Sample records for aeroelastic supercritical research

  1. Close-Range Photogrammetric Measurement of Static Deflections for an Aeroelastic Supercritical Wing

    NASA Technical Reports Server (NTRS)

    Byrdsong, Thomas A.; Adams, Richard R.; Sandford, Maynard C.

    1990-01-01

    Close range photogrammetric measurements were made for the lower wing surface of a full span aspect ratio 10.3 aeroelastic supercritical research wing. The measurements were made during wind tunnel tests for quasi-steady pressure distributions on the wing. The tests were conducted in the NASA Langley Transonic Dynamics Tunnel at Mach numbers up to 0.90 and dynamic pressures up to 300 pounds per square foot. Deflection data were obtained for 57 locations on the wing lower surface using dual non-metric cameras. Representative data are presented as graphical overview to show variations and trends of spar deflection with test variables. Comparative data are presented for photogrammetric and cathetometric results of measurements for the wing tip deflections. A tabulation of the basic measurements is presented in a supplement to this report.

  2. Overview of the Aeroelastic Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Heeg, Jennifer; Chwalowski, Pawel; Schuster, David M.; Dalenbring, Mats

    2013-01-01

    The AIAA Aeroelastic Prediction Workshop (AePW) was held in April, 2012, bringing together communities of aeroelasticians and computational fluid dynamicists. The objective in conducting this workshop on aeroelastic prediction was to assess state-of-the-art computational aeroelasticity methods as practical tools for the prediction of static and dynamic aeroelastic phenomena. No comprehensive aeroelastic benchmarking validation standard currently exists, greatly hindering validation and state-of-the-art assessment objectives. The workshop was a step towards assessing the state of the art in computational aeroelasticity. This was an opportunity to discuss and evaluate the effectiveness of existing computer codes and modeling techniques for unsteady flow, and to identify computational and experimental areas needing additional research and development. Three configurations served as the basis for the workshop, providing different levels of geometric and flow field complexity. All cases considered involved supercritical airfoils at transonic conditions. The flow fields contained oscillating shocks and in some cases, regions of separation. The computational tools principally employed Reynolds-Averaged Navier Stokes solutions. The successes and failures of the computations and the experiments are examined in this paper.

  3. Lessons Learned in the Selection and Development of Test Cases for the Aeroelastic Prediction Workshop: Rectangular Supercritical Wing

    NASA Technical Reports Server (NTRS)

    Heeg, Jennifer; Chwalowski, Pawel; Wieseman, Carol D.; Florance, Jennifer P.; Schuster, David M.

    2013-01-01

    The Aeroelastic Prediction Workshop brought together an international community of computational fluid dynamicists as a step in defining the state of the art in computational aeroelasticity. The Rectangular Supercritical Wing (RSW) was chosen as the first configuration to study due to its geometric simplicity, perceived simple flow field at transonic conditions and availability of an experimental data set containing forced oscillation response data. Six teams performed analyses of the RSW; they used Reynolds-Averaged Navier-Stokes flow solvers exercised assuming that the wing had a rigid structure. Both steady-state and forced oscillation computations were performed by each team. The results of these calculations were compared with each other and with the experimental data. The steady-state results from the computations capture many of the flow features of a classical supercritical airfoil pressure distribution. The most dominant feature of the oscillatory results is the upper surface shock dynamics. Substantial variations were observed among the computational solutions as well as differences relative to the experimental data. Contributing issues to these differences include substantial wind tunnel wall effects and diverse choices in the analysis parameters.

  4. FUN3D Analyses in Support of the Second Aeroelastic Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Chwalowski, Pawel; Heeg, Jennifer

    2016-01-01

    This paper presents the computational aeroelastic results generated in support of the second Aeroelastic Prediction Workshop for the Benchmark Supercritical Wing (BSCW) configurations and compares them to the experimental data. The computational results are obtained using FUN3D, an unstructured grid Reynolds- Averaged Navier-Stokes solver developed at NASA Langley Research Center. The analysis results include aerodynamic coefficients and surface pressures obtained for steady-state, static aeroelastic equilibrium, and unsteady flow due to a pitching wing or flutter prediction. Frequency response functions of the pressure coefficients with respect to the angular displacement are computed and compared with the experimental data. The effects of spatial and temporal convergence on the computational results are examined.

  5. Investigating the Transonic Flutter Boundary of the Benchmark Supercritical Wing

    NASA Technical Reports Server (NTRS)

    Heeg, Jennifer; Chwalowski, Pawel

    2017-01-01

    This paper builds on the computational aeroelastic results published previously and generated in support of the second Aeroelastic Prediction Workshop for the NASA Benchmark Supercritical Wing configuration. The computational results are obtained using FUN3D, an unstructured grid Reynolds-Averaged Navier-Stokes solver developed at the NASA Langley Research Center. The analysis results focus on understanding the dip in the transonic flutter boundary at a single Mach number (0.74), exploring an angle of attack range of ??1 to 8 and dynamic pressures from wind off to beyond flutter onset. The rigid analysis results are examined for insights into the behavior of the aeroelastic system. Both static and dynamic aeroelastic simulation results are also examined.

  6. Plans and Example Results for the 2nd AIAA Aeroelastic Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Heeg, Jennifer; Chwalowski, Pawel; Schuster, David M.; Raveh, Daniella; Jirasek, Adam; Dalenbring, Mats

    2015-01-01

    This paper summarizes the plans for the second AIAA Aeroelastic Prediction Workshop. The workshop is designed to assess the state-of-the-art of computational methods for predicting unsteady flow fields and aeroelastic response. The goals are to provide an impartial forum to evaluate the effectiveness of existing computer codes and modeling techniques, and to identify computational and experimental areas needing additional research and development. This paper provides guidelines and instructions for participants including the computational aerodynamic model, the structural dynamic properties, the experimental comparison data and the expected output data from simulations. The Benchmark Supercritical Wing (BSCW) has been chosen as the configuration for this workshop. The analyses to be performed will include aeroelastic flutter solutions of the wing mounted on a pitch-and-plunge apparatus.

  7. Activities in Aeroelasticity at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Perry, Boyd, III; Noll, Thomas E.

    1997-01-01

    This paper presents the results of recently-completed research and presents status reports of current research being performed within the Aeroelasticity Branch of the NASA Langley Research Center. Within the paper this research is classified as experimental, analytical, and theoretical aeroelastic research. The paper also describes the Langley Transonic Dynamics Tunnel, its features, capabilities, a new open-architecture data acquisition system, ongoing facility modifications, and the subsequent calibration of the facility.

  8. Ongoing Fixed Wing Research within the NASA Langley Aeroelasticity Branch

    NASA Technical Reports Server (NTRS)

    Bartels, Robert; Chwalowski, Pawel; Funk, Christie; Heeg, Jennifer; Hur, Jiyoung; Sanetrik, Mark; Scott, Robert; Silva, Walter; Stanford, Bret; Wiseman, Carol

    2015-01-01

    The NASA Langley Aeroelasticity Branch is involved in a number of research programs related to fixed wing aeroelasticity and aeroservoelasticity. These ongoing efforts are summarized here, and include aeroelastic tailoring of subsonic transport wing structures, experimental and numerical assessment of truss-braced wing flutter and limit cycle oscillations, and numerical modeling of high speed civil transport configurations. Efforts devoted to verification, validation, and uncertainty quantification of aeroelastic physics in a workshop setting are also discussed. The feasibility of certain future civil transport configurations will depend on the ability to understand and control complex aeroelastic phenomena, a goal that the Aeroelasticity Branch is well-positioned to contribute through these programs.

  9. Aeroelasticity at the NASA Langley Research Center Recent progress, new challenges

    NASA Technical Reports Server (NTRS)

    Hanson, P. W.

    1985-01-01

    Recent progress in aeroelasticity, particularly at the NASA Langley Research Center is reviewed to look at the questions answered and questions raised, and to attempt to define appropriate research emphasis needed in the near future and beyond. The paper is focused primarily on the NASA Langley Research Center (LaRC) Program because Langley is the lead NASA center for aerospace structures research, and essentially is the only one working in depth in the area of aeroelasticity. Historical trends in aeroelasticity are reviewed broadly in terms of technology and staffing particularly at the LaRC. Then, selected studies of the Loads and Aeroelasticity Division at LaRC and others over the past three years are presented with attention paid to unresolved questions. Finally, based on the results of these studies and on perceptions of design trends and aircraft operational requirements, future research needs in aeroelasticity are discussed.

  10. A historical overview of tiltrotor aeroelastic research at Langley Research Center

    NASA Technical Reports Server (NTRS)

    Kvaternik, Raymond G.

    1992-01-01

    The Bell/Boeing V-22 Osprey which is being developed for the U.S. Military is a tiltrotor aircraft combining the versatility of a helicopter with the range and speed of a turboprop airplane. The V-22 represents a tiltrotor lineage which goes back over forty years, during which time contributions to the technology base needed for its development were made by both government and industry. NASA Langley Research Center has made substantial contributions to tiltrotor technology in several areas, in particular in the area of aeroelasticity. The purpose of this talk is to present a summary of the tiltrotor aeroelastic research conducted at Langley which has contributed to that technology.

  11. Data Comparisons and Summary of the Second Aeroelastic Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Heeg, Jennifer; Wieseman, Carol D.; Chwalowski, Pawel

    2016-01-01

    This paper presents the computational results generated by participating teams of the second Aeroelastic Prediction Workshop and compare them with experimental data. Aeroelastic and rigid configurations of the Benchmark Supercritical Wing (BSCW) wind tunnel model served as the focus for the workshop. The comparison data sets include unforced ("steady") system responses, forced pitch oscillations and coupled fluid-structure responses. Integrated coefficients, frequency response functions, and flutter onset conditions are compared. The flow conditions studied were in the transonic range, including both attached and separated flow conditions. Some of the technical discussions that took place at the workshop are summarized.

  12. Research and Applications in Aeroelasticity and Structural Dynamics at the NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Abel, Irving

    1997-01-01

    An overview of recently completed programs in aeroelasticity and structural dynamics research at the NASA Langley Research Center is presented. Methods used to perform flutter clearance studies in the wind-tunnel on a high performance fighter are discussed. Recent advances in the use of smart structures and controls to solve aeroelastic problems, including flutter and gust response are presented. An aeroelastic models program designed to support an advanced high speed civil transport is described. An extension to transonic small disturbance theory that better predicts flows involving separation and reattachment is presented. The results of a research study to determine the effects of flexibility on the taxi and takeoff characteristics of a high speed civil transport are presented. The use of photogrammetric methods aboard Space Shuttle to measure spacecraft dynamic response is discussed. Issues associated with the jitter response of multi-payload spacecraft are discussed. Finally a Space Shuttle flight experiment that studied the control of flexible spacecraft is described.

  13. FUN3D Analyses in Support of the First Aeroelastic Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Chwalowski, Pawel; Heeg, Jennifer; Wieseman, Carol D.; Florance, Jennifer P.

    2013-01-01

    This paper presents the computational aeroelastic results generated in support of the first Aeroelastic Prediction Workshop for the Benchmark Supercritical Wing (BSCW) and the HIgh REynolds Number AeroStructural Dynamics (HIRENASD) configurations and compares them to the experimental data. The computational results are obtained using FUN3D, an unstructured grid Reynolds-averaged Navier-Stokes solver developed at NASA Langley Research Center. The analysis results for both configurations include aerodynamic coefficients and surface pressures obtained for steady-state or static aeroelastic equilibrium (BSCW and HIRENASD, respectively) and for unsteady flow due to a pitching wing (BSCW) or modally-excited wing (HIRENASD). Frequency response functions of the pressure coefficients with respect to displacement are computed and compared with the experimental data. For the BSCW, the shock location is computed aft of the experimentally-located shock position. The pressure distribution upstream of this shock is in excellent agreement with the experimental data, but the pressure downstream of the shock in the separated flow region does not match as well. For HIRENASD, very good agreement between the numerical results and the experimental data is observed at the mid-span wing locations.

  14. Unsteady aerodynamic modeling and active aeroelastic control

    NASA Technical Reports Server (NTRS)

    Edwards, J. W.

    1977-01-01

    Unsteady aerodynamic modeling techniques are developed and applied to the study of active control of elastic vehicles. The problem of active control of a supercritical flutter mode poses a definite design goal stability, and is treated in detail. The transfer functions relating the arbitrary airfoil motions to the airloads are derived from the Laplace transforms of the linearized airload expressions for incompressible two dimensional flow. The transfer function relating the motions to the circulatory part of these loads is recognized as the Theodorsen function extended to complex values of reduced frequency, and is termed the generalized Theodorsen function. Inversion of the Laplace transforms yields exact transient airloads and airfoil motions. Exact root loci of aeroelastic modes are calculated, providing quantitative information regarding subcritical and supercritical flutter conditions.

  15. A Review of Recent Aeroelastic Analysis Methods for Propulsion at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Reddy, T. S. R.; Bakhle, Milind A.; Srivastava, R.; Mehmed, Oral; Stefko, George L.

    1993-01-01

    This report reviews aeroelastic analyses for propulsion components (propfans, compressors and turbines) being developed and used at NASA LeRC. These aeroelastic analyses include both structural and aerodynamic models. The structural models include a typical section, a beam (with and without disk flexibility), and a finite-element blade model (with plate bending elements). The aerodynamic models are based on the solution of equations ranging from the two-dimensional linear potential equation to the three-dimensional Euler equations for multibladed configurations. Typical calculated results are presented for each aeroelastic model. Suggestions for further research are made. Many of the currently available aeroelastic models and analysis methods are being incorporated in a unified computer program, APPLE (Aeroelasticity Program for Propulsion at LEwis).

  16. Final design and fabrication of an active control system for flutter suppression on a supercritical aeroelastic research wing

    NASA Technical Reports Server (NTRS)

    Hodges, G. E.; Mcgehee, C. R.

    1981-01-01

    The final design and hardware fabrication was completed for an active control system capable of the required flutter suppression, compatible with and ready for installation in the NASA aeroelastic research wing number 1 (ARW-1) on Firebee II drone flight test vehicle. The flutter suppression system uses vertical acceleration at win buttock line 1.930 (76), with fuselage vertical and roll accelerations subtracted out, to drive wing outboard aileron control surfaces through appropriate symmetric and antisymmetric shaping filters. The goal of providing an increase of 20 percent above the unaugmented vehicle flutter velocity but below the maximum operating condition at Mach 0.98 is exceeded by the final flutter suppression system. Results indicate that the flutter suppression system mechanical and electronic components are ready for installation on the DAST ARW-1 wing and BQM-34E/F drone fuselage.

  17. Turbomachinery aeroelasticity at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Kaza, Krishna Rao V.

    1989-01-01

    The turbomachinery aeroelastic effort is focused on unstalled and stalled flutter, forced response, and whirl flutter of both single rotation and counter rotation propfans. It also includes forced response of the Space Shuttle Main Engine (SSME) turbopump blades. Because of certain unique features of propfans and the SSME turbopump blades, it is not possible to directly use the existing aeroelastic technology of conventional propellers, turbofans or helicopters. Therefore, reliable aeroelastic stability and response analysis methods for these propulsion systems must be developed. The development of these methods for propfans requires specific basic technology disciplines, such as 2-D and 3-D steady and unsteady aerodynamic theories in subsonic, transonic and supersonic flow regimes; modeling of composite blades; geometric nonlinear effects; and passive and active control of flutter and response. These methods are incorporated in a computer program, ASTROP. The program has flexibility such that new and future models in basic disciplines can be easily implemented.

  18. Numerical Investigations of the Benchmark Supercritical Wing in Transonic Flow

    NASA Technical Reports Server (NTRS)

    Chwalowski, Pawel; Heeg, Jennifer; Biedron, Robert T.

    2017-01-01

    This paper builds on the computational aeroelastic results published previously and generated in support of the second Aeroelastic Prediction Workshop for the NASA Benchmark Supercritical Wing (BSCW) configuration. The computational results are obtained using FUN3D, an unstructured grid Reynolds-Averaged Navier-Stokes solver developed at the NASA Langley Research Center. The analysis results show the effects of the temporal and spatial resolution, the coupling scheme between the flow and the structural solvers, and the initial excitation conditions on the numerical flutter onset. Depending on the free stream condition and the angle of attack, the above parameters do affect the flutter onset. Two conditions are analyzed: Mach 0.74 with angle of attack 0 and Mach 0.85 with angle of attack 5. The results are presented in the form of the damping values computed from the wing pitch angle response as a function of the dynamic pressure or in the form of dynamic pressure as a function of the Mach number.

  19. Aeroelasticity Benchmark Assessment: Subsonic Fixed Wing Program

    NASA Technical Reports Server (NTRS)

    Florance, Jennifer P.; Chwalowski, Pawel; Wieseman, Carol D.

    2010-01-01

    The fundamental technical challenge in computational aeroelasticity is the accurate prediction of unsteady aerodynamic phenomena and the effect on the aeroelastic response of a vehicle. Currently, a benchmarking standard for use in validating the accuracy of computational aeroelasticity codes does not exist. Many aeroelastic data sets have been obtained in wind-tunnel and flight testing throughout the world; however, none have been globally presented or accepted as an ideal data set. There are numerous reasons for this. One reason is that often, such aeroelastic data sets focus on the aeroelastic phenomena alone (flutter, for example) and do not contain associated information such as unsteady pressures and time-correlated structural dynamic deflections. Other available data sets focus solely on the unsteady pressures and do not address the aeroelastic phenomena. Other discrepancies can include omission of relevant data, such as flutter frequency and / or the acquisition of only qualitative deflection data. In addition to these content deficiencies, all of the available data sets present both experimental and computational technical challenges. Experimental issues include facility influences, nonlinearities beyond those being modeled, and data processing. From the computational perspective, technical challenges include modeling geometric complexities, coupling between the flow and the structure, grid issues, and boundary conditions. The Aeroelasticity Benchmark Assessment task seeks to examine the existing potential experimental data sets and ultimately choose the one that is viewed as the most suitable for computational benchmarking. An initial computational evaluation of that configuration will then be performed using the Langley-developed computational fluid dynamics (CFD) software FUN3D1 as part of its code validation process. In addition to the benchmarking activity, this task also includes an examination of future research directions. Researchers within the

  20. Physical properties of the benchmark models program supercritical wing

    NASA Technical Reports Server (NTRS)

    Dansberry, Bryan E.; Durham, Michael H.; Bennett, Robert M.; Turnock, David L.; Silva, Walter A.; Rivera, Jose A., Jr.

    1993-01-01

    The goal of the Benchmark Models Program is to provide data useful in the development and evaluation of aeroelastic computational fluid dynamics (CFD) codes. To that end, a series of three similar wing models are being flutter tested in the Langley Transonic Dynamics Tunnel. These models are designed to simultaneously acquire model response data and unsteady surface pressure data during wing flutter conditions. The supercritical wing is the second model of this series. It is a rigid semispan model with a rectangular planform and a NASA SC(2)-0414 supercritical airfoil shape. The supercritical wing model was flutter tested on a flexible mount, called the Pitch and Plunge Apparatus, that provides a well-defined, two-degree-of-freedom dynamic system. The supercritical wing model and associated flutter test apparatus is described and experimentally determined wind-off structural dynamic characteristics of the combined rigid model and flexible mount system are included.

  1. APPLE - An aeroelastic analysis system for turbomachines and propfans

    NASA Technical Reports Server (NTRS)

    Reddy, T. S. R.; Bakhle, Milind A.; Srivastava, R.; Mehmed, Oral

    1992-01-01

    This paper reviews aeroelastic analysis methods for propulsion elements (advanced propellers, compressors and turbines) being developed and used at NASA Lewis Research Center. These aeroelastic models include both structural and aerodynamic components. The structural models include the typical section model, the beam model with and without disk flexibility, and the finite element blade model with plate bending elements. The aerodynamic models are based on the solution of equations ranging from the two-dimensional linear potential equation for a cascade to the three-dimensional Euler equations for multi-blade configurations. Typical results are presented for each aeroelastic model. Suggestions for further research are indicated. All the available aeroelastic models and analysis methods are being incorporated into a unified computer program named APPLE (Aeroelasticity Program for Propulsion at LEwis).

  2. Survey of Army/NASA rotorcraft aeroelastic stability research

    NASA Technical Reports Server (NTRS)

    Ormiston, Robert A.; Warmbrodt, William G.; Hodges, Dewey H.; Peters, David A.

    1988-01-01

    Theoretical and experimental developments in the aeroelastic and aeromechanical stability of helicopters and tilt-rotor aircraft are addressed. Included are the underlying nonlinear structural mechanics of slender rotating beams, necessary for accurate modeling of elastic cantilever rotor blades, and the development of dynamic inflow, an unsteady aerodynamic theory for low frequency aeroelastic stability applications. Analytical treatment of isolated rotor stability in hover and forward flight, coupled rotor-fuselage stability are considered. Results of parametric investigations of system behavior are presented, and correlations between theoretical results and experimental data from small- and large-scale wind tunnel and flight testing are discussed.

  3. Aeroelastic stability and response of rotating structures

    NASA Technical Reports Server (NTRS)

    Keith, Theo G., Jr.

    1993-01-01

    A summary of the work performed during the progress period is presented. Analysis methods for predicting loads and instabilities of wind turbines were developed. Three new areas of research to aid the Advanced Turboprop Project (ATP) were initiated and developed. These three areas of research are aeroelastic analysis methods for cascades including blade and disk flexibility; stall flutter analysis; and computational aeroelasticity.

  4. Probabilistic Aeroelastic Analysis Developed for Turbomachinery Components

    NASA Technical Reports Server (NTRS)

    Reddy, T. S. R.; Mital, Subodh K.; Stefko, George L.; Pai, Shantaram S.

    2003-01-01

    Aeroelastic analyses for advanced turbomachines are being developed for use at the NASA Glenn Research Center and industry. However, these analyses at present are used for turbomachinery design with uncertainties accounted for by using safety factors. This approach may lead to overly conservative designs, thereby reducing the potential of designing higher efficiency engines. An integration of the deterministic aeroelastic analysis methods with probabilistic analysis methods offers the potential to design efficient engines with fewer aeroelastic problems and to make a quantum leap toward designing safe reliable engines. In this research, probabilistic analysis is integrated with aeroelastic analysis: (1) to determine the parameters that most affect the aeroelastic characteristics (forced response and stability) of a turbomachine component such as a fan, compressor, or turbine and (2) to give the acceptable standard deviation on the design parameters for an aeroelastically stable system. The approach taken is to combine the aeroelastic analysis of the MISER (MIStuned Engine Response) code with the FPI (fast probability integration) code. The role of MISER is to provide the functional relationships that tie the structural and aerodynamic parameters (the primitive variables) to the forced response amplitudes and stability eigenvalues (the response properties). The role of FPI is to perform probabilistic analyses by utilizing the response properties generated by MISER. The results are a probability density function for the response properties. The probabilistic sensitivities of the response variables to uncertainty in primitive variables are obtained as a byproduct of the FPI technique. The combined analysis of aeroelastic and probabilistic analysis is applied to a 12-bladed cascade vibrating in bending and torsion. Out of the total 11 design parameters, 6 are considered as having probabilistic variation. The six parameters are space-to-chord ratio (SBYC), stagger angle

  5. In-flight total forces, moments and static aeroelastic characteristics of an oblique-wing research airplane

    NASA Technical Reports Server (NTRS)

    Curry, R. E.; Sim, A. G.

    1984-01-01

    A low-speed flight investigation has provided total force and moment coefficients and aeroelastic effects for the AD-1 oblique-wing research airplane. The results were interpreted and compared with predictions that were based on wind tunnel data. An assessment has been made of the aeroelastic wing bending design criteria. Lateral-directional trim requirements caused by asymmetry were determined. At angles of attack near stall, flow visualization indicated viscous flow separation and spanwise vortex flow. These effects were also apparent in the force and moment data.

  6. Aeroelastic Analysis for Rotorcraft

    NASA Technical Reports Server (NTRS)

    Johnson, W.

    1982-01-01

    Aeroelastic-analysis computer program incorporates an analytical model of aeroelastic behavior of wide range of rotorcraft. Such an analytical model is desirable for both pretest predictions and posttest correlations. Program can be applied in investigations of isolated rotor aeroelasticity and helicopter-flight dynamics and could be employed as basis for more-extensive investigations or aeroelastic behavior, such as automatic control system design.

  7. Aeroelastic optimization methodology for viscous and turbulent flows

    NASA Astrophysics Data System (ADS)

    Barcelos Junior, Manuel Nascimento Dias

    2007-12-01

    In recent years, the development of faster computers and parallel processing allowed the application of high-fidelity analysis methods to the aeroelastic design of aircraft. However, these methods are restricted to the final design verification, mainly due to the computational cost involved in iterative design processes. Therefore, this work is concerned with the creation of a robust and efficient aeroelastic optimization methodology for inviscid, viscous and turbulent flows by using high-fidelity analysis and sensitivity analysis techniques. Most of the research in aeroelastic optimization, for practical reasons, treat the aeroelastic system as a quasi-static inviscid problem. In this work, as a first step toward the creation of a more complete aeroelastic optimization methodology for realistic problems, an analytical sensitivity computation technique was developed and tested for quasi-static aeroelastic viscous and turbulent flow configurations. Viscous and turbulent effects are included by using an averaged discretization of the Navier-Stokes equations, coupled with an eddy viscosity turbulence model. For quasi-static aeroelastic problems, the traditional staggered solution strategy has unsatisfactory performance when applied to cases where there is a strong fluid-structure coupling. Consequently, this work also proposes a solution methodology for aeroelastic and sensitivity analyses of quasi-static problems, which is based on the fixed point of an iterative nonlinear block Gauss-Seidel scheme. The methodology can also be interpreted as the solution of the Schur complement of the aeroelastic and sensitivity analyses linearized systems of equations. The methodologies developed in this work are tested and verified by using realistic aeroelastic systems.

  8. Research of aerohydrodynamic and aeroelastic processes on PNRPU HPC system

    NASA Astrophysics Data System (ADS)

    Modorskii, V. Ya.; Shevelev, N. A.

    2016-10-01

    Research of aerohydrodynamic and aeroelastic processes with the High Performance Computing Complex in PNIPU is actively conducted within the university priority development direction "Aviation engine and gas turbine technology". Work is carried out in two areas: development and use of domestic software and use of well-known foreign licensed applied software packets. In addition, the third direction associated with the verification of computational experiments - physical modeling, with unique proprietary experimental installations is being developed.

  9. Experimental unsteady pressures at flutter on the Supercritical Wing Benchmark Model

    NASA Technical Reports Server (NTRS)

    Dansberry, Bryan E.; Durham, Michael H.; Bennett, Robert M.; Rivera, Jose A.; Silva, Walter A.; Wieseman, Carol D.; Turnock, David L.

    1993-01-01

    This paper describes selected results from the flutter testing of the Supercritical Wing (SW) model. This model is a rigid semispan wing having a rectangular planform and a supercritical airfoil shape. The model was flutter tested in the Langley Transonic Dynamics Tunnel (TDT) as part of the Benchmark Models Program, a multi-year wind tunnel activity currently being conducted by the Structural Dynamics Division of NASA Langley Research Center. The primary objective of this program is to assist in the development and evaluation of aeroelastic computational fluid dynamics codes. The SW is the second of a series of three similar models which are designed to be flutter tested in the TDT on a flexible mount known as the Pitch and Plunge Apparatus. Data sets acquired with these models, including simultaneous unsteady surface pressures and model response data, are meant to be used for correlation with analytical codes. Presented in this report are experimental flutter boundaries and corresponding steady and unsteady pressure distribution data acquired over two model chords located at the 60 and 95 percent span stations.

  10. Loads and aeroelasticity division research and technology accomplishments for FY 1982 and plans for FY 1983

    NASA Technical Reports Server (NTRS)

    Gardner, J. E.

    1983-01-01

    Accomplishments of the past year and plans for the coming year are highlighted as they relate to five year plans and the objectives of the following technical areas: aerothermal loads; multidisciplinary analysis and optimization; unsteady aerodynamics; and configuration aeroelasticity. Areas of interest include thermal protection system concepts, active control, nonlinear aeroelastic analysis, aircraft aeroelasticity, and rotorcraft aeroelasticity and vibrations.

  11. Supercritical fluid technology: a promising approach in pharmaceutical research.

    PubMed

    Girotra, Priti; Singh, Shailendra Kumar; Nagpal, Kalpana

    2013-02-01

    Supercritical fluids possess the unique properties of behaving like liquids and gases, above their critical point. Supercritical fluid technology has recently emerged as a green and novel technique for various processes such as solubility enhancement of poorly soluble drugs, plasticization of polymers, surface modification, nanosizing and nanocrystal modification, and chromatographic extraction. Research interest in this area has been fuelled because of the numerous advantages that the technology offers over the conventional methods. This work aims to review the merits, demerits, and various processes such as rapid expansion of supercritical solutions (RESS), particles from gas saturated solutions (PGSS), gas antisolvent process (GAS), supercritical antisolvent process (SAS) and polymerization induced phase separation (PIPS), that have enabled this technology to considerably raise the interest of researchers over the past two decades. An insight has been given into the numerous applications of this technology in pharmaceutical industry and the future challenges which must be appropriately dealt with to make it effective on a commercial scale.

  12. Aeroelastic Tailoring for Stability Augmentation and Performance Enhancements of Tiltrotor Aircraft

    NASA Technical Reports Server (NTRS)

    Nixon, Mark W.; Piatak, David J.; Corso, Lawrence M.; Popelka, David A.

    1999-01-01

    The requirements for increased speed and productivity for tiltrotors has spawned several investigations associated with proprotor aeroelastic stability augmentation and aerodynamic performance enhancements. Included among these investigations is a focus on passive aeroelastic tailoring concepts which exploit the anisotropic capabilities of fiber composite materials. Researchers at Langley Research Center and Bell Helicopter have devoted considerable effort to assess the potential for using these materials to obtain aeroelastic responses which are beneficial to the important stability and performance considerations of tiltrotors. Both experimental and analytical studies have been completed to examine aeroelastic tailoring concepts for the tiltrotor, applied either to the wing or to the rotor blades. This paper reviews some of the results obtained in these aeroelastic tailoring investigations and discusses the relative merits associated with these approaches.

  13. Uncertainty Quantification in Aeroelasticity

    NASA Astrophysics Data System (ADS)

    Beran, Philip; Stanford, Bret; Schrock, Christopher

    2017-01-01

    Physical interactions between a fluid and structure, potentially manifested as self-sustained or divergent oscillations, can be sensitive to many parameters whose values are uncertain. Of interest here are aircraft aeroelastic interactions, which must be accounted for in aircraft certification and design. Deterministic prediction of these aeroelastic behaviors can be difficult owing to physical and computational complexity. New challenges are introduced when physical parameters and elements of the modeling process are uncertain. By viewing aeroelasticity through a nondeterministic prism, where key quantities are assumed stochastic, one may gain insights into how to reduce system uncertainty, increase system robustness, and maintain aeroelastic safety. This article reviews uncertainty quantification in aeroelasticity using traditional analytical techniques not reliant on computational fluid dynamics; compares and contrasts this work with emerging methods based on computational fluid dynamics, which target richer physics; and reviews the state of the art in aeroelastic optimization under uncertainty. Barriers to continued progress, for example, the so-called curse of dimensionality, are discussed.

  14. Non-linear aeroelastic prediction for aircraft applications

    NASA Astrophysics Data System (ADS)

    de C. Henshaw, M. J.; Badcock, K. J.; Vio, G. A.; Allen, C. B.; Chamberlain, J.; Kaynes, I.; Dimitriadis, G.; Cooper, J. E.; Woodgate, M. A.; Rampurawala, A. M.; Jones, D.; Fenwick, C.; Gaitonde, A. L.; Taylor, N. V.; Amor, D. S.; Eccles, T. A.; Denley, C. J.

    2007-05-01

    Current industrial practice for the prediction and analysis of flutter relies heavily on linear methods and this has led to overly conservative design and envelope restrictions for aircraft. Although the methods have served the industry well, it is clear that for a number of reasons the inclusion of non-linearity in the mathematical and computational aeroelastic prediction tools is highly desirable. The increase in available and affordable computational resources, together with major advances in algorithms, mean that non-linear aeroelastic tools are now viable within the aircraft design and qualification environment. The Partnership for Unsteady Methods in Aerodynamics (PUMA) Defence and Aerospace Research Partnership (DARP) was sponsored in 2002 to conduct research into non-linear aeroelastic prediction methods and an academic, industry, and government consortium collaborated to address the following objectives: To develop useable methodologies to model and predict non-linear aeroelastic behaviour of complete aircraft. To evaluate the methodologies on real aircraft problems. To investigate the effect of non-linearities on aeroelastic behaviour and to determine which have the greatest effect on the flutter qualification process. These aims have been very effectively met during the course of the programme and the research outputs include: New methods available to industry for use in the flutter prediction process, together with the appropriate coaching of industry engineers. Interesting results in both linear and non-linear aeroelastics, with comprehensive comparison of methods and approaches for challenging problems. Additional embryonic techniques that, with further research, will further improve aeroelastics capability. This paper describes the methods that have been developed and how they are deployable within the industrial environment. We present a thorough review of the PUMA aeroelastics programme together with a comprehensive review of the relevant research

  15. Development of Advanced Computational Aeroelasticity Tools at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Bartels, R. E.

    2008-01-01

    NASA Langley Research Center has continued to develop its long standing computational tools to address new challenges in aircraft and launch vehicle design. This paper discusses the application and development of those computational aeroelastic tools. Four topic areas will be discussed: 1) Modeling structural and flow field nonlinearities; 2) Integrated and modular approaches to nonlinear multidisciplinary analysis; 3) Simulating flight dynamics of flexible vehicles; and 4) Applications that support both aeronautics and space exploration.

  16. Some experiences in aircraft aeroelastic design using Preliminary Aeroelastic Design of Structures (PAD)

    NASA Technical Reports Server (NTRS)

    Radovcich, N. A.

    1984-01-01

    The design experience associated with a benchmark aeroelastic design of an out of production transport aircraft is discussed. Current work being performed on a high aspect ratio wing design is reported. The Preliminary Aeroelastic Design of Structures (PADS) system is briefly summarized and some operational aspects of generating the design in an automated aeroelastic design environment are discussed.

  17. An overview of aeroelasticity studies for the National Aero-Space Plane

    NASA Technical Reports Server (NTRS)

    Ricketts, Rodney H.; Noll, Thomas E.; Whitlow, Woodrow, Jr.; Huttsell, Lawrence J.

    1993-01-01

    The National Aero-Space Plane (NASP), or X-30, is a single-stage-to-orbit vehicle that is designed to takeoff and land on conventional runways. Research in aeroelasticity was conducted by the NASA and the Wright Laboratory to support the design of a flight vehicle by the national contractor team. This research includes the development of new computational codes for predicting unsteady aerodynamic pressures. In addition, studies were conducted to determine the aerodynamic heating effects on vehicle aeroelasticity and to determine the effects of fuselage flexibility on the stability of the control systems. It also includes the testing of scale models to better understand the aeroelastic behavior of the X-30 and to obtain data for code validation and correlation. This paper presents an overview of the aeroelastic research which has been conducted to support the airframe design.

  18. Internal Structural Design of the Common Research Model Wing Box for Aeroelastic Tailoring

    NASA Technical Reports Server (NTRS)

    Jutte, Christine V.; Stanford, Bret K.; Wieseman, Carol D.

    2015-01-01

    This work explores the use of alternative internal structural designs within a full-scale wing box structure for aeroelastic tailoring, with a focus on curvilinear spars, ribs, and stringers. The baseline wing model is a fully-populated, cantilevered wing box structure of the Common Research Model (CRM). Metrics of interest include the wing weight, the onset of dynamic flutter, and the static aeroelastic stresses. Twelve parametric studies alter the number of internal structural members along with their location, orientation, and curvature. Additional evaluation metrics are considered to identify design trends that lead to lighter-weight, aeroelastically stable wing designs. The best designs of the individual studies are compared and discussed, with a focus on weight reduction and flutter resistance. The largest weight reductions were obtained by removing the inner spar, and performance was maintained by shifting stringers forward and/or using curvilinear ribs: 5.6% weight reduction, a 13.9% improvement in flutter speed, but a 3.0% increase in stress levels. Flutter resistance was also maintained using straight-rotated ribs although the design had a 4.2% lower flutter speed than the curved ribs of similar weight and stress levels were higher. For some configurations, the differences between curved and straight ribs were smaller, which provides motivation for future optimization-based studies to fully exploit the trade-offs.

  19. Exploratory Studies in Generalized Predictive Control for Active Aeroelastic Control of Tiltrotor Aircraft

    NASA Technical Reports Server (NTRS)

    Kvaternik, Raymond G.; Juang, Jer-Nan; Bennett, Richard L.

    2000-01-01

    The Aeroelasticity Branch at NASA Langley Research Center has a long and substantive history of tiltrotor aeroelastic research. That research has included a broad range of experimental investigations in the Langley Transonic Dynamics Tunnel (TDT) using a variety of scale models and the development of essential analyses. Since 1994, the tiltrotor research program has been using a 1/5-scale, semispan aeroelastic model of the V-22 designed and built by Bell Helicopter Textron Inc. (BHTI) in 1981. That model has been refurbished to form a tiltrotor research testbed called the Wing and Rotor Aeroelastic Test System (WRATS) for use in the TDT. In collaboration with BHTI, studies under the current tiltrotor research program are focused on aeroelastic technology areas having the potential for enhancing the commercial and military viability of tiltrotor aircraft. Among the areas being addressed, considerable emphasis is being directed to the evaluation of modern adaptive multi-input multi- output (MIMO) control techniques for active stability augmentation and vibration control of tiltrotor aircraft. As part of this investigation, a predictive control technique known as Generalized Predictive Control (GPC) is being studied to assess its potential for actively controlling the swashplate of tiltrotor aircraft to enhance aeroelastic stability in both helicopter and airplane modes of flight. This paper summarizes the exploratory numerical and experimental studies that were conducted as part of that investigation.

  20. Experimental aeroelasticity history, status and future in brief

    NASA Technical Reports Server (NTRS)

    Ricketts, Rodney H.

    1990-01-01

    NASA conducts wind tunnel experiments to determine and understand the aeroelastic characteristics of new and advanced flight vehicles, including fixed-wing, rotary-wing and space-launch configurations. Review and assessments are made of the state-of-the-art in experimental aeroelasticity regarding available facilities, measurement techniques, and other means and devices useful in testing. In addition, some past experimental programs are described which assisted in the development of new technology, validated new analysis codes, or provided needed information for clearing flight envelopes of unwanted aeroelastic response. Finally, needs and requirements for advances and improvements in testing capabilities for future experimental research and development programs are described.

  1. Plans for Aeroelastic Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Heeg, Jennifer; Ballmann, Josef; Bhatia, Kumar; Blades, Eric; Boucke, Alexander; Chwalowski, Pawel; Dietz, Guido; Dowell, Earl; Florance, Jennifer P.; Hansen, Thorsten; hide

    2011-01-01

    This paper summarizes the plans for the first Aeroelastic Prediction Workshop. The workshop is designed to assess the state of the art of computational methods for predicting unsteady flow fields and aeroelastic response. The goals are to provide an impartial forum to evaluate the effectiveness of existing computer codes and modeling techniques, and to identify computational and experimental areas needing additional research and development. Three subject configurations have been chosen from existing wind tunnel data sets where there is pertinent experimental data available for comparison. For each case chosen, the wind tunnel testing was conducted using forced oscillation of the model at specified frequencies

  2. Dynamic Deformation Measurements of an Aeroelastic Semispan Model. [conducted in the Transonic Dynamics Tunnel at the NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Graves, Sharon S.; Burner, Alpheus W.; Edwards, John W.; Schuster, David M.

    2001-01-01

    The techniques used to acquire, reduce, and analyze dynamic deformation measurements of an aeroelastic semispan wind tunnel model are presented. Single-camera, single-view video photogrammetry (also referred to as videogrammetric model deformation, or VMD) was used to determine dynamic aeroelastic deformation of the semispan 'Models for Aeroelastic Validation Research Involving Computation' (MAVRIC) model in the Transonic Dynamics Tunnel at the NASA Langley Research Center. Dynamic deformation was determined from optical retroreflective tape targets at five semispan locations located on the wing from the root to the tip. Digitized video images from a charge coupled device (CCD) camera were recorded and processed to automatically determine target image plane locations that were then corrected for sensor, lens, and frame grabber spatial errors. Videogrammetric dynamic data were acquired at a 60-Hz rate for time records of up to 6 seconds during portions of this flutter/Limit Cycle Oscillation (LCO) test at Mach numbers from 0.3 to 0.96. Spectral analysis of the deformation data is used to identify dominant frequencies in the wing motion. The dynamic data will be used to separate aerodynamic and structural effects and to provide time history deflection data for Computational Aeroelasticity code evaluation and validation.

  3. Study of the feasibility aspects of flight testing an aeroelastically tailored forward swept research wing on a BQM-34F drone vehicle

    NASA Technical Reports Server (NTRS)

    Mourey, D. J.

    1979-01-01

    The aspects of flight testing an aeroelastically tailored forward swept research wing on a BQM-34F drone vehicle are examined. The geometry of a forward swept wing, which is incorporated into the BQM-34F to maintain satisfactory flight performance, stability, and control is defined. A preliminary design of the aeroelastically tailored forward swept wing is presented.

  4. Technical activities of the configuration aeroelasticity branch

    NASA Technical Reports Server (NTRS)

    Cole, Stanley R. (Editor)

    1991-01-01

    A number of recent technical activities of the Configuration Aeroelasticity Branch of the NASA Langley Research Center are discussed in detail. The information on the research branch is compiled in twelve separate papers. The first of these topics is a summary of the purpose of the branch, including a full description of the branch and its associated projects and program efforts. The next ten papers cover specific projects and are as follows: Experimental transonic flutter characteristics of supersonic cruise configurations; Aeroelastic effects of spoiler surfaces mounted on a low aspect ratio rectangular wing; Planform curvature effects on flutter of 56 degree swept wing determined in Transonic Dynamics Tunnel (TDT); An introduction to rotorcraft testing in TDT; Rotorcraft vibration reduction research at the TDT; A preliminary study to determine the effects of tip geometry on the flutter of aft swept wings; Aeroelastic models program; NACA 0012 pressure model and test plan; Investigation of the use of extension twist coupling in composite rotor blades; and Improved finite element methods for rotorcraft structures. The final paper describes the primary facility operation by the branch, the Langley TDT.

  5. Computation of aeroelastic characteristics and stress-strained state of parachutes

    NASA Astrophysics Data System (ADS)

    Dneprov, Igor'v.

    The paper presents computation results of the stress-strained state and aeroelastic characteristics of different types of parachutes in the process of their interaction with a flow. Simulation of the aerodynamic part of the aeroelastic problem is based on the discrete vortex method, while the elastic part of the problem is solved by employing either the finite element method, or the finite difference method. The research covers the following problems of the axisymmetric parachutes dynamic aeroelasticity: parachute inflation, forebody influence on the aerodynamic characteristics of the object-parachute system, parachute disreefing, parachute inflation in the presence of the engagement parachute. The paper also presents the solution of the spatial problem of static aeroelasticity for a single-envelope ram-air parachute. Some practical recommendations are suggested.

  6. Status of NASA full-scale engine aeroelasticity research

    NASA Technical Reports Server (NTRS)

    Lubomski, J. F.

    1980-01-01

    Data relevant to several types of aeroelastic instabilities were obtained using several types of turbojet and turbofan engines. In particular, data relative to separated flow (stall) flutter, choke flutter, and system mode instabilities are presented. The unique characteristics of these instabilities are discussed, and a number of correlations are presented that help identify the nature of the phenomena.

  7. Aeroelasticity - Frontiers and beyond /von Karman Lecture/

    NASA Technical Reports Server (NTRS)

    Garrick, I. E.

    1976-01-01

    The lecture aims at giving a broad survey of the current reaches of aeroelasticity with some narrower views for the specialist. After a short historical review of concepts for orientation, several topics are briefly presented. These touch on current flight vehicles having special points of aeroelastic interest; recent developments in the active control of aeroelastic response including control of flutter; remarks on the unsteady aerodynamics of arbitrary configurations; problems of the space shuttle related to aeroelasticity; and aeroelastic response in flight.

  8. Experimental Results from the Active Aeroelastic Wing Wind Tunnel Test Program

    NASA Technical Reports Server (NTRS)

    Heeg, Jennifer; Spain, Charles V.; Florance, James R.; Wieseman, Carol D.; Ivanco, Thomas G.; DeMoss, Joshua; Silva, Walter A.; Panetta, Andrew; Lively, Peter; Tumwa, Vic

    2005-01-01

    The Active Aeroelastic Wing (AAW) program is a cooperative effort among NASA, the Air Force Research Laboratory and the Boeing Company, encompassing flight testing, wind tunnel testing and analyses. The objective of the AAW program is to investigate the improvements that can be realized by exploiting aeroelastic characteristics, rather than viewing them as a detriment to vehicle performance and stability. To meet this objective, a wind tunnel model was crafted to duplicate the static aeroelastic behavior of the AAW flight vehicle. The model was tested in the NASA Langley Transonic Dynamics Tunnel in July and August 2004. The wind tunnel investigation served the program goal in three ways. First, the wind tunnel provided a benchmark for comparison with the flight vehicle and various levels of theoretical analyses. Second, it provided detailed insight highlighting the effects of individual parameters upon the aeroelastic response of the AAW vehicle. This parameter identification can then be used for future aeroelastic vehicle design guidance. Third, it provided data to validate scaling laws and their applicability with respect to statically scaled aeroelastic models.

  9. A Summary of Data and Findings from the First Aeroelastic Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Schuster, David M.; Chwalowski, Pawel.; Heeg, Jennifer; Wieseman, Carol D.

    2012-01-01

    This paper summarizes data and findings from the first Aeroelastic Prediction Workshop (AePW) held in April, 2012. The workshop has been designed as a series of technical interchange meetings to assess the state of the art of computational methods for predicting unsteady flowfields and static and dynamic aeroelastic response. The goals are to provide an impartial forum to evaluate the effectiveness of existing computer codes and modeling techniques to simulate aeroelastic problems, and to identify computational and experimental areas needing additional research and development. For this initial workshop, three subject configurations have been chosen from existing wind tunnel data sets where there is pertinent experimental data available for comparison. Participant researchers analyzed one or more of the subject configurations and results from all of these computations were compared at the workshop. Keywords: Unsteady Aerodynamics, Aeroelasticity, Computational Fluid Dynamics, Transonic Flow, Separated Flow.

  10. Development of moving spars for active aeroelastic structures

    NASA Astrophysics Data System (ADS)

    Amprikidis, Michael; Cooper, Jonathan E.

    2003-08-01

    This paper describes a research program investigating the development of "moving spars" to enable active aeroelastic control of aerospace structures. A number of different concepts have been considered as part of the EU funded Active Aeroelastic Aircraft Structures (3AS) project that enable the control of the bending and torsional stiffness of aircraft wings through changes in the internal aircraft structure. The aeroelastic behaviour, in particular static deflections, can be controlled as desired through changes in the position, orientation and stiffness of the spars. The concept described in this paper is based upon translational movement of the spars. This will result in changes in the torsional stiffness and shear centre position whilst leaving the bending stiffness unaffected. An analytical study of the aeroelastic behaviour demonstrates the benefits of using such an approach. An experimental investigation involving construction and bench testing of the concepts was undertaken to demonstrate its feasibility. Finally, a wind tunnel test of simple wing models constructed using these concepts was performed. The simulated and experimental results show that it is possible to control the wind twist in practice.

  11. Research on unsteady transonic flow theory

    NASA Technical Reports Server (NTRS)

    Revell, J. D.

    1973-01-01

    A two-dimensional theory is considered for the unsteady flow disturbances caused by aeroelastic deformations of a thick wing at high subsonic freestream Mach numbers, having a single, internally embedded supercritical (locally supersonic) steady flow region adjacent to the low pressure side of the wing. The theory develops a matrix of unsteady aerodynamic influence coefficients (AICs) suitable as a strip theory for aeroelastic analysis of large aspect ratio thick wings of moderate sweep, typical of a wide class of current and future aircraft. The theory derives the linearized unsteady flow solutions separately for both the subcritical and supercritical regions. These solutions are coupled together to give the requisite (wing pressure-downwash) AICs by the intermediate step of defining flow disturbances on the sonic line, and at the shock wave; these intermediate quantities are then algebraically eliminated by expressing them in terms of the wing surface downwash.

  12. Recent Applications of Higher-Order Spectral Analysis to Nonlinear Aeroelastic Phenomena

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.; Hajj, Muhammad R.; Dunn, Shane; Strganac, Thomas W.; Powers, Edward J.; Stearman, Ronald

    2005-01-01

    Recent applications of higher-order spectral (HOS) methods to nonlinear aeroelastic phenomena are presented. Applications include the analysis of data from a simulated nonlinear pitch and plunge apparatus and from F-18 flight flutter tests. A MATLAB model of the Texas A&MUniversity s Nonlinear Aeroelastic Testbed Apparatus (NATA) is used to generate aeroelastic transients at various conditions including limit cycle oscillations (LCO). The Gaussian or non-Gaussian nature of the transients is investigated, related to HOS methods, and used to identify levels of increasing nonlinear aeroelastic response. Royal Australian Air Force (RAAF) F/A-18 flight flutter test data is presented and analyzed. The data includes high-quality measurements of forced responses and LCO phenomena. Standard power spectral density (PSD) techniques and HOS methods are applied to the data and presented. The goal of this research is to develop methods that can identify the onset of nonlinear aeroelastic phenomena, such as LCO, during flutter testing.

  13. Aeroelastic Sizing for High-Speed Research (HSR) Longitudinal Control Alternatives Project (LCAP)

    NASA Technical Reports Server (NTRS)

    Walsh, Joanne L.; Dunn, H. J.; Stroud, W. Jefferson; Barthelemy, J.-F.; Weston, Robert P.; Martin, Carl J.; Bennett, Robert M.

    2005-01-01

    The Longitudinal Control Alternatives Project (LCAP) compared three high-speed civil transport configurations to determine potential advantages of the three associated longitudinal control concepts. The three aircraft configurations included a conventional configuration with a layout having a horizontal aft tail, a configuration with a forward canard in addition to a horizontal aft tail, and a configuration with only a forward canard. The three configurations were aeroelastically sized and were compared on the basis of operational empty weight (OEW) and longitudinal control characteristics. The sized structure consisted of composite honeycomb sandwich panels on both the wing and the fuselage. Design variables were the core depth of the sandwich and the thicknesses of the composite material which made up the face sheets of the sandwich. Each configuration was sized for minimum structural weight under linear and nonlinear aeroelastic loads subject to strain, buckling, ply-mixture, and subsonic and supersonic flutter constraints. This report describes the methods that were used and the results that were generated for the aeroelastic sizing of the three configurations.

  14. Harmonic Balance Computations of Fan Aeroelastic Stability

    NASA Technical Reports Server (NTRS)

    Bakhle, Milind A.; Reddy, T. S. R.

    2010-01-01

    A harmonic balance (HB) aeroelastic analysis, which has been recently developed, was used to determine the aeroelastic stability (flutter) characteristics of an experimental fan. To assess the numerical accuracy of this HB aeroelastic analysis, a time-domain aeroelastic analysis was also used to determine the aeroelastic stability characteristics of the same fan. Both of these three-dimensional analysis codes model the unsteady flowfield due to blade vibrations using the Reynolds-averaged Navier-Stokes (RANS) equations. In the HB analysis, the unsteady flow equations are converted to a HB form and solved using a pseudo-time marching method. In the time-domain analysis, the unsteady flow equations are solved using an implicit time-marching approach. Steady and unsteady computations for two vibration modes were carried out at two rotational speeds: 100 percent (design) and 70 percent (part-speed). The steady and unsteady results obtained from the two analysis methods compare well, thus verifying the recently developed HB aeroelastic analysis. Based on the results, the experimental fan was found to have no aeroelastic instability (flutter) at the conditions examined in this study.

  15. Helicopter rotor dynamics and aeroelasticity - Some key ideas and insights

    NASA Technical Reports Server (NTRS)

    Friedmann, Peretz P.

    1990-01-01

    Four important current topics in helicopter rotor dynamics and aeroelasticity are discussed: (1) the role of geometric nonlinearities in rotary-wing aeroelasticity; (2) structural modeling, free vibration, and aeroelastic analysis of composite rotor blades; (3) modeling of coupled rotor/fuselage areomechanical problems and their active control; and (4) use of higher-harmonic control for vibration reduction in helicopter rotors in forward flight. The discussion attempts to provide an improved fundamental understanding of the current state of the art. In this way, future research can be focused on problems which remain to be solved instead of producing marginal improvements on problems which are already understood.

  16. Aeroelastic Tailoring of Transport Aircraft Wings: State-of-the-Art and Potential Enabling Technologies

    NASA Technical Reports Server (NTRS)

    Jutte, Christine; Stanford, Bret K.

    2014-01-01

    This paper provides a brief overview of the state-of-the-art for aeroelastic tailoring of subsonic transport aircraft and offers additional resources on related research efforts. Emphasis is placed on aircraft having straight or aft swept wings. The literature covers computational synthesis tools developed for aeroelastic tailoring and numerous design studies focused on discovering new methods for passive aeroelastic control. Several new structural and material technologies are presented as potential enablers of aeroelastic tailoring, including selectively reinforced materials, functionally graded materials, fiber tow steered composite laminates, and various nonconventional structural designs. In addition, smart materials and structures whose properties or configurations change in response to external stimuli are presented as potential active approaches to aeroelastic tailoring.

  17. Development of an Aeroelastic Code Based on an Euler/Navier-Stokes Aerodynamic Solver

    NASA Technical Reports Server (NTRS)

    Bakhle, Milind A.; Srivastava, Rakesh; Keith, Theo G., Jr.; Stefko, George L.; Janus, Mark J.

    1996-01-01

    This paper describes the development of an aeroelastic code (TURBO-AE) based on an Euler/Navier-Stokes unsteady aerodynamic analysis. A brief review of the relevant research in the area of propulsion aeroelasticity is presented. The paper briefly describes the original Euler/Navier-Stokes code (TURBO) and then details the development of the aeroelastic extensions. The aeroelastic formulation is described. The modeling of the dynamics of the blade using a modal approach is detailed, along with the grid deformation approach used to model the elastic deformation of the blade. The work-per-cycle approach used to evaluate aeroelastic stability is described. Representative results used to verify the code are presented. The paper concludes with an evaluation of the development thus far, and some plans for further development and validation of the TURBO-AE code.

  18. Aeroelasticity matters: Some reflections on two decades of testing in the NASA Langley transonic dynamics tunnel

    NASA Technical Reports Server (NTRS)

    Reed, W. H., III

    1981-01-01

    Testing of wind-tunnel aeroelastic models is a well established, widely used means of studying flutter trends, validating theory and investigating flutter margins of safety of new vehicle designs. The Langley Transonic Dynamics Tunnel was designed specifically for work on dynamics and aeroelastic problems of aircraft and space vehicles. A cross section of aeroelastic research and testing in the facility since it became operational more than two decades ago is presented. Examples selected from a large store of experience illustrate the nature and purpose of some major areas of work performed in the tunnel. These areas include: specialized experimental techniques; development testing of new aircraft and launch vehicle designs; evaluation of proposed "fixes" to solve aeroelastic problems uncovered during development testing; study of unexpected aeroelastic phenomena (i.e., "surprises"); control of aeroelastic effects by active and passive means; and, finally, fundamental research involving measurement of unsteady pressures on oscillating wings and control surface.

  19. Loads and aeroelasticity division research and technology accomplishments for FY 1985 and plans for FY 1986

    NASA Technical Reports Server (NTRS)

    Gardner, J. E.; Dixon, S. C.

    1986-01-01

    The Langley Research Center Loads and Aeroelasticity Division's research accomplishments for FY85 and research plans for FY86 are presented. The rk under each branch (technical area) will be described in terms of highlights of accomplishments during the past year and highlights of plans for the current year as they relate to five year plans for each technical area. This information will be useful in program coordination with other government organizations and industry in areas of mutual interest.

  20. Unsteady-Pressure and Dynamic-Deflection Measurements on an Aeroelastic Supercritical Wing

    NASA Technical Reports Server (NTRS)

    Seidel, David A.; Sandford, Maynard C.; Eckstrom, Clinton V.

    1991-01-01

    Transonic steady and unsteady pressure tests were conducted on a large elastic wing. The wing has a supercritical airfoil, a full span aspect ratio of 10.3, a leading edge sweepback angle of 28.8 degrees, and two inboard and one outboard trailing edge control surfaces. Only the outboard control surface was deflected statically and dynamically to generate steady and unsteady flow over the wing. The unsteady surface pressure and dynamic deflection measurements of this elastic wing are presented to permit correlations of the experimental data with theoretical predictions.

  1. Computational Aeroelastic Modeling of Airframes and TurboMachinery: Progress and Challenges

    NASA Technical Reports Server (NTRS)

    Bartels, R. E.; Sayma, A. I.

    2006-01-01

    Computational analyses such as computational fluid dynamics and computational structural dynamics have made major advances toward maturity as engineering tools. Computational aeroelasticity is the integration of these disciplines. As computational aeroelasticity matures it too finds an increasing role in the design and analysis of aerospace vehicles. This paper presents a survey of the current state of computational aeroelasticity with a discussion of recent research, success and continuing challenges in its progressive integration into multidisciplinary aerospace design. This paper approaches computational aeroelasticity from the perspective of the two main areas of application: airframe and turbomachinery design. An overview will be presented of the different prediction methods used for each field of application. Differing levels of nonlinear modeling will be discussed with insight into accuracy versus complexity and computational requirements. Subjects will include current advanced methods (linear and nonlinear), nonlinear flow models, use of order reduction techniques and future trends in incorporating structural nonlinearity. Examples in which computational aeroelasticity is currently being integrated into the design of airframes and turbomachinery will be presented.

  2. Aeroelastic System Development Using Proper Orthogonal Decomposition and Volterra Theory

    NASA Technical Reports Server (NTRS)

    Lucia, David J.; Beran, Philip S.; Silva, Walter A.

    2003-01-01

    This research combines Volterra theory and proper orthogonal decomposition (POD) into a hybrid methodology for reduced-order modeling of aeroelastic systems. The out-come of the method is a set of linear ordinary differential equations (ODEs) describing the modal amplitudes associated with both the structural modes and the POD basis functions for the uid. For this research, the structural modes are sine waves of varying frequency, and the Volterra-POD approach is applied to the fluid dynamics equations. The structural modes are treated as forcing terms which are impulsed as part of the uid model realization. Using this approach, structural and uid operators are coupled into a single aeroelastic operator. This coupling converts a free boundary uid problem into an initial value problem, while preserving the parameter (or parameters) of interest for sensitivity analysis. The approach is applied to an elastic panel in supersonic cross ow. The hybrid Volterra-POD approach provides a low-order uid model in state-space form. The linear uid model is tightly coupled with a nonlinear panel model using an implicit integration scheme. The resulting aeroelastic model provides correct limit-cycle oscillation prediction over a wide range of panel dynamic pressure values. Time integration of the reduced-order aeroelastic model is four orders of magnitude faster than the high-order solution procedure developed for this research using traditional uid and structural solvers.

  3. Development of an Aeroelastic Analysis Including a Viscous Flow Model

    NASA Technical Reports Server (NTRS)

    Keith, Theo G., Jr.; Bakhle, Milind A.

    2001-01-01

    Under this grant, Version 4 of the three-dimensional Navier-Stokes aeroelastic code (TURBO-AE) has been developed and verified. The TURBO-AE Version 4 aeroelastic code allows flutter calculations for a fan, compressor, or turbine blade row. This code models a vibrating three-dimensional bladed disk configuration and the associated unsteady flow (including shocks, and viscous effects) to calculate the aeroelastic instability using a work-per-cycle approach. Phase-lagged (time-shift) periodic boundary conditions are used to model the phase lag between adjacent vibrating blades. The direct-store approach is used for this purpose to reduce the computational domain to a single interblade passage. A disk storage option, implemented using direct access files, is available to reduce the large memory requirements of the direct-store approach. Other researchers have implemented 3D inlet/exit boundary conditions based on eigen-analysis. Appendix A: Aeroelastic calculations based on three-dimensional euler analysis. Appendix B: Unsteady aerodynamic modeling of blade vibration using the turbo-V3.1 code.

  4. Theoretical and experimental research in aeroelastic stability of an advanced bearingless rotor for future helicopters

    NASA Technical Reports Server (NTRS)

    Wang, James M.

    1991-01-01

    The aeroelastic stability of a shaft-fixed bearingless rotor is analyzed in wind-tunnel tests for a wide range of operating conditions in order to determine whether such a system could be made aeroelastically stable without incorporating auxiliary dampers. The model rotor and blade properties are determined and used as an input to a bearingless-rotor analysis. Theoretical predictions are compared with experimental results in hover and forward flights. The analysis predicts the lag mode damping satisfactorily for collective pitch between 5 deg and 10 deg; however, the quasi-steady linear aerodynamic modeling overpredicts the damping values for higher collective pitch settings. It is noted that soft blade pitch links improve aeroelastic stability in hover and at low advance ratio.

  5. Survey of Army/NASA Rotorcraft Aeroelastic Stability Research

    DTIC Science & Technology

    1988-10-01

    modal analysis of aeroelastic sLaoili:v of .niform 5ant:- lever rotor blades that clearlv .llustra:ea the significar: ;.fl- ence : :ne -cn - ear bending... ence 8, the Newtonian approach does, not necessarily yield a syMetriC structural operator and althort3. the equations from the two methods are not... ence 69 to a true finite-element form so that the generalized coorainates were actual displacements and slopes at ends of the element. In addition to the

  6. Loads and Aeroelasticity Division research and technology accomplishments for FY 1986 and plans for FY 1987

    NASA Technical Reports Server (NTRS)

    Gardner, James E.; Dixon, S. C.

    1987-01-01

    The Loads and Aeroelasticity Division's research accomplishments for FY 86 and research plans for FY 87 are presented. The work under each Branch (technical area) is described in terms of highlights of accomplishments during the past year and highlights of plans for the current year as they relate to five year plans for each technical area. This information will be useful in program coordination with other government organizations and industry in areas of mutual interest.

  7. An overview of selected NASP aeroelastic studies at the NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Spain, Charles V.; Soistmann, David L.; Parker, Ellen C.; Gibbons, Michael D.; Gilbert, Michael G.

    1990-01-01

    Following an initial discussion of the NASP flight environment, the results of recent aeroelastic testing of NASP-type highly swept delta-wing models in Langley's Transonic Dynamics Tunnel (TDT) are summarized. Subsonic and transonic flutter characteristics of a variety of these models are described, and several analytical codes used to predict flutter of these models are evaluated. These codes generally provide good, but conservative predictions of subsonic and transonic flutter. Also, test results are presented on a nonlinear transonic phenomena known as aileron buzz which occurred in the wind tunnel on highly swept delta wings with full-span ailerons. An analytical procedure which assesses the effects of hypersonic heating on aeroelastic instabilities (aerothermoelasticity) is also described. This procedure accurately predicted flutter of a heated aluminum wing on which experimental data exists. Results are presented on the application of this method to calculate the flutter characteristics of a fine-element model of a generic NASP configuration. Finally, it is demonstrated analytically that active controls can be employed to improve the aeroelastic stability and ride quality of a generic NASP vehicle flying at hypersonic speeds.

  8. Overview: Performance Adaptive Aeroelastic Wing

    NASA Technical Reports Server (NTRS)

    Hashemi, Kelley

    2017-01-01

    An overview of recent aeroelasitc wing-shaping work at the NASA Ames Research Center is presented. The highlight focuses on activity related to the Performance Adaptive Aeroelastic Wing concept and related Variable Camber Continuous Trailing Edge Flap actuation system. Topics covered include drag-reducing configurations and online algorithms, gust and maneuver load techniques, and wind tunnel demonstrations.

  9. Aeroelastic Tailoring of the NASA Common Research Model via Novel Material and Structural Configurations

    NASA Technical Reports Server (NTRS)

    Jutte, Christine V.; Stanford, Bret K.; Wieseman, Carol D.; Moore, James B.

    2014-01-01

    This work explores the use of tow steered composite laminates, functionally graded metals (FGM), thickness distributions, and curvilinear rib/spar/stringer topologies for aeroelastic tailoring. Parameterized models of the Common Research Model (CRM) wing box have been developed for passive aeroelastic tailoring trade studies. Metrics of interest include the wing weight, the onset of dynamic flutter, and the static aeroelastic stresses. Compared to a baseline structure, the lowest aggregate static wing stresses could be obtained with tow steered skins (47% improvement), and many of these designs could reduce weight as well (up to 14%). For these structures, the trade-off between flutter speed and weight is generally strong, although one case showed both a 100% flutter improvement and a 3.5% weight reduction. Material grading showed no benefit in the skins, but moderate flutter speed improvements (with no weight or stress increase) could be obtained by grading the spars (4.8%) or ribs (3.2%), where the best flutter results were obtained by grading both thickness and material. For the topology work, large weight reductions were obtained by removing an inner spar, and performance was maintained by shifting stringers forward and/or using curvilinear ribs: 5.6% weight reduction, a 13.9% improvement in flutter speed, but a 3.0% increase in stress levels. Flutter resistance was also maintained using straightrotated ribs although the design had a 4.2% lower flutter speed than the curved ribs of similar weight and stress levels were higher. These results will guide the development of a future design optimization scheme established to exploit and combine the individual attributes of these technologies.

  10. Airloads, wakes, and aeroelasticity

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne

    1990-01-01

    Fundamental considerations regarding the theory of modeling of rotary wing airloads, wakes, and aeroelasticity are presented. The topics covered are: airloads and wakes, including lifting-line theory, wake models and nonuniform inflow, free wake geometry, and blade-vortex interaction; aerodynamic and wake models for aeroelasticity, including two-dimensional unsteady aerodynamics and dynamic inflow; and airloads and structural dynamics, including comprehensive airload prediction programs. Results of calculations and correlations are presented.

  11. Controlled Aeroelastic Response and Airfoil Shaping Using Adaptive Materials and Integrated Systems

    NASA Technical Reports Server (NTRS)

    Pinkerton, Jennifer L.; McGowan, Anna-Maria R.; Moses, Robert W.; Scott, Robert C.; Heeg, Jennifer

    1996-01-01

    This paper presents an overview of several activities of the Aeroelasticity Branch at the NASA Langley Research Center in the area of applying adaptive materials and integrated systems for controlling both aircraft aeroelastic response and airfoil shape. The experimental results of four programs are discussed: the Piezoelectric Aeroelastic Response Tailoring Investigation (PARTI); the Adaptive Neural Control of Aeroelastic Response (ANCAR) program; the Actively Controlled Response of Buffet Affected Tails (ACROBAT) program; and the Airfoil THUNDER Testing to Ascertain Characteristics (ATTACH) project. The PARTI program demonstrated active flutter control and significant rcductions in aeroelastic response at dynamic pressures below flutter using piezoelectric actuators. The ANCAR program seeks to demonstrate the effectiveness of using neural networks to schedule flutter suppression control laws. Th,e ACROBAT program studied the effectiveness of a number of candidate actuators, including a rudder and piezoelectric actuators, to alleviate vertical tail buffeting. In the ATTACH project, the feasibility of using Thin-Layer Composite-Uimorph Piezoelectric Driver and Sensor (THUNDER) wafers to control airfoil aerodynamic characteristics was investigated. Plans for future applications are also discussed.

  12. Development of Variable Camber Continuous Trailing Edge Flap for Performance Adaptive Aeroelastic Wing

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan; Kaul, Upender; Lebofsky, Sonia; Ting, Eric; Chaparro, Daniel; Urnes, James

    2015-01-01

    This paper summarizes the recent development of an adaptive aeroelastic wing shaping control technology called variable camber continuous trailing edge flap (VCCTEF). As wing flexibility increases, aeroelastic interactions with aerodynamic forces and moments become an increasingly important consideration in aircraft design and aerodynamic performance. Furthermore, aeroelastic interactions with flight dynamics can result in issues with vehicle stability and control. The initial VCCTEF concept was developed in 2010 by NASA under a NASA Innovation Fund study entitled "Elastically Shaped Future Air Vehicle Concept," which showed that highly flexible wing aerodynamic surfaces can be elastically shaped in-flight by active control of wing twist and bending deflection in order to optimize the spanwise lift distribution for drag reduction. A collaboration between NASA and Boeing Research & Technology was subsequently funded by NASA from 2012 to 2014 to further develop the VCCTEF concept. This paper summarizes some of the key research areas conducted by NASA during the collaboration with Boeing Research and Technology. These research areas include VCCTEF design concepts, aerodynamic analysis of VCCTEF camber shapes, aerodynamic optimization of lift distribution for drag minimization, wind tunnel test results for cruise and high-lift configurations, flutter analysis and suppression control of flexible wing aircraft, and multi-objective flight control for adaptive aeroelastic wing shaping control.

  13. Aeroelastic Wingbox Stiffener Topology Optimization

    NASA Technical Reports Server (NTRS)

    Stanford, Bret K.

    2017-01-01

    This work considers an aeroelastic wingbox model seeded with run-out blade stiffeners along the skins. Topology optimization is conducted within the shell webs of the stiffeners, in order to add cutouts and holes for mass reduction. This optimization is done with a global-local approach in order to moderate the computational cost: aeroelastic loads are computed at the wing-level, but the topology and sizing optimization is conducted at the panel-level. Each panel is optimized separately under stress, buckling, and adjacency constraints, and periodically reassembled to update the trimmed aeroelastic loads. The resulting topology is baselined against a design with standard full-depth solid stiffener blades, and found to weigh 7.43% less.

  14. Analysis of Test Case Computations and Experiments for the First Aeroelastic Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Schuster, David M.; Heeg, Jennifer; Wieseman, Carol D.; Chwalowski, Pawel

    2013-01-01

    This paper compares computational and experimental data from the Aeroelastic Prediction Workshop (AePW) held in April 2012. This workshop was designed as a series of technical interchange meetings to assess the state of the art of computational methods for predicting unsteady flowfields and static and dynamic aeroelastic response. The goals are to provide an impartial forum to evaluate the effectiveness of existing computer codes and modeling techniques to simulate aeroelastic problems and to identify computational and experimental areas needing additional research and development. Three subject configurations were chosen from existing wind-tunnel data sets where there is pertinent experimental data available for comparison. Participant researchers analyzed one or more of the subject configurations, and results from all of these computations were compared at the workshop.

  15. Loads and aeroelasticity division research and technology accomplishments for FY 1987 and plans for FY 1988

    NASA Technical Reports Server (NTRS)

    Dixon, S. C.; Gardner, James E.

    1988-01-01

    The purpose of this paper is to present the Loads and Aeroelasticity Division's research accomplishments for FY87 and research plans for FY88. The work under each Branch (technical area) is described in terms of highlights of accomplishments during the past year and highlights of plans for the current year as they relate to five year plans for each technical area. This information will be useful in program coordination with other government organizations and industry in areas of mutual interest.

  16. Loads and Aeroelasticity Division research and technology accomplishments for FY 1984 and plans for FY 1985

    NASA Technical Reports Server (NTRS)

    Gardner, J. E.; Dixon, S. C.

    1985-01-01

    The loads and aeroelasticity divisions research accomplishments are presented. The work under each branch or technical area, described in terms of highlights of accomplishments during the past year and highlights of plans for the current year as they relate to 5 year plans for each technical area. This information will be useful in program coordination with other government organizations and industry in areas of mutual interest.

  17. Investigation and suppression of high dynamic response encountered on an elastic supercritical wing

    NASA Technical Reports Server (NTRS)

    Seidel, David A.; Adams, William M., Jr.; Eckstrom, Clinton V.; Sandford, Maynard C.

    1989-01-01

    The DAST Aeroelastic Research Wing had been previously in the NASA Langley TDT and an unusual instability boundary was predicted based upon supercritical response data. Contrary to the predictions, no instability was found during the present test. Instead a region of high dynamic wing response was observed which reached a maximum value between Mach numbers 0.92 and 0.93. The amplitude of the dynamic response increased directly with dynamic pressure. The reponse appears to be related to chordwise shock movement in conjunction with flow separation and reattachment on the upper and lower wing surfaces. The onset of flow separation coincided with the occurrence of strong shocks on a surface. A controller was designed to suppress the wing response. The control law attenuated the response as compared with the uncontrolled case and added a small but significant amount of damping for the lower density condition.

  18. Reduced-Order Models for the Aeroelastic Analysis of Ares Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.; Vatsa, Veer N.; Biedron, Robert T.

    2010-01-01

    This document presents the development and application of unsteady aerodynamic, structural dynamic, and aeroelastic reduced-order models (ROMs) for the ascent aeroelastic analysis of the Ares I-X flight test and Ares I crew launch vehicles using the unstructured-grid, aeroelastic FUN3D computational fluid dynamics (CFD) code. The purpose of this work is to perform computationally-efficient aeroelastic response calculations that would be prohibitively expensive via computation of multiple full-order aeroelastic FUN3D solutions. These efficient aeroelastic ROM solutions provide valuable insight regarding the aeroelastic sensitivity of the vehicles to various parameters over a range of dynamic pressures.

  19. Recent Applications of the Volterra Theory to Aeroelastic Phenomena

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.; Haji, Muhammad R; Prazenica, Richard J.

    2005-01-01

    The identification of nonlinear aeroelastic systems based on the Volterra theory of nonlinear systems is presented. Recent applications of the theory to problems in experimental aeroelasticity are reviewed. These results include the identification of aerodynamic impulse responses, the application of higher-order spectra (HOS) to wind-tunnel flutter data, and the identification of nonlinear aeroelastic phenomena from flight flutter test data of the Active Aeroelastic Wing (AAW) aircraft.

  20. AGARD Manual on Aeroelasticity in Axial-Flow Turbomachines. Volume 2. Structural Dynamics and Aeroelasticity,

    DTIC Science & Technology

    1988-06-01

    LEVELSKSI C. Q ac ca VANE OVERALL TOTAL-STATIC EXPANSION RATOS * Figure 12. Prediction of Response due to Second Stage Vane. 22-12 SAP /- MAXIMUM...assessment methods, written by Armstrong. The problem of life time prediction is reviewed by Labourdette, who also summarizes ONERA’s research in...applicable to single blades and bladed assemblies. The blade fatigue problem and its assessment methods, and life-time- prediction are considered. Aeroelastic

  1. Development and Testing of Control Laws for the Active Aeroelastic Wing Program

    NASA Technical Reports Server (NTRS)

    Dibley, Ryan P.; Allen, Michael J.; Clarke, Robert; Gera, Joseph; Hodgkinson, John

    2005-01-01

    The Active Aeroelastic Wing research program was a joint program between the U.S. Air Force Research Laboratory and NASA established to investigate the characteristics of an aeroelastic wing and the technique of using wing twist for roll control. The flight test program employed the use of an F/A-18 aircraft modified by reducing the wing torsional stiffness and adding a custom research flight control system. The research flight control system was optimized to maximize roll rate using only wing surfaces to twist the wing while simultaneously maintaining design load limits, stability margins, and handling qualities. NASA Dryden Flight Research Center developed control laws using the software design tool called CONDUIT, which employs a multi-objective function optimization to tune selected control system design parameters. Modifications were made to the Active Aeroelastic Wing implementation in this new software design tool to incorporate the NASA Dryden Flight Research Center nonlinear F/A-18 simulation for time history analysis. This paper describes the design process, including how the control law requirements were incorporated into constraints for the optimization of this specific software design tool. Predicted performance is also compared to results from flight.

  2. Using transonic small disturbance theory for predicting the aeroelastic stability of a flexible wind-tunnel model

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.; Bennett, Robert M.

    1990-01-01

    The CAP-TSD (Computational Aeroelasticity Program - Transonic Small Disturbance) code, developed at the NASA - Langley Research Center, is applied to the Active Flexible Wing (AFW) wind tunnel model for prediction of the model's transonic aeroelastic behavior. Static aeroelastic solutions using CAP-TSD are computed. Dynamic (flutter) analyses are then performed as perturbations about the static aeroelastic deformations of the AFW. The accuracy of the static aeroelastic procedure is investigated by comparing analytical results to those from previous AFW wind tunnel experiments. Dynamic results are presented in the form of root loci at different Mach numbers for a heavy gas and air. The resultant flutter boundaries for both gases are also presented. The effects of viscous damping and angle-of-attack, on the flutter boundary in air, are presented as well.

  3. Current status of computational methods for transonic unsteady aerodynamics and aeroelastic applications

    NASA Technical Reports Server (NTRS)

    Edwards, John W.; Malone, John B.

    1992-01-01

    The current status of computational methods for unsteady aerodynamics and aeroelasticity is reviewed. The key features of challenging aeroelastic applications are discussed in terms of the flowfield state: low-angle high speed flows and high-angle vortex-dominated flows. The critical role played by viscous effects in determining aeroelastic stability for conditions of incipient flow separation is stressed. The need for a variety of flow modeling tools, from linear formulations to implementations of the Navier-Stokes equations, is emphasized. Estimates of computer run times for flutter calculations using several computational methods are given. Applications of these methods for unsteady aerodynamic and transonic flutter calculations for airfoils, wings, and configurations are summarized. Finally, recommendations are made concerning future research directions.

  4. Rotorcraft aeroelastic stability

    NASA Technical Reports Server (NTRS)

    Ormiston, Robert A.; Warmbrodt, William G.; Hodges, Dewey H.; Peters, David A.

    1988-01-01

    Theoretical and experimental developments in the aeroelastic and aeromechanical stability of helicopters and tilt-rotor aircraft are addressed. Included are the underlying nonlinear structural mechanics of slender rotating beams, necessary for accurate modeling of elastic cantilever rotor blades, and the development of dynamic inflow, an unsteady aerodynamic theory for low-frequency aeroelastic stability applications. Analytical treatment of isolated rotor stability in hover and forward flight, coupled rotor-fuselage stability in hover and forward flight, and analysis of tilt-rotor dynamic stability are considered. Results of parametric investigations of system behavior are presented, and correlation between theoretical results and experimental data from small and large scale wind tunnel and flight testing are discussed.

  5. Static aeroelastic analysis and tailoring of a single-element racing car wing

    NASA Astrophysics Data System (ADS)

    Sadd, Christopher James

    This thesis presents the research from an Engineering Doctorate research programme in collaboration with Reynard Motorsport Ltd, a manufacturer of racing cars. Racing car wing design has traditionally considered structures to be rigid. However, structures are never perfectly rigid and the interaction between aerodynamic loading and structural flexibility has a direct impact on aerodynamic performance. This interaction is often referred to as static aeroelasticity and the focus of this research has been the development of a computational static aeroelastic analysis method to improve the design of a single-element racing car wing. A static aeroelastic analysis method has been developed by coupling a Reynolds-Averaged Navier-Stokes CFD analysis method with a Finite Element structural analysis method using an iterative scheme. Development of this method has included assessment of CFD and Finite Element analysis methods and development of data transfer and mesh deflection methods. Experimental testing was also completed to further assess the computational analyses. The computational and experimental results show a good correlation and these studies have also shown that a Navier-Stokes static aeroelastic analysis of an isolated wing can be performed at an acceptable computational cost. The static aeroelastic analysis tool was used to assess methods of tailoring the structural flexibility of the wing to increase its aerodynamic performance. These tailoring methods were then used to produce two final wing designs to increase downforce and reduce drag respectively. At the average operating dynamic pressure of the racing car, the computational analysis predicts that the downforce-increasing wing has a downforce of C[1]=-1.377 in comparison to C[1]=-1.265 for the original wing. The computational analysis predicts that the drag-reducing wing has a drag of C[d]=0.115 in comparison to C[d]=0.143 for the original wing.

  6. Nonlinear Aeroelastic Analysis of Joined-Wing Configurations

    NASA Astrophysics Data System (ADS)

    Cavallaro, Rauno

    Aeroelastic design of joined-wing configurations is yet a relatively unexplored topic which poses several difficulties. Due to the overconstrained nature of the system combined with structural geometric nonlinearities, the behavior of Joined Wings is often counterintuitive and presents challenges not seen in standard layouts. In particular, instability observed on detailed aircraft models but never thoroughly investigated, is here studied with the aid of a theoretical/computational framework. Snap-type of instabilities are shown for both pure structural and aeroelastic cases. The concept of snap-divergence is introduced to clearly identify the true aeroelastic instability, as opposed to the usual aeroelastic divergence evaluated through eigenvalue approach. Multi-stable regions and isola-type of bifurcations are possible characterizations of the nonlinear response of Joined Wings, and may lead to branch-jumping phenomena well below nominal critical load condition. Within this picture, sensitivity to (unavoidable) manufacturing defects could have potential catastrophic effects. The phenomena studied in this work suggest that the design process for Joined Wings needs to be revisited and should focus, when instability is concerned, on nonlinear post-critical analysis since linear methods may provide wrong trend indications and also hide potentially catastrophical situations. Dynamic aeroelastic analyses are also performed. Flutter occurrence is critically analyzed with frequency and time-domain capabilities. Sensitivity to different-fidelity aeroelastic modeling (fluid-structure interface algorithm, aerodynamic solvers) is assessed showing that, for some configurations, wake modeling (rigid versus free) has a strong impact on the results. Post-flutter regimes are also explored. Limit cycle oscillations are observed, followed, in some cases, by flip bifurcations (period doubling) and loss of periodicity of the solution. Aeroelastic analyses are then carried out on a

  7. Aeroelastic Uncertainty Quantification Studies Using the S4T Wind Tunnel Model

    NASA Technical Reports Server (NTRS)

    Nikbay, Melike; Heeg, Jennifer

    2017-01-01

    This paper originates from the joint efforts of an aeroelastic study team in the Applied Vehicle Technology Panel from NATO Science and Technology Organization, with the Task Group number AVT-191, titled "Application of Sensitivity Analysis and Uncertainty Quantification to Military Vehicle Design." We present aeroelastic uncertainty quantification studies using the SemiSpan Supersonic Transport wind tunnel model at the NASA Langley Research Center. The aeroelastic study team decided treat both structural and aerodynamic input parameters as uncertain and represent them as samples drawn from statistical distributions, propagating them through aeroelastic analysis frameworks. Uncertainty quantification processes require many function evaluations to asses the impact of variations in numerous parameters on the vehicle characteristics, rapidly increasing the computational time requirement relative to that required to assess a system deterministically. The increased computational time is particularly prohibitive if high-fidelity analyses are employed. As a remedy, the Istanbul Technical University team employed an Euler solver in an aeroelastic analysis framework, and implemented reduced order modeling with Polynomial Chaos Expansion and Proper Orthogonal Decomposition to perform the uncertainty propagation. The NASA team chose to reduce the prohibitive computational time by employing linear solution processes. The NASA team also focused on determining input sample distributions.

  8. Static aeroelastic behavior of a subsonic plate wing

    NASA Astrophysics Data System (ADS)

    Berci, M.

    2017-07-01

    The static aeroelastic behavior of a subsonic plate wing is here described by semi-analytical means. Within a generalised modal formulation, any distribution of the plate's properties is allowed. Modified strip theory is employed for the aerodynamic modelling and a linear aeroelastic model is eventually derived. Numerical results are then shown for the plate's aeroelastic stability in terms of divergence speed, with respect to the most relevant aero-structural parameters.

  9. Aeroelastic characteristics of composite bearingless rotor blades

    NASA Technical Reports Server (NTRS)

    Bielawa, R. L.

    1976-01-01

    Owing to the inherent unique structural features of composite bearingless rotors, various assumptions upon which conventional rotor aeroelastic analyses are formulated, are violated. Three such features identified are highly nonlinear and time-varying structural twist, structural redundancy in bending and torsion, and for certain configurations a strongly coupled low frequency bending-torsion mode. An examination of these aeroelastic considerations and appropriate formulations required for accurate analyses of such rotor systems is presented. Also presented are test results from a dynamically scaled model rotor and complementary analytic results obtained with the appropriately reformulated aeroelastic analysis.

  10. A Taguchi study of the aeroelastic tailoring design process

    NASA Technical Reports Server (NTRS)

    Bohlmann, Jonathan D.; Scott, Robert C.

    1991-01-01

    A Taguchi study was performed to determine the important players in the aeroelastic tailoring design process and to find the best composition of the optimization's objective function. The Wing Aeroelastic Synthesis Procedure (TSO) was used to ascertain the effects that factors such as composite laminate constraints, roll effectiveness constraints, and built-in wing twist and camber have on the optimum, aeroelastically tailored wing skin design. The results show the Taguchi method to be a viable engineering tool for computational inquiries, and provide some valuable lessons about the practice of aeroelastic tailoring.

  11. Research in Supercritical Fuel Properties and Combustion Modeling

    DTIC Science & Technology

    2015-09-18

    AFRL-AFOSR-VA-TR-2015-0296 RESEARCH IN SUPERCRITICAL FUEL PROPERTIES AND COMBUSTION MODELING Gregory Faris SRI INTERNATIONAL MENLO PARK CA Final...Properties and Combustion Modeling 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-13-1-0177 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Gregory W...carbon atom species for combustion modeling and optimization. On the stimulated scattering task, we have tested new methods for rapidly scanning

  12. Computational aeroelastic analysis of aircraft wings including geometry nonlinearity

    NASA Astrophysics Data System (ADS)

    Tian, Binyu

    The objective of the present study is to show the ability of solving fluid structural interaction problems more realistically by including the geometric nonlinearity of the structure so that the aeroelastic analysis can be extended into the onset of flutter, or in the post flutter regime. A nonlinear Finite Element Analysis software is developed based on second Piola-Kirchhoff stress and Green-Lagrange strain. The second Piola-Kirchhoff stress and Green-Lagrange strain is a pair of energetically conjugated tensors that can accommodate arbitrary large structural deformations and deflection, to study the flutter phenomenon. Since both of these tensors are objective tensors, i.e., the rigid-body motion has no contribution to their components, the movement of the body, including maneuvers and deformation, can be included. The nonlinear Finite Element Analysis software developed in this study is verified with ANSYS, NASTRAN, ABAQUS, and IDEAS for the linear static, nonlinear static, linear dynamic and nonlinear dynamic structural solutions. To solve the flow problems by Euler/Navier equations, the current nonlinear structural software is then embedded into ENSAERO, which is an aeroelastic analysis software package developed at NASA Ames Research Center. The coupling of the two software, both nonlinear in their own field, is achieved by domain decomposition method first proposed by Guruswamy. A procedure has been set for the aeroelastic analysis process. The aeroelastic analysis results have been obtained for fight wing in the transonic regime for various cases. The influence dynamic pressure on flutter has been checked for a range of Mach number. Even though the current analysis matches the general aeroelastic characteristic, the numerical value not match very well with previous studies and needs farther investigations. The flutter aeroelastic analysis results have also been plotted at several time points. The influences of the deforming wing geometry can be well seen

  13. Aeroelastic Deflection of NURBS Geometry

    NASA Technical Reports Server (NTRS)

    Samareh, Jamshid A.

    1998-01-01

    The purpose of this paper is to present an algorithm for using NonUniform Rational B-Spline (NURBS) representation in an aeroelastic loop. The algorithm is based on creating a least-squares NURBS surface representing the aeroelastic defection. The resulting NURBS surfaces are used to update either the original Computer- Aided Design (CAD) model, Computational Structural Mechanics (CSM) grid or the Computational Fluid Dynamics (CFD) grid. Results are presented for a generic High-Speed Civil Transport (HSCT).

  14. Role of computational fluid dynamics in unsteady aerodynamics for aeroelasticity

    NASA Technical Reports Server (NTRS)

    Guruswamy, Guru P.; Goorjian, Peter M.

    1989-01-01

    In the last two decades there have been extensive developments in computational unsteady transonic aerodynamics. Such developments are essential since the transonic regime plays an important role in the design of modern aircraft. Therefore, there has been a large effort to develop computational tools with which to accurately perform flutter analysis at transonic speeds. In the area of Computational Fluid Dynamics (CFD), unsteady transonic aerodynamics are characterized by the feature of modeling the motion of shock waves over aerodynamic bodies, such as wings. This modeling requires the solution of nonlinear partial differential equations. Most advanced codes such as XTRAN3S use the transonic small perturbation equation. Currently, XTRAN3S is being used for generic research in unsteady aerodynamics and aeroelasticity of almost full aircraft configurations. Use of Euler/Navier Stokes equations for simple typical sections has just begun. A brief history of the development of CFD for aeroelastic applications is summarized. The development of unsteady transonic aerodynamics and aeroelasticity are also summarized.

  15. Application of Aeroelastic Solvers Based on Navier Stokes Equations

    NASA Technical Reports Server (NTRS)

    Keith, Theo G., Jr.; Srivastava, Rakesh

    2001-01-01

    The propulsion element of the NASA Advanced Subsonic Technology (AST) initiative is directed towards increasing the overall efficiency of current aircraft engines. This effort requires an increase in the efficiency of various components, such as fans, compressors, turbines etc. Improvement in engine efficiency can be accomplished through the use of lighter materials, larger diameter fans and/or higher-pressure ratio compressors. However, each of these has the potential to result in aeroelastic problems such as flutter or forced response. To address the aeroelastic problems, the Structural Dynamics Branch of NASA Glenn has been involved in the development of numerical capabilities for analyzing the aeroelastic stability characteristics and forced response of wide chord fans, multi-stage compressors and turbines. In order to design an engine to safely perform a set of desired tasks, accurate information of the stresses on the blade during the entire cycle of blade motion is required. This requirement in turn demands that accurate knowledge of steady and unsteady blade loading is available. To obtain the steady and unsteady aerodynamic forces for the complex flows around the engine components, for the flow regimes encountered by the rotor, an advanced compressible Navier-Stokes solver is required. A finite volume based Navier-Stokes solver has been developed at Mississippi State University (MSU) for solving the flow field around multistage rotors. The focus of the current research effort, under NASA Cooperative Agreement NCC3- 596 was on developing an aeroelastic analysis code (entitled TURBO-AE) based on the Navier-Stokes solver developed by MSU. The TURBO-AE code has been developed for flutter analysis of turbomachine components and delivered to NASA and its industry partners. The code has been verified. validated and is being applied by NASA Glenn and by aircraft engine manufacturers to analyze the aeroelastic stability characteristics of modem fans, compressors

  16. Aeroelastic Tailoring via Tow Steered Composites

    NASA Technical Reports Server (NTRS)

    Stanford, Bret K.; Jutte, Christine V.

    2014-01-01

    The use of tow steered composites, where fibers follow prescribed curvilinear paths within a laminate, can improve upon existing capabilities related to aeroelastic tailoring of wing structures, though this tailoring method has received relatively little attention in the literature. This paper demonstrates the technique for both a simple cantilevered plate in low-speed flow, as well as the wing box of a full-scale high aspect ratio transport configuration. Static aeroelastic stresses and dynamic flutter boundaries are obtained for both cases. The impact of various tailoring choices upon the aeroelastic performance is quantified: curvilinear fiber steering versus straight fiber steering, certifiable versus noncertifiable stacking sequences, a single uniform laminate per wing skin versus multiple laminates, and identical upper and lower wing skins structures versus individual tailoring.

  17. Multi-fractality in aeroelastic response as a precursor to flutter

    NASA Astrophysics Data System (ADS)

    Venkatramani, J.; Nair, Vineeth; Sujith, R. I.; Gupta, Sayan; Sarkar, Sunetra

    2017-01-01

    Wind tunnel tests on a NACA 0012 airfoil have been carried out to study the transition in aeroelastic response from an initial state characterised by low-amplitude aperiodic fluctuations to aeroelastic flutter when the system exhibits limit cycle oscillations. An analysis of the aeroelastic measurements reveals multi-fractal characteristics in the pre-flutter regime. This has not been studied in the literature. As the flow velocity approaches the flutter velocity from below, a gradual loss in multi-fractality is observed. Measures based on the generalised Hurst exponents are developed and are shown to have the potential to warn against impending aeroelastic flutter. The results of this study could be useful for health monitoring of aeroelastic structures.

  18. Aeroelastic Response of Swept Aircraft Wings in a Compressible Flow Field

    NASA Technical Reports Server (NTRS)

    Marzocca, Piergiovanni; Librescu, Liviu; Silva, Walter A.

    2000-01-01

    The present study addresses the subcritical aeroelastic response of swept wings, in various flight speed regimes, to arbitrary time-dependent external excitations. The methodology based on the concept of indicial functions is carried out in time and frequency domains. As a result of this approach, the proper unsteady aerodynamic loads necessary to study the subcritical aeroelastic response of the open/closed loop aeroelastic systems, and of flutter instability, respectively are obtained. Validation of the aeroelastic model is provided, and applications to subcritical aeroelastic response to blast pressure signatures are illustrated. In this context, an original representation of the aeroelastic response in the phase-space is displayed, and pertinent conclusions on the implications of a number of selected parameters of the system are outlined.

  19. Unsteady Aerodynamic Validation Experiences From the Aeroelastic Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Heeg, Jennifer; Chawlowski, Pawel

    2014-01-01

    The AIAA Aeroelastic Prediction Workshop (AePW) was held in April 2012, bringing together communities of aeroelasticians, computational fluid dynamicists and experimentalists. The extended objective was to assess the state of the art in computational aeroelastic methods as practical tools for the prediction of static and dynamic aeroelastic phenomena. As a step in this process, workshop participants analyzed unsteady aerodynamic and weakly-coupled aeroelastic cases. Forced oscillation and unforced system experiments and computations have been compared for three configurations. This paper emphasizes interpretation of the experimental data, computational results and their comparisons from the perspective of validation of unsteady system predictions. The issues examined in detail are variability introduced by input choices for the computations, post-processing, and static aeroelastic modeling. The final issue addressed is interpreting unsteady information that is present in experimental data that is assumed to be steady, and the resulting consequences on the comparison data sets.

  20. Loads and aeroelasticity division research and technology accomplishments for FY 1983 and plans for FY 1984

    NASA Technical Reports Server (NTRS)

    Gardner, J. E.; Dixon, S. C.

    1984-01-01

    Research was done in the following areas: development and validation of solution algorithms, modeling techniques, integrated finite elements for flow-thermal-structural analysis and design, optimization of aircraft and spacecraft for the best performance, reduction of loads and increase in the dynamic structural stability of flexible airframes by the use of active control, methods for predicting steady and unsteady aerodynamic loads and aeroelastic characteristics of flight vehicles with emphasis on the transonic range, and methods for predicting and reducing helicoper vibrations.

  1. Viscous and Aeroelastic Effects on Wind Turbine Blades. The VISCEL Project. Part II: Aeroelastic Stability Investigations

    NASA Astrophysics Data System (ADS)

    Chaviaropoulos, P. K.; Soerensen, N. N.; Hansen, M. O. L.; Nikolaou, I. G.; Aggelis, K. A.; Johansen, J.; Gaunaa, Mac; Hambraus, T.; Frhr. von Geyr, Heiko; Hirsch, Ch.; Shun, Kang; Voutsinas, S. G.; Tzabiras, G.; Perivolaris, Y.; Dyrmose, S. Z.

    2003-10-01

    The recent introduction of ever larger wind turbines poses new challenges with regard to understanding the mechanisms of unsteady flow-structure interaction. An important aspect of the problem is the aeroelastic stability of the wind turbine blades, especially in the case of combined flap/lead-lag vibrations in the stall regime. Given the limited experimental information available in this field, the use of CFD techniques and state-of-the-art viscous flow solvers provides an invaluable alternative towards the identification of the underlying physics and the development and validation of sound engineering-type aeroelastic models. Navier-Stokes-based aeroelastic stability analysis of individual blade sections subjected to combined pitch/flap or flap/lead-lag motion has been attempted by the present consortium in the framework of the concluded VISCEL JOR3-CT98-0208 Joule III project.

  2. Material and Thickness Grading for Aeroelastic Tailoring of the Common Research Model Wing Box

    NASA Technical Reports Server (NTRS)

    Stanford, Bret K.; Jutte, Christine V.

    2014-01-01

    This work quantifies the potential aeroelastic benefits of tailoring a full-scale wing box structure using tailored thickness distributions, material distributions, or both simultaneously. These tailoring schemes are considered for the wing skins, the spars, and the ribs. Material grading utilizes a spatially-continuous blend of two metals: Al and Al+SiC. Thicknesses and material fraction variables are specified at the 4 corners of the wing box, and a bilinear interpolation is used to compute these parameters for the interior of the planform. Pareto fronts detailing the conflict between static aeroelastic stresses and dynamic flutter boundaries are computed with a genetic algorithm. In some cases, a true material grading is found to be superior to a single-material structure.

  3. Flight Test of the F/A-18 Active Aeroelastic Wing Airplane

    NASA Technical Reports Server (NTRS)

    Clarke, Robert; Allen, Michael J.; Dibley, Ryan P.; Gera, Joseph; Hodgkinson, John

    2005-01-01

    Successful flight-testing of the Active Aeroelastic Wing airplane was completed in March 2005. This program, which started in 1996, was a joint activity sponsored by NASA, Air Force Research Laboratory, and industry contractors. The test program contained two flight test phases conducted in early 2003 and early 2005. During the first phase of flight test, aerodynamic models and load models of the wing control surfaces and wing structure were developed. Design teams built new research control laws for the Active Aeroelastic Wing airplane using these flight-validated models; and throughout the final phase of flight test, these new control laws were demonstrated. The control laws were designed to optimize strategies for moving the wing control surfaces to maximize roll rates in the transonic and supersonic flight regimes. Control surface hinge moments and wing loads were constrained to remain within hydraulic and load limits. This paper describes briefly the flight control system architecture as well as the design approach used by Active Aeroelastic Wing project engineers to develop flight control system gains. Additionally, this paper presents flight test techniques and comparison between flight test results and predictions.

  4. Control Law Design in a Computational Aeroelasticity Environment

    NASA Technical Reports Server (NTRS)

    Newsom, Jerry R.; Robertshaw, Harry H.; Kapania, Rakesh K.

    2003-01-01

    A methodology for designing active control laws in a computational aeroelasticity environment is given. The methodology involves employing a systems identification technique to develop an explicit state-space model for control law design from the output of a computational aeroelasticity code. The particular computational aeroelasticity code employed in this paper solves the transonic small disturbance aerodynamic equation using a time-accurate, finite-difference scheme. Linear structural dynamics equations are integrated simultaneously with the computational fluid dynamics equations to determine the time responses of the structure. These structural responses are employed as the input to a modern systems identification technique that determines the Markov parameters of an "equivalent linear system". The Eigensystem Realization Algorithm is then employed to develop an explicit state-space model of the equivalent linear system. The Linear Quadratic Guassian control law design technique is employed to design a control law. The computational aeroelasticity code is modified to accept control laws and perform closed-loop simulations. Flutter control of a rectangular wing model is chosen to demonstrate the methodology. Various cases are used to illustrate the usefulness of the methodology as the nonlinearity of the aeroelastic system is increased through increased angle-of-attack changes.

  5. Aeroelastic analysis of wind energy conversion systems

    NASA Technical Reports Server (NTRS)

    Dugundji, J.

    1978-01-01

    An aeroelastic investigation of horizontal axis wind turbines is described. The study is divided into two simpler areas; (1) the aeroelastic stability of a single blade on a rigid tower; and (2) the mechanical vibrations of the rotor system on a flexible tower. Some resulting instabilities and forced vibration behavior are described.

  6. Aeroelastic modeling for the FIT (Functional Integration Technology) team F/A-18 simulation

    NASA Technical Reports Server (NTRS)

    Zeiler, Thomas A.; Wieseman, Carol D.

    1989-01-01

    As part of Langley Research Center's commitment to developing multidisciplinary integration methods to improve aerospace systems, the Functional Integration Technology (FIT) team was established to perform dynamics integration research using an existing aircraft configuration, the F/A-18. An essential part of this effort has been the development of a comprehensive simulation modeling capability that includes structural, control, and propulsion dynamics as well as steady and unsteady aerodynamics. The structural and unsteady aerodynamics contributions come from an aeroelastic mode. Some details of the aeroelastic modeling done for the Functional Integration Technology (FIT) team research are presented. Particular attention is given to work done in the area of correction factors to unsteady aerodynamics data.

  7. Computational Results for the KTH-NASA Wind-Tunnel Model Used for Acquisition of Transonic Nonlinear Aeroelastic Data

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.; Chwalowski, Pawel; Wieseman, Carol D.; Eller, David; Ringertz, Ulf

    2017-01-01

    A status report is provided on the collaboration between the Royal Institute of Technology (KTH) in Sweden and the NASA Langley Research Center regarding the aeroelastic analyses of a full-span fighter configuration wind-tunnel model. This wind-tunnel model was tested in the Transonic Dynamics Tunnel (TDT) in the summer of 2016. Large amounts of data were acquired including steady/unsteady pressures, accelerations, strains, and measured dynamic deformations. The aeroelastic analyses presented include linear aeroelastic analyses, CFD steady analyses, and analyses using CFD-based reduced-order models (ROMs).

  8. Toward efficient aeroelastic energy harvesting through limit cycle shaping

    NASA Astrophysics Data System (ADS)

    Kirschmeier, Benjamin; Bryant, Matthew

    2016-04-01

    Increasing demand to harvest energy from renewable resources has caused significant research interest in unsteady aerodynamic and hydrodynamic phenomena. Apart from the traditional horizontal axis wind turbines, there has been significant growth in the study of bio-inspired oscillating wings for energy harvesting. These systems are being built to harvest electricity for wireless devices, as well as for large scale mega-watt power generation. Such systems can be driven by aeroelastic flutter phenomena which, beyond a critical wind speed, will cause the system to enter into limitcycle oscillations. When the airfoil enters large amplitude, high frequency motion, leading and trailing edge vortices form and, when properly synchronized with the airfoil kinematics, enhance the energy extraction efficiency of the device. A reduced order dynamic stall model is employed on a nonlinear aeroelastic structural model to investigate whether the parameters of a fully passive aeroelastic device can be tuned to produce limit cycle oscillations at desired kinematics. This process is done through an optimization technique to find the necessary structural parameters to achieve desired structural forces and moments corresponding to a target limit cycle. Structural nonlinearities are explored to determine the essential nonlinearities such that the system's limit cycle closely matches the desired kinematic trajectory. The results from this process demonstrate that it is possible to tune system parameters such that a desired limit cycle trajectory can be achieved. The simulations also demonstrate that the high efficiencies predicted by previous computational aerodynamics studies can be achieved in fully passive aeroelastic devices.

  9. Design and Analysis of AN Static Aeroelastic Experiment

    NASA Astrophysics Data System (ADS)

    Hou, Ying-Yu; Yuan, Kai-Hua; Lv, Ji-Nan; Liu, Zi-Qiang

    2016-06-01

    Static aeroelastic experiments are very common in the United States and Russia. The objective of static aeroelastic experiments is to investigate deformation and loads of elastic structure in flow field. Generally speaking, prerequisite of this experiment is that the stiffness distribution of structure is known. This paper describes a method for designing experimental models, in the case where the stiffness distribution and boundary condition of a real aircraft are both uncertain. The stiffness distribution form of the structure can be calculated via finite element modeling and simulation calculation and F141 steels and rigid foam are used to make elastic model. In this paper, the design and manufacturing process of static aeroelastic models is presented and a set of experiment model was designed to simulate the stiffness of the designed wings, a set of experiments was designed to check the results. The test results show that the experimental method can effectively complete the design work of elastic model. This paper introduces the whole process of the static aeroelastic experiment, and the experimental results are analyzed. This paper developed a static aeroelasticity experiment technique and established an experiment model targeting at the swept wing of a certain kind of large aspect ratio aircraft.

  10. Kinetics of Supercritical Water Oxidation

    DTIC Science & Technology

    1995-12-31

    milestone and Sandia Technical Report. A much-needed report describing in detail the operation of the Supercritical Fluids Reactor (SFR) was also...years. In addition, the literature research required to arrive at this optimal design will be used to improve the performance of the Supercritical Fluids ...the Supercritical Fluids Reactor (SFR)" (Sandia National Laboratories Report SAND-8203, Livermore, CA, 1995). R. R. Steeper, "Methane and Methanol

  11. Advanced Aeroelastic Technologies for Turbomachinery Application

    NASA Technical Reports Server (NTRS)

    DeWitt, Kenneth; Srivastava, Rakesh; Reddy, T. S. R.

    2004-01-01

    A summary of the work performed under the grant NCC-1068 is presented. More details can be found in the cited references. The summary is presented in two parts to represent two areas of research. In the first part, methods to analyze a high temperature ceramic guide vane subjected to cooling jets are presented, and in the second part, the effect of unsteady aerodynamic forces on aeroelastic stability as implemented into the turbo-REDUCE code are presented

  12. Three-Dimensional Aeroelastic and Aerothermoelastic Behavior in Hypersonic Flow

    NASA Technical Reports Server (NTRS)

    McNamara, Jack J.; Friedmann, Peretz P.; Powell, Kenneth G.; Thuruthimattam, Biju J.; Bartels, Robert E.

    2005-01-01

    The aeroelastic and aerothermoelastic behavior of three-dimensional configurations in hypersonic flow regime are studied. The aeroelastic behavior of a low aspect ratio wing, representative of a fin or control surface on a generic hypersonic vehicle, is examined using third order piston theory, Euler and Navier-Stokes aerodynamics. The sensitivity of the aeroelastic behavior generated using Euler and Navier-Stokes aerodynamics to parameters governing temporal accuracy is also examined. Also, a refined aerothermoelastic model, which incorporates the heat transfer between the fluid and structure using CFD generated aerodynamic heating, is used to examine the aerothermoelastic behavior of the low aspect ratio wing in the hypersonic regime. Finally, the hypersonic aeroelastic behavior of a generic hypersonic vehicle with a lifting-body type fuselage and canted fins is studied using piston theory and Euler aerodynamics for the range of 2.5 less than or equal to M less than or equal to 28, at altitudes ranging from 10,000 feet to 80,000 feet. This analysis includes a study on optimal mesh selection for use with Euler aerodynamics. In addition to the aeroelastic and aerothermoelastic results presented, three time domain flutter identification techniques are compared, namely the moving block approach, the least squares curve fitting method, and a system identification technique using an Auto-Regressive model of the aeroelastic system. In general, the three methods agree well. The system identification technique, however, provided quick damping and frequency estimations with minimal response record length, and therefore o ers significant reductions in computational cost. In the present case, the computational cost was reduced by 75%. The aeroelastic and aerothermoelastic results presented illustrate the applicability of the CFL3D code for the hypersonic flight regime.

  13. Aeroelastic Response of Nonlinear Wing Section By Functional Series Technique

    NASA Technical Reports Server (NTRS)

    Marzocca, Piergiovanni; Librescu, Liviu; Silva, Walter A.

    2000-01-01

    This paper addresses the problem of the determination of the subcritical aeroelastic response and flutter instability of nonlinear two-dimensional lifting surfaces in an incompressible flow-field via indicial functions and Volterra series approach. The related aeroelastic governing equations are based upon the inclusion of structural and damping nonlinearities in plunging and pitching, of the linear unsteady aerodynamics and consideration of an arbitrary time-dependent external pressure pulse. Unsteady aeroelastic nonlinear kernels are determined, and based on these, frequency and time histories of the subcritical aeroelastic response are obtained, and in this context the influence of the considered nonlinearities is emphasized. Conclusions and results displaying the implications of the considered effects are supplied.

  14. Aeroelastic Response of Nonlinear Wing Section by Functional Series Technique

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.; Marzocca, Piergiovanni

    2001-01-01

    This paper addresses the problem of the determination of the subcritical aeroelastic response and flutter instability of nonlinear two-dimensional lifting surfaces in an incompressible flow-field via indicial functions and Volterra series approach. The related aeroelastic governing equations are based upon the inclusion of structural and damping nonlinearities in plunging and pitching, of the linear unsteady aerodynamics and consideration of an arbitrary time-dependent external pressure pulse. Unsteady aeroelastic nonlinear kernels are determined, and based on these, frequency and time histories of the subcritical aeroelastic response are obtained, and in this context the influence of the considered nonlinearities is emphasized. Conclusions and results displaying the implications of the considered effects are supplied.

  15. Simplified aeroelastic modeling of horizontal axis wind turbines

    NASA Technical Reports Server (NTRS)

    Wendell, J. H.

    1982-01-01

    Certain aspects of the aeroelastic modeling and behavior of the horizontal axis wind turbine (HAWT) are examined. Two simple three degree of freedom models are described in this report, and tools are developed which allow other simple models to be derived. The first simple model developed is an equivalent hinge model to study the flap-lag-torsion aeroelastic stability of an isolated rotor blade. The model includes nonlinear effects, preconing, and noncoincident elastic axis, center of gravity, and aerodynamic center. A stability study is presented which examines the influence of key parameters on aeroelastic stability. Next, two general tools are developed to study the aeroelastic stability and response of a teetering rotor coupled to a flexible tower. The first of these tools is an aeroelastic model of a two-bladed rotor on a general flexible support. The second general tool is a harmonic balance solution method for the resulting second order system with periodic coefficients. The second simple model developed is a rotor-tower model which serves to demonstrate the general tools. This model includes nacelle yawing, nacelle pitching, and rotor teetering. Transient response time histories are calculated and compared to a similar model in the literature. Agreement between the two is very good, especially considering how few harmonics are used. Finally, a stability study is presented which examines the effects of support stiffness and damping, inflow angle, and preconing.

  16. Unified Formulation of the Aeroelasticity of Swept Lifting Surfaces

    NASA Technical Reports Server (NTRS)

    Silva, Walter; Marzocca, Piergiovanni; Librescu, Liviu

    2001-01-01

    An unified approach for dealing with stability and aeroelastic response to time-dependent pressure pulses of swept wings in an incompressible flow is developed. To this end the indicial function concept in time and frequency domains, enabling one to derive the proper unsteady aerodynamic loads is used. Results regarding stability in the frequency and time domains, and subcritical aeroelastic response to arbitrary time-dependent external excitation obtained via the direct use of the unsteady aerodynamic derivatives for 3-D wings are supplied. Closed form expressions for unsteady aerodynamic derivatives using this unified approach have been derived and used to illustrate their application to flutter and aeroelastic response to blast and sonic-boom signatures. In this context, an original representation of the aeroelastic response in the phase space was presented and pertinent conclusions on the implications of some basic parameters have been outlined.

  17. CEAS/AIAA/ICASE/NASA Langley International Forum on Aeroelasticity and Structural Dynamics 1999. Pt. 1

    NASA Technical Reports Server (NTRS)

    Woodrow Whitlow, Jr. (Editor); Todd, Emily N. (Editor)

    1999-01-01

    These proceedings represent a collection of the latest advances in aeroelasticity and structural dynamics from the world community. Research in the areas of unsteady aerodynamics and aeroelasticity, structural modeling and optimization, active control and adaptive structures, landing dynamics, certification and qualification, and validation testing are highlighted in the collection of papers. The wide range of results will lead to advances in the prediction and control of the structural response of aircraft and spacecraft.

  18. Comparison of Curvilinear Stiffeners and Tow Steered Composites for Aeroelastic Tailoring of Transports

    NASA Technical Reports Server (NTRS)

    Stanford, Bret K.; Jutte, Christine V.

    2016-01-01

    A series of aeroelastic optimization problems are solved on a high aspect ratio wingbox of the Common Research Model, in an effort to minimize structural mass under coupled stress, buckling, and flutter constraints. Two technologies are of particular interest: tow steered composite laminate skins and curvilinear stiffeners. Both methods are found to afford feasible reductions in mass over their non-curvilinear structural counterparts, through both distinct and shared mechanisms for passively controlling aeroelastic performance. Some degree of diminishing returns are seen when curvilinear stiffeners and curvilinear fiber tow paths are used simultaneously.

  19. Experimental Data from the Benchmark SuperCritical Wing Wind Tunnel Test on an Oscillating Turntable

    NASA Technical Reports Server (NTRS)

    Heeg, Jennifer; Piatak, David J.

    2013-01-01

    The Benchmark SuperCritical Wing (BSCW) wind tunnel model served as a semi-blind testcase for the 2012 AIAA Aeroelastic Prediction Workshop (AePW). The BSCW was chosen as a testcase due to its geometric simplicity and flow physics complexity. The data sets examined include unforced system information and forced pitching oscillations. The aerodynamic challenges presented by this AePW testcase include a strong shock that was observed to be unsteady for even the unforced system cases, shock-induced separation and trailing edge separation. The current paper quantifies these characteristics at the AePW test condition and at a suggested benchmarking test condition. General characteristics of the model's behavior are examined for the entire available data set.

  20. Computational Aeroelastic Analyses of a Low-Boom Supersonic Configuration

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.; Sanetrik, Mark D.; Chwalowski, Pawel; Connolly, Joseph

    2015-01-01

    An overview of NASA's Commercial Supersonic Technology (CST) Aeroservoelasticity (ASE) element is provided with a focus on recent computational aeroelastic analyses of a low-boom supersonic configuration developed by Lockheed-Martin and referred to as the N+2 configuration. The overview includes details of the computational models developed to date including a linear finite element model (FEM), linear unsteady aerodynamic models, unstructured CFD grids, and CFD-based aeroelastic analyses. In addition, a summary of the work involving the development of aeroelastic reduced-order models (ROMs) and the development of an aero-propulso-servo-elastic (APSE) model is provided.

  1. NASA Aeroelasticity Handbook Volume 2: Design Guides Part 2

    NASA Technical Reports Server (NTRS)

    Ramsey, John K. (Editor)

    2006-01-01

    The NASA Aeroelasticity Handbook comprises a database (in three formats) of NACA and NASA aeroelasticity flutter data through 1998 and a collection of aeroelasticity design guides. The Microsoft Access format provides the capability to search for specific data, retrieve it, and present it in a tabular or graphical form unique to the application. The full-text NACA and NASA documents from which the data originated are provided in portable document format (PDF), and these are hyperlinked to their respective data records. This provides full access to all available information from the data source. Two other electronic formats, one delimited by commas and the other by spaces, are provided for use with other software capable of reading text files. To the best of the author s knowledge, this database represents the most extensive collection of NACA and NASA flutter data in electronic form compiled to date by NASA. Volume 2 of the handbook contains a convenient collection of aeroelastic design guides covering fixed wings, turbomachinery, propellers and rotors, panels, and model scaling. This handbook provides an interactive database and design guides for use in the preliminary aeroelastic design of aerospace systems and can also be used in validating or calibrating flutter-prediction software.

  2. Design of a candidate flutter suppression control law for DAST ARW-2. [Drones for Aerodynamic and Structural Testing Aeroelastic Research Wing

    NASA Technical Reports Server (NTRS)

    Adams, W. M., Jr.; Tiffany, S. H.

    1983-01-01

    A control law is developed to suppress symmetric flutter for a mathematical model of an aeroelastic research vehicle. An implementable control law is attained by including modified LQG (linear quadratic Gaussian) design techniques, controller order reduction, and gain scheduling. An alternate (complementary) design approach is illustrated for one flight condition wherein nongradient-based constrained optimization techniques are applied to maximize controller robustness.

  3. Development of Reduced-Order Models for Aeroelastic and Flutter Prediction Using the CFL3Dv6.0 Code

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.; Bartels, Robert E.

    2002-01-01

    A reduced-order model (ROM) is developed for aeroelastic analysis using the CFL3D version 6.0 computational fluid dynamics (CFD) code, recently developed at the NASA Langley Research Center. This latest version of the flow solver includes a deforming mesh capability, a modal structural definition for nonlinear aeroelastic analyses, and a parallelization capability that provides a significant increase in computational efficiency. Flutter results for the AGARD 445.6 Wing computed using CFL3D v6.0 are presented, including discussion of associated computational costs. Modal impulse responses of the unsteady aerodynamic system are then computed using the CFL3Dv6 code and transformed into state-space form. Important numerical issues associated with the computation of the impulse responses are presented. The unsteady aerodynamic state-space ROM is then combined with a state-space model of the structure to create an aeroelastic simulation using the MATLAB/SIMULINK environment. The MATLAB/SIMULINK ROM is used to rapidly compute aeroelastic transients including flutter. The ROM shows excellent agreement with the aeroelastic analyses computed using the CFL3Dv6.0 code directly.

  4. Adaptive wing static aeroelastic roll control

    NASA Astrophysics Data System (ADS)

    Ehlers, Steven M.; Weisshaar, Terrence A.

    1993-09-01

    Control of the static aeroelastic characteristics of a swept uniform wing in roll using an adaptive structure is examined. The wing structure is modeled as a uniform beam with bending and torsional deformation freedom. Aerodynamic loads are obtained from strip theory. The structure model includes coefficients representing torsional and bending actuation provided by embedded piezoelectric material layers. The wing is made adaptive by requiring the electric field applied to the piezoelectric material layers to be proportional to the wing root loads. The proportionality factor, or feedback gain, is used to control static aeroelastic rolling properties. Example wing configurations are used to illustrate the capabilities of the adaptive structure. The results show that rolling power, damping-in-roll and aileron effectiveness can be controlled by adjusting the feedback gain. And that dynamic pressure affects the gain required. Gain scheduling can be used to set and maintain rolling properties over a range of dynamic pressures. An adaptive wing provides a method for active aeroelastic tailoring of structural response to meet changing structural performance requirements during a roll maneuver.

  5. Aeroelastic Stability Investigations for Large-scale Vertical Axis Wind Turbines

    NASA Astrophysics Data System (ADS)

    Owens, B. C.; Griffith, D. T.

    2014-06-01

    The availability of offshore wind resources in coastal regions, along with a high concentration of load centers in these areas, makes offshore wind energy an attractive opportunity for clean renewable electricity production. High infrastructure costs such as the offshore support structure and operation and maintenance costs for offshore wind technology, however, are significant obstacles that need to be overcome to make offshore wind a more cost-effective option. A vertical-axis wind turbine (VAWT) rotor configuration offers a potential transformative technology solution that significantly lowers cost of energy for offshore wind due to its inherent advantages for the offshore market. However, several potential challenges exist for VAWTs and this paper addresses one of them with an initial investigation of dynamic aeroelastic stability for large-scale, multi-megawatt VAWTs. The aeroelastic formulation and solution method from the BLade Aeroelastic STability Tool (BLAST) for HAWT blades was employed to extend the analysis capability of a newly developed structural dynamics design tool for VAWTs. This investigation considers the effect of configuration geometry, material system choice, and number of blades on the aeroelastic stability of a VAWT, and provides an initial scoping for potential aeroelastic instabilities in large-scale VAWT designs.

  6. An Aeroelastic Analysis of a Thin Flexible Membrane

    NASA Technical Reports Server (NTRS)

    Scott, Robert C.; Bartels, Robert E.; Kandil, Osama A.

    2007-01-01

    Studies have shown that significant vehicle mass and cost savings are possible with the use of ballutes for aero-capture. Through NASA's In-Space Propulsion program, a preliminary examination of ballute sensitivity to geometry and Reynolds number was conducted, and a single-pass coupling between an aero code and a finite element solver was used to assess the static aeroelastic effects. There remain, however, a variety of open questions regarding the dynamic aeroelastic stability of membrane structures for aero-capture, with the primary challenge being the prediction of the membrane flutter onset. The purpose of this paper is to describe and begin addressing these issues. The paper includes a review of the literature associated with the structural analysis of membranes and membrane utter. Flow/structure analysis coupling and hypersonic flow solver options are also discussed. An approach is proposed for tackling this problem that starts with a relatively simple geometry and develops and evaluates analysis methods and procedures. This preliminary study considers a computationally manageable 2-dimensional problem. The membrane structural models used in the paper include a nonlinear finite-difference model for static and dynamic analysis and a NASTRAN finite element membrane model for nonlinear static and linear normal modes analysis. Both structural models are coupled with a structured compressible flow solver for static aeroelastic analysis. For dynamic aeroelastic analyses, the NASTRAN normal modes are used in the structured compressible flow solver and 3rd order piston theories were used with the finite difference membrane model to simulate utter onset. Results from the various static and dynamic aeroelastic analyses are compared.

  7. In-flight gust monitoring and aeroelasticity studies

    NASA Astrophysics Data System (ADS)

    Alvarez-Salazar, Oscar Salvador

    An in-flight gust monitoring and aeroelasticity study was conducted on board NASA Dryden's F15-B/FTF-II test platform (``FTF''). A total of four flights were completed. This study is the first in a series of flight experiments being conducted jointly by NASA Dryden Flight Research Center and UCLA's Flight Systems Research Center. The first objective of the in-flight gust- monitoring portion of the study was to demonstrate for the first time anywhere the measurability of intensity variations of a collimated Helium-Neon laser beam due to atmospheric air turbulence while having both the source and target apertures mounted outside an airborne aircraft. Intensity beam variations are the result of forward scattering of the beam by variations in the air's index of refraction, which are carried across the laser beam's path by a cross flow or air (i.e., atmospheric turbulence shifting vertically in the atmosphere). A laser beam was propagated parallel to the direction of flight for 1/2 meter outside the flight test fixture and its intensity variations due to atmospheric turbulence were successfully measured by a photo- detector. When the aircraft did not fly through a field of atmospheric turbulence, the laser beam proved to be insensitive to the stream velocity's cross component to the path of the beam. The aeroelasticity portion of the study consisted of measurements of the dynamic response of a straight, 18.25 inch span, 4.00 inch chord, NACA 0006 airfoil thickness profile, one sided wing to in-flight aircraft maneuvers, landing gear buffeting, unsteady aerodynamics, atmospheric turbulence, and aircraft vibration in general. These measurements were accomplished through the use of accelerometers, strain gauges and in-flight video cameras. Data collected will be used to compute in-flight root loci for the wing as functions of the aircraft's stream velocity. The data may also be used to calibrate data collected by the gust-monitoring system flown, and help verify the

  8. Volterra Series Approach for Nonlinear Aeroelastic Response of 2-D Lifting Surfaces

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.; Marzocca, Piergiovanni; Librescu, Liviu

    2001-01-01

    The problem of the determination of the subcritical aeroelastic response and flutter instability of nonlinear two-dimensional lifting surfaces in an incompressible flow-field via Volterra series approach is addressed. The related aeroelastic governing equations are based upon the inclusion of structural nonlinearities, of the linear unsteady aerodynamics and consideration of an arbitrary time-dependent external pressure pulse. Unsteady aeroelastic nonlinear kernels are determined, and based on these, frequency and time histories of the subcritical aeroelastic response are obtained, and in this context the influence of geometric nonlinearities is emphasized. Conclusions and results displaying the implications of the considered effects are supplied.

  9. Helicopter aeroelastic stability and response - Current topics and future trends

    NASA Technical Reports Server (NTRS)

    Friedmann, Peretz P.

    1990-01-01

    This paper presents several current topics in rotary wing aeroelasticity and concludes by attempting to anticipate future trends and developments. These topics are: (1) the role of geometric nonlinearities; (2) structural modeling, and aeroelastic analysis of composite rotor blades; (3) aeroelastic stability and response in forward flight; (4) modeling of coupled rotor/fuselage aeromechanical problems and their active control; and (5) the coupled rotor-fuselage vibration problem and its alleviation by higher harmonic control. Selected results illustrating the fundamental aspects of these topics are presented. Future developments are briefly discussed.

  10. Research activities on supercritical fluid science in food biotechnology.

    PubMed

    Khosravi-Darani, Kianoush

    2010-06-01

    This article serves as an overview, introducing the currently popular area of supercritical fluids and their uses in food biotechnology. Within each application, and wherever possible, the basic principles of the technique, as well as a description of the history, instrumentation, methodology, uses, problems encountered, and advantages over the traditional, non-supercritical methods are given. Most current commercial application of the supercritical extraction involve biologically-produced materials; the technique may be particularly relevant to the extraction of biological compounds in cases where there is a requirement for low-temperature processing, high mass-transfer rates, and negligible carrying over of the solvent into the final product. Special applications to food processing include the decaffeination of green coffee beans, the production of hops extracts, the recovery of aromas and flavors from herbs and spices, the extraction and fractionation of edible oils, and the removal of contaminants, among others. New advances, in which the extraction is combined with reaction or crystallization steps, may further increase the attractiveness of supercritical fluids in the bioprocess industries. To develop and establish a novel and effective alternative to heating treatment, the lethal action of high hydrostatic pressure CO(2) on microorganisms, with none or only a minimal heating process, has recently received a great deal of attention.

  11. Advanced Subsonic Technology (AST) Area of Interest (AOI) 6: Develop and Validate Aeroelastic Codes for Turbomachinery

    NASA Technical Reports Server (NTRS)

    Gardner, Kevin D.; Liu, Jong-Shang; Murthy, Durbha V.; Kruse, Marlin J.; James, Darrell

    1999-01-01

    AlliedSignal Engines, in cooperation with NASA GRC (National Aeronautics and Space Administration Glenn Research Center), completed an evaluation of recently-developed aeroelastic computer codes using test cases from the AlliedSignal Engines fan blisk and turbine databases. Test data included strain gage, performance, and steady-state pressure information obtained for conditions where synchronous or flutter vibratory conditions were found to occur. Aeroelastic codes evaluated included quasi 3-D UNSFLO (MIT Developed/AE Modified, Quasi 3-D Aeroelastic Computer Code), 2-D FREPS (NASA-Developed Forced Response Prediction System Aeroelastic Computer Code), and 3-D TURBO-AE (NASA/Mississippi State University Developed 3-D Aeroelastic Computer Code). Unsteady pressure predictions for the turbine test case were used to evaluate the forced response prediction capabilities of each of the three aeroelastic codes. Additionally, one of the fan flutter cases was evaluated using TURBO-AE. The UNSFLO and FREPS evaluation predictions showed good agreement with the experimental test data trends, but quantitative improvements are needed. UNSFLO over-predicted turbine blade response reductions, while FREPS under-predicted them. The inviscid TURBO-AE turbine analysis predicted no discernible blade response reduction, indicating the necessity of including viscous effects for this test case. For the TURBO-AE fan blisk test case, significant effort was expended getting the viscous version of the code to give converged steady flow solutions for the transonic flow conditions. Once converged, the steady solutions provided an excellent match with test data and the calibrated DAWES (AlliedSignal 3-D Viscous Steady Flow CFD Solver). However, efforts expended establishing quality steady-state solutions prevented exercising the unsteady portion of the TURBO-AE code during the present program. AlliedSignal recommends that unsteady pressure measurement data be obtained for both test cases examined

  12. Aeroelastic Optimization Study Based on X-56A Model

    NASA Technical Reports Server (NTRS)

    Li, Wesley; Pak, Chan-Gi

    2014-01-01

    A design process which incorporates the object-oriented multidisciplinary design, analysis, and optimization (MDAO) tool and the aeroelastic effects of high fidelity finite element models to characterize the design space was successfully developed and established. Two multidisciplinary design optimization studies using an object-oriented MDAO tool developed at NASA Armstrong Flight Research Center were presented. The first study demonstrates the use of aeroelastic tailoring concepts to minimize the structural weight while meeting the design requirements including strength, buckling, and flutter. A hybrid and discretization optimization approach was implemented to improve accuracy and computational efficiency of a global optimization algorithm. The second study presents a flutter mass balancing optimization study. The results provide guidance to modify the fabricated flexible wing design and move the design flutter speeds back into the flight envelope so that the original objective of X-56A flight test can be accomplished.

  13. Artificial neural network prediction of aircraft aeroelastic behavior

    NASA Astrophysics Data System (ADS)

    Pesonen, Urpo Juhani

    An Artificial Neural Network that predicts aeroelastic behavior of aircraft is presented. The neural net was designed to predict the shape of a flexible wing in static flight conditions using results from a structural analysis and an aerodynamic analysis performed with traditional computational tools. To generate reliable training and testing data for the network, an aeroelastic analysis code using these tools as components was designed and validated. To demonstrate the advantages and reliability of Artificial Neural Networks, a network was also designed and trained to predict airfoil maximum lift at low Reynolds numbers where wind tunnel data was used for the training. Finally, a neural net was designed and trained to predict the static aeroelastic behavior of a wing without the need to iterate between the structural and aerodynamic solvers.

  14. Status and future plans of the Drones for Aerodynamic and Structural Testing (DAST) program. [Aeroelastic Research Wing (ARW)

    NASA Technical Reports Server (NTRS)

    Murrow, H. N.

    1981-01-01

    Results from flight tests of the ARW-1 research wing are presented. Preliminary loads data and experiences with the active control system for flutter suppression are included along with comparative results of test and prediction for the flutter boundary of the supercritical research wing and on performance of the flutter suppression system. The status of the ARW-2 research wing is given.

  15. Supercritical fluid chromatography

    NASA Astrophysics Data System (ADS)

    Vigdergauz, M. S.; Lobachev, A. L.; Lobacheva, I. V.; Platonov, I. A.

    1992-03-01

    The characteristic features of supercritical fluid chromatography (SCFC) are examined and there is a brief historical note concerning the development of the method. Information concerning the use of supercritical fluid chromatography in the analysis of objects of different nature is presented in the form of a table. The roles of the mobile and stationary phases in the separation process and the characteristic features of the apparatus and of the use of the method in physicochemical research are discussed. The bibliography includes 364 references.

  16. Research on simulation of supercritical steam turbine system in large thermal power station

    NASA Astrophysics Data System (ADS)

    Zhou, Qiongyang

    2018-04-01

    In order to improve the stability and safety of supercritical steam turbine system operation in large thermal power station, the body of the steam turbine is modeled in this paper. And in accordance with the hierarchical modeling idea, the steam turbine body model, condensing system model, deaeration system model and regenerative system model are combined to build a simulation model of steam turbine system according to the connection relationship of each subsystem of steam turbine. Finally, the correctness of the model is verified by design and operation data of the 600MW supercritical unit. The results show that the maximum simulation error of the model is 2.15%, which meets the requirements of the engineering. This research provides a platform for the research on the variable operating conditions of the turbine system, and lays a foundation for the construction of the whole plant model of the thermal power plant.

  17. Structural dynamic and aeroelastic considerations for hypersonic vehicles

    NASA Technical Reports Server (NTRS)

    Cazier, F. W., Jr.; Doggett, Robert V., Jr.; Ricketts, Rodney H.

    1991-01-01

    The specific geometrical, structural, and operational environment characteristics of hypersonic vehicles are discussed with particular reference to aerospace plane type configurations. A discussion of the structural dynamic and aeroelastic phenomena that must be addressed for this class of vehicles is presented. These phenomena are in the aeroservothermoelasticity technical area. Some illustrative examples of recent experimental and analytical work are given. Some examples of current research are pointed out.

  18. Development of a structural optimization capability for the aeroelastic tailoring of composite rotor blades with straight and swept tips

    NASA Technical Reports Server (NTRS)

    Friedmann, P. P.; Venkatesan, C.; Yuan, K.

    1992-01-01

    This paper describes the development of a new structural optimization capability aimed at the aeroelastic tailoring of composite rotor blades with straight and swept tips. The primary objective is to reduce vibration levels in forward flight without diminishing the aeroelastic stability margins of the blade. In the course of this research activity a number of complicated tasks have been addressed: (1) development of a new, aeroelastic stability and response analysis; (2) formulation of a new comprehensive sensitive analysis, which facilitates the generation of the appropriate approximations for the objective and the constraints; (3) physical understanding of the new model and, in particular, determination of its potential for aeroelastic tailoring, and (4) combination of the newly developed analysis capability, the sensitivity derivatives and the optimizer into a comprehensive optimization capability. The first three tasks have been completed and the fourth task is in progress.

  19. Wind Tunnel to Atmospheric Mapping for Static Aeroelastic Scaling

    NASA Technical Reports Server (NTRS)

    Heeg, Jennifer; Spain, Charles V.; Rivera, J. A.

    2004-01-01

    Wind tunnel to Atmospheric Mapping (WAM) is a methodology for scaling and testing a static aeroelastic wind tunnel model. The WAM procedure employs scaling laws to define a wind tunnel model and wind tunnel test points such that the static aeroelastic flight test data and wind tunnel data will be correlated throughout the test envelopes. This methodology extends the notion that a single test condition - combination of Mach number and dynamic pressure - can be matched by wind tunnel data. The primary requirements for affecting this extension are matching flight Mach numbers, maintaining a constant dynamic pressure scale factor and setting the dynamic pressure scale factor in accordance with the stiffness scale factor. The scaling is enabled by capabilities of the NASA Langley Transonic Dynamics Tunnel (TDT) and by relaxation of scaling requirements present in the dynamic problem that are not critical to the static aeroelastic problem. The methodology is exercised in two example scaling problems: an arbitrarily scaled wing and a practical application to the scaling of the Active Aeroelastic Wing flight vehicle for testing in the TDT.

  20. A Coupled Aeroelastic Model for Launch Vehicle Stability Analysis

    NASA Technical Reports Server (NTRS)

    Orr, Jeb S.

    2010-01-01

    A technique for incorporating distributed aerodynamic normal forces and aeroelastic coupling effects into a stability analysis model of a launch vehicle is presented. The formulation augments the linear state-space launch vehicle plant dynamics that are compactly derived as a system of coupled linear differential equations representing small angular and translational perturbations of the rigid body, nozzle, and sloshing propellant coupled with normal vibration of a set of orthogonal modes. The interaction of generalized forces due to aeroelastic coupling and thrust can be expressed as a set of augmenting non-diagonal stiffness and damping matrices in modal coordinates with no penalty on system order. While the eigenvalues of the structural response in the presence of thrust and aeroelastic forcing can be predicted at a given flight condition independent of the remaining degrees of freedom, the coupled model provides confidence in closed-loop stability in the presence of rigid-body, slosh, and actuator dynamics. Simulation results are presented that characterize the coupled dynamic response of the Ares I launch vehicle and the impact of aeroelasticity on control system stability margins.

  1. Aeroelastic Stability and Response of Rotating Structures

    NASA Technical Reports Server (NTRS)

    Keith, Theo G., Jr.; Reddy, Tondapu

    2004-01-01

    A summary of the work performed under NASA grant is presented. More details can be found in the cited references. This grant led to the development of relatively faster aeroelastic analysis methods for predicting flutter and forced response in fans, compressors, and turbines using computational fluid dynamic (CFD) methods. These methods are based on linearized two- and three-dimensional, unsteady, nonlinear aerodynamic equations. During the period of the grant, aeroelastic analysis that includes the effects of uncertainties in the design variables has also been developed.

  2. Role of HPC in Advancing Computational Aeroelasticity

    NASA Technical Reports Server (NTRS)

    Guruswamy, Guru P.

    2004-01-01

    On behalf of the High Performance Computing and Modernization Program (HPCMP) and NASA Advanced Supercomputing Division (NAS) a study is conducted to assess the role of supercomputers on computational aeroelasticity of aerospace vehicles. The study is mostly based on the responses to a web based questionnaire that was designed to capture the nuances of high performance computational aeroelasticity, particularly on parallel computers. A procedure is presented to assign a fidelity-complexity index to each application. Case studies based on major applications using HPCMP resources are presented.

  3. Refined methods of aeroelastic analysis and optimization. [swept wings, propeller theory, and subsonic flutter

    NASA Technical Reports Server (NTRS)

    Ashley, H.

    1984-01-01

    Graduate research activity in the following areas is reported: the divergence of laminated composite lifting surfaces, subsonic propeller theory and aeroelastic analysis, and cross sectional resonances in wind tunnels.

  4. Overview of the Aeroelastic Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Heeg, Jennifer; Chwalowski, Pawel; Florance, Jennifer P.; Wieseman, Carol D.; Schuster, David M.; Perry, Raleigh B.

    2013-01-01

    The Aeroelastic Prediction Workshop brought together an international community of computational fluid dynamicists as a step in defining the state of the art in computational aeroelasticity. This workshop's technical focus was prediction of unsteady pressure distributions resulting from forced motion, benchmarking the results first using unforced system data. The most challenging aspects of the physics were identified as capturing oscillatory shock behavior, dynamic shock-induced separated flow and tunnel wall boundary layer influences. The majority of the participants used unsteady Reynolds-averaged Navier Stokes codes. These codes were exercised at transonic Mach numbers for three configurations and comparisons were made with existing experimental data. Substantial variations were observed among the computational solutions as well as differences relative to the experimental data. Contributing issues to these differences include wall effects and wall modeling, non-standardized convergence criteria, inclusion of static aeroelastic deflection, methodology for oscillatory solutions, post-processing methods. Contributing issues pertaining principally to the experimental data sets include the position of the model relative to the tunnel wall, splitter plate size, wind tunnel expansion slot configuration, spacing and location of pressure instrumentation, and data processing methods.

  5. Aeroelasticity of morphing wings using neural networks

    NASA Astrophysics Data System (ADS)

    Natarajan, Anand

    In this dissertation, neural networks are designed to effectively model static non-linear aeroelastic problems in adaptive structures and linear dynamic aeroelastic systems with time varying stiffness. The use of adaptive materials in aircraft wings allows for the change of the contour or the configuration of a wing (morphing) in flight. The use of smart materials, to accomplish these deformations, can imply that the stiffness of the wing with a morphing contour changes as the contour changes. For a rapidly oscillating body in a fluid field, continuously adapting structural parameters may render the wing to behave as a time variant system. Even the internal spars/ribs of the aircraft wing which define the wing stiffness can be made adaptive, that is, their stiffness can be made to vary with time. The immediate effect on the structural dynamics of the wing, is that, the wing motion is governed by a differential equation with time varying coefficients. The study of this concept of a time varying torsional stiffness, made possible by the use of active materials and adaptive spars, in the dynamic aeroelastic behavior of an adaptable airfoil is performed here. Another type of aeroelastic problem of an adaptive structure that is investigated here, is the shape control of an adaptive bump situated on the leading edge of an airfoil. Such a bump is useful in achieving flow separation control for lateral directional maneuverability of the aircraft. Since actuators are being used to create this bump on the wing surface, the energy required to do so needs to be minimized. The adverse pressure drag as a result of this bump needs to be controlled so that the loss in lift over the wing is made minimal. The design of such a "spoiler bump" on the surface of the airfoil is an optimization problem of maximizing pressure drag due to flow separation while minimizing the loss in lift and energy required to deform the bump. One neural network is trained using the CFD code FLUENT to

  6. Method of performing computational aeroelastic analyses

    NASA Technical Reports Server (NTRS)

    Silva, Walter A. (Inventor)

    2011-01-01

    Computational aeroelastic analyses typically use a mathematical model for the structural modes of a flexible structure and a nonlinear aerodynamic model that can generate a plurality of unsteady aerodynamic responses based on the structural modes for conditions defining an aerodynamic condition of the flexible structure. In the present invention, a linear state-space model is generated using a single execution of the nonlinear aerodynamic model for all of the structural modes where a family of orthogonal functions is used as the inputs. Then, static and dynamic aeroelastic solutions are generated using computational interaction between the mathematical model and the linear state-space model for a plurality of periodic points in time.

  7. Selected topics in experimental aeroelasticity at the NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Ricketts, R. H.

    1985-01-01

    The results of selected studies that have been conducted by the NASA Langley Research Center in the last three years are presented. The topics presented focus primarily on the ever-important transonic flight regime and include the following: body-freedom flutter of a forward-swept-wing configuration with and without relaxed static stability; instabilities associated with a new tilt-rotor vehicle; effects of winglets, supercritical airfoils, and spanwise curvature on wing flutter; wind-tunnel investigation of a flutter-like oscillation on a high-aspect-ratio flight research wing; results of wing-tunnel demonstration of the NASA decoupler pylon concept for passive suppression of wing/store flutter; and, new flutter testing methods which include testing at cryogenic temperatures for full scale Reynolds number simulation, subcritical response techniques for predicting onset of flutter, and a two-degree-of-freedom mount system for testing side-wall-mounted models.

  8. Selected topics in experimental aeroelasticity at the NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Ricketts, R. H.

    1985-01-01

    The results of selected studies that have been conducted by the NASA Langley Research Center in the last three years are presented. The topics presented focus primarily on the ever-important transonic flight regime and include the following: body-freedom flutter of a forward-swept-wing configuration with and without relaxed static stability; instabilities associated with a new tilt-rotor vehicle; effects of winglets, supercritical airfoils, and spanwise curvature on wing flutter; wind-tunnel investigation of a flutter-like oscillation on a high-aspect-ratio flight research wing; results of wind-tunnel demonstration of the NASA decoupler pylon concept for passive suppression of wing/store flutter; and, new flutter testing methods which include testing at cryogenic temperatures for full scale Reynolds number simulation, subcritical response techniques for predicting onset of flutter, and a two-degree-of-freedom mount system for testing side-wall-mounted models.

  9. IAEA coordinated research project on thermal-hydraulics of Supercritical Water-Cooled Reactors (SCWRs)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamada, K.; Aksan, S. N.

    The Supercritical Water-Cooled Reactor (SCWR) is an innovative water-cooled reactor concept, which uses supercritical pressure water as reactor coolant. It has been attracting interest of many researchers in various countries mainly due to its benefits of high thermal efficiency and simple primary systems, resulting in low capital cost. The IAEA started in 2008 a Coordinated Research Project (CRP) on Thermal-Hydraulics of SCWRs as a forum to foster the exchange of technical information and international collaboration in research and development. This paper summarizes the activities and current status of the CRP, as well as major progress achieved to date. At present,more » 15 institutions closely collaborate in several tasks. Some organizations have been conducting thermal-hydraulics experiments and analysing the data, and others have been participating in code-to-test and/or code-to-code benchmark exercises. The expected outputs of the CRP are also discussed. Finally, the paper introduces several IAEA activities relating to or arising from the CRP. (authors)« less

  10. Transonic Unsteady Aerodynamics and Aeroelasticity 1987, part 1

    NASA Technical Reports Server (NTRS)

    Bland, Samuel R. (Compiler)

    1989-01-01

    Computational fluid dynamics methods have been widely accepted for transonic aeroelastic analysis. Previously, calculations with the TSD methods were used for 2-D airfoils, but now the TSD methods are applied to the aeroelastic analysis of the complete aircraft. The Symposium papers are grouped into five subject areas, two of which are covered in this part: (1) Transonic Small Disturbance (TSD) theory for complete aircraft configurations; and (2) Full potential and Euler equation methods.

  11. Aeroelastic Airworthiness Assesment of the Adaptive Compliant Trailing Edge Flaps

    NASA Technical Reports Server (NTRS)

    Herrera, Claudia Y.; Spivey, Natalie D.; Lung, Shun-fat; Ervin, Gregory; Flick, Peter

    2015-01-01

    The Adaptive Compliant Trailing Edge (ACTE) demonstrator is a joint task under the National Aeronautics and Space Administration Environmentally Responsible Aviation Project in partnership with the Air Force Research Laboratory and FlexSys, Inc. (Ann Arbor, Michigan). The project goal is to develop advanced technologies that enable environmentally friendly aircraft, such as adaptive compliant technologies. The ACTE demonstrator flight-test program encompassed replacing the Fowler flaps on the SubsoniC Aircraft Testbed, a modified Gulfstream III (Gulfstream Aerospace, Savannah, Georgia) aircraft, with control surfaces developed by FlexSys. The control surfaces developed by FlexSys are a pair of uniquely-designed unconventional flaps to be used as lifting surfaces during flight-testing to validate their structural effectiveness. The unconventional flaps required a multidisciplinary airworthiness assessment to prove they could withstand the prescribed flight envelope. Several challenges were posed due to the large deflections experienced by the structure, requiring non-linear analysis methods. The aeroelastic assessment necessitated both conventional and extensive testing and analysis methods. A series of ground vibration tests (GVTs) were conducted to provide modal characteristics to validate and update finite element models (FEMs) used for the flutter analyses for a subset of the various flight configurations. Numerous FEMs were developed using data from FlexSys and the ground tests. The flap FEMs were then attached to the aircraft model to generate a combined FEM that could be analyzed for aeroelastic instabilities. The aeroelastic analysis results showed the combined system of aircraft and flaps were predicted to have the required flutter margin to successfully demonstrate the adaptive compliant technology. This paper documents the details of the aeroelastic airworthiness assessment described, including the ground testing and analyses, and subsequent flight

  12. Static aeroelastic behavior of an adaptive laminated piezoelectric composite wing

    NASA Technical Reports Server (NTRS)

    Weisshaar, T. A.; Ehlers, S. M.

    1990-01-01

    The effect of using an adaptive material to modify the static aeroelastic behavior of a uniform wing is examined. The wing structure is idealized as a laminated sandwich structure with piezoelectric layers in the upper and lower skins. A feedback system that senses the wing root loads applies a constant electric field to the piezoelectric actuator. Modification of pure torsional deformaton behavior and pure bending deformation are investigated, as is the case of an anisotropic composite swept wing. The use of piezoelectric actuators to create an adaptive structure is found to alter static aeroelastic behavior in that the proper choice of the feedback gain can increase or decrease the aeroelastic divergence speed. This concept also may be used to actively change the lift effectiveness of a wing. The ability to modify static aeroelastic behavior is limited by physical limitations of the piezoelectric material and the manner in which it is integrated into the parent structure.

  13. Nonlinear Time Delayed Feedback Control of Aeroelastic Systems: A Functional Approach

    NASA Technical Reports Server (NTRS)

    Marzocca, Piergiovanni; Librescu, Liviu; Silva, Walter A.

    2003-01-01

    In addition to its intrinsic practical importance, nonlinear time delayed feedback control applied to lifting surfaces can result in interesting aeroelastic behaviors. In this paper, nonlinear aeroelastic response to external time-dependent loads and stability boundary for actively controlled lifting surfaces, in an incompressible flow field, are considered. The structural model and the unsteady aerodynamics are considered linear. The implications of the presence of time delays in the linear/nonlinear feedback control and of geometrical parameters on the aeroelasticity of lifting surfaces are analyzed and conclusions on their implications are highlighted.

  14. Supercritical and Transcritical Real-Fluid Mixing in Diesel Engine Applications

    DTIC Science & Technology

    2015-09-01

    ARL-RP-0551 ● SEP 2015 US Army Research Laboratory Supercritical and Transcritical Real-Fluid Mixing in Diesel Engine...ARL-RP-0551 ● SEP 2015 US Army Research Laboratory Supercritical and Transcritical Real-Fluid Mixing in Diesel Engine Applications by...COVERED (From - To) 1 January 2014–30 September 2014 4. TITLE AND SUBTITLE Supercritical and Transcritical Real-Fluid Mixing in Diesel Engine

  15. Analysis of operational limit of an aircraft: An aeroelastic approach

    NASA Astrophysics Data System (ADS)

    Hasan, Md. Mehedi; Hassan, M. D. Mehedi; Sarrowar, S. M. Bayazid; Faisal, Kh. Md.; Ahmed, Sheikh Reaz, Dr.

    2017-06-01

    In classical theory of elasticity, external loading acting on the body is independent of deformation of the body. But, in aeroelasticity, aerodynamic forces depend on the attitude of the body relative to the flow. Aircraft's are subjected to a range of static loads resulting from equilibrium or steady flight maneuvers such as coordinated level turn, steady pitch and bank rate, steady and level flight. Interaction of these loads with elastic forces of aircraft structure creates some aeroelastic phenomena. In this paper, we have summarized recent developments in the area of aeroelasticity. A numerical approach has been applied for finding divergence speed, a static aeroelastic phenomena, of a typical aircraft. This paper also involves graphical representations of constraints on load factor and bank angle during different steady flight maneuvers taking flexibility into account and comparing it with the value without flexibility. Effect of wing skin thickness, spar web thickness and position of flexural axis of wing on this divergence speed as well as load factor and bank angle has also been observed using MATLAB.

  16. Application of a transonic potential flow code to the static aeroelastic analysis of three-dimensional wings

    NASA Technical Reports Server (NTRS)

    Whitlow, W., Jr.; Bennett, R. M.

    1982-01-01

    Since the aerodynamic theory is nonlinear, the method requires the coupling of two iterative processes - an aerodynamic analysis and a structural analysis. A full potential analysis code, FLO22, is combined with a linear structural analysis to yield aerodynamic load distributions on and deflections of elastic wings. This method was used to analyze an aeroelastically-scaled wind tunnel model of a proposed executive-jet transport wing and an aeroelastic research wing. The results are compared with the corresponding rigid-wing analyses, and some effects of elasticity on the aerodynamic loading are noted.

  17. Aeroelastic Tailoring of a Plate Wing with Functionally Graded Materials

    NASA Technical Reports Server (NTRS)

    Dunning, Peter D.; Stanford, Bret K.; Kim, H. Alicia; Jutte, Christine V.

    2014-01-01

    This work explores the use of functionally graded materials for the aeroelastic tailoring of a metallic cantilevered plate-like wing. Pareto trade-off curves between dynamic stability (flutter) and static aeroelastic stresses are obtained for a variety of grading strategies. A key comparison is between the effectiveness of material grading, geometric grading (i.e., plate thickness variations), and using both simultaneously. The introduction of material grading does, in some cases, improve the aeroelastic performance. This improvement, and the physical mechanism upon which it is based, depends on numerous factors: the two sets of metallic material parameters used for grading, the sweep of the plate, the aspect ratio of the plate, and whether the material is graded continuously or discretely.

  18. Aeroelastic passive control optimization of supersonic composite wing with external stores

    NASA Astrophysics Data System (ADS)

    Sulaeman, E.; Abdullah, N. A.; Kashif, S. M.

    2017-03-01

    This paper provides a study on passive aeroelastic control optimization, by means of aeroelastic tailoring, of a composite supersonic wing equipped with external stores. The objective of the optimization is to minimize wing weight by considering the aeroelastic flutter and divergence instability speeds as constraints at several flight altitudes. The optimization variables are the composite ply angle and skin thickness of the wing box, wing rib and its control surfaces. The aeroelastic instability speed is set as constraint such that it should be higher than the flutter speed of a metallic base line model of supersonic wing having previously published. A finite element analysis is applied to determine the stiffness and mass matric of the wing and its multi stores. The boundary element method in the form of doublet lattice method is used to model the unsteady aerodynamic load. The results indicate that, for the present wing configuration, the high modulus Graphite/Epoxy composite provides a desired higher flutter speed and lower wing weight compare to that of Kevlar/Epoxy composite as well as the base line metallic wing materials. The aeroelastic boundary thus can be enlarged to higher speed zone and in the same time reduce the structural weight which is important for a further optimization process.

  19. Probabilistic Aeroelastic Analysis of Turbomachinery Components

    NASA Technical Reports Server (NTRS)

    Reddy, T. S. R.; Mital, S. K.; Stefko, G. L.

    2004-01-01

    A probabilistic approach is described for aeroelastic analysis of turbomachinery blade rows. Blade rows with subsonic flow and blade rows with supersonic flow with subsonic leading edge are considered. To demonstrate the probabilistic approach, the flutter frequency, damping and forced response of a blade row representing a compressor geometry is considered. The analysis accounts for uncertainties in structural and aerodynamic design variables. The results are presented in the form of probabilistic density function (PDF) and sensitivity factors. For subsonic flow cascade, comparisons are also made with different probabilistic distributions, probabilistic methods, and Monte-Carlo simulation. The approach shows that the probabilistic approach provides a more realistic and systematic way to assess the effect of uncertainties in design variables on the aeroelastic instabilities and response.

  20. Flight-vehicle materials, structures, and dynamics - Assessment and future directions. Vol. 5 - Structural dynamics and aeroelasticity

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K. (Editor); Venneri, Samuel L. (Editor)

    1993-01-01

    Various papers on flight vehicle materials, structures, and dynamics are presented. Individual topics addressed include: general modeling methods, component modeling techniques, time-domain computational techniques, dynamics of articulated structures, structural dynamics in rotating systems, structural dynamics in rotorcraft, damping in structures, structural acoustics, structural design for control, structural modeling for control, control strategies for structures, system identification, overall assessment of needs and benefits in structural dynamics and controlled structures. Also discussed are: experimental aeroelasticity in wind tunnels, aeroservoelasticity, nonlinear aeroelasticity, aeroelasticity problems in turbomachines, rotary-wing aeroelasticity with application to VTOL vehicles, computational aeroelasticity, structural dynamic testing and instrumentation.

  1. Integrated multidisciplinary design optimization using discrete sensitivity analysis for geometrically complex aeroelastic configurations

    NASA Astrophysics Data System (ADS)

    Newman, James Charles, III

    1997-10-01

    practical interest, the sensitivity analysis and shape optimization has been performed for several two- and three-dimensional cases. In twodimensions, an initially symmetric NACA-0012 airfoil and a high-lift multielement airfoil were examined. For the three-dimensional configurations, an initially rectangular wing with uniform NACA-0012 cross-sections was optimized; in addition, a complete Boeing 747-200 aircraft was studied. Furthermore, the current study also examines the effect of inconsistency in the order of spatial accuracy between the nonlinear fluid and linear shape sensitivity equations. The second step was to develop a computationally efficient, high-fidelity, integrated static aeroelastic analysis procedure. To accomplish this, a structural analysis code was coupled with the aforementioned unstructured grid aerodynamic analysis solver. The use of an unstructured grid scheme for the aerodynamic analysis enhances the interaction compatibility with the wing structure. The structural analysis utilizes finite elements to model the wing so that accurate structural deflections may be obtained. In the current work, parameters have been introduced to control the interaction of the computational fluid dynamics and structural analyses; these control parameters permit extremely efficient static aeroelastic computations. To demonstrate and evaluate this procedure, static aeroelastic analysis results for a flexible wing in low subsonic, high subsonic (subcritical), transonic (supercritical), and supersonic flow conditions are presented.

  2. Gravo-Aeroelastic Scaling for Extreme-Scale Wind Turbines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fingersh, Lee J; Loth, Eric; Kaminski, Meghan

    2017-06-09

    A scaling methodology is described in the present paper for extreme-scale wind turbines (rated at 10 MW or more) that allow their sub-scale turbines to capture their key blade dynamics and aeroelastic deflections. For extreme-scale turbines, such deflections and dynamics can be substantial and are primarily driven by centrifugal, thrust and gravity forces as well as the net torque. Each of these are in turn a function of various wind conditions, including turbulence levels that cause shear, veer, and gust loads. The 13.2 MW rated SNL100-03 rotor design, having a blade length of 100-meters, is herein scaled to the CART3more » wind turbine at NREL using 25% geometric scaling and blade mass and wind speed scaled by gravo-aeroelastic constraints. In order to mimic the ultralight structure on the advanced concept extreme-scale design the scaling results indicate that the gravo-aeroelastically scaled blades for the CART3 are be three times lighter and 25% longer than the current CART3 blades. A benefit of this scaling approach is that the scaled wind speeds needed for testing are reduced (in this case by a factor of two), allowing testing under extreme gust conditions to be much more easily achieved. Most importantly, this scaling approach can investigate extreme-scale concepts including dynamic behaviors and aeroelastic deflections (including flutter) at an extremely small fraction of the full-scale cost.« less

  3. Aeroelastic Optimization Study Based on the X-56A Model

    NASA Technical Reports Server (NTRS)

    Li, Wesley W.; Pak, Chan-Gi

    2014-01-01

    One way to increase the aircraft fuel efficiency is to reduce structural weight while maintaining adequate structural airworthiness, both statically and aeroelastically. A design process which incorporates the object-oriented multidisciplinary design, analysis, and optimization (MDAO) tool and the aeroelastic effects of high fidelity finite element models to characterize the design space was successfully developed and established. This paper presents two multidisciplinary design optimization studies using an object-oriented MDAO tool developed at NASA Armstrong Flight Research Center. The first study demonstrates the use of aeroelastic tailoring concepts to minimize the structural weight while meeting the design requirements including strength, buckling, and flutter. Such an approach exploits the anisotropic capabilities of the fiber composite materials chosen for this analytical exercise with ply stacking sequence. A hybrid and discretization optimization approach improves accuracy and computational efficiency of a global optimization algorithm. The second study presents a flutter mass balancing optimization study for the fabricated flexible wing of the X-56A model since a desired flutter speed band is required for the active flutter suppression demonstration during flight testing. The results of the second study provide guidance to modify the wing design and move the design flutter speeds back into the flight envelope so that the original objective of X-56A flight test can be accomplished successfully. The second case also demonstrates that the object-oriented MDAO tool can handle multiple analytical configurations in a single optimization run.

  4. Preliminary Computational Analysis of the (HIRENASD) Configuration in Preparation for the Aeroelastic Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Chwalowski, Pawel; Florance, Jennifer P.; Heeg, Jennifer; Wieseman, Carol D.; Perry, Boyd P.

    2011-01-01

    This paper presents preliminary computational aeroelastic analysis results generated in preparation for the first Aeroelastic Prediction Workshop (AePW). These results were produced using FUN3D software developed at NASA Langley and are compared against the experimental data generated during the HIgh REynolds Number Aero- Structural Dynamics (HIRENASD) Project. The HIRENASD wind-tunnel model was tested in the European Transonic Windtunnel in 2006 by Aachen University0s Department of Mechanics with funding from the German Research Foundation. The computational effort discussed here was performed (1) to obtain a preliminary assessment of the ability of the FUN3D code to accurately compute physical quantities experimentally measured on the HIRENASD model and (2) to translate the lessons learned from the FUN3D analysis of HIRENASD into a set of initial guidelines for the first AePW, which includes test cases for the HIRENASD model and its experimental data set. This paper compares the computational and experimental results obtained at Mach 0.8 for a Reynolds number of 7 million based on chord, corresponding to the HIRENASD test conditions No. 132 and No. 159. Aerodynamic loads and static aeroelastic displacements are compared at two levels of the grid resolution. Harmonic perturbation numerical results are compared with the experimental data using the magnitude and phase relationship between pressure coefficients and displacement. A dynamic aeroelastic numerical calculation is presented at one wind-tunnel condition in the form of the time history of the generalized displacements. Additional FUN3D validation results are also presented for the AGARD 445.6 wing data set. This wing was tested in the Transonic Dynamics Tunnel and is commonly used in the preliminary benchmarking of computational aeroelastic software.

  5. On mathematical modelling of aeroelastic problems with finite element method

    NASA Astrophysics Data System (ADS)

    Sváček, Petr

    2018-06-01

    This paper is interested in solution of two-dimensional aeroelastic problems. Two mathematical models are compared for a benchmark problem. First, the classical approach of linearized aerodynamical forces is described to determine the aeroelastic instability and the aeroelastic response in terms of frequency and damping coefficient. This approach is compared to the coupled fluid-structure model solved with the aid of finite element method used for approximation of the incompressible Navier-Stokes equations. The finite element approximations are coupled to the non-linear motion equations of a flexibly supported airfoil. Both methods are first compared for the case of small displacement, where the linearized approach can be well adopted. The influence of nonlinearities for the case of post-critical regime is discussed.

  6. Application of Computational Stability and Control Techniques Including Unsteady Aerodynamics and Aeroelastic Effects

    NASA Technical Reports Server (NTRS)

    Schuster, David M.; Edwards, John W.

    2004-01-01

    The motivation behind the inclusion of unsteady aerodynamics and aeroelastic effects in the computation of stability and control (S&C) derivatives will be discussed as they pertain to aeroelastic and aeroservoelastic analysis. This topic will be addressed in the context of two applications, the first being the estimation of S&C derivatives for a cable-mounted aeroservoelastic wind tunnel model tested in the NASA Langley Research Center (LaRC) Transonic Dynamics Tunnel (TDT). The second application will be the prediction of the nonlinear aeroservoelastic phenomenon known as Residual Pitch Oscillation (RPO) on the B-2 Bomber. Techniques and strategies used in these applications to compute S&C derivatives and perform flight simulations will be reviewed, and computational results will be presented.

  7. Flight Dynamics of Flexible Aircraft with Aeroelastic and Inertial Force Interactions

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.; Tuzcu, Ilhan

    2009-01-01

    This paper presents an integrated flight dynamic modeling method for flexible aircraft that captures coupled physics effects due to inertial forces, aeroelasticity, and propulsive forces that are normally present in flight. The present approach formulates the coupled flight dynamics using a structural dynamic modeling method that describes the elasticity of a flexible, twisted, swept wing using an equivalent beam-rod model. The structural dynamic model allows for three types of wing elastic motion: flapwise bending, chordwise bending, and torsion. Inertial force coupling with the wing elasticity is formulated to account for aircraft acceleration. The structural deflections create an effective aeroelastic angle of attack that affects the rigid-body motion of flexible aircraft. The aeroelastic effect contributes to aerodynamic damping forces that can influence aerodynamic stability. For wing-mounted engines, wing flexibility can cause the propulsive forces and moments to couple with the wing elastic motion. The integrated flight dynamics for a flexible aircraft are formulated by including generalized coordinate variables associated with the aeroelastic-propulsive forces and moments in the standard state-space form for six degree-of-freedom flight dynamics. A computational structural model for a generic transport aircraft has been created. The eigenvalue analysis is performed to compute aeroelastic frequencies and aerodynamic damping. The results will be used to construct an integrated flight dynamic model of a flexible generic transport aircraft.

  8. Computational Aeroelastic Analysis of the Semi-Span Super-Sonic Transport (S4T) Wind-Tunnel Model

    NASA Technical Reports Server (NTRS)

    Sanetrik, Mark D.; Silva, Walter A.; Hur, Jiyoung

    2012-01-01

    A summary of the computational aeroelastic analysis for the Semi-Span Super-Sonic Transport (S4T) wind-tunnel model is presented. A broad range of analysis techniques, including linear, nonlinear and Reduced Order Models (ROMs) were employed in support of a series of aeroelastic (AE) and aeroservoelastic (ASE) wind-tunnel tests conducted in the Transonic Dynamics Tunnel (TDT) at NASA Langley Research Center. This research was performed in support of the ASE element in the Supersonics Program, part of NASA's Fundamental Aeronautics Program. The analysis concentrated on open-loop flutter predictions, which were in good agreement with experimental results. This paper is one in a series that comprise a special S4T technical session, which summarizes the S4T project.

  9. A Historical Overview of Aeroelasticity Branch and Transonic Dynamics Tunnel Contributions to Rotorcraft Technology and Development

    NASA Technical Reports Server (NTRS)

    Yeager, William T., Jr.; Kvaternik, Raymond G.

    2001-01-01

    A historical account of the contributions of the Aeroelasticity Branch (AB) and the Langley Transonic Dynamics Tunnel (TDT) to rotorcraft technology and development since the tunnel's inception in 1960 is presented. The paper begins with a summary of the major characteristics of the TDT and a description of the unique capability offered by the TDT for testing aeroelastic models by virtue of its heavy gas test medium. This is followed by some remarks on the role played by scale models in the design and development of rotorcraft vehicles and a review of the basic scaling relationships important for designing and building dynamic aeroelastic models of rotorcraft vehicles for testing in the TDT. Chronological accounts of helicopter and tiltrotor research conducted in AB/TDT are then described in separate sections. Both experimental and analytical studies are reported and include a description of the various physical and mathematical models employed, the specific objectives of the investigations, and illustrative experimental and analytical results.

  10. Static Aeroelastic Analysis with an Inviscid Cartesian Method

    NASA Technical Reports Server (NTRS)

    Rodriguez, David L.; Aftosmis, Michael J.; Nemec, Marian; Smith, Stephen C.

    2014-01-01

    An embedded-boundary, Cartesian-mesh flow solver is coupled with a three degree-of-freedom structural model to perform static, aeroelastic analysis of complex aircraft geometries. The approach solves a nonlinear, aerostructural system of equations using a loosely-coupled strategy. An open-source, 3-D discrete-geometry engine is utilized to deform a triangulated surface geometry according to the shape predicted by the structural model under the computed aerodynamic loads. The deformation scheme is capable of modeling large deflections and is applicable to the design of modern, very-flexible transport wings. The coupling interface is modular so that aerodynamic or structural analysis methods can be easily swapped or enhanced. After verifying the structural model with comparisons to Euler beam theory, two applications of the analysis method are presented as validation. The first is a relatively stiff, transport wing model which was a subject of a recent workshop on aeroelasticity. The second is a very flexible model recently tested in a low speed wind tunnel. Both cases show that the aeroelastic analysis method produces results in excellent agreement with experimental data.

  11. Application of the Finite Element Method to Rotary Wing Aeroelasticity

    NASA Technical Reports Server (NTRS)

    Straub, F. K.; Friedmann, P. P.

    1982-01-01

    A finite element method for the spatial discretization of the dynamic equations of equilibrium governing rotary-wing aeroelastic problems is presented. Formulation of the finite element equations is based on weighted Galerkin residuals. This Galerkin finite element method reduces algebraic manipulative labor significantly, when compared to the application of the global Galerkin method in similar problems. The coupled flap-lag aeroelastic stability boundaries of hingeless helicopter rotor blades in hover are calculated. The linearized dynamic equations are reduced to the standard eigenvalue problem from which the aeroelastic stability boundaries are obtained. The convergence properties of the Galerkin finite element method are studied numerically by refining the discretization process. Results indicate that four or five elements suffice to capture the dynamics of the blade with the same accuracy as the global Galerkin method.

  12. Subspace Iteration Method for Complex Eigenvalue Problems with Nonsymmetric Matrices in Aeroelastic System

    NASA Technical Reports Server (NTRS)

    Pak, Chan-gi; Lung, Shun-fat

    2009-01-01

    Modern airplane design is a multidisciplinary task which combines several disciplines such as structures, aerodynamics, flight controls, and sometimes heat transfer. Historically, analytical and experimental investigations concerning the interaction of the elastic airframe with aerodynamic and in retia loads have been conducted during the design phase to determine the existence of aeroelastic instabilities, so called flutter .With the advent and increased usage of flight control systems, there is also a likelihood of instabilities caused by the interaction of the flight control system and the aeroelastic response of the airplane, known as aeroservoelastic instabilities. An in -house code MPASES (Ref. 1), modified from PASES (Ref. 2), is a general purpose digital computer program for the analysis of the closed-loop stability problem. This program used subroutines given in the International Mathematical and Statistical Library (IMSL) (Ref. 3) to compute all of the real and/or complex conjugate pairs of eigenvalues of the Hessenberg matrix. For high fidelity configuration, these aeroelastic system matrices are large and compute all eigenvalues will be time consuming. A subspace iteration method (Ref. 4) for complex eigenvalues problems with nonsymmetric matrices has been formulated and incorporated into the modified program for aeroservoelastic stability (MPASES code). Subspace iteration method only solve for the lowest p eigenvalues and corresponding eigenvectors for aeroelastic and aeroservoelastic analysis. In general, the selection of p is ranging from 10 for wing flutter analysis to 50 for an entire aircraft flutter analysis. The application of this newly incorporated code is an experiment known as the Aerostructures Test Wing (ATW) which was designed by the National Aeronautic and Space Administration (NASA) Dryden Flight Research Center, Edwards, California to research aeroelastic instabilities. Specifically, this experiment was used to study an instability

  13. Aeroelastic modeling of composite rotor blades with straight and swept tips

    NASA Technical Reports Server (NTRS)

    Yuan, Kuo-An; Friedmann, Peretz P.; Venkatesan, Comandur

    1992-01-01

    This paper presents an analytical study of the aeroelastic behavior of composite rotor blades with straight and swept tips. The blade is modeled by beam type finite elements. A single finite element is used to model the swept tip. The nonlinear equations of motion for the FEM are derived using Hamilton's principle and based on a moderate deflection theory and accounts for: arbitrary cross-sectional shape, pretwist, generally anisotropic material behavior, transverse shears and out-of-plane warping. Numerical results illustrating the effects of tip sweep, anhedral and composite ply orientation on blade aeroelastic behavior are presented. It is shown that composite ply orientation has a substantial effect on blade stability. At low thrust conditions, certain ply orientations can cause instability in the lag mode. The flap-torsion coupling associated with tip sweep can also induce aeroelastic instability in the blade. This instability can be removed by appropriate ply orientation in the composite construction. These results illustrate the inherent potential for aeroelastic tailoring present in composite rotor blades with swept tips, which still remains to be exploited in the design process.

  14. Past, Present, and Future Capabilities of the Transonic Dynamics Tunnel from an Aeroelasticity Perspective

    NASA Technical Reports Server (NTRS)

    Cole, Stanley R.; Garcia, Jerry L.

    2000-01-01

    The NASA Langley Transonic Dynamics Tunnel (TDT) has provided a unique capability for aeroelastic testing for forty years. The facility has a rich history of significant contributions to the design of many United States commercial transports, military aircraft, launch vehicles, and spacecraft. The facility has many features that contribute to its uniqueness for aeroelasticity testing, perhaps the most important feature being the use of a heavy gas test medium to achieve higher test densities. Higher test medium densities substantially improve model-building requirements and therefore simplify the fabrication process for building aeroelastically scaled wind tunnel models. Aeroelastic scaling for the heavy gas results in lower model structural frequencies. Lower model frequencies tend to a make aeroelastic testing safer. This paper will describe major developments in the testing capabilities at the TDT throughout its history, the current status of the facility, and planned additions and improvements to its capabilities in the near future.

  15. Nonlinear System Identification for Aeroelastic Systems with Application to Experimental Data

    NASA Technical Reports Server (NTRS)

    Kukreja, Sunil L.

    2008-01-01

    Representation and identification of a nonlinear aeroelastic pitch-plunge system as a model of the Nonlinear AutoRegressive, Moving Average eXogenous (NARMAX) class is considered. A nonlinear difference equation describing this aircraft model is derived theoretically and shown to be of the NARMAX form. Identification methods for NARMAX models are applied to aeroelastic dynamics and its properties demonstrated via continuous-time simulations of experimental conditions. Simulation results show that (1) the outputs of the NARMAX model closely match those generated using continuous-time methods, and (2) NARMAX identification methods applied to aeroelastic dynamics provide accurate discrete-time parameter estimates. Application of NARMAX identification to experimental pitch-plunge dynamics data gives a high percent fit for cross-validated data.

  16. Aeroelastic behavior of composite rotor blades with swept tips

    NASA Technical Reports Server (NTRS)

    Yuan, Kuo-An; Friedmann, Peretz P.; Venkatesan, Comandur

    1992-01-01

    This paper presents an analytical study of the aeroelastic behavior of composite rotor blades with straight and swept tips. The blade is modeled by beam type finite elements. A single finite element is used to model the swept tip. The nonlinear equations of motion for the finite element model are derived using Hamilton's principle and based on a moderate deflection theory and accounts for: arbitrary cross-sectional shape, pretwist, generally anisotropic material behavior, transverse shears and out-of-plane warping. Numerical results illustrating the effects of tip sweep, anhedral and composite ply orientation on blade aeroelastic behavior are presented. It is shown that composite ply orientation has a substantial effect on blade stability. At low thrust conditions, certain ply orientations can cause instability in the lag mode. The flap-torsion coupling associated with tip sweep can also induce aeroelastic instability in the blade. This instability can be removed by appropriate ply orientation in the composite construction.

  17. Development of an Aeroelastic Modeling Capability for Transient Nozzle Side Load Analysis

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Zhao, Xiang; Zhang, Sijun; Chen, Yen-Sen

    2013-01-01

    Lateral nozzle forces are known to cause severe structural damage to any new rocket engine in development. Currently there is no fully coupled computational tool to analyze this fluid/structure interaction process. The objective of this study was to develop a fully coupled aeroelastic modeling capability to describe the fluid/structure interaction process during the transient nozzle operations. The aeroelastic model composes of three components: the computational fluid dynamics component based on an unstructured-grid, pressure-based computational fluid dynamics formulation, the computational structural dynamics component developed in the framework of modal analysis, and the fluid-structural interface component. The developed aeroelastic model was applied to the transient nozzle startup process of the Space Shuttle Main Engine at sea level. The computed nozzle side loads and the axial nozzle wall pressure profiles from the aeroelastic nozzle are compared with those of the published rigid nozzle results, and the impact of the fluid/structure interaction on nozzle side loads is interrogated and presented.

  18. Twist Model Development and Results from the Active Aeroelastic Wing F/A-18 Aircraft

    NASA Technical Reports Server (NTRS)

    Lizotte, Andrew M.; Allen, Michael J.

    2007-01-01

    Understanding the wing twist of the active aeroelastic wing (AAW) F/A-18 aircraft is a fundamental research objective for the program and offers numerous benefits. In order to clearly understand the wing flexibility characteristics, a model was created to predict real-time wing twist. A reliable twist model allows the prediction of twist for flight simulation, provides insight into aircraft performance uncertainties, and assists with computational fluid dynamic and aeroelastic issues. The left wing of the aircraft was heavily instrumented during the first phase of the active aeroelastic wing program allowing deflection data collection. Traditional data processing steps were taken to reduce flight data, and twist predictions were made using linear regression techniques. The model predictions determined a consistent linear relationship between the measured twist and aircraft parameters, such as surface positions and aircraft state variables. Error in the original model was reduced in some cases by using a dynamic pressure-based assumption. This technique produced excellent predictions for flight between the standard test points and accounted for nonlinearities in the data. This report discusses data processing techniques and twist prediction validation, and provides illustrative and quantitative results.

  19. Preliminary Assessment of Optimal Longitudinal-Mode Control for Drag Reduction through Distributed Aeroelastic Shaping

    NASA Technical Reports Server (NTRS)

    Ippolito, Corey; Nguyen, Nhan; Lohn, Jason; Dolan, John

    2014-01-01

    The emergence of advanced lightweight materials is resulting in a new generation of lighter, flexible, more-efficient airframes that are enabling concepts for active aeroelastic wing-shape control to achieve greater flight efficiency and increased safety margins. These elastically shaped aircraft concepts require non-traditional methods for large-scale multi-objective flight control that simultaneously seek to gain aerodynamic efficiency in terms of drag reduction while performing traditional command-tracking tasks as part of a complete guidance and navigation solution. This paper presents results from a preliminary study of a notional multi-objective control law for an aeroelastic flexible-wing aircraft controlled through distributed continuous leading and trailing edge control surface actuators. This preliminary study develops and analyzes a multi-objective control law derived from optimal linear quadratic methods on a longitudinal vehicle dynamics model with coupled aeroelastic dynamics. The controller tracks commanded attack-angle while minimizing drag and controlling wing twist and bend. This paper presents an overview of the elastic aircraft concept, outlines the coupled vehicle model, presents the preliminary control law formulation and implementation, presents results from simulation, provides analysis, and concludes by identifying possible future areas for research

  20. Twist Model Development and Results From the Active Aeroelastic Wing F/A-18 Aircraft

    NASA Technical Reports Server (NTRS)

    Lizotte, Andrew; Allen, Michael J.

    2005-01-01

    Understanding the wing twist of the active aeroelastic wing F/A-18 aircraft is a fundamental research objective for the program and offers numerous benefits. In order to clearly understand the wing flexibility characteristics, a model was created to predict real-time wing twist. A reliable twist model allows the prediction of twist for flight simulation, provides insight into aircraft performance uncertainties, and assists with computational fluid dynamic and aeroelastic issues. The left wing of the aircraft was heavily instrumented during the first phase of the active aeroelastic wing program allowing deflection data collection. Traditional data processing steps were taken to reduce flight data, and twist predictions were made using linear regression techniques. The model predictions determined a consistent linear relationship between the measured twist and aircraft parameters, such as surface positions and aircraft state variables. Error in the original model was reduced in some cases by using a dynamic pressure-based assumption and by using neural networks. These techniques produced excellent predictions for flight between the standard test points and accounted for nonlinearities in the data. This report discusses data processing techniques and twist prediction validation, and provides illustrative and quantitative results.

  1. New Flutter Analysis Technique for Time-Domain Computational Aeroelasticity

    NASA Technical Reports Server (NTRS)

    Pak, Chan-Gi; Lung, Shun-Fat

    2017-01-01

    A new time-domain approach for computing flutter speed is presented. Based on the time-history result of aeroelastic simulation, the unknown unsteady aerodynamics model is estimated using a system identification technique. The full aeroelastic model is generated via coupling the estimated unsteady aerodynamic model with the known linear structure model. The critical dynamic pressure is computed and used in the subsequent simulation until the convergence of the critical dynamic pressure is achieved. The proposed method is applied to a benchmark cantilevered rectangular wing.

  2. Experimental aeroelasticity in wind tunnels - History, status, and future in brief

    NASA Technical Reports Server (NTRS)

    Ricketts, Rodney H.

    1993-01-01

    The state of the art of experimental aeroelasticity in the United States is assessed. A brief history of the development of ground test facilities, apparatus, and testing methods is presented. Several experimental programs are described that were previously conducted and helped to improve the state of the art. Some specific future directions for improving and enhancing experimental aeroelasticity are suggested.

  3. Aeroelastic Flight Data Analysis with the Hilbert-Huang Algorithm

    NASA Technical Reports Server (NTRS)

    Brenner, Martin J.; Prazenica, Chad

    2006-01-01

    This report investigates the utility of the Hilbert Huang transform for the analysis of aeroelastic flight data. It is well known that the classical Hilbert transform can be used for time-frequency analysis of functions or signals. Unfortunately, the Hilbert transform can only be effectively applied to an extremely small class of signals, namely those that are characterized by a single frequency component at any instant in time. The recently-developed Hilbert Huang algorithm addresses the limitations of the classical Hilbert transform through a process known as empirical mode decomposition. Using this approach, the data is filtered into a series of intrinsic mode functions, each of which admits a well-behaved Hilbert transform. In this manner, the Hilbert Huang algorithm affords time-frequency analysis of a large class of signals. This powerful tool has been applied in the analysis of scientific data, structural system identification, mechanical system fault detection, and even image processing. The purpose of this report is to demonstrate the potential applications of the Hilbert Huang algorithm for the analysis of aeroelastic systems, with improvements such as localized online processing. Applications for correlations between system input and output, and amongst output sensors, are discussed to characterize the time-varying amplitude and frequency correlations present in the various components of multiple data channels. Online stability analyses and modal identification are also presented. Examples are given using aeroelastic test data from the F-18 Active Aeroelastic Wing airplane, an Aerostructures Test Wing, and pitch plunge simulation.

  4. Aeroelastic Flight Data Analysis with the Hilbert-Huang Algorithm

    NASA Technical Reports Server (NTRS)

    Brenner, Marty; Prazenica, Chad

    2005-01-01

    This paper investigates the utility of the Hilbert-Huang transform for the analysis of aeroelastic flight data. It is well known that the classical Hilbert transform can be used for time-frequency analysis of functions or signals. Unfortunately, the Hilbert transform can only be effectively applied to an extremely small class of signals, namely those that are characterized by a single frequency component at any instant in time. The recently-developed Hilbert-Huang algorithm addresses the limitations of the classical Hilbert transform through a process known as empirical mode decomposition. Using this approach, the data is filtered into a series of intrinsic mode functions, each of which admits a well-behaved Hilbert transform. In this manner, the Hilbert-Huang algorithm affords time-frequency analysis of a large class of signals. This powerful tool has been applied in the analysis of scientific data, structural system identification, mechanical system fault detection, and even image processing. The purpose of this paper is to demonstrate the potential applications of the Hilbert-Huang algorithm for the analysis of aeroelastic systems, with improvements such as localized/online processing. Applications for correlations between system input and output, and amongst output sensors, are discussed to characterize the time-varying amplitude and frequency correlations present in the various components of multiple data channels. Online stability analyses and modal identification are also presented. Examples are given using aeroelastic test data from the F/A-18 Active Aeroelastic Wing aircraft, an Aerostructures Test Wing, and pitch-plunge simulation.

  5. Aeroelastic stability analyses of two counter rotating propfan designs for a cruise missile model

    NASA Technical Reports Server (NTRS)

    Mahajan, Aparajit J.; Lucero, John M.; Mehmed, Oral; Stefko, George L.

    1992-01-01

    Aeroelastic stability analyses were performed to insure structural integrity of two counterrotating propfan blade designs for a NAVY/Air Force/NASA cruise missile model wind tunnel test. This analysis predicted if the propfan designs would be flutter free at the operating conditions of the wind tunnel test. Calculated stability results are presented for the two blade designs with rotational speed and Mach number as the parameters. A aeroelastic analysis code ASTROP2 (Aeroelastic Stability and Response of Propulsion Systems - 2 Dimensional Analysis), developed at LeRC, was used in this project. The aeroelastic analysis is a modal method and uses the combination of a finite element structural model and two dimensional steady and unsteady cascade aerodynamic models. This code was developed to analyze single rotation propfans but was modified and applied to counterrotating propfans for the present work. Modifications were made to transform the geometry and rotation of the aft rotor to the same reference frame as the forward rotor, to input a non-uniform inflow into the rotor being analyzed, and to automatically converge to the least stable aeroelastic mode.

  6. The nonlinear aeroelastic characteristics of a folding wing with cubic stiffness

    NASA Astrophysics Data System (ADS)

    Hu, Wei; Yang, Zhichun; Gu, Yingsong; Wang, Xiaochen

    2017-07-01

    This paper focuses on the nonlinear aeroelastic characteristics of a folding wing in the quasi-steady condition (namely at fixed folding angles) and during the morphing process. The structure model of the folding wing is formulated by the Lagrange equations, and the constraint equation is used to describe the morphing strategy. The aerodynamic influence coefficient matrices at several folding angles are calculated by the Doublet Lattice method, and described as rational functions in the Laplace domain by the rational function approximation, and then the Kriging agent model technique is adopted to interpolate the coefficient matrices of the rational functions, and the aerodynamics model of the folding wing during the morphing process is built. The aeroelastic responses of the folding wing with cubic stiffness are simulated, and the results show that the motion types of aeroelastic responses in the quasi-steady condition and during the morphing process are all sensitive to the initial condition and folding angle. During the morphing process, the transition of the motion types is observed. And apart from the period of transition, the aeroelastic response at some folding angles may exhibit different motion types, which can be found from the results in the quasi-steady condition.

  7. Supercritical Fuel Measurements

    DTIC Science & Technology

    2012-09-01

    TERMS Fuels, supercritical fluids , stimulated scattering, Brillouin scattering, Rayleigh scattering, elastic properties, thermal properties 16...10 Supercritical Cell and Fluid Handling ....................................................................................... 11...motion in supercritical fluids . Thus, the method can perform diagnostics on the heat transfer of high-temperature and high-pressure fuels, measuring

  8. Wing Weight Optimization Under Aeroelastic Loads Subject to Stress Constraints

    NASA Technical Reports Server (NTRS)

    Kapania, Rakesh K.; Issac, J.; Macmurdy, D.; Guruswamy, Guru P.

    1997-01-01

    A minimum weight optimization of the wing under aeroelastic loads subject to stress constraints is carried out. The loads for the optimization are based on aeroelastic trim. The design variables are the thickness of the wing skins and planform variables. The composite plate structural model incorporates first-order shear deformation theory, the wing deflections are expressed using Chebyshev polynomials and a Rayleigh-Ritz procedure is adopted for the structural formulation. The aerodynamic pressures provided by the aerodynamic code at a discrete number of grid points is represented as a bilinear distribution on the composite plate code to solve for the deflections and stresses in the wing. The lifting-surface aerodynamic code FAST is presently being used to generate the pressure distribution over the wing. The envisioned ENSAERO/Plate is an aeroelastic analysis code which combines ENSAERO version 3.0 (for analysis of wing-body configurations) with the composite plate code.

  9. Analysis of Limit Cycle Oscillation Data from the Aeroelastic Test of the SUGAR Truss-Braced Wing Model

    NASA Technical Reports Server (NTRS)

    Bartels, Robert E.; Funk, Christie; Scott, Robert C.

    2015-01-01

    Research focus in recent years has been given to the design of aircraft that provide significant reductions in emissions, noise and fuel usage. Increases in fuel efficiency have also generally been attended by overall increased wing flexibility. The truss-braced wing (TBW) configuration has been forwarded as one that increases fuel efficiency. The Boeing company recently tested the Subsonic Ultra Green Aircraft Research (SUGAR) Truss-Braced Wing (TBW) wind-tunnel model in the NASA Langley Research Center Transonic Dynamics Tunnel (TDT). This test resulted in a wealth of accelerometer data. Other publications have presented details of the construction of that model, the test itself, and a few of the results of the test. This paper aims to provide a much more detailed look at what the accelerometer data says about the onset of aeroelastic instability, usually known as flutter onset. Every flight vehicle has a location in the flight envelope of flutter onset, and the TBW vehicle is not different. For the TBW model test, the flutter onset generally occurred at the conditions that the Boeing company analysis said it should. What was not known until the test is that, over a large area of the Mach number dynamic pressure map, the model displayed wing/engine nacelle aeroelastic limit cycle oscillation (LCO). This paper dissects that LCO data in order to provide additional insights into the aeroelastic behavior of the model.

  10. An assessment of the future roles of the National Transonic Facility and the Langley Transonic Dynamics Tunnel in aeroelastic and unsteady aerodynamic testing

    NASA Technical Reports Server (NTRS)

    Hanson, P. W.

    1980-01-01

    The characteristics and capabilities of the two tunnels, that relate to studies in the fields of aeroelasticity and unsteady aerodynamics are discussed. Scaling considerations for aeroelasticity and unsteady aerodynamics testing in the two facilities are reviewed, and some of the special features (or lack thereof) of the Langley Research Center Transonic Dynamics Tunnel (TDT) and the National Transonic Facility (NTF) that will weigh heavily in any decisions conducting a given study in the two tunnels are discussed. For illustrative purposes a fighter and a transport airplane are scaled for tests in the NTF and in the TDT, and the resulting model characteristics are compared. The NTF was designed specifically to meet the need for higher Reynolds number capability for flow simulation in aerodynamic performance testing of aircraft designs. However, the NTF can be a valuable tool for evaluating the severity of Reynolds number effects in the areas of dynamic aeroelasticity and unsteady aerodynamics. On the other hand, the TDT was constructed specifically for studies and tests in the field of aeroelasticity. Except for tests requiring the Reynolds number capability of NTF, the TDT will remain the primary facility for tests of dynamic aeroelasticity and unsteady aerodynamics.

  11. Recent Enhancements to the Development of CFD-Based Aeroelastic Reduced-Order Models

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.

    2007-01-01

    Recent enhancements to the development of CFD-based unsteady aerodynamic and aeroelastic reduced-order models (ROMs) are presented. These enhancements include the simultaneous application of structural modes as CFD input, static aeroelastic analysis using a ROM, and matched-point solutions using a ROM. The simultaneous application of structural modes as CFD input enables the computation of the unsteady aerodynamic state-space matrices with a single CFD execution, independent of the number of structural modes. The responses obtained from a simultaneous excitation of the CFD-based unsteady aerodynamic system are processed using system identification techniques in order to generate an unsteady aerodynamic state-space ROM. Once the unsteady aerodynamic state-space ROM is generated, a method for computing the static aeroelastic response using this unsteady aerodynamic ROM and a state-space model of the structure, is presented. Finally, a method is presented that enables the computation of matchedpoint solutions using a single ROM that is applicable over a range of dynamic pressures and velocities for a given Mach number. These enhancements represent a significant advancement of unsteady aerodynamic and aeroelastic ROM technology.

  12. Non-Linear System Identification for Aeroelastic Systems with Application to Experimental Data

    NASA Technical Reports Server (NTRS)

    Kukreja, Sunil L.

    2008-01-01

    Representation and identification of a non-linear aeroelastic pitch-plunge system as a model of the NARMAX class is considered. A non-linear difference equation describing this aircraft model is derived theoretically and shown to be of the NARMAX form. Identification methods for NARMAX models are applied to aeroelastic dynamics and its properties demonstrated via continuous-time simulations of experimental conditions. Simulation results show that (i) the outputs of the NARMAX model match closely those generated using continuous-time methods and (ii) NARMAX identification methods applied to aeroelastic dynamics provide accurate discrete-time parameter estimates. Application of NARMAX identification to experimental pitch-plunge dynamics data gives a high percent fit for cross-validated data.

  13. Level-Set Topology Optimization with Aeroelastic Constraints

    NASA Technical Reports Server (NTRS)

    Dunning, Peter D.; Stanford, Bret K.; Kim, H. Alicia

    2015-01-01

    Level-set topology optimization is used to design a wing considering skin buckling under static aeroelastic trim loading, as well as dynamic aeroelastic stability (flutter). The level-set function is defined over the entire 3D volume of a transport aircraft wing box. Therefore, the approach is not limited by any predefined structure and can explore novel configurations. The Sequential Linear Programming (SLP) level-set method is used to solve the constrained optimization problems. The proposed method is demonstrated using three problems with mass, linear buckling and flutter objective and/or constraints. A constraint aggregation method is used to handle multiple buckling constraints in the wing skins. A continuous flutter constraint formulation is used to handle difficulties arising from discontinuities in the design space caused by a switching of the critical flutter mode.

  14. CEAS/AIAA/ICASE/NASA Langley International Forum on Aeroelasticity and Structural Dynamics 1999. Pt. 2

    NASA Technical Reports Server (NTRS)

    Whitlow, Jr., Woodrow (Editor); Todd, Emily N. (Editor)

    1999-01-01

    The proceedings of a workshop sponsored by the Confederation of European Aerospace Societies (CEAS), the American Institute of Aeronautics and Astronautics (AIAA), the National Aeronautics and Space Administration (NASA), Washington, D.C., and the Institute for Computer Applications in Science and Engineering (ICASE), Hampton, Virginia, and held in Williamsburg, Virginia June 22-25, 1999 represent a collection of the latest advances in aeroelasticity and structural dynamics from the world community. Research in the areas of unsteady aerodynamics and aeroelasticity, structural modeling and optimization, active control and adaptive structures, landing dynamics, certification and qualification, and validation testing are highlighted in the collection of papers. The wide range of results will lead to advances in the prediction and control of the structural response of aircraft and spacecraft.

  15. Aeroelastic stability analyses of two counter rotating propfan designs for a cruise missile model

    NASA Technical Reports Server (NTRS)

    Mahajan, Aparajit J.; Lucero, John M.; Mehmed, Oral; Stefko, George L.

    1992-01-01

    A modal aeroelastic analysis combining structural and aerodynamic models is applied to counterrotating propfans to evaluate their structural integrity for wind-tunnel testing. The aeroelastic analysis code is an extension of the 2D analysis code called the Aeroelastic Stability and Response of Propulsion Systems. Rotational speed and freestream Mach number are the parameters for calculating the stability of the two blade designs with a modal method combining a finite-element structural model with 2D steady and unsteady cascade aerodynamic models. The model demonstrates convergence to the least stable aeroelastic mode, describes the effects of a nonuniform inflow, and permits the modification of geometry and rotation. The analysis shows that the propfan designs are suitable for the wind-tunnel test and confirms that the propfans should be flutter-free under the range of conditions of the testing.

  16. Aeroelasticity and mechanical stability report, 0.27 Mach scale model of the YAH-64 advanced attack helicopter

    NASA Technical Reports Server (NTRS)

    Straub, F. K.; Johnston, R. A.

    1987-01-01

    A 27% dynamically scaled model of the YAH-64 Advanced Attack Helicopter main rotor and hub has been designed and fabricated. The model will be tested in the NASA Langley Research Center V/STOL wind tunnel using the General Rotor Model System (GRMS). This report documents the studies performed to ensure dynamic similarity of the model with its full scale parent. It also contains a preliminary aeroelastic and aeromechanical substantiation for the rotor installation in the wind tunnel. From the limited studies performed no aeroelastic stability or load problems are projected. To alleviate a projected ground resonance problem, a modification of the roll characteristics of the GRMS is recommended.

  17. Application of unsteady aeroelastic analysis techniques on the national aerospace plane

    NASA Technical Reports Server (NTRS)

    Pototzky, Anthony S.; Spain, Charles V.; Soistmann, David L.; Noll, Thomas E.

    1988-01-01

    A presentation provided at the Fourth National Aerospace Plane Technology Symposium held in Monterey, California, in February 1988 is discussed. The objective is to provide current results of ongoing investigations to develop a methodology for predicting the aerothermoelastic characteristics of NASP-type (hypersonic) flight vehicles. Several existing subsonic and supersonic unsteady aerodynamic codes applicable to the hypersonic class of flight vehicles that are generally available to the aerospace industry are described. These codes were evaluated by comparing calculated results with measured wind-tunnel aeroelastic data. The agreement was quite good in the subsonic speed range but showed mixed agreement in the supersonic range. In addition, a future endeavor to extend the aeroelastic analysis capability to hypersonic speeds is outlined. An investigation to identify the critical parameters affecting the aeroelastic characteristics of a hypersonic vehicle, to define and understand the various flutter mechanisms, and to develop trends for the important parameters using a simplified finite element model of the vehicle is summarized. This study showed the value of performing inexpensive and timely aeroelastic wind-tunnel tests to expand the experimental data base required for code validation using simple to complex models that are representative of the NASP configurations and root boundary conditions are discussed.

  18. A comparative study of serial and parallel aeroelastic computations of wings

    NASA Technical Reports Server (NTRS)

    Byun, Chansup; Guruswamy, Guru P.

    1994-01-01

    A procedure for computing the aeroelasticity of wings on parallel multiple-instruction, multiple-data (MIMD) computers is presented. In this procedure, fluids are modeled using Euler equations, and structures are modeled using modal or finite element equations. The procedure is designed in such a way that each discipline can be developed and maintained independently by using a domain decomposition approach. In the present parallel procedure, each computational domain is scalable. A parallel integration scheme is used to compute aeroelastic responses by solving fluid and structural equations concurrently. The computational efficiency issues of parallel integration of both fluid and structural equations are investigated in detail. This approach, which reduces the total computational time by a factor of almost 2, is demonstrated for a typical aeroelastic wing by using various numbers of processors on the Intel iPSC/860.

  19. Structural Dynamics Modeling of HIRENASD in Support of the Aeroelastic Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Wieseman, Carol; Chwalowski, Pawel; Heeg, Jennifer; Boucke, Alexander; Castro, Jack

    2013-01-01

    An Aeroelastic Prediction Workshop (AePW) was held in April 2012 using three aeroelasticity case study wind tunnel tests for assessing the capabilities of various codes in making aeroelasticity predictions. One of these case studies was known as the HIRENASD model that was tested in the European Transonic Wind Tunnel (ETW). This paper summarizes the development of a standardized enhanced analytical HIRENASD structural model for use in the AePW effort. The modifications to the HIRENASD finite element model were validated by comparing modal frequencies, evaluating modal assurance criteria, comparing leading edge, trailing edge and twist of the wing with experiment and by performing steady and unsteady CFD analyses for one of the test conditions on the same grid, and identical processing of results.

  20. Control of forward swept wing configurations dominated by flight-dynamic/aeroelastic interactions

    NASA Technical Reports Server (NTRS)

    Rimer, M.; Chipman, R.; Muniz, B.

    1984-01-01

    An active control system concept for an aeroelastic wind-tunnel model of a statically unstable FSW configuration with wing-mounted stores is developed to provide acceptable longitudinal flying qualities while maintaining adequate flutter speed margin. On FSW configurations, the inherent aeroelastic wing divergence tendency causes strong flight-dynamic/aeroelastic interactions that in certain cases can produce a dynamic instability known as body-freedom flutter (BFF). The carriage of wing-mounted stores is shown to severely aggravate this problem. The control system developed combines a canard-based SAS with an Active Divergence/Flutter Suppression (ADFS) system which relies on wing-mounted sensors and a trailing-edge device (flaperon). Synergism between these two systems is exploited to obtain the flying qualities and flutter speed objectives.

  1. Aeroelastic, CFD, and Dynamics Computation and Optimization for Buffet and Flutter Applications

    NASA Technical Reports Server (NTRS)

    Kandil, Osama A.

    1997-01-01

    Accomplishments achieved during the reporting period are listed. These accomplishments included 6 papers published in various journals or presented at various conferences; 1 abstract submitted to a technical conference; production of 2 animated movies; and a proposal for use of the National Aerodynamic Simulation Facility at NASA Ames Research Center for further research. The published and presented papers and animated movies addressed the following topics: aeroelasticity, computational fluid dynamics, structural dynamics, wing and tail buffet, vortical flow interactions, and delta wings.

  2. The DAST-1 remotely piloted research vehicle development and initial flight testing

    NASA Technical Reports Server (NTRS)

    Kotsabasis, A.

    1981-01-01

    The development and initial flight testing of the DAST (drones for aerodynamic and structural testing) remotely piloted research vehicle, fitted with the first aeroelastic research wing ARW-I are presented. The ARW-I is a swept supercritical wing, designed to exhibit flutter within the vehicle's flight envelope. An active flutter suppression system (FSS) designed to increase the ARW-I flutter boundary speed by 20 percent is described. The development of the FSS was based on prediction techniques of structural and unsteady aerodynamic characteristics. A description of the supporting ground facilities and aircraft systems involved in the remotely piloted research vehicle (RPRV) flight test technique is given. The design, specification, and testing of the remotely augmented vehicle system are presented. A summary of the preflight and flight test procedures associated with the RPRV operation is given. An evaluation of the blue streak test flight and the first and second ARW-I test flights is presented.

  3. Supercritical Fuel Pyrolysis

    DTIC Science & Technology

    2010-05-30

    supercritical fluids . These temperatures and pressures will also cause the fuel to undergo pyrolytic reactions, which have the potential of forming...With regard to physical properties, supercritical fluids have highly variable densities, no surface tension, and transport properties (i.e., mass...effects in supercritical fluids , often affecting chemical reaction pathways by facilitating the formation of certain transition states [6]. Because

  4. Using FUN3D for Aeroelastic, Sonic Boom, and AeroPropulsoServoElastic (APSE) Analyses of a Supersonic Configuration

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.; Sanetrik, Mark D.; Chwalowski, Pawel; Connolly, Joseph; Kopasakis, George

    2016-01-01

    An overview of recent applications of the FUN3D CFD code to computational aeroelastic, sonic boom, and aeropropulsoservoelasticity (APSE) analyses of a low-boom supersonic configuration is presented. The overview includes details of the computational models developed including multiple unstructured CFD grids suitable for aeroelastic and sonic boom analyses. In addition, aeroelastic Reduced-Order Models (ROMs) are generated and used to rapidly compute the aeroelastic response and utter boundaries at multiple flight conditions.

  5. Time-Shifted Boundary Conditions Used for Navier-Stokes Aeroelastic Solver

    NASA Technical Reports Server (NTRS)

    Srivastava, Rakesh

    1999-01-01

    Under the Advanced Subsonic Technology (AST) Program, an aeroelastic analysis code (TURBO-AE) based on Navier-Stokes equations is currently under development at NASA Lewis Research Center s Machine Dynamics Branch. For a blade row, aeroelastic instability can occur in any of the possible interblade phase angles (IBPA s). Analyzing small IBPA s is very computationally expensive because a large number of blade passages must be simulated. To reduce the computational cost of these analyses, we used time shifted, or phase-lagged, boundary conditions in the TURBO-AE code. These conditions can be used to reduce the computational domain to a single blade passage by requiring the boundary conditions across the passage to be lagged depending on the IBPA being analyzed. The time-shifted boundary conditions currently implemented are based on the direct-store method. This method requires large amounts of data to be stored over a period of the oscillation cycle. On CRAY computers this is not a major problem because solid-state devices can be used for fast input and output to read and write the data onto a disk instead of storing it in core memory.

  6. Supercritical fluid extraction

    DOEpatents

    Wai, Chien M.; Laintz, Kenneth

    1994-01-01

    A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a supercritical fluid solvent containing a chelating agent. The chelating agent forms chelates that are soluble in the supercritical fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is a fluorinated or lipophilic crown ether or fluorinated dithiocarbamate. The method provides an environmentally benign process for removing contaminants from industrial waste without using acids or biologically harmful solvents. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process.

  7. Applications of potential theory computations to transonic aeroelasticity

    NASA Technical Reports Server (NTRS)

    Edwards, J. W.

    1986-01-01

    Unsteady aerodynamic and aeroelastic stability calculations based upon transonic small disturbance (TSD) potential theory are presented. Results from the two-dimensional XTRAN2L code and the three-dimensional XTRAN3S code are compared with experiment to demonstrate the ability of TSD codes to treat transonic effects. The necessity of nonisentropic corrections to transonic potential theory is demonstrated. Dynamic computational effects resulting from the choice of grid and boundary conditions are illustrated. Unsteady airloads for a number of parameter variations including airfoil shape and thickness, Mach number, frequency, and amplitude are given. Finally, samples of transonic aeroelastic calculations are given. A key observation is the extent to which unsteady transonic airloads calculated by inviscid potential theory may be treated in a locally linear manner.

  8. An Overview of Recent Developments in Computational Aeroelasticity

    NASA Technical Reports Server (NTRS)

    Bennett, Robert M.; Edwards, John W.

    2004-01-01

    The motivation for Computational Aeroelasticity (CA) and the elements of one type of the analysis or simulation process are briefly reviewed. The need for streamlining and improving the overall process to reduce elapsed time and improve overall accuracy is discussed. Further effort is needed to establish the credibility of the methodology, obtain experience, and to incorporate the experience base to simplify the method for future use. Experience with the application of a variety of Computational Aeroelasticity programs is summarized for the transonic flutter of two wings, the AGARD 445.6 wing and a typical business jet wing. There is a compelling need for a broad range of additional flutter test cases for further comparisons. Some existing data sets that may offer CA challenges are presented.

  9. Supercritical Fuel Pyrolysis

    DTIC Science & Technology

    2007-05-28

    be supercritical fluids . These temperatures and pressures will also cause the fuel to undergo pyrolytic reactions, which have the potential of forming...physical properties, supercritical fluids have highly variable densities, no surface tension, and transport properties (i.e., mass, energy, and momentum...are very dependent on pressure, chemical reaction rates in supercritical fluids can be highly pressure-dependent [6-9]. The kinetic reaction rate

  10. CFD and Aeroelastic Analysis of the MEXICO Wind Turbine

    NASA Astrophysics Data System (ADS)

    Carrión, M.; Woodgate, M.; Steijl, R.; Barakos, G.; Gómez-Iradi, S.; Munduate, X.

    2014-12-01

    This paper presents an aerodynamic and aeroelastic analysis of the MEXICO wind turbine, using the compressible HMB solver of Liverpool. The aeroelasticity of the blade, as well as the effect of a low-Mach scheme were studied for the zero-yaw 15m/s wind case and steady- state computations. The wake developed behind the rotor was also extracted and compared with the experimental data, using the compressible solver and a low-Mach scheme. It was found that the loads were not sensitive to the Mach number effects, although the low-Mach scheme improved the wake predictions. The sensitivity of the results to the blade structural properties was also highlighted.

  11. High fidelity CFD-CSD aeroelastic analysis of slender bladed horizontal-axis wind turbine

    NASA Astrophysics Data System (ADS)

    Sayed, M.; Lutz, Th.; Krämer, E.; Shayegan, Sh.; Ghantasala, A.; Wüchner, R.; Bletzinger, K.-U.

    2016-09-01

    The aeroelastic response of large multi-megawatt slender horizontal-axis wind turbine blades is investigated by means of a time-accurate CFD-CSD coupling approach. A loose coupling approach is implemented and used to perform the simulations. The block- structured CFD solver FLOWer is utilized to obtain the aerodynamic blade loads based on the time-accurate solution of the unsteady Reynolds-averaged Navier-Stokes equations. The CSD solver Carat++ is applied to acquire the blade elastic deformations based on non-linear beam elements. In this contribution, the presented coupling approach is utilized to study the aeroelastic response of the generic DTU 10MW wind turbine. Moreover, the effect of the coupled results on the wind turbine performance is discussed. The results are compared to the aeroelastic response predicted by FLOWer coupled to the MBS tool SIMPACK as well as the response predicted by SIMPACK coupled to a Blade Element Momentum code for aerodynamic predictions. A comparative study among the different modelling approaches for this coupled problem is discussed to quantify the coupling effects of the structural models on the aeroelastic response.

  12. Static aeroelastic deformation of flexible skin for continuous variable trailing-edge camber wing

    NASA Astrophysics Data System (ADS)

    Liu, Libo; Yin, Weilong; Dai, Fuhong; Liu, Yanju; Leng, Jinsong

    2011-03-01

    The method for analyzing the static aeroelastic deformation of flexible skin under the air loads was developed. The effect of static aeroelastic deformation of flexible skin on the aerodynamic characteristics of aerofoil and the design parameters of skin was discussed. Numerical results show that the flexible skin on the upper surface of trailing-edge will bubble under the air loads and the bubble has a powerful effect on the aerodynamic pressure near the surface of local deformation. The static aeroelastic deformation of flexible skin significantly affects the aerodynamic characteristics of aerofoil. At small angle of attack, the drag coefficient increases and the lift coefficient decreases. With the increasing angle of attack, the effect of flexible skin on the aerodynamic characteristics of aerofoil is smaller and smaller. The deformation of flexible skin becomes larger and larger with the free-stream velocity increasing. When the free-stream velocity is greater than a value, both of the deformation of flexible skin and the drag coefficient of aerofoil increase rapidly. The maximum tensile strain of flexible skin is increased with consideration of the static aeroelastic deformation.

  13. Aeroelastic Stability & Response of Rotating Structures

    NASA Technical Reports Server (NTRS)

    Keith, Theo G., Jr.; Reddy, T. S. R.

    2001-01-01

    A summary of the work performed under NASA grant NCC3-605 is presented. More details can be found in the cited references. This grant led to the development of relatively faster aeroelastic analyses methods for predicting flutter and forced response in fans, compressors, and turbines using computational fluid dynamic (CFD) methods.

  14. Static Aeroelasticity in Combat Aircraft.

    DTIC Science & Technology

    1986-01-01

    stiffness scaled beam machined along a predicted elastic axis, and load iola- tion cuts forward and aft of the beam, has proved to be most successful...aircraft components. Many papers deal with the activities in the field of structural optimization.’ 4sing fiber composites , a new design technique...Supersonic Design Composite Structures Fly - by - Wire Thin Profiles Aeroelastic Tailoring Unstable Aircraft V Variable Camber Lght Weight Pilot Handling

  15. Aeroelasticity and structural optimization of composite helicopter rotor blades with swept tips

    NASA Technical Reports Server (NTRS)

    Yuan, K. A.; Friedmann, P. P.

    1995-01-01

    This report describes the development of an aeroelastic analysis capability for composite helicopter rotor blades with straight and swept tips, and its application to the simulation of helicopter vibration reduction through structural optimization. A new aeroelastic model is developed in this study which is suitable for composite rotor blades with swept tips in hover and in forward flight. The hingeless blade is modeled by beam type finite elements. A single finite element is used to model the swept tip. Arbitrary cross-sectional shape, generally anisotropic material behavior, transverse shears and out-of-plane warping are included in the blade model. The nonlinear equations of motion, derived using Hamilton's principle, are based on a moderate deflection theory. Composite blade cross-sectbnal properties are calculated by a separate linear, two-dimensional cross section analysis. The aerodynamic loads are obtained from quasi-steady, incompressible aerodynamics, based on an implicit formulation. The trim and steady state blade aeroelastic response are solved in a fully coupled manner. In forward flight, where the blade equations of motion are periodic, the coupled trim-aeroelastic response solution is obtained from the harmonic balance method. Subsequently, the periodic system is linearized about the steady state response, and its stability is determined from Floquet theory.

  16. Aeroelastic Stability and Response of Rotating Structures

    NASA Technical Reports Server (NTRS)

    Keith, Theo G., Jr.; Reddy, T. S. R.

    1998-01-01

    A summary of the work performed from 1996 to 1997 is presented. More details can be found in the cited references. This grant led to the development of aeroelastic analyses methods for predicting flutter and forced response in fans, compressors, and turbines using computational

  17. Aeroelastic Analysis of a Trimmed Generic Hypersonic Vehicle

    NASA Technical Reports Server (NTRS)

    Nydick, I.; Friedmann, P. P.

    1999-01-01

    The aeroelastic equations of motion governing a hypersonic vehicle in free flight are derived. The equations of motion for a translating and rotating flexible body using Lagrange's equations in terms of quasi-coordinates are presented. These equations are simplified for the case of a vehicle with pitch and plunge rigid body degrees of freedom and small elastic displacements. The displacements are approximated by a truncated series of the unrestrained mode shapes, which are obtained using equivalent plate theory. Subsequently, the nonlinear equations of motion are linearized about the trim state, which is obtained using a rigid body trim model and steady hypersonic aerodynamics. The appropriate flutter derivatives are calculated from piston theory. Results describing mode shapes, trim behavior, and aeroelastic stability of a generic hypersonic vehicle are presented.

  18. Aeroelastic Modeling of X-56A Stiff-Wing Configuration Flight Test Data

    NASA Technical Reports Server (NTRS)

    Grauer, Jared A.; Boucher, Matthew J.

    2017-01-01

    Aeroelastic stability and control derivatives for the X-56A Multi-Utility Technology Testbed (MUTT), in the stiff-wing configuration, were estimated from flight test data using the output-error method. Practical aspects of the analysis are discussed. The orthogonal phase-optimized multisine inputs provided excellent data information for aeroelastic modeling. Consistent parameter estimates were determined using output error in both the frequency and time domains. The frequency domain analysis converged faster and was less sensitive to starting values for the model parameters, which was useful for determining the aeroelastic model structure and obtaining starting values for the time domain analysis. Including a modal description of the structure from a finite element model reduced the complexity of the estimation problem and improved the modeling results. Effects of reducing the model order on the short period stability and control derivatives were investigated.

  19. Introduction of the ASP3D Computer Program for Unsteady Aerodynamic and Aeroelastic Analyses

    NASA Technical Reports Server (NTRS)

    Batina, John T.

    2005-01-01

    A new computer program has been developed called ASP3D (Advanced Small Perturbation 3D), which solves the small perturbation potential flow equation in an advanced form including mass-consistent surface and trailing wake boundary conditions, and entropy, vorticity, and viscous effects. The purpose of the program is for unsteady aerodynamic and aeroelastic analyses, especially in the nonlinear transonic flight regime. The program exploits the simplicity of stationary Cartesian meshes with the movement or deformation of the configuration under consideration incorporated into the solution algorithm through a planar surface boundary condition. The new ASP3D code is the result of a decade of developmental work on improvements to the small perturbation formulation, performed while the author was employed as a Senior Research Scientist in the Configuration Aerodynamics Branch at the NASA Langley Research Center. The ASP3D code is a significant improvement to the state-of-the-art for transonic aeroelastic analyses over the CAP-TSD code (Computational Aeroelasticity Program Transonic Small Disturbance), which was developed principally by the author in the mid-1980s. The author is in a unique position as the developer of both computer programs to compare, contrast, and ultimately make conclusions regarding the underlying formulations and utility of each code. The paper describes the salient features of the ASP3D code including the rationale for improvements in comparison with CAP-TSD. Numerous results are presented to demonstrate the ASP3D capability. The general conclusion is that the new ASP3D capability is superior to the older CAP-TSD code because of the myriad improvements developed and incorporated.

  20. Subsonic Ultra Green Aircraft Research: Phase II- Volume III-Truss Braced Wing Aeroelastic Test Report

    NASA Technical Reports Server (NTRS)

    Bradley, Marty K.; Allen, Timothy J.; Droney, Christopher

    2014-01-01

    This Test Report summarizes the Truss Braced Wing (TBW) Aeroelastic Test (Task 3.1) work accomplished by the Boeing Subsonic Ultra Green Aircraft Research (SUGAR) team, which includes the time period of February 2012 through June 2014. The team consisted of Boeing Research and Technology, Boeing Commercial Airplanes, Virginia Tech, and NextGen Aeronautics. The model was fabricated by NextGen Aeronautics and designed to meet dynamically scaled requirements from the sized full scale TBW FEM. The test of the dynamically scaled SUGAR TBW half model was broken up into open loop testing in December 2013 and closed loop testing from January 2014 to April 2014. Results showed the flutter mechanism to primarily be a coalescence of 2nd bending mode and 1st torsion mode around 10 Hz, as predicted by analysis. Results also showed significant change in flutter speed as angle of attack was varied. This nonlinear behavior can be explained by including preload and large displacement changes to the structural stiffness and mass matrices in the flutter analysis. Control laws derived from both test system ID and FEM19 state space models were successful in suppressing flutter. The control laws were robust and suppressed flutter for a variety of Mach, dynamic pressures, and angle of attacks investigated.

  1. ASTROP2 users manual: A program for aeroelastic stability analysis of propfans

    NASA Technical Reports Server (NTRS)

    Narayanan, G. V.; Kaza, K. R. V.

    1991-01-01

    A user's manual is presented for the aeroelastic stability and response of propulsion systems computer program called ASTROP2. The ASTROP2 code preforms aeroelastic stability analysis of rotating propfan blades. This analysis uses a two-dimensional, unsteady cascade aerodynamics model and a three-dimensional, normal-mode structural model. Analytical stability results from this code are compared with published experimental results of a rotating composite advanced turboprop model and of nonrotating metallic wing model.

  2. Evaluation of Aeroelastically Tailored Small Wind Turbine Blades Final Project Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griffin, Dayton A.

    2005-09-29

    Evaluation of Aeroelastically Tailored Small Wind Turbine Blades Final Report Global Energy Concepts, LLC (GEC) has performed a conceptual design study concerning aeroelastic tailoring of small wind turbine blades. The primary objectives were to evaluate ways that blade/rotor geometry could be used to enable cost-of-energy reductions by enhancing energy capture while constraining or mitigating blade costs, system loads, and related component costs. This work builds on insights developed in ongoing adaptive-blade programs but with a focus on application to small turbine systems with isotropic blade material properties and with combined blade sweep and pre-bending/pre-curving to achieve the desired twist coupling.more » Specific goals of this project are to: (A) Evaluate and quantify the extent to which rotor geometry can be used to realize load-mitigating small wind turbine rotors. Primary aspects of the load mitigation are: (1) Improved overspeed safety affected by blades twisting toward stall in response to speed increases. (2) Reduced fatigue loading affected by blade twisting toward feather in response to turbulent gusts. (B) Illustrate trade-offs and design sensitivities for this concept. (C) Provide the technical basis for small wind turbine manufacturers to evaluate this concept and commercialize if the technology appears favorable. The SolidWorks code was used to rapidly develop solid models of blade with varying shapes and material properties. Finite element analyses (FEA) were performed using the COSMOS code modeling with tip-loads and centripetal accelerations. This tool set was used to investigate the potential for aeroelastic tailoring with combined planform sweep and pre-curve. An extensive matrix of design variables was investigated, including aerodynamic design, magnitude and shape of planform sweep, magnitude and shape of blade pre-curve, material stiffness, and rotor diameter. The FEA simulations resulted in substantial insights into the

  3. Investigations on precursor measures for aeroelastic flutter

    NASA Astrophysics Data System (ADS)

    Venkatramani, J.; Sarkar, Sunetra; Gupta, Sayan

    2018-04-01

    Wind tunnel experiments carried out on a pitch-plunge aeroelastic system in the presence of fluctuating flows reveal that flutter instability is presaged by a regime of intermittency. It is observed that as the flow speed gradually increases towards the flutter speed, there appears intermittent bursts of periodic oscillations which become more frequent as the wind speed increases and eventually the dynamics transition into fully developed limit cycle oscillations, marking the onset of flutter. The signature from these intermittent oscillations are exploited to develop measures that forewarn a transition to flutter and can serve as precursors. This study investigates a suite of measures that are obtained directly from the time history of measurements and are hence model independent. The dependence of these precursors on the size of the measured data set and the time required for their computation is investigated. These measures can be useful in structural health monitoring of aeroelastic structures.

  4. Aeroelastic Modeling of a Nozzle Startup Transient

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Zhao, Xiang; Zhang, Sijun; Chen, Yen-Sen

    2014-01-01

    Lateral nozzle forces are known to cause severe structural damage to any new rocket engine in development during test. While three-dimensional, transient, turbulent, chemically reacting computational fluid dynamics methodology has been demonstrated to capture major side load physics with rigid nozzles, hot-fire tests often show nozzle structure deformation during major side load events, leading to structural damages if structural strengthening measures were not taken. The modeling picture is incomplete without the capability to address the two-way responses between the structure and fluid. The objective of this study is to develop a tightly coupled aeroelastic modeling algorithm by implementing the necessary structural dynamics component into an anchored computational fluid dynamics methodology. The computational fluid dynamics component is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, while the computational structural dynamics component is developed under the framework of modal analysis. Transient aeroelastic nozzle startup analyses at sea level were performed, and the computed transient nozzle fluid-structure interaction physics presented,

  5. Solid catalyzed isoparaffin alkylation at supercritical fluid and near-supercritical fluid conditions

    DOEpatents

    Ginosar, Daniel M.; Fox, Robert V.; Kong, Peter C.

    2000-01-01

    This invention relates to an improved method for the alkylation reaction of isoparaffins with olefins over solid catalysts including contacting a mixture of an isoparaffin, an olefin and a phase-modifying material with a solid acid catalyst member under alkylation conversion conditions at either supercritical fluid, or near-supercritical fluid conditions, at a temperature and a pressure relative to the critical temperature(T.sub.c) and the critical pressure(P.sub.c) of the reaction mixture. The phase-modifying phase-modifying material is employed to promote the reaction's achievement of either a supercritical fluid state or a near-supercritical state while simultaneously allowing for decreased reaction temperature and longer catalyst life.

  6. Static Aeroelastic Scaling and Analysis of a Sub-Scale Flexible Wing Wind Tunnel Model

    NASA Technical Reports Server (NTRS)

    Ting, Eric; Lebofsky, Sonia; Nguyen, Nhan; Trinh, Khanh

    2014-01-01

    This paper presents an approach to the development of a scaled wind tunnel model for static aeroelastic similarity with a full-scale wing model. The full-scale aircraft model is based on the NASA Generic Transport Model (GTM) with flexible wing structures referred to as the Elastically Shaped Aircraft Concept (ESAC). The baseline stiffness of the ESAC wing represents a conventionally stiff wing model. Static aeroelastic scaling is conducted on the stiff wing configuration to develop the wind tunnel model, but additional tailoring is also conducted such that the wind tunnel model achieves a 10% wing tip deflection at the wind tunnel test condition. An aeroelastic scaling procedure and analysis is conducted, and a sub-scale flexible wind tunnel model based on the full-scale's undeformed jig-shape is developed. Optimization of the flexible wind tunnel model's undeflected twist along the span, or pre-twist or wash-out, is then conducted for the design test condition. The resulting wind tunnel model is an aeroelastic model designed for the wind tunnel test condition.

  7. Conceptual design of a thermalhydraulic loop for multiple test geometries at supercritical conditions named Supercritical Phenomena Experimental Test Apparatus (SPETA)

    NASA Astrophysics Data System (ADS)

    Adenariwo, Adepoju

    The efficiency of nuclear reactors can be improved by increasing the operating pressure of current nuclear reactors. Current CANDU-type nuclear reactors use heavy water as coolant at an outlet pressure of up to 11.5 MPa. Conceptual SuperCritical Water Reactors (SCWRs) will operate at a higher coolant outlet pressure of 25 MPa. Supercritical water technology has been used in advanced coal plants and its application proves promising to be employed in nuclear reactors. To better understand how supercritical water technology can be applied in nuclear power plants, supercritical water loops are used to study the heat transfer phenomena as it applies to CANDU-type reactors. A conceptual design of a loop known as the Supercritical Phenomena Experimental Apparatus (SPETA) has been done. This loop has been designed to fit in a 9 m by 2 m by 2.8 m enclosure that will be installed at the University of Ontario Institute of Technology Energy Research Laboratory. The loop include components to safely start up and shut down various test sections, produce a heat source to the test section, and to remove reject heat. It is expected that loop will be able to investigate the behaviour of supercritical water in various geometries including bare tubes, annulus tubes, and multi-element-type bundles. The experimental geometries are designed to match the fluid properties of Canadian SCWR fuel channel designs so that they are representative of a practical application of supercritical water technology in nuclear plants. This loop will investigate various test section orientations which are the horizontal, vertical, and inclined to investigate buoyancy effects. Frictional pressure drop effects and satisfactory methods of estimating hydraulic resistances in supercritical fluid shall also be estimated with the loop. Operating limits for SPETA have been established to be able to capture the important heat transfer phenomena at supercritical conditions. Heat balance and flow calculations have

  8. AGARD standard aeroelastic configurations for dynamic response. 1: Wing 445.6

    NASA Technical Reports Server (NTRS)

    Yates, E. Carson, Jr.

    1988-01-01

    This report contains experimental flutter data for the AGARD 3-D swept tapered standard configuration Wing 445.6, along with related descriptive data of the model properties required for comparative flutter calculations. As part of a cooperative AGARD-SMP program, guided by the Sub-Committee on Aeroelasticity, this standard configuration may serve as a common basis for comparison of calculated and measured aeroelastic behavior. These comparisons will promote a better understanding of the assumptions, approximations and limitations underlying the various aerodynamic methods applied, thus pointing the way to further improvements.

  9. Energy-based aeroelastic analysis of a morphing wing

    NASA Astrophysics Data System (ADS)

    De Breuker, Roeland; Abdalla, Mostafa; Gürdal, Zafer; Lindner, Douglas

    2007-04-01

    Aircraft are often confronted with distinct circumstances during different parts of their mission. Ideally the aircraft should fly optimally in terms of aerodynamic performance and other criteria in each one of these mission requirements. This requires in principle as many different aircraft configurations as there are flight conditions, so therefore a morphing aircraft would be the ideal solution. A morphing aircraft is a flying vehicle that i) changes its state substantially, ii) provides superior system capability and iii) uses a design that integrates innovative technologies. It is important for such aircraft that the gains due to the adaptability to the flight condition are not nullified by the energy consumption to carry out the morphing manoeuvre. Therefore an aeroelastic numerical tool that takes into account the morphing energy is needed to analyse the net gain of the morphing. The code couples three-dimensional beam finite elements model in a co-rotational framework to a lifting-line aerodynamic code. The morphing energy is calculated by summing actuation moments, applied at the beam nodes, multiplied by the required angular rotations of the beam elements. The code is validated with NASTRAN Aeroelasticity Module and found to be in agreement. Finally the applicability of the code is tested for a sweep morphing manoeuvre and it has been demonstrated that sweep morphing can improve the aerodynamic performance of an aircraft and that the inclusion of aeroelastic effects is important.

  10. Transonic aeroelastic analysis of launch vehicle configurations. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Filgueirasdeazevedo, Joao Luiz

    1988-01-01

    A numerical study of the aeroelastic stability of typical launch vehicle configurations in transonic flight is performed. Recent computational fluid dynamics techniques are used to simulate the transonic aerodynamic flow fields, as opposed to relying on experimental data for the unsteady aerodynamic pressures. The flow solver is coupled to an appropriate structural representation of the vehicle. The aerodynamic formulation is based on the thin layer approximation to the Reynolds-Averaged Navier-Stokes equations, where the account for turbulent mixing is done by the two-layer Baldwin and Lomax algebraic eddy viscosity model. The structural-dynamic equations are developed considering free-free flexural vibration of an elongated beam with variable properties and are cast in modal form. Aeroelastic analyses are performed by integrating simultaneously in the two sets of equations. By tracing the growth or decay of a perturbed oscillation, the aeroelastic stability of a given constant configuration can be ascertained. The method is described in detail, and results that indicate its application are presented. Applications include some validation cases for the algorithm developed, as well as the study of configurations known to have presented flutter programs in the past.

  11. Aeroelastic Modeling of Elastically Shaped Aircraft Concept via Wing Shaping Control for Drag Reduction

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan; James Urnes, Sr.

    2012-01-01

    Lightweight aircraft design has received a considerable attention in recent years as a means for improving cruise efficiency. Reducing aircraft weight results in lower lift requirements which directly translate into lower drag, hence reduced engine thrust requirements during cruise. The use of lightweight materials such as advanced composite materials has been adopted by airframe manufacturers in current and future aircraft. Modern lightweight materials can provide less structural rigidity while maintaining load-carrying capacity. As structural flexibility increases, aeroelastic interactions with aerodynamic forces and moments become an increasingly important consideration in aircraft design and aerodynamic performance. Furthermore, aeroelastic interactions with flight dynamics can result in issues with vehicle stability and control. Abstract This paper describes a recent aeroelastic modeling effort for an elastically shaped aircraft concept (ESAC). The aircraft model is based on the rigid-body generic transport model (GTM) originally developed at NASA Langley Research Center. The ESAC distinguishes itself from the GTM in that it is equipped with highly flexible wing structures as a weight reduction design feature. More significantly, the wings are outfitted with a novel control effector concept called variable camber continuous trailing edge (VCCTE) flap system for active control of wing aeroelastic deflections to optimize the local angle of attack of wing sections for improved aerodynamic efficiency through cruise drag reduction and lift enhancement during take-off and landing. The VCCTE flap is a multi-functional and aerodynamically efficient device capable of achieving high lift-to-drag ratios. The flap system is comprised of three chordwise segments that form the variable camber feature of the flap and multiple spanwise segments that form a piecewise continuous trailing edge. By configuring the flap camber and trailing edge shape, drag reduction could be

  12. Study of Dynamic Characteristics of Aeroelastic Systems Utilizing Randomdec Signatures

    NASA Technical Reports Server (NTRS)

    Chang, C. S.

    1975-01-01

    The feasibility of utilizing the random decrement method in conjunction with a signature analysis procedure to determine the dynamic characteristics of an aeroelastic system for the purpose of on-line prediction of potential on-set of flutter was examined. Digital computer programs were developed to simulate sampled response signals of a two-mode aeroelastic system. Simulated response data were used to test the random decrement method. A special curve-fit approach was developed for analyzing the resulting signatures. A number of numerical 'experiments' were conducted on the combined processes. The method is capable of determining frequency and damping values accurately from randomdec signatures of carefully selected lengths.

  13. This modified F/A-18A is the test aircraft for the Active Aeroelastic Wing (AAW) project at NASA's D

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This modified F/A-18A sporting a distinctive red, white and blue paint scheme is the test aircraft for the Active Aeroelastic Wing (AAW) project at NASA's Dryden Flight Research Center, Edwards, California.

  14. Aeroelastic Deformation Measurements of Flap, Gap, and Overhang on a Semispan Model

    NASA Technical Reports Server (NTRS)

    Burner, A. W.; Liu, Tianshu; Garg, Sanjay; Ghee, Terence A.; Taylor, Nigel J.

    2000-01-01

    Single-camera, single-view videogrammetry has been used to determine static aeroelastic deformation of a slotted flap configuration on a semispan model at the National Transonic Facility (NTF). Deformation was determined by comparing wind-off to wind-on spatial data from targets placed on the main element, shroud, and flap of the model. Digitized video images from a camera were recorded and processed to automatically determine target image plane locations that were then corrected for sensor, lens, and frame grabber spatial errors. The videogrammetric technique has been established at NASA facilities as the technique of choice when high-volume static aeroelastic data with minimum impact on data taking is required. The primary measurement at the NTF with this technique in the past has been the measurement of static aeroelastic wing twist on full span models. The first results using the videogrammetric technique for the measurement of component deformation during semispan testing at the NTF are presented.

  15. First-order aerodynamic and aeroelastic behavior of a single-blade installation setup

    NASA Astrophysics Data System (ADS)

    Gaunaa, M.; Bergami, L.; Guntur, S.; Zahle, F.

    2014-06-01

    Limitations on the wind speed at which blade installation can be performed bears important financial consequences. The installation cost of a wind farm could be significantly reduced by increasing the wind speed at which blade mounting operations can be carried out. This work characterizes the first-order aerodynamic and aeroelastic behavior of a single blade installation system, where the blade is grabbed by a yoke, which is lifted by the crane and stabilized by two taglines. A simple engineering model is formulated to describe the aerodynamic forcing on the blade subject to turbulent wind of arbitrary direction. The model is coupled with a schematic aeroelastic representation of the taglines system, which returns the minimum line tension required to compensate for the aerodynamic forcing. The simplified models are in excellent agreement with the aeroelastic code HAWC2, and provide a solid basis for future design of an upgraded single blade installation system able to operate at higher wind speeds.

  16. Geometrical and structural properties of an Aeroelastic Research Wing (ARW-2)

    NASA Technical Reports Server (NTRS)

    Sandford, Maynard C.; Seidel, David A.; Eckstrom, Clinton V.; Spain, Charles V.

    1989-01-01

    Transonic steady and unsteady pressure tests were conducted on a large elastic wing known as the DAST ARW-2 wing. The wing has a supercritical airfoil, an aspect ratio of 10.3, a leading edge sweepback angle of 28.8 deg and is equipped with two inboard and one outboard trailing edge control surfaces. The geometrical and structural characteristics are presented of this elastic wing, using a combination of measured and calculated data, to permit future analyst to compare the experimental surface pressure data with theoretical predictions.

  17. Aeroelastic modal characteristics of mistuned blade assemblies: Mode localization and loss of eigenstructure

    NASA Technical Reports Server (NTRS)

    Pierre, Christophe; Murthy, Durbha V.

    1991-01-01

    An investigation of the effects of small mistuning on the aeroelastic modes of bladed disk assemblies with aerodynamic coupling between blades is presented. The cornerstone of the approach is the use and development of perturbation methods that exhibit the crucial role of the interblade coupling and yield general findings regarding mistuning effects. It is shown that blade assemblies with weak aerodynamic interblade coupling are highly sensitive to small blade mistuning, and that their dynamics is quantitatively altered in the following ways: the regular pattern that characterizes the root locus of the tuned aeroelastic eigenvalues in the complex plane is totally lost; the aeroelastic mode shapes becomes severely localized to only a few blades of the assembly and lose their constant interblade phase angle feature; and curve veering phenomena take place when the eigenvalues are plotted versus a mistuning parameter.

  18. Treatment of municipal sewage sludge in supercritical water: A review.

    PubMed

    Qian, Lili; Wang, Shuzhong; Xu, Donghai; Guo, Yang; Tang, Xingying; Wang, Laisheng

    2016-02-01

    With increasing construction of wastewater treatment plants and stricter policies, municipal sewage sludge (MSS) disposal has become a serious problem. Treatment of MSS in supercritical water (SCW) can avoid the pre-drying procedure and secondary pollution of conventional methods. SCW treatment methods can be divided into supercritical water gasification (SCWG), supercritical water partial oxidation (SCWPO) and supercritical water oxidation (SCWO) technologies with increasing amounts of oxidants. Hydrogen-rich gases can be generated from MSS by SCWG or SCWPO technology using oxidants less than stoichiometric ratio while organic compounds can be completely degraded by SCWO technology with using an oxidant excess. For SCWG and SCWPO technologies, this paper reviews the influences of different process variables (MSS properties, moisture content, temperature, oxidant amount and catalysts) on the production of gases. For SCWO technology, this paper reviews research regarding the removal of organics with or without hydrothermal flames and the changes in heavy metal speciation and risk. Finally, typical systems for handling MSS are summarized and research needs and challenges are proposed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Sensitivity Analysis of Wing Aeroelastic Responses

    NASA Technical Reports Server (NTRS)

    Issac, Jason Cherian

    1995-01-01

    Design for prevention of aeroelastic instability (that is, the critical speeds leading to aeroelastic instability lie outside the operating range) is an integral part of the wing design process. Availability of the sensitivity derivatives of the various critical speeds with respect to shape parameters of the wing could be very useful to a designer in the initial design phase, when several design changes are made and the shape of the final configuration is not yet frozen. These derivatives are also indispensable for a gradient-based optimization with aeroelastic constraints. In this study, flutter characteristic of a typical section in subsonic compressible flow is examined using a state-space unsteady aerodynamic representation. The sensitivity of the flutter speed of the typical section with respect to its mass and stiffness parameters, namely, mass ratio, static unbalance, radius of gyration, bending frequency, and torsional frequency is calculated analytically. A strip theory formulation is newly developed to represent the unsteady aerodynamic forces on a wing. This is coupled with an equivalent plate structural model and solved as an eigenvalue problem to determine the critical speed of the wing. Flutter analysis of the wing is also carried out using a lifting-surface subsonic kernel function aerodynamic theory (FAST) and an equivalent plate structural model. Finite element modeling of the wing is done using NASTRAN so that wing structures made of spars and ribs and top and bottom wing skins could be analyzed. The free vibration modes of the wing obtained from NASTRAN are input into FAST to compute the flutter speed. An equivalent plate model which incorporates first-order shear deformation theory is then examined so it can be used to model thick wings, where shear deformations are important. The sensitivity of natural frequencies to changes in shape parameters is obtained using ADIFOR. A simple optimization effort is made towards obtaining a minimum weight

  20. Experimental aeroelastic control using adaptive wing model concepts

    NASA Astrophysics Data System (ADS)

    Costa, Antonio P.; Moniz, Paulo A.; Suleman, Afzal

    2001-06-01

    The focus of this study is to evaluate the aeroelastic performance and control of adaptive wings. Ailerons and flaps have been designed and implemented into 3D wings for comparison with adaptive structures and active aerodynamic surface control methods. The adaptive structures concept, the experimental setup and the control design are presented. The wind-tunnel tests of the wing models are presented for the open- and closed-loop systems. The wind tunnel testing has allowed for quantifying the effectiveness of the piezoelectric vibration control of the wings, and also provided performance data for comparison with conventional aerodynamic control surfaces. The results indicate that a wing utilizing skins as active structural elements with embedded piezoelectric actuators can be effectively used to improve the aeroelastic response of aeronautical components. It was also observed that the control authority of adaptive wings is much greater than wings using conventional aerodynamic control surfaces.

  1. Evaluation of Linear, Inviscid, Viscous, and Reduced-Order Modeling Aeroelastic Solutions of the AGARD 445.6 Wing Using Root Locus Analysis

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.; Perry, Boyd III; Chwalowski, Pawel

    2014-01-01

    Reduced-order modeling (ROM) methods are applied to the CFD-based aeroelastic analysis of the AGARD 445.6 wing in order to gain insight regarding well-known discrepancies between the aeroelastic analyses and the experimental results. The results presented include aeroelastic solutions using the inviscid CAP-TSD code and the FUN3D code (Euler and Navier-Stokes). Full CFD aeroelastic solutions and ROM aeroelastic solutions, computed at several Mach numbers, are presented in the form of root locus plots in order to better reveal the aeroelastic root migrations with increasing dynamic pressure. Important conclusions are drawn from these results including the ability of the linear CAP-TSD code to accurately predict the entire experimental flutter boundary (repeat of analyses performed in the 1980's), that the Euler solutions at supersonic conditions indicate that the third mode is always unstable, and that the FUN3D Navier-Stokes solutions stabilize the unstable third mode seen in the Euler solutions.

  2. Aeroelastic Considerations For Rotorcraft Primary Control with On-Blade Elevons

    NASA Technical Reports Server (NTRS)

    Ormiston, Robert A.; Rutkowski, Michael (Technical Monitor)

    2001-01-01

    Replacing the helicopter rotor swashplate and blade pitch control system with on-blade elevon control surfaces for primary flight control may significantly reduce weight and drag to improve mission performance. Simplified analyses are used to examine the basic aeroelastic characteristics of such rotor blades, including pitch and flap dynamic response, elevon reversal, and elevon control effectiveness. The profile power penalty associated with deflections of elevon control surfaces buried within the blade planform is also evaluated. Results suggest that with aeroelastic design for pitch frequencies in the neighborhood of 2/rev, reasonable elevon control effectiveness may be achieved and that, together with collective pitch indexing, the aerodynamic profile power penalty of on-blade control surface deflections may be minimized.

  3. AEROELASTIC SIMULATION TOOL FOR INFLATABLE BALLUTE AEROCAPTURE

    NASA Technical Reports Server (NTRS)

    Liever, P. A.; Sheta, E. F.; Habchi, S. D.

    2006-01-01

    A multidisciplinary analysis tool is under development for predicting the impact of aeroelastic effects on the functionality of inflatable ballute aeroassist vehicles in both the continuum and rarefied flow regimes. High-fidelity modules for continuum and rarefied aerodynamics, structural dynamics, heat transfer, and computational grid deformation are coupled in an integrated multi-physics, multi-disciplinary computing environment. This flexible and extensible approach allows the integration of state-of-the-art, stand-alone NASA and industry leading continuum and rarefied flow solvers and structural analysis codes into a computing environment in which the modules can run concurrently with synchronized data transfer. Coupled fluid-structure continuum flow demonstrations were conducted on a clamped ballute configuration. The feasibility of implementing a DSMC flow solver in the simulation framework was demonstrated, and loosely coupled rarefied flow aeroelastic demonstrations were performed. A NASA and industry technology survey identified CFD, DSMC and structural analysis codes capable of modeling non-linear shape and material response of thin-film inflated aeroshells. The simulation technology will find direct and immediate applications with NASA and industry in ongoing aerocapture technology development programs.

  4. Aeroelastic oscillations of a cantilever with structural nonlinearities: theory and numerical simulation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, Brandon; Rocha da Costa, Leandro Jose; Poirel, Dominique

    Our study details the derivation of the nonlinear equations of motion for the axial, biaxial bending and torsional vibrations of an aeroelastic cantilever undergoing rigid body (pitch) rotation at the base. The primary attenstion is focussed on the geometric nonlinearities of the system, whereby the aeroelastic load is modeled by the theory of linear quasisteady aerodynamics. This modelling effort is intended to mimic the wind-tunnel experimental setup at the Royal Military College of Canada. While the derivation closely follows the work of Hodges and Dowell [1] for rotor blades, this aeroelastic system contains new inertial terms which stem from themore » fundamentally different kinematics than those exhibited by helicopter or wind turbine blades. Using the Hamilton’s principle, a set of coupled nonlinear partial differential equations (PDEs) and an ordinary differential equation (ODE) are derived which describes the coupled axial-bending-bending-torsion-pitch motion of the aeroelastic cantilever with the pitch rotation. The finite dimensional approximation of the coupled system of PDEs are obtained using the Galerkin projection, leading to a coupled system of ODEs. Subsequently, these nonlinear ODEs are solved numerically using the built-in MATLAB implicit ODE solver and the associated numerical results are compared with those obtained using Houbolt’s method. It is demonstrated that the system undergoes coalescence flutter, leading to a limit cycle oscillation (LCO) due to coupling between the rigid body pitching mode and teh flexible mode arising from the flapwise bending motion.« less

  5. A new aeroelastic model for composite rotor blades with straight and swept tips

    NASA Technical Reports Server (NTRS)

    Yuan, Kuo-An; Friedmann, Peretz P.; Venkatesan, Comandur

    1992-01-01

    An analytical model for predicting the aeroelastic behavior of composite rotor blades with straight and swept tips is presented. The blade is modeled by beam type finite elements along the elastic axis. A single finite element is used to model the swept tip. The nonlinear equations of motion for the finite element model are derived using Hamilton's principle and based on a moderate deflection theory and accounts for: arbitrary cross-sectional shape, pretwist, generally anisotropic material behavior, transverse shears and out-of-plane warping. Numerical results illustrating the effects of tip sweep, anhedral and composite ply orientation on blade aeroelastic behavior are presented. Tip sweep can induce aeroelastic instability by flap-twist coupling. Tip anhedral causes lag-torsion and flap-axial couplings, however, its effects on blade stability is less pronounced than the effect due to sweep. Composite ply orientation has a substantial effect on blade stability.

  6. General corrosion properties of modified PNC1520 austenitic stainless steel in supercritical water as a fuel cladding candidate material for supercritical water reactor

    NASA Astrophysics Data System (ADS)

    Nakazono, Y.; Iwai, T.; Abe, H.

    2010-03-01

    The Super-Critical Water-cooled Reactor (SCWR) has been designed and investigated because of its high thermal efficiency and plant simplification. There are some advantages including the use of a single phase coolant with high enthalpy but there are numerous potential problems, particularly with materials. As the operating temperature of supercritical water reactor will be between 280°C and 620°C with a pressure of 25MPa, the selection of materials is difficult and important. Austenitic stainless steels were selected for possible use in supercritical water systems because of their corrosion resistance and radiation resistance. The PNC1520 austenitic stainless steel developed by Japan Atomic Energy Agency (JAEA) as a nuclear fuel cladding material for a Na-cooled fast breeder reactor. The corrosion data of PNC1520 in supercritical water (SCW) is required but does not exist. The purpose of the present study is to research the corrosion properties for PNC1520 austenitic stainless steel in supercritical water. The supercritical water corrosion test was performed for the standard PNC1520 (1520S) and the Ti-additional type of PNC1520 (1520Ti) by using a supercritical water autoclave. Corrosion tests on the austenitic 1520S and 1520Ti steels in supercritical water were performed at 400, 500 and 600°C with exposures up to 1000h. The amount of weight gain, weight loss and weight of scale were evaluated after the corrosion test in supercritical water for both austenitic steels. After 1000h corrosion test performed, the weight gains of both austenitic stainless steels were less than 2 g/m2 at 400°C and 500°C . But both weight gain and weight loss of 1520Ti were larger than those of 1520S at 600°C . By increasing the temperature to 600°C, the surface of 1520Ti was covered with magnetite formed in supercritical water and dissolution of the steel alloying elements has been observed. In view of corrosion, 1520S may have larger possibility than 1520Ti to adopt a

  7. Trim and Structural Optimization of Subsonic Transport Wings Using Nonconventional Aeroelastic Tailoring

    NASA Technical Reports Server (NTRS)

    Stanford, Bret K.; Jutte, Christine V.

    2014-01-01

    Several minimum-mass aeroelastic optimization problems are solved to evaluate the effectiveness of a variety of novel tailoring schemes for subsonic transport wings. Aeroelastic strength and panel buckling constraints are imposed across a variety of trimmed maneuver loads. Tailoring with metallic thickness variations, functionally graded materials, composite laminates, tow steering, and distributed trailing edge control effectors are all found to provide reductions in structural wing mass with varying degrees of success. The question as to whether this wing mass reduction will offset the increased manufacturing cost is left unresolved for each case.

  8. Steady pressure measurements on an Aeroelastic Research Wing (ARW-2)

    NASA Technical Reports Server (NTRS)

    Sandford, Maynard C.; Seidel, David A.; Eckstrom, Clinton V.

    1994-01-01

    Transonic steady and unsteady pressure tests have been conducted in the Langley transonic dynamics tunnel on a large elastic wing known as the DAST ARW-2. The wing has a supercritical airfoil, an aspect ratio of 10.3, a leading-edge sweep back angle of 28.8 degrees, and two inboard and one outboard trailing-edge control surfaces. Only the outboard control surface was deflected to generate steady and unsteady flow over the wing during this study. Only the steady surface pressure, control-surface hinge moment, wing-tip deflection, and wing-root bending moment measurements are presented. The results from this elastic wing test are in tabulated form to assist in calibrating advanced computational fluid dynamics (CFD) algorithms.

  9. Shock Location Dominated Transonic Flight Loads on the Active Aeroelastic Wing

    NASA Technical Reports Server (NTRS)

    Lokos, William A.; Lizotte, Andrew; Lindsley, Ned J.; Stauf, Rick

    2005-01-01

    During several Active Aeroelastic Wing research flights, the shadow of the over-wing shock could be observed because of natural lighting conditions. As the plane accelerated, the shock location moved aft, and as the shadow passed the aileron and trailing-edge flap hinge lines, their associated hinge moments were substantially affected. The observation of the dominant effect of shock location on aft control surface hinge moments led to this investigation. This report investigates the effect of over-wing shock location on wing loads through flight-measured data and analytical predictions. Wing-root and wing-fold bending moment and torque and leading- and trailing-edge hinge moments have been measured in flight using calibrated strain gages. These same loads have been predicted using a computational fluid dynamics code called the Euler Navier-Stokes Three Dimensional Aeroelastic Code. The computational fluid dynamics study was based on the elastically deformed shape estimated by a twist model, which in turn was derived from in-flight-measured wing deflections provided by a flight deflection measurement system. During level transonic flight, the shock location dominated the wing trailing-edge control surface hinge moments. The computational fluid dynamics analysis based on the shape provided by the flight deflection measurement system produced very similar results and substantially correlated with the measured loads data.

  10. Aeroelasticity of Axially Loaded Aerodynamic Structures for Truss-Braced Wing Aircraft

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan; Ting, Eric; Lebofsky, Sonia

    2015-01-01

    This paper presents an aeroelastic finite-element formulation for axially loaded aerodynamic structures. The presence of axial loading causes the bending and torsional sitffnesses to change. For aircraft with axially loaded structures such as the truss-braced wing aircraft, the aeroelastic behaviors of such structures are nonlinear and depend on the aerodynamic loading exerted on these structures. Under axial strain, a tensile force is created which can influence the stiffness of the overall aircraft structure. This tension stiffening is a geometric nonlinear effect that needs to be captured in aeroelastic analyses to better understand the behaviors of these types of aircraft structures. A frequency analysis of a rotating blade structure is performed to demonstrate the analytical method. A flutter analysis of a truss-braced wing aircraft is performed to analyze the effect of geometric nonlinear effect of tension stiffening on the flutter speed. The results show that the geometric nonlinear tension stiffening effect can have a significant impact on the flutter speed prediction. In general, increased wing loading results in an increase in the flutter speed. The study illustrates the importance of accounting for the geometric nonlinear tension stiffening effect in analyzing the truss-braced wing aircraft.

  11. Optimal Topology of Aircraft Rib and Spar Structures under Aeroelastic Loads

    NASA Technical Reports Server (NTRS)

    Stanford, Bret K.; Dunning, Peter D.

    2014-01-01

    Several topology optimization problems are conducted within the ribs and spars of a wing box. It is desired to locate the best position of lightening holes, truss/cross-bracing, etc. A variety of aeroelastic metrics are isolated for each of these problems: elastic wing compliance under trim loads and taxi loads, stress distribution, and crushing loads. Aileron effectiveness under a constant roll rate is considered, as are dynamic metrics: natural vibration frequency and flutter. This approach helps uncover the relationship between topology and aeroelasticity in subsonic transport wings, and can therefore aid in understanding the complex aircraft design process which must eventually consider all these metrics and load cases simultaneously.

  12. The benchmark aeroelastic models program: Description and highlights of initial results

    NASA Technical Reports Server (NTRS)

    Bennett, Robert M.; Eckstrom, Clinton V.; Rivera, Jose A., Jr.; Dansberry, Bryan E.; Farmer, Moses G.; Durham, Michael H.

    1991-01-01

    An experimental effort was implemented in aeroelasticity called the Benchmark Models Program. The primary purpose of this program is to provide the necessary data to evaluate computational fluid dynamic codes for aeroelastic analysis. It also focuses on increasing the understanding of the physics of unsteady flows and providing data for empirical design. An overview is given of this program and some results obtained in the initial tests are highlighted. The tests that were completed include measurement of unsteady pressures during flutter of rigid wing with a NACA 0012 airfoil section and dynamic response measurements of a flexible rectangular wing with a thick circular arc airfoil undergoing shock boundary layer oscillations.

  13. Aeroelastic simulation of higher harmonic control

    NASA Technical Reports Server (NTRS)

    Robinson, Lawson H.; Friedmann, Peretz P.

    1994-01-01

    This report describes the development of an aeroelastic analysis of a helicopter rotor and its application to the simulation of helicopter vibration reduction through higher harmonic control (HHC). An improved finite-state, time-domain model of unsteady aerodynamics is developed to capture high frequency aerodynamic effects. An improved trim procedure is implemented which accounts for flap, lead-lag, and torsional deformations of the blade. The effect of unsteady aerodynamics is studied and it is found that its impact on blade aeroelastic stability and low frequency response is small, but it has a significant influence on rotor hub vibrations. Several different HHC algorithms are implemented on a hingeless rotor and their effectiveness in reducing hub vibratory shears is compared. All the controllers are found to be quite effective, but very differing HHC inputs are required depending on the aerodynamic model used. Effects of HHC on rotor stability and power requirements are found to be quite small. Simulations of roughly equivalent articulated and hingeless rotors are carried out, and it is found that hingeless rotors can require considerably larger HHC inputs to reduce vibratory shears. This implies that the practical implementation of HHC on hingeless rotors might be considerably more difficult than on articulated rotors.

  14. Supercritical Fluid Fractionation of JP-8

    DTIC Science & Technology

    1991-12-26

    applications, such as coffee decaffeination , spice extraction, and lipids purification. The processing principles have also long been well known and ipracticed...PRINCIPLES OF SUPERCRITICAL FLUID EXTRACTION 8 A. Background on Supercritical Fluid Solubility 8 B. Supercritical Fluid Extraction Process ...Operation I0 1. Batch Extraction of Solid Materials 10 2. Counter-Current Continuous SCF Processing of Liquid 15 Products 3. Supercritical Fluid Extraction vs

  15. Aeroelastic Deformation Measurements of Flap, Gap, and Overhang on a Semispan Model

    NASA Technical Reports Server (NTRS)

    Burner, A. W.; Liu, Tian-Shu; Garg, Sanjay; Ghee, Terence A.; Taylor, Nigel J.

    2001-01-01

    Single-camera, single-view videogrammetry has been used for the first time to determine static aeroelastic deformation of a slotted flap configuration on a semispan model at the National Transonic Facility (NTF). Deformation was determined by comparing wind-off to wind-on spatial data from targets placed on the main element, shroud, and flap of the model. Digitized video images from a camera were recorded and processed to automatically determine target image plane locations that were then corrected for sensor, lens, and frame grabber spatial errors. The videogrammetric technique used for the measurements presented here has been established at NASA facilities as the technique of choice when high-volume static aeroelastic data with minimum impact on data taking is required. However, the primary measurement at the NTF with this technique in the past has been the measurement of the static aeroelastic wing twist of the main wing element on full span models rather than for the measurement of component deformation. Considerations for using the videogrammetric technique for semispan component deformation measurements as well as representative results are presented.

  16. Development of an Aeroelastic Modeling Capability for Transient Nozzle Side Load Analysis

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Zhao, Xiang; Zhang, Sijun; Chen, Yen-Sen

    2013-01-01

    Lateral nozzle forces are known to cause severe structural damage to any new rocket engine in development during test. While three-dimensional, transient, turbulent, chemically reacting computational fluid dynamics methodology has been demonstrated to capture major side load physics with rigid nozzles, hot-fire tests often show nozzle structure deformation during major side load events, leading to structural damages if structural strengthening measures were not taken. The modeling picture is incomplete without the capability to address the two-way responses between the structure and fluid. The objective of this study is to develop a coupled aeroelastic modeling capability by implementing the necessary structural dynamics component into an anchored computational fluid dynamics methodology. The computational fluid dynamics component is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, while the computational structural dynamics component is developed in the framework of modal analysis. Transient aeroelastic nozzle startup analyses of the Block I Space Shuttle Main Engine at sea level were performed. The computed results from the aeroelastic nozzle modeling are presented.

  17. An Aeroelastic Perspective of Floating Offshore Wind Turbine Wake Formation and Instability

    NASA Astrophysics Data System (ADS)

    Rodriguez, Steven N.; Jaworski, Justin W.

    2015-11-01

    The wake formation and wake stability of floating offshore wind turbines are investigated from an aeroelastic perspective. The aeroelastic model is composed of the Sebastian-Lackner free-vortex wake aerodynamic model coupled to the nonlinear Hodges-Dowell beam equations, which are extended to include the effects of blade profile asymmetry, higher-order torsional effects, and kinetic energy components associated with periodic rigid-body motions of floating platforms. Rigid-body platform motions are also assigned to the aerodynamic model as varying inflow conditions to emulate operational rotor-wake interactions. Careful attention is given to the wake formation within operational states where the ratio of inflow velocity to induced velocity is over 50%. These states are most susceptible to aerodynamic instabilities, and provide a range of states about which a wake stability analysis can be performed. In addition, the stability analysis used for the numerical framework is implemented into a standalone free-vortex wake aerodynamic model. Both aeroelastic and standalone aerodynamic results are compared to evaluate the level of impact that flexible blades have on the wake formation and wake stability.

  18. Aeroelastic analysis for propellers - mathematical formulations and program user's manual

    NASA Technical Reports Server (NTRS)

    Bielawa, R. L.; Johnson, S. A.; Chi, R. M.; Gangwani, S. T.

    1983-01-01

    Mathematical development is presented for a specialized propeller dedicated version of the G400 rotor aeroelastic analysis. The G400PROP analysis simulates aeroelastic characteristics particular to propellers such as structural sweep, aerodynamic sweep and high subsonic unsteady airloads (both stalled and unstalled). Formulations are presented for these expanded propeller related methodologies. Results of limited application of the analysis to realistic blade configurations and operating conditions which include stable and unstable stall flutter test conditions are given. Sections included for enhanced program user efficiency and expanded utilization include descriptions of: (1) the structuring of the G400PROP FORTRAN coding; (2) the required input data; and (3) the output results. General information to facilitate operation and improve efficiency is also provided.

  19. Aeroelasticity of wing and wing-body configurations on parallel computers

    NASA Technical Reports Server (NTRS)

    Byun, Chansup

    1995-01-01

    The objective of this research is to develop computationally efficient methods for solving aeroelasticity problems on parallel computers. Both uncoupled and coupled methods are studied in this research. For the uncoupled approach, the conventional U-g method is used to determine the flutter boundary. The generalized aerodynamic forces required are obtained by the pulse transfer-function analysis method. For the coupled approach, the fluid-structure interaction is obtained by directly coupling finite difference Euler/Navier-Stokes equations for fluids and finite element dynamics equations for structures. This capability will significantly impact many aerospace projects of national importance such as Advanced Subsonic Civil Transport (ASCT), where the structural stability margin becomes very critical at the transonic region. This research effort will have direct impact on the High Performance Computing and Communication (HPCC) Program of NASA in the area of parallel computing.

  20. Strain actuated aeroelastic control

    NASA Technical Reports Server (NTRS)

    Lazarus, Kenneth B.

    1992-01-01

    Viewgraphs on strain actuated aeroelastic control are presented. Topics covered include: structural and aerodynamic modeling; control law design methodology; system block diagram; adaptive wing test article; bench-top experiments; bench-top disturbance rejection: open and closed loop response; bench-top disturbance rejection: state cost versus control cost; wind tunnel experiments; wind tunnel gust alleviation: open and closed loop response at 60 mph; wind tunnel gust alleviation: state cost versus control cost at 60 mph; wind tunnel command following: open and closed loop error at 60 mph; wind tunnel flutter suppression: open loop flutter speed; and wind tunnel flutter suppression: closed loop state cost curves.

  1. Aeroelastic Considerations in the Preliminary Design Aircraft

    DTIC Science & Technology

    1983-09-01

    system for aeroelastic analysis FINDEX- Lockheed’s DMS for matrices and NASTRAN tables FSD- fully stressed design algorithm Lockheed- Lockheed-California...Company MLC- maneuver load control NASA- National Aeronautics and Space Adminstration NASTRAN - structural finite element program developed by NASA...Computer Program Validation All major computing programs (FAMAS, NASTRAN , etc.), except the weight distribution program, the panel sizing and allowable

  2. Vibration, performance, flutter and forced response characteristics of a large-scale propfan and its aeroelastic model

    NASA Technical Reports Server (NTRS)

    August, Richard; Kaza, Krishna Rao V.

    1988-01-01

    An investigation of the vibration, performance, flutter, and forced response of the large-scale propfan, SR7L, and its aeroelastic model, SR7A, has been performed by applying available structural and aeroelastic analytical codes and then correlating measured and calculated results. Finite element models of the blades were used to obtain modal frequencies, displacements, stresses and strains. These values were then used in conjunction with a 3-D, unsteady, lifting surface aerodynamic theory for the subsequent aeroelastic analyses of the blades. The agreement between measured and calculated frequencies and mode shapes for both models is very good. Calculated power coefficients correlate well with those measured for low advance ratios. Flutter results show that both propfans are stable at their respective design points. There is also good agreement between calculated and measured blade vibratory strains due to excitation resulting from yawed flow for the SR7A propfan. The similarity of structural and aeroelastic results show that the SR7A propfan simulates the SR7L characteristics.

  3. Optimum Design of a Helicopter Rotor for Low Vibration Using Aeroelastic Analysis and Response Surface Methods

    NASA Astrophysics Data System (ADS)

    Ganguli, R.

    2002-11-01

    An aeroelastic analysis based on finite elements in space and time is used to model the helicopter rotor in forward flight. The rotor blade is represented as an elastic cantilever beam undergoing flap and lag bending, elastic torsion and axial deformations. The objective of the improved design is to reduce vibratory loads at the rotor hub that are the main source of helicopter vibration. Constraints are imposed on aeroelastic stability, and move limits are imposed on the blade elastic stiffness design variables. Using the aeroelastic analysis, response surface approximations are constructed for the objective function (vibratory hub loads). It is found that second order polynomial response surfaces constructed using the central composite design of the theory of design of experiments adequately represents the aeroelastic model in the vicinity of the baseline design. Optimization results show a reduction in the objective function of about 30 per cent. A key accomplishment of this paper is the decoupling of the analysis problem and the optimization problems using response surface methods, which should encourage the use of optimization methods by the helicopter industry.

  4. Supercritical water oxidation of landfill leachate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Shuzhong, E-mail: s_z_wang@yahoo.cn; Guo Yang; Chen Chongming

    2011-09-15

    Highlights: > Thermal analysis of NH{sub 3} in supercritical water oxidation reaction. > Research on the catalytic reaction of landfill leachate by using response surface method. > Kinetic research of supercritical water oxidation of NH{sub 3} with and without MnO{sub 2} catalyst. - Abstract: In this paper, ammonia as an important ingredient in landfill leachate was mainly studied. Based on Peng-Robinson formulations and Gibbs free energy minimization method, the estimation of equilibrium composition and thermodynamic analysis for supercritical water oxidation of ammonia (SCWO) was made. As equilibrium is reached, ammonia could be totally oxidized in SCW. N{sub 2} is themore » main product, and the formation of NO{sub 2} and NO could be neglected. The investigation on SCWO of landfill leachate was conducted in a batch reactor at temperature of 380-500 deg. C, reaction time of 50-300 s and pressure of 25 MPa. The effect of reaction parameters such as oxidant equivalent ratio, reaction time and temperature were investigated. The results showed that COD and NH{sub 3} conversion improved as temperature, reaction time and oxygen excess increased. Compared to organics, NH{sub 3} is a refractory compound in supercritical water. The conversion of COD and NH{sub 3} were higher in the presence of MnO{sub 2} than that without catalyst. The interaction between reaction temperature and time was analyzed by using response surface method (RSM) and the results showed that its influence on the NH{sub 3} conversion was relatively insignificant in the case without catalyst. A global power-law rate expression was regressed from experimental data to estimate the reaction rate of NH{sub 3}. The activation energy with and without catalyst for NH{sub 3} oxidation were 107.07 {+-} 8.57 kJ/mol and 83.22 {+-} 15.62 kJ/mol, respectively.« less

  5. Development of an aeroelastic methodology for surface morphing rotors

    NASA Astrophysics Data System (ADS)

    Cook, James R.

    Helicopter performance capabilities are limited by maximum lift characteristics and vibratory loading. In high speed forward flight, dynamic stall and transonic flow greatly increase the amplitude of vibratory loads. Experiments and computational simulations alike have indicated that a variety of active rotor control devices are capable of reducing vibratory loads. For example, periodic blade twist and flap excitation have been optimized to reduce vibratory loads in various rotors. Airfoil geometry can also be modified in order to increase lift coefficient, delay stall, or weaken transonic effects. To explore the potential benefits of active controls, computational methods are being developed for aeroelastic rotor evaluation, including coupling between computational fluid dynamics (CFD) and computational structural dynamics (CSD) solvers. In many contemporary CFD/CSD coupling methods it is assumed that the airfoil is rigid to reduce the interface by single dimension. Some methods retain the conventional one-dimensional beam model while prescribing an airfoil shape to simulate active chord deformation. However, to simulate the actual response of a compliant airfoil it is necessary to include deformations that originate not only from control devices (such as piezoelectric actuators), but also inertial forces, elastic stresses, and aerodynamic pressures. An accurate representation of the physics requires an interaction with a more complete representation of loads and geometry. A CFD/CSD coupling methodology capable of communicating three-dimensional structural deformations and a distribution of aerodynamic forces over the wetted blade surface has not yet been developed. In this research an interface is created within the Fully Unstructured Navier-Stokes (FUN3D) solver that communicates aerodynamic forces on the blade surface to University of Michigan's Nonlinear Active Beam Solver (UM/NLABS -- referred to as NLABS in this thesis). Interface routines are developed for

  6. Nonlinear aeroelastic analysis, flight dynamics, and control of a complete aircraft

    NASA Astrophysics Data System (ADS)

    Patil, Mayuresh Jayawant

    The focus of this research was to analyze a high-aspect-ratio wing aircraft flying at low subsonic speeds. Such aircraft are designed for high-altitude, long-endurance missions. Due to the high flexibility and associated wing deformation, accurate prediction of aircraft response requires use of nonlinear theories. Also strong interactions between flight dynamics and aeroelasticity are expected. To analyze such aircraft one needs to have an analysis tool which includes the various couplings and interactions. A theoretical basis has been established for a consistent analysis which takes into account, (i) material anisotropy, (ii) geometrical nonlinearities of the structure, (iii) rigid-body motions, (iv) unsteady flow behavior, and (v) dynamic stall. The airplane structure is modeled as a set of rigidly attached beams. Each of the beams is modeled using the geometrically exact mixed variational formulation, thus taking into account geometrical nonlinearities arising due to large displacements and rotations. The cross-sectional stiffnesses are obtained using an asymptotically exact analysis, which can model arbitrary cross sections and material properties. An aerodynamic model, consisting of a unified lift model, a consistent combination of finite-state inflow model and a modified ONERA dynamic stall model, is coupled to the structural system to determine the equations of motion. The results obtained indicate the necessity of including nonlinear effects in aeroelastic analysis. Structural geometric nonlinearities result in drastic changes in aeroelastic characteristics, especially in case of high-aspect-ratio wings. The nonlinear stall effect is the dominant factor in limiting the amplitude of oscillation for most wings. The limit cycle oscillation (LCO) phenomenon is also investigated. Post-flutter and pre-flutter LCOs are possible depending on the disturbance mode and amplitude. Finally, static output feedback (SOF) controllers are designed for flutter suppression

  7. Advanced Supercritical Carbon Dioxide Brayton Cycle Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Mark; Sienicki, James; Moisseytsev, Anton

    2015-10-21

    Fluids operating in the supercritical state have promising characteristics for future high efficiency power cycles. In order to develop power cycles using supercritical fluids, it is necessary to understand the flow characteristics of fluids under both supercritical and two-phase conditions. In this study, a Computational Fluid Dynamic (CFD) methodology was developed for supercritical fluids flowing through complex geometries. A real fluid property module was implemented to provide properties for different supercritical fluids. However, in each simulation case, there is only one species of fluid. As a result, the fluid property module provides properties for either supercritical CO 2 (S-CO 2)more » or supercritical water (SCW). The Homogeneous Equilibrium Model (HEM) was employed to model the two-phase flow. HEM assumes two phases have same velocity, pressure, and temperature, making it only applicable for the dilute dispersed two-phase flow situation. Three example geometries, including orifices, labyrinth seals, and valves, were used to validate this methodology with experimental data. For the first geometry, S-CO 2 and SCW flowing through orifices were simulated and compared with experimental data. The maximum difference between the mass flow rate predictions and experimental measurements is less than 5%. This is a significant improvement as previous works can only guarantee 10% error. In this research, several efforts were made to help this improvement. First, an accurate real fluid module was used to provide properties. Second, the upstream condition was determined by pressure and density, which determines supercritical states more precise than using pressure and temperature. For the second geometry, the flow through labyrinth seals was studied. After a successful validation, parametric studies were performed to study geometric effects on the leakage rate. Based on these parametric studies, an optimum design strategy for the see-through labyrinth seals was

  8. Supercritical Wing Technology: A Progress Report on Flight Evaluations

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The papers in this compilation were presented at the NASA Symposium on "Supercritical Wing Technology: A Progress Report on Flight Evaluation" held at the NASA Flight Research Center, Edwards, Calif., on February 29, 1972. The purpose of the symposium was to present timely information on flight results obtained with the F-8 and T-2C supercritical wing configurations, discuss comparisons with wind-tunnel predictions, and project [ ] flight programs planned for the F-8 and F-III (TACT) airplanes.

  9. A Nonlinear Modal Aeroelastic Solver for FUN3D

    NASA Technical Reports Server (NTRS)

    Goldman, Benjamin D.; Bartels, Robert E.; Biedron, Robert T.; Scott, Robert C.

    2016-01-01

    A nonlinear structural solver has been implemented internally within the NASA FUN3D computational fluid dynamics code, allowing for some new aeroelastic capabilities. Using a modal representation of the structure, a set of differential or differential-algebraic equations are derived for general thin structures with geometric nonlinearities. ODEPACK and LAPACK routines are linked with FUN3D, and the nonlinear equations are solved at each CFD time step. The existing predictor-corrector method is retained, whereby the structural solution is updated after mesh deformation. The nonlinear solver is validated using a test case for a flexible aeroshell at transonic, supersonic, and hypersonic flow conditions. Agreement with linear theory is seen for the static aeroelastic solutions at relatively low dynamic pressures, but structural nonlinearities limit deformation amplitudes at high dynamic pressures. No flutter was found at any of the tested trajectory points, though LCO may be possible in the transonic regime.

  10. Design, manufacturing and characterization of aero-elastically scaled wind turbine blades for testing active and passive load alleviation techniques within a ABL wind tunnel

    NASA Astrophysics Data System (ADS)

    Campagnolo, Filippo; Bottasso, Carlo L.; Bettini, Paolo

    2014-06-01

    In the research described in this paper, a scaled wind turbine model featuring individual pitch control (IPC) capabilities, and equipped with aero-elastically scaled blades featuring passive load reduction capabilities (bend-twist coupling, BTC), was constructed to investigate, by means of wind tunnel testing, the load alleviation potential of BTC and its synergy with active load reduction techniques. The paper mainly focus on the design of the aero-elastic blades and their dynamic and static structural characterization. The experimental results highlight that manufactured blades show desired bend-twist coupling behavior and are a first milestone toward their testing in the wind tunnel.

  11. Supercritical Water Mixture (SCWM) Experiment

    NASA Technical Reports Server (NTRS)

    Hicks, Michael C.; Hegde, Uday G.

    2012-01-01

    The subject presentation, entitled, Supercritical Water Mixture (SCWM) Experiment, was presented at the International Space Station (ISS) Increment 33/34 Science Symposium. This presentation provides an overview of an international collaboration between NASA and CNES to study the behavior of a dilute aqueous solution of Na2SO4 (5% w) at near-critical conditions. The Supercritical Water Mixture (SCWM) investigation, serves as important precursor work for subsequent Supercritical Water Oxidation (SCWO) experiments. The SCWM investigation will be performed in DECLICs High Temperature Insert (HTI) for the purpose of studying critical fluid phenomena at high temperatures and pressures. The HTI includes a completely sealed and integrated test cell (i.e., Sample Cell Unit SCU) that will contain approximately 0.3 ml of the aqueous test solution. During the sequence of tests, scheduled to be performed in FY13, temperatures and pressures will be elevated to critical conditions (i.e., Tc = 374C and Pc = 22 MPa) in order to observe salt precipitation, precipitate agglomeration and precipitate transport in the presence of a temperature gradient without the influences of gravitational forces. This presentation provides an overview of the motivation for this work, a description of the DECLIC HTI hardware, the proposed test sequences, and a brief discussion of the scientific research objectives.

  12. Algorithm for Simulating Atmospheric Turbulence and Aeroelastic Effects on Simulator Motion Systems

    NASA Technical Reports Server (NTRS)

    Ercole, Anthony V.; Cardullo, Frank M.; Kelly, Lon C.; Houck, Jacob A.

    2012-01-01

    Atmospheric turbulence produces high frequency accelerations in aircraft, typically greater than the response to pilot input. Motion system equipped flight simulators must present cues representative of the aircraft response to turbulence in order to maintain the integrity of the simulation. Currently, turbulence motion cueing produced by flight simulator motion systems has been less than satisfactory because the turbulence profiles have been attenuated by the motion cueing algorithms. This report presents a new turbulence motion cueing algorithm, referred to as the augmented turbulence channel. Like the previous turbulence algorithms, the output of the channel only augments the vertical degree of freedom of motion. This algorithm employs a parallel aircraft model and an optional high bandwidth cueing filter. Simulation of aeroelastic effects is also an area where frequency content must be preserved by the cueing algorithm. The current aeroelastic implementation uses a similar secondary channel that supplements the primary motion cue. Two studies were conducted using the NASA Langley Visual Motion Simulator and Cockpit Motion Facility to evaluate the effect of the turbulence channel and aeroelastic model on pilot control input. Results indicate that the pilot is better correlated with the aircraft response, when the augmented channel is in place.

  13. Hybrid state vector methods for structural dynamic and aeroelastic boundary value problems

    NASA Technical Reports Server (NTRS)

    Lehman, L. L.

    1982-01-01

    A computational technique is developed that is suitable for performing preliminary design aeroelastic and structural dynamic analyses of large aspect ratio lifting surfaces. The method proves to be quite general and can be adapted to solving various two point boundary value problems. The solution method, which is applicable to both fixed and rotating wing configurations, is based upon a formulation of the structural equilibrium equations in terms of a hybrid state vector containing generalized force and displacement variables. A mixed variational formulation is presented that conveniently yields a useful form for these state vector differential equations. Solutions to these equations are obtained by employing an integrating matrix method. The application of an integrating matrix provides a discretization of the differential equations that only requires solutions of standard linear matrix systems. It is demonstrated that matrix partitioning can be used to reduce the order of the required solutions. Results are presented for several example problems in structural dynamics and aeroelasticity to verify the technique and to demonstrate its use. These problems examine various types of loading and boundary conditions and include aeroelastic analyses of lifting surfaces constructed from anisotropic composite materials.

  14. Wind-tunnel measurements of aerodynamic load distribution on an NASA supercritical-wing research airplane configuration

    NASA Technical Reports Server (NTRS)

    Harris, C. D.

    1972-01-01

    Wind tunnel tests have been conducted on a research airplane model with an NASA supercritical wing to define the general character of the flow over the wing and to aid in structural design of the full scale airplane. Pressure measurements were made at Mach numbers from 0.25 to 1.30 for sideslip angles from -2.50 deg to 2.50 deg over a moderate range of angles of attack and dynamic pressures. Except for representative figures, the results are presented in tabular form without detailed analysis.

  15. Assessing Videogrammetry for Static Aeroelastic Testing of a Wind-Tunnel Model

    NASA Technical Reports Server (NTRS)

    Spain, Charles V.; Heeg, Jennifer; Ivanco, Thomas G.; Barrows, Danny A.; Florance, James R.; Burner, Alpheus W.; DeMoss, Joshua; Lively, Peter S.

    2004-01-01

    The Videogrammetric Model Deformation (VMD) technique, developed at NASA Langley Research Center, was recently used to measure displacements and local surface angle changes on a static aeroelastic wind-tunnel model. The results were assessed for consistency, accuracy and usefulness. Vertical displacement measurements and surface angular deflections (derived from vertical displacements) taken at no-wind/no-load conditions were analyzed. For accuracy assessment, angular measurements were compared to those from a highly accurate accelerometer. Shewhart's Variables Control Charts were used in the assessment of consistency and uncertainty. Some bad data points were discovered, and it is shown that the measurement results at certain targets were more consistent than at other targets. Physical explanations for this lack of consistency have not been determined. However, overall the measurements were sufficiently accurate to be very useful in monitoring wind-tunnel model aeroelastic deformation and determining flexible stability and control derivatives. After a structural model component failed during a highly loaded condition, analysis of VMD data clearly indicated progressive structural deterioration as the wind-tunnel condition where failure occurred was approached. As a result, subsequent testing successfully incorporated near- real-time monitoring of VMD data in order to ensure structural integrity. The potential for higher levels of consistency and accuracy through the use of statistical quality control practices are discussed and recommended for future applications.

  16. Supercritical Fluid Chromatography/Fourier Transform Infrared Spectroscopy Of Food Components

    NASA Astrophysics Data System (ADS)

    Calvey, Elizabeth M.; Page, Samuel W.; Taylor, Larry T.

    1989-12-01

    Supercritical fluid (SF) technologies are being investigated extensively for applications in food processing. The number of SF-related patents issued testifies to the level of interest. Among the properties of materials at temperatures and pressures above their critical points (supercritical fluids) is density-dependent solvating power. Supercritical CO2 is of particular interest to the food industry because of its low critical temperature (31.3°C) and low toxicity. Many of the components in food matrices react or degrade at elevated temperatures and may be adversely affected by high temperature extractions. Likewise, these components may not be amenable to GC analyses. Our SF research has been in the development of methods employing supercritical fluid chromatography (SFC) and extraction (SFE) coupled to a Fourier transform infrared (FT-IR) spectrometer to investigate food composition. The effects of processing techniques on the isomeric fatty acid content of edible oils and the analysis of lipid oxidation products using SFC/FT-IR with a flow-cell interface are described.

  17. Implementation of the DAST ARW II control laws using an 8086 microprocessor and an 8087 floating-point coprocessor. [drones for aeroelasticity research

    NASA Technical Reports Server (NTRS)

    Kelly, G. L.; Berthold, G.; Abbott, L.

    1982-01-01

    A 5 MHZ single-board microprocessor system which incorporates an 8086 CPU and an 8087 Numeric Data Processor is used to implement the control laws for the NASA Drones for Aerodynamic and Structural Testing, Aeroelastic Research Wing II. The control laws program was executed in 7.02 msec, with initialization consuming 2.65 msec and the control law loop 4.38 msec. The software emulator execution times for these two tasks were 36.67 and 61.18, respectively, for a total of 97.68 msec. The space, weight and cost reductions achieved in the present, aircraft control application of this combination of a 16-bit microprocessor with an 80-bit floating point coprocessor may be obtainable in other real time control applications.

  18. Supercritical carbon dioxide-based sterilization of decellularized heart valves

    PubMed Central

    Hennessy, Ryan S.; Jana, Soumen; Tefft, Brandon J.; Helder, Meghana R.; Young, Melissa D.; Hennessy, Rebecca R.; Stoyles, Nicholas J.; Lerman, Amir

    2017-01-01

    Objective The goal of this research project encompasses finding the most efficient and effective method of decellularized tissue sterilization. Background Aortic tissue grafts have been utilized to repair damaged or diseased valves. Although, the tissues for grafting are collected aseptically, it does not eradicate the risk of contamination nor disease transfer. Thus, sterilization of grafts is mandatory. Several techniques have been applied to sterilize grafts; however, each technique shows drawbacks. In this study, we compared several sterilization techniques: supercritical carbon dioxide, electrolyzed water, gamma radiation, ethanol-peracetic acid, and hydrogen peroxide for impact on the sterility and mechanical integrity of porcine decellularized aortic valves. Methods Valve sterility was characterized by histology, microbe culture, and electron microscopy. Uniaxial tensile testing was conducted on the valve cusps along their circumferential orientation to study these sterilization techniques on their integrity. Results Ethanol-peracetic acid and supercritical carbon dioxide treated valves were found to be sterile. The tensile strength of supercritical carbon dioxide treated valves (4.28 ± 0.22 MPa) was higher to those valves treated with electrolyzed water, gamma radiation, ethanol-peracetic acid and hydrogen peroxide (1.02 ± 0.15, 1.25 ± 0.25, 3.53 ± 0.41 and 0.37 ± 0.04 MPa, respectively). Conclusions Superior sterility and integrity were found in the decellularized porcine aortic valves with supercritical carbon dioxide sterilization. This sterilization technique may hold promise for other decellularized soft tissues. Summary Sterilization of grafts is essential. Supercritical carbon dioxide, electrolyzed water, gamma radiation, ethanol-peracetic acid, and hydrogen peroxide techniques were compared for impact on sterility and mechanical integrity of porcine decellularized aortic valves. Ethanol-peracetic acid and supercritical carbon dioxide treated

  19. Supercritical carbon dioxide-based sterilization of decellularized heart valves.

    PubMed

    Hennessy, Ryan S; Jana, Soumen; Tefft, Brandon J; Helder, Meghana R; Young, Melissa D; Hennessy, Rebecca R; Stoyles, Nicholas J; Lerman, Amir

    2017-02-01

    The goal of this research project encompasses finding the most efficient and effective method of decellularized tissue sterilization. Aortic tissue grafts have been utilized to repair damaged or diseased valves. Although, the tissues for grafting are collected aseptically, it does not eradicate the risk of contamination nor disease transfer. Thus, sterilization of grafts is mandatory. Several techniques have been applied to sterilize grafts; however, each technique shows drawbacks. In this study, we compared several sterilization techniques: supercritical carbon dioxide, electrolyzed water, gamma radiation, ethanol-peracetic acid, and hydrogen peroxide for impact on the sterility and mechanical integrity of porcine decellularized aortic valves. Valve sterility was characterized by histology, microbe culture, and electron microscopy. Uniaxial tensile testing was conducted on the valve cusps along their circumferential orientation to study these sterilization techniques on their integrity. Ethanol-peracetic acid and supercritical carbon dioxide treated valves were found to be sterile. The tensile strength of supercritical carbon dioxide treated valves (4.28 ± 0.22 MPa) was higher to those valves treated with electrolyzed water, gamma radiation, ethanol-peracetic acid and hydrogen peroxide (1.02 ± 0.15, 1.25 ± 0.25, 3.53 ± 0.41 and 0.37 ± 0.04 MPa, respectively). Superior sterility and integrity were found in the decellularized porcine aortic valves with supercritical carbon dioxide sterilization. This sterilization technique may hold promise for other decellularized soft tissues. Sterilization of grafts is essential. Supercritical carbon dioxide, electrolyzed water, gamma radiation, ethanol-peracetic acid, and hydrogen peroxide techniques were compared for impact on sterility and mechanical integrity of porcine decellularized aortic valves. Ethanol-peracetic acid and supercritical carbon dioxide treated valves were found to be sterile using histology, microbe

  20. Stability and Control Properties of an Aeroelastic Fixed Wing Micro Aerial Vehicle

    NASA Technical Reports Server (NTRS)

    Waszak, Martin R.; Jenkins, Luther N.; Ifju, Peter

    2001-01-01

    Micro aerial vehicles have been the subject of considerable interest and development over the last several years. The majority of current vehicle concepts rely on rigid fixed wings or rotors. An alternate design based on an aeroelastic membrane wing concept has also been developed that has exhibited desired characteristics in flight test demonstrations and competition. This paper presents results from a wind tunnel investigation that sought to quantify stability and control properties for a family of vehicles using the aeroelastic design. The results indicate that the membrane wing does exhibit potential benefits that could be exploited to enhance the design of future flight vehicles.

  1. Supercritical Saltwater Spray for Marine Cloud Brightening (MCB)

    NASA Astrophysics Data System (ADS)

    Neukermans, A.; Cooper, G. F.; Foster, J.; Galbraith, L. K.; Johnston, D.; Ormond, B.; Wang, Q.

    2012-12-01

    Solar Radiation Management (SRM), including both stratospheric sulfur aerosol delivery and MCB, has emerged as the leading contender for geoengineering. Field research in MCB would require a technique capable of producing 1017 salt nuclei/sec from a single source on a seagoing vessel. Spraying supercritical saltwater has emerged as a viable technology, at least for research purposes. Under optimum conditions a single 50-μm nozzle produces 1014 suitable nuclei/sec. Power consumption is high (1-2 MW), but 95% of the required energy is in the form of heat that can probably be obtained from wasted ship-engine heat. While its implementation is conceptually simple, the corrosive nature of supercritical saltwater makes the material requirements very demanding. Progress on this work is detailed.

  2. Electrochemistry in supercritical fluids

    PubMed Central

    Branch, Jack A.; Bartlett, Philip N.

    2015-01-01

    A wide range of supercritical fluids (SCFs) have been studied as solvents for electrochemistry with carbon dioxide and hydrofluorocarbons (HFCs) being the most extensively studied. Recent advances have shown that it is possible to get well-resolved voltammetry in SCFs by suitable choice of the conditions and the electrolyte. In this review, we discuss the voltammetry obtained in these systems, studies of the double-layer capacitance, work on the electrodeposition of metals into high aspect ratio nanopores and the use of metallocenes as redox probes and standards in both supercritical carbon dioxide–acetonitrile and supercritical HFCs. PMID:26574527

  3. Particle Formation and Product Formulation Using Supercritical Fluids.

    PubMed

    Knez, Željko; Knez Hrnčič, Maša; Škerget, Mojca

    2015-01-01

    Traditional methods for solids processing involve either high temperatures, necessary for melting or viscosity reduction, or hazardous organic solvents. Owing to the negative impact of the solvents on the environment, especially on living organisms, intensive research has focused on new, sustainable methods for the processing of these substances. Applying supercritical fluids for particle formation may produce powders and composites with special characteristics. Several processes for formation and design of solid particles using dense gases have been studied intensively. The unique thermodynamic and fluid-dynamic properties of supercritical fluids can be used also for impregnation of solid particles or for the formation of solid powderous emulsions and particle coating, e.g., for formation of solids with unique properties for use in different applications. We give an overview of the application of sub- and supercritical fluids as green processing media for particle formation processes and present recent advances and trends in development.

  4. Analysis of non-linear aeroelastic response of a supersonic thick fin with plunging, pinching and flapping free-plays

    NASA Astrophysics Data System (ADS)

    Firouz-Abadi, R. D.; Alavi, S. M.; Salarieh, H.

    2013-07-01

    The flutter of a 3-D rigid fin with double-wedge section and free-play in flapping, plunging and pitching degrees-of-freedom operating in supersonic and hypersonic flight speed regimes have been considered. Aerodynamic model is obtained by local usage of the piston theory behind the shock and expansion analysis, and structural model is obtained based on Lagrange equation of motion. Such model presents fast, accurate algorithm for studying the aeroelastic behavior of the thick supersonic fin in time domain. Dynamic behavior of the fin is considered over large number of parameters that characterize the aeroelastic system. Results show that the free-play in the pitching, plunging and flapping degrees-of-freedom has significant effects on the oscillation exhibited by the aeroelastic system in the supersonic/hypersonic flight speed regimes. The simulations also show that the aeroelastic system behavior is greatly affected by some parameters, such as the Mach number, thickness, angle of attack, hinge position and sweep angle.

  5. Static Aeroelastic and Longitudinal Trim Model of Flexible Wing Aircraft Using Finite-Element Vortex-Lattice Coupled Solution

    NASA Technical Reports Server (NTRS)

    Ting, Eric; Nguyen, Nhan; Trinh, Khanh

    2014-01-01

    This paper presents a static aeroelastic model and longitudinal trim model for the analysis of a flexible wing transport aircraft. The static aeroelastic model is built using a structural model based on finite-element modeling and coupled to an aerodynamic model that uses vortex-lattice solution. An automatic geometry generation tool is used to close the loop between the structural and aerodynamic models. The aeroelastic model is extended for the development of a three degree-of-freedom longitudinal trim model for an aircraft with flexible wings. The resulting flexible aircraft longitudinal trim model is used to simultaneously compute the static aeroelastic shape for the aircraft model and the longitudinal state inputs to maintain an aircraft trim state. The framework is applied to an aircraft model based on the NASA Generic Transport Model (GTM) with wing structures allowed to flexibly deformed referred to as the Elastically Shaped Aircraft Concept (ESAC). The ESAC wing mass and stiffness properties are based on a baseline "stiff" values representative of current generation transport aircraft.

  6. Transonic Unsteady Aerodynamics and Aeroelasticity 1987, part 2

    NASA Technical Reports Server (NTRS)

    Bland, Samuel R. (Compiler)

    1989-01-01

    This two part document contains copies of the text and figures for the papers presented at the symposium held at NASA Langley on 20 to 22 May, 1987. The papers are grouped in five subject areas. The areas covered by this part includes the following: Methods for vortex and viscous flows; Aeroelastic applications, and Experimental results and cascade flows.

  7. Navier-Stokes, dynamics and aeroelastic computations for vortical flows, buffet and flutter applications

    NASA Technical Reports Server (NTRS)

    Kandil, Osama A.

    1993-01-01

    Research on Navier-Stokes, dynamics, and aeroelastic computations for vortical flows, buffet, and flutter applications was performed. Progress during the period from 1 Oct. 1992 to 30 Sep. 1993 is included. Papers on the following topics are included: vertical tail buffet in vortex breakdown flows; simulation of tail buffet using delta wing-vertical tail configuration; shock-vortex interaction over a 65-degree delta wing in transonic flow; supersonic vortex breakdown over a delta wing in transonic flow; and prediction and control of slender wing rock.

  8. On the optimization of discrete structures with aeroelastic constraints

    NASA Technical Reports Server (NTRS)

    Mcintosh, S. C., Jr.; Ashley, H.

    1978-01-01

    The paper deals with the problem of dynamic structural optimization where constraints relating to flutter of a wing (or other dynamic aeroelastic performance) are imposed along with conditions of a more conventional nature such as those relating to stress under load, deflection, minimum dimensions of structural elements, etc. The discussion is limited to a flutter problem for a linear system with a finite number of degrees of freedom and a single constraint involving aeroelastic stability, and the structure motion is assumed to be a simple harmonic time function. Three search schemes are applied to the minimum-weight redesign of a particular wing: the first scheme relies on the method of feasible directions, while the other two are derived from necessary conditions for a local optimum so that they can be referred to as optimality-criteria schemes. The results suggest that a heuristic redesign algorithm involving an optimality criterion may be best suited for treating multiple constraints with large numbers of design variables.

  9. Behavior of an aeroelastic system beyond critical point of instability

    NASA Astrophysics Data System (ADS)

    Sekar, T. Chandra; Agarwal, Ravindra; Mandal, Alakesh Chandra; Kushari, Abhijit

    2017-11-01

    Understanding the behavior of an aeroelastic system beyond the critical point is essential for effective implementation of any active control scheme since the control system design depends on the type of instability (bifurcation) the system encounters. Previous studies had found the aeroelastic system to enter into chaos beyond the point of instability. In the present work, an attempt has been made to carry out an experimental study on an aeroelastic model placed in a wind tunnel, to understand the behavior of aerodynamics around a wing section undergoing classical flutter. Wind speed was increased from zero until the model encountered flutter. Pressure at various locations along the surface of wing and acceleration at multiple points on the wing were measured in real time for the entire duration of experiment. A Leading Edge Separation Bubble (LSB) was observed beyond the critical point. The growing strength of the LSB with increasing wind speed was found to alter the aerodynamic moment acting on the system, which forced the system to enter into a second bifurcation. Based on the nature of the response, the system appears to undergo periodic doubling bifurcation rather than Hopf-bifurcation, resulting in chaotic motion. Eliminating the LSB can help in preventing the system from entering chaos. Any active flow control scheme that can avoid or counter the formation of leading edge separation bubble can be a potential solution to control the classical flutter.

  10. Supercritical/Solid Catalyst (SSC)

    ScienceCinema

    Ginosar, Daniel; Fox, Robert; Bright, Patricia

    2018-05-23

    INL's patented, continuous-flow Supercritical/Solid Catalyst (SSC) produces the highest ASTM-quality B-100 biodiesel from waste fats, oils, and greases at the site of waste generation. SSC delivers low-cost transportation fuel, avoids significant landfill costs for municipalities, and reduces potent methane and other emissions produced in landfills from these wastes. You can learn more about INL's energy research programs at http://www.facebook.com/idahonationallaboratory.

  11. Supercritical/Solid Catalyst (SSC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ginosar, Daniel; Fox, Robert; Bright, Patricia

    2010-05-28

    INL's patented, continuous-flow Supercritical/Solid Catalyst (SSC) produces the highest ASTM-quality B-100 biodiesel from waste fats, oils, and greases at the site of waste generation. SSC delivers low-cost transportation fuel, avoids significant landfill costs for municipalities, and reduces potent methane and other emissions produced in landfills from these wastes. You can learn more about INL's energy research programs at http://www.facebook.com/idahonationallaboratory.

  12. Aeroelastic Flutter Behavior of Cantilever within a Nozzle-Diffuser Geometry

    NASA Astrophysics Data System (ADS)

    Tosi, Luis Phillipe; Colonius, Tim; Sherrit, Stewart; Lee, Hyeong Jae

    2015-11-01

    Aeroelastic flutter arises when the motion of a structure and its surrounding flowing fluid are coupled in a constructive manner, causing large amplitudes of vibration in the immersed solid. A cantilevered beam in axial flow within a nozzle-diffuser geometry exhibits interesting resonance behavior that presents good prospects for internal flow energy harvesting. Different modes can be excited as a function of throat velocity, nozzle geometry, fluid and cantilever material parameters. This work explores the relationship between the aeroelastic flutter instability boundaries and relevant non-dimensional parameters via experiments. Results suggest that for a linear expansion diffuser geometry, a non-dimensional stiffness, non-dimensional mass, and non-dimensional throat size are the critical parameters in mapping the instability. This map can serve as a guide to future work concerning possible electrical output and failure prediction in energy harvesters.

  13. An Aeroelastic Evaluation of the Flexible Thermal Protection System for an Inatable Aerodynamic Decelerator

    NASA Astrophysics Data System (ADS)

    Goldman, Benjamin D.

    The purpose of this dissertation is to study the aeroelastic stability of a proposed flexible thermal protection system (FTPS) for the NASA Hypersonic Inflatable Aerodynamic Decelerator (HIAD). A flat, square FTPS coupon exhibits violent oscillations during experimental aerothermal testing in NASA's 8 Foot High Temperature Tunnel, leading to catastrophic failure. The behavior of the structural response suggested that aeroelastic flutter may be the primary instability mechanism, prompting further experimental investigation and theoretical model development. Using Von Karman's plate theory for the panel-like structure and piston theory aerodynamics, a set of aeroelastic models were developed and limit cycle oscillations (LCOs) were calculated at the tunnel flow conditions. Similarities in frequency content of the theoretical and experimental responses indicated that the observed FTPS oscillations were likely aeroelastic in nature, specifically LCO/flutter. While the coupon models can be used for comparison with tunnel tests, they cannot predict accurately the aeroelastic behavior of the FTPS in atmospheric flight. This is because the geometry of the flight vehicle is no longer a flat plate, but rather (approximately) a conical shell. In the second phase of this work, linearized Donnell conical shell theory and piston theory aerodynamics are used to calculate natural modes of vibration and flutter dynamic pressures for various structural models composed of one or more conical shells resting on several circumferential elastic supports. When the flight vehicle is approximated as a single conical shell without elastic supports, asymmetric flutter in many circumferential waves is observed. When the elastic supports are included, the shell flutters symmetrically in zero circumferential waves. Structural damping is found to be important in this case, as "hump-mode" flutter is possible. Aeroelastic models that consider the individual FTPS layers as separate shells exhibit

  14. Supercritical water oxidation - Microgravity solids separation

    NASA Technical Reports Server (NTRS)

    Killilea, William R.; Hong, Glenn T.; Swallow, Kathleen C.; Thomason, Terry B.

    1988-01-01

    This paper discusses the application of supercritical water oxidation (SCWO) waste treatment and water recycling technology to the problem of waste disposal in-long term manned space missions. As inorganic constituents present in the waste are not soluble in supercritical water, they must be removed from the organic-free supercritical fluid reactor effluent. Supercritical water reactor/solids separator designs capable of removing precipitated solids from the process' supercritical fluid in zero- and low- gravity environments are developed and evaluated. Preliminary experiments are then conducted to test the concepts. Feed materials for the experiments are urine, feces, and wipes with the addition of reverse osmosis brine, the rejected portion of processed hygiene water. The solid properties and their influence on the design of several oxidation-reactor/solids-separator configurations under study are presented.

  15. Centrifugal Compressor Aeroelastic Analysis Code

    NASA Astrophysics Data System (ADS)

    Keith, Theo G., Jr.; Srivastava, Rakesh

    2002-01-01

    Centrifugal compressors are very widely used in the turbomachine industry where low mass flow rates are required. Gas turbine engines for tanks, rotorcraft and small jets rely extensively on centrifugal compressors for rugged and compact design. These compressors experience problems related with unsteadiness of flowfields, such as stall flutter, separation at the trailing edge over diffuser guide vanes, tip vortex unsteadiness, etc., leading to rotating stall and surge. Considerable interest exists in small gas turbine engine manufacturers to understand and eventually eliminate the problems related to centrifugal compressors. The geometric complexity of centrifugal compressor blades and the twisting of the blade passages makes the linear methods inapplicable. Advanced computational fluid dynamics (CFD) methods are needed for accurate unsteady aerodynamic and aeroelastic analysis of centrifugal compressors. Most of the current day industrial turbomachines and small aircraft engines are designed with a centrifugal compressor. With such a large customer base and NASA Glenn Research Center being, the lead center for turbomachines, it is important that adequate emphasis be placed on this area as well. Currently, this activity is not supported under any project at NASA Glenn.

  16. Formulation of the aeroelastic stability and response problem of coupled rotor/support systems

    NASA Technical Reports Server (NTRS)

    Warmbrodt, W.; Friedmann, P.

    1979-01-01

    The consistent formulation of the governing nonlinear equations of motion for a coupled rotor/support system is presented. Rotor/support coupling is clearly documented by enforcing dynamic equilibrium between the rotor and the moving flexible support. The nonlinear periodic coefficient equations of motion are applicable to both coupled rotor/fuselage aeroelastic problems of helicopters in hover or forward flight and coupled rotor/tower dynamics of a large horizontal axis wind turbine (HAWT). Finally, the equations of motion are used to study the influence of flexible supports and nonlinear terms on rotor aeroelastic stability and response of a large two-bladed HAWT.

  17. Calculation of unsteady aerodynamics for four AGARD standard aeroelastic configurations

    NASA Technical Reports Server (NTRS)

    Bland, S. R.; Seidel, D. A.

    1984-01-01

    Calculated unsteady aerodynamic characteristics for four Advisory Group for Aeronautical Research Development (AGARD) standard aeroelastic two-dimensional airfoils and for one of the AGARD three-dimensional wings are reported. Calculations were made using the finite-difference codes XTRAN2L (two-dimensional flow) and XTRAN3S (three-dimensional flow) which solve the transonic small disturbance potential equations. Results are given for the 36 AGARD cases for the NACA 64A006, NACA 64A010, and NLR 7301 airfoils with experimental comparisons for most of these cases. Additionally, six of the MBB-A3 airfoil cases are included. Finally, results are given for three of the cases for the rectangular wing.

  18. Aeroelastic and dynamic finite element analyses of a bladder shrouded disk

    NASA Technical Reports Server (NTRS)

    Smith, G. C. C.; Elchuri, V.

    1980-01-01

    The delivery and demonstration of a computer program for the analysis of aeroelastic and dynamic properties is reported. Approaches to flutter and forced vibration of mistuned discs, and transient aerothermoelasticity are described.

  19. Aeroelastic Computations of a Compressor Stage Using the Harmonic Balance Method

    NASA Technical Reports Server (NTRS)

    Reddy, T. S. R.

    2010-01-01

    The aeroelastic characteristics of a compressor stage were analyzed using a computational fluid dynamic (CFD) solver that uses the harmonic balance method to solve the governing equations. The three dimensional solver models the unsteady flow field due to blade vibration using the Reynolds-Averaged Navier-Stokes equations. The formulation enables the study of the effect of blade row interaction through the inclusion of coupling modes between blade rows. It also enables the study of nonlinear effects of high amplitude blade vibration by the inclusion of higher harmonics of the fundamental blade vibration frequency. In the present work, the solver is applied to study in detail the aeroelastic characteristics of a transonic compressor stage. Various parameters were included in the study: number of coupling modes, blade row axial spacing, and operating speeds. Only the first vibration mode is considered with amplitude of oscillation in the linear range. Both aeroelastic stability (flutter) of rotor blade and unsteady loading on the stator are calculated. The study showed that for the stage considered, the rotor aerodynamic damping is not influenced by the presence of the stator even when the axial spacing is reduced by nearly 25 percent. However, the study showed that blade row interaction effects become important for the unsteady loading on the stator when the axial spacing is reduced by the same amount.

  20. Aeroelastic tailoring and structural optimization of joined-wing configurations

    NASA Astrophysics Data System (ADS)

    Lee, Dong-Hwan

    2002-08-01

    Methodology for integrated aero-structural design was developed using formal optimization. ASTROS (Automated STRuctural Optimization System) was used as an analyzer and an optimizer for performing joined-wing weight optimization with stress, displacement, cantilever or body-freedom flutter constraints. As a pre/post processor, MATLAB was used for generating input file of ASTROS and for displaying the results of the ASTROS. The effects of the aeroelastic constraints on the isotropic and composite joined-wing weight were examined using this developed methodology. The aeroelastic features of a joined-wing aircraft were examined using both the Rayleigh-Ritz method and a finite element based aeroelastic stability and weight optimization procedure. Aircraft rigid-body modes are included to analyze of body-freedom flutter of the joined-wing aircraft. Several parametric studies were performed to determine the most important parameters that affect the aeroelastic behavior of a joined-wing aircraft. The special feature of a joined-wing aircraft is body-freedom flutter involving frequency interaction of the first elastic mode and the aircraft short period mode. In most parametric study cases, the body-freedom flutter speed was less than the cantilever flutter speed that is independent of fuselage inertia. As fuselage pitching moment of inertia was increased, the body-freedom flutter speed increased. When the pitching moment of inertia reaches a critical value, transition from body-freedom flutter to cantilever flutter occurred. The effects of composite laminate orientation on the front and rear wings of a joined-wing configuration were studied. An aircraft pitch divergence mode, which occurred because of forward movement of center of pressure due to wing deformation, was found. Body-freedom flutter and cantilever-like flutter were also found depending on combination of front and rear wing ply orientations. Optimized wing weight behaviors of the planar and non

  1. Further investigations of the aeroelastic behavior of the AFW wind-tunnel model using transonic small disturbance theory

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.; Bennett, Robert M.

    1992-01-01

    The Computational Aeroelasticity Program-Transonic Small Disturbance (CAP-TSD) code, developed at LaRC, is applied to the active flexible wing wind-tunnel model for prediction of transonic aeroelastic behavior. A semi-span computational model is used for evaluation of symmetric motions, and a full-span model is used for evaluation of antisymmetric motions, and a full-span model is used for evaluation of antisymmetric motions. Static aeroelastic solutions using CAP-TSD are computed. Dynamic deformations are presented as flutter boundaries in terms of Mach number and dynamic pressure. Flutter boundaries that take into account modal refinements, vorticity and entropy corrections, antisymmetric motion, and sensitivity to the modeling of the wing tip ballast stores are also presented with experimental flutter results.

  2. A comparison between different finite elements for elastic and aero-elastic analyses.

    PubMed

    Mahran, Mohamed; ELsabbagh, Adel; Negm, Hani

    2017-11-01

    In the present paper, a comparison between five different shell finite elements, including the Linear Triangular Element, Linear Quadrilateral Element, Linear Quadrilateral Element based on deformation modes, 8-node Quadrilateral Element, and 9-Node Quadrilateral Element was presented. The shape functions and the element equations related to each element were presented through a detailed mathematical formulation. Additionally, the Jacobian matrix for the second order derivatives was simplified and used to derive each element's strain-displacement matrix in bending. The elements were compared using carefully selected elastic and aero-elastic bench mark problems, regarding the number of elements needed to reach convergence, the resulting accuracy, and the needed computation time. The best suitable element for elastic free vibration analysis was found to be the Linear Quadrilateral Element with deformation-based shape functions, whereas the most suitable element for stress analysis was the 8-Node Quadrilateral Element, and the most suitable element for aero-elastic analysis was the 9-Node Quadrilateral Element. Although the linear triangular element was the last choice for modal and stress analyses, it establishes more accurate results in aero-elastic analyses, however, with much longer computation time. Additionally, the nine-node quadrilateral element was found to be the best choice for laminated composite plates analysis.

  3. Large Eddy Simulation of a Supercritical Turbulent Mixing Layer

    NASA Astrophysics Data System (ADS)

    Sheikhi, Reza; Hadi, Fatemeh; Safari, Mehdi

    2017-11-01

    Supercritical turbulent flows are relevant to a wide range of applications such as supercritical power cycles, gas turbine combustors, rocket propulsion and internal combustion engines. Large eddy simulation (LES) analysis of such flows involves solving mass, momentum, energy and scalar transport equations with inclusion of generalized diffusion fluxes. These equations are combined with a real gas equation of state and the corresponding thermodynamic mixture variables. Subgrid scale models are needed for not only the conventional convective terms but also the additional high pressure effects arising due to the nonlinearity associated with generalized diffusion fluxes and real gas equation of state. In this study, LES is carried out to study the high pressure turbulent mixing of methane with carbon dioxide in a temporally developing mixing layer under supercritical condition. LES results are assessed by comparing with data obtained from direct numerical simulation (DNS) of the same layer. LES predictions agree favorably with DNS data and represent several key supercritical turbulent flow features such as high density gradient regions. Supported by DOE Grant SC0017097; computational support is provided by DOE National Energy Research Scientific Computing Center.

  4. Advanced Thermal Storage for Central Receivers with Supercritical Coolants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelly, Bruce D.

    2010-06-15

    The principal objective of the study is to determine if supercritical heat transport fluids in a central receiver power plant, in combination with ceramic thermocline storage systems, offer a reduction in levelized energy cost over a baseline nitrate salt concept. The baseline concept uses a nitrate salt receiver, two-tank (hot and cold) nitrate salt thermal storage, and a subcritical Rankine cycle. A total of 6 plant designs were analyzed, as follows: Plant Designation Receiver Fluid Thermal Storage Rankine Cycle Subcritical nitrate salt Nitrate salt Two tank nitrate salt Subcritical Supercritical nitrate salt Nitrate salt Two tank nitrate salt Supercritical Lowmore » temperature H2O Supercritical H2O Two tank nitrate salt Supercritical High temperature H2O Supercritical H2O Packed bed thermocline Supercritical Low temperature CO2 Supercritical CO2 Two tank nitrate salt Supercritical High temperature CO2 Supercritical CO2 Packed bed thermocline Supercritical Several conclusions have been drawn from the results of the study, as follows: 1) The use of supercritical H2O as the heat transport fluid in a packed bed thermocline is likely not a practical approach. The specific heat of the fluid is a strong function of the temperatures at values near 400 °C, and the temperature profile in the bed during a charging cycle is markedly different than the profile during a discharging cycle. 2) The use of supercritical CO2 as the heat transport fluid in a packed bed thermocline is judged to be technically feasible. Nonetheless, the high operating pressures for the supercritical fluid require the use of pressure vessels to contain the storage inventory. The unit cost of the two-tank nitrate salt system is approximately $24/kWht, while the unit cost of the high pressure thermocline system is nominally 10 times as high. 3) For the supercritical fluids, the outer crown temperatures of the receiver tubes are in the range of 700 to 800 °C. At temperatures of 700 °C and above

  5. Supercritical transitiometry of polymers.

    PubMed

    Randzio, S L; Grolier, J P

    1998-06-01

    Employing supercritical fluids (SCFs) during polymers processing allows the unusual properties of SCFs to be exploited for making polymer products that cannot be obtained by other means. A new supercritical transitiometer has been constructed to permit study of the interactions of SCFs with polymers during processing under well-defined conditions of temperature and pressure. The supercritical transitiometer allows pressure to be exerted by either a supercritical fluid or a neutral medium and enables simultaneous determination of four basic parameters of a transition, i.e., p, T, Δ(tr)H and Δ(tr)V. This permits determination of the SCF effect on modification of the polymer structure at a given pressure and temperature and defines conditions to allow reproducible preparation of new polymer structures. Study of a semicrystalline polyethylene by this method has defined conditions for preparation of new microfoamed phases with good mechanical properties. The low densities and microporous structures of the new materials may make them useful for applications in medicine, pharmacy, or the food industry, for example.

  6. Analyzing Aeroelastic Stability of a Tilt-Rotor Aircraft

    NASA Technical Reports Server (NTRS)

    Kvaternil, Raymond G.

    2006-01-01

    Proprotor Aeroelastic Stability Analysis, now at version 4.5 (PASTA 4.5), is a FORTRAN computer program for analyzing the aeroelastic stability of a tiltrotor aircraft in the airplane mode of flight. The program employs a 10-degree- of-freedom (DOF), discrete-coordinate, linear mathematical model of a rotor with three or more blades and its drive system coupled to a 10-DOF modal model of an airframe. The user can select which DOFs are included in the analysis. Quasi-steady strip-theory aerodynamics is employed for the aerodynamic loads on the blades, a quasi-steady representation is employed for the aerodynamic loads acting on the vibrational modes of the airframe, and a stability-derivative approach is used for the aerodynamics associated with the rigid-body DOFs of the airframe. Blade parameters that vary with the blade collective pitch can be obtained by interpolation from a user-defined table. Stability is determined by examining the eigenvalues that are obtained by solving the coupled equations of motions as a matrix eigenvalue problem. Notwithstanding the relative simplicity of its mathematical foundation, PASTA 4.5 and its predecessors have played key roles in a number of engineering investigations over the years.

  7. Aeroelastic Response of the Adaptive Compliant Trailing Edge Transtition Section

    NASA Technical Reports Server (NTRS)

    Herrera, Claudia Y.; Spivey, Natalie D.; Lung, Shun-fat

    2016-01-01

    The Adaptive Compliant Trailing Edge demonstrator was a joint task under the Environmentally Responsible Aviation Project in partnership with the Air Force Research Laboratory and FlexSys, Inc. (Ann Arbor, Michigan), chartered by the National Aeronautics and Space Administration to develop advanced technologies that enable environmentally friendly aircraft, such as continuous mold-line technologies. The Adaptive Compliant Trailing Edge demonstrator encompassed replacing the Fowler flaps on the SubsoniC Aircraft Testbed, a Gulfstream III (Gulfstream Aerospace, Savannah, Georgia) aircraft, with control surfaces developed by FlexSys, Inc., a pair of uniquely-designed, unconventional flaps to be used as lifting surfaces during flight-testing to substantiate their structural effectiveness. The unconventional flaps consisted of a main flap section and two transition sections, inboard and outboard, which demonstrated the continuous mold-line technology. Unique characteristics of the transition sections provided a challenge to the airworthiness assessment for this part of the structure. A series of build-up tests and analyses were conducted to ensure the data required to support the airworthiness assessment were acquired and applied accurately. The transition sections were analyzed both as individual components and as part of the flight-test article assembly. Instrumentation was installed in the transition sections based on the analysis to best capture the in-flight aeroelastic response. Flight-testing was conducted and flight data were acquired to validate the analyses. This paper documents the details of the aeroelastic assessment and in-flight response of the transition sections of the unconventional Adaptive Compliant Trailing Edge flaps.

  8. Frequency-Domain Identification Of Aeroelastic Modes

    NASA Technical Reports Server (NTRS)

    Acree, C. W., Jr.; Tischler, Mark B.

    1991-01-01

    Report describes flight measurements and frequency-domain analyses of aeroelastic vibrational modes of wings of XV-15 tilt-rotor aircraft. Begins with description of flight-test methods. Followed by brief discussion of methods of analysis, which include Fourier-transform computations using chirp z transformers, use of coherence and other spectral functions, and methods and computer programs to obtain frequencies and damping coefficients from measurements. Includes brief description of results of flight tests and comparisions among various experimental and theoretical results. Ends with section on conclusions and recommended improvements in techniques.

  9. LINFLUX-AE: A Turbomachinery Aeroelastic Code Based on a 3-D Linearized Euler Solver

    NASA Technical Reports Server (NTRS)

    Reddy, T. S. R.; Bakhle, M. A.; Trudell, J. J.; Mehmed, O.; Stefko, G. L.

    2004-01-01

    This report describes the development and validation of LINFLUX-AE, a turbomachinery aeroelastic code based on the linearized unsteady 3-D Euler solver, LINFLUX. A helical fan with flat plate geometry is selected as the test case for numerical validation. The steady solution required by LINFLUX is obtained from the nonlinear Euler/Navier Stokes solver TURBO-AE. The report briefly describes the salient features of LINFLUX and the details of the aeroelastic extension. The aeroelastic formulation is based on a modal approach. An eigenvalue formulation is used for flutter analysis. The unsteady aerodynamic forces required for flutter are obtained by running LINFLUX for each mode, interblade phase angle and frequency of interest. The unsteady aerodynamic forces for forced response analysis are obtained from LINFLUX for the prescribed excitation, interblade phase angle, and frequency. The forced response amplitude is calculated from the modal summation of the generalized displacements. The unsteady pressures, work done per cycle, eigenvalues and forced response amplitudes obtained from LINFLUX are compared with those obtained from LINSUB, TURBO-AE, ASTROP2, and ANSYS.

  10. Fast-Running Aeroelastic Code Based on Unsteady Linearized Aerodynamic Solver Developed

    NASA Technical Reports Server (NTRS)

    Reddy, T. S. R.; Bakhle, Milind A.; Keith, T., Jr.

    2003-01-01

    The NASA Glenn Research Center has been developing aeroelastic analyses for turbomachines for use by NASA and industry. An aeroelastic analysis consists of a structural dynamic model, an unsteady aerodynamic model, and a procedure to couple the two models. The structural models are well developed. Hence, most of the development for the aeroelastic analysis of turbomachines has involved adapting and using unsteady aerodynamic models. Two methods are used in developing unsteady aerodynamic analysis procedures for the flutter and forced response of turbomachines: (1) the time domain method and (2) the frequency domain method. Codes based on time domain methods require considerable computational time and, hence, cannot be used during the design process. Frequency domain methods eliminate the time dependence by assuming harmonic motion and, hence, require less computational time. Early frequency domain analyses methods neglected the important physics of steady loading on the analyses for simplicity. A fast-running unsteady aerodynamic code, LINFLUX, which includes steady loading and is based on the frequency domain method, has been modified for flutter and response calculations. LINFLUX, solves unsteady linearized Euler equations for calculating the unsteady aerodynamic forces on the blades, starting from a steady nonlinear aerodynamic solution. First, we obtained a steady aerodynamic solution for a given flow condition using the nonlinear unsteady aerodynamic code TURBO. A blade vibration analysis was done to determine the frequencies and mode shapes of the vibrating blades, and an interface code was used to convert the steady aerodynamic solution to a form required by LINFLUX. A preprocessor was used to interpolate the mode shapes from the structural dynamic mesh onto the computational dynamics mesh. Then, we used LINFLUX to calculate the unsteady aerodynamic forces for a given mode, frequency, and phase angle. A postprocessor read these unsteady pressures and

  11. Efficient computation of aerodynamic influence coefficients for aeroelastic analysis on a transputer network

    NASA Technical Reports Server (NTRS)

    Janetzke, David C.; Murthy, Durbha V.

    1991-01-01

    Aeroelastic analysis is multi-disciplinary and computationally expensive. Hence, it can greatly benefit from parallel processing. As part of an effort to develop an aeroelastic capability on a distributed memory transputer network, a parallel algorithm for the computation of aerodynamic influence coefficients is implemented on a network of 32 transputers. The aerodynamic influence coefficients are calculated using a 3-D unsteady aerodynamic model and a parallel discretization. Efficiencies up to 85 percent were demonstrated using 32 processors. The effect of subtask ordering, problem size, and network topology are presented. A comparison to results on a shared memory computer indicates that higher speedup is achieved on the distributed memory system.

  12. Enhanced Forced Convection Heat Transfer using Small Scale Vorticity Concentrations Effected by Flow Driven, Aeroelastically Vibrating Reeds

    DTIC Science & Technology

    2016-08-03

    insulated from behind (using an air gap) as shown in figure III.3-1c. Each of the heated side walls are instrumented with seven equally-spaced T-Type...AFRL-AFOSR-VA-TR-2016-0339 Enhanced convection heat transfer using small-scale vorticity concentrations effected by flow-driven, aeroelastically...public release. Enhanced Forced Convection Heat Transfer using Small-Scale Vorticity Concentrations Effected by Flow-Driven, Aeroelastically Vibrating

  13. NASTRAN level 16 programmer's manual updates for aeroelastic analysis of bladed discs

    NASA Technical Reports Server (NTRS)

    Gallo, A. M.; Dale, B.

    1980-01-01

    The programming routines for the NASTRAN Level 16program are presented. Particular emphasis is placed on its application to aeroelastic analyses, mode development, and flutter analysis for turbomachine blades.

  14. Aeroelastic analysis of a troposkien-type wind turbine blade

    NASA Technical Reports Server (NTRS)

    Nitzsche, F.

    1981-01-01

    The linear aeroelastic equations for one curved blade of a vertical axis wind turbine in state vector form are presented. The method is based on a simple integrating matrix scheme together with the transfer matrix idea. The method is proposed as a convenient way of solving the associated eigenvalue problem for general support conditions.

  15. Electrodeposition of metals from supercritical fluids

    PubMed Central

    Ke, Jie; Su, Wenta; Howdle, Steven M.; George, Michael W.; Cook, David; Perdjon-Abel, Magda; Bartlett, Philip N.; Zhang, Wenjian; Cheng, Fei; Levason, William; Reid, Gillian; Hyde, Jason; Wilson, James; Smith, David C.; Mallik, Kanad; Sazio, Pier

    2009-01-01

    Electrodeposition is a widely used materials-deposition technology with a number of unique features, in particular, the efficient use of starting materials, conformal, and directed coating. The properties of the solvent medium for electrodeposition are critical to the technique's applicability. Supercritical fluids are unique solvents which give a wide range of advantages for chemistry in general, and materials processing in particular. However, a widely applicable approach to electrodeposition from supercritical fluids has not yet been developed. We present here a method that allows electrodeposition of a range of metals from supercritical carbon dioxide, using acetonitrile as a co-solvent and supercritical difluoromethane. This method is based on a careful selection of reagent and supporting electrolyte. There are no obvious barriers preventing this method being applied to deposit a range of materials from many different supercritical fluids. We present the deposition of 3-nm diameter nanowires in mesoporous silica templates using this methodology. PMID:19706479

  16. Bayesian analysis of the flutter margin method in aeroelasticity

    DOE PAGES

    Khalil, Mohammad; Poirel, Dominique; Sarkar, Abhijit

    2016-08-27

    A Bayesian statistical framework is presented for Zimmerman and Weissenburger flutter margin method which considers the uncertainties in aeroelastic modal parameters. The proposed methodology overcomes the limitations of the previously developed least-square based estimation technique which relies on the Gaussian approximation of the flutter margin probability density function (pdf). Using the measured free-decay responses at subcritical (preflutter) airspeeds, the joint non-Gaussain posterior pdf of the modal parameters is sampled using the Metropolis–Hastings (MH) Markov chain Monte Carlo (MCMC) algorithm. The posterior MCMC samples of the modal parameters are then used to obtain the flutter margin pdfs and finally the fluttermore » speed pdf. The usefulness of the Bayesian flutter margin method is demonstrated using synthetic data generated from a two-degree-of-freedom pitch-plunge aeroelastic model. The robustness of the statistical framework is demonstrated using different sets of measurement data. In conclusion, it will be shown that the probabilistic (Bayesian) approach reduces the number of test points required in providing a flutter speed estimate for a given accuracy and precision.« less

  17. Aeroelastic equations of motion of a Darrieus vertical-axis wind-turbine blade

    NASA Technical Reports Server (NTRS)

    Kaza, K. R. V.; Kvaternik, R. G.

    1979-01-01

    The second-degree nonlinear aeroelastic equations of motion for a slender, flexible, nonuniform, Darrieus vertical-axis wind turbine blade which is undergoing combined flatwise bending, edgewise bending, torsion, and extension are developed using Hamilton's principle. The blade aerodynamic loading is obtained from strip theory based on a quasi-steady approximation of two-dimensional incompressible unsteady airfoil theory. The derivation of the equations has its basis in the geometric nonlinear theory of elasticity and the resulting equations are consistent with the small deformation approximation in which the elongations and shears are negligible compared to unity. These equations are suitable for studying vibrations, static and dynamic aeroelastic instabilities, and dynamic response. Several possible methods of solution of the equations, which have periodic coefficients, are discussed.

  18. Oxy-combustor operable with supercritical fluid

    DOEpatents

    Brun, Klaus; McClung, Aaron M.; Owston, Rebecca A.

    2017-04-04

    An oxy-combustor is provided which comprises a combustion vessel including at least one solid fuel slurry inlet port, at least one oxygen inlet port and at least one supercritical fluid inlet port, wherein the combustion vessel is operable at an operating pressure of at least 1,100 psi; an interior of the combustion vessel comprises a combustion chamber and a supercritical fluid infusion chamber surrounding at least a part of the combustion chamber, the supercritical fluid infusion chamber and the combustion chamber are separated by a porous liner surrounding the combustion chamber, and the supercritical infusion chamber is located between the porous liner and an outer casing of the combustion vessel.

  19. Investigation of the Flutter Suppression by Fuzzy Logic Control for Hypersonic Wing

    NASA Astrophysics Data System (ADS)

    Li, Dongxu; Luo, Qing; Xu, Rui

    This paper presents a fundamental study of flutter characteristics and control performance of an aeroelastic system based on a two-dimensional double wedge wing in the hypersonic regime. Dynamic equations were established based on the modified third order nonlinear piston theory and some nonlinear structural effects are also included. A set of important parameters are observed. And then aeroelastic control law is designed to suppress the amplitude of the LCOs for the system in the sub/supercritical speed range by applying fuzzy logic control on the input of the deflection of the flap. The overall effects of the parameters on the aeroelastic system were outlined. Nonlinear aeroelastic responses in the open- and closed-loop system are obtained through numerical methods. The simulations show fuzzy logic control methods are effective in suppressing flutter and provide a smart approach for this complicated system.

  20. Aeroelastic Model Structure Computation for Envelope Expansion

    NASA Technical Reports Server (NTRS)

    Kukreja, Sunil L.

    2007-01-01

    Structure detection is a procedure for selecting a subset of candidate terms, from a full model description, that best describes the observed output. This is a necessary procedure to compute an efficient system description which may afford greater insight into the functionality of the system or a simpler controller design. Structure computation as a tool for black-box modelling may be of critical importance in the development of robust, parsimonious models for the flight-test community. Moreover, this approach may lead to efficient strategies for rapid envelope expansion which may save significant development time and costs. In this study, a least absolute shrinkage and selection operator (LASSO) technique is investigated for computing efficient model descriptions of nonlinear aeroelastic systems. The LASSO minimises the residual sum of squares by the addition of an l(sub 1) penalty term on the parameter vector of the traditional 2 minimisation problem. Its use for structure detection is a natural extension of this constrained minimisation approach to pseudolinear regression problems which produces some model parameters that are exactly zero and, therefore, yields a parsimonious system description. Applicability of this technique for model structure computation for the F/A-18 Active Aeroelastic Wing using flight test data is shown for several flight conditions (Mach numbers) by identifying a parsimonious system description with a high percent fit for cross-validated data.

  1. NASA Perspective on Requirements for Development of Advanced Methods Predicting Unsteady Aerodynamics and Aeroelasticity

    NASA Technical Reports Server (NTRS)

    Schuster, David M.

    2008-01-01

    Over the past three years, the National Aeronautics and Space Administration (NASA) has initiated design, development, and testing of a new human-rated space exploration system under the Constellation Program. Initial designs within the Constellation Program are scheduled to replace the present Space Shuttle, which is slated for retirement within the next three years. The development of vehicles for the Constellation system has encountered several unsteady aerodynamics challenges that have bearing on more traditional unsteady aerodynamic and aeroelastic analysis. This paper focuses on the synergy between the present NASA challenges and the ongoing challenges that have historically been the subject of research and method development. There are specific similarities in the flows required to be analyzed for the space exploration problems and those required for some of the more nonlinear unsteady aerodynamic and aeroelastic problems encountered on aircraft. The aggressive schedule, significant technical challenge, and high-priority status of the exploration system development is forcing engineers to implement existing tools and techniques in a design and application environment that is significantly stretching the capability of their methods. While these methods afford the users with the ability to rapidly turn around designs and analyses, their aggressive implementation comes at a price. The relative immaturity of the techniques for specific flow problems and the inexperience with their broad application to them, particularly on manned spacecraft flight system, has resulted in the implementation of an extensive wind tunnel and flight test program to reduce uncertainty and improve the experience base in the application of these methods. This provides a unique opportunity for unsteady aerodynamics and aeroelastic method developers to test and evaluate new analysis techniques on problems with high potential for acquisition of test and even flight data against which they

  2. Vertical axis wind turbine turbulent response model. Part 2: Response of Sandia National laboratories' 34-meter VAWT with aeroelastic effects

    NASA Astrophysics Data System (ADS)

    1990-01-01

    The dynamic response of Sandia National Laboratories' 34-m Darrieus rotor wind turbine at Bushland, Texas, is presented. The formulation used a double-multiple streamtube aerodynamic model with a turbulent airflow and included the effects of linear aeroelastic forces. The structural analysis used established procedures with the program MSC/NASTRAN. The effects of aeroelastic forces on the damping of natural modes agree well with previous results at operating rotor speeds, but show some discrepancies at very high rotor speeds. A number of alternative expressions for the spectrum of turbulent wind were investigated. The model loading represented by each does not differ significantly; a more significant difference is caused by imposing a full lateral coherence of the turbulent flow. Spectra of the predicted stresses at various locations show that without aeroelastic forces, very severe resonance is likely to occur at certain natural frequencies. Inclusion of aeroelastic effects greatly attenuates this stochastic response, especially in modes involving in-plane blade bending.

  3. Integrated analysis on static/dynamic aeroelasticity of curved panels based on a modified local piston theory

    NASA Astrophysics Data System (ADS)

    Yang, Zhichun; Zhou, Jian; Gu, Yingsong

    2014-10-01

    A flow field modified local piston theory, which is applied to the integrated analysis on static/dynamic aeroelastic behaviors of curved panels, is proposed in this paper. The local flow field parameters used in the modification are obtained by CFD technique which has the advantage to simulate the steady flow field accurately. This flow field modified local piston theory for aerodynamic loading is applied to the analysis of static aeroelastic deformation and flutter stabilities of curved panels in hypersonic flow. In addition, comparisons are made between results obtained by using the present method and curvature modified method. It shows that when the curvature of the curved panel is relatively small, the static aeroelastic deformations and flutter stability boundaries obtained by these two methods have little difference, while for curved panels with larger curvatures, the static aeroelastic deformation obtained by the present method is larger and the flutter stability boundary is smaller compared with those obtained by the curvature modified method, and the discrepancy increases with the increasing of curvature of panels. Therefore, the existing curvature modified method is non-conservative compared to the proposed flow field modified method based on the consideration of hypersonic flight vehicle safety, and the proposed flow field modified local piston theory for curved panels enlarges the application range of piston theory.

  4. A study of aeroelastic and structural dynamic effects in multi-rotor systems with application to hybrid heavy lift vehicles

    NASA Technical Reports Server (NTRS)

    Friedmann, P. P.

    1984-01-01

    An aeroelastic model suitable for the study of aeroelastic and structural dynamic effects in multirotor vehicles simulating a hybrid heavy lift vehicle was developed and applied to the study of a number of diverse problems. The analytical model developed proved capable of modeling a number of aeroelastic problems, namely: (1) isolated blade aeroelastic stability in hover and forward flight, (2) coupled rotor/fuselage aeromechanical problem in air or ground resonance, (3) tandem rotor coupled rotor/fuselage problems, and (4) the aeromechanical stability of a multirotor vehicle model representing a hybrid heavy lift airship (HHLA). The model was used to simulate the ground resonance boundaries of a three bladed hingeless rotor model, including the effect of aerodynamic loads, and the theoretical predictions compared well with experimental results. Subsequently the model was used to study the aeromechanical stability of a vehicle representing a hybrid heavy lift airship, and potential instabilities which could occur for this type of vehicle were identified. The coupling between various blade, supporting structure and rigid body modes was identified.

  5. Aeroelastic instability stoppers for wind tunnel models

    NASA Technical Reports Server (NTRS)

    Doggett, R. V., Jr.; Ricketts, R. H. (Inventor)

    1981-01-01

    A mechanism for constraining models or sections thereof, was wind tunnel tested, deployed at the onset of aeroelastic instability, to forestall destructive vibrations in the model is described. The mechanism includes a pair of arms pivoted to the tunnel wall and straddling the model. Rollers on the ends of the arms contact the model, and are pulled together against the model by a spring stretched between the arms. An actuator mechanism swings the arms into place and back as desired.

  6. Aeroelastic stability analysis of a Darrieus wind turbine

    NASA Astrophysics Data System (ADS)

    Popelka, D.

    1982-02-01

    An aeroelastic stability analysis was developed for predicting flutter instabilities on vertical axis wind turbines. The analytical model and mathematical formulation of the problem are described as well as the physical mechanism that creates flutter in Darrieus turbines. Theoretical results are compared with measured experimental data from flutter tests of the Sandia 2 Meter turbine. Based on this comparison, the analysis appears to be an adequate design evaluation tool.

  7. Unsteady transonic flow calculations for two-dimensional canard-wing configurations with aeroelastic applications

    NASA Technical Reports Server (NTRS)

    Batina, J. T.

    1985-01-01

    Unsteady transonic flow calculations for aerodynamically interfering airfoil configurations are performed as a first step toward solving the three dimensional canard wing interaction problem. These calculations are performed by extending the XTRAN2L two dimensional unsteady transonic small disturbance code to include an additional airfoil. Unsteady transonic forces due to plunge and pitch motions of a two dimensional canard and wing are presented. Results for a variety of canard wing separation distances reveal the effects of aerodynamic interference on unsteady transonic airloads. Aeroelastic analyses employing these unsteady airloads demonstrate the effects of aerodynamic interference on aeroelastic stability and flutter. For the configurations studied, increases in wing flutter speed result with the inclusion of the aerodynamically interfering canard.

  8. Aeroelastic modeling of rotor blades with spanwise variable elastic axis offset: Classic issues revisited and new formulations

    NASA Technical Reports Server (NTRS)

    Bielawa, Richard L.

    1988-01-01

    In response to a systematic methodology assessment program directed to the aeroelastic stability of hingeless helicopter rotor blades, improved basic aeroelastic reformulations and new formulations relating to structural sweep were achieved. Correlational results are presented showing the substantially improved performance of the G400 aeroelastic analysis incorporating these new formulations. The formulations pertain partly to sundry solutions to classic problem areas, relating to dynamic inflow with vortex-ring state operation and basic blade kinematics, but mostly to improved physical modeling of elastic axis offset (structural sweep) in the presence of nonlinear structural twist. Specific issues addressed are an alternate modeling of the delta EI torsional excitation due to compound bending using a force integration approach, and the detailed kinematic representation of an elastically deflected point mass of a beam with both structural sweep and nonlinear twist.

  9. Supercritical impregnation and optical characterization of loaded foldable intraocular lenses using supercritical fluids.

    PubMed

    Bouledjouidja, Abir; Masmoudi, Yasmine; Li, Yanfeng; He, Wei; Badens, Elisabeth

    2017-10-01

    To prepare drug-loaded intraocular lenses (IOLs) used to combine cataract surgery with postoperative complication treatment through supercritical impregnation while preserving their optical properties. Aix-Marseille Université, CNRS, Centrale Marseille, Laboratoire de Mécanique, Modélisation & Procédés Propres, Marseille, France, and He University Eye Hospital, Liaoning Province, China. Experimental study. Supercritical impregnations of commercial foldable IOLs used in cataract surgery with ciprofloxacin (an antibiotic) and dexamethasone 21-phosphate disodium salt (an antiinflammatory drug) were performed in a noncontinuous mode. Impregnation amounts were determined through drug-release kinetic studies. The optical characterizations of IOLs were determined by evaluating the dioptric power and the imaging quality by determining the modulating transfer function (MTF) at a specified spatial frequency according to the International Organization for Standardization (ISO 11979-2:2014). Transparent IOLs presenting an effective impregnation were obtained with a prolonged drug delivery during approximately 10 days. Optical characterizations (dioptric powers and MTF values) show preserved optical properties after supercritical treatment/impregnation. Supercritical treatments/impregnations do not damage the optical properties of IOLs and are therefore adequate for the preparation of delivery devices used for cataract surgery. Copyright © 2017. Published by Elsevier Inc.

  10. Modeling and Analysis of Composite Wing Sections for Improved Aeroelastic and Vibration Characteristics Using Smart Materials

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Aditi

    1996-01-01

    The objective of this research is to develop analysis procedures to investigate the coupling of composite and smart materials to improve aeroelastic and vibratory response of aerospace structures. The structural modeling must account for arbitrarily thick geometries, embedded and surface bonded sensors and actuators and imperfections, such as delamination. Changes in the dynamic response due to the presence of smart materials and delaminations is investigated. Experiments are to be performed to validate the proposed mathematical model.

  11. ASTROP2-LE: A Mistuned Aeroelastic Analysis System Based on a Two Dimensional Linearized Euler Solver

    NASA Technical Reports Server (NTRS)

    Reddy, T. S. R.; Srivastava, R.; Mehmed, Oral

    2002-01-01

    An aeroelastic analysis system for flutter and forced response analysis of turbomachines based on a two-dimensional linearized unsteady Euler solver has been developed. The ASTROP2 code, an aeroelastic stability analysis program for turbomachinery, was used as a basis for this development. The ASTROP2 code uses strip theory to couple a two dimensional aerodynamic model with a three dimensional structural model. The code was modified to include forced response capability. The formulation was also modified to include aeroelastic analysis with mistuning. A linearized unsteady Euler solver, LINFLX2D is added to model the unsteady aerodynamics in ASTROP2. By calculating the unsteady aerodynamic loads using LINFLX2D, it is possible to include the effects of transonic flow on flutter and forced response in the analysis. The stability is inferred from an eigenvalue analysis. The revised code, ASTROP2-LE for ASTROP2 code using Linearized Euler aerodynamics, is validated by comparing the predictions with those obtained using linear unsteady aerodynamic solutions.

  12. Preliminary report on candidates for AGARD standard aeroelastic configurations for dynamic response

    NASA Technical Reports Server (NTRS)

    Yates, E. Carson, Jr.

    1987-01-01

    At the request of the Aeroelasticity Subcommittee of the AGARD Structures and Materials Panel, a survey of member countries has been conducted to seek candidates for a prospective set of standard configurations to be used for comparison of calculated and measured dynamic aeroelastic behavior with emphasis on the transonic speed range. This set is a sequel to that established several years ago for comparisons of calculated and measured aerodynamic pressures and forces. Approximately two dozen people in the United States, and more than three dozen people in the other member countries, were contacted. This preliminary report presents the results of the survey and an analysis of those results along with recommendations for the initial set of standard configurations and for additional experimental work needed to fill significant gaps in the available information.

  13. Anisotropic piezoelectric twist actuation of helicopter rotor blades: Aeroelastic analysis and design optimization

    NASA Astrophysics Data System (ADS)

    Wilkie, William Keats

    1997-12-01

    An aeroelastic model suitable for control law and preliminary structural design of composite helicopter rotor blades incorporating embedded anisotropic piezoelectric actuator laminae is developed. The aeroelasticity model consists of a linear, nonuniform beam representation of the blade structure, including linear piezoelectric actuation terms, coupled with a nonlinear, finite-state unsteady aerodynamics model. A Galerkin procedure and numerical integration in the time domain are used to obtain a soluti An aeroelastic model suitable for control law and preliminary structural design of composite helicopter rotor blades incorporating embedded anisotropic piezoelectric actuator laminae is developed. The aeroelasticity model consists of a linear, nonuniform beam representation of the blade structure, including linear piezoelectric actuation terms, coupled with a nonlinear, finite-state unsteady aerodynamics model. A Galerkin procedure and numerical integration in the time domain are used to obtain amited additional piezoelectric material mass, it is shown that blade twist actuation approaches which exploit in-plane piezoelectric free-stain anisotropies are capable of producing amplitudes of oscillatory blade twisting sufficient for rotor vibration reduction applications. The second study examines the effectiveness of using embedded piezoelectric actuator laminae to alleviate vibratory loads due to retreating blade stall. A 10 to 15 percent improvement in dynamic stall limited forward flight speed, and a 5 percent improvement in stall limited rotor thrust were numerically demonstrated for the active twist rotor blade relative to a conventional blade design. The active twist blades are also demonstrated to be more susceptible than the conventional blades to dynamic stall induced vibratory loads when not operating with twist actuation. This is the result of designing the active twist blades with low torsional stiffness in order to maximize piezoelectric twist authority

  14. Vibration and aeroelastic analysis of highly flexible HALE aircraft

    NASA Astrophysics Data System (ADS)

    Chang, Chong-Seok

    The highly flexible HALE (High Altitude Long Endurance) aircraft analysis methodology is of interest because early studies indicated that HALE aircraft might have different vibration and aeroelastic characteristics from those of conventional aircraft. Recently the computer code Nonlinear Aeroelastic Trim And Stability of HALE Aircraft (NATASHA) was developed under NASA sponsorship. NATASHA can predict the flight dynamics and aeroelastic behavior for HALE aircraft with a flying wing configuration. Further analysis improvements for NATASHA were required to extend its capability to the ground vibration test (GVT) environment and to both GVT and aeroelastic behavior of HALE aircraft with other configurations. First, the analysis methodology, based on geometrically exact fully intrinsic beam theory, was extended to treat other aircraft cofigurations. Conventional aircraft with flexible fuselage and tail can now be modeled by treating the aircraft as an assembly of beam elements. NATASHA is now applicable to any aircraft cofiguration that can be modeled this way. The intrinsic beam formulation, which is a fundamental structural modeling approach, is now capable of being applying to a structure consisting of multiple beams by relating the virtual displacements and rotations at points where two or more beam elements are connected to each other. Additional aspects are also considered in the analysis such as auxiliary elevator input in the horizontal tail and fuselage aerodynamics. Second, the modeling approach was extended to treat the GVT environment for HALE aircraft, which have highly flexible wings. GVT has its main purpose to provide modal characteristics for model validation. A bungee formulation was developed by the augmented Lagrangian method and coupled to the intrinsic beam formulation for the GVT modeling. After the coupling procedure, the whole formulation cannot be fully intrinsic because the geometric constraint by bungee cords makes the system statically

  15. User's Manual for DuctE3D: A Program for 3D Euler Unsteady Aerodynamic and Aeroelastic Analysis of Ducted Fans

    NASA Technical Reports Server (NTRS)

    Srivastava, R.; Reddy, T. S. R.

    1997-01-01

    The program DuctE3D is used for steady or unsteady aerodynamic and aeroelastic analysis of ducted fans. This guide describes the input data required and the output files generated, in using DuctE3D. The analysis solves three dimensional unsteady, compressible Euler equations to obtain the aerodynamic forces. A normal mode structural analysis is used to obtain the aeroelastic equations, which are solved using either the time domain or the frequency domain solution method. Sample input and output files are included in this guide for steady aerodynamic analysis and aeroelastic analysis of an isolated fan row.

  16. Research on the physical properties of supercritical CO2 and the log evaluation of CO2-bearing volcanic reservoirs

    NASA Astrophysics Data System (ADS)

    Pan, Baozhi; Lei, Jian; Zhang, Lihua; Guo, Yuhang

    2017-10-01

    CO2-bearing reservoirs are difficult to distinguish from other natural gas reservoirs during gas explorations. Due to the lack of physical parameters for supercritical CO2, particularly neutron porosity, at present a hydrocarbon gas log evaluation method is used to evaluate CO2-bearing reservoirs. The differences in the physical properties of hydrocarbon and CO2 gases have led to serious errors. In this study, the deep volcanic rock of the Songliao Basin was the research area. In accordance with the relationship between the density and acoustic velocity of supercritical CO2 and temperature and pressure, the regularity between the CO2 density and acoustic velocity, and the depth of the area was established. A neutron logging simulation was completed based on a Monte Carlo method. Through the simulation of the wet limestone neutron logging, the relationship between the count rate ratio of short and long space detectors and the neutron porosity was acquired. Then, the nature of the supercritical CO2 neutron moderation was obtained. With consideration given to the complexity of the volcanic rock mineral composition, a volcanic rock volume model was established, and the matrix neutron and density parameters were acquired using the ECS log. The properties of CO2 were applied in the log evaluation of the CO2-bearing volcanic reservoirs in the southern Songliao Basin. The porosity and saturation of CO2 were obtained, and a reasonable application was achieved in the CO2-bearing reservoir.

  17. Optimum design of high speed prop rotors including the coupling of performance, aeroelastic stability and structures

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Aditi; Mccarthy, Thomas R.; Madden, John F., III

    1992-01-01

    An optimization procedure is developed for the design of high speed prop-rotors to be used in civil tiltrotor applications. The goal is to couple aerodynamic performance, aeroelastic stability, and structural design requirements inside a closed-loop optimization procedure. The objective is to minimize the gross weight and maximize the propulsive efficiency in high speed cruise. Constraints are imposed on the rotor aeroelastic stability in both hover and cruise and rotor figure of merit in hover. Both structural and aerodynamic design variables are used.

  18. Optimum structural design with static aeroelastic constraints

    NASA Technical Reports Server (NTRS)

    Bowman, Keith B; Grandhi, Ramana V.; Eastep, F. E.

    1989-01-01

    The static aeroelastic performance characteristics, divergence velocity, control effectiveness and lift effectiveness are considered in obtaining an optimum weight structure. A typical swept wing structure is used with upper and lower skins, spar and rib thicknesses, and spar cap and vertical post cross-sectional areas as the design parameters. Incompressible aerodynamic strip theory is used to derive the constraint formulations, and aerodynamic load matrices. A Sequential Unconstrained Minimization Technique (SUMT) algorithm is used to optimize the wing structure to meet the desired performance constraints.

  19. Effects of supercritical environment on hydrocarbon-fuel injection

    NASA Astrophysics Data System (ADS)

    Shin, Bongchul; Kim, Dohun; Son, Min; Koo, Jaye

    2017-04-01

    In this study, the effects of environment conditions on decane were investigated. Decane was injected in subcritical and supercritical ambient conditions. The visualization chamber was pressurized to 1.68 MPa by using nitrogen gas at a temperature of 653 K for subcritical ambient conditions. For supercritical ambient conditions, the visualization chamber was pressurized to 2.52 MPa by using helium at a temperature of 653 K. The decane injection in the pressurized chamber was visualized via a shadowgraph technique and gradient images were obtained by a post processing method. A large variation in density gradient was observed at jet interface in the case of subcritical injection in subcritical ambient conditions. Conversely, for supercritical injection in supercritical ambient conditions, a small density gradient was observed at the jet interface. In a manner similar to that observed in other cases, supercritical injection in subcritical ambient conditions differed from supercritical ambient conditions such as sphere shape liquid. Additionally, there were changes in the interface, and the supercritical injection core width was thicker than that in the subcritical injection. Furthermore, in cases with the same injection conditions, the change in the supercritical ambient normalized core width was smaller than the change in the subcritical ambient normalized core width owing to high specific heat at the supercritical injection and small phase change at the interface. Therefore, the interface was affected by the changing ambient condition. Given that the effect of changing the thermodynamic properties of propellants could be essential for a variable thrust rocket engine, the effects of the ambient conditions were investigated experimentally.

  20. Inertial Force Coupling to Nonlinear Aeroelasticity of Flexible Wing Aircraft

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.; Ting, Eric

    2016-01-01

    This paper investigates the inertial force effect on nonlinear aeroelasticity of flexible wing aircraft. The geometric are nonlinearity due to rotational and tension stiffening. The effect of large bending deflection will also be investigated. Flutter analysis will be conducted for a truss-braced wing aircraft concept with tension stiffening and inertial force coupling.

  1. Geothermal energy production with supercritical fluids

    DOEpatents

    Brown, Donald W.

    2003-12-30

    There has been invented a method for producing geothermal energy using supercritical fluids for creation of the underground reservoir, production of the geothermal energy, and for heat transport. Underground reservoirs are created by pumping a supercritical fluid such as carbon dioxide into a formation to fracture the rock. Once the reservoir is formed, the same supercritical fluid is allowed to heat up and expand, then is pumped out of the reservoir to transfer the heat to a surface power generating plant or other application.

  2. Aeroelastic modeling for the FIT team F/A-18 simulation

    NASA Technical Reports Server (NTRS)

    Zeiler, Thomas A.; Wieseman, Carol D.

    1989-01-01

    Some details of the aeroelastic modeling of the F/A-18 aircraft done for the Functional Integration Technology (FIT) team's research in integrated dynamics modeling and how these are combined with the FIT team's integrated dynamics model are described. Also described are mean axis corrections to elastic modes, the addition of nonlinear inertial coupling terms into the equations of motion, and the calculation of internal loads time histories using the integrated dynamics model in a batch simulation program. A video tape made of a loads time history animation was included as a part of the oral presentation. Also discussed is work done in one of the areas of unsteady aerodynamic modeling identified as needing improvement, specifically, in correction factor methodologies for improving the accuracy of stability derivatives calculated with a doublet lattice code.

  3. Dynamics of Supercritical Flows

    DTIC Science & Technology

    2012-08-26

    to Supercritical Environment of Relevance to Rocket, Gas turbine , and Diesel Engines,” 37th AIAA Aerospace Science Meeting and Exhibit, AIAA...Visual Characteristics of a Round Jet into a Sub- to Supercritical Environment of Relevance to Rocket, Gas turbine , and Diesel Engines,” 37th AIAA...Relevance to Rocket, Gas turbine , and Diesel Engines,” 37th AIAA Aerospace Science Meeting and Exhibit, AIAA, Washington, DC, 11-14 Jan. 1999. 26Chehroudi

  4. Analytic investigation of helicopter rotor blade appended aeroelastic devices

    NASA Technical Reports Server (NTRS)

    Bielawa, Richard L.

    1984-01-01

    Analytic evaluations of four different passive aeroelastic devices appended to helicopter rotor blades are presented. The devices consist of a passive tuned tab, a control coupled tab, an all-flying tip and a harmonic dilational airfoil tip. Each device was conceived for improving either aerodynamic performance or reducing vibratory control loads or hub shears. The evaluation was performed using a comprehensive rotor aeroelastic analysis (the G400PA code with appropriate modifications), together with data for a realistic helicopter rotor blade (the UH-60A Blackhawk), in high speed flight (90 m/s, 175 kts). The results of this study show that significant performance (L/(D sub e)) gains can be achieved with the all-flying free tip. Results from the harmonic dilational airfoil tip show the potential for moderate improvements in L/(D sub e). Finally, the results for the passive tuned tab and the control coupled tab, as configured for this study, show these devices to be impractical. Sections are included which describe the operation of each device, the required G400PA modifications, and the detailed results obtained for each device.

  5. Nastran level 16 theoretical manual updates for aeroelastic analysis of bladed discs

    NASA Technical Reports Server (NTRS)

    Elchuri, V.; Smith, G. C. C.

    1980-01-01

    A computer program based on state of the art compressor and structural technologies applied to bladed shrouded disc was developed and made operational in NASTRAN Level 16. Aeroelastic analyses, modes and flutter. Theoretical manual updates are included.

  6. Aeroelastic Model Structure Computation for Envelope Expansion

    NASA Technical Reports Server (NTRS)

    Kukreja, Sunil L.

    2007-01-01

    Structure detection is a procedure for selecting a subset of candidate terms, from a full model description, that best describes the observed output. This is a necessary procedure to compute an efficient system description which may afford greater insight into the functionality of the system or a simpler controller design. Structure computation as a tool for black-box modeling may be of critical importance in the development of robust, parsimonious models for the flight-test community. Moreover, this approach may lead to efficient strategies for rapid envelope expansion that may save significant development time and costs. In this study, a least absolute shrinkage and selection operator (LASSO) technique is investigated for computing efficient model descriptions of non-linear aeroelastic systems. The LASSO minimises the residual sum of squares with the addition of an l(Sub 1) penalty term on the parameter vector of the traditional l(sub 2) minimisation problem. Its use for structure detection is a natural extension of this constrained minimisation approach to pseudo-linear regression problems which produces some model parameters that are exactly zero and, therefore, yields a parsimonious system description. Applicability of this technique for model structure computation for the F/A-18 (McDonnell Douglas, now The Boeing Company, Chicago, Illinois) Active Aeroelastic Wing project using flight test data is shown for several flight conditions (Mach numbers) by identifying a parsimonious system description with a high percent fit for cross-validated data.

  7. Enhancing power cycle efficiency for a supercritical Brayton cycle power system using tunable supercritical gas mixtures

    DOEpatents

    Wright, Steven A.; Pickard, Paul S.; Vernon, Milton E.; Radel, Ross F.

    2017-08-29

    Various technologies pertaining to tuning composition of a fluid mixture in a supercritical Brayton cycle power generation system are described herein. Compounds, such as Alkanes, are selectively added or removed from an operating fluid of the supercritical Brayton cycle power generation system to cause the critical temperature of the fluid to move up or down, depending upon environmental conditions. As efficiency of the supercritical Brayton cycle power generation system is substantially optimized when heat is rejected near the critical temperature of the fluid, dynamically modifying the critical temperature of the fluid based upon sensed environmental conditions improves efficiency of such a system.

  8. Static aeroelastic analysis of wings using Euler/Navier-Stokes equations coupled with improved wing-box finite element structures

    NASA Technical Reports Server (NTRS)

    Guruswamy, Guru P.; MacMurdy, Dale E.; Kapania, Rakesh K.

    1994-01-01

    Strong interactions between flow about an aircraft wing and the wing structure can result in aeroelastic phenomena which significantly impact aircraft performance. Time-accurate methods for solving the unsteady Navier-Stokes equations have matured to the point where reliable results can be obtained with reasonable computational costs for complex non-linear flows with shock waves, vortices and separations. The ability to combine such a flow solver with a general finite element structural model is key to an aeroelastic analysis in these flows. Earlier work involved time-accurate integration of modal structural models based on plate elements. A finite element model was developed to handle three-dimensional wing boxes, and incorporated into the flow solver without the need for modal analysis. Static condensation is performed on the structural model to reduce the structural degrees of freedom for the aeroelastic analysis. Direct incorporation of the finite element wing-box structural model with the flow solver requires finding adequate methods for transferring aerodynamic pressures to the structural grid and returning deflections to the aerodynamic grid. Several schemes were explored for handling the grid-to-grid transfer of information. The complex, built-up nature of the wing-box complicated this transfer. Aeroelastic calculations for a sample wing in transonic flow comparing various simple transfer schemes are presented and discussed.

  9. Approximate analytical relationships for linear optimal aeroelastic flight control laws

    NASA Astrophysics Data System (ADS)

    Kassem, Ayman Hamdy

    1998-09-01

    This dissertation introduces new methods to uncover functional relationships between design parameters of a contemporary control design technique and the resulting closed-loop properties. Three new methods are developed for generating such relationships through analytical expressions: the Direct Eigen-Based Technique, the Order of Magnitude Technique, and the Cost Function Imbedding Technique. Efforts concentrated on the linear-quadratic state-feedback control-design technique applied to an aeroelastic flight control task. For this specific application, simple and accurate analytical expressions for the closed-loop eigenvalues and zeros in terms of basic parameters such as stability and control derivatives, structural vibration damping and natural frequency, and cost function weights are generated. These expressions explicitly indicate how the weights augment the short period and aeroelastic modes, as well as the closed-loop zeros, and by what physical mechanism. The analytical expressions are used to address topics such as damping, nonminimum phase behavior, stability, and performance with robustness considerations, and design modifications. This type of knowledge is invaluable to the flight control designer and would be more difficult to formulate when obtained from numerical-based sensitivity analysis.

  10. Aeroelastic analysis of an adaptive trailing edge with a smart elastic skin

    NASA Astrophysics Data System (ADS)

    Arena, Maurizio; Pecora, Rosario; Amoroso, Francesco; Noviello, Maria Chiara; Rea, Francesco; Concilio, Antonio

    2017-09-01

    Nowadays, the design choices of the new generation aircraft are moving towards the research and development of innovative technologies, aimed at improving performance as well as to minimize the environmental impact. In the current "greening" context, the morphing structures represent a very attractive answer to such requirements: both aerodynamic and structural advantages are ensured in several flight conditions, safeguarding the fuel consumption at the same time. An aeronautical intelligent system is therefore the outcome of combining complex smart materials and structures, assuring the best functionality level in the flight envelope. The Adaptive Trailing Edge Device (ATED) is a sub-project inside SARISTU (Smart Intelligent Aircraft Structures), an L2 level project of the 7th EU Framework programme coordinated by Airbus, aimed at developing technologies for realizing a morphing wing extremity addressed to improve the general aircraft performance and to reduce the fuel burning up to 5%. This specific study, divided into design, manufacturing and testing phases, involved universities, research centers and leading industries of the European consortium. The paper deals with the aeroelastic impact assessment of a full-scale morphing wing trailing edge on a Large Aeroplanes category aircraft. The FE (Finite Element) model of the technology demonstrator, located in the aileron region and manufactured within the project, was referenced to for the extrapolation of the structural properties of the whole adaptive trailing edge device placed in its actual location in the outer wing. The input FE models were processed within MSC-Nastran® environment to estimate stiffness and inertial distributions suitable to construct the aeroelastic stick-beam mock-up of the reference structure. Afterwards, a flutter analysis in simulated operative condition, have been carried out by means of Sandy®, an in-house code, according to meet the safety requirements imposed by the applicable

  11. Impact of structural optimization with aeroelastic/multidisciplinary constraints on helicopter rotor design

    NASA Technical Reports Server (NTRS)

    Friedmann, Peretz P.

    1992-01-01

    This paper presents a review of the state-of-the-art in the field of structural optimization when applied to vibration reduction of helicopters in forward flight with aeroelastic and multidisciplinary constraints. It emphasizes the application of the modern approach where the optimization is formulated as a mathematical programming problem and the objective function consists of the vibration levels at the hub and behavior constraints are imposed on the blade frequencies, aeroelastic stability margins as well as on a number of additional ingredients which can have a significant effect on the overall performance and flight mechanics of the helicopter. It is shown that the integrated multidisciplinary optimization of rotorcraft offers the potential for substantial improvements which can be achieved by careful preliminary design and analysis without requiring additional hardware such as rotor vibration absorbers or isolation systems.

  12. Helicopter vibration reduction using structural optimization with aeroelastic/multidisciplinary constraints - A survey

    NASA Technical Reports Server (NTRS)

    Friedmann, Peretz P.

    1991-01-01

    This paper presents a survey of the state-of-the-art in the field of structural optimization when applied to vibration reduction of helicopters in forward flight with aeroelastic and multidisciplinary constraints. It emphasizes the application of the modern approach where the optimization is formulated as a mathematical programming problem, the objective function consists of the vibration levels at the hub, and behavior constraints are imposed on the blade frequencies and aeroelastic stability margins, as well as on a number of additional ingredients that can have a significant effect on the overall performance and flight mechanics of the helicopter. It is shown that the integrated multidisciplinary optimization of rotorcraft offers the potential for substantial improvements, which can be achieved by careful preliminary design and analysis without requiring additional hardware such as rotor vibration absorbers of isolation systems.

  13. Supercritical Fluid Extraction of Aflatoxin B 1 from Soil

    EPA Science Inventory

    This research describes the development of a Supercritical Fluid Extraction (SFE) method to recover aflatoxin B1 from fortified soil. The effects of temperature, pressure, modifier (identity and percentage), and extraction type were assessed. Using the optimized SFE conditions, ...

  14. [Supercritical CO2 extraction and component analysis of Aesculus wilsonii seed oil].

    PubMed

    Chen, Guang-Yu; Shi, Zhao-Hua; Li, Hai-Chi; Ge, Fa-Huan; Zhan, Hua-Shu

    2013-03-01

    To research the optimal extraction process of supercritical CO2 extraction and analyze the component of the oil extracted from Aesculus wilsonii seed. Using the yield of Aesculus wilsonii seed oil as the index, optimized supercritical CO2 extraction parameter by orthogonal experiment methodology and analysed the compounds of Aesculus wilsonii seed oil by GC-MS. The optimal parameters of the supercritical CO2 extraction of the oil extracted from Aesculus wilsoniit seed were determined: the extraction pressure was 28 MPa and the temperature was 38 degrees C, the separation I pressure was 12 MPa and the temperature was 40 degrees C, the separation II pressure was 5 MPa and the temperature was 40 degrees C, the extraction time was 110 min. The average extraction rate of Aesculus wilsonii seed oil was 1.264%. 26 kinds of compounds were identified by GC-MS in Aesculus wilsonii seed oil extracted by supercritical CO2. The main components were fatty acids. Comparing with the petroleum ether extraction, the supercritical CO2 extraction has higher extraction rate, shorter extraction time, more clarity oil. The kinds of fatty acids with high amounts in Aesculus wilsonii seed oil is identical in general, the kinds of fatty acids with low amounts in Aesculus wilsonii seed oil have differences.

  15. Supercritical methanol for polyethylene terephthalate depolymerization: Observation using simulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Genta, Minoru; Iwaya, Tomoko; Sasaki, Mitsuru

    2007-07-01

    To apply PET depolymerization in supercritical methanol to commercial recycling, the benefits of supercritical methanol usage in PET depolymerization was investigated from the viewpoint of the reaction rate and energy demands. PET was depolymerized in a batch reactor at 573 K in supercritical methanol under 14.7 MPa and in vapor methanol under 0.98 MPa in our previous work. The main products of both reactions were the PET monomers of dimethyl terephthalate (DMT) and ethylene glycol (EG). The rate of PET depolymerization in supercritical methanol was faster than that of PET depolymerization in vapor methanol. This indicates supercritical fluid is beneficialmore » in reducing reaction time without the use of a catalyst. We depicted the simple process flow of PET depolymerization in supercritical methanol and in vapor methanol, and by simulation evaluated the total heat demand of each process. In this simulation, bis-hydroxyethyl terephthalate (BHET) was used as a model component of PET. The total heat demand of PET depolymerization in supercritical methanol was 2.35 x 10{sup 6} kJ/kmol Produced-DMT. That of PET depolymerization in vapor methanol was 2.84 x 10{sup 6} kJ/kmol Produced-DMT. The smaller total heat demand of PET depolymerization in supercritical methanol clearly reveals the advantage of using supercritical fluid in terms of energy savings.« less

  16. A review on non-linear aeroelasticity of high aspect-ratio wings

    NASA Astrophysics Data System (ADS)

    Afonso, Frederico; Vale, José; Oliveira, Éder; Lau, Fernando; Suleman, Afzal

    2017-02-01

    Current economic constraints and environmental regulations call for design of more efficient aircraft configurations. An observed trend in aircraft design to reduce the lift induced drag and improve fuel consumption and emissions is to increase the wing aspect-ratio. However, a slender wing is more flexible and subject to higher deflections under the same operating conditions. This effect may lead to changes in dynamic behaviour and in aeroelastic response, potentially resulting in instabilities. Therefore, it is important to take into account geometric non-linearities in the design of high aspect-ratio wings, as well as having accurate computational codes that couple the aerodynamic and structural models in the presence of non-linearities. Here, a review on the state-of-the-art on non-linear aeroelasticity of high aspect-ratio wings is presented. The methodologies employed to analyse high aspect-ratio wings are presented and their applications discussed. Important observations from the state-of-the-art studies are drawn and the current challenges in the field are identified.

  17. Aeroelastic-Acoustics Simulation of Flight Systems

    NASA Technical Reports Server (NTRS)

    Gupta, kajal K.; Choi, S.; Ibrahim, A.

    2009-01-01

    This paper describes the details of a numerical finite element (FE) based analysis procedure and a resulting code for the simulation of the acoustics phenomenon arising from aeroelastic interactions. Both CFD and structural simulations are based on FE discretization employing unstructured grids. The sound pressure level (SPL) on structural surfaces is calculated from the root mean square (RMS) of the unsteady pressure and the acoustic wave frequencies are computed from a fast Fourier transform (FFT) of the unsteady pressure distribution as a function of time. The resulting tool proves to be unique as it is designed to analyze complex practical problems, involving large scale computations, in a routine fashion.

  18. PROP3D: A Program for 3D Euler Unsteady Aerodynamic and Aeroelastic (Flutter and Forced Response) Analysis of Propellers. Version 1.0

    NASA Technical Reports Server (NTRS)

    Srivastava, R.; Reddy, T. S. R.

    1996-01-01

    This guide describes the input data required, for steady or unsteady aerodynamic and aeroelastic analysis of propellers and the output files generated, in using PROP3D. The aerodynamic forces are obtained by solving three dimensional unsteady, compressible Euler equations. A normal mode structural analysis is used to obtain the aeroelastic equations, which are solved using either time domain or frequency domain solution method. Sample input and output files are included in this guide for steady aerodynamic analysis of single and counter-rotation propellers, and aeroelastic analysis of single-rotation propeller.

  19. Supercritical Fluids Processing of Biomass to Chemicals and Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olson, Norman K.

    2011-09-28

    The main objective of this project is to develop and/or enhance cost-effective methodologies for converting biomass into a wide variety of chemicals, fuels, and products using supercritical fluids. Supercritical fluids will be used both to perform reactions of biomass to chemicals and products as well as to perform extractions/separations of bio-based chemicals from non-homogeneous mixtures. This work supports the Biomass Program’s Thermochemical Platform Goals. Supercritical fluids are a thermochemical approach to processing biomass that, while aligned with the Biomass Program’s interests in gasification and pyrolysis, offer the potential for more precise and controllable reactions. Indeed, the literature with respect tomore » the use of water as a supercritical fluid frequently refers to “supercritical water gasification” or “supercritical water pyrolysis.”« less

  20. Bio-oil production from biomass via supercritical fluid extraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durak, Halil, E-mail: halildurak@yyu.edu.tr

    2016-04-18

    Supercritical fluid extraction is used for producing bio-fuel from biomass. Supercritical fluid extraction process under supercritical conditions is the thermally disruption process of the lignocellulose or other organic materials at 250-400 °C temperature range under high pressure (4-5 MPa). Supercritical fluid extraction trials were performed in a cylindrical reactor (75 mL) in organic solvents (acetone, ethanol) under supercritical conditions with (calcium hydroxide, sodium carbonate) and without catalyst at the temperatures of 250, 275 and 300 °C. The produced liquids at 300 °C in supercritical liquefaction were analyzed and characterized by elemental, GC-MS and FT-IR. 36 and 37 different types of compounds weremore » identified by GC-MS obtained in acetone and ethanol respectively.« less

  1. Predicted Static Aeroelastic Effects on Wings with Supersonic Leading Edges and Streamwise Tips

    NASA Technical Reports Server (NTRS)

    Brown, Stuart C.

    1959-01-01

    A method is presented for calculation of static aeroelastic effects on wings with supersonic leading edges and streamwise tips. Both chord-wise and spanwise deflections are taken into account. Aerodynamic and structural forces are introduced in influence coefficient form; the former are developed from linearized supersonic wing theory and the latter are assumed to be known from load-deflection tests or theory. The predicted effects of flexibility on lateral-control effectiveness, damping in roll, and lift-curve slope are shown for a low-aspect-ratio wing at Mach numbers of 1.25 and 2.60. The control effectiveness is shown for a trailing-edge aileron, a tip aileron, and a slot-deflector spoiler located along the 0.70 chord line. The calculations indicate that the tip aileron is particularly attractive from an aeroelastic standpoint, because the changes in effectiveness with dynamic pressure are small compared to the changes in effectiveness of the trailing-edge aileron and slot-deflector spoiler. The effects of making several simplifying assumptions in the example calculations are shown. The use of a modified strip theory to determine the aerodynamic influence coefficients gave adequate results only for the high Mach number case. Elimination of chordwise bending in the structural influence coefficients exaggerated the aeroelastic effects on rolling-moment and lift coefficients for both Mach numbers.

  2. Application of the ASP3D Computer Program to Unsteady Aerodynamic and Aeroelastic Analyses

    NASA Technical Reports Server (NTRS)

    Batina, John T.

    2006-01-01

    A new computer program has been developed called ASP3D (Advanced Small Perturbation - 3D), which solves the small perturbation potential flow equation in an advanced form including mass-consistent surface and trailing wake boundary conditions, and entropy, vorticity, and viscous effects. The purpose of the program is for unsteady aerodynamic and aeroelastic analyses, especially in the nonlinear transonic flight regime. The program exploits the simplicity of stationary Cartesian meshes with the movement or deformation of the configuration under consideration incorporated into the solution algorithm through a planar surface boundary condition. The paper presents unsteady aerodynamic and aeroelastic applications of ASP3D to assess the time dependent capability and demonstrate various features of the code.

  3. X-HALE: A Very Flexible UAV for Nonlinear Aeroelastic Tests

    DTIC Science & Technology

    2010-04-01

    Theseus (right) showing large wing deflections (Courtesy NASA Dryden) Figure 2. Three different “Sensorcraft” configurations1 More...Shearer, C. M., Coupled Nonlinear Flight Dynamics, Aeroelasticity, and Control of Very Flexible Aircraft, Ph.D. thesis , The University of Michigan... Thesis , Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, 2003. 24. Cesnik, C.E.S. and Ortega-Morales, M

  4. Experimental Investigation of Aeroelastic Deformation of Slender Wings at Supersonic Speeds Using a Video Model Deformation Measurement Technique

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.

    2013-01-01

    A video-based photogrammetric model deformation system was established as a dedicated optical measurement technique at supersonic speeds in the NASA Langley Research Center Unitary Plan Wind Tunnel. This system was used to measure the wing twist due to aerodynamic loads of two supersonic commercial transport airplane models with identical outer mold lines but different aeroelastic properties. One model featured wings with deflectable leading- and trailing-edge flaps and internal channels to accommodate static pressure tube instrumentation. The wings of the second model were of single-piece construction without flaps or internal channels. The testing was performed at Mach numbers from 1.6 to 2.7, unit Reynolds numbers of 1.0 million to 5.0 million, and angles of attack from -4 degrees to +10 degrees. The video model deformation system quantified the wing aeroelastic response to changes in the Mach number, Reynolds number concurrent with dynamic pressure, and angle of attack and effectively captured the differences in the wing twist characteristics between the two test articles.

  5. Results of including geometric nonlinearities in an aeroelastic model of an F/A-18

    NASA Technical Reports Server (NTRS)

    Buttrill, Carey S.

    1989-01-01

    An integrated, nonlinear simulation model suitable for aeroelastic modeling of fixed-wing aircraft has been developed. While the author realizes that the subject of modeling rotating, elastic structures is not closed, it is believed that the equations of motion developed and applied herein are correct to second order and are suitable for use with typical aircraft structures. The equations are not suitable for large elastic deformation. In addition, the modeling framework generalizes both the methods and terminology of non-linear rigid-body airplane simulation and traditional linear aeroelastic modeling. Concerning the importance of angular/elastic inertial coupling in the dynamic analysis of fixed-wing aircraft, the following may be said. The rigorous inclusion of said coupling is not without peril and must be approached with care. In keeping with the same engineering judgment that guided the development of the traditional aeroelastic equations, the effect of non-linear inertial effects for most airplane applications is expected to be small. A parameter does not tell the whole story, however, and modes flagged by the parameter as significant also need to be checked to see if the coupling is not a one-way path, i.e., the inertially affected modes can influence other modes.

  6. Deflection-Based Structural Loads Estimation From the Active Aeroelastic Wing F/A-18 Aircraft

    NASA Technical Reports Server (NTRS)

    Lizotte, Andrew M.; Lokos, William A.

    2005-01-01

    Traditional techniques in structural load measurement entail the correlation of a known load with strain-gage output from the individual components of a structure or machine. The use of strain gages has proved successful and is considered the standard approach for load measurement. However, remotely measuring aerodynamic loads using deflection measurement systems to determine aeroelastic deformation as a substitute to strain gages may yield lower testing costs while improving aircraft performance through reduced instrumentation weight. This technique was examined using a reliable strain and structural deformation measurement system. The objective of this study was to explore the utility of a deflection-based load estimation, using the active aeroelastic wing F/A-18 aircraft. Calibration data from ground tests performed on the aircraft were used to derive left wing-root and wing-fold bending-moment and torque load equations based on strain gages, however, for this study, point deflections were used to derive deflection-based load equations. Comparisons between the strain-gage and deflection-based methods are presented. Flight data from the phase-1 active aeroelastic wing flight program were used to validate the deflection-based load estimation method. Flight validation revealed a strong bending-moment correlation and slightly weaker torque correlation. Development of current techniques, and future studies are discussed.

  7. Enhanced Modeling of First-Order Plant Equations of Motion for Aeroelastic and Aeroservoelastic Applications

    NASA Technical Reports Server (NTRS)

    Pototzky, Anthony S.

    2010-01-01

    A methodology is described for generating first-order plant equations of motion for aeroelastic and aeroservoelastic applications. The description begins with the process of generating data files representing specialized mode-shapes, such as rigid-body and control surface modes, using both PATRAN and NASTRAN analysis. NASTRAN executes the 146 solution sequence using numerous Direct Matrix Abstraction Program (DMAP) calls to import the mode-shape files and to perform the aeroelastic response analysis. The aeroelastic response analysis calculates and extracts structural frequencies, generalized masses, frequency-dependent generalized aerodynamic force (GAF) coefficients, sensor deflections and load coefficients data as text-formatted data files. The data files are then re-sequenced and re-formatted using a custom written FORTRAN program. The text-formatted data files are stored and coefficients for s-plane equations are fitted to the frequency-dependent GAF coefficients using two Interactions of Structures, Aerodynamics and Controls (ISAC) programs. With tabular files from stored data created by ISAC, MATLAB generates the first-order aeroservoelastic plant equations of motion. These equations include control-surface actuator, turbulence, sensor and load modeling. Altitude varying root-locus plot and PSD plot results for a model of the F-18 aircraft are presented to demonstrate the capability.

  8. Aeroelastic flutter enhancement by exploiting the combined use of shape memory alloys and nonlinear piezoelectric circuits

    NASA Astrophysics Data System (ADS)

    Sousa, Vagner Candido de; Silva, Tarcísio Marinelli Pereira; De Marqui Junior, Carlos

    2017-10-01

    In this paper, the combined effects of semi-passive control using shunted piezoelectric material and passive pseudoelastic hysteresis of shape memory springs on the aerolastic behavior of a typical section is investigated. An aeroelastic model that accounts for the presence of both smart materials employed as mechanical energy dissipation devices is presented. The Brinson model is used to simulate the shape memory material. New expressions for the modeling of the synchronized switch damping on inductor technique (developed for enhanced piezoelectric damping) are presented, resulting in better agreement with experimental data. The individual effects of each nonlinear mechanism on the aeroelastic behavior of the typical section are first verified. Later, the combined effects of semi-passive piezoelectric control and passive shape memory alloy springs on the post-critical behavior of the system are discussed in details. The range of post-flutter airflow speeds with stable limit cycle oscillations is significantly increased due to the combined effects of both sources of energy dissipation, providing an effective and autonomous way to modify the behavior of aeroelastic systems using smart materials.

  9. Flight measurements of surface pressures on a flexible supercritical research wing

    NASA Technical Reports Server (NTRS)

    Eckstrom, C. V.

    1985-01-01

    A flexible supercritical research wing, designated as ARW-1, was flight-tested as part of the NASA Drones for Aerodynamic and Structural Testing Program. Aerodynamic loads, in the form of wing surface pressure measurements, were obtained during flights at altitudes of 15,000, 20,000, and 25,000 feet at Mach numbers from 0.70 to 0.91. Surface pressure coefficients determined from pressure measurements at 80 orifice locations are presented individually as nearly continuous functions of angle of attack for constant values of Mach number. The surface pressure coefficients are also presented individually as a function of Mach number for an angle of attack of 2.0 deg. The nearly continuous values of the pressure coefficient clearly show details of the pressure gradient, which occurred in a rather narrow Mach number range. The effects of changes in angle of attack, Mach number, and dynamic pressure are also shown by chordwise pressure distributions for the range of test conditions experienced. Reynolds numbers for the tests ranged from 5.7 to 8.4 x 1,000,000.

  10. Using supercritical fluids to refine hydrocarbons

    DOEpatents

    Yarbro, Stephen Lee

    2015-06-09

    A system and method for reactively refining hydrocarbons, such as heavy oils with API gravities of less than 20 degrees and bitumen-like hydrocarbons with viscosities greater than 1000 cp at standard temperature and pressure, using a selected fluid at supercritical conditions. A reaction portion of the system and method delivers lightweight, volatile hydrocarbons to an associated contacting unit which operates in mixed subcritical/supercritical or supercritical modes. Using thermal diffusion, multiphase contact, or a momentum generating pressure gradient, the contacting unit separates the reaction products into portions that are viable for use or sale without further conventional refining and hydro-processing techniques.

  11. Recovery of Minerals in Martian Soils Via Supercritical Fluid Extraction

    NASA Astrophysics Data System (ADS)

    Debelak, Kenneth A.; Roth, John A.

    2001-03-01

    We are investigating the use of supercritical fluids to extract mineral and/or carbonaceous material from Martian surface soils and its igneous crust. Two candidate supercritical fluids are carbon dioxide and water. The Martian atmosphere is composed mostly of carbon dioxide (approx. 95.3%) and could therefore provide an in-situ source of carbon dioxide. Water, although present in the Martian atmosphere at only approx. 0.03%, is also a candidate supercritical solvent. Previous work done with supercritical fluids has focused primarily on their solvating properties with organic compounds. Interestingly, the first work reported by Hannay and Hogarth at a meeting of the Royal Society of London in 1879 observed that increasing or decreasing the pressure caused several inorganic salts e.g., cobalt chloride, potassium iodide, and potassium bromide, to dissolve or precipitate in supercritical ethanol. In high-pressure boilers, silica, present in most boiler feed waters, is dissolved in supercritical steam and transported as dissolved silica to the turbine blades. As the pressure is reduced the silica precipitates onto the turbine blades eventually requiring the shutdown of the generator. In supercritical water oxidation processes for waste treatment, dissolved salts present a similar problem. The solubility of silicon dioxide (SiO2) in supercritical water is shown. The solubility curve has a shape characteristic of supercritical systems. At a high pressure (greater than 1750 atmospheres) increasing the temperature results in an increase in solubility of silica, while at low pressures, less than 400 atm., the solubility decreases as temperature increases. There are only a few studies in the literature where supercritical fluids are used in extractive metallurgy. Bolt modified the Mond process in which supercritical carbon monoxide was used to produce nickel carbonyl (Ni(CO)4). Tolley and Tester studied the solubility of titanium tetrachloride (TiCl4) in supercritical CO2

  12. Development of Unsteady Aerodynamic and Aeroelastic Reduced-Order Models Using the FUN3D Code

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.; Vatsa, Veer N.; Biedron, Robert T.

    2009-01-01

    Recent significant improvements to the development of CFD-based unsteady aerodynamic reduced-order models (ROMs) are implemented into the FUN3D unstructured flow solver. These improvements include the simultaneous excitation of the structural modes of the CFD-based unsteady aerodynamic system via a single CFD solution, minimization of the error between the full CFD and the ROM unsteady aero- dynamic solution, and computation of a root locus plot of the aeroelastic ROM. Results are presented for a viscous version of the two-dimensional Benchmark Active Controls Technology (BACT) model and an inviscid version of the AGARD 445.6 aeroelastic wing using the FUN3D code.

  13. Effect of multiple engine placement on aeroelastic trim and stability of flying wing aircraft

    NASA Astrophysics Data System (ADS)

    Mardanpour, Pezhman; Richards, Phillip W.; Nabipour, Omid; Hodges, Dewey H.

    2014-01-01

    Effects of multiple engine placement on flutter characteristics of a backswept flying wing resembling the HORTEN IV are investigated using the code NATASHA (Nonlinear Aeroelastic Trim And Stability of HALE Aircraft). Four identical engines with defined mass, inertia, and angular momentum are placed in different locations along the span with different offsets from the elastic axis while fixing the location of the aircraft c.g. The aircraft experiences body freedom flutter along with non-oscillatory instabilities that originate from flight dynamics. Multiple engine placement increases flutter speed particularly when the engines are placed in the outboard portion of the wing (60-70% span), forward of the elastic axis, while the lift to drag ratio is affected negligibly. The behavior of the sub- and supercritical eigenvalues is studied for two cases of engine placement. NATASHA captures a hump body-freedom flutter with low frequency for the clean wing case, which disappears as the engines are placed on the wings. In neither case is there any apparent coalescence between the unstable modes. NATASHA captures other non-oscillatory unstable roots with very small amplitude, apparently originating with flight dynamics. For the clean-wing case, in the absence of aerodynamic and gravitational forces, the regions of minimum kinetic energy density for the first and third bending modes are located around 60% span. For the second mode, this kinetic energy density has local minima around the 20% and 80% span. The regions of minimum kinetic energy of these modes are in agreement with calculations that show a noticeable increase in flutter speed if engines are placed forward of the elastic axis at these regions.

  14. Determining XV-15 aeroelastic modes from flight data with frequency-domain methods

    NASA Technical Reports Server (NTRS)

    Acree, C. W., Jr.; Tischler, Mark B.

    1993-01-01

    The XV-15 tilt-rotor wing has six major aeroelastic modes that are close in frequency. To precisely excite individual modes during flight test, dual flaperon exciters with automatic frequency-sweep controls were installed. The resulting structural data were analyzed in the frequency domain (Fourier transformed). All spectral data were computed using chirp z-transforms. Modal frequencies and damping were determined by fitting curves to frequency-response magnitude and phase data. The results given in this report are for the XV-15 with its original metal rotor blades. Also, frequency and damping values are compared with theoretical predictions made using two different programs, CAMRAD and ASAP. The frequency-domain data-analysis method proved to be very reliable and adequate for tracking aeroelastic modes during flight-envelope expansion. This approach required less flight-test time and yielded mode estimations that were more repeatable, compared with the exponential-decay method previously used.

  15. Anomalous sorption of supercritical fluids on polymer thin films.

    PubMed

    Wang, Xiaochu; Sanchez, Isaac C

    2006-10-24

    Unusual sorption has been reported in thin polymer films exposed to near-critical CO2. When the supercritical fluid approaches the critical point, the film appears to thicken, but it is not clear whether the film swells or there is an adsorption layer on the film surface. A combination of the gradient theory of inhomogeneous systems and the Sanchez-Lacombe equation of state has been used to investigate this phenomenon. It is shown analytically that surface adsorption on an attractive surface is proportional to the compressibility of the fluid. We have also investigated numerically the sorption of supercritical CO2 on poly(dimethylsiloxane) and polyisobutylene, and supercritical 1,1-difluoroethane on polystyrene. By calculating the Gibbs adsorption and adsorption layer thickness of the supercritical fluids, we found in all cases (different substrates, different supercritical fluids) that maximum adsorption occurs when the supercritical fluid is near its compressibility maximum.

  16. Hydrogel Nanoparticles from Supercritical Technology for Pharmaceutical and Seismological Applications

    NASA Astrophysics Data System (ADS)

    Hemingway, Melinda Graham

    This research focuses on hydrogel nanoparticle formation using miniemulsion polymerization and supercritical carbon dioxide. Hydrogel nanopowder is produced by a novel combination of inverse miniemulsion polymerization and supercritical drying (MPSD) methods. Three drying methods of miniemulsions are examined: (1) a conventional freeze drying technique, and (2) two supercritical drying techniques: (2a) supercritical fluid injection into miniemulsions, and (2b) the polymerized miniemulsion injection into supercritical fluid. Method 2b can produce non-agglomerated hydrogel nanoparticles that are free of solvent or surfactant (Chapter 2). The optimized MPSD method was applied for producing an extended release drug formulation with mucoadhesive properties. Drug nanoparticles of mesalamine, were produced using supercritical antisolvent technology and encapsulation within two hydrogels, polyacrylamide and poly(acrylic acid-co-acrylamide). The encapsulation efficiency and release profile of drug nanoparticles is compared with commercial ground mesalamine particles. The loading efficiency is influenced by morphological compatibility (Chapter 3). The MPSD method was extended for encapsulation of zinc oxide nanoparticles for UV protection in sunscreens (Chapter 4). ZnO was incorporated into the inverse miniemulsion during polymerization. The effect of process parameters are examined on absorbency of ultraviolet light and transparency of visible light. For use of hydrogel nanoparticles in a seismological application, delayed hydration is needed. Supercritical methods extend MPSD so that a hydrophobic coating can be applied on the particle surface (Chapter 5). Multiple analysis methods and coating materials were investigated to elucidate compatibility of coating material to polyacrylamide hydrogel. Coating materials of poly(lactide), poly(sulphone), poly(vinyl acetate), poly(hydroxybutyrate), Geluice 50-13, Span 80, octadecyltrichlorosilane, and perfluorobutane sulfate (PFBS

  17. FPCAS3D User's guide: A three dimensional full potential aeroelastic program, version 1

    NASA Technical Reports Server (NTRS)

    Bakhle, Milind A.

    1995-01-01

    The FPCAS3D computer code has been developed for aeroelastic stability analysis of bladed disks such as those in fans, compressors, turbines, propellers, or propfans. The aerodynamic analysis used in this code is based on the unsteady three-dimensional full potential equation which is solved for a blade row. The structural analysis is based on a finite-element model for each blade. Detailed explanations of the aerodynamic analysis, the numerical algorithms, and the aeroelastic analysis are not given in this report. This guide can be used to assist in the preparation of the input data required by the FPCAS3D code. A complete description of the input data is provided in this report. In addition, six examples, including inputs and outputs, are provided.

  18. Aeroelastic Studies of a Rectangular Wing with a Hole: Correlation of Theory and Experiment

    NASA Technical Reports Server (NTRS)

    Conyers, Howard J.; Dowell, Earl H.; Hall, Kenneth C.

    2010-01-01

    Two rectangular wing models with a hole have been designed and tested in the Duke University wind tunnel to better understand the effects of damage. A rectangular hole is used to simulate damage. The wing with a hole is modeled structurally as a thin elastic plate using the finite element method. The unsteady aerodynamics of the plate-like wing with a hole is modeled using the doublet lattice method. The aeroelastic equations of motion are derived using Lagrange's equation. The flutter boundary is found using the V-g method. The hole's location effects the wing's mass, stiffness, aerodynamics and therefore the aeroelastic behavior. Linear theoretical models were shown to be capable of predicting the critical flutter velocity and frequency as verified by wind tunnel tests.

  19. Studying aeroelastic oscillations with tensoresistor and Arduino

    NASA Astrophysics Data System (ADS)

    Demenkov, Maxim

    2018-05-01

    We describe a modification of the Flexy device, originally developed at the Slovak University of Technology. With our version of it, constructed at the Institute of Control Sciences, one can study aeroelastic oscillations (flutter) using cheap and freely available components. Flex sensor (tensoresistor) changes its electrical resistance proportionally to its bending. The lightweight plastic plate (attached to the resistor) plays the role of a wing in the flow generated by a small fan. Both fan and tensoresistor are connected to an Arduino microcontroller and it is possible to obtain and analyze experimental data from the device on a personal computer.

  20. Aeroelastic instability in a jet plate interaction

    NASA Astrophysics Data System (ADS)

    Antoine, Maxime; Hémon, Pascal; de Langre, Emmanuel

    2007-11-01

    A flexible sheet subject to a normal impinging air jet can oscillate. We present a simple experiment that shows that added damping generated by the jet is responsible for this aeroelastic instability. The cases of planar jet and circular jet are studied. A model is presented to describe this instability and the results agree well with the experimental observations. The nozzle geometry is found to be a dominant parameter that drives the critical distance between the jet and the sheet, under which the instability develops. To cite this article: M. Antoine et al., C. R. Mecanique 335 (2007).

  1. [Study on the dynamic model with supercritical CO2 fluid extracting the lipophilic components in Panax notoginseng].

    PubMed

    Duan, Xian-Chun; Wang, Yong-Zhong; Zhang, Jun-Ru; Luo, Huan; Zhang, Heng; Xia, Lun-Zhu

    2011-08-01

    To establish a dynamics model for extracting the lipophilic components in Panax notoginseng with supercritical carbon dioxide (CO2). Based on the theory of counter-flow mass transfer and the molecular mass transfer between the material and the supercritical CO2 fluid under differential mass-conservation equation, a dynamics model was established and computed to compare forecasting result with the experiment process. A dynamics model has been established for supercritical CO2 to extract the lipophilic components in Panax notoginseng, the computed result of this model was consistent with the experiment process basically. The supercritical fluid extract dynamics model established in this research can expound the mechanism in the extract process of which lipophilic components of Panax notoginseng dissolve the mass transfer and is tallied with the actual extract process. This provides certain instruction for the supercritical CO2 fluid extract' s industrialization enlargement.

  2. Structure Detection of Nonlinear Aeroelastic Systems with Application to Aeroelastic Flight Test Data. Part 2

    NASA Technical Reports Server (NTRS)

    Kukreja, Sunil L.; Brenner, martin J.

    2006-01-01

    This viewgraph presentation reviews the 1. Motivation for the study 2. Nonlinear Model Form 3. Structure Detection 4. Least Absolute Shrinkage and Selection Operator (LASSO) 5. Objectives 6. Results 7. Assess LASSO as a Structure Detection Tool: Simulated Nonlinear Models 8. Applicability to Complex Systems: F/A-18 Active Aeroelastic Wing Flight Test Data. The authors conclude that 1. this is a novel approach for detecting the structure of highly over-parameterised nonlinear models in situations where other methods may be inadequate 2. that it is a practical significance in the analysis of aircraft dynamics during envelope expansion and could lead to more efficient control strategies and 3. this could allow greater insight into the functionality of various systems dynamics, by providing a quantitative model which is easily interpretable

  3. Supercritical fuel injection system

    NASA Technical Reports Server (NTRS)

    Marek, C. J.; Cooper, L. P. (Inventor)

    1980-01-01

    a fuel injection system for gas turbines is described including a pair of high pressure pumps. The pumps provide fuel and a carrier fluid such as air at pressures above the critical pressure of the fuel. A supercritical mixing chamber mixes the fuel and carrier fluid and the mixture is sprayed into a combustion chamber. The use of fuel and a carrier fluid at supercritical pressures promotes rapid mixing of the fuel in the combustion chamber so as to reduce the formation of pollutants and promote cleaner burning.

  4. Nonlinear Aeroelastic Analysis of the HIAD TPS Coupon in the NASA 8' High Temperature Tunnel: Theory and Experiment

    NASA Technical Reports Server (NTRS)

    Goldman, Benjamin D.; Scott, Robert C,; Dowell, Earl H.

    2014-01-01

    The purpose of this work is to develop a set of theoretical and experimental techniques to characterize the aeroelasticity of the thermal protection system (TPS) on the NASA Hypersonic Inflatable Aerodynamic Decelerator (HIAD). A square TPS coupon experiences trailing edge oscillatory behavior during experimental testing in the 8' High Temperature Tunnel (HTT), which may indicate the presence of aeroelastic flutter. Several theoretical aeroelastic models have been developed, each corresponding to a different experimental test configuration. Von Karman large deflection theory is used for the plate-like components of the TPS, along with piston theory for the aerodynamics. The constraints between the individual TPS layers and the presence of a unidirectional foundation at the back of the coupon are included by developing the necessary energy expressions and using the Rayleigh Ritz method to derive the nonlinear equations of motion. Free vibrations and limit cycle oscillations are computed and the frequencies and amplitudes are compared with accelerometer and photogrammetry data from the experiments.

  5. Aeroelastic Analysis of a Distributed Electric Propulsion Wing

    NASA Technical Reports Server (NTRS)

    Massey, Steven J.; Stanford, Bret K.; Wieseman, Carol D.; Heeg, Jennifer

    2017-01-01

    An aeroelastic analysis of a prototype distributed electric propulsion wing is presented. Results using MSC Nastran (Registered Trademark) doublet lattice aerodynamics are compared to those based on FUN3D Reynolds Averaged Navier- Stokes aerodynamics. Four levels of grid refinement were examined for the FUN3D solutions and solutions were seen to be well converged. It was found that no oscillatory instability existed, only that of divergence, which occurred in the first bending mode at a dynamic pressure of over three times the flutter clearance condition.

  6. Aeroelastic Response and Protection of Space Shuttle External Tank Cable Trays

    NASA Technical Reports Server (NTRS)

    Edwards, John W.; Keller, Donald F.; Schuster, David M.; Piatak, David J.; Rausch, Russ D.; Bartels, Robert E.; Ivanco, Thomas G.; Cole, Stanley R.; Spain, Charles V.

    2005-01-01

    Sections of the Space Shuttle External Tank Liquid Oxygen (LO2) and Liquid Hydrogen (LH2) cable trays are shielded from potentially damaging airloads with foam Protuberance Aerodynamic Load (PAL) Ramps. Flight standard design LO2 and LH2 cable tray sections were tested with and without PAL Ramp models in the United States Air Force Arnold Engineering Development Center s (AEDC) 16T transonic wind tunnel to obtain experimental data on the aeroelastic stability and response characteristics of the trays and as part of the larger effort to determine whether the PAL ramps can be safely modified or removed. Computational Fluid Dynamic simulations of the full-stack shuttle launch configuration were used to investigate the flow characeristics around and under the cable trays without the protective PAL ramps and to define maximum crossflow Mach numbers and dynamic pressures experienced during launch. These crossflow conditions were used to establish wind tunnel test conditions which also included conservative margins. For all of the conditions and configurations tested, no aeroelastic instabilities or unacceptable dynamic response levels were encountered and no visible structural damage was experienced by any of the tested cable tray sections. Based upon this aeroelastic characterization test, three potentially acceptable alternatives are available for the LO2 cable tray PAL Ramps: Mini-Ramps, Tray Fences, or No Ramps. All configurations were tested to maximum conditions, except the LH2 trays at -15 deg. crossflow angle. This exception is the only caveat preventing the proposal of acceptable alternative configurations for the LH2 trays as well. Structural assessment of all tray loads and tray response measurements from launches following the Shuttle Return To Flight with the existing PAL Ramps will determine the acceptability of these PAL Ramp alternatives.

  7. Supercritical fluid technology: concepts and pharmaceutical applications.

    PubMed

    Deshpande, Praful Balavant; Kumar, G Aravind; Kumar, Averineni Ranjith; Shavi, Gopal Venkatesh; Karthik, Arumugam; Reddy, Meka Sreenivasa; Udupa, Nayanabhirama

    2011-01-01

    In light of environmental apprehension, supercritical fluid technology (SFT) exhibits excellent opportunities to accomplish key objectives in the drug delivery sector. Supercritical fluid extraction using carbon dioxide (CO(2)) has been recognized as a green technology. It is a clean and versatile solvent with gas-like diffusivity and liquid-like density in the supercritical phase, which has provided an excellent alternative to the use of chemical solvents. The present commentary provides an overview of different techniques using supercritical fluids and their future opportunity for the drug delivery industry. Some of the emerging applications of SFT in pharmaceuticals, such as particle design, drug solubilization, inclusion complex, polymer impregnation, polymorphism, drug extraction process, and analysis, are also covered in this review. The data collection methods are based on the recent literature related to drug delivery systems using SFT platforms. SFT has become a much more versatile and environmentally attractive technology that can handle a variety of complicated problems in pharmaceuticals. This cutting-edge technology is growing predominantly to surrogate conventional unit operations in relevance to the pharmaceutical production process. Supercritical fluid technology has recently drawn attention in the field of pharmaceuticals. It is a distinct conception that utilizes the solvent properties of supercritical fluids above their critical temperature and pressure, where they exhibit both liquid-like and gas-like properties, which can enable many pharmaceutical applications. For example, the liquid-like properties provide benefits in extraction processes of organic solvents or impurities, drug solubilization, and polymer plasticization, and the gas-like features facilitate mass transfer processes. It has become a much more versatile and environmentally attractive technology that can handle a variety of complicated problems in pharmaceuticals. This review is

  8. Mapped Chebyshev Pseudo-Spectral Method for Dynamic Aero-Elastic Problem of Limit Cycle Oscillation

    NASA Astrophysics Data System (ADS)

    Im, Dong Kyun; Kim, Hyun Soon; Choi, Seongim

    2018-05-01

    A mapped Chebyshev pseudo-spectral method is developed as one of the Fourier-spectral approaches and solves nonlinear PDE systems for unsteady flows and dynamic aero-elastic problem in a given time interval, where the flows or elastic motions can be periodic, nonperiodic, or periodic with an unknown frequency. The method uses the Chebyshev polynomials of the first kind for the basis function and redistributes the standard Chebyshev-Gauss-Lobatto collocation points more evenly by a conformal mapping function for improved numerical stability. Contributions of the method are several. It can be an order of magnitude more efficient than the conventional finite difference-based, time-accurate computation, depending on the complexity of solutions and the number of collocation points. The method reformulates the dynamic aero-elastic problem in spectral form for coupled analysis of aerodynamics and structures, which can be effective for design optimization of unsteady and dynamic problems. A limit cycle oscillation (LCO) is chosen for the validation and a new method to determine the LCO frequency is introduced based on the minimization of a second derivative of the aero-elastic formulation. Two examples of the limit cycle oscillation are tested: nonlinear, one degree-of-freedom mass-spring-damper system and two degrees-of-freedom oscillating airfoil under pitch and plunge motions. Results show good agreements with those of the conventional time-accurate simulations and wind tunnel experiments.

  9. Aeroelastic Analysis for Rotorcraft in Flight or in a Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Johnson, W.

    1977-01-01

    An analytical model is developed for the aeroelastic behavior of a rotorcraft in flight or in a wind tunnel. A unified development is presented for a wide class of rotors, helicopters, and operating conditions. The equations of motion for the rotor are derived using an integral Newtonian method, which gives considerable physical insight into the blade inertial and aerodynamic forces. The rotor model includes coupled flap-lag bending and blade torsion degrees of freedom, and is applicable to articulated, hingeless, gimballed, and teetering rotors with an arbitrary number of blades. The aerodynamic model is valid for both high and low inflow, and for axial and nonaxial flight. The rotor rotational speed dynamics, including engine inertia and damping, and the perturbation inflow dynamics are included. For a rotor on a wind-tunnel support, a normal mode representation of the test module, strut, and balance system is used. The aeroelastic analysis for the rotorcraft in flight is applicable to a general two-rotor aircraft, including single main-rotor and tandem helicopter configurations, and side-by-side or tilting proprotor aircraft configurations.

  10. Aeroelastic response and blade loads of a composite rotor in forward flight

    NASA Technical Reports Server (NTRS)

    Smith, Edward C.; Chopra, Inderjit

    1992-01-01

    The aeroelastic response, blade and hub loads, and shaft-fixed aeroelastic stability is investigated for a helicopter with elastically tailored composite rotor blades. A new finite element based structural analysis including nonclassical effects such as transverse shear, torsion related warping and inplane elasticity is integrated with the University of Maryland Advanced Rotorcraft Code. The structural dynamics analysis is correlated against both experimental data and detailed finite element results. Correlation of rotating natural frequencies of coupled composite box-beams is generally within 5-10 percent. The analysis is applied to a soft-inplane hingeless rotor helicopter in free flight propulsive trim. For example, lag mode damping can be increased 300 percent over a range of thrust conditions and forward speeds. The influence of unsteady aerodynamics on the blade response and vibratory hub loads is also investigated. The magnitude and phase of the flap response is substantially altered by the unsteady aerodynamic effects. Vibratory hub loads increase up to 30 percent due to unsteady aerodynamic effects.

  11. Impact of magnetic suspension stiffness on aeroelastic compressor rotor vibrations of gas pumping units

    NASA Astrophysics Data System (ADS)

    Mekhonoshina, E. V.; Modorskii, V. Ya.

    2016-10-01

    This paper describes simulation of oscillation modes in the elastic rotor supports with the gas-dynamic flow influence on the rotor in the magnetic suspension in the course of computational experiments. The system of engineering analysis ANSYS 15.0 was used as a numerical tool. The finite volume method for gas dynamics and finite element method for evaluating components of the stress-strain state (SSS) were applied for computation. The research varied magnetic suspension rigidity and estimated the SSS components in the system "gas-dynamic flow - compressor rotor - magnetic suspensions." The influence of aeroelastic effects on the impeller and the rotor on the deformability of vibration magnetic suspension was detected.

  12. Developments in steady and unsteady aerodynamics for use in aeroelastic analysis and design. [for supersonic cruise aircraft

    NASA Technical Reports Server (NTRS)

    Yates, E. C., Jr.; Bland, S. R.

    1976-01-01

    A review is given of seven research projects which are aimed at improving the generality, accuracy, and computational efficiency of steady and unsteady aerodynamic theory for use in aeroelastic analysis and design. These projects indicate three major thrusts of current research efforts: (1) more realistic representation of steady and unsteady subsonic and supersonic loads on aircraft configurations of general shape with emphasis on structural-design applications, (2) unsteady aerodynamics for application in active-controls analyses, and (3) unsteady aerodynamics for the frequently critical transonic speed range. The review of each project includes theoretical background, description of capabilities, results of application, current status, and plans for further development and use.

  13. On-line coupling of supercritical fluid extraction and chromatographic techniques.

    PubMed

    Sánchez-Camargo, Andrea Del Pilar; Parada-Alfonso, Fabián; Ibáñez, Elena; Cifuentes, Alejandro

    2017-01-01

    This review summarizes and discusses recent advances and applications of on-line supercritical fluid extraction coupled to liquid chromatography, gas chromatography, and supercritical fluid chromatographic techniques. Supercritical fluids, due to their exceptional physical properties, provide unique opportunities not only during the extraction step but also in the separation process. Although supercritical fluid extraction is especially suitable for recovery of non-polar organic compounds, this technique can also be successfully applied to the extraction of polar analytes by the aid of modifiers. Supercritical fluid extraction process can be performed following "off-line" or "on-line" approaches and their main features are contrasted herein. Besides, the parameters affecting the supercritical fluid extraction process are explained and a "decision tree" is for the first time presented in this review work as a guide tool for method development. The general principles (instrumental and methodological) of the different on-line couplings of supercritical fluid extraction with chromatographic techniques are described. Advantages and shortcomings of supercritical fluid extraction as hyphenated technique are discussed. Besides, an update of the most recent applications (from 2005 up to now) of the mentioned couplings is also presented in this review. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Comprehensive Review of Applicable Supercritical Fluid Extraction Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harvey, Scott; Wright, Cherylyn W.; Wright, Bob W.

    2001-09-10

    This comprehensive supercritical fluid extraction (SFE) literature review is divided into three major sections. The first section describes the electronic literature search details including the abstract service used and the different topics searched. This section also contains an overview of the seven search topics that yielded relevant references along with a brief synopsis of the most significant literature citations. These seven groupings are (1) chemical warfare agents; (2) explosives; (3) hazardous chemicals; (4) poisons, toxins and mycotoxins; (5) toxic (lethal) chemical and toxicants; (6) pesticides in soil; and (7) pesticides from plant and animal tissues. The second section contains tablesmore » of each of these groupings. Each of the seven tables contains entries for individual literature citations listed along with the specific compounds or compound classes that are addressed. The third section refers to the abstracts used in the literature search.« less

  15. Solute Nucleation and Growth in Supercritical Fluid Mixtures

    NASA Technical Reports Server (NTRS)

    Smedley, Gregory T.; Wilemski, Gerald; Rawlins, W. Terry; Joshi, Prakash; Oakes, David B.; Durgin, William W.

    1996-01-01

    This research effort is directed toward two primary scientific objectives: (1) to determine the gravitational effect on the measurement of nucleation and growth rates near a critical point and (2) to investigate the nucleation process in supercritical fluids to aid in the evaluation and development of existing theoretical models and practical applications. A nucleation pulse method will be employed for this investigation using a rapid expansion to a supersaturated state that is maintained for approximately 1 ms followed by a rapid recompression to a less supersaturated state that effectively terminates nucleation while permitting growth to continue. Nucleation, which occurs during the initial supersaturated state, is decoupled from growth by producing rapid pressure changes. Thermodynamic analysis, condensation modeling, apparatus design, and optical diagnostic design necessary for the initiation of a theoretical and experimental investigation of naphthalene nucleation from supercritical CO2 have been completed.

  16. Theoretical models for supercritical fluid extraction.

    PubMed

    Huang, Zhen; Shi, Xiao-Han; Jiang, Wei-Juan

    2012-08-10

    For the proper design of supercritical fluid extraction processes, it is essential to have a sound knowledge of the mass transfer mechanism of the extraction process and the appropriate mathematical representation. In this paper, the advances and applications of kinetic models for describing supercritical fluid extraction from various solid matrices have been presented. The theoretical models overviewed here include the hot ball diffusion, broken and intact cell, shrinking core and some relatively simple models. Mathematical representations of these models have been in detail interpreted as well as their assumptions, parameter identifications and application examples. Extraction process of the analyte solute from the solid matrix by means of supercritical fluid includes the dissolution of the analyte from the solid, the analyte diffusion in the matrix and its transport to the bulk supercritical fluid. Mechanisms involved in a mass transfer model are discussed in terms of external mass transfer resistance, internal mass transfer resistance, solute-solid interactions and axial dispersion. The correlations of the external mass transfer coefficient and axial dispersion coefficient with certain dimensionless numbers are also discussed. Among these models, the broken and intact cell model seems to be the most relevant mathematical model as it is able to provide realistic description of the plant material structure for better understanding the mass-transfer kinetics and thus it has been widely employed for modeling supercritical fluid extraction of natural matters. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Fischer-Tropsch synthesis in supercritical phase carbon dioxide: Recycle rates

    NASA Astrophysics Data System (ADS)

    Soti, Madhav

    With increasing oil prices and attention towards the reduction of anthropogenic CO2, the use of supercritical carbon dioxide for Fischer Tropsch Synthesis (FTS) is showing promise in fulfilling the demand of clean liquid fuels. The evidence of consumption of carbon dioxide means that it need not to be removed from the syngas feed to the Fischer Tropsch reactor after the gasification process. Over the last five years, research at SIUC have shown that FTS in supercritical CO2reduces the selectivities for methane, enhances conversion, reduces the net CO2produces in the coal to liquid fuels process and increase the life of the catalyst. The research has already evaluated the impact of various operating and feed conditions on the FTS for the once through process. We believe that the integration of unreacted feed recycle would enhance conversion, increase the yield and throughput of liquid fuels for the same reactor size. The proposed research aims at evaluating the impact of recycle of the unreacted feed gas along with associated product gases on the performance of supercritical CO2FTS. The previously identified conditions will be utilized and various recycle ratios will be evaluated in this research once the recycle pump and associated fittings have been integrated to the supercritical CO2FTS. In this research two different catalysts (Fe-Zn-K, Fe-Co-Zn-K) were analyzed under SC-FTS in different recycle rate at 350oC and 1200 psi. The use of recycle was found to improve conversion from 80% to close to 100% with both catalysts. The experiment recycle rate at 4.32 and 4.91 was clearly surpassing theoretical recycle curve. The steady state reaction rate constant was increased to 0.65 and 0.8 min-1 for recycle rate of 4.32 and 4.91 respectively. Carbon dioxide selectivity was decreased for both catalyst as it was converting to carbon monoxide. Carbon dioxide consumption was increased from 0.014 to 0.034 mole fraction. This concluded that CO2is being used in the system and

  18. Modern supercritical fluid technology for food applications.

    PubMed

    King, Jerry W

    2014-01-01

    This review provides an update on the use of supercritical fluid (SCF) technology as applied to food-based materials. It advocates the use of the solubility parameter theory (SPT) for rationalizing the results obtained when employing sub- and supercritical media to food and nutrient-bearing materials and for optimizing processing conditions. Total extraction and fractionation of foodstuffs employing SCFs are compared and are illustrated by using multiple fluids and unit processes to obtain the desired food product. Some of the additional prophylactic benefits of using carbon dioxide as the processing fluid are explained and illustrated with multiple examples of commercial products produced using SCF media. I emphasize the role of SCF technology in the context of environmentally benign and sustainable processing, as well as its integration into an overall biorefinery concept. Conclusions are drawn in terms of current trends in the field and future research that is needed to secure new applications of the SCF platform as applied in food science and technology.

  19. Loads Model Development and Analysis for the F/A-18 Active Aeroelastic Wing Airplane

    NASA Technical Reports Server (NTRS)

    Allen, Michael J.; Lizotte, Andrew M.; Dibley, Ryan P.; Clarke, Robert

    2005-01-01

    The Active Aeroelastic Wing airplane was successfully flight-tested in March 2005. During phase 1 of the two-phase program, an onboard excitation system provided independent control surface movements that were used to develop a loads model for the wing structure and wing control surfaces. The resulting loads model, which was used to develop the control laws for phase 2, is described. The loads model was developed from flight data through the use of a multiple linear regression technique. The loads model input consisted of aircraft states and control surface positions, in addition to nonlinear inputs that were calculated from flight-measured parameters. The loads model output for each wing consisted of wing-root bending moment and torque, wing-fold bending moment and torque, inboard and outboard leading-edge flap hinge moment, trailing-edge flap hinge moment, and aileron hinge moment. The development of the Active Aeroelastic Wing loads model is described, and the ability of the model to predict loads during phase 2 research maneuvers is demonstrated. Results show a good match to phase 2 flight data for all loads except inboard and outboard leading-edge flap hinge moments at certain flight conditions. The average load prediction errors for all loads at all flight conditions are 9.1 percent for maximum stick-deflection rolls, 4.4 percent for 5-g windup turns, and 7.7 percent for 4-g rolling pullouts.

  20. Supercritical water oxidation of products of human metabolism

    NASA Technical Reports Server (NTRS)

    Tester, Jefferson W.; Orge A. achelling, Richard K. ADTHOMASSON; Orge A. achelling, Richard K. ADTHOMASSON

    1986-01-01

    Although the efficient destruction of organic material was demonstrated in the supercritical water oxidation process, the reaction kinetics and mechanisms are unknown. The kinetics and mechanisms of carbon monoxide and ammonia oxidation in and reaction with supercritical water were studied experimentally. Experimental oxidation of urine and feces in a microprocessor controlled system was performed. A minaturized supercritical water oxidation process for space applications was design, including preliminary mass and energy balances, power, space and weight requirements.

  1. Effects of structural nonlinearity on subsonic aeroelastic characteristics of an aircraft wing with control surface

    NASA Astrophysics Data System (ADS)

    Bae, J.-S.; Inman, D. J.; Lee, I.

    2004-07-01

    The nonlinear aeroelastic characteristics of an aircraft wing with a control surface are investigated. A doublet-hybrid method is used for the calculation of subsonic unsteady aerodynamic forces and the minimum-state approximation is used for the approximation of aerodynamic forces. A free vibration analysis is performed using the finite element and the fictitious mass methods. The structural nonlinearity in the control surface hinge is represented by both free-play and a bilinear nonlinearity. These nonlinearities are linearized using the describing function method. From the nonlinear flutter analysis, various types of limit cycle oscillations and periodic motions are observed in a wide range of air speeds below the linear flutter boundary. The effects of structural nonlinearities on aeroelastic characteristics are investigated.

  2. Nested subcritical flows within supercritical systems

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Braun, M. J.; Wheeler, R. L., III; Mullen, R. L.

    1985-01-01

    In supercritical systems the design inlet and outlet pressures are maintained above the thermaodynamic critical pressure P sub C. Designers rely on this simple rule of thumb to circumvent problems associated with a subcritical pressure regime nested within the supercritical pressure system along with the uncertainties in heat transfer, fluid mechanics, and thermophysical property variations. The simple rule of thumb is adequate in many low-power designs but is inadequate for high-performance turbomachines and linear systems, where nested two-phase regions can exist. Examples for a free-jet expansion with backpressure greater than P sub C and a rotor (bearing) with ambient pressure greater than P sub C illustrate the existence of subcritical pressure regimes nested within supercritical systems.

  3. In-Flight Aeroelastic Stability of the Thermal Protection System on the NASA HIAD, Part I: Linear Theory

    NASA Technical Reports Server (NTRS)

    Goldman, Benjamin D.; Dowell, Earl H.; Scott, Robert C.

    2014-01-01

    Conical shell theory and piston theory aerodynamics are used to study the aeroelastic stability of the thermal protection system (TPS) on the NASA Hypersonic Inflatable Aerodynamic Decelerator (HIAD). Structural models of the TPS consist of single or multiple orthotropic conical shell systems resting on several circumferential linear elastic supports. The shells in each model may have pinned (simply-supported) or elastically-supported edges. The Lagrangian is formulated in terms of the generalized coordinates for all displacements and the Rayleigh-Ritz method is used to derive the equations of motion. The natural modes of vibration and aeroelastic stability boundaries are found by calculating the eigenvalues and eigenvectors of a large coefficient matrix. When the in-flight configuration of the TPS is approximated as a single shell without elastic supports, asymmetric flutter in many circumferential waves is observed. When the elastic supports are included, the shell flutters symmetrically in zero circumferential waves. Structural damping is found to be important in this case. Aeroelastic models that consider the individual TPS layers as separate shells tend to flutter asymmetrically at high dynamic pressures relative to the single shell models. Several parameter studies also examine the effects of tension, orthotropicity, and elastic support stiffness.

  4. Surfactant/Supercritical Fluid Cleaning of Contaminated Substrates

    NASA Technical Reports Server (NTRS)

    White, Gary L.

    1997-01-01

    CFC's and halogenated hydrocarbon solvents have been the solvents of choice to degrease and otherwise clean precision metal parts to allow proper function. Recent regulations have, however, rendered most of these solvents unacceptable for these purposes. New processes which are being used or which have been proposed to replace these solvents usually either fail to remove water soluble contaminants or produce significant aqueous wastes which must then be disposed of. In this work, a new method for cleaning surfaces will be investigated. Solubility of typical contaminants such as lubricating greases and phosphatizing bath residues will be studied in several surfactant/supercritical fluid solutions. The effect of temperature, pressure, and the composition of the cleaning mixture on the solubility of oily, polar, and ionic contaminants will be investigated. A reverse micellar solution in a supercritical light hydrocarbon solvent will be used to clean samples of industrial wastes. A reverse micellar solution is one where water is dissolved into a non-polar solvent with the aid of a surfactant. The solution will be capable of dissolving both water-soluble contaminants and oil soluble contaminants. Once the contaminants have been dissolved into the solution they will be separated from the light hydrocarbon and precipitated by a relatively small pressure drop and the supercritical solvent will be available for recycle for reuse. The process will be compared to the efficacy of supercritical CO2 cleaning by attempting to clean the same types of substrates and machining wastes with the same contaminants using supercritical CO2. It is anticipated that the supercritical CO2 process will not be capable of removing ionic residues.

  5. Supercritical synthesis of biodiesel.

    PubMed

    Bernal, Juana M; Lozano, Pedro; García-Verdugo, Eduardo; Burguete, M Isabel; Sánchez-Gómez, Gregorio; López-López, Gregorio; Pucheault, Mathieu; Vaultier, Michel; Luis, Santiago V

    2012-07-23

    The synthesis of biodiesel fuel from lipids (vegetable oils and animal fats) has gained in importance as a possible source of renewable non-fossil energy in an attempt to reduce our dependence on petroleum-based fuels. The catalytic processes commonly used for the production of biodiesel fuel present a series of limitations and drawbacks, among them the high energy consumption required for complex purification operations and undesirable side reactions. Supercritical fluid (SCF) technologies offer an interesting alternative to conventional processes for preparing biodiesel. This review highlights the advances, advantages, drawbacks and new tendencies involved in the use of supercritical fluids (SCFs) for biodiesel synthesis.

  6. Wing Torsional Stiffness Tests of the Active Aeroelastic Wing F/A-18 Airplane

    NASA Technical Reports Server (NTRS)

    Lokos, William A.; Olney, Candida D.; Crawford, Natalie D.; Stauf, Rick; Reichenbach, Eric Y.

    2002-01-01

    The left wing of the Active Aeroelastic Wing (AAW) F/A-18 airplane has been ground-load-tested to quantify its torsional stiffness. The test has been performed at the NASA Dryden Flight Research Center in November 1996, and again in April 2001 after a wing skin modification was performed. The primary objectives of these tests were to characterize the wing behavior before the first flight, and provide a before-and-after measurement of the torsional stiffness. Two streamwise load couples have been applied. The wing skin modification is shown to have more torsional flexibility than the original configuration has. Additionally, structural hysteresis is shown to be reduced by the skin modification. Data comparisons show good repeatability between the tests.

  7. Effect of supercritical fluid density on nanoencapsulated drug particle size using the supercritical antisolvent method.

    PubMed

    Kalani, Mahshid; Yunus, Robiah

    2012-01-01

    The reported work demonstrates and discusses the effect of supercritical fluid density (pressure and temperature of supercritical fluid carbon dioxide) on particle size and distribution using the supercritical antisolvent (SAS) method in the purpose of drug encapsulation. In this study, paracetamol was encapsulated inside L-polylactic acid, a semicrystalline polymer, with different process parameters, including pressure and temperature, using the SAS process. The morphology and particle size of the prepared nanoparticles were determined by scanning electron microscopy and transmission electron microscopy. The results revealed that increasing temperature enhanced mean particle size due to the plasticizing effect. Furthermore, increasing pressure enhanced molecular interaction and solubility; thus, particle size was reduced. Transmission electron microscopy images defined the internal structure of nanoparticles. Thermal characteristics of nanoparticles were also investigated via differential scanning calorimetry. Furthermore, X-ray diffraction pattern revealed the changes in crystallinity structure during the SAS process. In vitro drug release analysis determined the sustained release of paracetamol in over 4 weeks.

  8. Effect of supercritical fluid density on nanoencapsulated drug particle size using the supercritical antisolvent method

    PubMed Central

    Kalani, Mahshid; Yunus, Robiah

    2012-01-01

    The reported work demonstrates and discusses the effect of supercritical fluid density (pressure and temperature of supercritical fluid carbon dioxide) on particle size and distribution using the supercritical antisolvent (SAS) method in the purpose of drug encapsulation. In this study, paracetamol was encapsulated inside L-polylactic acid, a semicrystalline polymer, with different process parameters, including pressure and temperature, using the SAS process. The morphology and particle size of the prepared nanoparticles were determined by scanning electron microscopy and transmission electron microscopy. The results revealed that increasing temperature enhanced mean particle size due to the plasticizing effect. Furthermore, increasing pressure enhanced molecular interaction and solubility; thus, particle size was reduced. Transmission electron microscopy images defined the internal structure of nanoparticles. Thermal characteristics of nanoparticles were also investigated via differential scanning calorimetry. Furthermore, X-ray diffraction pattern revealed the changes in crystallinity structure during the SAS process. In vitro drug release analysis determined the sustained release of paracetamol in over 4 weeks. PMID:22619552

  9. Control Surface Interaction Effects of the Active Aeroelastic Wing Wind Tunnel Model

    NASA Technical Reports Server (NTRS)

    Heeg, Jennifer

    2006-01-01

    This paper presents results from testing the Active Aeroelastic Wing wind tunnel model in NASA Langley s Transonic Dynamics Tunnel. The wind tunnel test provided an opportunity to study aeroelastic system behavior under combined control surface deflections, testing for control surface interaction effects. Control surface interactions were observed in both static control surface actuation testing and dynamic control surface oscillation testing. The primary method of evaluating interactions was examination of the goodness of the linear superposition assumptions. Responses produced by independently actuating single control surfaces were combined and compared with those produced by simultaneously actuating and oscillating multiple control surfaces. Adjustments to the data were required to isolate the control surface influences. Using dynamic data, the task increases, as both the amplitude and phase have to be considered in the data corrections. The goodness of static linear superposition was examined and analysis of variance was used to evaluate significant factors influencing that goodness. The dynamic data showed interaction effects in both the aerodynamic measurements and the structural measurements.

  10. Triboelectret-based aeroelastic flutter energy harvesters

    NASA Astrophysics Data System (ADS)

    Perez, Matthias; Boisseau, Sebastien; Geisler, Matthias; Despesse, Ghislain; Reboud, Jean Luc

    2016-11-01

    This paper highlights some experimental results on several electrostatic membranes tested in a wind tunnel between 0 and 20m.s-1 for airflow energy harvesting. The main idea is to use the aeroelastic behavior of thin flexible films to induce simultaneously the capacitance variations and the polarization required by the triboelectric/electrostatic conversion. This technology provides thin and flexible devices and avoids the issue of electrets discharge. Our prototypes (<16cm2) allowed a quick startup (from 3ms-1), an electrical power-flux density from 0.1μW.cm-2 to 60μW.cm-2. In order to complete the energy harvesting chain, we have used a wireless sensor with temperature and acceleration measures coupled to a low power transmission (Bluetooth Low Energy) with reception on a smartphone.

  11. Sensitivity analysis of a wing aeroelastic response

    NASA Technical Reports Server (NTRS)

    Kapania, Rakesh K.; Eldred, Lloyd B.; Barthelemy, Jean-Francois M.

    1991-01-01

    A variation of Sobieski's Global Sensitivity Equations (GSE) approach is implemented to obtain the sensitivity of the static aeroelastic response of a three-dimensional wing model. The formulation is quite general and accepts any aerodynamics and structural analysis capability. An interface code is written to convert one analysis's output to the other's input, and visa versa. Local sensitivity derivatives are calculated by either analytic methods or finite difference techniques. A program to combine the local sensitivities, such as the sensitivity of the stiffness matrix or the aerodynamic kernel matrix, into global sensitivity derivatives is developed. The aerodynamic analysis package FAST, using a lifting surface theory, and a structural package, ELAPS, implementing Giles' equivalent plate model are used.

  12. Effects of Gravity on Supercritical Water Oxidation (SCWO) Processes

    NASA Technical Reports Server (NTRS)

    Hegde, Uday; Hicks, Michael

    2013-01-01

    The effects of gravity on the fluid mechanics of supercritical water jets are being studied at NASA to develop a better understanding of flow behaviors for purposes of advancing supercritical water oxidation (SCWO) technologies for applications in reduced gravity environments. These studies provide guidance for the development of future SCWO experiments in new experimental platforms that will extend the current operational range of the DECLIC (Device for the Study of Critical Liquids and Crystallization) Facility on board the International Space Station (ISS). The hydrodynamics of supercritical fluid jets is one of the basic unit processes of a SCWO reactor. These hydrodynamics are often complicated by significant changes in the thermo-physical properties that govern flow behavior (e.g., viscosity, thermal conductivity, specific heat, compressibility, etc), particularly when fluids transition from sub-critical to supercritical conditions. Experiments were conducted in a 150 ml reactor cell under constant pressure with water injections at various flow rates. Flow configurations included supercritical jets injected into either sub-critical or supercritical water. Profound gravitational influences were observed, particularly in the transition to turbulence, for the flow conditions under study. These results will be presented and the parameters of the flow that control jet behavior will be examined and discussed.

  13. Supercritical carbon dioxide for textile applications and recent developments

    NASA Astrophysics Data System (ADS)

    Eren, H. A.; Avinc, O.; Eren, S.

    2017-10-01

    In textile industry, supercritical carbon dioxide (scCO2), possessing liquid-like densities, mostly find an application on textile dyeing processes such as providing hydrophobic dyes an advantage on dissolving. Their gas-like low viscosities and diffusion properties can result in shorter dyeing periods in comparison with the conventional water dyeing process. Supercritical carbon dioxide dyeing is an anhydrous dyeing and this process comprises the usage of less energy and chemicals when compared to conventional water dyeing processes leading to a potential of up to 50% lower operation costs. The advantages of supercritical carbon dioxide dyeing method especially on synthetic fiber fabrics hearten leading textile companies to alter their dyeing method to this privileged waterless dyeing technology. Supercritical carbon dioxide (scCO2) waterless dyeing is widely known and applied green method for sustainable and eco-friendly textile industry. However, not only the dyeing but also scouring, desizing and different finishing applications take the advantage of supercritical carbon dioxide (scCO2). In this review, not only the principle, advantages and disadvantages of dyeing in supercritical carbon dioxide but also recent developments of scCO2 usage in different textile processing steps such as scouring, desizing and finishing are explained and commercial developments are stated and summed up.

  14. Analytical formulation of 2-D aeroelastic model in weak ground effect

    NASA Astrophysics Data System (ADS)

    Dessi, Daniele; Mastroddi, Franco; Mancini, Simone

    2013-10-01

    This paper deals with the aeroelastic modeling and analysis of a 2-D oscillating airfoil in ground effect, elastically constrained by linear and torsional springs and immersed in an incompressible potential flow (typical section) at a finite distance from the ground. This work aims to extend Theodorsen theory, valid in an unbounded flow domain, to the case of weak ground effect, i.e., for clearances above half the airfoil chord. The key point is the determination of the aerodynamic loads, first in the frequency domain and then in the time domain, accounting for their dependence on the ground distance. The method of images is exploited in order to comply with the impermeability condition on the ground. The new integral equation in the unknown vortex distribution along the chord and the wake is solved using asymptotic expansions in the perturbation parameter defined as the inverse of the non-dimensional ground clearance of the airfoil. The mathematical model describing the aeroelastic system is transformed from the frequency domain into the time domain and then in a pure differential form using a finite-state aerodynamic approximation (augmented states). The typical section, which the developed theory is applied to, is obtained as a reduced model of a wing box finite element representation, thus allowing comparison with the corresponding aeroelastic analysis carried out by a commercial solver based on a 3-D lifting surface aerodynamic model. Stability (flutter margins) and response of the airfoil both in frequency and time domains are then investigated. In particular, within the developed theory, the solution of the Wagner problem can be directly achieved confirming an asymptotic trend of the aerodynamic coefficients toward the steady-state conditions different from that relative to the unbounded domain case. The dependence of flutter speed and the frequency response functions on ground clearance is highlighted, showing the usefulness of this approach in efficiently

  15. Chemical Reactions in Supercritical Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Wai, Chien M.; Hunt, Fred; Ji, Min; Chen, Xiaoyuan

    1998-12-01

    Utilizing supercritical fluids as environmentally benign solvents for chemical synthesis is one of the new approaches in the "greening" of chemistry. Carbon dioxide is the most widely used gas for supercritical fluid studies because of its moderate critical constants, nontoxic nature, and availability in pure form. One unique property of supercritical carbon dioxide (sc-CO2) is its high solubility for fluorinated compounds. Thus sc-CO2 can be used to replace Freons that are conventionally used as solvents for synthesis of perfluoro-polymers. Another property of sc-CO2 is its miscibility with gases such as H2. Heterogeneous reactions involving these gases may become homogeneous reactions in sc-CO2. Reactions in sc-CO2 may offer several advantages including controlling phase behavior and products, increasing speed of reactions, and obtaining specific reaction channels. This paper describes the following nine types of chemical reactions reported in the literature utilizing sc-CO2 as a solvent to illustrate the unique properties of the supercritical fluid reaction systems: (i) hydrogenation and hydroformylation, (ii) synthesis of organometallic compounds, (iii) metal chelation and extraction, (iv) preparation of inorganic nanoparticles, (v) stereo-selectivity of lipase-catalyzed reactions, (vi) asymmetric catalytic hydrogenation, (vii) polymerization, (viii) Diels-Alder reaction, and (ix) free radical reactions.

  16. Field-portable supercritical CO{sub 2} extractor

    DOEpatents

    Wright, B.W.; Zemanian, T.S.; Robins, W.H.; Woodcock, L.J.

    1997-06-10

    The present invention is an apparatus for extracting organic compounds from solid materials. A generator vessel has a removable closure for receiving a solid or liquid solvent which is heated with a resistive heating element to a gaseous or supercritical phase. The removable closure is unencumbered because the side wall is penetrated with an outlet for the gaseous or supercritical solvent. The generator vessel further has a pressure transducer that provides an electronic signal related to pressure of the gaseous or supercritical solvent. The apparatus of the present invention further includes at least one extraction cell having a top and a bottom and a wall extending there between, wherein the bottom is sealably penetrated by an inlet for gaseous or supercritical solvent received through a manifold connected to the outlet, the top having an easy-open removable closure cap, and the wall having an outlet port. Finally, a permeable sample cartridge is included for holding the solid materials and to provide radial-flow of the extraction fluid, which is placed within the extraction cell. 10 figs.

  17. Field-portable supercritical CO.sub.2 extractor

    DOEpatents

    Wright, Bob W.; Zemanian, Thomas S.; Robins, William H.; Woodcock, Leslie J.

    1997-01-01

    The present invention is an apparatus for extracting organic compounds from solid materials. A generator vessel has a removable closure for receiving a solid or liquid solvent which is heated with a resistive heating element to a gaseous or supercritical phase. The removable closure is unencumbered because the side wall is penetrated with an outlet for the gaseous or supercritical solvent. The generator vessel further has a pressure transducer that provides an electronic signal related to pressure of the gaseous or supercritical solvent. The apparatus of the present invention further includes at least one extraction cell having a top and a bottom and a wall extending therebetween, wherein the bottom is sealably penetrated by an inlet for gaseous or supercritical solvent received through a manifold connected to the outlet, the top having an easy-open removable closure cap, and the wall having an outlet port. Finally, a permeable sample cartridge is included for holding the solid materials and to provide radial-flow of the extraction fluid, which is placed within the extraction cell.

  18. High-power ultrasonic system for the enhancement of mass transfer in supercritical CO2 extraction processes

    NASA Astrophysics Data System (ADS)

    Riera, Enrique; Blanco, Alfonso; García, José; Benedito, José; Mulet, Antonio; Gallego-Juárez, Juan A.; Blasco, Miguel

    2010-01-01

    Oil is an important component of almonds and other vegetable substrates that can show an influence on human health. In this work the development and validation of an innovative, robust, stable, reliable and efficient ultrasonic system at pilot scale to assist supercritical CO2 extraction of oils from different substrates is presented. In the extraction procedure ultrasonic energy represents an efficient way of producing deep agitation enhancing mass transfer processes because of some mechanisms (radiation pressure, streaming, agitation, high amplitude vibrations, etc.). A previous work to this research pointed out the feasibility of integrating an ultrasonic field inside a supercritical extractor without losing a significant volume fraction. This pioneer method enabled to accelerate mass transfer and then, improving supercritical extraction times. To commercially develop the new procedure fulfilling industrial requirements, a new configuration device has been designed, implemented, tested and successfully validated for supercritical fluid extraction of oil from different vegetable substrates.

  19. International contributions to IAEA-NEA heat transfer databases for supercritical fluids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leung, L. K. H.; Yamada, K.

    2012-07-01

    An IAEA Coordinated Research Project on 'Heat Transfer Behaviour and Thermohydraulics Code Testing for SCWRs' is being conducted to facilitate collaboration and interaction among participants from 15 organizations. While the project covers several key technology areas relevant to the development of SCWR concepts, it focuses mainly on the heat transfer aspect, which has been identified as the most challenging. Through the collaborating effort, large heat-transfer databases have been compiled for supercritical water and surrogate fluids in tubes, annuli, and bundle subassemblies of various orientations over a wide range of flow conditions. Assessments of several supercritical heat-transfer correlations were performed usingmore » the complied databases. The assessment results are presented. (authors)« less

  20. Hydrothermal Synthesis of Metal Oxide Nanoparticles in Supercritical Water

    PubMed Central

    Hayashi, Hiromichi; Hakuta, Yukiya

    2010-01-01

    This paper summarizes specific features of supercritical hydrothermal synthesis of metal oxide particles. Supercritical water allows control of the crystal phase, morphology, and particle size since the solvent's properties, such as density of water, can be varied with temperature and pressure, both of which can affect the supersaturation and nucleation. In this review, we describe the advantages of fine particle formation using supercritical water and describe which future tasks need to be solved. PMID:28883312

  1. Aeroelastic analysis and ground vibration survey of the NASA, Grumman American Yankee modified for spin testing

    NASA Technical Reports Server (NTRS)

    Kroeger, R. A.

    1977-01-01

    A complete ground vibration and aeroelastic analysis was made of a modified version of the Grumman American Yankee. The aircraft had been modified for four empennage configurations, a wing boom was added, a spin chute installed and provisions included for large masses in the wing tip to vary the lateral and directional inertia. Other minor changes were made which have much less influence on the flutter and vibrations. Neither static divergence nor aileron reversal was considered since the wing structure was not sufficiently changed to affect its static aeroelastic qualities. The aircraft was found to be free from flutter in all of the normal modes explored in the ground shake test. The analysis demonstrated freedom from flutter up to 214 miles per hour.

  2. Coupled nonlinear aeroelasticity and flight dynamics of fully flexible aircraft

    NASA Astrophysics Data System (ADS)

    Su, Weihua

    This dissertation introduces an approach to effectively model and analyze the coupled nonlinear aeroelasticity and flight dynamics of highly flexible aircraft. A reduced-order, nonlinear, strain-based finite element framework is used, which is capable of assessing the fundamental impact of structural nonlinear effects in preliminary vehicle design and control synthesis. The cross-sectional stiffness and inertia properties of the wings are calculated along the wing span, and then incorporated into the one-dimensional nonlinear beam formulation. Finite-state unsteady subsonic aerodynamics is used to compute airloads along lifting surfaces. Flight dynamic equations are then introduced to complete the aeroelastic/flight dynamic system equations of motion. Instead of merely considering the flexibility of the wings, the current work allows all members of the vehicle to be flexible. Due to their characteristics of being slender structures, the wings, tail, and fuselage of highly flexible aircraft can be modeled as beams undergoing three dimensional displacements and rotations. New kinematic relationships are developed to handle the split beam systems, such that fully flexible vehicles can be effectively modeled within the existing framework. Different aircraft configurations are modeled and studied, including Single-Wing, Joined-Wing, Blended-Wing-Body, and Flying-Wing configurations. The Lagrange Multiplier Method is applied to model the nodal displacement constraints at the joint locations. Based on the proposed models, roll response and stability studies are conducted on fully flexible and rigidized models. The impacts of the flexibility of different vehicle members on flutter with rigid body motion constraints, flutter in free flight condition, and roll maneuver performance are presented. Also, the static stability of the compressive member of the Joined-Wing configuration is studied. A spatially-distributed discrete gust model is incorporated into the time simulation

  3. Supercritical Fluid Processing of Propellant Polymers

    DTIC Science & Technology

    1991-01-01

    coffee decaffeination , spice extraction, and lipids purification. The processing principles have also long been well known and practiced in the...rn PL-TR-91 -3003 AD: AD-A234 285 Final Report Supercritical Fluid Processing for the period of Propellant Polymers September 1989 to September 1990...PROJECT TASK I’Ac K UNIT ELEMENT NO. NO. P:~53Co O 62302F 5730 0055 3𔃻U-- 11. TITLE (Include Security Classification) Supercritical Fluid Processing

  4. Structural behavior of supercritical fluids under confinement

    NASA Astrophysics Data System (ADS)

    Ghosh, Kanka; Krishnamurthy, C. V.

    2018-01-01

    The existence of the Frenkel line in the supercritical regime of a Lennard-Jones (LJ) fluid shown through molecular dynamics (MD) simulations initially and later corroborated by experiments on argon opens up possibilities of understanding the structure and dynamics of supercritical fluids in general and of the Frenkel line in particular. The location of the Frenkel line, which demarcates two distinct physical states, liquidlike and gaslike within the supercritical regime, has been established through MD simulations of the velocity autocorrelation (VACF) and radial distribution function (RDF). We, in this article, explore the changes in the structural features of supercritical LJ fluid under partial confinement using atomistic walls. The study is carried out across the Frenkel line through a series of MD simulations considering a set of thermodynamics states in the supercritical regime (P =5000 bar, 240 K ≤T ≤1500 K ) of argon well above the critical point. Confinement is partial, with atomistic walls located normal to z and extending to "infinity" along the x and y directions. In the "liquidlike" regime of the supercritical phase, particles are found to be distributed in distinct layers along the z axis with layer spacing less than one atomic diameter and the lateral RDF showing amorphous-like structure for specific spacings (packing frustration) and non-amorphous-like structure for other spacings. Increasing the rigidity of the atomistic walls is found to lead to stronger layering and increased structural order. For confinement with reflective walls, layers are found to form with one atomic diameter spacing and the lateral RDF showing close-packed structure for the smaller confinements. Translational order parameter and excess entropy assessment confirms the ordering taking place for atomistic wall and reflective wall confinements. In the "gaslike" regime of the supercritical phase, particle distribution along the spacing and the lateral RDF exhibit features

  5. Structural behavior of supercritical fluids under confinement.

    PubMed

    Ghosh, Kanka; Krishnamurthy, C V

    2018-01-01

    The existence of the Frenkel line in the supercritical regime of a Lennard-Jones (LJ) fluid shown through molecular dynamics (MD) simulations initially and later corroborated by experiments on argon opens up possibilities of understanding the structure and dynamics of supercritical fluids in general and of the Frenkel line in particular. The location of the Frenkel line, which demarcates two distinct physical states, liquidlike and gaslike within the supercritical regime, has been established through MD simulations of the velocity autocorrelation (VACF) and radial distribution function (RDF). We, in this article, explore the changes in the structural features of supercritical LJ fluid under partial confinement using atomistic walls. The study is carried out across the Frenkel line through a series of MD simulations considering a set of thermodynamics states in the supercritical regime (P=5000 bar, 240K≤T≤1500K) of argon well above the critical point. Confinement is partial, with atomistic walls located normal to z and extending to "infinity" along the x and y directions. In the "liquidlike" regime of the supercritical phase, particles are found to be distributed in distinct layers along the z axis with layer spacing less than one atomic diameter and the lateral RDF showing amorphous-like structure for specific spacings (packing frustration) and non-amorphous-like structure for other spacings. Increasing the rigidity of the atomistic walls is found to lead to stronger layering and increased structural order. For confinement with reflective walls, layers are found to form with one atomic diameter spacing and the lateral RDF showing close-packed structure for the smaller confinements. Translational order parameter and excess entropy assessment confirms the ordering taking place for atomistic wall and reflective wall confinements. In the "gaslike" regime of the supercritical phase, particle distribution along the spacing and the lateral RDF exhibit features not

  6. Supercritical Fluid Infusion of Iron Additives in Polymeric Matrices

    NASA Technical Reports Server (NTRS)

    Nazem, Negin; Taylor, Larry T.

    1999-01-01

    The objective of this project was the experimentation to measure preparation of iron nanophases within polymeric matrices via supercritical fluid infusion of iron precursors followed by thermal reduction. Another objective was to determine if supercritical CO2 could infuse into the polymer. The experiment is described along with the materials, and the supercritical fluid infusion and cure procedures. X-ray photoelectron spectra and transmission electron micrographs were obtained. The results are summarized in charts, and tables.

  7. Dynamic stability characteristics in pitch, yaw, and roll of a supercritical-wing research airplane model. [langley 8-foot transonic tunnel tests

    NASA Technical Reports Server (NTRS)

    Boyden, R. P.

    1974-01-01

    The aerodynamic damping in pitch, yaw, and roll and the oscillatory stability in pitch and yaw of a supercritical-wing research airplane model were determined for Mach numbers of 0.25 to 1.20 by using the small-amplitude forced-oscillation technique. The angle-of-attack range was from -2 deg to 20 deg. The effects of the underwing leading-edge vortex generators and the contributions of the wing, vertical tail, and horizontal tail to the appropriate damping and stability were measured.

  8. User's Guide for MSAP2D: A Program for Unsteady Aerodynamic and Aeroelastic (Flutter and Forced Response) Analysis of Multistage Compressors and Turbines. 1.0

    NASA Technical Reports Server (NTRS)

    Reddy, T. S. R.; Srivastava, R.

    1996-01-01

    This guide describes the input data required for using MSAP2D (Multi Stage Aeroelastic analysis Program - Two Dimensional) computer code. MSAP2D can be used for steady, unsteady aerodynamic, and aeroelastic (flutter and forced response) analysis of bladed disks arranged in multiple blade rows such as those found in compressors, turbines, counter rotating propellers or propfans. The code can also be run for single blade row. MSAP2D code is an extension of the original NPHASE code for multiblade row aerodynamic and aeroelastic analysis. Euler equations are used to obtain aerodynamic forces. The structural dynamic equations are written for a rigid typical section undergoing pitching (torsion) and plunging (bending) motion. The aeroelastic equations are solved in time domain. For single blade row analysis, frequency domain analysis is also provided to obtain unsteady aerodynamic coefficients required in an eigen analysis for flutter. In this manual, sample input and output are provided for a single blade row example, two blade row example with equal and unequal number of blades in the blade rows.

  9. Widom Lines in Binary Mixtures of Supercritical Fluids.

    PubMed

    Raju, Muralikrishna; Banuti, Daniel T; Ma, Peter C; Ihme, Matthias

    2017-06-08

    Recent experiments on pure fluids have identified distinct liquid-like and gas-like regimes even under supercritical conditions. The supercritical liquid-gas transition is marked by maxima in response functions that define a line emanating from the critical point, referred to as Widom line. However, the structure of analogous state transitions in mixtures of supercritical fluids has not been determined, and it is not clear whether a Widom line can be identified for binary mixtures. Here, we present first evidence for the existence of multiple Widom lines in binary mixtures from molecular dynamics simulations. By considering mixtures of noble gases, we show that, depending on the phase behavior, mixtures transition from a liquid-like to a gas-like regime via distinctly different pathways, leading to phase relationships of surprising complexity and variety. Specifically, we show that miscible binary mixtures have behavior analogous to a pure fluid and the supercritical state space is characterized by a single liquid-gas transition. In contrast, immiscible binary mixture undergo a phase separation in which the clusters transition separately at different temperatures, resulting in multiple distinct Widom lines. The presence of this unique transition behavior emphasizes the complexity of the supercritical state to be expected in high-order mixtures of practical relevance.

  10. Determination of major aromatic constituents in vanilla using an on-line supercritical fluid extraction coupled with supercritical fluid chromatography.

    PubMed

    Liang, Yanshan; Liu, Jiaqi; Zhong, Qisheng; Shen, Lingling; Yao, Jinting; Huang, Taohong; Zhou, Ting

    2018-04-01

    An on-line supercritical fluid extraction coupled with supercritical fluid chromatography method was developed for the determination of four major aromatic constituents in vanilla. The parameters of supercritical fluid extraction were systematically investigated using single factor optimization experiments and response surface methodology by a Box-Behnken design. The modifier ratio, split ratio, and the extraction temperature and pressure were the major parameters which have significant effects on the extraction. While the static extraction time, dynamic extraction time, and recycle time had little influence on the compounds with low polarity. Under the optimized conditions, the relative extraction efficiencies of all the constituents reached 89.0-95.1%. The limits of quantification were in the range of 1.123-4.747 μg. The limits of detection were in the range of 0.3368-1.424 μg. The recoveries of the four analytes were in the range of 76.1-88.9%. The relative standard deviations of intra- and interday precision ranged from 4.2 to 7.6%. Compared with other off-line methods, the present method obtained higher extraction yields for all four aromatic constituents. Finally, this method has been applied to the analysis of vanilla from different sources. On the basis of the results, the on-line supercritical fluid extraction-supercritical fluid chromatography method shows great promise in the analysis of aromatic constituents in natural products. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Transport relaxation processes in supercritical fluids

    NASA Astrophysics Data System (ADS)

    Jonas, J.

    The technique for solubility measurements of solids in compressed supercritical fluids using NMR and theoretical analysis of experimental data on collision induced scattering were examined. Initial tests for a determination of solid solubilities in supercritical fluids without mixing were previously described and these preparations have continued. Super critical carbon dioxide dissolving naphthalene, for which solubility data is already available (M. McHugh, M.E. Paulaitis, J. Chem. Eng. Data, Vol. 25 (4), 1980) is being studied. This initial testing of the NMR technique for measuring solubilities in a well characterized system should prove very valuable for our later determinations with the proposed mixing probe. Systematic experimental studies of collision induced spectra in several supercritical fluids using both Raman and Rayleigh scattering are continued. The experimental work on SF6 and CH4 was finished and the experimental data testing of the various theoretical models for collision induced scattering is being analyzed.

  12. NASTRAN level 16 user's manual updates for aeroelastic analysis of bladed discs

    NASA Technical Reports Server (NTRS)

    Elchuri, V.; Gallo, A. M.

    1980-01-01

    The NASTRAN aeroelastic and flutter capability was extended to solve a class of problems associated with axial flow turbomachines. The capabilities of the program are briefly discussed. The aerodynamic data pertaining to the bladed disc sector, the associated aerodynamic modeling, the steady aerothermoelastic 'design/analysis' formulations, and the modal, flutter, and subcritical roots analyses are described. Sample problems and their solutions are included.

  13. Aeroelastic, CFD, and Dynamic Computation and Optimization for Buffet and Flutter Application

    NASA Technical Reports Server (NTRS)

    Kandil, Osama A.

    1997-01-01

    The work presented in this paper include: 'Coupled and Uncoupled Bending-Torsion Responses of Twin-Tail Buffet'; 'Fluid/Structure Twin Tail Buffet Response Over a Wide Range of Angles of Attack'; 'Resent Advances in Multidisciplinary Aeronautical Problems of Fluids/Structures/Dynamics Interaction'; and'Development of a Coupled Fluid/Structure Aeroelastic Solver with Applications to Vortex Breakdown induced Twin Tail Buffeting.

  14. The NASA supercritical-wing technology

    NASA Technical Reports Server (NTRS)

    Bartlett, D. W.; Patterson, J. C., Jr.

    1978-01-01

    A number of high aspect ratio supercritical wings in combination with a representative wide body type fuselage were tested in the Langley 8 foot transonic pressure tunnel. The wing parameters investigated include aspect ratio, sweep, thickness to chord ratio, and camber. Subsequent to these initial series of tests, a particular wing configuration was selected for further study and development. Tests on the selected wing involved the incorporation of a larger inboard trailing edge extension, an inboard leading edge extension, and flow through nacelles. Range factors for the various supercritical wing configurations are compared with those for a reference wide body transport configuration.

  15. Aeroelastic Control of a Segmented Trailing Edge Using Fiber Optic Strain Sensing Technology

    NASA Technical Reports Server (NTRS)

    Graham, Corbin Jay; Martins, Benjamin; Suppanade, Nathan

    2014-01-01

    Currently, design of aircraft structures incorporate a safety factor which is essentially an over design to mitigate the risk of structure failure during operation. Typically this safety factor is to design the structure to withstand loads much greater than what is expected to be experienced during flight. NASA Dryden Flight Research Centers has developed a Fiber Optic Strain Sensing (FOSS) system which can measure strain values in real-time. The Aeroelastics Lab at the AERO Institute is developing a segmented trailing edged wing with multiple control surfaces that can utilize the data from the FOSS system, in conjunction with an adaptive controller to redistribute the lift across a wing. This redistribution can decrease the amount of strain experienced by the wing as well as be used to dampen vibration and reduce flutter.

  16. Supercritical Water Process for the Chemical Recycling of Waste Plastics

    NASA Astrophysics Data System (ADS)

    Goto, Motonobu

    2010-11-01

    The development of chemical recycling of waste plastics by decomposition reactions in sub- and supercritical water is reviewed. Decomposition reactions proceed rapidly and selectively using supercritical fluids compared to conventional processes. Condensation polymerization plastics such as PET, nylon, and polyurethane, are relatively easily depolymerized to their monomers in supercritical water. The monomer components are recovered in high yield. Addition polymerization plastics such as phenol resin, epoxy resin, and polyethylene, are also decomposed to monomer components with or without catalysts. Recycling process of fiber reinforced plastics has been studied. Pilot scale or commercial scale plants have been developed and are operating with sub- and supercritical fluids.

  17. Supercritical convection, critical heat flux, and coking characteristics of propane

    NASA Technical Reports Server (NTRS)

    Rousar, D. C.; Gross, R. S.; Boyd, W. C.

    1984-01-01

    The heat transfer characteristics of propane at subcritical and supercritical pressure were experimentally evaluated using electrically heated Monel K-500 tubes. A design correlation for supercritical heat transfer coefficient was established using the approach previously applied to supercritical oxygen. Flow oscillations were observed and the onset of these oscillations at supercritical pressures was correlated with wall-to-bulk temperature ratio and velocity. The critical heat flux measured at subcritical pressure was correlated with the product of velocity and subcooling. Long duration tests at fixed heat flux conditions were conducted to evaluate coking on the coolant side tube wall and coking rates comparable to RP-1 were observed.

  18. Review of the coal-fired, over-supercritical and ultra-supercritical steam power plants

    NASA Astrophysics Data System (ADS)

    Tumanovskii, A. G.; Shvarts, A. L.; Somova, E. V.; Verbovetskii, E. Kh.; Avrutskii, G. D.; Ermakova, S. V.; Kalugin, R. N.; Lazarev, M. V.

    2017-02-01

    The article presents a review of developments of modern high-capacity coal-fired over-supercritical (OSC) and ultra-supercritical (USC) steam power plants and their implementation. The basic engineering solutions are reported that ensure the reliability, economic performance, and low atmospheric pollution levels. The net efficiency of the power plants is increased by optimizing the heat balance, improving the primary and auxiliary equipment, and, which is the main thing, by increasing the throttle conditions. As a result of the enhanced efficiency, emissions of hazardous substances into the atmosphere, including carbon dioxide, the "greenhouse" gas, are reduced. To date, the exhaust steam conditions in the world power industry are p 0 ≈ 30 MPa and t 0 = 610/620°C. The efficiency of such power plants reaches 47%. The OSC plants are being operated in Germany, Denmark, Japan, China, and Korea; pilot plants are being developed in Russia. Currently, a project of a power plant for the ultra-supercritical steam conditions p 0 ≈ 35 MPa and t 0 = 700/720°C with efficiency of approximately 50% is being studied in the EU within the framework of the Thermie AD700 program, project AD 700PF. Investigations in this field have also been launched in the United States, Japan, and China. Engineering solutions are also being sought in Russia by the All-Russia Thermal Engineering Research Institute (VTI) and the Moscow Power Engineering Institute. The stated steam parameter level necessitates application of new materials, namely, nickel-base alloys. Taking into consideration high costs of nickel-base alloys and the absence in Russia of technologies for their production and manufacture of products from these materials for steam-turbine power plants, the development of power plants for steam parameters of 32 MPa and 650/650°C should be considered to be the first stage in creating the USC plants as, to achieve the above parameters, no expensive alloys are require. To develop and

  19. LOX droplet vaporization in a supercritical forced convective environment

    NASA Technical Reports Server (NTRS)

    Hsiao, Chia-Chun; Yang, Vigor

    1993-01-01

    Modern liquid rocket engines often use liquid oxygen (LOX) and liquid hydrogen (LH2) as propellants to achieve high performance, with the engine operational conditions in the supercritical regimes of the propellants. Once the propellant exceeds its critical state, it essentially becomes a puff of dense fluid. The entire field becomes a continuous medium, and no distinct interfacial boundary between the liquid and gas exists. Although several studies have been undertaken to investigate the supercritical droplet behavior at quiescent conditions, very little effort has been made to address the fundamental mechanisms associated with LOX droplet vaporization in a supercritical, forced convective environment. The purpose is to establish a theoretical framework within which supercritical droplet dynamics and vaporization can be studied systematically by means of an efficient and robust numerical algorithm.

  20. Aeroelastic Wing Shaping Control Subject to Actuation Constraints.

    NASA Technical Reports Server (NTRS)

    Swei, Sean Shan-Min; Nguyen, Nhan

    2014-01-01

    This paper considers the control of coupled aeroelastic aircraft model which is configured with Variable Camber Continuous Trailing Edge Flap (VCCTEF) system. The relative deflection between two adjacent flaps is constrained and this actuation constraint is accounted for when designing an effective control law for suppressing the wing vibration. A simple tuned-mass damper mechanism with two attached masses is used as an example to demonstrate the effectiveness of vibration suppression with confined motion of tuned masses. In this paper, a dynamic inversion based pseudo-control hedging (PCH) and bounded control approach is investigated, and for illustration, it is applied to the NASA Generic Transport Model (GTM) configured with VCCTEF system.

  1. Electrodeposition of germanium from supercritical fluids.

    PubMed

    Ke, Jie; Bartlett, Philip N; Cook, David; Easun, Timothy L; George, Michael W; Levason, William; Reid, Gillian; Smith, David; Su, Wenta; Zhang, Wenjian

    2012-01-28

    Several Ge(II) and Ge(IV) compounds were investigated as possible reagents for the electrodeposition of Ge from liquid CH(3)CN and CH(2)F(2) and supercritical CO(2) containing as a co-solvent CH(3)CN (scCO(2)) and supercritical CH(2)F(2) (scCH(2)F(2)). For Ge(II) reagents the most promising results were obtained using [NBu(n)(4)][GeCl(3)]. However the reproducibility was poor and the reduction currents were significantly less than the estimated mass transport limited values. Deposition of Ge containing films was possible at high cathodic potential from [NBu(n)(4)][GeCl(3)] in liquid CH(3)CN and supercritical CO(2) containing CH(3)CN but in all cases they were heavily contaminated by C, O, F and Cl. Much more promising results were obtained using GeCl(4) in liquid CH(2)F(2) and supercritical CH(2)F(2). In this case the reduction currents were consistent with mass transport limited reduction and bulk electrodeposition produced amorphous films of Ge. Characterisation by XPS showed the presence of low levels of O, F and C, XPS confirmed the presence of Ge together with germanium oxides, and Raman spectroscopy showed that the as deposited amorphous Ge could be crystallised by the laser used in obtaining the Raman measurements.

  2. Chemical deposition methods using supercritical fluid solutions

    DOEpatents

    Sievers, Robert E.; Hansen, Brian N.

    1990-01-01

    A method for depositing a film of a desired material on a substrate comprises dissolving at least one reagent in a supercritical fluid comprising at least one solvent. Either the reagent is capable of reacting with or is a precursor of a compound capable of reacting with the solvent to form the desired product, or at least one additional reagent is included in the supercritical solution and is capable of reacting with or is a precursor of a compound capable of reacting with the first reagent or with a compound derived from the first reagent to form the desired material. The supercritical solution is expanded to produce a vapor or aerosol and a chemical reaction is induced in the vapor or aerosol so that a film of the desired material resulting from the chemical reaction is deposited on the substrate surface. In an alternate embodiment, the supercritical solution containing at least one reagent is expanded to produce a vapor or aerosol which is then mixed with a gas containing at least one additional reagent. A chemical reaction is induced in the resulting mixture so that a film of the desired material is deposited.

  3. Investigation of the effects of aeroelastic deformations on the radar cross section of aircraft

    NASA Astrophysics Data System (ADS)

    McKenzie, Samuel D.

    1991-12-01

    The effects of aeroelastic deformations on the radar cross section (RCS) of a T-38 trainer jet and a C-5A transport aircraft are examined and characterized. Realistic representations of structural wing deformations are obtained from a mechanical/computer aided design software package called NASTRAN. NASTRAN is used to evaluate the structural parameters of the aircraft as well as the restraints and loads associated with realistic flight conditions. Geometries for both the non-deformed and deformed airframes are obtained from the NASTRAN models and translated into RCS models. The RCS is analyzed using a numerical modeling code called the Radar Cross Section - Basic Scattering Code, version 2 which was developed at the Ohio State University and is based on the uniform geometric theory of diffraction. The code is used to analyze the effects of aeroelastic deformations on the RCS of the aircraft by comparing the computed RCS representing the deformed airframe to that of the non-deformed airframe and characterizing the differences between them.

  4. Computational Aeroelastic Analysis of Ares Crew Launch Vehicle Bi-Modal Loading

    NASA Technical Reports Server (NTRS)

    Massey, Steven J.; Chwalowski, Pawel

    2010-01-01

    A Reynolds averaged Navier-Stokes analysis, with and without dynamic aeroelastic effects, is presented for the Ares I-X launch vehicle at transonic Mach numbers and flight Reynolds numbers for two grid resolutions and two angles of attack. The purpose of the study is to quantify the force and moment increment imparted by the sudden transition from fully separated flow around the crew module - service module junction to that of the bi-modal flow state in which only part of the flow reattaches. The bi-modal flow phenomenon is of interest to the guidance, navigation and control community because it causes a discontinuous jump in forces and moments. Computations with a rigid structure at zero zero angle of attack indicate significant increases in normal force and pitching moment. Dynamic aeroelastic computations indicate the bi-modal flow state is insensitive to vehicle flexibility due to the resulting deflections imparting only very small changes in local angle of attack. At an angle of attack of 2.5deg, the magnitude of the pitching moment increment resulting from the bi-modal state nearly triples, while occurring at a slightly lower Mach number. Significant grid induced variations between the solutions indicate that further grid refinement is warranted.

  5. Model-based minimization algorithm of a supercritical helium loop consumption subject to operational constraints

    NASA Astrophysics Data System (ADS)

    Bonne, F.; Bonnay, P.; Girard, A.; Hoa, C.; Lacroix, B.; Le Coz, Q.; Nicollet, S.; Poncet, J.-M.; Zani, L.

    2017-12-01

    Supercritical helium loops at 4.2 K are the baseline cooling strategy of tokamaks superconducting magnets (JT-60SA, ITER, DEMO, etc.). This loops work with cryogenic circulators that force a supercritical helium flow through the superconducting magnets in order that the temperature stay below the working range all along their length. This paper shows that a supercritical helium loop associated with a saturated liquid helium bath can satisfy temperature constraints in different ways (playing on bath temperature and on the supercritical flow), but that only one is optimal from an energy point of view (every Watt consumed at 4.2 K consumes at least 220 W of electrical power). To find the optimal operational conditions, an algorithm capable of minimizing an objective function (energy consumption at 5 bar, 5 K) subject to constraints has been written. This algorithm works with a supercritical loop model realized with the Simcryogenics [2] library. This article describes the model used and the results of constrained optimization. It will be possible to see that the changes in operating point on the temperature of the magnet (e.g. in case of a change in the plasma configuration) involves large changes on the cryodistribution optimal operating point. Recommendations will be made to ensure that the energetic consumption is kept as low as possible despite the changing operating point. This work is partially supported by EUROfusion Consortium through the Euratom Research and Training Program 20142018 under Grant 633053.

  6. ASTROP2 Users Manual: A Program for Aeroelastic Stability Analysis of Propfans

    NASA Technical Reports Server (NTRS)

    Reddy, T. S. R.; Lucero, John M.

    1996-01-01

    This manual describes the input data required for using the second version of the ASTROP2 (Aeroelastic STability and Response Of Propulsion systems - 2 dimensional analysis) computer code. In ASTROP2, version 2.0, the program is divided into two modules: 2DSTRIP, which calculates the structural dynamic information; and 2DASTROP, which calculates the unsteady aerodynamic force coefficients from which the aeroelastic stability can be determined. In the original version of ASTROP2, these two aspects were performed in a single program. The improvements to version 2.0 include an option to account for counter rotation, improved numerical integration, accommodation for non-uniform inflow distribution, and an iterative scheme to flutter frequency convergence. ASTROP2 can be used for flutter analysis of multi-bladed structures such as those found in compressors, turbines, counter rotating propellers or propfans. The analysis combines a two-dimensional, unsteady cascade aerodynamics model and a three dimensional, normal mode structural model using strip theory. The flutter analysis is formulated in the frequency domain resulting in an eigenvalue determinant. The flutter frequency and damping can be inferred from the eigenvalues.

  7. High Density Thermal Energy Storage with Supercritical Fluids

    NASA Technical Reports Server (NTRS)

    Ganapathi, Gani B.; Wirz, Richard

    2012-01-01

    A novel approach to storing thermal energy with supercritical fluids is being investigated, which if successful, promises to transform the way thermal energy is captured and utilized. The use of supercritical fluids allows cost-affordable high-density storage with a combination of latent heat and sensible heat in the two-phase as well as the supercritical state. This technology will enhance penetration of several thermal power generation applications and high temperature water for commercial use if the overall cost of the technology can be demonstrated to be lower than the current state-of-the-art molten salt using sodium nitrate and potassium nitrate eutectic mixtures.

  8. Selective free radical reactions using supercritical carbon dioxide.

    PubMed

    Cormier, Philip J; Clarke, Ryan M; McFadden, Ryan M L; Ghandi, Khashayar

    2014-02-12

    We report herein a means to modify the reactivity of alkenes, and particularly to modify their selectivity toward reactions with nonpolar reactants (e.g., nonpolar free radicals) in supercritical carbon dioxide near the critical point. Rate constants for free radical addition of the light hydrogen isotope muonium to ethylene, vinylidene fluoride, and vinylidene chloride in supercritical carbon dioxide are compared over a range of pressures and temperatures. Near carbon dioxide's critical point, the addition to ethylene exhibits critical speeding up, while the halogenated analogues display critical slowing. This suggests that supercritical carbon dioxide as a solvent may be used to tune alkene chemistry in near-critical conditions.

  9. Prospects of Supercritical Fluids in Realizing Graphene-Based Functional Materials.

    PubMed

    Padmajan Sasikala, Suchithra; Poulin, Philippe; Aymonier, Cyril

    2016-04-13

    Supercritical-fluids science and technology predate all the approaches that are currently established for graphene production by several decades in advanced materials design. However, it has only recently been proposed as a plausible approach for graphene processing. Since then, supercritical fluids have emerged into contention as an alternative to existing technologies because of their scalability and versatility in processing graphene materials, which include composites, aerogels, and foams. Here, an overview is presented of such materials prepared through supercritical fluids from an advanced materials science standpoint, with a discussion on their fundamental properties and technological applications. The benefits of supercritical-fluid processing over conventional liquid-phase processing are presented. The benefits include not only better performances for advanced applications but also environmental issues associated with the synthesis process. Nevertheless, the limitations of supercritical-fluid processing are also stressed, along with challenges that are still faced toward the achievement of the great expectations from graphene materials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Ketoprofen-β-cyclodextrin inclusion complexes formation by supercritical process technology

    NASA Astrophysics Data System (ADS)

    Sumarno, Rahim, Rizki; Trisanti, Prida Novarita

    2017-05-01

    Ketoprofen was a poorly soluble which anti-inflammatory, analgesic and antipyretic drug, solubility of which can be enchanced by form complexation with β-cyclodextrin. Besides that, the inclusion complex reduces the incidence of gastrointestinal side effect of drug. The aims of this research are to study the effect of H2O concentration in the supercritical carbondioxide and operation condition in the formation of ketoprofen-β-Cyclodextrin inclusion complex. This research was began by dissolved H2O in supercritical CO2 at 40°C and various saturation pressures. Then, dissolved H2O contacted with (1:5 w/w) ketoprofen-β-Cyclodextrin mixture at 50°C and various operation pressures. It called saturation process. Saturation was done for ±2 hours with agitation process and continued by decompression process. The products were characterized by drug Release, Differential Scanning Calorimetry (DCS) dan Scanning Electron Microscopy (SEM) analyses. The percentage from this work were 76,82%-89,99% for inclusion complexes. The percentage drug release of ketoprofen were 82,83%-88,36% on various inclusion pressure and various inclusion period.

  11. DNS of High Pressure Supercritical Combustion

    NASA Astrophysics Data System (ADS)

    Chong, Shao Teng; Raman, Venkatramanan

    2016-11-01

    Supercritical flows have always been important to rocket motors, and more recently to aircraft engines and stationary gas turbines. The purpose of the present study is to understand effects of differential diffusion on reacting scalars using supercritical isotropic turbulence. Focus is on fuel and oxidant reacting in the transcritical region where density, heat capacity and transport properties are highly sensitive to variations in temperature and pressure. Reynolds and Damkohler number vary as a result and although it is common to neglect differential diffusion effects if Re is sufficiently large, this large variation in temperature with heat release can accentuate molecular transport differences. Direct numerical simulations (DNS) for one step chemistry reaction between fuel and oxidizer are used to examine the differential diffusion effects. A key issue investigated in this paper is if the flamelet progress variable approach, where the Lewis number is usually assumed to be unity and constant for all species, can be accurately applied to simulate supercritical combustion.

  12. Coupled Vortex-Lattice Flight Dynamic Model with Aeroelastic Finite-Element Model of Flexible Wing Transport Aircraft with Variable Camber Continuous Trailing Edge Flap for Drag Reduction

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan; Ting, Eric; Nguyen, Daniel; Dao, Tung; Trinh, Khanh

    2013-01-01

    This paper presents a coupled vortex-lattice flight dynamic model with an aeroelastic finite-element model to predict dynamic characteristics of a flexible wing transport aircraft. The aircraft model is based on NASA Generic Transport Model (GTM) with representative mass and stiffness properties to achieve a wing tip deflection about twice that of a conventional transport aircraft (10% versus 5%). This flexible wing transport aircraft is referred to as an Elastically Shaped Aircraft Concept (ESAC) which is equipped with a Variable Camber Continuous Trailing Edge Flap (VCCTEF) system for active wing shaping control for drag reduction. A vortex-lattice aerodynamic model of the ESAC is developed and is coupled with an aeroelastic finite-element model via an automated geometry modeler. This coupled model is used to compute static and dynamic aeroelastic solutions. The deflection information from the finite-element model and the vortex-lattice model is used to compute unsteady contributions to the aerodynamic force and moment coefficients. A coupled aeroelastic-longitudinal flight dynamic model is developed by coupling the finite-element model with the rigid-body flight dynamic model of the GTM.

  13. Novel Supercritical Carbon Dioxide Power Cycle Utilizing Pressured Oxy-combustion in Conjunction with Cryogenic Compression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brun, Klaus; McClung, Aaron; Davis, John

    2014-03-31

    The team of Southwest Research Institute® (SwRI) and Thar Energy LLC (Thar) applied technology engineering and economic analysis to evaluate two advanced oxy-combustion power cycles, the Cryogenic Pressurized Oxy-combustion Cycle (CPOC), and the Supercritical Oxy-combustion Cycle. This assessment evaluated the performance and economic cost of the two proposed cycles with carbon capture, and included a technology gap analysis of the proposed technologies to determine the technology readiness level of the cycle and the cycle components. The results of the engineering and economic analysis and the technology gap analysis were used to identify the next steps along the technology development roadmapmore » for the selected cycle. The project objectives, as outlined in the FOA, were 90% CO{sub 2} removal at no more than a 35% increase in cost of electricity (COE) as compared to a Supercritical Pulverized Coal Plant without CO{sub 2} capture. The supercritical oxy-combustion power cycle with 99% carbon capture achieves a COE of $121/MWe. This revised COE represents a 21% reduction in cost as compared to supercritical steam with 90% carbon capture ($137/MWe). However, this represents a 49% increase in the COE over supercritical steam without carbon capture ($80.95/MWe), exceeding the 35% target. The supercritical oxy-combustion cycle with 99% carbon capture achieved a 37.9% HHV plant efficiency (39.3% LHV plant efficiency), when coupling a supercritical oxy-combustion thermal loop to an indirect supercritical CO{sub 2} (sCO{sub 2}) power block. In this configuration, the power block achieved 48% thermal efficiency for turbine inlet conditions of 650°C and 290 atm. Power block efficiencies near 60% are feasible with higher turbine inlet temperatures, however a design tradeoff to limit firing temperature to 650°C was made in order to use austenitic stainless steels for the high temperature pressure vessels and piping and to minimize the need for advanced turbomachinery

  14. Supercritical Fluid Extraction of Bioactive Compounds from Plant Materials.

    PubMed

    Wrona, Olga; Rafińska, Katarzyna; Możeński, Cezary; Buszewski, Bogusław

    2017-11-01

    There has been growing interest in the application of supercritical solvents over the last several years, many of the applications industrial in nature. The purpose of plant material extraction is to obtain large amounts of extract rich in the desired active compounds in a time-sensitive and cost-effective manner. The productivity and profitability of a supercritical fluid extraction (SFE) process largely depends on the selection of process parameters, which are elaborated upon in this paper. Carbon dioxide (CO2) is the most desirable solvent for the supercritical extraction of natural products. Its near-ambient critical temperature makes it suitable for the extraction of thermolabile components without degradation. A new approach has been adopted for SFE in which the solubility of nonpolar supercritical CO2 can be enhanced by the addition of small amounts of cosolvent.

  15. A wind turbine hybrid simulation framework considering aeroelastic effects

    NASA Astrophysics Data System (ADS)

    Song, Wei; Su, Weihua

    2015-04-01

    In performing an effective structural analysis for wind turbine, the simulation of turbine aerodynamic loads is of great importance. The interaction between the wake flow and the blades may impact turbine blades loading condition, energy yield and operational behavior. Direct experimental measurement of wind flow field and wind profiles around wind turbines is very helpful to support the wind turbine design. However, with the growth of the size of wind turbines for higher energy output, it is not convenient to obtain all the desired data in wind-tunnel and field tests. In this paper, firstly the modeling of dynamic responses of large-span wind turbine blades will consider nonlinear aeroelastic effects. A strain-based geometrically nonlinear beam formulation will be used for the basic structural dynamic modeling, which will be coupled with unsteady aerodynamic equations and rigid-body rotations of the rotor. Full wind turbines can be modeled by using the multi-connected beams. Then, a hybrid simulation experimental framework is proposed to potentially address this issue. The aerodynamic-dominant components, such as the turbine blades and rotor, are simulated as numerical components using the nonlinear aeroelastic model; while the turbine tower, where the collapse of failure may occur under high level of wind load, is simulated separately as the physical component. With the proposed framework, dynamic behavior of NREL's 5MW wind turbine blades will be studied and correlated with available numerical data. The current work will be the basis of the authors' further studies on flow control and hazard mitigation on wind turbine blades and towers.

  16. AGARD Manual on Aeroelasticity in Axial-Flow Turbomachines. Volume 1. Unsteady Turbomachinery Aerodynamics

    DTIC Science & Technology

    1987-03-01

    highly specialized unsteady aerodynamic and aeroelastic information to the turbomachinery design community and the introduction of young engineers to this...dynamics and aeroelas- ticity will be found useful as an introduction to this important special discipline and as a basis for future work. Max F...I. INTRODUCTION AND OVERVIEW F.Sisto, Stevens Institute of Technology Introduction

  17. Effect of randomness on multi-frequency aeroelastic responses resolved by Unsteady Adaptive Stochastic Finite Elements

    NASA Astrophysics Data System (ADS)

    Witteveen, Jeroen A. S.; Bijl, Hester

    2009-10-01

    The Unsteady Adaptive Stochastic Finite Elements (UASFE) method resolves the effect of randomness in numerical simulations of single-mode aeroelastic responses with a constant accuracy in time for a constant number of samples. In this paper, the UASFE framework is extended to multi-frequency responses and continuous structures by employing a wavelet decomposition pre-processing step to decompose the sampled multi-frequency signals into single-frequency components. The effect of the randomness on the multi-frequency response is then obtained by summing the results of the UASFE interpolation at constant phase for the different frequency components. Results for multi-frequency responses and continuous structures show a three orders of magnitude reduction of computational costs compared to crude Monte Carlo simulations in a harmonically forced oscillator, a flutter panel problem, and the three-dimensional transonic AGARD 445.6 wing aeroelastic benchmark subject to random fields and random parameters with various probability distributions.

  18. Workshop on Dynamics and Aeroelastic Stability Modeling of Rotorcraft Systems (3rd), Held in Durham, North Carolina on March 12-14, 1990

    DTIC Science & Technology

    1990-03-14

    aeroelastic stability studies of composite rotor blades in hover, Panda and Chopra [481 also stu-died the aeroelastic stability and response of hingeless...31, No. 4, pp. 29-35. 1986.I48 Panda , B. and Chopra. I., "Dynamics of Composite Rotor Blades in Forward Flight," Vertica, Vol. 11, No. 1/2,pp. 187-209...conditions. References [1] Panda ,B., Chopra,I., "Flap-Lag-Torsion Stability in Forward Flight", Journal of the American Helicopter Society, 30, No. 4, Oct

  19. METHOD FOR THE SUPERCRITICAL FLUID EXTRACTION OF SOILS/SEDIMENTS

    EPA Science Inventory

    Supercritical fluid extraction has been publicized as an extraction method which has several advantages over conventional methods, and it is expected to result in substantial cost and labor savings. This study was designed to evaluate the feasibility of using supercritical fluid ...

  20. Supercritical-Fluid Extraction of Oil From Tar Sands

    NASA Technical Reports Server (NTRS)

    Compton, L. E.

    1982-01-01

    New supercritical solvent mixtures have been laboratory-tested for extraction of oil from tar sands. Mixture is circulated through sand at high pressure and at a temperature above critical point, dissolving organic matter into the compressed gas. Extract is recovered from sand residues. Low-temperature super-critical solvents reduce energy consumption and waste-disposal problems.

  1. Supercritical fluid chromatography for lipid analysis in foodstuffs.

    PubMed

    Donato, Paola; Inferrera, Veronica; Sciarrone, Danilo; Mondello, Luigi

    2017-01-01

    The task of lipid analysis has always challenged separation scientists, and new techniques in chromatography were often developed for the separation of lipids; however, no single technique or methodology is yet capable of affording a comprehensive screening of all lipid species and classes. This review acquaints the role of supercritical fluid chromatography within the field of lipid analysis, from the early developed capillary separations based on pure CO 2 , to the most recent techniques employing packed columns under subcritical conditions, including the niche multidimensional techniques using supercritical fluids in at least one of the separation dimensions. A short history of supercritical fluid chromatography will be introduced first, from its early popularity in the late 1980s, to the sudden fall and oblivion until the last decade, experiencing a regain of interest within the chromatographic community. Afterwards, the subject of lipid nomenclature and classification will be briefly dealt with, before discussing the main applications of supercritical fluid chromatography for food analysis, according to the specific class of lipids. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Influence of thickness and camber on the aeroelastic stability of supersonic throughflow fans: An engineering approach

    NASA Technical Reports Server (NTRS)

    Ramsey, John K.

    1989-01-01

    An engineering approach was used to include the nonlinear effects of thickness and camber in an analytical aeroelastic analysis of cascades in supersonic acial flow (supersonic leading-edge locus). A hybrid code using Lighthill's nonlinear piston theory and Lanes's linear potential theory was developed to include these nonlinear effects. Lighthill's theory was used to calculate the unsteady pressures on the noninterference surface regions of the airfoils in cascade. Lane's theory was used to calculate the unsteady pressures on the remaining interference surface regions. Two airfoil profiles was investigated (a supersonic throughflow fan design and a NACA 66-206 airfoil with a sharp leading edge). Results show that compared with predictions of Lane's potential theory for flat plates, the inclusion of thickness (with or without camber) may increase or decrease the aeroelastic stability, depending on the airfoil geometry and operating conditions. When thickness effects are included in the aeroelastic analysis, inclusion of camber will influence the predicted stability in proportion to the magnitude of the added camber. The critical interblade phase angle, depending on the airfoil profile and operating conditions, may also be influenced by thickness and camber. Compared with predictions of Lane's linear potential theory, the inclusion of thickness and camber decreased the aerodynamic stifness and increased the aerodynamic damping at Mach 2 and 2.95 for a cascade of supersonic throughflow fan airfoils oscillating 180 degrees out of phase at a reduced frequency of 0.1.

  3. Effects of differential and symmetrical aileron deflection on the aerodynamic characteristics of an NASA supercritical-wing research airplane model

    NASA Technical Reports Server (NTRS)

    Bartlett, D. W.

    1975-01-01

    An investigation has been conducted in the Langley 8 foot transonic pressure tunnel to determine the effects of differential and symmetrical aileron deflection on the longitudinal and lateral directional aerodynamic characteristics of an 0.087 scale model of an NASA supercritical wing research airplane (TF-8A). Tests were conducted at Mach numbers from 0.25 to 0.99 in order to determine the effects of differential aileron deflection and at Mach numbers of 0.25 and 0.50 to determine the effects of symmetrical aileron (flap) deflection. The angle of attack range for all tests varied from approximately -12 deg to 20 deg.

  4. Advance finite element modeling of rotor blade aeroelasticity

    NASA Technical Reports Server (NTRS)

    Straub, F. K.; Sangha, K. B.; Panda, B.

    1994-01-01

    An advanced beam finite element has been developed for modeling rotor blade dynamics and aeroelasticity. This element is part of the Element Library of the Second Generation Comprehensive Helicopter Analysis System (2GCHAS). The element allows modeling of arbitrary rotor systems, including bearingless rotors. It accounts for moderately large elastic deflections, anisotropic properties, large frame motion for maneuver simulation, and allows for variable order shape functions. The effects of gravity, mechanically applied and aerodynamic loads are included. All kinematic quantities required to compute airloads are provided. In this paper, the fundamental assumptions and derivation of the element matrices are presented. Numerical results are shown to verify the formulation and illustrate several features of the element.

  5. Synthesis and characterization of nanocrystalline mesoporous zirconia using supercritical drying.

    PubMed

    Tyagi, Beena; Sidhpuria, Kalpesh; Shaik, Basha; Jasra, Raksh Vir

    2006-06-01

    Synthesis of nano-crystalline zirconia aerogel was done by sol-gel technique and supercritical drying using n-propanol solvent at and above supercritical temperature (235-280 degrees C) and pressure (48-52 bar) of n-propanol. Zirconia xerogel samples have also been prepared by conventional thermal drying method to compare with the super critically dried samples. Crystalline phase, crystallite size, surface area, pore volume, and pore size distribution were determined for all the samples in detail to understand the effect of gel drying methods on these properties. Supercritical drying of zirconia gel was observed to give thermally stable, nano-crystalline, tetragonal zirconia aerogels having high specific surface area and porosity with narrow and uniform pore size distribution as compared to thermally dried zirconia. With supercritical drying, zirconia samples show the formation of only mesopores whereas in thermally dried samples, substantial amount of micropores are observed along with mesopores. The samples prepared using supercritical drying yield nano-crystalline zirconia with smaller crystallite size (4-6 nm) as compared to higher crystallite size (13-20 nm) observed with thermally dried zirconia.

  6. Supercritical solvent extraction of oil sand bitumen

    NASA Astrophysics Data System (ADS)

    Imanbayev, Ye. I.; Ongarbayev, Ye. K.; Tileuberdi, Ye.; Mansurov, Z. A.; Golovko, A. K.; Rudyk, S.

    2017-08-01

    The supercritical solvent extraction of bitumen from oil sand studied with organic solvents. The experiments were performed in autoclave reactor at temperature above 255 °C and pressure 29 atm with stirring for 6 h. The reaction resulted in the formation of coke products with mineral part of oil sands. The remaining products separated into SARA fractions. The properties of the obtained products were studied. The supercritical solvent extraction significantly upgraded extracted natural bitumen.

  7. Advanced Stimulated Scattering Measurements in Supercritical Fluids

    DTIC Science & Technology

    2006-09-01

    supercritical fluid measurement techniques. Ajay Agrawal, optical diagnostics. Mel Roquemore, turbine engines. Fred Schauer, pulse detonation propulsion...Lett. 87, 233902 (2001). 11. R. W. Gammon, H. L. Swinney, and H. Z. Cummins, "Brillouin scattering in carbon dioxide in the critical region," Phys. Rev...Stimulated Scattering Measurements in Supercritical F49620-03-C-0015 Fluids 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 61102F 6. AUTHOR(S) 5d

  8. Supercritical extraction of lycopene from tomato industrial wastes with ethane.

    PubMed

    Nobre, Beatriz P; Gouveia, Luisa; Matos, Patricia G S; Cristino, Ana F; Palavra, António F; Mendes, Rui L

    2012-07-11

    Supercritical fluid extraction of all-E-lycopene from tomato industrial wastes (mixture of skins and seeds) was carried out in a semi-continuous flow apparatus using ethane as supercritical solvent. The effect of pressure, temperature, feed particle size, solvent superficial velocity and matrix initial composition was evaluated. Moreover, the yield of the extraction was compared with that obtained with other supercritical solvents (supercritical CO₂ and a near critical mixture of ethane and propane). The recovery of all-E-lycopene increased with pressure, decreased with the increase of the particle size in the initial stages of the extraction and was not practically affected by the solvent superficial velocity. The effect of the temperature was more complex. When the temperature increased from 40 to 60 °C the recovery of all-E-lycopene increased from 80 to 90%. However, for a further increase to 80 °C, the recovery remained almost the same, indicating that some E-Z isomerization could have occurred, as well as some degradation of lycopene. The recovery of all-E-lycopene was almost the same for feed samples with different all-E-lycopene content. Furthermore, when a batch with a higher all-E-lycopene content was used, supercritical ethane and a near critical mixture of ethane and propane showed to be better solvents than supercritical CO₂ leading to a faster extraction with a higher recovery of the carotenoid.

  9. Carotenoids microencapsulation by spray drying method and supercritical micronization.

    PubMed

    Janiszewska-Turak, Emilia

    2017-09-01

    Carotenoids are used as natural food colourants in the food industry. As unstable natural pigments they need protection. This protection can involve the microencapsulation process. There are numerous techniques that can be used for carotenoid protection, but two of them -spray drying and supercritical micronization - are currently the most commonly used. The objective of this paper is to describe these two techniques for carotenoid microencapsulation. In this review information from articles from the last five years was taken into consideration. Pigments described in the review are all carotenoids. Short summary of carotenoids sources was presented. For the spray drying technique, a review of carrier material and process conditions was made. Moreover, a short description of some of the most suitable processes involving supercritical fluids for carotenoids (astaxanthin, β-carotene, lutein and lycopene) encapsulation was given. These include the Supercritical Antisolvent process (SAS), Particles from Gas-Saturated Solutions (PGSS), Supercritical Fluid Extraction From an Emulsion (SFEE) and Solution Enhanced Dispersion by Supercritical fluids (SEDS). In most cases the studies, independently of the described method, were conducted on the laboratory scale. In some a scale-up was also tested. In the review a critical assessment of the used methods was made. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Meeting the challenges with the Douglas Aircraft Company Aeroelastic Design Optimization Program (ADOP)

    NASA Technical Reports Server (NTRS)

    Rommel, Bruce A.

    1989-01-01

    An overview of the Aeroelastic Design Optimization Program (ADOP) at the Douglas Aircraft Company is given. A pilot test program involving the animation of mode shapes with solid rendering as well as wire frame displays, a complete aircraft model of a high-altitude hypersonic aircraft to test ADOP procedures, a flap model, and an aero-mesh modeler for doublet lattice aerodynamics are discussed.

  11. Fundamental kinetics and mechanistic pathways for oxidation reactions in supercritical water

    NASA Technical Reports Server (NTRS)

    Webley, Paul A.; Tester, Jefferson W.

    1988-01-01

    Oxidation of the products of human metabolism in supercritical water has been shown to be an efficient way to accomplish the on-board water/waste recycling in future long-term space flights. Studies of the oxidation kinetics of methane to carbon dioxide in supercritical water are presented in this paper in order to enhance the fundamental understanding of the oxidation of human waste compounds in supercritical water. It is concluded that, although the elementary reaction models remain the best hope for simulating oxidation in supercritical water, several modifications to existing mechanisms need to be made to account for the role of water in the reaction mechanism.

  12. Extraction fatty acid as a source to produce biofuel in microalgae Chlorella sp. and Spirulina sp. using supercritical carbon dioxide

    NASA Astrophysics Data System (ADS)

    Tai, Do Chiem; Hai, Dam Thi Thanh; Vinh, Nguyen Hanh; Phung, Le Thi Kim

    2016-06-01

    In this research, the fatty acids of isolated microalgae were extracted by some technologies such as maceration, Soxhlet, ultrasonic-assisted extraction and supercritical fluid extraction; and analyzed for biodiesel production using GC-MS. This work deals with the extraction of microalgae oil from dry biomass by using supercritical fluid extraction method. A complete study at laboratory of the influence of some parameters on the extraction kinetics and yields and on the composition of the oil in terms of lipid classes and profiles is proposed. Two types of microalgae were studied: Chlorella sp. and Spirulina sp. For the extraction of oil from microalgae, supercritical CO2 (SC-CO2) is regarded with interest, being safer than n-hexane and offering a negligible environmental impact, a short extraction time and a high-quality final product. Whilst some experimental papers are available on the supercritical fluid extraction (SFE) of oil from microalgae, only limited information exists on the kinetics of the process. These results demonstrate that supercritical CO2 extraction is an efficient method for the complete recovery of the neutral lipid phase.

  13. Droplet turbulence interactions under subcritical and supercritical conditions

    NASA Technical Reports Server (NTRS)

    Coy, E. B.; Greenfield, S. C.; Ondas, M. S.; Song, Y.-H.; Spegar, T. D.; Santavicca, D. A.

    1993-01-01

    The goal of this research is to experimentally characterize the behavior of droplets in vaporizing liquid sprays under conditions typical of those encountered in high pressure combustion systems such as liquid fueled rocket engines. Of particular interest are measurements of droplet drag, droplet heating, droplet vaporization, droplet distortion, and secondary droplet breakup, under both subcritical and supercritical conditions. The paper presents a brief description of the specific accomplishments which have been made over the past year.

  14. Aeroelastic Flutter Behavior of a Cantilever and Elastically Mounted Plate within a Nozzle-Diffuser Geometry

    NASA Astrophysics Data System (ADS)

    Tosi, Luis Phillipe; Colonius, Tim; Lee, Hyeong Jae; Sherrit, Stewart; Jet Propulsion Laboratory Collaboration; California Institute of Technology Collaboration

    2016-11-01

    Aeroelastic flutter arises when the motion of a structure and its surrounding flowing fluid are coupled in a constructive manner, causing large amplitudes of vibration in the immersed solid. A cantilevered beam in axial flow within a nozzle-diffuser geometry exhibits interesting resonance behavior that presents good prospects for internal flow energy harvesting. Different modes can be excited as a function of throat velocity, nozzle geometry, fluid and cantilever material parameters. Similar behavior has been also observed in elastically mounted rigid plates, enabling new designs for such devices. This work explores the relationship between the aeroelastic flutter instability boundaries and relevant non-dimensional parameters via experiments, numerical, and stability analyses. Parameters explored consist of a non-dimensional stiffness, a non-dimensional mass, non-dimensional throat size, and Reynolds number. A map of the system response in this parameter space may serve as a guide to future work concerning possible electrical output and failure prediction in harvesting devices.

  15. Supercritical Fluid Facilitated Growth of Copper and Aluminum Oxide Nanoparticles

    ERIC Educational Resources Information Center

    Williams, Geoffrey L.; Vohs, Jason K.; Brege, Jonathan J.; Fahlman, Bradley D.

    2005-01-01

    Supercritical fluids (SCFs) possess properties that are intermediate between liquids and gases. The combination of supercritical fluid technology with advanced characterization techniques such as electron microscopy provided a practical and rewarding undergraduate laboratory experiment.

  16. Geologic controls on supercritical geothermal resources above magmatic intrusions

    PubMed Central

    Scott, Samuel; Driesner, Thomas; Weis, Philipp

    2015-01-01

    A new and economically attractive type of geothermal resource was recently discovered in the Krafla volcanic system, Iceland, consisting of supercritical water at 450 °C immediately above a 2-km deep magma body. Although utilizing such supercritical resources could multiply power production from geothermal wells, the abundance, location and size of similar resources are undefined. Here we present the first numerical simulations of supercritical geothermal resource formation, showing that they are an integral part of magma-driven geothermal systems. Potentially exploitable resources form in rocks with a brittle–ductile transition temperature higher than 450 °C, such as basalt. Water temperatures and enthalpies can exceed 400 °C and 3 MJ kg−1, depending on host rock permeability. Conventional high-enthalpy resources result from mixing of ascending supercritical and cooler surrounding water. Our models reproduce the measured thermal conditions of the resource discovered at Krafla. Similar resources may be widespread below conventional high-enthalpy geothermal systems. PMID:26211617

  17. Simultaneous Graphite Exfoliation and N Doping in Supercritical Ammonia.

    PubMed

    Sasikala, Suchithra Padmajan; Huang, Kai; Giroire, Baptiste; Prabhakaran, Prem; Henry, Lucile; Penicaud, Alain; Poulin, Philippe; Aymonier, Cyril

    2016-11-16

    We report the exfoliation of graphite and simultaneous N doping of graphene by two methods: supercritical ammonia treatment and liquid-phase exfoliation with NH 4 OH. While the supercritical ammonia allowed N doping at a level of 6.4 atom % in 2 h, the liquid-phase exfoliation with NH 4 OH allowed N doping at a level of 2.7 atom % in 6 h. The N doped graphene obtained via the supercritical ammonia route had few layers (<5) and showed large lateral flake size (∼8 μm) and low defect density (I D /I G < 0.6) in spite of their high level of N doping. This work is the first demonstration of supercritical ammonia as an exfoliation agent and N doping precursor for graphene. Notably, the N doped graphene showed electrocatalytic activity toward oxygen reduction reaction with high durability and good methanol tolerance compared to those of commercial Pt/C catalyst.

  18. Geologic controls on supercritical geothermal resources above magmatic intrusions.

    PubMed

    Scott, Samuel; Driesner, Thomas; Weis, Philipp

    2015-07-27

    A new and economically attractive type of geothermal resource was recently discovered in the Krafla volcanic system, Iceland, consisting of supercritical water at 450 °C immediately above a 2-km deep magma body. Although utilizing such supercritical resources could multiply power production from geothermal wells, the abundance, location and size of similar resources are undefined. Here we present the first numerical simulations of supercritical geothermal resource formation, showing that they are an integral part of magma-driven geothermal systems. Potentially exploitable resources form in rocks with a brittle-ductile transition temperature higher than 450 °C, such as basalt. Water temperatures and enthalpies can exceed 400 °C and 3 MJ kg(-1), depending on host rock permeability. Conventional high-enthalpy resources result from mixing of ascending supercritical and cooler surrounding water. Our models reproduce the measured thermal conditions of the resource discovered at Krafla. Similar resources may be widespread below conventional high-enthalpy geothermal systems.

  19. Design of experimental system for supercritical CO2 fracturing under confining pressure conditions

    NASA Astrophysics Data System (ADS)

    Wang, H.; Lu, Q.; Li, X.; Yang, B.; Zheng, Y.; Shi, L.; Shi, X.

    2018-03-01

    Supercritical CO2 has the characteristics of low viscosity, high diffusion and zero surface tension, and it is considered as a new fluid for non-polluting and non-aqueous fracturing which can be used for shale gas development. Fracturing refers to a method of utilizing the high-pressure fluid to generate fractures in the rock formation so as to improve the oil and gas flow conditions and increase the oil and gas production. In this article, a new type of experimental system for supercritical CO2 fracturing under confining pressure conditions is designed, which is based on characteristics of supercritical CO2, shale reservoir and down-hole environment. The experimental system consists of three sub-systems, including supercritical CO2 generation system, supercritical CO2 fracturing system and data analysis system. It can be used to simulate supercritical CO2 fracturing under geo-stress conditions, thus to study the rock initiation pressure, the formation of the rock fractures, fractured surface morphology and so on. The experimental system has successfully carried out a series of supercritical CO2 fracturing experiments. The experimental results confirm the feasibility of the experimental system and the high efficiency of supercritical CO2 in fracturing tight rocks.

  20. Analyzing Aeroelasticity in Turbomachines

    NASA Technical Reports Server (NTRS)

    Reddy, T. S. R.; Srivastava, R.

    2003-01-01

    ASTROP2-LE is a computer program that predicts flutter and forced responses of blades, vanes, and other components of such turbomachines as fans, compressors, and turbines. ASTROP2-LE is based on the ASTROP2 program, developed previously for analysis of stability of turbomachinery components. In developing ASTROP2- LE, ASTROP2 was modified to include a capability for modeling forced responses. The program was also modified to add a capability for analysis of aeroelasticity with mistuning and unsteady aerodynamic solutions from another program, LINFLX2D, that solves the linearized Euler equations of unsteady two-dimensional flow. Using LINFLX2D to calculate unsteady aerodynamic loads, it is possible to analyze effects of transonic flow on flutter and forced response. ASTROP2-LE can be used to analyze subsonic, transonic, and supersonic aerodynamics and structural mistuning for rotors with blades of differing structural properties. It calculates the aerodynamic damping of a blade system operating in airflow so that stability can be assessed. The code also predicts the magnitudes and frequencies of the unsteady aerodynamic forces on the airfoils of a blade row from incoming wakes. This information can be used in high-cycle fatigue analysis to predict the fatigue lives of the blades.

  1. Charting the landscape of supercritical string theory.

    PubMed

    Hellerman, Simeon; Swanson, Ian

    2007-10-26

    Special solutions of string theory in supercritical dimensions can interpolate in time between theories with different numbers of spacetime dimensions and different amounts of world sheet supersymmetry. These solutions connect supercritical string theories to the more familiar string duality web in ten dimensions and provide a precise link between supersymmetric and purely bosonic string theories. Dimension quenching and c duality appear to be natural concepts in string theory, giving rise to large networks of interconnected theories.

  2. Aeroelastic Response from Indicial Functions with a Finite Element Model of a Suspension Bridge

    NASA Astrophysics Data System (ADS)

    Mikkelsen, O.; Jakobsen, J. B.

    2017-12-01

    The present paper describes a comprehensive analysis of the aeroelastic bridge response in time-domain, with a finite element model of the structure. The main focus is on the analysis of flutter instability, accounting for the wind forces generated by the bridge motion, including twisting as well as vertical and horizontal translation, i.e. all three global degrees of freedom. The solution is obtained by direct integration of the equations of motion for the bridge-wind system, with motion-dependent forces approximated from flutter derivatives in terms of rational functions. For the streamlined bridge box-girder investigated, the motion dependent wind forces related to the along-wind response are found to have a limited influence on the flutter velocity. The flutter mode shapes in the time-domain and the frequency domain are consistent, and composed of the three lowest symmetrical vertical modes coupled with the first torsional symmetric mode. The method applied in this study provides detailed response estimates and contributes to an increased understanding of the complex aeroelastic behaviour of long-span bridges.

  3. Structural dynamics branch research and accomplishments

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Summaries are presented of fiscal year 1989 research highlights from the Structural Dynamics Branch at NASA Lewis Research Center. Highlights from the branch's major work areas include aeroelasticity, vibration control, dynamic systems, and computation structural methods. A listing of the fiscal year 1989 branch publications is given.

  4. Development of a Rotor-Body Coupled Analysis for an Active Mount Aeroelastic Rotor Testbed. Degree awarded by George Washington Univ., May 1996

    NASA Technical Reports Server (NTRS)

    Wilbur, Matthew L.

    1998-01-01

    At the Langley Research Center an active mount rotorcraft testbed is being developed for use in the Langley Transonic Dynamics Tunnel. This testbed, the second generation version of the Aeroelastic Rotor Experimental System (ARES-II), can impose rotor hub motions and measure the response so that rotor-body coupling phenomena may be investigated. An analytical method for coupling an aeroelastically scaled model rotor system to the ARES-II is developed in the current study. Models of the testbed and the rotor system are developed in independent analyses, and an impedance-matching approach is used to couple the rotor system to the testbed. The development of the analytical models and the coupling method is examined, and individual and coupled results are presented for the testbed and rotor system. Coupled results are presented with and without applied hub motion, and system loads and displacements are examined. The results show that a closed-loop control system is necessary to achieve desired hub motions, that proper modeling requires including the loads at the rotor hub and rotor control system, and that the strain-gauge balance placed in the rotating system of the ARES-II provided the best loads results.

  5. Aeroelastic analysis of versatile thermal insulation (VTI) panels with pinched boundary conditions

    NASA Astrophysics Data System (ADS)

    Carrera, Erasmo; Zappino, Enrico; Patočka, Karel; Komarek, Martin; Ferrarese, Adriano; Montabone, Mauro; Kotzias, Bernhard; Huermann, Brian; Schwane, Richard

    2014-03-01

    Launch vehicle design and analysis is a crucial problem in space engineering. The large range of external conditions and the complexity of space vehicles make the solution of the problem really challenging. The problem considered in the present work deals with the versatile thermal insulation (VTI) panel. This thermal protection system is designed to reduce heat fluxes on the LH2 tank during the long coasting phases. Because of the unconventional boundary conditions and the large-scale geometry of the panel, the aeroelastic behaviour of VTI is investigated in the present work. Known available results from literature related to similar problem, are reviewed by considering the effect of various Mach regimes, including boundary layer thickness effects, in-plane mechanical and thermal loads, non-linear effects and amplitude of limit cycle oscillations. A dedicated finite element model is developed for the supersonic regime. The models used for coupling the orthotropic layered structural model with Piston Theory aerodynamic models allow the calculations of flutter conditions in case of curved panels supported in a discrete number of points. An advanced computational aeroelasticity tool is developed using various dedicated commercial softwares (CFX, ZAERO, EDGE). A wind tunnel test campaign is carried out to assess the computational tool in the analysis of this type of problem.

  6. Aeroelastic Stability of a Four-Bladed Semi-Articulated Soft-Inplane Tiltrotor Model

    NASA Technical Reports Server (NTRS)

    Nixon, Mark W.; Langston, Chester W.; Singleton, Jeffrey D.; Piatak, David J.; Kvaternik, Raymond G.; Corso, Lawrence M.; Brown, Ross

    2003-01-01

    A new four-bladed, semi-articulated, soft-inplane rotor system, designed as a candidate for future heavy-lift rotorcraft, was tested at model scale on the Wing and Rotor Aeroelastic Testing System (WRATS), a 1/5-size aeroelastic wind-tunnel model based on the V-22. The experimental investigation included a hover test with the model in helicopter mode subject to ground resonance conditions, and a forward flight test with the model in airplane mode subject to whirl-flutter conditions. An active control system designed to augment system damping was also tested as part of this investigation. Results of this study indicate that the new four-bladed, soft-inplane rotor system in hover has adequate damping characteristics and is stable throughout its rotor-speed envelope. However, in airplane mode it produces very low damping in the key wing beam-bending mode, and has a low whirl-flutter stability boundary with respect to airspeed. The active control system was successful in augmenting the damping of the fundamental system modes, and was found to be robust with respect to changes in rotor-speed and airspeed. Finally, conversion-mode dynamic loads were measured on the rotor and these were found to be significantly lower for the new soft-inplane hub than for the previous baseline stiff-inplane hub.

  7. Aeroelastic Stability of Idling Wind Turbines

    NASA Astrophysics Data System (ADS)

    Wang, Kai; Riziotis, Vasilis A.; Voutsinas, Spyros G.

    2016-09-01

    Wind turbine rotors in idling operation mode can experience high angles of attack, within the post stall region that are capable of triggering stall-induced vibrations. In the present paper rotor stability in slow idling operation is assessed on the basis of non-linear time domain and linear eigenvalue analysis. Analysis is performed for a 10 MW conceptual wind turbine designed by DTU. First the flow conditions that are likely to favour stall induced instabilities are identified through non-linear time domain aeroelastic analysis. Next, for the above specified conditions, eigenvalue stability simulations are performed aiming at identifying the low damped modes of the turbine. Finally the results of the eigenvalue analysis are evaluated through computations of the work of the aerodynamic forces by imposing harmonic vibrations following the shape and frequency of the various modes. Eigenvalue analysis indicates that the asymmetric and symmetric out-of-plane modes have the lowest damping. The results of the eigenvalue analysis agree well with those of the time domain analysis.

  8. Aeroelastic Tailoring of Transport Wings Including Transonic Flutter Constraints

    NASA Technical Reports Server (NTRS)

    Stanford, Bret K.; Wieseman, Carol D.; Jutte, Christine V.

    2015-01-01

    Several minimum-mass optimization problems are solved to evaluate the effectiveness of a variety of novel tailoring schemes for subsonic transport wings. Aeroelastic stress and panel buckling constraints are imposed across several trimmed static maneuver loads, in addition to a transonic flutter margin constraint, captured with aerodynamic influence coefficient-based tools. Tailoring with metallic thickness variations, functionally graded materials, balanced or unbalanced composite laminates, curvilinear tow steering, and distributed trailing edge control effectors are all found to provide reductions in structural wing mass with varying degrees of success. The question as to whether this wing mass reduction will offset the increased manufacturing cost is left unresolved for each case.

  9. Aeroelastic Analysis of Aircraft: Wing and Wing/Fuselage Configurations

    NASA Technical Reports Server (NTRS)

    Chen, H. H.; Chang, K. C.; Tzong, T.; Cebeci, T.

    1997-01-01

    A previously developed interface method for coupling aerodynamics and structures is used to evaluate the aeroelastic effects for an advanced transport wing at cruise and under-cruise conditions. The calculated results are compared with wind tunnel test data. The capability of the interface method is also investigated for an MD-90 wing/fuselage configuration. In addition, an aircraft trim analysis is described and applied to wing configurations. The accuracy of turbulence models based on the algebraic eddy viscosity formulation of Cebeci and Smith is studied for airfoil flows at low Mach numbers by using methods based on the solutions of the boundary-layer and Navier-Stokes equations.

  10. Simulation and Flight Control of an Aeroelastic Fixed Wing Micro Aerial Vehicle

    NASA Technical Reports Server (NTRS)

    Waszak, Martin; Davidson, John B.; Ifju, Peter G.

    2002-01-01

    Micro aerial vehicles have been the subject of continued interest and development over the last several years. The majority of current vehicle concepts rely on rigid fixed wings or rotors. An alternate design based on an aeroelastic membrane wing has also been developed that exhibits desired characteristics in flight test demonstrations, competition, and in prior aerodynamics studies. This paper presents a simulation model and an assessment of flight control characteristics of the vehicle. Linear state space models of the vehicle associated with typical trimmed level flight conditions and which are suitable for control system design are presented as well. The simulation is used as the basis for the design of a measurement based nonlinear dynamic inversion control system and outer loop guidance system. The vehicle/controller system is the subject of ongoing investigations of autonomous and collaborative control schemes. The results indicate that the design represents a good basis for further development of the micro aerial vehicle for autonomous and collaborative controls research.

  11. Application of supercritical fluid carbon dioxide to the extraction and analysis of lipids.

    PubMed

    Lee, Jae Won; Fukusaki, Eiichiro; Bamba, Takeshi

    2012-10-01

    Supercritical carbon dioxide (SCCO(2)) is an ecofriendly supercritical fluid that is chemically inert, nontoxic, noninflammable and nonpolluting. As a green material, SCCO(2) has desirable properties such as high density, low viscosity and high diffusivity that make it suitable for use as a solvent in supercritical fluid extraction, an effective and environment-friendly analytical method, and as a mobile phase for supercritical fluid chromatography, which facilitates high-throughput, high-resolution analysis. Furthermore, the low polarity of SCCO(2) is suitable for the extraction and analysis of hydrophobic compounds. The growing concern surrounding environmental pollution has triggered the development of green analysis methods based on the use of SCCO(2) in various laboratories and industries. SCCO(2) is becoming an effective alternative to conventional organic solvents. In this review, the usefulness of SCCO(2) in supercritical fluid extraction and supercritical fluid chromatography for the extraction and analysis of lipids is described.

  12. Organic syntheses employing supercritical carbon dioxide as a reaction solvent

    NASA Technical Reports Server (NTRS)

    Barstow, Leon E. (Inventor); Ward, Glen D. (Inventor); Bier, Milan (Inventor)

    1993-01-01

    Chemical reactions are readily carried out using supercritical carbon dioxide as the reaction medium. Supercritical carbon dioxide is of special value as a reaction medium in reactions for synthesizing polypeptides, for sequencing polypeptides, or for amino acid analysis.

  13. Organic syntheses employing supercritical carbon dioxide as a reaction solvent

    NASA Technical Reports Server (NTRS)

    Barstow, Leon E. (Inventor); Ward, Glen D. (Inventor); Bier, Milan (Inventor)

    1991-01-01

    Chemical reactions are readily carried out using supercritical carbon dioxide as the reaction medium. Supercritical carbon dioxide is of special value as a reaction medium in reactions for synthesizing polypeptides, for sequencing polypeptides, or for amino acid analysis.

  14. Maximized Gust Loads of a Closed-Loop, Nonlinear Aeroelastic System Using Nonlinear Systems Theory

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.

    1999-01-01

    The problem of computing the maximized gust load for a nonlinear, closed-loop aeroelastic aircraft is discusses. The Volterra theory of nonlinear systems is applied in order to define a linearized system that provides a bounds on the response of the nonlinear system of interest. The method is applied to a simplified model of an Airbus A310.

  15. Extraction of metals using supercritical fluid and chelate forming legand

    DOEpatents

    Wai, Chien M.; Laintz, Kenneth E.

    1998-01-01

    A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a supercritical fluid solvent containing a chelating agent is described. The chelating agent forms chelates that are soluble in the supercritical fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is a fluorinated .beta.-diketone. In especially preferred embodiments the extraction solvent is supercritical carbon dioxide, and the chelating agent comprises a fluorinated .beta.-diketone and a trialkyl phosphate, or a fluorinated .beta.-diketone and a trialkylphosphine oxide. Although a trialkyl phosphate can extract lanthanides and actinides from acidic solutions, a binary mixture comprising a fluorinated .beta.-diketone and a trialkyl phosphate or a trialkylphosphine oxide tends to enhance the extraction efficiencies for actinides and lanthanides. The method provides an environmentally benign process for removing contaminants from industrial waste without using acids or biologically harmful solvents. The method is particularly useful for extracting actinides and lanthanides from acidic solutions. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process.

  16. Extraction of metals using supercritical fluid and chelate forming ligand

    DOEpatents

    Wai, C.M.; Laintz, K.E.

    1998-03-24

    A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a supercritical fluid solvent containing a chelating agent is described. The chelating agent forms chelates that are soluble in the supercritical fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is a fluorinated {beta}-diketone. In especially preferred embodiments the extraction solvent is supercritical carbon dioxide, and the chelating agent comprises a fluorinated {beta}-diketone and a trialkyl phosphate, or a fluorinated {beta}-diketone and a trialkylphosphine oxide. Although a trialkyl phosphate can extract lanthanides and actinides from acidic solutions, a binary mixture comprising a fluorinated {beta}-diketone and a trialkyl phosphate or a trialkylphosphine oxide tends to enhance the extraction efficiencies for actinides and lanthanides. The method provides an environmentally benign process for removing contaminants from industrial waste without using acids or biologically harmful solvents. The method is particularly useful for extracting actinides and lanthanides from acidic solutions. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process. 7 figs.

  17. Supercritical fluid processing: opportunities for new resist materials and processes

    NASA Astrophysics Data System (ADS)

    Gallagher-Wetmore, Paula M.; Ober, Christopher K.; Gabor, Allen H.; Allen, Robert D.

    1996-05-01

    Over the past two decades supercritical fluids have been utilized as solvents for carrying out separations of materials as diverse as foods, polymers, pharmaceuticals, petrochemicals, natural products, and explosives. More recently they have been used for non-extractive applications such as recrystallization, deposition, impregnation, surface modification, and as a solvent alternative for precision parts cleaning. Today, supercritical fluid extraction is being practiced in the foods and beverage industries; there are commercial plants for decaffeinating coffee and tea, extracting beer flavoring agents from hops, and separating oils and oleoresins from spices. Interest in supercritical fluid processing of polymers has grown over the last ten years, and many new purification, fractionation, and even polymerization techniques have emerged. One of the most significant motivations for applying this technology to polymers has been increased performance demands. More recently, with increasing scrutiny of traditional solvents, supercritical fluids, and in particular carbon dioxide, are receiving widespread attention as 'environmentally conscious' solvents. This paper describes several examples of polymers applications, including a few involving photoresists, which demonstrate that as next- generation advanced polymer systems emerge, supercritical fluids are certain to offer advantages as cutting edge processing tools.

  18. A Static Aeroelastic Analysis of a Flexible Wing Mini Unmanned Aerial Vehicle

    DTIC Science & Technology

    2008-03-27

    is the most favorable because it generally results in the greatest CL max and is less prone to hysteresis in the lift curve. Carmichael emphasized the...Defense, 2005. 8. Carmichael B. H. Low Reynolds Number Airfoil Survey . Technical Report, NASA, 1981. 9. Crabtree L. F. “Effects of Leading-Edge Separation...44th AIAA Aerospace Sciences Meeting and Exhibit . Jan 2006. 34. Stults J. A. Computational Aeroelastic Analysis of Micro Air Vehicle with Ex

  19. Continuous production of biodiesel under supercritical methyl acetate conditions: Experimental investigation and kinetic model.

    PubMed

    Farobie, Obie; Matsumura, Yukihiko

    2017-10-01

    In this study, biodiesel production by using supercritical methyl acetate in a continuous flow reactor was investigated for the first time. The aim of this study was to elucidate the reaction kinetics of biodiesel production by using supercritical methyl. Experiments were conducted at various reaction temperatures (300-400°C), residence times (5-30min), oil-to-methyl acetate molar ratio of 1:40, and a fixed pressure of 20MPa. Reaction kinetics of biodiesel production with supercritical methyl acetate was determined. Finally, biodiesel yield obtained from this method was compared to that obtained with supercritical methanol, ethanol, and MTBE (methyl tertiary-butyl ether). The results showed that biodiesel yield with supercritical methyl acetate increased with temperature and time. The developed kinetic model was found to fit the experimental data well. The reactivity of supercritical methyl acetate was the lowest, followed by that of supercritical MTBE, ethanol, and methanol, under the same conditions. Copyright © 2017. Published by Elsevier Ltd.

  20. Wavelet Analyses of F/A-18 Aeroelastic and Aeroservoelastic Flight Test Data

    NASA Technical Reports Server (NTRS)

    Brenner, Martin J.

    1997-01-01

    Time-frequency signal representations combined with subspace identification methods were used to analyze aeroelastic flight data from the F/A-18 Systems Research Aircraft (SRA) and aeroservoelastic data from the F/A-18 High Alpha Research Vehicle (HARV). The F/A-18 SRA data were produced from a wingtip excitation system that generated linear frequency chirps and logarithmic sweeps. HARV data were acquired from digital Schroeder-phased and sinc pulse excitation signals to actuator commands. Nondilated continuous Morlet wavelets implemented as a filter bank were chosen for the time-frequency analysis to eliminate phase distortion as it occurs with sliding window discrete Fourier transform techniques. Wavelet coefficients were filtered to reduce effects of noise and nonlinear distortions identically in all inputs and outputs. Cleaned reconstructed time domain signals were used to compute improved transfer functions. Time and frequency domain subspace identification methods were applied to enhanced reconstructed time domain data and improved transfer functions, respectively. Time domain subspace performed poorly, even with the enhanced data, compared with frequency domain techniques. A frequency domain subspace method is shown to produce better results with the data processed using the Morlet time-frequency technique.