NASA Technical Reports Server (NTRS)
Hodges, G. E.; Mcgehee, C. R.
1981-01-01
The final design and hardware fabrication was completed for an active control system capable of the required flutter suppression, compatible with and ready for installation in the NASA aeroelastic research wing number 1 (ARW-1) on Firebee II drone flight test vehicle. The flutter suppression system uses vertical acceleration at win buttock line 1.930 (76), with fuselage vertical and roll accelerations subtracted out, to drive wing outboard aileron control surfaces through appropriate symmetric and antisymmetric shaping filters. The goal of providing an increase of 20 percent above the unaugmented vehicle flutter velocity but below the maximum operating condition at Mach 0.98 is exceeded by the final flutter suppression system. Results indicate that the flutter suppression system mechanical and electronic components are ready for installation on the DAST ARW-1 wing and BQM-34E/F drone fuselage.
Close-Range Photogrammetric Measurement of Static Deflections for an Aeroelastic Supercritical Wing
NASA Technical Reports Server (NTRS)
Byrdsong, Thomas A.; Adams, Richard R.; Sandford, Maynard C.
1990-01-01
Close range photogrammetric measurements were made for the lower wing surface of a full span aspect ratio 10.3 aeroelastic supercritical research wing. The measurements were made during wind tunnel tests for quasi-steady pressure distributions on the wing. The tests were conducted in the NASA Langley Transonic Dynamics Tunnel at Mach numbers up to 0.90 and dynamic pressures up to 300 pounds per square foot. Deflection data were obtained for 57 locations on the wing lower surface using dual non-metric cameras. Representative data are presented as graphical overview to show variations and trends of spar deflection with test variables. Comparative data are presented for photogrammetric and cathetometric results of measurements for the wing tip deflections. A tabulation of the basic measurements is presented in a supplement to this report.
Ongoing Fixed Wing Research within the NASA Langley Aeroelasticity Branch
NASA Technical Reports Server (NTRS)
Bartels, Robert; Chwalowski, Pawel; Funk, Christie; Heeg, Jennifer; Hur, Jiyoung; Sanetrik, Mark; Scott, Robert; Silva, Walter; Stanford, Bret; Wiseman, Carol
2015-01-01
The NASA Langley Aeroelasticity Branch is involved in a number of research programs related to fixed wing aeroelasticity and aeroservoelasticity. These ongoing efforts are summarized here, and include aeroelastic tailoring of subsonic transport wing structures, experimental and numerical assessment of truss-braced wing flutter and limit cycle oscillations, and numerical modeling of high speed civil transport configurations. Efforts devoted to verification, validation, and uncertainty quantification of aeroelastic physics in a workshop setting are also discussed. The feasibility of certain future civil transport configurations will depend on the ability to understand and control complex aeroelastic phenomena, a goal that the Aeroelasticity Branch is well-positioned to contribute through these programs.
Activities in Aeroelasticity at NASA Langley Research Center
NASA Technical Reports Server (NTRS)
Perry, Boyd, III; Noll, Thomas E.
1997-01-01
This paper presents the results of recently-completed research and presents status reports of current research being performed within the Aeroelasticity Branch of the NASA Langley Research Center. Within the paper this research is classified as experimental, analytical, and theoretical aeroelastic research. The paper also describes the Langley Transonic Dynamics Tunnel, its features, capabilities, a new open-architecture data acquisition system, ongoing facility modifications, and the subsequent calibration of the facility.
2005 PathfinderPlus Aero-Elastic Research Flight
NASA Technical Reports Server (NTRS)
Navarro, Robert
2005-01-01
This viewgraph presentation describes the 2005 Pathfinder along with an investigation of its aeroelastic responses. The contents include: 1) HALE Class of Vehicles; 2) Aero-elastic Research Flights Overall Objective; 3) General Arrangement; 4) Sensor Locations; 5) NASA Ramp Operations; 6) Lakebed Operations; 7) 1st Flight Data Set; 8) Tool development / data usage; 9) HALE Tool Development & Validation; 10) Building a HALE Foundation; 11) Compelling Needs Drive HALE Efforts; and 12) Team Photo
NASA Technical Reports Server (NTRS)
Heeg, Jennifer; Chwalowski, Pawel; Wieseman, Carol D.; Florance, Jennifer P.; Schuster, David M.
2013-01-01
The Aeroelastic Prediction Workshop brought together an international community of computational fluid dynamicists as a step in defining the state of the art in computational aeroelasticity. The Rectangular Supercritical Wing (RSW) was chosen as the first configuration to study due to its geometric simplicity, perceived simple flow field at transonic conditions and availability of an experimental data set containing forced oscillation response data. Six teams performed analyses of the RSW; they used Reynolds-Averaged Navier-Stokes flow solvers exercised assuming that the wing had a rigid structure. Both steady-state and forced oscillation computations were performed by each team. The results of these calculations were compared with each other and with the experimental data. The steady-state results from the computations capture many of the flow features of a classical supercritical airfoil pressure distribution. The most dominant feature of the oscillatory results is the upper surface shock dynamics. Substantial variations were observed among the computational solutions as well as differences relative to the experimental data. Contributing issues to these differences include substantial wind tunnel wall effects and diverse choices in the analysis parameters.
Aeroelasticity at the NASA Langley Research Center Recent progress, new challenges
NASA Technical Reports Server (NTRS)
Hanson, P. W.
1985-01-01
Recent progress in aeroelasticity, particularly at the NASA Langley Research Center is reviewed to look at the questions answered and questions raised, and to attempt to define appropriate research emphasis needed in the near future and beyond. The paper is focused primarily on the NASA Langley Research Center (LaRC) Program because Langley is the lead NASA center for aerospace structures research, and essentially is the only one working in depth in the area of aeroelasticity. Historical trends in aeroelasticity are reviewed broadly in terms of technology and staffing particularly at the LaRC. Then, selected studies of the Loads and Aeroelasticity Division at LaRC and others over the past three years are presented with attention paid to unresolved questions. Finally, based on the results of these studies and on perceptions of design trends and aircraft operational requirements, future research needs in aeroelasticity are discussed.
A Review of Recent Aeroelastic Analysis Methods for Propulsion at NASA Lewis Research Center
NASA Technical Reports Server (NTRS)
Reddy, T. S. R.; Bakhle, Milind A.; Srivastava, R.; Mehmed, Oral; Stefko, George L.
1993-01-01
This report reviews aeroelastic analyses for propulsion components (propfans, compressors and turbines) being developed and used at NASA LeRC. These aeroelastic analyses include both structural and aerodynamic models. The structural models include a typical section, a beam (with and without disk flexibility), and a finite-element blade model (with plate bending elements). The aerodynamic models are based on the solution of equations ranging from the two-dimensional linear potential equation to the three-dimensional Euler equations for multibladed configurations. Typical calculated results are presented for each aeroelastic model. Suggestions for further research are made. Many of the currently available aeroelastic models and analysis methods are being incorporated in a unified computer program, APPLE (Aeroelasticity Program for Propulsion at LEwis).
NASA Technical Reports Server (NTRS)
Abel, Irving
1997-01-01
An overview of recently completed programs in aeroelasticity and structural dynamics research at the NASA Langley Research Center is presented. Methods used to perform flutter clearance studies in the wind-tunnel on a high performance fighter are discussed. Recent advances in the use of smart structures and controls to solve aeroelastic problems, including flutter and gust response are presented. An aeroelastic models program designed to support an advanced high speed civil transport is described. An extension to transonic small disturbance theory that better predicts flows involving separation and reattachment is presented. The results of a research study to determine the effects of flexibility on the taxi and takeoff characteristics of a high speed civil transport are presented. The use of photogrammetric methods aboard Space Shuttle to measure spacecraft dynamic response is discussed. Issues associated with the jitter response of multi-payload spacecraft are discussed. Finally a Space Shuttle flight experiment that studied the control of flexible spacecraft is described.
A historical overview of tiltrotor aeroelastic research at Langley Research Center
NASA Technical Reports Server (NTRS)
Kvaternik, Raymond G.
1992-01-01
The Bell/Boeing V-22 Osprey which is being developed for the U.S. Military is a tiltrotor aircraft combining the versatility of a helicopter with the range and speed of a turboprop airplane. The V-22 represents a tiltrotor lineage which goes back over forty years, during which time contributions to the technology base needed for its development were made by both government and industry. NASA Langley Research Center has made substantial contributions to tiltrotor technology in several areas, in particular in the area of aeroelasticity. The purpose of this talk is to present a summary of the tiltrotor aeroelastic research conducted at Langley which has contributed to that technology.
Unsteady-Pressure and Dynamic-Deflection Measurements on an Aeroelastic Supercritical Wing
NASA Technical Reports Server (NTRS)
Seidel, David A.; Sandford, Maynard C.; Eckstrom, Clinton V.
1991-01-01
Transonic steady and unsteady pressure tests were conducted on a large elastic wing. The wing has a supercritical airfoil, a full span aspect ratio of 10.3, a leading edge sweepback angle of 28.8 degrees, and two inboard and one outboard trailing edge control surfaces. Only the outboard control surface was deflected statically and dynamically to generate steady and unsteady flow over the wing. The unsteady surface pressure and dynamic deflection measurements of this elastic wing are presented to permit correlations of the experimental data with theoretical predictions.
Dynamic structural aeroelastic stability testing of the XV-15 tilt rotor research aircraft
NASA Technical Reports Server (NTRS)
Schroers, L. G.
1982-01-01
For the past 20 years, a significant effort has been made to understand and predict the structural aeroelastic stability characteristics of the tilt rotor concept. Beginning with the rotor-pylon oscillation of the XV-3 aircraft, the problem was identified and then subjected to a series of theoretical studies, plus model and full-scale wind tunnel tests. From this data base, methods were developed to predict the structural aeroelastic stability characteristics of the XV-15 Tilt Rotor Research Aircraft. The predicted aeroelastic characteristics are examined in light of the major parameters effecting rotor-pylon-wing stability. Flight test techniques used to obtain XV-15 aeroelastic stability are described. Flight test results are summarized and compared to the predicted values. Wind tunnel results are compared to flight test results and correlated with predicted values.
Survey of Army/NASA rotorcraft aeroelastic stability research
NASA Technical Reports Server (NTRS)
Ormiston, Robert A.; Warmbrodt, William G.; Hodges, Dewey H.; Peters, David A.
1988-01-01
Theoretical and experimental developments in the aeroelastic and aeromechanical stability of helicopters and tilt-rotor aircraft are addressed. Included are the underlying nonlinear structural mechanics of slender rotating beams, necessary for accurate modeling of elastic cantilever rotor blades, and the development of dynamic inflow, an unsteady aerodynamic theory for low frequency aeroelastic stability applications. Analytical treatment of isolated rotor stability in hover and forward flight, coupled rotor-fuselage stability are considered. Results of parametric investigations of system behavior are presented, and correlations between theoretical results and experimental data from small- and large-scale wind tunnel and flight testing are discussed.
Status of NASA full-scale engine aeroelasticity research
NASA Technical Reports Server (NTRS)
Lubomski, J. F.
1980-01-01
Data relevant to several types of aeroelastic instabilities were obtained using several types of turbojet and turbofan engines. In particular, data relative to separated flow (stall) flutter, choke flutter, and system mode instabilities are presented. The unique characteristics of these instabilities are discussed, and a number of correlations are presented that help identify the nature of the phenomena.
Status of NASA full-scale engine aeroelasticity research
NASA Technical Reports Server (NTRS)
Lubomski, J. F.
1980-01-01
The paper presents data relevant to several types of aeroelastic instabilities which have been obtained using several types of turbojet and turbofan engines. Special attention is given to data relative to separated flow (stall) flutter, choke flutter, and system mode instabilities. The discussion covers the characteristics of these instabilities, and a number of correlations are presented that help identify the nature of the phenomena.
Overview of the Aeroelastic Prediction Workshop
NASA Technical Reports Server (NTRS)
Heeg, Jennifer; Chwalowski, Pawel; Schuster, David M.; Dalenbring, Mats
2013-01-01
The AIAA Aeroelastic Prediction Workshop (AePW) was held in April, 2012, bringing together communities of aeroelasticians and computational fluid dynamicists. The objective in conducting this workshop on aeroelastic prediction was to assess state-of-the-art computational aeroelasticity methods as practical tools for the prediction of static and dynamic aeroelastic phenomena. No comprehensive aeroelastic benchmarking validation standard currently exists, greatly hindering validation and state-of-the-art assessment objectives. The workshop was a step towards assessing the state of the art in computational aeroelasticity. This was an opportunity to discuss and evaluate the effectiveness of existing computer codes and modeling techniques for unsteady flow, and to identify computational and experimental areas needing additional research and development. Three configurations served as the basis for the workshop, providing different levels of geometric and flow field complexity. All cases considered involved supercritical airfoils at transonic conditions. The flow fields contained oscillating shocks and in some cases, regions of separation. The computational tools principally employed Reynolds-Averaged Navier Stokes solutions. The successes and failures of the computations and the experiments are examined in this paper.
NASA Technical Reports Server (NTRS)
Gardner, J. E.; Dixon, S. C.
1986-01-01
The Langley Research Center Loads and Aeroelasticity Division's research accomplishments for FY85 and research plans for FY86 are presented. The rk under each branch (technical area) will be described in terms of highlights of accomplishments during the past year and highlights of plans for the current year as they relate to five year plans for each technical area. This information will be useful in program coordination with other government organizations and industry in areas of mutual interest.
NASA Technical Reports Server (NTRS)
Gardner, James E.; Dixon, S. C.
1987-01-01
The Loads and Aeroelasticity Division's research accomplishments for FY 86 and research plans for FY 87 are presented. The work under each Branch (technical area) is described in terms of highlights of accomplishments during the past year and highlights of plans for the current year as they relate to five year plans for each technical area. This information will be useful in program coordination with other government organizations and industry in areas of mutual interest.
NASA Technical Reports Server (NTRS)
Dixon, S. C.; Gardner, James E.
1988-01-01
The purpose of this paper is to present the Loads and Aeroelasticity Division's research accomplishments for FY87 and research plans for FY88. The work under each Branch (technical area) is described in terms of highlights of accomplishments during the past year and highlights of plans for the current year as they relate to five year plans for each technical area. This information will be useful in program coordination with other government organizations and industry in areas of mutual interest.
NASA Technical Reports Server (NTRS)
Gardner, J. E.
1983-01-01
Accomplishments of the past year and plans for the coming year are highlighted as they relate to five year plans and the objectives of the following technical areas: aerothermal loads; multidisciplinary analysis and optimization; unsteady aerodynamics; and configuration aeroelasticity. Areas of interest include thermal protection system concepts, active control, nonlinear aeroelastic analysis, aircraft aeroelasticity, and rotorcraft aeroelasticity and vibrations.
NASA Technical Reports Server (NTRS)
Gardner, J. E.; Dixon, S. C.
1984-01-01
Research was done in the following areas: development and validation of solution algorithms, modeling techniques, integrated finite elements for flow-thermal-structural analysis and design, optimization of aircraft and spacecraft for the best performance, reduction of loads and increase in the dynamic structural stability of flexible airframes by the use of active control, methods for predicting steady and unsteady aerodynamic loads and aeroelastic characteristics of flight vehicles with emphasis on the transonic range, and methods for predicting and reducing helicoper vibrations.
Development of Advanced Computational Aeroelasticity Tools at NASA Langley Research Center
NASA Technical Reports Server (NTRS)
Bartels, R. E.
2008-01-01
NASA Langley Research Center has continued to develop its long standing computational tools to address new challenges in aircraft and launch vehicle design. This paper discusses the application and development of those computational aeroelastic tools. Four topic areas will be discussed: 1) Modeling structural and flow field nonlinearities; 2) Integrated and modular approaches to nonlinear multidisciplinary analysis; 3) Simulating flight dynamics of flexible vehicles; and 4) Applications that support both aeronautics and space exploration.
NASA Technical Reports Server (NTRS)
Gardner, J. E.; Dixon, S. C.
1985-01-01
The loads and aeroelasticity divisions research accomplishments are presented. The work under each branch or technical area, described in terms of highlights of accomplishments during the past year and highlights of plans for the current year as they relate to 5 year plans for each technical area. This information will be useful in program coordination with other government organizations and industry in areas of mutual interest.
Steady pressure measurements on an Aeroelastic Research Wing (ARW-2)
NASA Technical Reports Server (NTRS)
Sandford, Maynard C.; Seidel, David A.; Eckstrom, Clinton V.
1994-01-01
Transonic steady and unsteady pressure tests have been conducted in the Langley transonic dynamics tunnel on a large elastic wing known as the DAST ARW-2. The wing has a supercritical airfoil, an aspect ratio of 10.3, a leading-edge sweep back angle of 28.8 degrees, and two inboard and one outboard trailing-edge control surfaces. Only the outboard control surface was deflected to generate steady and unsteady flow over the wing during this study. Only the steady surface pressure, control-surface hinge moment, wing-tip deflection, and wing-root bending moment measurements are presented. The results from this elastic wing test are in tabulated form to assist in calibrating advanced computational fluid dynamics (CFD) algorithms.
Internal Structural Design of the Common Research Model Wing Box for Aeroelastic Tailoring
NASA Technical Reports Server (NTRS)
Jutte, Christine V.; Stanford, Bret K.; Wieseman, Carol D.
2015-01-01
This work explores the use of alternative internal structural designs within a full-scale wing box structure for aeroelastic tailoring, with a focus on curvilinear spars, ribs, and stringers. The baseline wing model is a fully-populated, cantilevered wing box structure of the Common Research Model (CRM). Metrics of interest include the wing weight, the onset of dynamic flutter, and the static aeroelastic stresses. Twelve parametric studies alter the number of internal structural members along with their location, orientation, and curvature. Additional evaluation metrics are considered to identify design trends that lead to lighter-weight, aeroelastically stable wing designs. The best designs of the individual studies are compared and discussed, with a focus on weight reduction and flutter resistance. The largest weight reductions were obtained by removing the inner spar, and performance was maintained by shifting stringers forward and/or using curvilinear ribs: 5.6% weight reduction, a 13.9% improvement in flutter speed, but a 3.0% increase in stress levels. Flutter resistance was also maintained using straight-rotated ribs although the design had a 4.2% lower flutter speed than the curved ribs of similar weight and stress levels were higher. For some configurations, the differences between curved and straight ribs were smaller, which provides motivation for future optimization-based studies to fully exploit the trade-offs.
Aeroelastic Analysis of Modern Complex Wings
NASA Technical Reports Server (NTRS)
Kapania, Rakesh K.; Bhardwaj, Manoj K.; Reichenbach, Eric; Guruswamy, Guru P.
1996-01-01
A process is presented by which aeroelastic analysis is performed by using an advanced computational fluid dynamics (CFD) code coupled with an advanced computational structural dynamics (CSD) code. The process is demonstrated on an F/A-18 Stabilator using NASTD (an in-house McDonnell Douglas Aerospace East CFD code) coupled with NASTRAN. The process is also demonstrated on an aeroelastic research wing (ARW-2) using ENSAERO (an in-house NASA Ames Research Center CFD code) coupled with a finite element wing-box structures code. Good results have been obtained for the F/A-18 Stabilator while results for the ARW-2 supercritical wing are still being obtained.
Supercritical fluid technology: a promising approach in pharmaceutical research.
Girotra, Priti; Singh, Shailendra Kumar; Nagpal, Kalpana
2013-02-01
Supercritical fluids possess the unique properties of behaving like liquids and gases, above their critical point. Supercritical fluid technology has recently emerged as a green and novel technique for various processes such as solubility enhancement of poorly soluble drugs, plasticization of polymers, surface modification, nanosizing and nanocrystal modification, and chromatographic extraction. Research interest in this area has been fuelled because of the numerous advantages that the technology offers over the conventional methods. This work aims to review the merits, demerits, and various processes such as rapid expansion of supercritical solutions (RESS), particles from gas saturated solutions (PGSS), gas antisolvent process (GAS), supercritical antisolvent process (SAS) and polymerization induced phase separation (PIPS), that have enabled this technology to considerably raise the interest of researchers over the past two decades. An insight has been given into the numerous applications of this technology in pharmaceutical industry and the future challenges which must be appropriately dealt with to make it effective on a commercial scale. PMID:23036159
NASA Technical Reports Server (NTRS)
Jutte, Christine V.; Stanford, Bret K.; Wieseman, Carol D.; Moore, James B.
2014-01-01
This work explores the use of tow steered composite laminates, functionally graded metals (FGM), thickness distributions, and curvilinear rib/spar/stringer topologies for aeroelastic tailoring. Parameterized models of the Common Research Model (CRM) wing box have been developed for passive aeroelastic tailoring trade studies. Metrics of interest include the wing weight, the onset of dynamic flutter, and the static aeroelastic stresses. Compared to a baseline structure, the lowest aggregate static wing stresses could be obtained with tow steered skins (47% improvement), and many of these designs could reduce weight as well (up to 14%). For these structures, the trade-off between flutter speed and weight is generally strong, although one case showed both a 100% flutter improvement and a 3.5% weight reduction. Material grading showed no benefit in the skins, but moderate flutter speed improvements (with no weight or stress increase) could be obtained by grading the spars (4.8%) or ribs (3.2%), where the best flutter results were obtained by grading both thickness and material. For the topology work, large weight reductions were obtained by removing an inner spar, and performance was maintained by shifting stringers forward and/or using curvilinear ribs: 5.6% weight reduction, a 13.9% improvement in flutter speed, but a 3.0% increase in stress levels. Flutter resistance was also maintained using straightrotated ribs although the design had a 4.2% lower flutter speed than the curved ribs of similar weight and stress levels were higher. These results will guide the development of a future design optimization scheme established to exploit and combine the individual attributes of these technologies.
NASA Technical Reports Server (NTRS)
Mourey, D. J.
1979-01-01
The aspects of flight testing an aeroelastically tailored forward swept research wing on a BQM-34F drone vehicle are examined. The geometry of a forward swept wing, which is incorporated into the BQM-34F to maintain satisfactory flight performance, stability, and control is defined. A preliminary design of the aeroelastically tailored forward swept wing is presented.
NASA Technical Reports Server (NTRS)
Graves, Sharon S.; Burner, Alpheus W.; Edwards, John W.; Schuster, David M.
2001-01-01
The techniques used to acquire, reduce, and analyze dynamic deformation measurements of an aeroelastic semispan wind tunnel model are presented. Single-camera, single-view video photogrammetry (also referred to as videogrammetric model deformation, or VMD) was used to determine dynamic aeroelastic deformation of the semispan 'Models for Aeroelastic Validation Research Involving Computation' (MAVRIC) model in the Transonic Dynamics Tunnel at the NASA Langley Research Center. Dynamic deformation was determined from optical retroreflective tape targets at five semispan locations located on the wing from the root to the tip. Digitized video images from a charge coupled device (CCD) camera were recorded and processed to automatically determine target image plane locations that were then corrected for sensor, lens, and frame grabber spatial errors. Videogrammetric dynamic data were acquired at a 60-Hz rate for time records of up to 6 seconds during portions of this flutter/Limit Cycle Oscillation (LCO) test at Mach numbers from 0.3 to 0.96. Spectral analysis of the deformation data is used to identify dominant frequencies in the wing motion. The dynamic data will be used to separate aerodynamic and structural effects and to provide time history deflection data for Computational Aeroelasticity code evaluation and validation.
Heat transfer research on supercritical water flow upward in tube
Li, H. B.; Yang, J.; Gu, H. Y.; Zhao, M.; Lu, D. H.; Zhang, J. M.; Wang, F.; Zhang, Y.
2012-07-01
The experimental research of heat transfer on supercritical water has been carried out on the supercritical water multipurpose test loop with a 7.6 mm upright tube. The experimental data of heat transfer is obtained. The experimental results of thermal-hydraulic parameters on flow and heat transfer of supercritical water show that: Heat transfer enhancement occurs when the fluid temperature reaches pseudo-critical point with low mass flow velocity, and peters out when the mass flow velocity increases. The heat transfer coefficient and Nusselt number decrease with the heat flux or system pressure increases, and increase with the increasing of mass flow velocity. The wall temperature increases when the mass flow velocity decreases or the system pressure increases. (authors)
NASA Technical Reports Server (NTRS)
Bradley, Marty K.; Allen, Timothy J.; Droney, Christopher
2014-01-01
This Test Report summarizes the Truss Braced Wing (TBW) Aeroelastic Test (Task 3.1) work accomplished by the Boeing Subsonic Ultra Green Aircraft Research (SUGAR) team, which includes the time period of February 2012 through June 2014. The team consisted of Boeing Research and Technology, Boeing Commercial Airplanes, Virginia Tech, and NextGen Aeronautics. The model was fabricated by NextGen Aeronautics and designed to meet dynamically scaled requirements from the sized full scale TBW FEM. The test of the dynamically scaled SUGAR TBW half model was broken up into open loop testing in December 2013 and closed loop testing from January 2014 to April 2014. Results showed the flutter mechanism to primarily be a coalescence of 2nd bending mode and 1st torsion mode around 10 Hz, as predicted by analysis. Results also showed significant change in flutter speed as angle of attack was varied. This nonlinear behavior can be explained by including preload and large displacement changes to the structural stiffness and mass matrices in the flutter analysis. Control laws derived from both test system ID and FEM19 state space models were successful in suppressing flutter. The control laws were robust and suppressed flutter for a variety of Mach, dynamic pressures, and angle of attacks investigated.
Plans and Example Results for the 2nd AIAA Aeroelastic Prediction Workshop
NASA Technical Reports Server (NTRS)
Heeg, Jennifer; Chwalowski, Pawel; Schuster, David M.; Raveh, Daniella; Jirasek, Adam; Dalenbring, Mats
2015-01-01
This paper summarizes the plans for the second AIAA Aeroelastic Prediction Workshop. The workshop is designed to assess the state-of-the-art of computational methods for predicting unsteady flow fields and aeroelastic response. The goals are to provide an impartial forum to evaluate the effectiveness of existing computer codes and modeling techniques, and to identify computational and experimental areas needing additional research and development. This paper provides guidelines and instructions for participants including the computational aerodynamic model, the structural dynamic properties, the experimental comparison data and the expected output data from simulations. The Benchmark Supercritical Wing (BSCW) has been chosen as the configuration for this workshop. The analyses to be performed will include aeroelastic flutter solutions of the wing mounted on a pitch-and-plunge apparatus.
FUN3D Analyses in Support of the Second Aeroelastic Prediction Workshop
NASA Technical Reports Server (NTRS)
Chwalowski, Pawel; Heeg, Jennifer
2016-01-01
This paper presents the computational aeroelastic results generated in support of the second Aeroelastic Prediction Workshop for the Benchmark Supercritical Wing (BSCW) configurations and compares them to the experimental data. The computational results are obtained using FUN3D, an unstructured grid Reynolds- Averaged Navier-Stokes solver developed at NASA Langley Research Center. The analysis results include aerodynamic coefficients and surface pressures obtained for steady-state, static aeroelastic equilibrium, and unsteady flow due to a pitching wing or flutter prediction. Frequency response functions of the pressure coefficients with respect to the angular displacement are computed and compared with the experimental data. The effects of spatial and temporal convergence on the computational results are examined.
NASA Technical Reports Server (NTRS)
Wang, James M.
1991-01-01
The aeroelastic stability of a shaft-fixed bearingless rotor is analyzed in wind-tunnel tests for a wide range of operating conditions in order to determine whether such a system could be made aeroelastically stable without incorporating auxiliary dampers. The model rotor and blade properties are determined and used as an input to a bearingless-rotor analysis. Theoretical predictions are compared with experimental results in hover and forward flights. The analysis predicts the lag mode damping satisfactorily for collective pitch between 5 deg and 10 deg; however, the quasi-steady linear aerodynamic modeling overpredicts the damping values for higher collective pitch settings. It is noted that soft blade pitch links improve aeroelastic stability in hover and at low advance ratio.
Selected topics in experimental aeroelasticity at the NASA Langley Research Center
NASA Technical Reports Server (NTRS)
Ricketts, R. H.
1985-01-01
The results of selected studies that have been conducted by the NASA Langley Research Center in the last three years are presented. The topics presented focus primarily on the ever-important transonic flight regime and include the following: body-freedom flutter of a forward-swept-wing configuration with and without relaxed static stability; instabilities associated with a new tilt-rotor vehicle; effects of winglets, supercritical airfoils, and spanwise curvature on wing flutter; wind-tunnel investigation of a flutter-like oscillation on a high-aspect-ratio flight research wing; results of wind-tunnel demonstration of the NASA decoupler pylon concept for passive suppression of wing/store flutter; and, new flutter testing methods which include testing at cryogenic temperatures for full scale Reynolds number simulation, subcritical response techniques for predicting onset of flutter, and a two-degree-of-freedom mount system for testing side-wall-mounted models.
Selected topics in experimental aeroelasticity at the NASA Langley Research Center
NASA Technical Reports Server (NTRS)
Ricketts, R. H.
1985-01-01
The results of selected studies that have been conducted by the NASA Langley Research Center in the last three years are presented. The topics presented focus primarily on the ever-important transonic flight regime and include the following: body-freedom flutter of a forward-swept-wing configuration with and without relaxed static stability; instabilities associated with a new tilt-rotor vehicle; effects of winglets, supercritical airfoils, and spanwise curvature on wing flutter; wind-tunnel investigation of a flutter-like oscillation on a high-aspect-ratio flight research wing; results of wing-tunnel demonstration of the NASA decoupler pylon concept for passive suppression of wing/store flutter; and, new flutter testing methods which include testing at cryogenic temperatures for full scale Reynolds number simulation, subcritical response techniques for predicting onset of flutter, and a two-degree-of-freedom mount system for testing side-wall-mounted models.
NASA Technical Reports Server (NTRS)
Murrow, H. N.
1981-01-01
Results from flight tests of the ARW-1 research wing are presented. Preliminary loads data and experiences with the active control system for flutter suppression are included along with comparative results of test and prediction for the flutter boundary of the supercritical research wing and on performance of the flutter suppression system. The status of the ARW-2 research wing is given.
Material and Thickness Grading for Aeroelastic Tailoring of the Common Research Model Wing Box
NASA Technical Reports Server (NTRS)
Stanford, Bret K.; Jutte, Christine V.
2014-01-01
This work quantifies the potential aeroelastic benefits of tailoring a full-scale wing box structure using tailored thickness distributions, material distributions, or both simultaneously. These tailoring schemes are considered for the wing skins, the spars, and the ribs. Material grading utilizes a spatially-continuous blend of two metals: Al and Al+SiC. Thicknesses and material fraction variables are specified at the 4 corners of the wing box, and a bilinear interpolation is used to compute these parameters for the interior of the planform. Pareto fronts detailing the conflict between static aeroelastic stresses and dynamic flutter boundaries are computed with a genetic algorithm. In some cases, a true material grading is found to be superior to a single-material structure.
An overview of selected NASP aeroelastic studies at the NASA Langley Research Center
NASA Technical Reports Server (NTRS)
Spain, Charles V.; Soistmann, David L.; Parker, Ellen C.; Gibbons, Michael D.; Gilbert, Michael G.
1990-01-01
Following an initial discussion of the NASP flight environment, the results of recent aeroelastic testing of NASP-type highly swept delta-wing models in Langley's Transonic Dynamics Tunnel (TDT) are summarized. Subsonic and transonic flutter characteristics of a variety of these models are described, and several analytical codes used to predict flutter of these models are evaluated. These codes generally provide good, but conservative predictions of subsonic and transonic flutter. Also, test results are presented on a nonlinear transonic phenomena known as aileron buzz which occurred in the wind tunnel on highly swept delta wings with full-span ailerons. An analytical procedure which assesses the effects of hypersonic heating on aeroelastic instabilities (aerothermoelasticity) is also described. This procedure accurately predicted flutter of a heated aluminum wing on which experimental data exists. Results are presented on the application of this method to calculate the flutter characteristics of a fine-element model of a generic NASP configuration. Finally, it is demonstrated analytically that active controls can be employed to improve the aeroelastic stability and ride quality of a generic NASP vehicle flying at hypersonic speeds.
Aeroelastic Sizing for High-Speed Research (HSR) Longitudinal Control Alternatives Project (LCAP)
NASA Technical Reports Server (NTRS)
Walsh, Joanne L.; Dunn, H. J.; Stroud, W. Jefferson; Barthelemy, J.-F.; Weston, Robert P.; Martin, Carl J.; Bennett, Robert M.
2005-01-01
The Longitudinal Control Alternatives Project (LCAP) compared three high-speed civil transport configurations to determine potential advantages of the three associated longitudinal control concepts. The three aircraft configurations included a conventional configuration with a layout having a horizontal aft tail, a configuration with a forward canard in addition to a horizontal aft tail, and a configuration with only a forward canard. The three configurations were aeroelastically sized and were compared on the basis of operational empty weight (OEW) and longitudinal control characteristics. The sized structure consisted of composite honeycomb sandwich panels on both the wing and the fuselage. Design variables were the core depth of the sandwich and the thicknesses of the composite material which made up the face sheets of the sandwich. Each configuration was sized for minimum structural weight under linear and nonlinear aeroelastic loads subject to strain, buckling, ply-mixture, and subsonic and supersonic flutter constraints. This report describes the methods that were used and the results that were generated for the aeroelastic sizing of the three configurations.
Aeroelastic problems in turbomachines
NASA Technical Reports Server (NTRS)
Bendiksen, Oddvar O.
1990-01-01
A review of the field of turbomachinery aeroelasticity is presented. Developments over the past decade are emphasized, and an assessment of possible future directions of research is offered. The paper reviews the areas of unsteady cascade flows, structural modeling, and flutter prediction methods. Representative results for unsteady flow calculations and flutter boundary predictions in subsonic, transonic, and supersonic flows are discussed, including recent calculations based on the methods of computational fluid mechanics. Results from current attempts to correlate experimental data with theoretical predictions are discussed briefly. It is recommended that future research include investigations of novel approaches to flutter calculations that can take full advantage of parallel processing supercomputers. The feasibility of using mistuning and aeroelastic tailoring as passive flutter suppression techniques should also be pursued.
NASA Technical Reports Server (NTRS)
Adams, W. M., Jr.; Tiffany, S. H.
1983-01-01
A control law is developed to suppress symmetric flutter for a mathematical model of an aeroelastic research vehicle. An implementable control law is attained by including modified LQG (linear quadratic Gaussian) design techniques, controller order reduction, and gain scheduling. An alternate (complementary) design approach is illustrated for one flight condition wherein nongradient-based constrained optimization techniques are applied to maximize controller robustness.
Research of a Supercritical Pressure Water Cooled Reactor in Korea
Bae, Yoon-Yeong; Joo, Hyung-Kook; Jang, Jinsung; Jeong, Yong-Hwan; Song, Jin-ho; Yoon, Han-Young; Yoo, Jung-Yul
2004-07-01
In this paper the activities on the supercritical pressure water-cooled reactor (SCWR) in Korea are briefly introduced. Four projects on a SCWR are being conducted in Korea. Three of them are supported by the I-NERI program while one is by KAERI. Two of the I-NERI-supported projects concern suitable materials for supercritical pressure and temperature, and radiation environment. The other I-NERI-supported project surveys numerically and experimentally the proper turbulence modeling for the numerical calculation of heat transfer phenomena at a supercritical condition. Heat transfer at a supercritical condition is being studied at KAERI experimentally using carbon dioxide as a coolant. The test loop is to be completed by the end of 2004. (authors)
Aeroelasticity Benchmark Assessment: Subsonic Fixed Wing Program
NASA Technical Reports Server (NTRS)
Florance, Jennifer P.; Chwalowski, Pawel; Wieseman, Carol D.
2010-01-01
The fundamental technical challenge in computational aeroelasticity is the accurate prediction of unsteady aerodynamic phenomena and the effect on the aeroelastic response of a vehicle. Currently, a benchmarking standard for use in validating the accuracy of computational aeroelasticity codes does not exist. Many aeroelastic data sets have been obtained in wind-tunnel and flight testing throughout the world; however, none have been globally presented or accepted as an ideal data set. There are numerous reasons for this. One reason is that often, such aeroelastic data sets focus on the aeroelastic phenomena alone (flutter, for example) and do not contain associated information such as unsteady pressures and time-correlated structural dynamic deflections. Other available data sets focus solely on the unsteady pressures and do not address the aeroelastic phenomena. Other discrepancies can include omission of relevant data, such as flutter frequency and / or the acquisition of only qualitative deflection data. In addition to these content deficiencies, all of the available data sets present both experimental and computational technical challenges. Experimental issues include facility influences, nonlinearities beyond those being modeled, and data processing. From the computational perspective, technical challenges include modeling geometric complexities, coupling between the flow and the structure, grid issues, and boundary conditions. The Aeroelasticity Benchmark Assessment task seeks to examine the existing potential experimental data sets and ultimately choose the one that is viewed as the most suitable for computational benchmarking. An initial computational evaluation of that configuration will then be performed using the Langley-developed computational fluid dynamics (CFD) software FUN3D1 as part of its code validation process. In addition to the benchmarking activity, this task also includes an examination of future research directions. Researchers within the
Plans for Aeroelastic Prediction Workshop
NASA Technical Reports Server (NTRS)
Heeg, Jennifer; Ballmann, Josef; Bhatia, Kumar; Blades, Eric; Boucke, Alexander; Chwalowski, Pawel; Dietz, Guido; Dowell, Earl; Florance, Jennifer P.; Hansen, Thorsten; Mani, Mori; Marvriplis, Dimitri; Perry, Boyd, III; Ritter, Markus; Schuster, David M.; Smith, Marilyn; Taylor, Paul; Whiting, Brent; Wieseman, Carol C.
2011-01-01
This paper summarizes the plans for the first Aeroelastic Prediction Workshop. The workshop is designed to assess the state of the art of computational methods for predicting unsteady flow fields and aeroelastic response. The goals are to provide an impartial forum to evaluate the effectiveness of existing computer codes and modeling techniques, and to identify computational and experimental areas needing additional research and development. Three subject configurations have been chosen from existing wind tunnel data sets where there is pertinent experimental data available for comparison. For each case chosen, the wind tunnel testing was conducted using forced oscillation of the model at specified frequencies
Research activities on supercritical fluid science in food biotechnology.
Khosravi-Darani, Kianoush
2010-06-01
This article serves as an overview, introducing the currently popular area of supercritical fluids and their uses in food biotechnology. Within each application, and wherever possible, the basic principles of the technique, as well as a description of the history, instrumentation, methodology, uses, problems encountered, and advantages over the traditional, non-supercritical methods are given. Most current commercial application of the supercritical extraction involve biologically-produced materials; the technique may be particularly relevant to the extraction of biological compounds in cases where there is a requirement for low-temperature processing, high mass-transfer rates, and negligible carrying over of the solvent into the final product. Special applications to food processing include the decaffeination of green coffee beans, the production of hops extracts, the recovery of aromas and flavors from herbs and spices, the extraction and fractionation of edible oils, and the removal of contaminants, among others. New advances, in which the extraction is combined with reaction or crystallization steps, may further increase the attractiveness of supercritical fluids in the bioprocess industries. To develop and establish a novel and effective alternative to heating treatment, the lethal action of high hydrostatic pressure CO(2) on microorganisms, with none or only a minimal heating process, has recently received a great deal of attention. PMID:20544439
FUN3D Analyses in Support of the First Aeroelastic Prediction Workshop
NASA Technical Reports Server (NTRS)
Chwalowski, Pawel; Heeg, Jennifer; Wieseman, Carol D.; Florance, Jennifer P.
2013-01-01
This paper presents the computational aeroelastic results generated in support of the first Aeroelastic Prediction Workshop for the Benchmark Supercritical Wing (BSCW) and the HIgh REynolds Number AeroStructural Dynamics (HIRENASD) configurations and compares them to the experimental data. The computational results are obtained using FUN3D, an unstructured grid Reynolds-averaged Navier-Stokes solver developed at NASA Langley Research Center. The analysis results for both configurations include aerodynamic coefficients and surface pressures obtained for steady-state or static aeroelastic equilibrium (BSCW and HIRENASD, respectively) and for unsteady flow due to a pitching wing (BSCW) or modally-excited wing (HIRENASD). Frequency response functions of the pressure coefficients with respect to displacement are computed and compared with the experimental data. For the BSCW, the shock location is computed aft of the experimentally-located shock position. The pressure distribution upstream of this shock is in excellent agreement with the experimental data, but the pressure downstream of the shock in the separated flow region does not match as well. For HIRENASD, very good agreement between the numerical results and the experimental data is observed at the mid-span wing locations.
Data Comparisons and Summary of the Second Aeroelastic Prediction Workshop
NASA Technical Reports Server (NTRS)
Heeg, Jennifer; Wieseman, Carol D.; Chwalowski, Pawel
2016-01-01
This paper presents the computational results generated by participating teams of the second Aeroelastic Prediction Workshop and compare them with experimental data. Aeroelastic and rigid configurations of the Benchmark Supercritical Wing (BSCW) wind tunnel model served as the focus for the workshop. The comparison data sets include unforced ("steady") system responses, forced pitch oscillations and coupled fluid-structure responses. Integrated coefficients, frequency response functions, and flutter onset conditions are compared. The flow conditions studied were in the transonic range, including both attached and separated flow conditions. Some of the technical discussions that took place at the workshop are summarized.
Unsteady aerodynamic modeling and active aeroelastic control
NASA Technical Reports Server (NTRS)
Edwards, J. W.
1977-01-01
Unsteady aerodynamic modeling techniques are developed and applied to the study of active control of elastic vehicles. The problem of active control of a supercritical flutter mode poses a definite design goal stability, and is treated in detail. The transfer functions relating the arbitrary airfoil motions to the airloads are derived from the Laplace transforms of the linearized airload expressions for incompressible two dimensional flow. The transfer function relating the motions to the circulatory part of these loads is recognized as the Theodorsen function extended to complex values of reduced frequency, and is termed the generalized Theodorsen function. Inversion of the Laplace transforms yields exact transient airloads and airfoil motions. Exact root loci of aeroelastic modes are calculated, providing quantitative information regarding subcritical and supercritical flutter conditions.
Airloads, wakes, and aeroelasticity
NASA Technical Reports Server (NTRS)
Johnson, Wayne
1990-01-01
Fundamental considerations regarding the theory of modeling of rotary wing airloads, wakes, and aeroelasticity are presented. The topics covered are: airloads and wakes, including lifting-line theory, wake models and nonuniform inflow, free wake geometry, and blade-vortex interaction; aerodynamic and wake models for aeroelasticity, including two-dimensional unsteady aerodynamics and dynamic inflow; and airloads and structural dynamics, including comprehensive airload prediction programs. Results of calculations and correlations are presented.
APPLE - An aeroelastic analysis system for turbomachines and propfans
NASA Technical Reports Server (NTRS)
Reddy, T. S. R.; Bakhle, Milind A.; Srivastava, R.; Mehmed, Oral
1992-01-01
This paper reviews aeroelastic analysis methods for propulsion elements (advanced propellers, compressors and turbines) being developed and used at NASA Lewis Research Center. These aeroelastic models include both structural and aerodynamic components. The structural models include the typical section model, the beam model with and without disk flexibility, and the finite element blade model with plate bending elements. The aerodynamic models are based on the solution of equations ranging from the two-dimensional linear potential equation for a cascade to the three-dimensional Euler equations for multi-blade configurations. Typical results are presented for each aeroelastic model. Suggestions for further research are indicated. All the available aeroelastic models and analysis methods are being incorporated into a unified computer program named APPLE (Aeroelasticity Program for Propulsion at LEwis).
Probabilistic Aeroelastic Analysis Developed for Turbomachinery Components
NASA Technical Reports Server (NTRS)
Reddy, T. S. R.; Mital, Subodh K.; Stefko, George L.; Pai, Shantaram S.
2003-01-01
Aeroelastic analyses for advanced turbomachines are being developed for use at the NASA Glenn Research Center and industry. However, these analyses at present are used for turbomachinery design with uncertainties accounted for by using safety factors. This approach may lead to overly conservative designs, thereby reducing the potential of designing higher efficiency engines. An integration of the deterministic aeroelastic analysis methods with probabilistic analysis methods offers the potential to design efficient engines with fewer aeroelastic problems and to make a quantum leap toward designing safe reliable engines. In this research, probabilistic analysis is integrated with aeroelastic analysis: (1) to determine the parameters that most affect the aeroelastic characteristics (forced response and stability) of a turbomachine component such as a fan, compressor, or turbine and (2) to give the acceptable standard deviation on the design parameters for an aeroelastically stable system. The approach taken is to combine the aeroelastic analysis of the MISER (MIStuned Engine Response) code with the FPI (fast probability integration) code. The role of MISER is to provide the functional relationships that tie the structural and aerodynamic parameters (the primitive variables) to the forced response amplitudes and stability eigenvalues (the response properties). The role of FPI is to perform probabilistic analyses by utilizing the response properties generated by MISER. The results are a probability density function for the response properties. The probabilistic sensitivities of the response variables to uncertainty in primitive variables are obtained as a byproduct of the FPI technique. The combined analysis of aeroelastic and probabilistic analysis is applied to a 12-bladed cascade vibrating in bending and torsion. Out of the total 11 design parameters, 6 are considered as having probabilistic variation. The six parameters are space-to-chord ratio (SBYC), stagger angle
Aeroelastic Analysis for Aeropropulsion Applications
NASA Technical Reports Server (NTRS)
Keith, Theo G., Jr.; Bakhle, Milind A.
2002-01-01
Aeroelastic codes with advanced capabilities for modeling flow require substantial computational time. On the other hand, fast-running linear aeroelastic codes lack the capability to model three-dimensional, transonic, vortical, and viscous flows. The goal of this work was to develop an aeroelastic code with accurate modeling capabilities and small computational requirements.
NASA Technical Reports Server (NTRS)
Kelly, G. L.; Berthold, G.; Abbott, L.
1982-01-01
A 5 MHZ single-board microprocessor system which incorporates an 8086 CPU and an 8087 Numeric Data Processor is used to implement the control laws for the NASA Drones for Aerodynamic and Structural Testing, Aeroelastic Research Wing II. The control laws program was executed in 7.02 msec, with initialization consuming 2.65 msec and the control law loop 4.38 msec. The software emulator execution times for these two tasks were 36.67 and 61.18, respectively, for a total of 97.68 msec. The space, weight and cost reductions achieved in the present, aircraft control application of this combination of a 16-bit microprocessor with an 80-bit floating point coprocessor may be obtainable in other real time control applications.
Yamada, K.; Aksan, S. N.
2012-07-01
The Supercritical Water-Cooled Reactor (SCWR) is an innovative water-cooled reactor concept, which uses supercritical pressure water as reactor coolant. It has been attracting interest of many researchers in various countries mainly due to its benefits of high thermal efficiency and simple primary systems, resulting in low capital cost. The IAEA started in 2008 a Coordinated Research Project (CRP) on Thermal-Hydraulics of SCWRs as a forum to foster the exchange of technical information and international collaboration in research and development. This paper summarizes the activities and current status of the CRP, as well as major progress achieved to date. At present, 15 institutions closely collaborate in several tasks. Some organizations have been conducting thermal-hydraulics experiments and analysing the data, and others have been participating in code-to-test and/or code-to-code benchmark exercises. The expected outputs of the CRP are also discussed. Finally, the paper introduces several IAEA activities relating to or arising from the CRP. (authors)
Experimental aeroelasticity history, status and future in brief
NASA Technical Reports Server (NTRS)
Ricketts, Rodney H.
1990-01-01
NASA conducts wind tunnel experiments to determine and understand the aeroelastic characteristics of new and advanced flight vehicles, including fixed-wing, rotary-wing and space-launch configurations. Review and assessments are made of the state-of-the-art in experimental aeroelasticity regarding available facilities, measurement techniques, and other means and devices useful in testing. In addition, some past experimental programs are described which assisted in the development of new technology, validated new analysis codes, or provided needed information for clearing flight envelopes of unwanted aeroelastic response. Finally, needs and requirements for advances and improvements in testing capabilities for future experimental research and development programs are described.
Helicopter rotor dynamics and aeroelasticity - Some key ideas and insights
NASA Technical Reports Server (NTRS)
Friedmann, Peretz P.
1990-01-01
Four important current topics in helicopter rotor dynamics and aeroelasticity are discussed: (1) the role of geometric nonlinearities in rotary-wing aeroelasticity; (2) structural modeling, free vibration, and aeroelastic analysis of composite rotor blades; (3) modeling of coupled rotor/fuselage areomechanical problems and their active control; and (4) use of higher-harmonic control for vibration reduction in helicopter rotors in forward flight. The discussion attempts to provide an improved fundamental understanding of the current state of the art. In this way, future research can be focused on problems which remain to be solved instead of producing marginal improvements on problems which are already understood.
Advanced Models for Aeroelastic Analysis of Propulsion Systems
NASA Technical Reports Server (NTRS)
Keith, Theo G., Jr.; Mahajan, Aparajit
1996-01-01
This report describes an integrated, multidisciplinary simulation capability for aeroelastic analysis and optimization of advanced propulsion systems. This research is intended to improve engine development, acquisition, and maintenance costs. One of the proposed simulations is aeroelasticity of blades, cowls, and struts in an ultra-high bypass fan. These ducted fans are expected to have significant performance, fuel, and noise improvements over existing engines. An interface program was written to use modal information from COBSTAN and NASTRAN blade models in aeroelastic analysis with a single rotation ducted fan aerodynamic code.
NASA Technical Reports Server (NTRS)
Reed, W. H., III
1981-01-01
Testing of wind-tunnel aeroelastic models is a well established, widely used means of studying flutter trends, validating theory and investigating flutter margins of safety of new vehicle designs. The Langley Transonic Dynamics Tunnel was designed specifically for work on dynamics and aeroelastic problems of aircraft and space vehicles. A cross section of aeroelastic research and testing in the facility since it became operational more than two decades ago is presented. Examples selected from a large store of experience illustrate the nature and purpose of some major areas of work performed in the tunnel. These areas include: specialized experimental techniques; development testing of new aircraft and launch vehicle designs; evaluation of proposed "fixes" to solve aeroelastic problems uncovered during development testing; study of unexpected aeroelastic phenomena (i.e., "surprises"); control of aeroelastic effects by active and passive means; and, finally, fundamental research involving measurement of unsteady pressures on oscillating wings and control surface.
Rotorcraft aeroelastic stability
NASA Technical Reports Server (NTRS)
Ormiston, Robert A.; Warmbrodt, William G.; Hodges, Dewey H.; Peters, David A.
1988-01-01
Theoretical and experimental developments in the aeroelastic and aeromechanical stability of helicopters and tilt-rotor aircraft are addressed. Included are the underlying nonlinear structural mechanics of slender rotating beams, necessary for accurate modeling of elastic cantilever rotor blades, and the development of dynamic inflow, an unsteady aerodynamic theory for low-frequency aeroelastic stability applications. Analytical treatment of isolated rotor stability in hover and forward flight, coupled rotor-fuselage stability in hover and forward flight, and analysis of tilt-rotor dynamic stability are considered. Results of parametric investigations of system behavior are presented, and correlation between theoretical results and experimental data from small and large scale wind tunnel and flight testing are discussed.
Philip E. MacDonald
2003-09-01
Supercritical water-cooled reactors (SCWRs) are among the most promising advanced nuclear systems because of their high thermal efficiency [i.e., about 45% vs. 33% of current light water reactors (LWRs)] and considerable plant simplification. SCWRs achieve this with superior thermodynamic conditions (i.e., high operating pressure and temperature), and by reducing the containment volume and eliminating the need for recirculation and jet pumps, pressurizer, steam generators, steam separators and dryers. The reference SCWR design in the U.S. is a direct cycle, thermal spectrum, light-water-cooled and moderated reactor with an operating pressure of 25 MPa and inlet/outlet coolant temperature of 280/500 Â°C. The inlet flow splits, partly to a down-comer and partly to a plenum at the top of the reactor pressure vessel to flow downward through the core in special water rods to the inlet plenum. This strategy is employed to provide good moderation at the top of the core, where the coolant density is only about 15-20% that of liquid water. The SCWR uses a power conversion cycle similar to that used in supercritical fossil-fired plants: high- intermediate- and low-pressure turbines are employed with one moisture-separator re-heater and up to eight feedwater heaters. The reference power is 3575 MWt, the net electric power is 1600 MWe and the thermal efficiency is 44.8%. The fuel is low-enriched uranium oxide fuel and the plant is designed primarily for base load operation. The purpose of this report is to survey existing materials for fossil, fission and fusion applications and identify the materials research and development needed to establish the SCWR viabilitya with regard to possible materials of construction. The two most significant materials related factors in going from the current LWR designs to the SCWR are the increase in outlet coolant temperature from 300 to 500 Â°C and the possible compatibility issues associated with the supercritical water environment. â
Advanced Aeroelastic Technologies for Turbomachinery Application
NASA Technical Reports Server (NTRS)
DeWitt, Kenneth; Srivastava, Rakesh; Reddy, T. S. R.
2004-01-01
A summary of the work performed under the grant NCC-1068 is presented. More details can be found in the cited references. The summary is presented in two parts to represent two areas of research. In the first part, methods to analyze a high temperature ceramic guide vane subjected to cooling jets are presented, and in the second part, the effect of unsteady aerodynamic forces on aeroelastic stability as implemented into the turbo-REDUCE code are presented
Aeroelasticity - Frontiers and beyond /von Karman Lecture/
NASA Technical Reports Server (NTRS)
Garrick, I. E.
1976-01-01
The lecture aims at giving a broad survey of the current reaches of aeroelasticity with some narrower views for the specialist. After a short historical review of concepts for orientation, several topics are briefly presented. These touch on current flight vehicles having special points of aeroelastic interest; recent developments in the active control of aeroelastic response including control of flutter; remarks on the unsteady aerodynamics of arbitrary configurations; problems of the space shuttle related to aeroelasticity; and aeroelastic response in flight.
Strain actuated aeroelastic control
NASA Technical Reports Server (NTRS)
Lazarus, Kenneth B.
1992-01-01
Viewgraphs on strain actuated aeroelastic control are presented. Topics covered include: structural and aerodynamic modeling; control law design methodology; system block diagram; adaptive wing test article; bench-top experiments; bench-top disturbance rejection: open and closed loop response; bench-top disturbance rejection: state cost versus control cost; wind tunnel experiments; wind tunnel gust alleviation: open and closed loop response at 60 mph; wind tunnel gust alleviation: state cost versus control cost at 60 mph; wind tunnel command following: open and closed loop error at 60 mph; wind tunnel flutter suppression: open loop flutter speed; and wind tunnel flutter suppression: closed loop state cost curves.
Technical activities of the configuration aeroelasticity branch
NASA Technical Reports Server (NTRS)
Cole, Stanley R. (Editor)
1991-01-01
A number of recent technical activities of the Configuration Aeroelasticity Branch of the NASA Langley Research Center are discussed in detail. The information on the research branch is compiled in twelve separate papers. The first of these topics is a summary of the purpose of the branch, including a full description of the branch and its associated projects and program efforts. The next ten papers cover specific projects and are as follows: Experimental transonic flutter characteristics of supersonic cruise configurations; Aeroelastic effects of spoiler surfaces mounted on a low aspect ratio rectangular wing; Planform curvature effects on flutter of 56 degree swept wing determined in Transonic Dynamics Tunnel (TDT); An introduction to rotorcraft testing in TDT; Rotorcraft vibration reduction research at the TDT; A preliminary study to determine the effects of tip geometry on the flutter of aft swept wings; Aeroelastic models program; NACA 0012 pressure model and test plan; Investigation of the use of extension twist coupling in composite rotor blades; and Improved finite element methods for rotorcraft structures. The final paper describes the primary facility operation by the branch, the Langley TDT.
Adaptive neural control of aeroelastic response
NASA Astrophysics Data System (ADS)
Lichtenwalner, Peter F.; Little, Gerald R.; Scott, Robert C.
1996-05-01
The Adaptive Neural Control of Aeroelastic Response (ANCAR) program is a joint research and development effort conducted by McDonnell Douglas Aerospace (MDA) and the National Aeronautics and Space Administration, Langley Research Center (NASA LaRC) under a Memorandum of Agreement (MOA). The purpose of the MOA is to cooperatively develop the smart structure technologies necessary for alleviating undesirable vibration and aeroelastic response associated with highly flexible structures. Adaptive control can reduce aeroelastic response associated with buffet and atmospheric turbulence, it can increase flutter margins, and it may be able to reduce response associated with nonlinear phenomenon like limit cycle oscillations. By reducing vibration levels and loads, aircraft structures can have lower acquisition cost, reduced maintenance, and extended lifetimes. Phase I of the ANCAR program involved development and demonstration of a neural network-based semi-adaptive flutter suppression system which used a neural network for scheduling control laws as a function of Mach number and dynamic pressure. This controller was tested along with a robust fixed-gain control law in NASA's Transonic Dynamics Tunnel (TDT) utilizing the Benchmark Active Controls Testing (BACT) wing. During Phase II, a fully adaptive on-line learning neural network control system has been developed for flutter suppression which will be tested in 1996. This paper presents the results of Phase I testing as well as the development progress of Phase II.
Studies in hypersonic aeroelasticity
NASA Astrophysics Data System (ADS)
Nydick, Ira Harvey
2000-11-01
This dissertation describes the aeroelastic analysis of a generic hypersonic vehicle, focusing on two specific problems: (1) hypersonic panel flutter, and (2) aeroelastic behavior of a complete unrestrained generic hypersonic vehicle operating at very high Mach numbers. The panels are modeled as shallow shells using Marguerre nonlinear shallow shell theory for orthotropic panels and the aerodynamic loads are obtained from third order piston theory. Two models of curvature, several applied temperature distributions, and the presence of a shock are also included in the model. Results indicate that the flutter speed of the panel is significantly reduced by temperature variations comparable to the buckling temperature and by the presence of a shock. A panel with initial curvature can be more stable than the flat panel but the increase in stability depends in a complex way on the material properties of the panel and the amount of curvature. At values of dynamic pressure above critical, aperiodic motion was observed. The value of dynamic pressure for which this occurs in both heated panels and curved panels is much closer to the critical dynamic pressure than for the flat, unheated panel. A comparison of piston theory aerodynamics and Euler and Navier-Stokes aerodynamics was performed for a two dimensional panel with prescribed motion and the results indicate that while 2nd or higher order piston theory agrees very well with the Euler solution for the frequencies seen in hypersonic panel flutter, it differs substantially from the Navier-Stokes solution. The aeroelastic behavior of the complete vehicle was simulated using the unrestrained equations of motion, utilizing the method of quasi-coordinates. The unrestrained mode shapes of the vehicle were obtained from an equivalent plate analysis using an available code (ELAPS). The effects of flexible trim and rigid body degrees of freedom are carefully incorporated in the mathematical model. This model was applied to a
Aeroelastic Deflection of NURBS Geometry
NASA Technical Reports Server (NTRS)
Samareh, Jamshid A.
1998-01-01
The purpose of this paper is to present an algorithm for using NonUniform Rational B-Spline (NURBS) representation in an aeroelastic loop. The algorithm is based on creating a least-squares NURBS surface representing the aeroelastic defection. The resulting NURBS surfaces are used to update either the original Computer- Aided Design (CAD) model, Computational Structural Mechanics (CSM) grid or the Computational Fluid Dynamics (CFD) grid. Results are presented for a generic High-Speed Civil Transport (HSCT).
Computational Aeroelasticity: Success, Progress, Challenge
NASA Technical Reports Server (NTRS)
Schuster, David M.; Liu, Danny D.; Huttsell, Lawrence J.
2003-01-01
The formal term Computational Aeroelasticity (CAE) has only been recently adopted to describe aeroelastic analysis methods coupling high-level computational fluid dynamics codes with structural dynamics techniques. However, the general field of aeroelastic computations has enjoyed a rich history of development and application since the first hand-calculations performed in the mid 1930 s. This paper portrays a much broader definition of Computational Aeroelasticity; one that encompasses all levels of aeroelastic computation from the simplest linear aerodynamic modeling to the highest levels of viscous unsteady aerodynamics, from the most basic linear beam structural models to state-of-the-art Finite Element Model (FEM) structural analysis. This paper is not written as a comprehensive history of CAE, but rather serves to review the development and application of aeroelastic analysis methods. It describes techniques and example applications that are viewed as relatively mature and accepted, the "successes" of CAE. Cases where CAE has been successfully applied to unique or emerging problems, but the resulting techniques have proven to be one-of-a-kind analyses or areas where the techniques have yet to evolve into a routinely applied methodology are covered as "progress" in CAE. Finally the true value of this paper is rooted in the description of problems where CAE falls short in its ability to provide relevant tools for industry, the so-called "challenges" to CAE.
Flight measurements of surface pressures on a flexible supercritical research wing
NASA Technical Reports Server (NTRS)
Eckstrom, C. V.
1985-01-01
A flexible supercritical research wing, designated as ARW-1, was flight-tested as part of the NASA Drones for Aerodynamic and Structural Testing Program. Aerodynamic loads, in the form of wing surface pressure measurements, were obtained during flights at altitudes of 15,000, 20,000, and 25,000 feet at Mach numbers from 0.70 to 0.91. Surface pressure coefficients determined from pressure measurements at 80 orifice locations are presented individually as nearly continuous functions of angle of attack for constant values of Mach number. The surface pressure coefficients are also presented individually as a function of Mach number for an angle of attack of 2.0 deg. The nearly continuous values of the pressure coefficient clearly show details of the pressure gradient, which occurred in a rather narrow Mach number range. The effects of changes in angle of attack, Mach number, and dynamic pressure are also shown by chordwise pressure distributions for the range of test conditions experienced. Reynolds numbers for the tests ranged from 5.7 to 8.4 x 1,000,000.
Aeroelastic Tailoring for Stability Augmentation and Performance Enhancements of Tiltrotor Aircraft
NASA Technical Reports Server (NTRS)
Nixon, Mark W.; Piatak, David J.; Corso, Lawrence M.; Popelka, David A.
1999-01-01
The requirements for increased speed and productivity for tiltrotors has spawned several investigations associated with proprotor aeroelastic stability augmentation and aerodynamic performance enhancements. Included among these investigations is a focus on passive aeroelastic tailoring concepts which exploit the anisotropic capabilities of fiber composite materials. Researchers at Langley Research Center and Bell Helicopter have devoted considerable effort to assess the potential for using these materials to obtain aeroelastic responses which are beneficial to the important stability and performance considerations of tiltrotors. Both experimental and analytical studies have been completed to examine aeroelastic tailoring concepts for the tiltrotor, applied either to the wing or to the rotor blades. This paper reviews some of the results obtained in these aeroelastic tailoring investigations and discusses the relative merits associated with these approaches.
Aeroelastic tailoring in wind-turbine blade applications
Veers, P.; Lobitz, D.; Bir, G.
1998-04-01
This paper reviews issues related to the use of aeroelastic tailoring as a cost-effective, passive means to shape the power curve and reduce loads. Wind turbine blades bend and twist during operation, effectively altering the angle of attack, which in turn affects loads and energy production. There are blades now in use that have significant aeroelastic couplings, either on purpose or because of flexible and light-weight designs. Since aeroelastic effects are almost unavoidable in flexible blade designs, it may be desirable to tailor these effects to the authors advantage. Efforts have been directed at adding flexible devices to a blade, or blade tip, to passively regulate power (or speed) in high winds. It is also possible to build a small amount of desirable twisting into the load response of a blade with proper asymmetric fiber lay up in the blade skin. (Such coupling is akin to distributed {delta}{sub 3} without mechanical hinges.) The tailored twisting can create an aeroelastic effect that has payoff in either better power production or in vibration alleviation, or both. Several research efforts have addressed different parts of this issue. Research and development in the use of aeroelastic tailoring on helicopter rotors is reviewed. Potential energy gains as a function of twist coupling are reviewed. The effects of such coupling on rotor stability have been studied and are presented here. The ability to design in twist coupling with either stretching or bending loads is examined also.
Recent Applications of Higher-Order Spectral Analysis to Nonlinear Aeroelastic Phenomena
NASA Technical Reports Server (NTRS)
Silva, Walter A.; Hajj, Muhammad R.; Dunn, Shane; Strganac, Thomas W.; Powers, Edward J.; Stearman, Ronald
2005-01-01
Recent applications of higher-order spectral (HOS) methods to nonlinear aeroelastic phenomena are presented. Applications include the analysis of data from a simulated nonlinear pitch and plunge apparatus and from F-18 flight flutter tests. A MATLAB model of the Texas A&MUniversity s Nonlinear Aeroelastic Testbed Apparatus (NATA) is used to generate aeroelastic transients at various conditions including limit cycle oscillations (LCO). The Gaussian or non-Gaussian nature of the transients is investigated, related to HOS methods, and used to identify levels of increasing nonlinear aeroelastic response. Royal Australian Air Force (RAAF) F/A-18 flight flutter test data is presented and analyzed. The data includes high-quality measurements of forced responses and LCO phenomena. Standard power spectral density (PSD) techniques and HOS methods are applied to the data and presented. The goal of this research is to develop methods that can identify the onset of nonlinear aeroelastic phenomena, such as LCO, during flutter testing.
NASA Technical Reports Server (NTRS)
Jutte, Christine; Stanford, Bret K.
2014-01-01
This paper provides a brief overview of the state-of-the-art for aeroelastic tailoring of subsonic transport aircraft and offers additional resources on related research efforts. Emphasis is placed on aircraft having straight or aft swept wings. The literature covers computational synthesis tools developed for aeroelastic tailoring and numerous design studies focused on discovering new methods for passive aeroelastic control. Several new structural and material technologies are presented as potential enablers of aeroelastic tailoring, including selectively reinforced materials, functionally graded materials, fiber tow steered composite laminates, and various nonconventional structural designs. In addition, smart materials and structures whose properties or configurations change in response to external stimuli are presented as potential active approaches to aeroelastic tailoring.
NASA Technical Reports Server (NTRS)
Reed, W. H., III
1981-01-01
In 1955, work was started on the conversion of a subsonic wind tunnel to a 16-foot transonic tunnel with Freon-12 or air as the test medium. The new facility, designated the Transonic Dynamics Tunnel (TDT), became fully operational in 1960. A description is presented of aeroelastic testing and research performed in the TDT since 1960. It is pointed out that wind-tunnel tests of aeroelastic models require specialized experimental techniques seldom found in other types of wind-tunnel studies. Attention is given to model mount systems, launch vehicle models, aircraft models, aircraft buffet, gust response, stability derivative measurements, and subcritical testing techniques. Aspects of vehicle development testing are considered along with aeroelastic 'fixes', aeroelastic 'surprises', approaches for controlling aeroelastic effects, and unsteady pressure measurements.
Predicting the aeroelastic behavior of a wind-tunnel model using transonic small disturbance theory
NASA Technical Reports Server (NTRS)
Silva, Walter A.; Bennett, Robert M.
1990-01-01
The CAP-TSD (Computational Aeroelasticity Program - Transonic Small Disturbance) code, developed at the NASA-Langley Research Center, is applied to the Active Flexible Wing (AFW) wind-tunnel model for prediction of the model's transonic aeroelastic behavior. Static aeroelastic solutions using CAP-TSD are computed. Dynamic (flutter) analyses are then performed as perturbations about the static aeroelastic deformations of the AFW. The accuracy of the static aeroelastic procedure is investigated by comparing analytical results to those from AFW wind-tunnel experiments. Dynamic results are presented in the form of root loci at different Mach numbers for a heavy gas and for air test mediums. The resultant flutter boundaries for both gases, and the effects of viscous damping and angle of attack on the flutter boundary in air, are also presented.
Development of an Aeroelastic Code Based on an Euler/Navier-Stokes Aerodynamic Solver
NASA Technical Reports Server (NTRS)
Bakhle, Milind A.; Srivastava, Rakesh; Keith, Theo G., Jr.; Stefko, George L.; Janus, Mark J.
1996-01-01
This paper describes the development of an aeroelastic code (TURBO-AE) based on an Euler/Navier-Stokes unsteady aerodynamic analysis. A brief review of the relevant research in the area of propulsion aeroelasticity is presented. The paper briefly describes the original Euler/Navier-Stokes code (TURBO) and then details the development of the aeroelastic extensions. The aeroelastic formulation is described. The modeling of the dynamics of the blade using a modal approach is detailed, along with the grid deformation approach used to model the elastic deformation of the blade. The work-per-cycle approach used to evaluate aeroelastic stability is described. Representative results used to verify the code are presented. The paper concludes with an evaluation of the development thus far, and some plans for further development and validation of the TURBO-AE code.
TURBO-AE: An Aeroelastic Code for Propulsion Applications
NASA Technical Reports Server (NTRS)
Bakhle, Milind A.
1997-01-01
NASA's Advanced Subsonic Technology (AST) program is developing new technologies to increase the fuel efficiency of commercial aircraft engines, improve the safety of engine operation, and reduce engine emissions and noise. With the development of new designs for ducted fans, compressors, and turbines to achieve these goals, a basic aeroelastic requirement is that there should be no flutter or high resonant blade stresses in the operating regime. To verify the aeroelastic soundness of these designs, we need an accurate prediction and analysis code. Such a two-dimensional viscous propulsion aeroelastic code, named TURBO-AE, is being developed at the NASA Lewis Research Center. The TURBO-AE aeroelastic code is based on a three-dimensional unsteady aerodynamic Euler/Navier-Stokes turbomachinery code TURBO, developed under a grant from NASA Lewis. TURBO-AE can model viscous flow effects that play an important role in certain aeroelastic problems, such as flutter with flow separation (or stall flutter) and flutter in the presence of shock and boundary-layer interaction. The structural dynamics representation of the blade in the TURBO-AE code is based on a normal mode representation. A finite element analysis code, such as NASTRAN, is used to calculate in-vacuum vibration modes and the associated natural frequency. A work-per-cycle approach is used to determine aeroelastic (flutter) stability. With this approach, the motion of the blade is prescribed to be a harmonic vibration in a specified in vacuum normal mode. The aerodynamic forces acting on the vibrating blade and the work done by these forces on the vibrating blade during a cycle of vibration are calculated. If positive work is being done on the blade by the aerodynamic forces, the blade is dynamically unstable, since it will extract energy from the flow, leading to an increase in the amplitude of the blade's oscillation. Initial calculations have been done for a configuration representative of the Energy
Recent rotorcraft aeroelastic testing in the Langley Transonic Dynamics Tunnel
NASA Technical Reports Server (NTRS)
Yeager, William T., Jr.; Mirick, Paul H.; Wilbur, Matthew L.; Singleton, Jeffrey D.; Wilkie, W. K.; Hamouda, M.-N. H.
1991-01-01
Wind-tunnel testing of a properly scaled aeroelastic model helicopter rotor is considered a necessary phase in the design and development of new rotor systems. For this reason, extensive testing of aeroelastically scaled model rotors is done in the Transonic Dynamics Tunnel (TDT) located at the Langley Research Center. A unique capability of this facility, which enables proper dynamic scaling, is the use of diflourodichloromethane, or Refrigerant-12 (R-12) as a test medium. The paper presents a description of the TDT and a discussion of the benefits of using R-12 as a test medium. A description of the system used to conduct model tests is provided and examples of recent rotor tests are cited to illustrate the types of aeroelastic model rotor tests conducted in the TDT.
Centrifugal Compressor Aeroelastic Analysis Code
NASA Astrophysics Data System (ADS)
Keith, Theo G., Jr.; Srivastava, Rakesh
2002-01-01
Centrifugal compressors are very widely used in the turbomachine industry where low mass flow rates are required. Gas turbine engines for tanks, rotorcraft and small jets rely extensively on centrifugal compressors for rugged and compact design. These compressors experience problems related with unsteadiness of flowfields, such as stall flutter, separation at the trailing edge over diffuser guide vanes, tip vortex unsteadiness, etc., leading to rotating stall and surge. Considerable interest exists in small gas turbine engine manufacturers to understand and eventually eliminate the problems related to centrifugal compressors. The geometric complexity of centrifugal compressor blades and the twisting of the blade passages makes the linear methods inapplicable. Advanced computational fluid dynamics (CFD) methods are needed for accurate unsteady aerodynamic and aeroelastic analysis of centrifugal compressors. Most of the current day industrial turbomachines and small aircraft engines are designed with a centrifugal compressor. With such a large customer base and NASA Glenn Research Center being, the lead center for turbomachines, it is important that adequate emphasis be placed on this area as well. Currently, this activity is not supported under any project at NASA Glenn.
Centrifugal Compressor Aeroelastic Analysis Code
NASA Technical Reports Server (NTRS)
Keith, Theo G., Jr.; Srivastava, Rakesh
2002-01-01
Centrifugal compressors are very widely used in the turbomachine industry where low mass flow rates are required. Gas turbine engines for tanks, rotorcraft and small jets rely extensively on centrifugal compressors for rugged and compact design. These compressors experience problems related with unsteadiness of flowfields, such as stall flutter, separation at the trailing edge over diffuser guide vanes, tip vortex unsteadiness, etc., leading to rotating stall and surge. Considerable interest exists in small gas turbine engine manufacturers to understand and eventually eliminate the problems related to centrifugal compressors. The geometric complexity of centrifugal compressor blades and the twisting of the blade passages makes the linear methods inapplicable. Advanced computational fluid dynamics (CFD) methods are needed for accurate unsteady aerodynamic and aeroelastic analysis of centrifugal compressors. Most of the current day industrial turbomachines and small aircraft engines are designed with a centrifugal compressor. With such a large customer base and NASA Glenn Research Center being, the lead center for turbomachines, it is important that adequate emphasis be placed on this area as well. Currently, this activity is not supported under any project at NASA Glenn.
Computational, unsteady transonic aerodynamics and aeroelasticity about airfoils and wings
NASA Technical Reports Server (NTRS)
Goorjian, Peter M.; Guruswamy, Guru P.
1987-01-01
Research in the area of computational, unsteady transonic flows about airfoils and wings, including aeroelastic effects is reviewed. In the last decade, there have been extensive developments in computational methods in response to the need for computer codes with which to study fundamental aerodynamic and aeroelastic problems in the critical transonic regime. For example, large commercial aircraft cruise most effectively in the transonic flight regime and computational fluid dynamics (CDF) provides a new tool, which can be used in combination with test facilities to reduce the costs, time, and risks of aircraft development.
Analyzing Aeroelasticity in Turbomachines
NASA Technical Reports Server (NTRS)
Reddy, T. S. R.; Srivastava, R.
2003-01-01
ASTROP2-LE is a computer program that predicts flutter and forced responses of blades, vanes, and other components of such turbomachines as fans, compressors, and turbines. ASTROP2-LE is based on the ASTROP2 program, developed previously for analysis of stability of turbomachinery components. In developing ASTROP2- LE, ASTROP2 was modified to include a capability for modeling forced responses. The program was also modified to add a capability for analysis of aeroelasticity with mistuning and unsteady aerodynamic solutions from another program, LINFLX2D, that solves the linearized Euler equations of unsteady two-dimensional flow. Using LINFLX2D to calculate unsteady aerodynamic loads, it is possible to analyze effects of transonic flow on flutter and forced response. ASTROP2-LE can be used to analyze subsonic, transonic, and supersonic aerodynamics and structural mistuning for rotors with blades of differing structural properties. It calculates the aerodynamic damping of a blade system operating in airflow so that stability can be assessed. The code also predicts the magnitudes and frequencies of the unsteady aerodynamic forces on the airfoils of a blade row from incoming wakes. This information can be used in high-cycle fatigue analysis to predict the fatigue lives of the blades.
NASA Technical Reports Server (NTRS)
Harris, C. D.
1972-01-01
Wind tunnel tests have been conducted on a research airplane model with an NASA supercritical wing to define the general character of the flow over the wing and to aid in structural design of the full scale airplane. Pressure measurements were made at Mach numbers from 0.25 to 1.30 for sideslip angles from -2.50 deg to 2.50 deg over a moderate range of angles of attack and dynamic pressures. Except for representative figures, the results are presented in tabular form without detailed analysis.
Propulsion Aeroelastic Analysis Developed for Flutter and Forced Response
NASA Technical Reports Server (NTRS)
Bakhle, Milind A.
2000-01-01
The NASA Glenn Research Center at Lewis Field develops new technologies to increase the fuel efficiency of aircraft engines, improve the safety of engine operation, reduce emissions, and reduce engine noise. With the development of new designs for fans, compressors, and turbines to achieve these goals, the basic aeroelastic requirements are that there should be no flutter (self-excited vibrations) or high resonant blade stresses (due to forced response) in the operating regime. Therefore, an accurate prediction and analysis capability is required to verify the aeroelastic soundness of the designs. Such a three-dimensional viscous propulsion aeroelastic analysis capability has been developed at Glenn with support from the Advanced Subsonic Technology (AST) program. This newly developed aeroelastic analysis capability is based on TURBO, a threedimensional unsteady aerodynamic Reynolds-averaged Navier-Stokes turbomachinery code developed previously under a grant from Glenn. TURBO can model the viscous flow effects that play an important role in certain aeroelastic problems such as flutter with flow separation, flutter at high loading conditions near the stall line (stall flutter), flutter in the presence of shock and boundary-layer interaction, and forced response due to wakes and shock impingement. In aeroelastic analysis, the structural dynamics representation of the blades is based on normal modes. A finite-element analysis code is used to calculate these in-vacuum vibration modes and the associated natural frequencies. In an aeroelastic analysis using the TURBO code, flutter and forced response are modeled as being uncoupled. To calculate if a blade row will flutter, one prescribes the motion of the blade to be a harmonic vibration in a specified in-vacuum normal mode. An aeroelastic analysis preprocessor is used to generate the displacement field required for the analysis. The work done by aerodynamic forces on the vibrating blade during a cycle of vibration is
Aeroelastic System Development Using Proper Orthogonal Decomposition and Volterra Theory
NASA Technical Reports Server (NTRS)
Lucia, David J.; Beran, Philip S.; Silva, Walter A.
2003-01-01
This research combines Volterra theory and proper orthogonal decomposition (POD) into a hybrid methodology for reduced-order modeling of aeroelastic systems. The out-come of the method is a set of linear ordinary differential equations (ODEs) describing the modal amplitudes associated with both the structural modes and the POD basis functions for the uid. For this research, the structural modes are sine waves of varying frequency, and the Volterra-POD approach is applied to the fluid dynamics equations. The structural modes are treated as forcing terms which are impulsed as part of the uid model realization. Using this approach, structural and uid operators are coupled into a single aeroelastic operator. This coupling converts a free boundary uid problem into an initial value problem, while preserving the parameter (or parameters) of interest for sensitivity analysis. The approach is applied to an elastic panel in supersonic cross ow. The hybrid Volterra-POD approach provides a low-order uid model in state-space form. The linear uid model is tightly coupled with a nonlinear panel model using an implicit integration scheme. The resulting aeroelastic model provides correct limit-cycle oscillation prediction over a wide range of panel dynamic pressure values. Time integration of the reduced-order aeroelastic model is four orders of magnitude faster than the high-order solution procedure developed for this research using traditional uid and structural solvers.
NASA Technical Reports Server (NTRS)
Ashley, H.
1984-01-01
Graduate research activity in the following areas is reported: the divergence of laminated composite lifting surfaces, subsonic propeller theory and aeroelastic analysis, and cross sectional resonances in wind tunnels.
Static aeroelastic analysis of a three-dimensional generic wing
NASA Technical Reports Server (NTRS)
Green, John A.; Lee, IN; Miura, Hirokazu
1990-01-01
A continuation of research on the static aeroelastic analysis of a generic wing configuration is presented. Results of the study of the asymmetric oblique wing model developed by Rockwell International, in conjunction with the NASA Oblique Wing Research Aircraft Program, are reported. The capability to perform static aeroelastic analyses of an oblique wing at arbitrary skew positions is demonstrated by applying the MSC/NASTRAN static analysis scheme modified by the aerodynamic influence coefficient matrix created by the NASA Ames aerodynamic panel codes. The oblique wing is studied at two skew angles, and in particular, the capability to calculate 3-D thickness effects on the aerodynamic properties of the wing is investigated. The ability to model asymmetric wings in both subsonic and supersonic Mach numbers is shown. The aerodynamic influence coefficient matrix computed by the external programs is inserted in MSC/NASTRAN static aeroelasticity analysis run stream to compute the aeroelastic deformation and internal forces. Various aerodynamic coefficients of the oblique wing were computed for two Mach numbers, 0.7 and 1.4, and the angle of attach -5 through 15 deg.
NASA Technical Reports Server (NTRS)
Kvaternik, Raymond G.; Juang, Jer-Nan; Bennett, Richard L.
2000-01-01
The Aeroelasticity Branch at NASA Langley Research Center has a long and substantive history of tiltrotor aeroelastic research. That research has included a broad range of experimental investigations in the Langley Transonic Dynamics Tunnel (TDT) using a variety of scale models and the development of essential analyses. Since 1994, the tiltrotor research program has been using a 1/5-scale, semispan aeroelastic model of the V-22 designed and built by Bell Helicopter Textron Inc. (BHTI) in 1981. That model has been refurbished to form a tiltrotor research testbed called the Wing and Rotor Aeroelastic Test System (WRATS) for use in the TDT. In collaboration with BHTI, studies under the current tiltrotor research program are focused on aeroelastic technology areas having the potential for enhancing the commercial and military viability of tiltrotor aircraft. Among the areas being addressed, considerable emphasis is being directed to the evaluation of modern adaptive multi-input multi- output (MIMO) control techniques for active stability augmentation and vibration control of tiltrotor aircraft. As part of this investigation, a predictive control technique known as Generalized Predictive Control (GPC) is being studied to assess its potential for actively controlling the swashplate of tiltrotor aircraft to enhance aeroelastic stability in both helicopter and airplane modes of flight. This paper summarizes the exploratory numerical and experimental studies that were conducted as part of that investigation.
Development of an Aeroelastic Analysis Including a Viscous Flow Model
NASA Technical Reports Server (NTRS)
Keith, Theo G., Jr.; Bakhle, Milind A.
2001-01-01
Under this grant, Version 4 of the three-dimensional Navier-Stokes aeroelastic code (TURBO-AE) has been developed and verified. The TURBO-AE Version 4 aeroelastic code allows flutter calculations for a fan, compressor, or turbine blade row. This code models a vibrating three-dimensional bladed disk configuration and the associated unsteady flow (including shocks, and viscous effects) to calculate the aeroelastic instability using a work-per-cycle approach. Phase-lagged (time-shift) periodic boundary conditions are used to model the phase lag between adjacent vibrating blades. The direct-store approach is used for this purpose to reduce the computational domain to a single interblade passage. A disk storage option, implemented using direct access files, is available to reduce the large memory requirements of the direct-store approach. Other researchers have implemented 3D inlet/exit boundary conditions based on eigen-analysis. Appendix A: Aeroelastic calculations based on three-dimensional euler analysis. Appendix B: Unsteady aerodynamic modeling of blade vibration using the turbo-V3.1 code.
Rotary-wing aeroelasticity with application to VTOL vehicles
NASA Technical Reports Server (NTRS)
Friedmann, Peretz P.
1990-01-01
This survey presents an assessment of the state of the art in rotary-wing aeroelasticity as applied to conventional helicopters as well as other VTOL vehicles such as tilting prop-rotors, the X-wing and a hybrid heavy lift vehicle. The objective is to enable the reader to develop an awareness of what has been accomplished, what remains to be done, and where to find more comprehensive treatments of the various topics discussed. The main topics discussed are: (1) structural modeling; (2) unsteady aerodynamic modeling; (3) formulation of the equations of motion and their solutions; (4) illustrative results for isolated blades in hover and forward flight; (5) illustrative results for coupled rotor/fuselage problems; (6) active control of aeromechanical and aeroelastic problems; (7) active controls for vibration reduction; (8) structural optimization with aeroelastic constraints; (9) gust response analysis of rotors; and (10) aeroelastic problems in special VTOL vehicles. These topics are reviewed with different levels of detail and some useful observation on potentially rewarding areas of future research are made.
Toward efficient aeroelastic energy harvesting through limit cycle shaping
NASA Astrophysics Data System (ADS)
Kirschmeier, Benjamin; Bryant, Matthew
2016-04-01
Increasing demand to harvest energy from renewable resources has caused significant research interest in unsteady aerodynamic and hydrodynamic phenomena. Apart from the traditional horizontal axis wind turbines, there has been significant growth in the study of bio-inspired oscillating wings for energy harvesting. These systems are being built to harvest electricity for wireless devices, as well as for large scale mega-watt power generation. Such systems can be driven by aeroelastic flutter phenomena which, beyond a critical wind speed, will cause the system to enter into limitcycle oscillations. When the airfoil enters large amplitude, high frequency motion, leading and trailing edge vortices form and, when properly synchronized with the airfoil kinematics, enhance the energy extraction efficiency of the device. A reduced order dynamic stall model is employed on a nonlinear aeroelastic structural model to investigate whether the parameters of a fully passive aeroelastic device can be tuned to produce limit cycle oscillations at desired kinematics. This process is done through an optimization technique to find the necessary structural parameters to achieve desired structural forces and moments corresponding to a target limit cycle. Structural nonlinearities are explored to determine the essential nonlinearities such that the system's limit cycle closely matches the desired kinematic trajectory. The results from this process demonstrate that it is possible to tune system parameters such that a desired limit cycle trajectory can be achieved. The simulations also demonstrate that the high efficiencies predicted by previous computational aerodynamics studies can be achieved in fully passive aeroelastic devices.
A Summary of Data and Findings from the First Aeroelastic Prediction Workshop
NASA Technical Reports Server (NTRS)
Schuster, David M.; Chwalowski, Pawel.; Heeg, Jennifer; Wieseman, Carol D.
2012-01-01
This paper summarizes data and findings from the first Aeroelastic Prediction Workshop (AePW) held in April, 2012. The workshop has been designed as a series of technical interchange meetings to assess the state of the art of computational methods for predicting unsteady flowfields and static and dynamic aeroelastic response. The goals are to provide an impartial forum to evaluate the effectiveness of existing computer codes and modeling techniques to simulate aeroelastic problems, and to identify computational and experimental areas needing additional research and development. For this initial workshop, three subject configurations have been chosen from existing wind tunnel data sets where there is pertinent experimental data available for comparison. Participant researchers analyzed one or more of the subject configurations and results from all of these computations were compared at the workshop. Keywords: Unsteady Aerodynamics, Aeroelasticity, Computational Fluid Dynamics, Transonic Flow, Separated Flow.
Ultra supercritical steamside oxidation
Holcomb, Gordon R.; Covino, Bernard S., Jr.; Bullard, Sophie J.; Cramer, Stephen D.; Ziomek-Moroz, M.; Alman, David A.; Ochs, Thomas L.
2004-01-01
Ultra supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions, which are part of the U.S. Department of Energy's Vision 21 goals. Most current coal power plants in the U.S. operate at a maximum steam temperature of 538 C. However, new supercritical plants worldwide are being brought into service with steam temperatures of up to 620 C. Vision 21 goals include steam temperatures of up to 760 C. This research examines the steamside oxidation of advanced alloys for use in USC systems. Emphasis is placed on alloys for high- and intermediate-pressure turbine sections. Initial results of this research are presented.
Aeroelastic Calculations of Quiet High- Speed Fan Performed
NASA Technical Reports Server (NTRS)
Bakhle, Milind A.; Srivastava, Rakesh; Mehmed, Oral; Min, James B.
2002-01-01
An advanced high-speed fan was recently designed under a cooperative effort between the NASA Glenn Research Center and Honeywell Engines & Systems. The principal design goals were to improve performance and to reduce fan noise at takeoff. Scale models of the Quiet High-Speed Fan were tested for operability, performance, and acoustics. During testing, the fan showed significantly improved noise characteristics, but a self-excited aeroelastic vibration known as flutter was encountered in the operating range. Flutter calculations were carried out for the Quiet High-Speed Fan using a three-dimensional, unsteady aerodynamic, Reynolds-averaged Navier-Stokes turbomachinery code named "TURBO." The TURBO code can accurately model the viscous flow effects that can play an important role in various aeroelastic problems such as flutter with flow separation, flutter at high loading conditions near the stall line (stall flutter), and flutter in the presence of shock and boundary-layer interaction. Initially, calculations were performed with no blade vibrations. These calculations were at a constant rotational speed and a varying mass flow rate. The mass flow rate was varied by changing the backpressure at the exit boundary of the computational domain. These initial steady calculations were followed by aeroelastic calculations in which the blades were prescribed to vibrate harmonically in a natural mode, at a natural frequency, and with a fixed interblade phase angle between adjacent blades. The AE-prep preprocessor was used to interpolate the in-vacuum mode shapes from the structural dynamics mesh onto the computational fluid dynamics mesh and to smoothly propagate the grid deformations from the blade surface to the interior points of the grid. The aeroelastic calculations provided the unsteady aerodynamic forces on the blade surface due to blade vibrations. These forces were vector multiplied with the structural dynamic mode shape to calculate the work done on the blade during
Physical properties of the benchmark models program supercritical wing
NASA Technical Reports Server (NTRS)
Dansberry, Bryan E.; Durham, Michael H.; Bennett, Robert M.; Turnock, David L.; Silva, Walter A.; Rivera, Jose A., Jr.
1993-01-01
The goal of the Benchmark Models Program is to provide data useful in the development and evaluation of aeroelastic computational fluid dynamics (CFD) codes. To that end, a series of three similar wing models are being flutter tested in the Langley Transonic Dynamics Tunnel. These models are designed to simultaneously acquire model response data and unsteady surface pressure data during wing flutter conditions. The supercritical wing is the second model of this series. It is a rigid semispan model with a rectangular planform and a NASA SC(2)-0414 supercritical airfoil shape. The supercritical wing model was flutter tested on a flexible mount, called the Pitch and Plunge Apparatus, that provides a well-defined, two-degree-of-freedom dynamic system. The supercritical wing model and associated flutter test apparatus is described and experimentally determined wind-off structural dynamic characteristics of the combined rigid model and flexible mount system are included.
NASA Technical Reports Server (NTRS)
Woodrow Whitlow, Jr. (Editor); Todd, Emily N. (Editor)
1999-01-01
These proceedings represent a collection of the latest advances in aeroelasticity and structural dynamics from the world community. Research in the areas of unsteady aerodynamics and aeroelasticity, structural modeling and optimization, active control and adaptive structures, landing dynamics, certification and qualification, and validation testing are highlighted in the collection of papers. The wide range of results will lead to advances in the prediction and control of the structural response of aircraft and spacecraft.
Comparison of supercritical and conventional wing flutter characteristics
NASA Technical Reports Server (NTRS)
Farmer, M. G.; Hanson, P. W.; Wynne, E. C.
1976-01-01
A wind-tunnel study was undertaken to directly compare the measured flutter boundaries of two dynamically similar aeroelastic models which had the same planform, maximum thickness-to-chord ratio, and as nearly identical stiffness and mass distributions as possible, with one wing having a supercritical airfoil and the other a conventional airfoil. The considerations and problems associated with flutter testing supercritical wing models at or near design lift coefficients are discussed, and the measured transonic boundaries of the two wings are compared with boundaries calculated with a subsonic lifting surface theory.
Computational aeroelastic analysis of aircraft wings including geometry nonlinearity
NASA Astrophysics Data System (ADS)
Tian, Binyu
The objective of the present study is to show the ability of solving fluid structural interaction problems more realistically by including the geometric nonlinearity of the structure so that the aeroelastic analysis can be extended into the onset of flutter, or in the post flutter regime. A nonlinear Finite Element Analysis software is developed based on second Piola-Kirchhoff stress and Green-Lagrange strain. The second Piola-Kirchhoff stress and Green-Lagrange strain is a pair of energetically conjugated tensors that can accommodate arbitrary large structural deformations and deflection, to study the flutter phenomenon. Since both of these tensors are objective tensors, i.e., the rigid-body motion has no contribution to their components, the movement of the body, including maneuvers and deformation, can be included. The nonlinear Finite Element Analysis software developed in this study is verified with ANSYS, NASTRAN, ABAQUS, and IDEAS for the linear static, nonlinear static, linear dynamic and nonlinear dynamic structural solutions. To solve the flow problems by Euler/Navier equations, the current nonlinear structural software is then embedded into ENSAERO, which is an aeroelastic analysis software package developed at NASA Ames Research Center. The coupling of the two software, both nonlinear in their own field, is achieved by domain decomposition method first proposed by Guruswamy. A procedure has been set for the aeroelastic analysis process. The aeroelastic analysis results have been obtained for fight wing in the transonic regime for various cases. The influence dynamic pressure on flutter has been checked for a range of Mach number. Even though the current analysis matches the general aeroelastic characteristic, the numerical value not match very well with previous studies and needs farther investigations. The flutter aeroelastic analysis results have also been plotted at several time points. The influences of the deforming wing geometry can be well seen
Effect of follower forces on aeroelastic stability of flexible structures
NASA Astrophysics Data System (ADS)
Chae, Seungmook
Missile bodies and wings are typical examples of structures that can be represented by beam models. Such structures, loaded by follower forces along with aerodynamics, exhibit the vehicle's aeroelastic instabilities. The current research integrates a nonlinear beam dynamics and unsteady aerodynamics to conduct aeroelastic studies of missile bodies and wings subjected to follower forces. The structural formulations are based on a geometrically-exact, mixed finite element method. Slender-body theory and thin-airfoil theory are used for the missile aerodynamics, and two-dimensional finite-state unsteady aerodynamics is used for wing aerodynamics. The aeroelastic analyses are performed using time-marching scheme for the missile body stability, and eigenvalue analysis for the wing flutter, respectively. Results from the time-marching formulation agree with published results for dynamic stability and show the development of limit cycle oscillations for disturbed flight near and above the critical thrust. Parametric studies of the aeroelastic behavior of specific flexible missile configurations are presented, including effects of flexibility on stability, limit-cycle amplitudes, and missile loads. The results do yield a significant interaction between the thrust, which is a follower force, and the aeroelastic stability. Parametric studies based on the eigenvalue analysis for the wing flutter, show that the predicted stability boundaries are very sensitive to the ratio of bending stiffness to torsional stiffness. The effect of thrust can be either stabilizing or destabilizing, depending on the value of this parameter. An assessment whether or not the magnitude of thrust needed to influence the flutter speed is practical is made for one configuration. The flutter speed is shown to change by 11% for this specific wing configuration.
Application of Aeroelastic Solvers Based on Navier Stokes Equations
NASA Technical Reports Server (NTRS)
Keith, Theo G., Jr.; Srivastava, Rakesh
2001-01-01
The propulsion element of the NASA Advanced Subsonic Technology (AST) initiative is directed towards increasing the overall efficiency of current aircraft engines. This effort requires an increase in the efficiency of various components, such as fans, compressors, turbines etc. Improvement in engine efficiency can be accomplished through the use of lighter materials, larger diameter fans and/or higher-pressure ratio compressors. However, each of these has the potential to result in aeroelastic problems such as flutter or forced response. To address the aeroelastic problems, the Structural Dynamics Branch of NASA Glenn has been involved in the development of numerical capabilities for analyzing the aeroelastic stability characteristics and forced response of wide chord fans, multi-stage compressors and turbines. In order to design an engine to safely perform a set of desired tasks, accurate information of the stresses on the blade during the entire cycle of blade motion is required. This requirement in turn demands that accurate knowledge of steady and unsteady blade loading is available. To obtain the steady and unsteady aerodynamic forces for the complex flows around the engine components, for the flow regimes encountered by the rotor, an advanced compressible Navier-Stokes solver is required. A finite volume based Navier-Stokes solver has been developed at Mississippi State University (MSU) for solving the flow field around multistage rotors. The focus of the current research effort, under NASA Cooperative Agreement NCC3- 596 was on developing an aeroelastic analysis code (entitled TURBO-AE) based on the Navier-Stokes solver developed by MSU. The TURBO-AE code has been developed for flutter analysis of turbomachine components and delivered to NASA and its industry partners. The code has been verified. validated and is being applied by NASA Glenn and by aircraft engine manufacturers to analyze the aeroelastic stability characteristics of modem fans, compressors
In-flight aeroelastic measurement technique development
NASA Astrophysics Data System (ADS)
Burner, Alpheus W.; Lokos, William A.; Barrows, Danny A.
2003-11-01
The initial concept and development of a low-cost, adaptable method for the measurement of static and dynamic aeroelastic deformation of aircraft during flight testing is presented. The method is adapted from a proven technique used in wind tunnel testing to measure model deformation, often referred to as the videogrammetric model deformation (or VMD) technique. The requirements for in-flight measurements are compared and contrasted with those for wind tunnel testing. The methodology for the proposed measurements and differences compared with that used for wind tunnel testing is given. Several error sources and their effects are identified. Measurement examples using the new technique, including change in wing twist and deflection as a function of time, from an F/A-18 research aircraft at NASA's Dryden Flight Research Center are presented.
Investigation of the aeroelastic stability of the AFW wind-tunnel model using CAP-TSD
NASA Technical Reports Server (NTRS)
Silva, Walter A.; Bennett, Robert M.
1991-01-01
The Computational Aeroelasticity Program - Transonic Small Disturbance (CAP-TSD) code, developed at the NASA Langley Research Center, is applied to the Active Flexible Wing (AFW) wind tunnel model for prediction of the model's transonic aeroelastic behavior. A semi-span computational model is used for evaluation of symmetric motions and a full span model is used for evaluation of antisymmetric motions. Static aeroelastic solutions using CAP-TSD are computed. Dynamic (flutter) analyses are then performed as perturbations about the static aeroelastic deformations and presented as flutter boundaries in terms of Mach number and dynamic pressure. Flutter boundaries that take into account modal refinements, vorticity and entropy corrections, antisymmetric motions and sensitivity to the modeling of the wing tip ballast stores are also presented and compared with experimental flutter results.
NASA Technical Reports Server (NTRS)
Silva, Walter A.; Bennett, Robert M.
1990-01-01
The CAP-TSD (Computational Aeroelasticity Program - Transonic Small Disturbance) code, developed at the NASA - Langley Research Center, is applied to the Active Flexible Wing (AFW) wind tunnel model for prediction of the model's transonic aeroelastic behavior. Static aeroelastic solutions using CAP-TSD are computed. Dynamic (flutter) analyses are then performed as perturbations about the static aeroelastic deformations of the AFW. The accuracy of the static aeroelastic procedure is investigated by comparing analytical results to those from previous AFW wind tunnel experiments. Dynamic results are presented in the form of root loci at different Mach numbers for a heavy gas and air. The resultant flutter boundaries for both gases are also presented. The effects of viscous damping and angle-of-attack, on the flutter boundary in air, are presented as well.
Aeroelastic analysis of wind energy conversion systems
NASA Technical Reports Server (NTRS)
Dugundji, J.
1978-01-01
An aeroelastic investigation of horizontal axis wind turbines is described. The study is divided into two simpler areas; (1) the aeroelastic stability of a single blade on a rigid tower; and (2) the mechanical vibrations of the rotor system on a flexible tower. Some resulting instabilities and forced vibration behavior are described.
Research on Flow Characteristics of Supercritical CO2 Axial Compressor Blades by CFD Analysis
NASA Astrophysics Data System (ADS)
Takagi, Kazuhisa; Muto, Yasushi; Ishizuka, Takao; Kikura, Hiroshige; Aritomi, Masanori
A supercritical CO2 gas turbine of 20MPa is suitable to couple with the Na-cooled fast reactor since Na - CO2 reaction is mild at the outlet temperature of 800K, the cycle thermal efficiency is relatively high and the size of CO2 gas turbine is very compact. In this gas turbine cycle, a compressor operates near the critical point. The property of CO2 and then the behavior of compressible flow near the critical point changes very sharply. So far, such a behavior is not examined sufficiently. Then, it is important to clarify compressible flow near the critical point. In this paper, an aerodynamic design of the axial supercritical CO2 compressor for this system has been carried out based on the existing aerodynamic design method of Cohen1). The cycle design point was selected to achieve the maximum cycle thermal efficiency of 43.8%. For this point, the compressor design conditions were determined. They are a mass flow rate of 2035kg/s, an inlet temperature of 308K, an inlet static pressure of 8.26MPa, an outlet static pressure of 20.6MPa and a rotational speed of 3600rpm. The mean radius was constant through axial direction. The design point was determined so as to keep the diffusion factor and blade stress within the allowable limits. Number of stages and an expected adiabatic efficiency was 14 and 87%, respectively. CFD analyses by FLUENT have been done for this compressor blade. The blade model consists of one set of a guide vane, a rotor blade and a stator blade. The analyses were conducted under the assumption both of the real gas properties and also of the modified ideal gas properties. Using the real gas properties, analysis was conducted for the 14th blade, whose condition is remote from the critical point and the possibility of divergence is very small. Then, the analyses were conducted for the blade whose conditions are nearer to the critical point. Gradually, divergence of calculation was encountered. Convergence was relatively easy for the modified ideal
Experimental Results from the Active Aeroelastic Wing Wind Tunnel Test Program
NASA Technical Reports Server (NTRS)
Heeg, Jennifer; Spain, Charles V.; Florance, James R.; Wieseman, Carol D.; Ivanco, Thomas G.; DeMoss, Joshua; Silva, Walter A.; Panetta, Andrew; Lively, Peter; Tumwa, Vic
2005-01-01
The Active Aeroelastic Wing (AAW) program is a cooperative effort among NASA, the Air Force Research Laboratory and the Boeing Company, encompassing flight testing, wind tunnel testing and analyses. The objective of the AAW program is to investigate the improvements that can be realized by exploiting aeroelastic characteristics, rather than viewing them as a detriment to vehicle performance and stability. To meet this objective, a wind tunnel model was crafted to duplicate the static aeroelastic behavior of the AAW flight vehicle. The model was tested in the NASA Langley Transonic Dynamics Tunnel in July and August 2004. The wind tunnel investigation served the program goal in three ways. First, the wind tunnel provided a benchmark for comparison with the flight vehicle and various levels of theoretical analyses. Second, it provided detailed insight highlighting the effects of individual parameters upon the aeroelastic response of the AAW vehicle. This parameter identification can then be used for future aeroelastic vehicle design guidance. Third, it provided data to validate scaling laws and their applicability with respect to statically scaled aeroelastic models.
Structural dynamic and aeroelastic considerations for hypersonic vehicles
NASA Technical Reports Server (NTRS)
Cazier, F. W., Jr.; Doggett, Robert V., Jr.; Ricketts, Rodney H.
1991-01-01
The specific geometrical, structural, and operational environment characteristics of hypersonic vehicles are discussed with particular reference to aerospace plane type configurations. A discussion of the structural dynamic and aeroelastic phenomena that must be addressed for this class of vehicles is presented. These phenomena are in the aeroservothermoelasticity technical area. Some illustrative examples of recent experimental and analytical work are given. Some examples of current research are pointed out.
Harmonic Balance Computations of Fan Aeroelastic Stability
NASA Technical Reports Server (NTRS)
Bakhle, Milind A.; Reddy, T. S. R.
2010-01-01
A harmonic balance (HB) aeroelastic analysis, which has been recently developed, was used to determine the aeroelastic stability (flutter) characteristics of an experimental fan. To assess the numerical accuracy of this HB aeroelastic analysis, a time-domain aeroelastic analysis was also used to determine the aeroelastic stability characteristics of the same fan. Both of these three-dimensional analysis codes model the unsteady flowfield due to blade vibrations using the Reynolds-averaged Navier-Stokes (RANS) equations. In the HB analysis, the unsteady flow equations are converted to a HB form and solved using a pseudo-time marching method. In the time-domain analysis, the unsteady flow equations are solved using an implicit time-marching approach. Steady and unsteady computations for two vibration modes were carried out at two rotational speeds: 100 percent (design) and 70 percent (part-speed). The steady and unsteady results obtained from the two analysis methods compare well, thus verifying the recently developed HB aeroelastic analysis. Based on the results, the experimental fan was found to have no aeroelastic instability (flutter) at the conditions examined in this study.
Aeroelastic Optimization Study Based on X-56A Model
NASA Technical Reports Server (NTRS)
Li, Wesley; Pak, Chan-Gi
2014-01-01
A design process which incorporates the object-oriented multidisciplinary design, analysis, and optimization (MDAO) tool and the aeroelastic effects of high fidelity finite element models to characterize the design space was successfully developed and established. Two multidisciplinary design optimization studies using an object-oriented MDAO tool developed at NASA Armstrong Flight Research Center were presented. The first study demonstrates the use of aeroelastic tailoring concepts to minimize the structural weight while meeting the design requirements including strength, buckling, and flutter. A hybrid and discretization optimization approach was implemented to improve accuracy and computational efficiency of a global optimization algorithm. The second study presents a flutter mass balancing optimization study. The results provide guidance to modify the fabricated flexible wing design and move the design flutter speeds back into the flight envelope so that the original objective of X-56A flight test can be accomplished.
Aeroelastic characteristics of composite bearingless rotor blades
NASA Technical Reports Server (NTRS)
Bielawa, R. L.
1976-01-01
Owing to the inherent unique structural features of composite bearingless rotors, various assumptions upon which conventional rotor aeroelastic analyses are formulated, are violated. Three such features identified are highly nonlinear and time-varying structural twist, structural redundancy in bending and torsion, and for certain configurations a strongly coupled low frequency bending-torsion mode. An examination of these aeroelastic considerations and appropriate formulations required for accurate analyses of such rotor systems is presented. Also presented are test results from a dynamically scaled model rotor and complementary analytic results obtained with the appropriately reformulated aeroelastic analysis.
Non-linear aeroelastic prediction for aircraft applications
NASA Astrophysics Data System (ADS)
de C. Henshaw, M. J.; Badcock, K. J.; Vio, G. A.; Allen, C. B.; Chamberlain, J.; Kaynes, I.; Dimitriadis, G.; Cooper, J. E.; Woodgate, M. A.; Rampurawala, A. M.; Jones, D.; Fenwick, C.; Gaitonde, A. L.; Taylor, N. V.; Amor, D. S.; Eccles, T. A.; Denley, C. J.
2007-05-01
Current industrial practice for the prediction and analysis of flutter relies heavily on linear methods and this has led to overly conservative design and envelope restrictions for aircraft. Although the methods have served the industry well, it is clear that for a number of reasons the inclusion of non-linearity in the mathematical and computational aeroelastic prediction tools is highly desirable. The increase in available and affordable computational resources, together with major advances in algorithms, mean that non-linear aeroelastic tools are now viable within the aircraft design and qualification environment. The Partnership for Unsteady Methods in Aerodynamics (PUMA) Defence and Aerospace Research Partnership (DARP) was sponsored in 2002 to conduct research into non-linear aeroelastic prediction methods and an academic, industry, and government consortium collaborated to address the following objectives: To develop useable methodologies to model and predict non-linear aeroelastic behaviour of complete aircraft. To evaluate the methodologies on real aircraft problems. To investigate the effect of non-linearities on aeroelastic behaviour and to determine which have the greatest effect on the flutter qualification process. These aims have been very effectively met during the course of the programme and the research outputs include: New methods available to industry for use in the flutter prediction process, together with the appropriate coaching of industry engineers. Interesting results in both linear and non-linear aeroelastics, with comprehensive comparison of methods and approaches for challenging problems. Additional embryonic techniques that, with further research, will further improve aeroelastics capability. This paper describes the methods that have been developed and how they are deployable within the industrial environment. We present a thorough review of the PUMA aeroelastics programme together with a comprehensive review of the relevant research
Comparison of supercritical and conventional wing flutter characteristics
NASA Technical Reports Server (NTRS)
Farmer, M. G.; Hanson, P. W.
1976-01-01
A wind-tunnel study is described in which it was attempted to compare the measured flutter boundaries of two dynamically similar aeroelastic models with identical planform, maximum thickness-to-chord ratio, and as nearly identical stiffness and mass distributions as possible, but with one wing having a supercritical airfoil and the other a conventional one. At subsonic Mach numbers, the flutter boundary for the supercritical wing was above that of the conventional wing, as predicted by flutter calculations using subsonic lifting theory. In the transonic region, however, the supercritical wing boundary decreases more rapidly and the minimum flutter point occurs at a dynamic pressure below the conventional wing boundary. Airfoil shape effects may account for some of the difference in the flutter boundaries of the two airfoils.
Aeroelastic Airworthiness Assesment of the Adaptive Compliant Trailing Edge Flaps
NASA Technical Reports Server (NTRS)
Herrera, Claudia Y.; Spivey, Natalie D.; Lung, Shun-fat; Ervin, Gregory; Flick, Peter
2015-01-01
The Adaptive Compliant Trailing Edge (ACTE) demonstrator is a joint task under the National Aeronautics and Space Administration Environmentally Responsible Aviation Project in partnership with the Air Force Research Laboratory and FlexSys, Inc. (Ann Arbor, Michigan). The project goal is to develop advanced technologies that enable environmentally friendly aircraft, such as adaptive compliant technologies. The ACTE demonstrator flight-test program encompassed replacing the Fowler flaps on the SubsoniC Aircraft Testbed, a modified Gulfstream III (Gulfstream Aerospace, Savannah, Georgia) aircraft, with control surfaces developed by FlexSys. The control surfaces developed by FlexSys are a pair of uniquely-designed unconventional flaps to be used as lifting surfaces during flight-testing to validate their structural effectiveness. The unconventional flaps required a multidisciplinary airworthiness assessment to prove they could withstand the prescribed flight envelope. Several challenges were posed due to the large deflections experienced by the structure, requiring non-linear analysis methods. The aeroelastic assessment necessitated both conventional and extensive testing and analysis methods. A series of ground vibration tests (GVTs) were conducted to provide modal characteristics to validate and update finite element models (FEMs) used for the flutter analyses for a subset of the various flight configurations. Numerous FEMs were developed using data from FlexSys and the ground tests. The flap FEMs were then attached to the aircraft model to generate a combined FEM that could be analyzed for aeroelastic instabilities. The aeroelastic analysis results showed the combined system of aircraft and flaps were predicted to have the required flutter margin to successfully demonstrate the adaptive compliant technology. This paper documents the details of the aeroelastic airworthiness assessment described, including the ground testing and analyses, and subsequent flight
Role of computational fluid dynamics in unsteady aerodynamics for aeroelasticity
NASA Technical Reports Server (NTRS)
Guruswamy, Guru P.; Goorjian, Peter M.
1989-01-01
In the last two decades there have been extensive developments in computational unsteady transonic aerodynamics. Such developments are essential since the transonic regime plays an important role in the design of modern aircraft. Therefore, there has been a large effort to develop computational tools with which to accurately perform flutter analysis at transonic speeds. In the area of Computational Fluid Dynamics (CFD), unsteady transonic aerodynamics are characterized by the feature of modeling the motion of shock waves over aerodynamic bodies, such as wings. This modeling requires the solution of nonlinear partial differential equations. Most advanced codes such as XTRAN3S use the transonic small perturbation equation. Currently, XTRAN3S is being used for generic research in unsteady aerodynamics and aeroelasticity of almost full aircraft configurations. Use of Euler/Navier Stokes equations for simple typical sections has just begun. A brief history of the development of CFD for aeroelastic applications is summarized. The development of unsteady transonic aerodynamics and aeroelasticity are also summarized.
Efficient Cfd/csd Coupling Methods for Aeroelastic Applications
NASA Astrophysics Data System (ADS)
Chen, Long; Xu, Tianhao; Xie, Jing
2016-06-01
A fast aeroelastic numerical simulation method using CFD/CSD coupling are developed. Generally, aeroelastic numerical simulation costs much time and significant hardware resources with CFD/CSD coupling. In this paper, dynamic grid method, full implicit scheme, parallel technology and improved coupling method are researched for efficiency simulation. An improved Delaunay graph mapping method is proposed for efficient dynamic grid deform. Hybrid grid finite volume method is used to solve unsteady flow fields. The dual time stepping method based on parallel implicit scheme is used in temporal discretization for efficiency simulation. An approximate system of linear equations is solved by the GMRES algorithm with a LU-SGS preconditioner. This method leads to a significant increase in performance over the explicit and LU-SGS implicit methods. A modification of LU-SGS is proposed to improve the parallel performance. Parallel computing overs a very effective way to improve our productivity in doing CFD/CFD coupling analysis. Improved loose coupling method is an efficiency way over the loose coupling method and tight coupling method. 3D wing's aeroelastic phenomenon is simulated by solving Reynolds-averaged Navier-Stokes equations using improved loose coupling method. The flutter boundary is calculated and agrees well with experimental data. The transonic hole is very clear in numerical simulation results.
Aeroelastic Optimization Study Based on the X-56A Model
NASA Technical Reports Server (NTRS)
Li, Wesley W.; Pak, Chan-Gi
2014-01-01
One way to increase the aircraft fuel efficiency is to reduce structural weight while maintaining adequate structural airworthiness, both statically and aeroelastically. A design process which incorporates the object-oriented multidisciplinary design, analysis, and optimization (MDAO) tool and the aeroelastic effects of high fidelity finite element models to characterize the design space was successfully developed and established. This paper presents two multidisciplinary design optimization studies using an object-oriented MDAO tool developed at NASA Armstrong Flight Research Center. The first study demonstrates the use of aeroelastic tailoring concepts to minimize the structural weight while meeting the design requirements including strength, buckling, and flutter. Such an approach exploits the anisotropic capabilities of the fiber composite materials chosen for this analytical exercise with ply stacking sequence. A hybrid and discretization optimization approach improves accuracy and computational efficiency of a global optimization algorithm. The second study presents a flutter mass balancing optimization study for the fabricated flexible wing of the X-56A model since a desired flutter speed band is required for the active flutter suppression demonstration during flight testing. The results of the second study provide guidance to modify the wing design and move the design flutter speeds back into the flight envelope so that the original objective of X-56A flight test can be accomplished successfully. The second case also demonstrates that the object-oriented MDAO tool can handle multiple analytical configurations in a single optimization run.
Wing-Body Aeroelasticity on Parallel Computers
NASA Technical Reports Server (NTRS)
Guruswamy, Guru P.; Byun, Chansup
1996-01-01
This article presents a procedure for computing the aeroelasticity of wing-body configurations on multiple-instruction, multiple-data parallel computers. In this procedure, fluids are modeled using Euler equations discretized by a finite difference method, and structures are modeled using finite element equations. The procedure is designed in such a way that each discipline can be developed and maintained independently by using a domain decomposition approach. A parallel integration scheme is used to compute aeroelastic responses by solving the coupled fluid and structural equations concurrently while keeping modularity of each discipline. The present procedure is validated by computing the aeroelastic response of a wing and comparing with experiment. Aeroelastic computations are illustrated for a high speed civil transport type wing-body configuration.
Experimental unsteady pressures at flutter on the Supercritical Wing Benchmark Model
NASA Technical Reports Server (NTRS)
Dansberry, Bryan E.; Durham, Michael H.; Bennett, Robert M.; Rivera, Jose A.; Silva, Walter A.; Wieseman, Carol D.; Turnock, David L.
1993-01-01
This paper describes selected results from the flutter testing of the Supercritical Wing (SW) model. This model is a rigid semispan wing having a rectangular planform and a supercritical airfoil shape. The model was flutter tested in the Langley Transonic Dynamics Tunnel (TDT) as part of the Benchmark Models Program, a multi-year wind tunnel activity currently being conducted by the Structural Dynamics Division of NASA Langley Research Center. The primary objective of this program is to assist in the development and evaluation of aeroelastic computational fluid dynamics codes. The SW is the second of a series of three similar models which are designed to be flutter tested in the TDT on a flexible mount known as the Pitch and Plunge Apparatus. Data sets acquired with these models, including simultaneous unsteady surface pressures and model response data, are meant to be used for correlation with analytical codes. Presented in this report are experimental flutter boundaries and corresponding steady and unsteady pressure distribution data acquired over two model chords located at the 60 and 95 percent span stations.
Ultra Supercritical Steamside Oxidation
Holcomb, Gordon R.; Cramer, Stephen D.; Covino, Bernard S., Jr.; Bullard, Sophie J.; Ziomek-Moroz, Malgorzata
2005-01-01
Ultra supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions, which are goals of the U.S. Department of Energy's Advanced Power Systems Initiatives. Most current coal power plants in the U.S. operate at a maximum steam temperature of 538 C. However, new supercritical plants worldwide are being brought into service with steam temperatures of up to 620 C. Current Advanced Power Systems goals include coal generation at 60% efficiency, which require steam temperatures of up to 760 C. This research examines the steamside oxidation of advanced alloys for use in USC systems, with emphasis placed on alloys for high- and intermediate-pressure turbine sections. Initial results of this research are presented.
NASA Technical Reports Server (NTRS)
Gardner, Kevin D.; Liu, Jong-Shang; Murthy, Durbha V.; Kruse, Marlin J.; James, Darrell
1999-01-01
AlliedSignal Engines, in cooperation with NASA GRC (National Aeronautics and Space Administration Glenn Research Center), completed an evaluation of recently-developed aeroelastic computer codes using test cases from the AlliedSignal Engines fan blisk and turbine databases. Test data included strain gage, performance, and steady-state pressure information obtained for conditions where synchronous or flutter vibratory conditions were found to occur. Aeroelastic codes evaluated included quasi 3-D UNSFLO (MIT Developed/AE Modified, Quasi 3-D Aeroelastic Computer Code), 2-D FREPS (NASA-Developed Forced Response Prediction System Aeroelastic Computer Code), and 3-D TURBO-AE (NASA/Mississippi State University Developed 3-D Aeroelastic Computer Code). Unsteady pressure predictions for the turbine test case were used to evaluate the forced response prediction capabilities of each of the three aeroelastic codes. Additionally, one of the fan flutter cases was evaluated using TURBO-AE. The UNSFLO and FREPS evaluation predictions showed good agreement with the experimental test data trends, but quantitative improvements are needed. UNSFLO over-predicted turbine blade response reductions, while FREPS under-predicted them. The inviscid TURBO-AE turbine analysis predicted no discernible blade response reduction, indicating the necessity of including viscous effects for this test case. For the TURBO-AE fan blisk test case, significant effort was expended getting the viscous version of the code to give converged steady flow solutions for the transonic flow conditions. Once converged, the steady solutions provided an excellent match with test data and the calibrated DAWES (AlliedSignal 3-D Viscous Steady Flow CFD Solver). However, efforts expended establishing quality steady-state solutions prevented exercising the unsteady portion of the TURBO-AE code during the present program. AlliedSignal recommends that unsteady pressure measurement data be obtained for both test cases examined
Ultra supercritical steamside oxidation
Holcomb, Gordon R.; Covino, Bernard S., Jr.; Bullard, Sophie J.; Cramer, Stephen D.; Ziomek-Moroz, Margaret
2005-01-01
Ultra supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions, Current goals of the U.S. Department of Energyâ€™s Advanced Power Systems Initiatives include coal generation at 60% efficiency, which would require steam temperatures of up to 760Â°C. This research examines the steamside oxidation of advanced alloys for use in USC systems, with emphasis placed on alloys for high- and intermediate-pressure turbine sections.
The Wing-Body Aeroelastic Analyses Using the Inverse Design Method
NASA Astrophysics Data System (ADS)
Lee, Seung Jun; Im, Dong-Kyun; Lee, In; Kwon, Jang-Hyuk
Flutter phenomenon is one of the most dangerous problems in aeroelasticity. When it occurs, the aircraft structure can fail in a few second. In recent aeroelastic research, computational fluid dynamics (CFD) techniques become important means to predict the aeroelastic unstable responses accurately. Among various flow equations like Navier-Stokes, Euler, full potential and so forth, the transonic small disturbance (TSD) theory is widely recognized as one of the most efficient theories. However, the small disturbance assumption limits the applicable range of the TSD theory to the thin wings. For a missile which usually has small aspect ratio wings, the influence of body aerodynamics on the wing surface may be significant. Thus, the flutter stability including the body effect should be verified. In this research an inverse design method is used to complement the aerodynamic deficiency derived from the fuselage. MGM (modified Garabedian-McFadden) inverse design method is used to optimize the aerodynamic field of a full aircraft model. Furthermore, the present TSD aeroelastic analyses do not require the grid regeneration process. The MGM inverse design method converges faster than other conventional aerodynamic theories. Consequently, the inverse designed aeroelastic analyses show that the flutter stability has been lowered by the body effect.
Analysis of Test Case Computations and Experiments for the First Aeroelastic Prediction Workshop
NASA Technical Reports Server (NTRS)
Schuster, David M.; Heeg, Jennifer; Wieseman, Carol D.; Chwalowski, Pawel
2013-01-01
This paper compares computational and experimental data from the Aeroelastic Prediction Workshop (AePW) held in April 2012. This workshop was designed as a series of technical interchange meetings to assess the state of the art of computational methods for predicting unsteady flowfields and static and dynamic aeroelastic response. The goals are to provide an impartial forum to evaluate the effectiveness of existing computer codes and modeling techniques to simulate aeroelastic problems and to identify computational and experimental areas needing additional research and development. Three subject configurations were chosen from existing wind-tunnel data sets where there is pertinent experimental data available for comparison. Participant researchers analyzed one or more of the subject configurations, and results from all of these computations were compared at the workshop.
Controlled Aeroelastic Response and Airfoil Shaping Using Adaptive Materials and Integrated Systems
NASA Technical Reports Server (NTRS)
Pinkerton, Jennifer L.; McGowan, Anna-Maria R.; Moses, Robert W.; Scott, Robert C.; Heeg, Jennifer
1996-01-01
This paper presents an overview of several activities of the Aeroelasticity Branch at the NASA Langley Research Center in the area of applying adaptive materials and integrated systems for controlling both aircraft aeroelastic response and airfoil shape. The experimental results of four programs are discussed: the Piezoelectric Aeroelastic Response Tailoring Investigation (PARTI); the Adaptive Neural Control of Aeroelastic Response (ANCAR) program; the Actively Controlled Response of Buffet Affected Tails (ACROBAT) program; and the Airfoil THUNDER Testing to Ascertain Characteristics (ATTACH) project. The PARTI program demonstrated active flutter control and significant rcductions in aeroelastic response at dynamic pressures below flutter using piezoelectric actuators. The ANCAR program seeks to demonstrate the effectiveness of using neural networks to schedule flutter suppression control laws. Th,e ACROBAT program studied the effectiveness of a number of candidate actuators, including a rudder and piezoelectric actuators, to alleviate vertical tail buffeting. In the ATTACH project, the feasibility of using Thin-Layer Composite-Uimorph Piezoelectric Driver and Sensor (THUNDER) wafers to control airfoil aerodynamic characteristics was investigated. Plans for future applications are also discussed.
Controlled aeroelastic response and airfoil shaping using adaptive materials and integrated systems
NASA Astrophysics Data System (ADS)
Pinkerton, Jennifer L.; McGowan, Anna-Maria R.; Moses, Robert W.; Scott, Robert C.; Heeg, Jennifer
1996-05-01
This paper presents an overview of several activities of the Aeroelasticity Branch at the NASA Langley Research Center in the area of applying adaptive materials and integrated systems for controlling both aircraft aeroelastic response and airfoil shape. The experimental results of four programs are discussed: the Piezoelectric Aeroelastic Response Tailoring Investigation (PARTI); the adaptive neural control of aeroelastic response (ANCAR) program; the actively controlled response of buffet affected tails (ACROBAT) program; and the Airfoil THUNDER Testing to ascertain charcteristics (ATTACH) project. The PARTI program demonstrated active flutter control and significant reductions in aeroelastic response at dynamic pressures below flutter using piezoelectric actuators. The ANCAR program seeks to demonstrate the effectiveness of using neural networks to schedule flutter suppression control laws. The ACROBAT program studied the effectiveness of a number of candidate actuators, including a rudder and piezoelectric actuators, to alleviate vertical tail buffeting. In the ATTACH project, the feasibility of using thin-layer composite-unimorph piezoelectric driver and sensor (THUNDER) wafers to control airfoil aerodynamic characteristics was investigated. Plans for future applications are also discussed.
Computational Aeroelastic Modeling of Airframes and TurboMachinery: Progress and Challenges
NASA Technical Reports Server (NTRS)
Bartels, R. E.; Sayma, A. I.
2006-01-01
Computational analyses such as computational fluid dynamics and computational structural dynamics have made major advances toward maturity as engineering tools. Computational aeroelasticity is the integration of these disciplines. As computational aeroelasticity matures it too finds an increasing role in the design and analysis of aerospace vehicles. This paper presents a survey of the current state of computational aeroelasticity with a discussion of recent research, success and continuing challenges in its progressive integration into multidisciplinary aerospace design. This paper approaches computational aeroelasticity from the perspective of the two main areas of application: airframe and turbomachinery design. An overview will be presented of the different prediction methods used for each field of application. Differing levels of nonlinear modeling will be discussed with insight into accuracy versus complexity and computational requirements. Subjects will include current advanced methods (linear and nonlinear), nonlinear flow models, use of order reduction techniques and future trends in incorporating structural nonlinearity. Examples in which computational aeroelasticity is currently being integrated into the design of airframes and turbomachinery will be presented.
Butner, S.; Hjeresen, D.; Silva, L.; Spall, D.; Stephenson, R.
1991-01-01
This paper discusses a proposed multi-party research and development program which seeks to develop supercritical fluid cleaning technology as an alternative to existing solvent cleaning applications. While SCF extraction technology has been in commercial use for several years, the use of these fluids as cleaning agents poses several new technical challenges. Problems inherent in the commercialization of SCF technology include: the cleaning efficacy and compatibility of supercritical working fluids with the parts to be cleaned must be assessed for a variety of materials and components; process parameters and equipment design Have been optimized for extractive applications and must be reconsidered for application to cleaning; and co-solvents and entrainers must be identified to facilitate the removal of polar inorganic and organic contaminants, which are often not well solvated in supercritical systems. The proposed research and development program would address these issues and lead to the development and commercialization of viable SCF-based technology for precision cleaning applications. This paper provides the technical background, program scope, and delineates the responsibilities of each principal participant in the program.
NASA Technical Reports Server (NTRS)
Silva, Walter A.; Bennett, Robert M.
1992-01-01
The CAP-TSD (Computational Aeroelasticity Program - Transonic Small Disturbance) code, developed at the NASA Langley Research Center, is applied to the Active Flexible Wing wind-tunnel model for prediction of transonic aeroelastic behavior. A semi-span computational model is used for evaluation of symmetric motions, and a full-span model is used for evaluation of antisymmetric motions. Static aeroelastic solutions using CAP-TSD are computed. Dynamic (flutter) analyses then are performed as perturbations about the static aeroelastic deformations and presented as flutter boundaries in terms of Mach number and dynamic pressure. Flutter boundaries that take into account modal refinements, vorticity and entropy corrections, antisymmetric motions and sensitivity to the modeling of the wing tip ballast stores also are presented and compared with experimental flutter results.
NASA Technical Reports Server (NTRS)
Friedmann, P. P.; Venkatesan, C.; Yuan, K.
1992-01-01
This paper describes the development of a new structural optimization capability aimed at the aeroelastic tailoring of composite rotor blades with straight and swept tips. The primary objective is to reduce vibration levels in forward flight without diminishing the aeroelastic stability margins of the blade. In the course of this research activity a number of complicated tasks have been addressed: (1) development of a new, aeroelastic stability and response analysis; (2) formulation of a new comprehensive sensitive analysis, which facilitates the generation of the appropriate approximations for the objective and the constraints; (3) physical understanding of the new model and, in particular, determination of its potential for aeroelastic tailoring, and (4) combination of the newly developed analysis capability, the sensitivity derivatives and the optimizer into a comprehensive optimization capability. The first three tasks have been completed and the fourth task is in progress.
Recent Applications of the Volterra Theory to Aeroelastic Phenomena
NASA Technical Reports Server (NTRS)
Silva, Walter A.; Haji, Muhammad R; Prazenica, Richard J.
2005-01-01
The identification of nonlinear aeroelastic systems based on the Volterra theory of nonlinear systems is presented. Recent applications of the theory to problems in experimental aeroelasticity are reviewed. These results include the identification of aerodynamic impulse responses, the application of higher-order spectra (HOS) to wind-tunnel flutter data, and the identification of nonlinear aeroelastic phenomena from flight flutter test data of the Active Aeroelastic Wing (AAW) aircraft.
NASA Technical Reports Server (NTRS)
Edwards, John W.; Malone, John B.
1992-01-01
The current status of computational methods for unsteady aerodynamics and aeroelasticity is reviewed. The key features of challenging aeroelastic applications are discussed in terms of the flowfield state: low-angle high speed flows and high-angle vortex-dominated flows. The critical role played by viscous effects in determining aeroelastic stability for conditions of incipient flow separation is stressed. The need for a variety of flow modeling tools, from linear formulations to implementations of the Navier-Stokes equations, is emphasized. Estimates of computer run times for flutter calculations using several computational methods are given. Applications of these methods for unsteady aerodynamic and transonic flutter calculations for airfoils, wings, and configurations are summarized. Finally, recommendations are made concerning future research directions.
Prediction of wing aeroelastic effects on aircraft life and pitching moment characteristics
NASA Technical Reports Server (NTRS)
Eckstrom, Clinton V.
1987-01-01
The distribution of flight loads on an aircraft structure determine the lift and pitching moment characteristics of the aircraft. When the load distribution changes due to the aeroelastic response of the structure, the lift and pitching moment characteristics also change. An estimate of the effect of aeroelasticity on stability and control characteristics is often required for the development of aircraft simulation models of evaluation of flight characteristics. This presentation outlines a procedure for incorporating calculated linear aeroelastic effects into measured nonlinear lift and pitching moment data from wind tunnel tests. Results are presented which were obtained from applying this procedure to data for an aircraft with a very flexible transport type research wing. The procedure described is generally applicable to all types of aircraft.
Prediction of wing aeroelastic effects on aircraft lift and pitching moment characteristics
NASA Technical Reports Server (NTRS)
Eckstrom, C. V.
1985-01-01
The distribution of flight loads on an aircraft structure determines the lift and pitching moment characteristics of the aircraft. When the load distribution changes due to the aeroelastic response of the structure, the lift and pitching moment characteristics also change. Some estimate of the effect of aeroelasticity on stability and control characteristics, particularly lift and pitching moment, is required for use in aircraft simulation models for evaluation of flight characteristics. This presentation outlines a procedure to incorporate aeroelastic effects into lift and pitching moment data from wind tunnel tests. Results are presented which were obtained from applying this procedure to an aircraft with a very flexible transport-type research wing. The procedure described is generally applicable to all types of aircraft.
Prediction of wing aeroelastic effects on aircraft lift and pitching moment characteristics
NASA Technical Reports Server (NTRS)
Eckstrom, Clinton V.
1986-01-01
The distribution of flight loads on an aircraft structure determine the lift and pitching moment characteristics of the aircraft. When the load distribution changes due to the aeroelastic response of the structure, the lift and pitching moment characteristics also change. An estimate of the effect of aeroelasticity on stability and control characteristics is often required for the development of aircraft simulation models of evaluation of flight characteristics. This presentation outlines a procedure for incorporating calculated linear aeroelastic effects into measured nonlinear lift and pitching moment data from wind tunnel tests. Results are presented which were obtained from applying this procedure to data for an aircraft with a very flexible transport type research wing. The procedure described is generally applicable to all types of aircraft.
NASA Technical Reports Server (NTRS)
Yeager, William T., Jr.; Kvaternik, Raymond G.
2001-01-01
A historical account of the contributions of the Aeroelasticity Branch (AB) and the Langley Transonic Dynamics Tunnel (TDT) to rotorcraft technology and development since the tunnel's inception in 1960 is presented. The paper begins with a summary of the major characteristics of the TDT and a description of the unique capability offered by the TDT for testing aeroelastic models by virtue of its heavy gas test medium. This is followed by some remarks on the role played by scale models in the design and development of rotorcraft vehicles and a review of the basic scaling relationships important for designing and building dynamic aeroelastic models of rotorcraft vehicles for testing in the TDT. Chronological accounts of helicopter and tiltrotor research conducted in AB/TDT are then described in separate sections. Both experimental and analytical studies are reported and include a description of the various physical and mathematical models employed, the specific objectives of the investigations, and illustrative experimental and analytical results.
NASA Technical Reports Server (NTRS)
Edwards, John W.; Malone, John B.
1992-01-01
The status of computational methods for unsteady aerodynamics and aeroelasticity is reviewed. The key features of challenging aeroelastic applications is discussed in terms of the flowfield state - low angle high speed flows and high angle vortex dominated flows. The critical role played by viscous effects in determining aeroelastic stability for conditions of incipient flow separation is stressed. The need for a variety of flow modeling tools, from linear formulations to implementations of the Navier-Stokes equations, is emphasized. Estimates of computer run times for flutter calculations using several computational methods are given. Applications of these methods for unsteady aerodynamic and transonic flutter calculations for airfoils, wings, and configurations are summarized. Finally, recommendations are made concerning future research directions.
NASA Technical Reports Server (NTRS)
Edwards, J. W.; Malone, J. B.
1992-01-01
The current status of computational methods for unsteady aerodynamics and aeroelasticity is reviewed. The key features of challenging aeroelastic applications are discussed in terms of the flowfield state: low-angle high speed flows and high-angle vortex-dominated flows. The critical role played by viscous effects in determining aeroelastic stability for conditions of incipient flow separation is stressed. The need for a variety of flow modeling tools, from linear formulations to implementations of the Navier-Stokes equations, is emphasized. Estimates of computer run times for flutter calculations using several computational methods are given. Application of these methods for unsteady aerodynamic and transonic flutter calculations for airfoils, wings, and configurations are summarized. Finally, recommendations are made concerning future research directions.
NASA Technical Reports Server (NTRS)
Stanford, Bret K.; Jutte, Christine V.
2016-01-01
A series of aeroelastic optimization problems are solved on a high aspect ratio wingbox of the Common Research Model, in an effort to minimize structural mass under coupled stress, buckling, and flutter constraints. Two technologies are of particular interest: tow steered composite laminate skins and curvilinear stiffeners. Both methods are found to afford feasible reductions in mass over their non-curvilinear structural counterparts, through both distinct and shared mechanisms for passively controlling aeroelastic performance. Some degree of diminishing returns are seen when curvilinear stiffeners and curvilinear fiber tow paths are used simultaneously.
Some experiences with active control of aeroelastic response
NASA Technical Reports Server (NTRS)
Newsom, J. R.; Abel, I.
1981-01-01
Flight and wind tunnel tests were conducted and multidiscipline computer programs were developed as part of investigations of active control technology conducted at the NASA Langley Research Center. Unsteady aerodynamics approximation, optimal control theory, optimal controller design, and the Delta wing and DC-10 models are described. The drones for aerodynamics and structural testing (DAST program) for evaluating procedures for aerodynamic loads prediction and the design of active control systems on wings with significant aeroelastic effects is described as well as the DAST model used in the wind tunnel tests.
Aeroelastic Tailoring via Tow Steered Composites
NASA Technical Reports Server (NTRS)
Stanford, Bret K.; Jutte, Christine V.
2014-01-01
The use of tow steered composites, where fibers follow prescribed curvilinear paths within a laminate, can improve upon existing capabilities related to aeroelastic tailoring of wing structures, though this tailoring method has received relatively little attention in the literature. This paper demonstrates the technique for both a simple cantilevered plate in low-speed flow, as well as the wing box of a full-scale high aspect ratio transport configuration. Static aeroelastic stresses and dynamic flutter boundaries are obtained for both cases. The impact of various tailoring choices upon the aeroelastic performance is quantified: curvilinear fiber steering versus straight fiber steering, certifiable versus noncertifiable stacking sequences, a single uniform laminate per wing skin versus multiple laminates, and identical upper and lower wing skins structures versus individual tailoring.
Recent advances in transonic computational aeroelasticity
NASA Technical Reports Server (NTRS)
Batina, John T.; Bennett, Robert M.; Seidel, David A.; Cunningham, Herbert J.; Bland, Samuel R.
1988-01-01
A transonic unsteady aerodynamic and aeroelasticity code called CAP-TSD was developed for application to realistic aircraft configurations. The code permits the calculation of steady and unsteady flows about complete aircraft configurations for aeroelastic analysis in the flutter critical transonic speed range. The CAP-TSD code uses a time accurate approximate factorization algorithm for solution of the unsteady transonic small disturbance potential equation. An overview is given of the CAP-TSD code development effort and results are presented which demonstrate various capabilities of the code. Calculations are presented for several configurations including the General Dynamics 1/9 scale F-16 aircraft model and the ONERA M6 wing. Calculations are also presented from a flutter analysis of a 45 deg sweptback wing which agrees well with the experimental data. Descriptions are presented of the CAP-TSD code and algorithm details along with results and comparisons which demonstrate these recent developments in transonic computational aeroelasticity.
NASA Technical Reports Server (NTRS)
Boyden, R. P.
1974-01-01
The aerodynamic damping in pitch, yaw, and roll and the oscillatory stability in pitch and yaw of a supercritical-wing research airplane model were determined for Mach numbers of 0.25 to 1.20 by using the small-amplitude forced-oscillation technique. The angle-of-attack range was from -2 deg to 20 deg. The effects of the underwing leading-edge vortex generators and the contributions of the wing, vertical tail, and horizontal tail to the appropriate damping and stability were measured.
Role of HPC in Advancing Computational Aeroelasticity
NASA Technical Reports Server (NTRS)
Guruswamy, Guru P.
2004-01-01
On behalf of the High Performance Computing and Modernization Program (HPCMP) and NASA Advanced Supercomputing Division (NAS) a study is conducted to assess the role of supercomputers on computational aeroelasticity of aerospace vehicles. The study is mostly based on the responses to a web based questionnaire that was designed to capture the nuances of high performance computational aeroelasticity, particularly on parallel computers. A procedure is presented to assign a fidelity-complexity index to each application. Case studies based on major applications using HPCMP resources are presented.
OVERAERO-MPI: Parallel Overset Aeroelasticity Code
NASA Technical Reports Server (NTRS)
Gee, Ken; Rizk, Yehia M.
1999-01-01
An overset modal structures analysis code was integrated with a parallel overset Navier-Stokes flow solver to obtain a code capable of static aeroelastic computations. The new code was used to compute the static aeroelastic deformation of an arrow-wing-body geometry and a complex, full aircraft configuration. For the simple geometry, the results were similar to the results obtained with the ENSAERO code and the PVM version of OVERAERO. The full potential of this code suite was illustrated in the complex, full aircraft computations.
Aeroelastic Stability and Response of Rotating Structures
NASA Technical Reports Server (NTRS)
Keith, Theo G., Jr.; Reddy, Tondapu
2004-01-01
A summary of the work performed under NASA grant is presented. More details can be found in the cited references. This grant led to the development of relatively faster aeroelastic analysis methods for predicting flutter and forced response in fans, compressors, and turbines using computational fluid dynamic (CFD) methods. These methods are based on linearized two- and three-dimensional, unsteady, nonlinear aerodynamic equations. During the period of the grant, aeroelastic analysis that includes the effects of uncertainties in the design variables has also been developed.
Method of performing computational aeroelastic analyses
NASA Technical Reports Server (NTRS)
Silva, Walter A. (Inventor)
2011-01-01
Computational aeroelastic analyses typically use a mathematical model for the structural modes of a flexible structure and a nonlinear aerodynamic model that can generate a plurality of unsteady aerodynamic responses based on the structural modes for conditions defining an aerodynamic condition of the flexible structure. In the present invention, a linear state-space model is generated using a single execution of the nonlinear aerodynamic model for all of the structural modes where a family of orthogonal functions is used as the inputs. Then, static and dynamic aeroelastic solutions are generated using computational interaction between the mathematical model and the linear state-space model for a plurality of periodic points in time.
A methodology for aeroelastic constraint analysis in a conceptual design environment
NASA Astrophysics Data System (ADS)
de Baets, Peter Wilfried Gaston
The objective of this study is the infusion of aeroelastic constraint knowledge into the design space. The mapping of such aeroelastic information in the conceptual design space has long been a desire of the design community. The conceptual design phase of an aircraft is a multidisciplinary environment and has the most influence on the future design of the vehicle. However, sufficient results cannot he obtained in a timely enough manner to materially contribute to early design decisions. Furthermore, the natural division of the engineering team into specialty groups is not well supported by the monolithic aerodynamic-structures codes typically used in modern aeroelastic analysis. The research examines how the Bi-Level Integrated System Synthesis decomposition technique can be adapted to perform as the conceptual aeroelastic design tool. The study describes a comprehensive solution of the aeroelastic coupled problem cast in this decomposition format and implemented in an integrated framework. The method is supported by application details of a proof of concept high speed vehicle. Physics-based codes such as finite element and an aerodynamic panel method are used to model the high-definition geometric characteristics of the vehicle. A synthesis and sizing code was added to referee the conflicts that arise between the two disciplines. This research's novelty lies in four points. First is the use of physics-based tools at the conceptual design phase to calculate the aeroelastic properties. Second is the projection of flutter and divergence velocity constraint lines in a power loading versus wing loading graph. Third is the aeroelastic assessment time reduction, which has moved from a matter of years to months. Lastly, this assessment allowed verification of the impact of changing velocity, altitude, and angle of attack on the aeroelastic properties. This then allowed identification of robust design space with respect to these three mission properties. The method
Power extraction from aeroelastic limit cycle oscillations
NASA Astrophysics Data System (ADS)
Dunnmon, J. A.; Stanton, S. C.; Mann, B. P.; Dowell, E. H.
2011-11-01
Nonlinear limit cycle oscillations of an aeroelastic energy harvester are exploited for enhanced piezoelectric power generation from aerodynamic flows. Specifically, a flexible beam with piezoelectric laminates is excited by a uniform axial flow field in a manner analogous to a flapping flag such that the system delivers power to an electrical impedance load. Fluid-structure interaction is modeled by augmenting a system of nonlinear equations for an electroelastic beam with a discretized vortex-lattice potential flow model. Experimental results from a prototype aeroelastic energy harvester are also presented. Root mean square electrical power on the order of 2.5 mW was delivered below the flutter boundary of the test apparatus at a comparatively low wind speed of 27 m/s and a chord normalized limit cycle amplitude of 0.33. Moreover, subcritical limit cycles with chord normalized amplitudes of up to 0.46 were observed. Calculations indicate that the system tested here was able to access over 17% of the flow energy to which it was exposed. Methods for designing aeroelastic energy harvesters by exploiting nonlinear aeroelastic phenomena and potential improvements to existing relevant aerodynamic models are also discussed.
Aeroelastic Stability and Response of Rotating Structures
NASA Technical Reports Server (NTRS)
Keith, Theo G., Jr.; Reddy, T. S. R.
1998-01-01
A summary of the work performed from 1996 to 1997 is presented. More details can be found in the cited references. This grant led to the development of aeroelastic analyses methods for predicting flutter and forced response in fans, compressors, and turbines using computational
Aeroelastic Stability & Response of Rotating Structures
NASA Technical Reports Server (NTRS)
Keith, Theo G., Jr.; Reddy, T. S. R.
2001-01-01
A summary of the work performed under NASA grant NCC3-605 is presented. More details can be found in the cited references. This grant led to the development of relatively faster aeroelastic analyses methods for predicting flutter and forced response in fans, compressors, and turbines using computational fluid dynamic (CFD) methods.
Experimental and theoretical studies in nonlinear aeroelasticity
NASA Astrophysics Data System (ADS)
Attar, Peter Joseph
Experimental and theoretical studies are conducted in the field of nonlinear aeroelasticity. Specifically two aeroelastic configurations, a flapping flag and a delta wing, are investigated and correlations between theory and experiment are presented. Two nonlinear structural theories are used to describe the structural behavior of the two models which are studied. The delta wing structural behavior is modeled using the nonlinear plate theory of von Karman. The nonlinearity in this model is due to the coupling between the out-of-plane and in-plane deflections and the model allows for moderately large out-of-plane plate deflections. The flapping flag structural model is a nonlinear beam theory which includes nonlinearities due to both large curvature and inertia. The axial deflection in this model is related to the out-of-plane deflection using an axially inextensible theory. The aerodynamic theory used is potential flow theory, which is applicable to low speed flows. The equation which describes potential flow is the Laplace equation, which is a linear partial differential equation. The Laplace equation is solved using a vortex lattice method. Aeroelastic solutions are found using both the classic small disturbance linearized fluid-structure interface boundary condition and the exact nonlinear boundary condition. The aeroelastic model which includes the nonlinear boundary conditions also includes a free wake solution. Several reduced order methods are explored. Normal mode solutions, both for the structural and aerodynamic models, are studied along with a proper orthogonal decomposition model for the aerodynamic flow. A brief description of a parallel implementation of the aeroelastic simulation code is also given and the parallel speedup is shown to be nearly linear for a certain class of problems. Correlation between theory and experiment is presented for both the delta wing and flapping flag model. Several steady angle of attack cases were investigated for the
Solvation in supercritical water
Cochran, H.D. ); Cummings, P.T.; Karaborni, S. . Dept. of Chemical Engineering)
1991-01-01
The aim of this work is to determine the solvation structure in supercritical water composed with that in ambient water and in simple supercritical solvents. Molecular dynamics studies have been undertaken of systems that model ionic sodium and chloride, atomic argon, and molecular methanol in supercritical aqueous solutions using the simple point charge model of Berendsen for water. Because of the strong interactions between water and ions, ionic solutes are strongly attractive in supercritical water, forming large clusters of water molecules around each ion. Methanol is found to be a weakly-attractive solute in supercritical water. The cluster of excess water molecules surrounding a dissolved ion or polar molecule in supercritical aqueous solutions is comparable to the solvent clusters surrounding attractive solutes in simple supercritical fluids. Likewise, the deficit of water molecules surrounding a dissolved argon atom in supercritical aqueous solutions is comparable to that surrounding repulsive solutes in simple supercritical fluids. The number of hydrogen bonds per water molecule in supercritical water was found to be about one third the number in ambient water. The number of hydrogen bonds per water molecule surrounding a central particle in supercritical water was only mildly affected by the identify of the central particle--atom, molecule, or ion. These results should be helpful in developing a qualitative understanding of important processes that occur in supercritical water. 29 refs., 6 figs.
Aeroelastic Analysis of Counter Rotation Fans
NASA Technical Reports Server (NTRS)
Keith, Theo G., Jr.; Murthy, Durbha V.
1997-01-01
Aeroelastic problems in turbomachinery and propfans can be static or dynamic in nature. The analysis of static aeroelastic problems is involved primarily with determination: (a) of the shape of the blades and the steady aerodynamic loads on the blades (which are inter-dependent), (b) of the resultant steady stresses and (c) of the static instability (divergence) margin, if applicable. In this project, we were concerned exclusively with dynamic aeroelastic behavior. The analysis of dynamic aeroelastic problems is involved with the determination: (a) of the unsteady aerodynamic loads on blades and the dynamic motion of the blades (which are again inter-dependent), (b) of the resultant dynamic stresses and their effect on fatigue life and (c) of the dynamic instability (flutter), if applicable. There are two primary dynamic aeroelastic phenomena of interest to designers of turbomachinery and propfans: flutter and forced response. Flutter generally refers to the occurrence of rapidly growing self-excited oscillations leading to catastrophic failure of the blade. When certain nonlinear phenomena are present, flutter response may lead to a potentially dangerous limit cycle oscillation rather than an immediate catastrophic failure. Forced response generally refers to the steady-state oscillations that occur as a consequence of excitations external to the rotor in question. These excitations typically result from the presence of upstream obstructions, inflow distortions, downstream obstructions, or mechanical sources such as tip-casing contact or shaft and gear meshing. Significant forced response leads to blade fatigue, and at design conditions, generally contributes to a degradation of blade life. At other operating conditions, forced response may lead to catastrophic failure due to severe blade fatigue in a short duration of time.
Michael A. Matthews; David A. Bruce,; Thomas A. Davis; Mark C. Thies; John W. Weidner; Ralph E. White
2002-04-01
Large quantities of mixed low level waste (MLLW) that fall under the Toxic Substances Control Act (TSCA) exist and will continue to be generated during D and D operations at DOE sites across the country. The standard process for destruction of MLLW is incineration, which has an uncertain future. The extraction and destruction of PCBs from MLLW was the subject of this research Supercritical Fluid Extraction (SFE) with carbon dioxide with 5% ethanol as cosolvent and Supercritical Waster Oxidation (SCWO) were the processes studied in depth. The solid matrix for experimental extraction studies was Toxi-dry, a commonly used absorbent made from plant material. PCB surrogates were 1.2,4-trichlorobenzene (TCB) and 2-chlorobiphenyl (2CBP). Extraction pressures of 2,000 and 4,000 psi and temperatures of 40 and 80 C were studied. Higher extraction efficiencies were observed with cosolvent and at high temperature, but pressure little effect. SCWO treatment of the treatment of the PCB surrogates resulted in their destruction below detection limits.
Applications of supercritical fluids.
Brunner, Gerd
2010-01-01
This review discusses supercritical fluids in industrial and near-to-industry applications. Supercritical fluids are flexible tools for processing materials. Supercritical fluids have been applied to mass-transfer processes, phase-transition processes, reactive systems, materials-related processes, and nanostructured materials. Some applications are already at industrial capacity, whereas others remain under development. In addition to extraction, application areas include impregnation and cleaning, multistage countercurrent separation, particle formation, coating, and reactive systems such as hydrogenation, biomass gasification, and supercritical water oxidation. Polymers are modified with supercritical fluids, and colloids and emulsions as well as nanostructured materials exhibit interesting phenomena when in contact with supercritical fluids that can be industrially exploited. For these applications to succeed, the properties of supercritical fluids in combination with the materials processed must be clearly determined and fundamental knowledge of the complex behavior must be made readily available. PMID:22432584
A Taguchi study of the aeroelastic tailoring design process
NASA Technical Reports Server (NTRS)
Bohlmann, Jonathan D.; Scott, Robert C.
1991-01-01
A Taguchi study was performed to determine the important players in the aeroelastic tailoring design process and to find the best composition of the optimization's objective function. The Wing Aeroelastic Synthesis Procedure (TSO) was used to ascertain the effects that factors such as composite laminate constraints, roll effectiveness constraints, and built-in wing twist and camber have on the optimum, aeroelastically tailored wing skin design. The results show the Taguchi method to be a viable engineering tool for computational inquiries, and provide some valuable lessons about the practice of aeroelastic tailoring.
Rotary-wing aeroelasticity with application to VTOL vehicles
NASA Technical Reports Server (NTRS)
Friedmann, Peretz P.
1993-01-01
A concise assessment is presented of the state of the art in the field of rotary-wing aeroelasticity (RWE). The basic ingredients of RWE are reviewed, including structural modeling, unsteady aerodynamic modeling, formulation of the equations of motion, and solution methods. Results illustrating these methods are presented for isolated blades and coupled rotor-fuselage problems. The application of active controls to suppress aeromechanical and aeroelastic instabilities and to reduce vibration in rotorcraft is discussed. Structural optimization with aeroelastic constraints, gust response analysis of helicopters, and aeroelastic problems in special VTOL vehicles are briefly examined.
An analytical study of effects of aeroelasticity on control effectiveness
NASA Technical Reports Server (NTRS)
Mehrotra, S. C.
1975-01-01
Structural influence coefficients were calculated for various wing planforms using the KU Aeroelastic and NASTRAN programs. The resulting matrices are compared with experimental results. Conclusions are given.
The supercritical profile of the supercritical wing
NASA Technical Reports Server (NTRS)
Wagner, O.
1981-01-01
The profile wing design for supercritical structures is discussed. Emphasis is placed on the flow of air surrounding the wing and variations in flow fields are examined. Modifications to the profile for flight below transonic level are presented that increase the uplift pressure and permit the achievement of critical Mach numbers on the order of 0.85. The uplift pressure along the upper side of the profile is compared for a classical and a Peaky profile. A comparison of classical and supercritical wing cross sections indicates a flatter upper side, a large nose radius, and a thicker profile to the supercritical wing.
Probabilistic Aeroelastic Analysis of Turbomachinery Components
NASA Technical Reports Server (NTRS)
Reddy, T. S. R.; Mital, S. K.; Stefko, G. L.
2004-01-01
A probabilistic approach is described for aeroelastic analysis of turbomachinery blade rows. Blade rows with subsonic flow and blade rows with supersonic flow with subsonic leading edge are considered. To demonstrate the probabilistic approach, the flutter frequency, damping and forced response of a blade row representing a compressor geometry is considered. The analysis accounts for uncertainties in structural and aerodynamic design variables. The results are presented in the form of probabilistic density function (PDF) and sensitivity factors. For subsonic flow cascade, comparisons are also made with different probabilistic distributions, probabilistic methods, and Monte-Carlo simulation. The approach shows that the probabilistic approach provides a more realistic and systematic way to assess the effect of uncertainties in design variables on the aeroelastic instabilities and response.
Aeroelastic instability stoppers for wind tunnel models
NASA Technical Reports Server (NTRS)
Doggett, R. V., Jr.; Ricketts, R. H. (Inventor)
1981-01-01
A mechanism for constraining models or sections thereof, was wind tunnel tested, deployed at the onset of aeroelastic instability, to forestall destructive vibrations in the model is described. The mechanism includes a pair of arms pivoted to the tunnel wall and straddling the model. Rollers on the ends of the arms contact the model, and are pulled together against the model by a spring stretched between the arms. An actuator mechanism swings the arms into place and back as desired.
NASA Technical Reports Server (NTRS)
Chwalowski, Pawel; Florance, Jennifer P.; Heeg, Jennifer; Wieseman, Carol D.; Perry, Boyd P.
2011-01-01
This paper presents preliminary computational aeroelastic analysis results generated in preparation for the first Aeroelastic Prediction Workshop (AePW). These results were produced using FUN3D software developed at NASA Langley and are compared against the experimental data generated during the HIgh REynolds Number Aero- Structural Dynamics (HIRENASD) Project. The HIRENASD wind-tunnel model was tested in the European Transonic Windtunnel in 2006 by Aachen University0s Department of Mechanics with funding from the German Research Foundation. The computational effort discussed here was performed (1) to obtain a preliminary assessment of the ability of the FUN3D code to accurately compute physical quantities experimentally measured on the HIRENASD model and (2) to translate the lessons learned from the FUN3D analysis of HIRENASD into a set of initial guidelines for the first AePW, which includes test cases for the HIRENASD model and its experimental data set. This paper compares the computational and experimental results obtained at Mach 0.8 for a Reynolds number of 7 million based on chord, corresponding to the HIRENASD test conditions No. 132 and No. 159. Aerodynamic loads and static aeroelastic displacements are compared at two levels of the grid resolution. Harmonic perturbation numerical results are compared with the experimental data using the magnitude and phase relationship between pressure coefficients and displacement. A dynamic aeroelastic numerical calculation is presented at one wind-tunnel condition in the form of the time history of the generalized displacements. Additional FUN3D validation results are also presented for the AGARD 445.6 wing data set. This wing was tested in the Transonic Dynamics Tunnel and is commonly used in the preliminary benchmarking of computational aeroelastic software.
Overview of the Aeroelastic Prediction Workshop
NASA Technical Reports Server (NTRS)
Heeg, Jennifer; Chwalowski, Pawel; Florance, Jennifer P.; Wieseman, Carol D.; Schuster, David M.; Perry, Raleigh B.
2013-01-01
The Aeroelastic Prediction Workshop brought together an international community of computational fluid dynamicists as a step in defining the state of the art in computational aeroelasticity. This workshop's technical focus was prediction of unsteady pressure distributions resulting from forced motion, benchmarking the results first using unforced system data. The most challenging aspects of the physics were identified as capturing oscillatory shock behavior, dynamic shock-induced separated flow and tunnel wall boundary layer influences. The majority of the participants used unsteady Reynolds-averaged Navier Stokes codes. These codes were exercised at transonic Mach numbers for three configurations and comparisons were made with existing experimental data. Substantial variations were observed among the computational solutions as well as differences relative to the experimental data. Contributing issues to these differences include wall effects and wall modeling, non-standardized convergence criteria, inclusion of static aeroelastic deflection, methodology for oscillatory solutions, post-processing methods. Contributing issues pertaining principally to the experimental data sets include the position of the model relative to the tunnel wall, splitter plate size, wind tunnel expansion slot configuration, spacing and location of pressure instrumentation, and data processing methods.
Development of Reduced-Order Models for Aeroelastic and Flutter Prediction Using the CFL3Dv6.0 Code
NASA Technical Reports Server (NTRS)
Silva, Walter A.; Bartels, Robert E.
2002-01-01
A reduced-order model (ROM) is developed for aeroelastic analysis using the CFL3D version 6.0 computational fluid dynamics (CFD) code, recently developed at the NASA Langley Research Center. This latest version of the flow solver includes a deforming mesh capability, a modal structural definition for nonlinear aeroelastic analyses, and a parallelization capability that provides a significant increase in computational efficiency. Flutter results for the AGARD 445.6 Wing computed using CFL3D v6.0 are presented, including discussion of associated computational costs. Modal impulse responses of the unsteady aerodynamic system are then computed using the CFL3Dv6 code and transformed into state-space form. Important numerical issues associated with the computation of the impulse responses are presented. The unsteady aerodynamic state-space ROM is then combined with a state-space model of the structure to create an aeroelastic simulation using the MATLAB/SIMULINK environment. The MATLAB/SIMULINK ROM is used to rapidly compute aeroelastic transients including flutter. The ROM shows excellent agreement with the aeroelastic analyses computed using the CFL3Dv6.0 code directly.
Aeroelastic, CFD, and Dynamics Computation and Optimization for Buffet and Flutter Applications
NASA Technical Reports Server (NTRS)
Kandil, Osama A.
1997-01-01
Accomplishments achieved during the reporting period are listed. These accomplishments included 6 papers published in various journals or presented at various conferences; 1 abstract submitted to a technical conference; production of 2 animated movies; and a proposal for use of the National Aerodynamic Simulation Facility at NASA Ames Research Center for further research. The published and presented papers and animated movies addressed the following topics: aeroelasticity, computational fluid dynamics, structural dynamics, wing and tail buffet, vortical flow interactions, and delta wings.
Aeroelastic modeling for the FIT (Functional Integration Technology) team F/A-18 simulation
NASA Technical Reports Server (NTRS)
Zeiler, Thomas A.; Wieseman, Carol D.
1989-01-01
As part of Langley Research Center's commitment to developing multidisciplinary integration methods to improve aerospace systems, the Functional Integration Technology (FIT) team was established to perform dynamics integration research using an existing aircraft configuration, the F/A-18. An essential part of this effort has been the development of a comprehensive simulation modeling capability that includes structural, control, and propulsion dynamics as well as steady and unsteady aerodynamics. The structural and unsteady aerodynamics contributions come from an aeroelastic mode. Some details of the aeroelastic modeling done for the Functional Integration Technology (FIT) team research are presented. Particular attention is given to work done in the area of correction factors to unsteady aerodynamics data.
Development and Testing of Control Laws for the Active Aeroelastic Wing Program
NASA Technical Reports Server (NTRS)
Dibley, Ryan P.; Allen, Michael J.; Clarke, Robert; Gera, Joseph; Hodgkinson, John
2005-01-01
The Active Aeroelastic Wing research program was a joint program between the U.S. Air Force Research Laboratory and NASA established to investigate the characteristics of an aeroelastic wing and the technique of using wing twist for roll control. The flight test program employed the use of an F/A-18 aircraft modified by reducing the wing torsional stiffness and adding a custom research flight control system. The research flight control system was optimized to maximize roll rate using only wing surfaces to twist the wing while simultaneously maintaining design load limits, stability margins, and handling qualities. NASA Dryden Flight Research Center developed control laws using the software design tool called CONDUIT, which employs a multi-objective function optimization to tune selected control system design parameters. Modifications were made to the Active Aeroelastic Wing implementation in this new software design tool to incorporate the NASA Dryden Flight Research Center nonlinear F/A-18 simulation for time history analysis. This paper describes the design process, including how the control law requirements were incorporated into constraints for the optimization of this specific software design tool. Predicted performance is also compared to results from flight.
Supercritical fluid extraction
Wai, Chien M.; Laintz, Kenneth
1994-01-01
A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a supercritical fluid solvent containing a chelating agent. The chelating agent forms chelates that are soluble in the supercritical fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is a fluorinated or lipophilic crown ether or fluorinated dithiocarbamate. The method provides an environmentally benign process for removing contaminants from industrial waste without using acids or biologically harmful solvents. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process.
Electrodeposition from supercritical fluids.
Bartlett, P N; Cook, D A; George, M W; Hector, A L; Ke, J; Levason, W; Reid, G; Smith, D C; Zhang, W
2014-05-28
Recent studies have shown that it is possible to electrodeposit a range of materials, such as Cu, Ag and Ge, from various supercritical fluids, including hydrofluorocarbons and mixtures of CO2 with suitable co-solvents. In this perspective we discuss the relatively new field of electrodeposition from supercritical fluids. The perspective focuses on some of the underlying physical chemistry and covers both practical and scientific aspects of electrodeposition from supercritical fluids. We also discuss possible applications for supercritical fluid electrodeposition and suggest some key developments that are required to take the field to the next stage. PMID:24469309
In-flight gust monitoring and aeroelasticity studies
NASA Astrophysics Data System (ADS)
Alvarez-Salazar, Oscar Salvador
An in-flight gust monitoring and aeroelasticity study was conducted on board NASA Dryden's F15-B/FTF-II test platform (``FTF''). A total of four flights were completed. This study is the first in a series of flight experiments being conducted jointly by NASA Dryden Flight Research Center and UCLA's Flight Systems Research Center. The first objective of the in-flight gust- monitoring portion of the study was to demonstrate for the first time anywhere the measurability of intensity variations of a collimated Helium-Neon laser beam due to atmospheric air turbulence while having both the source and target apertures mounted outside an airborne aircraft. Intensity beam variations are the result of forward scattering of the beam by variations in the air's index of refraction, which are carried across the laser beam's path by a cross flow or air (i.e., atmospheric turbulence shifting vertically in the atmosphere). A laser beam was propagated parallel to the direction of flight for 1/2 meter outside the flight test fixture and its intensity variations due to atmospheric turbulence were successfully measured by a photo- detector. When the aircraft did not fly through a field of atmospheric turbulence, the laser beam proved to be insensitive to the stream velocity's cross component to the path of the beam. The aeroelasticity portion of the study consisted of measurements of the dynamic response of a straight, 18.25 inch span, 4.00 inch chord, NACA 0006 airfoil thickness profile, one sided wing to in-flight aircraft maneuvers, landing gear buffeting, unsteady aerodynamics, atmospheric turbulence, and aircraft vibration in general. These measurements were accomplished through the use of accelerometers, strain gauges and in-flight video cameras. Data collected will be used to compute in-flight root loci for the wing as functions of the aircraft's stream velocity. The data may also be used to calibrate data collected by the gust-monitoring system flown, and help verify the
Synthesis of fluoropolymers in supercritical carbon dioxide
Guan, Z.; Combes, J.R.; Elsbernd, C.S.; DeSimone, J.M.
1993-12-31
The authors` research is focus on the synthesis of fluopolymers is supercritical carbon dioxide. The authors reported earlier the successful homogenous free radical polymerization of a series of highly fluorinated acrylic type monomers in supercritical carbon dioxide. Now it is found that a highly fluorinated styrenic polymer also exhibits very high solubility in carbon dioxide. The fluorinated styrenic polymer was synthesized in supercritical carbon dioxide using homogenous free radical polymerization and was characterized by {sup 1}HNMR, FTIR etc. Some semicrystalline fluoropolymers were also synthesized in supercritical carbon but the polymerization were heterogenous under the condition used. Various conventional nonfluorinated monomers were copolymerized with the fluorinated monomers and the copolymerizations were homogenous at very high nonfluorinated monomer feed ratio. The incorporation of nonfluorinated units onto the fluoropolymer chains increases their solubility greatly in organic solvents. The polymers synthesized in carbon dioxide will be furtherly characterized and the authors will continue the efforts on synthesizing polymers using carbon dioxide as polymerization medium.
14 CFR 25.629 - Aeroelastic stability requirements.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Aeroelastic stability requirements. 25.629 Section 25.629 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction General Â§ 25.629 Aeroelastic stability requirements. (a)...
Supercritical fluid technology
Penninger, J.M.L.; McHugh, M.A.; Radosz, M.; Krukonis, V.J.
1985-01-01
This book presents the state-of-the-art in the science and technology of supercritical fluid (scf) processing. Current research as described in the book, focuses on developments in equations of state for binary and multicomponent mixtures (including polymer solutions), solubility measurements at near-critical conditions, measurements of critical properties of binary mixtures and their correlation with equations of state. Progress in thermodynamics, coupled with advances in the design and construction of high pressure equipment, has opened up a wide avenue of commercial application (e.g. decaffeination of coffee beans, extractions of flavours and spices, purification of pharmaceutical products, separations of polymeric materials, deodorization and deacidification of vegetable oils, fractionation of fatty acids, coal liquefaction, wood delignitication, etc.)
NASA Technical Reports Server (NTRS)
Straub, F. K.; Johnston, R. A.
1987-01-01
A 27% dynamically scaled model of the YAH-64 Advanced Attack Helicopter main rotor and hub has been designed and fabricated. The model will be tested in the NASA Langley Research Center V/STOL wind tunnel using the General Rotor Model System (GRMS). This report documents the studies performed to ensure dynamic similarity of the model with its full scale parent. It also contains a preliminary aeroelastic and aeromechanical substantiation for the rotor installation in the wind tunnel. From the limited studies performed no aeroelastic stability or load problems are projected. To alleviate a projected ground resonance problem, a modification of the roll characteristics of the GRMS is recommended.
NASA Technical Reports Server (NTRS)
Whitlow, W., Jr.; Bennett, R. M.
1982-01-01
Since the aerodynamic theory is nonlinear, the method requires the coupling of two iterative processes - an aerodynamic analysis and a structural analysis. A full potential analysis code, FLO22, is combined with a linear structural analysis to yield aerodynamic load distributions on and deflections of elastic wings. This method was used to analyze an aeroelastically-scaled wind tunnel model of a proposed executive-jet transport wing and an aeroelastic research wing. The results are compared with the corresponding rigid-wing analyses, and some effects of elasticity on the aerodynamic loading are noted.
Unsteady Aerodynamic Validation Experiences From the Aeroelastic Prediction Workshop
NASA Technical Reports Server (NTRS)
Heeg, Jennifer; Chawlowski, Pawel
2014-01-01
The AIAA Aeroelastic Prediction Workshop (AePW) was held in April 2012, bringing together communities of aeroelasticians, computational fluid dynamicists and experimentalists. The extended objective was to assess the state of the art in computational aeroelastic methods as practical tools for the prediction of static and dynamic aeroelastic phenomena. As a step in this process, workshop participants analyzed unsteady aerodynamic and weakly-coupled aeroelastic cases. Forced oscillation and unforced system experiments and computations have been compared for three configurations. This paper emphasizes interpretation of the experimental data, computational results and their comparisons from the perspective of validation of unsteady system predictions. The issues examined in detail are variability introduced by input choices for the computations, post-processing, and static aeroelastic modeling. The final issue addressed is interpreting unsteady information that is present in experimental data that is assumed to be steady, and the resulting consequences on the comparison data sets.
Supercritical/Solid Catalyst (SSC)
2010-01-01
INL's patented, continuous-flow Supercritical/Solid Catalyst (SSC) produces the highest ASTM-quality B-100 biodiesel from waste fats, oils, and greases at the site of waste generation. SSC delivers low-cost transportation fuel, avoids significant landfill costs for municipalities, and reduces potent methane and other emissions produced in landfills from these wastes. You can learn more about INL's energy research programs at http://www.facebook.com/idahonationallaboratory.
Supercritical/Solid Catalyst (SSC)
None
2013-05-28
INL's patented, continuous-flow Supercritical/Solid Catalyst (SSC) produces the highest ASTM-quality B-100 biodiesel from waste fats, oils, and greases at the site of waste generation. SSC delivers low-cost transportation fuel, avoids significant landfill costs for municipalities, and reduces potent methane and other emissions produced in landfills from these wastes. You can learn more about INL's energy research programs at http://www.facebook.com/idahonationallaboratory.
Reduced-Order Models for the Aeroelastic Analysis of Ares Launch Vehicles
NASA Technical Reports Server (NTRS)
Silva, Walter A.; Vatsa, Veer N.; Biedron, Robert T.
2010-01-01
This document presents the development and application of unsteady aerodynamic, structural dynamic, and aeroelastic reduced-order models (ROMs) for the ascent aeroelastic analysis of the Ares I-X flight test and Ares I crew launch vehicles using the unstructured-grid, aeroelastic FUN3D computational fluid dynamics (CFD) code. The purpose of this work is to perform computationally-efficient aeroelastic response calculations that would be prohibitively expensive via computation of multiple full-order aeroelastic FUN3D solutions. These efficient aeroelastic ROM solutions provide valuable insight regarding the aeroelastic sensitivity of the vehicles to various parameters over a range of dynamic pressures.
NASA Technical Reports Server (NTRS)
Acree, C. W., Jr.
1993-01-01
In pursuit of higher performance, the XV-15 Tiltrotor Research Aircraft was modified by the installation of new composite rotor blades. Initial flights with the Advanced Technology Blades (ATB's) revealed excessive rotor control loads that were traced to a dynamic mismatch between the blades and the aircraft control system. The analytical models of both the blades and the mechanical controls were extensively revised for use by the CAMRAD computer program to better predict aeroelastic stability and loads. This report documents the most important revisions and discusses their effects on aeroelastic stability predictions for airplane-mode flight. The ATB's may be flown in several different configurations for research, including changes in blade sweep and tip twist. The effects on stability of 1 deg and 0 deg sweep are illustrated, as are those of twisted and zero-twist tips. This report also discusses the effects of stiffening the rotor control system, which was done by locking out lateral cyclic swashplate motion with shims.
NASA Technical Reports Server (NTRS)
Chattopadhyay, Aditi
1996-01-01
The objective of this research is to develop analysis procedures to investigate the coupling of composite and smart materials to improve aeroelastic and vibratory response of aerospace structures. The structural modeling must account for arbitrarily thick geometries, embedded and surface bonded sensors and actuators and imperfections, such as delamination. Changes in the dynamic response due to the presence of smart materials and delaminations is investigated. Experiments are to be performed to validate the proposed mathematical model.
Aeroelastic-Acoustics Simulation of Flight Systems
NASA Technical Reports Server (NTRS)
Gupta, kajal K.; Choi, S.; Ibrahim, A.
2009-01-01
This paper describes the details of a numerical finite element (FE) based analysis procedure and a resulting code for the simulation of the acoustics phenomenon arising from aeroelastic interactions. Both CFD and structural simulations are based on FE discretization employing unstructured grids. The sound pressure level (SPL) on structural surfaces is calculated from the root mean square (RMS) of the unsteady pressure and the acoustic wave frequencies are computed from a fast Fourier transform (FFT) of the unsteady pressure distribution as a function of time. The resulting tool proves to be unique as it is designed to analyze complex practical problems, involving large scale computations, in a routine fashion.
Calculations in bridge aeroelasticity via CFD
Brar, P.S.; Raul, R.; Scanlan, R.H.
1996-12-31
The central focus of the present study is the numerical calculation of flutter derivatives. These aeroelastic coefficients play an important role in determining the stability or instability of long, flexible structures under ambient wind loading. A class of Civil Engineering structures most susceptible to such an instability are long-span bridges of the cable-stayed or suspended-span variety. The disastrous collapse of the Tacoma Narrows suspension bridge in the recent past, due to a flutter instability, has been a big impetus in motivating studies in flutter of bridge decks.
Rotorcraft Technology for HALE Aeroelastic Analysis
NASA Technical Reports Server (NTRS)
Young, Larry; Johnson, Wayne
2008-01-01
Much of technology needed for analysis of HALE nonlinear aeroelastic problems is available from rotorcraft methodologies. Consequence of similarities in operating environment and aerodynamic surface configuration. Technology available - theory developed, validated by comparison with test data, incorporated into rotorcraft codes. High subsonic to transonic rotor speed, low to moderate Reynolds number. Structural and aerodynamic models for high aspect-ratio wings and propeller blades. Dynamic and aerodynamic interaction of wing/airframe and propellers. Large deflections, arbitrary planform. Steady state flight, maneuvers and response to turbulence. Linearized state space models. This technology has not been extensively applied to HALE configurations. Correlation with measured HALE performance and behavior required before can rely on tools.
Aeroelastic Response of the Adaptive Compliant Trailing Edge Transtition Section
NASA Technical Reports Server (NTRS)
Herrera, Claudia Y.; Spivey, Natalie D.; Lung, Shun-fat
2016-01-01
The Adaptive Compliant Trailing Edge demonstrator was a joint task under the Environmentally Responsible Aviation Project in partnership with the Air Force Research Laboratory and FlexSys, Inc. (Ann Arbor, Michigan), chartered by the National Aeronautics and Space Administration to develop advanced technologies that enable environmentally friendly aircraft, such as continuous mold-line technologies. The Adaptive Compliant Trailing Edge demonstrator encompassed replacing the Fowler flaps on the SubsoniC Aircraft Testbed, a Gulfstream III (Gulfstream Aerospace, Savannah, Georgia) aircraft, with control surfaces developed by FlexSys, Inc., a pair of uniquely-designed, unconventional flaps to be used as lifting surfaces during flight-testing to substantiate their structural effectiveness. The unconventional flaps consisted of a main flap section and two transition sections, inboard and outboard, which demonstrated the continuous mold-line technology. Unique characteristics of the transition sections provided a challenge to the airworthiness assessment for this part of the structure. A series of build-up tests and analyses were conducted to ensure the data required to support the airworthiness assessment were acquired and applied accurately. The transition sections were analyzed both as individual components and as part of the flight-test article assembly. Instrumentation was installed in the transition sections based on the analysis to best capture the in-flight aeroelastic response. Flight-testing was conducted and flight data were acquired to validate the analyses. This paper documents the details of the aeroelastic assessment and in-flight response of the transition sections of the unconventional Adaptive Compliant Trailing Edge flaps.
Development of an aeroelastic methodology for surface morphing rotors
NASA Astrophysics Data System (ADS)
Cook, James R.
Helicopter performance capabilities are limited by maximum lift characteristics and vibratory loading. In high speed forward flight, dynamic stall and transonic flow greatly increase the amplitude of vibratory loads. Experiments and computational simulations alike have indicated that a variety of active rotor control devices are capable of reducing vibratory loads. For example, periodic blade twist and flap excitation have been optimized to reduce vibratory loads in various rotors. Airfoil geometry can also be modified in order to increase lift coefficient, delay stall, or weaken transonic effects. To explore the potential benefits of active controls, computational methods are being developed for aeroelastic rotor evaluation, including coupling between computational fluid dynamics (CFD) and computational structural dynamics (CSD) solvers. In many contemporary CFD/CSD coupling methods it is assumed that the airfoil is rigid to reduce the interface by single dimension. Some methods retain the conventional one-dimensional beam model while prescribing an airfoil shape to simulate active chord deformation. However, to simulate the actual response of a compliant airfoil it is necessary to include deformations that originate not only from control devices (such as piezoelectric actuators), but also inertial forces, elastic stresses, and aerodynamic pressures. An accurate representation of the physics requires an interaction with a more complete representation of loads and geometry. A CFD/CSD coupling methodology capable of communicating three-dimensional structural deformations and a distribution of aerodynamic forces over the wetted blade surface has not yet been developed. In this research an interface is created within the Fully Unstructured Navier-Stokes (FUN3D) solver that communicates aerodynamic forces on the blade surface to University of Michigan's Nonlinear Active Beam Solver (UM/NLABS -- referred to as NLABS in this thesis). Interface routines are developed for
Mach number effects on transonic aeroelastic forces and flutter characteristics
NASA Technical Reports Server (NTRS)
Mohr, Ross W.; Batina, John T.; Yang, Henry T. Y.
1988-01-01
Transonic aeroelastic stability analysis and flutter calculations are presented for a generic transport-type wing based on the use of the CAP-TSD (Computational Aeroelasticity Program - Transonic Small Disturbance) finite-difference code. The CAP-TSD code was recently developed for transonic unsteady aerodynamic and aeroelastic analysis of complete aircraft configurations. A binary aeroelastic system consisting of simple bending and torsion modes was used to study aeroelastic behavior at transonic speeds. Generalized aerodynamic forces are presented for a wide range of Mach number and reduced frequency. Aeroelastic characteristics are presented for variations in freestream Mach number, mass ratio, and bending-torsion frequency ratio. Flutter boundaries are presented which have two transonic dips in flutter speed. The first dip is the usual transonic dip involving a bending-dominated flutter mode. The second dip is characterized by a single degree-of-freedom torsion oscillation. These aeroelastic results are physically interpreted and shown to be related to the steady state shock location and changes in generalized aerodynamic forces due to freestream Mach number.
NASA Technical Reports Server (NTRS)
Whitlow, Jr., Woodrow (Editor); Todd, Emily N. (Editor)
1999-01-01
The proceedings of a workshop sponsored by the Confederation of European Aerospace Societies (CEAS), the American Institute of Aeronautics and Astronautics (AIAA), the National Aeronautics and Space Administration (NASA), Washington, D.C., and the Institute for Computer Applications in Science and Engineering (ICASE), Hampton, Virginia, and held in Williamsburg, Virginia June 22-25, 1999 represent a collection of the latest advances in aeroelasticity and structural dynamics from the world community. Research in the areas of unsteady aerodynamics and aeroelasticity, structural modeling and optimization, active control and adaptive structures, landing dynamics, certification and qualification, and validation testing are highlighted in the collection of papers. The wide range of results will lead to advances in the prediction and control of the structural response of aircraft and spacecraft.
Flight Test of the F/A-18 Active Aeroelastic Wing Airplane
NASA Technical Reports Server (NTRS)
Clarke, Robert; Allen, Michael J.; Dibley, Ryan P.; Gera, Joseph; Hodgkinson, John
2005-01-01
Successful flight-testing of the Active Aeroelastic Wing airplane was completed in March 2005. This program, which started in 1996, was a joint activity sponsored by NASA, Air Force Research Laboratory, and industry contractors. The test program contained two flight test phases conducted in early 2003 and early 2005. During the first phase of flight test, aerodynamic models and load models of the wing control surfaces and wing structure were developed. Design teams built new research control laws for the Active Aeroelastic Wing airplane using these flight-validated models; and throughout the final phase of flight test, these new control laws were demonstrated. The control laws were designed to optimize strategies for moving the wing control surfaces to maximize roll rates in the transonic and supersonic flight regimes. Control surface hinge moments and wing loads were constrained to remain within hydraulic and load limits. This paper describes briefly the flight control system architecture as well as the design approach used by Active Aeroelastic Wing project engineers to develop flight control system gains. Additionally, this paper presents flight test techniques and comparison between flight test results and predictions.
Aeroelastic simulation of higher harmonic control
NASA Technical Reports Server (NTRS)
Robinson, Lawson H.; Friedmann, Peretz P.
1994-01-01
This report describes the development of an aeroelastic analysis of a helicopter rotor and its application to the simulation of helicopter vibration reduction through higher harmonic control (HHC). An improved finite-state, time-domain model of unsteady aerodynamics is developed to capture high frequency aerodynamic effects. An improved trim procedure is implemented which accounts for flap, lead-lag, and torsional deformations of the blade. The effect of unsteady aerodynamics is studied and it is found that its impact on blade aeroelastic stability and low frequency response is small, but it has a significant influence on rotor hub vibrations. Several different HHC algorithms are implemented on a hingeless rotor and their effectiveness in reducing hub vibratory shears is compared. All the controllers are found to be quite effective, but very differing HHC inputs are required depending on the aerodynamic model used. Effects of HHC on rotor stability and power requirements are found to be quite small. Simulations of roughly equivalent articulated and hingeless rotors are carried out, and it is found that hingeless rotors can require considerably larger HHC inputs to reduce vibratory shears. This implies that the practical implementation of HHC on hingeless rotors might be considerably more difficult than on articulated rotors.
Aeroelastic Modeling of a Nozzle Startup Transient
NASA Technical Reports Server (NTRS)
Wang, Ten-See; Zhao, Xiang; Zhang, Sijun; Chen, Yen-Sen
2014-01-01
Lateral nozzle forces are known to cause severe structural damage to any new rocket engine in development during test. While three-dimensional, transient, turbulent, chemically reacting computational fluid dynamics methodology has been demonstrated to capture major side load physics with rigid nozzles, hot-fire tests often show nozzle structure deformation during major side load events, leading to structural damages if structural strengthening measures were not taken. The modeling picture is incomplete without the capability to address the two-way responses between the structure and fluid. The objective of this study is to develop a tightly coupled aeroelastic modeling algorithm by implementing the necessary structural dynamics component into an anchored computational fluid dynamics methodology. The computational fluid dynamics component is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, while the computational structural dynamics component is developed under the framework of modal analysis. Transient aeroelastic nozzle startup analyses at sea level were performed, and the computed transient nozzle fluid-structure interaction physics presented,
AEROELASTIC SIMULATION TOOL FOR INFLATABLE BALLUTE AEROCAPTURE
NASA Technical Reports Server (NTRS)
Liever, P. A.; Sheta, E. F.; Habchi, S. D.
2006-01-01
A multidisciplinary analysis tool is under development for predicting the impact of aeroelastic effects on the functionality of inflatable ballute aeroassist vehicles in both the continuum and rarefied flow regimes. High-fidelity modules for continuum and rarefied aerodynamics, structural dynamics, heat transfer, and computational grid deformation are coupled in an integrated multi-physics, multi-disciplinary computing environment. This flexible and extensible approach allows the integration of state-of-the-art, stand-alone NASA and industry leading continuum and rarefied flow solvers and structural analysis codes into a computing environment in which the modules can run concurrently with synchronized data transfer. Coupled fluid-structure continuum flow demonstrations were conducted on a clamped ballute configuration. The feasibility of implementing a DSMC flow solver in the simulation framework was demonstrated, and loosely coupled rarefied flow aeroelastic demonstrations were performed. A NASA and industry technology survey identified CFD, DSMC and structural analysis codes capable of modeling non-linear shape and material response of thin-film inflated aeroshells. The simulation technology will find direct and immediate applications with NASA and industry in ongoing aerocapture technology development programs.
Synchronized charge extraction for aeroelastic energy harvesting
NASA Astrophysics Data System (ADS)
Zhao, Liya; Tang, Lihua; Wu, Hao; Yang, Yaowen
2014-03-01
Aeroelastic instabilities have been frequently exploited for energy harvesting purpose to power standalone electronic systems, such as wireless sensors. Meanwhile, various energy harvesting interface circuits, such as synchronized charge extraction (SCE) and synchronized switching harvesting on inductor (SSHI), have been widely pursued in the literature for efficiency enhancement of energy harvesting from existing base vibrations. These interfaces, however, have not been applied for aeroelastic energy harvesting. This paper investigates the feasibility of the SCE interface in galloping-based piezoelectric energy harvesting, with a focus on its benefit for performance improvement and influence on the galloping dynamics in different electromechanical coupling regimes. A galloping-based piezoelectric energy harvester (GPEH) is prototyped with an aluminum cantilever bonded with a piezoelectric sheet. Wind tunnel test is conducted with a simple electrical interface composed of a resistive load. Circuit simulation is performed with equivalent circuit representation of the GPEH system and confirmed by experimental results. Consequently, a self-powered SCE interface is implemented with the capability of self peak-detecting and switching. Circuit simulation for various electromechanical coupling cases shows that the harvested power with SCE interface for GPEH is independent of the electrical load, similar to that for a vibration-based piezoelectric energy harvester (VPEH). The SCE interface outperforms the standard interface if the electromechanical coupling is weak, and requires much less piezoelectric material to achieve the maximum power output. Moreover, influence of electromechanical coupling on the dynamics of GPEH with SCE is found sensitive to the wind speed.
Aeroelastic Model Structure Computation for Envelope Expansion
NASA Technical Reports Server (NTRS)
Kukreja, Sunil L.
2007-01-01
Structure detection is a procedure for selecting a subset of candidate terms, from a full model description, that best describes the observed output. This is a necessary procedure to compute an efficient system description which may afford greater insight into the functionality of the system or a simpler controller design. Structure computation as a tool for black-box modelling may be of critical importance in the development of robust, parsimonious models for the flight-test community. Moreover, this approach may lead to efficient strategies for rapid envelope expansion which may save significant development time and costs. In this study, a least absolute shrinkage and selection operator (LASSO) technique is investigated for computing efficient model descriptions of nonlinear aeroelastic systems. The LASSO minimises the residual sum of squares by the addition of an l(sub 1) penalty term on the parameter vector of the traditional 2 minimisation problem. Its use for structure detection is a natural extension of this constrained minimisation approach to pseudolinear regression problems which produces some model parameters that are exactly zero and, therefore, yields a parsimonious system description. Applicability of this technique for model structure computation for the F/A-18 Active Aeroelastic Wing using flight test data is shown for several flight conditions (Mach numbers) by identifying a parsimonious system description with a high percent fit for cross-validated data.
Aeroelastic Model Structure Computation for Envelope Expansion
NASA Technical Reports Server (NTRS)
Kukreja, Sunil L.
2007-01-01
Structure detection is a procedure for selecting a subset of candidate terms, from a full model description, that best describes the observed output. This is a necessary procedure to compute an efficient system description which may afford greater insight into the functionality of the system or a simpler controller design. Structure computation as a tool for black-box modeling may be of critical importance in the development of robust, parsimonious models for the flight-test community. Moreover, this approach may lead to efficient strategies for rapid envelope expansion that may save significant development time and costs. In this study, a least absolute shrinkage and selection operator (LASSO) technique is investigated for computing efficient model descriptions of non-linear aeroelastic systems. The LASSO minimises the residual sum of squares with the addition of an l(Sub 1) penalty term on the parameter vector of the traditional l(sub 2) minimisation problem. Its use for structure detection is a natural extension of this constrained minimisation approach to pseudo-linear regression problems which produces some model parameters that are exactly zero and, therefore, yields a parsimonious system description. Applicability of this technique for model structure computation for the F/A-18 (McDonnell Douglas, now The Boeing Company, Chicago, Illinois) Active Aeroelastic Wing project using flight test data is shown for several flight conditions (Mach numbers) by identifying a parsimonious system description with a high percent fit for cross-validated data.
Computational Aeroelastic Analysis of the Ares Launch Vehicle During Ascent
NASA Technical Reports Server (NTRS)
Bartels, Robert E.; Chwalowski, Pawel; Massey, Steven J.; Vatsa, Veer N.; Heeg, Jennifer; Wieseman, Carol D.; Mineck, Raymond E.
2010-01-01
This paper presents the static and dynamic computational aeroelastic (CAE) analyses of the Ares crew launch vehicle (CLV) during atmospheric ascent. The influence of launch vehicle flexibility on the static aerodynamic loading and integrated aerodynamic force and moment coefficients is discussed. The ultimate purpose of this analysis is to assess the aeroelastic stability of the launch vehicle along the ascent trajectory. A comparison of analysis results for several versions of the Ares CLV will be made. Flexible static and dynamic analyses based on rigid computational fluid dynamic (CFD) data are compared with a fully coupled aeroelastic time marching CFD analysis of the launch vehicle.
Computational Aeroelastic Analyses of a Low-Boom Supersonic Configuration
NASA Technical Reports Server (NTRS)
Silva, Walter A.; Sanetrik, Mark D.; Chwalowski, Pawel; Connolly, Joseph
2015-01-01
An overview of NASA's Commercial Supersonic Technology (CST) Aeroservoelasticity (ASE) element is provided with a focus on recent computational aeroelastic analyses of a low-boom supersonic configuration developed by Lockheed-Martin and referred to as the N+2 configuration. The overview includes details of the computational models developed to date including a linear finite element model (FEM), linear unsteady aerodynamic models, unstructured CFD grids, and CFD-based aeroelastic analyses. In addition, a summary of the work involving the development of aeroelastic reduced-order models (ROMs) and the development of an aero-propulso-servo-elastic (APSE) model is provided.
Electrochemistry in supercritical fluids.
Branch, Jack A; Bartlett, Philip N
2015-12-28
A wide range of supercritical fluids (SCFs) have been studied as solvents for electrochemistry with carbon dioxide and hydrofluorocarbons (HFCs) being the most extensively studied. Recent advances have shown that it is possible to get well-resolved voltammetry in SCFs by suitable choice of the conditions and the electrolyte. In this review, we discuss the voltammetry obtained in these systems, studies of the double-layer capacitance, work on the electrodeposition of metals into high aspect ratio nanopores and the use of metallocenes as redox probes and standards in both supercritical carbon dioxide-acetonitrile and supercritical HFCs. PMID:26574527
Electrochemistry in supercritical fluids
Branch, Jack A.; Bartlett, Philip N.
2015-01-01
A wide range of supercritical fluids (SCFs) have been studied as solvents for electrochemistry with carbon dioxide and hydrofluorocarbons (HFCs) being the most extensively studied. Recent advances have shown that it is possible to get well-resolved voltammetry in SCFs by suitable choice of the conditions and the electrolyte. In this review, we discuss the voltammetry obtained in these systems, studies of the double-layer capacitance, work on the electrodeposition of metals into high aspect ratio nanopores and the use of metallocenes as redox probes and standards in both supercritical carbon dioxideâ€“acetonitrile and supercritical HFCs. PMID:26574527
Supercritical Water Mixture (SCWM) Experiment
NASA Technical Reports Server (NTRS)
Hicks, Michael C.; Hegde, Uday G.
2012-01-01
The subject presentation, entitled, Supercritical Water Mixture (SCWM) Experiment, was presented at the International Space Station (ISS) Increment 33/34 Science Symposium. This presentation provides an overview of an international collaboration between NASA and CNES to study the behavior of a dilute aqueous solution of Na2SO4 (5% w) at near-critical conditions. The Supercritical Water Mixture (SCWM) investigation, serves as important precursor work for subsequent Supercritical Water Oxidation (SCWO) experiments. The SCWM investigation will be performed in DECLICs High Temperature Insert (HTI) for the purpose of studying critical fluid phenomena at high temperatures and pressures. The HTI includes a completely sealed and integrated test cell (i.e., Sample Cell Unit SCU) that will contain approximately 0.3 ml of the aqueous test solution. During the sequence of tests, scheduled to be performed in FY13, temperatures and pressures will be elevated to critical conditions (i.e., Tc = 374C and Pc = 22 MPa) in order to observe salt precipitation, precipitate agglomeration and precipitate transport in the presence of a temperature gradient without the influences of gravitational forces. This presentation provides an overview of the motivation for this work, a description of the DECLIC HTI hardware, the proposed test sequences, and a brief discussion of the scientific research objectives.
NASA Technical Reports Server (NTRS)
Ferris, J. C.
1973-01-01
The Langley 8-foot transonic pressure tunnel to determine the wing chordwise pressure distribution for a 0.09-scale model of a research airplane incorporating a 17-percent-thick supercritical wing. Airfoil profile drag was determined from wake pressure measurements at the 42-percent-semispan wing station. The investigation was conducted at Mach numbers from 0.30 to 0.80 over an angle-of-attack range sufficient to include buffet onset. The Reynolds number based on the mean geometric chord varied from 2 x 10 to the 6th power at Mach number 0.30 to 3.33 x 10 to the 6th power at Mach number 0.65 and was maintained at a constant value of 3.86 x 10 to the 6th power at Mach numbers from 0.70 to 0.80. Pressure coefficients for four wing semispan stations and wing-section normal-force and pitching-moment coefficients for two semispan stations are presented in tabular form over the Mach number range from 0.30 to 0.80. Plotted chordwise pressure distributions and wake profiles are given for a selected range of section normal-force coefficients over the same Mach number range.
NASA Technical Reports Server (NTRS)
Ippolito, Corey; Nguyen, Nhan; Lohn, Jason; Dolan, John
2014-01-01
The emergence of advanced lightweight materials is resulting in a new generation of lighter, flexible, more-efficient airframes that are enabling concepts for active aeroelastic wing-shape control to achieve greater flight efficiency and increased safety margins. These elastically shaped aircraft concepts require non-traditional methods for large-scale multi-objective flight control that simultaneously seek to gain aerodynamic efficiency in terms of drag reduction while performing traditional command-tracking tasks as part of a complete guidance and navigation solution. This paper presents results from a preliminary study of a notional multi-objective control law for an aeroelastic flexible-wing aircraft controlled through distributed continuous leading and trailing edge control surface actuators. This preliminary study develops and analyzes a multi-objective control law derived from optimal linear quadratic methods on a longitudinal vehicle dynamics model with coupled aeroelastic dynamics. The controller tracks commanded attack-angle while minimizing drag and controlling wing twist and bend. This paper presents an overview of the elastic aircraft concept, outlines the coupled vehicle model, presents the preliminary control law formulation and implementation, presents results from simulation, provides analysis, and concludes by identifying possible future areas for research
NASA Astrophysics Data System (ADS)
Otsuka, Keisuke; Makihara, Kanjuro
2016-05-01
Morphing wings have been developed by several organizations for a variety of applications including the changing of flight ability while in the air and reducing the amount of space required to store an aircraft. One such example of morphing wings is the deployable wing that is expected to be used for Mars exploration. When designing wings, aeroelastic simulation is important to prevent the occurrence of destructive phenomena while the wing is in use. Flutter and divergence are typical issues to be addressed. However, it has been difficult to simulate the aeroelastic motion of deployable wings because of the significant differences between these deployable wings and conventional designs. The most apparent difference is the kinematic constraints of deployment, typically a hinge joint. These constraints lead not only to deformation but also to rigid body rotation. This research provides a novel method of overcoming the difficulties associated with handling these kinematic constraints. The proposed method utilizes flexible multibody dynamics and absolute nodal coordinate formulation to describe the dynamic motion of a deployable wing. This paper presents the simulation of the rigid body rotation around the kinematic constraints as induced by the aeroelasticity. The practicality of the proposed method is confirmed.
Real-time simulation of aeroelastic rotor loads for horizontal axis wind turbines
NASA Astrophysics Data System (ADS)
Marnett, M.; Wellenberg, S.; SchrÃ¶der, W.
2014-06-01
Wind turbine drivetrain research and test facilities with hardware-in-the-loop capabilities require a robust and accurate aeroelastic real-time rotor simulation environment. Recent simulation environments do not guarantee a computational response at real-time. Which is why a novel simulation tool has been developed. It resolves the physical time domain of the turbulent wind spectra and the operational response of the turbine at real-time conditions. Therefore, there is a trade-off between accuracy of the physical models and the computational costs. However, the study shows the possibility to preserve the necessary computational accuracy while simultaneously granting dynamic interaction with the aeroelastic rotor simulation environment. The achieved computational costs allow a complete aeroelastic rotor simulation at a resolution frequency of 100 Hz on standard computer platforms. Results obtained for the 5-MW reference wind turbine by the National Renewable Energy Laboratory (NREL) are discussed and compared to NREL's fatigue, aerodynamics, structures, and turbulence (FAST)- Code. The rotor loads show a convincing match. The novel simulation tool is applied to the wind turbine drivetrain test facility at the Center for Wind Power Drives (CWD), RWTH Aachen University to show the real-time hardware-in-the-loop capabilities.
Twist Model Development and Results From the Active Aeroelastic Wing F/A-18 Aircraft
NASA Technical Reports Server (NTRS)
Lizotte, Andrew; Allen, Michael J.
2005-01-01
Understanding the wing twist of the active aeroelastic wing F/A-18 aircraft is a fundamental research objective for the program and offers numerous benefits. In order to clearly understand the wing flexibility characteristics, a model was created to predict real-time wing twist. A reliable twist model allows the prediction of twist for flight simulation, provides insight into aircraft performance uncertainties, and assists with computational fluid dynamic and aeroelastic issues. The left wing of the aircraft was heavily instrumented during the first phase of the active aeroelastic wing program allowing deflection data collection. Traditional data processing steps were taken to reduce flight data, and twist predictions were made using linear regression techniques. The model predictions determined a consistent linear relationship between the measured twist and aircraft parameters, such as surface positions and aircraft state variables. Error in the original model was reduced in some cases by using a dynamic pressure-based assumption and by using neural networks. These techniques produced excellent predictions for flight between the standard test points and accounted for nonlinearities in the data. This report discusses data processing techniques and twist prediction validation, and provides illustrative and quantitative results.
Twist Model Development and Results from the Active Aeroelastic Wing F/A-18 Aircraft
NASA Technical Reports Server (NTRS)
Lizotte, Andrew M.; Allen, Michael J.
2007-01-01
Understanding the wing twist of the active aeroelastic wing (AAW) F/A-18 aircraft is a fundamental research objective for the program and offers numerous benefits. In order to clearly understand the wing flexibility characteristics, a model was created to predict real-time wing twist. A reliable twist model allows the prediction of twist for flight simulation, provides insight into aircraft performance uncertainties, and assists with computational fluid dynamic and aeroelastic issues. The left wing of the aircraft was heavily instrumented during the first phase of the active aeroelastic wing program allowing deflection data collection. Traditional data processing steps were taken to reduce flight data, and twist predictions were made using linear regression techniques. The model predictions determined a consistent linear relationship between the measured twist and aircraft parameters, such as surface positions and aircraft state variables. Error in the original model was reduced in some cases by using a dynamic pressure-based assumption. This technique produced excellent predictions for flight between the standard test points and accounted for nonlinearities in the data. This report discusses data processing techniques and twist prediction validation, and provides illustrative and quantitative results.
Unified Formulation of the Aeroelasticity of Swept Lifting Surfaces
NASA Technical Reports Server (NTRS)
Silva, Walter; Marzocca, Piergiovanni; Librescu, Liviu
2001-01-01
An unified approach for dealing with stability and aeroelastic response to time-dependent pressure pulses of swept wings in an incompressible flow is developed. To this end the indicial function concept in time and frequency domains, enabling one to derive the proper unsteady aerodynamic loads is used. Results regarding stability in the frequency and time domains, and subcritical aeroelastic response to arbitrary time-dependent external excitation obtained via the direct use of the unsteady aerodynamic derivatives for 3-D wings are supplied. Closed form expressions for unsteady aerodynamic derivatives using this unified approach have been derived and used to illustrate their application to flutter and aeroelastic response to blast and sonic-boom signatures. In this context, an original representation of the aeroelastic response in the phase space was presented and pertinent conclusions on the implications of some basic parameters have been outlined.
Localization of aeroelastic modes in mistuned high-energy turbines
NASA Astrophysics Data System (ADS)
Pierre, Christophe; Smith, Todd E.; Murthy, Durbha V.
1994-05-01
The effects of blade mistuning on the aeroelastic vibration characteristics of high-energy turbines are investigated, using the first stage of the oxidizer turbopump in the Space Shuttle main rocket engine as an example. A modal aeroelastic analysis procedure is used in concert with a linearized unsteady aerodynamic theory that accounts for the effects of blade thickness, camber, and steady loading. High sensitivity of the dynamic characteristics of mistuned rotors is demonstrated. In particular, the aeroelastic free vibration modes become localized to a few blades, possibly leading to rogue blade failure, and the locus of the aeroelastic eigenvalues loses its regular structure when small mistuning (of the order usually present in actual rotors) is introduced. Perturbation analyses that yield physical insights into these phenomena are presented. A powerful but easily calculated stochastic sensitivity measure that allows the global prediction of mistuning effects is developed.
Aeroelastic Response of Nonlinear Wing Section By Functional Series Technique
NASA Technical Reports Server (NTRS)
Marzocca, Piergiovanni; Librescu, Liviu; Silva, Walter A.
2000-01-01
This paper addresses the problem of the determination of the subcritical aeroelastic response and flutter instability of nonlinear two-dimensional lifting surfaces in an incompressible flow-field via indicial functions and Volterra series approach. The related aeroelastic governing equations are based upon the inclusion of structural and damping nonlinearities in plunging and pitching, of the linear unsteady aerodynamics and consideration of an arbitrary time-dependent external pressure pulse. Unsteady aeroelastic nonlinear kernels are determined, and based on these, frequency and time histories of the subcritical aeroelastic response are obtained, and in this context the influence of the considered nonlinearities is emphasized. Conclusions and results displaying the implications of the considered effects are supplied.
Aeroelastic Response of Nonlinear Wing Section by Functional Series Technique
NASA Technical Reports Server (NTRS)
Silva, Walter A.; Marzocca, Piergiovanni
2001-01-01
This paper addresses the problem of the determination of the subcritical aeroelastic response and flutter instability of nonlinear two-dimensional lifting surfaces in an incompressible flow-field via indicial functions and Volterra series approach. The related aeroelastic governing equations are based upon the inclusion of structural and damping nonlinearities in plunging and pitching, of the linear unsteady aerodynamics and consideration of an arbitrary time-dependent external pressure pulse. Unsteady aeroelastic nonlinear kernels are determined, and based on these, frequency and time histories of the subcritical aeroelastic response are obtained, and in this context the influence of the considered nonlinearities is emphasized. Conclusions and results displaying the implications of the considered effects are supplied.
Static aeroelastic behavior of an adaptive laminated piezoelectric composite wing
NASA Technical Reports Server (NTRS)
Weisshaar, T. A.; Ehlers, S. M.
1990-01-01
The effect of using an adaptive material to modify the static aeroelastic behavior of a uniform wing is examined. The wing structure is idealized as a laminated sandwich structure with piezoelectric layers in the upper and lower skins. A feedback system that senses the wing root loads applies a constant electric field to the piezoelectric actuator. Modification of pure torsional deformaton behavior and pure bending deformation are investigated, as is the case of an anisotropic composite swept wing. The use of piezoelectric actuators to create an adaptive structure is found to alter static aeroelastic behavior in that the proper choice of the feedback gain can increase or decrease the aeroelastic divergence speed. This concept also may be used to actively change the lift effectiveness of a wing. The ability to modify static aeroelastic behavior is limited by physical limitations of the piezoelectric material and the manner in which it is integrated into the parent structure.
Sensitivity Analysis of Wing Aeroelastic Responses
NASA Technical Reports Server (NTRS)
Issac, Jason Cherian
1995-01-01
Design for prevention of aeroelastic instability (that is, the critical speeds leading to aeroelastic instability lie outside the operating range) is an integral part of the wing design process. Availability of the sensitivity derivatives of the various critical speeds with respect to shape parameters of the wing could be very useful to a designer in the initial design phase, when several design changes are made and the shape of the final configuration is not yet frozen. These derivatives are also indispensable for a gradient-based optimization with aeroelastic constraints. In this study, flutter characteristic of a typical section in subsonic compressible flow is examined using a state-space unsteady aerodynamic representation. The sensitivity of the flutter speed of the typical section with respect to its mass and stiffness parameters, namely, mass ratio, static unbalance, radius of gyration, bending frequency, and torsional frequency is calculated analytically. A strip theory formulation is newly developed to represent the unsteady aerodynamic forces on a wing. This is coupled with an equivalent plate structural model and solved as an eigenvalue problem to determine the critical speed of the wing. Flutter analysis of the wing is also carried out using a lifting-surface subsonic kernel function aerodynamic theory (FAST) and an equivalent plate structural model. Finite element modeling of the wing is done using NASTRAN so that wing structures made of spars and ribs and top and bottom wing skins could be analyzed. The free vibration modes of the wing obtained from NASTRAN are input into FAST to compute the flutter speed. An equivalent plate model which incorporates first-order shear deformation theory is then examined so it can be used to model thick wings, where shear deformations are important. The sensitivity of natural frequencies to changes in shape parameters is obtained using ADIFOR. A simple optimization effort is made towards obtaining a minimum weight
Transonic Unsteady Aerodynamics and Aeroelasticity 1987, part 1
NASA Technical Reports Server (NTRS)
Bland, Samuel R. (Compiler)
1989-01-01
Computational fluid dynamics methods have been widely accepted for transonic aeroelastic analysis. Previously, calculations with the TSD methods were used for 2-D airfoils, but now the TSD methods are applied to the aeroelastic analysis of the complete aircraft. The Symposium papers are grouped into five subject areas, two of which are covered in this part: (1) Transonic Small Disturbance (TSD) theory for complete aircraft configurations; and (2) Full potential and Euler equation methods.
Sensitivity analysis of a wing aeroelastic response
NASA Technical Reports Server (NTRS)
Kapania, Rakesh K.; Eldred, Lloyd B.; Barthelemy, Jean-Francois M.
1991-01-01
A variation of Sobieski's Global Sensitivity Equations (GSE) approach is implemented to obtain the sensitivity of the static aeroelastic response of a three-dimensional wing model. The formulation is quite general and accepts any aerodynamics and structural analysis capability. An interface code is written to convert one analysis's output to the other's input, and visa versa. Local sensitivity derivatives are calculated by either analytic methods or finite difference techniques. A program to combine the local sensitivities, such as the sensitivity of the stiffness matrix or the aerodynamic kernel matrix, into global sensitivity derivatives is developed. The aerodynamic analysis package FAST, using a lifting surface theory, and a structural package, ELAPS, implementing Giles' equivalent plate model are used.
Analysis of the Hessian for aeroelastic optimization
NASA Technical Reports Server (NTRS)
Arian, Eyal
1995-01-01
The symbol of the Hessian for an aeroelastic optimization model problem is analyzed. The flow is modeled by the small-disturbance full potential equation and the structure is modeled by an isotropic (von Karman) plate equation. The cost function consists of both aerodynamic and structural terms. In the new analysis the symbol of the cost function Hessian near the minimum is computed. The result indicates that under some conditions, which are likely fulfilled in most applications, the system is decoupled for the non-smooth components. The result also shows that the structure part in the Hessian is well-conditioned while the aerodynamic part is ill-conditioned. Applications of the result to optimization strategies are discussed.
Gust Buffeting and Aeroelastic Behaviour of Poles and Monotubular Towers
NASA Astrophysics Data System (ADS)
Solari, G.; Pagnini, L. C.
1999-10-01
The evolution in the constructional field and the realization of ever more slender and light structures have emphasized the increasing difficulty of properly evaluating the actions and effects of wind on poles and monotubular towers. Faced with this situation the Italian constructors, united in a consortium coordinated by ACS ACAI Servizi, entrusted the Department of Structural and Geotechnical Engineering of Genova University with the task of formulating an ad hoc calculation procedure for this type of structure. This gave rise to a wide-ranging research project in which theoretical models, experimental evaluations and engineering methods were developed in parallel through an effective and quite a unique co-operation between researchers, designers and builders. This paper illustrates the physical aspects, the general principles and the basic formulation of the method proposed, with special emphasis on gust buffeting and aeroelastic phenomena. Preliminary results of full-scale measurements of the structural damping are also presented. The conclusions highlight the scientific and technical perspectives of this research.
NASA Technical Reports Server (NTRS)
Pak, Chan-gi; Lung, Shu
2009-01-01
Modern airplane design is a multidisciplinary task which combines several disciplines such as structures, aerodynamics, flight controls, and sometimes heat transfer. Historically, analytical and experimental investigations concerning the interaction of the elastic airframe with aerodynamic and in retia loads have been conducted during the design phase to determine the existence of aeroelastic instabilities, so called flutter .With the advent and increased usage of flight control systems, there is also a likelihood of instabilities caused by the interaction of the flight control system and the aeroelastic response of the airplane, known as aeroservoelastic instabilities. An in -house code MPASES (Ref. 1), modified from PASES (Ref. 2), is a general purpose digital computer program for the analysis of the closed-loop stability problem. This program used subroutines given in the International Mathematical and Statistical Library (IMSL) (Ref. 3) to compute all of the real and/or complex conjugate pairs of eigenvalues of the Hessenberg matrix. For high fidelity configuration, these aeroelastic system matrices are large and compute all eigenvalues will be time consuming. A subspace iteration method (Ref. 4) for complex eigenvalues problems with nonsymmetric matrices has been formulated and incorporated into the modified program for aeroservoelastic stability (MPASES code). Subspace iteration method only solve for the lowest p eigenvalues and corresponding eigenvectors for aeroelastic and aeroservoelastic analysis. In general, the selection of p is ranging from 10 for wing flutter analysis to 50 for an entire aircraft flutter analysis. The application of this newly incorporated code is an experiment known as the Aerostructures Test Wing (ATW) which was designed by the National Aeronautic and Space Administration (NASA) Dryden Flight Research Center, Edwards, California to research aeroelastic instabilities. Specifically, this experiment was used to study an instability
Pharmaceutical applications of supercritical carbon dioxide.
Kaiser, C S; RÃ¶mpp, H; Schmidt, P C
2001-12-01
The appearance of a supercritical state was already observed at the beginning of the 19th century. Nevertheless, the industrial extraction of plant and other natural materials started about twenty years ago with the decaffeination of coffee. Today carbon dioxide is the most common gas for supercritical fluid extraction in food and pharmaceutical industry. Since pure supercritical carbon dioxide is a lipophilic solvent, mixtures with organic solvents, especially alcohols, are used to increase the polarity of the extraction fluid; more polar compounds can be extracted in this way. The main fields of interest are the extraction of vegetable oils from plant material in analytical and preparative scale, the preparation of essential oils for food and cosmetic industry and the isolation of substances of pharmaceutical relevance. Progress in research was made by the precise measurement of phase equilibria data by means of different methods. Apart from extraction, supercritical fluid chromatography was introduced in the field of analytics, as well as micro- and nanoparticle formation using supercritical fluids as solvent or antisolvent. This review presents pharmaceutical relevant literature of the last twenty years with special emphasis on extraction of natural materials. PMID:11802652
Supercritical fluid mixing in Diesel Engine Applications
NASA Astrophysics Data System (ADS)
Bravo, Luis; Ma, Peter; Kurman, Matthew; Tess, Michael; Ihme, Matthias; Kweon, Chol-Bum
2014-11-01
A numerical framework for simulating supercritical fluids mixing with large density ratios is presented in the context of diesel sprays. Accurate modeling of real fluid effects on the fuel air mixture formation process is critical in characterizing engine combustion. Recent work (Dahms, 2013) has suggested that liquid fuel enters the chamber in a transcritical state and rapidly evolves to supercritical regime where the interface transitions from a distinct liquid/gas interface into a continuous turbulent mixing layer. In this work, the Peng Robinson EoS is invoked as the real fluid model due to an acceptable compromise between accuracy and computational tractability. Measurements at supercritical conditions are reported from the Constant Pressure Flow (CPF) chamber facility at the Army Research Laboratory. Mie and Schlieren optical spray diagnostics are utilized to provide time resolved liquid and vapor penetration length measurement. The quantitative comparison presented is discussed. Oak Ridge Associated Universities (ORAU).
Supercritical fluid thermodynamics for coal processing
van Swol, F. . Dept. of Chemical Engineering); Eckert, C.A. . School of Chemical Engineering)
1988-09-15
The main objective of this research is to develop an equation of state that can be used to predict solubilities and tailor supercritical fluid solvents for the extraction and processing of coal. To meet this objective we have implemented a two-sided. approach. First, we expanded the database of model coal compound solubilities in higher temperature fluids, polar fluids, and fluid mixtures systems. Second, the unique solute/solute, solute/cosolvent and solute/solvent intermolecular interactions in supercritical fluid solutions were investigated using spectroscopic techniques. These results increased our understanding of the molecular phenomena that affect solubility in supercritical fluids and were significant in the development of an equation of state that accurately reflects the true molecular makeup of the solution. (VC)
Advanced Supercritical Carbon Dioxide Brayton Cycle Development
Anderson, Mark; Sienicki, James; Moisseytsev, Anton; Nellis, Gregory; Klein, Sanford
2015-10-21
Fluids operating in the supercritical state have promising characteristics for future high efficiency power cycles. In order to develop power cycles using supercritical fluids, it is necessary to understand the flow characteristics of fluids under both supercritical and two-phase conditions. In this study, a Computational Fluid Dynamic (CFD) methodology was developed for supercritical fluids flowing through complex geometries. A real fluid property module was implemented to provide properties for different supercritical fluids. However, in each simulation case, there is only one species of fluid. As a result, the fluid property module provides properties for either supercritical CO_{2} (S-CO_{2}) or supercritical water (SCW). The Homogeneous Equilibrium Model (HEM) was employed to model the two-phase flow. HEM assumes two phases have same velocity, pressure, and temperature, making it only applicable for the dilute dispersed two-phase flow situation. Three example geometries, including orifices, labyrinth seals, and valves, were used to validate this methodology with experimental data. For the first geometry, S-CO_{2} and SCW flowing through orifices were simulated and compared with experimental data. The maximum difference between the mass flow rate predictions and experimental measurements is less than 5%. This is a significant improvement as previous works can only guarantee 10% error. In this research, several efforts were made to help this improvement. First, an accurate real fluid module was used to provide properties. Second, the upstream condition was determined by pressure and density, which determines supercritical states more precise than using pressure and temperature. For the second geometry, the flow through labyrinth seals was studied. After a successful validation, parametric studies were performed to study geometric effects on the leakage rate. Based on these parametric studies, an optimum design strategy for the see
The DAST-1 remotely piloted research vehicle development and initial flight testing
NASA Technical Reports Server (NTRS)
Kotsabasis, A.
1981-01-01
The development and initial flight testing of the DAST (drones for aerodynamic and structural testing) remotely piloted research vehicle, fitted with the first aeroelastic research wing ARW-I are presented. The ARW-I is a swept supercritical wing, designed to exhibit flutter within the vehicle's flight envelope. An active flutter suppression system (FSS) designed to increase the ARW-I flutter boundary speed by 20 percent is described. The development of the FSS was based on prediction techniques of structural and unsteady aerodynamic characteristics. A description of the supporting ground facilities and aircraft systems involved in the remotely piloted research vehicle (RPRV) flight test technique is given. The design, specification, and testing of the remotely augmented vehicle system are presented. A summary of the preflight and flight test procedures associated with the RPRV operation is given. An evaluation of the blue streak test flight and the first and second ARW-I test flights is presented.
Successful treatment with supercritical water oxidation
Jensen, R.
1994-06-01
Supercritical Water Oxidation (SCWO) operates in a totally enclosed system. It uses water at high temperatures and high pressure to chemically change wastes. Oily substances become soluble and complex hydrocarbons are converted into water and carbon dioxide. Research and development on SCWO is described.
NASA Technical Reports Server (NTRS)
Hanson, P. W.
1980-01-01
The characteristics and capabilities of the two tunnels, that relate to studies in the fields of aeroelasticity and unsteady aerodynamics are discussed. Scaling considerations for aeroelasticity and unsteady aerodynamics testing in the two facilities are reviewed, and some of the special features (or lack thereof) of the Langley Research Center Transonic Dynamics Tunnel (TDT) and the National Transonic Facility (NTF) that will weigh heavily in any decisions conducting a given study in the two tunnels are discussed. For illustrative purposes a fighter and a transport airplane are scaled for tests in the NTF and in the TDT, and the resulting model characteristics are compared. The NTF was designed specifically to meet the need for higher Reynolds number capability for flow simulation in aerodynamic performance testing of aircraft designs. However, the NTF can be a valuable tool for evaluating the severity of Reynolds number effects in the areas of dynamic aeroelasticity and unsteady aerodynamics. On the other hand, the TDT was constructed specifically for studies and tests in the field of aeroelasticity. Except for tests requiring the Reynolds number capability of NTF, the TDT will remain the primary facility for tests of dynamic aeroelasticity and unsteady aerodynamics.
Nonlinear Aeroelastic Analysis of Joined-Wing Configurations
NASA Astrophysics Data System (ADS)
Cavallaro, Rauno
Aeroelastic design of joined-wing configurations is yet a relatively unexplored topic which poses several difficulties. Due to the overconstrained nature of the system combined with structural geometric nonlinearities, the behavior of Joined Wings is often counterintuitive and presents challenges not seen in standard layouts. In particular, instability observed on detailed aircraft models but never thoroughly investigated, is here studied with the aid of a theoretical/computational framework. Snap-type of instabilities are shown for both pure structural and aeroelastic cases. The concept of snap-divergence is introduced to clearly identify the true aeroelastic instability, as opposed to the usual aeroelastic divergence evaluated through eigenvalue approach. Multi-stable regions and isola-type of bifurcations are possible characterizations of the nonlinear response of Joined Wings, and may lead to branch-jumping phenomena well below nominal critical load condition. Within this picture, sensitivity to (unavoidable) manufacturing defects could have potential catastrophic effects. The phenomena studied in this work suggest that the design process for Joined Wings needs to be revisited and should focus, when instability is concerned, on nonlinear post-critical analysis since linear methods may provide wrong trend indications and also hide potentially catastrophical situations. Dynamic aeroelastic analyses are also performed. Flutter occurrence is critically analyzed with frequency and time-domain capabilities. Sensitivity to different-fidelity aeroelastic modeling (fluid-structure interface algorithm, aerodynamic solvers) is assessed showing that, for some configurations, wake modeling (rigid versus free) has a strong impact on the results. Post-flutter regimes are also explored. Limit cycle oscillations are observed, followed, in some cases, by flip bifurcations (period doubling) and loss of periodicity of the solution. Aeroelastic analyses are then carried out on a
Three-Dimensional Aeroelastic and Aerothermoelastic Behavior in Hypersonic Flow
NASA Technical Reports Server (NTRS)
McNamara, Jack J.; Friedmann, Peretz P.; Powell, Kenneth G.; Thuruthimattam, Biju J.; Bartels, Robert E.
2005-01-01
The aeroelastic and aerothermoelastic behavior of three-dimensional configurations in hypersonic flow regime are studied. The aeroelastic behavior of a low aspect ratio wing, representative of a fin or control surface on a generic hypersonic vehicle, is examined using third order piston theory, Euler and Navier-Stokes aerodynamics. The sensitivity of the aeroelastic behavior generated using Euler and Navier-Stokes aerodynamics to parameters governing temporal accuracy is also examined. Also, a refined aerothermoelastic model, which incorporates the heat transfer between the fluid and structure using CFD generated aerodynamic heating, is used to examine the aerothermoelastic behavior of the low aspect ratio wing in the hypersonic regime. Finally, the hypersonic aeroelastic behavior of a generic hypersonic vehicle with a lifting-body type fuselage and canted fins is studied using piston theory and Euler aerodynamics for the range of 2.5 less than or equal to M less than or equal to 28, at altitudes ranging from 10,000 feet to 80,000 feet. This analysis includes a study on optimal mesh selection for use with Euler aerodynamics. In addition to the aeroelastic and aerothermoelastic results presented, three time domain flutter identification techniques are compared, namely the moving block approach, the least squares curve fitting method, and a system identification technique using an Auto-Regressive model of the aeroelastic system. In general, the three methods agree well. The system identification technique, however, provided quick damping and frequency estimations with minimal response record length, and therefore o ers significant reductions in computational cost. In the present case, the computational cost was reduced by 75%. The aeroelastic and aerothermoelastic results presented illustrate the applicability of the CFL3D code for the hypersonic flight regime.
Improved Aerodynamic Influence Coefficients for Dynamic Aeroelastic Analyses
NASA Astrophysics Data System (ADS)
Gratton, Patrice
2011-12-01
Currently at Bombardier Aerospace, aeroelastic analyses are performed using the Doublet Lattice Method (DLM) incorporated in the NASTRAN solver. This method proves to be very reliable and fast in preliminary design stages where wind tunnel experimental results are often not available. Unfortunately, the geometric simplifications and limitations of the DLM, based on the lifting surfaces theory, reduce the ability of this method to give reliable results for all flow conditions, particularly in transonic flow. Therefore, a new method has been developed involving aerodynamic data from high-fidelity CFD codes which solve the Euler or Navier-Stokes equations. These new aerodynamic loads are transmitted to the NASTRAN aeroelastic module through improved aerodynamic influence coefficients (AIC). A cantilevered wing model is created from the Global Express structural model and a set of natural modes is calculated for a baseline configuration of the structure. The baseline mode shapes are then combined with an interpolation scheme to deform the 3-D CFD mesh necessary for Euler and Navier-Stokes analyses. An uncoupled approach is preferred to allow aerodynamic information from different CFD codes. Following the steady state CFD analyses, pressure differences ( DeltaCp), calculated between the deformed models and the original geometry, lead to aerodynamic loads which are transferred to the DLM model. A modal-based AIC method is applied to the aerodynamic matrices of NASTRAN based on a least-square approximation to evaluate aerodynamic loads of a different wing configuration which displays similar types of mode shapes. The methodology developed in this research creates weighting factors based on steady CFD analyses which have an equivalent reduced frequency of zero. These factors are applied to both the real and imaginary part of the aerodynamic matrices as well as all reduced frequencies used in the PK-Method which solves flutter problems. The modal-based AIC method
Supercritical Fluid Extraction of Aflatoxin B 1 from Soil
This research describes the development of a Supercritical Fluid Extraction (SFE) method to recover aflatoxin B1 from fortified soil. The effects of temperature, pressure, modifier (identity and percentage), and extraction type were assessed. Using the optimized SFE conditions, ...
Supercritical fuel injection system
NASA Technical Reports Server (NTRS)
Marek, C. J.; Cooper, L. P. (Inventor)
1980-01-01
a fuel injection system for gas turbines is described including a pair of high pressure pumps. The pumps provide fuel and a carrier fluid such as air at pressures above the critical pressure of the fuel. A supercritical mixing chamber mixes the fuel and carrier fluid and the mixture is sprayed into a combustion chamber. The use of fuel and a carrier fluid at supercritical pressures promotes rapid mixing of the fuel in the combustion chamber so as to reduce the formation of pollutants and promote cleaner burning.
New Flutter Analysis Technique for CFD-based Unsteady Aeroelasticity
NASA Technical Reports Server (NTRS)
Pak, Chan-gi; Jutte, Christine V.
2009-01-01
This paper presents a flutter analysis technique for the transonic flight regime. The technique uses an iterative approach to determine the critical dynamic pressure for a given mach number. Unlike other CFD-based flutter analysis methods, each iteration solves for the critical dynamic pressure and uses this value in subsequent iterations until the value converges. This process reduces the iterations required to determine the critical dynamic pressure. To improve the accuracy of the analysis, the technique employs a known structural model, leaving only the aerodynamic model as the unknown. The aerodynamic model is estimated using unsteady aeroelastic CFD analysis combined with a parameter estimation routine. The technique executes as follows. The known structural model is represented as a finite element model. Modal analysis determines the frequencies and mode shapes for the structural model. At a given mach number and dynamic pressure, the unsteady CFD analysis is performed. The output time history of the surface pressure is converted to a nodal aerodynamic force vector. The forces are then normalized by the given dynamic pressure. A multi-input multi-output parameter estimation software, ERA, estimates the aerodynamic model through the use of time histories of nodal aerodynamic forces and structural deformations. The critical dynamic pressure is then calculated using the known structural model and the estimated aerodynamic model. This output is used as the dynamic pressure in subsequent iterations until the critical dynamic pressure is determined. This technique is demonstrated on the Aerostructures Test Wing-2 model at NASA's Dryden Flight Research Center.
Unsteady Aerodynamic Models for Turbomachinery Aeroelastic and Aeroacoustic Applications
NASA Technical Reports Server (NTRS)
Verdon, Joseph M.; Barnett, Mark; Ayer, Timothy C.
1995-01-01
Theoretical analyses and computer codes are being developed for predicting compressible unsteady inviscid and viscous flows through blade rows of axial-flow turbomachines. Such analyses are needed to determine the impact of unsteady flow phenomena on the structural durability and noise generation characteristics of the blading. The emphasis has been placed on developing analyses based on asymptotic representations of unsteady flow phenomena. Thus, high Reynolds number flows driven by small amplitude unsteady excitations have been considered. The resulting analyses should apply in many practical situations and lead to a better understanding of the relevant flow physics. In addition, they will be efficient computationally, and therefore, appropriate for use in aeroelastic and aeroacoustic design studies. Under the present effort, inviscid interaction and linearized inviscid unsteady flow models have been formulated, and inviscid and viscid prediction capabilities for subsonic steady and unsteady cascade flows have been developed. In this report, we describe the linearized inviscid unsteady analysis, LINFLO, the steady inviscid/viscid interaction analysis, SFLOW-IVI, and the unsteady viscous layer analysis, UNSVIS. These analyses are demonstrated via application to unsteady flows through compressor and turbine cascades that are excited by prescribed vortical and acoustic excitations and by prescribed blade vibrations. Recommendations are also given for the future research needed for extending and improving the foregoing asymptotic analyses, and to meet the goal of providing efficient inviscid/viscid interaction capabilities for subsonic and transonic unsteady cascade flows.
Design and Analysis of AN Static Aeroelastic Experiment
NASA Astrophysics Data System (ADS)
Hou, Ying-Yu; Yuan, Kai-Hua; Lv, Ji-Nan; Liu, Zi-Qiang
2016-06-01
Static aeroelastic experiments are very common in the United States and Russia. The objective of static aeroelastic experiments is to investigate deformation and loads of elastic structure in flow field. Generally speaking, prerequisite of this experiment is that the stiffness distribution of structure is known. This paper describes a method for designing experimental models, in the case where the stiffness distribution and boundary condition of a real aircraft are both uncertain. The stiffness distribution form of the structure can be calculated via finite element modeling and simulation calculation and F141Â steelsÂ andÂ rigidÂ foam are used to make elasticÂ model. In this paper,Â theÂ design and manufacturingÂ process of staticÂ aeroelasticÂ models is presentedÂ and a set of experiment model was designed to simulate the stiffness of the designed wings, a set of experiments was designed to check the results. The test results show that the experimental method can effectively complete the design work of elastic model. This paperÂ introducesÂ the whole processÂ of theÂ staticÂ aeroelastic experiment,Â and the experimental results are analyzed. This paper developed a static aeroelasticity experiment technique and established an experiment model targeting at the swept wing of a certain kind of large aspect ratio aircraft.
NASA Aeroelasticity Handbook Volume 2: Design Guides Part 2
NASA Technical Reports Server (NTRS)
Ramsey, John K. (Editor)
2006-01-01
The NASA Aeroelasticity Handbook comprises a database (in three formats) of NACA and NASA aeroelasticity flutter data through 1998 and a collection of aeroelasticity design guides. The Microsoft Access format provides the capability to search for specific data, retrieve it, and present it in a tabular or graphical form unique to the application. The full-text NACA and NASA documents from which the data originated are provided in portable document format (PDF), and these are hyperlinked to their respective data records. This provides full access to all available information from the data source. Two other electronic formats, one delimited by commas and the other by spaces, are provided for use with other software capable of reading text files. To the best of the author s knowledge, this database represents the most extensive collection of NACA and NASA flutter data in electronic form compiled to date by NASA. Volume 2 of the handbook contains a convenient collection of aeroelastic design guides covering fixed wings, turbomachinery, propellers and rotors, panels, and model scaling. This handbook provides an interactive database and design guides for use in the preliminary aeroelastic design of aerospace systems and can also be used in validating or calibrating flutter-prediction software.
Control Law Design in a Computational Aeroelasticity Environment
NASA Technical Reports Server (NTRS)
Newsom, Jerry R.; Robertshaw, Harry H.; Kapania, Rakesh K.
2003-01-01
A methodology for designing active control laws in a computational aeroelasticity environment is given. The methodology involves employing a systems identification technique to develop an explicit state-space model for control law design from the output of a computational aeroelasticity code. The particular computational aeroelasticity code employed in this paper solves the transonic small disturbance aerodynamic equation using a time-accurate, finite-difference scheme. Linear structural dynamics equations are integrated simultaneously with the computational fluid dynamics equations to determine the time responses of the structure. These structural responses are employed as the input to a modern systems identification technique that determines the Markov parameters of an "equivalent linear system". The Eigensystem Realization Algorithm is then employed to develop an explicit state-space model of the equivalent linear system. The Linear Quadratic Guassian control law design technique is employed to design a control law. The computational aeroelasticity code is modified to accept control laws and perform closed-loop simulations. Flutter control of a rectangular wing model is chosen to demonstrate the methodology. Various cases are used to illustrate the usefulness of the methodology as the nonlinearity of the aeroelastic system is increased through increased angle-of-attack changes.
Simplified aeroelastic modeling of horizontal axis wind turbines
NASA Astrophysics Data System (ADS)
Wendell, J. H.
1982-09-01
Certain aspects of the aeroelastic modeling and behavior of the horizontal axis wind turbine (HAWT) are examined. Two simple three degree of freedom models are described in this report, and tools are developed which allow other simple models to be derived. The first simple model developed is an equivalent hinge model to study the flap-lag-torsion aeroelastic stability of an isolated rotor blade. The model includes nonlinear effects, preconing, and noncoincident elastic axis, center of gravity, and aerodynamic center. A stability study is presented which examines the influence of key parameters on aeroelastic stability. Next, two general tools are developed to study the aeroelastic stability and response of a teetering rotor coupled to a flexible tower. The first of these tools is an aeroelastic model of a two-bladed rotor on a general flexible support. The second general tool is a harmonic balance solution method for the resulting second order system with periodic coefficients. The second simple model developed is a rotor-tower model which serves to demonstrate the general tools. This model includes nacelle yawing, nacelle pitching, and rotor teetering. Transient response time histories are calculated and compared to a similar model in the literature. Agreement between the two is very good, especially considering how few harmonics are used. Finally, a stability study is presented which examines the effects of support stiffness and damping, inflow angle, and preconing.
Simplified aeroelastic modeling of horizontal axis wind turbines
NASA Technical Reports Server (NTRS)
Wendell, J. H.
1982-01-01
Certain aspects of the aeroelastic modeling and behavior of the horizontal axis wind turbine (HAWT) are examined. Two simple three degree of freedom models are described in this report, and tools are developed which allow other simple models to be derived. The first simple model developed is an equivalent hinge model to study the flap-lag-torsion aeroelastic stability of an isolated rotor blade. The model includes nonlinear effects, preconing, and noncoincident elastic axis, center of gravity, and aerodynamic center. A stability study is presented which examines the influence of key parameters on aeroelastic stability. Next, two general tools are developed to study the aeroelastic stability and response of a teetering rotor coupled to a flexible tower. The first of these tools is an aeroelastic model of a two-bladed rotor on a general flexible support. The second general tool is a harmonic balance solution method for the resulting second order system with periodic coefficients. The second simple model developed is a rotor-tower model which serves to demonstrate the general tools. This model includes nacelle yawing, nacelle pitching, and rotor teetering. Transient response time histories are calculated and compared to a similar model in the literature. Agreement between the two is very good, especially considering how few harmonics are used. Finally, a stability study is presented which examines the effects of support stiffness and damping, inflow angle, and preconing.
Numerical computation of aeroelastically corrected transonic loads
NASA Technical Reports Server (NTRS)
Chipman, R.; Waters, C.; Mackenzie, D.
1979-01-01
A numerical scheme is presented for the computation of transonic aerodynamic loads on flexible wings. The method consists of iteratively applying the loads computed by a 3D transonic aerodynamics code to a structural model to obtain elastic twist, and then recomputing the loads. Because this iteration is performed concurrently with the iterations performed in computing the aerodynamics, flexible loads are obtained in roughly the same amount of computing time as required to obtain rigid loads. Applications of this method to a flexible supercritical transonic transport wing are presented and compared with model test data.
Interactive aircraft flight control and aeroelastic stabilization
NASA Technical Reports Server (NTRS)
Weisshaar, T. A.
1985-01-01
Aeroservoelastic optimization techniques were studied to determine a methodology for maximization of the stable flight envelope of an idealized, actively controlled, flexible airfoil. The equations of motion for the airfoil were developed in state-space form to include time-domain representations of aerodynamic forces and active control. The development of an optimization scheme to stabilize the aeroelastic system over a range of airspeeds, including the design airspeed is outlined. The solution approach was divided in two levels: (1) the airfoil structure, with a design variable represented by the shear center position; and (2) the control system. An objective was stated in mathematical form and a search was conducted with the restriction that each subsystem be constrained to be optimal in some sense. Analytical expressions are developed to compute the changes in the eigenvalues of the closed-loop, actively controlled system. A stability index is constructed to ensure that stability is present at the design speed and at other airspeeds away from the design speed.
Unsteady aerodynamic analyses for turbomachinery aeroelastic predictions
NASA Technical Reports Server (NTRS)
Verdon, Joseph M.; Barnett, M.; Ayer, T. C.
1994-01-01
Applications for unsteady aerodynamics analysis in this report are: (1) aeroelastic: blade flutter and forced vibration; (2) aeroacoustic: noise generation; (3) vibration and noise control; and (4) effects of unsteadiness on performance. This requires that the numerical simulations and analytical modeling be accurate and efficient and contain realistic operating conditions and arbitrary modes of unsteady excitation. The assumptions of this application contend that: (1) turbulence and transition can be modeled with the Reynolds averaged and using Navier-Stokes equations; (2) 'attached' flow with high Reynolds number will require thin-layer Navier-Stokes equations, or inviscid/viscid interaction analyses; (3) small-amplitude unsteady excitations will need nonlinear steady and linearized unsteady analyses; and (4) Re to infinity will concern inviscid flow. Several computer programs (LINFLO, CLT, UNSVIS, AND SFLOW-IVI) are utilized for these analyses. Results and computerized grid examples are shown. This report was given during NASA LeRC Workshop on Forced Response in Turbomachinery in August of 1993.
Full potential unsteady computations including aeroelastic effects
NASA Technical Reports Server (NTRS)
Shankar, Vijaya; Ide, Hiroshi
1989-01-01
A unified formulation is presented based on the full potential framework coupled with an appropriate structural model to compute steady and unsteady flows over rigid and flexible configurations across the Mach number range. The unsteady form of the full potential equation in conservation form is solved using an implicit scheme maintaining time accuracy through internal Newton iterations. A flux biasing procedure based on the unsteady sonic reference conditions is implemented to compute hyperbolic regions with moving sonic and shock surfaces. The wake behind a trailing edge is modeled using a mathematical cut across which the pressure is satisfied to be continuous by solving an appropriate vorticity convection equation. An aeroelastic model based on the generalized modal deflection approach interacts with the nonlinear aerodynamics and includes both static as well as dynamic structural analyses capability. Results are presented for rigid and flexible configurations at different Mach numbers ranging from subsonic to supersonic conditions. The dynamic response of a flexible wing below and above its flutter point is demonstrated.
NASA Technical Reports Server (NTRS)
Kandil, Osama A.
1993-01-01
Research on Navier-Stokes, dynamics, and aeroelastic computations for vortical flows, buffet, and flutter applications was performed. Progress during the period from 1 Oct. 1992 to 30 Sep. 1993 is included. Papers on the following topics are included: vertical tail buffet in vortex breakdown flows; simulation of tail buffet using delta wing-vertical tail configuration; shock-vortex interaction over a 65-degree delta wing in transonic flow; supersonic vortex breakdown over a delta wing in transonic flow; and prediction and control of slender wing rock.
Unstructured-grid methods development for unsteady aerodynamic and aeroelastic analyses
NASA Technical Reports Server (NTRS)
Batina, John T.; Lee, Elizabeth M.; Kleb, William L.; Rausch, Russ D.
1992-01-01
The current status of unstructured grid methods developed in the Unsteady Aerodynamics Branch at NASA Langley Research Center is described. These methods are being developed for unsteady aerodynamic and aeroelastic analyses. Flow solvers that have been developed for the solution of unsteady Euler equations are highlighted. The results demonstrate two and three dimensional applications for both steady and unsteady flows. Comparisons are also made with solutions obtained using a structured grid code and with experimental data to determine the accuracy of the unstructured grid methodology. These comparisons show good agreement which thus verifies the accuracy.
Aeroelasticity of Nonlinear Tail / Rudder Systems with Freeplay
NASA Astrophysics Data System (ADS)
Rishel, Evan
This thesis details the development of a linear/nonlinear three degree of freedom aeroelastic system designed and manufactured at the University of Washington (UW). Describing function analysis was carried out in the frequency domain. Time domain simulations were carried out to account for all types of motion. Nonlinear aeroelastic behavior may lead to limit cycles which can be captured in the frequency domain using describing function approximation and numerically using Runga-Kutta integration. Linear and nonlinear aeroelastic tests were conducted in the UW 3x3 low-speed wind tunnel to determine the linear flutter speed and frequency of the system as well as its nonlinear behavior when freeplay is introduced. The test data is presented along with the results of the MATLAB-based simulations. The correlation between test and numerical results is very high.
Wing Weight Optimization Under Aeroelastic Loads Subject to Stress Constraints
NASA Technical Reports Server (NTRS)
Kapania, Rakesh K.; Issac, J.; Macmurdy, D.; Guruswamy, Guru P.
1997-01-01
A minimum weight optimization of the wing under aeroelastic loads subject to stress constraints is carried out. The loads for the optimization are based on aeroelastic trim. The design variables are the thickness of the wing skins and planform variables. The composite plate structural model incorporates first-order shear deformation theory, the wing deflections are expressed using Chebyshev polynomials and a Rayleigh-Ritz procedure is adopted for the structural formulation. The aerodynamic pressures provided by the aerodynamic code at a discrete number of grid points is represented as a bilinear distribution on the composite plate code to solve for the deflections and stresses in the wing. The lifting-surface aerodynamic code FAST is presently being used to generate the pressure distribution over the wing. The envisioned ENSAERO/Plate is an aeroelastic analysis code which combines ENSAERO version 3.0 (for analysis of wing-body configurations) with the composite plate code.
Aeroelastic behavior of composite rotor blades with swept tips
NASA Astrophysics Data System (ADS)
Yuan, Kuo-An; Friedmann, Peretz P.; Venkatesan, Comandur
This paper presents an analytical study of the aeroelastic behavior of composite rotor blades with straight and swept tips. The blade is modeled by beam type finite elements. A single finite element is used to model the swept tip. The nonlinear equations of motion for the finite element model are derived using Hamilton's principle and based on a moderate deflection theory and accounts for: arbitrary cross-sectional shape, pretwist, generally anisotropic material behavior, transverse shears and out-of-plane warping. Numerical results illustrating the effects of tip sweep, anhedral and composite ply orientation on blade aeroelastic behavior are presented. It is shown that composite ply orientation has a substantial effect on blade stability. At low thrust conditions, certain ply orientations can cause instability in the lag mode. The flap-torsion coupling associated with tip sweep can also induce aeroelastic instability in the blade. This instability can be removed by appropriate ply orientation in the composite construction.
Impact of Parallel Computing on Large Scale Aeroelastic Computations
NASA Technical Reports Server (NTRS)
Guruswamy, Guru P.; Kwak, Dochan (Technical Monitor)
2000-01-01
Aeroelasticity is computationally one of the most intensive fields in aerospace engineering. Though over the last three decades the computational speed of supercomputers have substantially increased, they are still inadequate for large scale aeroelastic computations using high fidelity flow and structural equations. In addition to reaching a saturation in computational speed because of changes in economics, computer manufactures are stopping the manufacturing of mainframe type supercomputers. This has led computational aeroelasticians to face the gigantic task of finding alternate approaches for fulfilling their needs. The alternate path to over come speed and availability limitations of mainframe type supercomputers is to use parallel computers. During this decade several different architectures have evolved. In FY92 the US Government started the High Performance Computing and Communication (HPCC) program. As a participant in this program NASA developed several parallel computational tools for aeroelastic applications. This talk describes the impact of those application tools on high fidelity based multidisciplinary analysis.
Aeroelastic Tailoring of a Plate Wing with Functionally Graded Materials
NASA Technical Reports Server (NTRS)
Dunning, Peter D.; Stanford, Bret K.; Kim, H. Alicia; Jutte, Christine V.
2014-01-01
This work explores the use of functionally graded materials for the aeroelastic tailoring of a metallic cantilevered plate-like wing. Pareto trade-off curves between dynamic stability (flutter) and static aeroelastic stresses are obtained for a variety of grading strategies. A key comparison is between the effectiveness of material grading, geometric grading (i.e., plate thickness variations), and using both simultaneously. The introduction of material grading does, in some cases, improve the aeroelastic performance. This improvement, and the physical mechanism upon which it is based, depends on numerous factors: the two sets of metallic material parameters used for grading, the sweep of the plate, the aspect ratio of the plate, and whether the material is graded continuously or discretely.
Application of the Finite Element Method to Rotary Wing Aeroelasticity
NASA Technical Reports Server (NTRS)
Straub, F. K.; Friedmann, P. P.
1982-01-01
A finite element method for the spatial discretization of the dynamic equations of equilibrium governing rotary-wing aeroelastic problems is presented. Formulation of the finite element equations is based on weighted Galerkin residuals. This Galerkin finite element method reduces algebraic manipulative labor significantly, when compared to the application of the global Galerkin method in similar problems. The coupled flap-lag aeroelastic stability boundaries of hingeless helicopter rotor blades in hover are calculated. The linearized dynamic equations are reduced to the standard eigenvalue problem from which the aeroelastic stability boundaries are obtained. The convergence properties of the Galerkin finite element method are studied numerically by refining the discretization process. Results indicate that four or five elements suffice to capture the dynamics of the blade with the same accuracy as the global Galerkin method.