Sample records for aeronet aerosol robotic

  1. Aerosol Robotic Network (AERONET) Version 3 Aerosol Optical Depth and Inversion Products

    NASA Astrophysics Data System (ADS)

    Giles, D. M.; Holben, B. N.; Eck, T. F.; Smirnov, A.; Sinyuk, A.; Schafer, J.; Sorokin, M. G.; Slutsker, I.

    2017-12-01

    The Aerosol Robotic Network (AERONET) surface-based aerosol optical depth (AOD) database has been a principal component of many Earth science remote sensing applications and modelling for more than two decades. During this time, the AERONET AOD database had utilized a semiautomatic quality assurance approach (Smirnov et al., 2000). Data quality automation developed for AERONET Version 3 (V3) was achieved by augmenting and improving upon the combination of Version 2 (V2) automatic and manual procedures to provide a more refined near real time (NRT) and historical worldwide database of AOD. The combined effect of these new changes provides a historical V3 AOD Level 2.0 data set comparable to V2 Level 2.0 AOD. The recently released V3 Level 2.0 AOD product uses Level 1.5 data with automated cloud screening and quality controls and applies pre-field and post-field calibrations and wavelength-dependent temperature characterizations. For V3, the AERONET aerosol retrieval code inverts AOD and almucantar sky radiances using a full vector radiative transfer called Successive ORDers of scattering (SORD; Korkin et al., 2017). The full vector code allows for potentially improving the real part of the complex index of refraction and the sphericity parameter and computing the radiation field in the UV (e.g., 380nm) and degree of linear depolarization. Effective lidar ratio and depolarization ratio products are also available with the V3 inversion release. Inputs to the inversion code were updated to the accommodate H2O, O3 and NO2 absorption to be consistent with the computation of V3 AOD. All of the inversion products are associated with estimated uncertainties that include the random error plus biases due to the uncertainty in measured AOD, absolute sky radiance calibration, and retrieved MODIS BRDF for snow-free and snow covered surfaces. The V3 inversion products use the same data quality assurance criteria as V2 inversions (Holben et al. 2006). The entire AERONET V3

  2. Validation of TOMS Aerosol Products using AERONET Observations

    NASA Technical Reports Server (NTRS)

    Bhartia, P. K.; Torres, O.; Sinyuk, A.; Holben, B.

    2002-01-01

    The Total Ozone Mapping Spectrometer (TOMS) aerosol algorithm uses measurements of radiances at two near UV channels in the range 331-380 nm to derive aerosol optical depth and single scattering albedo. Because of the low near UV surface albedo of all terrestrial surfaces (between 0.02 and 0.08), the TOMS algorithm has the capability of retrieving aerosol properties over the oceans and the continents. The Aerosol Robotic Network (AERONET) routinely derives spectral aerosol optical depth and single scattering albedo at a large number of sites around the globe. We have performed comparisons of both aerosol optical depth and single scattering albedo derived from TOMS and AERONET. In general, the TOMS aerosol products agree well with the ground-based observations, Results of this validation will be discussed.

  3. Characterizing Aerosols over Southeast Asia using the AERONET Data Synergy Tool

    NASA Technical Reports Server (NTRS)

    Giles, David M.; Holben, Brent N.; Eck, Thomas F.; Slutsker, Ilya; Slutsker, Ilya; Welton, Ellsworth, J.; Chin, Mian; Kucsera, Thomas; Schmaltz, Jeffery E.; Diehl, Thomas; hide

    2007-01-01

    Biomass burning, urban pollution and dust aerosols have significant impacts on the radiative forcing of the atmosphere over Asia. In order to better quanti@ these aerosol characteristics, the Aerosol Robotic Network (AERONET) has established over 200 sites worldwide with an emphasis in recent years on the Asian continent - specifically Southeast Asia. A total of approximately 15 AERONET sun photometer instruments have been deployed to China, India, Pakistan, Thailand, and Vietnam. Sun photometer spectral aerosol optical depth measurements as well as microphysical and optical aerosol retrievals over Southeast Asia will be analyzed and discussed with supporting ground-based instrument, satellite, and model data sets, which are freely available via the AERONET Data Synergy tool at the AERONET web site (http://aeronet.gsfc.nasa.gov). This web-based data tool provides access to groundbased (AERONET and MPLNET), satellite (MODIS, SeaWiFS, TOMS, and OMI) and model (GOCART and back trajectory analyses) databases via one web portal. Future development of the AERONET Data Synergy Tool will include the expansion of current data sets as well as the implementation of other Earth Science data sets pertinent to advancing aerosol research.

  4. Black Carbon Concentration from Worldwide Aerosol Robotic Network (AERONET)

    NASA Technical Reports Server (NTRS)

    Schuster, Greg; Dubovik, Oleg; Holben, Brent; Clothiaux, Eugene

    2008-01-01

    Worldwide black carbon concentration measurements are needed to assess the efficacy of the carbon emissions inventory and transport model output. This requires long-term measurements in many regions, as model success in one region or season does not apply to all regions and seasons. AERONET is an automated network of more than 180 surface radiometers located throughout the world. The sky radiance measurements obtained by AERONET are inverted to provide column-averaged aerosol refractive indices and size distributions for the AERONET database, which we use to derive column-averaged black carbon concentrations and specific absorptions that are constrained by the measured radiation field. This provides a link between AERONET sky radiance measurements and the elemental carbon concentration of transport models without the need for an optics module in the transport model. Knowledge of both the black carbon concentration and aerosol absorption optical depth (i.e., input and output of the optics module) will enable improvements to the transport model optics module.

  5. Aerosol Remote Sensing from AERONET, the Ground-Based Satellite

    NASA Technical Reports Server (NTRS)

    Holben, Brent N.

    2012-01-01

    Atmospheric particles including mineral dust, biomass burning smoke, pollution from carbonaceous aerosols and sulfates, sea salt, impact air quality and climate. The Aerosol Robotic Network (AERONET) program, established in the early 1990s, is a federation of ground-based remote sensing aerosol networks of Sun/sky radiometers distributed around the world, which provides a long-term, continuous and readily accessible public domain database of aerosol optical (e.g., aerosol optical depth) and microphysical (e.g., aerosol volume size distribution) properties for aerosol characterization, validation of satellite retrievals, and synergism with Earth science databases. Climatological aerosol properties will be presented at key worldwide locations exhibiting discrete dominant aerosol types. Further, AERONET's temporary mesoscale network campaign (e.g., UAE2, TIGERZ, DRAGON-USA.) results that attempt to quantify spatial and temporal variability of aerosol properties, establish validation of ground-based aerosol retrievals using aircraft profile measurements, and measure aerosol properties on compatible spatial scales with satellite retrievals and aerosol transport models allowing for more robust validation will be discussed.

  6. Multiangle Imaging Spectroradiometer (MISR) Global Aerosol Optical Depth Validation Based on 2 Years of Coincident Aerosol Robotic Network (AERONET) Observations

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph A.; Gaitley, Barbara J.; Martonchik, John V.; Diner, David J.; Crean, Kathleen A.; Holben, Brent

    2005-01-01

    Performance of the Multiangle Imaging Spectroradiometer (MISR) early postlaunch aerosol optical thickness (AOT) retrieval algorithm is assessed quantitatively over land and ocean by comparison with a 2-year measurement record of globally distributed AERONET Sun photometers. There are sufficient coincident observations to stratify the data set by season and expected aerosol type. In addition to reporting uncertainty envelopes, we identify trends and outliers, and investigate their likely causes, with the aim of refining algorithm performance. Overall, about 2/3 of the MISR-retrieved AOT values fall within [0.05 or 20% x AOT] of Aerosol Robotic Network (AERONET). More than a third are within [0.03 or 10% x AOT]. Correlation coefficients are highest for maritime stations (approx.0.9), and lowest for dusty sites (more than approx.0.7). Retrieved spectral slopes closely match Sun photometer values for Biomass burning and continental aerosol types. Detailed comparisons suggest that adding to the algorithm climatology more absorbing spherical particles, more realistic dust analogs, and a richer selection of multimodal aerosol mixtures would reduce the remaining discrepancies for MISR retrievals over land; in addition, refining instrument low-light-level calibration could reduce or eliminate a small but systematic offset in maritime AOT values. On the basis of cases for which current particle models are representative, a second-generation MISR aerosol retrieval algorithm incorporating these improvements could provide AOT accuracy unprecedented for a spaceborne technique.

  7. Factors for inconsistent aerosol single scattering albedo between SKYNET and AERONET

    NASA Astrophysics Data System (ADS)

    Khatri, P.; Takamura, T.; Nakajima, T.; Estellés, V.; Irie, H.; Kuze, H.; Campanelli, M.; Sinyuk, A.; Lee, S.-M.; Sohn, B. J.; Pandithurai, G.; Kim, S.-W.; Yoon, S. C.; Martinez-Lozano, J. A.; Hashimoto, M.; Devara, P. C. S.; Manago, N.

    2016-02-01

    SKYNET and Aerosol Robotic Network (AERONET) retrieved aerosol single scattering albedo (SSA) values of four sites, Chiba (Japan), Pune (India), Valencia (Spain), and Seoul (Korea), were compared to understand the factors behind often noted large SSA differences between them. SKYNET and AERONET algorithms are found to produce nearly same SSAs for similarity in input data, suggesting that SSA differences between them are primarily due to quality of input data due to different calibration and/or observation protocols as well as difference in quality assurance criteria. The most plausible reason for high SSAs in SKYNET is found to be underestimated calibration constant for sky radiance (ΔΩ). The disk scan method (scan area: 1° × 1° area of solar disk) of SKYNET is noted to produce stable wavelength-dependent ΔΩ values in comparison to those determined from the integrating sphere used by AERONET to calibrate sky radiance. Aerosol optical thickness (AOT) difference between them can be the next important factor for their SSA difference, if AOTs between them are not consistent. Inconsistent values of surface albedo while analyzing data of SKYNET and AERONET can also bring SSA difference between them, but the effect of surface albedo is secondary. The aerosol nonsphericity effect is found to be less important for SSA difference between these two networks.

  8. Synergic use of TOMS and Aeronet Observations for Characterization of Aerosol Absorption

    NASA Technical Reports Server (NTRS)

    Torres, O.; Bhartia, P. K.; Dubovik, O.; Holben, B.; Siniuk, A.

    2003-01-01

    The role of aerosol absorption on the radiative transfer balance of the earth-atmosphere system is one of the largest sources of uncertainty in the analysis of global climate change. Global measurements of aerosol single scattering albedo are, therefore, necessary to properly assess the radiative forcing effect of aerosols. Remote sensing of aerosol absorption is currently carried out using both ground (Aerosol Robotic Network) and space (Total Ozone Mapping Spectrometer) based observations. The satellite technique uses measurements of backscattered near ultraviolet radiation. Carbonaceous aerosols, resulting from the combustion of biomass, are one of the most predominant absorbing aerosol types in the atmosphere. In this presentation, TOMS and AERONET retrievals of single scattering albedo of carbonaceous aerosols, are compared for different environmental conditions: agriculture related biomass burning in South America and Africa and peat fires in Eastern Europe. The AERONET and TOMS derived aerosol absorption information are in good quantitative agreement. The most absorbing smoke is detected over the African Savanna. Aerosol absorption over the Brazilian rain forest is less absorbing. Absorption by aerosol particles resulting from peat fires in Eastern Europe is weaker than the absorption measured in Africa and South America. This analysis shows that the near UV satellite method of aerosol absorption characterization has the sensitivity to distinguish different levels of aerosol absorption. The analysis of the combined AERONET-TOMS observations shows a high degree of synergy between satellite and ground based observations.

  9. An AERONET-Based Aerosol Classification Using the Mahalanobis Distance

    NASA Technical Reports Server (NTRS)

    Hamill, Patrick; Giordano, Marco; Ward, Carolyne; Giles, David; Holben, Brent

    2016-01-01

    We present an aerosol classification based on AERONET aerosol data from 1993 to 2012. We used the AERONET Level 2.0 almucantar aerosol retrieval products to define several reference aerosol clusters which are characteristic of the following general aerosol types: Urban-Industrial, Biomass Burning, Mixed Aerosol, Dust, and Maritime. The classification of a particular aerosol observation as one of these aerosol types is determined by its five-dimensional Mahalanobis distance to each reference cluster. We have calculated the fractional aerosol type distribution at 190 AERONET sites, as well as the monthly variation in aerosol type at those locations. The results are presented on a global map and individually in the supplementary material. Our aerosol typing is based on recognizing that different geographic regions exhibit characteristic aerosol types. To generate reference clusters we only keep data points that lie within a Mahalanobis distance of 2 from the centroid. Our aerosol characterization is based on the AERONET retrieved quantities, therefore it does not include low optical depth values. The analysis is based on point sources (the AERONET sites) rather than globally distributed values. The classifications obtained will be useful in interpreting aerosol retrievals from satellite borne instruments.

  10. Maritime Aerosol Network as a Component of AERONET - a Useful Tool for Evaluation of the Global Sea-Salt Aerosol Distribution

    NASA Astrophysics Data System (ADS)

    Smirnov, A.; Holben, B. N.; Kinne, S.; Nelson, N. B.; Stenchikov, G. L.; Broccardo, S. P.; Sowers, D.; Lobecker, E.; Ondrusek, M.; Zielinski, T. P.; Gray, L. M.; Frouin, R.; Radionov, V. F.; Smyth, T. J.; Zibordi, G.; Heller, M. I.; Slabakova, V.; Krüger, K.; Reid, E. A.; Istomina, L.; Vandermeulen, R. A.; O'Neill, N. T.; Levy, G.; Giles, D. M.; Slutsker, I.; Sorokin, M. G.; Eck, T. F.

    2016-02-01

    Sea-salt aerosol plays an important role in radiation balance and chemistry of marine atmosphere. Sea-salt production depends on various factors. There is a significant uncertainty in the parametrization of the sea-salt production and budget. Ship-based aerosol optical depth (AOD) measurements can be used as an important validation tool for various global models and in-situ measurements. The paper presents the current status of the Maritime Aerosol Network (MAN) which is a component of Aerosol Robotic Network. Since 2006 over 300 cruises were completed and data archive of more than 5500 measurement days is accessible at http://aeronet.gsfc.nasa.gov/new_web/maritime_aerosol_network.html . AOD measurements from ships of opportunity complemented island-based AERONET measurements and provided important reference points for satellite retrieved and modelled AOD climatology over the oceans. The program exemplifies mutually beneficial international, multi-agency effort in atmospheric aerosol optical studies over the oceans.

  11. Synergetic use of Aerosol Robotic Network (AERONET) and Moderate Image Spectrometer (MODIS)

    NASA Technical Reports Server (NTRS)

    Kaufman, Y.

    2004-01-01

    I shall describe several distinct modes in which AERONET data are used in conjunction with MODIS data to evaluate the global aerosol system and its impact on climate. These includes: 1) Evaluation of the aerosol diurnal cycle not available from MODIS, and the relationship between the aerosol properties derived from MODIS and the daily average of these properties; 2) Climatology of the aerosol size distribution and single scattering albedo. The climatology is used to formulate the assumptions used in the MODIS look up tables used in the inversion of MODIS data; 3) Measurement of the aerosol effect on irradiation of the surface, this is used in conjunction with the MODIS evaluation of the aerosol effect at the TOA; and 4) Assessment of the aerosol baseline on top off which the satellite data are used to find the amount of dust or anthropogenic aerosol.

  12. Identifying Aerosol Type/Mixture from Aerosol Absorption Properties Using AERONET

    NASA Technical Reports Server (NTRS)

    Giles, D. M.; Holben, B. N.; Eck, T. F.; Sinyuk, A.; Dickerson, R. R.; Thompson, A. M.; Slutsker, I.; Li, Z.; Tripathi, S. N.; Singh, R. P.; hide

    2010-01-01

    Aerosols are generated in the atmosphere through anthropogenic and natural mechanisms. These sources have signatures in the aerosol optical and microphysical properties that can be used to identify the aerosol type/mixture. Spectral aerosol absorption information (absorption Angstrom exponent; AAE) used in conjunction with the particle size parameterization (extinction Angstrom exponent; EAE) can only identify the dominant absorbing aerosol type in the sample volume (e.g., black carbon vs. iron oxides in dust). This AAE/EAE relationship can be expanded to also identify non-absorbing aerosol types/mixtures by applying an absorption weighting. This new relationship provides improved aerosol type distinction when the magnitude of absorption is not equal (e.g, black carbon vs. sulfates). The Aerosol Robotic Network (AERONET) data provide spectral aerosol optical depth and single scattering albedo - key parameters used to determine EAE and AAE. The proposed aerosol type/mixture relationship is demonstrated using the long-term data archive acquired at AERONET sites within various source regions. The preliminary analysis has found that dust, sulfate, organic carbon, and black carbon aerosol types/mixtures can be determined from this AAE/EAE relationship when applying the absorption weighting for each available wavelength (Le., 440, 675, 870nm). Large, non-spherical dust particles absorb in the shorter wavelengths and the application of 440nm wavelength absorption weighting produced the best particle type definition. Sulfate particles scatter light efficiently and organic carbon particles are small near the source and aggregate over time to form larger less absorbing particles. Both sulfates and organic carbon showed generally better definition using the 870nm wavelength absorption weighting. Black carbon generation results from varying combustion rates from a number of sources including industrial processes and biomass burning. Cases with primarily black carbon showed

  13. Validation of Long-Term Global Aerosol Climatology Project Optical Thickness Retrievals Using AERONET and MODIS Data

    NASA Technical Reports Server (NTRS)

    Geogdzhayev, Igor V.; Mishchenko, Michael I.

    2015-01-01

    A comprehensive set of monthly mean aerosol optical thickness (AOT) data from coastal and island AErosol RObotic NETwork (AERONET) stations is used to evaluate Global Aerosol Climatology Project (GACP) retrievals for the period 1995-2009 during which contemporaneous GACP and AERONET data were available. To put the GACP performance in broader perspective, we also compare AERONET and MODerate resolution Imaging Spectroradiometer (MODIS) Aqua level-2 data for 2003-2009 using the same methodology. We find that a large mismatch in geographic coverage exists between the satellite and ground-based datasets, with very limited AERONET coverage of open-ocean areas. This is especially true of GACP because of the smaller number of AERONET stations at the early stages of the network development. Monthly mean AOTs from the two over-the-ocean satellite datasets are well-correlated with the ground-based values, the correlation coefficients being 0.81-0.85 for GACP and 0.74-0.79 for MODIS. Regression analyses demonstrate that the GACP mean AOTs are approximately 17%-27% lower than the AERONET values on average, while the MODIS mean AOTs are 5%-25% higher. The regression coefficients are highly dependent on the weighting assumptions (e.g., on the measure of aerosol variability) as well as on the set of AERONET stations used for comparison. Comparison of over-the-land and over-the-ocean MODIS monthly mean AOTs in the vicinity of coastal AERONET stations reveals a significant bias. This may indicate that aerosol amounts in coastal locations can differ significantly from those in adjacent open-ocean areas. Furthermore, the color of coastal waters and peculiarities of coastline meteorological conditions may introduce biases in the GACP AOT retrievals. We conclude that the GACP and MODIS over-the-ocean retrieval algorithms show similar ranges of discrepancy when compared to available coastal and island AERONET stations. The factors mentioned above may limit the performance of the

  14. Global Assessment of OMI Aerosol Single-scattering Albedo Using Ground-based AERONET and SKYNET Inversions

    NASA Technical Reports Server (NTRS)

    Jethva, Hiren; Torres, Omar; Ahn, Changwoo

    2014-01-01

    We compare the aerosol single-scattering albedo (SSA) retrieved by the near-UV two-channel algorithm (OMAERUV) applied to the Aura-Ozone Monitoring Instrument (OMI) measurements with an equivalent inversion made by the ground-based Aerosol Robotic Network (AERONET). This work is the first comprehensive effort to globally compare the OMI-retrieved SSA with that of AERONET using all available sites spanning the regions of biomass burning, dust, and urban pollution. An analysis of the co-located retrievals over 269 sites reveals that about 46 percent (69 percent) of OMI-AERONET matchups agree within the absolute difference of plus or minus 0.03 (plus or minus 0.05) for all aerosol types. The comparison improves to 52 percent (77 percent) when only 'smoke' and 'dust' aerosol types were identified by the OMAERUV algorithm. Regionally, the agreement between the two inversions was robust over the biomass burning sites of South America, Sahel, Indian subcontinent, and oceanic-coastal sites followed by a reasonable agreement over north-east Asia. Over the desert regions, OMI tends to retrieve higher SSA, particularly over the Arabian Peninsula. Globally, the OMI-AERONET matchups agree mostly within plus or minus 0.03 for the aerosol optical depth (440 nanometers) and UV-aerosol index larger than 0.4 and 1.0, respectively. We also compare the OMAERUV SSA against the inversion made by an independent network of ground-based radiometer called SKYNET with its operating sites in Japan, China, South-East Asia, India, and Europe. The advantage of the SKYNET database over AERONET is that it performs retrieval at near-UV wavelengths which facilitate the direct comparison of OMI retrievals with the equivalent ground-based inversion. Comparison of OMI and SKYNET over currently available sites reveals a good agreement between the two where more than 70 percent of matchups agree within the absolute difference of 0.05.

  15. Determination of Monthly Aerosol Types in Manila Observatory and Notre Dame of Marbel University from Aerosol Robotic Network (AERONET) measurements.

    NASA Astrophysics Data System (ADS)

    Ong, H. J. J.; Lagrosas, N.; Uy, S. N.; Gacal, G. F. B.; Dorado, S.; Tobias, V., Jr.; Holben, B. N.

    2016-12-01

    This study aims to identify aerosol types in Manila Observatory (MO) and Notre Dame of Marbel University (NDMU) using Aerosol Robotic Network (AERONET) Level 2.0 inversion data and five dimensional specified clustering and Mahalanobis classification. The parameters used are the 440-870 nm extinction Angström exponent (EAE), 440 nm single scattering albedo (SSA), 440-870 nm absorption Angström exponent (AAE), 440 nm real and imaginary refractive indices. Specified clustering makes use of AERONET data from 7 sites to define 7 aerosol classes: mineral dust (MD), polluted dust (PD), urban industrial (UI), urban industrial developing (UID), biomass burning white smoke (BBW), biomass burning dark smoke (BBD), and marine aerosols. This is similar to the classes used by Russell et al, 2014. A data point is classified into a class based on the closest 5-dimensional Mahalanobis distance (Russell et al, 2014 & Hamill et al, 2016). This method is applied to all 173 MO data points from January 2009 to June 2015 and to all 24 NDMU data points from December 2009 to July 2015 to look at monthly and seasonal variations of aerosol types. The MO and NDMU aerosols are predominantly PD ( 77%) and PD & UID ( 75%) respectively (Figs.1a-b); PD is predominant in the months of February to May in MO and February to March in NDMU. PD results from less strict emission and environmental regulations (Catrall 2005). Average SSA values in MO is comparable to the mean SSA for PD ( 0.89). This can be attributed to presence of high absorbing aerosol types, e.g., carbon which is a product of transportation emissions. The second most dominant aerosol type in MO is UID ( 15%), in NDMU it is BBW ( 25%). In Manila, the high sources of PD and UID (fine particles) is generally from vehicular combustion (Oanh, et al 2006). The detection of BBW in MO from April to May can be attributed to the fires which are common in these dry months. In NDMU, BBW source is from biomass burning (smoldering). In this

  16. AERONET-Based Nonspherical Dust Optical Models and Effects on the VIIRS Deep Blue/SOAR Over Water Aerosol Product

    NASA Astrophysics Data System (ADS)

    Lee, Jaehwa; Hsu, N. Christina; Sayer, Andrew M.; Bettenhausen, Corey; Yang, Ping

    2017-10-01

    Aerosol Robotic Network (AERONET)-based nonspherical dust optical models are developed and applied to the Satellite Ocean Aerosol Retrieval (SOAR) algorithm as part of the Version 1 Visible Infrared Imaging Radiometer Suite (VIIRS) NASA "Deep Blue" aerosol data product suite. The optical models are created using Version 2 AERONET inversion data at six distinct sites influenced frequently by dust aerosols from different source regions. The same spheroid shape distribution as used in the AERONET inversion algorithm is assumed to account for the nonspherical characteristics of mineral dust, which ensures the consistency between the bulk scattering properties of the developed optical models and the AERONET-retrieved microphysical and optical properties. For the Version 1 SOAR aerosol product, the dust optical model representative for Capo Verde site is used, considering the strong influence of Saharan dust over the global ocean in terms of amount and spatial coverage. Comparisons of the VIIRS-retrieved aerosol optical properties against AERONET direct-Sun observations at five island/coastal sites suggest that the use of nonspherical dust optical models significantly improves the retrievals of aerosol optical depth (AOD) and Ångström exponent by mitigating the well-known artifact of scattering angle dependence of the variables, which is observed when incorrectly assuming spherical dust. The resulting removal of these artifacts results in a more natural spatial pattern of AOD along the transport path of Saharan dust to the Atlantic Ocean; that is, AOD decreases with increasing distance transported, whereas the spherical assumption leads to a strong wave pattern due to the spurious scattering angle dependence of AOD.

  17. An Analysis of AERONET Aerosol Absorption Properties and Classifications Representative of Aerosol Source Regions

    NASA Technical Reports Server (NTRS)

    Giles, David M.; Holben, Brent N.; Eck, Thomas F.; Sinyuk, Aliaksandr; Smirnov, Alexander; Slutsker, Ilya; Dickerson, R. R.; Thompson, A. M.; Schafer, J. S.

    2012-01-01

    Partitioning of mineral dust, pollution, smoke, and mixtures using remote sensing techniques can help improve accuracy of satellite retrievals and assessments of the aerosol radiative impact on climate. Spectral aerosol optical depth (tau) and single scattering albedo (omega (sub 0) ) from Aerosol Robotic Network (AERONET) measurements are used to form absorption [i.e., omega (sub 0) and absorption Angstrom exponent (alpha(sub abs))] and size [i.e., extinction Angstrom exponent (alpha(sub ext)) and fine mode fraction of tau] relationships to infer dominant aerosol types. Using the long-term AERONET data set (1999-2010), 19 sites are grouped by aerosol type based on known source regions to: (1) determine the average omega (sub 0) and alpha(sub abs) at each site (expanding upon previous work); (2) perform a sensitivity study on alpha(sub abs) by varying the spectral omega (sub 0); and (3) test the ability of each absorption and size relationship to distinguish aerosol types. The spectral omega (sub 0) averages indicate slightly more aerosol absorption (i.e., a 0.0 < delta omega (sub 0) <= 0.02 decrease) than in previous work and optical mixtures of pollution and smoke with dust show stronger absorption than dust alone. Frequency distributions of alpha(sub abs) show significant overlap among aerosol type categories and at least 10% of the alpha(sub abs) retrievals in each category are below 1.0. Perturbing the spectral omega (sub 0) by +/- 0.03 induces significant alpha(sub abs) changes from the unperturbed value by at least approx. +/- 0.6 for Dust, approx. +/-0.2 for Mixed, and approx. +/-0.1 for Urban/Industrial and Biomass Burning. The omega (sub 0)440nm and alpha(sub ext) 440-870nm relationship shows the best separation among aerosol type clusters, providing a simple technique for determining aerosol type from surface- and future space-based instrumentation.

  18. Columnar aerosol optical properties at AERONET sites in northern, central and southern Mexico

    NASA Astrophysics Data System (ADS)

    Carabali, Giovanni; Estévez, Hector; Florean-Cruz, Claudia; Navarro-Medina, Abigail; Valdés-Barrón, Mauro; Bonifaz-Alfonzo, Roberto; Riveros-Rosas, David; Velasco-Herrera, Víctor; Vázquez-Gálvez, Felipe

    2017-04-01

    The column-integrated optical properties of aerosol in the north, central and southern Mexico were investigated based on Sun/sky radiometer measurements made at Aerosol Robotic Network (AERONET) sites. Characterization of aerosol properties in these Mexico regions is important due to natural and anthropogenic significant events that occurred: dust storms from Sonora desert, biomass burning from south forest areas and urban/industrial from Mexico City due to the increases in fossil fuel combustion. Some cities in northern Mexico located near desert areas are affected by the dust from Sonora and Chihuahua deserts. These particles are suspended in the atmosphere due to strong wind activity that creates dust storms. In the central part of the Mexican territory, urban air pollution is one of the biggest problems. Mexico City is the most important urban area that face seriously environmental problem generated by daily anthropogenic emissions from activities of some 21 million people and the vast amount of industry. On the other hand, biomass burning in the Yucatan Peninsula, Southern Mexico, and Guatemala is an important source of anthropogenic aerosol in the troposphere (Crutzen and Andrade, 1990). The pollution from these fires affects air quality locally and is transported over the Gulf of Mexico to the United States (Wang et al., 2006). The aim of this work is to study the optical properties of different types of aerosols by analyzing a 5-year (2005-2010) data set from AErosol RObotic NETwork (AERONET). Time series of Angstrom exponent (α) and aerosol optical depth (τ) in 7 wavelengths from 340 to 1020 nm are shown. Additionally, a graphical framework to classify aerosol properties using direct sun-photometer observations in the different regions of Mexico is presented. That aerosol classification was made by applying the method described by Gobbi et al (2007), which relies on the combined analysis of α and its spectral curvature δα.

  19. Application of AERONET Single Scattering Albedo and Absorption Angstrom Exponent to Classify Dominant Aerosol Types during DRAGON Campaigns

    NASA Astrophysics Data System (ADS)

    Giles, D. M.; Holben, B. N.; Eck, T. F.; Schafer, J.; Crawford, J. H.; Kim, J.; Sano, I.; Liew, S.; Salinas Cortijo, S. V.; Chew, B. N.; Lim, H.; Smirnov, A.; Sorokin, M.; Kenny, P.; Slutsker, I.

    2013-12-01

    Aerosols can have major implications on human health by inducing respiratory diseases due to inhalation of fine particles from biomass burning smoke or industrial pollution and on radiative forcing whereby the presence of absorbing aerosol particles (e.g., black carbon) increases atmospheric heating. Aerosol classification techniques have utilized aerosol loading and aerosol properties derived from multi-spectral and multi-angle observations by ground-based (e.g., AERONET) and satellite instrumentation (e.g., MISR). Aerosol Robotic Network (AERONET) data have been utilized to determine aerosol types by implementing various combinations of measured aerosol optical depth or retrieved size and absorption aerosol properties (e.g., Gobbi et al., 2007; Russell et al., 2010). Giles et al. [2012] showed single scattering albedo (SSA) relationship with extinction Angstrom exponent (EAE) can provide an estimate of the general classification of dominant aerosol types (i.e., desert dust, urban/industrial pollution, biomass burning smoke, and mixtures) based on data from ~20 AERONET sites located in known aerosol source regions. In addition, the absorption Angstrom exponent relationship with EAE can provide an indication of the dominant absorbing aerosol type such as dust, black carbon, brown carbon, or mixtures of them. These classification techniques are applied to the AERONET Level 2.0 quality assured data sets collected during Distributed Regional Aerosol Gridded Observational Network (DRAGON) campaigns in Maryland (USA), Japan, South Korea, Singapore, Penang (Malaysia), and California (USA). An analysis of aerosol type classification for DRAGON sites is performed as well as an assessment of the spatial variability of the aerosol types for selected DRAGON campaigns. Giles, D. M., B. N. Holben, T. F. Eck, A. Sinyuk, A. Smirnov, I. Slutsker, R. R. Dickerson, A. M. Thompson, and J. S. Schafer (2012), An analysis of AERONET aerosol absorption properties and classifications

  20. Analysis of the weekly cycle of aerosol optical depth using AERONET and MODIS data

    NASA Astrophysics Data System (ADS)

    Xia, Xiangao; Eck, Tom F.; Holben, Brent N.; Phillippe, Goloub; Chen, Hongbin

    2008-07-01

    Multi-year Aerosol Robotic Network (AERONET) and Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol optical depth (AOD) data are used to study AOD weekly variations at the global scale. A clear weekly cycle of AOD is observed in the United States (U.S.) and Central Europe. AOD during the weekday is larger than that during the weekend in 36 out of 43 AERONET sites in the U.S. The average U.S. weekend effect (the percent difference in AOD during the weekday and the weekend) is 3.8%. A weekly periodicity with lower AODs on Sunday and Monday and higher AODs from Wednesday until Saturday is revealed over Central Europe and the average weekend effect there is 4.0%. The weekly cycle in urban sites is greater than that in rural sites. AOD during the weekday is also significantly larger than that during the weekend in urban AERONET sites in South America and South Korea. However, a reversed AOD weekly cycle is observed in the Middle East and India. AODs on Thursday and Friday, the "weekend" for Middle East cultures, are relatively lower than AODs on other days. There is no clear weekly variation of AOD over eastern China. The striking feature in this region is the occurrence of much higher AOD on Sunday and this phenomenon is independent of season. The analysis of MODIS aerosol data is in good agreement with that of AERONET data.

  1. Comparisons of Satellite Retrieval of Aerosol Properties from SeaWiFS and TOMS to the AERONET Measurements during ACE-Asia

    NASA Technical Reports Server (NTRS)

    Hsu, Christina N.; Tsay, Si-Chee; Herman, R.; Holben, Brent; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    The primary goal of the ACE (Aerosol Characterization Experiment)-Asia mission is to increase our understanding of how atmospheric aerosol particles over the Asian-Pacific region affect the Earth climate system. In support of the day-to-day flight planning of ACE-Asia, we built a near real-time system to provide satellite data from the polar-orbiting instruments Earth Probe TOMS (Total Ozone Mapping Spectrometer) (in the form of absorbing aerosol index) and SeaWiFS (Sea-Viewing Wide Field-of-View Sensor) (in the form of aerosol optical thickness and Angstrom exponent). The results were available via web access. These satellite data provide a 'big picture' of aerosol distribution in the region, which is complementary to the ground based measurements. In this paper, we will briefly discuss the algorithms used to generate these data. The retrieved aerosol optical thickness and Angstrom exponent from SeaWiFS will be compared with those obtained from various AERONET (Aerosol Robotic Network) sites over the Asian-Pacific region. The TOMS aerosol index will also be compared with AERONET aerosol optical thickness over different aerosol conditions. Finally, we will discuss the climate implication of our studies using the combined satellite and AERONET observations.

  2. Retrieval of Aerosol Microphysical Properties from AERONET Photo-Polarimetric Measurements. 2: A New Research Algorithm and Case Demonstration

    NASA Technical Reports Server (NTRS)

    Xu, Xiaoguang; Wang, Jun; Zeng, Jing; Spurr, Robert; Liu, Xiong; Dubovik, Oleg; Li, Li; Li, Zhengqiang; Mishchenko, Michael I.; Siniuk, Aliaksandr; hide

    2015-01-01

    A new research algorithm is presented here as the second part of a two-part study to retrieve aerosol microphysical properties from the multispectral and multiangular photopolarimetric measurements taken by Aerosol Robotic Network's (AERONET's) new-generation Sun photometer. The algorithm uses an advanced UNified and Linearized Vector Radiative Transfer Model and incorporates a statistical optimization approach.While the new algorithmhas heritage from AERONET operational inversion algorithm in constraining a priori and retrieval smoothness, it has two new features. First, the new algorithmretrieves the effective radius, effective variance, and total volume of aerosols associated with a continuous bimodal particle size distribution (PSD) function, while the AERONET operational algorithm retrieves aerosol volume over 22 size bins. Second, our algorithm retrieves complex refractive indices for both fine and coarsemodes,while the AERONET operational algorithm assumes a size-independent aerosol refractive index. Mode-resolved refractive indices can improve the estimate of the single-scattering albedo (SSA) for each aerosol mode and thus facilitate the validation of satellite products and chemistry transport models. We applied the algorithm to a suite of real cases over Beijing_RADI site and found that our retrievals are overall consistent with AERONET operational inversions but can offer mode-resolved refractive index and SSA with acceptable accuracy for the aerosol composed by spherical particles. Along with the retrieval using both radiance and polarization, we also performed radiance-only retrieval to demonstrate the improvements by adding polarization in the inversion. Contrast analysis indicates that with polarization, retrieval error can be reduced by over 50% in PSD parameters, 10-30% in the refractive index, and 10-40% in SSA, which is consistent with theoretical analysis presented in the companion paper of this two-part study.

  3. AERONET derived (BC) aerosol absorption

    NASA Astrophysics Data System (ADS)

    Kinne, S.

    2015-12-01

    AERONET is a ground-based sun-/sky-photometer network with good annual statistics at more than 400 sites worldwide. Inversion methods applied to these data define all relevant column aerosol optical properties and reveal even microphysical detail. The extracted data include estimates for aerosol size-distributions and for aerosol refractive indices at four different solar wavelengths. Hereby, the imaginary parts of the refractive indices define the aerosol column absorption. For regional and global averages and radiative impact assessment with off-line radiative transfer, these local data have been extended with distribution patterns offered by AeroCom modeling experiments. Annual and seasonal absorption distributions for total aerosol and estimates for component contributions (such as BC) are presented and associated direct forcing impacts are quantified.

  4. Version 2.0 AERONET Dust Aerosol properties, Constraints and Application to Asian Dust Observations

    NASA Technical Reports Server (NTRS)

    Holben, Brent; Eck, Tom; Holben, Brent; Eck, Tom; Siniuk, Aliaksander; Huangand, Jianping; Zang, Wu

    2007-01-01

    In November 2006, AERONET released Version 2 of the Dubovik and King sky radiance and optical depth inversion. Reanalysis of the entire AERONET database revealed marked differences in aerosol properties in arid and semi arid regions with dust dominated aerosols. The change will be illustrated through sensitivity analysis and examples from the UAE2 (United Arab Emirates Unified Aerosol Experiment) field campaign. Properties of dust dominated aerosols will be presented from regional AERONET sites in China showing variations in dust aerosol properties. The constraints and limitations of the AERONET inversion will be presented that will facilitate analysis by the user community of these data.

  5. Development and assessment of a higher-spatial-resolution (4.4 km) MISR aerosol optical depth product using AERONET-DRAGON data

    NASA Astrophysics Data System (ADS)

    Garay, Michael J.; Kalashnikova, Olga V.; Bull, Michael A.

    2017-04-01

    Since early 2000, the Multi-angle Imaging SpectroRadiometer (MISR) instrument on NASA's Terra satellite has been acquiring data that have been used to produce aerosol optical depth (AOD) and particle property retrievals at 17.6 km spatial resolution. Capitalizing on the capabilities provided by multi-angle viewing, the current operational (Version 22) MISR algorithm performs well, with about 75 % of MISR AOD retrievals globally falling within 0.05 or 20 % × AOD of paired validation data from the ground-based Aerosol Robotic Network (AERONET). This paper describes the development and assessment of a prototype version of a higher-spatial-resolution 4.4 km MISR aerosol optical depth product compared against multiple AERONET Distributed Regional Aerosol Gridded Observations Network (DRAGON) deployments around the globe. In comparisons with AERONET-DRAGON AODs, the 4.4 km resolution retrievals show improved correlation (r = 0. 9595), smaller RMSE (0.0768), reduced bias (-0.0208), and a larger fraction within the expected error envelope (80.92 %) relative to the Version 22 MISR retrievals.

  6. AERONET's Development and Contributions through Two Decades of Aerosol Research

    NASA Astrophysics Data System (ADS)

    Holben, B. N.

    2016-12-01

    The name Brent Holben has been synonymous with AERONET since it's inception nearly two and a half decades ago. Like most scientific endeavors, progress relies on collaboration, persistence and the occasional good idea at the right time. And so it is with AERONET. I will use this opportunity to trace the history of AERONET's development and the scientific achievements that we, as a community, have developed and profited from in our research and understanding of aerosols, describe measurements from this simple instrument applied on a grand scale that created new research opportunities and most importantly acknowledge those that have been and continue to be key in AERONET contributions to aerosol science. Born from a need to remove atmospheric effects in remotely sensed data in the 1980's, molded at a confluence of ideas and shaped as a public domain database, the program has grown from a prototype instrument in 1992 designed to routinely monitor biomass burning aerosol optical depth to over 600 globally distributed sites providing near real-time aerosol properties for satellite validation, assimilation in models and access for numerous research projects. Although standardization and calibration are fundamental elements for scientific success, development for the scientific needs of the community drive new approaches for reprocessing archival data and making new measurements. I'll discuss these and glimpse into the future for AERONET.

  7. Type of Aerosols Determination Over Malaysia by AERONET Data

    NASA Astrophysics Data System (ADS)

    Lim, H.; Tan, F.; Abdullah, K.; Holben, B. N.

    2013-12-01

    Aerosols are one of the most interesting studies by the researchers due to the complicated of their characteristic and are not yet well quantified. Besides that there still have huge uncertainties associated with changes in Earth's radiation budget. The previous study by other researchers shown a lot of difficulties and challenges in quantifying aerosol influences arise. As well as the heterogeneity from the aerosol loading and properties: spatial, temporal, size, and composition. In this study, we were investigated the aerosol characteristics over two regions with different environmental conditions and aerosol sources contributed. The study sites are Penang and Kuching, Malaysia where ground-based AErosol RObotic NETwork (AERONET) sun-photometer was deployed. The types of the aerosols for both study sites were identified by analyzing aerosol optical depth, angstrom parameter and spectral de-convolution algorithm product from sun-photometer. The analysis was carried out associated with the in-situ meteorological data of relative humidity, visibility and air pollution index. The major aerosol type over Penang found in this study was hydrophobic aerosols. Whereas the hydrophilic type of the aerosols was highly distributed in Kuching. The major aerosol size distributions for both regions were identified in this study. The result also shows that the aerosol optical properties were affected by the types and characteristic of aerosols. Therefore, in this study we generated an algorithm to determine the aerosols in Malaysia by considered the environmental factors. From this study we found that the source of aerosols should always being consider in to retrieve the accurate information of aerosol for air quality study.

  8. Aerosol single-scattering albedo over the global oceans: Comparing PARASOL retrievals with AERONET, OMI, and AeroCom models estimates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lacagnina, Carlo; Hasekamp, Otto P.; Bian, Huisheng

    2015-09-27

    The aerosol Single Scattering Albedo (SSA) over the global oceans is evaluated based on polarimetric measurements by the PARASOL satellite. The retrieved values for SSA and Aerosol Optical Depth (AOD) agree well with the ground-based measurements of the AErosol RObotic NETwork (AERONET). The global coverage provided by the PARASOL observations represents a unique opportunity to evaluate SSA and AOD simulated by atmospheric transport model runs, as performed in the AeroCom framework. The SSA estimate provided by the AeroCom models is generally higher than the SSA retrieved from both PARASOL and AERONET. On the other hand, the mean simulated AOD ismore » about right or slightly underestimated compared with observations. An overestimate of the SSA by the models would suggest that these simulate an overly strong aerosol radiative cooling at top-of-atmosphere (TOA) and underestimate it at surface. This implies that aerosols have a potential stronger impact within the atmosphere than currently simulated.« less

  9. Spatial Variability of AERONET Aerosol Optical Properties and Satellite Data in South Korea during NASA DRAGON-Asia Campaign.

    PubMed

    Lee, Hyung Joo; Son, Youn-Suk

    2016-04-05

    We investigated spatial variability in aerosol optical properties, including aerosol optical depth (AOD), fine-mode fraction (FMF), and single scattering albedo (SSA), observed at 21 Aerosol Robotic Network (AERONET) sites and satellite remote sensing data in South Korea during the spring of 2012. These dense AERONET networks established in a National Aeronautics and Space Administration (NASA) field campaign enabled us to examine the spatially detailed aerosol size distribution and composition as well as aerosol levels. The springtime particle air quality was characterized by high background aerosol levels and high contributions of coarse-mode aerosols to total aerosols. We found that between-site correlations and coefficient of divergence for AOD and FMF strongly relied on the distance between sites, particularly in the south-north direction. Higher AOD was related to higher population density and lower distance from highways, and the aerosol size distribution and composition reflected source-specific characteristics. The ratios of satellite NO2 to AOD, which indicate the relative contributions of local combustion sources to aerosol levels, represented higher local contributions in metropolitan Seoul and Pusan. Our study demonstrates that the aerosol levels were determined by both local and regional pollution and that the relative contributions of these pollutions to aerosols generated spatial heterogeneity in the particle air quality.

  10. Optical Properties of Aerosols from Long Term Ground-Based Aeronet Measurements

    NASA Technical Reports Server (NTRS)

    Holben, B. N.; Tanre, D.; Smirnov, A.; Eck, T. F.; Slutsker, I.; Dubovik, O.; Lavenu, F.; Abuhassen, N.; Chatenet, B.

    1999-01-01

    AERONET is an optical ground-based aerosol monitoring network and data archive supported by NASA's Earth Observing System and expanded by federation with many non-NASA institutions including AEROCAN (AERONET CANada) and PHOTON (PHOtometrie pour le Traiteinent Operatonnel de Normalisation Satellitaire). The network hardware consists of identical automatic sun-sky scanning spectral radiometers owned by national agencies and universities purchased for their own monitoring and research objectives. Data are transmitted hourly through the data collection system (DCS) on board the geostationary meteorological satellites GMS, GOES and METEOSAT and received in a common archive for daily processing utilizing a peer reviewed series of algorithms thus imposing a standardization and quality control of the product data base. Data from this collaboration provides globally distributed near real time observations of aerosol spectral optical depths, aerosol size distributions, and precipitable water in diverse aerosol regimes. Access to the AERONET data base has shifted from the interactive program 'demonstrat' (reserved for PI's) to the AERONET homepage allowing faster access and greater development for GIS object oriented retrievals and analysis with companion geocoded data sets from satellites, LIDAR and solar flux measurements for example. We feel that a significant yet under utilized component of the AERONET data base are inversion products made from hourly principal plane and almucanter measurements. The current inversions have been shown to retrieve aerosol volume size distributions. A significant enhancement to the inversion code has been developed and is presented in these proceedings.

  11. Validation of Satellite Aerosol Retrievals from AERONET Ground-Based Measurements

    NASA Technical Reports Server (NTRS)

    Holben, Brent; Remer, Lorraine; Torres, Omar; Zhao, Tom; Smith, David E. (Technical Monitor)

    2001-01-01

    Accurate and comprehensive assessment of the parameters that control key atmospheric and biospheric processes including assessment of anthropogenic effects on climate change is a fundamental measurement objective of NASA's EOS program (King and Greenstone, 1999). Satellite assessment programs and associated global climate models require validation and additional parameterization with frequent reliable ground-based observations. A critical and highly uncertain element of the measurement program is characterization of tropospheric aerosols requiring basic observations of aerosols optical and microphysical properties. Unfortunately as yet we do not know the aerosol burden man is contributing to the atmosphere and thus we will have no definitive measure of change for the future. This lack of aerosol assessment is the impetus for some of the EOS measurement activities (Kaufman et al., 1997; King et al., 1999) and the formation of the AERONET program (Holben et al., 1998). The goals of the AERONET program are to develop long term monitoring at globally distributed sites providing critical data for multiannual trend changes in aerosol loading and optical properties with the specific goal of providing a data base for validation of satellite derived aerosol optical properties. The AERONET program has evolved into an international federated network of approximately 100 ground-based remote sensing monitoring stations to characterize the optical and microphysical properties of aerosols.

  12. Evaluation of climate model aerosol seasonal and spatial variability over Africa using AERONET

    NASA Astrophysics Data System (ADS)

    Horowitz, Hannah M.; Garland, Rebecca M.; Thatcher, Marcus; Landman, Willem A.; Dedekind, Zane; van der Merwe, Jacobus; Engelbrecht, Francois A.

    2017-11-01

    The sensitivity of climate models to the characterization of African aerosol particles is poorly understood. Africa is a major source of dust and biomass burning aerosols and this represents an important research gap in understanding the impact of aerosols on radiative forcing of the climate system. Here we evaluate the current representation of aerosol particles in the Conformal Cubic Atmospheric Model (CCAM) with ground-based remote retrievals across Africa, and additionally provide an analysis of observed aerosol optical depth at 550 nm (AOD550 nm) and Ångström exponent data from 34 Aerosol Robotic Network (AERONET) sites. Analysis of the 34 long-term AERONET sites confirms the importance of dust and biomass burning emissions to the seasonal cycle and magnitude of AOD550 nm across the continent and the transport of these emissions to regions outside of the continent. In general, CCAM captures the seasonality of the AERONET data across the continent. The magnitude of modeled and observed multiyear monthly average AOD550 nm overlap within ±1 standard deviation of each other for at least 7 months at all sites except the Réunion St Denis Island site (Réunion St. Denis). The timing of modeled peak AOD550 nm in southern Africa occurs 1 month prior to the observed peak, which does not align with the timing of maximum fire counts in the region. For the western and northern African sites, it is evident that CCAM currently overestimates dust in some regions while others (e.g., the Arabian Peninsula) are better characterized. This may be due to overestimated dust lifetime, or that the characterization of the soil for these areas needs to be updated with local information. The CCAM simulated AOD550 nm for the global domain is within the spread of previously published results from CMIP5 and AeroCom experiments for black carbon, organic carbon, and sulfate aerosols. The model's performance provides confidence for using the model to estimate large-scale regional impacts

  13. MPL-Net Measurements of Aerosol and Cloud Vertical Distributions at Co-Located AERONET Sites

    NASA Technical Reports Server (NTRS)

    Welton, Ellsworth J.; Campbell, James R.; Berkoff, Timothy A.; Spinhirne, James D.; Tsay, Si-Chee; Holben, Brent; Starr, David OC. (Technical Monitor)

    2002-01-01

    In the early 1990s, the first small, eye-safe, and autonomous lidar system was developed, the Micropulse Lidar (MPL). The MPL acquires signal profiles of backscattered laser light from aerosols and clouds. The signals are analyzed to yield multiple layer heights, optical depths of each layer, average extinction-to-backscatter ratios for each layer, and profiles of extinction in each layer. In 2000, several MPL sites were organized into a coordinated network, called MPL-Net, by the Cloud and Aerosol Lidar Group at NASA Goddard Space Flight Center (GSFC) using funding provided by the NASA Earth Observing System. tn addition to the funding provided by NASA EOS, the NASA CERES Ground Validation Group supplied four MPL systems to the project, and the NASA TOMS group contributed their MPL for work at GSFC. The Atmospheric Radiation Measurement Program (ARM) also agreed to make their data available to the MPL-Net project for processing. In addition to the initial NASA and ARM operated sites, several other independent research groups have also expressed interest in joining the network using their own instruments. Finally, a limited amount of EOS funding was set aside to participate in various field experiments each year. The NASA Sensor Intercomparison and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) project also provides funds to deploy their MPL during ocean research cruises. All together, the MPL-Net project has participated in four major field experiments since 2000. Most MPL-Net sites and field experiment locations are also co-located with sunphotometers in the NASA Aerosol Robotic Network. (AERONET). Therefore, at these locations data is collected on both aerosol and cloud vertical structure as well as column optical depth and sky radiance. Real-time data products are now available from most MPL-Net sites. Our real-time products are generated at times of AERONET aerosol optical depth (AOD) measurements. The AERONET AOD is used as input to our

  14. Discerning the pre-monsoon urban atmosphere aerosol characteristic and its potential source type remotely sensed by AERONET over the Bengal Gangetic plain.

    PubMed

    Priyadharshini, Babu; Verma, Shubha; Giles, David M; Holben, Brent N

    2018-05-26

    In the present study, we evaluated the pre-monsoon urban atmosphere (UA) aerosol characteristics remotely sensed by Aerosol Robotic Network (AERONET) over the Bengal Gangetic plain (BGP) at Kolkata (KOL) and their implication in potential source types and spatiotemporal features. About 70% of the AERONET-sensed aerosol optical depth at 0.50 μ m, AOD 0.5 (Angstrom exponent, α at 0.44-0.87 μ m) during the pre-monsoon period (February to June) was greater than 0.50 (≤ 1); the pre-monsoon mean of AOD 0.5 (α) was 0.73 (0.83) which was found being slightly higher (lower) than nearby AERONET stations (Dhaka/Bhola) located over the eastern Ganges basin. The volume geometric mean radius for the fine mode (FM) (coarse mode, CM) UA aerosol from AERONET retrievals was estimated to be 0.14-0.17 (2.24-2.75) μ m. The spectral distribution of the monthly mean of UA aerosol single-scattering albedo (SSA) exhibited an increasing trend with an increase in wavelength throughout all wavelengths during April, unlike the rest of the pre-monsoon months. Investigation of aerosol types indicated the pre-dominance of dust during April and a mixture of urban/open burning with mixed desert dust during the rest of the pre-monsoon months. Potential aerosol source fields were identified over the Indo-Gangetic Plain (IGP), east coast, northwestern India, and oceanic regions; these were estimated at elevated layers of atmosphere during April and May but that at surface layers during February and June. Comparison of aerosol characteristics over the BGP (at Kolkata, KOL) with that at six other coincident AERONET sites over India revealed mean AOD at KOL being 11 to 91% higher than the rest of the AERONET stations, with the relative increase at KOL being the highest during March; this was attributed to persistent high values of both FM and CM AOD unlike the rest of the stations. The monthly mean of SSA was the lowest at KOL among AERONET stations, during February and March. Comparison of the

  15. Validation and Expected Error Estimation of Suomi-NNP VIIRS Aerosol Optical Thickness and Angstrom Exponent with AERONET

    NASA Technical Reports Server (NTRS)

    Huang, Jingfeng; Kondragunta, Shobha; Laszlo, Istvan; Liu, Hongqing; Remer, Lorraine A.; Zhang, Hai; Superczynski, Stephen; Ciren, Pubu; Holben, Brent N.; Petrenko, Maksym

    2016-01-01

    The new-generation polar-orbiting operational environmental sensor, the Visible Infrared Imaging Radiometer Suite (VIIRS) on board the Suomi National Polar-orbiting Partnership (S-NPP) satellite, provides critical daily global aerosol observations. As older satellite sensors age out, the VIIRS aerosol product will become the primary observational source for global assessments of aerosol emission and transport, aerosol meteorological and climatic effects, air quality monitoring, and public health. To prove their validity and to assess their maturity level, the VIIRS aerosol products were compared to the spatiotemporally matched Aerosol Robotic Network (AERONET)measurements. Over land, the VIIRS aerosol optical thickness (AOT) environmental data record (EDR) exhibits an overall global bias against AERONET of 0.0008 with root-mean-square error(RMSE) of the biases as 0.12. Over ocean, the mean bias of VIIRS AOT EDR is 0.02 with RMSE of the biases as 0.06.The mean bias of VIIRS Ocean Angstrom Exponent (AE) EDR is 0.12 with RMSE of the biases as 0.57. The matchups between each product and its AERONET counterpart allow estimates of expected error in each case. Increased uncertainty in the VIIRS AOT and AE products is linked to specific regions, seasons, surface characteristics, and aerosol types, suggesting opportunity for future modifications as understanding of algorithm assumptions improves. Based on the assessment, the VIIRS AOT EDR over land reached Validated maturity beginning 23 January 2013; the AOT EDR and AE EDR over ocean reached Validated maturity beginning 2 May 2012, excluding the processing error period 15 October to 27 November 2012. These findings demonstrate the integrity and usefulness of the VIIRS aerosol products that will transition from S-NPP to future polar-orbiting environmental satellites in the decades to come and become the standard global aerosol data set as the previous generations missions come to an end.

  16. Aerosol Optical Properties in Southeast Asia From AERONET Observations

    NASA Astrophysics Data System (ADS)

    Eck, T. F.; Holben, B. N.; Boonjawat, J.; Le, H. V.; Schafer, J. S.; Reid, J. S.; Dubovik, O.; Smirnov, A.

    2003-12-01

    There is little published data available on measured optical properties of aerosols in the Southeast Asian region. The AERONET project and collaborators commenced monitoring of aerosol optical properties in February 2003 at four sites in Thailand and two sites in Viet Nam to measure the primarily anthropogenic aerosols generated by biomass burning and fossil fuel combustion/ industrial emissions. Automatic sun/sky radiometers at each site measured spectral aerosol optical depth in 7 wavelengths from 340 to 1020 nm and combined with directional radiances in the almucantar, retrievals were made of spectral single scattering albedo and aerosol size distributions. Angstrom exponents, size distributions and spectral single scattering albedo of primarily biomass burning aerosols at rural sites are compared to measurements made at AERONET sites in other major biomass burning regions in tropical southern Africa, South America, and in boreal forest regions. Additionally, the aerosol single scattering albedo and size distributions measured in Bangkok, Thailand are compared with those measured at other urban sites globally. The influences of aerosols originating from other regions outside of Southeast Asia are analyzed using trajectory analyses. Specifically, cases of aerosol transport and mixing from Southern China and from India are presented.

  17. Aerosol climatology: on the discrimination of aerosol types over four AERONET sites

    NASA Astrophysics Data System (ADS)

    Kaskaoutis, D. G.; Kambezidis, H. D.; Hatzianastassiou, N.; Kosmopoulos, P. G.; Badarinath, K. V. S.

    2007-05-01

    Aerosols have a significant regional and global effect on climate, which is about equal in magnitude but opposite in sign to that of greenhouse gases. Nevertheless, the aerosol climatic effect changes strongly with space and time because of the large variability of aerosol physical and optical properties, which is due to the variety of their sources, which are natural, and anthropogenic, and their dependence on the prevailing meteorological and atmospheric conditions. Characterization of aerosol properties is of major importance for the assessment of their role for climate. In the present study, 3-year AErosol RObotic NETwork (AERONET) data from ground-based sunphotometer measurements are used to establish climatologies of aerosol optical depth (AOD) and Ångström exponent α in several key locations of the world, characteristic of different atmospheric environments. Using daily mean values of AOD at 500 nm (AOD500) and Ångström exponent at the pair of wavelengths 440 and 870 nm (α 440-870), a discrimination of the different aerosol types occurring in each location is achieved. For this discrimination, appropriate thresholds for AOD500 and α 440-870 are applied. The discrimination of aerosol types in each location is made on an annual and seasonal basis. It is shown that a single aerosol type in a given location can exist only under specific conditions (e.g. intense forest fires or dust outbreaks), while the presence of well-mixed aerosols is the accustomed situation. Background clean aerosol conditions (AOD500<0.06) are mostly found over remote oceanic surfaces occurring on average in ~56.7% of total cases, while this situation is quite rare over land (occurrence of 3.8-13.7%). Our analysis indicates that these percentages change significantly from season to season. The spectral dependence of AOD exhibits large differences between the examined locations, while it exhibits a strong annual cycle.

  18. Aeronet-based Microphysical and Optical Properties of Smoke-dominated Aerosol near Source Regions and Transported over Oceans, and Implications for Satellite Retrievals of Aerosol Optical Depth

    NASA Technical Reports Server (NTRS)

    Sayer, A. M.; Hsu, N. C.; Eck, T. F.; Smirnov, A.; Holben, B. N.

    2013-01-01

    Smoke aerosols from biomass burning are an important component of the global aerosol cycle. Analysis of Aerosol Robotic Network (AERONET) retrievals of size distribution and refractive index reveals variety between biomass burning aerosols in different global source regions, in terms of aerosol particle size and single scatter albedo (SSA). Case studies of smoke transported to coastal/island AERONET sites also mostly lie within the range of variability at near-source sites. Two broad families of aerosol properties are found, corresponding to sites dominated by boreal forest burning (larger, broader fine mode, with midvisible SSA 0.95), and those influenced by grass, shrub, or crop burning with additional forest contributions (smaller, narrower particles with SSA 0.88-0.9 in the midvisible). The strongest absorption is seen in southern African savanna at Mongu (Zambia), with average SSA 0.85 in the midvisible. These can serve as candidate sets of aerosol microphysicaloptical properties for use in satellite aerosol optical depth (AOD) retrieval algorithms. The models presently adopted by these algorithms over ocean are often insufficiently absorbing to represent these biomass burning aerosols. A corollary of this is an underestimate of AOD in smoke outflow regions, which has important consequences for applications of these satellite datasets.

  19. Fog and Cloud Induced Aerosol Modification Observed by AERONET

    NASA Technical Reports Server (NTRS)

    Eck, T. F.; Holben, B. N.; Reid, J. S.; Giles, D. M.; Rivas, M. A.; Singh, R. P.; Tripathi, S. N.; Bruegge, C. J.; Platnick, S. E.; Arnold, G. T.; hide

    2011-01-01

    Large fine mode (sub-micron radius) dominated aerosols in size distributions retrieved from AERONET have been observed after fog or low-altitude cloud dissipation events. These column-integrated size distributions have been obtained at several sites in many regions of the world, typically after evaporation of low altitude cloud such as stratocumulus or fog. Retrievals with cloud processed aerosol are sometimes bimodal in the accumulation mode with the larger size mode often approx.0.4 - 0.5 microns radius (volume distribution); the smaller mode typically approx.0.12 to aprrox.0.20 microns may be interstitial aerosol that were not modified by incorporation in droplets and/or aerosol that are less hygroscopic in nature. Bimodal accumulation mode size distributions have often been observed from in situ measurements of aerosols that have interacted with clouds, and AERONET size distribution retrievals made after dissipation of cloud or fog are in good agreement with particle sizes measured by in situ techniques for cloud-processed aerosols. Aerosols of this type and large size range (in lower concentrations) may also be formed by cloud processing in partly cloudy conditions and may contribute to the shoulder of larger size particles in the accumulation mode retrievals, especially in regions where sulfate and other soluble aerosol are a significant component of the total aerosol composition. Observed trends of increasing aerosol optical depth (AOD) as fine mode radius increased suggests higher AOD in the near cloud environment and therefore greater aerosol direct radiative forcing than typically obtained from remote sensing, due to bias towards sampling at low cloud fraction.

  20. Using the Aerosol Single Scattering Albedo and Angstrom Exponent from AERONET to Determine Aerosol Origins and Mixing States over the Indo-Gangetic Plain

    NASA Astrophysics Data System (ADS)

    Giles, D. M.; Holben, B. N.; Eck, T. F.; Sinyuk, A.; Slutsker, I.; Smirnov, A.; Schafer, J. S.; Dickerson, R. R.; Thompson, A. M.; Tripathi, S. N.; Singh, R. P.; Ghauri, B.

    2012-12-01

    Aerosol mixtures—whether dominated by dust, carbon, sulfates, nitrates, sea salt, or mixtures of them—complicate the retrieval of remotely sensed aerosol properties from satellites and possibly increase the uncertainty of the aerosol radiative impact on climate. Major aerosol source regions in South Asia include the Thar Desert as well as agricultural lands, Himalayan foothills, and large urban centers in and near the Indo-Gangetic Plain (IGP). Over India and Pakistan, seasonal changes in meteorology, including the monsoon (June-September), significantly affect the transport, lifetime, and type of aerosols. Strong monsoonal winds can promote long range transport of dust resulting in mixtures of dust and carbonaceous aerosols, while more stagnant synoptic conditions (e.g., November-January) can prolong the occurrence of urban/industrial pollution, biomass burning smoke, or mixtures of them over the IGP. Aerosol Robotic Network (AERONET) Sun/sky radiometer data are analyzed to show the aerosol optical depth (AOD) seasonality and aerosol dominant mixing states. The Single Scattering Albedo (SSA) and extinction Angstrom exponent (EAE) relationship has been shown to provide sound clustering of dominant aerosol types using long term AERONET site data near known source regions [Giles et al., 2012]. In this study, aerosol type partitioning using the SSA (440 nm) and EAE (440-870 nm) relationship is further developed to quantify the occurrence of Dust, Mixed (e.g., dust and carbonaceous aerosols), Urban/Industrial (U/I) pollution, and Biomass Burning (BB) smoke. Based on EAE thresholds derived from the cluster analysis (for AOD440nm>0.4), preliminary results (2001-2010) for Kanpur, India, show the overall contributions of each dominant particle type (rounded to the nearest 10%): 10% for Dust (EAE≤0.25), 60% for Mixed (0.251.25). In the IGP, BB aerosols may have varying sizes (e.g., corresponding to 1.2

  1. Improvement of Aerosol Optical Depth Retrieval from MODIS Spectral Reflectance over the Global Ocean Using New Aerosol Models Archived from AERONET Inversion Data and Tri-axial Ellipsoidal Dust Database

    NASA Technical Reports Server (NTRS)

    Lee, J.; Kim, J.; Yang, P.; Hsu, N. C.

    2012-01-01

    New over-ocean aerosol models are developed by integrating the inversion data from the Aerosol Robotic Network (AERONET) sun/sky radiometers with a database for the optical properties of tri-axial ellipsoid particles. The new aerosol models allow more accurate retrieval of aerosol optical depth (AOD) from the Moderate Resolution Imaging Spectroradiometer (MODIS) in the case of high AOD (AOD greater than 0.3). The aerosol models are categorized by using the fine-mode fraction (FMF) at 550 nm and the singlescattering albedo (SSA) at 440 nm from the AERONET inversion data to include a variety of aerosol types found around the globe. For each aerosol model, the changes in the aerosol optical properties (AOPs) as functions of AOD are considered to better represent aerosol characteristics. Comparisons of AODs between AERONET and MODIS for the period from 2003 to 2010 show that the use of the new aerosol models enhances the AOD accuracy with a Pearson coefficient of 0.93 and a regression slope of 0.99 compared to 0.92 and 0.85 calculated using the MODIS Collection 5 data. Moreover, the percentage of data within an expected error of +/-(0.03 + 0.05xAOD) is increased from 62 percent to 64 percent for overall data and from 39 percent to 51 percent for AOD greater than 0.3. Errors in the retrieved AOD are further characterized with respect to the Angstrom exponent (AE), scattering angle, SSA, and air mass factor (AMF). Due to more realistic AOPs assumptions, the new algorithm generally reduces systematic errors in the retrieved AODs compared with the current operational algorithm. In particular, the underestimation of fine-dominated AOD and the scattering angle dependence of dust-dominated AOD are significantly mitigated as results of the new algorithm's improved treatment of aerosol size distribution and dust particle nonsphericity.

  2. Reducing Multisensor Satellite Monthly Mean Aerosol Optical Depth Uncertainty: 1. Objective Assessment of Current AERONET Locations

    NASA Technical Reports Server (NTRS)

    Li, Jing; Li, Xichen; Carlson, Barbara E.; Kahn, Ralph A.; Lacis, Andrew A.; Dubovik, Oleg; Nakajima, Teruyuki

    2016-01-01

    Various space-based sensors have been designed and corresponding algorithms developed to retrieve aerosol optical depth (AOD), the very basic aerosol optical property, yet considerable disagreement still exists across these different satellite data sets. Surface-based observations aim to provide ground truth for validating satellite data; hence, their deployment locations should preferably contain as much spatial information as possible, i.e., high spatial representativeness. Using a novel Ensemble Kalman Filter (EnKF)- based approach, we objectively evaluate the spatial representativeness of current Aerosol Robotic Network (AERONET) sites. Multisensor monthly mean AOD data sets from Moderate Resolution Imaging Spectroradiometer, Multiangle Imaging Spectroradiometer, Sea-viewing Wide Field-of-view Sensor, Ozone Monitoring Instrument, and Polarization and Anisotropy of Reflectances for Atmospheric Sciences coupled with Observations from a Lidar are combined into a 605-member ensemble, and AERONET data are considered as the observations to be assimilated into this ensemble using the EnKF. The assessment is made by comparing the analysis error variance (that has been constrained by ground-based measurements), with the background error variance (based on satellite data alone). Results show that the total uncertainty is reduced by approximately 27% on average and could reach above 50% over certain places. The uncertainty reduction pattern also has distinct seasonal patterns, corresponding to the spatial distribution of seasonally varying aerosol types, such as dust in the spring for Northern Hemisphere and biomass burning in the fall for Southern Hemisphere. Dust and biomass burning sites have the highest spatial representativeness, rural and oceanic sites can also represent moderate spatial information, whereas the representativeness of urban sites is relatively localized. A spatial score ranging from 1 to 3 is assigned to each AERONET site based on the uncertainty

  3. AEROCAN, the Canadian sub-network of AERONET: Aerosol monitoring and air quality applications

    NASA Astrophysics Data System (ADS)

    Sioris, Christopher E.; Abboud, Ihab; Fioletov, Vitali E.; McLinden, Chris A.

    2017-10-01

    Previous studies have demonstrated the utility of AERONET (Aerosol Robotic Network) aerosol optical depth (AOD) data for monitoring the spatial variability of particulate matter (PM) in relatively polluted regions of the globe. AEROCAN, a Canadian sub-network of AERONET, was established 20 years ago and currently consists of twenty sites across the country. In this study, we examine whether the AEROCAN sunphotometer data provide evidence of anthropogenic contributions to ambient particulate matter concentrations in relatively clean Canadian locations. The similar weekly cycle of AOD and PM2.5 over Toronto provides insight into the impact of local pollution on observed AODs. High temporal correlations (up to r = 0.78) between daily mean AOD (or its fine-mode component) and PM2.5 are found at southern Ontario AEROCAN sites during May-August, implying that the variability in the aerosol load resides primarily in the boundary layer and that sunphotometers capture day-to-day PM2.5 variations at moderately polluted sites. The sensitivity of AEROCAN AOD data to anthropogenic surface-level aerosol enhancements is demonstrated using boundary-layer wind information for sites near sources of aerosol or its precursors. An advantage of AEROCAN relative to the Canadian in-situ National Air Pollution Surveillance (NAPS) network is the ability to detect free tropospheric aerosol enhancements, which can be large in the case of lofted forest fire smoke or desert dust. These aerosol plumes eventually descend to the surface, sometimes in populated areas, exacerbating air quality. In cases of large AOD (≥0.4), AEROCAN data are also useful in characterizing the aerosol type. The AEROCAN network includes three sites in the high Arctic, a region not sampled by the NAPS PM2.5 monitoring network. These polar sites show the importance of long-range transport and meteorology in the Arctic haze phenomenon. Also, AEROCAN sunphotometers are, by design and due to regular maintenance, the most

  4. Intercomparison of MODIS, MISR, OMI, and CALIPSO aerosol optical depth retrievals for four locations on the Indo-Gangetic plains and validation against AERONET data

    NASA Astrophysics Data System (ADS)

    Bibi, Humera; Alam, Khan; Chishtie, Farrukh; Bibi, Samina; Shahid, Imran; Blaschke, Thomas

    2015-06-01

    This study provides an intercomparison of aerosol optical depth (AOD) retrievals from satellite-based Moderate Resolution Imaging Spectroradiometer (MODIS), Multiangle Imaging Spectroradiometer (MISR), Ozone Monitoring Instrument (OMI), and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) instrumentation over Karachi, Lahore, Jaipur, and Kanpur between 2007 and 2013, with validation against AOD observations from the ground-based Aerosol Robotic Network (AERONET). Both MODIS Deep Blue (MODISDB) and MODIS Standard (MODISSTD) products were compared with the AERONET products. The MODISSTD-AERONET comparisons revealed a high degree of correlation for the four investigated sites at Karachi, Lahore, Jaipur, and Kanpur, the MODISDB-AERONET comparisons revealed even better correlations, and the MISR-AERONET comparisons also indicated strong correlations, as did the OMI-AERONET comparisons, while the CALIPSO-AERONET comparisons revealed only poor correlations due to the limited number of data points available. We also computed figures for root mean square error (RMSE), mean absolute error (MAE) and root mean bias (RMB). Using AERONET data to validate MODISSTD, MODISDB, MISR, OMI, and CALIPSO data revealed that MODISSTD data was more accurate over vegetated locations than over un-vegetated locations, while MISR data was more accurate over areas close to the ocean than over other areas. The MISR instrument performed better than the other instruments over Karachi and Kanpur, while the MODISSTD AOD retrievals were better than those from the other instruments over Lahore and Jaipur. We also computed the expected error bounds (EEBs) for both MODIS retrievals and found that MODISSTD consistently outperformed MODISDB in all of the investigated areas. High AOD values were observed by the MODISSTD, MODISDB, MISR, and OMI instruments during the summer months (April-August); these ranged from 0.32 to 0.78, possibly due to human activity and biomass burning. In

  5. Aerosol Seasonal Variations over Urban-Industrial Regions in Ukraine According to AERONET and POLDER Measurements

    NASA Technical Reports Server (NTRS)

    Milinevsky, G.; Danylevsky, V.; Bovchaliuk, V.; Bovchaliuk, A.; Goloub, Ph.; Dubovik, O.; Kabashnikov, V.; Chaikovsky, A.; Miatselskaya, N.; Mishchenko, M.; hide

    2014-01-01

    The paper presents an investigation of aerosol seasonal variations in several urban-industrial regions in Ukraine. Our analysis of seasonal variations of optical and physical aerosol parameters is based on the sun-photometer 2008-2013 data from two urban ground-based AERONET (AErosol RObotic NETwork) sites in Ukraine (Kyiv, Lugansk) as well as on satellite POLDER instrument data for urban-industrial areas in Ukraine. We also analyzed the data from one AERONET site in Belarus (Minsk) in order to compare with the Ukrainian sites. Aerosol amount and optical depth (AOD) values in the atmosphere columns over the large urbanized areas like Kyiv and Minsk have maximum values in the spring (April-May) and late summer (August), whereas minimum values are observed in late autumn. The results show that fine-mode particles are most frequently detected during the spring and late summer seasons. The analysis of the seasonal AOD variations over the urban-industrial areas in the eastern and central parts of Ukraine according to both ground-based and POLDER data exhibits the similar traits. The seasonal variation similarity in the regions denotes the resemblance in basic aerosol sources that are closely related to properties of aerosol particles. The behavior of basic aerosol parameters in the western part of Ukraine is different from eastern and central regions and shows an earlier appearance of the spring and summer AOD maxima. Spectral single-scattering albedo, complex refractive index and size distribution of aerosol particles in the atmosphere column over Kyiv have different behavior for warm (April-October) and cold seasons. The seasonal features of fine and coarse aerosol particle behavior over the Kyiv site were analyzed. A prevailing influence of the fine-mode particles on the optical properties of the aerosol layer over the region has been established. The back-trajectory and cluster analysis techniques were applied to study the seasonal back trajectories and prevailing

  6. Assessment of aerosol optics, microphysics, and transport process of biomass-burning haze over northern SE Asia: 7-SEAS AERONET observations

    NASA Astrophysics Data System (ADS)

    Wang, S.; Giles, D. M.; Eck, T. F.; Lin, N.; Tsay, S.; Holben, B. N.

    2013-12-01

    Initiated in 2007, the Seven South East Asian Studies (7-SEAS) is aimed to facilitate an interdisciplinary research on the aerosol environment in SE Asia (SEA) as a whole, promote international collaboration, and further enhance scientific understanding of the impact of biomass burning on clouds, atmospheric radiation, hydrological cycle, and region climates. One of the key measurements proposed in the 7-SEAS is the NASA/AERONET (AErosol RObotic NETwork) observation, which provides helpful information on columnar aerosol optical properties and allows us consistently to examine biomass-burning aerosols across northern SEA from ground-based remote-sensing point of view. In this presentation, we will focus on the two 7-SEAS field deployments, i.e. the 2012 Son La Experiment and the 2013 BASELInE (Biomass-burning Aerosols & Stratocumulus Environment: Lifecycles and Interactions Experiment). We analyze the daytime variation of aerosol by using consistent measurements from 15 of AERONET sites over Indochina, the South China Sea, and Taiwan. Spatiotemporal characteristics of aerosol optical properties (e.g., aerosol optical depth (AOD), fine/coarse mode AOD, single-scattering albedo, asymmetry factor) will be discussed. Strong diurnal variation of aerosol optical properties was observed to be attributed to planetary boundary layer (PBL) dynamics. A comparison between aerosol loading (i.e. AOD) and surface PM2.5 concentration will be presented. Our results demonstrate that smoke aerosols emitted from agriculture burning that under certain meteorological conditions can degrade regional air quality 3000 km from the source region, with additional implications for aerosol radiative forcing and regional climate change over northern SE Asia.

  7. Observations of Aerosol Optical Properties over 15 AERONET Sites in Southeast Asia

    NASA Astrophysics Data System (ADS)

    Chan, J. D.; Lagrosas, N.; Uy, S. N.; Holben, B. N.; Dorado, S.; Tobias, V., Jr.; Anh, N. X.; Po-Hsiung, L.; Janjai, S.; Salinas Cortijo, S. V.; Liew, S. C.; Lim, H. S.; Lestari, P.

    2014-12-01

    Mean column-integrated optical properties from ground sun photometers of the Aerosol Robotic Network (AERONET) are studied to provide an overview of the characteristics of aerosols over the region as part of the 7 Southeast Asian Studies (7-SEAS) mission. The 15 AERONET sites with the most available level 2 data products are selected from Thailand (Chiang Mai, Mukdahan, Songkhla and Silpakorn University), Malaysia (University Sains Malaysia), Laos (Vientiane), Vietnam (Bac Giang, Bac Lieu and Nha Trang), Taiwan (National Cheng Kung University and Central Weather Bureau Taipei), Singapore, Indonesia (Bandung) and the Philippines (Manila Observatory and Notre Dame of Marbel University). For all 15 sites, high angstrom exponent values (α>1) have been observed. Chiang Mai and USM have the highest mean Angstrom exponent indicating the dominance of fine particles that can be ascribed to biomass burning and urbanization. Sites with the lowest Angstrom exponent values include Bac Lieu (α=1.047) and Manila Observatory (α=1.021). From the average lognormal size distribution curves, Songkhla and NDMU show the smallest annual variation in the fine mode region, indicating the observed fine aerosols are local to the sites. The rest of the sites show high variation which could be due to large scale forcings (e.g., monsoons and biomass burnings) that affect aerosol properties in these sites. Both high and low single scattering albedo at 440 nm (ω0440) values are found in sites located in major urban areas. Silpakorn University, Manila Observatory and Vientiane have all mean ω0440 < 0.90. Singapore and CWB Taipei have ω0440 > 0.94. The discrepancy in ω0 suggests different types of major emission sources present in urban areas. The absorptivity of urban aerosols can vary depending on the strength of traffic emissions, types of fuel combusted and automobile engines used, and the effect of biomass burning aerosols during the dry season. High aerosol optical depth values (τa550

  8. Dynamics and Properties of Global Aerosol using MODIS, AERONET and GOCART Model

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram; Chin, Mian; Reme, Lorraine; Tanre, Didier; Mattoo, Shana

    2002-01-01

    Recently produced daily Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol data for the whole year of 2001 are used to show the concentration and dynamics of aerosol over ocean and large parts of the continents. The data were validated against the Aerosol Robotic Network (AERONET) measurements over land and ocean in a special issue in GRL now in press. Monthly averages and a movie based on the daily data are produced and used to demonstrate the spatial and temporal evolution of aerosol. The MODIS wide spectral range is used to distinguish fine smoke and pollution aerosol from coarse dust and salt. The aerosol is observed above ocean and land. The movie produced from the MODIS data provides a new dimension to aerosol observations by showing the dynamics of the system. For example in February smoke and dust emitted from the Sahel and West Africa is shown to travel to the North-East Atlantic. In April heavy dust and pollution from East Asia is shown to travel to North America. In May-June pollution and dust play a dynamical dance in the Arabian Sea and Bay of Bengal. In Aug-September smoke from South Africa and South America is shown to pulsate in tandem and to periodically to be transported to the otherwise pristine Southern part of the Southern Hemisphere. The MODIS data are compared with the Georgia Tech/Goddard Global Ozone Chemistry Aerosol Radiation Transport (GOCART) model to test and adjust source and sink strengths in the model and to study the effect of clouds on the representation of the satellite data.

  9. Aerosol Daytime Variations over North and South America Derived from Multiyear AERONET Measurements

    NASA Technical Reports Server (NTRS)

    Zhang, Yan; Yu, Hongbin; Eck, Tom F.; Smirnov, Alexander; Chin, Mian; Remer, Lorraine A.; Bian, Huisheng; Tan, Qian; Levy, Roberrt; Holben, Brent N.

    2012-01-01

    This study analyzes the daytime variation of aerosol with seasonal distinction by using multi-year measurements from 54 of the Aerosol Robotic Network (AERONET) sites over North America, South America, and islands in surrounding oceans. The analysis shows a wide range of daily variability of aerosol optical depth (AOO) and Angstrom exponent depending on location and season. Possible reasons for daytime variations are given. The largest AOO daytime variation range at 440 nm, up to 75%, occurs in Mexico City, with maximum AOO in the afternoon. Large AOO daily variations are also observed in the polluted mid-Atlantic U.S. and U.S. West Coast with maximum AOO occurring in the afternoon in the mid-Atlantic U.S., but in the morning in the West Coast. In South American sites during the biomass burning season (August to October), maximum AOO generally occurs in the afternoon. But the daytime variation becomes smaller when sites are influenced more by long-range transported smoke than by local burning. Islands show minimum AOO in the morning and maximum AOO in the afternoon. The diverse patterns of aerosol daytime variation suggest that geostationary satellite measurements would be invaluable for characterizing aerosol temporal variations on regional and continental scales. In particular, simultaneous measurements of aerosols and aerosol precursors from a geostationary satellite would greatly aid in understanding the evolution of aerosol as determined by emissions, chemical transformations, and transport processes.

  10. Reduction of Aerosol Absorption in Beijing Since 2007 from MODIS and AERONET

    NASA Technical Reports Server (NTRS)

    Lyapustin, A.; Smirnov, A.; Holben, B.; Chin, M.; Streets, D. G.; Lu, Z.; Kahn, R.; Slutsker, I.; Laszlo, I.; Kondragunta, S.; hide

    2011-01-01

    An analysis of the time series of MODIS-based and AERONET aerosol records over Beijing reveals two distinct periods, before and after 2007. The MODIS data from both the Terra and Aqua satellites were processed with the new Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm. A comparison of MAIAC and AERONET AOT shows that whereas MAIAC consistently underestimated peak AOT values by 10-20% in the prior period, the bias mostly disappears after mid-2007. Independent analysis of the AERONET dataset reveals little or no change in the effective radii of the fine and coarse fractions and of the Angstrom exponent. At the same time, it shows an increasing trend in the single scattering albedo, by approx.0.02 in 9 years. As MAIAC was using the same aerosol model for the entire 2000-2010 period, the decrease in AOT bias after 2007 can be explained only by a corresponding decrease of aerosol absorption caused by a reduction in local black carbon emissions. The observed changes correlate in time with the Chinese government's broad measures to improve air quality in Beijing during preparations for the Summer Olympics of 2008.

  11. Aerosol climatology using a tunable spectral variability cloud screening of AERONET data

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.; Gobbi, Gian Paolo; Koren, Ilan

    2005-01-01

    Can cloud screening of an aerosol data set, affect the aerosol optical thickness (AOT) climatology? Aerosols, humidity and clouds are correlated. Therefore, rigorous cloud screening can systematically bias towards less cloudy conditions, underestimating the average AOT. Here, using AERONET data we show that systematic rejection of variable atmospheric optical conditions can generate such bias in the average AOT. Therefore we recommend (1) to introduce more powerful spectral variability cloud screening and (2) to change the philosophy behind present aerosol climatologies: Instead of systematically rejecting all cloud contaminations, we suggest to intentionally allow the presence of cloud contamination, estimate the statistical impact of the contamination and correct for it. The analysis, applied to 10 AERONET stations with approx. 4 years of data, shows almost no change for Rome (Italy), but up to a change in AOT of 0.12 in Beijing (PRC). Similar technique may be explored for satellite analysis, e.g. MODIS.

  12. Detection of a gas flaring signature in the AERONET optical properties of aerosols at a tropical station in West Africa

    NASA Astrophysics Data System (ADS)

    Fawole, Olusegun G.; Cai, Xiaoming; Levine, James G.; Pinker, Rachel T.; MacKenzie, A. R.

    2016-12-01

    The West African region, with its peculiar climate and atmospheric dynamics, is a prominent source of aerosols. Reliable and long-term in situ measurements of aerosol properties are not readily available across the region. In this study, Version 2 Level 1.5 Aerosol Robotic Network (AERONET) data were used to study the absorption and size distribution properties of aerosols from dominant sources identified by trajectory analysis. The trajectory analysis was used to define four sources of aerosols over a 10 year period. Sorting the AERONET aerosol retrievals by these putative sources, the hypothesis that there exists an optically distinct gas flaring signal was tested. Dominance of each source cluster varies with season: desert-dust (DD) and biomass burning (BB) aerosols are dominant in months prior to the West African Monsoon (WAM); urban (UB) and gas flaring (GF) aerosol are dominant during the WAM months. BB aerosol, with single scattering albedo (SSA) at 675 nm value of 0.86 ± 0.03 and GF aerosol with SSA (675 nm) value of 0.9 ± 0.07, is the most absorbing of the aerosol categories. The range of Absorption Angstr&öm Exponent (AAE) for DD, BB, UB and GF classes are 1.99 ± 0.35, 1.45 ± 0.26, 1.21 ± 0.38 and 0.98 ± 0.25, respectively, indicating different aerosol composition for each source. The AAE (440-870 nm) and Angstr&öm Exponent (AE) (440-870 nm) relationships further show the spread and overlap of the variation of these optical and microphysical properties, presumably due in part to similarity in the sources of aerosols and in part, due to mixing of air parcels from different sources en route to the measurement site.

  13. Evidence of a Weakly Absorbing Intermediate Mode of Aerosols in AERONET Data from Saharan and Sahelian Sites

    NASA Technical Reports Server (NTRS)

    Gianelli, Scott M.; Lacis, Andrew A.; Carlson, Barbara E.; Hameed, Sultan

    2013-01-01

    Accurate retrievals of aerosol size distribution are necessary to estimate aerosols' impact on climate and human health. The inversions of the Aerosol Robotic Network (AERONET) usually retrieve bimodal distributions. However, when the inversion is applied to Saharan and Sahelian dust, an additional mode of intermediate size between the coarse and fine modes is sometimes seen. This mode explains peculiarities in the behavior of the Angstrom exponent, along with the fine mode fraction retrieved using the spectral deconvolution algorithm, observed in a March 2006 dust storm. For this study, 15 AERONET sites in northern Africa and on the Atlantic are examined to determine the frequency and properties of the intermediate mode. The mode is observed most frequently at Ilorin in Nigeria. It is also observed at Capo Verde and multiple sites located within the Sahel but much less frequently at sites in the northern Sahara and the Canary Islands. The presence of the intermediate mode coincides with increases in Angstrom exponent, fine mode fraction, single-scattering albedo, and to a lesser extent percent sphericity. The Angstrom exponent decreases with increasing optical depth at most sites when the intermediate mode is present, but the fine mode fraction does not. Single-scattering albedo does not steadily decrease with fine mode fraction when the intermediate mode is present, as it does in typical mixtures of dust and biomass-burning aerosols. Continued investigation is needed to further define the intermediate mode's properties, determine why it differs from most Saharan dust, and identify its climate and health effects.

  14. An Evaluation of MODIS-Retrieved Aerosol Optical Depth over a Mountainous AERONET Site in the Southeastern US

    NASA Technical Reports Server (NTRS)

    Sherman, James P.; Gupta, Pawan; Levy, Robert C.; Sherman, Peter J.

    2016-01-01

    The literature shows that aerosol optical depth (AOD) derived from the MODIS Collection 5 (C5) dark target algorithm has been extensively validated by spatiotemporal collocation with AERONET sites on both global and regional scales.Although generally comparing well over the eastern US region, poor performance over mountains in other regions indicate the need to evaluate the MODIS product over a mountain site. This study compares MODIS C5 AOD at 550nm to AOD measured at the Appalachian State University AERONET site in Boone, NC over 30 months between August 2010 and September 2013. For the combined Aqua and Terra datasets, although more than 70% of the 500 MODIS AOD measurements agree with collocated AERONET AOD to within error envelope of +/- (0.05 + 15%), MODIS tends to have a low bias (0.02-0.03). The agreement between MODIS and AERONET AOD does not depend on MODIS quality assurance confidence (QAC) value. However, when stratified by satellite, MODIS-Terra data does not perform as well as Aqua, with especially poor correlation (r = 0.39) for low aerosol loading conditions (AERONET AOD less than 0.15).Linear regressions between Terra and AERONET possess statistically-different slopes for AOD < 0.15 and AOD > or = 0.15. AERONET AOD measured only during MODIS overpass hours is highly correlated with daily-averaged AERONET AOD. MODIS monthly-averaged AOD also tracks that of AERONET over the study period. These results indicate that MODIS is sensitive to the day-to-day variability, as well as the annual cycle of AOD over the Appalachian State AERONET site. The complex topography and high seasonality in AOD and vegetation indices allow us to specifically evaluate MODIS dark target algorithm surface albedo and aerosol model assumptions at a regionally-representative SE US mountain site.

  15. A Critical Examination of Spatial Biases Between MODIS and MISR Aerosol Products - Application for Potential AERONET Deployment

    NASA Technical Reports Server (NTRS)

    Shi, Y.; Zhang, J.; Reid, J. S.; Hyer, E. J.; Eck, T. F.; Holben, B. N.; Kahn, R. A.

    2011-01-01

    AErosol RObotic NETwork (AERONET) data are the primary benchmark for evaluating satellite-retrieved aerosol properties. However, despite its extensive coverage, the representativeness of the AERONET data is rarely discussed. Indeed, many studies have shown that satellite retrieval biases have a significant degree of spatial correlation that may be problematic for higher-level processes or inverse-emissions-modeling studies. To consider these issues and evaluate relative performance in regions of few surface observations, cross-comparisons between the Aerosol Optical Depth (AOD) products of operational MODIS Collection 5.1 Dark Target (DT) and operational MODIS Collection 5.1 Deep Blue (DB) with MISR version 22 were conducted. Through such comparisons, we can observe coherent spatial features of the AOD bias while side-stepping the full analysis required for determining when or where either retrieval is more correct. We identify regions where MODIS to MISR AOD ratios were found to be above 1.4 and below 0.7. Regions where lower boundary condition uncertainty is likely to be a dominant factor include portions of Western North America, the Andes mountains, Saharan Africa, the Arabian Peninsula, and Central Asia. Similarly, microphysical biases may be an issue in South America, and specific parts of Southern Africa, India Asia, East Asia, and Indonesia. These results help identify high-priority locations for possible future deployments of both in situ and ground based remote sensing measurements. The Supplement includes a km1 file.

  16. The NASA Micro-Pulse Lidar Network (MPLNET): Co-location of Lidars with AERONET

    NASA Technical Reports Server (NTRS)

    Welton, Ellsworth J.; Campbell, James R.; Berkoff, Timothy A.; Spinhirne, James D.; Holben, Brent; Tsay, Si-Chee

    2004-01-01

    We present the formation of a global-ground based eye-safe lidar network, the NASA Micro-Pulse Lidar Network (MPLNET). The aim of MPLNET is to acquire long-term observations of aerosol and cloud vertical profiles at unique geographic sites within the NASA Aerosol Robotic Network (AERONET). Network growth follows a federated approach, pioneered by AERONET, wherein independent research groups may join MPLNET with their own instrument and site. MPLNET utilizes standard instrumentation and data processing algorithms for efficient network operations and direct comparison of data between each site. The micro-pulse lidar is eye-safe, compact, and commercially available, and most easily allows growth of the network without sacrificing standardized instrumentation gods. Red-time data products (next-day) are available, and include Level 1 daily lidar signal images from the surface to -2Okm, and Level 1.5 aerosol extinction provides at times co-incident with AERONET observations. Testing of our quality assured aerosol extinction products, Level 2, is near completion and data will soon be available. Level 3 products, continuous daylight aerosol extinction profiles, are under development and testing has begun. An overview of h4PL" will be presented. Successful methods of merging standardized lidar operations with AERONET will also be discussed, with the first 4 years of MPLNET results serving as an example.

  17. Validation of MODIS Aerosol Retrieval Over Ocean

    NASA Technical Reports Server (NTRS)

    Remer, Lorraine A.; Tanre, Didier; Kaufman, Yoram J.; Ichoku, Charles; Mattoo, Shana; Levy, Robert; Chu, D. Allen; Holben, Brent N.; Dubovik, Oleg; Ahmad, Ziauddin; hide

    2001-01-01

    The MODerate resolution Imaging Spectroradiometer (MODIS) algorithm for determining aerosol characteristics over ocean is performing with remarkable accuracy. A two-month data set of MODIS retrievals co-located with observations from the AErosol RObotic NETwork (AERONET) ground-based sunphotometer network provides the necessary validation. Spectral radiation measured by MODIS (in the range 550 - 2100 nm) is used to retrieve the aerosol optical thickness, effective particle radius and ratio between the submicron and micron size particles. MODIS-retrieved aerosol optical thickness at 660 nm and 870 nm fall within the expected uncertainty, with the ensemble average at 660 nm differing by only 2% from the AERONET observations and having virtually no offset. MODIS retrievals of aerosol effective radius agree with AERONET retrievals to within +/- 0.10 micrometers, while MODIS-derived ratios between large and small mode aerosol show definite correlation with ratios derived from AERONET data.

  18. Application of Spectral Analysis Techniques in the Intercomparison of Aerosol Data. Part II: Using Maximum Covariance Analysis to Effectively Compare Spatiotemporal Variability of Satellite and AERONET Measured Aerosol Optical Depth

    NASA Technical Reports Server (NTRS)

    Li, Jing; Carlson, Barbara E.; Lacis, Andrew A.

    2014-01-01

    Moderate Resolution Imaging SpectroRadiometer (MODIS) and Multi-angle Imaging Spectroradiomater (MISR) provide regular aerosol observations with global coverage. It is essential to examine the coherency between space- and ground-measured aerosol parameters in representing aerosol spatial and temporal variability, especially in the climate forcing and model validation context. In this paper, we introduce Maximum Covariance Analysis (MCA), also known as Singular Value Decomposition analysis as an effective way to compare correlated aerosol spatial and temporal patterns between satellite measurements and AERONET data. This technique not only successfully extracts the variability of major aerosol regimes but also allows the simultaneous examination of the aerosol variability both spatially and temporally. More importantly, it well accommodates the sparsely distributed AERONET data, for which other spectral decomposition methods, such as Principal Component Analysis, do not yield satisfactory results. The comparison shows overall good agreement between MODIS/MISR and AERONET AOD variability. The correlations between the first three modes of MCA results for both MODIS/AERONET and MISR/ AERONET are above 0.8 for the full data set and above 0.75 for the AOD anomaly data. The correlations between MODIS and MISR modes are also quite high (greater than 0.9). We also examine the extent of spatial agreement between satellite and AERONET AOD data at the selected stations. Some sites with disagreements in the MCA results, such as Kanpur, also have low spatial coherency. This should be associated partly with high AOD spatial variability and partly with uncertainties in satellite retrievals due to the seasonally varying aerosol types and surface properties.

  19. Aerosol column absorption measurements using co-located UV-MFRSR and AERONET CIMEL instruments

    NASA Astrophysics Data System (ADS)

    Krotkov, N.; Labow, G.; Herman, J.; Slusser, J.; Tree, R.; Janson, G.; Durham, B.; Eck, T.; Holben, B.

    2009-08-01

    Column aerosol absorption properties in the visible wavelengths are measured routinely in worldwide locations by NASA AERONET network (http://aeronet.gsfc.nasa.gov), while similar optical properties in UV can be derived from diffuse and global irradiance measurements measured with Multifilter Rotating Shadowband Radiometer (MFRSR) instruments of the USDA UV-MFRSR network (http://uvb.nrel.colostate.edu). To enable direct comparisons between the two techniques, we have modified our UV-MFRSR by replacing standard 300nm filter with 440nm filter used in AERONET network. The modified UV/VIS-MFRSR has been mostly deployed at AERONET calibration site at NASA GSFC in Greenbelt, MD, but also at number of field campaigns. While the UV-MSFRSR instrument is highly susceptible to calibration drifts, these drifts can be accurately assessed using co-located AERONET direct-sun AOT data. In 2006 quartz dome has been installed atop the MFRSR diffuser, which stabilized calibration drifts in 2007-2009. After correcting for remaining calibration changes, the AOT and single scattering albedo (SSA) at the UV wavelengths can be accurately inferred by fitting the measurements of global and diffuse atmospheric transmittances with the forward RT model at each UV-MFRSR spectral channel. Derived AOT and SSA at common wavelength 440nm by two different techniques are generally in good agreement. We also found that SSA becomes smaller in the UV wavelengths and has strong wavelength dependence across blue and near-UV spectral range. The measured enhanced UV absorption might suggest the presence of selectively UV absorbing aerosols. High spectral resolution SSA measurements in UV-VIS wavelengths are called for.

  20. Near Real-Time Automatic Data Quality Controls for the AERONET Version 3 Database: An Introduction to the New Level 1.5V Aerosol Optical Depth Data Product

    NASA Astrophysics Data System (ADS)

    Giles, D. M.; Holben, B. N.; Smirnov, A.; Eck, T. F.; Slutsker, I.; Sorokin, M. G.; Espenak, F.; Schafer, J.; Sinyuk, A.

    2015-12-01

    The Aerosol Robotic Network (AERONET) has provided a database of aerosol optical depth (AOD) measured by surface-based Sun/sky radiometers for over 20 years. AERONET provides unscreened (Level 1.0) and automatically cloud cleared (Level 1.5) AOD in near real-time (NRT), while manually inspected quality assured (Level 2.0) AOD are available after instrument field deployment (Smirnov et al., 2000). The growing need for NRT quality controlled aerosol data has become increasingly important. Applications of AERONET NRT data include the satellite evaluation (e.g., MODIS, VIIRS, MISR, OMI), data synergism (e.g., MPLNET), verification of aerosol forecast models and reanalysis (e.g., GOCART, ICAP, NAAPS, MERRA), input to meteorological models (e.g., NCEP, ECMWF), and field campaign support (e.g., KORUS-AQ, ORACLES). In response to user needs for quality controlled NRT data sets, the new Version 3 (V3) Level 1.5V product was developed with similar quality controls as those applied by hand to the Version 2 (V2) Level 2.0 data set. The AERONET cloud screened (Level 1.5) NRT AOD database can be significantly impacted by data anomalies. The most significant data anomalies include AOD diurnal dependence due to contamination or obstruction of the sensor head windows, anomalous AOD spectral dependence due to problems with filter degradation, instrument gains, or non-linear changes in calibration, and abnormal changes in temperature sensitive wavelengths (e.g., 1020nm) in response to anomalous sensor head temperatures. Other less common AOD anomalies result from loose filters, uncorrected clock shifts, connection and electronic issues, and various solar eclipse episodes. Automatic quality control algorithms are applied to the new V3 Level 1.5 database to remove NRT AOD anomalies and produce the new AERONET V3 Level 1.5V AOD product. Results of the quality control algorithms are presented and the V3 Level 1.5V AOD database is compared to the V2 Level 2.0 AOD database.

  1. Estimation of columnar concentrations of absorbing and scattering fine mode aerosol components using AERONET data

    NASA Astrophysics Data System (ADS)

    Choi, Yongjoo; Ghim, Young Sung

    2016-11-01

    Columnar concentrations of absorbing and scattering components of fine mode aerosols were estimated using Aerosol Robotic Network (AERONET) data for a site downwind of Seoul. The study period was between March 2012 and April 2013 including the period of the Distributed Regional Aerosol Gridded Observation Networks (DRAGON)-Asia campaign in March to May 2012. The Maxwell Garnett mixing rule was assumed for insoluble components embedded in a host solution, while the volume average mixing rule was assumed for the aqueous solution of soluble components. During the DRAGON-Asia campaign the surface concentrations of major components of fine particles were measured. The columnar mass fractions of black carbon (BC), organic carbon (OC), mineral dust (MD), and ammonium sulfate (AS) were 1.5, 5.9, 6.6, and 52%, respectively, which were comparable to the mass fractions measured at the surface for BC, OC, and secondary inorganic aerosols at 2.3, 18, and 55%. The vertical distributions of BC and AS were investigated by employing the concept of a column height. While the column height for BC was similar to the planetary boundary layer (PBL) height, that for AS was 4.4 times higher than the PBL height and increased with air temperature from March to May. The monthly variations of the columnar mass concentrations during the study period were generally well explained in term of meteorology and emission characteristics. However, certain variations of MD were different from those typically observed primarily because only fine mode aerosols were considered.

  2. Comparison of Coincident Multiangle Imaging Spectroradiometer and Moderate Resolution Imaging Spectroradiometer Aerosol Optical Depths over Land and Ocean Scenes Containing Aerosol Robotic Network Sites

    NASA Technical Reports Server (NTRS)

    Abdou, Wedad A.; Diner, David J.; Martonchik, John V.; Bruegge, Carol J.; Kahn, Ralph A.; Gaitley, Barbara J.; Crean, Kathleen A.; Remer, Lorraine A.; Holben, Brent

    2005-01-01

    The Multiangle Imaging Spectroradiometer (MISR) and the Moderate Resolution Imaging Spectroradiometer (MODIS), launched on 18 December 1999 aboard the Terra spacecraft, are making global observations of top-of-atmosphere (TOA) radiances. Aerosol optical depths and particle properties are independently retrieved from these radiances using methodologies and algorithms that make use of the instruments corresponding designs. This paper compares instantaneous optical depths retrieved from simultaneous and collocated radiances measured by the two instruments at locations containing sites within the Aerosol Robotic Network (AERONET). A set of 318 MISR and MODIS images, obtained during the months of March, June, and September 2002 at 62 AERONET sites, were used in this study. The results show that over land, MODIS aerosol optical depths at 470 and 660 nm are larger than those retrieved from MISR by about 35% and 10% on average, respectively, when all land surface types are included in the regression. The differences decrease when coastal and desert areas are excluded. For optical depths retrieved over ocean, MISR is on average about 0.1 and 0.05 higher than MODIS in the 470 and 660 nm bands, respectively. Part of this difference is due to radiometric calibration and is reduced to about 0.01 and 0.03 when recently derived band-to-band adjustments in the MISR radiometry are incorporated. Comparisons with AERONET data show similar patterns.

  3. The Micro-Pulse Lidar Network (MPLNET): A Federated Network of Micro-pulse Lidars and AERONET Sunphotometers

    NASA Technical Reports Server (NTRS)

    Welton, Ellsworth J.; Campbell, James R.; Spinhirne, James D.; Berkoff, Timothy A.; Holben, Brent; Tsay, Si-Chee

    2004-01-01

    We present the formation of a new global-ground based eye-safe lidar network, the NASA Micro-Pulse Lidar Network (MPLNET). The aim of MPLNET is to acquire long- term observations of aerosol and cloud vertical profiles at unique geographic sites within the NASA Aerosol Robotic Network (AERONET). MPLNET utilizes standard instrumentation and data processing algorithms for efficient network operations and direct comparison of data between each site. The micro-pulse lidar is eye-safe, compact, and commercially available, and most easily allows growth of the network without sacrificing standardized instrumentation goals. Network growth follows a federated approach, pioneered by AERONET, wherein independent research groups may join MPLNET with their own instrument and site. MPLNET sites produce not only vertical profile data, but also column-averaged products already available from AERONET (aerosol optical depth, sky radiance, size distributions). Algorithms are presented for each MPLNET data product. Real-time Level 1 data products (next-day) include daily lidar signal images from the surface to -2Okm, and Level 1.5 aerosol extinction profiles at times co-incident with AERONET observations. Quality assured Level 2 aerosol extinction profiles are generated after screening the Level 1.5 results and removing bad data. Level 3 products include continuous day/night aerosol extinction profiles, and are produced using Level 2 calibration data. Rigorous uncertainty calculations are presented for all data products. Analysis of MPLNET data show the MPL and our analysis routines are capable of successfully retrieving aerosol profiles, with the strenuous accounting of uncertainty necessary for accurate interpretation of the results.

  4. Evaluation of MODIS columnar aerosol retrievals using AERONET in semi-arid Nevada and California, U.S.A., during the summer of 2012

    NASA Astrophysics Data System (ADS)

    Loría-Salazar, S. Marcela; Holmes, Heather A.; Patrick Arnott, W.; Barnard, James C.; Moosmüller, Hans

    2016-11-01

    Satellite characterization of local aerosol pollution is desirable because of the potential for broad spatial coverage, enabling transport studies of pollution from major sources, such as biomass burning events. However, retrieval of quantitative measures of air pollution such as Aerosol Optical Depth (AOD) from satellite measurements is challenging over land because the underlying surface albedo may be heterogeneous in space and time. Ground-based sunphotometer measurements of AOD are unaffected by surface albedo and are crucial in enabling evaluation, testing, and further development of satellite instruments and retrieval algorithms. Columnar aerosol optical properties from ground-based sunphotometers (Cimel CE-318) as part of AERONET and MODIS aerosol retrievals from Aqua and Terra satellites were compared over semi-arid California and Nevada during the summer season of 2012. Sunphotometer measurements were used as a 'ground truth' to evaluate the current state of satellite retrievals in this spatiotemporal domain. Satellite retrieved (MODIS Collection 6) AOD showed the presence of wildfires in northern California during August. During the study period, the dark-target (DT) retrieval algorithm appears to overestimate AERONET AOD by an average factor of 3.85 in the entire study domain. AOD from the deep-blue (DB) algorithm overestimates AERONET AOD by an average factor of 1.64. Low AOD correlation was also found between AERONET, DT, and DB retrievals. Smoke from fires strengthened the aerosol signal, but MODIS versus AERONET AOD correlation hardly increased during fire events (r2∼0.1-0.2 during non-fire periods and r2∼0-0.31 during fire periods). Furthermore, aerosol from fires increased the normalized mean bias (NMB) of MODIS retrievals of AOD (NMB∼23%-154% for non-fire periods and NMB∼77%-196% for fire periods). Ångström Extinction Exponent (AEE) from DB for both Terra and Aqua did not correlate with AERONET observations. High surface reflectance and

  5. Statistical intercomparison and validation of multisensory aerosol optical depth retrievals over three AERONET sites in Kenya, East Africa

    NASA Astrophysics Data System (ADS)

    Boiyo, Richard; Kumar, K. Raghavendra; Zhao, Tianliang

    2017-11-01

    Over the last two decades, a number of space-borne sensors have been used to retrieve aerosol optical depth (AOD). The reliability of these datasets over East Africa (EA), however, is an important issue in the interpretation of regional aerosol variability. This study provides an intercomparison and validation of AOD retrievals from the MODIS-Terra (DT and DB), MISR and OMI sensors against ground-based measurements from the AERONET over three sites (CRPSM_Malindi, Nairobi, and ICIPE_Mbita) in Kenya, EA during the periods 2008-2013, 2005-2009 and 2006-2015, respectively. The analysis revealed that MISR performed better over the three sites with about 82.5% of paired AOD data falling within the error envelope (EE). MODIS-DT showed good agreement against AERONET with 59.05% of paired AOD falling within the sensor EE over terrestrial surfaces with relatively high vegetation cover. The comparison between MODIS-DB and AERONET revealed an overall lower performance with lower Gfraction (48.93%) and lower correlation r = 0.58; while AOD retrieved from OMI showed less correspondence with AERONET data with lower Gfraction (68.89%) and lowest correlation r = 0.31. The monthly evaluation of AODs retrieved from the sensors against AERONET AOD indicates that MODIS-DT has the best performance over the three sites with highest correlation (0.71-0.84), lowest RMSE and spread closer to the AERONET. Regarding seasonal analysis, MISR performed well during most seasons over Nairobi and Mbita; while MODIS-DT performed better than all other sensors during most seasons over Malindi. Furthermore, the best seasonal performance of most sensors relative to AERONET data occurred during June-August (JJA) attributed to modulations induced by a precipitation-vegetation factor to AOD satellite retrieval algorithms. The study revealed the strength and weakness of each of the retrieval algorithm and forms the basis for further research on the validation of satellite retrieved aerosol products over EA.

  6. Trend estimates of AERONET-observed and model-simulated AOT percentiles between 1993 and 2013

    NASA Astrophysics Data System (ADS)

    Yoon, Jongmin; Pozzer, Andrea; Chang, Dong Yeong; Lelieveld, Jos

    2016-04-01

    Recent Aerosol Optical thickness (AOT) trend studies used monthly or annual arithmetic means that discard details of the generally right-skewed AOT distributions. Potentially, such results can be biased by extreme values (including outliers). This study additionally uses percentiles (i.e., the lowest 5%, 25%, 50%, 75% and 95% of the monthly cumulative distributions fitted to Aerosol Robotic Network (AERONET)-observed and ECHAM/MESSy Atmospheric Chemistry (EMAC)-model simulated AOTs) that are less affected by outliers caused by measurement error, cloud contamination and occasional extreme aerosol events. Since the limited statistical representativeness of monthly percentiles and means can lead to bias, this study adopts the number of observations as a weighting factor, which improves the statistical robustness of trend estimates. By analyzing the aerosol composition of AERONET-observed and EMAC-simulated AOTs in selected regions of interest, we distinguish the dominant aerosol types and investigate the causes of regional AOT trends. The simulated and observed trends are generally consistent with a high correlation coefficient (R = 0.89) and small bias (slope±2σ = 0.75 ± 0.19). A significant decrease in EMAC-decomposed AOTs by water-soluble compounds and black carbon is found over the USA and the EU due to environmental regulation. In particular, a clear reversal in the AERONET AOT trend percentiles is found over the USA, probably related to the AOT diurnal cycle and the frequency of wildfires.

  7. Aerosol Optical Depths over Oceans: a View from MISR Retrievals and Collocated MAN and AERONET in Situ Observations

    NASA Technical Reports Server (NTRS)

    Witek, Marcin L.; Garay, Michael J.; Diner, David J.; Smirnov, Alexander

    2013-01-01

    In this study, aerosol optical depths over oceans are analyzed from satellite and surface perspectives. Multiangle Imaging SpectroRadiometer (MISR) aerosol retrievals are investigated and validated primarily against Maritime Aerosol Network (MAN) observations. Furthermore, AErosol RObotic NETwork (AERONET) data from 19 island and coastal sites is incorporated in this study. The 270 MISRMAN comparison points scattered across all oceans were identified. MISR on average overestimates aerosol optical depths (AODs) by 0.04 as compared to MAN; the correlation coefficient and root-mean-square error are 0.95 and 0.06, respectively. A new screening procedure based on retrieval region characterization is proposed, which is capable of substantially reducing MISR retrieval biases. Over 1000 additional MISRAERONET comparison points are added to the analysis to confirm the validity of the method. The bias reduction is effective within all AOD ranges. Setting a clear flag fraction threshold to 0.6 reduces the bias to below 0.02, which is close to a typical ground-based measurement uncertainty. Twelve years of MISR data are analyzed with the new screening procedure. The average over ocean AOD is reduced by 0.03, from 0.15 to 0.12. The largest AOD decrease is observed in high latitudes of both hemispheres, regions with climatologically high cloud cover. It is postulated that the screening procedure eliminates spurious retrieval errors associated with cloud contamination and cloud adjacency effects. The proposed filtering method can be used for validating aerosol and chemical transport models.

  8. Statistical variability comparison in MODIS and AERONET derived aerosol optical depth over Indo-Gangetic Plains using time series modeling.

    PubMed

    Soni, Kirti; Parmar, Kulwinder Singh; Kapoor, Sangeeta; Kumar, Nishant

    2016-05-15

    A lot of studies in the literature of Aerosol Optical Depth (AOD) done by using Moderate Resolution Imaging Spectroradiometer (MODIS) derived data, but the accuracy of satellite data in comparison to ground data derived from ARrosol Robotic NETwork (AERONET) has been always questionable. So to overcome from this situation, comparative study of a comprehensive ground based and satellite data for the period of 2001-2012 is modeled. The time series model is used for the accurate prediction of AOD and statistical variability is compared to assess the performance of the model in both cases. Root mean square error (RMSE), mean absolute percentage error (MAPE), stationary R-squared, R-squared, maximum absolute percentage error (MAPE), normalized Bayesian information criterion (NBIC) and Ljung-Box methods are used to check the applicability and validity of the developed ARIMA models revealing significant precision in the model performance. It was found that, it is possible to predict the AOD by statistical modeling using time series obtained from past data of MODIS and AERONET as input data. Moreover, the result shows that MODIS data can be formed from AERONET data by adding 0.251627 ± 0.133589 and vice-versa by subtracting. From the forecast available for AODs for the next four years (2013-2017) by using the developed ARIMA model, it is concluded that the forecasted ground AOD has increased trend. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Trend analysis of the Aerosol Optical Thickness and Ångström Exponent derived from the global AERONET spectral observations

    NASA Astrophysics Data System (ADS)

    Yoon, J.; von Hoyningen-Huene, W.; Kokhanovsky, A. A.; Vountas, M.; Burrows, J. P.

    2011-08-01

    Regular aerosol observations based on well-calibrated instruments have led to a better understanding of the aerosol radiative budget on Earth. In recent years, these instruments have played an important role in the determination of the increase of anthropogenic aerosols by means of long-term studies. Only few investigations regarding long-term trends of aerosol optical characteristics (e.g. Aerosol Optical Thickness (AOT) and Ångström Exponent (ÅE)) have been derived from ground-based observations. This paper aims to derive and discuss linear trends of AOT (440, 675, 870, and 1020 nm) and ÅE (440-870 nm) using AErosol RObotic NETwork (AERONET) spectral observations. Additionally, temporal trends of Coarse- and Fine-mode dominant AOTs (CAOT and FAOT) have been estimated by applying an aerosol classification based on accurate ÅE and Ångström Exponent Difference (ÅED). In order to take into account the fact that cloud disturbance is having a significant influence on the trend analysis of aerosols, we introduce a weighted least squares regression depending on two weights: (1) monthly standard deviation and (2) Number of Observations (NO) per month. Temporal increase of FAOTs prevails over regions dominated by emerging economy or slash-burn agriculture in East Asia and South Africa. On the other hand, insignificant or negative trends for FAOTs are detected over Western Europe and North America. Over desert regions, both increase and decrease of CAOTs are observed depending on meteorological conditions.

  10. Towards identification of relevant variables in the observed aerosol optical depth bias between MODIS and AERONET observations

    NASA Astrophysics Data System (ADS)

    Malakar, N. K.; Lary, D. J.; Gencaga, D.; Albayrak, A.; Wei, J.

    2013-08-01

    Measurements made by satellite remote sensing, Moderate Resolution Imaging Spectroradiometer (MODIS), and globally distributed Aerosol Robotic Network (AERONET) are compared. Comparison of the two datasets measurements for aerosol optical depth values show that there are biases between the two data products. In this paper, we present a general framework towards identifying relevant set of variables responsible for the observed bias. We present a general framework to identify the possible factors influencing the bias, which might be associated with the measurement conditions such as the solar and sensor zenith angles, the solar and sensor azimuth, scattering angles, and surface reflectivity at the various measured wavelengths, etc. Specifically, we performed analysis for remote sensing Aqua-Land data set, and used machine learning technique, neural network in this case, to perform multivariate regression between the ground-truth and the training data sets. Finally, we used mutual information between the observed and the predicted values as the measure of similarity to identify the most relevant set of variables. The search is brute force method as we have to consider all possible combinations. The computations involves a huge number crunching exercise, and we implemented it by writing a job-parallel program.

  11. Toward Unified Satellite Climatology of Aerosol Properties. 3. MODIS Versus MISR Versus AERONET

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael I.; Liu, Li; Geogdzhayev, Igor V.; Travis, Larry D.; Cairns, Brian; Lacis, Andrew A.

    2010-01-01

    We use the full duration of collocated pixel-level MODIS-Terra and MISR aerosol optical thickness (AOT) retrievals and level 2 cloud-screened quality-assured AERONET measurements to evaluate the likely individual MODIS and MISR retrieval accuracies globally over oceans and land. We show that the use of quality-assured MODIS AOTs as opposed to the use of all MODIS AOTs has little effect on the resulting accuracy. The MODIS and MISR relative standard deviations (RSTDs) with respect to AERONET are remarkably stable over the entire measurement record and reveal nearly identical overall AOT performances of MODIS and MISR over the entire suite of AERONET sites. This result is used to evaluate the likely pixel-level MODIS and MISR performances on the global basis with respect to the (unknown) actual AOTs. For this purpose, we use only fully compatible MISR and MODIS aerosol pixels. We conclude that the likely RSTDs for this subset of MODIS and MISR AOTs are 73% over land and 30% over oceans. The average RSTDs for the combined [AOT(MODIS)+AOT(MISR)]/2 pixel-level product are close to 66% and 27%, respectively, which allows us to recommend this simple blend as a better alternative to the original MODIS and MISR data. These accuracy estimates still do not represent the totality of MISR and quality-assured MODIS pixel-level AOTs since an unaccounted for and potentially significant source of errors is imperfect cloud screening. Furthermore, many collocated pixels for which one of the datasets reports a retrieval, whereas the other one does not may also be problematic.

  12. Trend Estimates of AERONET-Observed and Model-Simulated AOTs Between 1993 and 2013

    NASA Technical Reports Server (NTRS)

    Yoon, J.; Pozzer, A.; Chang, D. Y.; Lelieveld, J.; Kim, J.; Kim, M.; Lee, Y. G.; Koo, J.-H.; Lee, J.; Moon, K. J.

    2015-01-01

    Recently, temporal changes in Aerosol Optical Thickness (AOT) have been investigated based on model simulations, satellite and ground-based observations. Most AOT trend studies used monthly or annual arithmetic means that discard details of the generally right-skewed AOT distributions. Potentially, such results can be biased by extreme values (including outliers). This study additionally uses percentiles (i.e., the lowest 5%, 25%, 50%, 75% and 95% of the monthly cumulative distributions fitted to Aerosol Robotic Network (AERONET)-observed and ECHAM/MESSy Atmospheric Chemistry (EMAC)-model simulated AOTs) that are less affected by outliers caused by measurement error, cloud contamination and occasional extreme aerosol events. Since the limited statistical representativeness of monthly percentiles and means can lead to bias, this study adopts the number of observations as a weighting factor, which improves the statistical robustness of trend estimates. By analyzing the aerosol composition of AERONET-observed and EMAC-simulated AOTs in selected regions of interest, we distinguish the dominant aerosol types and investigate the causes of regional AOT trends. The simulated and observed trends are generally consistent with a high correlation coefficient (R = 0.89) and small bias (slope+/-2(sigma) = 0.75 +/- 0.19). A significant decrease in EMAC-decomposed AOTs by water-soluble compounds and black carbon is found over the USA and the EU due to environmental regulation. In particular, a clear reversal in the AERONET AOT trend percentiles is found over the USA, probably related to the AOT diurnal cycle and the frequency of wildfires. In most of the selected regions of interest, EMAC-simulated trends are mainly attributed to the significant changes of the dominant aerosols; e.g., significant decrease in sea salt and water soluble compounds over Central America, increase in dust over Northern Africa and Middle East, and decrease in black carbon and organic carbon over

  13. Vertical Profiles of Light-Absorbing Aerosol: A Combination of In-situ and AERONET Observations during NASA DISCOVER-AQ

    NASA Astrophysics Data System (ADS)

    Ziemba, L. D.; Beyersdorf, A. J.; Chen, G.; Corr, C.; Crumeyrolle, S.; Giles, D. M.; Holben, B. N.; Hudgins, C.; Martin, R.; Moore, R.; Shook, M.; Thornhill, K. L., II; Winstead, E.; Anderson, B. E.

    2014-12-01

    Understanding the vertical profile of atmospheric aerosols plays a vital role in utilizing spaceborne, column-integrated satellite observations. The properties and distribution of light-absorbing aerosol are particularly uncertain despite significant air quality and climate ramifications. Advanced retrieval algorithms are able to derive complex aerosol properties (e.g., wavelength-dependent absorption coefficient and single scattering albedo) from remote-sensing measurements, but quantitative relationships to surface conditions remain a challenge. Highly systematic atmospheric profiling during four unique deployments for the NASA DISCOVER-AQ project (Baltimore, MD, 2011; San Joaquin Valley, CA, 2013; Houston, TX, 2013; Denver, CO, 2014) allow statistical assessment of spatial, temporal, and source-related variability for light-absorbing aerosol properties in these distinct regions. In-situ sampling in conjunction with a dense network of AERONET sensors also allows evaluation of the sensitivity, limitations, and advantages of remote-sensing data products over a wide range of conditions. In-situ aerosol and gas-phase observations were made during DISCOVER-AQ aboard the NASA P-3B aircraft. Aerosol absorption coefficients were measured by a Particle Soot Absorption Photometer (PSAP). Approximately 200 profiles for each of the four deployments were obtained, from the surface (25-300m altitude) to 5 km, and are used to calculate absorption aerosol optical depths (AAODs). These are quantitatively compared to AAOD derived from AERONET Level 1.5 retrievals to 1) explore discrepancies between measurements, 2) quantify the fraction of AAOD that exists directly at the surface and is often missed by airborne sampling, and 3) evaluate the potential for deriving ground-level black carbon (BC) concentrations for air quality prediction. Aerosol size distributions are used to assess absorption contributions from mineral dust, both at the surface and aloft. SP2 (Single Particle Soot

  14. Continental Scale Aerosol Optical Properties Over East Asia as Measured by Aeronet and Comparison to Satellite and Modeled Results

    NASA Technical Reports Server (NTRS)

    Holben, B. N.; Eck, T.; Smirnov, A.; Sinyuk, A.; Dubovik, O.; Slutsker, I.; Giles, D.; Sorokine, M.; Chin, L.; Remer, P.; hide

    2007-01-01

    The AERONET program has operated in E. Asia since 1995 providing time continuous and time averaged ground-based column-integrated aerosol optical properties in a variety of aerosol regimes In the last four years the distribution has greatly increased in Siberia, China, SE Asia and India in particular. Commensurate with that, significant improvement in data processing algorithms (Version 2.0) and access to ancillary data products through the WWW have become available to the scientific community. At this writing the following distribution represents E and S. Asia: 5 sites operate in Siberia (2 years), 1 in Mongolia (9 years), 3 in Korea (3 to 6 years), 3 in Japan (2 to 7 years), China 11 (6 to 0 years), Taiwan 4 (7 to 2 yrs), Viet Nam 2 (4 years), Thailand 2 to 5 (4 years), and Singapore 1 (4 months), India 1 to 3 (7 to 1 years), Pakistan 2 (1 year), and UAE 3 (3 years). An analysis of the aerosol optical depth at 500 nm using annual average quality assured AERONET data (pre 2006) was used to estimate the mean annual aerosol loading by continent, sub continent and ocean. The individual site data were assumed representative of regional aerosol loading and aggregated to the sub-continental, continental and oceanic areas and presented. This analysis will be updated with more recent data with particular emphasis on seasonal results for Asia and the addition of single scattering albedo retrievals. The ground based results will be compared to MODIS collection 5 results and model estimates for E. Asia using the AERONET Synergy Tool.

  15. How Well Can Aerosol Measurements from the Terra Morning Polar Orbiting Satellite Represent the Daily Aerosol Abundance and Properties?

    NASA Technical Reports Server (NTRS)

    Kaufman, Y. J.; Holben, B. N.; Tanre, D.; Slutzker, I.; Eck, T. F.; Smirnov, A.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The Terra mission, launched at the dawn of 1999, and Aqua mission to be launched soon, will possess innovative measurements of the aerosol daily spatial distribution, distinguish between dust, smoke and regional pollution and measure aerosol radiative forcing of climate. Their polar orbit gives daily global coverage, however measurements are acquired at specific time of the day. To what degree can present measurements from Terra taken between 10:00 and 11:30 AM local time, represent the daily average aerosol forcing of climate? Here we answer this question using 7 years of data from the distributed ground based 50-70 instrument Aerosol Robotic Network (AERONET) This (AERONET) half a million measurement data set shows that Terra aerosol measurements represent the daily average values within 5%. The excellent representation is found for large dust particles or small aerosol particles from Fires or regional pollution and for any range of the optical thickness, a measure of the amount of aerosol in the atmosphere.

  16. Light absorption, optical and microphysical properties of trajectory-clustered aerosols at two AERONET sites in West Africa

    NASA Astrophysics Data System (ADS)

    Fawole, O. G.; Cai, X.; MacKenzie, A. R.

    2015-12-01

    Aerosol remote sensing techniques and back-trajectory modeling can be combined to identify aerosol types. We have clustered 7 years of AERONET aerosol signals using trajectory analysis to identify dominant aerosol sources at two AERONET sites in West Africa: Ilorin (4.34 oE, 8.32 oN) and Djougou (1.60 oE, 9.76 oN). Of particular interest are air masses that have passed through the gas flaring region in the Niger Delta area, of Nigeria, en-route the AERONET sites. 7-day back trajectories were calculated using the UK UGAMP trajectory model driven by ECMWF wind analyses data. Dominant sources identified, using literature classifications, are desert dust (DD), Biomass burning (BB) and Urban-Industrial (UI). Below, we use a combination of synoptic trajectories and aerosol optical properties to distinguish a fourth source: that due to gas flaring. Gas flaring, (GF) the disposal of gas through stack in an open-air flame, is believed to be a prominent source of black carbon (BC) and greenhouse gases. For these different aerosol source signatures, single scattering albedo (SSA), refractive index , extinction Angstrom exponent (EEA) and absorption Angstrom exponent (AAE) were used to classify the light absorption characteristics of the aerosols for λ = 440, 675, 870 and1020 nm. A total of 1625 daily averages of aerosol data were collected for the two sites. Of which 245 make up the GF cluster for both sites. For GF cluster, the range of fine-mode fraction is 0.4 - 0.7. Average values SSA(λ), for the total and GF clusters are 0.90(440), 0.93(675), 0.95(870) and 0.96(1020), and 0.93(440), 0.92(675), 0.9(870) and 0.9(1020), respectively. Values of for the GF clusters for both sites are 0.62 - 1.11, compared to 1.28 - 1.66 for the remainder of the clusters, which strongly indicates the dominance of carbonaceous particles (BC), typical of a highly industrial area. An average value of 1.58 for the real part of the refractive index at low SSA for aerosol in the GF cluster is also

  17. Aerosol Optical Thickness comparisons between NASA LaRC Airborne HSRL and AERONET during the DISCOVER-AQ field campaigns

    NASA Astrophysics Data System (ADS)

    Scarino, A. J.; Ferrare, R. A.; Burton, S. P.; Hostetler, C. A.; Hair, J. W.; Rogers, R. R.; Berkoff, T.; Cook, A. L.; Harper, D. B.; Hoff, R. M.; Holben, B. N.; Schafer, J.; McGill, M. J.; Yorks, J. E.; Lantz, K. O.; Michalsky, J. J.; Hodges, G.

    2013-12-01

    The first- and second-generation NASA airborne High Spectral Resolution Lidars (HSRL-1 and HSRL-2) have been deployed on board the NASA Langley Research Center King Air aircraft during the Deriving Information on Surface Conditions from Column and VERtically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) field campaigns. These included deployments during July 2011 over Washington, D.C. and Baltimore, MD and during January and February 2013 over the San Joaquin Valley (SJV) of California and also a scheduled deployment during September 2013 over Houston, TX. Measurements of aerosol extinction, backscatter, and depolarization are available from both HSRL-1 and HSRL-2 in coordination with other participating research aircraft and ground sites. These measurements constitute a diverse data set for use in characterizing the spatial and temporal distribution of aerosols, aerosol optical thickness (AOT), as well as the Mixing Layer Height (MLH). HSRL AOT is compared to AOT measured by the Distributed Regional Aerosol Gridded Observation Networks (DRAGON) and long-term AERONET sites. For the 2011 campaign, comparisons of AOT at 532nm between HSRL-1 and AERONET showed excellent agreement (r = 0.98, slope = 1.01, intercept = 0.037) when the King Air flights were within 2.5 km of the ground site and 10 min from the retrieval time. The comparison results are similar for the 2013 DISCOVER-AQ campaign in the SJV. Additional ground-based (MPL) and airborne (CPL) lidar data were used to help screen for clouds in the AERONET observations during the SJV portion. AOT values from a Multi-Filter Rotating Shadowband Radiometer (MFRSR) located at the Porterville, CA site during the SJV campaign are also compared to HSRL-2 AOT. Lastly, using the MLH retrieved from HSRL aerosol backscatter profiles, we describe the distribution of AOT relative to the MLH.

  18. Maritime Aerosol Network as a Component of AERONET - First Results and Comparison with Global Aerosol Models and Satellite Retrievals

    NASA Technical Reports Server (NTRS)

    Smirnov, A.; Holben, B. N.; Giles, D. M.; Slutsker, I.; O'Neill, N. T.; Eck, T. F.; Macke, A.; Croot, P.; Courcoux, Y.; Sakerin, S. M.; hide

    2011-01-01

    The Maritime Aerosol Network (MAN) has been collecting data over the oceans since November 2006. Over 80 cruises were completed through early 2010 with deployments continuing. Measurement areas included various parts of the Atlantic Ocean, the Northern and Southern Pacific Ocean, the South Indian Ocean, the Southern Ocean, the Arctic Ocean and inland seas. MAN deploys Microtops handheld sunphotometers and utilizes a calibration procedure and data processing traceable to AERONET. Data collection included areas that previously had no aerosol optical depth (AOD) coverage at all, particularly vast areas of the Southern Ocean. The MAN data archive provides a valuable resource for aerosol studies in maritime environments. In the current paper we present results of AOD measurements over the oceans, and make a comparison with satellite AOD retrievals and model simulations.

  19. Maritime Aerosol Network as a component of AERONET - first results and comparison with global aerosol models and satellite retrievals

    NASA Astrophysics Data System (ADS)

    Smirnov, A.; Holben, B. N.; Giles, D. M.; Slutsker, I.; O'Neill, N. T.; Eck, T. F.; Macke, A.; Croot, P.; Courcoux, Y.; Sakerin, S. M.; Smyth, T. J.; Zielinski, T.; Zibordi, G.; Goes, J. I.; Harvey, M. J.; Quinn, P. K.; Nelson, N. B.; Radionov, V. F.; Duarte, C. M.; Losno, R.; Sciare, J.; Voss, K. J.; Kinne, S.; Nalli, N. R.; Joseph, E.; Krishna Moorthy, K.; Covert, D. S.; Gulev, S. K.; Milinevsky, G.; Larouche, P.; Belanger, S.; Horne, E.; Chin, M.; Remer, L. A.; Kahn, R. A.; Reid, J. S.; Schulz, M.; Heald, C. L.; Zhang, J.; Lapina, K.; Kleidman, R. G.; Griesfeller, J.; Gaitley, B. J.; Tan, Q.; Diehl, T. L.

    2011-01-01

    The Maritime Aerosol Network (MAN) has been collecting data over the oceans since November 2006. Over 80 cruises were completed through early 2010 with deployments continuing. Measurements areas included various parts of the Atlantic Ocean, the Northern and Southern Pacific Ocean, the South Indian Ocean, the Southern Ocean, the Arctic Ocean and inland seas. MAN deploys Microtops hand-held sunphotometers and utilizes a calibration procedure and data processing traceable to AERONET. Data collection included areas that previously had no aerosol optical depth (AOD) coverage at all, particularly vast areas of the Southern Ocean. The MAN data archive provides a valuable resource for aerosol studies in maritime environments. In the current paper we present results of AOD measurements over the oceans, and make a comparison with satellite AOD retrievals and model simulations.

  20. Maritime aerosol network as a component of AERONET - first results and comparison with global aerosol models and satellite retrievals

    NASA Astrophysics Data System (ADS)

    Smirnov, A.; Holben, B. N.; Giles, D. M.; Slutsker, I.; O'Neill, N. T.; Eck, T. F.; Macke, A.; Croot, P.; Courcoux, Y.; Sakerin, S. M.; Smyth, T. J.; Zielinski, T.; Zibordi, G.; Goes, J. I.; Harvey, M. J.; Quinn, P. K.; Nelson, N. B.; Radionov, V. F.; Duarte, C. M.; Losno, R.; Sciare, J.; Voss, K. J.; Kinne, S.; Nalli, N. R.; Joseph, E.; Krishna Moorthy, K.; Covert, D. S.; Gulev, S. K.; Milinevsky, G.; Larouche, P.; Belanger, S.; Horne, E.; Chin, M.; Remer, L. A.; Kahn, R. A.; Reid, J. S.; Schulz, M.; Heald, C. L.; Zhang, J.; Lapina, K.; Kleidman, R. G.; Griesfeller, J.; Gaitley, B. J.; Tan, Q.; Diehl, T. L.

    2011-03-01

    The Maritime Aerosol Network (MAN) has been collecting data over the oceans since November 2006. Over 80 cruises were completed through early 2010 with deployments continuing. Measurement areas included various parts of the Atlantic Ocean, the Northern and Southern Pacific Ocean, the South Indian Ocean, the Southern Ocean, the Arctic Ocean and inland seas. MAN deploys Microtops hand-held sunphotometers and utilizes a calibration procedure and data processing traceable to AERONET. Data collection included areas that previously had no aerosol optical depth (AOD) coverage at all, particularly vast areas of the Southern Ocean. The MAN data archive provides a valuable resource for aerosol studies in maritime environments. In the current paper we present results of AOD measurements over the oceans, and make a comparison with satellite AOD retrievals and model simulations.

  1. Trend analysis of aerosol optical thickness and Ångström exponent derived from the global AERONET spectral observations

    NASA Astrophysics Data System (ADS)

    Yoon, J.; von Hoyningen-Huene, W.; Kokhanovsky, A. A.; Vountas, M.; Burrows, J. P.

    2012-06-01

    Regular aerosol observations based on well-calibrated instruments have led to a better understanding of the aerosol radiative budget on Earth. In recent years, these instruments have played an important role in the determination of the increase of anthropogenic aerosols by means of long-term studies. Only few investigations regarding long-term trends of aerosol optical characteristics (e.g. aerosol optical thickness (AOT) and Ångström exponent (ÅE)) have been derived from ground-based observations. This paper aims to derive and discuss linear trends of AOT (440, 675, 870, and 1020 nm) and ÅE (440-870 nm) using AErosol RObotic NETwork (AERONET) level 2.0 spectral observations. Additionally, temporal trends of coarse- and fine-mode dominant AOTs (CdAOT and FdAOT) have been estimated by applying an aerosol classification based on accurate ÅE and Ångström exponent difference (ÅED). In order to take into account the fact that cloud disturbance is having a significant influence on the trend analysis of aerosols, we introduce a weighted least squares regression depending on two weights: (1) monthly standard deviation (σt) and (2) number of observations per month (nt). Temporal increase of FdAOTs (440 nm) prevails over newly industrializing countries in East Asia (weighted trends; +6.23% yr-1 at Beijing) and active agricultural burning regions in South Africa (+1.89% yr-1 at Mongu). On the other hand, insignificant or negative trends for FdAOTs are detected over Western Europe (+0.25% yr-1 at Avignon and -2.29% yr-1 at Ispra) and North America (-0.52% yr-1 for GSFC and -0.01% yr-1 at MD_Science_Center). Over desert regions, both increase and decrease of CdAOTs (+3.37% yr-1 at Solar_Village and -1.18% yr-1 at Ouagadougou) are observed depending on meteorological conditions.

  2. AERONET Version 3 Release: Providing Significant Improvements for Multi-Decadal Global Aerosol Database and Near Real-Time Validation

    NASA Technical Reports Server (NTRS)

    Holben, Brent; Slutsker, Ilya; Giles, David; Eck, Thomas; Smirnov, Alexander; Sinyuk, Aliaksandr; Schafer, Joel; Sorokin, Mikhail; Rodriguez, Jon; Kraft, Jason; hide

    2016-01-01

    Aerosols are highly variable in space, time and properties. Global assessment from satellite platforms and model predictions rely on validation from AERONET, a highly accurate ground-based network. Ver. 3 represents a significant improvement in accuracy and quality.

  3. Utilization of AERONET polarimetric measurements for improving retrieval of aerosol microphysics: GSFC, Beijing and Dakar data analysis

    NASA Astrophysics Data System (ADS)

    Fedarenka, Anton; Dubovik, Oleg; Goloub, Philippe; Li, Zhengqiang; Lapyonok, Tatyana; Litvinov, Pavel; Barel, Luc; Gonzalez, Louis; Podvin, Thierry; Crozel, Didier

    2016-08-01

    The study presents the efforts on including the polarimetric data to the routine inversion of the radiometric ground-based measurements for characterization of the atmospheric aerosols and analysis of the obtained advantages in retrieval results. First, to operationally process the large amount of polarimetric data the data preparation tool was developed. The AERONET inversion code adapted for inversion of both intensity and polarization measurements was used for processing. Second, in order to estimate the effect from utilization of polarimetric information on aerosol retrieval results, both synthetic data and the real measurements were processed using developed routine and analyzed. The sensitivity study has been carried out using simulated data based on three main aerosol models: desert dust, urban industrial and urban clean aerosols. The test investigated the effects of utilization of polarization data in the presence of random noise, bias in measurements of optical thickness and angular pointing shift. The results demonstrate the advantage of polarization data utilization in the cases of aerosols with pronounced concentration of fine particles. Further, the extended set of AERONET observations was processed. The data for three sites have been used: GSFC, USA (clean urban aerosol dominated by fine particles), Beijing, China (polluted industrial aerosol characterized by pronounced mixture of both fine and coarse modes) and Dakar, Senegal (desert dust dominated by coarse particles). The results revealed considerable advantage of polarimetric data applying for characterizing fine mode dominated aerosols including industrial pollution (Beijing). The use of polarization corrects particle size distribution by decreasing overestimated fine mode and increasing the coarse mode. It also increases underestimated real part of the refractive index and improves the retrieval of the fraction of spherical particles due to high sensitivity of polarization to particle shape

  4. Can MODIS detect trends in aerosol optical depth over land?

    NASA Astrophysics Data System (ADS)

    Fan, Xuehua; Xia, Xiang'ao; Chen, Hongbin

    2018-02-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) sensor onboard NASA's Aqua satellite has been collecting valuable data about the Earth system for more than 14 years, and one of the benefits of this is that it has made it possible to detect the long-term variation in aerosol loading across the globe. However, the long-term aerosol optical depth (AOD) trends derived from MODIS need careful validation and assessment, especially over land. Using AOD products with at least 70 months' worth of measurements collected during 2002-15 at 53 Aerosol Robotic Network (AERONET) sites over land, Mann-Kendall (MK) trends in AOD were derived and taken as the ground truth data for evaluating the corresponding results from MODIS onboard Aqua. The results showed that the AERONET AOD trends over all sites in Europe and North America, as well as most sites in Africa and Asia, can be reproduced by MODIS/Aqua. However, disagreement in AOD trends between MODIS and AERONET was found at a few sites in Australia and South America. The AOD trends calculated from AERONET instantaneous data at the MODIS overpass times were consistent with those from AERONET daily data, which suggests that the AOD trends derived from satellite measurements of 1-2 overpasses may be representative of those from daily measurements.

  5. Aerosol properties over the western Mediterranean basin: temporal and spatial variability

    NASA Astrophysics Data System (ADS)

    Lyamani, H.; Valenzuela, A.; Perez-Ramirez, D.; Toledano, C.; Granados-Muñoz, M. J.; Olmo, F. J.; Alados-Arboledas, L.

    2015-03-01

    This study focuses on the analysis of Aerosol Robotic Network (AERONET) aerosol data obtained over Alborán Island (35.90° N, 3.03° W, 15 m a.s.l.) in the western Mediterranean from July 2011 to January 2012. Additional aerosol data from the three nearest AERONET stations (Málaga, Oujda and Palma de Mallorca) and the Maritime Aerosol Network (MAN) were also analyzed in order to investigate the temporal and spatial variations of aerosol over this scarcely explored region. High aerosol loads over Alborán were mainly associated with desert dust transport from North Africa and occasional advection of anthropogenic fine particles from central European urban-industrial areas. The fine particle load observed over Alborán was surprisingly similar to that obtained over the other three nearest AERONET stations, suggesting homogeneous spatial distribution of fine particle loads over the four studied sites in spite of the large differences in local sources. The results from MAN acquired over the Mediterranean Sea, Black Sea and Atlantic Ocean from July to November 2011 revealed a pronounced predominance of fine particles during the cruise period.

  6. Comparison of AOD, AAOD and column single scattering albedo from AERONET retrievals and in situ profiling measurements

    NASA Astrophysics Data System (ADS)

    Andrews, Elisabeth; Ogren, John A.; Kinne, Stefan; Samset, Bjorn

    2017-05-01

    Here we present new results comparing aerosol optical depth (AOD), aerosol absorption optical depth (AAOD) and column single scattering albedo (SSA) obtained from in situ vertical profile measurements with AERONET ground-based remote sensing from two rural, continental sites in the US. The profiles are closely matched in time (within ±3 h) and space (within 15 km) with the AERONET retrievals. We have used Level 1.5 inversion retrievals when there was a valid Level 2 almucantar retrieval in order to be able to compare AAOD and column SSA below AERONET's recommended loading constraint (AOD > 0.4 at 440 nm). While there is reasonable agreement for the AOD comparisons, the direct comparisons of in situ-derived to AERONET-retrieved AAOD (or SSA) reveal that AERONET retrievals yield higher aerosol absorption than obtained from the in situ profiles for the low aerosol optical depth conditions prevalent at the two study sites. However, it should be noted that the majority of SSA comparisons for AOD440 > 0.2 are, nonetheless, within the reported SSA uncertainty bounds. The observation that, relative to in situ measurements, AERONET inversions exhibit increased absorption potential at low AOD values is generally consistent with other published AERONET-in situ comparisons across a range of locations, atmospheric conditions and AOD values. This systematic difference in the comparisons suggests a bias in one or both of the methods, but we cannot assess whether the AERONET retrievals are biased towards high absorption or the in situ measurements are biased low. Based on the discrepancy between the AERONET and in situ values, we conclude that scaling modeled black carbon concentrations upwards to match AERONET retrievals of AAOD should be approached with caution as it may lead to aerosol absorption overestimates in regions of low AOD. Both AERONET retrievals and in situ measurements suggest there is a systematic relationship between SSA and aerosol amount (AOD or aerosol light

  7. MISR Global Aerosol Product Assessment by Comparison with AERONET

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph A.; Gaitley, Barbara J.; Garay, Michael J.; Diner, David J.; Eck, Thomas F.; Smirnov, Alexander; Holben, Brent N.

    2010-01-01

    A statistical approach is used to assess the quality of the MISR Version 22 (V22) aerosol products. Aerosol Optical Depth (AOD) retrieval results are improved relative to the early post- launch values reported by Kahn et al. [2005a], varying with particle type category. Overall, about 70% to 75% of MISR AOD retrievals fall within 0.05 or 20% AOD of the paired validation data, and about 50% to 55% are within 0.03 or 10% AOD, except at sites where dust, or mixed dust and smoke, are commonly found. Retrieved particle microphysical properties amount to categorical values, such as three groupings in size: "small," "medium," and "large." For particle size, ground-based AERONET sun photometer Angstrom Exponents are used to assess statistically the corresponding MISR values, which are interpreted in terms of retrieved size categories. Coincident Single-Scattering Albedo (SSA) and fraction AOD spherical data are too limited for statistical validation. V22 distinguishes two or three size bins, depending on aerosol type, and about two bins in SSA (absorbing vs. non-absorbing), as well as spherical vs. non-spherical particles, under good retrieval conditions. Particle type sensitivity varies considerably with conditions, and is diminished for mid-visible AOD below about 0.15 or 0.2. Based on these results, specific algorithm upgrades are proposed, and are being investigated by the MISR team for possible implementation in future versions of the product.

  8. Dust transport over the eastern Mediterranean derived from Total Ozone Mapping Spectrometer, Aerosol Robotic Network, and surface measurements

    NASA Astrophysics Data System (ADS)

    Kalivitis, N.; Gerasopoulos, E.; Vrekoussis, M.; Kouvarakis, G.; Kubilay, N.; Hatzianastassiou, N.; Vardavas, I.; Mihalopoulos, N.

    2007-02-01

    Multiyear surface PM10 measurements performed on Crete Island, Greece, have been used in conjunction with satellite (Total Ozone Mapping Spectrometer (TOMS)) and ground-based remote sensing measurements (Aerosol Robotic Network (AERONET)) to enhance our understanding of the evolution of mineral dust events over the eastern Mediterranean. An analysis of southerly air masses at altitudes of 1000 and 3000 m over a 5 year period (2000-2005), showed that dust can potentially arrive over Crete, either simultaneously in the lower free troposphere and inside the boundary layer (vertical extended transport (VET)) or initially into the free troposphere with the heavier particles gradually being scavenged inside the boundary layer (free troposphere transport (FTT)). Both pathways present significant seasonal variations but on an annual basis contribute almost equally to the dust transport in the area. During VET the aerosol index (AI) derived from TOMS was significantly correlated with surface PM10, and in general AI was found to be adequate for the characterization of dust loadings over the eastern Mediterranean on a climatological basis. A significant covariance between PM10 and AOT was observed during VET as well, indicating that AOT levels from AERONET may be estimated by PM10 levels at the surface. Surface measurements are thus crucial for the validation of remote sensing measurements and hence are a powerful tool for the investigation of the impact of aerosols on climate.

  9. The Dynamics of Fine Mode Aerosol Optical Properties in South Korea from AERONET and Aircraft Observations with a Focus on Cases with Large Cloud Fraction and/or Fog During KORUS-AQ

    NASA Astrophysics Data System (ADS)

    Eck, T. F.; Holben, B. N.; Kim, J.; Choi, M.; Giles, D. M.; Schafer, J.; Smirnov, A.; Slutsker, I.; Sinyuk, A.; Sorokin, M. G.; Kraft, J.; Beyersdorf, A. J.; Anderson, B. E.; Thornhill, K. L., II; Crawford, J. H.

    2017-12-01

    The focus of our investigation is of major fine mode aerosol pollution events in South Korea, particularly when cloud fraction is high. This work includes the analysis of AERONET data utilizing the Spectral Deconvolution Algorithm to enable detection of fine mode aerosol optical depth (AOD) near to clouds. Additionally we analyze the newly developed AERONET V3 data sets that have significant changes to cloud screening algorithms. Comparisons of aerosol optical depth are made between AERONET Versions 2 and 3 for both long-term climatology data and for specific 2016 cases, especially in May and June 2016 during the KORUS-AQ field campaign. In general the Version 3 cloud screening allows many more fine mode AOD observations to reach Level 2 when cloud amount is high, as compared to Version 2, thereby enabling more thorough analysis of these types of cases. Particular case studies include May 25-26, 2016 when cloud fraction was very high over much of the peninsula, associated with a frontal passage and advection of pollution from China. Another interesting case is June 9, 2016 when there was fog over the West Sea, and this seems to have affected aerosol properties well downwind over the Korean peninsula. Both of these days had KORUS-AQ research aircraft flights that provided observations of aerosol absorption, particle size distributions and vertical profiles of extinction. AERONET retrievals and aircraft in situ measurements both showed high single scattering albedo (weak absorption) on these cloudy days. We also investigate the relationship between aerosol fine mode radius and AOD and the relationship between aerosol single scattering albedo and fine mode particle radius from the AERONET almucantar retrievals for the interval of April through June 2016 for 17 AERONET sites in South Korea. Strongly increasing fine mode radius (leading to greater scattering efficiency) as fine mode AOD increased is one factor contributing to a trend of increasing single scattering

  10. Evaluations of Thin Cirrus Contamination and Screening in Ground Aerosol Observations Using Collocated Lidar Systems

    NASA Technical Reports Server (NTRS)

    Huang, Jingfeng; Hsu, N. Christina; Tsay, Si-Chee; Holben, Brent N.; Welton, Ellsworth J.; Smirnov, Alexander; Jeong, Myeong-Jae; Hansell, Richard A.; Berkoff, Timothy A.

    2012-01-01

    Cirrus clouds, particularly sub visual high thin cirrus with low optical thickness, are difficult to be screened in operational aerosol retrieval algorithms. Collocated aerosol and cirrus observations from ground measurements, such as the Aerosol Robotic Network (AERONET) and the Micro-Pulse Lidar Network (MPLNET), provide us with an unprecedented opportunity to examine the susceptibility of operational aerosol products to thin cirrus contamination. Quality assured aerosol optical thickness (AOT) measurements were also tested against the CALIPSO vertical feature mask (VFM) and the MODIS-derived thin cirrus screening parameters for the purpose of evaluating thin cirrus contamination. Key results of this study include: (1) Quantitative evaluations of data uncertainties in AERONET AOT retrievals are conducted. Although AERONET cirrus screening schemes are successful in removing most cirrus contamination, strong residuals displaying strong spatial and seasonal variability still exist, particularly over thin cirrus prevalent regions during cirrus peak seasons, (2) Challenges in matching up different data for analysis are highlighted and corresponding solutions proposed, and (3) Estimation of the relative contributions from cirrus contamination to aerosol retrievals are discussed. The results are valuable for better understanding and further improving ground aerosol measurements that are critical for aerosol-related climate research.

  11. Mixing weight determination for retrieving optical properties of polluted dust with MODIS and AERONET data

    NASA Astrophysics Data System (ADS)

    Chang, Kuo-En; Hsiao, Ta-Chih; Hsu, N. Christina; Lin, Neng-Huei; Wang, Sheng-Hsiang; Liu, Gin-Rong; Liu, Chian-Yi; Lin, Tang-Huang

    2016-08-01

    In this study, an approach in determining effective mixing weight of soot aggregates from dust-soot aerosols is proposed to improve the accuracy of retrieving properties of polluted dusts by means of satellite remote sensing. Based on a pre-computed database containing several variables (such as wavelength, refractive index, soot mixing weight, surface reflectivity, observation geometries and aerosol optical depth (AOD)), the fan-shaped look-up tables can be drawn out accordingly for determining the mixing weights, AOD and single scattering albedo (SSA) of polluted dusts simultaneously with auxiliary regional dust properties and surface reflectivity. To validate the performance of the approach in this study, 6 cases study of polluted dusts (dust-soot aerosols) in Lower Egypt and Israel were examined with the ground-based measurements through AErosol RObotic NETwork (AERONET). The results show that the mean absolute differences could be reduced from 32.95% to 6.56% in AOD and from 2.67% to 0.83% in SSA retrievals for MODIS aerosol products when referenced to AERONET measurements, demonstrating the soundness of the proposed approach under different levels of dust loading, mixing weight and surface reflectivity. Furthermore, the developed algorithm is capable of providing the spatial distribution of the mixing weights and removing the requirement to assume that the dust plume properties are uniform. The case study further shows the spatially variant dust-soot mixing weight would improve the retrieval accuracy in AODmixture and SSAmixture about 10.0% and 1.4% respectively.

  12. Evaluation of Air Pollution Applications of AERONET and MODIS Aerosol Column Optical Depth by Comparison with In Situ Measurements of Aerosol Light Scattering and Absorption for Reno, NV, USA

    NASA Astrophysics Data System (ADS)

    Loria Salazar, S.; Arnott, W. P.; Moosmuller, H.; Colucci, D.

    2012-12-01

    Reno, Nevada, USA is subject to typical urban aerosol, wind-blown dust, and occasional biomass burning smoke from anthropogenic and natural fires. Reno has complex air flow at levels relevant for aerosol transport. At times recirculating mountain and urban flow arrives from the Sierra Nevada, San Francisco, CA and Sacramento, CA. The urban plumes are further modified by biogenic forest emissions and secondary aerosol formation during transport over the Sierra Nevada Mountains to Reno. This complicates the use of MODIS aerosol optical depth (AOD) for air quality measurements in Reno. Our laboratory at the University of Nevada Reno has collocated multispectral photoacoustic instruments and reciprocal nephelometers to measure light absorption and light scattering coefficients as well as an AERONET operated CIMEL CE-318 ground-based sunphotometer. Preliminary measurements from August 2011 indicate substantially larger Cimel AOD than could be accounted for by use of the in situ aerosol extinction measurements combined with mixing height estimate. This poster presents new results comparing AERONET AOD and single scattering albedo and MODIS AOD with in situ measurements for summer and fall 2012, along with extensive back trajectory analysis, to evaluate conditions when satellite measurement may be useful for air pollution applications in Reno.

  13. Response to "Toward Unified Satellite Climatology of Aerosol Properties. 3. MODIS Versus MISR Versus AERONET"

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph A.; Garay, Michael J.; Nelson, David L.; Levy, Robert C.; Bull, Michael A.; Diner, David J.; Martonchik, John V.; Hansen, Earl G.; Remer, Lorraine A.; Tanre, Didier

    2010-01-01

    A recent paper by Mishchenko et al. compares near-coincident MISR, MODIS, and AERONET aerosol optical depth (AOD) products, and reports much poorer agreement than that obtained by the instrument teams and others. We trace the reasons for the discrepancies primarily to differences in (1) the treatment of outliers, (2) the application of absolute vs. relative criteria for testing agreement, and (3) the ways in which seasonally varying spatial distributions of coincident retrievals are taken into account.

  14. A study of impact of Asian dusts and their transport pathways to Hong Kong using multiple AERONET data, trajectory, and in-situ measurements

    NASA Astrophysics Data System (ADS)

    Wong, Man Sing; Nichol, Janet Elizabeth; Lee, Kwon Ho

    2010-10-01

    Hong Kong, a commercial and financial city located in south-east China has suffered serious air pollution for the last decade due largely to rapid urban and industrial expansion of the cities of mainland China. However, the potential sources and pathways of aerosols transported to Hong Kong have not been well researched due to the lack of air quality monitoring stations in southern China. Here, an integrated method combining the AErosol RObotic NETwork (AERONET) data, trajectory and Potential Source Contribution Function (PSCF) modeling is used to identify the potential transport pathways and contribution of sources from four characteristic aerosol types. Four characteristic aerosol types were defined using a total of 730 AERONET data measurements between 2005 and 2008. They are coastal urban, polluted urban, dust (likely to be long distance desert dust), and heavy pollution. Results show that the sources of polluted urban and heavy pollution are associated with industrial emissions in southern China, whereas coastal urban aerosols have been affected both from natural marine aerosol and emissions. The PSCF map of dust shows a wide range of pathways followed by east- and south-eastwards trajectories from northwest China to Hong Kong. Although the contribution from dust sources is small compared to the anthropogenic aerosols, a serious recent dust outbreak has been observed in Hong Kong with an elevation of the Air Pollution Index to 500, compared with 50-100 on normal days. Therefore, the combined use of clustered AERONET data, trajectory and the PSCF models can help to resolve the longstanding issue about source regions and characteristics of pollutants carried to Hong Kong.

  15. Relationship Between Aerosol Optical Depth and Particulate Matter Over Singapore: Effects of Aerosol Vertical Distributions

    NASA Technical Reports Server (NTRS)

    Chew, Boo Ning; Campbell, James; Hyer, Edward J.; Salinas, Santo V.; Reid, Jeffrey S.; Welton, Ellsworth J.; Holben, Brent N.; Liew, Soo Chin

    2016-01-01

    As part of the Seven Southeast Asian Studies (7SEAS) program, an Aerosol Robotic Network (AERONET) sun photometer and a Micro-Pulse Lidar Network (MPLNET) instrument have been deployed at Singapore to study the regional aerosol environment of the Maritime Continent (MC). In addition, the Navy Aerosol Analysis and Prediction System (NAAPS) is used to model aerosol transport over the region. From 24 September 2009 to 31 March 2011, the relationships between ground-, satellite- and model-based aerosol optical depth (AOD) and particulate matter with aerodynamic equivalent diameters less than 2.5 microns (PM2.5) for air quality applications are investigated. When MPLNET-derived aerosol scale heights are applied to normalize AOD for comparison with surface PM2.5 data, the empirical relationships are shown to improve with an increased 11%, 10% and 5% in explained variances, for AERONET, MODIS and NAAPS respectively. The ratios of root mean square errors to standard deviations for the relationships also show corresponding improvements of 8%, 6% and 2%. Aerosol scale heights are observed to be bimodal with a mode below and another above the strongly-capped/deep near-surface layer (SCD; 0-1.35 km). Aerosol extinctions within the SCD layer are well-correlated with surface PM2.5 concentrations, possibly due to strong vertical mixing in the region.

  16. Aerosol optical, microphysical and radiative properties at regional background insular sites in the western Mediterranean

    NASA Astrophysics Data System (ADS)

    Sicard, Michaël; Barragan, Rubén; Dulac, François; Alados-Arboledas, Lucas; Mallet, Marc

    2016-09-01

    In the framework of the ChArMEx (the Chemistry-Aerosol Mediterranean Experiment; http://charmex.lsce.ipsl.fr/) program, the seasonal variability of the aerosol optical, microphysical and radiative properties derived from AERONET (Aerosol Robotic Network; aeronet.gsfc.nasa.gov/" target="_blank">http://aeronet.gsfc.nasa.gov/) is examined in two regional background insular sites in the western Mediterranean Basin: Ersa (Corsica Island, France) and Palma de Mallorca (Mallorca Island, Spain). A third site, Alborán (Alborán Island, Spain), with only a few months of data is considered for examining possible northeast-southwest (NE-SW) gradients of the aforementioned aerosol properties. The AERONET dataset is exclusively composed of level 2.0 inversion products available during the 5-year period 2011-2015. AERONET solar radiative fluxes are compared with ground- and satellite-based flux measurements. To the best of our knowledge this is the first time that AERONET fluxes are compared with measurements at the top of the atmosphere. Strong events (with an aerosol optical depth at 440 nm greater than 0.4) of long-range transport aerosols, one of the main drivers of the observed annual cycles and NE-SW gradients, are (1) mineral dust outbreaks predominant in spring and summer in the north and in summer in the south and (2) European pollution episodes predominant in autumn. A NE-SW gradient exists in the western Mediterranean Basin for the aerosol optical depth and especially its coarse-mode fraction, which all together produces a similar gradient for the aerosol direct radiative forcing. The aerosol fine mode is rather homogeneously distributed. Absorption properties are quite variable because of the many and different sources of anthropogenic particles in and around the western Mediterranean Basin: North African and European urban areas, the Iberian and Italian peninsulas, most forest fires and

  17. Satellite aerosol retrieval using dark target algorithm by coupling BRDF effect over AERONET site

    NASA Astrophysics Data System (ADS)

    Yang, Leiku; Xue, Yong; Guang, Jie; Li, Chi

    2012-11-01

    For most satellite aerosol retrieval algorithms even for multi-angle instrument, the simple forward model (FM) based on Lambertian surface assumption is employed to simulate top of the atmosphere (TOA) spectral reflectance, which does not fully consider the surface bi-directional reflectance functions (BRDF) effect. The approximating forward model largely simplifies the radiative transfer model, reduces the size of the look-up tables, and creates faster algorithm. At the same time, it creates systematic biases in the aerosol optical depth (AOD) retrieval. AOD product from the Moderate Resolution Imaging Spectro-radiometer (MODIS) data based on the dark target algorithm is considered as one of accurate satellite aerosol products at present. Though it performs well at a global scale, uncertainties are still found on regional in a lot of studies. The Lambertian surface assumpiton employed in the retrieving algorithm may be one of the uncertain factors. In this study, we first use radiative transfer simulations over dark target to assess the uncertainty to what extent is introduced from the Lambertian surface assumption. The result shows that the uncertainties of AOD retrieval could reach up to ±0.3. Then the Lambertian FM (L_FM) and the BRDF FM (BRDF_FM) are respectively employed in AOD retrieval using dark target algorithm from MODARNSS (MODIS/Terra and MODIS/Aqua Atmosphere Aeronet Subsetting Product) data over Beijing AERONET site. The validation shows that accuracy in AOD retrieval has been improved by employing the BRDF_FM accounting for the surface BRDF effect, the regression slope of scatter plots with retrieved AOD against AEROENET AOD increases from 0.7163 (for L_FM) to 0.7776 (for BRDF_FM) and the intercept decreases from 0.0778 (for L_FM) to 0.0627 (for BRDF_FM).

  18. Aerosol Optical Depth Changes in Version 4 CALIPSO Level 2 Product

    NASA Technical Reports Server (NTRS)

    Kim, Man-Hae; Omar, Ali H.; Tackett, Jason L.; Vaughan, Mark A.; Winker, David M.; Trepte, Charles R.; Hu, Yongxiang; Liu, Zhaoyan

    2017-01-01

    The Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) version 4.10 (V4) products were released in November 2016 with substantial enhancements. There have been improvements in the V4 CALIOP level 2 aerosol optical depth (AOD) compared to V3 (version 3) due to various factors. AOD change from V3 to V4 is investigated by separating factors. CALIOP AOD was compared with the Moderate Resolution Imaging Spectroradiometer (MODIS) and Aerosol Robotic Network (AERONET) for both V3 and V4.

  19. Remote sensing measurements of biomass burning aerosol optical properties during the 2015 Indonesian burning season from AERONET and MODIS satellite data

    NASA Astrophysics Data System (ADS)

    2016-04-01

    The strong El Nino event in 2015 resulted in below normal rainfall leading to very dry conditions throughout Indonesia from August though October 2015. These conditions in turn allowed for exceptionally large numbers of biomass burning fires with very high emissions of aerosols. Over the island of Borneo, three AERONET sites (Palangkaraya, Pontianak, and Kuching) measured monthly mean fine mode aerosol optical depth (AOD) at 500 nm from the spectral deconvolution algorithm in September and October ranging from 1.6 to 3.7, with daily average AOD as high as 6.1. In fact, the AOD was sometimes too high to obtain any significant signal in the mid-visible wavelengths, therefore a previously developed new algorithm in the AERONET Version 3 database was invoked to retain the measurements in as many of the red and near-infrared wavelengths (675, 870, 1020, and 1640 nm) as possible to analyze the AOD in those wavelengths. These AOD at longer wavelengths are then utilized to provide some estimate the AOD in the mid-visible. Additionally, satellite retrievals of AOD at 550 nm from MODIS sensor data and the Dark Target, Beep Blue, and MAIAC algorithms were also analyzed and compared to AERONET measured AOD. Not surprisingly, the AOD was often too high for the satellite algorithms to also measure accurate AOD on many days in the densest smoke regions. The AERONET sky radiance inversion algorithm was utilized to analyze retrievals of the aerosol optical properties of complex refractive indices and size distributions. Since the AOD was often extremely high there was sometimes insufficient direct sun signal for the larger solar zenith angles (> 50 degrees) required for almucantar retrievals. However, the new hybrid sky radiance scan can attain sufficient scattering angle range even at small solar zenith angles when 440 nm direct beam irradiance can be accurately measured, thereby allowing for many more retrievals and also at higher AOD levels during this event. Due to extreme

  20. Aerosol Optical Depth Changes in Version 4 CALIPSO Level 2 Product

    NASA Astrophysics Data System (ADS)

    Kim, M. H.; Omar, A. H.; Tackett, J. L.; Vaughan, M.; Winker, D. M.; Trepte, C. R.; Hu, Y.; Liu, Z.

    2017-12-01

    The Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) version 4 (V4) products were released in November 2016 with substantial enhancements. There have been improvements in the V4 CALIOP level 2 aerosol optical depth (AOD) compared to V3 (version 3) due to various factors. To analyze the AOD changes we selected every bin whose the vertical feature mask (VFM) is determined as aerosol for either V3 or V4 (or both) from the CALIOP level 2 profile product from 2007 to 2009. We isolated the AOD differences due to changes in six factors: layer detection, cloud-aerosol discrimination (CAD), surface detection, stratospheric aerosol, aerosol subtype, and lidar ratio. Total mean (± standard deviation) column AOD increases from V3 in V4 by 0.051±0.296 and 0.075±0.383 for daytime and nighttime, respectively. Dominant reasons for AOD change are differences in aerosol layer detection, CAD, aerosol subtype, and lidar ratio between V3 and V4 with AOD changes of 0.011 (0.027), 0.018 (0.015), -0.002 (0.009), 0.016 (0.017) for daytime (nighttime), respectively. CALIOP AOD was compared with the Moderate Resolution Imaging Spectroradiometer (MODIS) and Aerosol Robotic Network (AERONET) for both V3 and V4. The comparison shows that mean AOD biases with AERONET and MODIS (collection 6, over ocean) decrease in V4 compared to V3. Mean AOD difference with MODIS for cloud-screened data changes from -0.012±0.079 in V3 to -0.008±0.067 in V4. Mean AOD difference with AERONET is -0.071±0.207 and -0.023±0.233 for V3 and V4, respectively. There is reduction in the CALIOP AOD negative bias with respect to both MODIS and AERONET.

  1. Characterizing LEDAPS surface reflectance products by comparisons with AERONET, field spectrometer, and MODIS data

    USGS Publications Warehouse

    Maiersperger, Tom; Scaramuzza, Pat; Leigh, Larry; Shrestha, S.; Gallo, Kevin; Jenkerson, Calli B.; Dwyer, John L.

    2013-01-01

    This study provides a baseline quality check on provisional Landsat Surface Reflectance (SR) products as generated by the U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center using Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) software. Characterization of the Landsat SR products leveraged comparisons between aerosol optical thickness derived from LEDAPS and measured by Aerosol Robotic Network (AERONET), as well as reflectance correlations with field spectrometer and Moderate Resolution Imaging Spectroradiometer (MODIS) data. Results consistently indicated similarity between LEDAPS and alternative data products in longer wavelengths over vegetated areas with no adjacent water, while less reliable performance was observed in shorter wavelengths and sparsely vegetated areas. This study demonstrates the strengths and weaknesses of the atmospheric correction methodology used in LEDAPS, confirming its successful implementation to generate Landsat SR products.

  2. Statistical Inter-comparison Analysis of MODIS, MISR, and AERONET Over the Middle East and North Africa

    NASA Astrophysics Data System (ADS)

    Farahat, A.; El-Askary, H. M.; Kalashnikova, O. V.; Garay, M. J.

    2016-12-01

    Several space-borne and ground based sensors can provide long-standing monitoring of aerosols characteristics, but inconsistencies among different sensors reduce data reliability and lead to uncertainty in analysing long-term data. In this study, we perform statistical inter-comparison of the Aerosol Optical Depth (AOD) among MISR, MODIS/Terra, MODIS/Aqua and Aerosol Robotic Network (AERONET) over seven sites located in the Middle East and North Africa during the period (1995 -2015). The sites are categorized into two regions based on their geographic location and possible dominate particles composition. Compared to MISR, MODIS and AERONET AOD data retrievals indicate larger uncertainty over all sites with a larger daily variability in MODIS measurements. In general, MISR and MODIS AOD matches during high dust seasons but MODIS tends to under estimate the AOD values on low dust seasons. While Terra measurements give a negative trend over the time series at the dust-dominated sites, Aqua, MISR and AERONET show a positive trend. In general, MODIS/Aqua displays stable measurements over the time line at the dust dominated sites. MODIS/Terra, MODIS/Aqua and MISR display a positive trend over Cairo_EMA site while AERONET shows a negative trend over the time line. Terra was found to overestimate AOD during 2002 - 2004 and underestimates it after 2004. We also observe a deviation between Aqua and Terra regardless of the region and data sampling. Excluding Bahrain and Cairo_EMA for low data retrievals the performance of MODIS tends to be similar over all region with 68 % of the retrieved AOD values fall within the confidence range of the AERONET matched data, within global averaged level (> 66 %). MISR indicated better data performance with 72 % falls within the same confidence range. Complimentary MISR and MODIS data was found to provide a better picture of dust storms evolution over Arabian Peninsula and the Middle East. Acknowledgement The authors would like to

  3. Coherent Evaluation of Aerosol Data Products from Multiple Satellite Sensors

    NASA Technical Reports Server (NTRS)

    Ichoku, Charles

    2011-01-01

    Aerosol retrieval from satellite has practically become routine, especially during the last decade. However, there is often disagreement between similar aerosol parameters retrieved from different sensors, thereby leaving users confused as to which sensors to trust for answering important science questions about the distribution, properties, and impacts of aerosols. As long as there is no consensus, and the inconsistencies are not well characterized and understood, there will be no way of developing reliable model inputs and climate data records from satellite aerosol measurements. Fortunately, the Aerosol Robotic Network (AERONET) is providing well-calibrated globally representative ground-based aerosol measurements corresponding to the satellite-retrieved products. Through a recently developed web-based Multi-sensor Aerosol Products Sampling System (MAPSS), we are utilizing the advantages offered by collocated AERONET and satellite products to characterize and evaluate aerosol retrieval from multiple sensors. Indeed, MAPSS and its companion statistical tool AeroStat are facilitating detailed comparative uncertainty analysis of satellite aerosol measurements from Terra-MODIS, Aqua-MODIS, Terra-MISR, Aura-OMI, Parasol-POLDER, and Calipso-CALIOP. In this presentation, we will describe the strategy of the MAPSS system, its potential advantages for the aerosol community, and the preliminary results of an integrated comparative uncertainly analysis of aerosol products from multiple satellite sensors.

  4. Improvement of aerosol optical properties modeling over Eastern Asia with MODIS AOD assimilation in a global non-hydrostatic icosahedral aerosol transport model.

    PubMed

    Dai, Tie; Schutgens, Nick A J; Goto, Daisuke; Shi, Guangyu; Nakajima, Teruyuki

    2014-12-01

    A new global aerosol assimilation system adopting a more complex icosahedral grid configuration is developed. Sensitivity tests for the assimilation system are performed utilizing satellite retrieved aerosol optical depth (AOD) from the Moderate Resolution Imaging Spectroradiometer (MODIS), and the results over Eastern Asia are analyzed. The assimilated results are validated through independent Aerosol Robotic Network (AERONET) observations. Our results reveal that the ensemble and local patch sizes have little effect on the assimilation performance, whereas the ensemble perturbation method has the largest effect. Assimilation leads to significantly positive effect on the simulated AOD field, improving agreement with all of the 12 AERONET sites over the Eastern Asia based on both the correlation coefficient and the root mean square difference (assimilation efficiency). Meanwhile, better agreement of the Ångström Exponent (AE) field is achieved for 8 of the 12 sites due to the assimilation of AOD only. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Development and Applications of a New, High-Resolution, Operational MISR Aerosol Product

    NASA Astrophysics Data System (ADS)

    Garay, M. J.; Diner, D. J.; Kalashnikova, O.

    2014-12-01

    Since early 2000, the Multi-angle Imaging SpectroRadiometer (MISR) instrument on NASA's Terra satellite has been providing aerosol optical depth (AOD) and particle property retrievals at 17.6 km spatial resolution. Capitalizing on the capabilities provided by multi-angle viewing, the operational MISR algorithm performs well, with about 75% of MISR AOD retrievals falling within 0.05 or 20% × AOD of the paired validation data from the ground-based Aerosol Robotic Network (AERONET), and is able to distinguish aerosol particles by size and sphericity, over both land and water. These attributes enable a variety of applications, including aerosol transport model validation and global air quality assessment. Motivated by the adverse impacts of aerosols on human health at the local level, and taking advantage of computational speed advances that have occurred since the launch of Terra, we have implemented an operational MISR aerosol product with 4.4 km spatial resolution that maintains, and sometimes improves upon, the quality of the 17.6 km resolution product. We will describe the performance of this product relative to the heritage 17.6 km product, the global AERONET validation network, and high spatial density AERONET-DRAGON sites. Other changes that simplify product content, and make working with the data much easier for users, will also be discussed. Examples of how the new product demonstrates finer spatial variability of aerosol fields than previously retrieved, and ways this new dataset can be used for studies of local aerosol effects, will be shown.

  6. Comparisons of Spectral Aerosol Single Scattering Albedo in Seoul, South Korea

    NASA Technical Reports Server (NTRS)

    Mok, Jungbin; Krotkov, Nickolay A.; Torres, Omar; Jethva, Hiren; Loughman, Robert P.; Spinei, Elena; Campanelli, Monica; Li, Zhanqing; Go, Sujung; Labow, Gordon; hide

    2018-01-01

    Quantifying aerosol absorption at ultraviolet (UV) wavelengths is important for monitoring air pollution and aerosol amounts using current (e.g., Aura/OMI (Ozone Monitoring Instrument)) and future (e.g., TROPOMI (TROPOspheric Monitoring Instrument), TEMPO (Tropospheric Emissions: Monitoring of POllution), GEMS (Geostationary Environment Monitoring Spectrometer) and Sentinel-4) satellite measurements. Measurements of column average atmospheric aerosol single scattering albedo (SSA) are performed on the ground by the NASA AERONET (AEROsol robotic NETwork) in the visible (VIS) and near-infrared (NIR) wavelengths and in the UV-VIS-NIR by the SKYNET (SKY radiometer NETwork) networks. Previous comparison studies have focused on VIS and NIR wavelengths due to the lack of co-incident measurements of aerosol and gaseous absorption properties in the UV. This study compares the SKYNET-retrieved SSA in the UV with the SSA derived from a combination of AERONET, MFRSR (MultiFilter Rotating Shadowband Radiometer), and Pandora (AMP) retrievals in Seoul, South Korea, in spring and summer 2016. The results show that the spectrally invariant surface albedo assumed in the SKYNET SSA retrievals leads to underestimated SSA compared to AMP values at near UV wavelengths. Re-processed SKYNET inversions using spectrally varying surface albedo, consistent with the AERONET retrieval improve agreement with AMP SSA. The combined AMP inversions allow for separating aerosol and gaseous (NO2 and O3) absorption and provide aerosol retrievals from the shortest UVB (305 nanometers) through VIS to NIR wavelengths (870 nanometers).

  7. GOCI Yonsei Aerosol Retrieval (YAER) algorithm and validation during the DRAGON-NE Asia 2012 campaign

    NASA Astrophysics Data System (ADS)

    Choi, Myungje; Kim, Jhoon; Lee, Jaehwa; Kim, Mijin; Park, Young-Je; Jeong, Ukkyo; Kim, Woogyung; Hong, Hyunkee; Holben, Brent; Eck, Thomas F.; Song, Chul H.; Lim, Jae-Hyun; Song, Chang-Keun

    2016-04-01

    The Geostationary Ocean Color Imager (GOCI) onboard the Communication, Ocean, and Meteorological Satellite (COMS) is the first multi-channel ocean color imager in geostationary orbit. Hourly GOCI top-of-atmosphere radiance has been available for the retrieval of aerosol optical properties over East Asia since March 2011. This study presents improvements made to the GOCI Yonsei Aerosol Retrieval (YAER) algorithm together with validation results during the Distributed Regional Aerosol Gridded Observation Networks - Northeast Asia 2012 campaign (DRAGON-NE Asia 2012 campaign). The evaluation during the spring season over East Asia is important because of high aerosol concentrations and diverse types of Asian dust and haze. Optical properties of aerosol are retrieved from the GOCI YAER algorithm including aerosol optical depth (AOD) at 550 nm, fine-mode fraction (FMF) at 550 nm, single-scattering albedo (SSA) at 440 nm, Ångström exponent (AE) between 440 and 860 nm, and aerosol type. The aerosol models are created based on a global analysis of the Aerosol Robotic Networks (AERONET) inversion data, and covers a broad range of size distribution and absorptivity, including nonspherical dust properties. The Cox-Munk ocean bidirectional reflectance distribution function (BRDF) model is used over ocean, and an improved minimum reflectance technique is used over land. Because turbid water is persistent over the Yellow Sea, the land algorithm is used for such cases. The aerosol products are evaluated against AERONET observations and MODIS Collection 6 aerosol products retrieved from Dark Target (DT) and Deep Blue (DB) algorithms during the DRAGON-NE Asia 2012 campaign conducted from March to May 2012. Comparison of AOD from GOCI and AERONET resulted in a Pearson correlation coefficient of 0.881 and a linear regression equation with GOCI AOD = 1.083 × AERONET AOD - 0.042. The correlation between GOCI and MODIS AODs is higher over ocean than land. GOCI AOD shows better

  8. GOCI Yonsei Aerosol Retrieval (YAER) Algorithm and Validation During the DRAGON-NE Asia 2012 Campaign

    NASA Technical Reports Server (NTRS)

    Choi, Myungje; Kim, Jhoon; Lee, Jaehwa; Kim, Mijin; Park, Young-Je; Jeong, Ukkyo; Kim, Woogyung; Hong, Hyunkee; Holben, Brent; Eck, Thomas F.; hide

    2016-01-01

    The Geostationary Ocean Color Imager (GOCI) onboard the Communication, Ocean, and Meteorological Satellite (COMS) is the first multi-channel ocean color imager in geostationary orbit. Hourly GOCI top-of-atmosphere radiance has been available for the retrieval of aerosol optical properties over East Asia since March 2011. This study presents improvements made to the GOCI Yonsei Aerosol Retrieval (YAER) algorithm together with validation results during the Distributed Regional Aerosol Gridded Observation Networks - Northeast Asia 2012 campaign (DRAGONNE Asia 2012 campaign). The evaluation during the spring season over East Asia is important because of high aerosol concentrations and diverse types of Asian dust and haze. Optical properties of aerosol are retrieved from the GOCI YAER algorithm including aerosol optical depth (AOD) at 550 nm, fine-mode fraction (FMF) at 550 nm, single-scattering albedo (SSA) at 440 nm, Angstrom exponent (AE) between 440 and 860 nm, and aerosol type. The aerosol models are created based on a global analysis of the Aerosol Robotic Networks (AERONET) inversion data, and covers a broad range of size distribution and absorptivity, including nonspherical dust properties. The Cox-Munk ocean bidirectional reflectance distribution function (BRDF) model is used over ocean, and an improved minimum reflectance technique is used over land. Because turbid water is persistent over the Yellow Sea, the land algorithm is used for such cases. The aerosol products are evaluated against AERONET observations and MODIS Collection 6 aerosol products retrieved from Dark Target (DT) and Deep Blue (DB) algorithms during the DRAGON-NE Asia 2012 campaign conducted from March to May 2012. Comparison of AOD from GOCI and AERONET resulted in a Pearson correlation coefficient of 0.881 and a linear regression equation with GOCI AOD = 1.083 x AERONET AOD - 0.042. The correlation between GOCI and MODIS AODs is higher over ocean than land. GOCI AOD shows better agreement

  9. Aerosol Properties Derived from Airborne Sky Radiance and Direct Beam Measurements in Recent NASA and DoE Field Campaigns

    NASA Technical Reports Server (NTRS)

    Redemann, J.; Flynn, C. J.; Shinozuka, Y.; Russell, P. B.; Kacenelenbogen, M.; Segal-Rosenheimer, M.; Livingston, J. M.; Schmid, B.; Dunagan, S. E.; Johnson, R. R.; hide

    2014-01-01

    The AERONET (AErosol RObotic NETwork) ground-based suite of sunphotometers provides measurements of spectral aerosol optical depth (AOD), precipitable water and spectral sky radiance, which can be inverted to retrieve aerosol microphysical properties that are critical to assessments of aerosol-climate interactions. Because of data quality criteria and sampling constraints, there are significant limitations to the temporal and spatial coverage of AERONET data and their representativeness for global aerosol conditions.The 4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research) instrument, jointly developed by NASA Ames and PNNL (Pacific Northwest National Laboratory) with NASA Goddard collaboration, combines airborne sun tracking and AERONET-like sky scanning with spectroscopic detection. Being an airborne instrument, 4STAR has the potential to fill gaps in the AERONET data set. The 4STAR instrument operated successfully in the SEAC4RS (Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys) experiment in Aug./Sep. 2013 aboard the NASA DC-8 and in the DoE (Department of Energy)-sponsored TCAP (Two Column Aerosol Project, July 2012 & Feb. 2013) experiment aboard the DoE G-1 aircraft. 4STAR provided direct beam measurements of hyperspectral AOD, columnar trace gas retrievals (H2O, O3, NO2), and the first ever airborne hyperspectral sky radiance scans, which can be inverted to yield the same products as AERONET ground-based observations. In this presentation, we provide an overview of the new 4STAR capabilities, with an emphasis on 26 high-quality sky radiance measurements carried out by 4STAR in SEAC4RS. We compare collocated 4STAR and AERONET sky radiances, as well as their retrievals of aerosol microphysical properties for a subset of the available case studies. We summarize the particle property and air-mass characterization studies made possible by the combined 4STAR direct beam and sky radiance

  10. Potential sources of Southern Siberia aerosols by data of AERONET site in Tomsk, Russia

    NASA Astrophysics Data System (ADS)

    Shukurov, K. A.; Shukurova, L. M.

    2017-11-01

    For all days of measurements in 2002-2015 of volume concentration of aerosols at the AERONET Tomsk/Tomsk-22 station an array of 10-day backward trajectories of air parcels arriving in Tomsk into seven layers of the troposphere with heights in the range of 0.5-5.0 km is calculated using the trajectory model NOAA HYSPLIT_4. For the three fractions of the aerosol with particle sizes < 1.0 μm, 1.0-2.5 μm, 2.5-5.0 μm and their sum (< 5.0 μm), the field of capacity of the potential sources of aerosols of these fractions for southern Siberia is determined by the CWT (concentration weighted trajectory) method using the backward trajectory array. The analysis is carried out taking into account the processes both the scavenging of the aerosols with precipitation and the dry deposition. Trajectories arriving at different heights were analyzed taking into account the weight coefficients proportional to the backward light scattering coefficients of an aerosols at corresponding heights for warm and cold seasons in Western Siberia. The most capable (in unit of volume concentration μm3 /μm2 ) potential sources of these fractions for southern Siberia are located above North Africa, Eastern Siberia, Central Asia and the Dzhungarian desert in the Xinjiang-Uyghur Autonomous Region of China.

  11. Atmospheric correction at AERONET locations: A new science and validation data set

    USGS Publications Warehouse

    Wang, Y.; Lyapustin, A.I.; Privette, J.L.; Morisette, J.T.; Holben, B.

    2009-01-01

    This paper describes an Aerosol Robotic Network (AERONET)-based Surface Reflectance Validation Network (ASRVN) and its data set of spectral surface bidirectional reflectance and albedo based on Moderate Resolution Imaging Spectroradiometer (MODIS) TERRA and AQUA data. The ASRVN is an operational data collection and processing system. It receives 50 ?? 50 km2; subsets of MODIS level 1B (L1B) data from MODIS adaptive processing system and AERONET aerosol and water-vapor information. Then, it performs an atmospheric correction (AC) for about 100 AERONET sites based on accurate radiative-transfer theory with complex quality control of the input data. The ASRVN processing software consists of an L1B data gridding algorithm, a new cloud-mask (CM) algorithm based on a time-series analysis, and an AC algorithm using ancillary AERONET aerosol and water-vapor data. The AC is achieved by fitting the MODIS top-of-atmosphere measurements, accumulated for a 16-day interval, with theoretical reflectance parameterized in terms of the coefficients of the Li SparseRoss Thick (LSRT) model of the bidirectional reflectance factor (BRF). The ASRVN takes several steps to ensure high quality of results: 1) the filtering of opaque clouds by a CM algorithm; 2) the development of an aerosol filter to filter residual semitransparent and subpixel clouds, as well as cases with high inhomogeneity of aerosols in the processing area; 3) imposing the requirement of the consistency of the new solution with previously retrieved BRF and albedo; 4) rapid adjustment of the 16-day retrieval to the surface changes using the last day of measurements; and 5) development of a seasonal backup spectral BRF database to increase data coverage. The ASRVN provides a gapless or near-gapless coverage for the processing area. The gaps, caused by clouds, are filled most naturally with the latest solution for a given pixel. The ASRVN products include three parameters of the LSRT model (kL, kG, and kV), surface albedo

  12. Retrievals of aerosol optical depth and Angström exponent from ground-based Sun-photometer data of Singapore.

    PubMed

    Salinas, Santo V; Chew, Boon N; Liew, Soo C

    2009-03-10

    The role of aerosols in climate and climate change is one of the factors that is least understood at the present. Aerosols' direct interaction with solar radiation is a well understood mechanism that affects Earth's net radiative forcing. However, quantifying its magnitude is more problematic because of the temporal and spatial variability of aerosol particles. To enhance our understanding of the radiative effects of aerosols on the global climate, Singapore has joined the AERONET (Aerosol Robotic Network) worldwide network by contributing ground-based direct Sun measurements performed by means of a multiwavelength Sun-photometer instrument. Data are collected on an hourly basis, then are uploaded to be fully screened and quality assured by AERONET. We use a one year data record (level 1.5/2.0) of measured columnar atmospheric optical depth, spanning from November 2006 to October 2007, to study the monthly and seasonal variability of the aerosol optical depth and the Angström exponent. We performed independent retrievals of these parameters (aerosol optical depth and Angström exponent) by using the photometer's six available bands covering the near-UV to near-IR (380-1080 nm). As a validation, our independent retrievals were compared with AERONET 1.5/2.0 level direct Sun product.

  13. Dust Optical Properties Over North Africa and Arabian Peninsula Derived from the AERONET Dataset

    NASA Technical Reports Server (NTRS)

    Kim, D.; Chin, M.; Yu, H.; Eck, T. F.; Sinyuk, A.; Smirnov, A.; Holben, B. N.

    2011-01-01

    Dust optical properties over North Africa and the Arabian Peninsula are extracted from the quality assured multi-year datasets obtained at 14 sites of the Aerosol Robotic Network (AERONET). We select the data with (a) large aerosol optical depth (AOD >= 0.4 at 440 nm) and (b) small Angstrom exponent (A(sub ext)<= 0.2) for retaining high accuracy and reducing interference of non-dust aerosols. The result indicates that the major fraction of high aerosol optical depth days are dominated by dust over these sites even though it varies depending on location and time. We have found that the annual mean and standard deviation of single scattering albedo, asymmetry parameter, real refractive index, and imaginary refractive index for Saharan and Arabian desert dust is 0.944 +/- 0.005, 0.752 +/- 0.014, 1.498 +/- 0.032, and 0.0024 +/- 0.0034 at 550 nm wavelength, respectively. Dust aerosol selected by this method is less absorbing than the previously reported values over these sites. The weaker absorption of dust from this study is consistent with the studies using remote sensing techniques from satellite. These results can help to constrain uncertainties in estimating global dust shortwave radiative forcing.

  14. Combining external and internal mixing representation of atmospheric aerosol for optical properties calculations: focus on absorption properties over Europe and North America using AERONET observations and AQMEII simulations

    NASA Astrophysics Data System (ADS)

    Curci, Gabriele

    2017-04-01

    the coating formation). We compare sunphotometer observations from the AERosol RObotic NETwork (AERONET, http://aeronet.gsfc.nasa.gov/) across Europe and North America for the year 2010 with simulations from the Air Quality Modeling Evaluation International Initiative (AQMEII, http://aqmeii.jrc.ec.europa.eu/). The calculation of optical properties from simulated aerosol profiles is carried out using a single post-processing tool (FlexAOD, http://pumpkin.aquila.infn.it/flexaod/) that allows explicit and flexible assignment of the underlying assumptions mentioned above. We found that the combination of externally and internally mixed particles weighted through the F_in fraction gives the best agreement between models and observations, in particular regarding the single-scattering albedo.

  15. GOCI Yonsei Aerosol Retrieval (YAER) algorithm and validation during DRAGON-NE Asia 2012 campaign

    NASA Astrophysics Data System (ADS)

    Choi, M.; Kim, J.; Lee, J.; Kim, M.; Park, Y. Je; Jeong, U.; Kim, W.; Holben, B.; Eck, T. F.; Lim, J. H.; Song, C. K.

    2015-09-01

    The Geostationary Ocean Color Imager (GOCI) onboard the Communication, Ocean, and Meteorology Satellites (COMS) is the first multi-channel ocean color imager in geostationary orbit. Hourly GOCI top-of-atmosphere radiance has been available for the retrieval of aerosol optical properties over East Asia since March 2011. This study presents improvements to the GOCI Yonsei Aerosol Retrieval (YAER) algorithm over ocean and land together with validation results during the DRAGON-NE Asia 2012 campaign. Optical properties of aerosol are retrieved from the GOCI YAER algorithm including aerosol optical depth (AOD) at 550 nm, fine-mode fraction (FMF) at 550 nm, single scattering albedo (SSA) at 440 nm, Angstrom exponent (AE) between 440 and 860 nm, and aerosol type from selected aerosol models in calculating AOD. Assumed aerosol models are compiled from global Aerosol Robotic Networks (AERONET) inversion data, and categorized according to AOD, FMF, and SSA. Nonsphericity is considered, and unified aerosol models are used over land and ocean. Different assumptions for surface reflectance are applied over ocean and land. Surface reflectance over the ocean varies with geometry and wind speed, while surface reflectance over land is obtained from the 1-3 % darkest pixels in a 6 km × 6 km area during 30 days. In the East China Sea and Yellow Sea, significant area is covered persistently by turbid waters, for which the land algorithm is used for aerosol retrieval. To detect turbid water pixels, TOA reflectance difference at 660 nm is used. GOCI YAER products are validated using other aerosol products from AERONET and the MODIS Collection 6 aerosol data from "Dark Target (DT)" and "Deep Blue (DB)" algorithms during the DRAGON-NE Asia 2012 campaign from March to May 2012. Comparison of AOD from GOCI and AERONET gives a Pearson correlation coefficient of 0.885 and a linear regression equation with GOCI AOD =1.086 × AERONET AOD - 0.041. GOCI and MODIS AODs are more highly correlated

  16. Assessment of OMI Near-UV Aerosol Optical Depth over Land

    NASA Technical Reports Server (NTRS)

    Ahn, Changwoo; Torres, Omar; Jethva, Hiren

    2014-01-01

    This is the first comprehensive assessment of the aerosol optical depth (AOD) product retrieved from the near-UV observations by the Ozone Monitoring Instrument (OMI) onboard the Aura satellite. The OMI-retrieved AOD by the ultraviolet (UV) aerosol algorithm (OMAERUV version 1.4.2) was evaluated using collocated Aerosol Robotic Network (AERONET) level 2.0 direct Sun AOD measurements over 8 years (2005-2012). A time series analysis of collocated satellite and ground-based AOD observations over 8 years shows no discernible drift in OMI's calibration. A rigorous validation analysis over 4 years (2005-2008) was carried out at 44 globally distributed AERONET land sites. The chosen locations are representative of major aerosol types such as smoke from biomass burning or wildfires, desert mineral dust, and urban/industrial pollutants. Correlation coefficient (p) values of 0.75 or better were obtained at 50 percent of the sites with about 33 percent of the sites in the analysis reporting regression line slope values larger than 0.70 but always less than unity. The combined AERONET-OMAERUV analysis of the 44 sites yielded a p of 0.81, slope of 0.79, Y intercept of 0.10, and 65 percent OMAERUV AOD falling within the expected uncertainty range (largest of 30 percent or 0.1) at 440 nanometers. The most accurate OMAERUV retrievals are reported over northern Africa locations where the predominant aerosol type is desert dust and cloud presence is less frequent. Reliable retrievals were documented at many sites characterized by urban-type aerosols with low to moderate AOD values, concentrated in the boundary layer. These results confirm that the near-ultraviolet observations are sensitive to the entire aerosol column. A simultaneous comparison of OMAERUV, Moderate Resolution Imaging Spectroradiometer (MODIS) Deep Blue, and Multiangle Imaging Spectroradiometer (MISR) AOD retrievals to AERONET measurements was also carried out to evaluate the OMAERUV accuracy in relation to those of

  17. Biomass Burning Aerosol Absorption Measurements with MODIS Using the Critical Reflectance Method

    NASA Technical Reports Server (NTRS)

    Zhu, Li; Martins, Vanderlei J.; Remer, Lorraine A.

    2010-01-01

    This research uses the critical reflectance technique, a space-based remote sensing method, to measure the spatial distribution of aerosol absorption properties over land. Choosing two regions dominated by biomass burning aerosols, a series of sensitivity studies were undertaken to analyze the potential limitations of this method for the type of aerosol to be encountered in the selected study areas, and to show that the retrieved results are relatively insensitive to uncertainties in the assumptions used in the retrieval of smoke aerosol. The critical reflectance technique is then applied to Moderate Resolution Imaging Spectrometer (MODIS) data to retrieve the spectral aerosol single scattering albedo (SSA) in South African and South American 35 biomass burning events. The retrieved results were validated with collocated Aerosol Robotic Network (AERONET) retrievals. One standard deviation of mean MODIS retrievals match AERONET products to within 0.03, the magnitude of the AERONET uncertainty. The overlap of the two retrievals increases to 88%, allowing for measurement variance in the MODIS retrievals as well. The ensemble average of MODIS-derived SSA for the Amazon forest station is 0.92 at 670 nm, and 0.84-0.89 for the southern African savanna stations. The critical reflectance technique allows evaluation of the spatial variability of SSA, and shows that SSA in South America exhibits higher spatial variation than in South Africa. The accuracy of the retrieved aerosol SSA from MODIS data indicates that this product can help to better understand 44 how aerosols affect the regional and global climate.

  18. A minimum albedo aerosol retrieval method for the new-generation geostationary meteorological satellite Himawari-8

    NASA Astrophysics Data System (ADS)

    Yan, Xing; Li, Zhanqing; Luo, Nana; Shi, Wenzhong; Zhao, Wenji; Yang, Xingchuan; Jin, Jiannan

    2018-07-01

    Aerosol properties, including aerosol optical thickness (AOT) and fine-mode fraction (FMF), are important physical data and are fundamental for climate studies. A minimum albedo aerosol retrieval method (MAARM) was developed for the retrieval of aerosol properties based on the new-generation geostationary meteorological satellite Himawari-8. This method is based on the albedo data which is directly obtained from the Himawari-8 and can successfully output AOT, FMF, and the Ångström exponent (AE) directly. As part of the MAARM, a modified radiative transfer equation was proposed that considers the impact of aerosol multiple scattering. Through comparisons with output from the Second Simulation of a Satellite Signal in the Solar Spectrum (6S) radiative transfer code, the modified radiative transfer equation achieved a high accuracy for the aerosol reflectance calculation ( 5%). Aerosol Robotic Network (AERONET) data from three sites in Beijing and its surrounding area for the year 2016 were used to validate MAARM aerosol retrievals. Fifty-seven percent, 57%, and 56% of derived AOT values fell within the estimated error envelope at the Beijing, the Chinese Academy of Meteorological Sciences (CAMS), and Xianghe AERONET stations, respectively. In addition, 36% (58%) of MAARM-derived FMF values fell within the ±10%AERONET FMF envelope (the ±25%AERONET FMF envelope). Overall, an improvement was achieved by the MAARM in retrieving AOT, FMF, and AE compared with Himawari-8 standard aerosol property retrievals; however, there remains a distinct lack of skills in determining FMF and AE and their use from the MAARM retrieval is not recommended at this time. Given that the Himawari-8 satellite provides observations at 10-min intervals, the MAARM is capable of monitoring the spatial distribution of and variation in AOT with a high temporal resolution.

  19. In-depth discrimination of aerosol types using multiple clustering techniques over four locations in Indo-Gangetic plains

    NASA Astrophysics Data System (ADS)

    Bibi, Humera; Alam, Khan; Bibi, Samina

    2016-11-01

    Discrimination of aerosol types is essential over the Indo-Gangetic plain (IGP) because several aerosol types originate from different sources having different atmospheric impacts. In this paper, we analyzed a seasonal discrimination of aerosol types by multiple clustering techniques using AERosol RObotic NETwork (AERONET) datasets for the period 2007-2013 over Karachi, Lahore, Jaipur and Kanpur. We discriminated the aerosols into three major types; dust, biomass burning and urban/industrial. The discrimination was carried out by analyzing different aerosol optical properties such as Aerosol Optical Depth (AOD), Angstrom Exponent (AE), Extinction Angstrom Exponent (EAE), Abortion Angstrom Exponent (AAE), Single Scattering Albedo (SSA) and Real Refractive Index (RRI) and their interrelationship to investigate the dominant aerosol types and to examine the variation in their seasonal distribution. The results revealed that during summer and pre-monsoon, dust aerosols were dominant while during winter and post-monsoon prevailing aerosols were biomass burning and urban industrial, and the mixed type of aerosols were present in all seasons. These types of aerosol discriminated from AERONET were in good agreement with CALIPSO (the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) measurement.

  20. Toward a Coherent Detailed Evaluation of Aerosol Data Products from Multiple Satellite Sensors

    NASA Technical Reports Server (NTRS)

    Ichoku, Charles; Petrenko, Maksym; Leptoukh, Gregory

    2011-01-01

    Atmospheric aerosols represent one of the greatest uncertainties in climate research. Although satellite-based aerosol retrieval has practically become routine, especially during the last decade, there is often disagreement between similar aerosol parameters retrieved from different sensors, leaving users confused as to which sensors to trust for answering important science questions about the distribution, properties, and impacts of aerosols. As long as there is no consensus and the inconsistencies are not well characterized and understood, there will be no way of developing reliable climate data records from satellite aerosol measurements. Fortunately, the most globally representative well-calibrated ground-based aerosol measurements corresponding to the satellite-retrieved products are available from the Aerosol Robotic Network (AERONET). To adequately utilize the advantages offered by this vital resource, an online Multi-sensor Aerosol Products Sampling System (MAPSS) was recently developed. The aim of MAPSS is to facilitate detailed comparative analysis of satellite aerosol measurements from different sensors (Terra-MODIS, Aqua-MODIS, TerraMISR, Aura-OMI, Parasol-POLDER, and Calipso-CALIOP) based on the collocation of these data products over AERONET stations. In this presentation, we will describe the strategy of the MASS system, its potential advantages for the aerosol community, and the preliminary results of an integrated comparative uncertainly analysis of aerosol products from multiple satellite sensors.

  1. Smoke aerosol properties and ageing effects for Northern temperate and boreal regions derived from AERONET source and age attribution

    NASA Astrophysics Data System (ADS)

    Nikonovas, Tadas; North, Peter; Doerr, Stefan H.

    2015-04-01

    Particulate emissions from wildfires impact human health and have a large but uncertain effect on climate. Modelling schemes depend on information about emission factors, emitted particle microphysical and optical properties and ageing effects, while satellite retrieval algorithms make use of characteristic aerosol models to improve retrieval. Ground based remote sensing provides detailed aerosol characterisation, but does not contain information on source. A new method is presented to estimate plume origin land cover type and age for AERONET aerosol observations, employing trajectory modelling using the HYSPLIT model, and satellite active fire and aerosol optical thickness (AOT) observations from MODIS and AATSR. It is applied to AERONET stations located in or near Northern temperate and boreal forests, for the period 2002-2013. The results from 629 fire attributions indicate significant differences insize distributions and particle optical properties between different land cover types. Smallest fine mode median radius are attributed to plumes from cropland/natural vegetation mosaic (0.143 μm) and grasslands (0.147 μm) fires. Evergreen needleleaf forest emissions show a significantly smaller fine mode median radius (0.164 μm) than plumes from woody savannas (0.184 μm) and mixed forest (0.193 μm) fires. Smoke plumes are predominantly scattering for all of the classes with median single scattering albedo at 440 nm (SSA(440)) values close to 0.95 except the cropland emissions which have SSA(440) value of 0.9. Overall fine mode volume median radius increase rate is 0.0095μm per day for the first 4 days of ageing and 0.0084 μm per day for seven days of ageing. Changes in size were consistent with a decrease in Angstrom Exponent and increase in Asymmetry parameter. No significant changes in SSA(λ) with ageing were found. The implications of this work for improved modeling of aerosol radiative effects, which are relevant to both climate modelling and satellite

  2. Smoke aerosol properties and ageing effects for Northern temperate and boreal regions derived from AERONET source and age attribution

    NASA Astrophysics Data System (ADS)

    Nikonovas, T.; North, P. R. J.; Doerr, S. H.

    2015-03-01

    Particulate emissions from wildfires impact human health and have a large but uncertain effect on climate. Modelling schemes depend on information about emission factors, emitted particle microphysical and optical properties and ageing effects, while satellite retrieval algorithms make use of characteristic aerosol models to improve retrieval. Ground based remote sensing provides detailed aerosol characterisation, but does not contain information on source. Here, a method is presented to estimate plume origin land cover type and age for AERONET aerosol observations, employing trajectory modelling using the HYSPLIT model, and satellite active fire and aerosol optical thickness (AOT) observations from MODIS and AATSR. It is applied to AERONET stations located in or near Northern temperate and boreal forests, for the period 2002-2013. The results from 629 fire attributions indicate significant differences in size distributions and particle optical properties between different land cover types. Smallest fine mode median radius are attributed to plumes from cropland - natural vegetation mosaic (0.143 μm) and grasslands (0.147 μm) fires. Evergreen needleleaf forest emissions show a significantly smaller fine mode median radius (0.164 μm) than plumes from woody savannas (0.184 μm) and mixed forest (0.193 μm) fires. Smoke plumes are predominantly scattering for all of the classes with median single scattering albedo at 440 nm (SSA(440)) values close to 0.95 except the cropland emissions which have a SSA(440) value of 0.9. Overall fine mode volume median radius increase rate is 0.0095 μm per day for the first 4 days of ageing and 0.0084 μm per day for seven days of ageing. Changes in size were consistent with a decrease in Angstrom Exponent and increase in Asymmetry parameter. No significant changes in SSA(λ) with ageing were found. These estimates have implications for

  3. Aerosol layer height from synergistic use of VIIRS and OMPS

    NASA Astrophysics Data System (ADS)

    Lee, J.; Hsu, N. Y. C.; Sayer, A. M.; Kim, W.; Seftor, C. J.

    2017-12-01

    This study presents an Aerosol Single-scattering albedo and Height Estimation (ASHE) algorithm, which retrieves the height of UV-absorbing aerosols by synergistically using the Visible Infrared Imaging Radiometer Suite (VIIRS) and the Ozone Mapping and Profiler Suite (OMPS). ASHE provides height information over a much broader area than ground-based or spaceborne lidar measurements by benefitting from the wide swaths of the two instruments used. As determination of single-scattering albedo (SSA) of the aerosol layer is the most critical part for the performance and coverage of ASHE, here we demonstrate three different strategies to constrain the SSA. First, ASHE is able to retrieve the SSA of UV-absorbing aerosols when Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) provides vertical profiles of the aerosol layer of interest. Second, Aerosol Robotic Network (AERONET) inversions can directly constrain the SSA of the aerosol layer when collocated with VIIRS or OMPS. Last, a SSA climatology from ASHE, AERONET, or other data sources can be used for large-scale, aged aerosol events, for which climatological SSA is well-known, at the cost of a slight decrease in retrieval accuracy. The same algorithm can be applied to measurements of similar type, such as those made by the Moderate Resolution Imaging Spectroradiometer (MODIS) and Ozone Monitoring Instrument (OMI), for a long-term, consistent data record.

  4. An overview of mesoscale aerosol processes, comparisons, and validation studies from DRAGON networks

    NASA Astrophysics Data System (ADS)

    Holben, Brent N.; Kim, Jhoon; Sano, Itaru; Mukai, Sonoyo; Eck, Thomas F.; Giles, David M.; Schafer, Joel S.; Sinyuk, Aliaksandr; Slutsker, Ilya; Smirnov, Alexander; Sorokin, Mikhail; Anderson, Bruce E.; Che, Huizheng; Choi, Myungje; Crawford, James H.; Ferrare, Richard A.; Garay, Michael J.; Jeong, Ukkyo; Kim, Mijin; Kim, Woogyung; Knox, Nichola; Li, Zhengqiang; Lim, Hwee S.; Liu, Yang; Maring, Hal; Nakata, Makiko; Pickering, Kenneth E.; Piketh, Stuart; Redemann, Jens; Reid, Jeffrey S.; Salinas, Santo; Seo, Sora; Tan, Fuyi; Tripathi, Sachchida N.; Toon, Owen B.; Xiao, Qingyang

    2018-01-01

    Over the past 24 years, the AErosol RObotic NETwork (AERONET) program has provided highly accurate remote-sensing characterization of aerosol optical and physical properties for an increasingly extensive geographic distribution including all continents and many oceanic island and coastal sites. The measurements and retrievals from the AERONET global network have addressed satellite and model validation needs very well, but there have been challenges in making comparisons to similar parameters from in situ surface and airborne measurements. Additionally, with improved spatial and temporal satellite remote sensing of aerosols, there is a need for higher spatial-resolution ground-based remote-sensing networks. An effort to address these needs resulted in a number of field campaign networks called Distributed Regional Aerosol Gridded Observation Networks (DRAGONs) that were designed to provide a database for in situ and remote-sensing comparison and analysis of local to mesoscale variability in aerosol properties. This paper describes the DRAGON deployments that will continue to contribute to the growing body of research related to meso- and microscale aerosol features and processes. The research presented in this special issue illustrates the diversity of topics that has resulted from the application of data from these networks.

  5. Smoke over haze: Comparative analysis of satellite, surface radiometer, and airborne in situ measurements of aerosol optical properties and radiative forcing over the eastern United States

    NASA Astrophysics Data System (ADS)

    Vant-Hull, Brian; Li, Zhanqing; Taubman, Brett F.; Levy, Robert; Marufu, Lackson; Chang, Fu-Lung; Doddridge, Bruce G.; Dickerson, Russell R.

    2005-05-01

    In July 2002 Canadian forest fires produced a major smoke episode that blanketed the east coast of the United States. Properties of the smoke aerosol were measured in situ from aircraft, complementing operational Aerosol Robotic Network (AERONET), and Moderate Resolution Imaging Spectroradiometer (MODIS) remotely sensed aerosol retrievals. This study compares single scattering albedo and phase function derived from the in situ measurements and AERONET retrievals in order to evaluate their consistency for application to satellite retrievals of optical depth and radiative forcing. These optical properties were combined with MODIS reflectance observations to calculate optical depth. The use of AERONET optical properties yielded optical depths 2-16% lower than those directly measured by AERONET. The use of in situ-derived optical properties resulted in optical depths 22-43% higher than AERONET measurements. These higher optical depths are attributed primarily to the higher absorption measured in situ, which is roughly twice that retrieved by AERONET. The resulting satellite retrieved optical depths were in turn used to calculate integrated radiative forcing at both the surface and top of atmosphere. Comparisons to surface (Surface Radiation Budget Network (SURFRAD) and ISIS) and to satellite (Clouds and Earth Radiant Energy System CERES) broadband radiometer measurements demonstrate that the use of optical properties derived from the aircraft measurements provided a better broadband forcing estimate (21% error) than those derived from AERONET (33% error). Thus AERONET-derived optical properties produced better fits to optical depth measurements, while in situ properties resulted in better fits to forcing measurements. These apparent inconsistencies underline the significant challenges facing the aerosol community in achieving column closure between narrow and broadband measurements and calculations.

  6. Response to Toward Unified Satellite Climatology of Aerosol Properties. 3; MODIS versus MISR versus AERONET

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph A.; Garay, Michael J.; Nelson, David L.; Levy, Robert C.; Bull, Michael A.; Diner, David J.; Martonchik, John V.; Hansen, Earl G.; Remer, Lorraine A.; Tanre, Didler

    2010-01-01

    A recent paper by Mishchenko et al. compares near-coincident MISR, MODIS, and AERONET aerosol optical depth (AOD), and gives a much less favorable impression of the utility of the satellite products than that presented by the instrument teams and other groups. We trace the reasons for the differing pictures to whether known and previously documented limitations of the products are taken into account in the assessments. Specifically, the analysis approaches differ primarily in (1) the treatment of outliers, (2) the application of absolute vs. relative criteria for testing agreement, and (3) the ways in which seasonally varying spatial distributions of coincident retrievals are taken into account. Mishchenko et al. also do not distinguish between observational sampling differences and retrieval algorithm error. We assess the implications of the different analysis approaches, and cite examples demonstrating how the MISR and MODIS aerosol products have been applied successfully to a range of scientific investigations.

  7. New Aerosol Models for the Retrieval of Aerosol Optical Thickness and Normalized Water-Leaving Radiances from the SeaWiFS and MODIS Sensors Over Coastal Regions and Open Oceans

    NASA Technical Reports Server (NTRS)

    Ahmad, Ziauddin; Franz, Bryan A.; McClain, Charles R.; Kwiatkowska, Ewa J.; Werdell, Jeremy; Shettle, Eric P.; Holben, Brent N.

    2010-01-01

    We describe the development of a new suite of aerosol models for the retrieval of atmospheric and oceanic optical properties from the SeaWiFs and MODIS sensors, including aerosol optical thickness (tau), angstrom coefficient (alpha), and water-leaving radiance (L(sub w)). The new aerosol models are derived from Aerosol Robotic Network (AERONET) observations and have bimodal lognormal distributions that are narrower than previous models used by the Ocean Biology Processing Group. We analyzed AERONET data over open ocean and coastal regions and found that the seasonal variability in the modal radii, particularly in the coastal region, was related to the relative humidity, These findings were incorporated into the models by making the modal radii, as well as the refractive indices, explicitly dependent on relative humidity, From those findings, we constructed a new suite of aerosol models. We considered eight relative humidity values (30%, 50%, 70%, 75%, 80%, 85%, 90%. and 95%) and, for each relative humidity value, we constructed ten distributions by varying the fine-mode fraction from zero to 1. In all. 80 distributions (8Rh x 10 fine-mode fractions) were created to process the satellite data. We. also assumed that the coarse-mode particles were nonabsorbing (sea salt) and that all observed absorptions were entirely due to fine-mode particles. The composition of fine mode was varied to ensure that the new models exhibited the same spectral dependence of single scattering albedo as observed in the AERONET data,

  8. Improvement of Aerosol Optical Depth Retrieval over Hong Kong from a Geostationary Meteorological Satellite Using Critical Reflectance with Background Optical Depth Correction

    NASA Technical Reports Server (NTRS)

    Kim, Mijin; Kim, Jhoon; Wong, Man Sing; Yoon, Jongmin; Lee, Jaehwa; Wu, Dong L.; Chan, P.W.; Nichol, Janet E.; Chung, Chu-Yong; Ou, Mi-Lim

    2014-01-01

    Despite continuous efforts to retrieve aerosol optical depth (AOD) using a conventional 5-channelmeteorological imager in geostationary orbit, the accuracy in urban areas has been poorer than other areas primarily due to complex urban surface properties and mixed aerosol types from different emission sources. The two largest error sources in aerosol retrieval have been aerosol type selection and surface reflectance. In selecting the aerosol type from a single visible channel, the season-dependent aerosol optical properties were adopted from longterm measurements of Aerosol Robotic Network (AERONET) sun-photometers. With the aerosol optical properties obtained fromthe AERONET inversion data, look-up tableswere calculated by using a radiative transfer code: the Second Simulation of the Satellite Signal in the Solar Spectrum (6S). Surface reflectance was estimated using the clear sky composite method, awidely used technique for geostationary retrievals. Over East Asia, the AOD retrieved from the Meteorological Imager showed good agreement, although the values were affected by cloud contamination errors. However, the conventional retrieval of the AOD over Hong Kong was largely underestimated due to the lack of information on the aerosol type and surface properties. To detect spatial and temporal variation of aerosol type over the area, the critical reflectance method, a technique to retrieve single scattering albedo (SSA), was applied. Additionally, the background aerosol effect was corrected to improve the accuracy of the surface reflectance over Hong Kong. The AOD retrieved froma modified algorithmwas compared to the collocated data measured by AERONET in Hong Kong. The comparison showed that the new aerosol type selection using the critical reflectance and the corrected surface reflectance significantly improved the accuracy of AODs in Hong Kong areas,with a correlation coefficient increase from0.65 to 0.76 and a regression line change from tMI [basic algorithm] = 0

  9. Assessment of the impact of forest fires on aerosols distribution in the atmosphere over Kyiv based on AERONET and satellites measurement techniques

    NASA Astrophysics Data System (ADS)

    Galytska, Evgenia; Danylevsky, Vassyl; Snizhko, Sergiy

    2015-04-01

    The study of the dynamics of aerosol particles, revealing their sources in the atmosphere is one of the urgent problems of modern meteorology, climatology, atmospheric physics, and ecology. Monitoring of the air pollution caused by aerosols contributes to the determination of its effects on the climate and to the reduction of its negative impacts on the health of the population. The research work comprises latest technologies and approaches: remote ground-based together with satellite measurements of the optical properties of aerosol particles, atmospheric dynamics research and modeling of transport of particles. The dynamics of aerosol layer properties over Ukrainian cities as Kyiv, Sevastopol, and over the rural site Martova is the subject of the remote sensing investigation made by the sun photometers network AERONET/PHOTONS, dealing with the columnar aerosol optical properties particularly aerosol optical depth (AOD). As well the CALIOP lidar data on board of CALIPSO satellite were used for AOD analysis for appropriate territory and further comparison with AERONET measurements. It was stated that during warm periods a large concentration of impurities was observed due to natural sources, such as forest fires in Ukraine and the European Russia. Especially in summer 2010 the high-altitude anticyclone and a ridge above the European Russia and Ural caused the hottest weather in the East Europe region for the period that promoted origin of vast and intensive forest fires in Central and Western Russia that caused reach pollution of the atmosphere over Ukraine by aerosols. Thus, in August 15, 2010 an aerosol optical depth over Kyiv at a wavelength of 440 nm reached a value of 1.5, which was associated with the aerosols arrival from these fires. Thus, the values of aerosol optical depth that date was triple more in comparison to usual distribution. The ways of aerosols arrival to the atmosphere over Kyiv from the fires centers during some days of August 2010 and effect

  10. Evaluation of the Multi-Angle Implementation of Atmospheric Correction (MAIAC) Aerosol Algorithm through Intercomparison with VIIRS Aerosol Products and AERONET

    NASA Technical Reports Server (NTRS)

    Superczynski, Stephen D.; Kondragunta, Shobha; Lyapustin, Alexei I.

    2017-01-01

    The Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm is under evaluation for use in conjunction with the Geostationary Coastal and Air Pollution Events (GEO-CAPE) mission. Column aerosol optical thickness (AOT) data from MAIAC are compared against corresponding data. from the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument over North America during 2013. Product coverage and retrieval strategy, along with regional variations in AOT through comparison of both matched and un-matched seasonally gridded data are reviewed. MAIAC shows extended coverage over parts of the continent when compared to VIIRS, owing to its pixel selection process and ability to retrieve aerosol information over brighter surfaces. To estimate data accuracy, both products are compared with AERONET Level 2 measurements to determine the amount of error present and discover if there is any dependency on viewing geometry and/or surface characteristics. Results suggest that MAIAC performs well over this region with a relatively small bias of -0.01; however there is a tendency for greater negative biases over bright surfaces and at larger scattering angles. Additional analysis over an expanded area and longer time period are likely needed to determine a comprehensive assessment of the products capability over the Western Hemisphere. and meet the levels of accuracy needed for aerosol monitoring.

  11. Aerosol variation over Continental Europe from 1980 to 2015 Using ALAD Aerosol Retrievals

    NASA Astrophysics Data System (ADS)

    Che, Yahui; Xue, Yong; Mei, Linlu; Guang, Jie; She, Lu

    2017-04-01

    The Advanced Very High Resolution Radiometer (AVHRR) on-board National Oceanic and Atmospheric Administration (NOAA) series satellites has been used to observe the Earth and is the only spaceborne instrument which can provide users continuous long time series global coverage for more than 35 years since 1979. The initial purpose of AVHRR is for cloud detection and monitoring thermal emission of the Earth so that it lacks visible channels (only 0.64μm) and spaceborne which is unignorably unfavourable to its applications in aerosol retrieving over bright and inhomogeneous surface. Using AVHRR data, an Algorithm for the retrieval over Land of the Aerosol optical Depth (ALAD) was developed data which has great potential to be used to retrieve long time series aerosol globally from 1979 to now. The core of ALAD is to assume that the contribution of aerosol at 3.75μm wavelength to reflectance at top of the atmosphere (TOA) is negligible. At this basis, one stable and firm relationship between surface reflectance at 0.64μm and 3.75μm will be found by regression analysis at different land types after separating reflectance from radiance at 3.75μm. Then, an atmospheric transfer model is applied to calculate AOD at 0.64μm. In this study, we recalibrate AVHRR Global Area Coverage (GAC) data and then apply ALAD to calculate AOD over continental Europe (30°N to 80°N, 170°W to 40°E) to investigate aerosol changes and possible reason in past 35 years from 1981 to 2015. The retrieved AOD has been validated with ground-based data from Aerosols, Clouds, and Trace gases Research InfraStructure (ACTRIS) and AErosol RObotic NETwork (AERONET). The correlation of ALAD AOD with AERONET and ACTRIS is 0.77 and 0.66, respectively. Further, we also make long time series comparison of monthly averaged ALAD AOD with AERONET, ACTRIS and MODIS, showing that ALAD underestimate AOD a little. Finally, we find that the AOD over most areas in Continental Europe are less than 0.3, even less

  12. Remote Sensing of Aerosol and Non-Aerosol Absorption

    NASA Technical Reports Server (NTRS)

    Kaufman, Y. J.; Dubovik, O.; Holben, B. N.; Remer, L. A.; Tanre, D.; Lau, William K. M. (Technical Monitor)

    2001-01-01

    Remote sensing of aerosol from the new satellite instruments (e.g. MODIS from Terra) and ground based radiometers (e.g. the AERONET) provides the opportunity to measure the absorption characteristics of the ambient undisturbed aerosol in the entire atmospheric column. For example Landsat and AERONET data are used to measure spectral absorption of sunlight by dust from West Africa. Both Application of the Landsat and AERONET data demonstrate that Saharan dust absorption of solar radiation is several times smaller than the current international standards. This is due to difficulties of measuring dust absorption in situ, and due to the often contamination of dust properties by the presence of air pollution or smoke. We use the remotely sensed aerosol absorption properties described by the spectral sin le scattering albedo, together with statistics of the monthly optical thickness for the fine and coarse aerosol derived from the MODIS data. The result is an estimate of the flux of solar radiation absorbed by the aerosol layer in different regions around the globe where aerosol is prevalent. If this aerosol forcing through absorption is not included in global circulation models, it may be interpreted as anomalous absorption in these regions. In a preliminary exercise we also use the absorption measurements by AERONET, to derive the non-aerosol absorption of the atmosphere in cloud free conditions. The results are obtained for the atmospheric windows: 0.44 microns, 0.66 microns, 0.86 microns and 1.05 microns. In all the locations over the land and ocean that were tested no anomalous absorption in these wavelengths, was found within absorption optical thickness of +/- 0.005.

  13. Minimum aerosol layer detection sensitivities and their subsequent impacts on aerosol optical thickness retrievals in CALIPSO level 2 data products

    NASA Astrophysics Data System (ADS)

    Toth, Travis D.; Campbell, James R.; Reid, Jeffrey S.; Tackett, Jason L.; Vaughan, Mark A.; Zhang, Jianglong; Marquis, Jared W.

    2018-01-01

    Due to instrument sensitivities and algorithm detection limits, level 2 (L2) Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) 532 nm aerosol extinction profile retrievals are often populated with retrieval fill values (RFVs), which indicate the absence of detectable levels of aerosol within the profile. In this study, using 4 years (2007-2008 and 2010-2011) of CALIOP version 3 L2 aerosol data, the occurrence frequency of daytime CALIOP profiles containing all RFVs (all-RFV profiles) is studied. In the CALIOP data products, the aerosol optical thickness (AOT) of any all-RFV profile is reported as being zero, which may introduce a bias in CALIOP-based AOT climatologies. For this study, we derive revised estimates of AOT for all-RFV profiles using collocated Moderate Resolution Imaging Spectroradiometer (MODIS) Dark Target (DT) and, where available, AErosol RObotic NEtwork (AERONET) data. Globally, all-RFV profiles comprise roughly 71 % of all daytime CALIOP L2 aerosol profiles (i.e., including completely attenuated profiles), accounting for nearly half (45 %) of all daytime cloud-free L2 aerosol profiles. The mean collocated MODIS DT (AERONET) 550 nm AOT is found to be near 0.06 (0.08) for CALIOP all-RFV profiles. We further estimate a global mean aerosol extinction profile, a so-called noise floor, for CALIOP all-RFV profiles. The global mean CALIOP AOT is then recomputed by replacing RFV values with the derived noise-floor values for both all-RFV and non-all-RFV profiles. This process yields an improvement in the agreement of CALIOP and MODIS over-ocean AOT.

  14. Variability and Trends of Aerosol Properties over Kanpur, Northern India using AERONET Data (2001-10)

    NASA Technical Reports Server (NTRS)

    Kaskaoutis, Dimitris G.; Singh, Ramesh.P.; Gautam, Ritesh; Sharma, Manish; Kosmopoulos, P. G.; Tripathi, S. N.

    2012-01-01

    Natural and anthropogenic aerosols over northern India play an important role in influencing the regional radiation budget, causing climate implications to the overall hydrological cycle of South Asia. In the context of regional climate change and air quality, we discuss aerosol loading variability and trends at Kanpur AERONET station located in the central part of the Indo-Gangetic plains (IGP), during the last decade (2001-10). Ground-based radiometric measurements show an overall increase in column-integrated aerosol optical depth (AOD) on a yearly basis. This upward trend is mainly due to a sustained increase in the seasonal/monthly averaged AOD during the winter (Dec-Feb) and post-monsoon (Oct-Nov) seasons (dominated by anthropogenic emissions). In contrast, a neutral to weak declining trend is observed during late pre-monsoon (Mar-May) and monsoon (Jun-Sep) months, mainly influenced by inter-annual variations of dust outbreaks. A general decrease in coarse-mode aerosols associated with variable dust activity is observed, whereas the statistically significant increasing post-monsoon/winter AOD is reflected in a shift of the columnar size distribution towards relatively larger particles in the accumulation mode. Overall, the present study provides an insight into the pronounced seasonal behavior in aerosol loading trends and, in general, is in agreement with that associating the findings with those recently reported by satellite observations (MODIS and MISR) over northern India. Our results further suggest that anthropogenic emissions (due mainly to fossil-fuel and biomass combustion) over the IGP have continued to increase in the last decade.

  15. Ground-based Network and Supersite Measurements for Studying Aerosol Properties and Aerosol-Cloud Interactions

    NASA Technical Reports Server (NTRS)

    Tsay, Si-Chee; Holben, Brent N.

    2008-01-01

    From radiometric principles, it is expected that the retrieved properties of extensive aerosols and clouds from reflected/emitted measurements by satellite (and/or aircraft) should be consistent with those retrieved from transmitted/emitted radiance observed at the surface. Although space-borne remote sensing observations contain large spatial domain, they are often plagued by contamination of surface signatures. Thus, ground-based in-situ and remote-sensing measurements, where signals come directly from atmospheric constituents, the sun, and the Earth-atmosphere interactions, provide additional information content for comparisons that confirm quantitatively the usefulness of the integrated surface, aircraft, and satellite datasets. The development and deployment of AERONET (AErosol RObotic NETwork) sunphotometer network and SMART-COMMIT (Surface-sensing Measurements for Atmospheric Radiative Transfer - Chemical, Optical & Microphysical Measurements of In-situ Troposphere) mobile supersite are aimed for the optimal utilization of collocated ground-based observations as constraints to yield higher fidelity satellite retrievals and to determine any sampling bias due to target conditions. To characterize the regional natural and anthropogenic aerosols, AERONET is an internationally federated network of unique sunphotometry that contains more than 250 permanent sites worldwide. Since 1993, there are more than 480 million aerosol optical depth observations and about 15 sites have continuous records longer than 10 years for annual/seasonal trend analyses. To quantify the energetics of the surface-atmosphere system and the atmospheric processes, SMART-COMMIT instrument into three categories: flux radiometer, radiance sensor and in-situ probe. Through participation in many satellite remote-sensing/retrieval and validation projects over eight years, SMART-COMMIT have gradually refine( and been proven vital for field deployment. In this paper, we will demonstrate the

  16. A Pure Marine Aerosol Model, for Use in Remote Sensing Applications

    NASA Technical Reports Server (NTRS)

    Sayer, A. M.; Smirnov, A.; Hsu, N. C.; Holben, B. N.

    2011-01-01

    Retrievals of aerosol optical depth (AOD) and related parameters from satellite measurements typically involve prescribed models of aerosol size and composition, and are therefore dependent on how well these models are able to represent the radiative behaviour of real aerosols, This study uses aerosol volume size distributions retrieved from Sun-photometer measurements at 11 Aerosol Robotic Network (AERONET) island sites, spread throughout the world's oceans, as a basis to define such a model for unpolluted maritime aerosols. Size distributions are observed to be bimodal and approximately lognormal, although the coarse mode is skewed with a long tail on the low-radius end, The relationship of AOD and size distribution parameters to meteorological conditions is also examined, As wind speed increases, so do coarse-mode volume and radius, The AOD and Angstrom exponent (alpha) show linear relationships with wind speed, although there is considerable scatter in all these relationships, limiting their predictive power. Links between aerosol properties and near-surface relative humidity, columnar water vapor, and sea surface temperature are also explored. A recommended bimodal maritime model, which is able to reconstruct the AERONET AOD with accuracy of order 0.01-0.02, is presented for use in aerosol remote sensing applications. This accuracy holds at most sites and for wavelengths between 340 nm and 1020 nm. Calculated lidar ratios are also provided, and differ significantly from those currently used in Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) processing.

  17. Aerosol Optical Depth over Europe: Evaluation of the CALIOPE air quality modelling system with direct-sun AERONET observations

    NASA Astrophysics Data System (ADS)

    Basart, Sara; Pay, María. Teresa; Pérez, Carlos; Cuevas, Emilio; Jorba, Oriol; Piot, Matthias; María Baldasano, Jose

    2010-05-01

    In the frame of the CALIOPE project (Baldasano et al., 2008), the Barcelona Supercomputing Center (BSC-CNS) currently operates a high-resolution air quality forecasting system based on daily photochemical forecasts in Europe (12km x 12km resolution) with the WRF-ARW/HERMES/CMAQ modelling system (http://www.bsc.es/caliope) and desert dust forecasts over Southern Europe with BSC-DREAM8b (Pérez et al., 2006; http://www.bsc.es/projects/earthscience/DREAM). High resolution simulations and forecasts are possible through their implementation on MareNostrum supercomputer at BSC-CNS. As shown in previous air quality studies (e.g. Rodríguez et al., 2001; Jiménez-Guerrero et al., 2008), the contribution of desert dust on particulate matter levels in Southern Europe is remarkable due to its proximity to African desert dust sources. When considering only anthropogenic emissions (Baldasano et al., 2008) and the current knowledge about aerosol physics and chemistry, chemistry-transport model simulations underestimate the PM10 concentrations by 30-50%. As a first approach, the natural dust contribution from BSC-DREAM8b is on-line added to the anthropogenic aerosol output of CMAQ. The aim of the present work is the quantitative evaluation of the WRF-ARW/HERMES/ CMAQ/BSC-DREAM8b forecast system to simulate the Aerosol Optical Depth (AOD) over Europe. The performance of the modelled AOD has been quantitatively evaluated with discrete and categorical (skill scores) statistics by a comparison to direct-sun AERONET observations for 2004. The contribution of different types of aerosols will be analyzed by means of the O'Neill fine mode AOD products (O'Neill et al., 2001). A previous aerosol characterization of AERONET data was performed (Basart et al., 2009) in order to discriminate the different aerosol source contributions within the study region. The results indicate a remarkable improvement in the discrete and skill-scores evaluation (accuracy, critical success index and

  18. Estimation and Bias Correction of Aerosol Abundance using Data-driven Machine Learning and Remote Sensing

    NASA Technical Reports Server (NTRS)

    Malakar, Nabin K.; Lary, D. L.; Moore, A.; Gencaga, D.; Roscoe, B.; Albayrak, Arif; Petrenko, Maksym; Wei, Jennifer

    2012-01-01

    Air quality information is increasingly becoming a public health concern, since some of the aerosol particles pose harmful effects to peoples health. One widely available metric of aerosol abundance is the aerosol optical depth (AOD). The AOD is the integrated light extinction coefficient over a vertical atmospheric column of unit cross section, which represents the extent to which the aerosols in that vertical profile prevent the transmission of light by absorption or scattering. The comparison between the AOD measured from the ground-based Aerosol Robotic Network (AERONET) system and the satellite MODIS instruments at 550 nm shows that there is a bias between the two data products. We performed a comprehensive analysis exploring possible factors which may be contributing to the inter-instrumental bias between MODIS and AERONET. The analysis used several measured variables, including the MODIS AOD, as input in order to train a neural network in regression mode to predict the AERONET AOD values. This not only allowed us to obtain an estimate, but also allowed us to infer the optimal sets of variables that played an important role in the prediction. In addition, we applied machine learning to infer the global abundance of ground level PM2.5 from the AOD data and other ancillary satellite and meteorology products. This research is part of our goal to provide air quality information, which can also be useful for global epidemiology studies.

  19. The Multi-Sensor Aerosol Products Sampling System (MAPSS) for Integrated Analysis of Satellite Retrieval Uncertainties

    NASA Technical Reports Server (NTRS)

    Ichoku, Charles; Petrenko, Maksym; Leptoukh, Gregory

    2010-01-01

    Among the known atmospheric constituents, aerosols represent the greatest uncertainty in climate research. Although satellite-based aerosol retrieval has practically become routine, especially during the last decade, there is often disagreement between similar aerosol parameters retrieved from different sensors, leaving users confused as to which sensors to trust for answering important science questions about the distribution, properties, and impacts of aerosols. As long as there is no consensus and the inconsistencies are not well characterized and understood ', there will be no way of developing reliable climate data records from satellite aerosol measurements. Fortunately, the most globally representative well-calibrated ground-based aerosol measurements corresponding to the satellite-retrieved products are available from the Aerosol Robotic Network (AERONET). To adequately utilize the advantages offered by this vital resource,., an online Multi-sensor Aerosol Products Sampling System (MAPSS) was recently developed. The aim of MAPSS is to facilitate detailed comparative analysis of satellite aerosol measurements from different sensors (Terra-MODIS, Aqua-MODIS, Terra-MISR, Aura-OMI, Parasol-POLDER, and Calipso-CALIOP) based on the collocation of these data products over AERONET stations. In this presentation, we will describe the strategy of the MAPSS system, its potential advantages for the aerosol community, and the preliminary results of an integrated comparative uncertainty analysis of aerosol products from multiple satellite sensors.

  20. Comparison of full-sky polarization and radiance observations to radiative transfer simulations which employ AERONET products.

    PubMed

    Pust, Nathan J; Dahlberg, Andrew R; Thomas, Michael J; Shaw, Joseph A

    2011-09-12

    Visible-band and near infrared polarization and radiance images measured with a ground-based full-sky polarimeter are compared against a successive orders of scattering (SOS) radiative transfer model for 2009 summer cloud-free days in Bozeman, Montana, USA. The polarimeter measures radiance and polarization in 10-nm bands centered at 450 nm, 490 nm, 530 nm, 630 nm, and 700 nm. AERONET products are used to represent aerosols in the SOS model, while MISR satellite BRF products are used for the surface reflectance. While model results generally agree well with observation, the simulated degree of polarization is typically higher than observed data. Potential sources of this difference may include cloud contamination and/or underestimation of the AERONET-retrieved aerosol real refractive index. Problems with the retrieved parameters are not unexpected given the low aerosol optical depth range (0.025 to 0.17 at 500 nm) during the study and the corresponding difficulties that these conditions pose to the AERONET inversion algorithm.

  1. Collocation mismatch uncertainties in satellite aerosol retrieval validation

    NASA Astrophysics Data System (ADS)

    Virtanen, Timo H.; Kolmonen, Pekka; Sogacheva, Larisa; Rodríguez, Edith; Saponaro, Giulia; de Leeuw, Gerrit

    2018-02-01

    Satellite-based aerosol products are routinely validated against ground-based reference data, usually obtained from sun photometer networks such as AERONET (AEROsol RObotic NETwork). In a typical validation exercise a spatial sample of the instantaneous satellite data is compared against a temporal sample of the point-like ground-based data. The observations do not correspond to exactly the same column of the atmosphere at the same time, and the representativeness of the reference data depends on the spatiotemporal variability of the aerosol properties in the samples. The associated uncertainty is known as the collocation mismatch uncertainty (CMU). The validation results depend on the sampling parameters. While small samples involve less variability, they are more sensitive to the inevitable noise in the measurement data. In this paper we study systematically the effect of the sampling parameters in the validation of AATSR (Advanced Along-Track Scanning Radiometer) aerosol optical depth (AOD) product against AERONET data and the associated collocation mismatch uncertainty. To this end, we study the spatial AOD variability in the satellite data, compare it against the corresponding values obtained from densely located AERONET sites, and assess the possible reasons for observed differences. We find that the spatial AOD variability in the satellite data is approximately 2 times larger than in the ground-based data, and the spatial variability correlates only weakly with that of AERONET for short distances. We interpreted that only half of the variability in the satellite data is due to the natural variability in the AOD, and the rest is noise due to retrieval errors. However, for larger distances (˜ 0.5°) the correlation is improved as the noise is averaged out, and the day-to-day changes in regional AOD variability are well captured. Furthermore, we assess the usefulness of the spatial variability of the satellite AOD data as an estimate of CMU by comparing the

  2. Transport and Microphysics of Aerosols Released by Collapse and Fire of the World Trade Center on September 11, 2001 as Observed by AERONET and MISR

    NASA Astrophysics Data System (ADS)

    Stenchikov, G. L.; Diner, D.; Kahn, R.; Smirnov, A.; Holben, B.

    2005-12-01

    Atmospheric pollution has been studied intensively during the last several decades for its impact on climate, visibility, atmospheric chemistry, and public health. Here we consider the aftermath of the catastrophic aerosol release produced by the collapse of the World Trade Center (WTC) in New York City (NYC) on September 11, 2001. The north and south WTC buildings were attacked at 0846 EDT and 0903 EDT, respectively, on September 11, 2001. The collapse of the WTC South Tower at 0959 EDT followed by the crash of the North Tower at 1029 EDT instantaneously pulverized a vast amount of building material, that was reduced to dust and smoke in nearby streets and the atmosphere above. The remains of the WTC complex covered a 16-acre area known as Ground Zero. Intensive combustion continued until September 14, with temperatures occasionally exceeding 1000 C, producing a steady, elevated source of hazardous gases and aerosols. A detailed spatial and temporal description of the pollution fields' evolution is needed to fully understand their environmental and health impact, but many existing in situ aerosol monitoring stations in the vicinity of the WTC were completely plugged with dust immediately after the collapse. However, the aerosol plume was remotely sensed from the ground and from space. Here we combine numerical modeling of micrometeorological fields and pollution transport using the RAMS/HYPACT modeling system with AERONET and MISR retrievals, to realistically reconstruct plume evolution. AERONET collected plume data in NYC from the roof of the Goddard Institute for Space Studies (GISS) in Upper Manhattan. In NYC, aerosol optical depth was rather low until 1800 UTC on September 12; then it increased to ~0.3 (at 440 nm) by 2130 UTC. On September 13, the optical depth was slightly elevated in the morning and increased further beginning at 1700 UTC, reaching ~0.30 by 2000-2200 UTC. The angstrom exponent increased from 1.8 on September 12 to 2.2 in the late afternoon

  3. Coherent Uncertainty Analysis of Aerosol Measurements from Multiple Satellite Sensors

    NASA Technical Reports Server (NTRS)

    Petrenko, M.; Ichoku, C.

    2013-01-01

    Aerosol retrievals from multiple spaceborne sensors, including MODIS (on Terra and Aqua), MISR, OMI, POLDER, CALIOP, and SeaWiFS altogether, a total of 11 different aerosol products were comparatively analyzed using data collocated with ground-based aerosol observations from the Aerosol Robotic Network (AERONET) stations within the Multi-sensor Aerosol Products Sampling System (MAPSS, http://giovanni.gsfc.nasa.gov/mapss/ and http://giovanni.gsfc.nasa.gov/aerostat/). The analysis was performed by comparing quality-screened satellite aerosol optical depth or thickness (AOD or AOT) retrievals during 2006-2010 to available collocated AERONET measurements globally, regionally, and seasonally, and deriving a number of statistical measures of accuracy. We used a robust statistical approach to detect and remove possible outliers in the collocated data that can bias the results of the analysis. Overall, the proportion of outliers in each of the quality-screened AOD products was within 12%. Squared correlation coefficient (R2) values of the satellite AOD retrievals relative to AERONET exceeded 0.6, with R2 for most of the products exceeding 0.7 over land and 0.8 over ocean. Root mean square error (RMSE) values for most of the AOD products were within 0.15 over land and 0.09 over ocean. We have been able to generate global maps showing regions where the different products present advantages over the others, as well as the relative performance of each product over different landcover types. It was observed that while MODIS, MISR, and SeaWiFS provide accurate retrievals over most of the landcover types, multi-angle capabilities make MISR the only sensor to retrieve reliable AOD over barren and snow / ice surfaces. Likewise, active sensing enables CALIOP to retrieve aerosol properties over bright-surface shrublands more accurately than the other sensors, while POLDER, which is the only one of the sensors capable of measuring polarized aerosols, outperforms other sensors in

  4. Moderate Imaging Resolution Spectroradiometer (MODIS) Aerosol Optical Depth Retrieval for Aerosol Radiative Forcing

    NASA Astrophysics Data System (ADS)

    Asmat, A.; Jalal, K. A.; Ahmad, N.

    2018-02-01

    The present study uses the Aerosol Optical Depth (AOD) retrieved from Moderate Imaging Resolution Spectroradiometer (MODIS) data for the period from January 2011 until December 2015 over an urban area in Kuching, Sarawak. The results show the minimum AOD value retrieved from MODIS is -0.06 and the maximum value is 6.0. High aerosol loading with high AOD value observed during dry seasons and low AOD monitored during wet seasons. Multi plane regression technique used to retrieve AOD from MODIS (AODMODIS) and different statistics parameter is proposed by using relative absolute error for accuracy assessment in spatial and temporal averaging approach. The AODMODIS then compared with AOD derived from Aerosol Robotic Network (AERONET) Sunphotometer (AODAERONET) and the results shows high correlation coefficient (R2) for AODMODIS and AODAERONET with 0.93. AODMODIS used as an input parameters into Santa Barbara Discrete Ordinate Radiative Transfer (SBDART) model to estimate urban radiative forcing at Kuching. The observed hourly averaged for urban radiative forcing is -0.12 Wm-2 for top of atmosphere (TOA), -2.13 Wm-2 at the surface and 2.00 Wm-2 in the atmosphere. There is a moderate relationship observed between urban radiative forcing calculated using SBDART and AERONET which are 0.75 at the surface, 0.65 at TOA and 0.56 in atmosphere. Overall, variation in AOD tends to cause large bias in the estimated urban radiative forcing.

  5. AERONET-OC: Strengths and Weaknesses of a Network for the Validation of Satellite Coastal Radiometric Products

    NASA Technical Reports Server (NTRS)

    Zibordi, Giuseppe; Holben, Brent; Slutsker, Ilya; Giles, David; D'Alimonte, Davide; Melin, Frederic; Berthon, Jean-Francois; Vandemark, Doug; Feng, Hui; Schuster, Gregory; hide

    2008-01-01

    The Ocean Color component of the Aerosol Robotic Network (AERONET-OC) has been implemented to support long-term satellite ocean color investigations through cross-site consistent and accurate measurements collected by autonomous radiometer systems deployed on offshore fixed platforms. The ultimate purpose of AERONET-OC is the production of standardized measurements performed at different sites with identical measuring systems and protocols, calibrated using a single reference source and method, and processed with the same code. The AERONET-OC primary data product is the normalized water leaving radiance determined at center-wavelengths of interest for satellite ocean color applications, with an uncertainty lower than 5% in the blue-green spectral regions and higher than 8% in the red. Measurements collected at 6 sites counting the northern Adriatic Sea, the Baltic Proper, the Gulf of Finland, the Persian Gulf, and, the northern and southern margins of the Middle Atlantic Bay, have shown the capability of producing quality assured data over a wide range of bio-optical conditions including Case-2 yellow substance- and sedimentdominated waters. This work briefly introduces network elements like: deployment sites, measurement method, instrument calibration, processing scheme, quality-assurance, uncertainties, data archive and products accessibility. Emphases is given to those elements which underline the network strengths (i.e., mostly standardization of any network element) and its weaknesses (i.e., the use of consolidated, but old-fashioned technology). The work also addresses the application of AERONET-OC data to the validation of primary satellite radiometric products over a variety of complex coastal waters and finally provides elements for the identification of new deployment sites most suitable to support satellite ocean color missions.

  6. Validation of MODIS 3 km land aerosol optical depth from NASA's EOS Terra and Aqua missions

    NASA Astrophysics Data System (ADS)

    Gupta, Pawan; Remer, Lorraine A.; Levy, Robert C.; Mattoo, Shana

    2018-05-01

    In addition to the standard resolution product (10 km), the MODerate resolution Imaging Spectroradiometer (MODIS) Collection 6 (C006) data release included a higher resolution (3 km). Other than accommodations for the two different resolutions, the 10 and 3 km Dark Target (DT) algorithms are basically the same. In this study, we perform global validation of the higher-resolution aerosol optical depth (AOD) over global land by comparing against AErosol RObotic NETwork (AERONET) measurements. The MODIS-AERONET collocated data sets consist of 161 410 high-confidence AOD pairs from 2000 to 2015 for Terra MODIS and 2003 to 2015 for Aqua MODIS. We find that 62.5 and 68.4 % of AODs retrieved from Terra MODIS and Aqua MODIS, respectively, fall within previously published expected error bounds of ±(0.05 + 0.2 × AOD), with a high correlation (R = 0.87). The scatter is not random, but exhibits a mean positive bias of ˜ 0.06 for Terra and ˜ 0.03 for Aqua. These biases for the 3 km product are approximately 0.03 larger than the biases found in similar validations of the 10 km product. The validation results for the 3 km product did not have a relationship to aerosol loading (i.e., true AOD), but did exhibit dependence on quality flags, region, viewing geometry, and aerosol spatial variability. Time series of global MODIS-AERONET differences show that validation is not static, but has changed over the course of both sensors' lifetimes, with Terra MODIS showing more change over time. The likely cause of the change of validation over time is sensor degradation, but changes in the distribution of AERONET stations and differences in the global aerosol system itself could be contributing to the temporal variability of validation.

  7. Aerosol, Cloud and Trace Gas Observations Derived from Airborne Hyperspectral Radiance and Direct Beam Measurements in Recent Field Campaigns

    NASA Technical Reports Server (NTRS)

    Redemann, J.; Flynn, C. J.; Shinozuka, Y.; Kacenelenbogen, M.; Segal-Rosenheimer, M.; LeBlanc, S.; Russell, P. B.; Livingston, J. M.; Schmid, B.; Dunagan, S. E.; hide

    2014-01-01

    The AERONET (AErosol RObotic NETwork) ground-based suite of sunphotometers provides measurements of spectral aerosol optical depth (AOD), precipitable water and spectral sky radiance, which can be inverted to retrieve aerosol microphysical properties that are critical to assessments of aerosol-climate interactions. Because of data quality criteria and sampling constraints, there are significant limitations to the temporal and spatial coverage of AERONET data and their representativeness for global aerosol conditions. The 4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research) instrument, jointly developed by NASA Ames and PNNL with NASA Goddard collaboration, combines airborne sun tracking and AERONET-like sky scanning with spectroscopic detection. Being an airborne instrument, 4STAR has the potential to fill gaps in the AERONET data set. Dunagan et al. [2013] present results establishing the performance of the instrument, along with calibration, engineering flight test, and preliminary scientific field data. The 4STAR instrument operated successfully in the SEAC4RS [Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys] experiment in Aug./Sep. 2013 aboard the NASA DC-8 and in the DoE [Department of Energy]-sponsored TCAP [Two Column Aerosol Project, July 2012 & Feb. 2013] experiment aboard the DoE G-1 aircraft (Shinozuka et al., 2013), and acquired a wealth of data in support of mission objectives on all SEAC4RS and TCAP research flights. 4STAR provided direct beam measurements of hyperspectral AOD, columnar trace gas retrievals (H2O, O3, NO2; Segal-Rosenheimer et al., 2014), and the first ever airborne hyperspectral sky radiance scans, which can be inverted to yield the same products as AERONET ground-based observations. In addition, 4STAR measured zenith radiances underneath cloud decks for retrievals of cloud optical depth and effective diameter. In this presentation, we provide an overview of the new

  8. Validation of MODIS aerosol optical depth over the Mediterranean Coast

    NASA Astrophysics Data System (ADS)

    Díaz-Martínez, J. Vicente; Segura, Sara; Estellés, Víctor; Utrillas, M. Pilar; Martínez-Lozano, J. Antonio

    2013-04-01

    Atmospheric aerosols, due to their high spatial and temporal variability, are considered one of the largest sources of uncertainty in different processes affecting visibility, air quality, human health, and climate. Among their effects on climate, they play an important role in the energy balance of the Earth. On one hand they have a direct effect by scattering and absorbing solar radiation; on the other, they also have an impact in precipitation, modifying clouds, or affecting air quality. The application of remote sensing techniques to investigate aerosol effects on climate has advanced significatively over last years. In this work, the products employed have been obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS). MODIS is a sensor located onboard both Earth Observing Systems (EOS) Terra and Aqua satellites, which provide almost complete global coverage every day. These satellites have been acquiring data since early 2000 (Terra) and mid 2002 (Aqua) and offer different products for land, ocean and atmosphere. Atmospheric aerosol products are presented as level 2 products with a pixel size of 10 x 10 km2 in nadir. MODIS aerosol optical depth (AOD) is retrieved by different algorithms depending on the pixel surface, distinguishing between land and ocean. For its validation, ground based sunphotometer data from AERONET (Aerosol Robotic Network) has been employed. AERONET is an international operative network of Cimel CE318 sky-sunphotometers that provides the most extensive aerosol data base globally available of ground-based measurements. The ground sunphotometric technique is considered the most accurate for the retrieval of radiative properties of aerosols in the atmospheric column. In this study we present a validation of MODIS C051 AOD employing AERONET measurements over different Mediterranean coastal sites centered over an area of 50 x 50 km2, which includes both pixels over land and ocean. The validation is done comparing spatial

  9. Assessment of 10-Year Global Record of Aerosol Products from the OMI Near-UV Algorithm

    NASA Astrophysics Data System (ADS)

    Ahn, C.; Torres, O.; Jethva, H. T.

    2014-12-01

    Global observations of aerosol properties from space are critical for understanding climate change and air quality applications. The Ozone Monitoring Instrument (OMI) onboard the EOS-Aura satellite provides information on aerosol optical properties by making use of the large sensitivity to aerosol absorption and dark surface albedo in the UV spectral region. These unique features enable us to retrieve both aerosol extinction optical depth (AOD) and single scattering albedo (SSA) successfully from radiance measurements at 354 and 388 nm by the OMI near UV aerosol algorithm (OMAERUV). Recent improvements to algorithms in conjunction with the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and Atmospheric Infrared Sounder (AIRS) carbon monoxide data also reduce uncertainties due to aerosol layer heights and types significantly in retrieved products. We present validation results of OMI AOD against space and time collocated Aerosol Robotic Network (AERONET) measured AOD values over multiple stations representing major aerosol episodes and regimes. We also compare the OMI SSA against the inversion made by AERONET as well as an independent network of ground-based radiometer called SKYNET in Japan, China, South-East Asia, India, and Europe. The outcome of the evaluation analysis indicates that in spite of the "row anomaly" problem, affecting the sensor since mid-2007, the long-term aerosol record shows remarkable sensor stability. The OMAERUV 10-year global aerosol record is publicly available at the NASA data service center web site (http://disc.sci.gsfc.nasa.gov/Aura/data-holdings/OMI/omaeruv_v003.shtml).

  10. Can Aerosol Offset Urban Heat Island Effect?

    NASA Astrophysics Data System (ADS)

    Jin, M. S.; Shepherd, J. M.

    2009-12-01

    The Urban Heat Island effect (UHI) refers to urban skin or air temperature exceeding the temperatures in surrounding non-urban regions. In a warming climate, the UHI may intensify extreme heat waves and consequently cause significant health and energy problems. Aerosols reduce surface insolation via the direct effect, namely, scattering and absorbing sunlight in the atmosphere. Combining the National Aeronautics and Space Administration (NASA) AERONET (AErosol RObotic NETwork) observations over large cities together with Weather Research and Forecasting Model (WRF) simulations, we find that the aerosol direct reduction of surface insolation range from 40-100 Wm-2, depending on seasonality and aerosol loads. As a result, surface skin temperature can be reduced by 1-2C while 2-m surface air temperature by 0.5-1C. This study suggests that the aerosol direct effect is a competing mechanism for the urban heat island effect (UHI). More importantly, both aerosol and urban land cover effects must be adequately represented in meteorological and climate modeling systems in order to properly characterize urban surface energy budgets and UHI.

  11. Evaluation of the Multi-Angle Implementation of Atmospheric Correction (MAIAC) Aerosol Algorithm through Intercomparison with VIIRS Aerosol Products and AERONET

    PubMed Central

    Superczynski, Stephen D.; Kondragunta, Shobha; Lyapustin, Alexei I.

    2018-01-01

    The Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm is under evaluation for use in conjunction with the Geostationary Coastal and Air Pollution Events (GEO-CAPE) mission. Column aerosol optical thickness (AOT) data from MAIAC are compared against corresponding data from the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument over North America during 2013. Product coverage and retrieval strategy, along with regional variations in AOT through comparison of both matched and un-matched seasonally gridded data are reviewed. MAIAC shows extended coverage over parts of the continent when compared to VIIRS, owing to its pixel selection process and ability to retrieve aerosol information over brighter surfaces. To estimate data accuracy, both products are compared with AERONET Level 2 measurements to determine the amount of error present and discover if there is any dependency on viewing geometry and/or surface characteristics. Results suggest that MAIAC performs well over this region with a relatively small bias of −0.01; however there is a tendency for greater negative biases over bright surfaces and at larger scattering angles. Additional analysis over an expanded area and longer time period are likely needed to determine a comprehensive assessment of the products capability over the Western Hemisphere. PMID:29796366

  12. Evaluation of the Multi-Angle Implementation of Atmospheric Correction (MAIAC) Aerosol Algorithm through Intercomparison with VIIRS Aerosol Products and AERONET.

    PubMed

    Superczynski, Stephen D; Kondragunta, Shobha; Lyapustin, Alexei I

    2017-03-16

    The Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm is under evaluation for use in conjunction with the Geostationary Coastal and Air Pollution Events (GEO-CAPE) mission. Column aerosol optical thickness (AOT) data from MAIAC are compared against corresponding data from the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument over North America during 2013. Product coverage and retrieval strategy, along with regional variations in AOT through comparison of both matched and un-matched seasonally gridded data are reviewed. MAIAC shows extended coverage over parts of the continent when compared to VIIRS, owing to its pixel selection process and ability to retrieve aerosol information over brighter surfaces. To estimate data accuracy, both products are compared with AERONET Level 2 measurements to determine the amount of error present and discover if there is any dependency on viewing geometry and/or surface characteristics. Results suggest that MAIAC performs well over this region with a relatively small bias of -0.01; however there is a tendency for greater negative biases over bright surfaces and at larger scattering angles. Additional analysis over an expanded area and longer time period are likely needed to determine a comprehensive assessment of the products capability over the Western Hemisphere.

  13. Numerical simulations of Asian dust storms using a coupled climate-aerosol microphysical model

    NASA Astrophysics Data System (ADS)

    Su, Lin; Toon, Owen B.

    2009-07-01

    We have developed a three-dimensional coupled microphysical/climate model based on the National Center for Atmospheric Research Community Atmospheres Model and the University of Colorado/NASA Community Aerosol and Radiation Model for Atmospheres. We have used the model to investigate the sources, removal processes, transport, and optical properties of Asian dust aerosol and its impact on downwind regions. The model simulations are conducted primarily during the time frame of the Aerosol Characterization Experiment-Asia field experiment (March-May 2001) since considerable in situ data are available at that time. Our dust source function follows Ginoux et al. (2001). We modified the dust source function by using the friction velocity instead of the 10-m wind based on wind erosion theory, by adding a size-dependent threshold friction velocity following Marticorena and Bergametti (1995) and by adding a soil moisture correction. A Weibull distribution is implemented to estimate the subgrid-scale wind speed variability. We use eight size bins for mineral dust ranging from 0.1 to 10 μm radius. Generally, the model reproduced the aerosol optical depth retrieved by the ground-based Aerosol Robotic Network (AERONET) Sun photometers at six study sites ranging in location from near the Asian dust sources to the Eastern Pacific region. By constraining the dust complex refractive index from AERONET retrievals near the dust source, we also find the single-scattering albedo to be consistent with AERONET retrievals. However, large regional variations are observed due to local pollution. The timing of dust events is comparable to the National Institute for Environmental Studies (NIES) lidar data in Beijing and Nagasaki. However, the simulated dust aerosols are at higher altitudes than those observed by the NIES lidar.

  14. Maritime Aerosol Network optical depth measurements and comparison with satellite retrievals from various different sensors

    NASA Astrophysics Data System (ADS)

    Smirnov, Alexander; Petrenko, Maksym; Ichoku, Charles; Holben, Brent N.

    2017-10-01

    The paper reports on the current status of the Maritime Aerosol Network (MAN) which is a component of the Aerosol Robotic Network (AERONET). A public domain web-based data archive dedicated to MAN activity can be found at https://aeronet.gsfc.nasa.gov/new_web/maritime_aerosol_network.html . Since 2006 over 450 cruises were completed and the data archive consists of more than 6000 measurement days. In this work, we present MAN observations collocated with MODIS Terra, MODIS Aqua, MISR, POLDER, SeaWIFS, OMI, and CALIOP spaceborne aerosol products using a modified version of the Multi-Sensor Aerosol Products Sampling System (MAPSS) framework. Because of different spatio-temporal characteristics of the analyzed products, the number of MAN data points collocated with spaceborne retrievals varied between 1500 matchups for MODIS to 39 for CALIOP (as of August 2016). Despite these unavoidable sampling biases, latitudinal dependencies of AOD differences for all satellite sensors, except for SeaWIFS and POLDER, showed positive biases against ground truth (i.e. MAN) in the southern latitudes (<50° S), and substantial scatter in the Northern Atlantic "dust belt" (5°-15° N). Our analysis did not intend to determine whether satellite retrievals are within claimed uncertainty boundaries, but rather show where bias exists and corrections are needed.

  15. Simultaneous Retrieval of Aerosol and Surface Optical Properties from Combined Airborne- and Ground-Based Direct and Diffuse Radiometric Measurements

    NASA Technical Reports Server (NTRS)

    Gatebe, C. K.; Dubovik, O.; King, M. D.; Sinyuk, A.

    2010-01-01

    This paper presents a new method for simultaneously retrieving aerosol and surface reflectance properties from combined airborne and ground-based direct and diffuse radiometric measurements. The method is based on the standard Aerosol Robotic Network (AERONET) method for retrieving aerosol size distribution, complex index of refraction, and single scattering albedo, but modified to retrieve aerosol properties in two layers, below and above the aircraft, and parameters on surface optical properties from combined datasets (Cloud Absorption Radiometer (CAR) and AERONET data). A key advantage of this method is the inversion of all available spectral and angular data at the same time, while accounting for the influence of noise in the inversion procedure using statistical optimization. The wide spectral (0.34-2.30 m) and angular range (180 ) of the CAR instrument, combined with observations from an AERONET sunphotometer, provide sufficient measurement constraints for characterizing aerosol and surface properties with minimal assumptions. The robustness of the method was tested on observations made during four different field campaigns: (a) the Southern African Regional Science Initiative 2000 over Mongu, Zambia, (b) the Intercontinental Transport Experiment-Phase B over Mexico City, Mexico (c) Cloud and Land Surface Interaction Campaign over the Atmospheric Radiation Measurement (ARM) Central Facility, Oklahoma, USA, and (d) the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) over Elson Lagoon in Barrow, Alaska, USA. The four areas are dominated by different surface characteristics and aerosol types, and therefore provide good test cases for the new inversion method.

  16. Smoke aerosol properties and ageing effects for northern temperate and boreal regions derived from AERONET source and age attribution

    NASA Astrophysics Data System (ADS)

    Nikonovas, T.; North, P. R. J.; Doerr, S. H.

    2015-07-01

    Particulate emissions from wildfires impact human health and have a large but uncertain effect on climate. Modelling schemes depend on information about emission factors, emitted particle microphysical and optical properties and ageing effects, while satellite retrieval algorithms make use of characteristic aerosol models to improve retrieval. Ground-based remote sensing provides detailed aerosol characterisation, but does not contain information on source. Here, a method is presented to estimate plume origin land cover type and age for AERONET aerosol observations, employing trajectory modelling using the HYSPLIT model, and satellite active fire and aerosol optical thickness (AOT) observations from Moderate Resolution Imaging Spectroradiometer (MODIS) and Along Track Scanning Radiometer (AATSR). It is applied to AERONET stations located in or near northern temperate and boreal forests for the period 2002-2013. The results from 629 fire attributions indicate significant differences in size distributions and particle optical properties between different land cover types and plume age. Smallest fine mode median radius (Rfv) are attributed to plumes from cropland and/or natural vegetation mosaic (0.143 μm) and grassland (0.157 μm) fires. North American evergreen needleleaf forest emissions show a significantly smaller Rfv (0.164 μm) than plumes from Eurasian mixed forests (0.193 μm) and plumes attributed to the land cover types with sparse tree cover - open shrubland (0.185 μm) and woody savannas (0.184 μm). The differences in size distributions are related to inferred variability in plume concentrations between the land cover types. Significant differences are observed between day and night emissions, with daytime emissions showing larger particle sizes. Smoke is predominantly scattering for all of the classes with median single scattering albedo at 440 nm (SSA(440)) values close to 0

  17. Evaluation of AVHRR Aerosol Properties Over Mainland China from Deepblue Algorithm

    NASA Astrophysics Data System (ADS)

    Xue, Y.; Che, Y.; She, L.

    2017-12-01

    Advanced Very High Resolution Radiometer (AVHRR) on-board NOAA series satellites is the only operational senor which keeps observing surface of the Earth and cloud over 30 years since 1979. Such long time coverage helps to expand the application of AVHRR to aerosol properties retrieval over both land and ocean successfully. Recently in 2017, the Deep Blue Project has published AVHRR `Deep Blue' dataset version 001 (V001) using `Deep Blue (DB)' algorithm(Sayer et al., 2017). This dataset includes not only aerosol properties over land but also oceanic aerosol product at three periods (NOAA-11: 1989-1990, NOAA-14: 1995-1999, NOAA-18: 2006-2011). We pay much of our attention to DB's performance over mainland China. Therefore, in the presenting paper, we focus on validating AVHRR/DB dataset over different land covers in China in 2007, 2008 and 2010. Both of data from ground-based networks from the Aerosol Robotic NETwork (AERONET) and China Aerosol Remote Sensing Network (CARSNET) are used as reference data. The collocation method is to match data at a time range of of satellite pass-by and at a spatial frame of pixels around ground-based site. Totally, data from 18 AERONET and 25 CARSNET are used as shown in figure, collocating 922 matches with AERONET and 2325 matches with CARSNET. Additionally, we introduced a corrected RMS error as main evaluation metric. As a result, AVHRR/DB underestimates AOD increasingly and more uncertainties and errors will be introduced with the growth of AOD. Otherwise, the performance of AVHRR/DB are better compared with AERONET data than with CARSNET data from RMSbc of 0.35 vs. 0.42. Their Rs (0.757 vs. 0.654) prove this characteristic too. For urban areas, the performances in Beijing are better than that in Xi'an from RMSbc, otherwise RMS in Xi'an (0.324) is lower than others' (0.346 and 0.383) mainly because of small AOD observed range and low R (0.624). For croplands, those performances are at same levels with RMSbc from 0.312 to 0

  18. Online Simulations of Global Aerosol Distributions in the NASA GEOS-4 Model and Comparisons to Satellite and Ground-Based Aerosol Optical Depth

    NASA Technical Reports Server (NTRS)

    Colarco, Peter; daSilva, Arlindo; Chin, Mian; Diehl, Thomas

    2010-01-01

    We have implemented a module for tropospheric aerosols (GO CART) online in the NASA Goddard Earth Observing System version 4 model and simulated global aerosol distributions for the period 2000-2006. The new online system offers several advantages over the previous offline version, providing a platform for aerosol data assimilation, aerosol-chemistry-climate interaction studies, and short-range chemical weather forecasting and climate prediction. We introduce as well a methodology for sampling model output consistently with satellite aerosol optical thickness (AOT) retrievals to facilitate model-satellite comparison. Our results are similar to the offline GOCART model and to the models participating in the AeroCom intercomparison. The simulated AOT has similar seasonal and regional variability and magnitude to Aerosol Robotic Network (AERONET), Moderate Resolution Imaging Spectroradiometer, and Multiangle Imaging Spectroradiometer observations. The model AOT and Angstrom parameter are consistently low relative to AERONET in biomass-burning-dominated regions, where emissions appear to be underestimated, consistent with the results of the offline GOCART model. In contrast, the model AOT is biased high in sulfate-dominated regions of North America and Europe. Our model-satellite comparison methodology shows that diurnal variability in aerosol loading is unimportant compared to sampling the model where the satellite has cloud-free observations, particularly in sulfate-dominated regions. Simulated sea salt burden and optical thickness are high by a factor of 2-3 relative to other models, and agreement between model and satellite over-ocean AOT is improved by reducing the model sea salt burden by a factor of 2. The best agreement in both AOT magnitude and variability occurs immediately downwind of the Saharan dust plume.

  19. Validation of MODIS Aerosol Optical Depth Retrieval Over Land

    NASA Technical Reports Server (NTRS)

    Chu, D. A.; Kaufman, Y. J.; Ichoku, C.; Remer, L. A.; Tanre, D.; Holben, B. N.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Aerosol optical depths are derived operationally for the first time over land in the visible wavelengths by MODIS (Moderate Resolution Imaging Spectroradiometer) onboard the EOSTerra spacecraft. More than 300 Sun photometer data points from more than 30 AERONET (Aerosol Robotic Network) sites globally were used in validating the aerosol optical depths obtained during July - September 2000. Excellent agreement is found with retrieval errors within (Delta)tau=+/- 0.05 +/- 0.20 tau, as predicted, over (partially) vegetated surfaces, consistent with pre-launch theoretical analysis and aircraft field experiments. In coastal and semi-arid regions larger errors are caused predominantly by the uncertainty in evaluating the surface reflectance. The excellent fit was achieved despite the ongoing improvements in instrument characterization and calibration. This results show that MODIS-derived aerosol optical depths can be used quantitatively in many applications with cautions for residual clouds, snow/ice, and water contamination.

  20. A Simple and Universal Aerosol Retrieval Algorithm for Landsat Series Images Over Complex Surfaces

    NASA Astrophysics Data System (ADS)

    Wei, Jing; Huang, Bo; Sun, Lin; Zhang, Zhaoyang; Wang, Lunche; Bilal, Muhammad

    2017-12-01

    Operational aerosol optical depth (AOD) products are available at coarse spatial resolutions from several to tens of kilometers. These resolutions limit the application of these products for monitoring atmospheric pollutants at the city level. Therefore, a simple, universal, and high-resolution (30 m) Landsat aerosol retrieval algorithm over complex urban surfaces is developed. The surface reflectance is estimated from a combination of top of atmosphere reflectance at short-wave infrared (2.22 μm) and Landsat 4-7 surface reflectance climate data records over densely vegetated areas and bright areas. The aerosol type is determined using the historical aerosol optical properties derived from the local urban Aerosol Robotic Network (AERONET) site (Beijing). AERONET ground-based sun photometer AOD measurements from five sites located in urban and rural areas are obtained to validate the AOD retrievals. Terra MODerate resolution Imaging Spectrometer Collection (C) 6 AOD products (MOD04) including the dark target (DT), the deep blue (DB), and the combined DT and DB (DT&DB) retrievals at 10 km spatial resolution are obtained for comparison purposes. Validation results show that the Landsat AOD retrievals at a 30 m resolution are well correlated with the AERONET AOD measurements (R2 = 0.932) and that approximately 77.46% of the retrievals fall within the expected error with a low mean absolute error of 0.090 and a root-mean-square error of 0.126. Comparison results show that Landsat AOD retrievals are overall better and less biased than MOD04 AOD products, indicating that the new algorithm is robust and performs well in AOD retrieval over complex surfaces. The new algorithm can provide continuous and detailed spatial distributions of AOD during both low and high aerosol loadings.

  1. The 2015 Indonesian biomass-burning season with extensive peat fires: Remote sensing measurements of biomass burning aerosol optical properties from AERONET and MODIS satellite data

    NASA Astrophysics Data System (ADS)

    Eck, T. F.; Holben, B. N.; Giles, D. M.; Smirnov, A.; Slutsker, I.; Sinyuk, A.; Schafer, J.; Sorokin, M. G.; Reid, J. S.; Sayer, A. M.; Hsu, N. Y. C.; Levy, R. C.; Lyapustin, A.; Wang, Y.; Rahman, M. A.; Liew, S. C.; Salinas Cortijo, S. V.; Li, T.; Kalbermatter, D.; Keong, K. L.; Elifant, M.; Aditya, F.; Mohamad, M.; Mahmud, M.; Chong, T. K.; Lim, H. S.; Choon, Y. E.; Deranadyan, G.; Kusumaningtyas, S. D. A.

    2016-12-01

    The strong El Nino event in 2015 resulted in below normal rainfall throughout Indonesia, which in turn allowed for exceptionally large numbers of biomass burning fires (including much peat burning) from Aug though Oct 2015. Over the island of Borneo, three AERONET sites measured monthly mean fine mode aerosol optical depth (AOD) at 500 nm from the spectral deconvolution algorithm in Sep and Oct ranging from 1.6 to 3.7, with daily average AOD as high as 6.1. In fact, the AOD was sometimes too high to obtain significant signal at mid-visible, therefore a newly developed algorithm in the AERONET Version 3 database was invoked to retain the measurements in as many of the longer wavelengths as possible. The AOD at longer wavelengths were then utilized to provide estimates of AOD at 550 nm with maximum values of 9 to 11. Additionally, satellite retrievals of AOD at 550 nm from MODIS data and the Dark Target, Deep Blue, and MAIAC algorithms were analyzed and compared to AERONET measured AOD. The AOD was sometimes too high for the satellite algorithms to make retrievals in the densest smoke regions. Since the AOD was often extremely high there was often insufficient AERONET direct sun signal at 440 nm for the larger solar zenith angles (> 50 degrees) required for almucantar retrievals. However, new hybrid sky radiance scans can attain sufficient scattering angle range even at small solar zenith angles when 440 nm direct beam irradiance can be accurately measured, thereby allowing for more retrievals and at higher AOD levels. The retrieved volume median radius of the fine mode increased from 0.18 to 0.25 micron as AOD increased from 1 to 3 (at 440 nm). These are very large size particles for biomass burning aerosol and are similar in size to smoke particles measured in Alaska during the very dry years of 2004 and 2005 (Eck et al. 2009) when peat soil burning also contributed to the fuel burned. The average single scattering albedo over the wavelength range of 440 to 1020 nm

  2. Inferring Absorbing Organic Carbon Content from AERONET Data

    NASA Technical Reports Server (NTRS)

    Arola, A.; Schuster, G.; Myhre, G.; Kazadzis, S.; Dey, S.; Tripathi, S. N.

    2011-01-01

    Black carbon, light-absorbing organic carbon (often called brown carbon) and mineral dust are the major light-absorbing aerosols. Currently the sources and formation of brown carbon aerosol in particular are not well understood. In this study we estimated globally the amount of light absorbing organic carbon and black carbon from AERONET measurements. We find that the columnar absorbing organic carbon (brown carbon) levels in biomass burning regions of South-America and Africa are relatively high (about 15-20 magnesium per square meters during biomass burning season), while the concentrations are significantly lower in urban areas in US and Europe. However, we estimated significant absorbing organic carbon amounts from the data of megacities of newly industrialized countries, particularly in India and China, showing also clear seasonality with peak values up to 30-35 magnesium per square meters during the coldest season, likely caused by the coal and biofuel burning used for heating. We also compared our retrievals with the modeled organic carbon by global Oslo CTM for several sites. Model values are higher in biomass burning regions than AERONET-based retrievals, while opposite is true in urban areas in India and China.

  3. Susceptibility of Aerosol Retrievals to Cirrus Contamination during the BASE-ASIA Campaign and at Global View

    NASA Astrophysics Data System (ADS)

    Huang, J.; Hsu, C.; Tsay, S.; Jeong, M.; Holben, B.; Berkoff, T.; Welton, E. J.

    2010-12-01

    Cirrus clouds, particularly subvisual high thin cirrus with low optical thickness, are difficult to be screened out in the operational aerosol retrieval algorithms. In this study, we jointly used ground measurements (AERONET, aerosol robotic network; MPLNET, micro-pulse lidar network) and satellite data (MODIS, moderate resolution imaging spectroradiometer; CALIPSO, cloud-aerosol lidar and infrared pathfinder satellite observations) to closely examine the susceptibility of satellite retrieved and ground measured aerosol optical thickness (AOT) to cirrus contamination. Special cases were selected at Phimai (102.56°E, 15.18°N, also known as Pimai), Thailand, during the Biomass-burning Aerosols in South East-Asia: Smoke Impact Assessment (BASE-ASIA) campaign (February-May 2006). By taking advantage of space-borne and ground lidars in detecting cirrus clouds, we conducted the statistical analysis by matching up concurrent cirrus and aerosol observations at four levels: MPLNET vs AERONET, MPLNET vs MODIS, CALIPSO vs AERONET, and CALIPSO vs MODIS. Results suggest that the susceptibility of current operational AERONET and MODIS AOT products to cirrus features strong regional and seasonal variability, particularly in cirrus prevailing regions. The values of AOT and aerosol particle size appear to be larger for cirrus-susceptible cases than those for confidently non-cirrus cases, a possible signature of cirrus contamination. To further assess cirrus-screening algorithms, we tested 8 MODIS-derived cirrus screening parameters against lidar observations for their performance and robustness on cirrus screening: apparent reflectance at 1.38μm (R1.38), cirrus reflectance at 0.66μm (CR0.66), CR0.66 cirrus flag, reflectance ratio between 1.38μm and 0.66μm (RR1.38/0.66), reflectance ratio between 1.38μm and 1.24μm (RR1.38/1.24), brightness temperature difference between 8.6μm and 11μm (BTD8.6-11), brightness temperature difference between 11μm and 12μm (BTD11-12), and

  4. The MODIS Aerosol Algorithm, Products and Validation

    NASA Technical Reports Server (NTRS)

    Remer, L. A.; Kaufman, Y. J.; Tanre, D.; Mattoo, S.; Chu, D. A.; Martins, J. V.; Li, R.-R.; Ichoku, C.; Levy, R. C.; Kleidman, R. G.

    2003-01-01

    The MODerate resolution Imaging Spectroradiometer (MODIS) aboard both NASA's Terra and Aqua satellites is making near global daily observations of the earth in a wide spectral range. These measurements are used to derive spectral aerosol optical thickness and aerosol size parameters over both land and ocean. The aerosol products available over land include aerosol optical thickness at three visible wavelengths, a measure of the fraction of aerosol optical thickness attributed to the fine mode and several derived parameters including reflected spectral solar flux at top of atmosphere. Over ocean, the aerosol optical thickness is provided in seven wavelengths from 0.47 microns to 2.13 microns. In addition, quantitative aerosol size information includes effective radius of the aerosol and quantitative fraction of optical thickness attributed to the fine mode. Spectral aerosol flux, mass concentration and number of cloud condensation nuclei round out the list of available aerosol products over the ocean. The spectral optical thickness and effective radius of the aerosol over the ocean are validated by comparison with two years of AERONET data gleaned from 133 AERONET stations. 8000 MODIS aerosol retrievals colocated with AERONET measurements confirm that one-standard deviation of MODIS optical thickness retrievals fall within the predicted uncertainty of delta tauapproximately equal to plus or minus 0.03 plus or minus 0.05 tau over ocean and delta tay equal to plus or minus 0.05 plus or minus 0.15 tau over land. 271 MODIS aerosol retrievals co-located with AERONET inversions at island and coastal sites suggest that one-standard deviation of MODIS effective radius retrievals falls within delta r_eff approximately equal to 0.11 microns. The accuracy of the MODIS retrievals suggests that the product can be used to help narrow the uncertainties associated with aerosol radiative forcing of global climate.

  5. Aerosol Models for the CALIPSO Lidar Inversion Algorithms

    NASA Technical Reports Server (NTRS)

    Omar, Ali H.; Winker, David M.; Won, Jae-Gwang

    2003-01-01

    We use measurements and models to develop aerosol models for use in the inversion algorithms for the Cloud Aerosol Lidar and Imager Pathfinder Spaceborne Observations (CALIPSO). Radiance measurements and inversions of the AErosol RObotic NETwork (AERONET1, 2) are used to group global atmospheric aerosols using optical and microphysical parameters. This study uses more than 105 records of radiance measurements, aerosol size distributions, and complex refractive indices to generate the optical properties of the aerosol at more 200 sites worldwide. These properties together with the radiance measurements are then classified using classical clustering methods to group the sites according to the type of aerosol with the greatest frequency of occurrence at each site. Six significant clusters are identified: desert dust, biomass burning, urban industrial pollution, rural background, marine, and dirty pollution. Three of these are used in the CALIPSO aerosol models to characterize desert dust, biomass burning, and polluted continental aerosols. The CALIPSO aerosol model also uses the coarse mode of desert dust and the fine mode of biomass burning to build a polluted dust model. For marine aerosol, the CALIPSO aerosol model uses measurements from the SEAS experiment 3. In addition to categorizing the aerosol types, the cluster analysis provides all the column optical and microphysical properties for each cluster.

  6. Effects of data assimilation on the global aerosol key optical properties simulations

    NASA Astrophysics Data System (ADS)

    Yin, Xiaomei; Dai, Tie; Schutgens, Nick A. J.; Goto, Daisuke; Nakajima, Teruyuki; Shi, Guangyu

    2016-09-01

    We present the one month results of global aerosol optical properties for April 2006, using the Spectral Radiation Transport Model for Aerosol Species (SPRINTARS) coupled with the Non-hydrostatic ICosahedral Atmospheric Model (NICAM), by assimilating Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol optical depth (AOD) with Local Ensemble Transform Kalman Filter (LETKF). The simulated AOD, Ångström Exponent (AE) and single scattering albedo (SSA) are validated by independent Aerosol Robotic Network (AERONET) observations over the global sites. The data assimilation has the strongest positive effect on the AOD simulation and slight positive influences on the AE and SSA simulations. For the time-averaged globally spatial distribution, the data assimilation increases the model skill score (S) of AOD, AE, and SSA from 0.55, 0.92, and 0.75 to 0.79, 0.94, and 0.80, respectively. Over the North Africa (NAF) and Middle East region where the aerosol composition is simple (mainly dust), the simulated AODs are best improved by the data assimilation, indicating the assimilation correctly modifies the wrong dust burdens caused by the uncertainties of the dust emission parameterization. Assimilation also improves the simulation of the temporal variations of the aerosol optical properties over the AERONET sites, with improved S at 60 (62%), 45 (55%) and 11 (50%) of 97, 82 and 22 sites for AOD, AE and SSA. By analyzing AOD and AE at five selected sites with best S improvement, this study further indicates that the assimilation can reproduce short duration events and ratios between fine and coarse aerosols more accurately.

  7. Optical, microphysical and radiative properties of aerosols over a tropical rural site in Kenya, East Africa: Source identification, modification and aerosol type discrimination

    NASA Astrophysics Data System (ADS)

    Boiyo, Richard; Kumar, K. Raghavendra; Zhao, Tianliang

    2018-03-01

    A better understanding of aerosol optical, microphysical and radiative properties is a crucial challenge for climate change studies. In the present study, column-integrated aerosol optical and radiative properties observed at a rural site, Mbita (0.42°S, 34.20 °E, and 1125 m above sea level) located in Kenya, East Africa (EA) are investigated using ground-based Aerosol Robotic Network (AERONET) data retrieved during January, 2007 to December, 2015. The annual mean aerosol optical depth (AOD500 nm), Ångström exponent (AE440-870 nm), fine mode fraction of AOD500 nm (FMF500 nm), and columnar water vapor (CWV, cm) were found to be 0.23 ± 0.08, 1.01 ± 0.16, 0.60 ± 0.07, and 2.72 ± 0.20, respectively. The aerosol optical properties exhibited a unimodal distribution with substantial seasonal heterogeneity in their peak values being low (high) during the local wet (dry) seasons. The observed data showed that Mbita and its environs are significantly influenced by various types of aerosols, with biomass burning and/or urban-industrial (BUI), mixed (MXD), and desert dust (DDT) aerosol types contributing to 37.72%, 32.81%, and 1.40%, respectively during the local dry season (JJA). The aerosol volume size distribution (VSD) exhibited bimodal lognormal structure with a geometric mean radius of 0.15 μm and 3.86-5.06 μm for fine- and coarse-mode aerosols, respectively. Further, analysis of single scattering albedo (SSA), asymmetry parameter (ASY) and refractive index (RI) revealed dominance of fine-mode absorbing aerosols during JJA. The averaged aerosol direct radiative forcing (ARF) retrieved from the AERONET showed a strong cooling effect at the bottom of the atmosphere (BOA) and significant warming within the atmosphere (ATM), representing the important role of aerosols played in this rural site of Kenya. Finally, the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model revealed that aerosols from distinct sources resulted in enhanced loading

  8. Validation of high-resolution MAIAC aerosol product over South America

    NASA Astrophysics Data System (ADS)

    Martins, V. S.; Lyapustin, A.; de Carvalho, L. A. S.; Barbosa, C. C. F.; Novo, E. M. L. M.

    2017-07-01

    Multiangle Implementation of Atmospheric Correction (MAIAC) is a new Moderate Resolution Imaging Spectroradiometer (MODIS) algorithm that combines time series approach and image processing to derive surface reflectance and atmosphere products, such as aerosol optical depth (AOD) and columnar water vapor (CWV). The quality assessment of MAIAC AOD at 1 km resolution is still lacking across South America. In the present study, critical assessment of MAIAC AOD550 was performed using ground-truth data from 19 Aerosol Robotic Network (AERONET) sites over South America. Additionally, we validated the MAIAC CWV retrievals using the same AERONET sites. In general, MAIAC AOD Terra/Aqua retrievals show high agreement with ground-based measurements, with a correlation coefficient (R) close to unity (RTerra:0.956 and RAqua: 0.949). MAIAC accuracy depends on the surface properties and comparisons revealed high confidence retrievals over cropland, forest, savanna, and grassland covers, where more than 2/3 ( 66%) of retrievals are within the expected error (EE = ±(0.05 + 0.05 × AOD)) and R exceeding 0.86. However, AOD retrievals over bright surfaces show lower correlation than those over vegetated areas. Both MAIAC Terra and Aqua retrievals are similarly comparable to AERONET AOD over the MODIS lifetime (small bias offset 0.006). Additionally, MAIAC CWV presents quantitative information with R 0.97 and more than 70% of retrievals within error (±15%). Nonetheless, the time series validation shows an upward bias trend in CWV Terra retrievals and systematic negative bias for CWV Aqua. These results contribute to a comprehensive evaluation of MAIAC AOD retrievals as a new atmospheric product for future aerosol studies over South America.

  9. Validation of High-Resolution MAIAC Aerosol Product over South America

    NASA Technical Reports Server (NTRS)

    Martins, V. S.; Lyapustin, A.; de Carvalho, L. A. S.; Barbosa, C. C. F.; Novo, E. M. L. M.

    2017-01-01

    Multiangle Implementation of Atmospheric Correction (MAIAC) is a new Moderate Resolution Imaging Spectroradiometer (MODIS) algorithm that combines time series approach and image processing to derive surface reflectance and atmosphere products, such as aerosol optical depth (AOD) and columnar water vapor (CWV). The quality assessment of MAIAC AOD at 1 km resolution is still lacking across South America. In the present study, critical assessment of MAIAC AOD(sub 550) was performed using ground-truth data from 19 Aerosol Robotic Network (AERONET) sites over South America. Additionally, we validated the MAIAC CWV retrievals using the same AERONET sites. In general, MAIAC AOD Terra/Aqua retrievals show high agreement with ground-based measurements, with a correlation coefficient (R) close to unity (R(sub Terra):0.956 and R(sub Aqua):0.949). MAIAC accuracy depends on the surface properties and comparisons revealed high confidence retrievals over cropland, forest, savanna, and grassland covers, where more than 2/3 (approximately 66%) of retrievals are within the expected error (EE = +/-(0.05 + 0.05 × AOD)) and R exceeding 0.86. However, AOD retrievals over bright surfaces show lower correlation than those over vegetated areas. Both MAIAC Terra and Aqua retrievals are similarly comparable to AERONET AOD over the MODIS lifetime (small bias offset approximately 0.006). Additionally, MAIAC CWV presents quantitative information with R approximatley 0.97 and more than 70% of retrievals within error (+/-15%). Nonetheless, the time series validation shows an upward bias trend in CWV Terra retrievals and systematic negative bias for CWV Aqua. These results contribute to a comprehensive evaluation of MAIAC AOD retrievals as a new atmospheric product for future aerosol studies over South America.

  10. Multi year aerosol characterization in the tropical Andes and in adjacent Amazonia using AERONET measurements

    NASA Astrophysics Data System (ADS)

    Pérez-Ramírez, Daniel; Andrade-Flores, Marcos; Eck, Thomas F.; Stein, Ariel F.; O'Neill, Norman T.; Lyamani, Hassan; Gassó, Santiago; Whiteman, David N.; Veselovskii, Igor; Velarde, Fernando; Alados-Arboledas, L.

    2017-10-01

    This work focuses on the analysis of columnar aerosol properties in the complex geophysical tropical region of South America within 10-20° South and 50-70° West. The region is quite varied and encompasses a significant part of Amazonia (lowlands) as well as high mountains in the Andes (highlands,∼4000 m a.s.l.). Several AERONET stations were included to study the aerosol optical characteristics of the lowlands (Rio Branco, Ji Parana and Cuiaba in Brazil and Santa Cruz in Bolivia) and the highlands (La Paz, Bolivia) during the 2000-2014 period. Biomass-burning is by far the most important source of aerosol in the lowlands, particularly during the dry season (August-October). Multi-annual variability was investigated and showed very strong burning activity in 2005, 2006, 2007 and 2010. This resulted in smoke characterized by correspondingly strong, above-average AODs (aerosol optical depths) and homogeneous single scattering albedo (SSA) across all the stations (∼0.93). For other years, however, SSA differences arise between the northern stations (Rio Branco and Ji Parana) with SSAs of ∼0.95 and the southern stations (Cuiaba and Santa Cruz) with lower SSAs of ∼0.85. Such differences are explained by the different types of vegetation burned in the two different regions. In the highlands, however, the transport of biomass burning smoke is found to be sporadic in nature. This sporadicity results in highly variable indicators of aerosol load and type (Angstrom exponent and fine mode fraction) with moderately significant increases in both. Regional dust and local pollution are the background aerosol in this highland region, whose elevation places it close to the free troposphere. Transported smoke particles were generally found to be more optical absorbing than in the lowlands: the hypothesis to explain this is the significantly higher amount of water vapor in Amazonia relative to the high mountain areas. The air-mass transport to La Paz was investigated using

  11. Regional and transported aerosols during DRAGON-Japan experiment

    NASA Astrophysics Data System (ADS)

    Sano, I.; Holben, B. N.; Mukai, S.; Nakata, M.; Nakaguchi, Y.; Sugimoto, N.; Hatakeyama, S.; Nishizawa, T.; Takamura, T.; Takemura, T.; Yonemitsu, M.; Fujito, T.; Schafer, J.; Eck, T. F.; Sorokin, M.; Kenny, P.; Goto, M.; Hiraki, T.; Iguchi, N.; Kouzai, K.; KUJI, M.; Muramatsu, K.; Okada, Y.; Sadanaga, Y.; Tohno, S.; Toyazaki, Y.; Yamamoto, K.

    2013-12-01

    Aerosol properties over Japan have been monitored by AERONET sun / sky photometers since 2000. These measurements provides us with long term information of local aerosols, which are influenced by transported aerosols, such as Asian dusts or anthropogenic pollutants due to rapid increasing of energy consumption in Asian countries. A new aerosol monitoring experiment, Distributed Regional Aerosol Gridded Observation Networks (DRAGON) - Japan is operated in spring of 2012. The main instrument of DRAGON network is AERONET sun/sky radiometers. Some of them are sparsely set along the Japanese coast and some others make a dense network in Osaka, which is the second-largest city in Japan and famous for manufacturing town. Several 2ch NIES-LIDAR systems are also co-located with AERONET instrument to monitor Asian dusts throughout the campaign. The objects of Dragon-Japan are to characterize local aerosols as well as transported ones from the continent of China, and to acquire the detailed aerosol information for validating satellite data with high resolved spatial scale. This work presents the comprehensive results of aerosol properties with respect to regional- and/or transported- scale during DRAGON-Japan experiments.

  12. Preliminary results of the aerosol optical depth retrieval in Johor, Malaysia

    NASA Astrophysics Data System (ADS)

    Lim, H. Q.; Kanniah, K. D.; Lau, A. M. S.

    2014-02-01

    Monitoring of atmospheric aerosols over the urban area is important as tremendous amounts of pollutants are released by industrial activities and heavy traffic flow. Air quality monitoring by satellite observation provides better spatial coverage, however, detailed aerosol properties retrieval remains a challenge. This is due to the limitation of aerosol retrieval algorithm on high reflectance (bright surface) areas. The aim of this study is to retrieve aerosol optical depth over urban areas of Iskandar Malaysia; the main southern development zone in Johor state, using Moderate Resolution Imaging Spectroradiometer (MODIS) 500 m resolution data. One of the important steps is the aerosol optical depth retrieval is to characterise different types of aerosols in the study area. This information will be used to construct a Look Up Table containing the simulated aerosol reflectance and corresponding aerosol optical depth. Thus, in this study we have characterised different aerosol types in the study area using Aerosol Robotic Network (AERONET) data. These data were processed using cluster analysis and the preliminary results show that the area is consisting of coastal urban (65%), polluted urban (27.5%), dust particles (6%) and heavy pollution (1.5%) aerosols.

  13. Multi-Sensor Aerosol Products Sampling System

    NASA Technical Reports Server (NTRS)

    Petrenko, M.; Ichoku, C.; Leptoukh, G.

    2011-01-01

    Global and local properties of atmospheric aerosols have been extensively observed and measured using both spaceborne and ground-based instruments, especially during the last decade. Unique properties retrieved by the different instruments contribute to an unprecedented availability of the most complete set of complimentary aerosol measurements ever acquired. However, some of these measurements remain underutilized, largely due to the complexities involved in analyzing them synergistically. To characterize the inconsistencies and bridge the gap that exists between the sensors, we have established a Multi-sensor Aerosol Products Sampling System (MAPSS), which consistently samples and generates the spatial statistics (mean, standard deviation, direction and rate of spatial variation, and spatial correlation coefficient) of aerosol products from multiple spacebome sensors, including MODIS (on Terra and Aqua), MISR, OMI, POLDER, CALIOP, and SeaWiFS. Samples of satellite aerosol products are extracted over Aerosol Robotic Network (AERONET) locations as well as over other locations of interest such as those with available ground-based aerosol observations. In this way, MAPSS enables a direct cross-characterization and data integration between Level-2 aerosol observations from multiple sensors. In addition, the available well-characterized co-located ground-based data provides the basis for the integrated validation of these products. This paper explains the sampling methodology and concepts used in MAPSS, and demonstrates specific examples of using MAPSS for an integrated analysis of multiple aerosol products.

  14. Comparing MODIS C6 'Deep Blue' and 'Dark Target' Aerosol Data

    NASA Technical Reports Server (NTRS)

    Hsu, N. C.; Sayer, A. M.; Bettenhausen, C.; Lee, J.; Levy, R. C.; Mattoo, S.; Munchak, L. A.; Kleidman, R.

    2014-01-01

    The MODIS Collection 6 Atmospheres product suite includes refined versions of both 'Deep Blue' (DB) and 'Dark Target' (DT) aerosol algorithms, with the DB dataset now expanded to include coverage over vegetated land surfaces. This means that, over much of the global land surface, users will have both DB and DT data to choose from. A 'merged' dataset is also provided, primarily for visualization purposes, which takes retrievals from either or both algorithms based on regional and seasonal climatologies of normalized difference vegetation index (NDVI). This poster present some comparisons of these two C6 aerosol algorithms, focusing on AOD at 550 nm derived from MODIS Aqua measurements, with each other and with Aerosol Robotic Network (AERONET) data, with the intent to facilitate user decisions about the suitability of the two datasets for their desired applications.

  15. Evaluation of radiosonde, MODIS-NIR-Clear, and AERONET precipitable water vapor using IGS ground-based GPS measurements over China

    NASA Astrophysics Data System (ADS)

    Gui, Ke; Che, Huizheng; Chen, Quanliang; Zeng, Zhaoliang; Liu, Haizhi; Wang, Yaqiang; Zheng, Yu; Sun, Tianze; Liao, Tingting; Wang, Hong; Zhang, Xiaoye

    2017-11-01

    Water vapor is one of the major greenhouse gases in the atmosphere and also the key parameter affecting the hydrological cycle, aerosol properties, aerosol-cloud interactions, the energy budget, and the climate. This study analyzed the temporal and spatial distribution of precipitable water vapor (PWV) in China using MODerate resolution Imaging Spectroradiometer near-infrared (MODIS-NIR)-Clear PWV products from 2011 to 2013. We then compared the four PWV products (Global Positioning System PWV (GPS-PWV), radiosonde PWV (RS-PWV), MODIS-NIR-Clear PWV, and Aerosol Robotic Network sunphotometer PWV (AERONET-PWV)) at six typical sites in China from 2011 to 2013. The analysis of the temporal and spatial distribution showed that the PWV distribution in China has clear geographical differences, and its basic distribution characteristics gradually change from the coast in the southeast to inland in the northwest. Affected by the East Asian monsoon, the PWV over China showed clear seasonal distribution features, with highest values in the summer, followed by autumn and spring, and the lowest values in winter. Intercomparison results showed that GPS-PWV and RS-PWV had a slightly higher correlation (R2 = 0.975) at 0000 UTC than that at 1200 UTC (R2 = 0.967). The mean values of Bias, SD, and RMSE between GPS-PWV and RS-PWV (GPS-RS) were - 0.03 mm, 2.36 mm, and 2.60 mm at 0000 UTC, and - 0.23 mm, 2.76 mm, and 2.95 mm at 1200 UTC, respectively. This showed that GPS-PWV was slightly lower than RS-PWV, and this difference was more obvious during the nighttime. The MODIS-NIR-Clear PWV product showed a similar correlation coefficient (R2 = 0.88) with GPS-PWV compared with RS-PWV. In addition, MODIS-NIR-Clear PWV was greater than GPS-PWV and RS-PWV. The MODIS-NIR-Clear PWV showed a larger deviation from GPS-PWV (MODIS-GPS Bias = 1.50 mm, RMSE = 5.76 mm) compared with RS PWV (MODIS-RS Bias = 0.75 mm, RMSE = 5.31 mm). The correlation coefficients between AERONET-PWV and the PWV from GPS

  16. Direct radiative forcing of urban aerosols over Pretoria (25.75°S, 28.28°E) using AERONET Sunphotometer data: first scientific results and environmental impact.

    PubMed

    Adesina, Ayodele Joseph; Kumar, Kanike Raghavendra; Sivakumar, Venkataraman; Griffith, Derek

    2014-12-01

    The present study uses the data collected from Cimel Sunphotometer of Aerosol Robotic Network (AERONET) for the period from January to December, 2012 over an urban site, Pretoria (PTR; 25.75°S, 28.28°E, 1449 m above sea level), South Africa. We found that monthly mean aerosol optical depth (AOD, τ(a)) exhibits two maxima that occurred in summer (February) and winter (August) having values of 0.36 ± 0.19 and 0.25 ± 0.14, respectively, high-to-moderate values in spring and thereafter, decreases from autumn with a minima in early winter (June) 0.12 ± 0.07. The Angstrom exponents (α440-870) likewise, have its peak in summer (January) 1.70 ± 0.21 and lowest in early winter (June) 1.38 ± 0.26, while the columnar water vapor (CWV) followed AOD pattern with high values (summer) at the beginning of the year (February, 2.10 ± 0.37 cm) and low values (winter) in the middle of the year (July, 0.66 ± 0.21 cm). The volume size distribution (VSD) in the fine-mode is higher in the summer and spring seasons, whereas in the coarse mode the VSD is higher in the winter and lower in the summer due to the hygroscopic growth of aerosol particles. The single scattering albedo (SSA) ranged from 0.85 to 0.96 at 440 nm over PTR for the entire study period. The averaged aerosol radiative forcing (ARF) computed using SBDART model at the top of the atmosphere (TOA) was -8.78 ± 3.1 W/m², while at the surface it was -25.69 ± 8.1 W/m² leading to an atmospheric forcing of +16.91 ± 6.8 W/m², indicating significant heating of the atmosphere with a mean of 0.47K/day. Copyright © 2014. Published by Elsevier B.V.

  17. Synergism of MODIS Aerosol Remote Sensing from Terra and Aqua

    NASA Technical Reports Server (NTRS)

    Ichoku, Charles; Kaufman, Yoram J.; Remer, Lorraine A.

    2003-01-01

    The MODerate-resolution Imaging Spectro-radiometer (MODIS) sensors, aboard the Earth Observing System (EOS) Terra and Aqua satellites, are showing excellent competence at measuring the global distribution and properties of aerosols. Terra and Aqua were launched on December 18, 1999 and May 4, 2002 respectively, with daytime equator crossing times of approximately 10:30 am and 1:30 pm respectively. Several aerosol parameters are retrieved at 10-km spatial resolution from MODIS daytime data over land and ocean surfaces. The parameters retrieved include: aerosol optical thickness (AOT) at 0.47, 0.55 and 0.66 micron wavelengths over land, and at 0.47, 0.55, 0.66, 0.87, 1.2, 1.6, and 2.1 microns over ocean; Angstrom exponent over land and ocean; and effective radii, and the proportion of AOT contributed by the small mode aerosols over ocean. Since the beginning of its operation, the quality of Terra-MODIS aerosol products (especially AOT) have been evaluated periodically by cross-correlation with equivalent data sets acquired by ground-based (and occasionally also airborne) sunphotometers, particularly those coordinated within the framework of the AErosol Robotic NETwork (AERONET). Terra-MODIS AOT data have been found to meet or exceed pre-launch accuracy expectations, and have been applied to various studies dealing with local, regional, and global aerosol monitoring. The results of these Terra-MODIS aerosol data validation efforts and studies have been reported in several scientific papers and conferences. Although Aqua-MODIS is still young, it is already yielding formidable aerosol data products, which are also subjected to careful periodic evaluation similar to that implemented for the Terra-MODIS products. This paper presents results of validation of Aqua-MODIS aerosol products with AERONET, as well as comparative evaluation against corresponding Terra-MODIS data. In addition, we show interesting independent and synergistic applications of MODIS aerosol data from

  18. The Mpi-M Aerosol Climatology (MAC)

    NASA Astrophysics Data System (ADS)

    Kinne, S.

    2014-12-01

    Monthly gridded global data-sets for aerosol optical properties (AOD, SSA and g) and for aerosol microphysical properties (CCN and IN) offer a (less complex) alternate path to include aerosol radiative effects and aerosol impacts on cloud-microphysics in global simulations. Based on merging AERONET sun-/sky-photometer data onto background maps provided by AeroCom phase 1 modeling output and AERONET sun-/the MPI-M Aerosol Climatology (MAC) version 1 was developed and applied in IPCC simulations with ECHAM and as ancillary data-set in satellite-based global data-sets. An updated version 2 of this climatology will be presented now applying central values from the more recent AeroCom phase 2 modeling and utilizing the better global coverage of trusted sun-photometer data - including statistics from the Marine Aerosol network (MAN). Applications include spatial distributions of estimates for aerosol direct and aerosol indirect radiative effects.

  19. Aerosol loading impact on Asian monsoon precipitation patterns

    NASA Astrophysics Data System (ADS)

    Biondi, Riccardo; Cagnazzo, Chiara; Costabile, Francesca; Cairo, Francesco

    2017-04-01

    Solar light absorption by aerosols such as black carbon and dust assume a key role in driving the precipitation patterns in the Indian subcontinent. The aerosols stack up against the foothills of the Himalayas in the pre-monsoon season and several studies have already demonstrated that this can cause precipitation anomalies during summer. Despite its great significance in climate change studies, the link between absorbing aerosols loading and precipitation patterns remains highly uncertain. The main challenge for this kind of studies is to find consistent and reliable datasets. Several aerosol time series are available from satellite and ground based instruments and some precipitation datasets from satellite sensors, but they all have different time/spatial resolution and they use different assumptions for estimating the parameter of interest. We have used the aerosol estimations from the Ozone Monitoring Instrument (OMI), the Along-Track Scanning Radiometer (AATSR) and the MODerate resolution Imaging Spectroradiometer (MODIS) and validated them against the Aerosol Robotic Network (AERONET) measurements in the Indian area. The precipitation has been analyzed by using the Tropical Rainfall Measuring Mission (TRMM) estimations and the Modern-Era Retrospective analysis for Research and Applications version 2 (MERRA-2). From our results it is evident the discrepancy between the aerosol loading on the area of interest from the OMI, AATSR, and MODIS, but even between 3 different algorithms applied to the MODIS data. This uncertainty does not allow to clearly distinguishing high aerosol loading years from low aerosol loading years except in a couple of cases where all the estimations agree. Similar issues are also present in the precipitation estimations from TRMM and MERRA-2. However, all the aerosol datasets agree in defining couples of consecutive years with a large gradient of aerosol loading. Based on this assumption we have compared the precipitation anomalies and

  20. Potential of polarization lidar to provide profiles of CCN- and INP-relevant aerosol parameters

    NASA Astrophysics Data System (ADS)

    Mamouri, R. E.; Ansmann, A.

    2015-12-01

    We investigate the potential of polarization lidar to provide vertical profiles of aerosol parameters from which cloud condensation nucleus (CCN) and ice nucleating particle (INP) number concentrations can be estimated. We show that height profiles of number concentrations of aerosol particles with radius > 50 nm (APC50, reservoir of favorable CCN) and with radius > 250 nm (APC250, reservoir of favorable INP), as well as profiles of the aerosol particle surface area concentration (ASC, used in INP parameterization) can be retrieved from lidar-derived aerosol extinction coefficients (AEC) with relative uncertainties of a factor of around 2 (APC50), and of about 25-50 % (APC250, ASC). Of key importance is the potential of polarization lidar to identify mineral dust particles and to distinguish and separate the aerosol properties of basic aerosol types such as mineral dust and continental pollution (haze, smoke). We investigate the relationship between AEC and APC50, APC250, and ASC for the main lidar wavelengths of 355, 532 and 1064 nm and main aerosol types (dust, pollution, marine). Our study is based on multiyear Aerosol Robotic Network (AERONET) photometer observations of aerosol optical thickness and column-integrated particle size distribution at Leipzig, Germany, and Limassol, Cyprus, which cover all realistic aerosol mixtures of continental pollution, mineral dust, and marine aerosol. We further include AERONET data from field campaigns in Morocco, Cabo Verde, and Barbados, which provide pure dust and pure marine aerosol scenarios. By means of a simple relationship between APC50 and the CCN-reservoir particles (APCCCN) and published INP parameterization schemes (with APC250 and ASC as input) we finally compute APCCCN and INP concentration profiles. We apply the full methodology to a lidar observation of a heavy dust outbreak crossing Cyprus with dust up to 8 km height and to a case during which anthropogenic pollution dominated.

  1. Remote Sensing of Non-Aerosol (anomalous) Absorption in Cloud Free Atmosphere

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.; Dubovik, Oleg; Smirnov, Alexander; Holben, Brent N.; Lau, William K. M. (Technical Monitor)

    2001-01-01

    The interaction of sunlight with atmospheric gases, aerosols and clouds is fundamental to the understanding of climate and its variation. Several studies questioned our understanding of atmospheric absorption of sunlight in cloudy or in cloud free atmospheres. Uncertainty in instruments' accuracy and in the analysis methods makes this problem difficult to resolve. Here we use several years of measurements of sky and sun spectral brightness by selected instruments of the Aerosol Robotic Network (AERONET), that have known and high measurement accuracy. The measurements taken in several locations around the world show that in the atmospheric windows 0.44, 0.06, 0.86 and 1.02 microns the only significant absorbers in cloud free atmosphere is aerosol and ozone. This conclusions is reached using a method developed to distinguish between absorption associated with the presence of aerosol and absorption that is not related to the presence of aerosol. Non-aerosol absorption, defined as spectrally independent or smoothly variable, was found to have an optical thickness smaller than 0.002 corresponding to absorption of sunlight less than 1W/sq m, or essentially zero.

  2. Aerosol climatology over Mexico City basin: Characterization of their optical properties

    NASA Astrophysics Data System (ADS)

    Carabali-Sandoval, Giovanni; Valdéz-Barrón, Mauro; Bonifaz-Alfonso, Roberto; Riveros-Rosas, David; Estévez, Héctor

    2015-04-01

    Climatology of aerosol optical depth (AOD), single scattering albedo (SSA) and size parameters were analyzed using a 15-year (1999-2014) data set from AErosol RObotic NETwork (AERONET) observations over Mexico City basin. Since urban air pollution is one of the biggest problems that face this megacity, many studies addressing these issues have been published. However few studies have examined the climatology of aerosol taking into account their optical properties over long-time period. Pollution problems in Mexico City have been generated by the daily activities of some 21 million people coupled with the vast amount of industry located within the city's metropolitan area. Another contributing factor is the unique geographical setting of the basin encompassing Mexico City. The basin covers approximately 5000 km2 of the Mexican Plateau at an average elevation of 2250 m above sea level (ASL) and is surrounded on three sides by mountains averaging over 3000 m ASL. In this work we present preliminary results of aerosol climatology in Mexico City.

  3. Retrieval of Aerosol Optical Properties from Ground-Based Remote Sensing Measurements: Aerosol Asymmetry Factor and Single Scattering Albedo

    NASA Astrophysics Data System (ADS)

    Qie, L.; Li, Z.; Li, L.; Li, K.; Li, D.; Xu, H.

    2018-04-01

    The Devaux-Vermeulen-Li method (DVL method) is a simple approach to retrieve aerosol optical parameters from the Sun-sky radiance measurements. This study inherited the previous works of retrieving aerosol single scattering albedo (SSA) and scattering phase function, the DVL method was modified to derive aerosol asymmetric factor (g). To assess the algorithm performance at various atmospheric aerosol conditions, retrievals from AERONET observations were implemented, and the results are compared with AERONET official products. The comparison shows that both the DVL SSA and g were well correlated with those of AERONET. The RMSD and the absolute value of MBD deviations between the SSAs are 0.025 and 0.015 respectively, well below the AERONET declared SSA uncertainty of 0.03 for all wavelengths. For asymmetry factor g, the RMSD deviations are smaller than 0.02 and the absolute values of MBDs smaller than 0.01 at 675, 870 and 1020 nm bands. Then, considering several factors probably affecting retrieval quality (i.e. the aerosol optical depth (AOD), the solar zenith angle, and the sky residual error, sphericity proportion and Ångström exponent), the deviations for SSA and g of these two algorithms were calculated at varying value intervals. Both the SSA and g deviations were found decrease with the AOD and the solar zenith angle, and increase with sky residual error. However, the deviations do not show clear sensitivity to the sphericity proportion and Ångström exponent. This indicated that the DVL algorithm is available for both large, non-spherical particles and spherical particles. The DVL results are suitable for the evaluation of aerosol direct radiative effects of different aerosol types.

  4. Comparative Time Series Analysis of Aerosol Optical Depth over Sites in United States and China Using ARIMA Modeling

    NASA Astrophysics Data System (ADS)

    Li, X.; Zhang, C.; Li, W.

    2017-12-01

    Long-term spatiotemporal analysis and modeling of aerosol optical depth (AOD) distribution is of paramount importance to study radiative forcing, climate change, and human health. This study is focused on the trends and variations of AOD over six stations located in United States and China during 2003 to 2015, using satellite-retrieved Moderate Resolution Imaging Spectrometer (MODIS) Collection 6 retrievals and ground measurements derived from Aerosol Robotic NETwork (AERONET). An autoregressive integrated moving average (ARIMA) model is applied to simulate and predict AOD values. The R2, adjusted R2, Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and Bayesian Information Criterion (BIC) are used as indices to select the best fitted model. Results show that there is a persistent decreasing trend in AOD for both MODIS data and AERONET data over three stations. Monthly and seasonal AOD variations reveal consistent aerosol patterns over stations along mid-latitudes. Regional differences impacted by climatology and land cover types are observed for the selected stations. Statistical validation of time series models indicates that the non-seasonal ARIMA model performs better for AERONET AOD data than for MODIS AOD data over most stations, suggesting the method works better for data with higher quality. By contrast, the seasonal ARIMA model reproduces the seasonal variations of MODIS AOD data much more precisely. Overall, the reasonably predicted results indicate the applicability and feasibility of the stochastic ARIMA modeling technique to forecast future and missing AOD values.

  5. Nocturnal aerosol optical depth measurements with a small-aperture automated photometer using the moon as a light source

    USGS Publications Warehouse

    Berkoff, T.A.; Sorokin, M.; Stone, T.; Eck, T.F.; Hoff, R.; Welton, E.; Holben, B.

    2011-01-01

    A method is described that enables the use of lunar irradiance to obtain nighttime aerosol optical depth (AOD) measurements using a small-aperture photometer. In this approach, the U.S. Geological Survey lunar calibration system was utilized to provide high-precision lunar exoatmospheric spectral irradiance predictions for a ground-based sensor location, and when combined with ground measurement viewing geometry, provided the column optical transmittance for retrievals of AOD. Automated multiwavelength lunar measurements were obtained using an unmodified Cimel-318 sunphotometer sensor to assess existing capabilities and enhancements needed for day/night operation in NASA's Aerosol Robotic Network (AERONET). Results show that even existing photometers can provide the ability for retrievals of aerosol optical depths at night near full moon. With an additional photodetector signal-to-noise improvement of 10-100, routine use over the bright half of the lunar phase and a much wider range of wavelengths and conditions can be achieved. Although the lunar cycle is expected to limit the frequency of observations to 30%-40% compared to solar measurements, nevertheless this is an attractive extension of AERONET capabilities. ?? 2011 American Meteorological Society.

  6. MAX-DOAS retrieval of aerosol extinction properties in Madrid, Spain

    NASA Astrophysics Data System (ADS)

    Wang, Shanshan; Cuevas, Carlos A.; Frieß, Udo; Saiz-Lopez, Alfonso

    2017-04-01

    We present Multi-axis differential optical absorption spectroscopy (MAX-DOAS) measurements performed in the urban environment of Madrid, Spain, from March to September 2015. The O4 absorption in the ultraviolet (UV) spectral region was used to retrieve the aerosol extinction profile using an inversion algorithm. The results show a good agreement between the hourly retrieved aerosol optical depth (AOD) and the correlative Aerosol Robotic Network (AERONET) product. Higher AODs are found in the summer season due to the more frequent occurrence of Saharan dust intrusions. The surface aerosol extinction coefficient as retrieved by the MAX-DOAS measurements was also compared to in situ PM2:5 concentrations. The level of agreement between both measurements indicates that the MAX-DOAS retrieval has the ability to characterize the extinction of aerosol particles near the surface. The retrieval algorithm was also used to study a case of severe dust intrusion on 12 May 2015. The capability of the MAX-DOAS retrieval to recognize the dust event including an elevated particle layer is investigated along with air mass back-trajectory analysis.

  7. Long-term variations of aerosol optical depth and aerosol radiative forcing over Iran based on satellite and AERONET data.

    PubMed

    Arkian, F; Nicholson, S E

    2017-12-01

    In this study, three different sensors of satellites including the Moderate Resolution Imaging Spectroradiometer (MODIS), Multi-angle Imaging SpectroRadiometer (MISR), and Total Ozone Mapping Spectrometer (TOMS) were used to study spatial and temporal variations of aerosols over ten populated cities in Iran. Also, the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model was used for analyzing the origins of air masses and their trajectory in the area. An increasing trend in aerosol concentration was observed in the most studied cities in Iran during 1979-2016. The cities in the western part of Iran had the highest annual mean of aerosol concentration. The highest aerosol optical depth (AOD) value (0.76 ± 0.51) was recorded in May 2012 over Ahvaz, and the lowest value (0.035 ± 0.27) was recorded in December 2013 over Tabriz. After Ahvaz, the highest AOD value was found over Tehran (annual mean 0.11 ± 0.20). The results show that AOD increases with increasing industrial activities, but the increased frequency of aerosols due to land degradation and desertification is more powerful in Iran. The trajectory analysis by the HYSPLIT model showed that the air masses come from Egypt, Syria, and Lebanon and passed over the Iraq and then reached to Iran during summer. Aerosol radiative forcing (ARF) has been analyzed for Zanjan (Aerosol Robotic Network site) during 2010-2013. The ARF at surface and top of the atmosphere was found to be ranging from - 79 to - 10W m -2 (average - 33.45 W m -2 ) and from - 25 to 6 W m -2 (average - 12.80 W m -2 ), respectively.

  8. Estimating Marine Aerosol Particle Volume and Number from Maritime Aerosol Network Data

    NASA Technical Reports Server (NTRS)

    Sayer, A. M.; Smirnov, A.; Hsu, N. C.; Munchak, L. A.; Holben, B. N.

    2012-01-01

    As well as spectral aerosol optical depth (AOD), aerosol composition and concentration (number, volume, or mass) are of interest for a variety of applications. However, remote sensing of these quantities is more difficult than for AOD, as it is more sensitive to assumptions relating to aerosol composition. This study uses spectral AOD measured on Maritime Aerosol Network (MAN) cruises, with the additional constraint of a microphysical model for unpolluted maritime aerosol based on analysis of Aerosol Robotic Network (AERONET) inversions, to estimate these quantities over open ocean. When the MAN data are subset to those likely to be comprised of maritime aerosol, number and volume concentrations obtained are physically reasonable. Attempts to estimate surface concentration from columnar abundance, however, are shown to be limited by uncertainties in vertical distribution. Columnar AOD at 550 nm and aerosol number for unpolluted maritime cases are also compared with Moderate Resolution Imaging Spectroradiometer (MODIS) data, for both the present Collection 5.1 and forthcoming Collection 6. MODIS provides a best-fitting retrieval solution, as well as the average for several different solutions, with different aerosol microphysical models. The average solution MODIS dataset agrees more closely with MAN than the best solution dataset. Terra tends to retrieve lower aerosol number than MAN, and Aqua higher, linked with differences in the aerosol models commonly chosen. Collection 6 AOD is likely to agree more closely with MAN over open ocean than Collection 5.1. In situations where spectral AOD is measured accurately, and aerosol microphysical properties are reasonably well-constrained, estimates of aerosol number and volume using MAN or similar data would provide for a greater variety of potential comparisons with aerosol properties derived from satellite or chemistry transport model data.

  9. On relationship between aerosols and PM2.5

    NASA Astrophysics Data System (ADS)

    Sano, Itaru; Mukai, Sonoyo; Nakata, Makiko

    2015-04-01

    Since aerosol optical thickness (AOT) is a key parameter of aerosols and description of the Earth's radiation budget, it is widely measured from ground sun photometer network NASA/AERONET [Holben et al., 1998] and from satellite. Fine and surface level aerosol particle called PM2.5, whose diameter is 2.5 μ m or less, is a well-known parameter for understanding polluted level of air. Smirnov et al. reported a good agreement between ground based AERONET AOT (870 nm) and dust concentrations at Barbados [Smirnov et al., 2000]. Wang and Christopher founded a good correlation between satellite based MODIS AOT product and PM2.5 in Alabama area [Wang and 2003]. Long range transported dusts, particularly Asian dust events, are easy to change the vertical profile of aerosol extinction. The vertical profile is important to estimate PM information because both AOT information measured from ground or satellite are integrated value of aerosol extinction from ground to space, i.e. columnar AOT. Thus, we have also proposed correlations between ground level PM2.5 and AERONET AOT (670 nm) in two cases of ordinary air condition and dusty days [Sano et al., 2010]. In this work, we investigate the relationship between PM2.5 and AERONET AOT considering LIDAR measurements. Note that all of instruments are set up at the roof of the University building (50 m) and collocated in 10 m area. Surface-level AOT is derived from AERONET AOT multiplied by an averaged vertical aerosol extinction given by LIDAR. Note that the definition of surface-level AOT in this work is assumed as AOT up to 500 m height. Introduction of surface-level AOT enables to avoid the contamination of dusty aerosol signal existing at high altitude from columnar AOT. The cloud aerosol imager (CAI) on GOSAT satellite has four observing wavelengths, 380, 670, 870 nm, and 1.6 μ m. In this work three channels are selected to estimate aerosol information. Look-up table (LUT) method is applied to estimate the optical properties

  10. Using the OMI Aerosol Index and Absorption Aerosol Optical Depth to evaluate the NASA MERRA Aerosol Reanalysis

    NASA Astrophysics Data System (ADS)

    Buchard, V.; da Silva, A. M.; Colarco, P. R.; Darmenov, A.; Randles, C. A.; Govindaraju, R.; Torres, O.; Campbell, J.; Spurr, R.

    2014-12-01

    A radiative transfer interface has been developed to simulate the UV Aerosol Index (AI) from the NASA Goddard Earth Observing System version 5 (GEOS-5) aerosol assimilated fields. The purpose of this work is to use the AI and Aerosol Absorption Optical Depth (AAOD) derived from the Ozone Monitoring Instrument (OMI) measurements as independent validation for the Modern Era Retrospective analysis for Research and Applications Aerosol Reanalysis (MERRAero). MERRAero is based on a version of the GEOS-5 model that is radiatively coupled to the Goddard Chemistry, Aerosol, Radiation, and Transport (GOCART) aerosol module and includes assimilation of Aerosol Optical Depth (AOD) from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. Since AI is dependent on aerosol concentration, optical properties and altitude of the aerosol layer, we make use of complementary observations to fully diagnose the model, including AOD from the Multi-angle Imaging SpectroRadiometer (MISR), aerosol retrievals from the Aerosol Robotic Network (AERONET) and attenuated backscatter coefficients from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) mission to ascertain potential misplacement of plume height by the model. By sampling dust, biomass burning and pollution events in 2007 we have compared model produced AI and AAOD with the corresponding OMI products, identifying regions where the model representation of absorbing aerosols was deficient. As a result of this study over the Saharan dust region, we have obtained a new set of dust aerosol optical properties that retains consistency with the MODIS AOD data that were assimilated, while resulting in better agreement with aerosol absorption measurements from OMI. The analysis conducted over the South African and South American biomass burning regions indicates that revising the spectrally-dependent aerosol absorption properties in the near-UV region improves the modeled-observed AI comparisons

  11. Using the OMI aerosol index and absorption aerosol optical depth to evaluate the NASA MERRA Aerosol Reanalysis

    NASA Astrophysics Data System (ADS)

    Buchard, V.; da Silva, A. M.; Colarco, P. R.; Darmenov, A.; Randles, C. A.; Govindaraju, R.; Torres, O.; Campbell, J.; Spurr, R.

    2015-05-01

    A radiative transfer interface has been developed to simulate the UV aerosol index (AI) from the NASA Goddard Earth Observing System version 5 (GEOS-5) aerosol assimilated fields. The purpose of this work is to use the AI and aerosol absorption optical depth (AAOD) derived from the Ozone Monitoring Instrument (OMI) measurements as independent validation for the Modern Era Retrospective analysis for Research and Applications Aerosol Reanalysis (MERRAero). MERRAero is based on a version of the GEOS-5 model that is radiatively coupled to the Goddard Chemistry, Aerosol, Radiation, and Transport (GOCART) aerosol module and includes assimilation of aerosol optical depth (AOD) from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. Since AI is dependent on aerosol concentration, optical properties and altitude of the aerosol layer, we make use of complementary observations to fully diagnose the model, including AOD from the Multi-angle Imaging SpectroRadiometer (MISR), aerosol retrievals from the AErosol RObotic NETwork (AERONET) and attenuated backscatter coefficients from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) mission to ascertain potential misplacement of plume height by the model. By sampling dust, biomass burning and pollution events in 2007 we have compared model-produced AI and AAOD with the corresponding OMI products, identifying regions where the model representation of absorbing aerosols was deficient. As a result of this study over the Saharan dust region, we have obtained a new set of dust aerosol optical properties that retains consistency with the MODIS AOD data that were assimilated, while resulting in better agreement with aerosol absorption measurements from OMI. The analysis conducted over the southern African and South American biomass burning regions indicates that revising the spectrally dependent aerosol absorption properties in the near-UV region improves the modeled-observed AI comparisons

  12. MPL-Net data products available at co-located AERONET sites and field experiment locations

    NASA Astrophysics Data System (ADS)

    Welton, E. J.; Campbell, J. R.; Berkoff, T. A.

    2002-05-01

    Micro-pulse lidar (MPL) systems are small, eye-safe lidars capable of profiling the vertical distribution of aerosol and cloud layers. There are now over 20 MPL systems around the world, and they have been used in numerous field experiments. A new project was started at NASA Goddard Space Flight Center in 2000. The new project, MPL-Net, is a coordinated network of long-time MPL sites. The network also supports a limited number of field experiments each year. Most MPL-Net sites and field locations are co-located with AERONET sunphotometers. At these locations, the AERONET and MPL-Net data are combined together to provide both column and vertically resolved aerosol and cloud measurements. The MPL-Net project coordinates the maintenance and repair for all instruments in the network. In addition, data is archived and processed by the project using common, standardized algorithms that have been developed and utilized over the past 10 years. These procedures ensure that stable, calibrated MPL systems are operating at sites and that the data quality remains high. Rigorous uncertainty calculations are performed on all MPL-Net data products. Automated, real-time level 1.0 data processing algorithms have been developed and are operational. Level 1.0 algorithms are used to process the raw MPL data into the form of range corrected, uncalibrated lidar signals. Automated, real-time level 1.5 algorithms have also been developed and are now operational. Level 1.5 algorithms are used to calibrate the MPL systems, determine cloud and aerosol layer heights, and calculate the optical depth and extinction profile of the aerosol boundary layer. The co-located AERONET sunphotometer provides the aerosol optical depth, which is used as a constraint to solve for the extinction-to-backscatter ratio and the aerosol extinction profile. Browse images and data files are available on the MPL-Net web-site. An overview of the processing algorithms and initial results from selected sites and field

  13. MODIS Retrieval of Dust Aerosol

    NASA Technical Reports Server (NTRS)

    Remer, Lorraine A.; Kaufman, Yoram J.; Tanre, Didier

    2003-01-01

    The MODerate resolution Imaging Spectroradiometer (MODIS) currently aboard both the Terra and Aqua satellites produces a suite of products designed to characterize global aerosol distribution, optical thickness and particle size. Never before has a space-borne instrument been able to provide such detailed information, operationally, on a nearly global basis every day. The three years of Terra-MODIS data have been validated by comparing with co-located AERONET observations of aerosol optical thickness and derivations of aerosol size parameters. Some 8000 comparison points located at 133 AERONET sites around the globe show that the MODIS aerosol optical thickness retrievals are accurate to within the pre-launch expectations. However, the validation in regions dominated by desert dust is less accurate than in regions dominated by fine mode aerosol or background marine sea salt. The discrepancy is most apparent in retrievals of aerosol size parameters over ocean. In dust situations, the MODIS algorithm tends to under predict particle size because the reflectances at top of atmosphere measured by MODIS exhibit the stronger spectral signature expected by smaller particles. This pattern is consistent with the angular and spectral signature of non-spherical particles. All possible aerosol models in the MODIS Look-Up Tables were constructed from Mie theory, assuming a spherical shape. Using a combination of MODIS and AERONET observations, in regimes dominated by desert dust, we construct phase functions, empirically, with no assumption of particle shape. These new phase functions are introduced into the MODIS algorithm, in lieu of the original options for large dust-like particles. The results will be analyzed and examined.

  14. Evolution of aerosol loading in Santiago de Chile between 1997 and 2014

    NASA Astrophysics Data System (ADS)

    Pistone, Kristina; Gallardo, Laura

    2015-04-01

    While aerosols produced by major cities are a significant component of anthropogenic climate forcing as well as an important factor in public health, many South American cities have not been a major focus of aerosol studies due in part to relatively few long-term observations in the region. Here we present a synthesis of the available data for the emerging megacity of Santiago, Chile. We report new results from a recent NASA AERONET (AErosol RObotic NETwork) site in the Santiago basin, combining these with previous AERONET observations in Santiago as well as with a new assessment of the 11-station air quality monitoring network currently administered by the Chilean Environment Ministry (MMA, Ministerio del Medio Ambiente) to assess changes in aerosol composition since 1997. While the average surface concentration of pollution components (specifically PM2.5 and PM10) has decreased, no significant change in total aerosol optical depth was observed. However, changes in aerosol size and composition are suggested by the proxy measurements. Previous studies have revealed limitations in purely satellite-based studies over Santiago due to biases from high surface reflection in the region, particularly in summer months (e.g. Escribano et al 2014). To overcome this difficulty and certain limitations in the air quality data, we next incorporate analysis of aerosol products from the Multi-angle Imaging SpectroRadiometer (MISR) instrument along with those from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument, both on NASA's Terra satellite, to better quantify the high bias of MODIS. Thus incorporating these complementary datasets, we characterize the aerosol over Santiago over the period 1997 to 2014, including the evolution of aerosol properties over time and seasonal dependencies in the observed trends. References: Escribano et al (2014), "Satellite Retrievals of Aerosol Optical Depth over a Subtropical Urban Area: The Role of Stratification and Surface

  15. Estimation of shortwave direct aerosol radiative forcing at four locations on the Indo-Gangetic plains: Model results and ground measurement

    NASA Astrophysics Data System (ADS)

    Bibi, Humera; Alam, Khan; Bibi, Samina

    2017-08-01

    This study provides observational results of aerosol optical and radiative characteristics over four locations in IGP. Spectral variation of Aerosol Optical Depth (AOD), Single Scattering Albedo (SSA) and Asymmetry Parameter (AP) were analysed using AErosol RObotic NETwork (AERONET) data. The analysis revealed that coarse particles were dominant in summer and pre-monsoon, while fine particles were more pronounced in winter and post-monsoon. Furthermore, the spatio-temporal variations of Shortwave Direct Aerosol Radiative Forcing (SDARF) and Shortwave Direct Aerosol Radiative Forcing Efficiency (SDARFE) at the Top Of Atmosphere (TOA), SURface (SUR) and within ATMosphere (ATM) were calculated using SBDART model. The atmospheric Heating Rate (HR) associated with SDARFATM were also computed. It was observed that the monthly averaged SDARFTOA and SDARFSUR were found to be negative leading to positive SDARFATM during all the months over all sites. The increments in net atmospheric forcing lead to maximum HR in November-December and May. The seasonal analysis of SDARF revealed that SDARFTOA and SDARFSUR were negative during all seasons. The SW atmospheric absorption translates to highest atmospheric HR during summer over Karachi and during pre-monsoon over Lahore, Jaipur and Kanpur. Like SDARF, the monthly and seasonal variations of SDARFETOA and SDARFESUR were found to be negative, resulting in positive atmospheric forcing. Additionally, to compare the model estimated forcing against AERONET derived forcing, the regression analysis of AERONET-SBDART forcing were carried out. It was observed that SDARF at SUR and TOA showed relatively higher correlation over Lahore, moderate over Jaipur and Kanpur and lower over Karachi. Finally, the analysis of National Oceanic and Atmospheric Administration Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model revealed that air masses were arriving from multiple source locations.

  16. Aerosol data assimilation in the chemical transport model MOCAGE during the TRAQA/ChArMEx campaign: aerosol optical depth

    NASA Astrophysics Data System (ADS)

    Sič, Bojan; El Amraoui, Laaziz; Piacentini, Andrea; Marécal, Virginie; Emili, Emanuele; Cariolle, Daniel; Prather, Michael; Attié, Jean-Luc

    2016-11-01

    In this study, we describe the development of the aerosol optical depth (AOD) assimilation module in the chemistry transport model (CTM) MOCAGE (Modèle de Chimie Atmosphérique à Grande Echelle). Our goal is to assimilate the spatially averaged 2-D column AOD data from the National Aeronautics and Space Administration (NASA) Moderate-resolution Imaging Spectroradiometer (MODIS) instrument, and to estimate improvements in a 3-D CTM assimilation run compared to a direct model run. Our assimilation system uses 3-D-FGAT (first guess at appropriate time) as an assimilation method and the total 3-D aerosol concentration as a control variable. In order to have an extensive validation dataset, we carried out our experiment in the northern summer of 2012 when the pre-ChArMEx (CHemistry and AeRosol MEditerranean EXperiment) field campaign TRAQA (TRAnsport à longue distance et Qualité de l'Air dans le bassin méditerranéen) took place in the western Mediterranean basin. The assimilated model run is evaluated independently against a range of aerosol properties (2-D and 3-D) measured by in situ instruments (the TRAQA size-resolved balloon and aircraft measurements), the satellite Spinning Enhanced Visible and InfraRed Imager (SEVIRI) instrument and ground-based instruments from the Aerosol Robotic Network (AERONET) network. The evaluation demonstrates that the AOD assimilation greatly improves aerosol representation in the model. For example, the comparison of the direct and the assimilated model run with AERONET data shows that the assimilation increased the correlation (from 0.74 to 0.88), and reduced the bias (from 0.050 to 0.006) and the root mean square error in the AOD (from 0.12 to 0.07). When compared to the 3-D concentration data obtained by the in situ aircraft and balloon measurements, the assimilation consistently improves the model output. The best results as expected occur when the shape of the vertical profile is correctly simulated by the direct model. We

  17. Evaluation of spatio-temporal variability of Hamburg Aerosol Climatology against aerosol datasets from MODIS and CALIOP

    NASA Astrophysics Data System (ADS)

    Pappas, V.; Hatzianastassiou, N.; Papadimas, C.; Matsoukas, C.; Kinne, S.; Vardavas, I.

    2013-08-01

    The new global aerosol climatology named HAC (Hamburg Aerosol Climatology) is compared against MODIS (Collection 5, 2000-2007) and CALIOP (Level 2-version 3, 2006-2011) retrievals. The comparison of aerosol optical depth (AOD) from HAC against MODIS shows larger HAC AOD values over regions with higher aerosol loads and smaller HAC AOD values than MODIS for regions with lower loads. The HAC data are found to be more reliable over land and for low AOD values. The largest differences between HAC and MODIS occur from March to August for the Northern Hemisphere and from September to February for the Southern Hemisphere. In addition, both the spectral variability and vertical distribution of the HAC AOD are examined at selected AERONET (1998-2007) sites, representative of main aerosol types (pollutants, sea salt, biomass and dust). Based on comparisons against spectral AOD values from AERONET, the mean absolute percentage error in HAC AOD data is 25% at ultraviolet wavelengths (400 nm), 6-12% at visible and 18% at near-infrared (1000 nm). For the same AERONET sites, the HAC AOD vertical distribution is compared against CALIOP space lidar data. On a daily average basis, HAD AOD is less by 9% in the lowest 3 km than CALIOP values, especially for sites with biomass burning smoke, desert dust and sea salt spray. Above the boundary layer, the HAC AOD vertical distribution is reliable.

  18. Accuracy Assessment of Aqua-MODIS Aerosol Optical Depth Over Coastal Regions: Importance of Quality Flag and Sea Surface Wind Speed

    NASA Technical Reports Server (NTRS)

    Anderson, J. C.; Wang, J.; Zeng, J.; Petrenko, M.; Leptoukh, G. G.; Ichoku, C.

    2012-01-01

    Coastal regions around the globe are a major source for anthropogenic aerosols in the atmosphere, but the underlying surface characteristics are not favorable for the Moderate Resolution Imaging Spectroradiometer (MODIS) algorithms designed for retrieval of aerosols over dark land or open-ocean surfaces. Using data collected from 62 coastal stations worldwide from the Aerosol Robotic Network (AERONET) from approximately 2002-2010, accuracy assessments are made for coastal aerosol optical depth (AOD) retrieved from MODIS aboard Aqua satellite. It is found that coastal AODs (at 550 nm) characterized respectively by the MODIS Dark Land (hereafter Land) surface algorithm, the Open-Ocean (hereafter Ocean) algorithm, and AERONET all exhibit a log-normal distribution. After filtering by quality flags, the MODIS AODs respectively retrieved from the Land and Ocean algorithms are highly correlated with AERONET (with R(sup 2) is approximately equal to 0.8), but only the Land algorithm AODs fall within the expected error envelope greater than 66% of the time. Furthermore, the MODIS AODs from the Land algorithm, Ocean algorithm, and combined Land and Ocean product show statistically significant discrepancies from their respective counterparts from AERONET in terms of mean, probability density function, and cumulative density function, which suggest a need for future improvement in retrieval algorithms. Without filtering with quality flag, the MODIS Land and Ocean AOD dataset can be degraded by 30-50% in terms of mean bias. Overall, the MODIS Ocean algorithm overestimates the AERONET coastal AOD by 0.021 for AOD less than 0.25 and underestimates it by 0.029 for AOD greater than 0.25. This dichotomy is shown to be related to the ocean surface wind speed and cloud contamination effects on the satellite aerosol retrieval. The Modern Era Retrospective-Analysis for Research and Applications (MERRA) reveals that wind speeds over the global coastal region 25 (with a mean and median

  19. Towards climatological study on the characteristics of aerosols in Central Africa and Mediterranean sites

    NASA Astrophysics Data System (ADS)

    Benkhalifa, Jamel; Chaabane, Mabrouk

    2016-02-01

    The atmosphere contains molecules, clouds and aerosols that are sub-millimeter particles having a large variability in size, shape, chemical composition, lifetime and contents. The aerosols concentration depends greatly on the geographical situation, meteorological and environmental conditions, which makes aerosol climatology difficult to assess. Setting up a solar photometer (automatic, autonomous and portable instrument) on a given site allows carrying out the necessary measurements for aerosol characterization. The particle microphysical and optical properties are obtained from photometric measurements. The objective of this study is to analyze the spatial variability of aerosol optical thickness (AOT) in several Mediterranean regions and Central Africa, we considered a set of simultaneous data in the AErosol RObotic NETwork (AERONET) from six sites, two of which are located in Central Africa (Banizoumbou and Zinder Airport) and the rest are Mediterranean sites (Barcelona, Malaga, Lampedusa, and Forth Crete). The results have shown that the physical properties of aerosols are closely linked to the climate nature of the studied site. The optical thickness, single scattering albedo and aerosols size distribution can be due to the aging of the dust aerosol as they are transported over the Mediterranean basin.

  20. Aerosol properties over the western Mediterranean Basin: temporal and spatial variability

    NASA Astrophysics Data System (ADS)

    Lyamani, H.; Valenzuela, A.; Perez-Ramirez, D.; Toledano, C.; Granados-Muñoz, M. J.; Olmo, F. J.; Alados-Arboledas, L.

    2014-08-01

    This study focuses on the analysis of AERONET aerosol data obtained over Alborán Island (35.95° N, 3.01° W, 15 m a.s.l.) in the western Mediterranean from July 2011 to January 2012. Additional aerosol data from three nearest AERONET stations and the Maritime Aerosol Network (MAN) were also analyzed in order to investigate the aerosol temporal and spatial variations over this scarcely explored region. Aerosol load over Alborán was significantly larger than that reported for open oceanic areas not affected by long-range transport. High aerosol loads over Alborán were mainly associated with desert dust transport from North Africa and occasional advection of anthropogenic fine particles from Italy. The fine particle load observed over Alborán was surprisingly similar to that obtained over the other three nearest AERONET stations in spite of the large differences in local aerosol sources. The results from MAN acquired over the Mediterranean Sea, Black Sea and Atlantic Ocean from July to November 2011 revealed a pronounced predominance of fine particles during the cruise period. Alborán was significantly less influenced by anthropogenic particles than the Black Sea and central and eastern Mediterranean regions during the cruise period. Finally, the longer AERONET dataset from Málaga (36.71° N, 4.4° W, 40 m a.s.l.), port city in southern Spain, shows that no significant changes in columnar aerosol loads since the European Directive on ship emissions was implemented in 2010 were observed over this site.

  1. Radiative forcing of the desert aerosol at Ouarzazate (Morocco)

    NASA Astrophysics Data System (ADS)

    Tahiri, Abdelouahid; Diouri, Mohamed

    2018-05-01

    The atmospheric aerosol contributes to the definition of the climate with direct effect, the diffusion and absorption of solar and terrestrial radiations, and indirect, the cloud formation process where aerosols behave as condensation nuclei and alter the optical properties. Satellites and ground-based networks (solar photometers) allow the terrestrial aerosol observation and the determination of impact. Desert aerosol considered among the main types of tropospheric aerosols whose optical property uncertainties are still quite important. The analysis concerns the optical parameters recorded in 2015 at Ouarzazate solar photometric station (AERONET/PHOTONS network, aeronet.gsfc.nasa.gov/">http://aeronet.gsfc.nasa.gov/) close to Saharan zone. The daily average aerosol optical depthτaer at 0.5μm, are relatively high in summer and less degree in spring (from 0.01 to 1.82). Daily average of the Angstrom coefficients α vary between 0.01 and 1.55. The daily average of aerosol radiative forcing at the surface range between -150W/m2 and -10 W/m2 with peaks recorded in summer, characterized locally by large loads of desert aerosol in agreement with the advections of the Southeast of Morocco. Those recorded at the Top of the atmosphere show a variation from -74 W/m2 to +24 W/m2

  2. Evaluation of the multi-angle implementation of atmospheric correction (MAIAC) aerosol algorithm through intercomparison with VIIRS aerosol products and AERONET

    NASA Astrophysics Data System (ADS)

    Superczynski, Stephen D.; Kondragunta, Shobha; Lyapustin, Alexei I.

    2017-03-01

    The multi-angle implementation of atmospheric correction (MAIAC) algorithm is under evaluation for use in conjunction with the Geostationary Coastal and Air Pollution Events mission. Column aerosol optical thickness (AOT) data from MAIAC are compared against corresponding data from the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument over North America during 2013. Product coverage and retrieval strategy, along with regional variations in AOT through comparison of both matched and unmatched seasonally gridded data, are reviewed. MAIAC shows extended coverage over parts of the continent when compared to VIIRS, owing to its pixel selection process and ability to retrieve aerosol information over brighter surfaces. To estimate data accuracy, both products are compared with Aerosol Robotic Network level 2 measurements to determine the amount of error present and discover if there is any dependency on viewing geometry and/or surface characteristics. Results suggest that MAIAC performs well over this region with a relatively small bias of -0.01; however, there is a tendency for greater negative biases over bright surfaces and at larger scattering angles. Additional analysis over an expanded area and longer time period are likely needed to determine a comprehensive assessment of the products' capability over the Western Hemisphere.

  3. Development of a remote sensing algorithm to retrieve atmospheric aerosol properties using multiwavelength and multipixel information

    NASA Astrophysics Data System (ADS)

    Hashimoto, Makiko; Nakajima, Teruyuki

    2017-06-01

    We developed a satellite remote sensing algorithm to retrieve the aerosol optical properties using satellite-received radiances for multiple wavelengths and pixels. Our algorithm utilizes spatial inhomogeneity of surface reflectance to retrieve aerosol properties, and the main target is urban aerosols. This algorithm can simultaneously retrieve aerosol optical thicknesses (AOT) for fine- and coarse-mode aerosols, soot volume fraction in fine-mode aerosols (SF), and surface reflectance over heterogeneous surfaces such as urban areas that are difficult to obtain by conventional pixel-by-pixel methods. We applied this algorithm to radiances measured by the Greenhouse Gases Observing Satellite/Thermal and Near Infrared Sensor for Carbon Observations-Cloud and Aerosol Image (GOSAT/TANSO-CAI) at four wavelengths and were able to retrieve the aerosol parameters in several urban regions and other surface types. A comparison of the retrieved AOTs with those from the Aerosol Robotic Network (AERONET) indicated retrieval accuracy within ±0.077 on average. It was also found that the column-averaged SF and the aerosol single scattering albedo (SSA) underwent seasonal changes as consistent with the ground surface measurements of SSA and black carbon at Beijing, China.

  4. A study of remotely sensed aerosol properties from ground-based sun and sky scanning radiometers

    NASA Astrophysics Data System (ADS)

    Giles, David M.

    Aerosol particles impact human health by degrading air quality and affect climate by heating or cooling the atmosphere. The Indo-Gangetic Plain (IGP) of Northern India, one of the most populous regions in the world, produces and is impacted by a variety of aerosols including pollution, smoke, dust, and mixtures of them. The NASA Aerosol Robotic Network (AERONET) mesoscale distribution of Sun and sky-pointing instruments in India was established to measure aerosol characteristics at sites across the IGP and around Kanpur, India, a large urban and industrial center in the IGP, during the 2008 pre-monsoon (April-June). This study focused on detecting spatial and temporal variability of aerosols, validating satellite retrievals, and classifying the dominant aerosol mixing states and origins. The Kanpur region typically experiences high aerosol loading due to pollution and smoke during the winter and high aerosol loading due to the addition of dust to the pollution and smoke mixture during the pre-monsoon. Aerosol emissions in Kanpur likely contribute up to 20% of the aerosol loading during the pre-monsoon over the IGP. Aerosol absorption also increases significantly downwind of Kanpur indicating the possibility of the black carbon emissions from aerosol sources such as coal-fired power plants and brick kilns. Aerosol retrievals from satellite show a high bias when compared to the mesoscale distributed instruments around Kanpur during the pre-monsoon with few high quality retrievals due to imperfect aerosol type and land surface characteristic assumptions. Aerosol type classification using the aerosol absorption, size, and shape properties can identify dominant aerosol mixing states of absorbing dust and black carbon particles. Using 19 long-term AERONET sites near various aerosol source regions (Dust, Mixed, Urban/Industrial, and Biomass Burning), aerosol absorption property statistics are expanded upon and show significant differences when compared to previous work

  5. Estimation of UV index in the clear-sky using OMI PROFOZ and AERONET data

    NASA Astrophysics Data System (ADS)

    Lee, H.; Kim, J.; Jeong, U.

    2016-12-01

    Due to a strong influence to the human health and ecosystem environment, continuous monitoring of the surface-level ultraviolet (UV) radiation is important nowadays. UV index (UVI) is a simple parameter to show the strength of surface UV radiation, therefore UVI has been widely utilized for the purpose of UV monitoring. In this work, we also try to develop our own retrieval algorithm for better estimation of UVI. The amount of UVA (320-400 nm) and UVB (290-320 nm) radiation at the Earth surface depends on the extent of Rayleigh scattering by atmospheric gas molecules, the radiative absorption by ozone, radiative scattering by clouds, and both absorption and scattering by airborne aerosols. Thus advanced consideration of these factors is the essential part to establish the process of UVI estimation. In this study, we estimate UV Index (UVI) at Seoul first in a clear-sky atmosphere, and then validate this estimated UVI comparing to UVI from Brewer spectrophotometer measurements located at Yonsei University in Seoul. We use the Vector Linearized Discrete Ordinate Radiative Transfer (VLIDORT) model version 2.6 for our UVI calculation. To consider the ozone and aerosol influence in a real situation, we input ozone and temperature profiles from the Ozone Monitoring Instrument (OMI) Aura vertical profile ozone (PROFOZ) data, and aerosol properties from the AErosol RObotic NETwork (AERONET) measurements at Seoul into the model. Inter-comparison of UVI is performed for the year 2011, 2012 and 2014, and resulted in a high correlation coefficient (R=0.95) under clear-sky condition. But a slight overestimation of Brewer UVI occurred under high AOD conditions in clear-sky. Because our UVI algorithm does not account for surface absorbing aerosols, it is lead to systematic overestimation of surface UV irradiances. Therefore, we also investigate the effect of absorbing aerosol on the amount of UV irradiance in the clear-sky over East Asia.

  6. Evaluation of spatio-temporal variability of Hamburg Aerosol Climatology against aerosol datasets from MODIS and CALIOP

    NASA Astrophysics Data System (ADS)

    Pappas, V.; Hatzianastassiou, N.; Papadimas, C.; Matsoukas, C.; Kinne, S.; Vardavas, I.

    2013-02-01

    The new global aerosol climatology named HAC (Hamburg Aerosol Climatology) is compared against MODIS (MODerate resolution Imaging Spectroradiometer, Collection 5, 2000-2007) and CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization, Level 2-Version 3, 2006-2011) retrievals. The HAC aerosol optical depth (AOD) values are larger than MODIS in heavy aerosol load conditions (over land) and lower over oceans. Agreement between HAC and MODIS is better over land and for low AOD. Hemispherically, HAC has 16-17% smaller AOD values than MODIS. The discrepancy is slightly larger for the Southern Hemisphere (SH) than for the Northern Hemisphere (NH). Seasonally, the largest absolute differences are from March to August for NH and from September to February for SH. The spectral variability of HAC AOD is also evaluated against AERONET (1998-2007) data for sites representative of main aerosol types (pollutants, sea-salt, biomass and dust). The HAC has a stronger spectral dependence of AOD in the UV wavelengths, compared to AERONET and MODIS. For visible and near-infrared wavelengths, the spectral dependence is similar to AERONET. For specific sites, HAC AOD vertical distribution is compared to CALIOP data by looking at the fraction of columnar AOD at each altitude. The comparison suggests that HAC exhibits a smaller fraction of columnar AOD in the lowest 2-3 km than CALIOP, especially for sites with biomass burning smoke, desert dust and sea salt spray. For the region of the greater Mediterranean basin, the mean profile of HAC AOD is in very good agreement with CALIOP. The HAC AOD is very useful for distinguishing between natural and anthropogenic aerosols and provides high spectral resolution and vertically resolved information.

  7. Monthly and seasonal variations of aerosol optical properties and direct radiative forcing over Zanjan, Iran

    NASA Astrophysics Data System (ADS)

    Gharibzadeh, Maryam; Alam, Khan; Abedini, Yousefali; Bidokhti, Abbasali Aliakbari; Masoumi, Amir

    2017-11-01

    Aerosol optical properties and radiative forcing over Zanjan in northwest of Iran has been analyzed during 2010-2013. The aerosol optical and radiative properties are less studied over Zanjan, and therefore, require a careful and in depth analysis. The optical properties like Aerosol Optical Depth (AOD), Ångström Exponent (AE), ASYmmetry parameter (ASY), Single Scattering Albedo (SSA), and Aerosol Volume Size Distribution (AVSD) have been evaluated using the ground-based AErosol RObotic NETwork (AERONET) data. Higher AOD while relatively lower AE were observed in the spring and summer, which showed the presence of coarse mode particles in these seasons. An obvious increase of coarse mode particles in AVSD distribution, as well as a higher value of SSA represented considerable addition of coarse mode particles like dust into the atmosphere of Zanjan in these two seasons. Increase in AE, while a decrease in AOD was detected in the winter and fall. The presence of fine particles indicates the dominance of particles like urban-industrial aerosols from local sources especially in the winter. The Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART) model was utilized to calculate the Aerosol Radiative Forcing (ARF) at the Top of the Atmosphere (TOA), earth's surface and within the atmosphere. The annual averaged ARF values were -13.47 W m-2 and -36.1 W m-2 at the TOA and earth's surface, respectively, which indicate a significant cooling effect. Likewise, the ARF efficiencies at the TOA and earth's surface were -65.08 W m-2 and -158.43 W m-2, respectively. The annual mean atmospheric ARF and heating rate within the atmosphere were 22.63 W m-2 and 0.27 Kday-1 respectively, represented the warming effect within the atmosphere. Finally, a good agreement was found between AERONET retrieved ARF and SBDART simulated ARF.

  8. The role of cloud contamination, aerosol layer height and aerosol model in the assessment of the OMI near-UV retrievals over the ocean

    NASA Astrophysics Data System (ADS)

    Gassó, Santiago; Torres, Omar

    2016-07-01

    Retrievals of aerosol optical depth (AOD) at 388 nm over the ocean from the Ozone Monitoring Instrument (OMI) two-channel near-UV algorithm (OMAERUV) have been compared with independent AOD measurements. The analysis was carried out over the open ocean (OMI and MODerate-resolution Imaging Spectrometer (MODIS) AOD comparisons) and over coastal and island sites (OMI and AERONET, the AErosol RObotic NETwork). Additionally, a research version of the retrieval algorithm (using MODIS and CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) information as constraints) was utilized to evaluate the sensitivity of the retrieval to different assumed aerosol properties. Overall, the comparison resulted in differences (OMI minus independent measurements) within the expected levels of uncertainty for the OMI AOD retrievals (0.1 for AOD < 0.3, 30 % for AOD > 0.3). Using examples from case studies with outliers, the reasons that led to the observed differences were examined with specific purpose to determine whether they are related to instrument limitations (i.e., pixel size, calibration) or algorithm assumptions (such as aerosol shape, aerosol height). The analysis confirms that OMAERUV does an adequate job at rejecting cloudy scenes within the instrument's capabilities. There is a residual cloud contamination in OMI pixels with quality flag 0 (the best conditions for aerosol retrieval according to the algorithm), resulting in a bias towards high AODs in OMAERUV. This bias is more pronounced at low concentrations of absorbing aerosols (AOD 388 nm ˜ < 0.5). For higher aerosol loadings, the bias remains within OMI's AOD uncertainties. In pixels where OMAERUV assigned a dust aerosol model, a fraction of them (< 20 %) had retrieved AODs significantly lower than AERONET and MODIS AODs. In a case study, a detailed examination of the aerosol height from CALIOP and the AODs from MODIS, along with sensitivity tests, was carried out by varying the different assumed parameters in the

  9. The Role of Cloud Contamination, Aerosol Layer Height and Aerosol Model in the Assessment of the OMI Near-UV Retrievals Over the Ocean

    NASA Technical Reports Server (NTRS)

    Gasso, Santiago; Torres, Omar

    2016-01-01

    Retrievals of aerosol optical depth (AOD) at 388 nm over the ocean from the Ozone Monitoring Instrument (OMI) two-channel near-UV algorithm (OMAERUV) have been compared with independent AOD measurements. The analysis was carried out over the open ocean (OMI and MODerate-resolution Imaging Spectrometer (MODIS) AOD comparisons) and over coastal and island sites (OMI and AERONET, the AErosol RObotic NETwork). Additionally, a research version of the retrieval algorithm (using MODIS and CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) information as constraints) was utilized to evaluate the sensitivity of the retrieval to different assumed aerosol properties. Overall, the comparison resulted in differences (OMI minus independent measurements) within the expected levels of uncertainty for the OMI AOD retrievals (0.1 for AOD less than 0.3, 30% for AOD greater than 0.3). Using examples from case studies with outliers, the reasons that led to the observed differences were examined with specific purpose to determine whether they are related to instrument limitations (i.e., pixel size, calibration) or algorithm assumptions (such as aerosol shape, aerosol height). The analysis confirms that OMAERUV does an adequate job at rejecting cloudy scenes within the instrument's capabilities. There is a residual cloud contamination in OMI pixels with quality flag 0 (the best conditions for aerosol retrieval according to the algorithm), resulting in a bias towards high AODs in OMAERUV. This bias is more pronounced at low concentrations of absorbing aerosols (AOD 388 nm approximately less than 0.5). For higher aerosol loadings, the bias remains within OMI's AOD uncertainties. In pixels where OMAERUV assigned a dust aerosol model, a fraction of them (less than 20 %) had retrieved AODs significantly lower than AERONET and MODIS AODs. In a case study, a detailed examination of the aerosol height from CALIOP and the AODs from MODIS, along with sensitivity tests, was carried out by

  10. Development studies towards an 11-year global gridded aerosol optical thickness reanalysis for climate and applied applications

    NASA Astrophysics Data System (ADS)

    Lynch, P.; Reid, J. S.; Westphal, D. L.; Zhang, J.; Hogan, T. F.; Hyer, E. J.; Curtis, C. A.; Hegg, D. A.; Shi, Y.; Campbell, J. R.; Rubin, J. I.; Sessions, W. R.; Turk, F. J.; Walker, A. L.

    2015-12-01

    While standalone satellite and model aerosol products see wide utilization, there is a significant need in numerous climate and applied applications for a fused product on a regular grid. Aerosol data assimilation is an operational reality at numerous centers, and like meteorological reanalyses, aerosol reanalyses will see significant use in the near future. Here we present a standardized 2003-2013 global 1° × 1° and 6 hourly modal aerosol optical thickness (AOT) reanalysis product. This dataset can be applied to basic and applied earth system science studies of significant aerosol events, aerosol impacts on numerical weather prediction, and electro-optical propagation and sensor performance, among other uses. This paper describes the science of how to develop and score an aerosol reanalysis product. This reanalysis utilizes a modified Navy Aerosol Analysis and Prediction System (NAAPS) at its core and assimilates quality controlled retrievals of AOT from the Moderate Resolution Imaging Spectroradiometer (MODIS) on Terra and Aqua and the Multi-angle Imaging SpectroRadiometer (MISR) on Terra. The aerosol source functions, including dust and smoke, were regionally tuned to obtain the best match between the model fine and coarse mode AOTs and the Aerosol Robotic Network (AERONET) AOTs. Other model processes, including deposition, were tuned to minimize the AOT difference between the model and satellite AOT. Aerosol wet deposition in the tropics is driven with satellite retrieved precipitation, rather than the model field. The final reanalyzed fine and coarse mode AOT at 550 nm is shown to have good agreement with AERONET observations, with global mean root mean square error around 0.1 for both fine and coarse mode AOTs. This paper includes a discussion of issues particular to aerosol reanalyses that make them distinct from standard meteorological reanalyses, considerations for extending such a reanalysis outside of the NASA A-Train era, and examples of how the

  11. The impact of aerosol vertical distribution on aerosol optical depth retrieval using CALIPSO and MODIS data: Case study over dust and smoke regions

    NASA Astrophysics Data System (ADS)

    Wu, Yerong; de Graaf, Martin; Menenti, Massimo

    2017-08-01

    Global quantitative aerosol information has been derived from MODerate Resolution Imaging SpectroRadiometer (MODIS) observations for decades since early 2000 and widely used for air quality and climate change research. However, the operational MODIS Aerosol Optical Depth (AOD) products Collection 6 (C6) can still be biased, because of uncertainty in assumed aerosol optical properties and aerosol vertical distribution. This study investigates the impact of aerosol vertical distribution on the AOD retrieval. We developed a new algorithm by considering dynamic vertical profiles, which is an adaptation of MODIS C6 Dark Target (C6_DT) algorithm over land. The new algorithm makes use of the aerosol vertical profile extracted from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) measurements to generate an accurate top of the atmosphere (TOA) reflectance for the AOD retrieval, where the profile is assumed to be a single layer and represented as a Gaussian function with the mean height as single variable. To test the impact, a comparison was made between MODIS DT and Aerosol Robotic Network (AERONET) AOD, over dust and smoke regions. The results show that the aerosol vertical distribution has a strong impact on the AOD retrieval. The assumed aerosol layers close to the ground can negatively bias the retrievals in C6_DT. Regarding the evaluated smoke and dust layers, the new algorithm can improve the retrieval by reducing the negative biases by 3-5%.

  12. JRAero: the Japanese Reanalysis for Aerosol v1.0

    NASA Astrophysics Data System (ADS)

    Yumimoto, Keiya; Tanaka, Taichu Y.; Oshima, Naga; Maki, Takashi

    2017-09-01

    A global aerosol reanalysis product named the Japanese Reanalysis for Aerosol (JRAero) was constructed by the Meteorological Research Institute (MRI) of the Japan Meteorological Agency. The reanalysis employs a global aerosol transport model developed by MRI and a two-dimensional variational data assimilation method. It assimilates maps of aerosol optical depth (AOD) from MODIS onboard the Terra and Aqua satellites every 6 h and has a TL159 horizontal resolution (approximately 1.1° × 1.1°). This paper describes the aerosol transport model, the data assimilation system, the observation data, and the setup of the reanalysis and examines its quality with AOD observations. Comparisons with MODIS AODs that were used for the assimilation showed that the reanalysis showed much better agreement than the free run (without assimilation) of the aerosol model and improved under- and overestimation in the free run, thus confirming the accuracy of the data assimilation system. The reanalysis had a root mean square error (RMSE) of 0.05, a correlation coefficient (R) of 0.96, a mean fractional error (MFE) of 23.7 %, a mean fractional bias (MFB) of 2.8 %, and an index of agreement (IOA) of 0.98. The better agreement of the first guess, compared to the free run, indicates that aerosol fields obtained by the reanalysis can improve short-term forecasts. AOD fields from the reanalysis also agreed well with monthly averaged global AODs obtained by the Aerosol Robotic Network (AERONET) (RMSE = 0.08, R = 0. 90, MFE = 28.1 %, MFB = 0.6 %, and IOA = 0.93). Site-by-site comparison showed that the reanalysis was considerably better than the free run; RMSE was less than 0.10 at 86.4 % of the 181 AERONET sites, R was greater than 0.90 at 40.7 % of the sites, and IOA was greater than 0.90 at 43.4 % of the sites. However, the reanalysis tended to have a negative bias at urban sites (in particular, megacities in industrializing countries) and a positive bias at mountain sites, possibly because

  13. An optimal-estimation-based aerosol retrieval algorithm using OMI near-UV observations

    NASA Astrophysics Data System (ADS)

    Jeong, U.; Kim, J.; Ahn, C.; Torres, O.; Liu, X.; Bhartia, P. K.; Spurr, R. J. D.; Haffner, D.; Chance, K.; Holben, B. N.

    2016-01-01

    An optimal-estimation(OE)-based aerosol retrieval algorithm using the OMI (Ozone Monitoring Instrument) near-ultraviolet observation was developed in this study. The OE-based algorithm has the merit of providing useful estimates of errors simultaneously with the inversion products. Furthermore, instead of using the traditional look-up tables for inversion, it performs online radiative transfer calculations with the VLIDORT (linearized pseudo-spherical vector discrete ordinate radiative transfer code) to eliminate interpolation errors and improve stability. The measurements and inversion products of the Distributed Regional Aerosol Gridded Observation Network campaign in northeast Asia (DRAGON NE-Asia 2012) were used to validate the retrieved aerosol optical thickness (AOT) and single scattering albedo (SSA). The retrieved AOT and SSA at 388 nm have a correlation with the Aerosol Robotic Network (AERONET) products that is comparable to or better than the correlation with the operational product during the campaign. The OE-based estimated error represented the variance of actual biases of AOT at 388 nm between the retrieval and AERONET measurements better than the operational error estimates. The forward model parameter errors were analyzed separately for both AOT and SSA retrievals. The surface reflectance at 388 nm, the imaginary part of the refractive index at 354 nm, and the number fine-mode fraction (FMF) were found to be the most important parameters affecting the retrieval accuracy of AOT, while FMF was the most important parameter for the SSA retrieval. The additional information provided with the retrievals, including the estimated error and degrees of freedom, is expected to be valuable for relevant studies. Detailed advantages of using the OE method were described and discussed in this paper.

  14. An Optimal-Estimation-Based Aerosol Retrieval Algorithm Using OMI Near-UV Observations

    NASA Technical Reports Server (NTRS)

    Jeong, U; Kim, J.; Ahn, C.; Torres, O.; Liu, X.; Bhartia, P. K.; Spurr, R. J. D.; Haffner, D.; Chance, K.; Holben, B. N.

    2016-01-01

    An optimal-estimation(OE)-based aerosol retrieval algorithm using the OMI (Ozone Monitoring Instrument) near-ultraviolet observation was developed in this study. The OE-based algorithm has the merit of providing useful estimates of errors simultaneously with the inversion products. Furthermore, instead of using the traditional lookup tables for inversion, it performs online radiative transfer calculations with the VLIDORT (linearized pseudo-spherical vector discrete ordinate radiative transfer code) to eliminate interpolation errors and improve stability. The measurements and inversion products of the Distributed Regional Aerosol Gridded Observation Network campaign in northeast Asia (DRAGON NE-Asia 2012) were used to validate the retrieved aerosol optical thickness (AOT) and single scattering albedo (SSA). The retrieved AOT and SSA at 388 nm have a correlation with the Aerosol Robotic Network (AERONET) products that is comparable to or better than the correlation with the operational product during the campaign. The OEbased estimated error represented the variance of actual biases of AOT at 388 nm between the retrieval and AERONET measurements better than the operational error estimates. The forward model parameter errors were analyzed separately for both AOT and SSA retrievals. The surface reflectance at 388 nm, the imaginary part of the refractive index at 354 nm, and the number fine-mode fraction (FMF) were found to be the most important parameters affecting the retrieval accuracy of AOT, while FMF was the most important parameter for the SSA retrieval. The additional information provided with the retrievals, including the estimated error and degrees of freedom, is expected to be valuable for relevant studies. Detailed advantages of using the OE method were described and discussed in this paper.

  15. Spatiotemporal variability and contribution of different aerosol types to the Aerosol Optical Depth over the Eastern Mediterranean.

    PubMed

    Georgoulias, Aristeidis K; Alexandri, Georgia; Kourtidis, Konstantinos A; Lelieveld, Jos; Zanis, Prodromos; Pöschl, Ulrich; Levy, Robert; Amiridis, Vassilis; Marinou, Eleni; Tsikerdekis, Athanasios

    2016-01-01

    This study characterizes the spatiotemporal variability and relative contribution of different types of aerosols to the Aerosol Optical Depth (AOD) over the Eastern Mediterranean as derived from MODIS Terra (3/2000-12/2012) and Aqua (7/2002-12/2012) satellite instruments. For this purpose, a 0.1° × 0.1° gridded MODIS dataset was compiled and validated against sunphotometric observations from the AErosol RObotic NETwork (AERONET). The high spatial resolution and long temporal coverage of the dataset allows for the determination of local hot spots like megacities, medium sized cities, industrial zones, and power plant complexes, seasonal variabilities, and decadal averages. The average AOD at 550 nm (AOD 550 ) for the entire region is ~ 0.22 ± 0.19 with maximum values in summer and seasonal variabilities that can be attributed to precipitation, photochemical production of secondary organic aerosols, transport of pollution and smoke from biomass burning in Central and Eastern Europe, and transport of dust from the Sahara Desert and the Middle East. The MODIS data were analyzed together with data from other satellite sensors, reanalysis projects and a chemistry-aerosol-transport model using an optimized algorithm tailored for the region and capable of estimating the contribution of different aerosol types to the total AOD 550 . The spatial and temporal variability of anthropogenic, dust and fine mode natural aerosols over land and anthropogenic, dust and marine aerosols over the sea is examined. The relative contribution of the different aerosol types to the total AOD 550 exhibits a low/high seasonal variability over land/sea areas, respectively. Overall, anthropogenic aerosols, dust and fine mode natural aerosols account for ~ 51 %, ~ 34 % and ~ 15 % of the total AOD 550 over land, while, anthropogenic aerosols, dust and marine aerosols account ~ 40 %, ~ 34 % and ~ 26 % of the total AOD 550 over the sea, based on MODIS Terra and Aqua observations.

  16. Air Quality Monitoring and Forecasting Applications of Suomi NPP VIIRS Aerosol Products

    NASA Astrophysics Data System (ADS)

    Kondragunta, Shobha

    The Suomi National Polar-orbiting Partnership (NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) instrument was launched on October 28, 2011. It provides Aerosol Optical Thickness (AOT) at two different spatial resolutions: a pixel level (~750 m at nadir) product called the Intermediate Product (IP) and an aggregated (~6 km at nadir) product called the Environmental Data Record (EDR), and a Suspended Matter (SM) EDR that provides aerosol type (dust, smoke, sea salt, and volcanic ash) information. An extensive validation of VIIRS best quality aerosol products with ground based L1.5 Aerosol Robotic NETwork (AERONET) data shows that the AOT EDR product has an accuracy/precision of -0.01/0.11 and 0.01/0.08 over land and ocean respectively. Globally, VIIRS mean AOT EDR (0.20) is similar to Aqua MODIS (0.16) with some important regional and seasonal differences. The accuracy of the SM product, however, is found to be very low (20 percent) when compared to Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP) and AERONET. Several algorithm updates which include a better approach to retrieve surface reflectance have been developed for AOT retrieval. For dust aerosol type retrieval, a new approach that takes advantage of spectral dependence of Rayleigh scattering, surface reflectance, dust absorption in the deep blue (412 nm), blue (440 nm), and mid-IR (2.2 um) has been developed that detects dust with an accuracy of ~80 percent. For smoke plume identification, a source apportionment algorithm that combines fire hot spots with AOT imagery has been developed that provides smoke plume extent with an accuracy of ~70 percent. The VIIRS aerosol products will provide continuity to the current operational use of aerosol products from Aqua and Terra MODIS. These include aerosol data assimilation in Naval Research Laboratory (NRL) global aerosol model, verification of National Weather Service (NWS) dust and smoke forecasts, exceptional events monitoring by different states

  17. Ensembles of satellite aerosol retrievals based on three AATSR algorithms within aerosol_cci

    NASA Astrophysics Data System (ADS)

    Kosmale, Miriam; Popp, Thomas

    2016-04-01

    Ensemble techniques are widely used in the modelling community, combining different modelling results in order to reduce uncertainties. This approach could be also adapted to satellite measurements. Aerosol_cci is an ESA funded project, where most of the European aerosol retrieval groups work together. The different algorithms are homogenized as far as it makes sense, but remain essentially different. Datasets are compared with ground based measurements and between each other. Three AATSR algorithms (Swansea university aerosol retrieval, ADV aerosol retrieval by FMI and Oxford aerosol retrieval ORAC) provide within this project 17 year global aerosol records. Each of these algorithms provides also uncertainty information on pixel level. Within the presented work, an ensembles of the three AATSR algorithms is performed. The advantage over each single algorithm is the higher spatial coverage due to more measurement pixels per gridbox. A validation to ground based AERONET measurements shows still a good correlation of the ensemble, compared to the single algorithms. Annual mean maps show the global aerosol distribution, based on a combination of the three aerosol algorithms. In addition, pixel level uncertainties of each algorithm are used for weighting the contributions, in order to reduce the uncertainty of the ensemble. Results of different versions of the ensembles for aerosol optical depth will be presented and discussed. The results are validated against ground based AERONET measurements. A higher spatial coverage on daily basis allows better results in annual mean maps. The benefit of using pixel level uncertainties is analysed.

  18. Comparisons of spectral aerosol single scattering albedo in Seoul, South Korea

    NASA Astrophysics Data System (ADS)

    Mok, Jungbin; Krotkov, Nickolay A.; Torres, Omar; Jethva, Hiren; Li, Zhanqing; Kim, Jhoon; Koo, Ja-Ho; Go, Sujung; Irie, Hitoshi; Labow, Gordon; Eck, Thomas F.; Holben, Brent N.; Herman, Jay; Loughman, Robert P.; Spinei, Elena; Lee, Seoung Soo; Khatri, Pradeep; Campanelli, Monica

    2018-04-01

    Quantifying aerosol absorption at ultraviolet (UV) wavelengths is important for monitoring air pollution and aerosol amounts using current (e.g., Aura/OMI) and future (e.g., TROPOMI, TEMPO, GEMS, and Sentinel-4) satellite measurements. Measurements of column average atmospheric aerosol single scattering albedo (SSA) are performed on the ground by the NASA AERONET in the visible (VIS) and near-infrared (NIR) wavelengths and in the UV-VIS-NIR by the SKYNET networks. Previous comparison studies have focused on VIS and NIR wavelengths due to the lack of co-incident measurements of aerosol and gaseous absorption properties in the UV. This study compares the SKYNET-retrieved SSA in the UV with the SSA derived from a combination of AERONET, MFRSR, and Pandora (AMP) retrievals in Seoul, South Korea, in spring and summer 2016. The results show that the spectrally invariant surface albedo assumed in the SKYNET SSA retrievals leads to underestimated SSA compared to AMP values at near UV wavelengths. Re-processed SKYNET inversions using spectrally varying surface albedo, consistent with the AERONET retrieval improve agreement with AMP SSA. The combined AMP inversions allow for separating aerosol and gaseous (NO2 and O3) absorption and provide aerosol retrievals from the shortest UVB (305 nm) through VIS to NIR wavelengths (870 nm).

  19. Global Aerosol Optical Models and Lookup Tables for the New MODIS Aerosol Retrieval over Land

    NASA Technical Reports Server (NTRS)

    Levy, Robert C.; Remer, Loraine A.; Dubovik, Oleg

    2007-01-01

    Since 2000, MODIS has been deriving aerosol properties over land from MODIS observed spectral reflectance, by matching the observed reflectance with that simulated for selected aerosol optical models, aerosol loadings, wavelengths and geometrical conditions (that are contained in a lookup table or 'LUT'). Validation exercises have showed that MODIS tends to under-predict aerosol optical depth (tau) in cases of large tau (tau greater than 1.0), signaling errors in the assumed aerosol optical properties. Using the climatology of almucantur retrievals from the hundreds of global AERONET sunphotometer sites, we found that three spherical-derived models (describing fine-sized dominated aerosol), and one spheroid-derived model (describing coarse-sized dominated aerosol, presumably dust) generally described the range of observed global aerosol properties. The fine dominated models were separated mainly by their single scattering albedo (omega(sub 0)), ranging from non-absorbing aerosol (omega(sub 0) approx. 0.95) in developed urban/industrial regions, to neutrally absorbing aerosol (omega(sub 0) approx.90) in forest fire burning and developing industrial regions, to absorbing aerosol (omega(sub 0) approx. 0.85) in regions of savanna/grassland burning. We determined the dominant model type in each region and season, to create a 1 deg. x 1 deg. grid of assumed aerosol type. We used vector radiative transfer code to create a new LUT, simulating the four aerosol models, in four MODIS channels. Independent AERONET observations of spectral tau agree with the new models, indicating that the new models are suitable for use by the MODIS aerosol retrieval.

  20. Spatial and Temporal Monitoring of Aerosol over Selected Urban Areas in Egypt

    NASA Astrophysics Data System (ADS)

    Shokr, Mohammed; El-Tahan, Mohammed; Ibrahim, Alaa

    2015-04-01

    We utilize remote sensing data of atmospheric aerosols from the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard the Terra and Aqua satellites to explore spatio-temporal patterns over selected urban sites in Egypt during 2000-2015. High resolution (10 x 10 km^2) Level 2, collection 5, quality-controlled product was used. The selected sites are characterized by different human and industrial activities as well as landscape and meteorological attributes. These have impacts on the dominant types and intensity of aerosols. Aerosol robotic network (AERONET) data were used to validate the calculations from MODIS. The suitability of the MODIS product in terms of spatial and temporal coverage as well as accuracy and robustness has been established. Seasonal patterns of aerosol concentration are identified and compared between the sites. Spatial gradient of aerosol is assessed in the vicinity of major aerosol-emission sites (e.g. Cairo) to determine the range of influence of the generated pollution. Peak aerosol concentrations are explained in terms of meteorological events and land cover. The limited trends found in the temporal records of the aerosol measurements will be confirmed using calibrated long-term ground observations. The study has been conducted under the PEER 2-239 research project titled "The Impact of Biogenic and Anthropogenic Atmospheric Aerosols to Climate in Egypt". Project website is CleanAirEgypt.org

  1. Variation of aerosol characteristics in the detail scale of time and space

    NASA Astrophysics Data System (ADS)

    Mukai, S.; Nakata, M.; Sano, I.

    2012-04-01

    In this work, we intend to demonstrate the spatial and temporal variation of atmospheric aerosols around AERONET/Osaka site. Osaka is the second big city in Japan and a typical Asian urban area. It is well known that the aerosol distribution in Asia is complicated due to the increasing emissions of anthropogenic aerosols in association with economic growth and in addition behavior of natural dusts significantly varies with the seasons. Therefore local spatially and temporally resolved measurements of atmospheric particles in Asian urban city are meaningful. We equip various ground measurement devices of atmosphere in the campus of Kinki University (KU). The data supplied by the Cimel instrument are analyzed with a standard AERONET (Aerosol Robotics Network) processing system. It provides us with Aerosol optical thickness (AOT), the Ångström exponent and so on. We set up a PM sampler and a standard instrument of NIES/LIDAR network attached to our AERONET site. The PM sampler provides particle information about the concentrations of PM2.5, PM10 and OBC separately. In addition to the simultaneous measurements, we make observation of the air quality at several locations in the neighbour-hood using portable sun-photometers (Solar-Light Company Microtops-2). The simultaneous measurements of aerosols and numerical model simulations indicate that the spatial and temporal factors influence the characterization of atmospheric particles especially in dust event. Then we observe the air quality at such several locations within a few 10 km area from KU, as Izumi and Nara, in ordinal days and dust days. Izumi site locates near industrial area and Nara is in the east of KU beyond the mountain-Ikoma. It is found from the simultaneous measurements at these three sites that AOT at Izumi in ordinal days is the highest and Nara's lowest. It indicates that the Ikoma-mountains block off the polluted air from the west. However in dust days, AOT at Nara is as large as that at Higashi

  2. Satellite and ground-based remote sensing of aerosols during intense haze event of October 2013 over lahore, Pakistan

    NASA Astrophysics Data System (ADS)

    Tariq, Salman; Zia, ul-Haq; Ali, Muhammad

    2016-02-01

    Due to increase in population and economic development, the mega-cities are facing increased haze events which are causing important effects on the regional environment and climate. In order to understand these effects, we require an in-depth knowledge of optical and physical properties of aerosols in intense haze conditions. In this paper an effort has been made to analyze the microphysical and optical properties of aerosols during intense haze event over mega-city of Lahore by using remote sensing data obtained from satellites (Terra/Aqua Moderate-resolution Imaging Spectroradiometer (MODIS) and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO)) and ground based instrument (AErosol RObotic NETwork (AERONET)) during 6-14 October 2013. The instantaneous highest value of Aerosol Optical Depth (AOD) is observed to be 3.70 on 9 October 2013 followed by 3.12 on 8 October 2013. The primary cause of such high values is large scale crop residue burning and urban-industrial emissions in the study region. AERONET observations show daily mean AOD of 2.36 which is eight times higher than the observed values on normal day. The observed fine mode volume concentration is more than 1.5 times greater than the coarse mode volume concentration on the high aerosol burden day. We also find high values (~0.95) of Single Scattering Albedo (SSA) on 9 October 2013. Scatter-plot between AOD (500 nm) and Angstrom exponent (440-870 nm) reveals that biomass burning/urban-industrial aerosols are the dominant aerosol type on the heavy aerosol loading day over Lahore. MODIS fire activity image suggests that the areas in the southeast of Lahore across the border with India are dominated by biomass burning activities. A Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model backward trajectory showed that the winds at 1000 m above the ground are responsible for transport from southeast region of biomass burning to Lahore. CALIPSO derived sub-types of

  3. Quantitative retrieval of aerosol optical thickness from FY-2 VISSR data

    NASA Astrophysics Data System (ADS)

    Bai, Linyan; Xue, Yong; Cao, Chunxiang; Feng, Jianzhong; Zhang, Hao; Guang, Jie; Wang, Ying; Li, Yingjie; Mei, Linlu; Ai, Jianwen

    2010-11-01

    Atmospheric aerosol, as particulate matter suspended in the air, exists in a variety of forms such as dust, fume and mist. It deeply affects climate and land surface environment in both regional and global scales, and furthermore, lead to be hugely much influence on human health. For the sake of effectively monitoring it, many atmospheric aerosol observation networks are set up and provide associated informational services in the wide world, as well-known Aerosol robotic network (AERONET), Canadian Sunphotometer Network (AeroCan) and so forth. Given large-scale atmospheric aerosol monitoring, that satellite remote sensing data are used to inverse aerosol optical depth is one of available and effective approaches. Nowadays, special types of instruments aboard running satellites are applied to obtain related remote sensing data of retrieving atmospheric aerosol. However, atmospheric aerosol real-timely or near real-timely monitoring hasn't been accomplished. Nevertheless, retrievals, using Fengyun-2 VISSR data, are carried out and the above problem resolved to certain extent, especially over China. In this paper, the authors have developed a new retrieving model/mode to retrieve aerosol optical depth, using Fengyun-2 satellite data that were obtained by the VISSR aboard FY-2C and FY-2D. A series of the aerosol optical depth distribution maps with high time resolution were able to obtained, is helpful for understanding the forming mechanism, transport, influence and controlling approach of atmospheric aerosol.

  4. Maritime Aerosol Network (MAN) as a Component of AERONET

    NASA Technical Reports Server (NTRS)

    Smirnov, A.; Holben, B. N.; Slutsker, I.; Giles, D. M.; McClain, C. R.; Eck, T. F.; Sakerin, S. M.; Macke, A.; Croot, P.; Zibordi, G.; hide

    2008-01-01

    The World Ocean produces a large amount of natural aerosols that have all impact on the Earth's albedo and climate. Sea-salt is the major contributor to aerosol optical depth over the oceans. [Mahowald et al. 2006; Chin et al. 2002; Satheesh et al. 1999; Winter and Chylek, 1997] and therefore affects the radiative balance over the ocean through the direct [Haywood et al. 1999] and indirect aerosol effect [O'Dowd et al. 1999]. Aerosols over the oceans (produced marine and advected from land sources) are important for various atmospheric processes [Lewis and Schwartz, 2004] and remote sensing studies [Gordon, 1997].

  5. Can AERONET data be used to accurately model the monochromatic beam and circumsolar irradiances under cloud-free conditions in desert environment?

    NASA Astrophysics Data System (ADS)

    Eissa, Y.; Blanc, P.; Wald, L.; Ghedira, H.

    2015-12-01

    Routine measurements of the beam irradiance at normal incidence include the irradiance originating from within the extent of the solar disc only (DNIS), whose angular extent is 0.266° ± 1.7 %, and from a larger circumsolar region, called the circumsolar normal irradiance (CSNI). This study investigates whether the spectral aerosol optical properties of the AERONET stations are sufficient for an accurate modelling of the monochromatic DNIS and CSNI under cloud-free conditions in a desert environment. The data from an AERONET station in Abu Dhabi, United Arab Emirates, and the collocated Sun and Aureole Measurement instrument which offers reference measurements of the monochromatic profile of solar radiance were exploited. Using the AERONET data both the radiative transfer models libRadtran and SMARTS offer an accurate estimate of the monochromatic DNIS, with a relative root mean square error (RMSE) of 6 % and a coefficient of determination greater than 0.96. The observed relative bias obtained with libRadtran is +2 %, while that obtained with SMARTS is -1 %. After testing two configurations in SMARTS and three in libRadtran for modelling the monochromatic CSNI, libRadtran exhibits the most accurate results when the AERONET aerosol phase function is presented as a two-term Henyey-Greenstein phase function. In this case libRadtran exhibited a relative RMSE and a bias of respectively 27 and -24 % and a coefficient of determination of 0.882. Therefore, AERONET data may very well be used to model the monochromatic DNIS and the monochromatic CSNI. The results are promising and pave the way towards reporting the contribution of the broadband circumsolar irradiance to standard measurements of the beam irradiance.

  6. Long- and/or short-range transportation of local Asian aerosols in DRAGON-Osaka Experiment

    NASA Astrophysics Data System (ADS)

    Nakata, M.; Sano, I.; Mukai, S.; Holben, B. N.

    2013-12-01

    This work intends to demonstrate the spatial and temporal variation of atmospheric particles in East Asia, especially around AERONET (Aerosol Robotics Network) -Osaka site during Dragon Asia period in the spring of 2012, named Dragon-Osaka. It is known that the air pollution in East Asia becomes to be severe due to both the increasing emissions of the anthropogenic aerosols associated with economic growth and the complicated behavior of natural aerosols. Thus the precise observations of atmospheric particles in East Asia are desired. Osaka is the second big city in Japan and a typical Asian urban area. The population of the region is around 20 millions including neighbor prefectures. Therefore, air quality in the region is slightly bad compared to remote area due to industries and auto mobiles. In recent years, Asian dusts and anthropogenic small particles transported from China and cover those cities throughout year. AERONET Osaka site was established in 2002 on the campus of Kinki University. Nowadays, LIDAR (Light Detection and Ranging), an SPM sampler (SPM-613D, Kimoto Electric, Japan) and others are available on the roof of a building. The site data are useful for algorithm development of aerosol retrieval over busy city. On the other hand, human activities in this region also emit the huge amount of pollutions, thus it is needed to investigate the local distribution of aerosols in this region. In order to investigate change of aerosol properties, PM-individual analysis is made with scanning electron microscope (SEM) coupled with energy dispersive X-ray analyzer (EDX). SEM/EDX is an effective instrument to observe the surface microstructure and analyze the chemical composition of such materials as metals, powders, biological specimens, etc. We used sampling data from the SPM sampler at AERONET Osaka site. During a period of DRAGON-Asia, high concentrations of air pollutant were observed on the morning of March 11 in Fukue Island in the East China Sea. On the

  7. Remote sensing of soot carbon - Part 1: Distinguishing different absorbing aerosol species

    NASA Astrophysics Data System (ADS)

    Schuster, G. L.; Dubovik, O.; Arola, A.

    2016-02-01

    We describe a method of using the Aerosol Robotic Network (AERONET) size distributions and complex refractive indices to retrieve the relative proportion of carbonaceous aerosols and free iron minerals (hematite and goethite). We assume that soot carbon has a spectrally flat refractive index and enhanced imaginary indices at the 440 nm wavelength are caused by brown carbon or hematite. Carbonaceous aerosols can be separated from dust in imaginary refractive index space because 95 % of biomass burning aerosols have imaginary indices greater than 0.0042 at the 675-1020 nm wavelengths, and 95 % of dust has imaginary refractive indices of less than 0.0042 at those wavelengths. However, mixtures of these two types of particles can not be unambiguously partitioned on the basis of optical properties alone, so we also separate these particles by size. Regional and seasonal results are consistent with expectations. Monthly climatologies of fine mode soot carbon are less than 1.0 % by volume for West Africa and the Middle East, but the southern African and South American biomass burning sites have peak values of 3.0 and 1.7 %. Monthly averaged fine mode brown carbon volume fractions have a peak value of 5.8 % for West Africa, 2.1 % for the Middle East, 3.7 % for southern Africa, and 5.7 % for South America. Monthly climatologies of free iron volume fractions show little seasonal variability, and range from about 1.1 to 1.7 % for coarse mode aerosols in all four study regions. Finally, our sensitivity study indicates that the soot carbon retrieval is not sensitive to the component refractive indices or densities assumed for carbonaceous and free iron aerosols, and the retrieval differs by only 15.4 % when these parameters are altered from our chosen baseline values. The total uncertainty of retrieving soot carbon mass is ˜ 50 % (when uncertainty in the AERONET product and mixing state is included in the analysis).

  8. The Angstrom Exponent and Bimodal Aerosol Size Distributions

    NASA Technical Reports Server (NTRS)

    Schuster, Gregory L.; Dubovik, Oleg; Holben, Brent H.

    2005-01-01

    Powerlaws have long been used to describe the spectral dependence of aerosol extinction, and the wavelength exponent of the aerosol extinction powerlaw is commonly referred to as the Angstrom exponent. The Angstrom exponent is often used as a qualitative indicator of aerosol particle size, with values greater than two indicating small particles associated with combustion byproducts, and values less than one indicating large particles like sea salt and dust. In this study, we investigate the relationship between the Angstrom exponent and the mode parameters of bimodal aerosol size distributions using Mie theory calculations and Aerosol Robotic Network (AERONET) retrievals. We find that Angstrom exponents based upon seven wavelengths (0.34, 0.38, 0.44, 0.5, 0.67, 0.87, and 1.02 micrometers) are sensitive to the volume fraction of aerosols with radii less then 0.6 micrometers, but not to the fine mode effective radius. The Angstrom exponent is also known to vary with wavelength, which is commonly referred to as curvature; we show how the spectral curvature can provide additional information about aerosol size distributions for intermediate values of the Angstrom exponent. Curvature also has a significant effect on the conclusions that can be drawn about two-wavelength Angstrom exponents; long wavelengths (0.67, 0.87 micrometers) are sensitive to fine mode volume fraction of aerosols but not fine mode effective radius, while short wavelengths (0.38, 0.44 micrometers) are sensitive to the fine mode effective radius but not the fine mode volume fraction.

  9. Spatial Distribution of Accuracy of Aerosol Retrievals from Multiple Satellite Sensors

    NASA Technical Reports Server (NTRS)

    Petrenko, Maksym; Ichoku, Charles

    2012-01-01

    Remote sensing of aerosols from space has been a subject of extensive research, with multiple sensors retrieving aerosol properties globally on a daily or weekly basis. The diverse algorithms used for these retrievals operate on different types of reflected signals based on different assumptions about the underlying physical phenomena. Depending on the actual retrieval conditions and especially on the geographical location of the sensed aerosol parcels, the combination of these factors might be advantageous for one or more of the sensors and unfavorable for others, resulting in disagreements between similar aerosol parameters retrieved from different sensors. In this presentation, we will demonstrate the use of the Multi-sensor Aerosol Products Sampling System (MAPSS) to analyze and intercompare aerosol retrievals from multiple spaceborne sensors, including MODIS (on Terra and Aqua), MISR, OMI, POLDER, CALIOP, and SeaWiFS. Based on this intercomparison, we are determining geographical locations where these products provide the greatest accuracy of the retrievals and identifying the products that are the most suitable for retrieval at these locations. The analyses are performed by comparing quality-screened satellite aerosol products to available collocated ground-based aerosol observations from the Aerosol Robotic Network (AERONET) stations, during the period of 2006-2010 when all the satellite sensors were operating concurrently. Furthermore, we will discuss results of a statistical approach that is applied to the collocated data to detect and remove potential data outliers that can bias the results of the analysis.

  10. Can AERONET data be used to accurately model the monochromatic beam and circumsolar irradiances under cloud-free conditions in desert environment?

    NASA Astrophysics Data System (ADS)

    Eissa, Y.; Blanc, P.; Wald, L.; Ghedira, H.

    2015-07-01

    Routine measurements of the beam irradiance at normal incidence (DNI) include the irradiance originating from within the extent of the solar disc only (DNIS) whose angular extent is 0.266° ± 1.7 %, and that from a larger circumsolar region, called the circumsolar normal irradiance (CSNI). This study investigates if the spectral aerosol optical properties of the AERONET stations are sufficient for an accurate modelling of the monochromatic DNIS and CSNI under cloud-free conditions in a desert environment. The data from an AERONET station in Abu Dhabi, United Arab Emirates, and a collocated Sun and Aureole Measurement (SAM) instrument which offers reference measurements of the monochromatic profile of solar radiance, were exploited. Using the AERONET data both the radiative transfer models libRadtran and SMARTS offer an accurate estimate of the monochromatic DNIS, with a relative root mean square error (RMSE) of 5 %, a relative bias of +1 % and acoefficient of determination greater than 0.97. After testing two configurations in SMARTS and three in libRadtran for modelling the monochromatic CSNI, libRadtran exhibits the most accurate results when the AERONET aerosol phase function is presented as a Two Term Henyey-Greenstein phase function. In this case libRadtran exhibited a relative RMSE and a bias of respectively 22 and -19 % and a coefficient of determination of 0.89. The results are promising and pave the way towards reporting the contribution of the broadband circumsolar irradiance to standard DNI measurements.

  11. An 11-year global gridded aerosol optical thickness reanalysis (v1.0) for atmospheric and climate sciences

    NASA Astrophysics Data System (ADS)

    Lynch, Peng; Reid, Jeffrey S.; Westphal, Douglas L.; Zhang, Jianglong; Hogan, Timothy F.; Hyer, Edward J.; Curtis, Cynthia A.; Hegg, Dean A.; Shi, Yingxi; Campbell, James R.; Rubin, Juli I.; Sessions, Walter R.; Turk, F. Joseph; Walker, Annette L.

    2016-04-01

    While stand alone satellite and model aerosol products see wide utilization, there is a significant need in numerous atmospheric and climate applications for a fused product on a regular grid. Aerosol data assimilation is an operational reality at numerous centers, and like meteorological reanalyses, aerosol reanalyses will see significant use in the near future. Here we present a standardized 2003-2013 global 1 × 1° and 6-hourly modal aerosol optical thickness (AOT) reanalysis product. This data set can be applied to basic and applied Earth system science studies of significant aerosol events, aerosol impacts on numerical weather prediction, and electro-optical propagation and sensor performance, among other uses. This paper describes the science of how to develop and score an aerosol reanalysis product. This reanalysis utilizes a modified Navy Aerosol Analysis and Prediction System (NAAPS) at its core and assimilates quality controlled retrievals of AOT from the Moderate Resolution Imaging Spectroradiometer (MODIS) on Terra and Aqua and the Multi-angle Imaging SpectroRadiometer (MISR) on Terra. The aerosol source functions, including dust and smoke, were regionally tuned to obtain the best match between the model fine- and coarse-mode AOTs and the Aerosol Robotic Network (AERONET) AOTs. Other model processes, including deposition, were tuned to minimize the AOT difference between the model and satellite AOT. Aerosol wet deposition in the tropics is driven with satellite-retrieved precipitation, rather than the model field. The final reanalyzed fine- and coarse-mode AOT at 550 nm is shown to have good agreement with AERONET observations, with global mean root mean square error around 0.1 for both fine- and coarse-mode AOTs. This paper includes a discussion of issues particular to aerosol reanalyses that make them distinct from standard meteorological reanalyses, considerations for extending such a reanalysis outside of the NASA A-Train era, and examples of how

  12. Spectral Discrimination of Fine and Coarse Mode Aerosol Optical Depth from AERONET Direct Sun Data of Singapore and South-East Asia

    NASA Astrophysics Data System (ADS)

    Salinas Cortijo, S.; Chew, B.; Liew, S.

    2009-12-01

    Aerosol optical depth combined with the Angstrom exponent and its derivative, are often used as a qualitative indicator of aerosol particle size, with Angstrom exp. values greater than 2 indicating small (fine mode) particles associated with urban pollution and bio-mass burning. Around this region, forest fires are a regular occurrence during the dry season, specially near the large land masses of Sumatra and Borneo. The practice of clearing land by burning the primary and sometimes secondary forest, results in a smog-like haze covering large areas of regional cities such as cities Singapore, Kuala Lumpur and sometimes the south of Thailand, often reducing visibility and increasing health problems for the local population. In Singapore, the sources of aerosols are mostly from fossil fuel burning (energy stations, incinerators, urban transport etc.) and from the industrial and urban areas. The proximity to the sea adds a possible oceanic source. However, as stated above and depending on the time of the year, there can be a strong bio-mass component coming from forest fires from various regions of the neighboring countries. Bio-mass related aerosol particles are typically characterized by showing a large optical depth and small, sub-micron particle size distributions. In this work, we analyze three years of direct Sun measurements performed with a multi-channel Cimel Sun-Photometer (part of the AERONET network) located at our site. In order to identify bio-mass burning events in this region, we perform a spectral discrimination between coarse and fine mode optical depth; subsequently, the fine mode parameters such as optical depth, optical ratio and fine mode Angstrom exponents (and its derivative) are used to identify possible bio-mass related events within the data set.

  13. Development of a Low Cost Microcontroller-Enabled Handheld Sunphotometer and Comparison with NASA AERONET and MODIS

    NASA Astrophysics Data System (ADS)

    Krintz, I. A.; Ruble, W.; Sherman, J. P.

    2017-12-01

    Satellite-based measurements of aerosol optical depth (AOD), such as those made by NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) aboard the TERRA and AQUA spacecraft, are often used in studies of aerosol direct radiative forcing (DRF) on regional to global scales due to daily near-global coverage. However, these measurements require validation by ground-based instrumentation, which is limited due to the cost of research-grade instrumentation. Furthermore, satellite-based AOD agreement with "ground-truth" instruments is weaker over mountainous regions (Levy et al., 2010). To aid in satellite validation, a low cost handheld sunphotometer has been developed which will be suitable for deployment to multiple sites to form a citizen science network as part of an upcoming proposal. A microcontroller, along with temperature and pressure sensors, has been included in this design to ease the process of taking measurements and transferring data for processing. Although LED-based sunphotometers have been used for a number of years (Brooks and Mims, 2001), this design uses filtered photodiodes which appear to have less of a temperature dependence. The interface has been designed to be intuitive to citizen scientists of all ages, nationalities, and backgrounds, so that deployment to primary schools and international sites will be as seamless as possible. Presented here is the instrument design, as well as initial results of a comparison with NASA Aerosol Robotic Network (AERONET) and MODIS-measured AOD. Future revisions to the instrument design, such as incorporation of surface-mount devices to cut down on circuit board size, will allow for an even smaller and more cost effective solution suitable for a global sunphotometer network.

  14. South American Aerosol Tracking - LALINET

    NASA Astrophysics Data System (ADS)

    Landulfo, Eduardo; Lopes, Fabio; Ristori, Pablo; Quel, Eduardo; Otero, Lidia; Forno, Ricardo; Sanchez, Maria Fernanda; Barbosa, Henrique; Gouveia, Diego; Vieira Santos, Amanda; Bastidas, Alvaro; Nisperuza, Daniel

    2018-04-01

    LALINET lidar stations were used to track down aerosols generated over Amazon region and transported over the continent. These data were merged with collocated Aeronet stations in order to help in their identification together with HYSPLIT simulations. The results show potential indication of how aerosol can age in their long transport over regions South and Westward from the source areas by change of their optical properties.

  15. Estimation of surface-level PM2.5 concentration using aerosol optical thickness through aerosol type analysis method

    NASA Astrophysics Data System (ADS)

    Chen, Qi-Xiang; Yuan, Yuan; Huang, Xing; Jiang, Yan-Qiu; Tan, He-Ping

    2017-06-01

    Surface-level particulate matter is closely related to column aerosol optical thickness (AOT). Previous researches have successfully used column AOT and different meteorological parameters to estimate surface-level PM concentration. In this study, the performance of a selected linear model that estimates surface-level PM2.5 concentration was evaluated following the aerosol type analysis method (ATAM) for the first time. We utilized 443 daily average data for Xuzhou, Jiangsu province, collected using Aerosol Robotic Network (AERONET) during the period October 2013 to April 2016. Several parameters including atmospheric boundary layer height (BLH), relative humidity (RH), and effective radius of the aerosol size distribution (Ref) were used to assess the relationship between the column AOT and PM2.5 concentration. By including the BLH, ambient RH, and effective radius, the correlation (R2) increased from 0.084 to 0.250 at Xuzhou, and with the use of ATAM, the correlation increased further to 0.335. To compare the results, 450 daily average data for Beijing, pertaining to the same period, were utilized. The study found that model correlations improved by varying degrees in different seasons and at different sites following ATAM. The average urban industry (UI) aerosol ratios at Xuzhou and Beijing were 0.792 and 0.451, respectively, demonstrating poorer air conditions at Xuzhou. PM2.5 estimation at Xuzhou showed lower correlation (R2 = 0.335) compared to Beijing (R2 = 0.407), and the increase of R2 at Xuzhou and Beijing site following use of ATAM were 33.8% and 12.4%, respectively.

  16. Global Aerosol Remote Sensing from MODIS

    NASA Technical Reports Server (NTRS)

    Ichoku, Charles; Kaufman, Yoram J.; Remer, Lorraine A.; Chu, D. Allen; Mattoo, Shana; Tanre, Didier; Levy, Robert; Li, Rong-Rong; Martins, Jose V.; Lau, William K. M. (Technical Monitor)

    2002-01-01

    The physical characteristics, composition, abundance, spatial distribution and dynamics of global aerosols are still very poorly known, and new data from satellite sensors have long been awaited to improve current understanding and to give a boost to the effort in future climate predictions. The derivation of aerosol parameters from the MODerate resolution Imaging Spectro-radiometer (MODIS) sensors aboard the Earth Observing System (EOS) Terra and Aqua polar-orbiting satellites ushers in a new era in aerosol remote sensing from space. Terra and Aqua were launched on December 18, 1999 and May 4, 2002 respectively, with daytime equator crossing times of approximately 10:30 am and 1:30 pm respectively. Several aerosol parameters are retrieved at 10-km spatial resolution (level 2) from MODIS daytime data. The MODIS aerosol algorithm employs different approaches to retrieve parameters over land and ocean surfaces, because of the inherent differences in the solar spectral radiance interaction with these surfaces. The parameters retrieved include: aerosol optical thickness (AOT) at 0.47, 0.55 and 0.66 micron wavelengths over land, and at 0.47, 0.55, 0.66, 0.87, 1.2, 1.6, and 2.1 micron over ocean; Angstrom exponent over land and ocean; and effective radii, and the proportion of AOT contributed by the small mode aerosols over ocean. To ensure the quality of these parameters, a substantial part of the Terra-MODIS aerosol products were validated globally and regionally, based on cross correlation with corresponding parameters derived from ground-based measurements from AERONET (AErosol RObotic NETwork) sun photometers. Similar validation efforts are planned for the Aqua-MODIS aerosol products. The MODIS level 2 aerosol products are operationally aggregated to generate global daily, eight-day (weekly), and monthly products at one-degree spatial resolution (level 3). MODIS aerosol data are used for the detailed study of local, regional, and global aerosol concentration

  17. Deriving aerosol parameters from in-situ spectrometer measurements for validation of remote sensing products

    NASA Astrophysics Data System (ADS)

    Riedel, Sebastian; Janas, Joanna; Gege, Peter; Oppelt, Natascha

    2017-10-01

    Uncertainties of aerosol parameters are the limiting factor for atmospheric correction over inland and coastal waters. For validating remote sensing products from these optically complex and spatially inhomogeneous waters the spatial resolution of automated sun photometer networks like AERONET is too coarse and additional measurements on the test site are required. We have developed a method which allows the derivation of aerosol parameters from measurements with any spectrometer with suitable spectral range and resolution. This method uses a pair of downwelling irradiance and sky radiance measurements for the extraction of the turbidity coefficient and aerosol Ångström exponent. The data can be acquired fast and reliable at almost any place during a wide range of weather conditions. A comparison to aerosol parameters measured with a Cimel sun photometer provided by AERONET shows a reasonable agreement for the Ångström exponent. The turbidity coefficient did not agree well with AERONET values due to fit ambiguities, indicating that future research should focus on methods to handle parameter correlations within the underlying model.

  18. Spatiotemporal variability and contribution of different aerosol types to the Aerosol Optical Depth over the Eastern Mediterranean

    PubMed Central

    Georgoulias, Aristeidis K.; Alexandri, Georgia; Kourtidis, Konstantinos A.; Lelieveld, Jos; Zanis, Prodromos; Pöschl, Ulrich; Levy, Robert; Amiridis, Vassilis; Marinou, Eleni; Tsikerdekis, Athanasios

    2018-01-01

    This study characterizes the spatiotemporal variability and relative contribution of different types of aerosols to the Aerosol Optical Depth (AOD) over the Eastern Mediterranean as derived from MODIS Terra (3/2000–12/2012) and Aqua (7/2002–12/2012) satellite instruments. For this purpose, a 0.1° × 0.1° gridded MODIS dataset was compiled and validated against sunphotometric observations from the AErosol RObotic NETwork (AERONET). The high spatial resolution and long temporal coverage of the dataset allows for the determination of local hot spots like megacities, medium sized cities, industrial zones, and power plant complexes, seasonal variabilities, and decadal averages. The average AOD at 550 nm (AOD550) for the entire region is ~ 0.22 ± 0.19 with maximum values in summer and seasonal variabilities that can be attributed to precipitation, photochemical production of secondary organic aerosols, transport of pollution and smoke from biomass burning in Central and Eastern Europe, and transport of dust from the Sahara Desert and the Middle East. The MODIS data were analyzed together with data from other satellite sensors, reanalysis projects and a chemistry-aerosol-transport model using an optimized algorithm tailored for the region and capable of estimating the contribution of different aerosol types to the total AOD550. The spatial and temporal variability of anthropogenic, dust and fine mode natural aerosols over land and anthropogenic, dust and marine aerosols over the sea is examined. The relative contribution of the different aerosol types to the total AOD550 exhibits a low/high seasonal variability over land/sea areas, respectively. Overall, anthropogenic aerosols, dust and fine mode natural aerosols account for ~ 51 %, ~ 34 % and ~ 15 % of the total AOD550 over land, while, anthropogenic aerosols, dust and marine aerosols account ~ 40 %, ~ 34 % and ~ 26 % of the total AOD550 over the sea, based on MODIS Terra and Aqua observations. PMID:29755508

  19. Spatiotemporal variability and contribution of different aerosol types to the aerosol optical depth over the Eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Georgoulias, Aristeidis K.; Alexandri, Georgia; Kourtidis, Konstantinos A.; Lelieveld, Jos; Zanis, Prodromos; Pöschl, Ulrich; Levy, Robert; Amiridis, Vassilis; Marinou, Eleni; Tsikerdekis, Athanasios

    2016-11-01

    This study characterizes the spatiotemporal variability and relative contribution of different types of aerosols to the aerosol optical depth (AOD) over the Eastern Mediterranean as derived from MODIS (Moderate Resolution Imaging Spectroradiometer) Terra (March 2000-December 2012) and Aqua (July 2002-December 2012) satellite instruments. For this purpose, a 0.1° × 0.1° gridded MODIS dataset was compiled and validated against sun photometric observations from the AErosol RObotic NETwork (AERONET). The high spatial resolution and long temporal coverage of the dataset allows for the determination of local hot spots like megacities, medium-sized cities, industrial zones and power plant complexes, seasonal variabilities and decadal averages. The average AOD at 550 nm (AOD550) for the entire region is ˜ 0.22 ± 0.19, with maximum values in summer and seasonal variabilities that can be attributed to precipitation, photochemical production of secondary organic aerosols, transport of pollution and smoke from biomass burning in central and eastern Europe and transport of dust from the Sahara and the Middle East. The MODIS data were analyzed together with data from other satellite sensors, reanalysis projects and a chemistry-aerosol-transport model using an optimized algorithm tailored for the region and capable of estimating the contribution of different aerosol types to the total AOD550. The spatial and temporal variability of anthropogenic, dust and fine-mode natural aerosols over land and anthropogenic, dust and marine aerosols over the sea is examined. The relative contribution of the different aerosol types to the total AOD550 exhibits a low/high seasonal variability over land/sea areas, respectively. Overall, anthropogenic aerosols, dust and fine-mode natural aerosols account for ˜ 51, ˜ 34 and ˜ 15 % of the total AOD550 over land, while, anthropogenic aerosols, dust and marine aerosols account ˜ 40, ˜ 34 and ˜ 26 % of the total AOD550 over the sea, based on

  20. Spatiotemporal Variability and Contribution of Different Aerosol Types to the Aerosol Optical Depth over the Eastern Mediterranean

    NASA Technical Reports Server (NTRS)

    Georgoulias, Aristeidis K.; Alexandri, Georgia; Kourtidis, Konstantinos A.; Lelieveld, Jos; Zanis, Prodromos; Poeschl, Ulrich; Levy, Robert; Amiridis, Vassilis; Marinou, Eleni; Tsikerdekis, Athanasios

    2016-01-01

    This study characterizes the spatiotemporal variability and relative contribution of different types of aerosols to the aerosol optical depth (AOD) over the Eastern Mediterranean as derived from MODIS (Moderate Resolution Imaging Spectroradiometer) Terra (March 2000-December 2012) and Aqua (July 2002-December 2012) satellite instruments. For this purpose, a 0.1deg × 0.1deg gridded MODIS dataset was compiled and validated against sun photometric observations from the AErosol RObotic NETwork (AERONET). The high spatial resolution and long temporal coverage of the dataset allows for the determination of local hot spots like megacities, medium-sized cities, industrial zones and power plant complexes, seasonal variabilities and decadal averages. The average AOD at 550 nm (AOD550) for the entire region is approx. 0.22 +/- 0.19, with maximum values in summer and seasonal variabilities that can be attributed to precipitation, photochemical production of secondary organic aerosols, transport of pollution and smoke from biomass burning in central and eastern Europe and transport of dust from the Sahara and the Middle East. The MODIS data were analyzed together with data from other satellite sensors, reanalysis projects and a chemistry-aerosol-transport model using an optimized algorithm tailored for the region and capable of estimating the contribution of different aerosol types to the total AOD550. The spatial and temporal variability of anthropogenic, dust and fine-mode natural aerosols over land and anthropogenic, dust and marine aerosols over the sea is examined. The relative contribution of the different aerosol types to the total AOD550 exhibits a low/high seasonal variability over land/sea areas, respectively. Overall, anthropogenic aerosols, dust and fine-mode natural aerosols account for approx. 51, approx. 34 and approx. 15 % of the total AOD550 over land, while, anthropogenic aerosols, dust and marine aerosols account approx. 40, approx. 34 and approx. 26 % of

  1. Comparison of aerosol volume size distributions retrieved from ground-based remote sensing measurements with those from an optical particle counter on the ground

    NASA Astrophysics Data System (ADS)

    Kim, B.; Choi, Y.; Ghim, Y.

    2013-12-01

    Both Cimel CE-318 sunphotometer and POM-02 skyradiometer were operated for around 15 months starting from March 2012 as a part of the DRAGON (Distributed Regional Aerosol Gridded Observation Networks) campaign. These two instruments were collocated at the Hankuk_UFS (Hankuk University of Foreign Studies) site of AERONET (AErosol RObotic NETwork,) and the YGN (Yongin) site of SKYNET (SKYradiometer NETwork). We have also measured the particle concentration on the ground using an optical particle counter (Grimm Model 1.108) since the beginning of this year. The measurement site (37.02 °N, 127.16 °E, 167 m above sea level) is located about 35 km southeast of downtown Seoul. We compare the volume size distributions from sunphotometer, skyradiometer, and optical particle counter for the former part of this year. In the retrieval process, AERONET assumes 22 bins for 0.05-15 μm while SKYNET assumes 20 bins for 0.01-20 μm. The optical particle counter measures the particle number concentrations between 0.25 and 32 μm in 31 bins. Since the measurement intervals are different between instruments, we compare the distributions when the measurement time coincides within 5 minutes as well as mean distributions from the instruments. We examine the differences in mode radii and volume concentrations of fine and coarse mode aerosols between instruments.

  2. Improving Calculation Accuracies of Accumulation-Mode Fractions Based on Spectral of Aerosol Optical Depths

    NASA Astrophysics Data System (ADS)

    Ying, Zhang; Zhengqiang, Li; Yan, Wang

    2014-03-01

    Anthropogenic aerosols are released into the atmosphere, which cause scattering and absorption of incoming solar radiation, thus exerting a direct radiative forcing on the climate system. Anthropogenic Aerosol Optical Depth (AOD) calculations are important in the research of climate changes. Accumulation-Mode Fractions (AMFs) as an anthropogenic aerosol parameter, which are the fractions of AODs between the particulates with diameters smaller than 1μm and total particulates, could be calculated by AOD spectral deconvolution algorithm, and then the anthropogenic AODs are obtained using AMFs. In this study, we present a parameterization method coupled with an AOD spectral deconvolution algorithm to calculate AMFs in Beijing over 2011. All of data are derived from AErosol RObotic NETwork (AERONET) website. The parameterization method is used to improve the accuracies of AMFs compared with constant truncation radius method. We find a good correlation using parameterization method with the square relation coefficient of 0.96, and mean deviation of AMFs is 0.028. The parameterization method could also effectively solve AMF underestimate in winter. It is suggested that the variations of Angstrom indexes in coarse mode have significant impacts on AMF inversions.

  3. MODIS Observation of Aerosols over Southern Africa During SAFARI 2000: Data, Validation, and Estimation of Aerosol Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Ichoku, Charles; Kaufman, Yoram; Remer, Lorraine; Chu, D. Allen; Mattoo, Shana; Tanre, Didier; Levy, Robert; Li, Rong-Rong; Kleidman, Richard; Lau, William K. M. (Technical Monitor)

    2001-01-01

    Aerosol properties, including optical thickness and size parameters, are retrieved operationally from the MODIS sensor onboard the Terra satellite launched on 18 December 1999. The predominant aerosol type over the Southern African region is smoke, which is generated from biomass burning on land and transported over the southern Atlantic Ocean. The SAFARI-2000 period experienced smoke aerosol emissions from the regular biomass burning activities as well as from the prescribed burns administered on the auspices of the experiment. The MODIS Aerosol Science Team (MAST) formulates and implements strategies for the retrieval of aerosol products from MODIS, as well as for validating and analyzing them in order to estimate aerosol effects in the radiative forcing of climate as accurately as possible. These activities are carried out not only from a global perspective, but also with a focus on specific regions identified as having interesting characteristics, such as the biomass burning phenomenon in southern Africa and the associated smoke aerosol, particulate, and trace gas emissions. Indeed, the SAFARI-2000 aerosol measurements from the ground and from aircraft, along with MODIS, provide excellent data sources for a more intensive validation and a closer study of the aerosol characteristics over Southern Africa. The SAFARI-2000 ground-based measurements of aerosol optical thickness (AOT) from both the automatic Aerosol Robotic Network (AERONET) and handheld Sun photometers have been used to validate MODIS retrievals, based on a sophisticated spatio-temporal technique. The average global monthly distribution of aerosol from MODIS has been combined with other data to calculate the southern African aerosol daily averaged (24 hr) radiative forcing over the ocean for September 2000. It is estimated that on the average, for cloud free conditions over an area of 9 million square kin, this predominantly smoke aerosol exerts a forcing of -30 W/square m C lose to the terrestrial

  4. The Retrieval of Aerosol Optical Thickness Using the MERIS Instrument

    NASA Astrophysics Data System (ADS)

    Mei, L.; Rozanov, V. V.; Vountas, M.; Burrows, J. P.; Levy, R. C.; Lotz, W.

    2015-12-01

    Retrieval of aerosol properties for satellite instruments without shortwave-IR spectral information, multi-viewing, polarization and/or high-temporal observation ability is a challenging problem for spaceborne aerosol remote sensing. However, space based instruments like the MEdium Resolution Imaging Spectrometer (MERIS) and the successor, Ocean and Land Colour Instrument (OLCI) with high calibration accuracy and high spatial resolution provide unique abilities for obtaining valuable aerosol information for a better understanding of the impact of aerosols on climate, which is still one of the largest uncertainties of global climate change evaluation. In this study, a new Aerosol Optical Thickness (AOT) retrieval algorithm (XBAER: eXtensible Bremen AErosol Retrieval) is presented. XBAER utilizes the global surface spectral library database for the determination of surface properties while the MODIS collection 6 aerosol type treatment is adapted for the aerosol type selection. In order to take the surface Bidirectional Reflectance Distribution Function (BRDF) effect into account for the MERIS reduce resolution (1km) retrieval, a modified Ross-Li mode is used. The AOT is determined in the algorithm using lookup tables including polarization created using Radiative Transfer Model SCIATRAN3.4, by minimizing the difference between atmospheric corrected surface reflectance with given AOT and the surface reflectance calculated from the spectral library. The global comparison with operational MODIS C6 product, Multi-angle Imaging SpectroRadiometer (MISR) product, Advanced Along-Track Scanning Radiometer (AATSR) aerosol product and the validation using AErosol RObotic NETwork (AERONET) show promising results. The current XBAER algorithm is only valid for aerosol remote sensing over land and a similar method will be extended to ocean later.

  5. [Aerosol optical properties during different air-pollution episodes over Beijing].

    PubMed

    Shi, Chan-Zhen; Yu, Xing-Na; Zhou, Bin; Xiang, Lei; Nie, Hao-Hao

    2013-11-01

    Based on the 2005-2011 data from Aerosol Robotic Network (AERONET), this study conducted analysis on aerosol optical properties over Beijing during different air-pollution episodes (biomass burning, CNY firework, dust storm). The aerosol optical depth (AOD) showed notable increases in the air-pollution episodes while the AOD (at 440 nm) during dust storm was 4. 91, 4. 07 and 2.65 times higher as background, biomass burning and firework aerosols. AOD along with Angstrom exponent (alpha) can be used to determine the aerosol types. The dust aerosol had the highest AOD and the lowest alpha. The alpha value of firework (1.09) was smaller than biomass burning (1.21) and background (1.27), indicating that coarse particles were dominant in the former type. Higher AOD of burnings (than background) can be attributed to the optical extinction capability of black carbon aerosol. The single scattering albedo (SSA) was insensitive to wavelength. The SSA value of dust (0.934) was higher than background (0.878), biomass burning (0.921) and firework (0.905). Additionally, the extremely large SSA of burnings here maybe was caused by the aging smoke, hygroscopic growth and so on. The peak radius of aerosol volume size distributions were 0.1-0.2 microm and 2.24 -3.85 microm in clear and polluted conditions. The value of volume concentration ratio between coarse and fine particles was in the order of clear background (1.04), biomass burning (1.10), CNY firework (1.91) and dust storm (4.96) episode.

  6. Aerosol Data Assimilation at GMAO

    NASA Technical Reports Server (NTRS)

    da Silva, Arlindo M.; Buchard, Virginie

    2017-01-01

    This presentation presents an overview of the aerosol data assimilation work performed at GMAO. The GMAO Forward Processing system and the biomass burning emissions from QFED are first presented. Then, the current assimilation of Aerosol Optical Depth (AOD), performed by means of the analysis splitting method is briefly described, followed by some results on the quality control of observations using a Neural Network trained using AERONET AOD. Some applications are shown such as the Mount Pinatubo eruption in 1991 using the MERRA-2 aerosol dataset. Finally preliminary results on the EnKF implementation for aerosol assimilation are presented.

  7. Results and Validation of MODIS Aerosol Retrievals Over Land and Ocean

    NASA Technical Reports Server (NTRS)

    Remer, Lorraine; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The MODerate Resolution Imaging Spectroradiometer (MODIS) instrument aboard the Terra spacecraft has been retrieving aerosol parameters since late February 2000. Initial qualitative checking of the products showed very promising results including matching of land and ocean retrievals at coastlines. Using AERONET ground-based radiometers as our primary validation tool, we have established quantitative validation as well. Our results show that for most aerosol types, the MODIS products fall within the pre-launch estimated uncertainties. Surface reflectance and aerosol model assumptions appear to be sufficiently accurate for the optical thickness retrieval. Dust provides a possible exception, which may be due to non-spherical effects. Over ocean the MODIS products include information on particle size, and these parameters are also validated with AERONET retrievals.

  8. Results and Validation of MODIS Aerosol Retrievals over Land and Ocean

    NASA Technical Reports Server (NTRS)

    Remer, L. A.; Kaufman, Y. J.; Tanre, D.; Ichoku, C.; Chu, D. A.; Mattoo, S.; Levy, R.; Martins, J. V.; Li, R.-R.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The MODerate Resolution Imaging Spectroradiometer (MODIS) instrument aboard the Terra spacecraft has been retrieving aerosol parameters since late February 2000. Initial qualitative checking of the products showed very promising results including matching of land and ocean retrievals at coastlines. Using AERONET ground-based radiometers as our primary validation tool, we have established quantitative validation as well. Our results show that for most aerosol types, the MODIS products fall within the pre-launch estimated uncertainties. Surface reflectance and aerosol model assumptions appear to be sufficiently accurate for the optical thickness retrieval. Dust provides a possible exception, which may be due to non-spherical effects. Over ocean the MODIS products include information on particle size, and these parameters are also validated with AERONET retrievals.

  9. Global and Regional Evaluation of Over-Land Spectral Aerosol Optical Depth Retrievals from SeaWiFS

    NASA Technical Reports Server (NTRS)

    Sayer, A. M.; Hsu, N. C.; Bettenhausen, C.; Jeong, M. J.; Holben, B. N.; Zhang, J.

    2012-01-01

    This study evaluates a new spectral aerosol optical depth (AOD) dataset derived from Sea-viewing Wide Field-of-view Sensor (Sea WiFS) measurements over land. First, the data are validated against Aerosol Robotic Network (AERONET) direct-sun AOD measurements, and found to compare well on a global basis. If only data with the highest quality flag are used, the correlation is 0.86 and 72% of matchups fall within an expected absolute uncertainty of 0.05 + 20% (for the wavelength of 550 nm). The quality is similar at other wavelengths and stable over the 13-year (1997-2010) mission length. Performance tends to be better over vegetated, low-lying terrain with typical AOD of 0.3 or less, such as found over much of North America and Eurasia. Performance tends to be poorer for low-AOD conditions near backscattering geometries, where Sea WiFS overestimates AOD, or optically-thick cases of absorbing aerosol, where SeaWiFS tends to underestimate AOD. Second, the SeaWiFS data are compared with midvisible AOD derived from the Moderate Resolution Imaging Spectrometer (MODIS) and Multiangle Imaging Spectroradiometer (MISR). All instruments show similar spatial and seasonal distributions of AOD, although there are regional and seasonal offsets between them. At locations where AERONET data are available, these offsets are largely consistent with the known validation characteristics of each dataset. With the results of this study in mind, the SeaWiFS over-land AOD record should be suitable for quantitative scientific use.

  10. Cloud Droplet Size and Liquid Water Path Retrievals From Zenith Radiance Measurements: Examples From the Atmospheric Radiation Measurement Program and the Aerosol Robotic Network

    NASA Technical Reports Server (NTRS)

    Chiu, J. C.; Marshak, A.; Huang, C.-H.; Varnai, T.; Hogan, R. J.; Giles, D. M.; Holben, B. N.; Knyazikhin, Y.; O'Connor, E. J.; Wiscombe, W. J.

    2012-01-01

    The ground-based Atmospheric Radiation Measurement Program (ARM) and NASA Aerosol Robotic Network (AERONET) routinely monitor clouds using zenith radiances at visible and near-infrared wavelengths. Using the transmittance calculated from such measurements, we have developed a new retrieval method for cloud effective droplet size and conducted extensive tests for non-precipitating liquid water clouds. The underlying principle is to combine a water-absorbing wavelength (i.e. 1640 nm) with a nonwater-absorbing wavelength for acquiring information on cloud droplet size and optical depth. For simulated stratocumulus clouds with liquid water path less than 300 g/sq m and horizontal resolution of 201m, the retrieval method underestimates the mean effective radius by 0.8 m, with a root-mean-squared error of 1.7 m and a relative deviation of 13 %. For actual observations with a liquid water path less than 450 gm.2 at the ARM Oklahoma site during 2007-2008, our 1.5 min-averaged retrievals are generally larger by around 1 m than those from combined ground-based cloud radar and microwave radiometer at a 5min temporal resolution. We also compared our retrievals to those from combined shortwave flux and microwave observations for relatively homogeneous clouds, showing that the bias between these two retrieval sets is negligible, but the error of 2.6 m and the relative deviation of 22% are larger than those found in our simulation case. Finally, the transmittance-based cloud effective droplet radii agree to better than 11% with satellite observations and have a negative bias of 1 m. Overall, the retrieval method provides reasonable cloud effective radius estimates, which can enhance the cloud products of both ARM and AERONET.

  11. A new zenith-looking narrow-band radiometer-based system (ZEN) for dust aerosol optical depth monitoring

    NASA Astrophysics Data System (ADS)

    Almansa, A. Fernando; Cuevas, Emilio; Torres, Benjamín; Barreto, África; García, Rosa D.; Cachorro, Victoria E.; de Frutos, Ángel M.; López, César; Ramos, Ramón

    2017-02-01

    A new zenith-looking narrow-band radiometer based system (ZEN), conceived for dust aerosol optical depth (AOD) monitoring, is presented in this paper. The ZEN system comprises a new radiometer (ZEN-R41) and a methodology for AOD retrieval (ZEN-LUT). ZEN-R41 has been designed to be stand alone and without moving parts, making it a low-cost and robust instrument with low maintenance, appropriate for deployment in remote and unpopulated desert areas. The ZEN-LUT method is based on the comparison of the measured zenith sky radiance (ZSR) with a look-up table (LUT) of computed ZSRs. The LUT is generated with the LibRadtran radiative transfer code. The sensitivity study proved that the ZEN-LUT method is appropriate for inferring AOD from ZSR measurements with an AOD standard uncertainty up to 0.06 for AOD500 nm ˜ 0.5 and up to 0.15 for AOD500 nm ˜ 1.0, considering instrumental errors of 5 %. The validation of the ZEN-LUT technique was performed using data from AErosol RObotic NETwork (AERONET) Cimel Electronique 318 photometers (CE318). A comparison between AOD obtained by applying the ZEN-LUT method on ZSRs (inferred from CE318 diffuse-sky measurements) and AOD provided by AERONET (derived from CE318 direct-sun measurements) was carried out at three sites characterized by a regular presence of desert mineral dust aerosols: Izaña and Santa Cruz in the Canary Islands and Tamanrasset in Algeria. The results show a coefficient of determination (R2) ranging from 0.99 to 0.97, and root mean square errors (RMSE) ranging from 0.010 at Izaña to 0.032 at Tamanrasset. The comparison of ZSR values from ZEN-R41 and the CE318 showed absolute relative mean bias (RMB) < 10 %. ZEN-R41 AOD values inferred from ZEN-LUT methodology were compared with AOD provided by AERONET, showing a fairly good agreement in all wavelengths, with mean absolute AOD differences < 0.030 and R2 higher than 0.97.

  12. Atmospheric Correction at AERONET Locations: A New Science and Validation Data Set

    NASA Technical Reports Server (NTRS)

    Wang, Yujie; Lyapustin, Alexei; Privette, Jeffery L.; Morisette, Jeffery T.; Holben, Brent

    2008-01-01

    This paper describes an AERONET-based Surface Reflectance Validation Network (ASRVN) and its dataset of spectral surface bidirectional reflectance and albedo based on MODIS TERRA and AQUA data. The ASRVN is an operational data collection and processing system. It receives 50x50 square kilometer subsets of MODIS L1B data from MODAPS and AERONET aerosol and water vapor information. Then it performs an accurate atmospheric correction for about 100 AERONET sites based on accurate radiative transfer theory with high quality control of the input data. The ASRVN processing software consists of L1B data gridding algorithm, a new cloud mask algorithm based on a time series analysis, and an atmospheric correction algorithm. The atmospheric correction is achieved by fitting the MODIS top of atmosphere measurements, accumulated for 16-day interval, with theoretical reflectance parameterized in terms of coefficients of the LSRT BRF model. The ASRVN takes several steps to ensure high quality of results: 1) cloud mask algorithm filters opaque clouds; 2) an aerosol filter has been developed to filter residual semi-transparent and sub-pixel clouds, as well as cases with high inhomogeneity of aerosols in the processing area; 3) imposing requirement of consistency of the new solution with previously retrieved BRF and albedo; 4) rapid adjustment of the 16-day retrieval to the surface changes using the last day of measurements; and 5) development of seasonal back-up spectral BRF database to increase data coverage. The ASRVN provides a gapless or near-gapless coverage for the processing area. The gaps, caused by clouds, are filled most naturally with the latest solution for a given pixels. The ASRVN products include three parameters of LSRT model (k(sup L), k(sup G), k(sup V)), surface albedo, NBRF (a normalized BRF computed for a standard viewing geometry, VZA=0 deg., SZA=45 deg.), and IBRF (instantaneous, or one angle, BRF value derived from the last day of MODIS measurement for

  13. Absorption Properties of Mediterranean Aerosols Obtained from Multi-year Ground-based and Satellite Remote Sensing Observations

    NASA Technical Reports Server (NTRS)

    Mallet, M.; Dubovik, O.; Nabat, P.; Dulac, F.; Kahn, R.; Sciare, J.; Paronis, D.; Leon, J. F.

    2013-01-01

    Aerosol absorption properties are of high importance to assess aerosol impact on regional climate. This study presents an analysis of aerosol absorption products obtained over the Mediterranean Basin or land stations in the region from multi-year ground-based AERONET and satellite observations with a focus on the Absorbing Aerosol Optical Depth (AAOD), Single Scattering Albedo (SSA) and their spectral dependence. The AAOD and Absorption Angstrom Exponent (AAE) data set is composed of daily averaged AERONET level 2 data from a total of 22 Mediterranean stations having long time series, mainly under the influence of urban-industrial aerosols and/or soil dust. This data set covers the 17 yr period 1996-2012 with most data being from 2003-2011 (approximately 89 percent of level-2 AAOD data). Since AERONET level-2 absorption products require a high aerosol load (AOD at 440 nm greater than 0.4), which is most often related to the presence of desert dust, we also consider level-1.5 SSA data, despite their higher uncertainty, and filter out data with an Angstrom exponent less than 1.0 in order to study absorption by carbonaceous aerosols. The SSA data set includes both AERONET level-2 and satellite level-3 products. Satellite-derived SSA data considered are monthly level 3 products mapped at the regional scale for the spring and summer seasons that exhibit the largest aerosol loads. The satellite SSA dataset includes the following products: (i) Multi-angle Imaging SpectroRadiometer (MISR) over 2000-2011, (ii) Ozone Monitoring Instrument (OMI) near-UV algorithm over 2004-2010, and (iii) MODerate resolution Imaging Spectroradiometer (MODIS) Deep-Blue algorithm over 2005-2011, derived only over land in dusty conditions. Sun-photometer observations show that values of AAOD at 440 nm vary between 0.024 +/- 0.01 (resp. 0.040 +/- 0.01) and 0.050 +/- 0.01 (0.055 +/- 0.01) for urban (dusty) sites. Analysis shows that the Mediterranean urban-industrial aerosols appear "moderately

  14. Influence of Observed Diurnal Cycles of Aerosol Optical Depth on Aerosol Direct Radiative Effect

    NASA Technical Reports Server (NTRS)

    Arola, A.; Eck, T. F.; Huttunen, J.; Lehtinen, K. E. J.; Lindfors, A. V.; Myhre, G.; Smirinov, A.; Tripathi, S. N.; Yu, H.

    2013-01-01

    The diurnal variability of aerosol optical depth (AOD) can be significant, depending on location and dominant aerosol type. However, these diurnal cycles have rarely been taken into account in measurement-based estimates of aerosol direct radiative forcing (ADRF) or aerosol direct radiative effect (ADRE). The objective of our study was to estimate the influence of diurnal aerosol variability at the top of the atmosphere ADRE estimates. By including all the possible AERONET sites, we wanted to assess the influence on global ADRE estimates. While focusing also in more detail on some selected sites of strongest impact, our goal was to also see the possible impact regionally.We calculated ADRE with different assumptions about the daily AOD variability: taking the observed daily AOD cycle into account and assuming diurnally constant AOD. Moreover, we estimated the corresponding differences in ADREs, if the single AOD value for the daily mean was taken from the the Moderate Resolution Imaging Spectroradiometer (MODIS) Terra or Aqua overpass times, instead of accounting for the true observed daily variability. The mean impact of diurnal AOD variability on 24 h ADRE estimates, averaged over all AERONET sites, was rather small and it was relatively small even for the cases when AOD was chosen to correspond to the Terra or Aqua overpass time. This was true on average over all AERONET sites, while clearly there can be much stronger impact in individual sites. Examples of some selected sites demonstrated that the strongest observed AOD variability (the strongest morning afternoon contrast) does not typically result in a significant impact on 24 h ADRE. In those cases, the morning and afternoon AOD patterns are opposite and thus the impact on 24 h ADRE, when integrated over all solar zenith angles, is reduced. The most significant effect on daily ADRE was induced by AOD cycles with either maximum or minimum AOD close to local noon. In these cases, the impact on 24 h ADRE was

  15. GOCI Yonsei aerosol retrieval version 2 aerosol products: improved algorithm description and error analysis with uncertainty estimation from 5-year validation over East Asia

    NASA Astrophysics Data System (ADS)

    Choi, M.; Kim, J.; Lee, J.; KIM, M.; Park, Y. J.; Holben, B. N.; Eck, T. F.; Li, Z.; Song, C. H.

    2017-12-01

    The Geostationary Ocean Color Imager (GOCI) Yonsei aerosol retrieval (YAER) version 1 algorithm was developed for retrieving hourly aerosol optical depth at 550 nm (AOD) and other subsidiary aerosol optical properties over East Asia. The GOCI YAER AOD showed comparable accuracy compared to ground-based and other satellite-based observations, but still had errors due to uncertainties in surface reflectance and simple cloud masking. Also, it was not capable of near-real-time (NRT) processing because it required a monthly database of each year encompassing the day of retrieval for the determination of surface reflectance. This study describes the improvement of GOCI YAER algorithm to the version 2 (V2) for NRT processing with improved accuracy from the modification of cloud masking, surface reflectance determination using multi-year Rayleigh corrected reflectance and wind speed database, and inversion channels per surface conditions. Therefore, the improved GOCI AOD ( ) is similar with those of Moderate Resolution Imaging Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer Suite (VIIRS) AOD compared to V1 of the YAER algorithm. The shows reduced median bias and increased ratio within range (i.e. absolute expected error range of MODIS AOD) compared to V1 in the validation results using Aerosol Robotic Network (AERONET) AOD ( ) from 2011 to 2016. The validation using the Sun-Sky Radiometer Observation Network (SONET) over China also shows similar results. The bias of error ( is within -0.1 and 0.1 range as a function of AERONET AOD and AE, scattering angle, NDVI, cloud fraction and homogeneity of retrieved AOD, observation time, month, and year. Also, the diagnostic and prognostic expected error (DEE and PEE, respectively) of are estimated. The estimated multiple PEE of GOCI V2 AOD is well matched with actual error over East Asia, and the GOCI V2 AOD over Korea shows higher ratio within PEE compared to over China and Japan. Hourly AOD products based on the

  16. Comparing multiple model-derived aerosol optical properties to spatially collocated ground-based and satellite measurements

    NASA Astrophysics Data System (ADS)

    Ocko, Ilissa B.; Ginoux, Paul A.

    2017-04-01

    Anthropogenic aerosols are a key factor governing Earth's climate and play a central role in human-caused climate change. However, because of aerosols' complex physical, optical, and dynamical properties, aerosols are one of the most uncertain aspects of climate modeling. Fortunately, aerosol measurement networks over the past few decades have led to the establishment of long-term observations for numerous locations worldwide. Further, the availability of datasets from several different measurement techniques (such as ground-based and satellite instruments) can help scientists increasingly improve modeling efforts. This study explores the value of evaluating several model-simulated aerosol properties with data from spatially collocated instruments. We compare aerosol optical depth (AOD; total, scattering, and absorption), single-scattering albedo (SSA), Ångström exponent (α), and extinction vertical profiles in two prominent global climate models (Geophysical Fluid Dynamics Laboratory, GFDL, CM2.1 and CM3) to seasonal observations from collocated instruments (AErosol RObotic NETwork, AERONET, and Cloud-Aerosol Lidar with Orthogonal Polarization, CALIOP) at seven polluted and biomass burning regions worldwide. We find that a multi-parameter evaluation provides key insights on model biases, data from collocated instruments can reveal underlying aerosol-governing physics, column properties wash out important vertical distinctions, and improved models does not mean all aspects are improved. We conclude that it is important to make use of all available data (parameters and instruments) when evaluating aerosol properties derived by models.

  17. The MAC aerosol climatology

    NASA Astrophysics Data System (ADS)

    Kinne, S.

    2015-12-01

    Aerosol is highly diverse in space and time. And many different aerosol optical properties are needed (consistent to each other) for the determination of radiative effects. To sidestep a complex (and uncertain) aerosol treatment (emission to mass to optics) a monthly gridded climatology for aerosol properties has been developed. This MPI Aerosol Climatology (MAC) is strongly tied to observational statistics for aerosol column optical properties by AERONET (over land) and by MAN (over oceans). To fill spatial gaps, to address decadal change and to address vertical variability, these sparsely distributed local data are extended with central data of an ensemble of output from global models with complex aerosol modules. This data merging in performed for aerosol column amount (AOD), for aerosol size (AOD,fine) and for aerosol absorption (AAOD). The resulting MAC aerosol climatology is an example for the combination of high quality local observations with spatial, temporal and vertical context from model simulations.

  18. Quantifying organic aerosol single scattering albedo over tropical biomass burning regions using ground-based observation

    NASA Astrophysics Data System (ADS)

    Chu, J. E.

    2016-12-01

    Despite growing evidence of light-absorbing organic aerosols (OAs), OA light absorption has been poorly understood due to difficulties in aerosol light absorption measurements. In this study, we developed an empirical method to quantify OA single scattering albedo (SSA), the ratio of light scattering to extinction, using ground-based Aerosol Robotic Network (AERONET) observation. Our method includes partitioning fine-mode aerosol optical depth (fAOD) to individual aerosol's optical depth (AOD), separating black carbon and OA absorption aerosol optical depths, and finally binding OA SSA and sulfate+nitrate AOD. Our best estimate of OA SSA over tropical biomass burning region is 0.91 at 550nm with a range of 0.82-0.93. It implies the common OA SSA values of 0.96-1.0 in aerosol CTMs and GCMs significantly underrepresent OA light absorption. Model experiments with prescribed OA SSA showed that the enhanced absorption of solar radiation due to light absorbing OA yields global mean radiative forcing is +0.09 Wm-2 at the TOA, +0.21 Wm-2 at the atmosphere, and -0.12 Wm-2 at the surface. Compared to the previous assessment of OA radiative forcing reported in AeroCom II project, our result indicate that OA light absorption causes TOA radiative forcing by OA to change from negative (i.e., cooling effect) to positive (warming effect).

  19. Increased aerosol content in the atmosphere over Ukraine during summer 2010

    NASA Astrophysics Data System (ADS)

    Galytska, Evgenia; Danylevsky, Vassyl; Hommel, René; Burrows, John P.

    2018-04-01

    In this paper we assessed the influence of biomass burning during forest fires throughout summer (1 June-31 August) 2010 on aerosol abundance, dynamics, and its properties over Ukraine. We also considered influences and effects over neighboring countries: European Russia, Estonia, Belarus, Poland, Moldova, and Romania. We used MODIS satellite instrument data to study fire distribution. We also used ground-based remote measurements from the international sun photometer network AERONET plus MODIS and CALIOP satellite instrument data to determine the aerosol content and optical properties in the atmosphere over Eastern Europe. We applied the HYSPLIT model to investigate atmospheric dynamics and model pathways of particle transport. As with previous studies, we found that the highest aerosol content was observed over Moscow in the first half of August 2010 due to the proximity of the most active fires. Large temporal variability of the aerosol content with pronounced pollution peaks during 7-17 August was observed at the Ukrainian (Kyiv and Sevastopol), Belarusian (Minsk), Estonian (Toravere), and Romanian (Bucharest) AERONET sites. We analyzed aerosol spatiotemporal distribution over Ukraine using MODIS AOD 550 nm and further compared with the Kyiv AERONET site sun photometer measurements; we also compared CALIOP AOD 532 nm with MODIS AOD data. We analyzed vertical distribution of aerosol extinction at 532 nm, retrieved from CALIOP measurements, for the territory of Ukraine at locations where high AOD values were observed during intense fires. We estimated the influence of fires on the spectral single scattering albedo, size distribution, and complex refractive indices using Kyiv AERONET measurements performed during summer 2010. In this study we showed that the maximum AOD in the atmosphere over Ukraine recorded in summer 2010 was caused by particle transport from the forest fires in Russia. Those fires caused the highest AOD 500 nm over the Kyiv site, which in

  20. Spaceborne Remote Sensing of Aerosol Type: Global Distribution, Model Evaluation and Translation into Chemical Speciation

    NASA Astrophysics Data System (ADS)

    Kacenelenbogen, M. S.; Tan, Q.; Johnson, M. S.; Burton, S. P.; Redemann, J.; Hasekamp, O. P.; Dawson, K. W.; Hair, J. W.; Ferrare, R. A.; Butler, C. F.; Holben, B. N.; Beyersdorf, A. J.; Ziemba, L. D.; Froyd, K. D.; Dibb, J. E.; Shingler, T.; Sorooshian, A.; Jimenez, J. L.; Campuzano Jost, P.; Jacob, D.; Kim, P. S.; Travis, K.; Lacagnina, C.

    2016-12-01

    It is essential to evaluate and refine aerosol classification methods applied to passive satellite remote sensing. We have developed an aerosol classification algorithm (called Specified Clustering and Mahalanobis Classification, SCMC) that assigns an aerosol type to multi-parameter retrievals by spaceborne, airborne or ground-based passive remote sensing instruments [1]. The aerosol types identified by our scheme are pure dust, polluted dust, urban-industrial/developed economy, urban-industrial/developing economy, dark biomass smoke, light biomass smoke and pure marine. We apply the SCMC method to inversions from the ground-based AErosol RObotic NETwork (AERONET [2]) and retrievals from the space-borne Polarization and Directionality of Earth's Reflectances instrument (POLDER, [3]). The POLDER retrievals that we use differ from the standard POLDER retrievals [4] as they make full use of multi-angle, multispectral polarimetric data [5]. We analyze agreement in the aerosol types inferred from both AERONET and POLDER and evaluate GEOS-Chem [6] simulations over the globe. Finally, we use in-situ observations from the SEAC4RS airborne field experiment to bridge the gap between remote sensing-inferred qualitative SCMC aerosol types and their corresponding quantitative chemical speciation. We apply the SCMC method to airborne in-situ observations from the NASA Langley Aerosol Research Group Experiment (LARGE, [7]) and the Differential Aerosol Sizing and Hygroscopicity Spectrometer Probe (DASH-SP, [8]) instruments; we then relate each coarsely defined SCMC type to a sum of percentage of individual aerosol species, using in-situ observations from the Particle Analysis by Laser Mass Spectrometry (PALMS, [9]), the Soluble Acidic Gases and Aerosol (SAGA, [10]), and the High - Resolution Time - of - Flight Aerosol Mass Spectrometer (HR ToF AMS, [11]). [1] Russell P. B., et al., JGR, 119.16 (2014) [2] Holben B. N., et al., RSE, 66.1 (1998) [3] Tanré D., et al., AMT, 4.7 (2011

  1. Sensitivity of Multiangle Imaging to the Optical and Microphysical Properties of Biomass Burning Aerosols

    NASA Technical Reports Server (NTRS)

    Chen, Wei-Ting; Kahn, Ralph A.; Nelson, David; Yau, Kevin; Seinfeld, John H.

    2008-01-01

    The treatment of biomass burning (BB) carbonaceous particles in the Multiangle Imaging SpectroRadiometer (MISR) Standard Aerosol Retrieval Algorithm is assessed, and algorithm refinements are suggested, based on a theoretical sensitivity analysis and comparisons with near-coincident AERONET measurements at representative BB sites. Over the natural ranges of BB aerosol microphysical and optical properties observed in past field campaigns, patterns of retrieved Aerosol Optical Depth (AOD), particle size, and single scattering albedo (SSA) are evaluated. On the basis of the theoretical analysis, assuming total column AOD of 0.2, over a dark, uniform surface, MISR can distinguish two to three groups in each of size and SSA, except when the assumed atmospheric particles are significantly absorbing (mid-visible SSA approx.0.84), or of medium sizes (mean radius approx.0.13 pin); sensitivity to absorbing, medium-large size particles increases considerably when the assumed column AOD is raised to 0.5. MISR Research Aerosol Retrievals confirm the theoretical results, based on coincident AERONET inversions under BB-dominated conditions. When BB is externally mixed with dust in the atmosphere, dust optical model and surface reflection uncertainties, along with spatial variability, contribute to differences between the Research Retrievals and AERONET. These results suggest specific refinements to the MISR Standard Aerosol Algorithm complement of component particles and mixtures. They also highlight the importance for satellite aerosol retrievals of surface reflectance characterization, with accuracies that can be difficult to achieve with coupled surface-aerosol algorithms in some higher AOD situations.

  2. An effective inversion algorithm for retrieving bimodal aerosol particle size distribution from spectral extinction data

    NASA Astrophysics Data System (ADS)

    He, Zhenzong; Qi, Hong; Yao, Yuchen; Ruan, Liming

    2014-12-01

    The Ant Colony Optimization algorithm based on the probability density function (PDF-ACO) is applied to estimate the bimodal aerosol particle size distribution (PSD). The direct problem is solved by the modified Anomalous Diffraction Approximation (ADA, as an approximation for optically large and soft spheres, i.e., χ⪢1 and |m-1|⪡1) and the Beer-Lambert law. First, a popular bimodal aerosol PSD and three other bimodal PSDs are retrieved in the dependent model by the multi-wavelength extinction technique. All the results reveal that the PDF-ACO algorithm can be used as an effective technique to investigate the bimodal PSD. Then, the Johnson's SB (J-SB) function and the modified beta (M-β) function are employed as the general distribution function to retrieve the bimodal PSDs under the independent model. Finally, the J-SB and M-β functions are applied to recover actual measurement aerosol PSDs over Beijing and Shanghai obtained from the aerosol robotic network (AERONET). The numerical simulation and experimental results demonstrate that these two general functions, especially the J-SB function, can be used as a versatile distribution function to retrieve the bimodal aerosol PSD when no priori information about the PSD is available.

  3. Effect of MODIS Terra Radiometric Calibration Improvements on Collection 6 Deep Blue Aerosol Products: Validation and Terra/Aqua Consistency

    NASA Technical Reports Server (NTRS)

    Sayer, A. M.; Hsu, N. C.; Bettenhausen, C.; Jeong, M.-J.; Meister, G.

    2015-01-01

    The Deep Blue (DB) algorithm's primary data product is midvisible aerosol optical depth (AOD). DB applied to Moderate Resolution Imaging Spectroradiometer (MODIS) measurements provides a data record since early 2000 for MODIS Terra and mid-2002 for MODIS Aqua. In the previous data version (Collection 5, C5), DB production from Terra was halted in 2007 due to sensor degradation; the new Collection 6 (C6) has both improved science algorithms and sensor radiometric calibration. This includes additional calibration corrections developed by the Ocean Biology Processing Group to address MODIS Terra's gain, polarization sensitivity, and detector response versus scan angle, meaning DB can now be applied to the whole Terra record. Through validation with Aerosol Robotic Network (AERONET) data, it is shown that the C6 DB Terra AOD quality is stable throughout the mission to date. Compared to the C5 calibration, in recent years the RMS error compared to AERONET is smaller by approximately 0.04 over bright (e.g., desert) and approximately 0.01-0.02 over darker (e.g., vegetated) land surfaces, and the fraction of points in agreement with AERONET within expected retrieval uncertainty higher by approximately 10% and approximately 5%, respectively. Comparisons to the Aqua C6 time series reveal a high level of correspondence between the two MODIS DB data records, with a small positive (Terra-Aqua) average AOD offset <0.01. The analysis demonstrates both the efficacy of the new radiometric calibration efforts and that the C6 MODIS Terra DB AOD data remain stable (to better than 0.01 AOD) throughout the mission to date, suitable for quantitative scientific analyses.

  4. An "In Situ" Calibration Correction Procedure (KCICLO) Based on AOD Diurnal Cycle: Application to AERONET-El Arenosillo (Spain) AOD Data Series

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cachorro, V. E.; Toledano, C.; Berjon, A.

    Aerosol optical depth (AOD) very often shows a distinct diurnal cycle pattern, which seems to be an artifact resulting from an incorrect calibration (or an equivalent effect, such as filter degradation). The shape of this fictitious AOD diurnal cycle varies as the inverse of the solar air mass (m) and the magnitude of the effect is greatest at midday. The observation of this effect is not easy at many field stations, and only those stations with good weather conditions permit an easier detection and the possibility of its correction. By taking advantage of this dependence on the air mass, wemore » propose an improved “in situ” correction-calibration procedure to AOD measured data series. The method is named KCICLO because the determination of a constant K and the behavior of AOD as a cycle (ciclo, in Spanish). We estimate it has an accuracy of 0.2–0.5% for the calibration ratio constant K, or 0.002–0.005 in AOD at field stations. Although the KCICLO is an “in situ” calibration method, we recommend it to be used as an AOD correction method for field stations. At high-altitude sites, it may be used independently of the classical Langley method (CLM). However, we also recommend it to be used as a complement to CLM, improving it considerably. The application of this calibration correction method to the nearly 5 year AOD data series at El Arenosillo (Huelva, southwestern Spain) station belonging to Aerosol Robotic Network (AERONET)-PHOTONS shows that 8 (50%) of 16 filters of the four analyzed Sun photometers were outside of the 0.02 uncertainty of AERONET specification. The largest departures reached values of 0.06. The results show the efficiency of the method and a significant improvement over other “in situ” methods, with no other information required beyond the same AOD data.« less

  5. Lidar-Radiometer Inversion Code (LIRIC) for the Retrieval of Vertical Aerosol Properties from Combined Lidar Radiometer Data: Development and Distribution in EARLINET

    NASA Technical Reports Server (NTRS)

    Chaikovsky, A.; Dubovik, O.; Holben, Brent N.; Bril, A.; Goloub, P.; Tanre, D.; Pappalardo, G.; Wandinger, U.; Chaikovskaya, L.; Denisov, S.; hide

    2015-01-01

    This paper presents a detailed description of LIRIC (LIdar-Radiometer Inversion Code)algorithm for simultaneous processing of coincident lidar and radiometric (sun photometric) observations for the retrieval of the aerosol concentration vertical profiles. As the lidar radiometric input data we use measurements from European Aerosol Re-search Lidar Network (EARLINET) lidars and collocated sun-photometers of Aerosol Robotic Network (AERONET). The LIRIC data processing provides sequential inversion of the combined lidar and radiometric data by the estimations of column-integrated aerosol parameters from radiometric measurements followed by the retrieval of height-dependent concentrations of fine and coarse aerosols from lidar signals using integrated column characteristics of aerosol layer as a priori constraints. The use of polarized lidar observations allows us to discriminate between spherical and non-spherical particles of the coarse aerosol mode. The LIRIC software package was implemented and tested at a number of EARLINET stations. Inter-comparison of the LIRIC-based aerosol retrievals was performed for the observations by seven EARLNET lidars in Leipzig, Germany on 25 May 2009. We found close agreement between the aerosol parameters derived from different lidars that supports high robustness of the LIRIC algorithm. The sensitivity of the retrieval results to the possible reduction of the available observation data is also discussed.

  6. A Spatio-Temporal Approach for Global Validation and Analysis of MODIS Aerosol Products

    NASA Technical Reports Server (NTRS)

    Ichoku, Charles; Chu, D. Allen; Mattoo, Shana; Kaufman, Yoram J.; Remer, Lorraine A.; Tanre, Didier; Slutsker, Ilya; Holben, Brent N.; Lau, William K. M. (Technical Monitor)

    2001-01-01

    With the launch of the MODIS sensor on the Terra spacecraft, new data sets of the global distribution and properties of aerosol are being retrieved, and need to be validated and analyzed. A system has been put in place to generate spatial statistics (mean, standard deviation, direction and rate of spatial variation, and spatial correlation coefficient) of the MODIS aerosol parameters over more than 100 validation sites spread around the globe. Corresponding statistics are also computed from temporal subsets of AERONET-derived aerosol data. The means and standard deviations of identical parameters from MOMS and AERONET are compared. Although, their means compare favorably, their standard deviations reveal some influence of surface effects on the MODIS aerosol retrievals over land, especially at low aerosol loading. The direction and rate of spatial variation from MODIS are used to study the spatial distribution of aerosols at various locations either individually or comparatively. This paper introduces the methodology for generating and analyzing the data sets used by the two MODIS aerosol validation papers in this issue.

  7. An Aerosol Extinction-to-Backscatter Ratio Database Derived from the NASA Micro-Pulse Lidar Network: Applications for Space-based Lidar Observations

    NASA Technical Reports Server (NTRS)

    Welton, Ellsworth J.; Campbell, James R.; Spinhime, James D.; Berkoff, Timothy A.; Holben, Brent; Tsay, Si-Chee; Bucholtz, Anthony

    2004-01-01

    Backscatter lidar signals are a function of both backscatter and extinction. Hence, these lidar observations alone cannot separate the two quantities. The aerosol extinction-to-backscatter ratio, S, is the key parameter required to accurately retrieve extinction and optical depth from backscatter lidar observations of aerosol layers. S is commonly defined as 4*pi divided by the product of the single scatter albedo and the phase function at 180-degree scattering angle. Values of S for different aerosol types are not well known, and are even more difficult to determine when aerosols become mixed. Here we present a new lidar-sunphotometer S database derived from Observations of the NASA Micro-Pulse Lidar Network (MPLNET). MPLNET is a growing worldwide network of eye-safe backscatter lidars co-located with sunphotometers in the NASA Aerosol Robotic Network (AERONET). Values of S for different aerosol species and geographic regions will be presented. A framework for constructing an S look-up table will be shown. Look-up tables of S are needed to calculate aerosol extinction and optical depth from space-based lidar observations in the absence of co-located AOD data. Applications for using the new S look-up table to reprocess aerosol products from NASA's Geoscience Laser Altimeter System (GLAS) will be discussed.

  8. Comparison of C5 and C6 Aqua-MODIS Dark Target Aerosol Validation

    NASA Technical Reports Server (NTRS)

    Munchak, Leigh A.; Levy, Robert C.; Mattoo, Shana

    2014-01-01

    We compare C5 and C6 validation to compare the C6 10 km aerosol product against the well validated and trusted aerosol product on global and regional scales. Only the 10 km aerosol product is evaluated in this study, validation of the new C6 3 km aerosol product still needs to be performed. Not all of the time series has processed yet for C5 or C6, and the years processed for the 2 products is not exactly the same (this work is preliminary!). To reduce the impact of outlier observations, MODIS is spatially averaged within 27.5 km of the AERONET site, and AERONET is temporatally averaged within 30 minutes of the MODIS overpass time. Only high quality (QA = 3 over land, QA greater than 0 over ocean) pixels are included in the mean.

  9. Dependence of columnar aerosol size distribution, optical properties, and chemical components on regional transport in Beijing

    NASA Astrophysics Data System (ADS)

    Wang, Shuo; Zhao, Weixiong; Xu, Xuezhe; Fang, Bo; Zhang, Qilei; Qian, Xiaodong; Zhang, Weijun; Chen, Weidong; Pu, Wei; Wang, Xin

    2017-11-01

    Seasonal dependence of the columnar aerosol optical and chemical properties on regional transport in Beijing over 10 years (from January 2005 to December 2014) were analyzed by using the ground-based remote sensing combined with backward trajectory analysis. Daily air mass backward trajectories terminated in Beijing were computed with HYSPLIT-4 model and were categorized into five clusters. The columnar mass concentrations of black carbon (BC), brown carbon (BrC), dust (DU), aerosol water content (AW), and ammonium sulfate like aerosol (AS) of each cluster were retrieved from the optical data obtained from the Aerosol Robotic NETwork (AERONET) with five-component model. It was found that the columnar aerosol properties in different seasons were changed, and they were related to the air mass origins. In spring, aerosol was dominated by coarse particles. Summer was characterized by higher single scattering albedo (SSA), lower real part of complex refractive index (n), and obvious hygroscopic growth due to humid air from the south. During autumn and winter, there was an observable increase in absorption aerosol optical thickness (AAOT) and the imaginary part of complex refraction (k), with high levels of retrieved BC and BrC. However, concentrations of BC showed less dependence on the clusters during the two seasons owing to the widely spread coal heating in north China.

  10. Retrieval of aerosol optical properties using MERIS observations: Algorithm and some first results.

    PubMed

    Mei, Linlu; Rozanov, Vladimir; Vountas, Marco; Burrows, John P; Levy, Robert C; Lotz, Wolfhardt

    2017-08-01

    The MEdium Resolution Imaging Spectrometer (MERIS) instrument on board ESA Envisat made measurements from 2002 to 2012. Although MERIS was limited in spectral coverage, accurate Aerosol Optical Thickness (AOT) from MERIS data are retrieved by using appropriate additional information. We introduce a new AOT retrieval algorithm for MERIS over land surfaces, referred to as eXtensible Bremen AErosol Retrieval (XBAER). XBAER is similar to the "dark-target" (DT) retrieval algorithm used for Moderate-resolution Imaging Spectroradiometer (MODIS), in that it uses a lookup table (LUT) to match to satellite-observed reflectance and derive the AOT. Instead of a global parameterization of surface spectral reflectance, XBAER uses a set of spectral coefficients to prescribe surface properties. In this manner, XBAER is not limited to dark surfaces (vegetation) and retrieves AOT over bright surface (desert, semiarid, and urban areas). Preliminary validation of the MERIS-derived AOT and the ground-based Aerosol Robotic Network (AERONET) measurements yield good agreement, the resulting regression equation is y = (0.92 × ± 0.07) + (0.05 ± 0.01) and Pearson correlation coefficient of R = 0.78. Global monthly means of AOT have been compared from XBAER, MODIS and other satellite-derived datasets.

  11. Variability of Mediterranean aerosols properties at three regional background sites in the western Mediterranean Basin

    NASA Astrophysics Data System (ADS)

    Sicard, Michaël.; Totems, Julien; Barragan, Rubén.; Dulac, François; Mallet, Marc; Comerón, Adolfo; Alados-Arboledas, Lucas; Augustin, Patrick; Chazette, Patrick; Léon, Jean-François; Olmo-Reyes, Francisco José; Renard, Jean-Baptiste; Rocadenbosch, Francesc

    2014-10-01

    In the framework of the project ChArMEx (the Chemistry-Aerosol Mediterranean Experiment, http://charmex.lsce.ipsl.fr/), the variability of aerosol optical, microphysical and radiative properties is examined in three regional background sites on a southwest - northeast (SW-NE) straight line in the middle of the western Mediterranean Basin (WMB). The three sites are on the northward transport pathway of African dust: - Ersa, Corsica Island, France (43.00ºN, 9.36ºW, 80 m a.s.l), - Palma de Mallorca, Mallorca Island, Spain (39.55ºN, 2.62ºE, 10 m a.s.l) and - Alborán, Alboran Island, Spain (35.94ºN, 3.04ºW, 15 m a.s.l). AERONET (AErosol RObotic NETwork) sun-photometer products are mainly used. A preliminary analysis shows that at Ersa and Palma sites the annual aerosol optical depth (AOD) has a similar trend with a peak around 0.2 in July. The winter/spring AOD is lower in Palma than in Ersa, while it is reverse in summer/autumn. The aerosol particle size distribution (and the coarse mode fraction) shows clearly the SW-NE gradient with a decreasing coarse mode peak (and a decreasing coarse mode fraction from 0.5 - 0.35 - 0.2 in July) along the axis Alborán - Palma de Mallorca - Ersa. In addition to the seasonal and annual variability analysis, the analysis of AERONET products is completed with a large variety of ground-based and sounding balloons remote sensing and in situ instruments during the Special Observation Period (SOP) of the ADRIMED campaign in June 2013. The second part of the presentation will focus on the comparison of the observations at Palma de Mallorca and Ersa of the same long-range transported airmasses. The observations include lidar vertical profiles, balloon borne OPC (Optical Particle Counter) and MSG/SEVIRI AOD, among others.

  12. Simplified aerosol modeling for variational data assimilation

    NASA Astrophysics Data System (ADS)

    Huneeus, N.; Boucher, O.; Chevallier, F.

    2009-11-01

    We have developed a simplified aerosol model together with its tangent linear and adjoint versions for the ultimate aim of optimizing global aerosol and aerosol precursor emission using variational data assimilation. The model was derived from the general circulation model LMDz; it groups together the 24 aerosol species simulated in LMDz into 4 species, namely gaseous precursors, fine mode aerosols, coarse mode desert dust and coarse mode sea salt. The emissions have been kept as in the original model. Modifications, however, were introduced in the computation of aerosol optical depth and in the processes of sedimentation, dry and wet deposition and sulphur chemistry to ensure consistency with the new set of species and their composition. The simplified model successfully manages to reproduce the main features of the aerosol distribution in LMDz. The largest differences in aerosol load are observed for fine mode aerosols and gaseous precursors. Differences between the original and simplified models are mainly associated to the new deposition and sedimentation velocities consistent with the definition of species in the simplified model and the simplification of the sulphur chemistry. Furthermore, simulated aerosol optical depth remains within the variability of monthly AERONET observations for all aerosol types and all sites throughout most of the year. Largest differences are observed over sites with strong desert dust influence. In terms of the daily aerosol variability, the model is less able to reproduce the observed variability from the AERONET data with larger discrepancies in stations affected by industrial aerosols. The simplified model however, closely follows the daily simulation from LMDz. Sensitivity analyses with the tangent linear version show that the simplified sulphur chemistry is the dominant process responsible for the strong non-linearity of the model.

  13. Optical properties of boreal region biomass burning aerosols in central Alaska and seasonal variation of aerosol optical depth at an Arctic coastal site

    Treesearch

    T.F. Eck; B.N. Holben; J.S. Reid; A. Sinyuk; E.J. Hyer; N.T. O' Neill; G.E. Shaw; J.R. Vande Castle; F.S. Chapin; O. Dubovik; A. Smirnov; E. Vermote; J.S. Schafer; D. Giles; I. Slutsker; M. Sorokine; W.W. Newcomb

    2009-01-01

    Long-term monitoring of aerosol optical properties at a boreal forest AERONET site in interior Alaska was performed from 1994 through 2008 (excluding winter), Large interannual variability was observed, with some years showing near background aerosol optical depth (AOD) levels while 2004 and 2005 had August monthly means similar in magnitude to peak months at major...

  14. Highlights from 4STAR Sky-Scanning Retrievals of Aerosol Intensive Optical Properties from Multiple Field Campaigns with Detailed Comparisons of SSA Reported During SEAC4RS

    NASA Technical Reports Server (NTRS)

    Dunagan, Stephen E.

    2016-01-01

    The 4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research) instrument combines airborne sun tracking capabilities of the Ames Airborne Tracking Sun Photometer (AATS-14) with AERONET (Aerosol Robotic Network)-like sky-scanning capability and adds state-of-the-art fiber-coupled grating spectrometry to yield hyperspectral measurements of direct solar irradiance and angularly resolved sky radiance. The combination of sun-tracking and sky-scanning capability enables retrievals of wavelength-dependent aerosol optical depth (AOD), mode-resolved aerosol size distribution (SD), asphericity, and complex refractive index, and thus also the scattering phase function, asymmetry parameter, single-scattering albedo (SSA), and absorption aerosol optical thickness (AAOT). From 2012 to 2014 4STAR participated in four major field campaigns: the U.S. Dept. of Energy's TCAP (Two-Column Aerosol Project) I & II campaigns, and NASA's SEAC4RS (Studies of Emissions, Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys) and ARISE (Arctic Radiation - IceBridge Sea & Ice Experiment) campaigns. Establishing a strong performance record, 4STAR operated successfully on all flights conducted during each of these campaigns. Sky radiance spectra from scans in either constant azimuth (principal plane) or constant zenith angle (almucantar) were interspersed with direct beam measurements during level legs. During SEAC4RS and ARISE, 4STAR airborne measurements were augmented with flight-level albedo from the collocated Shortwave Spectral Flux Radiometer (SSFR) providing improved specification of below-aircraft radiative conditions for the retrieval. Calibrated radiances and retrieved products will be presented with particular emphasis on detailed comparisons of ambient SSA retrievals and measurements during SEAC4RS from 4STAR, AERONET, HSRL2 (High Spectral Resolution Lidar), and from in situ measurements.

  15. Smoke Over Haze: Comparative Analysis of Satellite, Surface Radiometer and Airborne In-Situ Measurements of Aerosol Optical Properties and Radiative Forcing Over the Eastern US

    NASA Astrophysics Data System (ADS)

    vant-Hull, B.; Li, Z.; Taubman, B.; Marufu, L.; Levy, R.; Chang, F.; Doddridge, B.; Dickerson, R.

    2004-12-01

    In July 2002 Canadian forest fires produced a major smoke episode that blanketed the U.S. East Coast. Properties of the smoke aerosol were measured in-situ from aircraft, complementing operational AERONET and MODIS remote sensed aerosol retrievals. This study compares single scattering albedo and phase function derived from the in-situ measurements and AERONET retrievals in order to evaluate their consistency for application to satellite retrievals of optical depth and radiative forcing. These optical properties were combined with MODIS reflectance observations to calculate optical depth. The use of AERONET optical properties yielded optical depths 2% to 16% lower than those directly measured by AERONET. The use of in-situ derived optical properties resulted in optical depths 22% to 43% higher than AERONET measurements. These higher optical depths are attributed primarily to the higher absorption measured in-situ, which is roughly twice that retrieved by AERONET. The resulting satellite retrieved optical depths were in turn used to calculate integrated radiative forcing at both the surface and TOA. Comparisons to surface (SurfRad and ISIS) and to satellite (CERES) broadband radiometer measurements demonstrate that the use of optical properties derived from the aircraft measurements provided a better broadband forcing estimate (21% error) than those derived from AERONET (33% error). Thus AERONET derived optical properties produced better fits to optical depth measurements, while in-situ properties resulted in better fits to forcing measurements. These apparent inconsistencies underline the significant challenges facing the aerosol community in achieving column closure between narrow and broadband measurements and calculations.

  16. Retrieval of aerosol optical depth from surface solar radiation measurements using machine learning algorithms, non-linear regression and a radiative transfer-based look-up table

    NASA Astrophysics Data System (ADS)

    Huttunen, Jani; Kokkola, Harri; Mielonen, Tero; Esa Juhani Mononen, Mika; Lipponen, Antti; Reunanen, Juha; Vilhelm Lindfors, Anders; Mikkonen, Santtu; Erkki Juhani Lehtinen, Kari; Kouremeti, Natalia; Bais, Alkiviadis; Niska, Harri; Arola, Antti

    2016-07-01

    In order to have a good estimate of the current forcing by anthropogenic aerosols, knowledge on past aerosol levels is needed. Aerosol optical depth (AOD) is a good measure for aerosol loading. However, dedicated measurements of AOD are only available from the 1990s onward. One option to lengthen the AOD time series beyond the 1990s is to retrieve AOD from surface solar radiation (SSR) measurements taken with pyranometers. In this work, we have evaluated several inversion methods designed for this task. We compared a look-up table method based on radiative transfer modelling, a non-linear regression method and four machine learning methods (Gaussian process, neural network, random forest and support vector machine) with AOD observations carried out with a sun photometer at an Aerosol Robotic Network (AERONET) site in Thessaloniki, Greece. Our results show that most of the machine learning methods produce AOD estimates comparable to the look-up table and non-linear regression methods. All of the applied methods produced AOD values that corresponded well to the AERONET observations with the lowest correlation coefficient value being 0.87 for the random forest method. While many of the methods tended to slightly overestimate low AODs and underestimate high AODs, neural network and support vector machine showed overall better correspondence for the whole AOD range. The differences in producing both ends of the AOD range seem to be caused by differences in the aerosol composition. High AODs were in most cases those with high water vapour content which might affect the aerosol single scattering albedo (SSA) through uptake of water into aerosols. Our study indicates that machine learning methods benefit from the fact that they do not constrain the aerosol SSA in the retrieval, whereas the LUT method assumes a constant value for it. This would also mean that machine learning methods could have potential in reproducing AOD from SSR even though SSA would have changed during

  17. Precipitable water vapour content from ESR/SKYNET sun-sky radiometers: validation against GNSS/GPS and AERONET over three different sites in Europe

    NASA Astrophysics Data System (ADS)

    Campanelli, Monica; Mascitelli, Alessandra; Sanò, Paolo; Diémoz, Henri; Estellés, Victor; Federico, Stefano; Iannarelli, Anna Maria; Fratarcangeli, Francesca; Mazzoni, Augusto; Realini, Eugenio; Crespi, Mattia; Bock, Olivier; Martínez-Lozano, Jose A.; Dietrich, Stefano

    2018-01-01

    The estimation of the precipitable water vapour content (W) with high temporal and spatial resolution is of great interest to both meteorological and climatological studies. Several methodologies based on remote sensing techniques have been recently developed in order to obtain accurate and frequent measurements of this atmospheric parameter. Among them, the relative low cost and easy deployment of sun-sky radiometers, or sun photometers, operating in several international networks, allowed the development of automatic estimations of W from these instruments with high temporal resolution. However, the great problem of this methodology is the estimation of the sun-photometric calibration parameters. The objective of this paper is to validate a new methodology based on the hypothesis that the calibration parameters characterizing the atmospheric transmittance at 940 nm are dependent on vertical profiles of temperature, air pressure and moisture typical of each measurement site. To obtain the calibration parameters some simultaneously seasonal measurements of W, from independent sources, taken over a large range of solar zenith angle and covering a wide range of W, are needed. In this work yearly GNSS/GPS datasets were used for obtaining a table of photometric calibration constants and the methodology was applied and validated in three European ESR-SKYNET network sites, characterized by different atmospheric and climatic conditions: Rome, Valencia and Aosta. Results were validated against the GNSS/GPS and AErosol RObotic NETwork (AERONET) W estimations. In both the validations the agreement was very high, with a percentage RMSD of about 6, 13 and 8 % in the case of GPS intercomparison at Rome, Aosta and Valencia, respectively, and of 8 % in the case of AERONET comparison in Valencia. Analysing the results by W classes, the present methodology was found to clearly improve W estimation at low W content when compared against AERONET in terms of % bias, bringing the

  18. Remote sensing for studying atmospheric aerosols in Malaysia

    NASA Astrophysics Data System (ADS)

    Kanniah, Kasturi D.; Kamarul Zaman, Nurul A. F.

    2015-10-01

    The aerosol system is Southeast Asia is complex and the high concentrations are due to population growth, rapid urbanization and development of SEA countries. Nevertheless, only a few studies have been carried out especially at large spatial extent and on a continuous basis to study atmospheric aerosols in Malaysia. In this review paper we report the use of remote sensing data to study atmospheric aerosols in Malaysia and document gaps and recommend further studies to bridge the gaps. Satellite data have been used to study the spatial and seasonal patterns of aerosol optical depth (AOD) in Malaysia. Satellite data combined with AERONET data were used to delineate different types and sizes of aerosols and to identify the sources of aerosols in Malaysia. Most of the aerosol studies performed in Malaysia was based on station-based PM10 data that have limited spatial coverage. Thus, satellite data have been used to extrapolate and retrieve PM10 data over large areas by correlating remotely sensed AOD with ground-based PM10. Realising the critical role of aerosols on radiative forcing numerous studies have been conducted worldwide to assess the aerosol radiative forcing (ARF). Such studies are yet to be conducted in Malaysia. Although the only source of aerosol data covering large region in Malaysia is remote sensing, satellite observations are limited by cloud cover, orbital gaps of satellite track, etc. In addition, relatively less understanding is achieved on how the atmospheric aerosol interacts with the regional climate system. These gaps can be bridged by conducting more studies using integrated approach of remote sensing, AERONET and ground based measurements.

  19. Validation of aerosol optical depth uncertainties within the ESA Climate Change Initiative

    NASA Astrophysics Data System (ADS)

    Stebel, Kerstin; Povey, Adam; Popp, Thomas; Capelle, Virginie; Clarisse, Lieven; Heckel, Andreas; Kinne, Stefan; Klueser, Lars; Kolmonen, Pekka; de Leeuw, Gerrit; North, Peter R. J.; Pinnock, Simon; Sogacheva, Larisa; Thomas, Gareth; Vandenbussche, Sophie

    2017-04-01

    Uncertainty is a vital component of any climate data record as it provides the context with which to understand the quality of the data and compare it to other measurements. Therefore, pixel-level uncertainties are provided for all aerosol products that have been developed in the framework of the Aerosol_cci project within ESA's Climate Change Initiative (CCI). Validation of these estimated uncertainties is necessary to demonstrate that they provide a useful representation of the distribution of error. We propose a technique for the statistical validation of AOD (aerosol optical depth) uncertainty by comparison to high-quality ground-based observations and present results for ATSR (Along Track Scanning Radiometer) and IASI (Infrared Atmospheric Sounding Interferometer) data records. AOD at 0.55 µm and its uncertainty was calculated with three AOD retrieval algorithms using data from the ATSR instruments (ATSR-2 (1995-2002) and AATSR (2002-2012)). Pixel-level uncertainties were calculated through error propagation (ADV/ASV, ORAC algorithms) or parameterization of the error's dependence on the geophysical retrieval conditions (SU algorithm). Level 2 data are given as super-pixels of 10 km x 10 km. As validation data, we use direct-sun observations of AOD from the AERONET (AErosol RObotic NETwork) and MAN (Maritime Aerosol Network) sun-photometer networks, which are substantially more accurate than satellite retrievals. Neglecting the uncertainty in AERONET observations and possible issues with their ability to represent a satellite pixel area, the error in the retrieval can be approximated by the difference between the satellite and AERONET retrievals (herein referred to as "error"). To evaluate how well the pixel-level uncertainty represents the observed distribution of error, we look at the distribution of the ratio D between the "error" and the ATSR uncertainty. If uncertainties are well represented, D should be normally distributed and 68.3% of values should

  20. A Mesoscale Analysis of Column-Integrated Aerosol Properties in Northern India During the TIGERZ 2008 Pre-Monsoon Period and a Comparison to MODIS Retrievals

    NASA Technical Reports Server (NTRS)

    Giles, D. M.; Holben, B. N.; Tripathi, S. N.; Eck, T. F.; Newcomb, W. W.; Slutsker, I.; Dickerson, R. R.; Thompson, A. M.; Wang, S.-H.; Singh, R. P.; hide

    2010-01-01

    The Indo-Gangetic Plain (IGP) of the northern Indian subcontinent produces anthropogenic pollution from urban, industrial and rural combustion sources nearly continuously and is affected by convection-induced winds driving desert and alluvial dust into the atmosphere during the premonsoon period. Within the IGP, the NASA Aerosol Robotic Network (AERONET) project initiated the TIGERZ measurement campaign in May 2008 with an intensive operational period from May 1 to June 23, 2008. Mesoscale spatial variability of aerosol optical depth (AOD, tau) measurements at 500mn was assessed at sites around Kanpur, India, with averages ranging from 0.31 to 0.89 for spatial variability study (SVS) deployments. Sites located downwind from the city of Kanpur indicated slightly higher average aerosol optical depth (delta Tau(sub 500)=0.03-0.09). In addition, SVS AOD area-averages were compared to the long-tenn Kanpur AERONET site data: Four SVS area-averages were within +/- 1 cr of the climatological mean of the Kanpur site, while one SVS was within 2sigma below climatology. For a SVS case using AERONET inversions, the 440-870mn Angstrom exponent of approximately 0.38, the 440-870mn absorption Angstrom exponent (AAE) of 1.15-1.53, and the sphericity parameter near zero suggested the occurrence of large, strongly absorbing, non-spherical aerosols over Kanpur (e.g., mixed black carbon and dust) as well as stronger absorption downwind of Kanpur. Furthermore, the 3km and lOkm Terra and Aqua MODIS C005 aerosol retrieval algorithms at tau(sub 550) were compared to the TIGERZ data set. Although MODIS retrievals at higher quality levels were comparable to the MODIS retrieval uncertainty, the total number of MODIS matchups (N) were reduced with subsequent quality levels (N=25, QA>=0; N=9,QA>=l; N=6, QA>=2; N=1, QA=3) over Kanpur during the premonsoon primarily due to the semi-bright surface, complex aerosol mixture and cloud-contaminated pixels. The TIGERZ 2008 data set provided a unique

  1. Radiative Effects of Carbonaceous and Inorganic Aerosols over California during CalNex and CARES: Observations versus Model Predictions

    NASA Astrophysics Data System (ADS)

    Vinoj, V.; Fast, J. D.; Liu, Y.

    2012-12-01

    Aerosols have been identified to be a major contributor to the uncertainty in understanding the present climate. Most of this uncertainty arises due to the lack of knowledge of their micro-physical and chemical properties as well as how to adequately represent their spatial and temporal distributions. Increased process level understanding can be achieved through carefully designed field campaigns and experiments. These measurements can be used to elucidate the aerosol properties, mixing, transport and transformation within the atmosphere and also to validate and improve models that include meteorology-aerosol-chemistry interactions. In the present study, the WRF-Chem model is used to simulate the evolution of carbonaceous and inorganic aerosols and their impact on radiation during May and June of 2010 over California when two field campaigns took place: the California Nexus Experiment (CalNex) and Carbonaceous Aerosol and Radiative Effects Study (CARES). We merged CalNex and CARES data along with data from operational networks such as, California Air Resources Board (CARB's) air quality monitoring network, the Interagency Monitoring of Protected Visual Environments (IMPROVE) network, the AErosol RObotic NETwork (AERONET), and satellites into a common dataset for the Aerosol Modeling Test bed. The resulting combined dataset is used to rigorously evaluate the model simulation of aerosol mass, size distribution, composition, and optical properties needed to understand uncertainties that could affect regional variations in aerosol radiative forcing. The model reproduced many of the diurnal, multi-day, and spatial variations of aerosols as seen in the measurements. However, regionally the performance varied with reasonably good agreement with observations around Los Angeles and Sacramento and poor agreement with observations in the vicinity of Bakersfield (although predictions aloft were much better). Some aerosol species (sulfate and nitrate) were better represented

  2. Classification of Aerosol Retrievals from Spaceborne Polarimetry Using a Multiparameter Algorithm

    NASA Technical Reports Server (NTRS)

    Russell, Philip B.; Kacenelenbogen, Meloe; Livingston, John M.; Hasekamp, Otto P.; Burton, Sharon P.; Schuster, Gregory L.; Johnson, Matthew S.; Knobelspiesse, Kirk D.; Redemann, Jens; Ramachandran, S.; hide

    2013-01-01

    In this presentation, we demonstrate application of a new aerosol classification algorithm to retrievals from the POLDER-3 polarimter on the PARASOL spacecraft. Motivation and method: Since the development of global aerosol measurements by satellites and AERONET, classification of observed aerosols into several types (e.g., urban-industrial, biomass burning, mineral dust, maritime, and various subtypes or mixtures of these) has proven useful to: understanding aerosol sources, transformations, effects, and feedback mechanisms; improving accuracy of satellite retrievals and quantifying assessments of aerosol radiative impacts on climate.

  3. An analysis of high fine aerosol loading episodes in north-central Spain in the summer 2013 - Impact of Canadian biomass burning episode and local emissions

    NASA Astrophysics Data System (ADS)

    Burgos, M. A.; Mateos, D.; Cachorro, V. E.; Toledano, C.; de Frutos, A. M.; Calle, A.; Herguedas, A.; Marcos, J. L.

    2018-07-01

    This work presents an evaluation of a surprising and unusual high turbidity summer period in 2013 recorded in the north-central Iberian Peninsula (IP). The study is made up of three main pollution episodes characterized by very high aerosol optical depth (AOD) values with the presence of fine aerosol particles: the strongest long-range transport Canadian Biomass Burning (BB) event recorded, one of the longest-lasting European Anthropogenic (A) episodes and an extremely strong regional BB. The Canadian BB episode was unusually strong with maximum values of AOD(440 nm) ∼ 0.8, giving rise to the highest value recorded by photometer data in the IP with a clearly established Canadian origin. The anthropogenic pollution episode originated in Europe is mainly a consequence of the strong impact of Canadian BB events over north-central Europe. As regards the local episode, a forest fire in the nature reserve near the Duero River (north-central IP) impacted on the population over 200 km away from its source. These three episodes exhibited fingerprints in different aerosol columnar properties retrieved by sun-photometers of the AErosol RObotic NETwork (AERONET) as well as in particle mass surface concentrations, PMx, measured by the European Monitoring and Evaluation Programme (EMEP). Main statistics, time series and scatterplots relate aerosol loads (aerosol optical depth, AOD and particulate matter, PM) with aerosol size quantities (Ångström Exponent and PM ratio). More detailed microphysical/optical properties retrieved by AERONET inversion products are analysed in depth to describe these events: contribution of fine and coarse particles to AOD and its ratio (the fine mode fraction), volume particle size distribution, fine volume fraction, effective radius, sphericity fraction, single scattering albedo and absorption optical depth. Due to its relevance in climate studies, the aerosol radiative effect has been quantified for the top and bottom of the atmosphere

  4. Bayesian aerosol retrieval algorithm for MODIS AOD retrieval over land

    NASA Astrophysics Data System (ADS)

    Lipponen, Antti; Mielonen, Tero; Pitkänen, Mikko R. A.; Levy, Robert C.; Sawyer, Virginia R.; Romakkaniemi, Sami; Kolehmainen, Ville; Arola, Antti

    2018-03-01

    We have developed a Bayesian aerosol retrieval (BAR) algorithm for the retrieval of aerosol optical depth (AOD) over land from the Moderate Resolution Imaging Spectroradiometer (MODIS). In the BAR algorithm, we simultaneously retrieve all dark land pixels in a granule, utilize spatial correlation models for the unknown aerosol parameters, use a statistical prior model for the surface reflectance, and take into account the uncertainties due to fixed aerosol models. The retrieved parameters are total AOD at 0.55 µm, fine-mode fraction (FMF), and surface reflectances at four different wavelengths (0.47, 0.55, 0.64, and 2.1 µm). The accuracy of the new algorithm is evaluated by comparing the AOD retrievals to Aerosol Robotic Network (AERONET) AOD. The results show that the BAR significantly improves the accuracy of AOD retrievals over the operational Dark Target (DT) algorithm. A reduction of about 29 % in the AOD root mean square error and decrease of about 80 % in the median bias of AOD were found globally when the BAR was used instead of the DT algorithm. Furthermore, the fraction of AOD retrievals inside the ±(0.05+15 %) expected error envelope increased from 55 to 76 %. In addition to retrieving the values of AOD, FMF, and surface reflectance, the BAR also gives pixel-level posterior uncertainty estimates for the retrieved parameters. The BAR algorithm always results in physical, non-negative AOD values, and the average computation time for a single granule was less than a minute on a modern personal computer.

  5. Validating and improving long-term aerosol data records from SeaWiFS

    NASA Astrophysics Data System (ADS)

    Bettenhausen, C.; Hsu, N. C.; Sayer, A. M.; Huang, J.; Gautam, R.

    2011-12-01

    Natural and anthropogenic aerosols influence the radiative balance of the Earth through direct and indirect interactions with incoming solar radiation. However, the quantification of these interactions and their ultimate effect on the Earth's climate still have large uncertainties. This is partly due to the limitations of current satellite data records which include short satellite lifetimes, retrieval algorithm uncertainty, or insufficient calibration accuracy. We have taken the first steps in overcoming this hurdle with the production and public release of an aerosol data record using the radiances from the Sea-viewing Wide Field-of-View Sensor (SeaWiFS). SeaWiFS was launched in late 1997 and provided exceptionally well-calibrated top-of-atmosphere radiance data until December 2010, more than 13 years. We have partnered this data with an expanded Deep Blue aerosol retrieval algorithm. In accordance with Deep Blue's original focus, the latest algorithm retrieves aerosol properties not only over bright desert surfaces, but also over oceans and vegetated surfaces. With this combination of a long time series and global algorithm, we can finally identify the changing patterns of regional aerosol loading and provide insight into long-term variability and trends of aerosols on regional and global scales. In this work, we provide an introduction to SeaWiFS, the current algorithms, and our aerosol data records. We have validated the data over land and ocean with ground measurements from the Aerosol Robotic Network (AERONET) and compared them with other satellites such as MODIS and MISR. Looking ahead to the next data release, we will also provide details on the implemented and planned algorithm improvements, and subsequent validation results.

  6. Validating and Improving Long-Term Aerosol Data Records from SeaWiFS

    NASA Technical Reports Server (NTRS)

    Bettenhausen, Corey; Hsu, N. Christina; Sayer, Andrew; Huang, Jinhfeng; Gautam, Ritesh

    2011-01-01

    Natural and anthropogenic aerosols influence the radiative balance of the Earth through direct and indirect interactions with incoming solar radiation. However, the quantification of these interactions and their ultimate effect on the Earth's climate still have large uncertainties. This is partly due to the limitations of current satellite data records which include short satellite lifetimes, retrieval algorithm uncertainty, or insufficient calibration accuracy. We have taken the first steps in overcoming this hurdle with the production and public release of an aerosol data record using the radiances from the Sea-viewing Wide Field-of-View Sensor (Sea WiFS). Sea WiFS was launched in late 1997 and provided exceptionally well-calibrated top-of-atmosphere radiance data until December 2010, more than 13 years. We have partnered this data with an expanded Deep Blue aerosol retrieval algorithm. In accordance with Deep Blue's original focus, the latest algorithm retrieves aerosol properties not only over bright desert surfaces, but also over oceans and vegetated surfaces. With this combination of a long time series and global algorithm, we can finally identify the changing patterns of regional aerosol loading and provide insight into longterm variability and trends of aerosols on regional and global scales. In this work, we provide an introduction to Sea WiFS, the current algorithms, and our aerosol data records. We have validated the data over land and ocean with ground measurements from the Aerosol Robotic Network (AERONET) and compared them with other satellites such as MODIS and MISR. Looking ahead to the next data release, we will also provide details on the implemented and planned algorithm improvements, and subsequent validation results.

  7. Determination of the single scattering albedo and direct radiative forcing of biomass burning aerosol with data from the MODIS (Moderate Resolution Imaging Spectroradiometer) satellite instrument

    NASA Astrophysics Data System (ADS)

    Zhu, Li

    Biomass burning aerosols absorb and scatter solar radiation and therefore affect the energy balance of the Earth-atmosphere system. The single scattering albedo (SSA), the ratio of the scattering coefficient to the extinction coefficient, is an important parameter to describe the optical properties of aerosols and to determine the effect of aerosols on the energy balance of the planet and climate. Aerosol effects on radiation also depend strongly on surface albedo. Large uncertainties remain in current estimates of radiative impacts of biomass burning aerosols, due largely to the lack of reliable measurements of aerosol and surface properties. In this work we investigate how satellite measurements can be used to estimate the direct radiative forcing of biomass burning aerosols. We developed a method using the critical reflectance technique to retrieve SSA from the Moderate Resolution Imaging Spectroradiometer (MODIS) observed reflectance at the top of the atmosphere (TOA). We evaluated MODIS retrieved SSAs with AErosol RObotic NETwork (AERONET) retrievals and found good agreements within the published uncertainty of the AERONET retrievals. We then developed an algorithm, the MODIS Enhanced Vegetation Albedo (MEVA), to improve the representations of spectral variations of vegetation surface albedo based on MODIS observations at the discrete 0.67, 0.86, 0.47, 0.55, 1.24, 1.64, and 2.12 mu-m channels. This algorithm is validated using laboratory measurements of the different vegetation types from the Amazon region, data from the Johns Hopkins University (JHU) spectral library, and data from the U.S. Geological Survey (USGS) digital spectral library. We show that the MEVA method can improve the accuracy of flux and aerosol forcing calculations at the TOA compared to more traditional interpolated approaches. Lastly, we combine the MODIS retrieved biomass burning aerosol SSA and the surface albedo spectrum determined from the MEVA technique to calculate TOA flux and

  8. Retrieval of aerosol profiles combining sunphotometer and ceilometer measurements in GRASP code

    NASA Astrophysics Data System (ADS)

    Román, R.; Benavent-Oltra, J. A.; Casquero-Vera, J. A.; Lopatin, A.; Cazorla, A.; Lyamani, H.; Denjean, C.; Fuertes, D.; Pérez-Ramírez, D.; Torres, B.; Toledano, C.; Dubovik, O.; Cachorro, V. E.; de Frutos, A. M.; Olmo, F. J.; Alados-Arboledas, L.

    2018-05-01

    In this paper we present an approach for the profiling of aerosol microphysical and optical properties combining ceilometer and sun/sky photometer measurements in the GRASP code (General Retrieval of Aerosol and Surface Properties). For this objective, GRASP is used with sun/sky photometer measurements of aerosol optical depth (AOD) and sky radiances, both at four wavelengths and obtained from AErosol RObotic NETwork (AERONET), and ceilometer measurements of range corrected signal (RCS) at 1064 nm. A sensitivity study with synthetic data evidences the capability of the method to retrieve aerosol properties such as size distribution and profiles of volume concentration (VC), especially for coarse particles. Aerosol properties obtained by the mentioned method are compared with airborne in-situ measurements acquired during two flights over Granada (Spain) within the framework of ChArMEx/ADRIMED (Chemistry-Aerosol Mediterranean Experiment/Aerosol Direct Radiative Impact on the regional climate in the MEDiterranean region) 2013 campaign. The retrieved aerosol VC profiles agree well with the airborne measurements, showing a mean bias error (MBE) and a mean absolute bias error (MABE) of 0.3 μm3/cm3 (12%) and 5.8 μm3/cm3 (25%), respectively. The differences between retrieved VC and airborne in-situ measurements are within the uncertainty of GRASP retrievals. In addition, the retrieved VC at 2500 m a.s.l. is shown and compared with in-situ measurements obtained during summer 2016 at a high-atitude mountain station in the framework of the SLOPE I campaign (Sierra Nevada Lidar AerOsol Profiling Experiment). VC from GRASP presents high correlation (r = 0.91) with the in-situ measurements, but overestimates them, MBE and MABE being equal to 23% and 43%.

  9. Three-dimensional variational assimilation of MODIS aerosol optical depth: Implementation and application to a dust storm over East Asia

    NASA Astrophysics Data System (ADS)

    Liu, Zhiquan; Liu, Quanhua; Lin, Hui-Chuan; Schwartz, Craig S.; Lee, Yen-Huei; Wang, Tijian

    2011-12-01

    Assimilation of the Moderate Resolution Imaging Spectroradiometer (MODIS) total aerosol optical depth (AOD) retrieval products (at 550 nm wavelength) from both Terra and Aqua satellites have been developed within the National Centers for Environmental Prediction (NCEP) Gridpoint Statistical Interpolation (GSI) three-dimensional variational (3DVAR) data assimilation system. This newly developed algorithm allows, in a one-step procedure, the analysis of 3-D mass concentration of 14 aerosol variables from the Goddard Chemistry Aerosol Radiation and Transport (GOCART) module. The Community Radiative Transfer Model (CRTM) was extended to calculate AOD using GOCART aerosol variables as input. Both the AOD forward model and corresponding Jacobian model were developed within the CRTM and used in the 3DVAR minimization algorithm to compute the AOD cost function and its gradient with respect to 3-D aerosol mass concentration. The impact of MODIS AOD data assimilation was demonstrated by application to a dust storm from 17 to 24 March 2010 over East Asia. The aerosol analyses initialized Weather Research and Forecasting/Chemistry (WRF/Chem) model forecasts. Results indicate that assimilating MODIS AOD substantially improves aerosol analyses and subsequent forecasts when compared to MODIS AOD, independent AOD observations from the Aerosol Robotic Network (AERONET) and Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument, and surface PM10 (particulate matter with diameters less than 10 μm) observations. The newly developed AOD data assimilation system can serve as a tool to improve simulations of dust storms and general air quality analyses and forecasts.

  10. Southeast Asian Summer Burning: A Micro Pulse Lidar Network Study of Aerosol Particle Physical Properties near Fires in Borneo and Sumatra

    NASA Astrophysics Data System (ADS)

    Lolli, S.; Welton, E. J.; Holben, B. N.; Campbell, J. R.

    2013-12-01

    In August and September 2012, as part of the continuing Seven South East Asian Studies (7-SEAS) project, three autonomous elastic-scattering 355 nm lidars were deployed by the NASA Micro Pulse Lidar Network (MPLNET) to Sumatra and Borneo, measuring the vertical profile of aerosol particle scattering during peak burning season. In coordination with the Aerosol Robotic Network (AERONET), a regional characterization of aerosol particle physical properties and distribution was performed. In addition to a permanent regional network site at Singapore, the three temporary sites established for this research include Jambi (Sumatra, Indonesia), Kuching (northwest Borneo, Malaysia) and Palangkaraya (south-central Borneo, Indonesia). In this paper, we discuss the mission and instruments, and introduce data products available to the community through the MPLNET online website. We further describe initial results of the study, including a contrast of mean vertical scattering profiles versus those observed near active fire sources at Jambi and Palangkaraya, and resolve longer-range particle evolution at receptor sites, like Kuching, that are most commonly 1-2 days downwind of larger fire complexes.

  11. Comparison of Aerosol Volume Size Distributions between Surface and Ground-based Remote Sensing Measurements Downwind of Seoul, Korea during MAPS-Seoul

    NASA Astrophysics Data System (ADS)

    Kim, P.; Choi, Y.; Ghim, Y. S.

    2016-12-01

    Both sunphotometer (Cimel, CE-318) and skyradiometer (Prede, POM-02) were operated in May, 2015 as a part of the Megacity Air Pollution Studies-Seoul (MAPS-Seoul) campaign. These instruments were collocated at the Hankuk University of Foreign Studies (Hankuk_UFS) site of AErosol RObotic NETwork (AERONET) and the Yongin (YGN) site of SKYradiometer NETwork (SKYNET). The aerosol volume size distribution at the surface was measured using a wide range aerosol spectrometer (WRAS) system consisting of a scanning mobility particle sizer (Grimm, Model 5.416; 45 bins, 0.01-1.09 μm) and an optical particle counter (Grimm, Model 1.109; 31 bins, 0.27-34 μm). The measurement site (37.34oN, 127.27oE, 167 m above sea level) is located about 35 km southeast of downtown Seoul. To investigate the discrepancies in volume concentrations, effective diameters and fine mode volume fractions, we compared the volume size distributions from sunphotometer, skyradiometer, and WRAS system when the measurement time coincided within 5 minutes considering that the measurement intervals were different between instruments.

  12. Vertically resolved aerosol properties by multi-wavelength lidar measurements

    NASA Astrophysics Data System (ADS)

    Perrone, M. R.; De Tomasi, F.; Gobbi, G. P.

    2014-02-01

    An approach based on the graphical method of Gobbi and co-authors (2007) is introduced to estimate the dependence on altitude of the aerosol fine mode radius (Rf) and of the fine mode contribution (η) to the aerosol optical thickness (AOT) from three-wavelength lidar measurements. The graphical method of Gobbi and co-authors (2007) was applied to AERONET (AErosol RObotic NETwork) spectral extinction observations and relies on the combined analysis of the Ångstrom exponent (å) and its spectral curvature Δå. Lidar measurements at 355, 532 and 1064 nm were used in this study to retrieve the vertical profiles of å and Δå and to estimate the dependence on altitude of Rf and η(532 nm) from the å-Δå combined analysis. Lidar measurements were performed at the Department of Mathematics and Physics of the Universita' del Salento, in south-eastern Italy. Aerosol from continental Europe, the Atlantic, northern Africa, and the Mediterranean Sea are often advected over south-eastern Italy and as a consequence, mixed advection patterns leading to aerosol properties varying with altitude are dominant. The proposed approach was applied to ten measurement days to demonstrate its feasibility in different aerosol load conditions. The selected days were characterized by AOTs spanning the 0.26-0.67, 0.15-0.39, and 0.04-0.27 range at 355, 532, and 1064 nm, respectively. Mean lidar ratios varied within the 31-83, 32-84, and 11-47 sr range at 355, 532, and 1064 nm, respectively, for the high variability of the aerosol optical and microphysical properties. å values calculated from lidar extinction profiles at 355 and 1064 nm ranged between 0.1 and 2.5 with a mean value ± 1 standard deviation equal to 1.3 ± 0.7. Δå varied within the -0.1-1 range with mean value equal to 0.25 ± 0.43. Rf and η(532 nm) values spanning the 0.05-0.3 μm and the 0.3-0.99 range, respectively, were associated with the å-Δå data points. Rf and η values showed no dependence on the altitude. 60

  13. Aerosol Optical Properties Derived from the DRAGON-NE Asia Campaign, and Implications for a Single-Channel Algorithm to Retrieve Aerosol Optical Depth in Spring from Meteorological Imager (MI) On-Board the Communication, Ocean, and Meteorological Satellite (COMS)

    NASA Technical Reports Server (NTRS)

    Kim, M.; Kim, J.; Jeong, U.; Kim, W.; Hong, H.; Holben, B.; Eck, T. F.; Lim, J.; Song, C.; Lee, S.; hide

    2016-01-01

    An aerosol model optimized for northeast Asia is updated with the inversion data from the Distributed Regional Aerosol Gridded Observation Networks (DRAGON)-northeast (NE) Asia campaign which was conducted during spring from March to May 2012. This updated aerosol model was then applied to a single visible channel algorithm to retrieve aerosol optical depth (AOD) from a Meteorological Imager (MI) on-board the geostationary meteorological satellite, Communication, Ocean, and Meteorological Satellite (COMS). This model plays an important role in retrieving accurate AOD from a single visible channel measurement. For the single-channel retrieval, sensitivity tests showed that perturbations by 4 % (0.926 +/- 0.04) in the assumed single scattering albedo (SSA) can result in the retrieval error in AOD by over 20 %. Since the measured reflectance at the top of the atmosphere depends on both AOD and SSA, the overestimation of assumed SSA in the aerosol model leads to an underestimation of AOD. Based on the AErosol RObotic NETwork (AERONET) inversion data sets obtained over East Asia before 2011, seasonally analyzed aerosol optical properties (AOPs) were categorized by SSAs at 675 nm of 0.92 +/- 0.035 for spring (March, April, and May). After the DRAGON-NE Asia campaign in 2012, the SSA during spring showed a slight increase to 0.93 +/- 0.035. In terms of the volume size distribution, the mode radius of coarse particles was increased from 2.08 +/- 0.40 to 2.14 +/- 0.40. While the original aerosol model consists of volume size distribution and refractive indices obtained before 2011, the new model is constructed by using a total data set after the DRAGON-NE Asia campaign. The large volume of data in high spatial resolution from this intensive campaign can be used to improve the representative aerosol model for East Asia. Accordingly, the new AOD data sets retrieved from a single-channel algorithm, which uses a precalculated look-up table (LUT) with the new aerosol model, show

  14. Aerosol optical, microphysical and radiative forcing properties during variable intensity African dust events in the Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Fernández, A. J.; Molero, F.; Salvador, P.; Revuelta, A.; Becerril-Valle, M.; Gómez-Moreno, F. J.; Artíñano, B.; Pujadas, M.

    2017-11-01

    Aerosol measurements at two AERONET (AErosol RObotic NETwork) sites of the Iberian Peninsula: Madrid (40°.45N, 3.72W) and La Coruña (43°.36N, 8°.42W) have been analyzed for the period 2012-2015 to assess aerosol optical properties (intensive and extensive) throughout the atmospheric column and their radiative forcing (RF) and radiative forcing efficiency (RFeff) estimates at the Bottom and Top Of Atmosphere (BOA and TOA respectively). Specific conditions as dust-free and African dust have been considered for the study. Unprecedented, this work uses the quantification of the African dust aerosol at ground level which allows us to study such AERONET products at different intensity levels of African events: Low (L), High (H) and very high (VH). The statistical difference between dust-free and African dust conditions on the aforementioned parameters, quantified by means of the non-parametric Kolmogorov-Smirnov test, is quite clear in Madrid, however it is not in La Coruña. Scattering Angstrom Exponent (SAE) and Absorption Angstrom Exponent (AAE) were found to be 1.64 ± 0.29 and 1.14 ± 0.23 respectively in Madrid for dust-free conditions because typical aerosol sources are traffic emissions and residential heating, and black carbon is an important compound in this aerosol kind. On the other hand, SAE and AAE were 0.96 ± 0.60 and 1.44 ± 0.51 for African dust conditions in this location. RF (at shortwave radiation) seems to decrease as the African dust contribution at ground level is larger which indicates the cooling effect of African dust aerosol in Madrid. We have also proved the potential of a 2D-cluster analysis based on AAE and SAE to differentiate both situations in Madrid. Conversely, it is suggested that aerosols observed in La Coruña under dust-free conditions might come from different sources. Then, SAE and AAE are not good enough indicators to distinguish between dust-free and African dust conditions. Besides, as La Coruña is at a further distance

  15. Evaluation of Aerosol Pollution Determination From MODIS Satellite Retrievals for Semi-Arid Reno, NV, USA with In-Situ Measurements

    NASA Astrophysics Data System (ADS)

    Loria-Salazar, S. Marcela

    The aim of the present work is to carry out a detailed analysis of ground and columnar aerosol properties obtained by in-situ Photoacoustic and Integrated Nephelometer (PIN), Cimel CE-318 sunphotometer and MODIS instrument onboard Aqua and Terra satellites, for semi-arid Reno, Nevada, USA in the local summer months of 2012. Satellite determination of local aerosol pollution is desirable because of the potential for broad spatial and temporal coverage. However, retrieval of quantitative measures of air pollution such as Aerosol Optical Depth (AOD) from satellite measurements is challenging because of the underlying surface albedo being heterogeneous in space and time. Therefore, comparisons of satellite retrievals with measurements from ground-based sun photometers are crucial for validation, testing, and further development of instruments and retrieval algorithms. Ground-based sunphotometry and in-situ ground observations show that seasonal weather changes and fire plumes have great influence on the atmosphere aerosol optics. The Apparent Optical Height (AOH) follows the shape of the development of the Convective Boundary Layer (CBL) when fire conditions were not present. However, significant fine particle optical depth was inferred beyond the CBL thereby complicating the use of remote sensing measurements for near-ground aerosol pollution measurements. A meteorological analysis was performed to help diagnose the nature of the aerosols above Reno. The calculation of a Zephyr index and back trajectory analysis demonstrated that a local circulation often induces aerosol transport from Northern CA over the Sierra Nevada Mountains that doubles the Aerosol Optical Depth (AOD) at 500 nm. Sunphotometer measurements were used as a `ground truth' for satellite retrievals to evaluate the current state of the science retrievals in this challenging location. Satellite retrieved for AOD showed the presence of wild fires in Northern CA during August. AOD retrieved using the

  16. A Climatology of Global Aerosol Mixtures to Support Sentinel-5P and Earthcare Mission Applications

    NASA Astrophysics Data System (ADS)

    Taylor, M.; Kazadzis, S.; Amaridis, V.; Kahn, R. A.

    2015-11-01

    Since constraining aerosol type with satellite remote sensing continues to be a challenge, we present a newly derived global climatology of aerosol mixtures to support atmospheric composition studies that are planned for Sentinel-5P and EarthCARE.The global climatology is obtained via application of iterative cluster analysis to gridded global decadal and seasonal mean values of the aerosol optical depth (AOD) of sulfate, biomass burning, mineral dust and marine aerosol as a proportion of the total AOD at 500nm output from the Goddard Chemistry Aerosol Radiation and Transport (GOCART). For both the decadal and seasonal means, the number of aerosol mixtures (clusters) identified is ≈10. Analysis of the percentage contribution of the component aerosol types to each mixture allowed development of a straightforward naming convention and taxonomy, and assignment of primary colours for the generation of true colour-mixing and easy-to-interpret maps of the spatial distribution of clusters across the global grid. To further help characterize the mixtures, aerosol robotic network (AERONET) Level 2.0 Version 2 inversion products were extracted from each cluster‟s spatial domain and used to estimate climatological values of key optical and microphysical parameters.The aerosol type climatology represents current knowledge that would be enhanced, possibly corrected, and refined by high temporal and spectral resolution, cloud-free observations produced by Sentinel-5P and EarthCARE instruments. The global decadal mean and seasonal gridded partitions comprise a preliminary reference framework and global climatology that can help inform the choice of components and mixtures in aerosol retrieval algorithms used by instruments such as TROPOMI and ATLID, and to test retrieval results.

  17. Effects of Data Quality on the Characterization of Aerosol Properties from Multiple Sensors

    NASA Technical Reports Server (NTRS)

    Petrenko, Maksym; Ichoku, Charles; Leptoukh, Gregory

    2011-01-01

    Cross-comparison of aerosol properties between ground-based and spaceborne measurements is an important validation technique that helps to investigate the uncertainties of aerosol products acquired using spaceborne sensors. However, it has been shown that even minor differences in the cross-characterization procedure may significantly impact the results of such validation. Of particular consideration is the quality assurance I quality control (QA/QC) information - an auxiliary data indicating a "confidence" level (e.g., Bad, Fair, Good, Excellent, etc.) conferred by the retrieval algorithms on the produced data. Depending on the treatment of available QA/QC information, a cross-characterization procedure has the potential of filtering out invalid data points, such as uncertain or erroneous retrievals, which tend to reduce the credibility of such comparisons. However, under certain circumstances, even high QA/QC values may not fully guarantee the quality of the data. For example, retrievals in proximity of a cloud might be particularly perplexing for an aerosol retrieval algorithm, resulting in an invalid data that, nonetheless, could be assigned a high QA/QC confidence. In this presentation, we will study the effects of several QA/QC parameters on cross-characterization of aerosol properties between the data acquired by multiple spaceborne sensors. We will utilize the Multi-sensor Aerosol Products Sampling System (MAPSS) that provides a consistent platform for multi-sensor comparison, including collocation with measurements acquired by the ground-based Aerosol Robotic Network (AERONET), The multi-sensor spaceborne data analyzed include those acquired by the Terra-MODIS, Aqua-MODIS, Terra-MISR, Aura-OMI, Parasol-POLDER, and CalipsoCALIOP satellite instruments.

  18. Simultaneous Retrieval of Aerosol Optical Depth and Surface Reflectance over Land within Short Temporal Interval Using MSG Data

    NASA Astrophysics Data System (ADS)

    Li, C.; Xue, Y.; Li, Y. J.; Yang, L. K.; Hou, T. T.

    2012-04-01

    resolution of 10 km. Preliminary validation results by comparing our retrieved AOD with Aerosol Robotic Network (AERONET) data show that the correlation coefficient R is about 0.81, the root-mean-square error (RMSE) is less than 0.1, and the uncertainty is found to be Δτ = ± 0.05 ± 0.20τ. Time serial comparison of MSG and AERONET AODs on Granada site also shows a good fitting. To conclude, this algorithm shows its potential to retrieve real-time AODs over land from geostationary satellites.

  19. A comparison of uncertainties in the aerosol direct radiative effect in the SE U.S. calculated using satellite-based and ground-based aerosol properties

    NASA Astrophysics Data System (ADS)

    Sherman, J. P.

    2017-12-01

    Satellite-retrieved aerosol optical depth is typically used for measurement-based estimates of the aerosol direct radiative effect (DRE) on solar radiation, on both global and regional scales. The SE U.S. is one of only a few regions not to have warmed during the 20th century and is home to some of the highest summertime levels of biogenic and sulfate aerosols in the U.S. While decreases in aerosol optical depth over the past few decades have likely reduced the cooling effect of aerosols in the region, satellite-derived estimates of aerosol DRE alone may not be sufficient to study long-term DRE trends and the roles played by changing AOD and aerosol optical properties. Appalachian State University (APP) in Boone, NC is home to the only co-located NASA AERONET, NOAA ESRL, and (active) NASA MPLNET sites in the U.S. and is well-positioned to validate satellite-based aerosol retrievals and better constrain background aerosol DRE in regional climate models. As part of the first multi-year `ground truth' DRE study in the SE U.S., Sherman and McComiskey (2017) applied nearly four years of spectral AOD from the APP AERONET site, along with single-scattering albedo(SSA) and asymmetry parameter from the APP NOAA ESRL site, as inputs to the SBDART Radiative Transfer model to calculate seasonal dependence of aerosol DRE and DRE uncertainties at the top-of-atmosphere and at the surface. Clear sky aerosol DRE uncertainty at the TOA (surface) above APP ranges from 0.44 Wm-2 (0.73 Wm-2) for DEC to 0.90 Wm-2 (1.3 Wm-2) for JUN. Expressed as a fraction of seasonal-mean DRE, these uncertainties are 12-20% for all seasons except winter, when they are close to 50%. Use of MODIS or MISR AOD in place of AERONET increases these uncertainties by factors of 2.5 to 5 and DRE uncertainties are dominated by AOD uncertainty for all seasons. The use of SSA from OMI or MISR further increases the DRE uncertainties, especially during the higher AOD summer months, when DRE sensitivity to aerosol

  20. Validation and Uncertainty Estimates for MODIS Collection 6 "Deep Blue" Aerosol Data

    NASA Technical Reports Server (NTRS)

    Sayer, A. M.; Hsu, N. C.; Bettenhausen, C.; Jeong, M.-J.

    2013-01-01

    The "Deep Blue" aerosol optical depth (AOD) retrieval algorithm was introduced in Collection 5 of the Moderate Resolution Imaging Spectroradiometer (MODIS) product suite, and complemented the existing "Dark Target" land and ocean algorithms by retrieving AOD over bright arid land surfaces, such as deserts. The forthcoming Collection 6 of MODIS products will include a "second generation" Deep Blue algorithm, expanding coverage to all cloud-free and snow-free land surfaces. The Deep Blue dataset will also provide an estimate of the absolute uncertainty on AOD at 550 nm for each retrieval. This study describes the validation of Deep Blue Collection 6 AOD at 550 nm (Tau(sub M)) from MODIS Aqua against Aerosol Robotic Network (AERONET) data from 60 sites to quantify these uncertainties. The highest quality (denoted quality assurance flag value 3) data are shown to have an absolute uncertainty of approximately (0.086+0.56Tau(sub M))/AMF, where AMF is the geometric air mass factor. For a typical AMF of 2.8, this is approximately 0.03+0.20Tau(sub M), comparable in quality to other satellite AOD datasets. Regional variability of retrieval performance and comparisons against Collection 5 results are also discussed.

  1. Joint retrieval of aerosol and water-leaving radiance from multispectral, multiangular and polarimetric measurements over ocean

    NASA Astrophysics Data System (ADS)

    Xu, Feng; Dubovik, Oleg; Zhai, Peng-Wang; Diner, David J.; Kalashnikova, Olga V.; Seidel, Felix C.; Litvinov, Pavel; Bovchaliuk, Andrii; Garay, Michael J.; van Harten, Gerard; Davis, Anthony B.

    2016-07-01

    An optimization approach has been developed for simultaneous retrieval of aerosol properties and normalized water-leaving radiance (nLw) from multispectral, multiangular, and polarimetric observations over ocean. The main features of the method are (1) use of a simplified bio-optical model to estimate nLw, followed by an empirical refinement within a specified range to improve its accuracy; (2) improved algorithm convergence and stability by applying constraints on the spatial smoothness of aerosol loading and Chlorophyll a (Chl a) concentration across neighboring image patches and spectral constraints on aerosol optical properties and nLw across relevant bands; and (3) enhanced Jacobian calculation by modeling and storing the radiative transfer (RT) in aerosol/Rayleigh mixed layer, pure Rayleigh-scattering layers, and ocean medium separately, then coupling them to calculate the field at the sensor. This approach avoids unnecessary and time-consuming recalculations of RT in unperturbed layers in Jacobian evaluations. The Markov chain method is used to model RT in the aerosol/Rayleigh mixed layer and the doubling method is used for the uniform layers of the atmosphere-ocean system. Our optimization approach has been tested using radiance and polarization measurements acquired by the Airborne Multiangle SpectroPolarimetric Imager (AirMSPI) over the AERONET USC_SeaPRISM ocean site (6 February 2013) and near the AERONET La Jolla site (14 January 2013), which, respectively, reported relatively high and low aerosol loadings. Validation of the results is achieved through comparisons to AERONET aerosol and ocean color products. For comparison, the USC_SeaPRISM retrieval is also performed by use of the Generalized Retrieval of Aerosol and Surface Properties algorithm (Dubovik et al., 2011). Uncertainties of aerosol and nLw retrievals due to random and systematic instrument errors are analyzed by truth-in/truth-out tests with three Chl a concentrations, five aerosol loadings

  2. Inter-comparison of model-simulated and satellite-retrieved componential aerosol optical depths in China

    NASA Astrophysics Data System (ADS)

    Li, Shenshen; Yu, Chao; Chen, Liangfu; Tao, Jinhua; Letu, Husi; Ge, Wei; Si, Yidan; Liu, Yang

    2016-09-01

    China's large aerosol emissions have major impacts on global climate change as well as regional air pollution and its associated disease burdens. A detailed understanding of the spatiotemporal patterns of aerosol components is necessary for the calculation of aerosol radiative forcing and the development of effective emission control policy. Model-simulated and satellite-retrieved aerosol components can support climate change research, PM2.5 source appointment and epidemiological studies. This study evaluated the total and componential aerosol optical depth (AOD) from the GEOS-Chem model (GC) and the Global Ozone Chemistry Aerosol Radiation and Transport model (GOCART), and the Multiangle Imaging Spectroradiometer (MISR) from 2006 to 2009 in China. Linear regression analysis between the GC and AErosol RObotic NETwork (AERONET) in China yielded similar correlation coefficients (0.6 daily, 0.71 monthly) but lower slopes (0.41 daily, 0.58 monthly) compared with those in the U.S. This difference was attributed to GC's underestimation of water-soluble AOD (WAOD) west of the Heihe-Tengchong Line, the dust AOD (DAOD) in the fall and winter, and the soot AOD (SAOD) throughout the year and throughout the country. GOCART exhibits the strongest dust estimation capability among all datasets. However, the GOCART soot distribution in the Northeast and Southeast has significant errors, and its WAOD in the polluted North China Plain (NCP) and the South is underestimated. MISR significantly overestimates the water-soluble aerosol levels in the West, and does not capture the high dust loadings in all seasons and regions, and the SAOD in the NCP. These discrepancies can mainly be attributed to the uncertainties in the emission inventories of both models, the poor performance of GC under China's high aerosol loading conditions, the omission of certain aerosol tracers in GOCART, and the tendency of MISR to misidentify dust and non-dust mixtures.

  3. Natural and Anthropogenic Aerosol Trends from Satellite and Surface Observations and Model Simulations over the North Atlantic Ocean from 2002 to 2012

    NASA Technical Reports Server (NTRS)

    Jongeward, Andrew R.; Li, Zhanqing; He, Hao; Xiong, Xiaoxiong

    2016-01-01

    Aerosols contribute to Earths radiative budget both directly and indirectly, and large uncertainties remain in quantifying aerosol effects on climate. Variability in aerosol distribution and properties, as might result from changing emissions and transport processes, must be characterized. In this study, variations in aerosol loading across the eastern seaboard of theUnited States and theNorthAtlanticOcean during 2002 to 2012 are analyzed to examine the impacts of anthropogenic emission control measures using monthly mean data from MODIS, AERONET, and IMPROVE observations and Goddard Chemistry Aerosol Radiation and Transport (GOCART) model simulation.MODIS observes a statistically significant negative trend in aerosol optical depth (AOD) over the midlatitudes (-0.030 decade(sup-1)). Correlation analyses with surface AOD from AERONET sites in the upwind region combined with trend analysis from GOCART component AOD confirm that the observed decrease in the midlatitudes is chiefly associated with anthropogenic aerosols that exhibit significant negative trends from the eastern U.S. coast extending over the western North Atlantic. Additional analysis of IMPROVE surface PM(sub 2.5) observations demonstrates statistically significant negative trends in the anthropogenic components with decreasing mass concentrations over the eastern United States. Finally, a seasonal analysis of observational datasets is performed. The negative trend seen by MODIS is strongest during spring (MAM) and summer (JJA) months. This is supported by AERONET seasonal trends and is identified from IMPROVE seasonal trends as resulting from ammonium sulfate decreases during these seasons.

  4. Optical Properties of Aerosol Types from Satellite and Ground-based Observations

    NASA Astrophysics Data System (ADS)

    Lin, Tang-Huang; Liu, Gin-Rong; Liu, Chian-Yi

    2014-05-01

    In this study, the properties of aerosol types are characterized from the aspects of remote sensing and in situ measurements. Particles of dust, smoke and anthropogenic pollutant are selected as the principal types in the study. The measurements of AERONET sites and MODIS data, during the dust storm and biomass burning events in the period from 2002 to 2008, suggest that the aerosol species can be discriminated sufficiently based on the dissimilarity of AE (Ångström exponent) and SSA (single scattering albedo) properties. However, the physicochemical characteristics of source aerosols can be altered after the external/internal combination along the pathway of transportation, thus induce error to the satellite retrievals. In order to eliminate from this kind of errors, the optical properties of mixed aerosols (external) are also simulated with the database of dust and soot aggregates in this study. The preliminary results show that SSA value (at 470 nm) of mineral dust may decay 5-11 % when external mixed with 15-30 % soot aggregates, then result in 11-22 % variation of reflectance observed from satellite which could lead to sufficiently large uncertainty on the retrieval of aerosol optical thickness. As a result, the effect of heterogeneous mixture should be taken into account for more accurate retrieval of aerosol properties, especially after the long-range transport. Keywords: Aerosol type, Ångström exponent, Single scattering albedo, AERONET, MODIS, External mixture

  5. In-situ, sunphotometer and Raman lidar observations of aerosol transport events in the western Mediterranean during the June 2013 ChArMEx campaign

    NASA Astrophysics Data System (ADS)

    Totems, Julien; Sicard, Michael; Bertolin, Santi; Boytard, Mai-Lan; Chazette, Patrick; Comeron, Adolfo; Dulac, Francois; Hassanzadeh, Sahar; Lange, Diego; Marnas, Fabien; Munoz, Constantino; Shang, Xiaoxia

    2014-05-01

    We present a preliminary analysis of aerosol observations performed in June 2013 in the western Mediterranean at two stations set up in Barcelona and Menorca (Spain) in the framework of the ChArMEx (Chemistry Aerosol Mediterranean Experiment) project. The Barcelona station was equipped with the following fixed instruments belonging to the Universitat Politècnica de Catalunya (UPC): an AERONET (Aerosol Robotic Network) sun-photometer, an MPL (Micro Pulse Lidar) lidar and the UPC multi-wavelength lidar. The MPL lidar works at 532 nm and has a depolarization channel, while the UPC lidar works at 355, 532 and 1064 nm, and also includes two N2- (at 387 and 607 nm) and one H2O-Raman (at 407 nm) channels. The MPL system works continuously 24 hour/day. The UPC system was operated on alert in coordination with the research aircrafts plans involved in the campaign. In Cap d'en Font, Menorca, the mobile laboratory of the Laboratoire des Sciences du Climat et de l'Environnement hosted an automated (AERONET) and a manual (Microtops) 5-lambda sunphotometer, a 3-lambda nephelometer, a 7-lambda aethalometer, as well as the LSCE Water vapor Aerosol LIdar (WALI). This mini Raman lidar, first developed and validated for the HyMEX (Hydrological cycle in the Mediterranean eXperiment) campaign in 2012, works at 355 nm for eye safety and is designed with a short overlap distance (<300m) to probe the lower troposphere. It includes depolarization, N2- and H2O-Raman channels. H2O observations have been calibrated on-site by different methods and show good agreement with balloon measurements. Observations at Cap d'en Font were quasi-continuous from June 10th to July 3rd, 2013. The lidar data at both stations helped direct the research aircrafts and balloon launches to interesting plumes of particles in real time for in-situ measurements. Among some light pollution background from the European continent, a typical Saharan dust event and an unusual American dust/biomass burning event are

  6. Aerosol radiative forcing from GEO satellite data over land surfaces

    NASA Astrophysics Data System (ADS)

    Costa, Maria J.; Silva, Ana M.

    2005-10-01

    . The aerosol characterization obtained is used to calculate the fluxes and estimate the aerosol radiative forcing at the top of the atmosphere. The methodology along with the results of the aerosol properties and radiative forcing using SEVIRI images is presented. The aerosol optical thickness results are compared with ground-based measurements from the Aerosol Robotic NETwork (AERONET), to assess the accuracy of the methodology presented.

  7. Evaluation of a regional mineral dust model over Northern Africa, Southern Europe and Middle East with AERONET data

    NASA Astrophysics Data System (ADS)

    Basart, S.; Pérez, C.; Cuevas, E.; Baldasano, J. M.

    2009-04-01

    A variety of regional and global models of the dust aerosol cycle have been developed since early 1990s. Dust models are essential to complement dust-related observations, understand the dust processes and predict the impact of dust on surface level PM concentrations. Dust generation and the parameterization of its deposition processes shows a high variability on spatial and temporal scales. It responds, in a non-linear way, to a variety of environmental factors, such as soil moisture content, the type of surface cover or surface atmospheric turbulence. Thus the modelling of this very complex process is a challenge. DREAM (Dust Regional Atmospheric Model; Nickovic et al., 2001) provides operational dust forecasts for Northern Africa, Europe and Middle East, as well as for the East-Asia regions. DREAM is operated and further developed in the Barcelona Supercomputing Center. DREAM is fully inserted as one of the governing equations in the NCEP/Eta atmospheric model and simulates all major processes of the atmospheric dust cycle. In order to implement new model versions for operational applications there is a need for extensive checking and validation against real observations. The present study focuses on the evaluation of forecasting capacity of the new version of DREAM by means of a model-to-observation comparison of the Aerosol Optical Depth (AOD) over Northern Africa, Southern Europe and Middle East for one year. The model provides 72h forecasts initialized at 12UTC of each day with outputs every 1 hour at horizontal resolution of about 1/3° and 24 z-vertical layers in the troposphere. Comparisons against 47 selected AERONET sites are used. Eight size bins between 0.1 and 10 µm are considered, and dust-radiation interactions are included (Pérez et al., 2006). Wet deposition scheme has been also improved. The simulation has been performed over one year (2004); statistics and time series for the model outputs and AERONET data are used to evaluate the ability of

  8. Ensemble-Based Assimilation of Aerosol Observations in GEOS-5

    NASA Technical Reports Server (NTRS)

    Buchard, V.; Da Silva, A.

    2016-01-01

    MERRA-2 is the latest Aerosol Reanalysis produced at NASA's Global Modeling Assimilation Office (GMAO) from 1979 to present. This reanalysis is based on a version of the GEOS-5 model radiatively coupled to GOCART aerosols and includes assimilation of bias corrected Aerosol Optical Depth (AOD) from AVHRR over ocean, MODIS sensors on both Terra and Aqua satellites, MISR over bright surfaces and AERONET data. In order to assimilate lidar profiles of aerosols, we are updating the aerosol component of our assimilation system to an Ensemble Kalman Filter (EnKF) type of scheme using ensembles generated routinely by the meteorological assimilation. Following the work performed with the first NASA's aerosol reanalysis (MERRAero), we first validate the vertical structure of MERRA-2 aerosol assimilated fields using CALIOP data over regions of particular interest during 2008.

  9. Aerosol climatology over the Mexico City basin: Characterization of optical properties

    NASA Astrophysics Data System (ADS)

    Carabali, Giovanni; Estévez, Héctor Raúl; Valdés-Barrón, Mauro; Bonifaz-Alfonzo, Roberto; Riveros-Rosas, David; Velasco-Herrera, Víctor Manuel; Vázquez-Gálvez, Felipe Adrián

    2017-09-01

    Climatology of Aerosol Optical Depth (AOD), Single Scattering Albedo (SSA), and aerosol particle-size distribution were analyzed using a 15-year (1999-2014) dataset from AErosol RObotic NETwork (AERONET) observations over the Mexico City (MC) basin. The atmosphere over this site is dominated by two main aerosol types, represented by urban/industrial pollution and biomass-burning particles. Due to the specific meteorological conditions within the basin, seasons are usually classified into three as follows: Dry Winter (DW) (November-February); Dry Spring (DS) (March-April), and the RAiny season (RA) (May-October), which are mentioned throughout this article. Using a CIMEL sun photometer, we conducted continuous observations over the MC urban area from January 1999 to December 2014. Aerosol Optical Depth (AOD), Ångström exponent (α440-870), Single Scattering Albedo (SSA), and aerosol particle-size distribution were derived from the observational data. The overall mean AOD500 during the 1999-2014 period was 0.34 ± 0.07. The monthly mean AOD reached a maximal value of 0.49 in May and a minimal value of 0.27 in February and March. The average α440-870 value for the period studied was 1.50 ± 0.16. The monthly average of α440-870 reached a minimal value of 1.32 in August and a maximal value of 1.61 in May. Average SSA at 440 nm was 0.89 throughout the observation period, indicating that aerosols over Mexico City are composed mainly of absorptive particles. Concentrations of fine- and coarse-mode aerosols over MC were highest in DS season compared with other seasons, especially for particles with radii measuring between 0.1 and 0.2 μm. Results from the Spectral De-convolution Algorithm (SDA) show that fine-mode aerosols dominated AOD variability in MC. In the final part of this article, we present a classification of aerosols in MC by using the graphical method proposed by Gobbi et al. (2007), which is based on the combined analysis of α and its spectral curvature

  10. Nighttime Aerosol Optical Depth Measurements Using a Ground-based Lunar Photometer

    NASA Technical Reports Server (NTRS)

    Berkoff, Tim; Omar, Ali; Haggard, Charles; Pippin, Margaret; Tasaddaq, Aasam; Stone, Tom; Rodriguez, Jon; Slutsker, Ilya; Eck, Tom; Holben, Brent; hide

    2015-01-01

    In recent years it was proposed to combine AERONET network photometer capabilities with a high precision lunar model used for satellite calibration to retrieve columnar nighttime AODs. The USGS lunar model can continuously provide pre-atmosphere high precision lunar irradiance determinations for multiple wavelengths at ground sensor locations. When combined with measured irradiances from a ground-based AERONET photometer, atmospheric column transmissions can determined yielding nighttime column aerosol AOD and Angstrom coefficients. Additional demonstrations have utilized this approach to further develop calibration methods and to obtain data in polar regions where extended periods of darkness occur. This new capability enables more complete studies of the diurnal behavior of aerosols, and feedback for models and satellite retrievals for the nighttime behavior of aerosols. It is anticipated that the nighttime capability of these sensors will be useful for comparisons with satellite lidars such as CALIOP and CATS in additional to ground-based lidars in MPLNET at night, when the signal-to-noise ratio is higher than daytime and more precise AOD comparisons can be made.

  11. Deriving brown carbon from multiwavelength absorption measurements: Method and application to AERONET and Aethalometer observations

    DOE PAGES

    Wang, X.; Heald, C. L.; Sedlacek, A.; ...

    2016-10-13

    The radiative impact of organic aerosols (OA) is a large source of uncertainty in estimating the global direct radiative effect (DRE) of aerosols. This radiative impact includes not only light scattering but also light absorption from a subclass of OA referred to as brown carbon (BrC). However the absorption properties of BrC are poorly understood leading to large uncertainties in modelling studies. To obtain observational constraints from measurements, a simple Absorption Ångström Exponent (AAE) method is often used to separate the contribution of BrC absorption from that of black carbon (BC). However, this attribution method is based on assumptions regardingmore » the spectral dependence of BC that are often violated in the ambient atmosphere. Here we develop a new method that decreases the uncertainties associated with estimating BrC absorption. By applying this method to multi-wavelength absorption aerosol optical depth (AAOD) measurements at AERONET sites worldwide and surface aerosol absorption measurements at multiple ambient sites, we estimate that BrC globally contributes 6-40% of the absorption at 440nm. We find that the mass absorption coefficient of OA (OA-MAC) is positively correlated with BC/OA mass ratio. Based on the variability of BC properties and BC/OA emission ratio, we estimate a range of 0.05-1.2 m 2/g for OA-MAC at 440nm. Using the combination of AERONET and OMI UV absorption observations we estimate that the AAE 388/440nm for BrC is generally ~4 world-wide, with a smaller value in Europe (< 2). Our analyses of two surface sites (Cape Cod, to the southeast of Boston, and the GoAmazon2014/5 T3 site, to the west of Manaus, Brazil) reveal no significant relationship between BrC absorptivity and photochemical aging in typical urban influenced conditions. However, the absorption of BrC measured during the biomass burning season near Manaus is found to decrease with photochemical aging with a lifetime of ~1 day. This lifetime is comparable to

  12. Algorithms for radiative transfer simulations for aerosol retrieval

    NASA Astrophysics Data System (ADS)

    Mukai, Sonoyo; Sano, Itaru; Nakata, Makiko

    2012-11-01

    Aerosol retrieval work from satellite data, i.e. aerosol remote sensing, is divided into three parts as: satellite data analysis, aerosol modeling and multiple light scattering calculation in the atmosphere model which is called radiative transfer simulation. The aerosol model is compiled from the accumulated measurements during more than ten years provided with the world wide aerosol monitoring network (AERONET). The radiative transfer simulations take Rayleigh scattering by molecules and Mie scattering by aerosols in the atmosphere, and reflection by the Earth surface into account. Thus the aerosol properties are estimated by comparing satellite measurements with the numerical values of radiation simulations in the Earth-atmosphere-surface model. It is reasonable to consider that the precise simulation of multiple light-scattering processes is necessary, and needs a long computational time especially in an optically thick atmosphere model. Therefore efficient algorithms for radiative transfer problems are indispensable to retrieve aerosols from space.

  13. Method for estimating the atmospheric content of sub-micrometer aerosol using direct-sun photometric data

    NASA Astrophysics Data System (ADS)

    Stefan, S.; Filip, L.

    2009-04-01

    It is well known that the aerosol generated by human activity falls in the sub-micrometer rage [1]. The rapid increase of such emissions led to massive accumulations in the planetary boundary layer. Aerosol pollutants influence the quality of life on the Earth in at least two ways: by direct physiological effects following their penetration into living organisms and by the indirect implications on the overall energy balance of the Earth-atmosphere system. For these reasons monitoring the sub-micrometer aerosol on a global scale, become a stringent necessity in protecting the environment. The sun-photometry proved a very efficient way for such monitoring activities, mainly when vast networks of instruments (like AERONET [2]) are used. The size distribution of aerosols is currently a product of AERONET obtained through an inversion algorithm of sky-photometry data [3, 4]. Alternatively, various methods of investigating the aerosol size distribution have been developed through the use of direct-sun photometric data, with the advantages of simpler computation algorithms and a more convenient use [5, 6]. Our research aims to formulate a new simpler way to retrieve aerosol fine and coarse mode volume concentrations, as well as dimensional information, from direct-sun data. As in other works from the literature [3-6], the main hypothesis is that of a bi-modal shape of the size distribution of aerosols that can be reproduced rather satisfactorily by a linear combination of two lognormal functions. Essentially, the method followed in this paper relies on aerosol size information retrieval through fitting theoretical computations to measured aerosol optical depth (AOD) and related data. To this purpose, the experimental spectral dependence of AOD is interpolated and differentiated numerically to obtain the Ǻngström parameter. The reduced (i.e. normalized to the corresponding columnar volumetric content) contributions of the fine and coarse modes to the AOD have also been

  14. High temporal resolution aerosol retrieval using Geostationary Ocean Color Imager: application and initial validation

    NASA Astrophysics Data System (ADS)

    Zhang, Yuhuan; Li, Zhengqiang; Zhang, Ying; Hou, Weizhen; Xu, Hua; Chen, Cheng; Ma, Yan

    2014-01-01

    The Geostationary Ocean Color Imager (GOCI) provides multispectral imagery of the East Asia region hourly from 9:00 to 16:00 local time (GMT+9) and collects multispectral imagery at eight spectral channels (412, 443, 490, 555, 660, 680, 745, and 865 nm) with a spatial resolution of 500 m. Thus, this technology brings significant advantages to high temporal resolution environmental monitoring. We present the retrieval of aerosol optical depth (AOD) in northern China based on GOCI data. Cross-calibration was performed against Moderate Resolution Imaging Spectrometer (MODIS) data in order to correct the land calibration bias of the GOCI sensor. AOD retrievals were then accomplished using a look-up table (LUT) strategy with assumptions of a quickly varying aerosol and a slowly varying surface with time. The AOD retrieval algorithm calculates AOD by minimizing the surface reflectance variations of a series of observations in a short period of time, such as several days. The monitoring of hourly AOD variations was implemented, and the retrieved AOD agreed well with AErosol RObotic NETwork (AERONET) ground-based measurements with a good R2 of approximately 0.74 at validation sites at the cities of Beijing and Xianghe, although intercept bias may be high in specific cases. The comparisons with MODIS products also show a good agreement in AOD spatial distribution. This work suggests that GOCI imagery can provide high temporal resolution monitoring of atmospheric aerosols over land, which is of great interest in climate change studies and environmental monitoring.

  15. Black carbon's contribution to aerosol absorption optical depth over S. Korea

    NASA Astrophysics Data System (ADS)

    Lamb, K.; Perring, A. E.; Beyersdorf, A. J.; Anderson, B. E.; Segal-Rosenhaimer, M.; Redemann, J.; Holben, B. N.; Schwarz, J. P.

    2017-12-01

    Aerosol absorption optical depth (AAOD) monitored by ground-based sites (AERONET, SKYNET, etc.) is used to constrain climate radiative forcing from black carbon (BC) and other absorbing aerosols in global models, but few validation studies between in situ aerosol measurements and ground-based AAOD exist. AAOD is affected by aerosol size distributions, composition, mixing state, and morphology. Megacities provide appealing test cases for this type of study due to their association with very high concentrations of anthropogenic aerosols. During the KORUS-AQ campaign in S. Korea, which took place in late spring and early summer of 2016, in situ aircraft measurements over the Seoul Metropolitan Area and Taehwa Research Forest (downwind of Seoul) were repeated three times per flight over a 6 week period, providing significant temporal coverage of vertically resolved aerosol properties influenced by different meteorological conditions and sources. Measurements aboard the NASA DC-8 by the NOAA Humidified Dual Single Particle Soot Photometers (HD-SP2) quantified BC mass, size distributions, mixing state, and the hygroscopicity of BC containing aerosols. The in situ BC mass vertical profiles are combined with estimated absorption enhancement calculated from observed optical size and hygroscopicity using Mie theory, and then integrated over the depth of the profile to calculate BC's contribution to AAOD. Along with bulk aerosol size distributions and hygroscopicity, bulk absorbing aerosol optical properties, and on-board sky radiance measurements, these measurements are compared with ground-based AERONET site measurements of AAOD to evaluate closure between in situ vertical profiles of BC and AAOD measurements. This study will provide constraints on the relative importance of BC (including lensing and hygroscopicity effects) and non-BC components to AAOD over S. Korea.

  16. Use of A-Train Aerosol Observations to Constrain Direct Aerosol Radiative Effects (DARE) Comparisons with Aerocom Models and Uncertainty Assessments

    NASA Technical Reports Server (NTRS)

    Redemann, J.; Shinozuka, Y.; Kacenelenbogen, M.; Segal-Rozenhaimer, M.; LeBlanc, S.; Vaughan, M.; Stier, P.; Schutgens, N.

    2017-01-01

    We describe a technique for combining multiple A-Train aerosol data sets, namely MODIS spectral AOD (aerosol optical depth), OMI AAOD (absorption aerosol optical depth) and CALIOP aerosol backscatter retrievals (hereafter referred to as MOC retrievals) to estimate full spectral sets of aerosol radiative properties, and ultimately to calculate the 3-D distribution of direct aerosol radiative effects (DARE). We present MOC results using almost two years of data collected in 2007 and 2008, and show comparisons of the aerosol radiative property estimates to collocated AERONET retrievals. Use of the MODIS Collection 6 AOD data derived with the dark target and deep blue algorithms has extended the coverage of the MOC retrievals towards higher latitudes. The MOC aerosol retrievals agree better with AERONET in terms of the single scattering albedo (ssa) at 441 nm than ssa calculated from OMI and MODIS data alone, indicating that CALIOP aerosol backscatter data contains information on aerosol absorption. We compare the spatio-temporal distribution of the MOC retrievals and MOC-based calculations of seasonal clear-sky DARE to values derived from four models that participated in the Phase II AeroCom model intercomparison initiative. Overall, the MOC-based calculations of clear-sky DARE at TOA over land are smaller (less negative) than previous model or observational estimates due to the inclusion of more absorbing aerosol retrievals over brighter surfaces, not previously available for observationally-based estimates of DARE. MOC-based DARE estimates at the surface over land and total (land and ocean) DARE estimates at TOA are in between previous model and observational results. Comparisons of seasonal aerosol property to AeroCom Phase II results show generally good agreement best agreement with forcing results at TOA is found with GMI-MerraV3. We discuss sampling issues that affect the comparisons and the major challenges in extending our clear-sky DARE results to all

  17. Aerosol optical properties in ultraviolet ranges and respiratory diseases in Thailand

    NASA Astrophysics Data System (ADS)

    Kumharn, Wilawan; Hanprasert, Kasarin

    2016-10-01

    This study investigated the values of Angstrom parameters (α,β) in ultraviolet (UV) ranges by using AERONET Aerosol Optical Depth (AOD) data. A second-order polynomial was applied to the AERONET data in order to extrapolate to 320 nm from 2003 to 2013 at seven sites in Thailand. The α,β were derived by applying the Volz Method (VM) and Linear Method (LM) at 320-380 nm at seven monitoring sites in Thailand. Aerosol particles were categorized in both coarse and fine modes, depending on regions. Aerosol loadings were related to dry weather, forest fires, sea salt and most importantly, biomass burning in the North, and South of Thailand. Aerosol particles in the Central region contain coarse and fine modes, mainly emitted from vehicles. The β values obtained were associated with turbid and very turbid skies in Northern and Central regions except Bangkok, while β results are associated with clean skies in South. Higher values of the β at all sites were found in the winter and summer compared with the rainy season, in contrast to South where the highest AOD was observed in June. The β values were likely to increase during 2003-2013. These values correlate with worsening health situations as evident from increasing respiratory diseases reported.

  18. Trend analysis of the aerosol optical depth from fusion of MISR and MODIS retrievals over China

    NASA Astrophysics Data System (ADS)

    Guo, Jing; Gu, Xingfa; Yu, Tao; Cheng, Tianhai; Chen, Hao

    2014-03-01

    Atmospheric aerosol plays an important role in the climate change though direct and indirect processes. In order to evaluate the effects of aerosols on climate, it is necessary to have a research on their spatial and temporal distributions. Satellite aerosol remote sensing is a developing technology that may provide good temporal sampling and superior spatial coverage to study aerosols. The Moderate Resolution Imaging Spectroradiometer (MODIS) and Multi-angle Imaging Spectroradiometer (MISR) have provided aerosol observations since 2000, with large coverage and high accuracy. However, due to the complex surface, cloud contamination, and aerosol models used in the retrieving process, the uncertainties still exist in current satellite aerosol products. There are several observed differences in comparing the MISR and MODIS AOD data with the AERONET AOD. Combing multiple sensors could reduce uncertainties and improve observational accuracy. The validation results reveal that a better agreement between fusion AOD and AERONET AOD. The results confirm that the fusion AOD values are more accurate than single sensor. We have researched the trend analysis of the aerosol properties over China based on nine-year (2002-2010) fusion data. Compared with trend analysis in Jingjintang and Yangtze River Delta, the accuracy has increased by 5% and 3%, respectively. It is obvious that the increasing trend of the AOD occurred in Yangtze River Delta, where human activities may be the main source of the increasing AOD.

  19. Simulation of aerosol radiative properties with the ORISAM-RAD model during a pollution event (ESCOMPTE 2001)

    NASA Astrophysics Data System (ADS)

    Mallet, M.; Pont, V.; Liousse, C.; Roger, J. C.; Dubuisson, P.

    The aim of this study is to present the organic and inorganic spectral aerosol module-radiative (ORISAM-RAD) module, allowing the 3D distribution of aerosol radiative properties (aerosol optical depth, single scattering albedo and asymmetry parameter) from the ORISAM module. In this work, we test ORISAM-RAD for one selected day (24th June) during the ESCOMPTE (expérience sur site pour contraindre les modèles de pollution atmosphérique et de transport d'emissions) experiment for an urban/industrial aerosol type. The particle radiative properties obtained from in situ and AERONET observations are used to validate our simulations. In a first time, simulations obtained from ORISAM-RAD indicate high aerosol optical depth (AOD)˜0.50-0.70±0.02 (at 440 nm) in the aerosol pollution plume, slightly lower (˜10-20%) than AERONET retrievals. In a second time, simulations of the single scattering albedo ( ωo) have been found to well reproduce the high spatial heterogeneities observed over this domain. Concerning the asymmetry parameter ( g), ORISAM-RAD simulations reveal quite uniform values over the whole ESCOMPTE domain, comprised between 0.61±0.01 and 0.65±0.01 (at 440 nm), in excellent agreement with ground based in situ measurements and AERONET retrievals. Finally, the outputs of ORISAM-RAD have been used in a radiative transfer model in order to simulate the diurnal direct radiative forcing at different locations (urban, industrial and rural). We show that anthropogenic aerosols strongly decrease surface solar radiation, with diurnal mean surface forcings comprised between -29.0±2.9 and -38.6±3.9 W m -2, depending on the sites. This decrease is due to the reflection of solar radiations back to space (-7.3±0.8<Δ FTOA<-12.3±1.2 W m -2) and to its absorption into the aerosol layer (21.1±2.1<Δ FATM<26.3±2.6 W m -2). These values are found to be consistent with those measured at local scale.

  20. A New, More Physically Based Algorithm, for Retrieving Aerosol Properties over Land from MODIS

    NASA Technical Reports Server (NTRS)

    Levy, Robert C.; Kaufman, Yoram J.; Remer, Lorraine A.; Mattoo, Shana

    2004-01-01

    The MOD Imaging Spectrometer (MODIS) has been successfully retrieving aerosol properties, beginning in early 2000 from Terra and from mid 2002 from Aqua. Over land, the retrieval algorithm makes use of three MODIS channels, in the blue, red and infrared wavelengths. As part of the validation exercises, retrieved spectral aerosol optical thickness (AOT) has been compared via scatterplots against spectral AOT measured by the global Aerosol Robotic NETwork (AERONET). On one hand, global and long term validation looks promising, with two-thirds (average plus and minus one standard deviation) of all points falling between published expected error bars. On the other hand, regression of these points shows a positive y-offset and a slope less than 1.0. For individual regions, such as along the U.S. East Coast, the offset and slope are even worse. Here, we introduce an overhaul of the algorithm for retrieving aerosol properties over land. Some well-known weaknesses in the current aerosol retrieval from MODIS include: a) rigid assumptions about the underlying surface reflectance, b) limited aerosol models to choose from, c) simplified (scalar) radiative transfer (RT) calculations used to simulate satellite observations, and d) assumption that aerosol is transparent in the infrared channel. The new algorithm attempts to address all four problems: a) The new algorithm will include surface type information, instead of fixed ratios of the reflectance in the visible channels to the mid-IR reflectance. b) It will include updated aerosol optical properties to reflect the growing aerosol retrieved from eight-plus years of AERONE". operation. c) The effects of polarization will be including using vector RT calculations. d) Most importantly, the new algorithm does not assume that aerosol is transparent in the infrared channel. It will be an inversion of reflectance observed in the three channels (blue, red, and infrared), rather than iterative single channel retrievals. Thus, this new

  1. Evaluation of Long-term Aerosol Data Records from SeaWiFS over Land and Ocean

    NASA Astrophysics Data System (ADS)

    Bettenhausen, C.; Hsu, C.; Jeong, M.; Huang, J.

    2010-12-01

    Deserts around the globe produce mineral dust aerosols that may then be transported over cities, across continents, or even oceans. These aerosols affect the Earth’s energy balance through direct and indirect interactions with incoming solar radiation. They also have a biogeochemical effect as they deliver scarce nutrients to remote ecosystems. Large dust storms regularly disrupt air traffic and are a general nuisance to those living in transport regions. In the past, measuring dust aerosols has been incomplete at best. Satellite retrieval algorithms were limited to oceans or vegetated surfaces and typically neglected desert regions due to their high surface reflectivity in the mid-visible and near-infrared wavelengths, which have been typically used for aerosol retrievals. The Deep Blue aerosol retrieval algorithm was developed to resolve these shortcomings by utilizing the blue channels from instruments such as the Sea-Viewing Wide-Field-of-View Sensor (SeaWiFS) and the Moderate Resolution Imaging Spectroradiometer (MODIS) to infer aerosol properties over these highly reflective surfaces. The surface reflectivity of desert regions is much lower in the blue channels and thus it is easier to separate the aerosol and surface signals than at the longer wavelengths used in other algorithms. More recently, the Deep Blue algorithm has been expanded to retrieve over vegetated surfaces and oceans as well. A single algorithm can now follow dust from source to sink. In this work, we introduce the SeaWiFS instrument and the Deep Blue aerosol retrieval algorithm. We have produced global aerosol data records over land and ocean from 1997 through 2009 using the Deep Blue algorithm and SeaWiFS data. We describe these data records and validate them with data from the Aerosol Robotic Network (AERONET). We also show the relative performance compared to the current MODIS Deep Blue operational aerosol data in desert regions. The current results are encouraging and this dataset will

  2. Using sky radiances measured by ground based AERONET Sun-Radiometers for cirrus cloud detection

    NASA Astrophysics Data System (ADS)

    Sinyuk, A.; Holben, B. N.; Eck, T. F.; Slutsker, I.; Lewis, J. R.

    2013-12-01

    Screening of cirrus clouds using observations of optical depth (OD) only has proven to be a difficult task due mostly to some clouds having temporally and spatially stable OD. On the other hand, the sky radiances measurements which in AERONET protocol are taken throughout the day may contain additional cloud information. In this work the potential of using sky radiances for cirrus cloud detection is investigated. The detection is based on differences in the angular shape of sky radiances due to cirrus clouds and aerosol (see Figure). The range of scattering angles from 3 to 6 degrees was selected due to two primary reasons: high sensitivity to cirrus clouds presence, and close proximity to the Sun. The angular shape of sky radiances was parametrized by its curvature, which is a parameter defined as a combination of the first and second derivatives as a function of scattering angle. We demonstrate that a slope of the logarithm of curvature versus logarithm of scattering angle in this selected range of scattering angles is sensitive to cirrus cloud presence. We also demonstrate that restricting the values of the slope below some threshold value can be used for cirrus cloud screening. The threshold value of the slope was estimated using collocated measurements of AERONET data and MPLNET lidars.

  3. Remote Sensing of Spectral Aerosol Properties: A Classroom Experience

    NASA Technical Reports Server (NTRS)

    Levy, Robert C.; Pinker, Rachel T.

    2006-01-01

    Bridging the gap between current research and the classroom is a major challenge to today s instructor, especially in the sciences where progress happens quickly. NASA Goddard Space Flight Center and the University of Maryland teamed up in designing a graduate class project intended to provide a hands-on introduction to the physical basis for the retrieval of aerosol properties from state-of-the-art MODIS observations. Students learned to recognize spectral signatures of atmospheric aerosols and to perform spectral inversions. They became acquainted with the operational MODIS aerosol retrieval algorithm over oceans, and methods for its evaluation, including comparisons with groundbased AERONET sun-photometer data.

  4. Retrieval of spectral aerosol optical thickness over land using ocean color sensors MERIS and SeaWiFS

    NASA Astrophysics Data System (ADS)

    von Hoyningen-Huene, W.; Yoon, J.; Vountas, M.; Istomina, L. G.; Rohen, G.; Dinter, T.; Kokhanovsky, A. A.; Burrows, J. P.

    2011-02-01

    For the determination of aerosol optical thickness (AOT) Bremen AErosol Retrieval (BAER) has been developed. Method and main features on the aerosol retrieval are described together with validation and results. The retrieval separates the spectral aerosol reflectance from surface and Rayleigh path reflectance for the shortwave range of the measured spectrum of top-of-atmosphere reflectance for wavelength less than 0.670 μm. The advantage of MERIS (Medium Resolution Imaging Spectrometer on the Environmental Satellite - ENVISAT - of the European Space Agency - ESA) and SeaWiFS (Sea viewing Wide Field Sensor on OrbView-2 spacecraft) observations is the availability of several spectral channels in the blue and visible range enabling the spectral determination of AOT in 7 (or 6) channels (0.412-0.670 μm) and additionally channels in the NIR, which can be used to characterize the surface properties. A dynamical spectral surface reflectance model for different surface types is used to obtain the spectral surface reflectance for this separation. The normalized differential vegetation index (NDVI), taken from the satellite observations, is the model input. Further surface bi-directional reflectance distribution function (BRDF) is considered by the Raman-Pinty-Verstraete (RPV) model. Spectral AOT is obtained from aerosol reflectance using look-up-tables, obtained from radiative transfer calculations with given aerosol phase functions and single scattering albedos either from aerosol models, given by model package "optical properties of aerosol components" (OPAC) or from experimental campaigns. Validations of the obtained AOT retrieval results with data of Aerosol Robotic Network (AERONET) over Europe gave a preference for experimental phase functions derived from almucantar measurements. Finally long-term observations of SeaWiFS have been investigated for 11 year trends in AOT. Western European regions have negative trends with decreasing AOT with time. For the

  5. Retrieval of the aerosol optical thickness from UV global irradiance measurements

    NASA Astrophysics Data System (ADS)

    Costa, M. J.; Salgueiro, V.; Bortoli, D.; Obregón, M. A.; Antón, M.; Silva, A. M.

    2015-12-01

    The UV irradiance is measured at Évora since several years, where a CIMEL sunphotometer integrated in AERONET is also installed. In the present work, measurements of UVA (315 - 400 nm) irradiances taken with Kipp&Zonen radiometers, as well as satellite data of ozone total column values, are used in combination with radiative transfer calculations, to estimate the aerosol optical thickness (AOT) in the UV. The retrieved UV AOT in Évora is compared with AERONET AOT (at 340 and 380 nm) and a fairly good agreement is found with a root mean square error of 0.05 (normalized root mean square error of 8.3%) and a mean absolute error of 0.04 (mean percentage error of 2.9%). The methodology is then used to estimate the UV AOT in Sines, an industrialized site on the Atlantic western coast, where the UV irradiance is monitored since 2013 but no aerosol information is available.

  6. Modeling South America regional smoke plume: aerosol optical depth variability and shortwave surface forcing

    NASA Astrophysics Data System (ADS)

    Rosário, N. E.; Longo, K. M.; Freitas, S. R.; Yamasoe, M. A.; Fonseca, R. M.

    2012-07-01

    Intra-seasonal variability of smoke aerosol optical depth (AOD) and downwelling solar irradiance at the surface during the 2002 biomass burning season in South America was modeled using the Coupled Chemistry-Aerosol-Tracer Transport model to the Brazilian developments on the Regional Atmospheric Modeling System (CCATT-BRAMS). Measurements of AOD from the AErosol RObotic NETwork (AERONET) and solar irradiance at the surface from the Solar Radiation Network (SolRad-NET) were used to evaluate model results. In general, the major features associated with AOD evolution over the southern part of the Amazon Basin and cerrado ecosystem are captured by the model. The main discrepancies were found for high aerosol loading events. In the northeastern portion of the Amazon Basin the model systematically underestimated AOD. This is likely due to the cloudy nature of the region, preventing accurate detection of the fire spots used in the emission model. Moreover, measured AOD were very often close to background conditions and emissions other than smoke were not considered in the simulation. Therefore, under the background scenario, one would expect the model to underestimate AOD. The issue of high aerosol loading events in the southern part of the Amazon and cerrado is also discussed in the context of emission shortcomings. The Cuiabá cerrado site was the only one where the highest quality AERONET data were unavailable. Thus, lower quality data were used. Root-mean-square-error (RMSE) between the model and observations decreased from 0.48 to 0.17 when extreme AOD events (AOD550 nm ≥ 1.0) and Cuiabá were excluded from analysis. Downward surface solar irradiance comparisons also followed similar trends when extremes AOD were excluded. This highlights the need to improve the modelling of the regional smoke plume in order to enhance the accuracy of the radiative energy budget. Aerosol optical model based on the mean intensive properties of smoke from the southern part of the

  7. A multi-model evaluation of aerosols over South Asia: common problems and possible causes

    NASA Astrophysics Data System (ADS)

    Pan, X.; Chin, M.; Gautam, R.; Bian, H.; Kim, D.; Colarco, P. R.; Diehl, T. L.; Takemura, T.; Pozzoli, L.; Tsigaridis, K.; Bauer, S.; Bellouin, N.

    2015-05-01

    Atmospheric pollution over South Asia attracts special attention due to its effects on regional climate, water cycle and human health. These effects are potentially growing owing to rising trends of anthropogenic aerosol emissions. In this study, the spatio-temporal aerosol distributions over South Asia from seven global aerosol models are evaluated against aerosol retrievals from NASA satellite sensors and ground-based measurements for the period of 2000-2007. Overall, substantial underestimations of aerosol loading over South Asia are found systematically in most model simulations. Averaged over the entire South Asia, the annual mean aerosol optical depth (AOD) is underestimated by a range 15 to 44% across models compared to MISR (Multi-angle Imaging SpectroRadiometer), which is the lowest bound among various satellite AOD retrievals (from MISR, SeaWiFS (Sea-Viewing Wide Field-of-View Sensor), MODIS (Moderate Resolution Imaging Spectroradiometer) Aqua and Terra). In particular during the post-monsoon and wintertime periods (i.e., October-January), when agricultural waste burning and anthropogenic emissions dominate, models fail to capture AOD and aerosol absorption optical depth (AAOD) over the Indo-Gangetic Plain (IGP) compared to ground-based Aerosol Robotic Network (AERONET) sunphotometer measurements. The underestimations of aerosol loading in models generally occur in the lower troposphere (below 2 km) based on the comparisons of aerosol extinction profiles calculated by the models with those from Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) data. Furthermore, surface concentrations of all aerosol components (sulfate, nitrate, organic aerosol (OA) and black carbon (BC)) from the models are found much lower than in situ measurements in winter. Several possible causes for these common problems of underestimating aerosols in models during the post-monsoon and wintertime periods are identified: the aerosol hygroscopic growth and formation of

  8. Multi-site characterization of tropical aerosols: Implications for regional radiative forcing

    NASA Astrophysics Data System (ADS)

    Sumit, Kumar; Devara, P. C. S.; Manoj, M. G.

    2012-03-01

    A land campaign, as a part of the Indian Space Research Organization-Geosphere Biosphere Program (ISRO-GBP), has been organized using a suit of instruments like AERONET (Aerosol Robotic Network) Sun/Sky sunphotometer, Microtops-II (MICROprocessor-controlled Total Ozone Portable Spectrometer), short-wave pyranometer from December 1, 2006 to April 30, 2007, over five locations (Ahmedabad, Pune, Sinhgad, Trivandrum and Gadanki) representing different environments. The dominance of different aerosol types such as biomass burning, urban/industrial pollution, marine origin and desert-dust particles is expected at these five sites. In all locations, significant day-to-day variability in AOD and Ångström exponent is observed. The Ångström exponent exhibits its lowest values over semi-arid region (Ahmedabad) 0.4-0.7, while it is around 1.8 at rural site (Gadanki). The retrieved volume size distributions for Pune, Ahmedabad and Trivandrum are found to be bimodal with varying concentration of each mode. Interesting feature of this observation is, very low coarse-mode volume concentration observed at Trivandrum even though observations were made about 300 m from the coast. The synergy of results from these complementary measurements is reflected in the computed regional aerosol radiative forcing and heating rates. We have used a radiative transfer model (SBDART) to examine the variations of aerosol direct radiative effect (ADRE) and heating rates to give an overall estimation of the effect on climate. The ADRE, over different measurement sites, at short wavelength is found to be negative at the surface in the range of - 18 to - 59 W m - 2 , and TOA forcing values varied from + 0.9 to - 8 W m - 2 .

  9. A COMPARISON OF CMAQ-BASED AEROSOL PROPERTIES WITH IMPROVE, MODIS, AND AERONET DATA

    EPA Science Inventory

    We compare select aerosol Properties derived from the Community Multiscale Air Quality (CMAQ) model-simulated aerosol mass concentrations with routine data from the National Aeronautics and Space Administration (NASA) satellite-borne Moderate Resolution Imaging Spectro-radiometer...

  10. Evaluation of VIIRS AOD over North China Plain: biases from aerosol models

    NASA Astrophysics Data System (ADS)

    Zhu, J.; Xia, X.; Wang, J.; Chen, H.; Zhang, J.; Oo, M. M.; Holz, R.

    2014-12-01

    With the launch of the Visible Infrared Imaging Radiometer Suit (VIIRS) instrument onboard Suomi National Polar-orbiting Partnership(S-NPP) in late 2011, the aerosol products of VIIRS are receiving much attention.To date, mostevaluations of VIIRS aerosol productswere carried out about aerosol optical depth (AOD). To further assess the VIIRS AOD in China which is a heavy polluted region in the world,we made a comparison between VIIRS AOD and CE-318 radiometerobservation at the following three sites overNorth China Plain (NCP): metropolis-Beijing (AERONET), suburbs-XiangHe (AERONET) and regional background site- Xinglong (CARSNET).The results showed the VIIRS AOD at 550 nm has a positive mean bias error (MBE) of 0.14-0.15 and root mean square error (RMBE) 0.20. Among three sites, Beijing is mainly a source of bias with MBE 0.17-0.18 and RMBE 0.23-0.24, and this bias is larger than some recent global statics recently published in the literature. Further analysis shows that this large bias in VIIRS AOD overNCP may be partly caused by the aerosol model selection in VIIRS aerosol inversion. According to the retrieval of sky radiance from CE-318 at three sites, aerosols in NCP have high mean real part of refractive indices (1.52-1.53), large volume mean radius (0.17-0.18) and low concentration (0.04-0.09) of fine aerosol, and small mean radius (2.86-2.92) and high concentration (0.06-0.16) of coarse mode aerosol. These observation-based aerosol single scattering properties and size of fine and coarse aerosols differ fromthe aerosol properties used in VIIRSoperational algorithm.The dominant aerosol models used in VIIRS algorithm for these three sites are less polluted urban aerosol in Beijing and low-absorption smoke in other two sites, all of which don't agree with the high imaginary part of refractive indices from CE-318 retrieval. Therefore, the aerosol models in VIIRS algorithm are likely to be refined in NCP region.

  11. Validation of MODIS Aerosol Optical Depth Retrievals over a Tropical Urban Site, Pune, India

    NASA Technical Reports Server (NTRS)

    More, Sanjay; Kuman, P. Pradeep; Gupta, Pawan; Devara, P. C. S.; Aher, G. R.

    2011-01-01

    In the present paper, MODIS (Terra and Aqua; level 2, collection 5) derived aerosoloptical depths (AODs) are compared with the ground-based measurements obtained from AERONET (level 2.0) and Microtops - II sun-photometer over a tropical urban station, Pune (18 deg 32'N; 73 deg 49'E, 559 m amsl). This is the first ever systematic validation of the MODIS aerosol products over Pune. Analysis of the data indicates that the Terra and Aqua MODIS AOD retrievals at 550 nm have good correlations with the AERONET and Microtops - II sun-photometer AOD measurements. During winter the linear regression correlation coefficients for MODIS products against AERONET measurements are 0.79 for Terra and 0.62 for Aqua; however for premonsoon, the corresponding coefficients are 0.78 and 0.74. Similarly, the linear regression correlation coefficients for Microtops measurements against MODIS products are 0.72 and 0.93 for Terra and Aqua data respectively during winter and are 0.78 and 0.75 during pre-monsoon. On yearly basis in 2008-2009, correlation coefficients for MODIS products against AERONET measurements are 0.80 and 0.78 for Terra and Aqua respectively while the corresponding coefficients are 0.70 and 0.73 during 2009-2010. The regressed intercepts with MODIS vs. AERONET are 0.09 for Terra and 0.05 for Aqua during winter whereas their values are 0.04 and 0.07 during pre-monsoon. However, MODIS AODs are found to underestimate during winter and overestimate during pre-monsoon with respect to AERONET and Microtops measurements having slopes 0.63 (Terra) and 0.74 (Aqua) during winter and 0.97 (Terra) and 0.94 (Aqua) during pre-monsoon. Wavelength dependency of Single Scattering Albedo (SSA) shows presence of absorbing and scattering aerosol particles. For winter, SSA decreases with wavelength with the values 0.86 +/- 0.03 at 440 nm and 0.82 +/- 0.04 at 1020nm. In pre-monsoon, it increases with wavelength (SSA is 0.87 +/- 0.02 at 440nm; and 0.88 +/-0.04 at 1020 nm).

  12. Direct Aerosol Radiative Forcing Based on Combined A-Train Observations: Towards All-sky Estimates and Attribution to Aerosol Type

    NASA Technical Reports Server (NTRS)

    Redemann, Jens; Shinozuka, Y.; Kacenelenbogen, M.; Russell, P.; Vaughan, M.; Ferrare, R.; Hostetler, C.; Rogers, R.; Burton, S.; Livingston, J.; hide

    2014-01-01

    We describe a technique for combining CALIOP aerosol backscatter, MODIS spectral AOD (aerosol optical depth), and OMI AAOD (absorption aerosol optical depth) measurements for the purpose of estimating full spectral sets of aerosol radiative properties, and ultimately for calculating the 3-D distribution of direct aerosol radiative forcing. We present results using one year of data collected in 2007 and show comparisons of the aerosol radiative property estimates to collocated AERONET retrievals. Initial calculations of seasonal clear-sky aerosol radiative forcing based on our multi-sensor aerosol retrievals compare well with over-ocean and top of the atmosphere IPCC-2007 model-based results, and with more recent assessments in the "Climate Change Science Program Report: Atmospheric Aerosol Properties and Climate Impacts" (2009). We discuss some of the challenges that exist in extending our clear-sky results to all-sky conditions. On the basis of comparisons to suborbital measurements, we present some of the limitations of the MODIS and CALIOP retrievals in the presence of adjacent or underlying clouds. Strategies for meeting these challenges are discussed. We also discuss a methodology for using the multi-sensor aerosol retrievals for aerosol type classification based on advanced clustering techniques. The combination of research results permits conclusions regarding the attribution of aerosol radiative forcing to aerosol type.

  13. Inferring wavelength dependence of AOD and Ångström exponent over a sub-tropical station in South Africa using AERONET data: influence of meteorology, long-range transport and curvature effect.

    PubMed

    Kumar, K Raghavendra; Sivakumar, V; Reddy, R R; Gopal, K Rama; Adesina, A Joseph

    2013-09-01

    Aerosol optical properties over a southern sub-tropical site Skukuza, South Africa were studied to determine the variability of the aerosol characteristics using CIMEL Sunphotometer data as part of the AErosol RObotic NETwork (AERONET) from December 2005 to November 2006. Aerosol optical depth (AOD), Ångström exponent (α), and columnar water vapor (CWV) data were collected, analyzed, and compiled. Participating in this network provided a unique opportunity for understanding the sources of aerosols affecting the atmosphere of South Africa (SA) and the regional radiation budget. The meteorological patterns significantly (p<0.05) influenced the amount and size distribution of the aerosols. Results showed that seasonal variation of AOD at 500 nm (AOD500) over the observation site were characterized by low values (0.10-0.13) in autumn, moderate values (0.14-0.16) in summer and winter seasons, and high to very high values (0.18-0.40) during the spring, with an overall mean value of 0.18±0.12. Ångström exponent α(440-870), varied from 0.5 to 2.89, with significant (p<0.0001) seasonal variability. CWV showed a strong annual cycle with maximum values in the summer and autumn seasons. The relationship between AOD, Ångström exponent (α), and CWV showed a strong dependence (p<0.0001) of α on AOD and CWV, while there was no significant correlation between AOD and CWV. Investigation of the adequacy of the simple use of the spectral AOD and Ångström exponent data was used in deriving the curvature (a2) showed to obtain information for determining the aerosol-particle size. The negative a2 values are characterized by aerosol-size dominated by fine-mode (0.1-1 μm), while the positive curvatures indicate abundance of coarse particles (>1 μm). Trajectory cluster analyses revealed that the air masses during the autumn and winter seasons have longer advection pathways, passing over the ocean and continent. This is reflected in the aerosol properties that are derived from

  14. On the influence of the diurnal variations of aerosol content to estimate direct aerosol radiative forcing using MODIS data

    NASA Astrophysics Data System (ADS)

    Xu, Hui; Guo, Jianping; Ceamanos, Xavier; Roujean, Jean-Louis; Min, Min; Carrer, Dominique

    2016-09-01

    Long-term measurements of aerosol optical depth (AOD) from the Aerosol Robotic Network (AERONET) located in Beijing reveal a strong diurnal cycle of aerosol load staged by seasonal patterns. Such pronounced variability is matter of importance in respect to the estimation of daily averaged direct aerosol radiative forcing (DARF). Polar-orbiting satellites could only offer a daily revisit, which turns in fact to be even much less in case of frequent cloudiness. Indeed, this places a severe limit to properly capture the diurnal variations of AOD and thus estimate daily DARF. Bearing this in mind, the objective of the present study is however to evaluate the impact of AOD diurnal variations for conducting quantitative assessment of DARF using Moderate Resolution Imaging Spectroradiometer (MODIS) AOD data over Beijing. We provide assessments of DARF with two different assumptions about diurnal AOD variability: taking the observed hourly-averaged AOD cycle into account and assuming constant MODIS (including Terra and Aqua) AOD value throughout the daytime. Due to the AOD diurnal variability, the absolute differences in annual daily mean DARFs, if the constant MODIS/Terra (MODIS/Aqua) AOD value is used instead of accounting for the observed hourly-averaged daily variability, is 1.2 (1.3) Wm-2 at the top of the atmosphere, 27.5 (30.6) Wm-2 at the surface, and 26.4 (29.3) Wm-2 in the atmosphere, respectively. During the summertime, the impact of the diurnal AOD variability on seasonal daily mean DARF estimates using MODIS Terra (Aqua) data can reach up to 2.2 (3.9) Wm-2 at the top of the atmosphere, 43.7 (72.7) Wm-2 at the surface, and 41.4 (68.8) Wm-2 in the atmosphere, respectively. Overall, the diurnal variation in AOD tends to cause large bias in the estimated DARF on both seasonal and annual scales. In summertime, the higher the surface albedo, the stronger impact on DARF at the top of the atmosphere caused by dust and biomass burning (continental) aerosol. This

  15. An aerosol climatology for a rapidly growing arid region (southern Arizona): Major aerosol species and remotely sensed aerosol properties

    NASA Astrophysics Data System (ADS)

    Sorooshian, Armin; Wonaschütz, Anna; Jarjour, Elias G.; Hashimoto, Bryce I.; Schichtel, Bret A.; Betterton, Eric A.

    2011-10-01

    This study reports a comprehensive characterization of atmospheric aerosol particle properties in relation to meteorological and back trajectory data in the southern Arizona region, which includes two of the fastest growing metropolitan areas in the United States (Phoenix and Tucson). Multiple data sets (MODIS, AERONET, OMI/TOMS, MISR, GOCART, ground-based aerosol measurements) are used to examine monthly trends in aerosol composition, aerosol optical depth (AOD), and aerosol size. Fine soil, sulfate, and organics dominate PM2.5 mass in the region. Dust strongly influences the region between March and July owing to the dry and hot meteorological conditions and back trajectory patterns. Because monsoon precipitation begins typically in July, dust levels decrease, while AOD, sulfate, and organic aerosol reach their maximum levels because of summertime photochemistry and monsoon moisture. Evidence points to biogenic volatile organic compounds being a significant source of secondary organic aerosol in this region. Biomass burning also is shown to be a major contributor to the carbonaceous aerosol budget in the region, leading to enhanced organic and elemental carbon levels aloft at a sky-island site north of Tucson (Mt. Lemmon). Phoenix exhibits different monthly trends for aerosol components in comparison with the other sites owing to the strong influence of fossil carbon and anthropogenic dust. Trend analyses between 1988 and 2009 indicate that the strongest statistically significant trends are reductions in sulfate, elemental carbon, and organic carbon, and increases in fine soil during the spring (March-May) at select sites. These results can be explained by population growth, land-use changes, and improved source controls.

  16. Aerosol Absorption in the Atmosphere: Perspectives from Global Model, Ground-Based Measurements, and Field Observations

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Dubovik, Oleg; Holben, Brent; Torres, Omar; Anderson, Tad; Quinn, Patricia; Ginoux, Paul

    2004-01-01

    Aerosol absorption in the atmosphere poses a major uncertainty in assessing the aerosol climate effects. This uncertainty arises from the poorly quantified aerosol sources, especially black carbon emissions, and our limited knowledge of aerosol mixing state and optical properties. Here we use a global model GOCART to simulate atmospheric aerosols, including sulfate, black carbon, organic carbon, dust, and sea salt. We compare the model calculated total aerosol optical thickness, extinction, and absorption with those quantities from the ground-based sun photometer measurements from AERONET, satellite retrievals from the TOMS instrument, and field observations from ACE-Asia. We will examine the most sensitive factors in determining the aerosol absorption. and the consequences of assessing the aerosol radiative forcing and atmospheric heating associated with those factors.

  17. Aerosol Absorption in the Atmosphere: Perspectives from Global Model, Ground-Based Measurements, and Field Observations

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Dubovik, Oleg; Holben, Brent; Anderson, Tad; Quinn, Patricia; Duncan, Bryan; Ginoux, Paul

    2003-01-01

    Aerosol absorption in the atmosphere poses a major uncertainty in assessing the aerosol climate effects. This uncertainty arises from the poorly quantified aerosol sources, especially black carbon emissions, and our limited knowledge of aerosol mixing state and optical properties. Here we use a global model GOCART to simulate atmospheric aerosols, including sulfate, black carbon, organic carbon, dust, and sea salt. We compare the model calculated total aerosol optical thickness, extinction, and absorption with those quantities from the ground-based sun photometer measurements from AERONET at several different wavelengths and the field observations from ACE-Asia. We will examine what are the most sensitive factors in determining the aerosol absorption, and the consequences of assessing the aerosol radiative forcing and atmospheric heating associated with those factors.

  18. Aerosol Absorption in the Atmosphere: Perspectives from Global Model, Ground-Based Measurements, and Field Observations

    NASA Technical Reports Server (NTRS)

    Chin, Main; Dubovik, Oleg; Holben, Brent; Anderson, Tad; Quinn, Patricia; Duncan, Bryan; Ginoux, Paul

    2004-01-01

    Aerosol absorption in the atmosphere poses a major uncertainty in assessing the aerosol climate effects. This uncertainty arises from the poorly quantified aerosol sources, especially black carbon emissions, and our limited knowledge of aerosol mixing state and optical properties. Here we use a global model GOCART to simulate atmospheric aerosols, including sulfate, black carbon, organic carbon, dust, and sea salt. We compare the model calculated total aerosol optical thickness, extinction, and absorption with those quantities from the ground-based sun photometer measurements from AERONET at several different wavelengths and the field observations from ACE-Asia. We will examine the most sensitive factors in determining the aerosol absorption, and the consequences of assessing the aerosol radiative forcing and atmospheric heating associated with those factors.

  19. Light Absorption of Biogenic Aerosol Particles in Amazonia

    NASA Astrophysics Data System (ADS)

    Holanda, B. A.; Artaxo, P.; Ferreira De Brito, J.; Barbosa, H. M.; Andreae, M. O.; Saturno, J.; Pöhlker, C.; Holben, B. N.; Schafer, J.

    2014-12-01

    Aerosol absorption is a key issue in proper calculation of aerosol radiative forcing. Especially in the tropics with the dominance of natural biogenic aerosol and brown carbon, the so called anomalous absorption is of particular interest. A special experiment was designed to study the wavelength dependence of aerosol absorption for PM2.5 as well as for PM10 particles in the wet season in Central Amazonia. Aerosol analysis occurred from May to August 2014, in the ZF2 ecological reservation, situated at about 55 km North of Manaus in very pristine conditions Two 7 wavelengths AE33 Aethalometers were deployed measuring in parallel, but with a PM2.5 and PM10 inlets. Two MAAP (Multiangle Aerosol Absorption Photometer) were operated in parallel with the AE33 exactly at the same PM2.5 and PM10 inlets. Organic and elemental carbon was analyzed using collection with quartz filters and analysis using a Sunset OC/EC analyzer. Aerosol light scattering for 3 wavelengths was measured using Air Photon and TSI Nephelometers. Aerosol size distribution was measured with one TSI SMPS and a GRIMM OPC to have the size range from 10 nm to 10 micrometers. Particles were measured under dry conditions using diffusion dryers. Aerosol optical depth and absorption was also measured with an AERONET sunphotometer operated close to the site. As the experiment was run in the wet season, very low equivalent black carbon (EBC) were measured, with average concentrations around 50 ng/m³ during May, increasing to 130 ng/m³ in June and July. The measurements adjusted for similar wavelengths shows excellent agreement between the MAAP and AE33 for both inlets (PM2.5 and PM10). It was not possible statistically infer absorption from the coarse mode biogenic particles, since the absorption was completely dominated by fine mode particles. AERONET measurements shows very low values of AOD, at 0.17 at 500 nm and 0.13 at 870 nm, with very low absorption AOD values at 0.00086 at 676 nm and 0.0068 at 872 nm

  20. Combined Use of Satellite and Surface Observations to Infer the Imaginary Part of Refractive Index of Saharan Dust

    NASA Technical Reports Server (NTRS)

    Sinyuk, Alexander; Torres, Omar; Dubovik, Oleg; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    We present a method for retrieval of the imaginary part of refractive index of desert dust aerosol in the near UV part of spectrum. The method uses Total Ozone Mapping Spectrometer (TOMS) measurements of the top of the atmosphere radiances at 331 and 360 run and aerosol optical depth provided by the Aerosol Robotic Network (AERONET). Obtained values of imaginary part of refractive index retrieved for Saharan dust aerosol at 360 nm are significantly lower than previously reported values. The average retrieved values vary between 0.0054 and 0.0066 for different geographical locations. Our findings are in good agreement with the results of several recent investigations.

  1. An operational MODIS aerosol retrieval algorithm at high spatial resolution, and its application over a complex urban region

    NASA Astrophysics Data System (ADS)

    Wong, Man Sing; Nichol, Janet E.; Lee, Kwon Ho

    2011-03-01

    Aerosol retrieval algorithms for the MODerate Resolution Imaging Spectroradiometer (MODIS) have been developed to estimate aerosol and microphysical properties of the atmosphere, which help to address aerosol climatic issues at global scale. However, higher spatial resolution aerosol products for urban areas have not been well-researched mainly due to the difficulty of differentiating aerosols from bright surfaces in urban areas. Here, an aerosol retrieval algorithm using the MODIS 500-m resolution bands is described, to retrieve aerosol properties over Hong Kong and the Pearl River Delta region. The rationale of our technique is to first estimate the aerosol reflectances by decomposing the top-of-atmosphere reflectances from surface reflectances and Rayleigh path reflectances. For the determination of surface reflectances, a Minimum Reflectance Technique (MRT) is used, and MRT images are computed for different seasons. For conversion of aerosol reflectance to aerosol optical thickness (AOT), comprehensive Look Up Tables specific to the local region are constructed, which consider aerosol properties and sun-viewing geometry in the radiative transfer calculations. Four local aerosol types, namely coastal urban, polluted urban, dust, and heavy pollution, were derived using cluster analysis on 3 years of AERONET measurements in Hong Kong. The resulting 500 m AOT images were found to be highly correlated with ground measurements from the AERONET (r2 = 0.767) and Microtops II sunphotometers (r2 = 0.760) in Hong Kong. This study further demonstrates the application of the fine resolution AOT images for monitoring inter-urban and intra-urban aerosol distributions and the influence of trans-boundary flows. These applications include characterization of spatial patterns of AOT within the city, and detection of regional biomass burning sources.

  2. Light-absorbing aerosol properties retrieved from the sunphotometer observation over the Yangtze River Delta, China.

    PubMed

    Wang, Jing; Niu, Shengjie; Xu, Dan

    2018-02-10

    In this study, aerosol optical depth (AOD) and extinction Ångström exponent (EAE) are derived from ground-based sunphotometer observations between 2007 and 2014 at urban sites of Nanjing over the Yangtze River Delta. In addition, the present study aims to investigate aerosol light-absorbing properties such as single-scattering albedo (SSA), absorption Ångström exponent (AAE), and the aerosol-absorbing optical depth (AAOD). The retrieval of aerosol properties is compared with AERONET inversion products. The results demonstrate that the retrieved AOD has a good agreement with the AERONET Level 1.5 data, with the root mean square error being 0.068, 0.065, and 0.026 for total, fine mode, and coarse mode at 440 nm, respectively. The SSA values indicate similar accuracies in the results, which are about 0.003, -0.009, -0.008, and 0.010 different from AERONET at 440, 670, 870, and 1020 nm, respectively. The occurrence frequency of background level AOD (AOD<0.10) at 440 nm in this region is limited (1%). Monthly mean AOD, SSA, the effective radius (R eff ), and the volume concentration at 440 nm were 0.6-1.3, 0.85-0.92, 0.24-0.40 μm, and 0.18-0.28  μm 3  μm -2 , respectively. The mean value of AAOD at 440 nm (AAOD 440 ) was the highest in both summer (0.095±0.041) and autumn (0.094±0.042), but was the lowest in winter (0.079±0.036). It was also noted that SSA was found to be higher during summer (0.89±0.05). The spectral variation of SSA was observed to be strongly wavelength-dependent during all seasons. The seasonal mean AAE440-870 is the highest in winter (0.86±0.41) and lowest in spring (0.49±0.29). In winter, the cumulative frequency for AAE between 1.0 and 1.2 was about 87%. The peak in the AAE distribution was close to 1.0, indicating that the aerosol column was dominated by urban-industrial aerosols and absorption species other than black carbon. Analysis of the relationship between EAE and SSA showed that the aerosol populations could be

  3. Aerosol and cloud properties derived from hyperspectral transmitted light in the southeast Atlantic sampled during field campaign deployments in 2016 and 2017

    NASA Astrophysics Data System (ADS)

    LeBlanc, S. E.; Redemann, J.; Flynn, C. J.; Segal-Rosenhaimer, M.; Kacenelenbogen, M. S.; Shinozuka, Y.; Pistone, K.; Karol, Y.; Schmidt, S.; Cochrane, S.; Chen, H.; Meyer, K.; Ferrare, R. A.; Burton, S. P.; Hostetler, C. A.; Hair, J. W.

    2017-12-01

    We present aerosol and cloud properties collected from airborne remote-sensing measurements in the southeast Atlantic during the recent NASA ObseRvations of CLouds above Aerosols and their intEractionS (ORACLES) field campaign. During the biomass burning seasons of September 2016 and August 2017, we sampled aerosol layers which overlaid marine stratocumulus clouds off the southwestern coast of Africa. We sampled these aerosol layers and the underlying clouds from the NASA P3 airborne platform with the Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR). Aerosol optical depth (AOD), along with trace gas content in the atmospheric column (water vapor, NO2, and O3), is obtained from the attenuation in the sun's direct beam, measured at the altitude of the airborne platform. Using hyperspectral transmitted light measurements from 4STAR, in conjunction with hyperspectral hemispheric irradiance measurements from the Solar Spectral Flux Radiometers (SSFR), we also obtained aerosol intensive properties (asymmetry parameter, single scattering albedo), aerosol size distributions, cloud optical depth (COD), cloud particle effective radius, and cloud thermodynamic phase. Aerosol intensive properties are retrieved from measurements of angularly resolved skylight and flight level spectral albedo using the inversion used with measurements from AERONET (Aerosol Robotic Network) that has been modified for airborne use. The cloud properties are obtained from 4STAR measurements of scattered light below clouds. We show a favorable initial comparison of the above-cloud AOD measured by 4STAR to this same product retrieved from measurements by the MODIS instrument on board the TERRA and AQUA satellites. The layer AOD observed above clouds will also be compared to integrated aerosol extinction profile measurements from the High Spectral Resolution Lidar-2 (HSRL-2).

  4. Understanding the absorption Angstrom exponent provided in the AERONET database

    NASA Astrophysics Data System (ADS)

    Schuster, G. L.; Dubovik, O.; Arola, A. T.

    2014-12-01

    Recently, some authors have suggested that the absorption Angstrom exponent (AAE) can be used to deduce the component aerosol absorption optical depths (AAOD) of dust, brown carbon, and soot carbon in the atmosphere. The premise behind this AAE approach is that AAE is a species-dependent aerosol property that does not depend upon particle size or mass, that absorbing aerosol species are externally mixed with one another, and that AAE is much less than 1 for black carbon. Other authors have found that AAE does not contain enough information to unambiguously speciate the absorbing aerosols. Thus, we explore this topic here, and point out some theoretical inconsistencies associated with using the AAE approach to deduce component AAODs from the AERONET retrievals. For instance, Level 2.0 retrievals at 15 West African sites subsampled for AAE < 1.0 indicate that 86% of the fine volume fractions are less than 0.2, 56% of the depolarization ratios are greater than 0.2, and 94% of the Angstrom exponents are less than 1.0. This indicates that most of the West African data with AAE < 1 are dominated by coarse mode dust, and that low AAE does not indicate pure BC, and that therefore AAE can not be used to separate carbonaceous aerosols from dust. We obtained similar results at five Middle East dust sites subsampled for AAE < 1.0, with 59% of the fine volume fractions less than 0.2, 88% of the depolarization ratios greater than 0.2, and 73% of the Angstrom exponents less than 1.0.Additionally, we find that AAE << 1 is very unlikely to occur for size distributions with fine volume fractions greater than 0.5 at nine southern Africa and South America sites, unless the imaginary refractive index at the 440 nm wavelength is less than the imaginary refractive index at the red and near infrared wavelengths (i.e., k(440) < k(rnir)). Since black carbon has a spectrally invariant imaginary refractive index at these wavelengths, it is unlikely to be the cause of k(440) < k(rnir) and AAE

  5. Optical and microphysical properties of atmospheric aerosols in Moldova

    NASA Astrophysics Data System (ADS)

    Aculinin, Alexandr; Smicov, Vladimir

    2010-05-01

    Measurements of aerosol properties in Kishinev, Moldova are being carried out within the framework of the international AERONET program managed by NASA/GSFC since 1999. Direct solar and sky diffuse radiances are measured by using of sunphotometer Cimel-318. Aerosol optical properties are retrieved from measured radiances by using of smart computational procedures developed by the AERONET's team. The instrument is situated at the ground-based solar radiation monitoring station giving the opportunity to make simultaneous spectral (win sunphotometer) and broadband (with the set of sensors from radiometric complex) solar radiation. Detailed description of the station and investigations in progress can be found at the http://arg.phys.asm.md. Ground station is placed in an urban environment of Kishinev city (47.00N; 28.56E; 205 m a.s.l). Summary of aerosol optical and microphysical properties retrieved from direct solar and diffuse sky radiance observations at Moldova site from September 1999 to June 2009 are presented below. Number of measurements (total): 1695 Number of measurements (for ?o, n, k): 223 Range of aerosol optical depth (AOD) @440 nm: 0.03 < ?(440) < 2.30, < ?(440)>=0.25 Range of Ångström parameter < α440_870 >: 0.14 < α < 2.28 Asymmetry factor (440/670/870/1020): 0.70/0.63/0.59/0.58 ±0.04 Refraction (n) and absorption (k) indices@440 nm: 1.41 ± 0.06; 0.009 ± 0.005 Single scattering albedo < ?o >(440/670/870/1020): 0.93/0.92/0.90/0.89 ±0.04 Parameters of volume particle size distribution function: (fine mode) volume median radius r v,f , μm: 0.17 ± 0.06 particle volume concentration Cv,f, μm3/μm2: 0.04 ± 0.03 (coarse mode) volume median radius rv,c , μm: 3.08 ± 0.64 particle volume concentration Cv,c, μm3/μm2: 0.03 ± 0.03 Climatic norms of AOD@500 nm and Ångström parameter < α440_870 > at the site of observation are equal to 0.21 ± 0.06 and 1.45 ± 0.14, respectively. The aerosol type in Moldova may be considered as 'urban

  6. Column-integrated aerosol optical properties and direct radiative forcing over the urban-industrial megacity Nanjing in the Yangtze River Delta, China.

    PubMed

    Kang, Na; Kumar, K Raghavendra; Yu, Xingna; Yin, Yan

    2016-09-01

    Aerosol optical properties were measured and analyzed through the ground-based remote sensing Aerosol Robotic Network (AERONET) over an urban-industrial site, Nanjing (32.21° N, 118.72° E, and 62 m above sea level), in the Yangtze River Delta, China, during September 2007-August 2008. The annual averaged values of aerosol optical depth (AOD500) and the Ångström exponent (AE440-870) were measured to be 0.94 ± 0.52 and 1.10 ± 0.21, respectively. The seasonal averaged values of AOD500 (AE440-870) were noticed to be high in summer (autumn) and low in autumn (spring). The characterization of aerosol types showed the dominance of mixed type followed by the biomass burning and urban-industrial type of aerosol at Nanjing. Subsequently, the curvature (a 2) obtained from the second-order polynomial fit and the second derivative of AE (α') were also analyzed to understand the dominant aerosol type. The single scattering albedo at 440 nm (SSA440) varied from 0.88 to 0.93 with relatively lower (higher) values during the summer (spring), suggesting an increase in black carbon and mineral dust (desert dust) aerosols of absorbing (scattering) nature. The averaged monthly and seasonal evolutions of shortwave (0.3-4.0 μm) direct aerosol radiative forcing (DARF) values were computed from the Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART) model both at the top of atmosphere (TOA) and bottom of atmosphere (SUR) during the study period. Further, the aerosol forcing efficiency (AFE) and the corresponding atmospheric heating rates (AHR) were also estimated from the forcing within the atmosphere (ATM). The derived DARF values, therefore, produced a warming effect within the atmosphere due to strong absorption of solar radiation.

  7. An Overview of the GEOS-5 Aerosol Reanalysis

    NASA Technical Reports Server (NTRS)

    da Silva, Arlindo; Colarco, Peter Richard; Damenov, Anton Spasov; Buchard-Marchant, Virginie; Randles, Cynthia A.; Gupta, Pawan

    2011-01-01

    GEOS-5 is the latest version of the NASA Global Modeling and Assimilation Office (GMAO) earth system model. GEOS-5 contains components for atmospheric circulation and composition (including data assimilation), ocean circulation and biogeochemistry, and land surface processes. In addition to traditional meteorological parameters, GEOS-5 includes modules representing the atmospheric composition, most notably aerosols and tropospheric/stratospheric chemical constituents, taking explicit account of the impact of these constituents on the radiative processes of the atmosphere. MERRA is a NASA meteorological reanalysis for the satellite era (1979-present) using GEOS-5. This project focuses on historical analyses of the hydrological cycle on a broad range of weather and climate time scales. As a first step towards an integrated Earth System Analysis (IESA), the GMAO is extending MERRA with reanalyses for other components of the earth system: land, ocean, bio-geochemistry and atmospheric constituents. In this talk we will present results from the MERRA-driven aerosol reanalysis covering the Aqua period (2003-present). The assimilation of Aerosol Optical Depth (AOD) in GEOS-5 involves very careful cloud screening and homogenization of the observing system by means of a Neural Net scheme that translates MODIS radiances into AERONET calibrated AOD. These measurements are further quality controlled using an adaptive buddy check scheme, and assimilated using the Local Displacement Ensemble (LDE) methodology. For this reanalysis, GEOS-5 runs at a nominal 50km horizontal resolution with 72 vertical layers (top at approx. 8Skm). GEOS-5 is driven by daily biomass burning emissions derived from MODIS fire radiative power retrievals. We will present a summary of our efforts to validate such dataset. The GEOS-5 assimilated aerosol fields are first validated by comparison to independent in-situ measurements (AERONET and PM2.5 surface concentrations). In order to asses aerosol

  8. Aerosol Climate Time Series Evaluation In ESA Aerosol_cci

    NASA Astrophysics Data System (ADS)

    Popp, T.; de Leeuw, G.; Pinnock, S.

    2015-12-01

    Within the ESA Climate Change Initiative (CCI) Aerosol_cci (2010 - 2017) conducts intensive work to improve algorithms for the retrieval of aerosol information from European sensors. By the end of 2015 full mission time series of 2 GCOS-required aerosol parameters are completely validated and released: Aerosol Optical Depth (AOD) from dual view ATSR-2 / AATSR radiometers (3 algorithms, 1995 - 2012), and stratospheric extinction profiles from star occultation GOMOS spectrometer (2002 - 2012). Additionally, a 35-year multi-sensor time series of the qualitative Absorbing Aerosol Index (AAI) together with sensitivity information and an AAI model simulator is available. Complementary aerosol properties requested by GCOS are in a "round robin" phase, where various algorithms are inter-compared: fine mode AOD, mineral dust AOD (from the thermal IASI spectrometer), absorption information and aerosol layer height. As a quasi-reference for validation in few selected regions with sparse ground-based observations the multi-pixel GRASP algorithm for the POLDER instrument is used. Validation of first dataset versions (vs. AERONET, MAN) and inter-comparison to other satellite datasets (MODIS, MISR, SeaWIFS) proved the high quality of the available datasets comparable to other satellite retrievals and revealed needs for algorithm improvement (for example for higher AOD values) which were taken into account for a reprocessing. The datasets contain pixel level uncertainty estimates which are also validated. The paper will summarize and discuss the results of major reprocessing and validation conducted in 2015. The focus will be on the ATSR, GOMOS and IASI datasets. Pixel level uncertainties validation will be summarized and discussed including unknown components and their potential usefulness and limitations. Opportunities for time series extension with successor instruments of the Sentinel family will be described and the complementarity of the different satellite aerosol products

  9. Development and Testing of the New Surface LER Climatology for OMI UV Aerosol Retrievals

    NASA Technical Reports Server (NTRS)

    Gupta, Pawan; Torres, Omar; Jethva, Hiren; Ahn, Changwoo

    2014-01-01

    Ozone Monitoring Instrument (OMI) onboard Aura satellite retrieved aerosols properties using UV part of solar spectrum. The OMI near UV aerosol algorithm (OMAERUV) is a global inversion scheme which retrieves aerosol properties both over ocean and land. The current version of the algorithm makes use of TOMS derived Lambertian Equivalent Reflectance (LER) climatology. A new monthly climatology of surface LER at 354 and 388 nm have been developed. This will replace TOMS LER (380 nm and 354nm) climatology in OMI near UV aerosol retrieval algorithm. The main objectives of this study is to produce high resolution (quarter degree) surface LER sets as compared to existing one degree TOMS surface LERs, to product instrument and wavelength consistent surface climatology. Nine years of OMI observations have been used to derive monthly climatology of surface LER. MODIS derived aerosol optical depth (AOD) have been used to make aerosol corrections on OMI wavelengths. MODIS derived BRDF adjusted reflectance product has been also used to capture seasonal changes in the surface characteristics. Finally spatial and temporal averaging techniques have been used to fill the gaps around the globes, especially in the regions with consistent cloud cover such as Amazon. After implementation of new surface data in the research version of algorithm, comparisons of AOD and single scattering albedo (SSA) have been performed over global AERONET sites for year 2007. Preliminary results shows improvements in AOD retrievals globally but more significance improvement were observed over desert and bright locations. We will present methodology of deriving surface data sets and will discuss the observed changes in retrieved aerosol properties with respect to reference AERONET measurements.

  10. A New Code SORD for Simulation of Polarized Light Scattering in the Earth Atmosphere

    NASA Technical Reports Server (NTRS)

    Korkin, Sergey; Lyapustin, Alexei; Sinyuk, Aliaksandr; Holben, Brent

    2016-01-01

    We report a new publicly available radiative transfer (RT) code for numerical simulation of polarized light scattering in plane-parallel atmosphere of the Earth. Using 44 benchmark tests, we prove high accuracy of the new RT code, SORD (Successive ORDers of scattering). We describe capabilities of SORD and show run time for each test on two different machines. At present, SORD is supposed to work as part of the Aerosol Robotic NETwork (AERONET) inversion algorithm. For natural integration with the AERONET software, SORD is coded in Fortran 90/95. The code is available by email request from the corresponding (first) author or from ftp://climate1.gsfc.nasa.gov/skorkin/SORD/.

  11. Quantitative impact of aerosols on numerical weather prediction. Part II: Impacts to IR radiance assimilation

    NASA Astrophysics Data System (ADS)

    Marquis, J. W.; Campbell, J. R.; Oyola, M. I.; Ruston, B. C.; Zhang, J.

    2017-12-01

    This is part II of a two-part series examining the impacts of aerosol particles on weather forecasts. In this study, the aerosol indirect effects on weather forecasts are explored by examining the temperature and moisture analysis associated with assimilating dust contaminated hyperspectral infrared radiances. The dust induced temperature and moisture biases are quantified for different aerosol vertical distribution and loading scenarios. The overall impacts of dust contamination on temperature and moisture forecasts are quantified over the west coast of Africa, with the assistance of aerosol retrievals from AERONET, MPL, and CALIOP. At last, methods for improving hyperspectral infrared data assimilation in dust contaminated regions are proposed.

  12. Citizen-Enabled Aerosol Measurements for Satellites (CEAMS): A Network for High-Resolution Measurements of PM2.5 and Aerosol Optical Depth

    NASA Astrophysics Data System (ADS)

    Pierce, J. R.; Volckens, J.; Ford, B.; Jathar, S.; Long, M.; Quinn, C.; Van Zyl, L.; Wendt, E.

    2017-12-01

    Atmospheric particulate matter with diameter smaller than 2.5 μm (PM2.5) is a pollutant that contributes to the development of human disease. Satellite-derived estimates of surface-level PM2.5 concentrations have the potential to contribute greatly to our understanding of how particulate matter affects health globally. However, these satellite-derived PM2.5 estimates are often uncertain due to a lack of information about the ratio of surface PM2.5 to aerosol optical depth (AOD), which is the primary aerosol retrieval made by satellite instruments. While modelling and statistical analyses have improved estimates of PM2.5:AOD, large uncertainties remain in situations of high PM2.5 exposure (such as urban areas and in wildfire-smoke plumes) where the health impacts of PM2.5 may be the greatest. Surface monitoring networks for co-incident PM2.5 and AOD measurements are extremely rare, even in the North America. To provide constraints for the PM2.5:AOD relationship, we have developed a relatively low-cost (<$1000) monitor for citizen use that provides sun-photometer AOD measurements and filter-based PM2.5 measurements. The instrument is solar-powered, lightweight (< 1kg), and operated wirelessly via smartphone application (iOS and Android). Sun photometry is performed across 4 discrete wavelengths that match those reported by the Aerosol Robotic Network (AERONET). Aerosol concentration is reported using both time-integrated filter mass (analyzed in an academic laboratory and reported as a 24-48hr average) and a continuous PM sensor within the instrument. Citizen scientists use the device to report daily AOD and PM2.5 measurements made in their backyards to a central server for data display and download. In this presentation, we provide an overview of (1) AOD and PM2.5 measurement calibration; (2) citizen recruiting and training efforts; and (3) results from our pilot citizen-science measurement campaign.

  13. Relation between aerosol particles and their optical properties: a case study for São Paulo-Brazil

    NASA Astrophysics Data System (ADS)

    Miranda, Regina; Andrade, Maria de Fatima

    2013-04-01

    Brazil has a territory of 8.5 million km2 and a population of more than 160 million inhabitants, distributed throughout 26 states. Brazillian capital-cities with millions inhabitants and vehicles have several problems concerning air pollution. São Paulo, capital of São Paulo State, with more than 19 million inhabitants, 7 million vehicles, as well as the major industrial and technological park of the country, has high concentrations of air pollutants, especially in the winter. Air pollution, high building density, and a lack of green areas, combined with the proliferation of asphalt and concrete surfaces, have resulted in a greater number of urban heat island effects, fewer drizzle events, and rainfall events of greater intensity. São Paulo has an extensive air quality monitoring network, which has shown that ozone levels often exceed the NAAQS limit during spring and summer, and that concentrations of inhalable particles exceed the NAAQS limit mainly during the winter, from June to August. Aerosols are produced by a variety of processes, creating differences in their physicochemical properties and hence in their ability to scatter and absorb solar radiation. For most urban areas in Brazil, vehicles are considered the principal source of particles emitted to the atmosphere. Particles have been monitored in the winter of 2012 in São Paulo using a MOUDI (Micro Orifice Uniform Deposit Impactor), in order to have the mass distribution of the aerosol. The concentrations of coarse particles can still be larger than those of fine particles, although the difference between both has become smaller than in the past. The samples collected were analyzed by gravimetry for mass concentration, optical reflectance for Black Carbon concentration and X-ray Fluorescence for elementar characterization. Optical properties were obtained from Aeronet (Aerosol Robotic Network, http://aeronet.gsfc.nasa.gov/) for São Paulo city. It was found that a high fraction of elements was derived

  14. Combined multispectral/hyperspectral remote sensing of tropospheric aerosols for quantification of their direct radiative effect

    NASA Astrophysics Data System (ADS)

    McGarragh, Gregory R.

    sensitivity and optimal estimation based information content study that explores the use of measurements made by a MODIS type instrument combined with measurements made by an instrument similar to GOSAT TANSO-FTS which supplies hyperspectral measurements of intensity and polarization in the O2 A-band and the 1.61- and 2.06-mu CO 2 bands. It is found that the use of the hyperspectral bands provides a means to separate the effects of the surface and aerosol absorption from effects related to aerosol single scattering parameters. The amount of information increases significantly when the CO2 bands are included rather than just the more traditional O2 A-band, when polarization measurements are included, and when measurements are made at multiple view angles. We then present a retrieval using co-located observations of MODIS and GOSAT TANSO-FTS which are both also co-located with AERONET sites for validation purposes. We introduce an optimal estimation retrieval and perform this retrieval on our co-located observations. We choose a complete state vector to maximize the use of the information in our measurements and use an a priori constraint and regularization to arrive at a stable solution. In addition to the retrieved parameters, we also calculate a self contained estimation of the retrieval error. Validation with AERONET, for retrievals using MODIS plus TANSO-FTS measurements of intensity and polarization in all three bands indicate accuracies within 15% for optical thickness, 10% for fine mode mean radius, 35% for coarse mode mean radius, 15% for the standard deviation of fine mode mean radius, 25% for the standard deviation of the coarse mode mean radius, 0.04 for the real part of the index of refraction, and 0.05 for single scattering albedo. In addition to the retrieved parameters, we also validate the estimated retrieval error and find that the estimations have distributions that are tighter and within the broader distributions of real errors relative to AERONET. The third

  15. Aerosol Meteorology of the Maritime Continent for the 2012 7SEAS Southwest Monsoon Intensive Study - Part 1: Regional-scale Phenomena

    NASA Technical Reports Server (NTRS)

    Reid, Jeffrey S.; Xian, Peng; Holben, Brent N.; Hyer, Edward J.; Reid, Elizabeth A.; Salinas, Santo V.; Zhang, Jianglong; Campbell, James R.; Chew, Boon Ning; Holz, Robert E.; hide

    2016-01-01

    The largest 7 Southeast Asian Studies (7SEAS) operation period within the Maritime Continent (MC) occurred in the August-September 2012 biomass burning season. Included was an enhanced deployment of Aerosol Robotic Network (AERONET) sun photometers, multiple lidars, and field measurements to observe transported smoke and pollution as it left the MC and entered the southwest monsoon trough. Here we describe the nature of the overall 2012 southwest monsoon (SWM) and biomass burning season to give context to the 2012 deployment. The MC in 2012 was in a slightly warm El Nino Southern Oscillation (ENSO) phase and with spatially typical burning activity. However, overall fire counts for 2012 were 10 lower than the Reid et al. (2012) baseline, with regions of significant departures from this norm, ranging from southern Sumatra (+30) to southern Kalimantan (42). Fire activity and monsoonal flows for the dominant burning regions were modulated by a series of intraseasonal oscillation events (e.g., Madden-Julian Oscillation, or MJO, and boreal summer intraseasonal oscillation, or BSISO). As is typical, fire activity systematically progressed eastward over time, starting with central Sumatran fire activity in June related to a moderately strong MJO event which brought drier air from the Indian Ocean aloft and enhanced monsoonal flow. Further burning in Sumatra and Kalimantan Borneo occurred in a series of significant events from early August to a peak in the first week of October, ending when the monsoon started to migrate back to its wintertime northeastern flow conditions in mid-October. Significant monsoonal enhancements and flow reversals collinear with tropical cyclone (TC) activity and easterly waves were also observed. Islands of the eastern MC, including Sulawesi, Java, and Timor, showed less sensitivity to monsoonal variation, with slowly increasing fire activity that also peaked in early October but lingered into November. Interestingly, even though fire counts were

  16. Aerosol meteorology of the Maritime Continent for the 2012 7SEAS southwest monsoon intensive study - Part 1: regional-scale phenomena

    NASA Astrophysics Data System (ADS)

    Reid, Jeffrey S.; Xian, Peng; Holben, Brent N.; Hyer, Edward J.; Reid, Elizabeth A.; Salinas, Santo V.; Zhang, Jianglong; Campbell, James R.; Chew, Boon Ning; Holz, Robert E.; Kuciauskas, Arunas P.; Lagrosas, Nofel; Posselt, Derek J.; Sampson, Charles R.; Walker, Annette L.; Welton, E. Judd; Zhang, Chidong

    2016-11-01

    The largest 7 Southeast Asian Studies (7SEAS) operation period within the Maritime Continent (MC) occurred in the August-September 2012 biomass burning season. Included was an enhanced deployment of Aerosol Robotic Network (AERONET) sun photometers, multiple lidars, and field measurements to observe transported smoke and pollution as it left the MC and entered the southwest monsoon trough. Here we describe the nature of the overall 2012 southwest monsoon (SWM) and biomass burning season to give context to the 2012 deployment. The MC in 2012 was in a slightly warm El Niño/Southern Oscillation (ENSO) phase and with spatially typical burning activity. However, overall fire counts for 2012 were 10 % lower than the Reid et al. (2012) baseline, with regions of significant departures from this norm, ranging from southern Sumatra (+30 %) to southern Kalimantan (-42 %). Fire activity and monsoonal flows for the dominant burning regions were modulated by a series of intraseasonal oscillation events (e.g., Madden-Julian Oscillation, or MJO, and boreal summer intraseasonal oscillation, or BSISO). As is typical, fire activity systematically progressed eastward over time, starting with central Sumatran fire activity in June related to a moderately strong MJO event which brought drier air from the Indian Ocean aloft and enhanced monsoonal flow. Further burning in Sumatra and Kalimantan Borneo occurred in a series of significant events from early August to a peak in the first week of October, ending when the monsoon started to migrate back to its wintertime northeastern flow conditions in mid-October. Significant monsoonal enhancements and flow reversals collinear with tropical cyclone (TC) activity and easterly waves were also observed. Islands of the eastern MC, including Sulawesi, Java, and Timor, showed less sensitivity to monsoonal variation, with slowly increasing fire activity that also peaked in early October but lingered into November. Interestingly, even though fire

  17. Aerosol Sources, Absorption, and Intercontinental Transport: Synergies among Models, Remote Sensing, and Atmospheric Measurements

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Ginoux, Paul; Dubovik, Oleg; Holben, Brent; Kaufman, Yoram; chu, Allen; Anderson, Tad; Quinn, Patricia

    2003-01-01

    Aerosol climate forcing is one of the largest uncertainties in assessing the anthropogenic impact on the global climate system. This uncertainty arises from the poorly quantified aerosol sources, especially black carbon emissions, our limited knowledge of aerosol mixing state and optical properties, and the consequences of intercontinental transport of aerosols and their precursors. Here we use a global model GOCART to simulate atmospheric aerosols, including sulfate, black carbon, organic carbon, dust, and sea salt, from anthropogenic, biomass burning, and natural sources. We compare the model calculated aerosol extinction and absorption with those quantities from the ground-based sun photometer measurements from AERONET at several different wavelengths and the field observations from ACE-Asia, and model calculated total aerosol optical depth and fine mode fractions with the MODIS satellite retrieval. We will also estimate the intercontinental transport of pollution and dust aerosols from their source regions to other areas in different seasons.

  18. A new approach to correct for absorbing aerosols in OMI UV

    NASA Astrophysics Data System (ADS)

    Arola, A.; Kazadzis, S.; Lindfors, A.; Krotkov, N.; Kujanpää, J.; Tamminen, J.; Bais, A.; di Sarra, A.; Villaplana, J. M.; Brogniez, C.; Siani, A. M.; Janouch, M.; Weihs, P.; Webb, A.; Koskela, T.; Kouremeti, N.; Meloni, D.; Buchard, V.; Auriol, F.; Ialongo, I.; Staneck, M.; Simic, S.; Smedley, A.; Kinne, S.

    2009-11-01

    Several validation studies of surface UV irradiance based on the Ozone Monitoring Instrument (OMI) satellite data have shown a high correlation with ground-based measurements but a positive bias in many locations. The main part of the bias can be attributed to the boundary layer aerosol absorption that is not accounted for in the current satellite UV algorithms. To correct for this shortfall, a post-correction procedure was applied, based on global climatological fields of aerosol absorption optical depth. These fields were obtained by using global aerosol optical depth and aerosol single scattering albedo data assembled by combining global aerosol model data and ground-based aerosol measurements from AERONET. The resulting improvements in the satellite-based surface UV irradiance were evaluated by comparing satellite and ground-based spectral irradiances at various European UV monitoring sites. The results generally showed a significantly reduced bias by 5-20%, a lower variability, and an unchanged, high correlation coefficient.

  19. GOCI Yonsei aerosol retrieval version 2 products: an improved algorithm and error analysis with uncertainty estimation from 5-year validation over East Asia

    NASA Astrophysics Data System (ADS)

    Choi, Myungje; Kim, Jhoon; Lee, Jaehwa; Kim, Mijin; Park, Young-Je; Holben, Brent; Eck, Thomas F.; Li, Zhengqiang; Song, Chul H.

    2018-01-01

    The Geostationary Ocean Color Imager (GOCI) Yonsei aerosol retrieval (YAER) version 1 algorithm was developed to retrieve hourly aerosol optical depth at 550 nm (AOD) and other subsidiary aerosol optical properties over East Asia. The GOCI YAER AOD had accuracy comparable to ground-based and other satellite-based observations but still had errors because of uncertainties in surface reflectance and simple cloud masking. In addition, near-real-time (NRT) processing was not possible because a monthly database for each year encompassing the day of retrieval was required for the determination of surface reflectance. This study describes the improved GOCI YAER algorithm version 2 (V2) for NRT processing with improved accuracy based on updates to the cloud-masking and surface-reflectance calculations using a multi-year Rayleigh-corrected reflectance and wind speed database, and inversion channels for surface conditions. The improved GOCI AOD τG is closer to that of the Moderate Resolution Imaging Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer Suite (VIIRS) AOD than was the case for AOD from the YAER V1 algorithm. The V2 τG has a lower median bias and higher ratio within the MODIS expected error range (0.60 for land and 0.71 for ocean) compared with V1 (0.49 for land and 0.62 for ocean) in a validation test against Aerosol Robotic Network (AERONET) AOD τA from 2011 to 2016. A validation using the Sun-Sky Radiometer Observation Network (SONET) over China shows similar results. The bias of error (τG - τA) is within -0.1 and 0.1, and it is a function of AERONET AOD and Ångström exponent (AE), scattering angle, normalized difference vegetation index (NDVI), cloud fraction and homogeneity of retrieved AOD, and observation time, month, and year. In addition, the diagnostic and prognostic expected error (PEE) of τG are estimated. The estimated PEE of GOCI V2 AOD is well correlated with the actual error over East Asia, and the GOCI V2 AOD over South

  20. New capabilities for characterizing smoke and dust aerosol over land using MODIS

    NASA Astrophysics Data System (ADS)

    Levy, R. C.; Remer, L. A.

    2006-12-01

    Smoke and dust aerosol have different chemical, optical and physical properties and both types affect many processes within the climate system. As earth's surface and atmosphere are continuously altered by natural and anthropogenic processes, the emission and presumably the effects of these aerosols are also changing. Thus it is necessary to observe and characterize aerosols on a global and climatic scale. While MODIS has been reporting characteristics of smoke and dust aerosol over land and ocean since shortly after Terra launch, the uncertainties in the over-land retrieval have been larger than expected. To better characterize different aerosol types closer to their source regions with greater accuracy, we have developed a new operational algorithm for retrieving aerosol properties over dark land surfaces from MODIS-observed visible (VIS) and infrared (IR) reflectance. Like earlier versions, this algorithm estimates the total loading (aerosol optical depth-τ) and relative weighting of fine (non-dust) and coarse (dust) -dominated aerosol to the total τ (fine weighting-η) over dark land surfaces. However, the fundamental mathematics and major assumptions have been overhauled. The new algorithm performs simultaneous multi-channel inversion that includes information about coarse aerosol in the IR channels, while assuming a fine-tuned relationship between VIS and IR surface reflectances, that is itself a function of scattering angle and vegetation condition. Finally, the suite of expected aerosol optical models described by the lookup table have been revised to closer resemble the AERONET climatology, including for smoke and dust aerosol. Beginning in April 2006, this algorithm has been used for forward processing and backward re- processing of the entire MODIS dataset observed from both Terra and Aqua. "Collection 5" products were completed for Aqua reprocessing by July 2006 and should be complete for Terra by December 2006. In this study, we used the complete

  1. Daily estimates of aerosol optical thickness over land surface based on a directional and temporal analysis of SEVIRI MSG visible observations

    NASA Astrophysics Data System (ADS)

    Carrer, Dominique; Roujean, Jean-Louis; Hautecoeur, Olivier; Elias, Thierry

    2010-05-01

    This paper presents an innovative method for obtaining a daily estimate of a quality-controlled aerosol optical thickness (AOT) of a vertical column of the atmosphere over the continents. Because properties of land surface are more stationary than the atmosphere, the temporal dimension is exploited for simultaneous retrieval of the surface and aerosol bidirectional reflectance distribution function (BRDF) coming from a kernel-driven reflectance model. Off-zenith geometry of illumination enhances the forward scattering peak of the aerosol, which improves the retrieval of AOT from the aerosol BRDF. The solution is obtained through an unconstrained linear inversion procedure and perpetuated in time using a Kalman filter. On the basis of numerical experiments using the 6S atmospheric code, the validity of the BRDF model is demonstrated. The application is carried out with data from the Spinning Enhanced Visible and Infra Red Imager (SEVIRI) instrument on board the geostationary Meteosat Second Generation (MSG) satellite from June 2005 to August 2007 for midlatitude regions and from March 2006 to June 2006 over desert sites. The satellite-derived SEVIRI AOT compares favorably with Aerosol Robotic Network (AERONET) measurements for a number of contrasted stations and also similar Moderate Resolution Imaging Spectroradiometer (MODIS) products, within 20% of relative accuracy. The method appears competitive for tracking anthropogenic aerosol emissions in the troposphere and shows a potential for the challenging estimate of dust events over bright targets. Moreover, a high-frequency distribution of AOT provides hints as to the variability of pollutants according to town density and, potentially, motor vehicle traffic. The outcomes of the present study are expected to promote a monitoring of the global distributions of natural and anthropogenic sources and sinks of aerosol, which are receiving increased attention because of their climatic implications.

  2. In-Situ and Remotely-Sensed Observations of Biomass Burning Aerosols at Doi Ang Khang, Thailand During 7-SEAS BASELInE 2015

    NASA Technical Reports Server (NTRS)

    Sayer, Andrew M.; Hsu, N. Christina; Hsiao, Ta-Chih; Pantina, Peter; Kuo, Ferret; Ou-Yang, Chang-Feng; Holben, Brent N.; Janjai, Serm; Chantara, Somporn; Wang, Sheng-Hsiang; hide

    2016-01-01

    The spring 2015 deployment of a suite of instrumentation at Doi Ang Khang (DAK) in northwestern Thailand enabled the characterization of air masses containing smoke aerosols from burning predominantly in Myanmar. Aerosol Robotic Network (AERONET) Sun photometer data were used to validate Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 6 "Deep Blue" aerosol optical depth (AOD) retrievals; MODIS Terra and Aqua provided results of similar quality, with correlation coefficients of 0.93-0.94 and similar agreement within expected uncertainties to global-average performance. Scattering and absorption measurements were used to compare surface and total column aerosol single scatter albedo (SSA); while the two were well-correlated, and showed consistent positive relationships with moisture (increasing SSA through the season as surface relative humidity and total columnar water vapor increased), in situ surface-level SSA was nevertheless significantly lower by 0.12-0.17. This could be related to vertical heterogeneity and/or instrumental issues. DAK is at approximately 1,500 meters above sea level in heterogeneous terrain, and the resulting strong diurnal variability in planetary boundary layer depth above the site leads to high temporal variability in both surface and column measurements, and acts as a controlling factor to the ratio between surface particulate matter (PM) levels and column AOD. In contrast, while some hygroscopic effects were observed relating to aerosol particle size and Angstrom exponent, relative humidity variations appear to be less important for this ratio here. As part of the Seven South-East Asian Studies (7-SEAS) project, the Biomass-burning Aerosols & Stratocumulus Environment: Lifecycles and Interactions Experiment (BASELInE) was intended to probe physicochemical processes, interactions, and feedbacks related to biomass burning aerosols and clouds during the spring burning season (February-April) in southeast Asia (SEA).

  3. Black Carbon Concentration from Worldwide Aerosol Robotic Network (AERONET) Measurements

    NASA Technical Reports Server (NTRS)

    Schuster, Gregory L.; Dubovik, Oleg; Holben, Brent N.; Clothiaux, Eugene E.

    2006-01-01

    The carbon emissions inventories used to initialize transport models and general circulation models are highly parameterized, and created on the basis of multiple sparse datasets (such as fuel use inventories and emission factors). The resulting inventories are uncertain by at least a factor of 2, and this uncertainty is carried forward to the model output. [Bond et al., 1998, Bond et al., 2004, Cooke et al., 1999, Streets et al., 2001] Worldwide black carbon concentration measurements are needed to assess the efficacy of the carbon emissions inventory and transport model output on a continuous basis.

  4. Aerosol Climate Time Series in ESA Aerosol_cci

    NASA Astrophysics Data System (ADS)

    Popp, Thomas; de Leeuw, Gerrit; Pinnock, Simon

    2016-04-01

    Within the ESA Climate Change Initiative (CCI) Aerosol_cci (2010 - 2017) conducts intensive work to improve algorithms for the retrieval of aerosol information from European sensors. Meanwhile, full mission time series of 2 GCOS-required aerosol parameters are completely validated and released: Aerosol Optical Depth (AOD) from dual view ATSR-2 / AATSR radiometers (3 algorithms, 1995 - 2012), and stratospheric extinction profiles from star occultation GOMOS spectrometer (2002 - 2012). Additionally, a 35-year multi-sensor time series of the qualitative Absorbing Aerosol Index (AAI) together with sensitivity information and an AAI model simulator is available. Complementary aerosol properties requested by GCOS are in a "round robin" phase, where various algorithms are inter-compared: fine mode AOD, mineral dust AOD (from the thermal IASI spectrometer, but also from ATSR instruments and the POLDER sensor), absorption information and aerosol layer height. As a quasi-reference for validation in few selected regions with sparse ground-based observations the multi-pixel GRASP algorithm for the POLDER instrument is used. Validation of first dataset versions (vs. AERONET, MAN) and inter-comparison to other satellite datasets (MODIS, MISR, SeaWIFS) proved the high quality of the available datasets comparable to other satellite retrievals and revealed needs for algorithm improvement (for example for higher AOD values) which were taken into account for a reprocessing. The datasets contain pixel level uncertainty estimates which were also validated and improved in the reprocessing. For the three ATSR algorithms the use of an ensemble method was tested. The paper will summarize and discuss the status of dataset reprocessing and validation. The focus will be on the ATSR, GOMOS and IASI datasets. Pixel level uncertainties validation will be summarized and discussed including unknown components and their potential usefulness and limitations. Opportunities for time series extension

  5. Combined use of Satellite and Surface Observations to Infer the Imaginary Part of Refractive Index of Saharan Dust

    NASA Technical Reports Server (NTRS)

    Sinyuk, Alexander; Torres, Omar; Dubovik, Oleg; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    We present a method for retrieval of imaginary part of refractive index of desert dust aerosol in UV part of spectrum along with aerosol layer height above the ground. The method uses Total Ozone Mapping Spectrometer' (TOMS) measurements of the top of atmosphere radiances (331 nm, 360 nm) and aerosol optical depth provided by Aerosol Robotic Network (AERONET) (440 nm). Obtained values of imaginary part of refractive index retrieved for Saharan dust aerosol at 360 nm are significantly lower than previously reported values. The average retrieved values vary between 0.0054 and 0.0066 for different geographical locations. Our findings are in good agreement with the results of several recent investigations. The time variability of retrieved values for aerosol layer height is consistent with the predictions of dust transport model.

  6. Assessment of the improvements in accuracy of aerosol characterization resulted from additions of polarimetric measurements to intensity-only observations using GRASP algorithm (Invited)

    NASA Astrophysics Data System (ADS)

    Dubovik, O.; Litvinov, P.; Lapyonok, T.; Herman, M.; Fedorenko, A.; Lopatin, A.; Goloub, P.; Ducos, F.; Aspetsberger, M.; Planer, W.; Federspiel, C.

    2013-12-01

    During last few years we were developing GRASP (Generalized Retrieval of Aerosol and Surface Properties) algorithm designed for the enhanced characterization of aerosol properties from spectral, multi-angular polarimetric remote sensing observations. The concept of GRASP essentially relies on the accumulated positive research heritage from previous remote sensing aerosol retrieval developments, in particular those from the AERONET and POLDER retrieval activities. The details of the algorithm are described by Dubovik et al. (Atmos. Meas. Tech., 4, 975-1018, 2011). The GRASP retrieves properties of both aerosol and land surface reflectance in cloud-free environments. It is based on highly advanced statistically optimized fitting and deduces nearly 50 unknowns for each observed site. The algorithm derives a similar set of aerosol parameters as AERONET including detailed particle size distribution, the spectrally dependent the complex index of refraction and the fraction of non-spherical particles. The algorithm uses detailed aerosol and surface models and fully accounts for all multiple interactions of scattered solar light with aerosol, gases and the underlying surface. All calculations are done on-line without using traditional look-up tables. In addition, the algorithm uses the new multi-pixel retrieval concept - a simultaneous fitting of a large group of pixels with additional constraints limiting the time variability of surface properties and spatial variability of aerosol properties. This principle is expected to result in higher consistency and accuracy of aerosol products compare to conventional approaches especially over bright surfaces where information content of satellite observations in respect to aerosol properties is limited. The GRASP is a highly versatile algorithm that allows input from both satellite and ground-based measurements. It also has essential flexibility in measurement processing. For example, if observation data set includes spectral

  7. A Global Data Assimilation System for Atmospheric Aerosol

    NASA Technical Reports Server (NTRS)

    daSilva, Arlindo

    1999-01-01

    We will give an overview of an aerosol data assimilation system which combines advances in remote sensing of atmospheric aerosols, aerosol modeling and data assimilation methodology to produce high spatial and temporal resolution 3D aerosol fields. Initially, the Goddard Aerosol Assimilation System (GAAS) will assimilate TOMS, AVHRR and AERONET observations; later we will include MODIS and MISR. This data assimilation capability will allows us to integrate complementing aerosol observations from these platforms, enabling the development of an assimilated aerosol climatology as well as a global aerosol forecasting system in support of field campaigns. Furthermore, this system provides an interactive retrieval framework for each aerosol observing satellites, in particular TOMS and AVHRR. The Goddard Aerosol Assimilation System (GAAS) takes advantage of recent advances in constituent data assimilation at DAO, including flow dependent parameterizations of error covariances and the proper consideration of model bias. For its prognostic transport model, GAAS will utilize the Goddard Ozone, Chemistry, Aerosol, Radiation and Transport (GOCART) model developed at NASA/GSFC Codes 916 and 910.3. GOCART includes the Lin-Rood flux-form, semi-Langrangian transport model with parameterized aerosol chemistry and physical processes for absorbing (dust and black carbon) and non-absorbing aerosols (sulfate and organic carbon). Observations and model fields are combined using a constituent version of DAO's Physical-space Statistical Analysis System (PSAS), including its adaptive quality control system. In this talk we describe the main components of this assimilation system and present preliminary results obtained by assimilating TOMS data.

  8. Validation of MODIS Aerosol Retrievals during PRIDE

    NASA Technical Reports Server (NTRS)

    Levy, R.; Remier, L.; Kaufman, Y.; Kleidman, R.; Holben, B.; Russell, P.; Livingston, J.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The Puerto Rico Dust Experiment (PRIDE) was held in Roosevelt Roads, Puerto Rico from June 26 to July 24, 2000. It was intended to study the radiative and microphysical properties of Saharan dust transported into Puerto Rico. PRIDE had the unique distinction of being the first major field experiment to allow direct comparison of aerosol retrievals from MODIS (MODerate Imaging Spectro-radiometer - aboard the Terra satellite) with data from a variety of ground, shipboard and air-based instruments. Over the ocean the MODIS algorithm retrieves optical depth as well as information about the aerosol's size. During PRIDE, MODIS passed over Roosevelt Roads approximately once per day during daylight hours. Due to sunglint and clouds over Puerto Rico, aerosol retrievals can be made from only about half the MODIS scenes. In this study we try to "validate" our aerosol retrievals by comparing to measurements taken by sun-photometers from multiple platforms, including: Cimel (AERONET) from the ground, Microtops (handheld) from ground and ship, and the NASA-Ames sunphotometer from the air.

  9. Sunlight Transmission through Desert Dust and Marine Aerosols: Diffuse Light Corrections to Sun Photometry and Pyrheliometry

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Livingston, J. M.; Dubovik, O.; Ramirez, S. A.; Wang, J.; Redemann, J.; Schmid, B.; Box, M.; Holben, B. N.

    2003-01-01

    Desert dust and marine aerosols are receiving increased scientific attention because of their prevalence on intercontinental scales and their potentially large effects on Earth radiation and climate, as well as on other aerosols, clouds, and precipitation. The relatively large size of desert dust and marine aerosols produces scattering phase functions that are strongly forward- peaked. Hence, Sun photometry and pyrheliometry of these aerosols are more subject to diffuse-light errors than is the case for smaller aerosols. Here we quantify these diffuse-light effects for common Sun photometer and pyrheliometer fields of view (FOV), using a data base on dust and marine aerosols derived from (1) AERONET measurements of sky radiance and solar beam transmission and (2) in situ measurements of aerosol layer size distribution and chemical composition. Accounting for particle non-sphericity is important when deriving dust size distribution from both AERONET and in situ aerodynamic measurements. We express our results in terms of correction factors that can be applied to Sun photometer and pyrheliometer measurements of aerosol optical depth (AOD). We find that the corrections are negligible (less than approximately 1% of AOD) for Sun photometers with narrow FOV (half-angle eta less than degree), but that they can be as large as 10% of AOD at 354 nm wavelength for Sun photometers with eta = 1.85 degrees. For pyrheliometers (which can have eta up to approximately 2.8 degrees), corrections can be as large as 16% at 354 nm. We find that AOD correction factors are well correlated with AOD wavelength dependence (hence Angstrom exponent). We provide best-fit equations for determining correction factors from Angstrom exponents of uncorrected AOD spectra, and we demonstrate their application to vertical profiles of multiwavelength AOD.

  10. Improved Cloud and Snow Screening in MAIAC Aerosol Retrievals Using Spectral and Spatial Analysis

    NASA Technical Reports Server (NTRS)

    Lyapustin, A.; Wang, Y.; Laszlo, I.; Kokrkin, S.

    2012-01-01

    An improved cloud/snow screening technique in the Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm is described. It is implemented as part of MAIAC aerosol retrievals based on analysis of spectral residuals and spatial variability. Comparisons with AERONET aerosol observations and a large-scale MODIS data analysis show strong suppression of aerosol optical thickness outliers due to unresolved clouds and snow. At the same time, the developed filter does not reduce the aerosol retrieval capability at high 1 km resolution in strongly inhomogeneous environments, such as near centers of the active fires. Despite significant improvement, the optical depth outliers in high spatial resolution data are and will remain the problem to be addressed by the application-dependent specialized filtering techniques.

  11. Aerosol climate time series from ESA Aerosol_cci (Invited)

    NASA Astrophysics Data System (ADS)

    Holzer-Popp, T.

    2013-12-01

    Within the ESA Climate Change Initiative (CCI) the Aerosol_cci project (mid 2010 - mid 2013, phase 2 proposed 2014-2016) has conducted intensive work to improve algorithms for the retrieval of aerosol information from European sensors AATSR (3 algorithms), PARASOL, MERIS (3 algorithms), synergetic AATSR/SCIAMACHY, OMI and GOMOS. Whereas OMI and GOMOS were used to derive absorbing aerosol index and stratospheric extinction profiles, respectively, Aerosol Optical Depth (AOD) and Angstrom coefficient were retrieved from the other sensors. Global datasets for 2008 were produced and validated versus independent ground-based data and other satellite data sets (MODIS, MISR). An additional 17-year dataset is currently generated using ATSR-2/AATSR data. During the three years of the project, intensive collaborative efforts were made to improve the retrieval algorithms focusing on the most critical modules. The team agreed on the use of a common definition for the aerosol optical properties. Cloud masking was evaluated, but a rigorous analysis with a pre-scribed cloud mask did not lead to improvement for all algorithms. Better results were obtained using a post-processing step in which sudden transitions, indicative of possible occurrence of cloud contamination, were removed. Surface parameterization, which is most critical for the nadir only algorithms (MERIS and synergetic AATSR / SCIAMACHY) was studied to a limited extent. The retrieval results for AOD, Ångström exponent (AE) and uncertainties were evaluated by comparison with data from AERONET (and a limited amount of MAN) sun photometer and with satellite data available from MODIS and MISR. Both level2 and level3 (gridded daily) datasets were validated. Several validation metrics were used (standard statistical quantities such as bias, rmse, Pearson correlation, linear regression, as well as scoring approaches to quantitatively evaluate the spatial and temporal correlations against AERONET), and in some cases

  12. Comparing Aerosol Retrievals from Ground-Based Instruments at the Impact-Pm Field Campaign

    NASA Astrophysics Data System (ADS)

    Kupinski, M.; Bradley, C. L.; Kalashnikova, O. V.; Xu, F.; Diner, D. J.; Clements, C. B.; Camacho, C.

    2016-12-01

    Detection of aerosol types, components having different size and chemical composition, over urban areas is important for understanding their impact on health and climate. In particular, sustained contact with size-differentiated airborne particulate matter: PM10 and PM2.5 can lead to adverse health effects such as asthma attacks, heart and lung diseases, and premature mortality. Multi-angular polarimetric measurements have been advocated in recent years as an additional tool to better understand and retrieve the aerosol properties needed for improved predictions of aerosol impart on air quality and climate. We deployed the ground-based Multiangle SpectroPolarimetric Imager (GroundMSPI) for accurate spectropolarimetric and radiance measurements co-located with the AERONET CIMEL sun photometer and a Halo Doppler 18 m resolution lidar from San José State University at the Garland-Fresno Air Quality supersite in Fresno, CA on July 7 during the Imaging Polarimetric Assessment and Characterization of Tropospheric Particulate Matter (ImPACT-PM) field experiment. GroundMSPI sampled the atmospheric scattering phase function in and 90 degrees out of the principal plane every 15 minutes in an automated manner, utilizing the 2-axis gimbal mount in elevation and azimuth. The goal of this work is verify atmospheric measurement of GroundMSPI with the coincident CIMEL sun photometer and ground-based lidar. Diffuse-sky radiance measurements of GroundMSPI are compared with the CIMEL sun photometer throughout the day. AERONET aerosol parameters such as size, shape, and index of refraction as well as lidar aerosol extinction profiles will be used in a forward radiative transfer model to compare with GroundMSPI observations and optimize these parameters to best match GroundMSPI data.

  13. MODIS Aerosol Optical Depth retrieval over land considering surface BRDF effects

    NASA Astrophysics Data System (ADS)

    Wu, Yerong; de Graaf, Martin; Menenti, Massimo

    2016-04-01

    measurements in our algorithm. We validated three case studies with AErosol Robotic NETwork (AERONET) AOD, and the results show that the AOD retrieval was improved compared to C6_DT AOD, with the increase of within expected accuracy ±(0.05 + 15%) by ranging from 2.7% to 7.5% for the best quality only (Quality Assurance =3), and from 5.8% to 9.5% for the marginal and better quality (Quality Assurance ≥ 1).

  14. A Laboratory Experiment for the Statistical Evaluation of Aerosol Retrieval (STEAR) Algorithms

    NASA Astrophysics Data System (ADS)

    Schuster, G. L.; Espinosa, R.; Ziemba, L. D.; Beyersdorf, A. J.; Rocha Lima, A.; Anderson, B. E.; Martins, J. V.; Dubovik, O.; Ducos, F.; Fuertes, D.; Lapyonok, T.; Shook, M.; Derimian, Y.; Moore, R.

    2016-12-01

    We have developed a method for validating Aerosol Robotic Network (AERONET) retrieval algorithms by mimicking atmospheric extinction and radiance measurements in a laboratory experiment. This enables radiometric retrievals that utilize the same sampling volumes, relative humidities, and particle size ranges as observed by other in situ instrumentation in the experiment. We utilize three Cavity Attenuated Phase Shift (CAPS) monitors for extinction and UMBC's three-wavelength Polarized Imaging Nephelometer (PI-Neph) for angular scattering measurements. We subsample the PI-Neph radiance measurements to angles that correspond to AERONET almucantar scans, with solar zenith angles ranging from 50 to 77 degrees. These measurements are then used as input to the Generalized Retrieval of Aerosol and Surface Properties (GRASP) algorithm, which retrieves size distributions, complex refractive indices, single-scatter albedos (SSA), and lidar ratios for the in situ samples. We obtained retrievals with residuals R < 10% for 100 samples. The samples that we tested include Arizona Test Dust, Arginotec NX, Senegal clay, Israel clay, montmorillonite, hematite, goethite, volcanic ash, ammonium nitrate, ammonium sulfate, and fullerene soot. Samples were alternately dried or humidified, and size distributions were limited to diameters of 1.0 or 2.5 um by using a cyclone. The SSA at 532 nm for these samples ranged from 0.59 to 1.00 when computed with CAPS extinction and PSAP absorption measurements. The GRASP retrieval provided SSAs that are highly correlated with the in situ SSAs, and the correlation coefficients ranged from 0.955 to 0.976, depending upon the simulated solar zenith angle. The GRASP SSAs exhibited an average absolute bias of +0.023 +/-0.01 with respect to the extinction and absorption measurements for the entire dataset. Although our apparatus was not capable of measuring backscatter lidar ratio, we did measure bistatic lidar ratios at a scattering angle of 173 deg. The

  15. First Evaluation of the CCAM Aerosol Simulation over Africa: Implications for Regional Climate Modeling

    NASA Astrophysics Data System (ADS)

    Horowitz, H.; Garland, R. M.; Thatcher, M. J.; Naidoo, M.; van der Merwe, J.; Landman, W.; Engelbrecht, F.

    2015-12-01

    An accurate representation of African aerosols in climate models is needed to understand the regional and global radiative forcing and climate impacts of aerosols, at present and under future climate change. However, aerosol simulations in regional climate models for Africa have not been well-tested. Africa contains the largest single source of biomass-burning smoke aerosols and dust globally. Although aerosols are short-lived relative to greenhouse gases, black carbon in particular is estimated to be second only to carbon dioxide in contributing to warming on a global scale. Moreover, Saharan dust is exported great distances over the Atlantic Ocean, affecting nutrient transport to regions like the Amazon rainforest, which can further impact climate. Biomass burning aerosols are also exported from Africa, westward from Angola over the Atlantic Ocean and off the southeastern coast of South Africa to the Indian Ocean. Here, we perform the first extensive quantitative evaluation of the Conformal-Cubic Atmospheric Model (CCAM) aerosol simulation against monitored data, focusing on aerosol optical depth (AOD) observations over Africa. We analyze historical regional simulations for 1999 - 2012 from CCAM consistent with the experimental design of CORDEX at 50 km global horizontal resolution, through the dynamical downscaling of ERA-Interim data reanalysis data, with the CMIP5 emissions inventory (RCP8.5 scenario). CCAM has a prognostic aerosol scheme for organic carbon, black carbon, sulfate, and dust, and non-prognostic sea salt. The CCAM AOD at 550nm was compared to AOD (observed at 440nm, adjusted to 550nm with the Ångström exponent) from long-term AERONET stations across Africa. Sites strongly impacted by dust and biomass burning and with long continuous records were prioritized. In general, the model captures the monthly trends of the AERONET data. This presentation provides a basis for understanding how well aerosol particles are represented over Africa in

  16. Online Simulations and Forecasts of the Global Aerosol Distribution in the NASA GEOS-5 Model

    NASA Technical Reports Server (NTRS)

    Colarco, Peter

    2006-01-01

    We present an analysis of simulations of the global aerosol system in the NASA GEOS-5 transport, radiation, and chemistry model. The model includes representations of all major tropospheric aerosol species, including dust, sea salt, black carbon, particulate organic matter, and sulfates. The aerosols are run online for the period 2000 through 2005 in a simulation driven by assimilated meteorology from the NASA Goddard Data Assimilation System. Aerosol surface mass concentrations are compared with existing long-term surface measurement networks. Aerosol optical thickness is compared with ground-based AERONET sun photometry and space-based retrievals from MODIS, MISR, and OMI. Particular emphasis is placed here on consistent sampling of model and satellite aerosol optical thickness to account for diurnal variations in aerosol optical properties. Additionally, we illustrate the use of this system for providing chemical weather forecasts in support of various NASA and community field missions.

  17. Evaluations of tropospheric aerosol properties simulated by the community earth system model with a sectional aerosol microphysics scheme

    PubMed Central

    Toon, Owen B.; Bardeen, Charles G.; Mills, Michael J.; Fan, Tianyi; English, Jason M.; Neely, Ryan R.

    2015-01-01

    Abstract A sectional aerosol model (CARMA) has been developed and coupled with the Community Earth System Model (CESM1). Aerosol microphysics, radiative properties, and interactions with clouds are simulated in the size‐resolving model. The model described here uses 20 particle size bins for each aerosol component including freshly nucleated sulfate particles, as well as mixed particles containing sulfate, primary organics, black carbon, dust, and sea salt. The model also includes five types of bulk secondary organic aerosols with four volatility bins. The overall cost of CESM1‐CARMA is approximately ∼2.6 times as much computer time as the standard three‐mode aerosol model in CESM1 (CESM1‐MAM3) and twice as much computer time as the seven‐mode aerosol model in CESM1 (CESM1‐MAM7) using similar gas phase chemistry codes. Aerosol spatial‐temporal distributions are simulated and compared with a large set of observations from satellites, ground‐based measurements, and airborne field campaigns. Simulated annual average aerosol optical depths are lower than MODIS/MISR satellite observations and AERONET observations by ∼32%. This difference is within the uncertainty of the satellite observations. CESM1/CARMA reproduces sulfate aerosol mass within 8%, organic aerosol mass within 20%, and black carbon aerosol mass within 50% compared with a multiyear average of the IMPROVE/EPA data over United States, but differences vary considerably at individual locations. Other data sets show similar levels of comparison with model simulations. The model suggests that in addition to sulfate, organic aerosols also significantly contribute to aerosol mass in the tropical UTLS, which is consistent with limited data. PMID:27668039

  18. Characteristics of columnar aerosol optical and microphysical properties retrieved from the sun photometer and its impact on radiative forcing over Skukuza (South Africa) during 1999-2010.

    PubMed

    Adesina, Ayodele Joseph; Piketh, Stuart; Kanike, Raghavendra Kumar; Venkataraman, Sivakumar

    2017-07-01

    The detailed analysis of columnar optical and microphysical properties of aerosols obtained from the AErosol RObotic NETwork (AERONET) Cimel sun photometer operated at Skukuza (24.98° S, 31.60° E, 150 m above sea level), South Africa was carried out using the level 2.0 direct sun and inversion products measured during 1999-2010. The observed aerosol optical depth (AOD) was generally low over the region, with high values noted in late winter (August) and mid-spring (September and October) seasons. The major aerosol types found during the study period were made of 3.74, 69.63, 9.34, 8.83, and 8.41% for polluted dust (PD), polluted continental (PC), non-absorbing (NA), slightly absorbing (SA), and moderately absorbing (MA) aerosols, respectively. Much attention was given to the aerosol fine- and coarse-modes deduced from the particle volume concentration, effective radius, and fine-mode volume fraction. The aerosol volume size distribution pattern was found to be bimodal with the fine-mode showing predominance relative to coarse-mode during the winter and spring seasons, owing to the onset of the biomass burning season. The mean values of total, fine-, and coarse-mode volume particle concentrations were 0.07 ± 0.04, 0.03 ± 0.03, and 0.04 ± 0.02 μm 3  μm -2 , respectively, whereas the mean respective effective radii observed at Skukuza for the abovementioned modes were 0.35 ± 0.17, 0.14 ± 0.02, and 2.08 ± 0.02 μm. The averaged shortwave direct aerosol radiative forcing (ARF) observed within the atmosphere was found to be positive (absorption or heating effect), whereas the negative forcing in the surface and TOA depicted significant cooling effect due to more scattering type particles.

  19. A Network for Standardized Ocean Color Validation Measurements

    NASA Technical Reports Server (NTRS)

    Zibordi, Giuseppe; Holben, Brent; Hooker, Stanford; Melin, Frederic; Berthon, Jean-Francois; Slutsker, Ilya; Giles, David; Vandemark, Doug; Feng, Hui; Rutledge, Ken; hide

    2006-01-01

    The Aerosol Robotic Network (AERONET) was developed to support atmospheric studies at various scales with measurements from worldwide distributed autonomous sunphotometers [Holben et al. 1998]. AERONET has now extended its support to marine applications through the additional capability of measuring the radiance emerging from the sea with modified sun-photometers installed on offshore platforms like lighthouses, navigation aids, oceanographic and oil towers. The functionality of this added network component called AERONET - Ocean Color (AERONET-OC), has been verified at different sites and deployment structures over a four year testing phase. Continuous or occasional deployment platforms (see Fig. 1) included: the Acqua Alta Oceanographic Tower (AAOT) of the Italian National Research Council in the northern Adriatic Sea since spring 2002; the Martha s Vineyard Coastal Observatory (MVCO) tower of the Woods Hole Oceanographic Institution in the Atlantic off the Massachusetts coast for different periods since spring 2004; the TOTAL Abu-Al-Bukhoosh oil Platform (AABP, shown through an artistic rendition in Fig. 1) in the Persian (Arabian) Gulf in fall 2004; the Gustaf Dal n Lighthouse Tower (GDLT) of the Swedish Maritime Administration in the Baltic Sea in summer 2005; and the platform at the Clouds and the Earth's Radiant Energy System (CERES) Ocean Validation Experiment (COVE) site located in the Atlantic Ocean off the Virginia coast since fall 2005. Data collected during the network testing phase, confirm the capability of AERONET-OC to support the validation of marine optical remote sensing products through standardized measurements of normalized water-leaving radiance, LWN, and aerosol optical thickness, a, at multiple coastal sites.

  20. The DRAGON scale concept and results for remote sensing of aerosol properties

    NASA Astrophysics Data System (ADS)

    Holben, B. N.; Eck, T. F.; Schafer, J.; Giles, D. M.; Kim, J.; Sano, I.; Mukai, S.; Kim, Y. J.; Reid, J. S.; Pickering, K. E.; Crawford, J. H.; Smirnov, A.; Sinyuk, A.; Slutsker, I.; Sorokin, M.; Rodriguez, J.; Liew, S.; Trevino, N.; Lim, H.; Lefer, B. L.; Nadkarni, R.; Macke, A.; Kinne, S. A.; Anderson, B. E.; Russell, P. B.; Maring, H. B.; Welton, E. J.; da Silva, A.; Toon, O. B.; Redemann, J.

    2013-12-01

    Aerosol processes occur at microscales but are typically observed and reported at continental to global scales. Often observable aerosol processes that have significant anthropogenic impact occur on spatial scales of tens to a few hundred km, representative of convective cloud processing, urban/megacity sources, anthropogenic burning and natural wildfires, dry lakebed dust sources etc. Historically remote sensing of aerosols has relied on relatively coarse temporal and spatial resolution satellite observations or high temporal resolution point observations from ground-based monitoring sites from networks such as AERONET, SKYNET, MPLNET and many other surface observation platforms. Airborne remote and in situ observations combined with assimilation models were/are to be the mesoscale link between the ground- and space-based RS scales. However clearly the in situ and ground-based RS characterizations of aerosols require a convergence of thought, parameterization and actual scale measurements in order to advance this goal. This has been served by periodic multidisciplinary field campaigns yet only recently has a concerted effort been made to establish these ground-based networks in an effort to capture the mesoscale processes through measurement programs such as DISCOVER AQ and NASA AERONET's effort to foster such measurements and analysis through the Distributed Regional Aerosol Gridded Observation Networks (DRAGON), short term meso-networks, with partners in Asia and Europe and N. America. This talk will review the historical need for such networks and discuss some of the results and in some cases unexpected findings from the eight DRAGON campaigns conducted the last several years. Emphasis will be placed on the most recent DISCOVER AQ campaign conducted in Houston TX and the synergism with a regional to global network plan through the SEAC4RS US campaign.

  1. Aerosol loading in the Southeastern United States: reconciling surface and satellite observations

    NASA Astrophysics Data System (ADS)

    Ford, B.; Heald, C. L.

    2013-04-01

    We investigate the seasonality in aerosols over the Southeastern United States using observations from several satellite instruments (MODIS, MISR, CALIOP) and surface network sites (IMPROVE, SEARCH, AERONET). We find that the strong summertime enhancement in satellite-observed aerosol optical depth (factor 2-3 enhancement over wintertime AOD) is not present in surface mass concentrations (25-55% summertime enhancement). Goldstein et al. (2009) previously attributed this seasonality in AOD to biogenic organic aerosol; however, surface observations show that organic aerosol only accounts for ~35% of PM2.5 mass and exhibits similar seasonality to total PM2.5. The GEOS-Chem model generally reproduces these surface aerosol measurements, but under represents the AOD seasonality observed by satellites. We show that seasonal differences in water uptake cannot sufficiently explain the magnitude of AOD increase. As CALIOP profiles indicate the presence of additional aerosol in the lower troposphere (below 700 hPa), which cannot be explained by vertical mixing; we conclude that the discrepancy is due to a missing source of aerosols above the surface in summer.

  2. Calibration of Raman lidar water vapor profiles by means of AERONET photometer observations and GDAS meteorological data

    NASA Astrophysics Data System (ADS)

    Dai, Guangyao; Althausen, Dietrich; Hofer, Julian; Engelmann, Ronny; Seifert, Patric; Bühl, Johannes; Mamouri, Rodanthi-Elisavet; Wu, Songhua; Ansmann, Albert

    2018-05-01

    We present a practical method to continuously calibrate Raman lidar observations of water vapor mixing ratio profiles. The water vapor profile measured with the multiwavelength polarization Raman lidar PollyXT is calibrated by means of co-located AErosol RObotic NETwork (AERONET) sun photometer observations and Global Data Assimilation System (GDAS) temperature and pressure profiles. This method is applied to lidar observations conducted during the Cyprus Cloud Aerosol and Rain Experiment (CyCARE) in Limassol, Cyprus. We use the GDAS temperature and pressure profiles to retrieve the water vapor density. In the next step, the precipitable water vapor from the lidar observations is used for the calibration of the lidar measurements with the sun photometer measurements. The retrieved calibrated water vapor mixing ratio from the lidar measurements has a relative uncertainty of 11 % in which the error is mainly caused by the error of the sun photometer measurements. During CyCARE, nine measurement cases with cloud-free and stable meteorological conditions are selected to calculate the precipitable water vapor from the lidar and the sun photometer observations. The ratio of these two precipitable water vapor values yields the water vapor calibration constant. The calibration constant for the PollyXT Raman lidar is 6.56 g kg-1 ± 0.72 g kg-1 (with a statistical uncertainty of 0.08 g kg-1 and an instrumental uncertainty of 0.72 g kg-1). To check the quality of the water vapor calibration, the water vapor mixing ratio profiles from the simultaneous nighttime observations with Raman lidar and Vaisala radiosonde sounding are compared. The correlation of the water vapor mixing ratios from these two instruments is determined by using all of the 19 simultaneous nighttime measurements during CyCARE. Excellent agreement with the slope of 1.01 and the R2 of 0.99 is found. One example is presented to demonstrate the full

  3. Answering the Call for Model-Relevant Observations of Aerosols and Clouds

    NASA Technical Reports Server (NTRS)

    Redemann, J.; Shinozuka, Y.; Kacenelenbogen, M.; Segal-Rozenhaimer, M.; LeBlanc, S.; Vaughan, M.; Stier, P.; Schutgens, N.

    2017-01-01

    We describe a technique for combining multiple A-Train aerosol data sets, namely MODIS spectral AOD (aerosol optical depth), OMI AAOD (absorption aerosol optical depth) and CALIOP aerosol backscatter retrievals (hereafter referred to as MOC retrievals) to estimate full spectral sets of aerosol radiative properties, and ultimately to calculate the 3-D distribution of direct aerosol radiative effects (DARE). We present MOC results using almost two years of data collected in 2007 and 2008, and show comparisons of the aerosol radiative property estimates to collocated AERONET retrievals. We compare the spatio-temporal distribution of the MOC retrievals and MOC-based calculations of seasonal clear-sky DARE to values derived from four models that participated in the Phase II AeroCom model intercomparison initiative. Comparisons of seasonal aerosol property to AeroCom Phase II results show generally good agreement best agreement with forcing results at TOA is found with GMI-MerraV3.We discuss the challenges in making observations that really address deficiencies in models, with some of the more relevant aspects being representativeness of the observations for climatological states, and whether a given model-measurement difference addresses a sampling or a model error.

  4. Long-term analysis of aerosol optical depth over Northeast Asia using a satellite-based measurement: MI Yonsei Aerosol Retrieval Algorithm (YAER)

    NASA Astrophysics Data System (ADS)

    Kim, Mijin; Kim, Jhoon; Yoon, Jongmin; Chung, Chu-Yong; Chung, Sung-Rae

    2017-04-01

    In 2010, the Korean geostationary earth orbit (GEO) satellite, the Communication, Ocean, and Meteorological Satellite (COMS), was launched including the Meteorological Imager (MI). The MI measures atmospheric condition over Northeast Asia (NEA) using a single visible channel centered at 0.675 μm and four IR channels at 3.75, 6.75, 10.8, 12.0 μm. The visible measurement can also be utilized for the retrieval of aerosol optical properties (AOPs). Since the GEO satellite measurement has an advantage for continuous monitoring of AOPs, we can analyze the spatiotemporal variation of the aerosol using the MI observations over NEA. Therefore, we developed an algorithm to retrieve aerosol optical depth (AOD) using the visible observation of MI, and named as MI Yonsei Aerosol Retrieval Algorithm (YAER). In this study, we investigated the accuracy of MI YAER AOD by comparing the values with the long-term products of AERONET sun-photometer. The result showed that the MI AODs were significantly overestimated than the AERONET values over bright surface in low AOD case. Because the MI visible channel centered at red color range, contribution of aerosol signal to the measured reflectance is relatively lower than the surface contribution. Therefore, the AOD error in low AOD case over bright surface can be a fundamental limitation of the algorithm. Meanwhile, an assumption of background aerosol optical depth (BAOD) could result in the retrieval uncertainty, also. To estimate the surface reflectance by considering polluted air condition over the NEA, we estimated the BAOD from the MODIS dark target (DT) aerosol products by pixel. The satellite-based AOD retrieval, however, largely depends on the accuracy of the surface reflectance estimation especially in low AOD case, and thus, the BAOD could include the uncertainty in surface reflectance estimation of the satellite-based retrieval. Therefore, we re-estimated the BAOD using the ground-based sun-photometer measurement, and

  5. Regional and Global Aspects of Aerosols in Western Africa: From Air Quality to Climate

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Diehl, Thomas; Kucsera, Tom; Spinhime, Jim; Palm, Stephen; Holben, Brent; Ginoux, Paul

    2006-01-01

    Western Africa is one of the most important aerosol source regions in the world. Major aerosol sources include dust from the world's largest desert Sahara, biomass burning from the Sahel, pollution aerosols from local sources and long-range transport from Europe, and biogenic sources from vegetation. Because these sources have large seasonal variations, the aerosol composition over the western Africa changes significantly with time. These aerosols exert large influences on local air quality and regional climate. In this study, we use the Goddard Chemistry Aerosol Radiation and Transport (GOCART) model to analyze satellite lidar data from the GLAS instrument on the ICESat and the sunphotometer data from the ground-based network AERONET taken in both the wet (September - October 2003) and dry (February - March 2004) seasons over western Africa. We will quantify the seasonal variations of aerosol sources and compositions and aerosol spatial (horizontal and vertical) distributions over western Africa. We will also assess the climate impact of western African aerosols. Such studies will be applied to support the international project, Africa Monsoon Multidisciplinary Analysis (AMMA) and to analyze the AMMA data.

  6. Evaluating WRF-Chem multi-scale model in simulating aerosol radiative properties over the tropics – A case study over India

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seethala, C.; Pandithurai, G.; Fast, Jerome D.

    We utilized WRF-Chem multi-scale model to simulate the regional distribution of aerosols, optical properties and its effect on radiation over India for a winter month. The model is evaluated using measurements obtained from upper-air soundings, AERONET sun photometers, various satellite instruments, and pyranometers operated by the Indian Meteorological Department. The simulated downward shortwave flux was overestimated when the effect of aerosols on radiation and clouds was neglected. Downward shortwave radiation from a simulation that included aerosol-radiation interaction processes was 5 to 25 Wm{sup -2} closer to the observations, while a simulation that included aerosol-cloud interaction processes were another 1 tomore » 20 Wm{sup -2} closer to the observations. For the few observations available, the model usually underestimated particulate concentration. This is likely due to turbulent mixing, transport errors and the lack of secondary organic aerosol treatment in the model. The model efficiently captured the broad regional hotspots such as high aerosol optical depth over Indo-Gangetic basin as well as the northwestern and southern part of India. The regional distribution of aerosol optical depth compares well with AVHRR aerosol optical depth and the TOMS aerosol index. The magnitude and wavelength-dependence of simulated aerosol optical depth was also similar to the AERONET observations across India. Differences in surface shortwave radiation between simulations that included and neglected aerosol-radiation interactions were as high as -25 Wm{sup -2}, while differences in surface shortwave radiation between simulations that included and neglect aerosol-radiation-cloud interactions were as high as -30 Wm{sup -2}. The spatial variations of these differences were also compared with AVHRR observation. This study suggests that the model is able to qualitatively simulate the impact of aerosols on radiation over India; however, additional measurements of

  7. Simultaneous determination of aerosol optical thickness and water-leaving radiance from multispectral measurements in coastal waters

    NASA Astrophysics Data System (ADS)

    Shi, Chong; Nakajima, Teruyuki

    2018-03-01

    Retrieval of aerosol optical properties and water-leaving radiance over ocean is challenging since the latter mostly accounts for ˜ 10 % of the satellite-observed signal and can be easily influenced by the atmospheric scattering. Such an effort would be more difficult in turbid coastal waters due to the existence of optically complex oceanic substances or high aerosol loading. In an effort to solve such problems, we present an optimization approach for the simultaneous determination of aerosol optical thickness (AOT) and normalized water-leaving radiance (nLw) from multispectral satellite measurements. In this algorithm, a coupled atmosphere-ocean radiative transfer model combined with a comprehensive bio-optical oceanic module is used to jointly simulate the satellite-observed reflectance at the top of atmosphere and water-leaving radiance just above the ocean surface. Then, an optimal estimation method is adopted to retrieve AOT and nLw iteratively. The algorithm is validated using Aerosol Robotic Network - Ocean Color (AERONET-OC) products selected from eight OC sites distributed over different waters, consisting of observations that covered glint and non-glint conditions from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument. Results show a good consistency between retrieved and in situ measurements at each site. It is demonstrated that more accurate AOTs are determined based on the simultaneous retrieval method, particularly in shorter wavelengths and sunglint conditions, where the averaged percentage difference (APD) of retrieved AOT is generally reduced by approximate 10 % in visible bands compared with those derived from the standard atmospheric correction (AC) scheme, since all the spectral measurements can be used jointly to increase the information content in the inversion of AOT, and the wind speed is also simultaneously retrieved to compensate the specular reflectance error estimated from the rough ocean surface model. For the

  8. Spatial and temporal variability in aerosol properties over the Mediterranean basin based on 6-year (2000-2006) MODIS data

    NASA Astrophysics Data System (ADS)

    Papadimas, C. D.; Hatzianastassiou, N.; Mihalopoulos, N.; Querol, X.; Vardavas, I.

    2008-06-01

    The temporal variability of aerosol optical properties is investigated over the broader Mediterranean basin, with emphasis on aerosol optical depth (AOD) that is an effective measure of aerosol load. The study is performed using Collection 005 Level-3 mean daily spectral aerosol data from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument on board the Terra and Aqua satellites, which cover the 6-year period from 2000 to 2006. The results of our analysis reveal a significant interannual variability of AOD in the study region. Specifically, the regional mean visible AOD over land and ocean has decreased over the period 2000-2006 by 20% in relative percentage terms (or by 0.04 in absolute terms). This tendency is statistically significant according to the Man-Kendall test. However, the decreasing tendency of AOD is not uniform over the whole basin. It appears mainly in the western parts of Iberian, Italian, and Balkan peninsulas (and coastal areas), as well as in the southern Anatolian peninsula. The analysis for summer (June to September) and winter (November to March) seasons revealed different tendencies in both AOD and precipitation. The summer-period AOD has decreased by 0.04 (or by 14%) probably due to decreased emission rates of anthropogenic pollution. In contrast, the winter AOD has increased by 0.03 (or 19%) mainly related to decreased precipitation (associated with an increasing tendency in the NAO index). The decreasing tendency in MODIS AOD is in good agreement with corresponding AOD tendencies based on data from Aerobot Robotic Network (AERONET) stations in the study region and ground based PM10 measurements at selected stations.

  9. The analysis of in situ and retrieved aerosol properties measured during three airborne field campaigns

    NASA Astrophysics Data System (ADS)

    Corr, Chelsea A.

    actinic flux (AF SSA) to those retrieved using ratios of direct and diffuse irradiance (DDR SSA) at four wavelengths: 332, 368, 415, and 500 mn. Both actinic flux and irradiance were measured atop the University of Houston's Moody Tower in Houston, TX as part of the Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) mission in September 2013. AF SSA values were consistently lower than DDR SSAs with largest offsets observed when aerosol optical depths was < ~0.2. AF SSA were also lower than those reported by the AErosol RObotic NETwork (AERONET) and column-averaged values calculated from aerosol scattering and absorption coefficients measured aboard the NASA P3-B aircraft at 450 and 550 nm. However, AAE values calculated from AF SSAs compared well to AERONET and column-averaged AAEs suggesting actinic flux retrievals can correctly resolve the spectral dependence of aerosol absorption. Recent work has suggested that mineral dust is the most important IN found in both anvil and synoptically formed cirrus clouds over North America. The vertical transport processes sustaining significant mineral dust in the upper troposphere (> 9 km) where these clouds form are not well understood, but deep convective systems (thunder storms) likely play a role. Bulk aerosol Ca2+ concentrations and volume size distributions were measured aboard the NASA DC-8 during the NCAR Deep Convective Clouds and Chemistry Experiment (DC-3) conducted in May/June 2012 in both the inflow and outflow regions of twelve isolated, high cloud base storms over CO and OK. Outflow/inflow ratios of both Ca2+ and total coarse (limn < diameter < 5 microm) aerosol volume (Vc)were high (> ~0.9) suggesting a significant fraction of ingested coarse mode dust was transported through these systems. Elevated Ca2+ and Vc in the outflow were most likely not artifacts of ice shattering given the general absence of a relationship between these

  10. Estimation of optical properties of aerosols and bidirectional reflectance from PARASOL/POLDER data over land

    NASA Astrophysics Data System (ADS)

    Kusaka, Takashi; Miyazaki, Go

    2014-10-01

    When monitoring target areas covered with vegetation from a satellite, it is very useful to estimate the vegetation index using the surface anisotropic reflectance, which is dependent on both solar and viewing geometries, from satellite data. In this study, the algorithm for estimating optical properties of atmospheric aerosols such as the optical thickness (τ), the refractive index (Nr), the mixing ratio of small particles in the bimodal log-normal distribution function (C) and the bidirectional reflectance (R) from only the radiance and polarization at the 865nm channel received by the PARASOL/POLDER is described. Parameters of the bimodal log-normal distribution function: mean radius, r1, standard deviation, σ1, of fine aerosols, and r2, σ2 of coarse aerosols were fixed, and these values were estimated from monthly averaged size distribution at AERONET sites managed by NASA near the target area. Moreover, it is assumed that the contribution of the surface reflectance with directional anisotropy to the polarized radiance received by the satellite is small because it is shown from our ground-based polarization measurements of light ray reflected by the grassland that degrees of polarization of the reflected light by the grassland are very low values at the 865nm channel. First aerosol properties were estimated from only the polarized radiance and then the bidirectional reflectance given by the Ross-Li BRDF model was estimated from only the total radiance at target areas in PARASOL/POLDER data over the Japanese islands taken on April 28, 2012 and April 25, 2010. The estimated optical thickness of aerosols was checked with those given in AERONET sites and the estimated parameters of BRDF were compared with those of vegetation measured from the radio-controlled helicopter. Consequently, it is shown that the algorithm described in the present study provides reasonable values for aerosol properties and surface bidirectional reflectance.

  11. Aerosol characterizaton in El Paso-Juarez airshed using optical methods

    NASA Astrophysics Data System (ADS)

    Esparza, Angel Eduardo

    2011-12-01

    retrieve the size distribution of them. This method permits the assessment of aerosols in the ambient in-situ, without physically extracting them from their current state, as the filter technique does. The second objective was an analysis and comparison of the aerosol optical thickness (AOT) data between ground-based instruments and satellite data. In this project, the groundbased instruments are the Multi Filter Rotating Shadowband Radiometers (MFRSR) installed at UTEP and the nearest sun photometer facility, a NASA's Aerosol Robotic Network (AERONET), located at White Sands, New Mexico. The satellite data is provided by the NASA's Multi-angle Imaging Spectro-radiometer (MISR) instrument located in the Terra satellite. Finally, the third objective was to estimate ground particulate matter concentration of particles no greater than 2.5 mum in diameter (PM2.5) by using the MISR's satellite data. This objective was achieved by implementing an empirical mathematical model that includes measured data. In addition, this model addressed the geographic characteristics of the region as well as several factors such as season, relative humidity (RH) and the height of the planetary boundary layer (PBL).

  12. REMOTE SENSING MEASUREMENTS OF AEROSOL OPTICAL THICKNESS AND CORRELATION WITH IN-SITU AIR QUALITY PARAMETERS DURING A SMOKE HAZE EPISODE IN SOUTHEAST ASIA

    NASA Astrophysics Data System (ADS)

    Chew, B.; Salinas Cortijo, S. V.; Liew, S.

    2009-12-01

    Transboundary smoke haze due to biomass burning is a major environmental problem in Southeast Asia which has not only affected air quality in the source region, but also in the surrounding countries. Air quality monitoring stations and meteorological stations can provide valuable information on the concentrations of criteria pollutants such as sulphur dioxide, nitrogen oxide, carbon monoxide, ozone and particulate mass (PM10) as well as health advisory to the general public during the haze episodes. Characteristics of aerosol particles in the smoke haze such as the aerosol optical thickness (AOT), aerosol size distribution and Angstrom exponent are also measured or retrieved by sun-tracking photometers, such as those deployed in the world-wide AErosol RObotic NETwork (AERONET). However, due to the limited spatial coverage by the air quality monitoring stations and AERONET sites, it is difficult to study and monitor the spatial and temporal variability of the smoke haze during a biomass burning episode, especially in areas without ground-based instrumentation. As such, we combine the standard in-situ measurements of PM10 by air quality monitoring stations with the remote sensing imagery from the Moderate Resolution Imaging Spectroradiometer (MODIS) on board NASA's Terra and Aqua satellites. The columnar AOT is first derived from the MODIS images for regions where PM10 measurements are available. Empirical correlations between AOT and PM10 measurements are then established for 50 sites in both Malaysia and Singapore during the smoke haze episode in 2006. When available, vertical feature information from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) is used to examine the validity of the correlations. Aloft transport of aerosols, which can weaken the correlations between AOT and PM10 measurements, is also identified by CALIPSO and taken into consideration for the analysis. With this integrated approach, we hope to enhance and

  13. A new code SORD for simulation of polarized light scattering in the Earth atmosphere

    NASA Astrophysics Data System (ADS)

    Korkin, Sergey; Lyapustin, Alexei; Sinyuk, Aliaksandr; Holben, Brent

    2016-05-01

    We report a new publicly available radiative transfer (RT) code for numerical simulation of polarized light scattering in plane-parallel Earth atmosphere. Using 44 benchmark tests, we prove high accuracy of the new RT code, SORD (Successive ORDers of scattering1, 2). We describe capabilities of SORD and show run time for each test on two different machines. At present, SORD is supposed to work as part of the Aerosol Robotic NETwork3 (AERONET) inversion algorithm. For natural integration with the AERONET software, SORD is coded in Fortran 90/95. The code is available by email request from the corresponding (first) author or from ftp://climate1.gsfc.nasa.gov/skorkin/SORD/ or ftp://maiac.gsfc.nasa.gov/pub/SORD.zip

  14. Retrieval and Validation of aerosol optical properties from AHI measurements: impact of surface reflectance assumption

    NASA Astrophysics Data System (ADS)

    Lim, H.; Choi, M.; Kim, J.; Go, S.; Chan, P.; Kasai, Y.

    2017-12-01

    This study attempts to retrieve the aerosol optical properties (AOPs) based on the spectral matching method, with using three visible and one near infrared channels (470, 510, 640, 860nm). This method requires the preparation of look-up table (LUT) approach based on the radiative transfer modeling. Cloud detection is one of the most important processes for guaranteed quality of AOPs. Since the AHI has several infrared channels, which are very advantageous for cloud detection, clouds can be removed by using brightness temperature difference (BTD) and spatial variability test. The Yonsei Aerosol Retrieval (YAER) algorithm is basically utilized on a dark surface, therefore a bright surface (e.g., desert, snow) should be removed first. Then we consider the characteristics of the reflectance of land and ocean surface using three visible channels. The known surface reflectivity problem in high latitude area can be solved in this algorithm by selecting appropriate channels through improving tests. On the other hand, we retrieved the AOPs by obtaining the visible surface reflectance using NIR to normalized difference vegetation index short wave infrared (NDVIswir) relationship. ESR tends to underestimate urban and cropland area, we improved the visible surface reflectance considering urban effect. In this version, ocean surface reflectance is using the new cox and munk method which considers ocean bidirectional reflectance distribution function (BRDF). Input of this method has wind speed, chlorophyll, salinity and so on. Based on validation results with the sun-photometer measurement in AErosol Robotic NETwork (AERONET), we confirm that the quality of Aerosol Optical Depth (AOD) from the YAER algorithm is comparable to the product from the Japan Aerospace Exploration Agency (JAXA) retrieval algorithm. Our future update includes a consideration of improvement land surface reflectance by hybrid approach, and non-spherical aerosols. This will improve the quality of YAER

  15. Marine aerosol distribution and variability over the pristine Southern Indian Ocean

    NASA Astrophysics Data System (ADS)

    Mallet, Paul-Étienne; Pujol, Olivier; Brioude, Jérôme; Evan, Stéphanie; Jensen, Andrew

    2018-06-01

    This paper presents an 8-year (2005-2012 inclusive) study of the marine aerosol distribution and variability over the Southern Indian Ocean, precisely in the area { 10 °S - 40 °S ; 50 °E - 110 °E } which has been identified as one of the most pristine regions of the globe. A large dataset consisting of satellite data (POLDER, CALIOP), AERONET measurements at Saint-Denis (French Réunion Island) and model reanalysis (MACC), has been used. In spite of a positive bias of about 0.05 between the AOD (aerosol optical depth) given by POLDER and MACC on one hand and the AOD measured by AERONET on the other, consistent results for aerosol distribution and variability over the area considered have been obtained. First, aerosols are mainly confined below 2km asl (above sea level) and are dominated by sea salt, especially in the center of the area of interest, with AOD ≤ 0 . 1. This zone is the most pristine and is associated with the position of the Mascarene anticyclone. There, the direct radiative effect is assessed around - 9 Wm-2 at the top of the atmosphere and probability density functions of the AOD s are leptokurtic lognormal functions without any significant seasonal variation. It is also suggested that the Madden-Jullian oscillation impacts sea salt emissions in the northern part of the area considered by modifying the state of the ocean surface. Finally, this area is surrounded in the northeast and the southwest by seasonal Australian and South African intrusions (AOD > 0.1) ; throughout the year, the ITCZ seems to limit continental contaminations from Asia. Due to the long period of time considered (almost a decade), this paper completes and strengthens results of studies based on observations performed during previous specific field campaigns.

  16. Characterizing error distributions for MISR and MODIS optical depth data

    NASA Astrophysics Data System (ADS)

    Paradise, S.; Braverman, A.; Kahn, R.; Wilson, B.

    2008-12-01

    The Multi-angle Imaging SpectroRadiometer (MISR) and Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's EOS satellites collect massive, long term data records on aerosol amounts and particle properties. MISR and MODIS have different but complementary sampling characteristics. In order to realize maximum scientific benefit from these data, the nature of their error distributions must be quantified and understood so that discrepancies between them can be rectified and their information combined in the most beneficial way. By 'error' we mean all sources of discrepancies between the true value of the quantity of interest and the measured value, including instrument measurement errors, artifacts of retrieval algorithms, and differential spatial and temporal sampling characteristics. Previously in [Paradise et al., Fall AGU 2007: A12A-05] we presented a unified, global analysis and comparison of MISR and MODIS measurement biases and variances over lives of the missions. We used AErosol RObotic NETwork (AERONET) data as ground truth and evaluated MISR and MODIS optical depth distributions relative to AERONET using simple linear regression. However, AERONET data are themselves instrumental measurements subject to sources of uncertainty. In this talk, we discuss results from an improved analysis of MISR and MODIS error distributions that uses errors-in-variables regression, accounting for uncertainties in both the dependent and independent variables. We demonstrate on optical depth data, but the method is generally applicable to other aerosol properties as well.

  17. Aerosol Retrieval from Multiangle Multispectral Photopolarimetric Measurements: Importance of Spectral Range and Angular Resolution

    NASA Technical Reports Server (NTRS)

    Wu, L.; Hasekamp, O.; Van Diedenhoven, B.; Cairns, B.

    2015-01-01

    We investigated the importance of spectral range and angular resolution for aerosol retrieval from multiangle photopolarimetric measurements over land. For this purpose, we use an extensive set of simulated measurements for different spectral ranges and angular resolutions and subsets of real measurements of the airborne Research Scanning Polarimeter (RSP) carried out during the PODEX and SEAC4RS campaigns over the continental USA. Aerosol retrievals performed from RSP measurements show good agreement with ground-based AERONET measurements for aerosol optical depth (AOD), single scattering albedo (SSA) and refractive index. Furthermore, we found that inclusion of shortwave infrared bands (1590 and/or 2250 nm) significantly improves the retrieval of AOD, SSA and coarse mode microphysical properties. However, accuracies of the retrieved aerosol properties do not improve significantly when more than five viewing angles are used in the retrieval.

  18. Multi-Satellite Synergy for Aerosol Analysis in the Asian Monsoon Region

    NASA Technical Reports Server (NTRS)

    Ichoku, Charles; Petrenko, Maksym

    2012-01-01

    Atmospheric aerosols represent one of the greatest uncertainties in environmental and climate research, particularly in tropical monsoon regions such as the Southeast Asian regions, where significant contributions from a variety of aerosol sources and types is complicated by unstable atmospheric dynamics. Although aerosols are now routinely retrieved from multiple satellite Sensors, in trying to answer important science questions about aerosol distribution, properties, and impacts, researchers often rely on retrievals from only one or two sensors, thereby running the risk of incurring biases due to sensor/algorithm peculiarities. We are conducting detailed studies of aerosol retrieval uncertainties from various satellite sensors (including Terra-/ Aqua-MODIS, Terra-MISR, Aura-OMI, Parasol-POLDER, SeaWiFS, and Calipso-CALIOP), based on the collocation of these data products over AERONET and other important ground stations, within the online Multi-sensor Aerosol Products Sampling System (MAPSS) framework that was developed recently. Such analyses are aimed at developing a synthesis of results that can be utilized in building reliable unified aerosol information and climate data records from multiple satellite measurements. In this presentation, we will show preliminary results of. an integrated comparative uncertainly analysis of aerosol products from multiple satellite sensors, particularly focused on the Asian Monsoon region, along with some comparisons from the African Monsoon region.

  19. Aerosol loading in the Southeastern United States: reconciling surface and satellite observations

    NASA Astrophysics Data System (ADS)

    Ford, B.; Heald, C. L.

    2013-09-01

    We investigate the seasonality in aerosols over the Southeastern United States using observations from several satellite instruments (MODIS, MISR, CALIOP) and surface network sites (IMPROVE, SEARCH, AERONET). We find that the strong summertime enhancement in satellite-observed aerosol optical depth (AOD) (factor 2-3 enhancement over wintertime AOD) is not present in surface mass concentrations (25-55% summertime enhancement). Goldstein et al. (2009) previously attributed this seasonality in AOD to biogenic organic aerosol; however, surface observations show that organic aerosol only accounts for ∼35% of fine particulate matter (smaller than 2.5 μm in aerodynamic diameter, PM2.5) and exhibits similar seasonality to total surface PM2.5. The GEOS-Chem model generally reproduces these surface aerosol measurements, but underrepresents the AOD seasonality observed by satellites. We show that seasonal differences in water uptake cannot sufficiently explain the magnitude of AOD increase. As CALIOP profiles indicate the presence of additional aerosol in the lower troposphere (below 700 hPa), which cannot be explained by vertical mixing, we conclude that the discrepancy is due to a missing source of aerosols above the surface layer in summer.

  20. Variability of aerosol vertical distribution in the Sahel

    NASA Astrophysics Data System (ADS)

    Cavalieri, O.; Cairo, F.; Fierli, F.; di Donfrancesco, G.; Snels, M.; Viterbini, M.; Cardillo, F.; Chatenet, B.; Formenti, P.; Marticorena, B.; Rajot, J. L.

    2010-12-01

    In this work, we have studied the seasonal and inter-annual variability of the aerosol vertical distribution over Sahelian Africa for the years 2006, 2007 and 2008, characterizing the different kind of aerosols present in the atmosphere in terms of their optical properties observed by ground-based and satellite instruments, and their sources searched for by using trajectory analysis. This study combines data acquired by three ground-based micro lidar systems located in Banizoumbou (Niger), Cinzana (Mali) and M'Bour (Senegal) in the framework of the African Monsoon Multidisciplinary Analysis (AMMA), by the AEROsol RObotic NETwork (AERONET) sun-photometers and by the space-based Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) onboard the CALIPSO satellite (Cloud-Aerosol Lidar and Infrared Pathfinder Observations). During winter, the lower levels air masses arriving in the Sahelian region come mainly from North, North-West and from the Atlantic area, while in the upper troposphere air flow generally originates from West Africa, crossing a region characterized by the presence of large biomass burning sources. The sites of Cinzana, Banizoumbou and M'Bour, along a transect of aerosol transport from East to West, are in fact under the influence of tropical biomass burning aerosol emission during the dry season, as revealed by the seasonal pattern of the aerosol optical properties, and by back-trajectory studies. Aerosol produced by biomass burning are observed mainly during the dry season and are confined in the upper layers of the atmosphere. This is particularly evident for 2006, which was characterized by a large presence of biomass burning aerosols in all the three sites. Biomass burning aerosol is also observed during spring when air masses originating from North and East Africa pass over sparse biomass burning sources, and during summer when biomass burning aerosol is transported from the southern part of the continent by the monsoon flow. During summer

  1. Air pollution from gas flaring: new emission factor estimates and detection in a West African aerosol remote-sensing climatology

    NASA Astrophysics Data System (ADS)

    MacKenzie, Rob; Fawole, Olusegun Gabriel; Levine, James; Cai, Xiaoming

    2016-04-01

    Gas flaring, the disposal of gas through stacks in an open-air flame, is a common feature in the processing of crude oil, especially in oil-rich regions of the world. Gas flaring is a prominent source of volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAH), CO, CO2, nitrogen oxides (NOx), SO2 (in "sour" gas only), and soot (black carbon), as well as the release of locally significant amounts of heat. The rates of emission of these pollutants from gas flaring depend on a number of factors including, but not limited to, fuel composition and quantity, stack geometry, flame/combustion characteristics, and prevailing meteorological conditions. Here, we derive new estimated emission factors (EFs) for carbon-containing pollutants (excluding PAH). The air pollution dispersion model, ADMS5, is used to simulate the dispersion of the pollutants from flaring stacks in the Niger delta. A seasonal variation of the dispersion pattern of the pollutant within a year is studied in relation to the movements of the West Africa Monsoon (WAM) and other prevailing meteorological factors. Further, we have clustered AERONET aerosol signals using trajectory analysis to identify dominant aerosol sources at the Ilorin site in West Africa (4.34 oE, 8.32 oN). A 10-year trajectory-based analysis was undertaken (2005-2015, excluding 2010). Of particular interest are air masses that have passed through the gas flaring region in the Niger Delta area en-route the AERONET site. 7-day back trajectories were calculated using the UK Universities Global Atmospheric Modelling Programme (UGAMP) trajectory model which is driven by analyses from the European Centre for Medium-Range Weather Forecasts (ECMWF). From the back-trajectory calculations, dominant sources are identified, using literature classifications: desert dust (DD); Biomass burning (BB); and Urban-Industrial (UI). We use a combination of synoptic trajectories and aerosol optical properties to distinguish a fourth source

  2. Estimation of the Cloud condensation nuclei concentration(CCN) and aerosol optical depth(AOD) relation in the Arctic region

    NASA Astrophysics Data System (ADS)

    Jung, C. H.; Yoon, Y. J.; Ahn, S. H.; Kang, H. J.; Gim, Y. T.; Lee, B. Y.

    2017-12-01

    Information of the spatial and temporal variations of cloud condensation nuclei (CCN) concentrations is important in estimating aerosol indirect effects. Generally, CCN aerosol is difficult to estimate using remote sensing methods. Although there are many CCN measurements data, extensive measurements of CCN are not feasible because of the complex nature of the operation and high cost, especially in the Arctic region. Thus, there have been many attempts to estimate CCN concentrations from more easily obtainable parameters such as aerosol optical depth (AOD) because AOD has the advantage of being readily observed by remote sensing from space by several sensors. For example, some form of correlation was derived between AOD and the number concentration of cloud condensation nuclei (CCN) through the comparison results from AERONET network and CCN measurements (Andreae 2009). In this study, a parameterization of CCN concentration as a function of AOD at 500 nm is given in the Arctic region. CCN data was collected during the period 2007-2013 at the Zeppelin observatory (78.91° N, 11.89° E, 474 masl). The AERONET network and MODIS AOD data are compared with ground measured CCN measurement and the relations between AOD and CCN are parameterized. The seasonal characteristics as well as long term trends are also considered. Through the measurement, CCN concentration remains high during spring because of aerosol transportation from the mid-latitudes, known as Arctic Haze. Lowest CCN number densities were observed during Arctic autumn and early winter when aerosol long-range transport into the Arctic is not effective and new particle formation ceases. The results show that the relation between AOD and CCN shows a different parameter depending on the seasonal aerosol and CCN characteristics. This seasonal different CCN-AOD relation can be interpreted as many physico-chemical aerosol properties including aerosol size distribution, composition. ReferenceAndreae, M. O. (2009

  3. Aerosol Absorption and Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Stier, Philip; Seinfeld, J. H.; Kinne, Stefan; Boucher, Olivier

    2007-01-01

    We present a comprehensive examination of aerosol absorption with a focus on evaluating the sensitivity of the global distribution of aerosol absorption to key uncertainties in the process representation. For this purpose we extended the comprehensive aerosol-climate model ECHAM5-HAM by effective medium approximations for the calculation of aerosol effective refractive indices, updated black carbon refractive indices, new cloud radiative properties considering the effect of aerosol inclusions, as well as by modules for the calculation of long-wave aerosol radiative properties and instantaneous aerosol forcing. The evaluation of the simulated aerosol absorption optical depth with the AERONET sun-photometer network shows a good agreement in the large scale global patterns. On a regional basis it becomes evident that the update of the BC refractive indices to Bond and Bergstrom (2006) significantly improves the previous underestimation of the aerosol absorption optical depth. In the global annual-mean, absorption acts to reduce the shortwave anthropogenic aerosol top-of-atmosphere (TOA) radiative forcing clear-sky from -0.79 to -0.53 W m(sup -2) (33%) and all-sky from -0.47 to -0.13W m(sup -2 (72%). Our results confirm that basic assumptions about the BC refractive index play a key role for aerosol absorption and radiative forcing. The effect of the usage of more accurate effective medium approximations is comparably small. We demonstrate that the diversity in the AeroCom land-surface albedo fields contributes to the uncertainty in the simulated anthropogenic aerosol radiative forcings: the usage of an upper versus lower bound of the AeroCom land albedos introduces a global annual-mean TOA forcing range of 0.19W m(sup -2) (36%) clear-sky and of 0.12W m(sup -2) (92%) all-sky. The consideration of black carbon inclusions on cloud radiative properties results in a small global annual-mean all-sky absorption of 0.05W m(sup -2) and a positive TOA forcing perturbation of 0

  4. A Seasonal Trend of Single Scattering Albedo in Southern African Biomass-burning Particles: Implications for Satellite Products and Estimates of Emissions for the World's Largest Biomass-burning Source

    NASA Technical Reports Server (NTRS)

    Eck, T. F.; Holben, B. N.; Reid, J. S.; Mukelabai, M. M.; Piketh, S. J.; Torres, O.; Jethva, H. T.; Hyer, E. J.; Ward, D. E.; Dubovik, O.; hide

    2013-01-01

    As a representative site of the southern African biomass-burning region, sun-sky data from the 15 year Aerosol Robotic Network (AERONET) deployment at Mongu, Zambia, was analyzed. For the biomass-burning season months (July-November), we investigate seasonal trends in aerosol single scattering albedo (SSA), aerosol size distributions, and refractive indices from almucantar sky scan retrievals. The monthly mean single scattering albedo at 440 nm in Mongu was found to increase significantly from approx.. 0.84 in July to approx. 0.93 in November (from 0.78 to 0.90 at 675 nm in these same months). There was no significant change in particle size, in either the dominant accumulation or secondary coarse modes during these months, nor any significant trend in the Angstrom exponent (440-870 nm; r(exp 2) = 0.02). A significant downward seasonal trend in imaginary refractive index (r(exp 2) = 0.43) suggests a trend of decreasing black carbon content in the aerosol composition as the burning season progresses. Similarly, burning season SSA retrievals for the Etosha Pan, Namibia AERONET site also show very similar increasing single scattering albedo values and decreasing imaginary refractive index as the season progresses. Furthermore, retrievals of SSA at 388 nm from the Ozone Monitoring Instrument satellite sensor show similar seasonal trends as observed by AERONET and suggest that this seasonal shift is widespread throughout much of southern Africa. A seasonal shift in the satellite retrieval bias of aerosol optical depth from the Moderate Resolution Imaging Spectroradiometer collection 5 dark target algorithm is consistent with this seasonal SSA trend since the algorithm assumes a constant value of SSA. Multi-angle Imaging Spectroradiometer, however, appears less sensitive to the absorption-induced bias.

  5. Analysis of DIAL/HSRL aerosol backscatter and extinction profiles during the SEAC4RS campaign with an aerosol assimilation system

    NASA Astrophysics Data System (ADS)

    Weaver, C. J.; da Silva, A. M., Jr.; Colarco, P. R.; Randles, C. A.

    2015-12-01

    We retrieve aerosol concentrations and optical information from vertical profiles of airborne 532 nm extinction and 532 and 1064 nm backscatter measurements made during the SEAC4RS summer 2013 campaign. The observations are from the High Spectral Resolution Lidar (HSRL) Airborne Differential Absorption Lidar (DIAL) on board the NASA DC-8. Instead of retrieving information about aerosol microphysical properties such as indexes of refraction, we seek information more directly applicable to an aerosol transport model - in our case the Goddard Chemistry Aerosol Radiation and Transport (GOCART) module used in the GEOS-5 Earth modeling system. A joint atmosphere/aerosol mini-reanalysis was performed for the SEAC4RS period using GEOS-5. The meteorological reanalysis followed the MERRA-2 atmospheric reanalysis protocol, and aerosol information from MODIS, MISR, and AERONET provided a constraint on the simulated aerosol optical depth (i.e., total column loading of aerosols). We focus on the simulated concentrations of 10 relevant aerosol species simulated by the GOCART module: dust, sulfate, and organic and black carbon. Our first retrieval algorithm starts with the SEAC4RS mini-reanalysis and adjusts the concentration of each GOCART aerosol species so that differences between the observed and simulated backscatter and extinction measurements are minimized. In this case, too often we are unable to simulate the observations by simple adjustment of the aerosol concentrations. A second retrieval approach adjusts both the aerosol concentrations and the optical parameters (i.e., assigned mass extinction efficiency) associated with each GOCART species. We present results from DC-8 flights over smoke from forest fires over the western US using both retrieval approaches. Finally, we compare our retrieved quantities with in-situ observations of aerosol absorption, scattering, and mass concentrations at flight altitude.

  6. Investigating aerosol properties in Peninsular Malaysia via the synergy of satellite remote sensing and ground-based measurements

    NASA Astrophysics Data System (ADS)

    Kanniah, Kasturi Devi; Lim, Hui Qi; Kaskaoutis, Dimitris G.; Cracknell, Arthur P.

    2014-03-01

    Spatio-temporal variation and trends in atmospheric aerosols as well as their impact on solar radiation and clouds are crucial for regional and global climate change assessment. These topics are not so well-documented over Malaysia, the fact that it receives considerable amounts of pollutants from both local and trans-boundary sources. The present study aims to analyse the spatio-temporal evolution and decadal trend of Aerosol Optical Depth (AOD) from Terra and Aqua MODIS sensors, to identify different types and origin of aerosols and explore the link between aerosols and solar radiation. AOD and fine-mode fraction (FMF) products from MODIS, AOD and Ångström Exponent (AE) values from AERONET stations along with ground-based PM10 measurements and solar radiation recordings at selected sites in Peninsular Malaysia are used for this scope. The MODIS AODs exhibit a wide spatio-temporal variation over Peninsular Malaysia, while Aqua AOD is consistently lower than that from Terra. The AOD shows a neutral-to-declining trend during the 2000s (Terra satellite), while that from Aqua exhibits an increasing trend (~ 0.01 per year). AERONET AODs exhibit either insignificant diurnal variation or higher values during the afternoon, while their short-term availability does not allow for a trend analysis. Moreover, the PM10 concentrations exhibit a general increasing trend over the examined locations. The sources and destination of aerosols are identified via the HYSPLIT trajectory model, revealing that aerosols during the dry season (June to September) are mainly originated from the west and southwest (Sumatra, Indonesia), while in the wet season (November to March) they are mostly associated with the northeast monsoon winds from the southern China Sea. Different aerosol types are identified via the relationship of AOD with FMF, revealing that the urban and biomass-burning aerosols are the most abundant over the region contributing to a significant reduction (~- 0.21 MJ m- 2) of

  7. Beyond MODIS: Developing an aerosol climate data record

    NASA Astrophysics Data System (ADS)

    Levy, R. C.; Mattoo, S.; Munchak, L. A.; Patadia, F.; Laszlo, I.; Holz, R.

    2013-12-01

    As defined by the National Research Council, a climate data record (CDR) is a time series of measurements of sufficient length, consistency, and continuity to determine climate variability and change. As one of our most pressing research questions concerns changes in global direct aerosol radiative forcing (DARF), creating an aerosol CDR is of high importance. To reduce our uncertainties in DARF, we need uncertainty in global aerosol optical depth (AOD) reduced to ×0.02 or better, or about 10% of global mean AOD (~0.15-0.20). To quantify aerosol trends with significance, we also need a stable time series at least 20-30 years. By this Fall-2013 AGU meeting, the Moderate Resolution Imaging Spectrometer (MODIS) has been flying on NASA's Terra and Aqua satellites for 14 years and 11.5 years, respectively. During this time, we have fine-tuned the aerosol retrieval algorithms and data processing protocols, resulting in a well characterized product of aerosol optical depth (AOD). MODIS AOD has been extensively compared to ground-based sunphotometer data, showing per-retrieval expected error (EE) of ×(0.03 + 5%) over ocean, and has been generally adopted as a robust and stable environmental data record (EDR). With the 2011 launch of the Visible and Infrared Imaging Radiometer Suite (VIIRS) aboard Suomi-NPP, we have begun a new aerosol time series. The VIIRS AOD product has stabilized to the point where, compared to ground-based AERONET sunphotometer, the VIIRS AOD is within similar EE envelope as MODIS. Thus, if VIIRS continues to perform as expected, it too can provide a robust and stable aerosol EDR. What will it take to stitch MODIS and VIIRS into a robust aerosol CDR? Based on the recent experience of MODIS 'Collection 6' development, there are many details of aerosol retrieval that each lead to ×0.01 uncertainties in global AOD. These include 'radiative transfer' assumptions such as calculations for gas absorption and sea-level Rayleigh optical depth, 'decision

  8. Climatology of Aerosol Optical Properties in Southern Africa

    NASA Technical Reports Server (NTRS)

    Queface, Antonio J.; Piketh, Stuart J.; Eck, Thomas F.; Tsay, Si-Chee

    2011-01-01

    A thorough regionally dependent understanding of optical properties of aerosols and their spatial and temporal distribution is required before we can accurately evaluate aerosol effects in the climate system. Long term measurements of aerosol optical depth, Angstrom exponent and retrieved single scattering albedo and size distribution, were analyzed and compiled into an aerosol optical properties climatology for southern Africa. Monitoring of aerosol parameters have been made by the AERONET program since the middle of the last decade in southern Africa. This valuable information provided an opportunity for understanding how aerosols of different types influence the regional radiation budget. Two long term sites, Mongu in Zambia and Skukuza in South Africa formed the core sources of data in this study. Results show that seasonal variation of aerosol optical thicknesses at 500 nm in southern Africa are characterized by low seasonal multi-month mean values (0.11 to 0.17) from December to May, medium values (0.20 to 0.27) between June and August, and high to very high values (0.30 to 0.46) during September to November. The spatial distribution of aerosol loadings shows that the north has high magnitudes than the south in the biomass burning season and the opposite in none biomass burning season. From the present aerosol data, no long term discernable trends are observable in aerosol concentrations in this region. This study also reveals that biomass burning aerosols contribute the bulk of the aerosol loading in August-October. Therefore if biomass burning could be controlled, southern Africa will experience a significant reduction in total atmospheric aerosol loading. In addition to that, aerosol volume size distribution is characterized by low concentrations in the non biomass burning period and well balanced particle size contributions of both coarse and fine modes. In contrast high concentrations are characteristic of biomass burning period, combined with

  9. Towards a long-term global aerosol optical depth record: applying a consistent aerosol retrieval algorithm to MODIS and VIIRS-observed reflectance

    NASA Astrophysics Data System (ADS)

    Levy, R. C.; Munchak, L. A.; Mattoo, S.; Patadia, F.; Remer, L. A.; Holz, R. E.

    2015-10-01

    To answer fundamental questions about aerosols in our changing climate, we must quantify both the current state of aerosols and how they are changing. Although NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) sensors have provided quantitative information about global aerosol optical depth (AOD) for more than a decade, this period is still too short to create an aerosol climate data record (CDR). The Visible Infrared Imaging Radiometer Suite (VIIRS) was launched on the Suomi-NPP satellite in late 2011, with additional copies planned for future satellites. Can the MODIS aerosol data record be continued with VIIRS to create a consistent CDR? When compared to ground-based AERONET data, the VIIRS Environmental Data Record (V_EDR) has similar validation statistics as the MODIS Collection 6 (M_C6) product. However, the V_EDR and M_C6 are offset in regards to global AOD magnitudes, and tend to provide different maps of 0.55 μm AOD and 0.55/0.86 μm-based Ångström Exponent (AE). One reason is that the retrieval algorithms are different. Using the Intermediate File Format (IFF) for both MODIS and VIIRS data, we have tested whether we can apply a single MODIS-like (ML) dark-target algorithm on both sensors that leads to product convergence. Except for catering the radiative transfer and aerosol lookup tables to each sensor's specific wavelength bands, the ML algorithm is the same for both. We run the ML algorithm on both sensors between March 2012 and May 2014, and compare monthly mean AOD time series with each other and with M_C6 and V_EDR products. Focusing on the March-April-May (MAM) 2013 period, we compared additional statistics that include global and gridded 1° × 1° AOD and AE, histograms, sampling frequencies, and collocations with ground-based AERONET. Over land, use of the ML algorithm clearly reduces the differences between the MODIS and VIIRS-based AOD. However, although global offsets are near zero, some regional biases remain, especially in

  10. Towards a long-term global aerosol optical depth record: applying a consistent aerosol retrieval algorithm to MODIS and VIIRS-observed reflectance

    NASA Astrophysics Data System (ADS)

    Levy, R. C.; Munchak, L. A.; Mattoo, S.; Patadia, F.; Remer, L. A.; Holz, R. E.

    2015-07-01

    To answer fundamental questions about aerosols in our changing climate, we must quantify both the current state of aerosols and how they are changing. Although NASA's Moderate resolution Imaging Spectroradiometer (MODIS) sensors have provided quantitative information about global aerosol optical depth (AOD) for more than a decade, this period is still too short to create an aerosol climate data record (CDR). The Visible Infrared Imaging Radiometer Suite (VIIRS) was launched on the Suomi-NPP satellite in late 2011, with additional copies planned for future satellites. Can the MODIS aerosol data record be continued with VIIRS to create a consistent CDR? When compared to ground-based AERONET data, the VIIRS Environmental Data Record (V_EDR) has similar validation statistics as the MODIS Collection 6 (M_C6) product. However, the V_EDR and M_C6 are offset in regards to global AOD magnitudes, and tend to provide different maps of 0.55 μm AOD and 0.55/0.86 μm-based Ångstrom Exponent (AE). One reason is that the retrieval algorithms are different. Using the Intermediate File Format (IFF) for both MODIS and VIIRS data, we have tested whether we can apply a single MODIS-like (ML) dark-target algorithm on both sensors that leads to product convergence. Except for catering the radiative transfer and aerosol lookup tables to each sensor's specific wavelength bands, the ML algorithm is the same for both. We run the ML algorithm on both sensors between March 2012 and May 2014, and compare monthly mean AOD time series with each other and with M_C6 and V_EDR products. Focusing on the March-April-May (MAM) 2013 period, we compared additional statistics that include global and gridded 1° × 1° AOD and AE, histograms, sampling frequencies, and collocations with ground-based AERONET. Over land, use of the ML algorithm clearly reduces the differences between the MODIS and VIIRS-based AOD. However, although global offsets are near zero, some regional biases remain, especially in

  11. Black carbon radiative forcing derived from AERONET measurements and models over an urban location in the southeastern Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Valenzuela, A.; Arola, A.; Antón, M.; Quirantes, A.; Alados-Arboledas, L.

    2017-07-01

    This paper provides an account of observed variations in Black carbon (BC) aerosol concentrations and their induced radiative forcing for the first time over Granada a measurement site in Southeastern Iberian Peninsula. Column-integrated BC concentrations were retrieved for the period 2005-2012. Monthly averages of BC concentrations (± one standard deviation) ranged from higher values in January and December with 4.0 ± 2.5 and 4 ± 3 mg/m2, respectively, to lower values in July and August with 1.6 ± 1.2 and 2.0 ± 0.5 mg/m2, respectively. This reduction is not only observed in the average values, but also in the median, third and first quartiles. The average BC concentration in winter (3.8 ± 0.6 mg/m2) was substantially higher than in summer (1.9 ± 0.3 mg/m2), being the eight-year average of 2.9 ± 0.9 mg/m2. The reduction in the use of fossil fuels during the economic crisis contributed significantly to reduced atmospheric loadings of BC. According to our analysis this situation persisted until 2010. BC concentration values were analyzed in terms of air mass influence using cluster analysis. BC concentrations for cluster 1 (local and regional areas) showed high correlations with air masses frequency in winter and autumn. In these seasons BC sources were related to the intense road traffic and increased BC emissions from domestic heating. High BC concentrations were found in autumn just when air mass frequencies for cluster 3 (Mediterranean region) were more elevated, suggesting that air masses coming from that area transport biomass burning particles towards Granada. BC aerosol optical properties were retrieved from BC fraction using aerosol AERONET size volume distribution and Mie theory. A radiative transfer model (SBDART) was used to estimate the aerosol radiative forcing separately for composite aerosol (total aerosols) and exclusively for BC aerosols. The mean radiative forcing for composite aerosol was + 23 ± 6 W/m2 (heating rate of + 0.21 ± 0.06 K

  12. Investigation of aerosol distribution patterns and its optical properties at different time scale by using LIDAR system and AERONET

    NASA Astrophysics Data System (ADS)

    Tan, Fuyi; Khor, Wei Ying; Hee, Wan Shen; Choon, Yeap Eng; San, Lim Hwee; Abdullah, Khiruddin

    2015-04-01

    Atmospheric aerosol is a major health-impairment issue in Malaysia especially during southeast monsoon period (June-September) due to the active open burning activities. However, hazy days were an issue in Penang, Malaysia during March, 2014. Haze intruded Penang during March and lasted for a month except for the few days after rain. Rain water had washed out the aerosols from the atmosphere. Therefore, this study intends to analyse the aerosol profile and the optical properties of aerosol during this haze event and after rain. Meanwhile, several days after the haze event (during April, 2014) were also analyzed for comparison purposes. Additionally, the dominant aerosol type (i.e., dust, biomass burning, industrial and urban, marine, and mixed aerosol) during the study period was identified according to the scattering plots of the aerosol optical depth (AOD) against the Angstrom exponent.

  13. Aerosol Properties and Radiative Forcing over Kanpur during Severe Aerosol Loading Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaskaoutis, D. G.; Sinha, P. R.; Vinoj, V.

    2013-11-01

    Atmospheric aerosols over India exhibit large spatio-temporal fluctuation driven by the local monsoon system, emission rates and seasonally-changed air masses. The northern part of India is well-known for its high aerosol loading throughout the year due to anthropogenic emissions, dust influence and biomass burning. On certain circumstances and, under favorable weather conditions, the aerosol load can be severe, causing significant health concerns and climate implications. The present work analyzes the aerosol episode (AE) days and examines the modification in aerosol properties and radiative forcing during the period 2001-2010 based on Kanpur-AERONET sun photometer data. As AEs are considered the daysmore » having daily-mean aerosol optical depth (AOD) above the decadal mean + 1 STD (standard deviation); the threshold value is defined at 0.928. The results identify 277 out of 2095 days (13.2%) of AEs over Kanpur, which are most frequently observed during post-monsoon (78 cases, 18.6%) and monsoon (76, 14.7%) seasons due to biomass-burning episodes and dust influence, respectively. On the other hand, the AEs in winter and pre-monsoon are lower in both absolute and percentage values (65, 12.5% and 58, 9.1%, respectively). The modification in aerosol properties on the AE days is strongly related to season. Thus, in post-monsoon and winter the AEs are associated with enhanced presence of fine-mode aerosols and Black Carbon from anthropogenic pollution and any kind of burning, while in pre-monsoon and monsoon seasons they are mostly associated with transported dust. Aerosol radiative forcing (ARF) calculated using SBDART shows much more surface (~-69 to -97 Wm-2) and Top of Atmosphere cooling (-20 to -30 Wm-2) as well as atmospheric heating (~43 to 71 Wm-2) during the AE days compared to seasonal means. These forcing values are mainly controlled by the higher AODs and the modified aerosol characteristics (Angstrom α, SSA) during the AE days in each season and may

  14. Aerosol direct and indirect radiative effect over Eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Georgoulias, Aristeidis; Alexandri, Georgia; Zanis, Prodromos; Ntogras, Christos; Poeschl, Ulrich; Kourtidis, Kostas

    In this work, we present results from the QUADIEEMS project which is focused on the aerosol-cloud relations and the aerosol direct and indirect radiative effect over the region of Eastern Mediterranean. First, a gridded dataset at a resolution of 0.1x0.1 degrees (~10km) with aerosol and cloud related parameters was compiled, using level-2 satellite observations from MODIS TERRA (3/2000-12/2012) and AQUA (7/2002-12/2012). The aerosol gridded dataset has been validated against sunphotometric measurements from 12 AERONET ground stations, showing that generally MODIS overestimates aerosol optical depth (AOD550). Then, the AOD550 and fine mode ratio (FMR550) data from MODIS were combined with aerosol index (AI) data from the Earth Probe TOMS and OMI satellite sensors, wind field data from the ERA-interim reanalysis and AOD550 data for various aerosol types from the GOCART model and the MACC reanalysis to quantify the relative contribution of different aerosol types (marine, dust, anthropogenic, fine-mode natural) to the total AOD550. The aerosol-cloud relations over the region were investigated with the use of the joint high resolution aerosol-cloud gridded dataset. Specifically, we focused on the seasonal relations between the cloud droplet number concentration (CDNC) and AOD550. The aerosol direct and first indirect radiative effect was then calculated for each aerosol type separately making use of the aerosol relative contribution to the total AOD550, the CDND-AOD550 relations and satellite-based parameterizations. The direct radiative effect was also quantified using simulations from a regional climate model (REGCM4), simulations with a radiative transfer model (SBDART) and the three methods were finally intervalidated.

  15. Absorbing Aerosols Above Cloud: Detection, Quantitative Retrieval, and Radiative Forcing from Satellite-based Passive Sensors

    NASA Astrophysics Data System (ADS)

    Jethva, H.; Torres, O.; Remer, L. A.; Bhartia, P. K.

    2012-12-01

    Light absorbing particles such as carbonaceous aerosols generated from biomass burning activities and windblown dust particles can exert a net warming effect on climate; the strength of which depends on the absorption capacity of the particles and brightness of the underlying reflecting background. When advected over low-level bright clouds, these aerosols absorb the cloud reflected radiation from ultra-violet (UV) to shortwave-IR (SWIR) and makes cloud scene darker-a phenomenon commonly known as "cloud darkening". The apparent "darkening" effect can be seen by eyes in satellite images as well as quantitatively in the spectral reflectance measurements made by space borne sensors over regions where light absorbing carbonaceous and dust aerosols overlay low-level cloud decks. Theoretical radiative transfer simulations support the observational evidence, and further reveal that the strength of the cloud darkening and its spectral signature (or color ratio) between measurements at two wavelengths are a bi-function of aerosol and cloud optical thickness (AOT and COT); both are measures of the total amount of light extinction caused by aerosols and cloud, respectively. Here, we developed a retrieval technique, named as the "color ratio method" that uses the satellite measurements at two channels, one at shorter wavelength in the visible and one at longer wavelength in the shortwave-IR for the simultaneous retrieval of AOT and COT. The present technique requires assumptions on the aerosol single-scattering albedo and aerosol-cloud separation which are supplemented by the Aerosol Robotic Network (AERONET) and space borne CALIOP lidar measurements. The retrieval technique has been tested making use of the near-UV and visible reflectance observations made by the Ozone Monitoring Instrument (OMI) and Moderate Resolution Imaging Spectroradiometer (MODIS) for distinct above-cloud smoke and dust aerosol events observed seasonally over the southeast and tropical Atlantic Ocean

  16. LOCAL AIR: Local Aerosol monitoring combining in-situ and Remote Sensing observations

    NASA Astrophysics Data System (ADS)

    Mona, Lucia; Caggiano, Rosa; Donvito, Angelo; Giannini, Vincenzo; Papagiannopoulos, Nikolaos; Sarli, Valentina; Trippetta, Serena

    2015-04-01

    The atmospheric aerosols have effects on climate, environment and health. Although the importance of the study of aerosols is well recognized, the current knowledge of the characteristics and their distribution is still insufficient, and there are large uncertainties in the current understanding of the role of aerosols on climate and the environment, both on a regional and local level. Overcoming these uncertainties requires a search strategy that integrates data from multiple platforms (eg, terrestrial, satellite, ships and planes) and the different acquisition techniques (for example, in situ measurements, remote sensing, modeling numerical and data assimilation) (Yu et al., 2006). To this end, in recent years, there have been many efforts such as the creation of networks dedicated to systematic observation of aerosols (eg, European Monitoring and Evaluation Programme-EMEP, European Aerosol Research Lidar NETwork-EARLINET, MicroPulse Lidar Network- MPLNET, and Aerosol Robotic NETwork-AERONET), the development and implementation of new satellite sensors and improvement of numerical models. The recent availability of numerous data to the ground, columnar and profiles of aerosols allows to investigate these aspects. An integrated approach between these different techniques could be able to provide additional information, providing greater insight into the properties of aerosols and their distribution and overcoming the limits of each single technique. In fact, the ground measurements allow direct determination of the physico-chemical properties of aerosols, but cannot be considered representative for large spatial and temporal scales and do not provide any information about the vertical profile of aerosols. On the other hand, the remote sensing techniques from the ground and satellite provide information on the vertical distribution of atmospheric aerosols both in the Planetary Boundary Layer (PBL), mainly characterized by the presence of aerosols originating from

  17. Satellite Remote Sensing of Aerosol Forcing

    NASA Technical Reports Server (NTRS)

    Remer, Lorraine; Kaufman, Yoram; Ramaprasad, Jaya; Procopio, Aline; Levin, Zev

    1999-01-01

    The role of aerosol forcing remains one of the largest uncertainties in estimating man's impact on the global climate system. One school of thought suggests that remote sensing by satellite sensors will provide the data necessary to narrow these uncertainties. While satellite measurements of direct aerosol forcing appear to be straightforward, satellite measurements of aerosol indirect forcing will be more complicated. Pioneering studies identified indirect aerosol forcing using AVHRR data in the biomass burning regions of Brazil. We have expanded this analysis with AVHRR to include an additional year of data and assimilated water vapor fields. The results show similar latitudinal dependence as reported by Kaufman and Fraser, but by using water vapor observations we conclude that latitude is not a proxy for water vapor and the strength of the indirect effect is not correlated to water vapor amounts. In addition to the AVHRR study we have identified indirect aerosol forcing in Brazil at much smaller spatial scales using the MODIS Airborne Simulator. The strength of the indirect effect appears to be related to cloud type and cloud dynamics. There is a suggestion that some of the cloud dynamics may be influenced by smoke destabilization of the atmospheric column. Finally, this study attempts to quantify remote sensing limitations due to the accuracy limits of the retrieval algorithms. We use a combination of numerical aerosol transport models, ground-based AERONET data and ISCCP cloud climatology to determine how much of the forcing occurs in regions too clean to determine from satellite retrievals.

  18. High Precision Sunphotometer using Wide Dynamic Range (WDR) Camera Tracking

    NASA Astrophysics Data System (ADS)

    Liss, J.; Dunagan, S. E.; Johnson, R. R.; Chang, C. S.; LeBlanc, S. E.; Shinozuka, Y.; Redemann, J.; Flynn, C. J.; Segal-Rosenhaimer, M.; Pistone, K.; Kacenelenbogen, M. S.; Fahey, L.

    2016-12-01

    High Precision Sunphotometer using Wide Dynamic Range (WDR) Camera TrackingThe NASA Ames Sun-photometer-Satellite Group, DOE, PNNL Atmospheric Sciences and Global Change Division, and NASA Goddard's AERONET (AErosol RObotic NETwork) team recently collaborated on the development of a new airborne sunphotometry instrument that provides information on gases and aerosols extending far beyond what can be derived from discrete-channel direct-beam measurements, while preserving or enhancing many of the desirable AATS features (e.g., compactness, versatility, automation, reliability). The enhanced instrument combines the sun-tracking ability of the current 14-Channel NASA Ames AATS-14 with the sky-scanning ability of the ground-based AERONET Sun/sky photometers, while extending both AATS-14 and AERONET capabilities by providing full spectral information from the UV (350 nm) to the SWIR (1,700 nm). Strengths of this measurement approach include many more wavelengths (isolated from gas absorption features) that may be used to characterize aerosols and detailed (oversampled) measurements of the absorption features of specific gas constituents. The Sky Scanning Sun Tracking Airborne Radiometer (3STAR) replicates the radiometer functionality of the AATS-14 instrument but incorporates modern COTS technologies for all instruments subsystems. A 19-channel radiometer bundle design is borrowed from a commercial water column radiance instrument manufactured by Biospherical Instruments of San Diego California (ref, Morrow and Hooker)) and developed using NASA funds under the Small Business Innovative Research (SBIR) program. The 3STAR design also incorporates the latest in robotic motor technology embodied in Rotary actuators from Oriental motor Corp. having better than 15 arc seconds of positioning accuracy. Control system was designed, tested and simulated using a Hybrid-Dynamical modeling methodology. The design also replaces the classic quadrant detector tracking sensor with a

  19. A Satellite-Surface Perspective of Boreal Spring Biomass-Burning Aerosols and Clouds over Northern Southeast Asia

    NASA Astrophysics Data System (ADS)

    Tsay, S.; Lin, N.; Hsu, N. C.; Luftus, A.; Gabriel, P.; Hansell, R. A.

    2013-05-01

    Biomass burning has long been recognized as one of the major factors affecting the global carbon cycle. Furthermore, the emission of trace gases and aerosols due to biomass burning changes the composition of the troposphere. Such complexity has fostered interdisciplinary studies that include the modulation of Earth-atmosphere energetics, hydrological and biogeochemical cycles, as well as the effects of regional-to-global weather and climate. Compared to other regions worldwide, biomass burning related studies over Southeast Asia are underrepresented in the literature. As part of the ongoing 7-SEAS (Seven South East Asian Studies) project, a series of field studies have been pursued in boreal spring since 2010 over northern Southeast Asia. In conjunction with satellite overpasses, the strategic deployments of ground-based supersites (e.g., SMARTLabs, http://smartlabs.gsfc.nasa.gov/) combined with distributed networks (e.g., AERONET, http://aeronet.gsfc.nasa.gov/ and MPLNET, http://mplnet.gsfc.nasa.gov/) and regional contributing measurements near/downwind of aerosol source regions and along transport pathways, offer a synergistic approach for further exploring many key atmospheric processes (e.g., complex aerosol-cloud interactions) and impacts of biomass burning on the surface-atmosphere energy budgets during lifecycles from source to receptor. These methodologies, developed through our years of experience, serve as a call to action, baselining potential paths to an improved understanding of regional aerosol effects, which continue to be one of the largest uncertainties in climate forcing. The first such action is a joint international effort, named as the 7-SEAS/BASELInE (Biomass-burning Aerosols & Stratocumulus Environment: Lifecycles and Interactions Experiment), which has just commenced in February 2013 in northern Southeast Asia. In this paper, we will present the deployment activities of 7-SEAS campaigns over northern Southeast Asia and discuss the scientific

  20. A Comparison of Aerosol Measurements from OCO-2 and MODIS

    NASA Astrophysics Data System (ADS)

    Nelson, R. R.; O'Dell, C.

    2016-12-01

    The goal of OCO-2 is to use hyperspectral measurements of reflected near-infrared sunlight to retrieve carbon dioxide with high accuracy and precision. This is only possible, however, if the light-path modification effects caused by clouds and aerosols are properly quantified. Even tiny amounts of clouds or aerosols can induce sufficient light-path modifications to lead to large errors in the estimated CO2 column-mean (XCO2). Therefore, it is imperative to evaluate the accuracy of the OCO-2 retrieved aerosol parameters. In this study, we compare OCO-2 retrieved aerosol parameters to Aqua-MODIS observations co-located in time and space. We find that there are significant disagreements between the aerosol information derived from MODIS and the retrieved aerosol parameters from OCO-2. These results are unsurprising, as previous comparisons to AERONET have also been poor. However, the tight co-location between Aqua and OCO-2 in the Afternoon Constellation allows us to examine the potential synergistic use of OCO-2 and MODIS measurements to more accurately constrain aerosol properties, potentially leading to a more accurate CO2 measurement. Specifically, we used select MODIS aerosol properties as the a priori for the OCO-2 retrievals and present the results here. Future studies include investigating the possibility of ingesting the MODIS radiances directly into the OCO-2 retrieval algorithm to further improve OCO-2's aerosol scheme and the resulting measurements.

  1. Status of the NASA Micro Pulse Lidar Network (MPLNET): overview of the network and future plans, new version 3 data products, and the polarized MPL

    NASA Astrophysics Data System (ADS)

    Welton, Ellsworth J.; Stewart, Sebastian A.; Lewis, Jasper R.; Belcher, Larry R.; Campbell, James R.; Lolli, Simone

    2018-04-01

    The NASA Micro Pulse Lidar Network (MPLNET) is a global federated network of Micro-Pulse Lidars (MPL) co-located with the NASA Aerosol Robotic Network (AERONET). MPLNET began in 2000, and there are currently 17 long-term sites, numerous field campaigns, and more planned sites on the way. We have developed a new Version 3 processing system including the deployment of polarized MPLs across the network. Here we provide an overview of Version 3, the polarized MPL, and current and future plans.

  2. Inventory of African desert dust events in the north-central Iberian Peninsula in 2003-2014 based on sun-photometer-AERONET and particulate-mass-EMEP data

    NASA Astrophysics Data System (ADS)

    Cachorro, Victoria E.; Burgos, Maria A.; Mateos, David; Toledano, Carlos; Bennouna, Yasmine; Torres, Benjamín; de Frutos, Ángel M.; Herguedas, Álvaro

    2016-07-01

    A reliable identification of desert dust (DD) episodes over north-central Spain is carried out based on the AErosol RObotic NETwork (AERONET) columnar aerosol sun photometer (aerosol optical depth, AOD, and Ångström exponent, α) and European Monitoring and Evaluation Programme (EMEP) surface particulate-mass concentration (PMx, x = 10, 2.5, and 2.5-10 µm) as the main core data. The impact of DD on background aerosol conditions is detectable by means of aerosol load thresholds and complementary information provided by HYSPLIT (Hybrid Single Particle Lagrangian Integrated Trajectory Model) air mass back trajectories, MODIS (Moderate Resolution Imaging Spectroradiometer) images, forecast aerosol models, and synoptic maps, which have been carefully reviewed by a human observer for each day included in the DD inventory. This identification method allows the detection of low and moderate DD intrusions and also of mixtures of mineral dust with other aerosol types by means of the analysis of α. During the period studied (2003-2014), a total of 152 DD episodes composed of 418 days are identified. Overall, this means ˜ 13 episodes and ˜ 35 days per year with DD intrusion, representing 9.5 % days year-1. During the identified DD intrusions, 19 daily exceedances over 50 µg m-3 are reported at the surface. The occurrence of DD event days during the year peaks in March and June, with a marked minimum in April and lowest occurrence in winter. A large interannual variability is observed showing a statistically significant temporal decreasing trend of ˜ 3 days year-1. The DD impact on the aerosol climatology is addressed by evaluating the DD contribution in magnitude and percent (in brackets) for AOD, PM10, PM2.5, and PM2.5 - 10, obtaining mean values of 0.015 (11.5 %), 1.3 µg m-3 (11.8 %), 0.55 µg m-3 (8.5 %) and 0.79 µg m-3 (16.1 %), respectively. Annual cycles of the DD contribution for AOD and PM10 present two maxima - one in summer (0.03 and 2.4 µg m-3 for AOD in

  3. Coordinated Airborne, Spaceborne and Ground-based Measurements of Massive Thick Aerosol Layers during the Dry Season in Southern Africa

    NASA Technical Reports Server (NTRS)

    Schmid, B.; Redemann, J.; Russell, P. B.; Hobbs, P. V.; Hlavka, D. L.; McGill, M. J.; Holben, B. N.; Welton, E. J.; Campbell, J. R.; Torres, O.

    2003-01-01

    During the dry season airborne campaign of the Southern African Regional Science Initiative (SAFARI 2000), coordinated observations were made of massive thick aerosol layers. These layers were often dominated by aerosols from biomass burning. We report on airborne Sun photometer measurements of aerosol optical depth (lambda = 0.354- 1.557 microns), columnar water vapor, and vertical profiles of aerosol extinction and water vapor density that were obtained aboard the University of Washington's Convair-580 research aircraft. We compare these with ground-based AERONET Sun/sky radiometer results, with ground based lidar data (MPL-Net), and with measurements from a downward pointing lidar aboard the high-flying NASA ER-2 aircraft. Finally, we show comparisons between aerosol optical depths fiom the Sun photometer and those retrieved over land and over water using four spaceborne sensors (TOMS, MODIS, MISR, and ATSR-2).

  4. Vertically resolved aerosol properties by multi wavelengths lidar measurements

    NASA Astrophysics Data System (ADS)

    Perrone, M. R.; De Tomasi, F.; Gobbi, G. P.

    2013-07-01

    A new approach is introduced to characterize the dependence on altitude of the aerosol fine mode radius (Rf) and of the fine mode contribution (η) to the aerosol optical thickness (AOT) by three-wavelength lidar measurements. The introduced approach is based on the graphical method of Gobbi et al. (2007), which was applied to AERONET spectral extinction observations and relies on the combined analysis of the Ångstrom exponent (å) and its spectral curvature Δå. Lidar measurements at 355, 532 and 1064 nm were used in this study to retrieve the vertical profiles of å and Δå and to determine the dependence on altitude of Rf and η (532 nm) from the å-Δå combined analysis. Lidar measurements were performed at the Mathematics and Physics Department of Universita' del Salento, in south eastern Italy. Aerosol from continental Europe, the Atlantic, northern Africa, and the Mediterranean Sea are often advected over south eastern Italy and as a consequence, mixed advection patterns leading to aerosol properties varying with altitude are dominant. The proposed approach was applied to eleven measurement days to demonstrate its feasibility in different aerosol load conditions. The selected-days were characterized by AOTs spanning the 0.23-0.67, 0.15-0.41, and 0.04-0.25 range at 355, 532, and 1064 nm, respectively. Lidar ratios varied within the 28-80, 30-70, and 30-55 sr range at 355, 532, and 1064 nm, respectively, for the high variability of the aerosol optical and microphysical properties. å(355 nm, 1064 nm) values retrieved from lidar measurements ranged between 0.12 and 2.5 with mean value ±1 standard deviation equal to 1.4 ± 0.5. Δå varied within the -0.10-0.87 range with mean value equal to 0.1 ± 0.4. Rf and η (532 nm) values spanning the 0.02-0.30 μm and the 0.30-0.99 range, respectively were associated to the å-Δå data points. Rf and η values showed no dependence on the altitude. 72% of the data points were in the Δå-å space delimited by the

  5. Smoke and Pollution Aerosol Effect on Cloud Cover

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.; Koren, Ilan

    2006-01-01

    Pollution and smoke aerosols can increase or decrease the cloud cover. This duality in the effects of aerosols forms one of the largest uncertainties in climate research. Using solar measurements from Aerosol Robotic Network sites around the globe, we show an increase in cloud cover with an increase in the aerosol column concentration and an inverse dependence on the aerosol absorption of sunlight. The emerging rule appears to be independent of geographical location or aerosol type, thus increasing our confidence in the understanding of these aerosol effects on the clouds and climate. Preliminary estimates suggest an increase of 5% in cloud cover.

  6. Regional aerosol trends over the North Atlantic Ocean since 2002: identifying and attributing using satellite, surface, and model datasets

    NASA Astrophysics Data System (ADS)

    Jongeward, A.; Li, Z.

    2017-12-01

    Aerosols from natural and anthropogenic sources can influence atmospheric variability and alter Earth's radiative balance through direct and indirect processes. Recently, policies targeting anthropogenic species (e.g. the Clean Air Act) have seen success in improving air quality. The anthropogenic contributions to the total aerosol loading and its spatiotemporal pattern/trend are anticipated to be altered. In this work the aerosol loading and trend over the North Atlantic Ocean since 2002 are examined, a period of significant change due to anthropogenic emissions control measures within the U.S. Monthly mean data from satellite (MODIS), ground (AERONET, IMPROVE), and model (GOCART, MERRA) sources are employed. Two annual trends in aerosol optical depth (AOD) observed by MODIS are present: a -0.020 decade-1 trend in the mid-latitudes and a 0.015 decade-1 trend in the sub-tropics. Trends in GOCART species AOD reveal anthropogenic (natural) species as the likely driver of the mid-latitude (sub-tropical) trend. AERONET AOD trends confirm negative AOD trends at three upwind sites in the Eastern U.S. and IMPROVE particulate matter (PM) observations identifies the role of decreasing ammonium sulfate in the overall PM decrease. Meanwhile, an increasing AOD trend seen during summertime in the eastern sub-tropics is associated with dust aerosol from North Africa. A dust parameterization from Kaufman et al. (2005) allows for changes in the flux transport across the sub-tropics to be calculated and analyzed. Using MERRA reanalysis fields, it is hypothesized that amplified warming and increases in baroclinic instability over the Saharan desert may lead to increased dust mobilization and export from North Africa to the sub-tropical Atlantic. This study provides updated analysis through 2016.

  7. Aerosol Optical Depth spatiotemporal variability and contribution of different aerosol types over Eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Georgoulias, Aristeidis K.; Alexandri, Georgia; Kourtidis, Konstantinos; Zanis, Prodromos; Pöschl, Ulrich; Lelieveld, Jos; Levy, Robert; Amiridis, Vassilis; Marinou, Eleni; Tsikerdekis, Athanasios; Pozzer, Andrea

    2015-04-01

    In this work, we study the aerosol spatiotemporal variability over the region of Eastern Mediterranean, for the time period 2000-2012, using a 0.1-degree gridded dataset compiled from level-2 MODIS TERRA and MODIS AQUA AOD550 and FMR550 data. A detailed validation of the AOD550 data was implemented using ground-based observations from the AERONET, also showing that the gridding methodology we followed allows for the detection of several local hot spots that cannot be seen using lower resolutions or level-3 data. By combining the MODIS data with data from other satellite sensors (TOMS, OMI), data from a global chemical-aerosol-transport model (GOCART), and reanalysis data from MACC and ERA-interim, we quantify the relative contribution of different aerosol types to the total AOD550 for the period of interest. For this reason, we developed an optimized algorithm for regional studies based on results from previous global studies. Over land, anthropogenic, dust, and fine-mode natural aerosols contribute to the total AOD550, while anthropogenic, dust and maritime AODs are calculated over the ocean. The dust AOD550 over the region was compared against dust AODs from the LIVAS CALIPSO product, showing a similar seasonal variability. Finally, we also look into the aerosol load short-term trends over the region for each aerosol type separately, the results being strongly affected by the selected time period. The research leading to these results has received funding from the European Social Fund (ESF) and national resources under the operational programme Education and Lifelong Learning (EdLL) within the framework of the Action "Supporting Postdoctoral Researchers" (QUADIEEMS project) and from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no. 226144 (C8 project).

  8. Aerosol retrieval experiments in the ESA Aerosol_cci project

    NASA Astrophysics Data System (ADS)

    Holzer-Popp, T.; de Leeuw, G.; Martynenko, D.; Klüser, L.; Bevan, S.; Davies, W.; Ducos, F.; Deuzé, J. L.; Graigner, R. G.; Heckel, A.; von Hoyningen-Hüne, W.; Kolmonen, P.; Litvinov, P.; North, P.; Poulsen, C. A.; Ramon, D.; Siddans, R.; Sogacheva, L.; Tanre, D.; Thomas, G. E.; Vountas, M.; Descloitres, J.; Griesfeller, J.; Kinne, S.; Schulz, M.; Pinnock, S.

    2013-03-01

    average AERONET sun photometer observations for the different versions of each algorithm. The analysis allowed an assessment of sensitivities of all algorithms which helped define the best algorithm version for the subsequent round robin exercise; all algorithms (except for MERIS) showed some, in parts significant, improvement. In particular, using common aerosol components and partly also a priori aerosol type climatology is beneficial. On the other hand the use of an AATSR-based common cloud mask meant a clear improvement (though with significant reduction of coverage) for the MERIS standard product, but not for the algorithms using AATSR.

  9. New Shortwave Array Spectroradiometer-Hemispheric (SAS-He): Hyperspectral Design and Initial Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kassianov, Evgueni I.; Flynn, Connor J M.; Barnard, James C.

    2016-10-31

    Aerosol optical depth (AOD) derived from hyperspectral measurements can serve as an invaluable input for simultaneous retrievals of particle size distributions and major trace gases. The required hyperspectral measurements are provided by a new ground-based radiometer, the so-called Shortwave Array Spectroradiometer-Hemispheric (SAS-He), recently developed with support from the Department of Energy (DOE) Office Atmospheric Radiation Measurement (ARM) Program. The SAS-He has wide spectral coverage (350-1700nm) and high spectral resolution: about 2.4 nm and 6 nm within 350-1000 nm and 970-1700 nm spectral ranges, respectively. To illustrate an initial performance of the SAS-He, we take advantage of integrated dataset collected duringmore » the ARM-supported Two-Column Aerosol Project (TCAP) over the US coastal region (Cape Cod, Massachusetts). This dataset includes AODs derived using data from Aerosol Robotic Network (AERONET) sunphotometer and Multi-Filter Rotating Shadowband Radiometer (MFRSR). We demonstrate that, on average, the SAS-He AODs closely match the MFRSR and AERONET AODs in the ultraviolet and visible spectral ranges for this area with highly variable AOD. Also, we discuss corrections of SAS-He total optical depth for gas absorption in the near-infrared spectral range and their operational implementation.« less

  10. Evaluation of MODIS aerosol optical depth for semi­-arid environments in complex terrain

    NASA Astrophysics Data System (ADS)

    Holmes, H.; Loria Salazar, S. M.; Panorska, A. K.; Arnott, W. P.; Barnard, J.

    2015-12-01

    The use of satellite remote sensing to estimate spatially resolved ground level air pollutant concentrations is increasing due to advancements in remote sensing technology and the limited number of surface observations. Satellite retrievals provide global, spatiotemporal air quality information and are used to track plumes, estimate human exposures, model emissions, and determine sources (i.e., natural versus anthropogenic) in regulatory applications. Ground level PM2.5 concentrations can be estimated using columnar aerosol optical depth (AOD) from MODIS, where the satellite retrieval serves as a spatial surrogate to simulate surface PM2.5 gradients. The spatial statistical models and MODIS AOD retrieval algorithms have been evaluated for the dark, vegetated eastern US, while the semi-arid western US continues to be an understudied region with associated complexity due to heterogeneous emissions, smoke from wildfires, and complex terrain. The objective of this work is to evaluate the uncertainty of MODIS AOD retrievals by comparing with columnar AOD and surface PM2.5 measurements from AERONET and EPA networks. Data is analyzed from multiple stations in California and Nevada for three years where four major wildfires occurred. Results indicate that MODIS retrievals fail to estimate column-integrated aerosol pollution in the summer months. This is further investigated by quantifying the statistical relationships between MODIS AOD, AERONET AOD, and surface PM2.5 concentrations. Data analysis indicates that the distribution of MODIS AOD is significantly (p<0.05) different than AERONET AOD. Further, using the results of distributional and association analysis the impacts of MODIS AOD uncertainties on the spatial gradients are evaluated. Additionally, the relationships between these uncertainties and physical parameters in the retrieval algorithm (e.g., surface reflectance, Ångström Extinction Exponent) are discussed.

  11. Analysis of Fine and Coarse mode Aerosol Distributions from AERONET's mini-DRAGON Set-up at Singapore 2012

    NASA Astrophysics Data System (ADS)

    Salinas Cortijo, S. V.; Chew, B. N.; Muller, A.; Liew, S.

    2013-12-01

    Aerosol optical depth combined with the Angstrom exponent and its derivative, are often used as a qualitative indicator of aerosol type and particle size regime. In Singapore, the sources of aerosols are mostly from fossil fuel burning (energy stations, incinerators, urban transport etc.) and from industrial and urban areas. However, depending on the time of the year (July-October), there can be a strong bio-mass component originated from uncontrolled forest/plantation fires from the neighboring land masses of Sumatra and Borneo. Unlike urban/fossil fuel aerosols, smoke or bio-mass related aerosol particles are typically characterized by showing a large optical depth and small, sub-micron particle size distributions. Trans-boundary smoke episodes has become an annual phenomenon in this region. Severe episodes were recorded in 1997 and 2006 and other minor episodes happened during 2002, 2004, 2010 and more recently on 2013. On August-September 2012, as part of CRISP participation on the August-September ground campaign of the Southeast Asia Composition, Cloud Climate Coupling Regional Study (SEAC4RS), a Distributed Regional Aerosol Gridded Observation Networks (DRAGON) set of six CIMEL CE-318A automatic Sun-tracking photometers have been deployed at sites located at North (Yishun ITE), East (Temasek Poly), West (NUS and Pandan Reservoir), Central (NEA) and South (St. John's island) of Singapore. In order to fully discriminate bio-mass burning events over other local sources, we perform a spectral discrimination of fine/coarse mode particle regime to all DRAGON sites; subsequently, the fine mode parameters such as optical depth, optical ratio and fine mode Angstrom exponent are used to identify possible bio-mass related events within the data set. Spatio-temporal relationship between sites are also investigated.

  12. Regional Aerosol Optical Properties and Radiative Impact of the Extreme Smoke Event in the European Arctic in Spring 2006

    NASA Technical Reports Server (NTRS)

    Lund Myhre, C.; Toledano, C.; Myhre, G.; Stebel, K.; Yttri, K.; Aaltonen, V.; Johnsrud, M.; Frioud, M.; Cachorro, V.; deFrutos, A.; hide

    2007-01-01

    In spring 2006 a special meteorological situation occurred in the European Arctic region giving record high levels of air pollution. The synoptic situation resulted in extensive transport of pollution predominantly from agricultural fires in Eastern Europe into the Arctic region and record high air-pollution levels were measured at the Zeppelin observatory at Ni-Alesun(78deg 54'N, 11deg 53'E) in the period from 25 April to 12 May. In the present study we investigate the optical properties of the aerosols from this extreme event and we estimate the radiative forcing of this episode. We examine the aerosol optical properties from the source region and into the European Arctic and explore the evolution of the episode and the changes in the optical properties. A number of sites in Eastern Europe, Northern Scandinavia and Svalbard are included in the study. In addition to AOD measurements, we explored lidar measurements from Minsk, ALOMAR (Arctic Lidar Observatory for Middle Atmosphere Research at Andenes) and Ny-Alesund. For the AERONET sites included (Minsk, Toravere, Hornsund) we have further studied the evolution of the aerosol size. Importantly, at Svalbard it is consistency between the AERONET measurements and calculations of single scattering albedo based on aerosol chemical composition. We have found strong agreement between the satellite dally MODIS AOD and the ground-based AOD observations. This agreement is crucial for the radiative forcing calculations. We calculate a strong negative radiative forcing for the most polluted days employing the analysed ground based data, MODIS AOD and a multi-stream model for radiative transfer of solar radiation.

  13. Satellite-Surface Perspectives of Air Quality and Aerosol-Cloud Effects on the Environment: An Overview of 7-SEAS BASELInE

    NASA Technical Reports Server (NTRS)

    Tsay, Si-Chee; Maring, Hal B.; Lin, Neng-Huei; Buntoung, Sumaman; Chantara, Somporn; Chuang, Hsiao-Chi; Gabriel, Philip M.; Goodloe, Colby S.; Holben, Brent N.; Hsiao, Ta-Chih; hide

    2016-01-01

    The objectives of 7-SEASBASELInE (Seven SouthEast Asian Studies Biomass-burning Aerosols and Stratocumulus Environment: Lifecycles and Interactions Experiment) campaigns in spring 2013-2015 were to synergize measurements from uniquely distributed ground-based networks (e.g., AERONET (AErosol RObotic NETwork)), MPLNET ( NASA Micro-Pulse Lidar Network)) and sophisticated platforms (e.g.,SMARTLabs (Surface-based Mobile Atmospheric Research and Testbed Laboratories), regional contributing instruments), along with satellite observations retrievals and regional atmospheric transport chemical models to establish a critically needed database, and to advance our understanding of biomass-burning aerosols and trace gases in Southeast Asia (SEA). We present a satellite-surface perspective of 7-SEASBASELInE and highlight scientific findings concerning: (1) regional meteorology of moisture fields conducive to the production and maintenance of low-level stratiform clouds over land; (2) atmospheric composition in a biomass-burning environment, particularly tracers-markers to serve as important indicators for assessing the state and evolution of atmospheric constituents; (3) applications of remote sensing to air quality and impact on radiative energetics, examining the effect of diurnal variability of boundary-layer height on aerosol loading; (4) aerosol hygroscopicity and ground-based cloud radar measurements in aerosol-cloud processes by advanced cloud ensemble models; and (5) implications of air quality, in terms of toxicity of nanoparticles and trace gases, to human health. This volume is the third 7-SEAS special issue (after Atmospheric Research, vol. 122, 2013; and Atmospheric Environment, vol. 78, 2013) and includes 27 papers published, with emphasis on air quality and aerosol-cloud effects on the environment. BASELInE observations of stratiform clouds over SEA are unique, such clouds are embedded in a heavy aerosol-laden environment and feature characteristically greater

  14. Aerosol-Cloud-Precipitation Interactions over Indo-Gangetic Basin

    NASA Technical Reports Server (NTRS)

    Tsay, S.-C.; Lau, K. .; Holben, B. N.; Hsu, N. C.; Bhartia, P. K.

    2005-01-01

    About 60% of world population reside in Asia, in term of which sheer population density presents a major environmental stress. Economic expansion in this region is, in fact, accompanied by increases in bio-fuel burning, industrial pollution, and land cover and land use changes. With a growth rate of approx. 8%/yr for Indian economy, more than 600 million people from Lahore, Pakistan to Calcutta, India over the Indo-Gangetic Basin have particularly witnessed increased frequencies of floods and droughts as well as a dramatic increase in atmospheric loading of aerosols (i.e., anthropogenic and natural aerosol) in recent decades. This regional change (e.g., aerosol, cloud, precipitation, etc.) will constitute a vital part of the global change in the 21st century. Better understanding of the impacts of aerosols in affecting monsoon climate and water cycles is crucial in providing the physical basis to improve monsoon climate prediction and for disaster mitigation. Based on climate model simulations, absorbing aerosols (dust and black carbon) play a critical role in affecting interannual and intraseasonal variability of the Indian monsoon. An initiative on the integrated (aerosols, clouds, and precipitation) measurements approach over the Indo-Gangetic Basin will be discussed. An array of ground-based (e.g., AERONET, MPLNET, SMART-COMMIT, etc.) and satellite (e.g., Terra, A-Train, etc.) sensors will be utilized to acquire aerosol characteristics, sources/sinks, and transport processes during the pre-monsoon (April-May, aerosol forcing) season, and to obtain cloud and precipitation properties during the monsoon (May-June, water cycle response) season. Close collaboration with other international programs, such as ABC, CLIVAR, GEWEX, and CEOP in the region is anticipated.

  15. The GAW Aerosol Lidar Observation Network (GALION) as a source of near-real time aerosol profile data for model evaluation and assimilation

    NASA Astrophysics Data System (ADS)

    Hoff, R. M.; Pappalardo, G.

    2010-12-01

    In 2007, the WMO Global Atmospheric Watch’s Science Advisory Group on Aerosols described a global network of lidar networks called GAW Aerosol Lidar Observation Network (GALION). GALION has a purpose of providing expanded coverage of aerosol observations for climate and air quality use. Comprised of networks in Asia (AD-NET), Europe (EARLINET and CIS-LINET), North America (CREST and CORALNET), South America (ALINE) and with contribution from global networks such as MPLNET and NDACC, the collaboration provides a unique capability to define aerosol profiles in the vertical. GALION is designed to supplement existing ground-based and column profiling (AERONET, PHOTONS, SKYNET, GAWPFR) stations. In September 2010, GALION held its second workshop and one component of discussion focussed how the network would integrate into model needs. GALION partners have contributed to the Sand and Dust Storm Warning and Analysis System (SDS-WAS) and to assimilation in models such as DREAM. This paper will present the conclusions of those discussions and how these observations can fit into a global model analysis framework. Questions of availability, latency, and aerosol parameters that might be ingested into models will be discussed. An example of where EARLINET and GALION have contributed in near-real time observations was the suite of measurements during the Eyjafjallajokull eruption in Iceland and its impact on European air travel. Lessons learned from this experience will be discussed.

  16. Aerosols, light, and water: Measurements of aerosol optical properties at different relative humidities

    NASA Astrophysics Data System (ADS)

    Orozco, Daniel

    sampled in Baltimore, MD with the PI-Neph. This study was centered on specific case studies where different aerosol conditions were experienced such as clean, haze episode, and transported smoke event. The approach employed consisted of dry and humid observations of ambient aerosols to compare them with total column products by AERONET. A relatively low difference between the phase function and the degree of linear polarization was measured at high and low RH. The small difference found in the scattering elements and their retrievals is attributed to the general aerosol composition in the region. It was observed that a RH increase causes the particles to scatter more light uniformly over all the scattering angles, and also, that the water uptake did not change markedly the particle's polarization properties. The comparison between in-situ and total column derived observations were highly correlated for most of the cases. The size distribution retrievals from the in-situ measurements were very comparable to the size distributions reported by AERONET, but only for the fine modes.

  17. Trace Gases and Aerosols Simulated Over the Indian Domain: Evaluation of the Model Wrf-Chem

    NASA Astrophysics Data System (ADS)

    Michael, M.; Yadav, A.; Tripathi, S. N.; Venkataraman, C.; Kanawade, V. P.

    2012-12-01

    As the anthropogenic emissions from the Asian countries contribute substantially to the global aerosol loading, the study of the distribution of trace gases and aerosols over this region has received increasing attention in recent years. In the present work, the aerosol properties over the Indian domain during the pre-monsoon season has been addressed. The "online" meteorological and chemical transport Weather Research and Forecasting-Chemistry (WRF-Chem) model has been implemented over Indian subcontinent for three consecutive summers in 2008, 2009 and 2010.The initial and boundary conditions are obtained from NCAR reanalysis data. The global emission inventories (REanalysis of the TROpospheric chemical composition (RETRO) and Emissions Database for Global Atmospheric Research (EDGAR)) have been used and are projected for the period of study using the method provided in Ohara et al. (2007). The emission rates of sulfur dioxide, black carbon, organic carbon and PM2.5 available in the global inventory are replaced with the high resolution emission inventory developed over India for the present study. The model simulates meteorological parameters, trace gases and particulate matter. Simulated mixing ratios of trace gases (Ozone, carbon monoxide, nitrogen oxides, and SO2) are compared with ground based as well as satellite observations over India with specific focus on Indo-Gangetic Plain. Simulated aerosol optical depth are in good agreement with those observed by Aerosol Robotic Network (AERONET). The vertical profiles of extinction coefficient have been compared with the Micro Pulse Lidar Network (MPLnet) data. The simulated mass concentration of BC shows very good agreement with those observed at a few ground stations. The vertical profiles of BC have also been compared with aircraft observations carried out during summer of 2008 and 2009, resulting in good agreement. This study shows that WRF-Chem model captures many important features of the observations and

  18. The effect of atmospheric aerosol particles and clouds on net ecosystem exchange in the Amazon

    NASA Astrophysics Data System (ADS)

    Cirino, G. G.; Souza, R. A. F.; Adams, D. K.; Artaxo, P.

    2014-07-01

    Carbon cycling in the Amazon is closely linked to atmospheric processes and climate in the region as a consequence of the strong coupling between the atmosphere and biosphere. This work examines the effects of changes in net radiation due to atmospheric aerosol particles and clouds on the net ecosystem exchange (NEE) of CO2 in the Amazon region. Some of the major environmental factors affecting the photosynthetic activity of plants, such as air temperature and relative humidity, were also examined. An algorithm for clear-sky irradiance was developed and used to determine the relative irradiance, f, which quantifies the percentage of solar radiation absorbed and scattered due to atmospheric aerosol particles and clouds. Aerosol optical depth (AOD) was calculated from irradiances measured with the MODIS (Moderate Resolution Imaging Spectroradiometer) sensor, onboard the Terra and Aqua satellites, and was validated with ground-based AOD measurements from AERONET (Aerosol Robotic Network) sun photometers. Carbon fluxes were measured using eddy covariance technique at the Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA) flux towers. Two sites were studied: the Jaru Biological Reserve (RBJ), located in Rondonia, and the Cuieiras Biological Reserve at the K34 LBA tower (located in a preserved region in the central Amazon). Analysis was performed continuously from 1999 to 2009 at K34 and from 1999 to 2002 at RBJ, and includes wet, dry and transition seasons. In the Jaru Biological Reserve, a 29% increase in carbon uptake (NEE) was observed when the AOD ranged from 0.10 to 1.5 at 550 nm. In the Cuieiras Biological Reserve, the aerosol effect on NEE was smaller, accounting for an approximate 20% increase in NEE. High aerosol loading (AOD above 3 at 550 nm) or high cloud cover leads to reductions in solar flux and strong decreases in photosynthesis up to the point where NEE approaches zero. The observed increase in NEE is attributed to an enhancement (~50%) in

  19. Atmosphere aerosol satellite project Aerosol-UA

    NASA Astrophysics Data System (ADS)

    Milinevsky, Gennadi; Yatskiv, Yaroslav; Syniavskyi, Ivan; Bovchaliuk, Andrii; Degtyaryov, Oleksandr; Sosonkin, Mikhail; Mishchenko, Michael; Danylevsky, Vassyl; Ivanov, Yury; Oberemok, Yevgeny; Masley, Volodymyr; Rosenbush, Vera; Moskalev, Sergii

    2017-04-01

    channels of the MSIP are the intensity channels that serve to obtain images in eight spectral wavebands to retrieve the aerosol optical depth. The main feature of the each MSIP channel is the splitting of the image by a special prism-splitter to four images on the same CCD detector. In that way we can simultaneously measure four polarization components at 0°, 45°, 90° and 135° as images in each of three polarization channels. One of the special features of ScanPol/MSIP concept is calibration of the MSIP using ScanPol data in the same field-of-view with 1% expected polarization accuracy. The Aerosol-UA experiment is planned to be launched in 2020 at the new satellite platform YuzhSat developed in the Yuzhnoye Design Office. The GRASP algorithm (Dubovik et al. 2014, doi: 10.1117/2.1201408.005558) is planned for Aerosol-UA data processing and AERONET sun photometers observations for validation. Acknowledgements. The work was partly supported by the Special Complex Program for Space Research 2012-2016 of the National Academy of Sciences of Ukraine, by the project 16BF051-02 of the Taras Shevchenko National University of Kyiv, and by the grant of the State Fund for Fundamental Research, project F73/115-2016.

  20. Aerosol retrieval experiments in the ESA Aerosol_cci project

    NASA Astrophysics Data System (ADS)

    Holzer-Popp, T.; de Leeuw, G.; Griesfeller, J.; Martynenko, D.; Klüser, L.; Bevan, S.; Davies, W.; Ducos, F.; Deuzé, J. L.; Graigner, R. G.; Heckel, A.; von Hoyningen-Hüne, W.; Kolmonen, P.; Litvinov, P.; North, P.; Poulsen, C. A.; Ramon, D.; Siddans, R.; Sogacheva, L.; Tanre, D.; Thomas, G. E.; Vountas, M.; Descloitres, J.; Griesfeller, J.; Kinne, S.; Schulz, M.; Pinnock, S.

    2013-08-01

    Within the ESA Climate Change Initiative (CCI) project Aerosol_cci (2010-2013), algorithms for the production of long-term total column aerosol optical depth (AOD) datasets from European Earth Observation sensors are developed. Starting with eight existing pre-cursor algorithms three analysis steps are conducted to improve and qualify the algorithms: (1) a series of experiments applied to one month of global data to understand several major sensitivities to assumptions needed due to the ill-posed nature of the underlying inversion problem, (2) a round robin exercise of "best" versions of each of these algorithms (defined using the step 1 outcome) applied to four months of global data to identify mature algorithms, and (3) a comprehensive validation exercise applied to one complete year of global data produced by the algorithms selected as mature based on the round robin exercise. The algorithms tested included four using AATSR, three using MERIS and one using PARASOL. This paper summarizes the first step. Three experiments were conducted to assess the potential impact of major assumptions in the various aerosol retrieval algorithms. In the first experiment a common set of four aerosol components was used to provide all algorithms with the same assumptions. The second experiment introduced an aerosol property climatology, derived from a combination of model and sun photometer observations, as a priori information in the retrievals on the occurrence of the common aerosol components. The third experiment assessed the impact of using a common nadir cloud mask for AATSR and MERIS algorithms in order to characterize the sensitivity to remaining cloud contamination in the retrievals against the baseline dataset versions. The impact of the algorithm changes was assessed for one month (September 2008) of data: qualitatively by inspection of monthly mean AOD maps and quantitatively by comparing daily gridded satellite data against daily averaged AERONET sun photometer

  1. Effect of MERRA-2 initial and boundary conditions on WRF-Chem aerosol simulations over the Arabian Peninsula

    NASA Astrophysics Data System (ADS)

    Ukhov, Alexander; Stenchikov, Georgiy

    2017-04-01

    In this study, we test the sensitivity of the horizontal and vertical distributions of aerosols to the initial and boundary conditions (IC&BC) of the aerosol/chemistry. We use the WRF-Chem model configured over the Arabian Peninsula to study both dust and anthropogenic aerosols. Currently, in the WRF-Chem the aerosol/chemistry IC&BC are constructed using either default aerosol/chemistry profiles with no inflow of aerosols and chemicals through the lateral boundaries or using the aerosol/chemistry fields from MOZART, the model for ozone and related chemical tracers from the NCAR. Here, we construct aerosol/chemistry IC&BC using MERRA-2 output. MERRA-2 is a recently developed reanalysis that assimilates ground-based and satellite observations to provide the improved distributions of aerosols and chemical species. We ran WRF-Chem simulations for July-August 2015 using GOCART/AFWA dust emission and GOCART aerosol schemes. We used the EDGAR HTAP V4 dataset to calculate SO2 emissions. Comparison of three runs initiated using the same ERA-Interim reanalysis fields but different aerosol/chemistry IC&BC (default WRF-Chem, MOZART, and MERRA-2) with AERONET, Micropulse Lidar, Balloon, and satellite observations shows that the MERRA-2 IC&BC are superior.

  2. Aerosol Optical Depth (AOD) Trends Over Bangladesh

    NASA Astrophysics Data System (ADS)

    Salam, A.

    2016-12-01

    An important omission in the Southeast Asian observing network is the border region with the Indian subcontinent. Significant amounts of pollution are generated and transported down the Indo-Gangenic Plain into the Bay of Bengal. High population density in a semi-arid region leads to the development of a complex mixture of absorbing pollution coupled with dust. Transport patterns of this mixture takes pollutants into Bangladesh, where more pollution is added to the atmosphere-leading to what is one of the highest non urban emission loading in the world (AOD500= 0.75 during the premonsoon season). Bangladesh is essentially a riverine country, and atmospheric outflow is over delta regions fed by over 500 rivers, including the Ganges, Bramaputra, Jamuna, and Padma systems forming the massive Meghna river. This combination of atmospheric and riverine components makes for an optically complex littoral region which challenges a host of environmental sensors and modeling systems. Data is needed to understand the sources, transport and optical characteristics of aerosol particles in the region. Dhaka (23.8103° N, 90.4125° E) is the capital of Bangladesh with a population of about 16 million. It has been growing rapidly with all the problem of a mega city. We have installed a sun photometer with NASA Aeronet project at the roof of the Chemistry Department, Dhaka University with other aerosol particles and gas measuring instruments. Bhola is an Island of the Bay of Bengal. It is surrounded by the Meghna River on the north and east, the Tatulia River on the west and the Bay of Bengal on the south. The observatory is located at Charfashion Bazar, Bhola (N 22o10´01″, E 90o45´00″, 3m asl). There is very little influence from traffic and industrial emissions. A Cimel sunphotometer (NASA AERONET) was installed for AOD measurements at this locations since 2013. Aerosol optical depth (AOD) trends between 2012 and 2016 at two different locations (Dhaka and Bhola) will be

  3. Aerosol Observability and Predictability: From Research to Operations for Chemical Weather Forecasting. Lagrangian Displacement Ensembles for Aerosol Data Assimilation

    NASA Technical Reports Server (NTRS)

    da Silva, Arlindo

    2010-01-01

    assimilating AOD retrievals from MODIS (on both Aqua and TERRA satellites) from AERONET for validation. The impact on the GEOS-5 Aerosol Forecasting will be fully documented.

  4. Evaluating aerosol impacts on Numerical Weather Prediction in two extreme dust and biomass-burning events

    NASA Astrophysics Data System (ADS)

    Remy, Samuel; Benedetti, Angela; Jones, Luke; Razinger, Miha; Haiden, Thomas

    2014-05-01

    The WMO-sponsored Working Group on Numerical Experimentation (WGNE) set up a project aimed at understanding the importance of aerosols for numerical weather prediction (NWP). Three cases are being investigated by several NWP centres with aerosol capabilities: a severe dust case that affected Southern Europe in April 2012, a biomass burning case in South America in September 2012, and an extreme pollution event in Beijing (China) which took place in January 2013. At ECMWF these cases are being studied using the MACC-II system with radiatively interactive aerosols. Some preliminary results related to the dust and the fire event will be presented here. A preliminary verification of the impact of the aerosol-radiation direct interaction on surface meteorological parameters such as 2m Temperature and surface winds over the region of interest will be presented. Aerosol optical depth (AOD) verification using AERONET data will also be discussed. For the biomass burning case, the impact of using injection heights estimated by a Plume Rise Model (PRM) for the biomass burning emissions will be presented.

  5. Characterising Brazilian biomass burning emissions using WRF-Chem with MOSAIC sectional aerosol

    NASA Astrophysics Data System (ADS)

    Archer-Nicholls, S.; Lowe, D.; Darbyshire, E.; Morgan, W. T.; Bela, M. M.; Pereira, G.; Trembath, J.; Kaiser, J. W.; Longo, K. M.; Freitas, S. R.; Coe, H.; McFiggans, G.

    2015-03-01

    The South American Biomass Burning Analysis (SAMBBA) field campaign took detailed in situ flight measurements of aerosol during the 2012 dry season to characterise biomass burning aerosol and improve understanding of its impacts on weather and climate. Developments have been made to the Weather Research and Forecast model with chemistry (WRF-Chem) model to improve the representation of biomass burning aerosol in the region, by coupling a sectional aerosol scheme to the plume-rise parameterisation. Brazilian Biomass Burning Emissions Model (3BEM) fire emissions are used, prepared using PREP-CHEM-SRC, and mapped to CBM-Z and MOSAIC species. Model results have been evaluated against remote sensing products, AERONET sites, and four case studies of flight measurements from the SAMBBA campaign. WRF-Chem predicted layers of elevated aerosol loadings (5-20 μg sm-3) of particulate organic matter at high altitude (6-8 km) over tropical forest regions, while flight measurements showed a sharp decrease above 2-4 km altitude. This difference was attributed to the plume-rise parameterisation overestimating injection height. The 3BEM emissions product was modified using estimates of active fire size and burned area for the 2012 fire season, which reduced the fire size. The enhancement factor for fire emissions was increased from 1.3 to 5 to retain reasonable aerosol optical depths (AODs). The smaller fire size lowered the injection height of the emissions, but WRF-Chem still showed elevated aerosol loadings between 4-5 km altitude. Over eastern cerrado (savannah-like) regions, both modelled and measured aerosol loadings decreased above approximately 4 km altitude. Compared with MODIS satellite data and AERONET sites, WRF-Chem represented AOD magnitude well (between 0.3-1.5) over western tropical forest fire regions in the first half of the campaign, but tended to over-predict them in the second half, when precipitation was more significant. Over eastern cerrado regions, WRF

  6. Characterising Brazilian biomass burning emissions using WRF-Chem with MOSAIC sectional aerosol

    NASA Astrophysics Data System (ADS)

    Archer-Nicholls, S.; Lowe, D.; Darbyshire, E.; Morgan, W. T.; Bela, M. M.; Pereira, G.; Trembath, J.; Kaiser, J. W.; Longo, K. M.; Freitas, S. R.; Coe, H.; McFiggans, G.

    2014-09-01

    The South American Biomass Burning Analysis (SAMBBA) field campaign took detailed in-situ flight measurements of aerosol during the 2012 dry season to characterise biomass burning aerosol and improve understanding of its impacts on weather and climate. Developments have been made to the Weather research and Forecast model with chemistry (WRF-Chem) model to improve the representation of biomass burning aerosol in the region by coupling a sectional aerosol scheme to the plume rise parameterisation. Brazilian Biomass Burning Emissions Model (3BEM) fire emissions are used, prepared using PREP-CHEM-SRC, and mapped to CBM-Z and MOSAIC species. Model results have been evaluated against remote sensing products, AERONET sites, and four case studies of flight measurements from the SAMBBA campaign. WRF-Chem predicted layers of elevated aerosol loadings (5-20 μg sm-3) of particulate organic matter at high altitude (6-8 km) over tropical forest regions, while flight measurements showed a sharp decrease above 2-4 km altitude. This difference was attributed to the plume-rise parameterisation overestimating injection height. The 3BEM emissions product was modified using estimates of active fire size and burned area for the 2012 fire season, which reduced the fire size. The enhancement factor for fire emissions was increased from 1.3 to 5 to retain reasonable aerosol optical depths (AOD). The smaller fire size lowered the injection height of the emissions, but WRF-Chem still showed elevated aerosol loadings between 4-5 km altitude. Over eastern Cerrado (savannah-like) regions, both modelled and measured aerosol loadings decreased above approximately 4 km altitude. Compared with MODIS satellite data and AERONET sites, WRF-Chem represented AOD magnitude well (between 0.3-1.5) over western tropical forest fire regions in the first half of the campaign, but tended to over-predict them in the second half, when precipitation was more significant. Over eastern Cerrado regions, WRF

  7. Aerosol Properties under Air Quality Control Measures of APEC 2014 in Beijing

    NASA Astrophysics Data System (ADS)

    Chen, X.; Xu, H.; Lv, Y.; Xie, Y.; Li, K.; Li, Z.; Li, D.; Ma, Y.; Mei, X.

    2015-12-01

    Because the economic and society were developing fast in the middle of last century, Los Angeles and London both were polluted by photochemical smog, which massacred thousands of people. Now, many regions are often covered by heavy haze in those large developing countries, especially in China and India. The Asia-Pacific Economic Cooperation (APEC) was held in Beijing during 5-11 November 2014. Beijing, Hebei, Tianjin, Shandong, Shanxi, Inner Mongolia reduced air pollution emissions for the APEC 2014 meeting held in Beijing. Only in Hebei province, there were 1028 factories stopped or restricted and 881 construction sites stopped. Half of the cars were prohibited driving even in the Zibo city which is 400 km far from Beijing. For scientific aims, these control measures were indeed a huge and uncommon atmospheric experiment led by the government. During the experiment, what did the "APEC Blue" mean? We analyzed aerosol properties with the data of an AERONET site in Beijing which is located 500m far from the main reception hall of APEC 2014. The Cimel solar photometers can give a series parameters of aerosol and water vapor. In this paper, we used CE318 solar photometer which is the main instrument of NASA AERONET. The CE318 of RADI belongs to the Chinese SONET (Sun-sky radiometer Observation NETwork) too. We analyzed the total, coarse and fine Aerosol Optical Depth (AOD), Fine-Mode Fraction (FMF) and Ångström exponent, Size Distribution and Real Refractive Index. In conclusion, the aerosol properties were analysed with the measurements of a sun photometer. During the APEC 2014, AOD decreased obviously with a 0.27 mean value compared with the annual mean 0.7. Around Beijing, the southern is polluted emission area including the cross part of Shandong, Shanxi, Hebei, Henan four provinces, and the northern is clean for less fine mode particles emission in the large Inner Mongolia province. In fact, during the APEC 2014, the weather condition was not good for the

  8. Validation of multi-angle imaging spectroradiometer aerosol products in China

    Treesearch

    J. Liu; X. Xia; Z. Li; P. Wang; M. Min; WeiMin Hao; Y. Wang; J. Xin; X. Li; Y. Zheng; Z. Chen

    2010-01-01

    Based on AErosol RObotic NETwork and Chinese Sun Hazemeter Network data, the Multi-angle Imaging SpectroRadiometer (MISR) level 2 aerosol optical depth (AOD) products are evaluated in China. The MISR retrievals depict well the temporal aerosol trend in China with correlation coefficients exceeding 0.8 except for stations located in northeast China and at the...

  9. An assessment of aerosol optical properties from remote-sensing observations and regional chemistry-climate coupled models over Europe

    NASA Astrophysics Data System (ADS)

    Palacios-Peña, Laura; Baró, Rocío; Baklanov, Alexander; Balzarini, Alessandra; Brunner, Dominik; Forkel, Renate; Hirtl, Marcus; Honzak, Luka; María López-Romero, José; Montávez, Juan Pedro; Pérez, Juan Luis; Pirovano, Guido; San José, Roberto; Schröder, Wolfram; Werhahn, Johannes; Wolke, Ralf; Žabkar, Rahela; Jiménez-Guerrero, Pedro

    2018-04-01

    Atmospheric aerosols modify the radiative budget of the Earth due to their optical, microphysical and chemical properties, and are considered one of the most uncertain climate forcing agents. In order to characterise the uncertainties associated with satellite and modelling approaches to represent aerosol optical properties, mainly aerosol optical depth (AOD) and Ångström exponent (AE), their representation by different remote-sensing sensors and regional online coupled chemistry-climate models over Europe are evaluated. This work also characterises whether the inclusion of aerosol-radiation (ARI) or/and aerosol-cloud interactions (ACI) help improve the skills of modelling outputs.Two case studies were selected within the EuMetChem COST Action ES1004 framework when important aerosol episodes in 2010 all over Europe took place: a Russian wildfire episode and a Saharan desert dust outbreak that covered most of the Mediterranean Sea. The model data came from different regional air-quality-climate simulations performed by working group 2 of EuMetChem, which differed according to whether ARI or ACI was included or not. The remote-sensing data came from three different sensors: MODIS, OMI and SeaWIFS. The evaluation used classical statistical metrics to first compare satellite data versus the ground-based instrument network (AERONET) and then to evaluate model versus the observational data (both satellite and ground-based data).Regarding the uncertainty in the satellite representation of AOD, MODIS presented the best agreement with the AERONET observations compared to other satellite AOD observations. The differences found between remote-sensing sensors highlighted the uncertainty in the observations, which have to be taken into account when evaluating models. When modelling results were considered, a common trend for underestimating high AOD levels was observed. For the AE, models tended to underestimate its variability, except when considering a sectional approach in

  10. Coordinated Airborne, Spaceborne, and Ground-Based Measurements of Massive, Thick Aerosol Layers During the Dry Season in Southern Africa

    NASA Technical Reports Server (NTRS)

    Schmid, B.; Redemann, J.; Russell, P. B.; Hobbs, P. V.; Hlavka, D. L.; McGill, M. J.; Holben, B. N.; Welton, E. J.; Campbell, J.; Torres, O.; hide

    2002-01-01

    During the dry-season airborne campaign of the Southern African Regional Science Initiative (SAFARI 2000), unique coordinated observations were made of massive, thick aerosol layers. These layers were often dominated by aerosols from biomass burning. We report on airborne Sunphotometer measurements of aerosol optical depth (lambda=354-1558 nm), columnar water vapor, and vertical profiles of aerosol extinction and water vapor density that were obtained aboard the University of Washington's Convair-580 research aircraft. We compare these with ground-based AERONET Sun/sky radiometer results, with ground based lidar data MPL-Net), and with measurements from a downward-pointing lidar aboard the high-flying NASA ER-2 aircraft. Finally, we show comparisons between aerosol optical depths from the Sunphotometer and those retrieved over land and over water using four spaceborne sensors (TOMS (Total Ozone Mapping Spectrometer), MODIS (Moderate Resolution Imaging Spectrometer), MISR (Multiangle Imaging Spectroradiometer) and ATSR-2 (Along Track Scanning Radiometer)).

  11. Clear-sky shortwave radiative closure for the Cabauw Baseline Surface Radiation Network site, the Netherlands

    NASA Astrophysics Data System (ADS)

    Wang, P.; Knap, W. H.; Kuipers Munneke, P.; Stammes, P.

    2009-04-01

    During the last two decades, several attempts have been made to achieve agreement between clear-sky shortwave broadband irradiance models and surface measurements of direct and diffuse irradiance. In general, models and measurements agreed well for the direct component but closing the gap for diffuse irradiances remained problematic. The number of studies reporting a satisfactory degree of closure for both direct and diffuse irradiance is still limited, which motivated us to perform the study presented here. In this paper a clear-sky shortwave closure analysis is presented for the Baseline Surface Radiation Network (BSRN) site of Cabauw, the Netherlands (51.97 °N, 4.93 °E). The analysis is based on an exceptional period of fine weather in the first half of May 2008 during the Intensive Measurement Period At the Cabauw Tower (IMPACT), an activity of the European Integrated project on Aerosol Cloud Climate and Air Quality Interactions (EUCAARI). Although IMPACT produced a wealth of data, it was decided to conduct the closure analysis using routine measurements only, provided by BSRN and the Aerosol Robotic Network (AERONET), completed with radiosonde obervations. The rationale for this pragmatic approach is the possibility of applying the method presented here to other periods and (BSRN) sites, where routine measurements are readily available, without having to deal with the investments and restrictions of an intensive observation period. The analysis is based on a selection of 72 comparisons on 6 days between BSRN measurements and Doubling Adding KNMI (DAK) model simulations of direct, diffuse, and global irradiance. The data span a wide range of aerosol properties, water vapour columns, and solar zenith angles. The model input consisted of operational Aerosol Robotic Network (AERONET) aerosol products and radiosonde data. On the basis of these data excellent closure was obtained: the mean differences between model and measurements are 2 W/m2 (+0.2%) for direct

  12. Dark Targets, Aerosols, Clouds and Toys

    NASA Astrophysics Data System (ADS)

    Remer, L. A.

    2015-12-01

    Today if you use the Thomson-Reuters Science Citations Index to search for "aerosol*", across all scientific disciplines and years, with no constraints, and you sort by number of citations, you will find a 2005 paper published in the Journal of the Atmospheric Sciences in the top 20. This is the "The MODIS Aerosol Algorithm, Products and Validation". Although I am the first author, there are in total 12 co-authors who each made a significant intellectual contribution to the paper or to the algorithm, products and validation described. This paper, that algorithm, those people lie at the heart of a lineage of scientists whose collaborations and linked individual pursuits have made a significant contribution to our understanding of radiative transfer and climate, of aerosol properties and the global aerosol system, of cloud physics and aerosol-cloud interaction, and how to measure these parameters and maximize the science that can be obtained from those measurements. The 'lineage' had its origins across the globe, from Soviet Russia to France, from the U.S. to Israel, from the Himalayas, the Sahel, the metropolises of Sao Paulo, Taipei, and the cities of east and south Asia. It came together in the 1990s and 2000s at the NASA Goddard Space Flight Center, using cultural diversity as a strength to form a common culture of scientific creativity that continues to this day. The original algorithm has spawned daughter algorithms that are being applied to new satellite and airborne sensors. The original MODIS products have been fundamental to analyses as diverse as air quality monitoring and aerosol-cloud forcing. AERONET, designed originally for the need of validation, is now its own thriving institution, and the lineage continues to push forward to provide new technology for the coming generations.

  13. Characterizing the Vertical Distribution of Aerosols using Ground-based Multiwavelength Lidar Data

    NASA Astrophysics Data System (ADS)

    Ferrare, R. A.; Thorsen, T. J.; Clayton, M.; Mueller, D.; Chemyakin, E.; Burton, S. P.; Goldsmith, J.; Holz, R.; Kuehn, R.; Eloranta, E. W.; Marais, W.; Newsom, R. K.; Liu, X.; Sawamura, P.; Holben, B. N.; Hostetler, C. A.

    2016-12-01

    radius and concentration retrieved from the CHARMS data and compare column-average aerosol properties derived from the multiwavelength lidar aerosol retrievals to corresponding values retrieved from AERONET measurements.

  14. From BASE-ASIA Toward 7-SEAS: A Satellite-Surface Perspective of Boreal Spring Biomass-Burning Aerosols and Clouds in Southeast Asia

    NASA Technical Reports Server (NTRS)

    Tsay, Si-Chee; Hsu, N. Christina; Lau, William K.-M.; Li, Can; Gabriel, Philip M.; Ji, Qiang; Holben, Brent N.; Welton, E. Judd; Nguyen, Anh X.; Janjai, Serm; hide

    2013-01-01

    In this paper, we present recent field studies conducted by NASA's SMART-COMMIT (and ACHIEVE, to be operated in 2013) mobile laboratories, jointly with distributed ground-based networks (e.g., AERONET, http://aeronet.gsfc.nasa.gov/ and MPLNET, http://mplnet.gsfc.nasa.gov/) and other contributing instruments over northern Southeast Asia. These three mobile laboratories, collectively called SMARTLabs (cf. http://smartlabs.gsfc.nasa.gov/, Surface-based Mobile Atmospheric Research & Testbed Laboratories) comprise a suite of surface remote sensing and in-situ instruments that are pivotal in providing high spectral and temporal measurements, complementing the collocated spatial observations from various Earth Observing System (EOS) satellites. A satellite-surface perspective and scientific findings, drawn from the BASE-ASIA (2006) field deployment as well as a series of ongoing 7-SEAS (2010-13) field activities over northern Southeast Asia are summarized, concerning (i) regional properties of aerosols from satellite and in situ measurements, (ii) cloud properties from remote sensing and surface observations, (iii) vertical distribution of aerosols and clouds, and (iv) regional aerosol radiative effects and impact assessment. The aerosol burden over Southeast Asia in boreal spring, attributed to biomass burning, exhibits highly consistent spatial and temporal distribution patterns, with major variability arising from changes in the magnitude of the aerosol loading mediated by processes ranging from large-scale climate factors to diurnal meteorological events. Downwind from the source regions, the tightly coupled-aerosolecloud system provides a unique, natural laboratory for further exploring the micro- and macro-scale relationships of the complex interactions. The climatic significance is presented through large-scale anti-correlations between aerosol and precipitation anomalies, showing spatial and seasonal variability, but their precise cause-and-effect relationships

  15. Deep Blue Retrievals of Asian Aerosol Properties During ACE-Asia

    NASA Technical Reports Server (NTRS)

    Hsu, N. Christina; Tsay, Si-Cee; King, Michael D.; Herman, Jay R.

    2006-01-01

    During the ACE-Asia field campaign, unprecedented amounts of aerosol property data in East Asia during springtime were collected from an array of aircraft, shipboard, and surface instruments. However, most of the observations were obtained in areas downwind of the source regions. In this paper, the newly developed satellite aerosol algorithm called "Deep Blue" was employed to characterize the properties of aerosols over source regions using radiance measurements from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) and Moderate Resolution Imaging Spectroradiometer (MODIS). Based upon the ngstr m exponent derived from the Deep Blue algorithm, it was demonstrated that this new algorithm is able to distinguish dust plumes from fine-mode pollution particles even in complex aerosol environments such as the one over Beijing. Furthermore, these results were validated by comparing them with observations from AERONET sites in China and Mongolia during spring 2001. These comparisons show that the values of satellite-retrieved aerosol optical thickness from Deep Blue are generally within 20%-30% of those measured by sunphotometers. The analyses also indicate that the roles of mineral dust and anthropogenic particles are comparable in contributing to the overall aerosol distributions during spring in northern China, while fine-mode particles are dominant over southern China. The spring season in East Asia consists of one of the most complex environments in terms of frequent cloudiness and wide ranges of aerosol loadings and types. This paper will discuss how the factors contributing to this complexity influence the resulting aerosol monthly averages from various satellite sensors and, thus, the synergy among satellite aerosol products.

  16. An enhanced VIIRS aerosol optical thickness (AOT) retrieval algorithm over land using a global surface reflectance ratio database

    NASA Astrophysics Data System (ADS)

    Zhang, Hai; Kondragunta, Shobha; Laszlo, Istvan; Liu, Hongqing; Remer, Lorraine A.; Huang, Jingfeng; Superczynski, Stephen; Ciren, Pubu

    2016-09-01

    The Visible/Infrared Imager Radiometer Suite (VIIRS) on board the Suomi National Polar-orbiting Partnership (S-NPP) satellite has been retrieving aerosol optical thickness (AOT), operationally and globally, over ocean and land since shortly after S-NPP launch in 2011. However, the current operational VIIRS AOT retrieval algorithm over land has two limitations in its assumptions for land surfaces: (1) it only retrieves AOT over the dark surfaces and (2) it assumes that the global surface reflectance ratios between VIIRS bands are constants. In this work, we develop a surface reflectance ratio database over land with a spatial resolution 0.1° × 0.1° using 2 years of VIIRS top of atmosphere reflectances. We enhance the current operational VIIRS AOT retrieval algorithm by applying the surface reflectance ratio database in the algorithm. The enhanced algorithm is able to retrieve AOT over both dark and bright surfaces. Over bright surfaces, the VIIRS AOT retrievals from the enhanced algorithm have a correlation of 0.79, mean bias of -0.008, and standard deviation (STD) of error of 0.139 when compared against the ground-based observations at the global AERONET (Aerosol Robotic Network) sites. Over dark surfaces, the VIIRS AOT retrievals using the surface reflectance ratio database improve the root-mean-square error from 0.150 to 0.123. The use of the surface reflectance ratio database also increases the data coverage of more than 20% over dark surfaces. The AOT retrievals over bright surfaces are comparable to MODIS Deep Blue AOT retrievals.

  17. Radiation, Aerosol Joint Observation-Modeling Exploration over Glaciers in Himalayan Asia (RAJO-MEGHA)

    NASA Astrophysics Data System (ADS)

    Tsay, S. C.; Holben, B. N.

    2016-12-01

    All major rivers that run through densely populated Asia (i.e., Yangtze, Yellow in China; Mekong in Southeast Asian peninsula; Brahmaputra, Ganges, Indus in Indian subcontinent) originate in High Mountain Asia (HMA) and are fed by the seasonal melt of snowpack and glaciers. Although varying greatly in space and time, the overall snowpack/ glaciers in the HMA are losing mass and retreating at an accelerated rate (e.g., Kulkarni et al., 2007; Kehrwald et al., 2008), as revealed from recent observations. This situation poses an imminent danger to the water supply and environmental hazards (e.g., soil erosion, glacial-lake-outburst flood) not only to regional inhabitants, but also to the global ecosystem through feedback mechanisms. Comprehensive regional-to-global assimilation models, advancing in lockstep with the advent of satellite observations (e.g., MODIS-/CERES-like sensors) and complementary surface measurements (e.g., AERONET), are playing an ever-increasing role in developing mitigation strategies. However, the complex characteristics of HMA, such as its ragged terrain, atmospheric inhomogeneity, snow susceptibility, and ground-truth accessibility, introduces difficulties for the aforementioned research tools to retrieve/assess radiative forcing on snow/ice melting with a high degree of fidelity. In terms of quantifying radiative forcing, the key components are transport/evolution of light-absorbing aerosols (e.g., dust, black carbon) aloft, the surface solar/terrestrial irradiance budget, and snow reflectivity/absorptivity with/without impurities. The RAJO-MEGHA (Sanskrit for Dust-Cloud) project is an initiative on the integrated (aerosols, clouds, and precipitation) measurements in the vicinity of HMA (e.g., Indo-Gangetic Plain, Himalaya-Tibetan Plateau). We will discuss an array of ground-based (e.g., AERONET, MPLNET, SMARTLabs, etc.) and satellite (e.g., Terra, A-Train, etc.) sensors utilized to acquire aerosol characteristics, sources/sinks, and

  18. Aircraft Measurements of Aerosol Phase Matrix Elements by the Polarized Imaging Nephelometer (Invited)

    NASA Astrophysics Data System (ADS)

    Dolgos, G.; Martins, J.; Espinosa, R.; Dubovik, O.; Beyersdorf, A. J.; Ziemba, L. D.; Hair, J. W.

    2013-12-01

    Aerosols have a significant impact on the radiative balance and water cycle of our planet through influencing atmospheric radiation. Remote sensing of aerosols relies on scattering phase matrix information to retrieve aerosol properties with frequent global coverage, the assumed phase matrices must be validated by measurements. At the Laboratory for Aerosols, Clouds and Optics (LACO) at the University of Maryland, Baltimore County (UMBC) we developed a new technique to directly measure the aerosol phase function (P11), the degree of linear polarization of the scattered light (-P12/P11), and the volume scattering coefficient (SCAT). We designed and built a portable instrument called the Polarized Imaging Nephelometer (PI-Neph), shown in Figure 1 (a). The PI-Neph successfully participated in dozens of flights of the NASA Development and Evaluation of satellite ValidatiOn Tools by Experimenters (DEVOTE) project and the Deep Convective Clouds and Chemistry (DC3) project and the January and February deployment of the Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (Discover-AQ) mission. The ambient aerosol enters the PI-Neph through an inlet and the sample is illuminated by laser light (wavelength of 532 nm); the scattered light is imaged by a stationary wide field of view camera in the scattering angle range of 2° to 178° (in some cases stray light limited the scattering angle range to 3° to 176°). Data for P11, P12, and SCAT were taken every 12 seconds, example datasets from DEVOTE of P11 times SCAT are shown on Figure 1 (b). The talk will highlight results from the three field deployments and will show microphysical retrievals from the scattering data. The size distribution and the average complex refractive index of the ambient aerosol ensemble can be retrieved from the data by an algorithm similar to that of AERONET, as illustrated in Figure 1 (c). Particle sphericity can potentially be

  19. Aerosol optical properties of Western Mediterranean basin from multi-year AERONET data

    NASA Astrophysics Data System (ADS)

    Benkhalifa, Jamel; Léon, Jean François; Chaabane, Mabrouk

    2017-11-01

    Aerosol optical properties including the total and coarse mode aerosol extinction optical depth (AODt and AODc respectively), Angstrom exponent (AE), size distribution, single scattering albedo (SSA) were examined using long-term ground-based radiometric measurements at 9 sites in the Western Mediterranean: Oujda, Malaga, Barcelona, Carpentras, Rome Tor Vergata, Ersa, Ispra, Venice and Evora, during the 4-year study period (2010-2013). The South-North gradient in the fraction of AODc represents the signature of the increasing influence of coarse particles on the optical properties at southern stations. This fraction has a daily mean ranging from 48 ± 18% at the southern site Oujda and to 8 ± 8% at Ispra. The low average AE444-870 value (<0.7) at Oujda confirms the major influence of large dust particles. Conversely, the AOD at urban stations are dominated by fine mode particles. The Angstrom Exponent (AE444-870) above 1.5 in Ispra and Venice indicates an atmospheric situation corresponding to the urban pollution controlled by small particles. We have analyzed the intrinsic dust optical properties by selecting the dusty days corresponding to a total optical depth above 0.3 and a fraction of the coarse mode optical depth above 30%. For these cases, the mean AODt during dusty days was shown to be close to 0.4. During dusty days, the coarse mode fraction represents 88% of the total volume at Oudja and above 83% for all other sites. There is a weak variability in the mean coarse mode volume median radius, showing an average of 1.98 ± 0.1. A maximum in the AODc was observed in the summer of 2012, with particular high events on June 27. The forward trajectory starting at Evora on June 27 clearly indicates that all the sites were affected by such dust events in the following days.

  20. Comment on "Classification of aerosol properties derived from AERONET direct sun data" by Gobbi et al. (2007)

    NASA Astrophysics Data System (ADS)

    O'Neill, N. T.

    2010-10-01

    It is pointed out that the graphical, aerosol classification method of Gobbi et al. (2007) can be interpreted as a manifestation of fundamental analytical relations whose existance depends on the simple assumption that the optical effects of aerosols are essentially bimodal in nature. The families of contour lines in their "Ada" curvature space are essentially empirical and discretized illustrations of analytical parabolic forms in (α, α') space (the space formed by the continuously differentiable Angstrom exponent and its spectral derivative).

  1. Remote sensing observation of annual dust cycles and possible causality of Kawasaki disease outbreaks in Japan

    PubMed Central

    LaHaye, Nick; Linstead, Erik; Sprigg, William A.; Yacoub, Magdi

    Kawasaki disease (KD) is a rare vascular disease that, if left untreated, can result in irreparable cardiac damage in children. While the symptoms of KD are well-known, as are best practices for treatment, the etiology of the disease and the factors contributing to KD outbreaks remain puzzling to both medical practitioners and scientists alike. Recently, a fungus known as Candida, originating in the farmlands of China, has been blamed for outbreaks in China and Japan, with the hypothesis that it can be transported over long ranges via different wind mechanisms. This paper provides evidence to understand the transport mechanisms of dust at different geographic locations and the cause of the annual spike of KD in Japan. Candida is carried along with many other dusts, particles or aerosols, of various sizes in major seasonal wind currents. The evidence is based upon particle categorization using the Moderate Resolution Imaging Spectrometer (MODIS) Aerosol Optical Depth (AOD), Fine Mode Fraction (FMF) and Ångström Exponent (AE), the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) attenuated backscatter and aerosol subtype, and the Aerosol Robotic Network’s (AERONET) derived volume concentration. We found that seasonality associated with aerosol size distribution at different geographic locations plays a role in identifying dominant abundance at each location. Knowing the typical size of the Candida fungus, and analyzing aerosol characteristics using AERONET data reveals possible particle transport association with KD events at different locations. Thus, understanding transport mechanisms and accurate identification of aerosol sources is important in order to understand possible triggers to outbreaks of KD. This work provides future opportunities to leverage machine learning, including state-of-the-art deep architectures, to build predictive models of KD outbreaks, with the ultimate goal of early forecasting and intervention within a

  2. An Emerging Global Aerosol Climatology from the MODIS Satellite Sensors

    NASA Technical Reports Server (NTRS)

    Remer, Lorraine A.; Kleidman, Richard G.; Levy, Robert C.; Kaufman, Yoram J.; Tanre, Didier; Mattoo, Shana; Martins, J. Vandelei; Ichoku, Charles; Koren, Ilan; Hongbin, Yu; hide

    2008-01-01

    The recently released Collection 5 MODIS aerosol products provide a consistent record of the Earth's aerosol system. Comparison with ground-based AERONET observations of aerosol optical depth (AOD) we find that Collection 5 MODIS aerosol products estimate AOD to within expected accuracy more than 60% of the time over ocean and more than 72% of the time over land. This is similar to previous results for ocean, and better than the previous results for land. However, the new Collection introduces a 0.01 5 offset between the Terra and Aqua global mean AOD over ocean, where none existed previously. Aqua conforms to previous values and expectations while Terra is high. The cause of the offset is unknown, but changes to calibration are a possible explanation. We focus the climatological analysis on the better understood Aqua retrievals. We find that global mean AOD at 550 nm over oceans is 0.13 and over land 0.19. AOD in situations with 80% cloud fraction are twice the global mean values, although such situations occur only 2% of the time over ocean and less than 1% of the time over land. There is no drastic change in aerosol particle size associated with these very cloudy situations. Regionally, aerosol amounts vary from polluted areas such as East Asia and India, to the cleanest regions such as Australia and the northern continents. In almost all oceans fine mode aerosol dominates over dust, except in the tropical Atlantic downwind of the Sahara and in some months the Arabian Sea.

  3. Profiling Transboundary Aerosols over Taiwan and Assessing Their Radiative Effects

    NASA Technical Reports Server (NTRS)

    Wang, Sheng-Hsiang; Lin, Neng-Huei; Chou, Ming-Dah; Tsay, Si-Chee; Welton, Ellsworth J.; Hsu, N. Christina; Giles, David M.; Liu, Gin-Rong; Holben, Brent N.

    2010-01-01

    A synergistic process was developed to study the vertical distributions of aerosol optical properties and their effects on solar heating using data retrieved from ground-based radiation measurements and radiative transfer simulations. Continuous MPLNET and AERONET observations were made at a rural site in northern Taiwan from 2005 to 2007. The aerosol vertical extinction profiles retrieved from ground-based lidar measurements were categorized into near-surface, mixed, and two-layer transport types, representing 76% of all cases. Fine-mode (Angstrom exponent, alpha, approx.1.4) and moderate-absorbing aerosols (columnar single-scattering albedo approx.0.93, asymmetry factor approx.0.73 at 440 nm wavelength) dominated in this region. The column-integrated aerosol optical thickness at 500 nm (tau(sub 500nm)) ranges from 0.1 to 0.6 for the near-surface transport type, but can be doubled in the presence of upper-layer aerosol transport. We utilize aerosol radiative efficiency (ARE; the impact on solar radiation per unit change of tau(sub 500nm)) to quantify the radiative effects due to different vertical distributions of aerosols. Our results show that the ARE at the top-of-atmosphere (-23 W/ sq m) is weakly sensitive to aerosol vertical distributions confined in the lower troposphere. On the other hand, values of the ARE at the surface are -44.3, -40.6 and -39.7 W/sq m 38 for near-surface, mixed, and two-layer transport types, respectively. Further analyses show that the impact of aerosols on the vertical profile of solar heating is larger for the near-surface transport type than that of two-layer transport type. The impacts of aerosol on the surface radiation and the solar heating profiles have implications for the stability and convection in the lower troposphere.

  4. Ground based characterization of biomass burning aerosols during the South American Biomass Burning Analysis (SAMBBA) field experiment in Brazil during Sept - Oct 2012

    NASA Astrophysics Data System (ADS)

    Artaxo, Paulo; Ferreira de Brito, Joel; Varanda Rizzo, Luciana; Johnson, Ben; Haywood, Jim; Longo, Karla; Freitas, Saulo; Coe, Hugh

    2013-04-01

    Biomass burning is one of the major drivers for atmospheric composition in the Southern hemisphere. In Amazonia, deforestation rates have been steadily decreasing, from 27,000 Km² in 2004 to about 5,000 Km² in 2011. This large reduction (by factor 5) was not followed by similar reduction in aerosol loading in the atmosphere due to the increase in agricultural fires. AERONET measurements from 5 sites show a large year-to year variability due to climatic and socio-economic issues. Besides this strong reduction in deforestation rate, biomass burning emissions in Amazonia increases concentrations of aerosol particles, CO, ozone and other species, and also change the surface radiation balance in a significant way. To complement the long term biomass burning measurements in Amazonia, it was organized in 2012 the intensive campaign of the South American Biomass Burning Analysis (SAMBBA) experiment with an airborne and a ground based components. A sampling site was set up at Porto Velho, with measurements of aerosol size distribution, optical properties such as absorption and scattering at several wavelengths, organic aerosol characterization with an ACSM - Aerosol Chemical Speciation Monitor. CO, CO2 and O3 were also measured to characterize combustion efficiency and photochemical processes. Filters for trace elements measured by XRF and for OC/EC determined using a Sunset instrument were also collected. An AERONET CIMEL sunphotometer was operated in parallel with a multifilter radiometer (MFR). A large data set was collected from August to October 2012. PM2.5 aerosol concentrations up to 250 ug/m3 were measured, with up to 20 ug/m3 of black carbon. Ozone went up to 60 ppb at mid-day in August. At night time ozone was consumed completely most of the time. ACSM shows that more than 85% of the aerosol mass was organic with a clear diurnal pattern. The organic aerosol volatility was very variable depending on the air mass sampled over Porto Velho. Aerosol optical depth at

  5. Development of an aerosol assimilation/forecasting system with Himawari-8 aerosol products

    NASA Astrophysics Data System (ADS)

    Maki, T.; Yumimoto, K.; Tanaka, T. Y.; Yoshida, M.; Kikuchi, M.; Nagao, T. M.; Murakami, H.; Ogi, A.; Sekiyama, T. T.

    2016-12-01

    A new generation geostationary meteorological satellite (GMS), Himawari-8, was launched on 7 October 2014 and became operational on 7 July 2015. Himawari-8 is equipped with more advanced multispectral imager (Advanced Himawari Imager; AHI) ahead of other planned GMSs (e.g., GEOS-R). The AHI has 16 observational bands including three visible lights (i.e. RGB) with high spatial (0.5-2 km) and temporal (every 10 minutes full-disk images) resolutions, and provides about 50 times more data than previous GMSs. It is attractive characteristics for aerosol study that the visible and near-infrared observational bands allow us to obtain full-disk maps of aerosol optical properties (i.e., aerosol optical thickness (AOT) and ångström exponent) with unprecedented temporal resolution. Meteorological Research Institute (MRI)/JMA and Japan Aerospace Exploration Agency (JAXA) have been developing an aerosol assimilation/forecasting system with a global aerosol transport model (MASINGAR mk-2), 2 dimensional variational (2D-Var) method, and the Himawari-8 AOTs. Forecasting results are quantitatively validated by AOTs measured by AERONET and PM2.5 concentrations obtained by in-situ stations. Figure 1 shows model-predicted and satellite-observed AOTs during the 2016 Siberian wildfire. Upper and lower panels exhibit maps of AOT at analysis time (0000 UTC on May 18, 2016) and 27-hour forecast time (03 UTC on May 19, 2016), respectively. The 27-hour forecasted AOT starting with the analyzed initial condition (Figure 1f) successfully predicts heavy smokes covering the northern part of Japan, which forecast without assimilation (Figure 1e) failed to reproduces. Figure 1: Horizontal distribution of observed and forecasted AOTs at 0000 UTC 18 May, 2016 (analysis time; upper panels) and 0300 UTC 19 May, 2016 (18-h forecast from the analysis time; lower panel). (a, d) observed AOT from Himawari-8, (b, e) forecasted AOT without assimilation, and (c, f) forecast AOT with assimilation.

  6. Using aircraft measurements to estimate the magnitude and uncertainty of the shortwave direct radiative forcing of southern African biomass burning aerosol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magi, Brian; Fu, Q.; Redemann, Jens

    2008-03-13

    We estimate the shortwave, diurnally-averaged direct radiative forcing (RF) of the biomass burning aerosol characterized by measurements made from the University of Washington (UW) research aircraft during the Southern African Regional Science Initiative in August and September 2000 (SAFARI-2000). We describe the methodology used to arrive at the best estimates of the measurement-based RF and discuss the confidence intervals of the estimates of RF that arise from uncertainties in measurements and assumptions necessary to describe the aerosol optical properties. We apply the methodology to the UW aircraft vertical profiles and estimate that the top of the atmosphere RF (RFtoa) rangesmore » from -1.5±3.2 to -14.4±3.5 W m-2, while the surface RF (RFsfc) ranges from -10.5±2.4 to -81.3±7.5 W m-2. These estimates imply that the aerosol RF of the atmosphere (RFatm) ranges from 5.0±2.3 to 73.3±11.0 W m-2. We compare some of the estimates to RF that we estimate using Aerosol Robotic Network (AERONET) aerosol optical properties, and show that the agreement is 2 of good for RFtoa, but poor for RFsfc. We also show that linear models accurately describe the relationship of RF with the aerosol optical depth at a wavelength of 550 nm (τ550). This relationship is known as the radiative forcing efficiency (RFE) and we find that RFtoa (unlike RFatm and RFsfc) depends not only on variations in τ550, but that the linear model itself is dependent on the magnitude of τ550. We then apply the models for RFE to daily τ550 derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite to estimate the RF over southern Africa from March 2000 to December 2006. Using the combination of UW and MODIS data, we find that the annual RFtoa, RFatm, and RFsfc over the region is -4.7±2.7 W m-2, 11.4±5.7 W m-2, and -18.3±5.8 W m-2, respectively.« less

  7. Preliminary Results from an Assimilation of TOMS Aerosol Observations Into the GOCART Model

    NASA Technical Reports Server (NTRS)

    daSilva, Arlindo; Weaver, Clark J.; Ginoux, Paul; Torres, Omar; Einaudi, Franco (Technical Monitor)

    2000-01-01

    At NASA Goddard we are developing a global aerosol data assimilation system that combines advances in remote sensing and modeling of atmospheric aerosols. The goal is to provide high resolution, 3-D aerosol distributions to the research community. Our first step is to develop a simple assimilation system for Saharan mineral aerosol. The Goddard Chemistry and Aerosol Radiation model (GOCART) provides accurate 3-D mineral aerosol size distributions that compare well with TOMS satellite observations. Surface, mobilization, wet and dry deposition, convective and long-range transport are all driven by assimilated fields from the Goddard Earth Observing System Data Assimilation System, GEOS-DAS. Our version of GOCART transports sizes from.08-10 microns and only simulates Saharan dust. TOMS radiance observations in the ultra violet provide information on the mineral and carbonaceous aerosol fields. We use two main observables in this study: the TOMS aerosol index (AI) which is directly related to the ratio of the 340 and 380 radiances and the 380 radiance. These are sensitive to the aerosol optical thickness, the single scattering albedo and the height of the aerosol layer. The Goddard Aerosol Assimilation System (GAAS) uses the Data Assimilation Office's Physical-space Statistical Analysis System (PSAS) to combine TOMS observations and GOCART model first guess fields. At this initial phase we only assimilate observations into the the GOCART model over regions of Africa and the Atlantic where mineral aerosols dominant and carbonaceous aerosols are minimal, Our preliminary results during summer show that the assimilation with TOMS data modifies both the aerosol mass loading and the single scattering albedo. Assimilated aerosol fields will be compared with assimilated aerosol fields from GOCART and AERONET observations over Cape Verde.

  8. Evaluation of applicability of high-resolution multiangle imaging photo-polarimetric observations for aerosol atmospheric correction

    NASA Astrophysics Data System (ADS)

    Kalashnikova, Olga; Garay, Michael; Xu, Feng; Diner, David; Seidel, Felix

    2016-07-01

    Multiangle spectro-polarimetric measurements have been advocated as an additional tool for better understanding and quantifying the aerosol properties needed for atmospheric correction for ocean color retrievals. The central concern of this work is the assessment of the effects of absorbing aerosol properties on remote sensing reflectance measurement uncertainty caused by neglecting UV-enhanced absorption of carbonaceous particles and by not accounting for dust nonsphericity. In addition, we evaluate the polarimetric sensitivity of absorbing aerosol properties in light of measurement uncertainties achievable for the next generation of multi-angle polarimetric imaging instruments, and demonstrate advantages and disadvantages of wavelength selection in the UV/VNIR range. In this work a vector Markov Chain radiative transfer code including bio-optical models was used to quantitatively evaluate in water leaving radiances between atmospheres containing realistic UV-enhanced and non-spherical aerosols and the SEADAS carbonaceous and dust-like aerosol models. The phase matrices for the spherical smoke particles were calculated using a standard Mie code, while those for non-spherical dust particles were calculated using the numerical approach developed for modeling dust for the AERONET network of ground-based sunphotometers. As a next step, we have developed a retrieval code that employs a coupled Markov Chain (MC) and adding/doubling radiative transfer method for joint retrieval of aerosol properties and water leaving radiance from Airborne Multiangle SpectroPolarimetric Imager-1 (AirMSPI-1) polarimetric observations. The AirMSPI-1 instrument has been flying aboard the NASA ER-2 high altitude aircraft since October 2010. AirMSPI typically acquires observations of a target area at 9 view angles between ±67° at 10 m resolution. AirMSPI spectral channels are centered at 355, 380, 445, 470, 555, 660, and 865 nm, with 470, 660, and 865 reporting linear polarization. We

  9. Improved MODIS aerosol retrieval in urban areas using a land classification approach and empirical orthogonal functions

    NASA Astrophysics Data System (ADS)

    Levitan, Nathaniel; Gross, Barry

    2016-10-01

    New, high-resolution aerosol products are required in urban areas to improve the spatial coverage of the products, in terms of both resolution and retrieval frequency. These new products will improve our understanding of the spatial variability of aerosols in urban areas and will be useful in the detection of localized aerosol emissions. Urban aerosol retrieval is challenging for existing algorithms because of the high spatial variability of the surface reflectance, indicating the need for improved urban surface reflectance models. This problem can be stated in the language of novelty detection as the problem of selecting aerosol parameters whose effective surface reflectance spectrum is not an outlier in some space. In this paper, empirical orthogonal functions, a reconstruction-based novelty detection technique, is used to perform single-pixel aerosol retrieval using the single angular and temporal sample provided by the MODIS sensor. The empirical orthogonal basis functions are trained for different land classes using the MODIS BRDF MCD43 product. Existing land classification products are used in training and aerosol retrieval. The retrieval is compared against the existing operational MODIS 3 KM Dark Target (DT) aerosol product and co-located AERONET data. Based on the comparison, our method allows for a significant increase in retrieval frequency and a moderate decrease in the known biases of MODIS urban aerosol retrievals.

  10. An evaluation of uncertainty in the aerosol optical properties as represented by satellites and an ensemble of chemistry-climate coupled models over Europe

    NASA Astrophysics Data System (ADS)

    Palacios-Peña, Laura; Baró, Rocío; Jiménez-Guerrero, Pedro

    2016-04-01

    The changes in Earth's climate are produced by forcing agents such as greenhouse gases, clouds and atmospheric aerosols. The latter modify the Earth's radiative budget due to their optical, microphysical and chemical properties, and are considered to be the most uncertain forcing agent. There are two main approaches to the study of aerosols: (1) ground-based and remote sensing observations and (2) atmospheric modelling. With the aim of characterizing the uncertainties associated with these approaches, and estimating the radiative forcing caused by aerosols, the main objective of this work is to assess the representation of aerosol optical properties by different remote sensing sensors and online-coupled chemistry-climate models and to determine whether the inclusion of aerosol radiative feedbacks in this type of models improves the modelling outputs over Europe. Two case studies have been selected under the framework of the EuMetChem COST Action ES1004, when important aerosol episodes during 2010 over Europe took place: a Russian wildfires episode and a Saharan desert dust outbreak covering most of Europe. Model data comes from an ensemble of regional air quality-climate simulations performed by the working group 2 of EuMetChem, that investigates the importance of different processes and feedbacks in on-line coupled chemistry-climate models. These simulations are run for three different configurations for each model, differing in the inclusion (or not) of aerosol-radiation and aerosol-cloud interactions. The remote sensing data comes from three different sensors, MODIS (Moderate Resolution Imaging Spectroradiometer), OMI (Ozone Monitoring Instrument) and SeaWIFS (Sea-viewing Wide Field-of-view Sensor). The evaluation has been performed by using classical statistical metrics, comparing modelled and remotely sensed data versus a ground-based instrument network (AERONET). The evaluated variables are aerosol optical depth (AOD) and the Angström exponent (AE) at

  11. New 4.4 km-resolution aerosol product from NASA's Multi-angle Imaging SpectroRadiometer: A user's guide

    NASA Astrophysics Data System (ADS)

    Nastan, A.; Garay, M. J.; Witek, M. L.; Seidel, F.; Bull, M. A.; Kahn, R. A.; Diner, D. J.

    2017-12-01

    The NASA Multi-angle Imaging SpectroRadiometer (MISR) instrument on NASA's Terra satellite has provided an 18-year-and-growing aerosol data record. MISR's V22 aerosol product has been used extensively in studies of regional and global climate and the health effects of particulate air pollution. The MISR team recently released a new version of this product (V23), which increases the spatial resolution from 17.6 km to 4.4 km, improves performance versus AERONET, and provides better spatial coverage, more accurate cloud screening, and improved radiometric conditioning relative to V22. The product formatting was also completely revamped to improve clarity and usability. Established and prospective users of the MISR aerosol product are invited to learn about the features and performance of the new product and to participate in one-on-one demonstrations of how to obtain, visualize, and analyze the new product. Because the aerosol product is used in generating atmospherically-corrected surface bidirectional reflectance factors, improvements in MISR's 1.1 km resolution land surface product are a by-product of the updated aerosol retrievals. Illustrative comparisons of the V22 and V23 aerosol and surface products will be shown.

  12. Satellite-Based Evidence of Wavelength-Dependent Aerosol Absorption in Biomass Burning Smoke Inferred from Ozone Monitoring Instrument

    NASA Technical Reports Server (NTRS)

    Jethva, H.; Torres, O.

    2012-01-01

    We provide satellite-based evidence of the spectral dependence of absorption in biomass burning aerosols over South America using near-UV measurements made by the Ozone Monitoring Instrument (OMI) during 2005-2007. In the current near-UV OMI aerosol algorithm (OMAERUV), it is implicitly assumed that the only absorbing component in carbonaceous aerosols is black carbon whose imaginary component of the refractive index is wavelength independent. With this assumption, OMI-derived aerosol optical depth (AOD) is found to be significantly over-estimated compared to that of AERONET at several sites during intense biomass burning events (August-September). Other well-known sources of error affecting the near-UV method of aerosol retrieval do not explain the large observed AOD discrepancies between the satellite and the ground-based observations. A number of studies have revealed strong spectral dependence in carbonaceous aerosol absorption in the near-UV region suggesting the presence of organic carbon in biomass burning generated aerosols. A sensitivity analysis examining the importance of accounting for the presence of wavelength-dependent aerosol absorption in carbonaceous particles in satellite-based remote sensing was carried out in this work. The results convincingly show that the inclusion of spectrally-dependent aerosol absorption in the radiative transfer calculations leads to a more accurate characterization of the atmospheric load of carbonaceous aerosols.

  13. Evaluation Of The MODIS-VIIRS Land Surface Reflectance Fundamental Climate Data Record.

    NASA Astrophysics Data System (ADS)

    Roger, J. C.; Vermote, E.; Skakun, S.; Murphy, E.; Holben, B. N.; Justice, C. O.

    2016-12-01

    The land surface reflectance is a fundamental climate data record at the basis of the derivation of other climate data records (Albedo, LAI/Fpar, Vegetation indices) and has been recognized as a key parameter in the understanding of the land-surface-climate processes. Here, we present the validation of the Land surface reflectance used for MODIS and VIIRS data. This methodology uses the 6SV Code and data from the AERONET network. The first part was to define a protocol to use the AERONET data. To correctly take into account the aerosol model, we used the aerosol microphysical properties provided by the AERONET network including size-distribution (%Cf, %Cc, rf, rc, σr, σc), complex refractive indices and sphericity. Over the 670 available AERONET sites, we selected 230 sites with sufficient data. To be useful for validation, the aerosol model should be readily available anytime, which is rarely the case. We then used regressions for each microphysical parameter using the aerosol optical thickness at 440nm and the Angström coefficient as parameters. Comparisons with the AERONET dataset give good APU (Accuracy-Precision-Uncertainties) for each parameter. The second part of the study relies on the theoretical land surface retrieval. We generated TOA synthetic data using aerosol models from AERONET and determined APU on the surface reflectance retrieval while applying the MODIS and VIRRS Atmospheric correction software. Over 250 AERONET sites, the global uncertainties are for MODIS band 1 (red) is always lower than 0.0015 (when surface reflectance is > 0.04). This very good result shows the validity of our reference. Then, we used this reference for validating the MODIS and VIIRS surface reflectance products. The overall accuracy clearly reaches specifications. Finally, we will present an error budget of the surface reflectance retrieval. Indeed, to better understand how to improve the methodology, we defined an exhaustive error budget. We included all inputs i

  14. Studies of seasonal variations of aerosol optical properties with use of remote techniques

    NASA Astrophysics Data System (ADS)

    Strzalkowska, Agata; Zielinski, Tymon; Petelski, Tomasz; Pakszys, Paulina; Markuszewski, Piotr; Makuch, Przemyslaw

    2014-05-01

    According to the IPCC report, atmospheric aerosols due to their properties -extinction of Sun and Earth radiation and participation in processes of creation of clouds, are among basic "unknowns" in climate studies. Aerosols have large effect on the radiation balance of the Earth which has a significant impact on climate changes. They are also a key issue in the case of remote sensing measurements. The optical properties of atmospheric aerosols depend not only on their type but also on physical parameters such as pressure, humidity, wind speed and direction. The wide range of properties in which atmospheric aerosols affect Earth's climate is the reason of high unrelenting interest of scientists from different disciplines such as physics, chemistry and biology. Numerous studies have dealt with aerosol optical properties, e.g. Dubovik et al. (2002), but only in a few have regarded the influence of meteorological parameters on the optical properties of aerosols in the Baltic Sea area. Studies of aerosol properties over the Baltic were conducted already in the last forty years, e.g. Zielinski T. et. al. (1999) or Zielinski T. & A. Zielinski (2002). The experiments carried out at that time involved only one measuring instrument -e.g. LIDAR (range of 1 km) measurements and they were conducted only in selected areas of the Polish coastal zone. Moreover in those publications authors did not use measurements performed on board of research vessel (R/V Oceania), which belongs to Institute of Oceanology Polish Academy of Science (IO PAN) or data received from satellite measurements. In 2011 Zdun and Rozwadowska performed an analysis of all data derived from the AERONET station on the Gotland Island. The data were divided into seasons and supplemented by meteorological factors. However, so far no comprehensive study has been carried out for the entire Baltic Sea area. This was the reason to conduct further research of SEasonal Variations of Aerosol optical depth over the Baltic

  15. A-Train Aerosol Observations Preliminary Comparisons with AeroCom Models and Pathways to Observationally Based All-Sky Estimates

    NASA Technical Reports Server (NTRS)

    Redemann, J.; Livingston, J.; Shinozuka, Y.; Kacenelenbogen, M.; Russell, P.; LeBlanc, S.; Vaughan, M.; Ferrare, R.; Hostetler, C.; Rogers, R.; hide

    2014-01-01

    We have developed a technique for combining CALIOP aerosol backscatter, MODIS spectral AOD (aerosol optical depth), and OMI AAOD (absorption aerosol optical depth) retrievals for the purpose of estimating full spectral sets of aerosol radiative properties, and ultimately for calculating the 3-D distribution of direct aerosol radiative forcing. We present results using one year of data collected in 2007 and show comparisons of the aerosol radiative property estimates to collocated AERONET retrievals. Use of the recently released MODIS Collection 6 data for aerosol optical depths derived with the dark target and deep blue algorithms has extended the coverage of the multi-sensor estimates towards higher latitudes. We compare the spatio-temporal distribution of our multi-sensor aerosol retrievals and calculations of seasonal clear-sky aerosol radiative forcing based on the aerosol retrievals to values derived from four models that participated in the latest AeroCom model intercomparison initiative. We find significant inter-model differences, in particular for the aerosol single scattering albedo, which can be evaluated using the multi-sensor A-Train retrievals. We discuss the major challenges that exist in extending our clear-sky results to all-sky conditions. On the basis of comparisons to suborbital measurements, we present some of the limitations of the MODIS and CALIOP retrievals in the presence of adjacent or underlying clouds. Strategies for meeting these challenges are discussed.

  16. An Accuracy Assessment of the CALIOP/CALIPSO Version 2/Version 3 Daytime Aerosol Extinction Product Based on a Detailed Multi-Sensor, Multi-Platform Case Study

    NASA Technical Reports Server (NTRS)

    Kacenelenbogen, M.; Vaughan, M. A.; Redemann, J.; Hoff, R. M.; Rogers, R. R.; Ferrare, R. A.; Russell, P. B.; Hostetler, C. A.; Hair, J. W.; Holben, B. N.

    2011-01-01

    The Cloud Aerosol LIdar with Orthogonal Polarization (CALIOP), on board the CALIPSO platform, has measured profiles of total attenuated backscatter coefficient (level 1 products) since June 2006. CALIOP s level 2 products, such as the aerosol backscatter and extinction coefficient profiles, are retrieved using a complex succession of automated algorithms. The goal of this study is to help identify potential shortcomings in the CALIOP version 2 level 2 aerosol extinction product and to illustrate some of the motivation for the changes that have been introduced in the next version of CALIOP data (version 3, released in June 2010). To help illustrate the potential factors contributing to the uncertainty of the CALIOP aerosol extinction retrieval, we focus on a one-day, multi-instrument, multiplatform comparison study during the CALIPSO and Twilight Zone (CATZ) validation campaign on 4 August 2007. On that day, we observe a consistency in the Aerosol Optical Depth (AOD) values recorded by four different instruments (i.e. spaceborne MODerate Imaging Spectroradiometer, MODIS: 0.67 and POLarization and Directionality of Earth s Reflectances, POLDER: 0.58, airborne High Spectral Resolution Lidar, HSRL: 0.52 and ground-based AErosol RObotic NETwork, AERONET: 0.48 to 0.73) while CALIOP AOD is a factor of two lower (0.32 at 532 nm). This case study illustrates the following potential sources of uncertainty in the CALIOP AOD: (i) CALIOP s low signal-to-noise ratio (SNR) leading to the misclassification and/or lack of aerosol layer identification, especially close to the Earth s surface; (ii) the cloud contamination of CALIOP version 2 aerosol backscatter and extinction profiles; (iii) potentially erroneous assumptions of the aerosol extinction-to-backscatter ratio (Sa) used in CALIOP s extinction retrievals; and (iv) calibration coefficient biases in the CALIOP daytime attenuated backscatter coefficient profiles. The use of version 3 CALIOP extinction retrieval for our case

  17. Initial Verification of GEOS-4 Aerosols Using CALIPSO and MODIS: Scene Classification

    NASA Technical Reports Server (NTRS)

    Welton, Ellsworth J.; Colarco, Peter R.; Hlavka, Dennis; Levy, Robert C.; Vaughan, Mark A.; daSilva, Arlindo

    2007-01-01

    A-train sensors such as MODIS and MISR provide column aerosol properties, and in the process a means of estimating aerosol type (e.g. smoke vs. dust). Correct classification of aerosol type is important because retrievals are often dependent upon selection of the right aerosol model. In addition, aerosol scene classification helps place the retrieved products in context for comparisons and analysis with aerosol transport models. The recent addition of CALIPSO to the A-train now provides a means of classifying aerosol distribution with altitude. CALIPSO level 1 products include profiles of attenuated backscatter at 532 and 1064 nm, and depolarization at 532 nm. Backscatter intensity, wavelength ratio, and depolarization provide information on the vertical profile of aerosol concentration, size, and shape. Thus similar estimates of aerosol type using MODIS or MISR are possible with CALIPSO, and the combination of data from all sensors provides a means of 3D aerosol scene classification. The NASA Goddard Earth Observing System general circulation model and data assimilation system (GEOS-4) provides global 3D aerosol mass for sulfate, sea salt, dust, and black and organic carbon. A GEOS-4 aerosol scene classification algorithm has been developed to provide estimates of aerosol mixtures along the flight track for NASA's Geoscience Laser Altimeter System (GLAS) satellite lidar. GLAS launched in 2003 and did not have the benefit of depolarization measurements or other sensors from the A-train. Aerosol typing from GLAS data alone was not possible, and the GEOS-4 aerosol classifier has been used to identify aerosol type and improve the retrieval of GLAS products. Here we compare 3D aerosol scene classification using CALIPSO and MODIS with the GEOS-4 aerosol classifier. Dust, smoke, and pollution examples will be discussed in the context of providing an initial verification of the 3D GEOS-4 aerosol products. Prior model verification has only been attempted with surface mass

  18. Development of a generalized algorithm of satellite remote sensing using multi-wavelength and multi-pixel information (MWP method) for aerosol properties by satellite-borne imager

    NASA Astrophysics Data System (ADS)

    Hashimoto, M.; Nakajima, T.; Morimoto, S.; Takenaka, H.

    2014-12-01

    We have developed a new satellite remote sensing algorithm to retrieve the aerosol optical characteristics using multi-wavelength and multi-pixel information of satellite imagers (MWP method). In this algorithm, the inversion method is a combination of maximum a posteriori (MAP) method (Rodgers, 2000) and the Phillips-Twomey method (Phillips, 1962; Twomey, 1963) as a smoothing constraint for the state vector. Furthermore, with the progress of computing technique, this method has being combined with the direct radiation transfer calculation numerically solved by each iteration step of the non-linear inverse problem, without using LUT (Look Up Table) with several constraints.Retrieved parameters in our algorithm are aerosol optical properties, such as aerosol optical thickness (AOT) of fine and coarse mode particles, a volume soot fraction in fine mode particles, and ground surface albedo of each observed wavelength. We simultaneously retrieve all the parameters that characterize pixels in each of horizontal sub-domains consisting the target area. Then we successively apply the retrieval method to all the sub-domains in the target area.We conducted numerical tests for the retrieval of aerosol properties and ground surface albedo for GOSAT/CAI imager data to test the algorithm for the land area. The result of the experiment showed that AOTs of fine mode and coarse mode, soot fraction and ground surface albedo are successfully retrieved within expected accuracy. We discuss the accuracy of the algorithm for various land surface types. Then, we applied this algorithm to GOSAT/CAI imager data, and we compared retrieved and surface-observed AOTs at the CAI pixel closest to an AERONET (Aerosol Robotic Network) or SKYNET site in each region. Comparison at several sites in urban area indicated that AOTs retrieved by our method are in agreement with surface-observed AOT within ±0.066.Our future work is to extend the algorithm for analysis of AGEOS-II/GLI and GCOM/C-SGLI data.

  19. Global Monitoring of Clouds and Aerosols Using a Network of Micro-Pulse Lidar Systems

    NASA Technical Reports Server (NTRS)

    Welton, Ellsworth J.; Campbell, James R.; Spinhirne, James D.; Scott, V. Stanley

    2000-01-01

    Long-term global radiation programs, such as AERONET and BSRN, have shown success in monitoring column averaged cloud and aerosol optical properties. Little attention has been focused on global measurements of vertically resolved optical properties. Lidar systems are the preferred instrument for such measurements. However, global usage of lidar systems has not been achieved because of limits imposed by older systems that were large, expensive, and logistically difficult to use in the field. Small, eye-safe, and autonomous lidar systems are now currently available and overcome problems associated with older systems. The first such lidar to be developed is the Micro-pulse lidar System (MPL). The MPL has proven to be useful in the field because it can be automated, runs continuously (day and night), is eye-safe, can easily be transported and set up, and has a small field-of-view which removes multiple scattering concerns. We have developed successful protocols to operate and calibrate MPL systems. We have also developed a data analysis algorithm that produces data products such as cloud and aerosol layer heights, optical depths, extinction profiles, and the extinction-backscatter ratio. The algorithm minimizes the use of a priori assumptions and also produces error bars for all data products. Here we present an overview of our MPL protocols and data analysis techniques. We also discuss the ongoing construction of a global MPL network in conjunction with the AERONET program. Finally, we present some early results from the MPL network.

  20. Use of the NASA GEOS-5 SEAC4RS Meteorological and Aerosol Reanalysis for assessing simulated aerosol optical properties as a function of smoke age

    NASA Astrophysics Data System (ADS)

    Randles, C. A.; da Silva, A. M., Jr.; Colarco, P. R.; Darmenov, A.; Buchard, V.; Govindaraju, R.; Chen, G.; Hair, J. W.; Russell, P. B.; Shinozuka, Y.; Wagner, N.; Lack, D.

    2014-12-01

    The NASA Goddard Earth Observing System version 5 (GEOS-5) Earth system model, which includes an online aerosol module, provided chemical and weather forecasts during the SEAC4RS field campaign. For post-mission analysis, we have produced a high resolution (25 km) meteorological and aerosol reanalysis for the entire campaign period. In addition to the full meteorological observing system used for routine NWP, we assimilate 550 nm aerosol optical depth (AOD) derived from MODIS (both Aqua and Terra satellites), ground-based AERONET sun photometers, and the MISR instrument (over bright surfaces only). Daily biomass burning emissions of CO, CO2, SO2, and aerosols are derived from MODIS fire radiative power retrievals. We have also introduced novel smoke "age" tracers, which provide, for a given time, a snapshot histogram of the age of simulated smoke aerosol. Because GEOS-5 assimilates remotely sensed AOD data, it generally reproduces observed (column) AOD compared to, for example, the airborne 4-STAR instrument. Constraining AOD, however, does not imply a good representation of either the vertical profile or the aerosol microphysical properties (e.g., composition, absorption). We do find a reasonable vertical structure for aerosols is attained in the model, provided actual smoke injection heights are not much above the planetary boundary layer, as verified with observations from DIAL/HRSL aboard the DC8. The translation of the simulated aerosol microphysical properties to total column AOD, needed in the aerosol assimilation step, is based on prescribed mass extinction efficiencies that depend on wavelength, composition, and relative humidity. Here we also evaluate the performance of the simulated aerosol speciation by examining in situ retrievals of aerosol absorption/single scattering albedo and scattering growth factor (f(RH)) from the LARGE and AOP suite of instruments. Putting these comparisons in the context of smoke age as diagnosed by the model helps us to

  1. Retrieval and Validation of Aerosol Optical Depth by using the GF-1 Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Xu, S.; Wang, L.; Cai, K.; Ge, Q.

    2017-05-01

    Based on the characteristics of GF-1 remote sensing data, the method and data processing procedure to retrieve the Aerosol Optical Depth (AOD) are developed in this study. The surface contribution over dense vegetation and urban bright target areas are respectively removed by using the dark target and deep blue algorithms. Our method is applied for the three serious polluted Beijing-Tianjin-Hebei (BTH), Yangtze River Delta (YRD) and Pearl River Delta (PRD) regions. The retrieved AOD are validated by ground-based AERONET data from Beijing, Hangzhou, Hong Kong sites. Our results show that, 1) the heavy aerosol loadings are usually distributed in high industrial emission and dense populated cities, with the AOD value near 1. 2) There is a good agreement between satellite-retrievals and in-site observations, with the coefficient factors of 0.71 (BTH), 0.55 (YRD) and 0.54(PRD). 3) The GF-1 retrieval uncertainties are mainly from the impact of cloud contamination, high surface reflectance and assumed aerosol model.

  2. Estimation of atmospheric columnar organic matter (OM) mass concentration from remote sensing measurements of aerosol spectral refractive indices

    NASA Astrophysics Data System (ADS)

    Zhang, Ying; Li, Zhengqiang; Sun, Yele; Lv, Yang; Xie, Yisong

    2018-04-01

    Aerosols have adverse effects on human health and air quality, changing Earth's energy balance and lead to climate change. The components of aerosol are important because of the different spectral characteristics. Based on the low hygroscopic and high scattering properties of organic matter (OM) in fine modal atmospheric aerosols, we develop an inversion algorithm using remote sensing to obtain aerosol components including black carbon (BC), organic matter (OM), ammonium nitrate-like (AN), dust-like (DU) components and aerosol water content (AW). In the algorithm, the microphysical characteristics (i.e. volume distribution and complex refractive index) of particulates are preliminarily separated to fine and coarse modes, and then aerosol components are retrieved using bimodal parameters. We execute the algorithm using remote sensing measurements of sun-sky radiometer at AERONET site (Beijing RADI) in a period from October of 2014 to January of 2015. The results show a reasonable distribution of aerosol components and a good fit for spectral feature calculations. The mean OM mass concentration in atmospheric column is account for 14.93% of the total and 56.34% of dry and fine-mode aerosol, being a fairly good correlation (R = 0.56) with the in situ observations near the surface layer.

  3. Lessons learned and way forward from 6 years of Aerosol_cci

    NASA Astrophysics Data System (ADS)

    Popp, Thomas; de Leeuw, Gerrit; Pinnock, Simon

    2017-04-01

    Within the ESA Climate Change Initiative (CCI) Aerosol_cci (2010 - 2017) conducts intensive work to improve and qualify algorithms for the retrieval of aerosol information from European sensors. Meanwhile, several validated (multi-) decadal time series of different aerosol parameters from complementary sensors are available: Aerosol Optical Depth (AOD), stratospheric extinction profiles, a qualitative Absorbing Aerosol Index (AAI), fine mode AOD, mineral dust AOD; absorption information and aerosol layer height are in an evaluation phase and the multi-pixel GRASP algorithm for the POLDER instrument is used for selected regions. Validation (vs. AERONET, MAN) and inter-comparison to other satellite datasets (MODIS, MISR, SeaWIFS) proved the high quality of the available datasets comparable to other satellite retrievals and revealed needs for algorithm improvement (for example for higher AOD values) which were taken into account in an iterative evolution cycle. The datasets contain pixel level uncertainty estimates which were also validated and improved in the reprocessing. The use of an ensemble method was tested, where several algorithms are applied to the same sensor. The presentation will summarize and discuss the lessons learned from the 6 years of intensive collaboration and highlight major achievements (significantly improved AOD quality, fine mode AOD, dust AOD, pixel level uncertainties, ensemble approach); also limitations and remaining deficits shall be discussed. An outlook will discuss the way forward for the continuous algorithm improvement and re-processing together with opportunities for time series extension with successor instruments of the Sentinel family and the complementarity of the different satellite aerosol products.

  4. Evaluation of VIIRS, GOCI, and MODIS Collection 6 AOD Retrievals Against Ground Sunphotometer Observations Over East Asia

    NASA Technical Reports Server (NTRS)

    Xiao, Q.; Zhang, H.; Choi, M.; Li, S.; Kondragunta, S.; Kim, J.; Holben, B.; Levy, R. C.; Liu, Y.

    2016-01-01

    Persistent high aerosol loadings together with extremely high population densities have raised serious air quality and public health concerns in many urban centers in East Asia. However, ground-based air quality monitoring is relatively limited in this area. Recently, satellite-retrieved Aerosol Optical Depth (AOD) at high resolution has become a powerful tool to characterize aerosol patterns in space and time. Using ground AOD observations from the Aerosol Robotic Network (AERONET) and the Distributed Regional Aerosol Gridded Observation Networks (DRAGON)-Asia Campaign, as well as from handheld sunphotometers, we evaluated emerging aerosol products from the Visible Infrared Imaging Radiometer Suite (VIIRS) aboard the Suomi National Polar-orbiting Partnership (S-NPP), the Geostationary Ocean Color Imager (GOCI) aboard the Communication, Ocean, and Meteorology Satellite (COMS), and Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) (Collection 6) in East Asia in 2012 and 2013. In the case study in Beijing, when compared with AOD observations from handheld sunphotometers, 51% of VIIRS Environmental Data Record (EDR) AOD, 37% of GOCI AOD, 33% of VIIRS Intermediate Product (IP) AOD, 26% of Terra MODIS C6 3km AOD, and 16% of Aqua MODIS C6 3km AOD fell within the reference expected error (EE) envelope (+/-0.05/+/- 0.15 AOD). Comparing against AERONET AOD over the JapanSouth Korea region, 64% of EDR, 37% of IP, 61% of GOCI, 39% of Terra MODIS, and 56% of Aqua MODIS C6 3km AOD fell within the EE. In general, satellite aerosol products performed better in tracking the day-to-day variability than tracking the spatial variability at high resolutions. The VIIRS EDR and GOCI products provided the most accurate AOD retrievals, while VIIRS IP and MODIS C6 3km products had positive biases.

  5. Evaluation of VIIRS, GOCI, and MODIS Collection 6 AOD retrievals against ground sunphotometer observations over East Asia

    NASA Astrophysics Data System (ADS)

    Xiao, Q.; Zhang, H.; Choi, M.; Li, S.; Kondragunta, S.; Kim, J.; Holben, B.; Levy, R. C.; Liu, Y.

    2016-02-01

    Persistent high aerosol loadings together with extremely high population densities have raised serious air quality and public health concerns in many urban centers in East Asia. However, ground-based air quality monitoring is relatively limited in this area. Recently, satellite-retrieved Aerosol Optical Depth (AOD) at high resolution has become a powerful tool to characterize aerosol patterns in space and time. Using ground AOD observations from the Aerosol Robotic Network (AERONET) and the Distributed Regional Aerosol Gridded Observation Networks (DRAGON)-Asia Campaign, as well as from handheld sunphotometers, we evaluated emerging aerosol products from the Visible Infrared Imaging Radiometer Suite (VIIRS) aboard the Suomi National Polar-orbiting Partnership (S-NPP), the Geostationary Ocean Color Imager (GOCI) aboard the Communication, Ocean, and Meteorology Satellite (COMS), and Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) (Collection 6) in East Asia in 2012 and 2013. In the case study in Beijing, when compared with AOD observations from handheld sunphotometers, 51 % of VIIRS Environmental Data Record (EDR) AOD, 37 % of GOCI AOD, 33 % of VIIRS Intermediate Product (IP) AOD, 26 % of Terra MODIS C6 3 km AOD, and 16 % of Aqua MODIS C6 3 km AOD fell within the reference expected error (EE) envelope (±0.05 ± 0.15 AOD). Comparing against AERONET AOD over the Japan-South Korea region, 64 % of EDR, 37 % of IP, 61 % of GOCI, 39 % of Terra MODIS, and 56 % of Aqua MODIS C6 3 km AOD fell within the EE. In general, satellite aerosol products performed better in tracking the day-to-day variability than tracking the spatial variability at high resolutions. The VIIRS EDR and GOCI products provided the most accurate AOD retrievals, while VIIRS IP and MODIS C6 3 km products had positive biases.

  6. Observations and regional modeling of aerosol optical properties, speciation and size distribution over Northern Africa and western Europe

    NASA Astrophysics Data System (ADS)

    Menut, Laurent; Siour, Guillaume; Mailler, Sylvain; Couvidat, Florian; Bessagnet, Bertrand

    2016-10-01

    The aerosol speciation and size distribution is modeled during the summer 2013 and over a large area encompassing Africa, Mediterranean and western Europe. The modeled aerosol is compared to available measurements such as the AERONET aerosol optical depth (AOD) and aerosol size distribution (ASD) and the EMEP network for surface concentrations of particulate matter PM2.5, PM10 and inorganic species (nitrate, sulfate and ammonium). The main goal of this study is to quantify the model ability to realistically model the speciation and size distribution of the aerosol. Results first showed that the long-range transport pathways are well reproduced and mainly constituted by mineral dust: spatial correlation is ≈ 0.9 for AOD and Ångström exponent, when temporal correlations show that the day-to-day variability is more difficult to reproduce. Over Europe, PM2.5 and PM10 have a mean temporal correlation of ≈ 0.4 but the lowest spatial correlation ( ≈ 0.25 and 0.62, respectively), showing that the fine particles are not well localized or transported. Being short-lived species, the uncertainties on meteorology and emissions induce these lowest scores. However, time series of PM2.5 with the speciation show a good agreement between model and measurements and are useful for discriminating the aerosol composition. Using a classification from the south (Africa) to the north (northern Europe), it is shown that mineral dust relative mass contribution decreases from 50 to 10 % when nitrate increases from 0 to 20 % and all other species, sulfate, sea salt, ammonium, elemental carbon, primary organic matter, are constant. The secondary organic aerosol contribution is between 10 and 20 % with a maximum at the latitude of the Mediterranean Sea (Spanish stations). For inorganic species, it is shown that nitrate, sulfate and ammonium have a mean temporal correlation of 0.25, 0.37 and 0.17, respectively. The spatial correlation is better (0.25, 0.5 and 0.87), showing that the mean

  7. Overview of ACE-Asia Spring 2001 Investigations on Aerosol Radiative Effects and Related Aerosol Properties

    NASA Technical Reports Server (NTRS)

    Russell, Philip B.; Valero, F. P. J.; Flatau, P. J.; Bergin, M.; Holben, B.; Nakajima, T.; Pilewskie, P.; Bergstrom, R.; Hipskind, R. Stephen (Technical Monitor)

    2001-01-01

    depth gradient, with AOD(500 nm) extremes from 0.1 to 1.1. On the Pacific transit from Honolulu to Hachijo AOD(500 nm) averaged 0.2, including increases to 0.4 after several storms, suggesting the strong impact of wind-generated seasalt. The AOD maximum, found in the Sea of Japan, was influenced by dust and anthropogenic sources. (4) In Beijing, single scattering albedo retrieved from AERONET sun-sky radiometry yielded midvisible SSA=0.88 with strong wavelength dependence, suggesting a significant black carbon component. SSA retrieved during dust episodes was approx. 0.90 and variable but wavelength neutral reflecting the presence of urban haze with the dust. Downwind at Anmyon Island SSA was considerably higher, approx. 0.94, but wavelength neutral for dust episodes and spectrally dependent during non dust periods. (5) Satellite retrievals show major aerosol features moving from Asia over the Pacific; however, determining seasonal-average aerosol effects is hampered by sampling frequency and large-scale cloud systems that obscure key parts of aerosol patterns. Preliminary calculations using, satellite-retrieved AOD fields and initial ACE-Asia aerosol properties (including sulfates, soot, and dust) yield clear-sky aerosol radiative effects in the seasonal-average ACE-Asia plume exceeding those of manmade greenhouse gases. Quantifying all-sky direct aerosol radiative effects is complicated by the need to define the height of absorbing aerosols with respect to cloud decks.

  8. Modeling of Aerosol Vertical Profiles Using GIS and Remote Sensing

    PubMed Central

    Wong, Man Sing; Nichol, Janet E.; Lee, Kwon Ho

    2009-01-01

    The use of Geographic Information Systems (GIS) and Remote Sensing (RS) by climatologists, environmentalists and urban planners for three dimensional modeling and visualization of the landscape is well established. However no previous study has implemented these techniques for 3D modeling of atmospheric aerosols because air quality data is traditionally measured at ground points, or from satellite images, with no vertical dimension. This study presents a prototype for modeling and visualizing aerosol vertical profiles over a 3D urban landscape in Hong Kong. The method uses a newly developed technique for the derivation of aerosol vertical profiles from AERONET sunphotometer measurements and surface visibility data, and links these to a 3D urban model. This permits automated modeling and visualization of aerosol concentrations at different atmospheric levels over the urban landscape in near-real time. Since the GIS platform permits presentation of the aerosol vertical distribution in 3D, it can be related to the built environment of the city. Examples are given of the applications of the model, including diagnosis of the relative contribution of vehicle emissions to pollution levels in the city, based on increased near-surface concentrations around weekday rush-hour times. The ability to model changes in air quality and visibility from ground level to the top of tall buildings is also demonstrated, and this has implications for energy use and environmental policies for the tall mega-cities of the future. PMID:22408531

  9. Modeling of Aerosol Vertical Profiles Using GIS and Remote Sensing.

    PubMed

    Wong, Man Sing; Nichol, Janet E; Lee, Kwon Ho

    2009-01-01

    The use of Geographic Information Systems (GIS) and Remote Sensing (RS) by climatologists, environmentalists and urban planners for three dimensional modeling and visualization of the landscape is well established. However no previous study has implemented these techniques for 3D modeling of atmospheric aerosols because air quality data is traditionally measured at ground points, or from satellite images, with no vertical dimension. This study presents a prototype for modeling and visualizing aerosol vertical profiles over a 3D urban landscape in Hong Kong. The method uses a newly developed technique for the derivation of aerosol vertical profiles from AERONET sunphotometer measurements and surface visibility data, and links these to a 3D urban model. This permits automated modeling and visualization of aerosol concentrations at different atmospheric levels over the urban landscape in near-real time. Since the GIS platform permits presentation of the aerosol vertical distribution in 3D, it can be related to the built environment of the city. Examples are given of the applications of the model, including diagnosis of the relative contribution of vehicle emissions to pollution levels in the city, based on increased near-surface concentrations around weekday rush-hour times. The ability to model changes in air quality and visibility from ground level to the top of tall buildings is also demonstrated, and this has implications for energy use and environmental policies for the tall mega-cities of the future.

  10. How well do satellite observations and models capture diurnal variation in aerosols over the Korean Peninsula?

    NASA Astrophysics Data System (ADS)

    Hyer, E. J.; Xian, P.; Campbell, J. R.

    2016-12-01

    Aerosol sources, sinks, and transport processes have important variations over the diurnal cycle. Advances in geostationary satellite observation have made it possible to retrieve aerosol properties over a larger fraction of the diurnal cycle in many areas. However, the conditions for retrieval of aerosol from space also have systematic diurnal variation, which must be considered when interpreting satellite data. We used surface PM2.5 observations from the Korean National Institute for Environmental Research, together with the dense network of AERONET sun photometers deployed in Korea for the KORUS-AQ mission in spring 2016, to examine diurnal variations in aerosol conditions and quantify the effect of systematic diurnal processes on daily integrated aerosol quantities of forcing and PM2.5 24-hour exposure. Time-resolved observations of aerosols from in situ data were compared to polar and geostationary satellite observations to evaluate these questions: 1) How well is diurnal variation observed in situ captured by satellite products? 2) Do the satellite products show evidence of systematic biases related to diurnally varying observing conditions? 3) What is the implication of diurnal variation for aerosol forcing estimates based on observations near solar noon? The diurnal variation diagnosed from observations was also compared to the output of the Navy Aerosol Analysis and Prediction System (NAAPS), to examine the ability of this model to capture aerosol diurnal variation. Finally, we discuss the implications of the observed diurnal variation for assimilation of aerosol observations into forecast models.

  11. Long term aerosol and trace gas measurements in Central Amazonia

    NASA Astrophysics Data System (ADS)

    Artaxo, Paulo; Barbosa, Henrique M. J.; Ferreira de Brito, Joel; Carbone, Samara; Rizzo, Luciana V.; Andreae, Meinrat O.; Martin, Scot T.

    2016-04-01

    The central region of the Amazonian forest is a pristine region in terms of aerosol and trace gases concentrations. In the wet season, Amazonia is actually one of the cleanest continental region we can observe on Earth. A long term observational program started 20 years ago, and show important features of this pristine region. Several sites were used, between then ATTO (Amazon Tall Tower Observatory) and ZF2 ecological research site, both 70-150 Km North of Manaus, receiving air masses that traveled over 1500 km of pristine tropical forests. The sites are GAW regional monitoring stations. Aerosol chemical composition (OC/EC and trace elements) is being analysed using filters for fine (PM2.5) and coarse mode aerosol as well as Aerodyne ACSM (Aerosol Chemical Speciation Monitors). VOCs are measured using PTR-MS, while CO, O3 and CO2 are routinely measured. Aerosol absorption is being studied with AE33 aethalometers and MAAP (Multi Angle Absorption Photometers). Aerosol light scattering are being measured at several wavelengths using TSI and Ecotech nephelometers. Aerosol size distribution is determined using scanning mobility particle sizer at each site. Lidars measure the aerosol column up to 12 Km providing the vertical profile of aerosol extinction. The aerosol column is measures using AERONET sun photometers. In the wet season, organic aerosol comprises 75-85% of fine aerosol, and sulfate and nitrate concentrations are very low (1-3 percent). Aerosols are dominated by biogenic primary particles as well as SOA from biogenic precursors. Black carbon in the wet season accounts for 5-9% of fine mode aerosol. Ozone in the wet season peaks at 10-12 ppb at the middle of the day, while carbon monoxide averages at 50-80 ppb. Aerosol optical thickness (AOT) is a low 0.05 to 0.1 at 550 nm in the wet season. Sahara dust transport events sporadically enhance the concentration of soil dust aerosols and black carbon. In the dry season (August-December), long range transported

  12. Case studies of aerosol and ocean color retrieval using a Markov chain radiative transfer model and AirMSPI measurements

    NASA Astrophysics Data System (ADS)

    Xu, F.; Diner, D. J.; Seidel, F. C.; Dubovik, O.; Zhai, P.

    2014-12-01

    A vector Markov chain radiative transfer method was developed for forward modeling of radiance and polarization fields in a coupled atmosphere-ocean system. The method was benchmarked against an independent Successive Orders of Scattering code and linearized through the use of Jacobians. Incorporated with the multi-patch optimization algorithm and look-up-table method, simultaneous aerosol and ocean color retrievals were performed using imagery acquired by the Airborne Multiangle SpectroPolarimetric Imager (AirMSPI) when it was operated in step-and-stare mode with 9 viewing angles ranging between ±67°. Data from channels near 355, 380, 445, 470*, 555, 660*, and 865* nm were used in the retrievals, where the asterisk denotes the polarimetric bands. Retrievals were run for AirMSPI overflights over Southern California and Monterey Bay, CA. For the relatively high aerosol optical depth (AOD) case (~0.28 at 550 nm), the retrieved aerosol concentration, size distribution, water-leaving radiance, and chlorophyll concentration were compared to those reported by the USC SeaPRISM AERONET-OC site off the coast of Southern California on 6 February 2013. For the relatively low AOD case (~0.08 at 550 nm), the retrieved aerosol concentration and size distribution were compared to those reported by the Monterey Bay AERONET site on 28 April 2014. Further, we evaluate the benefits of multi-angle and polarimetric observations by performing the retrievals using (a) all view angles and channels; (b) all view angles but radiances only (no polarization); (c) the nadir view angle only with both radiance and polarization; and (d) the nadir view angle without polarization. Optimized retrievals using different initial guesses were performed to provide a measure of retrieval uncertainty. Removal of multi-angular or polarimetric information resulted in increases in both parameter uncertainty and systematic bias. Potential accuracy improvements afforded by applying constraints on the surface

  13. Investigation of the seasonal variations of aerosol physicochemical properties and their impact on cloud condensation nuclei number concentration

    NASA Astrophysics Data System (ADS)

    Logan, Timothy S.

    Aerosols are among the most complex yet widely studied components of the atmosphere not only due to the seasonal variability of their physical and chemical properties but also their effects on climate change. The three main aerosol types that are known to affect the physics and chemistry of the atmosphere are: mineral dust, anthropogenic pollution, and biomass burning aerosols. In order to understand how these aerosols affect the atmosphere, this dissertation addresses the following three scientific questions through a combination of surface and satellite observations: SQ1: What are the seasonal and regional variations of aerosol physico-chemical properties at four selected Asian sites? SQ2: How do these aerosol properties change during transpacific and intra-continental long range transport? SQ3: What are the impacts of aerosol properties on marine boundary layer cloud condensation nuclei number concentration? This dissertation uses an innovative approach to classify aerosol properties by region and season to address SQ1. This is useful because this method provides an additional dimension when investigating the physico-chemical properties of aerosols by linking a regional and seasonal dependence to both the aerosol direct and indirect effects. This method involves isolating the aerosol physico-chemical properties into four separate regions using AERONET retrieved Angstrom exponent (AEAOD) and single scattering co-albedo (o oabs) to denote aerosol size and absorptive properties. The aerosols events are then clustered by season. The method is first applied to four AERONET sites representing single mode aerosol dominant regions: weakly absorbing pollution (NASA Goddard), strongly absorbing pollution (Mexico City), mineral dust (Solar Village), and biomass burning smoke (Alta Floresta). The method is then applied to four Asian sites that represent complicated aerosol components. There are strong regional and seasonal influences of the four aerosol types over the

  14. Studying Diurnal Variations of Aerosols with NASA MERRA-2 Reanalysis Data

    NASA Technical Reports Server (NTRS)

    Shen, Suhung; Ostrenga, Dana M.; Zeng, Jian; Vollmer, Bruce E.

    2018-01-01

    Aerosols play an important role in atmospheric dynamics, climate variations, and Earth's energy cycle by altering the radiation balance in the atmosphere through interaction with clouds, providing fertilizer for forests and canopy, and as a supply of iron to the ocean over long time periods. Studies suggest that much of the feedback between dust aerosols and dynamics is associated with diurnal and synoptic scale variability. However, the lack of sub-daily resolution of aerosols from satellite observations makes it difficult to study the diurnal characteristics, especially over tropical and subtropical regions. Investigation of this topic utilizes over 37 years of simulated global aerosol products from NASA atmospheric reanalysis, in the second Modern-Era Retrospective analysis for Research and Applications (MERRA-2) data set, available from NASA Goddard Earth Science Data and Information Services Center (GES DISC). MERRA-2 covers the period 1980-present, and is continuing as an ongoing climate analysis. Aerosol assimilation is included throughout the period, using data from MODIS, MISR, AERONET, and AVHRR (in the pre-EOS period). The aerosols are assimilated using the MERRA-2 aerosol model, which interacts directly with radiation parameterization, and is radiatively coupled with atmospheric model dynamics in the Goddard Earth Observing System Model, Version 5 (GEOS-5). Hourly, monthly, and monthly diurnal data are available at spatial resolution of 0.5o x 0.625o (latitude x longitude). By using MERRA-2 hourly and monthly diurnal products, different aerosol diurnal variabilities are observed over North America, Africa, Asia, and Australia, that may be due to different meteorological conditions and aerosol sources. The presentation will also provide an overview of MERRA-2 data services at GES DISC, such as how to find and download data, and how to quickly visualize and analyze data online with Giovanni.

  15. An algorithm for estimating aerosol optical depth from HIMAWARI-8 data over Ocean

    NASA Astrophysics Data System (ADS)

    Lee, Kwon Ho

    2016-04-01

    The paper presents currently developing algorithm for aerosol detection and retrieval over ocean for the next generation geostationary satellite, HIMAWARI-8. Enhanced geostationary remote sensing observations are now enables for aerosol retrieval of dust, smoke, and ash, which began a new era of geostationary aerosol observations. Sixteen channels of the Advanced HIMAWARI Imager (AHI) onboard HIMAWARI-8 offer capabilities for aerosol remote sensing similar to those currently provided by the Moderate Resolution Imaging Spectroradiometer (MODIS). Aerosols were estimated in detection processing from visible and infrared channel radiances, and in retrieval processing using the inversion-optimization of satellite-observed radiances with those calculated from radiative transfer model. The retrievals are performed operationally every ten minutes for pixel sizes of ~8 km. The algorithm currently under development uses a multichannel approach to estimate the effective radius, aerosol optical depth (AOD) simultaneously. The instantaneous retrieved AOD is evaluated by the MODIS level 2 operational aerosol products (C006), and the daily retrieved AOD was compared with ground-based measurements from the AERONET databases. The results show that the detection of aerosol and estimated AOD are in good agreement with the MODIS data and ground measurements with a correlation coefficient of ˜0.90 and a bias of 4%. These results suggest that the proposed method applied to the HIMAWARI-8 satellite data can accurately estimate continuous AOD. Acknowledgments This work was supported by "Development of Geostationary Meteorological Satellite Ground Segment(NMSC-2014-01)" program funded by National Meteorological Satellite Centre(NMSC) of Korea Meteorological Administration(KMA).

  16. Information Content of Aerosol Retrievals in the Sunglint Region

    NASA Technical Reports Server (NTRS)

    Ottaviani, M.; Knobelspiesse, K.; Cairns, B.; Mishchenko, M.

    2013-01-01

    We exploit quantitative metrics to investigate the information content in retrievals of atmospheric aerosol parameters (with a focus on single-scattering albedo), contained in multi-angle and multi-spectral measurements with sufficient dynamical range in the sunglint region. The simulations are performed for two classes of maritime aerosols with optical and microphysical properties compiled from measurements of the Aerosol Robotic Network. The information content is assessed using the inverse formalism and is compared to that deriving from observations not affected by sunglint. We find that there indeed is additional information in measurements containing sunglint, not just for single-scattering albedo, but also for aerosol optical thickness and the complex refractive index of the fine aerosol size mode, although the amount of additional information varies with aerosol type.

  17. Correlation Between Soil Moisture and Dust Emissions: An Investigation for Global Climate Modeling

    NASA Technical Reports Server (NTRS)

    Fredrickson, Carley; Tan, Qian

    2017-01-01

    This work is using the newly available NASA SMAP soil moisture measurement data to evaluate its impact on the atmospheric dust emissions. Dust is an important component of atmospheric aerosols, which affects both climate and air quality. In this work, we focused on semi-desert regions, where dust emissions show seasonal variations due to soil moisture changes, i.e. in Sahel of Africa. We first identified three Aerosol Robotic Network (AERONET) sites in the Sahel (IER_Cinzana, Banizoumbou, and Zinder_Airport). We then utilized measurements of aerosol optical depth (AOD), fine mode fraction, size distribution, and single-scattering albedo and its wave-length dependence to select dust plumes from the available measurements We matched the latitude and longitude of the AERONET station to the corresponding SMAP data cell in the years 2015 and 2016, and calculated their correlation coefficient. Additionally, we looked at the correlation coefficient with a three-day and a five-day shift to check the impact of soil moisture on dust plumes with some time delay. Due to the arid nature of Banizoumbou and Zinder_Airport, no correlation was found to exist between local soil moisture and dust aerosol load. While IER_Cinzana had soil moisture levels above the satellite threshold of 0.02cm3/cm3, R-value approaching zero indicated no presence of a correlation. On the other hand, Ilorin demonstrated a significant negative correlation between aerosol optical depth and soil moisture. When isolating the analysis to Ilorin's dry season, a negative correlation of -0.593 was the largest dust-isolated R-value recorded, suggesting that soil moisture is driven the dust emission in this semi-desert region during transitional season.

  18. Remote sensing of soot carbon - Part 2: Understanding the absorption Ångström exponent

    NASA Astrophysics Data System (ADS)

    Schuster, G. L.; Dubovik, O.; Arola, A.; Eck, T. F.; Holben, B. N.

    2016-02-01

    Recently, some authors have suggested that the absorption Ångström exponent (AAE) can be used to deduce the component aerosol absorption optical depths (AAODs) of carbonaceous aerosols in the AERONET database. This AAE approach presumes that AAE ≪ 1 for soot carbon, which contrasts the traditional small particle limit of AAE = 1 for soot carbon. Thus, we provide an overview of the AERONET retrieval, and we investigate how the microphysics of carbonaceous aerosols can be interpreted in the AERONET AAE product. We find that AAE ≪ 1 in the AERONET database requires large coarse mode fractions and/or imaginary refractive indices that increase with wavelength. Neither of these characteristics are consistent with the current definition of soot carbon, so we explore other possibilities for the cause of AAE ≪ 1. AAE is related to particle size, and coarse mode particles have a smaller AAE than fine mode particles for a given aerosol mixture of species. We also note that the mineral goethite has an imaginary refractive index that increases with wavelength, is very common in dust regions, and can easily contribute to AAE ≪ 1. We find that AAE ≪ 1 can not be caused by soot carbon, unless soot carbon has an imaginary refractive index that increases with wavelength throughout the visible and near-infrared spectrums. Finally, AAE is not a robust parameter for separating carbonaceous absorption from dust aerosol absorption in the AERONET database.

  19. Possible indicators of long-range transport for aerosol emitted from various source regions in Northeast Asia

    NASA Astrophysics Data System (ADS)

    Park, S.; Kim, C.

    2013-12-01

    Air pollutant is affected by both long-range transboundary processes and local air pollution emission. Therefore it is important to identify the origin of air pollutant, for example, by classifying air pollutants into long-range transport (LRT) dominant process and local emission dominant (LED) cases. This study proposed several chemical and physical indicators of LRT process of aerosol concentrations observed at Korean peninsula. In order to identify the source regions and to estimate the contributions of both LRT and LED, we performed Lagrangian particle dispersion model(FLEXPART) and selected high pollution days over the three source regions in China inland and one Korea peninsula defined in this study; LRT-I to III and LED case. Next, we investigated the chemical and physical characteristics of LRT process of aerosol, and contrasted to those in the LED case over the Northeast Asia. We examined the difference of both modeled features simulated by CMAQ and as well measured aerosol optical properties of satellite-based sensor MODIS and AERONET data. Modeling study showed that the most effective indicator is the sulfur conversion ratios such as SO42-/(SO2+ SO42-) and SO42-/ SO2 for high sulfate condition. The ratio of N-containing species such as NOx (or NOy) to CO were the next best alternative indicators. In the meteorological fields, the results showed that pressure pattern and streamline flow are similar on a case by case basis. For observational physical features, we obtained the spatial distributions of the mean AOD, fine mode fraction (FMF), angstrom exponent (AE) by taking the average of MODIS aerosol products for the each analysis period. The highest AOD was found over the industrialized coastal region regardless of cases. AERONET data showed that aerosol size distribution showed significantly higher concentration of fine-mode particle in LED cases in comparison with that of LRT groups, suggesting that the amplitude fine modes of LRT relative to LED could

  20. 4STAR Sky-Scanning Retrievals of Aerosol Intensive Optical Properties from Multiple Field Campaigns with Detailed Comparisons of SSA Reported During SEAC4RS

    NASA Technical Reports Server (NTRS)

    Flynn, Connor; Dahlgren, R. P.; Dunagan, S.; Johnson, R.; Kacenelenbogen, M.; LeBlanc, S.; Livingston, J.; Redemann, J.; Schmid, B.; Segal Rozenhaimer, M.; hide

    2015-01-01

    The 4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research) instrument combines airborne sun tracking capabilities of the Ames Airborne Tracking Sun Photometer (AATS-14) with AERONET-like sky-scanning capability and adds state-of-the-art fiber-coupled grating spectrometry to yield hyper spectral measurements of direct solar irradiance and angularly resolved sky radiance. The combination of sun-tracking and sky-scanning capability enables retrievals of wavelength-dependent aerosol optical depth (AOD), mode-resolved aerosol size distribution (SD), asphericity, and complex refractive index, and thus also the scattering phase function, asymmetry parameter, single-scattering albedo (SSA), and absorption aerosol optical thickness (AAOT).From 2012 to 2014 4STAR participated in four major field campaigns: the U.S. Dept. of Energy TCAP I II campaigns, and NASAs SEAC4RS and ARISE campaigns. Establishing a strong performance record, 4STAR operated successfully on all flights conducted during each of these campaigns. Sky radiance spectra from scans in either constant azimuth (principal plane) or constant zenith angle (almucantar) were interspersed with direct beam measurements during level legs. During SEAC4RS and ARISE, 4STAR airborne measurements were augmented with flight-level albedo from the collocated Shortwave Spectral Flux Radiometer (SSFR) providing improved specification of below-aircraft radiative conditions for the retrieval. Calibrated radiances and retrieved products will be presented with particular emphasis on detailed comparisons of ambient SSA retrievals and measurements during SEAC4RS from 4STAR, AERONET, HSRL2, and from in situ measurements.