Sample records for aerosol properties observed

  1. AIP1OGREN: Aerosol Observing Station Intensive Properties Value-Added Product

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koontz, Annette; Flynn, Connor

    The aip1ogren value-added product (VAP) computes several aerosol intensive properties. It requires as input calibrated, corrected, aerosol extensive properties (scattering and absorption coefficients, primarily) from the Aerosol Observing Station (AOS). Aerosol extensive properties depend on both the nature of the aerosol and the amount of the aerosol. We compute several properties as relationships between the various extensive properties. These intensive properties are independent of aerosol amount and instead relate to intrinsic properties of the aerosol itself. Along with the original extensive properties we report aerosol single-scattering albedo, hemispheric backscatter fraction, asymmetry parameter, and Ångström exponent for scattering and absorption withmore » one-minute averaging. An hourly averaged file is produced from the 1-minute files that includes all extensive and intensive properties as well as submicron scattering and submicron absorption fractions. Finally, in both the minutely and hourly files the aerosol radiative forcing efficiency is provided.« less

  2. Observational evidence for the aerosol impact on ice cloud properties regulated by cloud/aerosol types

    NASA Astrophysics Data System (ADS)

    Zhao, B.; Gu, Y.; Liou, K. N.; Jiang, J. H.; Li, Q.; Liu, X.; Huang, L.; Wang, Y.; Su, H.

    2016-12-01

    The interactions between aerosols and ice clouds (consisting only of ice) represent one of the largest uncertainties in global radiative forcing from pre-industrial time to the present. The observational evidence for the aerosol impact on ice cloud properties has been quite limited and showed conflicting results, partly because previous observational studies did not consider the distinct features of different ice cloud and aerosol types. Using 9-year satellite observations, we find that, for ice clouds generated from deep convection, cloud thickness, cloud optical thickness (COT), and ice cloud fraction increase and decrease with small-to-moderate and high aerosol loadings, respectively. For in-situ formed ice clouds, however, the preceding cloud properties increase monotonically and more sharply with aerosol loadings. The case is more complicated for ice crystal effective radius (Rei). For both convection-generated and in-situ ice clouds, the responses of Rei to aerosol loadings are modulated by water vapor amount in conjunction with several other meteorological parameters, but the sensitivities of Rei to aerosols under the same water vapor amount differ remarkably between the two ice cloud types. As a result, overall Rei slightly increases with aerosol loading for convection-generated ice clouds, but decreases for in-situ ice clouds. When aerosols are decomposed into different types, an increase in the loading of smoke aerosols generally leads to a decrease in COT of convection-generated ice clouds, while the reverse is true for dust and anthropogenic pollution. In contrast, an increase in the loading of any aerosol type can significantly enhance COT of in-situ ice clouds. The modulation of the aerosol impacts by cloud/aerosol types is demonstrated and reproduced by simulations using the Weather Research and Forecasting (WRF) model. Adequate and accurate representations of the impact of different cloud/aerosol types in climate models are crucial for reducing the

  3. Observational evidence for the aerosol impact on ice cloud properties regulated by cloud/aerosol types

    NASA Astrophysics Data System (ADS)

    Zhao, B.; Gu, Y.; Liou, K. N.; Jiang, J. H.; Li, Q.; Liu, X.; Huang, L.; Wang, Y.; Su, H.

    2017-12-01

    The interactions between aerosols and ice clouds (consisting only of ice) represent one of the largest uncertainties in global radiative forcing from pre-industrial time to the present. The observational evidence for the aerosol impact on ice cloud properties has been quite limited and showed conflicting results, partly because previous observational studies did not consider the distinct features of different ice cloud and aerosol types. Using 9-year satellite observations, we find that, for ice clouds generated from deep convection, cloud thickness, cloud optical thickness (COT), and ice cloud fraction increase and decrease with small-to-moderate and high aerosol loadings, respectively. For in-situ formed ice clouds, however, the preceding cloud properties increase monotonically and more sharply with aerosol loadings. The case is more complicated for ice crystal effective radius (Rei). For both convection-generated and in-situ ice clouds, the responses of Rei to aerosol loadings are modulated by water vapor amount in conjunction with several other meteorological parameters, but the sensitivities of Rei to aerosols under the same water vapor amount differ remarkably between the two ice cloud types. As a result, overall Rei slightly increases with aerosol loading for convection-generated ice clouds, but decreases for in-situ ice clouds. When aerosols are decomposed into different types, an increase in the loading of smoke aerosols generally leads to a decrease in COT of convection-generated ice clouds, while the reverse is true for dust and anthropogenic pollution. In contrast, an increase in the loading of any aerosol type can significantly enhance COT of in-situ ice clouds. The modulation of the aerosol impacts by cloud/aerosol types is demonstrated and reproduced by simulations using the Weather Research and Forecasting (WRF) model. Adequate and accurate representations of the impact of different cloud/aerosol types in climate models are crucial for reducing the

  4. Ground-based observation of aerosol optical properties in Lanzhou, China.

    PubMed

    Yu, Xingna; Zhu, Bin; Fan, Shuxian; Yin, Yan; Bu, Xiaoli

    2009-01-01

    Aerosol optical properties from August 2006 to July 2007 were obtained from ground-based and sky radiance measurements in Semi-Arid Climate and Environment Observatory of Lanzhou University (SACOL), China. High aerosol optical thickness (AOT) associated with low Angström exponent (alpha) was mainly observed in spring, which was consistent with the seasonal dust production from Hexi Corridor. The maximum monthly average value of AOT 0.56 occurred in March of 2007, which was two times larger than the minimum value of 0.28 in October of 2006. Approximately 60% of the AOT ranged between 0.3 and 0.5, and nearly 93% of alpha value varied from 0.1 to 0.8, which occurred in spring. The significant correlation between aerosol properties and water vapor content was not observed. The aerosol volume size distribution can be characterized by the bimodal logarithm normal structure: fine mode (r < 0.6 microm) and coarse mode (r > 0.6 microm). Aerosols in spring of SACOL were dominated by large particles with the volume concentration ratio of coarse to fine modes being 7.85. The average values of asymmetry factor (g) in the wavelength range 440-1020 nm were found to be 0.71, 0.67, 0.67 and 0.69 in spring, summer, autumn and winter, respectively.

  5. Optical Properties of Aerosol Types from Satellite and Ground-based Observations

    NASA Astrophysics Data System (ADS)

    Lin, Tang-Huang; Liu, Gin-Rong; Liu, Chian-Yi

    2014-05-01

    In this study, the properties of aerosol types are characterized from the aspects of remote sensing and in situ measurements. Particles of dust, smoke and anthropogenic pollutant are selected as the principal types in the study. The measurements of AERONET sites and MODIS data, during the dust storm and biomass burning events in the period from 2002 to 2008, suggest that the aerosol species can be discriminated sufficiently based on the dissimilarity of AE (Ångström exponent) and SSA (single scattering albedo) properties. However, the physicochemical characteristics of source aerosols can be altered after the external/internal combination along the pathway of transportation, thus induce error to the satellite retrievals. In order to eliminate from this kind of errors, the optical properties of mixed aerosols (external) are also simulated with the database of dust and soot aggregates in this study. The preliminary results show that SSA value (at 470 nm) of mineral dust may decay 5-11 % when external mixed with 15-30 % soot aggregates, then result in 11-22 % variation of reflectance observed from satellite which could lead to sufficiently large uncertainty on the retrieval of aerosol optical thickness. As a result, the effect of heterogeneous mixture should be taken into account for more accurate retrieval of aerosol properties, especially after the long-range transport. Keywords: Aerosol type, Ångström exponent, Single scattering albedo, AERONET, MODIS, External mixture

  6. Properties of arctic haze aerosol from lidar observations during iarea 2015 campaign on spitsbergen

    NASA Astrophysics Data System (ADS)

    Stachlewska, Iwona S.; Ritter, Christoph; Böckmann, Christine; Engelmann, Ronny

    2018-04-01

    Arctic Haze event was observed on 5-8 April 2015 using simultaneously Near-range Aerosol Raman Lidar of IGFUW and Koldewey Aerosol Raman Lidar of AWI, both based at AWIPEV German-French station in Ny-Ålesund, Spitsbergen. The alterations in particle abundance and altitude of the aerosol load observed on following days of the event is analyzed. The daytime profiles of particle optical properties were obtained for both lidars, and then served as input for microphysical parameters inversion. The results indicate aerosol composition typical for the Arctic Haze. However, in some layers, a likely abundance of aqueous aerosol or black carbon originating in biomass burning over Siberia, changes measurably the Arctic Haze properties.

  7. Observed correlations between aerosol and cloud properties in an Indian Ocean trade cumulus regime

    NASA Astrophysics Data System (ADS)

    Pistone, K.; Praveen, P. S.; Thomas, R. M.; Ramanathan, V.; Wilcox, E.; Bender, F. A.-M.

    2015-10-01

    There are many contributing factors which determine the micro- and macrophysical properties of clouds, including atmospheric structure, dominant meteorological conditions, and aerosol concentration, all of which may be coupled to one another. In the quest to determine aerosol effects on clouds, these potential relationships must be understood, as changes in atmospheric conditions due to aerosol may change the expected magnitude of indirect effects by altering cloud properties in unexpected ways. Here we describe several observed correlations between aerosol conditions and cloud and atmospheric properties in the Indian Ocean winter monsoon season. In the CARDEX (Cloud, Aerosol, Radiative forcing, Dynamics EXperiment) field campaign conducted in February and March 2012 in the northern Indian Ocean, continuous measurements of atmospheric precipitable water vapor and the liquid water path (LWP) of trade cumulus clouds were made, concurrent with measurements of water vapor flux, cloud and aerosol vertical profiles, meteorological data, and surface and total-column aerosol. Here we present evidence of a positive correlation between aerosol and cloud LWP which becomes clear after the data are filtered to control for the natural meteorological variability in the region. We then use the aircraft and ground observatory measurements to explore the mechanisms behind the observed aerosol-LWP correlation. We determine that increased boundary-layer humidity lowering the cloud base is responsible for the observed increase in cloud liquid water. Large-scale analysis indicates that high pollution cases originate with a highly-polluted boundary layer air mass approaching the observatory from a northwesterly direction. This polluted mass exhibits higher temperatures and humidity than the clean case, the former of which may be attributable to heating due to aerosol absorption of solar radiation over the subcontinent. While high temperature conditions dispersed along with the high-aerosol

  8. Use of Multiangle Satellite Observations to Retrieve Aerosol Properties and Ocean Color

    NASA Technical Reports Server (NTRS)

    Martonchik, John V.; Diner, David; Khan, Ralph

    2005-01-01

    A new technique is described for retrieving aerosol over ocean water and the associated ocean color using multiangle satellite observations. Unlike current satellite aerosol retrieval algorithms which only utilize observations at red wavelengths and longer, with the assumption that these wavelengths have a negligible ocean (water-leaving radiance), this new algorithm uses all available spectral bands and simultaneously retrieves both aerosol properties and the spectral ocean color. We show some results of case studies using MISR data, performed over different water conditions (coastal water, blooms, and open water).

  9. Determination of nocturnal aerosol properties from a combination of lunar photometer and lidar observations

    NASA Astrophysics Data System (ADS)

    Li, Donghui; Li, Zhengqiang; Lv, Yang; Zhang, Ying; Li, Kaitao; Xu, Hua

    2015-10-01

    Aerosol plays a key role in the assessment of global climate change and environmental health, while observation is one of important way to deepen the understanding of aerosol properties. In this study, the newly instrument - lunar photometer is used to measure moonlight and nocturnal column aerosol optical depth (AOD, τ) is retrieved. The AOD algorithm is test and verified with sun photometer both in high and low aerosol loading. Ångström exponent (α) and fine/coarse mode AOD (τf, τc) 1 is derived from spectral AOD. The column aerosol properties (τ, α, τf, τc) inferred from the lunar photometer is analyzed based on two month measurement in Beijing. Micro-pulse lidar has advantages in retrieval of aerosol vertical distribution, especially in night. However, the typical solution of lidar equation needs lidar ratio(ratio of aerosol backscatter and extinction coefficient) assumed in advance(Fernald method), or constrained by AOD2. Yet lidar ratio is varied with aerosol type and not easy to fixed, and AOD is used of daylight measurement, which is not authentic when aerosol loading is different from day and night. In this paper, the nocturnal AOD measurement from lunar photometer combined with mie scattering lidar observations to inverse aerosol extinction coefficient(σ) profile in Beijing is discussed.

  10. Aerosol Optical Properties in Southeast Asia From AERONET Observations

    NASA Astrophysics Data System (ADS)

    Eck, T. F.; Holben, B. N.; Boonjawat, J.; Le, H. V.; Schafer, J. S.; Reid, J. S.; Dubovik, O.; Smirnov, A.

    2003-12-01

    There is little published data available on measured optical properties of aerosols in the Southeast Asian region. The AERONET project and collaborators commenced monitoring of aerosol optical properties in February 2003 at four sites in Thailand and two sites in Viet Nam to measure the primarily anthropogenic aerosols generated by biomass burning and fossil fuel combustion/ industrial emissions. Automatic sun/sky radiometers at each site measured spectral aerosol optical depth in 7 wavelengths from 340 to 1020 nm and combined with directional radiances in the almucantar, retrievals were made of spectral single scattering albedo and aerosol size distributions. Angstrom exponents, size distributions and spectral single scattering albedo of primarily biomass burning aerosols at rural sites are compared to measurements made at AERONET sites in other major biomass burning regions in tropical southern Africa, South America, and in boreal forest regions. Additionally, the aerosol single scattering albedo and size distributions measured in Bangkok, Thailand are compared with those measured at other urban sites globally. The influences of aerosols originating from other regions outside of Southeast Asia are analyzed using trajectory analyses. Specifically, cases of aerosol transport and mixing from Southern China and from India are presented.

  11. Observed correlations between aerosol and cloud properties in an Indian Ocean trade cumulus regime

    NASA Astrophysics Data System (ADS)

    Pistone, Kristina; Praveen, Puppala S.; Thomas, Rick M.; Ramanathan, Veerabhadran; Wilcox, Eric M.; Bender, Frida A.-M.

    2017-04-01

    There are multiple factors which affect the micro- and macrophysical properties of clouds, including the atmospheric vertical structure and dominant meteorological conditions in addition to aerosol concentration, all of which may be coupled to one another. In the quest to determine aerosol effects on clouds, these potential relationships must be understood. As bio- and fossil fuel combustion has increased in southeast Asia, corresponding increases in atmospheric aerosol pollution have been seen over the surrounding regions. These emissions notably include black carbon (BC) aerosols, which absorb rather than reflect solar radiation, affecting the atmosphere over the Indian Ocean through direct warming in addition to modifying cloud microphysical properties. The CARDEX (Cloud, Aerosol, Radiative forcing, Dynamics EXperiment) field campaign was conducted during the winter monsoon season (February and March) of 2012 in the northern Indian Ocean, a region dominated by trade cumulus clouds. During CARDEX, small unmanned aircraft were deployed, measuring aerosol, radiation, cloud, water vapor fluxes, and meteorological properties while a surface observatory collected continuous measurements of atmospheric precipitable water vapor (PWV), water vapor fluxes, surface and total-column aerosol, and cloud liquid water path (LWP). We present observations which indicate a positive correlation between aerosol and cloud LWP only when considering cases with low atmospheric water vapor (PWV)

  12. Observed correlations between aerosol and cloud properties in an Indian Ocean trade cumulus regime

    NASA Astrophysics Data System (ADS)

    Pistone, Kristina; Praveen, Puppala S.; Thomas, Rick M.; Ramanathan, Veerabhadran; Wilcox, Eric M.; Bender, Frida A.-M.

    2016-04-01

    There are many contributing factors which determine the micro- and macrophysical properties of clouds, including atmospheric vertical structure, dominant meteorological conditions, and aerosol concentration, all of which may be coupled to one another. In the quest to determine aerosol effects on clouds, these potential relationships must be understood. Here we describe several observed correlations between aerosol conditions and cloud and atmospheric properties in the Indian Ocean winter monsoon season.In the CARDEX (Cloud, Aerosol, Radiative forcing, Dynamics EXperiment) field campaign conducted in February and March 2012 in the northern Indian Ocean, continuous measurements were made of atmospheric precipitable water vapor (PWV) and the liquid water path (LWP) of trade cumulus clouds, concurrent with measurements of water vapor flux, cloud and aerosol vertical profiles, meteorological data, and surface and total-column aerosol from instrumentation at a ground observatory and on small unmanned aircraft. We present observations which indicate a positive correlation between aerosol and cloud LWP only when considering cases with low atmospheric water vapor (PWV < 40 kg m-2), a criterion which acts to filter the data to control for the natural meteorological variability in the region.We then use the aircraft and ground-based measurements to explore possible mechanisms behind this observed aerosol-LWP correlation. The increase in cloud liquid water is found to coincide with a lowering of the cloud base, which is itself attributable to increased boundary layer humidity in polluted conditions. High pollution is found to correlate with both higher temperatures and higher humidity measured throughout the boundary layer. A large-scale analysis, using satellite observations and meteorological reanalysis, corroborates these covariations: high-pollution cases are shown to originate as a highly polluted boundary layer air mass approaching the observatory from a northwesterly

  13. Synergy of Satellite-Surface Observations for Studying the Properties of Absorbing Aerosols in Asia

    NASA Technical Reports Server (NTRS)

    Tsay, Si-Chee

    2010-01-01

    Through interaction with clouds and alteration of the Earth's radiation budget, atmospheric aerosols significantly influence our weather and climate. Monsoon rainfalls, for example, sustain the livelihood of more than half of the world's population. Thus, understanding the mechanism that drives the water cycle and freshwater distribution is high-lighted as one of the major near-term goals in NASA's Earth Science Enterprise Strategy. Every cloud droplet/ice-crystal that serves as an essential element in portraying water cycle and distributing freshwater contains atmospheric aerosols at its core. In addition, the spatial and temporal variability of atmospheric aerosol properties is complex due to their dynamic nature. In fact, the predictability of the tropical climate system is much reduced during the boreal spring, which is associated with the peak season of biomass burning activities and regional/long-range transport of dust aerosols. Therefore, to accurately assess the impact of absorbing aerosols on regional-to-global climate requires not only modeling efforts but also continuous observations from satellites, aircraft, networks of ground-based instruments and dedicated field experiments. Since 1997 NASA has been successfully launching a series of satellites the Earth Observing System - to intensively study, and gain a better understanding of, the Earth as an integrated system. Through participation in many satellite remote-sensing/retrieval and validation projects over the years, we have gradually developed and refined the SMART (Surface-sensing Measurements for Atmospheric Radiative Transfer) and COMMIT (Chemical, Optical & Microphysical Measurements of In-situ Troposphere) mobile observatories, a suite of surface remote sensing and in-situ instruments that proved to be vital in providing high temporal measurements, which complement the satellite observations. In this talk, we will present SMART-COMMIT which has played key roles, serving as network or supersite

  14. Systematic Satellite Observations of the Impact of Aerosols from Passive Volcanic Degassing on Local Cloud Properties

    NASA Technical Reports Server (NTRS)

    Ebmeier, S. K.; Sayer, A. M.; Grainger, R. G.; Mather, T. A.; Carboni, E.

    2014-01-01

    The impact of volcanic emissions is a significant source of uncertainty in estimations of aerosol indirect radiative forcing, especially with respect to emissions from passive de-gassing and minor explosions. Understanding the impact of volcanic emissions on indirect radiative forcing is important assessing present day atmospheric properties and also to define the pre-industrial baseline to assess anthropogenic perturbations. We present observations of the time-averaged indirect aerosol effect within 200 km downwind of isolated island volcanoes in regions of low present-day aerosol burden using MODIS and AATSR data. Retrievals of aerosol and cloud properties at Kilauea (Hawaii), Yasur (Vanuatu) and Piton de la Fournaise (Reunion) are rotated about the volcanic vent according to wind direction, so that retrievals downwind of the volcano can be averaged to improve signal to noise ratio. The emissions from all three volcanoes, including those from passive degassing, strombolian activity and minor explosions lead to measurably increased aerosol optical depth downwind of the active vent. Average cloud droplet effective radius is lower downwind of the volcano in all cases, with the peak difference in effective radius ranging from 48 microns at the different volcanoes. A comparison of these observations with cloud properties at isolated islands with no significant source of aerosol suggests that these patterns are not purely orographic in origin. This approach sets out a first step for the systematic measurement of the effects of present day low altitude volcanic emissions on cloud properties, and our observations of unpolluted, isolated marine settings may capture processes similar to those in the preindustrial marine atmosphere.

  15. Observed correlations between aerosol and cloud properties in an Indian Ocean trade cumulus regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pistone, Kristina; Praveen, Puppala S.; Thomas, Rick M.

    There are many contributing factors which determine the micro- and macrophysical properties of clouds, including atmospheric vertical structure, dominant meteorological conditions, and aerosol concentration, all of which may be coupled to one another. In the quest to determine aerosol effects on clouds, these potential relationships must be understood. Here we describe several observed correlations between aerosol conditions and cloud and atmospheric properties in the Indian Ocean winter monsoon season.In the CARDEX (Cloud, Aerosol, Radiative forcing, Dynamics EXperiment) field campaign conducted in February and March 2012 in the northern Indian Ocean, continuous measurements were made of atmospheric precipitable water vapor (PWV)more » and the liquid water path (LWP) of trade cumulus clouds, concurrent with measurements of water vapor flux, cloud and aerosol vertical profiles, meteorological data, and surface and total-column aerosol from instrumentation at a ground observatory and on small unmanned aircraft. We present observations which indicate a positive correlation between aerosol and cloud LWP only when considering cases with low atmospheric water vapor (PWV < 40 kg m –2), a criterion which acts to filter the data to control for the natural meteorological variability in the region.We then use the aircraft and ground-based measurements to explore possible mechanisms behind this observed aerosol–LWP correlation. The increase in cloud liquid water is found to coincide with a lowering of the cloud base, which is itself attributable to increased boundary layer humidity in polluted conditions. High pollution is found to correlate with both higher temperatures and higher humidity measured throughout the boundary layer. A large-scale analysis, using satellite observations and meteorological reanalysis, corroborates these covariations: high-pollution cases are shown to originate as a highly polluted boundary layer air mass approaching the observatory from a

  16. Observed correlations between aerosol and cloud properties in an Indian Ocean trade cumulus regime

    DOE PAGES

    Pistone, Kristina; Praveen, Puppala S.; Thomas, Rick M.; ...

    2016-04-27

    There are many contributing factors which determine the micro- and macrophysical properties of clouds, including atmospheric vertical structure, dominant meteorological conditions, and aerosol concentration, all of which may be coupled to one another. In the quest to determine aerosol effects on clouds, these potential relationships must be understood. Here we describe several observed correlations between aerosol conditions and cloud and atmospheric properties in the Indian Ocean winter monsoon season.In the CARDEX (Cloud, Aerosol, Radiative forcing, Dynamics EXperiment) field campaign conducted in February and March 2012 in the northern Indian Ocean, continuous measurements were made of atmospheric precipitable water vapor (PWV)more » and the liquid water path (LWP) of trade cumulus clouds, concurrent with measurements of water vapor flux, cloud and aerosol vertical profiles, meteorological data, and surface and total-column aerosol from instrumentation at a ground observatory and on small unmanned aircraft. We present observations which indicate a positive correlation between aerosol and cloud LWP only when considering cases with low atmospheric water vapor (PWV < 40 kg m –2), a criterion which acts to filter the data to control for the natural meteorological variability in the region.We then use the aircraft and ground-based measurements to explore possible mechanisms behind this observed aerosol–LWP correlation. The increase in cloud liquid water is found to coincide with a lowering of the cloud base, which is itself attributable to increased boundary layer humidity in polluted conditions. High pollution is found to correlate with both higher temperatures and higher humidity measured throughout the boundary layer. A large-scale analysis, using satellite observations and meteorological reanalysis, corroborates these covariations: high-pollution cases are shown to originate as a highly polluted boundary layer air mass approaching the observatory from a

  17. Titan's aerosol optical properties with VIMS observations at the limb

    NASA Astrophysics Data System (ADS)

    Rannou, Pascal; Seignovert, Benoit; Le Mouelic, Stephane; Sotin, Christophe

    2016-06-01

    The study of Titan properties with remote sensing relies on a good knowledge of the atmosphere properties. The in-situ observations made by Huygens combined with recent advances in the definition of methane properties enable to model and interpret observations with a very good accuracy. Thanks to these progresses, we can analyze in this work the observations made at the limb of Titan in order to retrieve information on the haze properties as its vertical profiles but also the spectral behaviour between 0.88 and 5.2 µm. To study the haze layer and more generally the source of opacities in the stratosphere, we use some observation made at the limb of Titan by the VIMS instrument onboard Cassini. We used a model in spherical geometry and in single scattering, and we accounted for the multiple scattering with a parallel plane model that evaluate the multiple scattering source function at the plane of the limb. Our scope is to retrieve informations about the vertical distribution of the haze, its spectral properties, but also to obtain details about the shape of the methane windows to desantangle the role of the methane and of the aerosols. We started our study at the latitude of 55°N, with a image taken in 2006 with a relatively high spatial resolution (for VIMS). Our preliminary results shows the spectral properties of the aerosols are the same whatever the altitude. This is a consequence of the large scale mixing. From limb profile between 0.9 and 5.2 µm, we can probe the haze layer from about 500 km (at 0.9 µm) to the ground (at 5.2 µm). We find that the vertical profile of the haze layer shows three distinct scale heights with transitions around 250 km and 350 km. We also clearly a transition around 70-90 km that may be due to the top of a condensation layer.

  18. Systematic Satellite Observations of the Impact of Aerosols from Passive Volcanic Degassing on Local Cloud Properties

    NASA Technical Reports Server (NTRS)

    Ebmeier, S.K.; Sayer, Andrew M.; Grainger, R. G.; Mather, T. A.; Carboni, E.

    2014-01-01

    The impact of volcanic emissions, especially from passive degassing and minor explosions, is a source of uncertainty in estimations of aerosol indirect effects. Observations of the impact of volcanic aerosol on clouds contribute to our understanding of both present-day atmospheric properties and of the pre-industrial baseline necessary to assess aerosol radiative forcing. We present systematic measurements over several years at multiple active and inactive volcanic islands in regions of low present-day aerosol burden. The timeaveraged indirect aerosol effects within 200 kilometers downwind of island volcanoes are observed using Moderate Resolution Imaging Spectroradiometer (MODIS, 2002-2013) and Advanced Along-Track Scanning Radiometer (AATSR, 2002- 2008) data. Retrievals of aerosol and cloud properties at Kilauea (Hawaii), Yasur (Vanuatu) and Piton de la Fournaise (la Reunion) are rotated about the volcanic vent to be parallel to wind direction, so that upwind and downwind retrievals can be compared. The emissions from all three volcanoes - including those from passive degassing, Strombolian activity and minor explosions - lead to measurably increased aerosol optical depth downwind of the active vent. Average cloud droplet effective radius is lower downwind of the volcano in all cases, with the peak difference ranging from 2 - 8 micrometers at the different volcanoes in different seasons. Estimations of the difference in Top of Atmosphere upward Short Wave flux upwind and downwind of the active volcanoes from NASA's Clouds and the Earth's Radiant Energy System (CERES) suggest a downwind elevation of between 10 and 45 Watts per square meter at distances of 150 - 400 kilometers from the volcano, with much greater local (less than 80 kilometers) effects. Comparison of these observations with cloud properties at isolated islands without degassing or erupting volcanoes suggests that these patterns are not purely orographic in origin. Our observations of unpolluted

  19. Vacuum FTIR observation on hygroscopic properties and phase transition of malonic acid aerosols

    NASA Astrophysics Data System (ADS)

    Shao, Xu; Zhang, Yun; Pang, Shu-Feng; Zhang, Yun-Hong

    2017-02-01

    A novel approach based on a combination of a pulse relative humidity (RH) controlling system and a rapid scan vacuum FTIR spectrometer was utilized to investigate the hygroscopic property and phase transition of malonic acid (MA) aerosols. By using this approach, both water vapor amount around the aerosols and water content within aerosols with sub-second time resolution were obtained. Based on the features of FTIR absorbing bands, it can be known that the evolution of hydrogen-bonding structures of malonic acid aerosols took place from (H2O)n-MA to MA-MA accompanying with phase transition in the dehumidifying process. And in present paper, the stepwise efflorescence of MA aerosols and nucleation rates at different RHs are first reported. Our observation has shown that the efflorescence of MA started at ∼17% RH and the nucleation rates increased with decreasing RH.

  20. Retrieval of Aerosol Absorption Properties from Satellite Observations

    NASA Technical Reports Server (NTRS)

    Torres, Omar; Bhartia, Pawan K.; Jethva, H.; Ahn, Chang-Woo

    2012-01-01

    The Angstrom Absorption Exponent (AAE) is a parameter commonly used to characterize the wavelength-dependence of aerosol absorption optical depth (AAOD). It is closely related to aerosol composition. Black carbon (BC) containing aerosols yield AAE values near unity whereas Organic carbon (OC) aerosol particles are associated with values larger than 2. Even larger AAE values have been reported for desert dust aerosol particles. Knowledge of spectral AAOD is necessary for the calculation of direct radiative forcing effect of aerosols and for inferring aerosol composition. We have developed a satellitebased method of determining the spectral AAOD of absorbing aerosols. The technique uses multi-spectral measurements of upwelling radiation from scenes where absorbing aerosols lie above clouds as indicated by the UV Aerosol Index. For those conditions, the satellite measurement can be explained, using an approximations of Beer's Law (BL), as the upwelling reflectance at the cloud top attenuated by the absorption effects of the overlying aerosol layer. The upwelling reflectance at the cloud-top in an aerosol-free atmospheric column is mainly a function of cloud optical depth (COD). In the proposed method of AAE derivation, the first step is determining COD which is retrieved using a previously developed color-ratio based approach. In the second step, corrections for molecular scattering effects are applied to both the observed ad the calculated cloud reflectance terms, and the spectral AAOD is then derived by an inversion of the BL approximation. The proposed technique will be discussed in detail and application results making use of OMI multi-spectral measurements in the UV-Vis. will be presented.

  1. Observations of Aerosol Optical Properties over 15 AERONET Sites in Southeast Asia

    NASA Astrophysics Data System (ADS)

    Chan, J. D.; Lagrosas, N.; Uy, S. N.; Holben, B. N.; Dorado, S.; Tobias, V., Jr.; Anh, N. X.; Po-Hsiung, L.; Janjai, S.; Salinas Cortijo, S. V.; Liew, S. C.; Lim, H. S.; Lestari, P.

    2014-12-01

    Mean column-integrated optical properties from ground sun photometers of the Aerosol Robotic Network (AERONET) are studied to provide an overview of the characteristics of aerosols over the region as part of the 7 Southeast Asian Studies (7-SEAS) mission. The 15 AERONET sites with the most available level 2 data products are selected from Thailand (Chiang Mai, Mukdahan, Songkhla and Silpakorn University), Malaysia (University Sains Malaysia), Laos (Vientiane), Vietnam (Bac Giang, Bac Lieu and Nha Trang), Taiwan (National Cheng Kung University and Central Weather Bureau Taipei), Singapore, Indonesia (Bandung) and the Philippines (Manila Observatory and Notre Dame of Marbel University). For all 15 sites, high angstrom exponent values (α>1) have been observed. Chiang Mai and USM have the highest mean Angstrom exponent indicating the dominance of fine particles that can be ascribed to biomass burning and urbanization. Sites with the lowest Angstrom exponent values include Bac Lieu (α=1.047) and Manila Observatory (α=1.021). From the average lognormal size distribution curves, Songkhla and NDMU show the smallest annual variation in the fine mode region, indicating the observed fine aerosols are local to the sites. The rest of the sites show high variation which could be due to large scale forcings (e.g., monsoons and biomass burnings) that affect aerosol properties in these sites. Both high and low single scattering albedo at 440 nm (ω0440) values are found in sites located in major urban areas. Silpakorn University, Manila Observatory and Vientiane have all mean ω0440 < 0.90. Singapore and CWB Taipei have ω0440 > 0.94. The discrepancy in ω0 suggests different types of major emission sources present in urban areas. The absorptivity of urban aerosols can vary depending on the strength of traffic emissions, types of fuel combusted and automobile engines used, and the effect of biomass burning aerosols during the dry season. High aerosol optical depth values (τa550

  2. Global CALIPSO Observations of Aerosol Changes Near Clouds

    NASA Technical Reports Server (NTRS)

    Varnai, Tamas; Marshak, Alexander

    2011-01-01

    Several recent studies have found that clouds are surrounded by a transition zone of rapidly changing aerosol optical properties and particle size. Characterizing this transition zone is important for better understanding aerosol-cloud interactions and aerosol radiative effects, and also for improving satellite retrievals of aerosol properties. This letter presents a statistical analysis of a monthlong global data set of Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) lidar observations over oceans. The results show that the transition zone is ubiquitous over all oceans and extends up to 15 km away from clouds. They also show that near-cloud enhancements in backscatter and particle size are strongest at low altitudes, slightly below the top of the nearest clouds. Also, the enhancements are similar near illuminated and shadowy cloud sides, which confirms that the asymmetry of Moderate Resolution Imaging Spectroradiometer reflectances found in an earlier study comes from 3-D radiative processes and not from differences in aerosol properties. Finally, the effects of CALIPSO aerosol detection and cloud identification uncertainties are discussed. The findings underline the importance of accounting for the transition zone to avoid potential biases in studies of satellite aerosol products, aerosol-cloud interactions, and aerosol direct radiative effects.

  3. Space-borne Observations of Aerosols

    NASA Astrophysics Data System (ADS)

    Kaufman, Y. J.; Tanre, D.; Coakley, J. A.; Fraser, R. S.

    2005-12-01

    As early as 1963, photographs of the twilight horizon from the Vostok-6 spaceship were used by G. V. Rozenberg and V. V. Nikolaeva-Tereshkova to derive profiles of stratospheric aerosols. The launch of the ATS III satellite in 1967 sparked interest in using satellites to observe aerosol emission, transport, and their effects on climate, precipitation and health. The first use of autonomous satellites in aerosol research appears to be by Toby Carlson and Joe Prospero who tracked dust from the Sahara to the Americas in the early `70s using ATS III images. The launch of the calibrated Landsat instrument in 1972 allowed Bob Fraser to perform quantitative analyses of dust column concentrations for individual scenes. GOES launched in 1975 provided hourly data that allowed Walter Lyons and J.C. Dooley in the late 70's to report on the transport of sulfate air pollution which was later followed by estimates of the export of sulfate aerosol from the US to the Atlantic Ocean. With the launch of SAGE in 1979, Pat McCormick and co-workers began long term observations of statospheric aerosols. The launch of TIROS(N) and the AVHRR in 1979 marked the start of concerted efforts by Larry Stowe and his colleagues to produce operationally an aerosol product over oceans from the NOAA polar orbiting satellite. With the launch of the Earth Radiation Budget Experiment scanners in the late 1980's, Sundar Christopher and his colleagues began linking AVHRR-derived aerosol burdens to their effects on the Earth's radiation budget. A remarkable aspect of this early work is that instruments like the AVHRR, Landsat, and GOES imager were not originally designed to perform quantitative estimates of aerosol properties. In fact, corrections for the effects of aerosols in determining ocean reflectances implemented primarily through the work of Howard Gordon, facilitated much improved pictures of chlorophyll in the upper oceans than had been hoped for from CZCS data collected in the late 70's. This

  4. Aqueous aerosol SOA formation: impact on aerosol physical properties.

    PubMed

    Woo, Joseph L; Kim, Derek D; Schwier, Allison N; Li, Ruizhi; McNeill, V Faye

    2013-01-01

    Organic chemistry in aerosol water has recently been recognized as a potentially important source of secondary organic aerosol (SOA) material. This SOA material may be surface-active, therefore potentially affecting aerosol heterogeneous activity, ice nucleation, and CCN activity. Aqueous aerosol chemistry has also been shown to be a potential source of light-absorbing products ("brown carbon"). We present results on the formation of secondary organic aerosol material in aerosol water and the associated changes in aerosol physical properties from GAMMA (Gas-Aerosol Model for Mechanism Analysis), a photochemical box model with coupled gas and detailed aqueous aerosol chemistry. The detailed aerosol composition output from GAMMA was coupled with two recently developed modules for predicting a) aerosol surface tension and b) the UV-Vis absorption spectrum of the aerosol, based on our previous laboratory observations. The simulation results suggest that the formation of oligomers and organic acids in bulk aerosol water is unlikely to perturb aerosol surface tension significantly. Isoprene-derived organosulfates are formed in high concentrations in acidic aerosols under low-NO(x) conditions, but more experimental data are needed before the potential impact of these species on aerosol surface tension may be evaluated. Adsorption of surfactants from the gas phase may further suppress aerosol surface tension. Light absorption by aqueous aerosol SOA material is driven by dark glyoxal chemistry and is highest under high-NO(x) conditions, at high relative humidity, in the early morning hours. The wavelength dependence of the predicted absorption spectra is comparable to field observations and the predicted mass absorption efficiencies suggest that aqueous aerosol chemistry can be a significant source of aerosol brown carbon under urban conditions.

  5. Version 2.0 AERONET Dust Aerosol properties, Constraints and Application to Asian Dust Observations

    NASA Technical Reports Server (NTRS)

    Holben, Brent; Eck, Tom; Holben, Brent; Eck, Tom; Siniuk, Aliaksander; Huangand, Jianping; Zang, Wu

    2007-01-01

    In November 2006, AERONET released Version 2 of the Dubovik and King sky radiance and optical depth inversion. Reanalysis of the entire AERONET database revealed marked differences in aerosol properties in arid and semi arid regions with dust dominated aerosols. The change will be illustrated through sensitivity analysis and examples from the UAE2 (United Arab Emirates Unified Aerosol Experiment) field campaign. Properties of dust dominated aerosols will be presented from regional AERONET sites in China showing variations in dust aerosol properties. The constraints and limitations of the AERONET inversion will be presented that will facilitate analysis by the user community of these data.

  6. Titan's aerosol optical properties with VIMS observations at the limb of Titan

    NASA Astrophysics Data System (ADS)

    Rannou, Pascal; Seignovert, Benoit; Lavvas, Panayotis; Lemouelic, Stéphane; Sotin, Christophe

    2015-11-01

    The study of Titan properties with remote sensing relies on a good knowledge of the atmosphere properties. The in-situ observations made by Huygens combined with recent advances in the definition of methane properties enable to model and interpret observations with a very good accuracy. Thanks to these progresses, we can analyze in this work the observations made at the limb of Titan in order to retrieve information on the haze properties as its vertical profiles but also the spectral behaviour between 0.88 and 5.2 μm.To study the haze layer and more generally the source of opacities in the stratosphere, we use som observation made at the limbe of Titan by the VIMS instrument onboard Cassini. We used a model in spherical geometry and in single scattering, and we accounted for the multiple scattering with a parallel plane model that evaluate the multiple scattering source function at the plane of the limb.Our scope is to retrieve informations about the vertical distribution of the haze, its spectral properties, but also to obtain details about the shape of the methane windows to disantangle the role of the methane and of the aerosols.We started our study at the latitude of 55°N, with a image taken in 2006 with a relatively high spatial resolution (for VIMS). Our preliminary results shows the spectral properties of the aerosols are the same whatever the altitude. This is a consequence of the large scale mixing. From limb profile between 0.9 and 5.2 μm, we can probe the haze layer from about 500 km (at 0.9 μm) to the ground (at 5.2 μm). We find that the vertical profile of the haze layer shows three distinct scale heights with transitions around 250 km and 350 km. We also clearly a transition around 70-90 km that may be due to the top of a condensation layer.

  7. Measurements of Semi-volatile Aerosol and Its Effect on Aerosol Optical Properties During Southern Oxidant and Aerosol Study

    NASA Astrophysics Data System (ADS)

    Khlystov, A.; Grieshop, A. P.; Saha, P.; Subramanian, R.

    2013-12-01

    Semi-volatile compounds, including particle-bound water, comprise a large part of aerosol mass and have a significant influence on aerosol lifecycle and its optical properties. Understanding the properties of semi-volatile compounds, especially those pertaining to gas/aerosol partitioning, is of critical importance for our ability to predict concentrations and properties of ambient aerosol. A set of state-of-the-art instruments was deployed at the SEARCH site near Centerville, AL during the Southern Oxidant and Aerosol Study (SOAS) campaign in summer 2013 to measure the effect of temperature and relative humidity on aerosol size distribution, composition and optical properties. Light scattering and absorption by temperature- and humidity-conditioned aerosols was measured using three photo-acoustic extinctiometers (PAX) at three wavelengths (405 nm, 532 nm, and 870 nm). In parallel to these measurements, a long residence time temperature-stepping thermodenuder and a variable residence time constant temperature thermodenuder in combination with three SMPS systems and an Aerosol Chemical Speciation Monitor (ACSM) were used to assess aerosol volatility and kinetics of aerosol evaporation. It was found that both temperature and relative humidity have a strong effect on aerosol optical properties. The variable residence time thermodenuder data suggest that aerosol equilibrated fairly quickly, within 2 s, in contrast to other ambient observations. Preliminary analysis show that approximately 50% and 90% of total aerosol mass evaporated at temperatures of 100 C and 180C, respectively. Evaporation varied substantially with ambient aerosol loading and composition and meteorology. During course of this study, T50 (temperatures at which 50% aerosol mass evaporates) varied from 60 C to more than 120 C.

  8. Optimal estimation retrieval of aerosol microphysical properties from SAGE~II satellite observations in the volcanically unperturbed lower stratosphere

    NASA Astrophysics Data System (ADS)

    Wurl, D.; Grainger, R. G.; McDonald, A. J.; Deshler, T.

    2010-05-01

    Stratospheric aerosol particles under non-volcanic conditions are typically smaller than 0.1 μm. Due to fundamental limitations of the scattering theory in the Rayleigh limit, these tiny particles are hard to measure by satellite instruments. As a consequence, current estimates of global aerosol properties retrieved from spectral aerosol extinction measurements tend to be strongly biased. Aerosol surface area densities, for instance, are observed to be about 40% smaller than those derived from correlative in situ measurements (Deshler et al., 2003). An accurate knowledge of the global distribution of aerosol properties is, however, essential to better understand and quantify the role they play in atmospheric chemistry, dynamics, radiation and climate. To address this need a new retrieval algorithm was developed, which employs a nonlinear Optimal Estimation (OE) method to iteratively solve for the monomodal size distribution parameters which are statistically most consistent with both the satellite-measured multi-wavelength aerosol extinction data and a priori information. By thus combining spectral extinction measurements (at visible to near infrared wavelengths) with prior knowledge of aerosol properties at background level, even the smallest particles are taken into account which are practically invisible to optical remote sensing instruments. The performance of the OE retrieval algorithm was assessed based on synthetic spectral extinction data generated from both monomodal and small-mode-dominant bimodal sulphuric acid aerosol size distributions. For monomodal background aerosol, the new algorithm was shown to fairly accurately retrieve the particle sizes and associated integrated properties (surface area and volume densities), even in the presence of large extinction uncertainty. The associated retrieved uncertainties are a good estimate of the true errors. In the case of bimodal background aerosol, where the retrieved (monomodal) size distributions naturally

  9. Stratospheric Aerosol--Observations, Processes, and Impact on Climate

    NASA Technical Reports Server (NTRS)

    Kresmer, Stefanie; Thomason, Larry W.; von Hobe, Marc; Hermann, Markus; Deshler, Terry; Timmreck, Claudia; Toohey, Matthew; Stenke, Andrea; Schwarz, Joshua P.; Weigel, Ralf; hide

    2016-01-01

    Interest in stratospheric aerosol and its role in climate have increased over the last decade due to the observed increase in stratospheric aerosol since 2000 and the potential for changes in the sulfur cycle induced by climate change. This review provides an overview about the advances in stratospheric aerosol research since the last comprehensive assessment of stratospheric aerosol was published in 2006. A crucial development since 2006 is the substantial improvement in the agreement between in situ and space-based inferences of stratospheric aerosol properties during volcanically quiescent periods. Furthermore, new measurement systems and techniques, both in situ and space based, have been developed for measuring physical aerosol properties with greater accuracy and for characterizing aerosol composition. However, these changes induce challenges to constructing a long-term stratospheric aerosol climatology. Currently, changes in stratospheric aerosol levels less than 20% cannot be confidently quantified. The volcanic signals tend to mask any nonvolcanically driven change, making them difficult to understand. While the role of carbonyl sulfide as a substantial and relatively constant source of stratospheric sulfur has been confirmed by new observations and model simulations, large uncertainties remain with respect to the contribution from anthropogenic sulfur dioxide emissions. New evidence has been provided that stratospheric aerosol can also contain small amounts of nonsulfatematter such as black carbon and organics. Chemistry-climate models have substantially increased in quantity and sophistication. In many models the implementation of stratospheric aerosol processes is coupled to radiation and/or stratospheric chemistry modules to account for relevant feedback processes.

  10. Aerosol Properties Observed in the Subtropical North Pacific Boundary Layer

    NASA Astrophysics Data System (ADS)

    Royalty, T. M.; Phillips, B. N.; Dawson, K. W.; Reed, R.; Meskhidze, N.; Petters, M. D.

    2017-09-01

    The impact of anthropogenic aerosol on climate forcing remains uncertain largely due to inadequate representation of natural aerosols in climate models. The marine boundary layer (MBL) might serve as a model location to study natural aerosol processes. Yet source and sink mechanisms controlling the MBL aerosol number, size distribution, chemical composition, and hygroscopic properties remain poorly constrained. Here aerosol size distribution and water uptake measurements were made aboard the R/V Hi'ialakai from 27 June to 3 July 2016 in the subtropical North Pacific Ocean. Size distributions were predominantly bimodal with an average integrated number concentration of 197 ± 98 cm-3. Hygroscopic growth factors were measured using the tandem differential mobility analyzer technique for dry 48, 96, and 144 nm particles. Mode kappa values for these were 0.57 ± 0.12, 0.51 ± 0.09, and 0.52 ± 0.08, respectively. To better understand remote MBL aerosol sources, a new algorithm was developed which decomposes hygroscopicity distributions into three classes: carbon-containing particles, sulfate-like particles, and sodium-containing particles. Results from this algorithm showed low and steady sodium-containing particle concentrations while the sulfate-like and carbon-containing particle concentrations varied during the cruise. According to the classification scheme, carbon-containing particles contributed at least 3-7%, sulfate-like particles contributed at most 77-88% and sodium-containing particles at least contributed 9-16% to the total aerosol number concentration. Size distribution and hygroscopicity data, in conjunction with air mass back trajectory analysis, suggested that the aerosol budget in the subtropical North Pacific MBL may be controlled by aerosol entrainment from the free troposphere.

  11. Classifying aerosol type using in situ surface spectral aerosol optical properties

    NASA Astrophysics Data System (ADS)

    Schmeisser, Lauren; Andrews, Elisabeth; Ogren, John A.; Sheridan, Patrick; Jefferson, Anne; Sharma, Sangeeta; Kim, Jeong Eun; Sherman, James P.; Sorribas, Mar; Kalapov, Ivo; Arsov, Todor; Angelov, Christo; Mayol-Bracero, Olga L.; Labuschagne, Casper; Kim, Sang-Woo; Hoffer, András; Lin, Neng-Huei; Chia, Hao-Ping; Bergin, Michael; Sun, Junying; Liu, Peng; Wu, Hao

    2017-10-01

    Knowledge of aerosol size and composition is important for determining radiative forcing effects of aerosols, identifying aerosol sources and improving aerosol satellite retrieval algorithms. The ability to extrapolate aerosol size and composition, or type, from intensive aerosol optical properties can help expand the current knowledge of spatiotemporal variability in aerosol type globally, particularly where chemical composition measurements do not exist concurrently with optical property measurements. This study uses medians of the scattering Ångström exponent (SAE), absorption Ångström exponent (AAE) and single scattering albedo (SSA) from 24 stations within the NOAA/ESRL Federated Aerosol Monitoring Network to infer aerosol type using previously published aerosol classification schemes.Three methods are implemented to obtain a best estimate of dominant aerosol type at each station using aerosol optical properties. The first method plots station medians into an AAE vs. SAE plot space, so that a unique combination of intensive properties corresponds with an aerosol type. The second typing method expands on the first by introducing a multivariate cluster analysis, which aims to group stations with similar optical characteristics and thus similar dominant aerosol type. The third and final classification method pairs 3-day backward air mass trajectories with median aerosol optical properties to explore the relationship between trajectory origin (proxy for likely aerosol type) and aerosol intensive parameters, while allowing for multiple dominant aerosol types at each station.The three aerosol classification methods have some common, and thus robust, results. In general, estimating dominant aerosol type using optical properties is best suited for site locations with a stable and homogenous aerosol population, particularly continental polluted (carbonaceous aerosol), marine polluted (carbonaceous aerosol mixed with sea salt) and continental dust/biomass sites

  12. Answering the Call for Model-Relevant Observations of Aerosols and Clouds

    NASA Technical Reports Server (NTRS)

    Redemann, J.; Shinozuka, Y.; Kacenelenbogen, M.; Segal-Rozenhaimer, M.; LeBlanc, S.; Vaughan, M.; Stier, P.; Schutgens, N.

    2017-01-01

    We describe a technique for combining multiple A-Train aerosol data sets, namely MODIS spectral AOD (aerosol optical depth), OMI AAOD (absorption aerosol optical depth) and CALIOP aerosol backscatter retrievals (hereafter referred to as MOC retrievals) to estimate full spectral sets of aerosol radiative properties, and ultimately to calculate the 3-D distribution of direct aerosol radiative effects (DARE). We present MOC results using almost two years of data collected in 2007 and 2008, and show comparisons of the aerosol radiative property estimates to collocated AERONET retrievals. We compare the spatio-temporal distribution of the MOC retrievals and MOC-based calculations of seasonal clear-sky DARE to values derived from four models that participated in the Phase II AeroCom model intercomparison initiative. Comparisons of seasonal aerosol property to AeroCom Phase II results show generally good agreement best agreement with forcing results at TOA is found with GMI-MerraV3.We discuss the challenges in making observations that really address deficiencies in models, with some of the more relevant aspects being representativeness of the observations for climatological states, and whether a given model-measurement difference addresses a sampling or a model error.

  13. Light-absorbing aerosol properties retrieved from the sunphotometer observation over the Yangtze River Delta, China.

    PubMed

    Wang, Jing; Niu, Shengjie; Xu, Dan

    2018-02-10

    In this study, aerosol optical depth (AOD) and extinction Ångström exponent (EAE) are derived from ground-based sunphotometer observations between 2007 and 2014 at urban sites of Nanjing over the Yangtze River Delta. In addition, the present study aims to investigate aerosol light-absorbing properties such as single-scattering albedo (SSA), absorption Ångström exponent (AAE), and the aerosol-absorbing optical depth (AAOD). The retrieval of aerosol properties is compared with AERONET inversion products. The results demonstrate that the retrieved AOD has a good agreement with the AERONET Level 1.5 data, with the root mean square error being 0.068, 0.065, and 0.026 for total, fine mode, and coarse mode at 440 nm, respectively. The SSA values indicate similar accuracies in the results, which are about 0.003, -0.009, -0.008, and 0.010 different from AERONET at 440, 670, 870, and 1020 nm, respectively. The occurrence frequency of background level AOD (AOD<0.10) at 440 nm in this region is limited (1%). Monthly mean AOD, SSA, the effective radius (R eff ), and the volume concentration at 440 nm were 0.6-1.3, 0.85-0.92, 0.24-0.40 μm, and 0.18-0.28  μm 3  μm -2 , respectively. The mean value of AAOD at 440 nm (AAOD 440 ) was the highest in both summer (0.095±0.041) and autumn (0.094±0.042), but was the lowest in winter (0.079±0.036). It was also noted that SSA was found to be higher during summer (0.89±0.05). The spectral variation of SSA was observed to be strongly wavelength-dependent during all seasons. The seasonal mean AAE440-870 is the highest in winter (0.86±0.41) and lowest in spring (0.49±0.29). In winter, the cumulative frequency for AAE between 1.0 and 1.2 was about 87%. The peak in the AAE distribution was close to 1.0, indicating that the aerosol column was dominated by urban-industrial aerosols and absorption species other than black carbon. Analysis of the relationship between EAE and SSA showed that the aerosol populations could be

  14. An assessment of aerosol optical properties from remote-sensing observations and regional chemistry-climate coupled models over Europe

    NASA Astrophysics Data System (ADS)

    Palacios-Peña, Laura; Baró, Rocío; Baklanov, Alexander; Balzarini, Alessandra; Brunner, Dominik; Forkel, Renate; Hirtl, Marcus; Honzak, Luka; María López-Romero, José; Montávez, Juan Pedro; Pérez, Juan Luis; Pirovano, Guido; San José, Roberto; Schröder, Wolfram; Werhahn, Johannes; Wolke, Ralf; Žabkar, Rahela; Jiménez-Guerrero, Pedro

    2018-04-01

    Atmospheric aerosols modify the radiative budget of the Earth due to their optical, microphysical and chemical properties, and are considered one of the most uncertain climate forcing agents. In order to characterise the uncertainties associated with satellite and modelling approaches to represent aerosol optical properties, mainly aerosol optical depth (AOD) and Ångström exponent (AE), their representation by different remote-sensing sensors and regional online coupled chemistry-climate models over Europe are evaluated. This work also characterises whether the inclusion of aerosol-radiation (ARI) or/and aerosol-cloud interactions (ACI) help improve the skills of modelling outputs.Two case studies were selected within the EuMetChem COST Action ES1004 framework when important aerosol episodes in 2010 all over Europe took place: a Russian wildfire episode and a Saharan desert dust outbreak that covered most of the Mediterranean Sea. The model data came from different regional air-quality-climate simulations performed by working group 2 of EuMetChem, which differed according to whether ARI or ACI was included or not. The remote-sensing data came from three different sensors: MODIS, OMI and SeaWIFS. The evaluation used classical statistical metrics to first compare satellite data versus the ground-based instrument network (AERONET) and then to evaluate model versus the observational data (both satellite and ground-based data).Regarding the uncertainty in the satellite representation of AOD, MODIS presented the best agreement with the AERONET observations compared to other satellite AOD observations. The differences found between remote-sensing sensors highlighted the uncertainty in the observations, which have to be taken into account when evaluating models. When modelling results were considered, a common trend for underestimating high AOD levels was observed. For the AE, models tended to underestimate its variability, except when considering a sectional approach in

  15. Simulating Aerosol Optical Properties With the Aerosol Simulation Program (ASP): Closure Studies Using ARCTAS Data

    NASA Astrophysics Data System (ADS)

    Alvarado, M. J.; Macintyre, H. L.; Bian, H.; Chin, M.; Wang, C.

    2012-12-01

    The scattering and absorption of ultraviolet and visible radiation by aerosols can significantly alter actinic fluxes and photolysis rates. Accurate modeling of aerosol optical properties is thus essential to simulating atmospheric chemistry, air quality, and climate. Here we evaluate the aerosol optical property predictions of the Aerosol Simulation Program (ASP) with in situ data on aerosol scattering and absorption gathered during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) campaign. The model simulations are initialized with in situ data on the aerosol size distribution and composition. We perform a set of sensitivity studies (e.g., internal vs. external mixture, core-in-shell versus Maxwell-Garnett, fraction of the organic carbon mass that is light-absorbing "brown carbon," etc.) to determine the model framework and parameters most consistent with the observations. We compare the ASP results to the aerosol optical property lookup tables in FAST-JX and suggest improvements that will better enable FAST-JX to simulate the impact of aerosols on photolysis rates and atmospheric chemistry.

  16. Observations of enhanced aerosol longwave radiative forcing over an urban environment

    NASA Astrophysics Data System (ADS)

    Panicker, A. S.; Pandithurai, G.; Safai, P. D.; Kewat, S.

    2008-02-01

    Collocated measurements of sun/sky radiance, aerosol chemical composition and radiative fluxes have been utilized to estimate longwave aerosol radiative forcing over Pune, an Indian urban site during dry winter [Dec2004 to Feb2005] by two methods. Hybrid method which uses observed downwelling and modeled upwelling longwave fluxes for different aerosol loadings yielded a surface forcing of 9.4 Wm-2. Model approach includes utilization of skyradiometer derived spectral aerosol optical properties in the visible and near infra-red wavelengths, modeled aerosol properties in 1.2-40 μm using observed soot and chemical composition data, MODIS water vapor and TOMS column ozone in a radiative transfer model. Estimates from model method showed longwave enhancement of 6.5 and 8.2 Wm-2 at the surface with tropical model atmosphere and temporally varying profiles of temperature and humidity, respectively. Study reveals that about 25% of the aerosol shortwave cooling is being compensated by increase in longwave radiation due to aerosol absorption.

  17. Validation of TOMS Aerosol Products using AERONET Observations

    NASA Technical Reports Server (NTRS)

    Bhartia, P. K.; Torres, O.; Sinyuk, A.; Holben, B.

    2002-01-01

    The Total Ozone Mapping Spectrometer (TOMS) aerosol algorithm uses measurements of radiances at two near UV channels in the range 331-380 nm to derive aerosol optical depth and single scattering albedo. Because of the low near UV surface albedo of all terrestrial surfaces (between 0.02 and 0.08), the TOMS algorithm has the capability of retrieving aerosol properties over the oceans and the continents. The Aerosol Robotic Network (AERONET) routinely derives spectral aerosol optical depth and single scattering albedo at a large number of sites around the globe. We have performed comparisons of both aerosol optical depth and single scattering albedo derived from TOMS and AERONET. In general, the TOMS aerosol products agree well with the ground-based observations, Results of this validation will be discussed.

  18. Aerosol classification using EARLINET measurements for an intensive observational period

    NASA Astrophysics Data System (ADS)

    Papagiannopoulos, Nikolaos; Mona, Lucia; Pappalardo, Gelsomina

    2016-04-01

    ACTRIS (Aerosols, Clouds and Trace gases Research Infrastructure Network) organized an intensive observation period during summer 2012. This campaign aimed at the provision of advanced observations of physical and chemical aerosol properties, at the delivery of information about the 3D distribution of European atmospheric aerosols, and at the monitoring of Saharan dust intrusions events. EARLINET (European Aerosol Research Lidar Network) participated in the ACTRIS campaign through the addition of measurements according to the EARLINET schedule as well as daily lidar-profiling measurements around sunset by 11 selected lidar stations for the period from 8 June - 17 July. EARLINET observations during this almost two-month period are used to characterize the optical properties and vertical distribution of long-range transported aerosol over the broader area of Mediterranean basin. The lidar measurements of aerosol intensive parameters (lidar ratio, depolarization, Angstrom exponents) are shown to vary with location and aerosol type. A methodology based on EARLINET observations of frequently observed aerosol types is used to classify aerosols into seven separate types. The summertime Mediterranean basin is prone to African dust aerosols. Two major dust events were studied. The first episode occurred from the 18 to 21 of the June and the second one lasted from 28 June to 6 July. The lidar ratio within the dust layer was found to be wavelength independent with mean values of 58±14 sr at 355 nm and 57±11 sr at 532 nm. For the particle linear depolarization ratio, mean values of 0.27±0.04 at 532 nm have been found. Acknowledgements. The financial support for EARLINET in the ACTRIS Research Infrastructure Project by the European Union's Horizon 2020 research and innovation programme under grant agreement no. 654169 and previously under grant agreement no. 262254 in the Seventh Framework Programme (FP7/2007-2013) is gratefully acknowledged.

  19. Aircraft observations of the physical and radiative properties of biomass aerosol particles during SAFARI-2000.

    NASA Astrophysics Data System (ADS)

    Osborne, S. R.; Haywood, J. M.

    2001-12-01

    An initial analysis will be shown from the ~80 h of data collected between 2--18 September 2000 by the UK Met Office C-130 aircraft during the dry season campaign of the Southern African Regional Science Initiative (SAFARI-2000). The talk will concentrate on the physical and optical properties of the biomass aerosol. The evolution of the particle size spectrum and its optical properties at emission and after ageing will be shown. The vertical distribution of the biomass plume over the land and sea will be compared in view of the local meteorology. A generalised three log-normal model is shown to represent aged biomass aerosol over the sea areas, both in terms of the number and mass particle size spectra, but also derived optical properties (e.g. asymmetry factor, single scatter albedo (ω 0) and extinction coefficient) as calculated using Mie theory and appropriate refractive indices. ω 0 was determined independently using a particle soot absorption photometer (giving the absorption coefficient at a wavelength of 0.567 μ m) and a nephelometer (giving the scattering coefficients at 0.45, 0.55 and 0.65 μ m). Good agreement was found between the measurements and those obtained from the Mie calculations and observed size distributions. A typical value of ω 0 at 0.55 μ m for aged biomass aerosol was 0.90. The radiative properties of the biomass aerosol over both land and sea will be summarised. Stratocumulus cloud was present on some of the days over the sea and the surprising lack of interaction between the elevated biomass plume (containing significant levels of cloud condensation nuclei) and the cloud capping the marine boundary layer will be illustrated. Using the cloud-free and cloudy case studies we can begin to elucidate the levels of direct and indirect forcing of the biomass aerosol on a regional scale. >http://www.mrfnet.demon.co.uk/africa/SAFARI2000.htm

  20. Confronting the Uncertainty in Aerosol Forcing Using Comprehensive Observational Data

    NASA Astrophysics Data System (ADS)

    Johnson, J. S.; Regayre, L. A.; Yoshioka, M.; Pringle, K.; Sexton, D.; Lee, L.; Carslaw, K. S.

    2017-12-01

    The effect of aerosols on cloud droplet concentrations and radiative properties is the largest uncertainty in the overall radiative forcing of climate over the industrial period. In this study, we take advantage of a large perturbed parameter ensemble of simulations from the UK Met Office HadGEM-UKCA model (the aerosol component of the UK Earth System Model) to comprehensively sample uncertainty in aerosol forcing. Uncertain aerosol and atmospheric parameters cause substantial aerosol forcing uncertainty in climatically important regions. As the aerosol radiative forcing itself is unobservable, we investigate the potential for observations of aerosol and radiative properties to act as constraints on the large forcing uncertainty. We test how eight different theoretically perfect aerosol and radiation observations can constrain the forcing uncertainty over Europe. We find that the achievable constraint is weak unless many diverse observations are used simultaneously. This is due to the complex relationships between model output responses and the multiple interacting parameter uncertainties: compensating model errors mean there are many ways to produce the same model output (known as model equifinality) which impacts on the achievable constraint. However, using all eight observable quantities together we show that the aerosol forcing uncertainty can potentially be reduced by around 50%. This reduction occurs as we reduce a large sample of model variants (over 1 million) that cover the full parametric uncertainty to around 1% that are observationally plausible.Constraining the forcing uncertainty using real observations is a more complex undertaking, in which we must account for multiple further uncertainties including measurement uncertainties, structural model uncertainties and the model discrepancy from reality. Here, we make a first attempt to determine the true potential constraint on the forcing uncertainty from our model that is achievable using a comprehensive

  1. Comparison of MADE3-simulated and observed aerosol distributions with a focus on aerosol vertical profiles

    NASA Astrophysics Data System (ADS)

    Kaiser, Christopher; Hendricks, Johannes; Righi, Mattia; Jöckel, Patrick

    2016-04-01

    The reliability of aerosol radiative forcing estimates from climate models depends on the accuracy of simulated global aerosol distribution and composition, as well as on the models' representation of the aerosol-cloud and aerosol-radiation interactions. To help improve on previous modeling studies, we recently developed the new aerosol microphysics submodel MADE3 that explicitly tracks particle mixing state in the Aitken, accumulation, and coarse mode size ranges. We implemented MADE3 into the global atmospheric chemistry general circulation model EMAC and evaluated it by comparison of simulated aerosol properties to observations. Compared properties include continental near-surface aerosol component concentrations and size distributions, continental and marine aerosol vertical profiles, and nearly global aerosol optical depth. Recent studies have shown the specific importance of aerosol vertical profiles for determination of the aerosol radiative forcing. Therefore, our focus here is on the evaluation of simulated vertical profiles. The observational data is taken from campaigns between 1990 and 2011 over the Pacific Ocean, over North and South America, and over Europe. The datasets include black carbon and total aerosol mass mixing ratios, as well as aerosol particle number concentrations. Compared to other models, EMAC with MADE3 yields good agreement with the observations - despite a general high bias of the simulated mass mixing ratio profiles. However, BC concentrations are generally overestimated by many models in the upper troposphere. With MADE3 in EMAC, we find better agreement of the simulated BC profiles with HIPPO data than the multi-model average of the models that took part in the AeroCom project. There is an interesting difference between the profiles from individual campaigns and more "climatological" datasets. For instance, compared to spatially and temporally localized campaigns, the model simulates a more continuous decline in both total

  2. Climatology and Characteristics of Aerosol Optical Properties in the Arctic

    NASA Astrophysics Data System (ADS)

    Schmeisser, Lauren; Ogren, John; Backman, John; Asmi, Eija; Andrews, Elisabeth; Jefferson, Anne; Bergin, Michael; Tunved, Peter; Sharma, Sangeeta; Starkweather, Sandra

    2016-04-01

    Within the Arctic, climate forcers like atmospheric aerosols are important contributors to the observed warming and environmental changes in the region. Quantifying the forcing by aerosols in the Arctic is especially difficult, given short aerosol lifetimes, annual variability in illumination and surface albedo, stratified atmospheric conditions, complex feedbacks, and long-range aerosol transport. However, in-situ surface measurements of Arctic aerosol optical properties can be used to constrain variability of light scattering and absorption, identify potential particle sources, and help evaluate the resulting forcing. Data from six WMO Global Atmosphere Watch stations are presented: Alert, Canada (ALT); Barrow, Alaska (BRW); Pallas, Finland (PAL); Summit, Greenland (SUM); Tiksi, Russia (TIK); and Zeppelin Mountain, Norway (ZEP). These sites contribute to the International Arctic System for Observing the Atmosphere (IASOA), which facilitates Arctic-wide data collection and analysis. Climatologies of aerosol optical properties from each station show differences in magnitude and variability of observed parameters. For example, most stations (ALT, BRW, SUM, TIK, ZEP) experience maximum scattering in winter/spring, while PAL exhibits maximum scattering in the summer. The observed range in scattering across these sites is large (almost an order of magnitude) - SUM has the lowest annual median scattering at 0.82 Mm-1 while BRW has the highest at 6.9 Mm-1. A closer look at systematic variability between optical properties at each station, as well as site back trajectories, suggest differences in aerosol processes, sources and transport. The development of consistent climatologies and additional analyses like the ones presented here can help provide a better understanding of trans-Arctic aerosol variability, which can be an asset for improving aerosol models in this unique and remote region.

  3. Size-resolved aerosol and cloud condensation nuclei (CCN) properties in the remote marine South China Sea - Part 1: Observations and source classification

    NASA Astrophysics Data System (ADS)

    Atwood, Samuel A.; Reid, Jeffrey S.; Kreidenweis, Sonia M.; Blake, Donald R.; Jonsson, Haflidi H.; Lagrosas, Nofel D.; Xian, Peng; Reid, Elizabeth A.; Sessions, Walter R.; Simpas, James B.

    2017-01-01

    Ship-based measurements of aerosol and cloud condensation nuclei (CCN) properties are presented for 2 weeks of observations in remote marine regions of the South China Sea/East Sea during the southwestern monsoon (SWM) season. Smoke from extensive biomass burning throughout the Maritime Continent advected into this region during the SWM, where it was mixed with anthropogenic continental pollution and emissions from heavy shipping activities. Eight aerosol types were identified using a k-means cluster analysis with data from a size-resolved CCN characterization system. Interpretation of the clusters was supplemented by additional onboard aerosol and meteorological measurements, satellite, and model products for the region. A typical bimodal marine boundary layer background aerosol population was identified and observed mixing with accumulation mode aerosol from other sources, primarily smoke from fires in Borneo and Sumatra. Hygroscopicity was assessed using the κ parameter and was found to average 0.40 for samples dominated by aged accumulation mode smoke; 0.65 for accumulation mode marine aerosol; 0.60 in an anthropogenic aerosol plume; and 0.22 during a short period that was characterized by elevated levels of volatile organic compounds not associated with biomass burning impacts. As a special subset of the background marine aerosol, clean air masses substantially scrubbed of particles were observed following heavy precipitation or the passage of squall lines, with changes in observed aerosol properties occurring on the order of minutes. Average CN number concentrations, size distributions, and κ values are reported for each population type, along with CCN number concentrations for particles that activated at supersaturations between 0.14 and 0.85 %.

  4. Use of A-Train Aerosol Observations to Constrain Direct Aerosol Radiative Effects (DARE) Comparisons with Aerocom Models and Uncertainty Assessments

    NASA Technical Reports Server (NTRS)

    Redemann, J.; Shinozuka, Y.; Kacenelenbogen, M.; Segal-Rozenhaimer, M.; LeBlanc, S.; Vaughan, M.; Stier, P.; Schutgens, N.

    2017-01-01

    We describe a technique for combining multiple A-Train aerosol data sets, namely MODIS spectral AOD (aerosol optical depth), OMI AAOD (absorption aerosol optical depth) and CALIOP aerosol backscatter retrievals (hereafter referred to as MOC retrievals) to estimate full spectral sets of aerosol radiative properties, and ultimately to calculate the 3-D distribution of direct aerosol radiative effects (DARE). We present MOC results using almost two years of data collected in 2007 and 2008, and show comparisons of the aerosol radiative property estimates to collocated AERONET retrievals. Use of the MODIS Collection 6 AOD data derived with the dark target and deep blue algorithms has extended the coverage of the MOC retrievals towards higher latitudes. The MOC aerosol retrievals agree better with AERONET in terms of the single scattering albedo (ssa) at 441 nm than ssa calculated from OMI and MODIS data alone, indicating that CALIOP aerosol backscatter data contains information on aerosol absorption. We compare the spatio-temporal distribution of the MOC retrievals and MOC-based calculations of seasonal clear-sky DARE to values derived from four models that participated in the Phase II AeroCom model intercomparison initiative. Overall, the MOC-based calculations of clear-sky DARE at TOA over land are smaller (less negative) than previous model or observational estimates due to the inclusion of more absorbing aerosol retrievals over brighter surfaces, not previously available for observationally-based estimates of DARE. MOC-based DARE estimates at the surface over land and total (land and ocean) DARE estimates at TOA are in between previous model and observational results. Comparisons of seasonal aerosol property to AeroCom Phase II results show generally good agreement best agreement with forcing results at TOA is found with GMI-MerraV3. We discuss sampling issues that affect the comparisons and the major challenges in extending our clear-sky DARE results to all

  5. Effect of CALIPSO Cloud Aerosol Discrimination (CAD) Confidence Levels on Observations of Aerosol Properties near Clouds

    NASA Technical Reports Server (NTRS)

    Yang, Weidong; Marshak, Alexander; Varnai, Tamas; Liu, Zhaoyan

    2012-01-01

    CALIPSO aerosol backscatter enhancement in the transition zone between clouds and clear sky areas is revisited with particular attention to effects of data selection based on the confidence level of cloud-aerosol discrimination (CAD). The results show that backscatter behavior in the transition zone strongly depends on the CAD confidence level. Higher confidence level data has a flatter backscatter far away from clouds and a much sharper increase near clouds (within 4 km), thus a smaller transition zone. For high confidence level data it is shown that the overall backscatter enhancement is more pronounced for small clear-air segments and horizontally larger clouds. The results suggest that data selection based on CAD reduces the possible effects of cloud contamination when studying aerosol properties in the vicinity of clouds.

  6. Retrieval of aerosol optical properties using MERIS observations: Algorithm and some first results.

    PubMed

    Mei, Linlu; Rozanov, Vladimir; Vountas, Marco; Burrows, John P; Levy, Robert C; Lotz, Wolfhardt

    2017-08-01

    The MEdium Resolution Imaging Spectrometer (MERIS) instrument on board ESA Envisat made measurements from 2002 to 2012. Although MERIS was limited in spectral coverage, accurate Aerosol Optical Thickness (AOT) from MERIS data are retrieved by using appropriate additional information. We introduce a new AOT retrieval algorithm for MERIS over land surfaces, referred to as eXtensible Bremen AErosol Retrieval (XBAER). XBAER is similar to the "dark-target" (DT) retrieval algorithm used for Moderate-resolution Imaging Spectroradiometer (MODIS), in that it uses a lookup table (LUT) to match to satellite-observed reflectance and derive the AOT. Instead of a global parameterization of surface spectral reflectance, XBAER uses a set of spectral coefficients to prescribe surface properties. In this manner, XBAER is not limited to dark surfaces (vegetation) and retrieves AOT over bright surface (desert, semiarid, and urban areas). Preliminary validation of the MERIS-derived AOT and the ground-based Aerosol Robotic Network (AERONET) measurements yield good agreement, the resulting regression equation is y = (0.92 × ± 0.07) + (0.05 ± 0.01) and Pearson correlation coefficient of R = 0.78. Global monthly means of AOT have been compared from XBAER, MODIS and other satellite-derived datasets.

  7. Black carbon aerosol mixing state, organic aerosols and aerosol optical properties over the UK

    NASA Astrophysics Data System (ADS)

    McMeeking, G. R.; Morgan, W. T.; Flynn, M.; Highwood, E. J.; Turnbull, K.; Haywood, J.; Coe, H.

    2011-05-01

    Black carbon (BC) aerosols absorb sunlight thereby leading to a positive radiative forcing and a warming of climate and can also impact human health through their impact on the respiratory system. The state of mixing of BC with other aerosol species, particularly the degree of internal/external mixing, has been highlighted as a major uncertainty in assessing its radiative forcing and hence its climate impact, but few in situ observations of mixing state exist. We present airborne single particle soot photometer (SP2) measurements of refractory BC (rBC) mass concentrations and mixing state coupled with aerosol composition and optical properties measured in urban plumes and regional pollution over the UK. All data were obtained using instrumentation flown on the UK's BAe-146-301 large Atmospheric Research Aircraft (ARA) operated by the Facility for Airborne Atmospheric Measurements (FAAM). We measured sub-micron aerosol composition using an aerosol mass spectrometer (AMS) and used positive matrix factorization to separate hydrocarbon-like (HOA) and oxygenated organic aerosols (OOA). We found a higher number fraction of thickly coated rBC particles in air masses with large OOA relative to HOA, higher ozone-to-nitrogen oxides (NOx) ratios and large concentrations of total sub-micron aerosol mass relative to rBC mass concentrations. The more ozone- and OOA-rich air masses were associated with transport from continental Europe, while plumes from UK cities had higher HOA and NOx and fewer thickly coated rBC particles. We did not observe any significant change in the rBC mass absorption efficiency calculated from rBC mass and light absorption coefficients measured by a particle soot absorption photometer despite observing significant changes in aerosol composition and rBC mixing state. The contributions of light scattering and absorption to total extinction (quantified by the single scattering albedo; SSA) did change for different air masses, with lower SSA observed in

  8. Aerosol optical properties and radiative effects: Assessment of urban aerosols in central China using 10-year observations

    NASA Astrophysics Data System (ADS)

    Zhang, Ming; Ma, Yingying; Gong, Wei; Liu, Boming; Shi, Yifan; Chen, ZhongYong

    2018-06-01

    Poor air quality episodes are common in central China. Here, based on 10 years of ground-based sun-photometric observations, aerosol optical and radiative forcing characteristics were analyzed in Wuhan, the biggest metropolis in central China. Aerosol optical depth (AOD) in the last decade declined significantly, while the Ångström exponent (AE) showed slight growth. Single scattering albedo (SSA) at 440 nm reached the lowest value (0.87) in winter and highest value (0.93) in summer. Aerosol parameters derived from sun-photometric observations were used as input in a radiative transfer model to calculate aerosol radiative forcing (ARF) on the surface in ultraviolet (UV), visible (VIS), near-infrared (NIR), and shortwave (SW) spectra. ARFSW sustained decreases (the absolute values) over the last 10 years. In terms of seasonal variability, due to the increases in multiple scattering effects and attenuation of the transmitted radiation as AOD increased, ARF in summer displayed the largest value (-73.94 W/m2). After eliminating the influence of aerosol loading, the maximum aerosol radiative forcing efficiency in SW range (ARFESW) achieved a value of -64.5 W/m2/AOD in April. The ARFE change in each sub-interval spectrum was related to the change in SSA and effective radius of fine mode particles (Refff), that is, ARFE increased with the decreases in SSA and Refff. The smallest contribution of ARFENIR to ARFESW was 34.11% under strong absorbing and fine particle conditions, and opposite results were found for the VIS range, whose values were always over 51.82%. Finally, due to the serious air pollution and frequency of haze day, aerosol characteristics in haze and clear days were analyzed. The percentage of ARFENIR increased from 35.71% on clear-air days to 37.63% during haze periods, while both the percentage of ARFEUV and ARFENIR in ARFESW kept decreasing. The results of this paper should help us to better understand the effect of aerosols on solar spectral radiation

  9. Black carbon aerosol mixing state, organic aerosols and aerosol optical properties over the United Kingdom

    NASA Astrophysics Data System (ADS)

    McMeeking, G. R.; Morgan, W. T.; Flynn, M.; Highwood, E. J.; Turnbull, K.; Haywood, J.; Coe, H.

    2011-09-01

    Black carbon (BC) aerosols absorb sunlight thereby leading to a positive radiative forcing and a warming of climate and can also impact human health through their impact on the respiratory system. The state of mixing of BC with other aerosol species, particularly the degree of internal/external mixing, has been highlighted as a major uncertainty in assessing its radiative forcing and hence its climate impact, but few in situ observations of mixing state exist. We present airborne single particle soot photometer (SP2) measurements of refractory BC (rBC) mass concentrations and mixing state coupled with aerosol composition and optical properties measured in urban plumes and regional pollution over the United Kingdom. All data were obtained using instrumentation flown on the UK's BAe-146-301 large Atmospheric Research Aircraft (ARA) operated by the Facility for Airborne Atmospheric Measurements (FAAM). We measured sub-micron aerosol composition using an aerosol mass spectrometer (AMS) and used positive matrix factorization to separate hydrocarbon-like (HOA) and oxygenated organic aerosols (OOA). We found a higher number fraction of thickly coated rBC particles in air masses with large OOA relative to HOA, higher ozone-to-nitrogen oxides (NOx) ratios and large concentrations of total sub-micron aerosol mass relative to rBC mass concentrations. The more ozone- and OOA-rich air masses were associated with transport from continental Europe, while plumes from UK cities had higher HOA and NOx and fewer thickly coated rBC particles. We did not observe any significant change in the rBC mass absorption efficiency calculated from rBC mass and light absorption coefficients measured by a particle soot absorption photometer despite observing significant changes in aerosol composition and rBC mixing state. The contributions of light scattering and absorption to total extinction (quantified by the single scattering albedo; SSA) did change for different air masses, with lower SSA

  10. Simultaneous Retrieval of Aerosol and Cloud Properties During the MILAGRO Field Campaign

    NASA Technical Reports Server (NTRS)

    Knobelspiesse, K.; Cairns, B.; Redemann, J.; Bergstrom, R. W.; Stohl, A.

    2011-01-01

    Estimation of Direct Climate Forcing (DCF) due to aerosols in cloudy areas has historically been a difficult task, mainly because of a lack of appropriate measurements. Recently, passive remote sensing instruments have been developed that have the potential to retrieve both cloud and aerosol properties using polarimetric, multiple view angle, and multi spectral observations, and therefore determine DCF from aerosols above clouds. One such instrument is the Research Scanning Polarimeter (RSP), an airborne prototype of a sensor on the NASA Glory satellite, which unfortunately failed to reach orbit during its launch in March of 2011. In the spring of 2006, the RSP was deployed on an aircraft based in Veracruz, Mexico, as part of the Megacity Initiative: Local and Global Research Observations (MILAGRO) field campaign. On 13 March, the RSP over flew an aerosol layer lofted above a low altitude marine stratocumulus cloud close to shore in the Gulf of Mexico. We investigate the feasibility of retrieving aerosol properties over clouds using these data. Our approach is to first determine cloud droplet size distribution using the angular location of the cloud bow and other features in the polarized reflectance. The selected cloud was then used in a multiple scattering radiative transfer model optimization to determine the aerosol optical properties and fine tune the cloud size distribution. In this scene, we were able to retrieve aerosol optical depth, the fine mode aerosol size distribution parameters and the cloud droplet size distribution parameters to a degree of accuracy required for climate modeling. This required assumptions about the aerosol vertical distribution and the optical properties of the coarse aerosol size mode. A sensitivity study was also performed to place this study in the context of future systematic scanning polarimeter observations, which found that the aerosol complex refractive index can also be observed accurately if the aerosol optical depth is

  11. Raman Lidar Measurements of Aerosol Optical Properties Performed at CNR- IMAA

    NASA Astrophysics Data System (ADS)

    Mona, L.; Amodeo, A.; Cornacchia, C.; D'Amico, G.; Madonna, F.; Pandolfi, M.; Pappalardo, G.

    2005-12-01

    The lidar system for tropospheric aerosol study, located at CNR-IMAA in Tito Scalo, Potenza (40 °36'N, 15°44' E, 760 m above sea level), is a Raman/elastic lidar system operational since May 2000 in the framework of EARLINET (European Aerosol Research LIdar NETwork), the first lidar network for tropospheric aerosol study on continental scale. It provides independent measurements of aerosol extinction and backscatter coefficient profiles at 355 nm and aerosol backscatter profiles at 532 nm. Both the IMAA aerosol lidar system and the used algorithms for the retrieval of aerosol optical parameters have been successfully tested with different intercomparison exercises in the frame of the EARLINET quality assurance program. In the frame of EARLINET, regular measurements are performed three times per week, allowing to study the aerosol content typically present in the planetary boundary layer over Potenza. Particular attention is devoted to Saharan dust intrusions in Europe, and Saharan dust forecasts are distributed to all EARLINET stations. The large dataset of Saharan dust optical properties profiles collected at IMAA allowed to study the contribution of dust particles to the aerosol load typically present in our area as well as to investigate transformations of aerosol optical properties during the transport. Several intensive measurement campaigns have been performed at IMAA with this system to study optical properties of different types of aerosol, and how the transport and modification mechanisms and the water content affect these optical properties. In particular, direct transport of volcanic aerosol emitted in 2002 during the Etna eruptions was observed, and in summer 2004, aerosol layers related to forest fires smoke or pollution plume transported from Alaska, Canada and North America were observed at IMAA during the International Consortium for Atmospheric Research on Transport and Transformation (ICARTT) field campaign. Moreover, this system has been used

  12. Aerosol Properties of the Atmospheres of Extrasolar Giant Planets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lavvas, P.; Koskinen, T., E-mail: panayotis.lavvas@univ-reims.fr

    2017-09-20

    We use a model of aerosol microphysics to investigate the impact of high-altitude photochemical aerosols on the transmission spectra and atmospheric properties of close-in exoplanets, such as HD 209458 b and HD 189733 b. The results depend strongly on the temperature profiles in the middle and upper atmospheres, which are poorly understood. Nevertheless, our model of HD 189733 b, based on the most recently inferred temperature profiles, produces an aerosol distribution that matches the observed transmission spectrum. We argue that the hotter temperature of HD 209458 b inhibits the production of high-altitude aerosols and leads to the appearance of amore » clearer atmosphere than on HD 189733 b. The aerosol distribution also depends on the particle composition, photochemical production, and atmospheric mixing. Due to degeneracies among these inputs, current data cannot constrain the aerosol properties in detail. Instead, our work highlights the role of different factors in controlling the aerosol distribution that will prove useful in understanding different observations, including those from future missions. For the atmospheric mixing efficiency suggested by general circulation models, we find that the aerosol particles are small (∼nm) and probably spherical. We further conclude that a composition based on complex hydrocarbons (soots) is the most likely candidate to survive the high temperatures in hot-Jupiter atmospheres. Such particles would have a significant impact on the energy balance of HD 189733 b’s atmosphere and should be incorporated in future studies of atmospheric structure. We also evaluate the contribution of external sources to photochemical aerosol formation and find that their spectral signature is not consistent with observations.« less

  13. Satellite remote sensing of aerosol and cloud properties over Eurasia

    NASA Astrophysics Data System (ADS)

    Sogacheva, Larisa; Kolmonen, Pekka; Saponaro, Giulia; Virtanen, Timo; Rodriguez, Edith; Sundström, Anu-Maija; Atlaskina, Ksenia; de Leeuw, Gerrit

    2015-04-01

    surface properties, the surface reflectance can be independently retrieved using the AOD for atmospheric correction. For the retrieval of cloud properties, the SACURA algorithm has been implemented in the ADV/ASV aerosol retrieval suite. Cloud properties retrieved from AATSR data are cloud fraction, cloud optical thickness, cloud top height, cloud droplet effective radius, liquid water path. Aerosol and cloud properties are applied for different studies over the Eurasia area. Using the simultaneous retrieval of aerosol and cloud properties allows for study of the transition from the aerosol regime to the cloud regime, such as changes in effective radius or AOD (aerosol optical depth) to COT (cloud optical thickness). The column- integrated aerosol extinction, aerosol optical depth or AOD, which is primarily reported from satellite observations, can be used as a proxy for cloud condensation nuclei (CCN) and hence contains information on the ability of aerosol particles to form clouds. Hence, connecting this information with direct observations of cloud properties provides information on aerosol-cloud interactions.

  14. Modeling the Relationships Between Aerosol Properties and the Direct and Indirect Effects of Aerosols on Climate

    NASA Technical Reports Server (NTRS)

    Toon, Owen B.

    1994-01-01

    Aerosols may affect climate directly by scattering and absorbing visible and infrared energy, They may also affect climate indirectly by modifying the properties of clouds through microphysical processes, and by altering abundances of radiatively important gases through heterogeneous chemistry. Researchers understand which aerosol properties control the direct effect of aerosols on the radiation budget. Unfortunately, despite an abundance of data on certain types of aerosols, much work remains to be done to determine the values of these properties. For instance we have little idea about the global distribution, seasonal variation, or interannual variability of the aerosol optical depth. Also we do not know the visible light absorption properties of tropical aerosols which may contain much debris from slash and burn agriculture. A positive correlation between aerosol concentrations and albedos of marine stratus clouds is observed, and the causative microphysics is understood. However, models suggest that it is difficult to produce new particles in the marine boundary layer. Some modelers have suggested that the particles in the marine boundary layer may originate in the free troposphere and be transported into the boundary layer. Others argue that the aerosols are created in the marine boundary layer. There are no data linking aerosol concentration and cirrus cloud albedo, and models suggest cirrus properties may not be very sensitive to aerosol abundance. There is clear evidence of a radiatively significant change in the global lower stratospheric ozone abundance during the past few decades. These changes are caused by heterogeneous chemical reactions occurring on the surfaces of particles. The rates of these reactions depend upon the chemical composition of the particles. Although rapid advances in understanding heterogeneous chemistry have been made, much remains to be done.

  15. Improvements to the OMI Near-uv Aerosol Algorithm Using A-train CALIOP and AIRS Observations

    NASA Technical Reports Server (NTRS)

    Torres, O.; Ahn, C.; Zhong, C.

    2014-01-01

    The height of desert dust and carbonaceous aerosols layers and, to a lesser extent, the difficulty in assessing the predominant size mode of these absorbing aerosol types, are sources of uncertainty in the retrieval of aerosol properties from near UV satellite observations. The availability of independent, near-simultaneous measurements of aerosol layer height, and aerosol-type related parameters derived from observations by other A-train sensors, makes possible the direct use of these parameters as input to the OMI (Ozone Monitoring Instrument) near UV retrieval algorithm. A monthly climatology of aerosol layer height derived from observations by the CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) sensor, and real-time AIRS (Atmospheric Infrared Sounder) CO observations are used in an upgraded version of the OMI near UV aerosol algorithm. AIRS CO measurements are used as a reliable tracer of carbonaceous aerosols, which allows the identification of smoke layers in areas and times of the year where the dust-smoke differentiation is difficult in the near-UV. The use of CO measurements also enables the identification of elevated levels of boundary layer pollution undetectable by near UV observations alone. In this paper we discuss the combined use of OMI, CALIOP and AIRS observations for the characterization of aerosol properties, and show a significant improvement in OMI aerosol retrieval capabilities.

  16. Organic Aerosols from SÃO Paulo and its Relationship with Aerosol Absorption and Scattering Properties

    NASA Astrophysics Data System (ADS)

    Artaxo, P.; Brito, J. F.; Rizzo, L. V.

    2012-12-01

    The megacity of São Paulo with its 19 million people and 7 million cars is a challenge from the point of view of air pollution. High levels of organic aerosols, PM10, black carbon and ozone and the peculiar situation of the large scale use of ethanol fuel makes it a special case. Little is known about the impact of ethanol on air quality and human health and the increase of ethanol as vehicle fuel is rising worldwide An experiment was designed to physico-chemical properties of aerosols in São Paulo, as well as their optical properties. Aerosol size distribution in the size range of 1nm to 10 micrometers is being measured with a Helsinki University SMPS (Scanning Mobility Particle Sizer), an NAIS (Neutral ion Spectrometer) and a GRIMM OPC (Optical Particle Counter). Optical properties are being measured with a TSI Nephelometer and a Thermo MAAP (Multi Angle Absorption Photometer). A CIMEL sunphotometer from the AERONET network measure the aerosol optical depth. Furthermore, a Proton-Transfer-Reaction Mass Spectrometer (PTR-MS) and an Aerosol Chemical Speciation Monitor (ACSM) are used to real-time VOC analysis and aerosol composition, respectively. The ACSM was operated for 3 months continuosly during teh wintertime of 2012. The measured total particle concentration typically varies between 10,000 and 30,000 cm-3 being the lowest late in the night and highest around noon and frequently exceeding 50,000 cm-3. Clear diurnal patterns in aerosol optical properties were observed. Scattering and absorption coefficients typically range between 20 and 100 Mm-1 at 450 nm, and between 10 to 40 Mm-1 at 637 nm, respectively, both of them peaking at 7:00 local time, the morning rush hour. The corresponding single scattering albedo varies between 0.50 and 0.85, indicating a significant contribution of primary absorbing particles to the aerosol population. During the first month a total of seven new particle formation events were observed with growth rates ranging from 9 to 25

  17. Spatial and temporal variations of aerosols around Beijing in summer 2006: 2. Local and column aerosol optical properties

    NASA Astrophysics Data System (ADS)

    Matsui, H.; Koike, M.; Kondo, Y.; Takegawa, N.; Fast, J. D.; PöSchl, U.; Garland, R. M.; Andreae, M. O.; Wiedensohler, A.; Sugimoto, N.; Zhu, T.

    2010-11-01

    Model calculations were conducted using the Weather Research and Forecasting model coupled with chemistry (WRF-chem) for the region around Beijing, China, in the summer of 2006, when the CAREBeijing-2006 intensive campaign was conducted. In this paper, we interpret aerosol optical properties in terms of aerosol mass concentrations and their chemical compositions by linking model calculations with measurements. The model calculations generally captured the observed variability of various surface and column aerosol optical parameters in and around Beijing. At the surface, the spatial and temporal variations of aerosol absorption and scattering coefficients corresponded well to those of elemental carbon and sulfate mass concentrations, respectively, and were controlled by local-scale (<100 km and <24 hours) and regional-scale (<500 km and <3 days) emissions, respectively. The contribution of secondary aerosols and their water uptake increased with altitude within the planetary boundary layer. This variation led to a considerable increase in column aerosol optical depth and was responsible for the differences in regional and temporal variations between surface and column aerosol optical properties around Beijing. These processes are expected to be common in other megacity regions as well. Model calculations, however, underestimated or overestimated the absolute levels of aerosol optical properties in and around Beijing by up to 60%. Sensitivity studies showed that these discrepancies were mostly due to the uncertainties in aerosol mixing state and aerosol density (affecting mass extinction efficiency) in the model calculations. Good agreement with measurements is achieved when these aerosol properties are accurately predicted or assumed; however, significant bias can result when these properties are inadequately treated, even if total aerosol mass concentrations are reproduced well in the model calculations.

  18. Approaches to Observe Anthropogenic Aerosol-Cloud Interactions.

    PubMed

    Quaas, Johannes

    Anthropogenic aerosol particles exert an-quantitatively very uncertain-effective radiative forcing due to aerosol-cloud interactions via an immediate altering of cloud albedo on the one hand and via rapid adjustments by alteration of cloud processes and by changes in thermodynamic profiles on the other hand. Large variability in cloud cover and properties and the therefore low signal-to-noise ratio for aerosol-induced perturbations hamper the identification of effects in observations. Six approaches are discussed as a means to isolate the impact of anthropogenic aerosol on clouds from natural cloud variability to estimate or constrain the effective forcing. These are (i) intentional cloud modification, (ii) ship tracks, (iii) differences between the hemispheres, (iv) trace gases, (v) weekly cycles and (vi) trends. Ship track analysis is recommendable for detailed process understanding, and the analysis of weekly cycles and long-term trends is most promising to derive estimates or constraints on the effective radiative forcing.

  19. Absorption Properties of Mediterranean Aerosols Obtained from Multi-year Ground-based and Satellite Remote Sensing Observations

    NASA Technical Reports Server (NTRS)

    Mallet, M.; Dubovik, O.; Nabat, P.; Dulac, F.; Kahn, R.; Sciare, J.; Paronis, D.; Leon, J. F.

    2013-01-01

    Aerosol absorption properties are of high importance to assess aerosol impact on regional climate. This study presents an analysis of aerosol absorption products obtained over the Mediterranean Basin or land stations in the region from multi-year ground-based AERONET and satellite observations with a focus on the Absorbing Aerosol Optical Depth (AAOD), Single Scattering Albedo (SSA) and their spectral dependence. The AAOD and Absorption Angstrom Exponent (AAE) data set is composed of daily averaged AERONET level 2 data from a total of 22 Mediterranean stations having long time series, mainly under the influence of urban-industrial aerosols and/or soil dust. This data set covers the 17 yr period 1996-2012 with most data being from 2003-2011 (approximately 89 percent of level-2 AAOD data). Since AERONET level-2 absorption products require a high aerosol load (AOD at 440 nm greater than 0.4), which is most often related to the presence of desert dust, we also consider level-1.5 SSA data, despite their higher uncertainty, and filter out data with an Angstrom exponent less than 1.0 in order to study absorption by carbonaceous aerosols. The SSA data set includes both AERONET level-2 and satellite level-3 products. Satellite-derived SSA data considered are monthly level 3 products mapped at the regional scale for the spring and summer seasons that exhibit the largest aerosol loads. The satellite SSA dataset includes the following products: (i) Multi-angle Imaging SpectroRadiometer (MISR) over 2000-2011, (ii) Ozone Monitoring Instrument (OMI) near-UV algorithm over 2004-2010, and (iii) MODerate resolution Imaging Spectroradiometer (MODIS) Deep-Blue algorithm over 2005-2011, derived only over land in dusty conditions. Sun-photometer observations show that values of AAOD at 440 nm vary between 0.024 +/- 0.01 (resp. 0.040 +/- 0.01) and 0.050 +/- 0.01 (0.055 +/- 0.01) for urban (dusty) sites. Analysis shows that the Mediterranean urban-industrial aerosols appear "moderately

  20. Characteristics of aerosol light scattering and absorption properties observed at Gosan, Korea, during GOPOEX 2014

    NASA Astrophysics Data System (ADS)

    Cho, C.; Kim, S. W.; Sheridan, P. J.; Gustafsson, O.; Lee, M.; Yoon, S. C.

    2016-12-01

    Anthropogenic fine pollution and wind-blown mineral dust aerosols have a significant effect on the regional radiation budget by scattering or absorbing the solar radiation reaching the Earth's surface. We investigate the optical and physical properties of dust and pollution aerosols at Gosan Climate Observatory (GCO), Korea during Gosan Pollution Experiment 2014 (GOPOEX 2014; January 2014).Mean values of aerosol scattering coefficient and absorption coefficient during GOPOEX 2014 were 72 ± 86 Mm-1 and 6 ± 5 Mm-1 at 550 nm, respectively. Aerosol scattering coefficient and absorption coefficient during dust episodes were 245 ± 171 Mm-1 and 22 ± 13 Mm-1 at 550 nm, which were approximately 3.5 times greater than mean values during GOPOEX 2014. Values for scattering and absorption coefficient of pollution episodes were recorded as 153 ± 95 Mm-1 and 12 ± 7 Mm-1 at 550 nm. Therefore, single scattering albedo of pollution episodes (0.92 ± 0.02) was slightly higher than those of dust episodes (0.90 ± 0.03). This is because that pollutant aerosols include more scattering fraction such as SO42-, and NO3- in fine particulate matter emitted from industrial areas in the eastern coastal region of China while dust aerosols are transported from North China to Gosan.Aerosol optical properties are influenced by where the air mass is transported from, either South China or North China. The mean values of aerosol scattering coefficient and absorption coefficient when air mass was transported from South China were 136 ± 132 Mm-1 and 15 ± 14 Mm-1 at 550 nm whereas those from North China were 108 ± 112 Mm-1 and 8 ± 7 Mm-1 at 550 nm. Single scattering albedo are almost identical as 0.9 ± 0.03 for both air masses.Carbonaceous composition of aerosols, which occupy a considerable fraction of fine particulate matter, also depends on the origin of the air mass. Radiocarbon (14C) is a good indicator for distinguishing between fossil combustion and biomass combustion. Detailed source

  1. Setup and first airborne application of an aerosol optical properties package for the In-service Aircraft Global Observing System IAGOS.

    NASA Astrophysics Data System (ADS)

    Bundke, Ulrich; Freedman, Andrew; Herber, Andreas; Mattis, Ina; Berg, Marcel; De Faira, Julia; Petzold, Andreas

    2016-04-01

    The atmospheric aerosol influences the climate twofold via the direct interaction with solar radiation and indirectly effecting microphysical properties of clouds. The latter has the largest uncertainty according to the last IPPC Report. A measured in situ climatology of the aerosol microphysical and optical properties is needed to reduce the reported uncertainty of the aerosol climate impact. The European Research Infrastructure IAGOS (In-service Aircraft for a Global Observing System; www.iagos.org) responds to the increasing requests for long-term, routine in situ observational data by using commercial passenger aircraft as measurement platform. However, scientific instrumentation for the measurement of atmospheric constituents requires major modifications before being deployable aboard in-service passenger aircraft. The prototype of the IAGOS Aerosol Package (IAGOS-P2E) consists of two modified CAPS (Cavity Attenuated Phase Shift) instruments from Aerodyne Research, Inc. and one optical particle counter (Model Grimm Sky OPC 1.129). The CAPS PMex monitor provides a measurement of the optical extinction (the sum of scattering and absorption) of an ambient sample of particles. There is a choice of 5 different wavelengths - blue (450 nm), green (530 nm), red (630 nm), far red (660 nm) and near infrared (780 nm) - which match the spectral bands of most other particle optical properties measurement equipment. In our prototype setup we used the instrument operating at 630nm wavelength (red). The second CAPS instrument we have chosen is the CAPS NO2 monitor. This instrument provides a direct absorption measurement of nitrogen dioxide in the blue region of the electromagnetic spectrum (450 nm). Unlike standard chemiluminescence-based monitors, the instrument requires no conversion of NO2 to another species and thus is not sensitive to other nitro-containing species. In the final IAGOS Setup, up to 4 CAPS might be used to get additional aerosol properties using the

  2. Giant aerosol observations with cloud radar: methodology and effects

    NASA Astrophysics Data System (ADS)

    Guma Claramunt, Pilar; Madonna, Fabio; Amodeo, Aldo; Bauer-Pfundstein, Matthias; Papagiannopoulos, Nikolaos; Pappalardo, Gelsomina

    2017-04-01

    Giant aerosol particles can act as Giant Cloud Condensation Nuclei (GCCN), and determine the droplet concentration at the cloud formation, the clouds albedo and lifetime, and the precipitation formation. In addition, depending on their composition, they can also act as IN. It is not yet clear if they can also expedite rain processes. The main techniques used nowadays in measuring aerosols, which are lidar and sun photometer, cannot retrieve aerosol microphysical properties for particles bigger than a few microns, which means that they do not account for giant aerosols. Therefore, the distribution and impact in the atmosphere and climate of these particles is not well known and the aerosol transport models largely underestimate them. Recent studies have demonstrated that cloud radars are able to detect ultragiant volcanic aerosols also at a large distance from the source. In this study, an innovative methodology for the observation of giant aerosols using the millimeter wavelength radar has been developed and applied to 6 years of measurements carried out at CNR-IMAA Atmospheric Observatory (CIAO), in Potenza, South Italy, finding more than 40 giant aerosol events per year and a good agreement with the aerosol climatologic data. Besides, the effects of giant aerosols in the local and regional meteorology have been studied by correlating several atmospheric variables in the time period following the observation of giant particles. The meteorological situation has been assessed through the data classification into cases characterized by different pressure vertical velocities at the upper atmosphere (400 hPa), Giant aerosols are correlated to lower values of the Cloud Optical Depth (COD) in presence of stable or unstable atmospheric conditions while higher values are found for an intermediate stability. The giant aerosols effects on the Liquid Water Path (LWP) are closely linked to those in the Aerosol Optical Thickness (AOD). The highest increases in the LWP occurs

  3. Linking Aerosol Optical Properties Between Laboratory, Field, and Model Studies

    NASA Astrophysics Data System (ADS)

    Murphy, S. M.; Pokhrel, R. P.; Foster, K. A.; Brown, H.; Liu, X.

    2017-12-01

    The optical properties of aerosol emissions from biomass burning have a significant impact on the Earth's radiative balance. Based on measurements made during the Fourth Fire Lab in Missoula Experiment, our group published a series of parameterizations that related optical properties (single scattering albedo and absorption due to brown carbon at multiple wavelengths) to the elemental to total carbon ratio of aerosols emitted from biomass burning. In this presentation, the ability of these parameterizations to simulate the optical properties of ambient aerosol is assessed using observations collected in 2017 from our mobile laboratory chasing wildfires in the Western United States. The ambient data includes measurements of multi-wavelength absorption, scattering, and extinction, size distribution, chemical composition, and volatility. In addition to testing the laboratory parameterizations, this combination of measurements allows us to assess the ability of core-shell Mie Theory to replicate observations and to assess the impact of brown carbon and mixing state on optical properties. Finally, both laboratory and ambient data are compared to the optical properties generated by a prominent climate model (Community Earth System Model (CESM) coupled with the Community Atmosphere Model (CAM 5)). The discrepancies between lab observations, ambient observations and model output will be discussed.

  4. Aerosol optical properties in the Marine Environment during the TCAP-I campaign

    NASA Astrophysics Data System (ADS)

    Chand, D.; Berg, L. K.; Barnard, J.; Berkowitz, C. M.; Burton, S. P.; Chapman, E. G.; Comstock, J. M.; Fast, J. D.; Ferrare, R. A.; Connor, F. J.; Hair, J. W.; Hostetler, C. A.; Hubbe, J.; Kluzek, C.; Mei, F.; Pekour, M. S.; Sedlacek, A. J.; Schmid, B.; Shilling, J. E.; Shinozuka, Y.; Tomlinson, J. M.; Wilson, J. M.; Zelenyuk-Imre, A.

    2013-12-01

    The role of direct radiative forcing by atmospheric aerosol is one of the largest sources of uncertainty in predicting climate change. Much of this uncertainty comes from the limited knowledge of observed aerosol optical properties. In this presentation we discuss derived aerosol optical properties based on measurements made during the summer 2012 Two-Column Aerosol Project-I (TCAP) campaign and relate these properties to the corresponding chemical and physical properties of the aerosol. TCAP was designed to provide simultaneous, in-situ observations of the size distribution, chemical properties, and optical properties of aerosol within and between two atmospheric columns over the Atlantic Ocean near the eastern seaboard of the United States. These columns are separated by 200-300 km and were sampled in July 2012 during a summer intensive operation period (IOP) using the U.S. Department of Energy's Gulfstream-1 (G-1) and NASA's B200 aircraft, winter IOP using G-1 aircraft in February 2013, and the surface-based DOE Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF) located on Cape Cod. In this presentation we examine the spectral dependence of the aerosol optical properties measured from the aircraft over the TCAP-I domain, with an emphasis on in-situ derived intensive properties measured by a 3-λ Nephelometer, a Particle Soot Absorption Photometer (PSAP), a humidograph (f(RH)), and a Single Particle Soot Photometer (SP2). Preliminary results indicate that the aerosol are more light-absorbing as well as more hygroscopic at higher altitudes (2-4 km) compared to the corresponding values made within residual layers near the surface (0-2 km altitude). The average column (0-4 km) single scattering albedo (ω) and hygroscopic scattering factor (F) are found to be ~0.96 and 1.25, respectively. Additional results on key aerosol intensive properties such as the angstrom exponent (å), asymmetry parameter (g), backscattering fraction (b), and gamma parameter (

  5. Longterm and spatial variability of Aerosol optical properties measured by sky radiometer in Japan sites

    NASA Astrophysics Data System (ADS)

    Aoki, K.

    2016-12-01

    Aerosols and cloud play an important role in the climate change. We started the long-term monitoring of aerosol and cloud optical properties since 1990's by using sky radiometer (POM-01, 02; Prede Co. Ltd., Japan). We provide the information, in this presentation, on the aerosol optical properties with respect to their temporal and spatial variability in Japan site (ex. Sapporo, Toyama, Kasuga and etc). The global distributions of aerosols have been derived from earth observation satellite and have been simulated in numerical models, which assume optical parameters. However, these distributions are difficult to derive because of variability in time and space. Therefore, Aerosol optical properties were investigated using the measurements from ground-based and ship-borne sky radiometer. The sky radiometer is an automatic instrument that takes observations only in daytime under the clear sky conditions. Observation of diffuse solar intensity interval was made every ten or five minutes by once. The aerosol optical properties were computed using the SKYRAD.pack version 4.2. The obtained Aerosol optical properties (Aerosol optical thickness, Ångström exponent, Single scattering albedo, and etc.) and size distribution volume clearly showed spatial and temporal variability in Japan area. In this study, we present the temporal and spatial variability of Aerosol optical properties at several Japan sites, applied to validation of satellite and numerical models. This project is validation satellite of GCOM-C, JAXA. The GCOM-C satellite scheduled to be launched in early 2017.

  6. Atmospheric aerosols: Their Optical Properties and Effects

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Measured properties of atmospheric aerosol particles are presented. These include aerosol size frequency distribution and complex retractive index. The optical properties of aerosols are computed based on the presuppositions of thermodynamic equilibrium and of Mie-theory.

  7. ISAMS observations of stratospheric aerosol

    NASA Technical Reports Server (NTRS)

    Lambert, Alyn; Remedios, John J.; Dudhia, Anu; Corney, Marie; Kerridge, Brian J.; Rodgers, Clive D.; Taylor, Fredric W.

    1994-01-01

    The Improved Stratospheric and Mesospheric (ISAMS) on board the Upper Atmosphere Research Satellite (UARS) incorporates a 12.1 micron window channel for the measurement of aerosol opacity. The retrieval scheme is discussed briefly and preliminary observations of the Mt. Pinatubo aerosol cloud are presented and compared with SAGE 2 observations at 1.02 microns. The effect of aerosol on other ISAMS channels and its spectral dependence is discussed.

  8. Combining external and internal mixing representation of atmospheric aerosol for optical properties calculations: focus on absorption properties over Europe and North America using AERONET observations and AQMEII simulations

    NASA Astrophysics Data System (ADS)

    Curci, Gabriele

    2017-04-01

    the coating formation). We compare sunphotometer observations from the AERosol RObotic NETwork (AERONET, http://aeronet.gsfc.nasa.gov/) across Europe and North America for the year 2010 with simulations from the Air Quality Modeling Evaluation International Initiative (AQMEII, http://aqmeii.jrc.ec.europa.eu/). The calculation of optical properties from simulated aerosol profiles is carried out using a single post-processing tool (FlexAOD, http://pumpkin.aquila.infn.it/flexaod/) that allows explicit and flexible assignment of the underlying assumptions mentioned above. We found that the combination of externally and internally mixed particles weighted through the F_in fraction gives the best agreement between models and observations, in particular regarding the single-scattering albedo.

  9. The statistical distribution of aerosol properties in sourthern West Africa

    NASA Astrophysics Data System (ADS)

    Haslett, Sophie; Taylor, Jonathan; Flynn, Michael; Bower, Keith; Dorsey, James; Crawford, Ian; Brito, Joel; Denjean, Cyrielle; Bourrianne, Thierry; Burnet, Frederic; Batenburg, Anneke; Schulz, Christiane; Schneider, Johannes; Borrmann, Stephan; Sauer, Daniel; Duplissy, Jonathan; Lee, James; Vaughan, Adam; Coe, Hugh

    2017-04-01

    The population and economy in southern West Africa have been growing at an exceptional rate in recent years and this trend is expected to continue, with the population projected to more than double to 800 million by 2050. This will result in a dramatic increase in anthropogenic pollutants, already estimated to have tripled between 1950 and 2000 (Lamarque et al., 2010). It is known that aerosols can modify the radiative properties of clouds. As such, the entrainment of anthropogenic aerosol into the large banks of clouds forming during the onset of the West African Monsoon could have a substantial impact on the region's response to climate change. Such projections, however, are greatly limited by the scarcity of observations in this part of the world. As part of the Dynamics-Aerosol-Chemistry-Cloud Interactions in West Africa (DACCIWA) project, three research aircraft were deployed, each carrying equipment capable of measuring aerosol properties in-situ. Instrumentation included Aerosol Mass Spectrometers (AMS), Single Particle Soot Photometers (SP2), Condensation Particle Counters (CPC) and Scanning Mobility Particle Sizers (SMPS). Throughout the intensive aircraft campaign, 155 hours of scientific flights covered an area including large parts of Benin, Togo, Ghana and parts of Côte D'Ivoire. Approximately 70 hours were dedicated to the measurement of cloud-aerosol interactions, with many other flights producing data contributing towards this objective. Using datasets collected during this campaign period, it is possible to build a robust statistical understanding of aerosol properties in this region for the first time, including size distributions and optical and chemical properties. Here, we describe preliminary results from aerosol measurements on board the three aircraft. These have been used to describe aerosol properties throughout the region and time period encompassed by the DACCIWA aircraft campaign. Such statistics will be invaluable for improving future

  10. Climatology of Aerosol Optical Properties in Southern Africa

    NASA Technical Reports Server (NTRS)

    Queface, Antonio J.; Piketh, Stuart J.; Eck, Thomas F.; Tsay, Si-Chee

    2011-01-01

    A thorough regionally dependent understanding of optical properties of aerosols and their spatial and temporal distribution is required before we can accurately evaluate aerosol effects in the climate system. Long term measurements of aerosol optical depth, Angstrom exponent and retrieved single scattering albedo and size distribution, were analyzed and compiled into an aerosol optical properties climatology for southern Africa. Monitoring of aerosol parameters have been made by the AERONET program since the middle of the last decade in southern Africa. This valuable information provided an opportunity for understanding how aerosols of different types influence the regional radiation budget. Two long term sites, Mongu in Zambia and Skukuza in South Africa formed the core sources of data in this study. Results show that seasonal variation of aerosol optical thicknesses at 500 nm in southern Africa are characterized by low seasonal multi-month mean values (0.11 to 0.17) from December to May, medium values (0.20 to 0.27) between June and August, and high to very high values (0.30 to 0.46) during September to November. The spatial distribution of aerosol loadings shows that the north has high magnitudes than the south in the biomass burning season and the opposite in none biomass burning season. From the present aerosol data, no long term discernable trends are observable in aerosol concentrations in this region. This study also reveals that biomass burning aerosols contribute the bulk of the aerosol loading in August-October. Therefore if biomass burning could be controlled, southern Africa will experience a significant reduction in total atmospheric aerosol loading. In addition to that, aerosol volume size distribution is characterized by low concentrations in the non biomass burning period and well balanced particle size contributions of both coarse and fine modes. In contrast high concentrations are characteristic of biomass burning period, combined with

  11. Long-term observation of aerosol cloud relationships in the Mid-Atlantic region

    NASA Astrophysics Data System (ADS)

    Li, S.; Joseph, E.; Min, Q.; Yin, B.

    2013-12-01

    Long-term ground-based observations of aerosol and cloud properties derived from measurements of Multifilter Rotating Shadow Band Radiometer and microwave radiometer at an atmospheric measurement field station in the Baltimore-Washington corridor operated by Howard University are used to examine the temporal variation of aerosol and cloud properties and moreover aerosol indirect effect on clouds. Through statistical analysis of five years (from 2006 to 2010) of these observations, the proportion of polluted cases is found larger in 2006 and 2007 and the proportion of optically thick clouds cases is also larger in 2006 and 2007 than that in 2008, 2009 and 2010. Both the mean aerosol optical depth (AOD) and cloud optical depth (COD) are observed decreasing from 2006 to 2010 but there is no obvious trend observed on cloud liquid water path (LWP). Because of the limit of AOD retrievals under cloudy conditions surface measurements of fine particle particulate matter 2.5 (PM2.5) were used for assessing aerosol indirect effect. A positive relationship between LWP and cloud droplets effective radius (Re) and a negative relationship between PM2.5 and Re are observed based on a stringent case selection method which is used to reduce the uncertainties from retrieval and meteorological impacts. The total 5 years summer time observations are segregated according to the value of PM2.5. Examination of distributions of COD, cloud condensation nuclei (CCN), cloud droplets effective radius and LWP under polluted and pristine conditions further confirm that the high aerosol loading decreases cloud droplets effective radius and increases cloud optical depth.

  12. XBAER-derived aerosol optical thickness from OLCI/Sentinel-3 observation

    NASA Astrophysics Data System (ADS)

    Mei, Linlu; Rozanov, Vladimir; Vountas, Marco; Burrows, John P.; Richter, Andreas

    2018-02-01

    A cloud identification algorithm used for cloud masking, which is based on the spatial variability of reflectances at the top of the atmosphere in visible wavelengths, has been developed for the retrieval of aerosol properties by MODIS. It is shown that the spatial pattern of cloud reflectance, as observed from space, is very different from that of aerosols. Clouds show a high spatial variability in the scale of a hundred metres to a few kilometres, whereas aerosols in general are homogeneous. The concept of spatial variability of reflectances at the top of the atmosphere is mainly applicable over the ocean, where the surface background is sufficiently homogeneous for the separation between aerosols and clouds. Aerosol retrievals require a sufficiently accurate cloud identification to be able to mask these ground scenes. However, a conservative mask will exclude strong aerosol episodes and a less conservative mask could introduce cloud contamination that biases the retrieved aerosol optical properties (e.g. aerosol optical depth and effective radii). A detailed study on the effect of cloud contamination on aerosol retrievals has been performed and parameters are established determining the threshold value for the MODIS aerosol cloud mask (3×3-STD) over the ocean. The 3×3-STD algorithm discussed in this paper is the operational cloud mask used for MODIS aerosol retrievals over the ocean.A prolonged pollution haze event occurred in the northeast part of China during the period 16-21 December 2016. To assess the impact of such events, the amounts and distribution of aerosol particles, formed in such events, need to be quantified. The newly launched Ocean Land Colour Instrument (OLCI) onboard Sentinel-3 is the successor of the MEdium Resolution Imaging Spectrometer (MERIS). It provides measurements of the radiance and reflectance at the top of the atmosphere, which can be used to retrieve the aerosol optical thickness (AOT) from synoptic to global scales. In this

  13. Impact of long-range transport pollution on aerosol properties over West Africa: observations during the DACCIWA airborne campaign

    NASA Astrophysics Data System (ADS)

    Denjean, Cyrielle; Bourrianne, Thierry; Burnet, Frederic; Deroubaix, Adrien; Brito, Joel; Dupuy, Régis; Colomb, Aurélie; Schwarzenboeck, Alfons; Sellegri, Karine; Chazette, Patrick; Duplissy, Jonathan; Flamant, Cyrille

    2017-04-01

    Southern West Africa (SWA) is a region highly vulnerable to climate change. Emissions of anthropogenic pollution have increased substantially over the past decades in the region and are projected to keep increasing. The region is also strongly impacted by important natural pollution from distant locations. Biomass burning mainly from vegetation fires in Central Africa and mineral dust from the Saharan and Sahel-Sudan regions are advected by winds to the SWA region especially in summer. Both biomass burning and mineral dust aerosols scatter and absorb solar radiation and are able to significantly modify the regional radiative budget. Presently, the potential radiative impact of dust and biomass burning particles on SWA is unclear due to inadequate data information on the aerosols properties and vertical distribution. In the framework of the Dynamics-Aerosol-Chemistry-Cloud Interactions in West Africa (DACCIWA) project, an unprecedented field campaign took place in summer 2016 in West Africa. The ATR-42 research aircraft operated by SAFIRE performed twenty flights to sample the local air pollution from maritime traffic and coastal megacities, as well as regional pollution from biomass burning and desert dust. The aircraft was equipped with state of the art in situ instrumentation to measure the aerosol optical properties (CAPS, nephelometer, PSAP), the aerosol size distribution (SMPS, GRIMM, USHAS, PCASP, FSSP) and the aerosol chemical composition (SP2, AMS). A mini backscattered lidar system provided additional measurements of the aerosol vertical structure and the aerosol optical properties such as the particulate depolarization ratio. The CHIMERE chemistry and transport model has been used to characterize the source area and the long-range transport of dust and biomass burning plumes. Here, we investigate the aerosol microphysical, chemical and optical properties of biomass burning and dust aerosols transported in SWA. In particular the following questions will be

  14. The Asian Tropopause Aerosol Layer: Balloon-Borne Measurements, Satellite Observations and Modeling Approaches

    NASA Technical Reports Server (NTRS)

    Fairlie, T. D.; Vernier, J.-P.; Natarajan, M.; Deshler, Terry; Liu, H.; Wegner, T.; Baker, N.; Gadhavi, H.; Jayaraman, A.; Pandit, A.; hide

    2016-01-01

    Satellite observations and numerical modeling studies have demonstrated that the Asian Summer Monsoon (ASM) can provide a conduit for gas-phase pollutants in south Asia to reach the lower stratosphere. Now, observations from the CALIPSO satellite have revealed the Asian Tropopause Aerosol Layer (ATAL), a summertime accumulation of aerosols associated with ASM anticyclone, in the upper troposphere and lower stratosphere (UTLS). The ATAL has potential implications for regional cloud properties, climate, and chemical processes in the UTLS. Here, we show in situ measurements from balloon-borne instrumentation, aircraft and satellite observations, combined with trajectory and chemical transport model (CTM) simulations to explore the origin, composition, physical and optical properties of aerosols in the ATAL. In particular, we show balloon-based observations from our BATAL-2015 field campaign to India and Saudi Arabia in summer 2015, including in situ backscatter measurements from COBALD instruments, and some of the first observations of size and volatility of aerosols in the ATAL layer using optical particle counters (OPCs). Back trajectory calculations initialized from CALIPSO observations point to deep convection over North India as a principal source of ATAL aerosols. Available aircraft observations suggest significant sulfur and carbonaceous contributions to the ATAL, which is supported by simulations using the GEOS-Chem CTM. Source elimination studies conducted with the GEOS-Chem indicate that 80-90% of ATAL aerosols originate from south Asian sources, in contrast with some earlier studies.

  15. Optical properties of aerosol contaminated cloud derived from MODIS instrument

    NASA Astrophysics Data System (ADS)

    Mei, Linlu; Rozanov, Vladimir; Lelli, Luca; Vountas, Marco; Burrows, John P.

    2016-04-01

    The presence of absorbing aerosols above/within cloud can reduce the amount of up-welling radiation in visible (VIS) and short-wave infrared and darken the spectral reflectance when compared with a spectrum of a clean cloud observed by satellite instruments (Jethva et al., 2013). Cloud properties retrieval for aerosol contaminated cases is a great challenge. Even small additional injection of aerosol particles into clouds in the cleanest regions of Earth's atmosphere will cause significant effect on those clouds and on climate forcing (Koren et al., 2014; Rosenfeld et al., 2014) because the micro-physical cloud process are non-linear with respect to the aerosol loading. The current cloud products like Moderate Resolution Imaging Spectroradiometer (MODIS) ignoring the aerosol effect for the retrieval, which may cause significant error in the satellite-derived cloud properties. In this paper, a new cloud properties retrieval method, considering aerosol effect, based on the weighting-function (WF) method, is presented. The retrieval results shows that the WF retrieved cloud properties (e.g COT) agrees quite well with MODIS COT product for relative clear atmosphere (AOT ≤ 0.4) while there is a large difference for large aerosol loading. The MODIS COT product is underestimated for at least 2 - 3 times for AOT>0.4, and this underestimation increases with the increase of AOT.

  16. The thermal infrared radiance properties of dust aerosol over ocean

    NASA Astrophysics Data System (ADS)

    Hao, Zengzhou; Pan, Delu; Tu, Qianguang; Gong, Fang; Chen, Jianyu

    2015-10-01

    Asian dust storms, which can long-range transport to ocean, often occur on spring. The present of Asian dust aerosols over ocean makes some difficult for other studies, such as cloud detection, and also take some advantage for ocean, such as take nutrition into the ocean by dry or wet deposition. Therefore, it is important to study the dust aerosol and retrieve the properties of dust from satellite observations that is mainly from the thermal infrared radiance. In this paper, the thermal infrared radiance properties of dust aerosol over ocean are analyzed from MODIS and MTSAT2 observations and Streamer model simulations. By analyzing some line samples and a series of dust aerosol region, it shows that the dust aerosol brightness temperature at 12μm (BT12) is always greater than BT11 and BT8.5, and BT8.5 is general greater than BT11. The brightness temperature different between 11μm and 12μm (BTD11-12) increases with the dust intensity. And the BTD11-12 will become positive when the atmospheric relative humidity is greater than 70%. The BTD11-12 increases gradually with the surface temperature while the effect on BTD11-12 of dust layer temperature is not evident. Those are caused by the transmission of the dust aerosol is different at the two thermal infrared channels. During daytime, dust infrared brightness temperature at mid-infrared bands should reduce the visual radiance, which takes about 25K or less. In general, BT3.7 is greater than BT11 for dust aerosol. Those results are helpful to monitor or retrieve dust aerosol physical properties over ocean from satellite.

  17. Factors Influencing Aerosol Concentrations and Properties over the Tropical Eastern Pacific: Observations from TC4

    NASA Astrophysics Data System (ADS)

    Anderson, B. E.; Chen, G.; Thornhill, K. L.; Winstead, E. L.; Dibb, J.; Scheuer, E.; Lathem, T.

    2007-12-01

    The NASA Tropical Composition Cloud and Climate Coupling (TC4) mission was conducted during summer 2007 and had the primary objective of gaining a better understanding of composition and dynamics of the upper troposphere over the tropical eastern pacific region. Based in San Jose, Costa Rica, the mission employed instrumented aircraft along with ground, balloon, and satellite borne sensors to determine the spatial distribution of trace gas and aerosol species as well as moisture and clouds between the surface and roughly 16 km altitude over Central America, the eastern Pacific, the western Caribbean and northern South America. Because of its heavy payload and long endurance capability, the NASA DC-8 aircraft was the primary sampling platform for the lower-tropospheric altitude regime (i.e., below 12 km). It carried both remote and in situ instruments and was used to characterize cloud inflow and outflow as well as the microphysical properties of maritime convective systems. Because of their roles in regulating atmospheric radiation transfer and cloud formation and microphysics, flight plans placed particular emphasis on determining the sources and properties of the aerosol particles present within the region. A preliminary analysis of the DC-8 data set suggests that the following sources/processes had the greatest impact on aerosol number and mass loading: dust transport from Africa; sea salt production over the ocean; urban and biogenic emissions over the continent; secondary aerosol formation in volcanic plumes; nucleation in cloud outflow; and cloud scavenging. In this presentation, we will examine the microphysical, optical and hydration properties of each aerosol type and assess the overall impact of the source/sink processes to the regional aerosol budget. We will also contrast the microphysical properties of the Saharan Dust sampled over the Caribbean with those measured in fresh dust layers over the eastern Atlantic from the DC-8 during the summer 2006

  18. The optical properties of absorbing aerosols with fractal soot aggregates: Implications for aerosol remote sensing

    NASA Astrophysics Data System (ADS)

    Cheng, Tianhai; Gu, Xingfa; Wu, Yu; Chen, Hao; Yu, Tao

    2013-08-01

    Applying sphere aerosol models to replace the absorbing fine-sized dominated aerosols can potentially result in significant errors in the climate models and aerosol remote sensing retrieval. In this paper, the optical properties of absorbing fine-sized dominated aerosol were modeled, which are taking into account the fresh emitted soot particles (agglomerates of primary spherules), aged soot particles (semi-externally mixed with other weakly absorbing aerosols), and coarse aerosol particles (dust particles). The optical properties of the individual fresh and aged soot aggregates are calculated using the superposition T-matrix method. In order to quantify the morphology effect of absorbing aerosol models on the aerosol remote sensing retrieval, the ensemble averaged optical properties of absorbing fine-sized dominated aerosols are calculated based on the size distribution of fine aerosols (fresh and aged soot) and coarse aerosols. The corresponding optical properties of sphere absorbing aerosol models using Lorenz-Mie solutions were presented for comparison. The comparison study demonstrates that the sphere absorbing aerosol models underestimate the absorption ability of the fine-sized dominated aerosol particles. The morphology effect of absorbing fine-sized dominated aerosols on the TOA radiances and polarized radiances is also investigated. It is found that the sphere aerosol models overestimate the TOA reflectance and polarized reflectance by approximately a factor of 3 at wavelength of 0.865 μm. In other words, the fine-sized dominated aerosol models can cause large errors in the retrieved aerosol properties if satellite reflectance measurements are analyzed using the conventional Mie theory for spherical particles.

  19. Interactions between deep convective clouds and aerosols as observed by satellites

    NASA Astrophysics Data System (ADS)

    Yuan, T.; Li, Z. I.; Remer, L.; Martins, V.

    2008-12-01

    Major uncertainties regarding interactions between deep convective clouds (DCC) exist due partly to observational difficulty and partly to the entanglement among remotely sensed properties of aerosols and clouds and entanglement between meteorology and possible aerosol signals. In this study we adopt a novel, physically sound relationship between cloud crystal effective radius(CER) and brightness temperature (BT) and utilize ample sampling opportunity provided by MODIS instrument. We reveal aerosol impacts on DCCs by analyzing an ensemble data. Through a conceptual model we demonstrate how aerosol may affect DCC properties. We outline a few scenarios where aerosol signals are best separated and pronounced. Based on our results, anthropogenic pollutions and smokes are shown to effectively decrease CER and to elevate glaciation level of DCCs. On the other hand, dust particles from local sources have the opposite effects, namely, increasing cloud ice particle size and enhancing glaciation by acting possibly as giant CCN or IN. Implications of these effects for aerosols are discussed along with feedbacks of these effects to dynamics.

  20. Aerosol-Cloud Interactions and Cloud Microphysical Properties in the Asir Region of Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Kucera, P. A.; Axisa, D.; Burger, R. P.; Li, R.; Collins, D. R.; Freney, E. J.; Buseck, P. R.

    2009-12-01

    In recent advertent and inadvertent weather modification studies, a considerable effort has been made to understand the impact of varying aerosol properties and concentration on cloud properties. Significant uncertainties exist with aerosol-cloud interactions for which complex microphysical processes link the aerosol and cloud properties. Under almost all environmental conditions, increased aerosol concentrations within polluted air masses will enhance cloud droplet concentration relative to that in unperturbed regions. The interaction between dust particles and clouds are significant, yet the conditions in which dust particles become cloud condensation nuclei (CCN) are uncertain. In order to quantify this aerosol effect on clouds and precipitation, a field campaign was launched in the Asir region, located adjacent to the Red Sea in the southwest region of Saudi Arabia. Ground measurements of aerosol size distributions, hygroscopic growth factors, CCN concentrations as well as aircraft measurements of cloud hydrometeor size distributions were observed in the Asir region in August 2009. The presentation will include a summary of the analysis and results with a focus on aerosol-cloud interactions and cloud microphysical properties observed during the convective season in the Asir region.

  1. Global volcanic aerosol properties derived from emissions, 1990-2014, using CESM1(WACCM): VOLCANIC AEROSOLS DERIVED FROM EMISSIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mills, Michael J.; Schmidt, Anja; Easter, Richard

    Accurate representation of global stratospheric aerosol properties from volcanic and non-volcanic sulfur emissions is key to understanding the cooling effects and ozone-loss enhancements of recent volcanic activity. Attribution of climate and ozone variability to volcanic activity is of particular interest in relation to the post-2000 slowing in the apparent rate of global average temperature increases, and variable recovery of the Antarctic ozone hole. We have developed a climatology of global aerosol properties from 1990 to 2014 calculated based on volcanic and non-volcanic emissions of sulfur sources. We have complied a database of volcanic SO2 emissions and plume altitudes for eruptionsmore » between 1990 and 2014, and a new prognostic capability for simulating stratospheric sulfate aerosols in version 5 of the Whole Atmosphere Community Climate Model, a component of the Community Earth System Model. Our climatology shows remarkable agreement with ground-based lidar observations of stratospheric aerosol optical depth (SAOD), and with in situ measurements of aerosol surface area density (SAD). These properties are key parameters in calculating the radiative and chemical effects of stratospheric aerosols. Our SAOD climatology represents a significant improvement over satellite-based analyses, which ignore aerosol extinction below 15 km, a region that can contain the vast majority of stratospheric aerosol extinction at mid- and high-latitudes. Our SAD climatology significantly improves on that provided for the Chemistry-Climate Model Initiative, which misses 60% of the SAD measured in situ. Our climatology of aerosol properties is publicly available on the Earth System Grid.« less

  2. Retrieving Neptune's aerosol properties from Keck OSIRIS observations. I. Dark regions

    NASA Astrophysics Data System (ADS)

    Luszcz-Cook, S. H.; de Kleer, K.; de Pater, I.; Adamkovics, M.; Hammel, H. B.

    2016-09-01

    We present and analyze three-dimensional data cubes of Neptune from the OSIRIS integral-field spectrograph on the 10-m W.M. Keck II telescope, from 26 July 2009. These data have a spatial resolution of 0.035/pixel and spectral resolution of R ∼3800 in the H (1.47-1.80 μm) and K (1.97-2.38 μm) broad bands. We focus our analysis on regions of Neptune's atmosphere that are near-infrared dark - that is, free of discrete bright cloud features. We use a forward model coupled to a Markov chain Monte Carlo algorithm to retrieve properties of Neptune's aerosol structure and methane profile above ∼4 bar in these near-infrared dark regions. We construct a set of high signal-to-noise spectra spanning a range of viewing geometries to constrain the vertical structure of Neptune's aerosols in a cloud-free latitude band from 2-12°N. We find that Neptune's cloud opacity at these wavelengths is dominated by a compact, optically thick cloud layer with a base near 3 bar. Using the pyDISORT algorithm for the radiative transfer and assuming a Henyey-Greenstein phase function, we observe this cloud to be composed of low albedo (single scattering albedo = 0.45-0.01+0.01), forward scattering (asymmetry parameter g = 0.50-0.02+0.02) particles, with an assumed characteristic size of ∼1μm. Above this cloud, we require an aerosol layer of smaller (∼0.1μm) particles forming a vertically extended haze, which reaches from the upper troposphere (0.59-0.03+0.04 bar) into the stratosphere. The particles in this haze are brighter (single scattering albedo = 0.91-0.05+0.06) and more isotropically scattering (asymmetry parameter g = 0.24-0.03+0.02) than those in the deep cloud. When we extend our analysis to 18 cloud-free locations from 20°N to 87°S, we observe that the optical depth in aerosols above 0.5 bar decreases by a factor of 2-3 or more at mid- and high-southern latitudes relative to low latitudes. We also consider Neptune's methane (CH4) profile, and find that our retrievals

  3. Evaluation of Aerosol-cloud Interaction in the GISS Model E Using ARM Observations

    NASA Technical Reports Server (NTRS)

    DeBoer, G.; Bauer, S. E.; Toto, T.; Menon, Surabi; Vogelmann, A. M.

    2013-01-01

    Observations from the US Department of Energy's Atmospheric Radiation Measurement (ARM) program are used to evaluate the ability of the NASA GISS ModelE global climate model in reproducing observed interactions between aerosols and clouds. Included in the evaluation are comparisons of basic meteorology and aerosol properties, droplet activation, effective radius parameterizations, and surface-based evaluations of aerosol-cloud interactions (ACI). Differences between the simulated and observed ACI are generally large, but these differences may result partially from vertical distribution of aerosol in the model, rather than the representation of physical processes governing the interactions between aerosols and clouds. Compared to the current observations, the ModelE often features elevated droplet concentrations for a given aerosol concentration, indicating that the activation parameterizations used may be too aggressive. Additionally, parameterizations for effective radius commonly used in models were tested using ARM observations, and there was no clear superior parameterization for the cases reviewed here. This lack of consensus is demonstrated to result in potentially large, statistically significant differences to surface radiative budgets, should one parameterization be chosen over another.

  4. The single scattering properties of the aerosol particles as aggregated spheres

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Gu, X.; Cheng, T.; Xie, D.; Yu, T.; Chen, H.; Guo, J.

    2012-08-01

    The light scattering and absorption properties of anthropogenic aerosol particles such as soot aggregates are complicated in the temporal and spatial distribution, which introduce uncertainty of radiative forcing on global climate change. In order to study the single scattering properties of anthorpogenic aerosol particles, the structures of these aerosols such as soot paticles and soot-containing mixtures with the sulfate or organic matter, are simulated using the parallel diffusion limited aggregation algorithm (DLA) based on the transmission electron microscope images (TEM). Then, the single scattering properties of randomly oriented aerosols, such as scattering matrix, single scattering albedo (SSA), and asymmetry parameter (AP), are computed using the superposition T-matrix method. The comparisons of the single scattering properties of these specific types of clusters with different morphological and chemical factors such as fractal parameters, aspect ratio, monomer radius, mixture mode and refractive index, indicate that these different impact factors can respectively generate the significant influences on the single scattering properties of these aerosols. The results show that aspect ratio of circumscribed shape has relatively small effect on single scattering properties, for both differences of SSA and AP are less than 0.1. However, mixture modes of soot clusters with larger sulfate particles have remarkably important effects on the scattering and absorption properties of aggregated spheres, and SSA of those soot-containing mixtures are increased in proportion to the ratio of larger weakly absorbing attachments. Therefore, these complex aerosols come from man made pollution cannot be neglected in the aerosol retrievals. The study of the single scattering properties on these kinds of aggregated spheres is important and helpful in remote sensing observations and atmospheric radiation balance computations.

  5. CALIPSO Observations of Near-Cloud Aerosol Properties as a Function of Cloud Fraction

    NASA Technical Reports Server (NTRS)

    Yang, Weidong; Marshak, Alexander; Varnai, Tamas; Wood, Robert

    2015-01-01

    This paper uses spaceborne lidar data to study how near-cloud aerosol statistics of attenuated backscatter depend on cloud fraction. The results for a large region around the Azores show that: (1) far-from-cloud aerosol statistics are dominated by samples from scenes with lower cloud fractions, while near-cloud aerosol statistics are dominated by samples from scenes with higher cloud fractions; (2) near-cloud enhancements of attenuated backscatter occur for any cloud fraction but are most pronounced for higher cloud fractions; (3) the difference in the enhancements for different cloud fractions is most significant within 5km from clouds; (4) near-cloud enhancements can be well approximated by logarithmic functions of cloud fraction and distance to clouds. These findings demonstrate that if variability in cloud fraction across the scenes used to composite aerosol statistics are not considered, a sampling artifact will affect these statistics calculated as a function of distance to clouds. For the Azores-region dataset examined here, this artifact occurs mostly within 5 km from clouds, and exaggerates the near-cloud enhancements of lidar backscatter and color ratio by about 30. This shows that for accurate characterization of the changes in aerosol properties with distance to clouds, it is important to account for the impact of changes in cloud fraction.

  6. CALIPSO: Global Aerosol and Cloud Observations from Lidar and Passive Instruments

    NASA Technical Reports Server (NTRS)

    Poole, L. R.; Winker, D. M.; Pelon, J. R.; McCormick, M. P.

    2002-01-01

    CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Spaceborne Observations) is an approved satellite mission being developed through collaboration between NASA and the French space agency CNES. The mission is scheduled for launch in 2004 and will operate for 3 years as part of a five-satellite formation called the Aqua constellation. This constellation will provide a unique data set on aerosol and cloud optical and physical properties and aerosol-cloud interactions that will substantially increase our understanding of the climate system and the potential for climate change.

  7. A new description of Titan's aerosol optical properties from the analysis of VIMS Emission Phase Function observations

    NASA Astrophysics Data System (ADS)

    Maltagliati, Luca; Rodriguez, Sebastien; Sotin, Christophe; Rannou, Pascal; Bezard, Bruno; Cornet, Thomas

    2016-06-01

    The Huygens probe gave unprecedented information on the properties of Titan's aerosols (vertical distribution, opacity as a function of wavelength, phase function, single scattering albedo) by in-situ measurements (Tomasko et al. 2008). Being the only existing in-situ atmospheric probing for Titan, this aerosol model currently is the reference for many Titan studies (e.g. by being applied as physical input in radiative transfer models of the atmosphere). Recently a reanalysis of the DISR dataset, corroborated by data from the Downward-Looking Visible Spectrometer (DLVS), was carried out by the same group (Doose et al. 2016), leading to significant changes to the indications given by Tomasko et al. (2008). Here we present the analysis of the Emission Phase Function observation (EPF) performed by VIMS during the Cassini flyby T88 (November 2012). An EPF observes the same spot on the surface (and thus the same atmosphere) with the same emergence angle but with different incidence angles. In this way, our EPF allows, for the first time, to have direct information on the phase function of Titan's aerosols, as well as on other important physical parameters of the aerosols as the behavior of their extinction as a function of wavelength and the single scattering albedo (also as a function of wavelength) for the whole VIMS range (0.8-5.2 µm). The T88 EPF is composed of 25 VIMS datacubes spanning a scattering angle range approximately from 0°to 70°. We used the radiative transfer model described in Hirtzig et al. (2013) as baseline, updated with improved methane (+ related isotopes) spectroscopy. By changing the aerosol description in the model, we found the combination of aerosol optical parameters that fits best a constant aerosol column density over the whole set of the VIMS datacubes. We confirmed that the new results from Doose et al. (2016) do improve the fit for what concerns the vertical profile and the extinction as a function of wavelength. However, a different

  8. A new description of Titan's aerosol optical properties from the analysis of VIMS Emission Phase Function observations

    NASA Astrophysics Data System (ADS)

    Rodriguez, Sebastien; Maltagliati, Luca; Sotin, Christophe; Rannou, Pascal; Bézard, Bruno; Cornet, Thomas

    2016-10-01

    The Huygens probe gave unprecedented information on the properties of Titan's aerosols (vertical distribution, opacity as a function of wavelength, phase function, single scattering albedo) by in-situ measurements (Tomasko et al. 2008). Being the only existing in-situ atmospheric probing for Titan, this aerosol model currently is the reference for many Titan studies (e.g. by being applied as physical input in radiative transfer models of the atmosphere). Recently a reanalysis of the DISR dataset, corroborated by data from the Downward-Looking Visible Spectrometer (DLVS), was carried out by the same group (Doose et al. 2016), leading to significant changes to the indications given by Tomasko et al. (2008).Here we present the analysis of the Emission Phase Function observation (EPF) performed by VIMS during the Cassini flyby T88 (November 2012). An EPF observes the same spot on the surface (and thus the same atmosphere) with the same emergence angle but with different incidence angles. In this way, our EPF allows, for the first time, to have direct information on the phase function of Titan's aerosols, as well as on other important physical parameters of the aerosols as the behavior of their extinction as a function of wavelength and the single scattering albedo (also as a function of wavelength) for the whole VIMS range (0.8-5.2 μm). The T88 EPF is composed of 25 VIMS datacubes spanning a scattering angle range approximately from 0°to 70°.We used the radiative transfer model described in Hirtzig et al. (2013) as baseline, updated with improved methane (+ related isotopes) spectroscopy. By changing the aerosol description in the model, we found the combination of aerosol optical parameters that fits best a constant aerosol column density over the whole set of the VIMS datacubes. We confirmed that the new results from Doose et al. (2016) do improve the fit for what concerns the vertical profile and the extinction as a function of wavelength. However, a different

  9. Evaluations of tropospheric aerosol properties simulated by the community earth system model with a sectional aerosol microphysics scheme

    PubMed Central

    Toon, Owen B.; Bardeen, Charles G.; Mills, Michael J.; Fan, Tianyi; English, Jason M.; Neely, Ryan R.

    2015-01-01

    Abstract A sectional aerosol model (CARMA) has been developed and coupled with the Community Earth System Model (CESM1). Aerosol microphysics, radiative properties, and interactions with clouds are simulated in the size‐resolving model. The model described here uses 20 particle size bins for each aerosol component including freshly nucleated sulfate particles, as well as mixed particles containing sulfate, primary organics, black carbon, dust, and sea salt. The model also includes five types of bulk secondary organic aerosols with four volatility bins. The overall cost of CESM1‐CARMA is approximately ∼2.6 times as much computer time as the standard three‐mode aerosol model in CESM1 (CESM1‐MAM3) and twice as much computer time as the seven‐mode aerosol model in CESM1 (CESM1‐MAM7) using similar gas phase chemistry codes. Aerosol spatial‐temporal distributions are simulated and compared with a large set of observations from satellites, ground‐based measurements, and airborne field campaigns. Simulated annual average aerosol optical depths are lower than MODIS/MISR satellite observations and AERONET observations by ∼32%. This difference is within the uncertainty of the satellite observations. CESM1/CARMA reproduces sulfate aerosol mass within 8%, organic aerosol mass within 20%, and black carbon aerosol mass within 50% compared with a multiyear average of the IMPROVE/EPA data over United States, but differences vary considerably at individual locations. Other data sets show similar levels of comparison with model simulations. The model suggests that in addition to sulfate, organic aerosols also significantly contribute to aerosol mass in the tropical UTLS, which is consistent with limited data. PMID:27668039

  10. Aerosol Properties and Radiative Forcing over Kanpur during Severe Aerosol Loading Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaskaoutis, D. G.; Sinha, P. R.; Vinoj, V.

    2013-11-01

    Atmospheric aerosols over India exhibit large spatio-temporal fluctuation driven by the local monsoon system, emission rates and seasonally-changed air masses. The northern part of India is well-known for its high aerosol loading throughout the year due to anthropogenic emissions, dust influence and biomass burning. On certain circumstances and, under favorable weather conditions, the aerosol load can be severe, causing significant health concerns and climate implications. The present work analyzes the aerosol episode (AE) days and examines the modification in aerosol properties and radiative forcing during the period 2001-2010 based on Kanpur-AERONET sun photometer data. As AEs are considered the daysmore » having daily-mean aerosol optical depth (AOD) above the decadal mean + 1 STD (standard deviation); the threshold value is defined at 0.928. The results identify 277 out of 2095 days (13.2%) of AEs over Kanpur, which are most frequently observed during post-monsoon (78 cases, 18.6%) and monsoon (76, 14.7%) seasons due to biomass-burning episodes and dust influence, respectively. On the other hand, the AEs in winter and pre-monsoon are lower in both absolute and percentage values (65, 12.5% and 58, 9.1%, respectively). The modification in aerosol properties on the AE days is strongly related to season. Thus, in post-monsoon and winter the AEs are associated with enhanced presence of fine-mode aerosols and Black Carbon from anthropogenic pollution and any kind of burning, while in pre-monsoon and monsoon seasons they are mostly associated with transported dust. Aerosol radiative forcing (ARF) calculated using SBDART shows much more surface (~-69 to -97 Wm-2) and Top of Atmosphere cooling (-20 to -30 Wm-2) as well as atmospheric heating (~43 to 71 Wm-2) during the AE days compared to seasonal means. These forcing values are mainly controlled by the higher AODs and the modified aerosol characteristics (Angstrom α, SSA) during the AE days in each season and may

  11. The Effect of Aerosol Hygroscopicity and Volatility on Aerosol Optical Properties During Southern Oxidant and Aerosol Study

    NASA Astrophysics Data System (ADS)

    Khlystov, A.; Grieshop, A. P.; Saha, P.; Subramanian, R.

    2014-12-01

    Secondary organic aerosol (SOA) from biogenic sources can influence optical properties of ambient aerosol by altering its hygroscopicity and contributing to light absorption directly via formation of brown carbon and indirectly by enhancing light absorption by black carbon ("lensing effect"). The magnitude of these effects remains highly uncertain. A set of state-of-the-art instruments was deployed at the SEARCH site near Centerville, AL during the Southern Oxidant and Aerosol Study (SOAS) campaign in summer 2013 to measure the effect of relative humidity and temperature on aerosol size distribution, composition and optical properties. Light scattering and absorption by temperature- and humidity-conditioned aerosols was measured using three photo-acoustic extinctiometers (PAX) at three wavelengths (405 nm, 532 nm, and 870 nm). The sample-conditioning system provided measurements at ambient RH, 10%RH ("dry"), 85%RH ("wet"), and 200 C ("TD"). In parallel to these measurements, a long residence time temperature-stepping thermodenuder (TD) and a variable residence time constant temperature TD in combination with three SMPS systems and an Aerosol Chemical Speciation Monitor (ACSM) were used to assess aerosol volatility and kinetics of aerosol evaporation. We will present results of the on-going analysis of the collected data set. We will show that both temperature and relative humidity have a strong effect on aerosol optical properties. SOA appears to increase aerosol light absorption by about 10%. TD measurements suggest that aerosol equilibrated fairly quickly, within 2 s. Evaporation varied substantially with ambient aerosol loading and composition and meteorology.

  12. Deep Blue Retrievals of Asian Aerosol Properties During ACE-Asia

    NASA Technical Reports Server (NTRS)

    Hsu, N. Christina; Tsay, Si-Cee; King, Michael D.; Herman, Jay R.

    2006-01-01

    During the ACE-Asia field campaign, unprecedented amounts of aerosol property data in East Asia during springtime were collected from an array of aircraft, shipboard, and surface instruments. However, most of the observations were obtained in areas downwind of the source regions. In this paper, the newly developed satellite aerosol algorithm called "Deep Blue" was employed to characterize the properties of aerosols over source regions using radiance measurements from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) and Moderate Resolution Imaging Spectroradiometer (MODIS). Based upon the ngstr m exponent derived from the Deep Blue algorithm, it was demonstrated that this new algorithm is able to distinguish dust plumes from fine-mode pollution particles even in complex aerosol environments such as the one over Beijing. Furthermore, these results were validated by comparing them with observations from AERONET sites in China and Mongolia during spring 2001. These comparisons show that the values of satellite-retrieved aerosol optical thickness from Deep Blue are generally within 20%-30% of those measured by sunphotometers. The analyses also indicate that the roles of mineral dust and anthropogenic particles are comparable in contributing to the overall aerosol distributions during spring in northern China, while fine-mode particles are dominant over southern China. The spring season in East Asia consists of one of the most complex environments in terms of frequent cloudiness and wide ranges of aerosol loadings and types. This paper will discuss how the factors contributing to this complexity influence the resulting aerosol monthly averages from various satellite sensors and, thus, the synergy among satellite aerosol products.

  13. Evaluation of biomass burning aerosols in the HadGEM3 climate model with observations from the SAMBBA field campaign

    NASA Astrophysics Data System (ADS)

    Johnson, Ben T.; Haywood, James M.; Langridge, Justin M.; Darbyshire, Eoghan; Morgan, William T.; Szpek, Kate; Brooke, Jennifer K.; Marenco, Franco; Coe, Hugh; Artaxo, Paulo; Longo, Karla M.; Mulcahy, Jane P.; Mann, Graham W.; Dalvi, Mohit; Bellouin, Nicolas

    2016-11-01

    We present observations of biomass burning aerosol from the South American Biomass Burning Analysis (SAMBBA) and other measurement campaigns, and use these to evaluate the representation of biomass burning aerosol properties and processes in a state-of-the-art climate model. The evaluation includes detailed comparisons with aircraft and ground data, along with remote sensing observations from MODIS and AERONET. We demonstrate several improvements to aerosol properties following the implementation of the Global Model for Aerosol Processes (GLOMAP-mode) modal aerosol scheme in the HadGEM3 climate model. This predicts the particle size distribution, composition, and optical properties, giving increased accuracy in the representation of aerosol properties and physical-chemical processes over the Coupled Large-scale Aerosol Scheme for Simulations in Climate Models (CLASSIC) bulk aerosol scheme previously used in HadGEM2. Although both models give similar regional distributions of carbonaceous aerosol mass and aerosol optical depth (AOD), GLOMAP-mode is better able to capture the observed size distribution, single scattering albedo, and Ångström exponent across different tropical biomass burning source regions. Both aerosol schemes overestimate the uptake of water compared to recent observations, CLASSIC more so than GLOMAP-mode, leading to a likely overestimation of aerosol scattering, AOD, and single scattering albedo at high relative humidity. Observed aerosol vertical distributions were well captured when biomass burning aerosol emissions were injected uniformly from the surface to 3 km. Finally, good agreement between observed and modelled AOD was gained only after scaling up GFED3 emissions by a factor of 1.6 for CLASSIC and 2.0 for GLOMAP-mode. We attribute this difference in scaling factor mainly to different assumptions for the water uptake and growth of aerosol mass during ageing via oxidation and condensation of organics. We also note that similar agreement

  14. Aerosol Activation Properties within and above Mixing Layer in the North China Plain

    NASA Astrophysics Data System (ADS)

    Deng, Z.; Ran, L.

    2013-12-01

    Aerosol particles, serving as cloud condensation nuclei (CCN), may modify the properties of clouds and have an impact on climate. The vertical distribution of aerosols and their activation properties is critical to quantify the effect of aerosols on clouds. An intensive field campaign, Vertical Observations of trace Gases and Aerosols in the North China Plain (VOGA-NCP 2013), was conducted in the North China Plain during the late July and early August 2013 to measure the vertical profiles of atmospheric components in this polluted region and estimate their effects on atmospheric environment and climate. Aerosols were measured with in-situ instruments and Lidar. Particularly, the aerosols were collected at 1000 m height with a 1 m3 bag sampler attached to a tethered balloon, and subsequently measured with combined scanning mobility particle sizer (SMPS) and CCN counter. Comparisons of size-resolved activation ratios at ground level and 1000 m height showed that aerosols in upper atmosphere were not only less concentrated, but also less CCN-active than those at the surface. The difference in aerosol properties between upper atmosphere and the ground indicates that the analysis of impacts of aerosols on cloud might be misleading in heavily polluted region based on the relationship of cloud properties and surface aerosols or column without considering the vertical distribution of aerosol activation abilities.

  15. The optical properties, physical properties and direct radiative forcing of urban columnar aerosols in the Yangtze River Delta, China

    NASA Astrophysics Data System (ADS)

    Zhuang, Bingliang; Wang, Tijian; Liu, Jane; Che, Huizheng; Han, Yong; Fu, Yu; Li, Shu; Xie, Min; Li, Mengmeng; Chen, Pulong; Chen, Huimin; Yang, Xiu-qun; Sun, Jianning

    2018-02-01

    The optical and physical properties as well as the direct radiative forcings (DRFs) of fractionated aerosols in the urban area of the western Yangtze River Delta (YRD) are investigated with measurements from a Cimel sun photometer combined with a radiation transfer model. Ground-based observations of aerosols have much higher temporal resolutions than satellite retrievals. An initial analysis reveals the characteristics of the optical properties of different types of fractionated aerosols in the western YRD. The total aerosols, mostly composed of scattering components (93.8 %), have mean optical depths of 0.65 at 550 nm and refractive index of 1.44 + 0.0084i at 440 nm. The fine aerosols are approximately four times more abundant and have very different compositions from coarse aerosols. The absorbing components account for only ˜ 4.6 % of fine aerosols and 15.5 % of coarse aerosols and have smaller sizes than the scattering aerosols within the same mode. Therefore, fine particles have stronger scattering than coarse ones, simultaneously reflecting the different size distributions between the absorbing and scattering aerosols. The relationships among the optical properties quantify the aerosol mixing and imply that approximately 15 and 27.5 % of the total occurrences result in dust- and black-carbon-dominating mixing aerosols, respectively, in the western YRD. Unlike the optical properties, the size distributions of aerosols in the western YRD are similar to those found at other sites over eastern China on a climatological scale, peaking at radii of 0.148 and 2.94 µm. However, further analysis reveals that the coarse-dominated particles can also lead to severe haze pollution over the YRD. Observation-based estimations indicate that both fine and coarse aerosols in the western YRD exert negative DRFs, and this is especially true for fine aerosols (-11.17 W m-2 at the top of atmosphere, TOA). A higher absorption fraction leads directly to the negative DRF being

  16. Aerosol properties associated with air masses arriving into the North East Atlantic during the 2008 Mace Head EUCAARI intensive observing period: an overview

    NASA Astrophysics Data System (ADS)

    Dall'Osto, M.; Ceburnis, D.; Martucci, G.; Bialek, J.; Dupuy, R.; Jennings, S. G.; Berresheim, H.; Wenger, J.; Healy, R.; Facchini, M. C.; Rinaldi, M.; Giulianelli, L.; Finessi, E.; Worsnop, D.; Ehn, M.; Mikkilä, J.; Kulmala, M.; O'Dowd, C. D.

    2010-09-01

    As part of the EUCAARI Intensive Observing Period, a 4-week campaign to measure aerosol physical, chemical and optical properties, atmospheric structure, and cloud microphysics was conducted from mid-May to mid-June, 2008 at the Mace Head Atmospheric Research Station, located at the interface of Western Europe and the N. E. Atlantic and centered on the west Irish coastline. During the campaign, continental air masses comprising both young and aged continental plumes were encountered, along with polar, Arctic and tropical air masses. Polluted-continental aerosol concentrations were of the order of 3000 cm-3, while background marine air aerosol concentrations were between 400-600 cm-3. The highest marine air concentrations occurred in polar air masses in which a 15 nm nucleation mode, with concentration of 1100 cm-3, was observed and attributed to open ocean particle formation. Continental air submicron chemical composition (excluding refractory sea salt) was dominated by organic matter, closely followed by sulphate mass. Although the concentrations and size distribution spectral shape were almost identical for the young and aged continental cases, hygroscopic growth factors (GF) and cloud condensation nuclei (CCN) to total condensation nuclei (CN) concentration ratios were significantly less in the younger pollution plume, indicating a more oxidized organic component to the aged continental plume. The difference in chemical composition and hygroscopic growth factor appear to result in a 40-50% impact on aerosol scattering coefficients and Aerosol Optical Depth, despite almost identical aerosol microphysical properties in both cases, with the higher values been recorded for the more aged case. For the CCN/CN ratio, the highest ratios were seen in the more age plume. In marine air, sulphate mass dominated the sub-micron component, followed by water soluble organic carbon, which, in turn, was dominated by methanesulphonic acid (MSA). Sulphate concentrations were

  17. Global observations of aerosol-cloud-precipitation-climate interactions

    NASA Astrophysics Data System (ADS)

    Rosenfeld, Daniel; Andreae, Meinrat O.; Asmi, Ari; Chin, Mian; de Leeuw, Gerrit; Donovan, David P.; Kahn, Ralph; Kinne, Stefan; Kivekäs, Niku; Kulmala, Markku; Lau, William; Schmidt, K. Sebastian; Suni, Tanja; Wagner, Thomas; Wild, Martin; Quaas, Johannes

    2014-12-01

    Cloud drop condensation nuclei (CCN) and ice nuclei (IN) particles determine to a large extent cloud microstructure and, consequently, cloud albedo and the dynamic response of clouds to aerosol-induced changes to precipitation. This can modify the reflected solar radiation and the thermal radiation emitted to space. Measurements of tropospheric CCN and IN over large areas have not been possible and can be only roughly approximated from satellite-sensor-based estimates of optical properties of aerosols. Our lack of ability to measure both CCN and cloud updrafts precludes disentangling the effects of meteorology from those of aerosols and represents the largest component in our uncertainty in anthropogenic climate forcing. Ways to improve the retrieval accuracy include multiangle and multipolarimetric passive measurements of the optical signal and multispectral lidar polarimetric measurements. Indirect methods include proxies of trace gases, as retrieved by hyperspectral sensors. Perhaps the most promising emerging direction is retrieving the CCN properties by simultaneously retrieving convective cloud drop number concentrations and updraft speeds, which amounts to using clouds as natural CCN chambers. These satellite observations have to be constrained by in situ observations of aerosol-cloud-precipitation-climate (ACPC) interactions, which in turn constrain a hierarchy of model simulations of ACPC. Since the essence of a general circulation model is an accurate quantification of the energy and mass fluxes in all forms between the surface, atmosphere and outer space, a route to progress is proposed here in the form of a series of box flux closure experiments in the various climate regimes. A roadmap is provided for quantifying the ACPC interactions and thereby reducing the uncertainty in anthropogenic climate forcing.

  18. SAGE II Measurements of Stratospheric Aerosol Properties at Non-Volcanic Levels

    NASA Technical Reports Server (NTRS)

    Thomason, Larry W.; Burton, Sharon P.; Luo, Bei-Ping; Peter, Thomas

    2008-01-01

    Since 2000, stratospheric aerosol levels have been relatively stable and at the lowest levels observed in the historical record. Given the challenges of making satellite measurements of aerosol properties at these levels, we have performed a study of the sensitivity of the product to the major components of the processing algorithm used in the production of SAGE II aerosol extinction measurements and the retrieval process that produces the operational surface area density (SAD) product. We find that the aerosol extinction measurements, particularly at 1020 nm, remain robust and reliable at the observed aerosol levels. On the other hand, during background periods, the SAD operational product has an uncertainty of at least a factor of 2 during due to the lack of sensitivity to particles with radii less than 100 nm.

  19. Analysis of aerosol effects on warm clouds over the Yangtze River Delta from multi-sensor satellite observations

    NASA Astrophysics Data System (ADS)

    Liu, Yuqin; de Leeuw, Gerrit; Kerminen, Veli-Matti; Zhang, Jiahua; Zhou, Putian; Nie, Wei; Qi, Ximeng; Hong, Juan; Wang, Yonghong; Ding, Aijun; Guo, Huadong; Krüger, Olaf; Kulmala, Markku; Petäjä, Tuukka

    2017-05-01

    Aerosol effects on low warm clouds over the Yangtze River Delta (YRD, eastern China) are examined using co-located MODIS, CALIOP and CloudSat observations. By taking the vertical locations of aerosol and cloud layers into account, we use simultaneously observed aerosol and cloud data to investigate relationships between cloud properties and the amount of aerosol particles (using aerosol optical depth, AOD, as a proxy). Also, we investigate the impact of aerosol types on the variation of cloud properties with AOD. Finally, we explore how meteorological conditions affect these relationships using ERA-Interim reanalysis data. This study shows that the relation between cloud properties and AOD depends on the aerosol abundance, with a different behaviour for low and high AOD (i.e. AOD < 0.35 and AOD > 0.35). This applies to cloud droplet effective radius (CDR) and cloud fraction (CF), but not to cloud optical thickness (COT) and cloud top pressure (CTP). COT is found to decrease when AOD increases, which may be due to radiative effects and retrieval artefacts caused by absorbing aerosol. Conversely, CTP tends to increase with elevated AOD, indicating that the aerosol is not always prone to expand the vertical extension. It also shows that the COT-CDR and CWP (cloud liquid water path)-CDR relationships are not unique, but affected by atmospheric aerosol loading. Furthermore, separation of cases with either polluted dust or smoke aerosol shows that aerosol-cloud interaction (ACI) is stronger for clouds mixed with smoke aerosol than for clouds mixed with dust, which is ascribed to the higher absorption efficiency of smoke than dust. The variation of cloud properties with AOD is analysed for various relative humidity and boundary layer thermodynamic and dynamic conditions, showing that high relative humidity favours larger cloud droplet particles and increases cloud formation, irrespective of vertical or horizontal level. Stable atmospheric conditions enhance cloud cover

  20. Ultraviolet dust aerosol properties as observed by MARCI

    NASA Astrophysics Data System (ADS)

    Wolff, Michael J.; Todd Clancy, R.; Goguen, Jay D.; Malin, Michael C.; Cantor, Bruce A.

    2010-07-01

    Observations by the Mars Color Imager (MARCI) on board the Mars Reconnaissance Orbiter (MRO) in two ultraviolet (UV, Bands 6 and 7; 258 nm, and 320 nm, respectively) and one visible (Band 1, 436 nm) channels of the 2007 planet encircling dust storm are combined with those made by the two Mars Exploration Rovers (MERs) to better characterize the single scattering albedo (ω0) of martian dust aerosols. Exploiting the low contrast of the surface in the UV (and blue) as well as the reduced importance of surface reflectance under very dusty conditions, we utilize the sampling of photometric angles by the MARCI cross-track geometry to synthesize an analog of the classical Emergence Phase Function (EPF). This so-called "pseudo-EPF", used in conjunction with the "ground-truth" measurements provided by the MERs, is able to effectively isolate the effects of the dust ω0. The motivation for this approach is the elimination of a significant portion of the type of uncertainty involved in many previous radiative transfer analyses. Furthermore, we produce a self-consistent set of complex refractive indices (m=n+ik) through our use of an explicit microphysical representation of the aerosol scattering properties. Because of uncertainty in the exact size of the dust particles during the epoch of the observations, we consider two effective particle radii (reff) to cover the range anticipated from the literature: 1.6 and 1.8 μm. The resulting set of model-data comparisons, ω0, and m are presented along with an assessment of potential sources of error and uncertainty. Analysis of the Band 1 results is limited to ω0 as a "proof-of-concept" for our approach through a comparison to contemporaneous CRISM EPF results at 440 nm. The derived ω0 are: assuming reff=1.6μm-0.619-0.626,0.648, and 0.765, for Bands 6, 7, and 1, respectively; for reff=1.8μm-0.625-0.635,0.653,0.769, for the same band order. For either reff case, the total estimated error is 0.022, 0.019, and 0.010, again for

  1. Modelling the optical properties of aerosols in a chemical transport model

    NASA Astrophysics Data System (ADS)

    Andersson, E.; Kahnert, M.

    2015-12-01

    According to the IPCC fifth assessment report (2013), clouds and aerosols still contribute to the largest uncertainty when estimating and interpreting changes to the Earth's energy budget. Therefore, understanding the interaction between radiation and aerosols is both crucial for remote sensing observations and modelling the climate forcing arising from aerosols. Carbon particles are the largest contributor to the aerosol absorption of solar radiation, thereby enhancing the warming of the planet. Modelling the radiative properties of carbon particles is a hard task and involves many uncertainties arising from the difficulties of accounting for the morphologies and heterogeneous chemical composition of the particles. This study aims to compare two ways of modelling the optical properties of aerosols simulated by a chemical transport model. The first method models particle optical properties as homogeneous spheres and are externally mixed. This is a simple model that is particularly easy to use in data assimilation methods, since the optics model is linear. The second method involves a core-shell internal mixture of soot, where sulphate, nitrate, ammonia, organic carbon, sea salt, and water are contained in the shell. However, by contrast to previously used core-shell models, only part of the carbon is concentrated in the core, while the remaining part is homogeneously mixed with the shell. The chemical transport model (CTM) simulations are done regionally over Europe with the Multiple-scale Atmospheric Transport and CHemistry (MATCH) model, developed by the Swedish Meteorological and Hydrological Institute (SMHI). The MATCH model was run with both an aerosol dynamics module, called SALSA, and with a regular "bulk" approach, i.e., a mass transport model without aerosol dynamics. Two events from 2007 are used in the analysis, one with high (22/12-2007) and one with low (22/6-2007) levels of elemental carbon (EC) over Europe. The results of the study help to assess the

  2. Arctic biomass burning aerosol event-microphysical property retrieval

    NASA Astrophysics Data System (ADS)

    Böckmann, Christine; Ritter, Christoph; Ortiz-Amezcua, Pablo

    2018-04-01

    An intense biomass-burning (BB) event from North America in July 2015 was observed over Ny-Ålesund (Spitsbergen, European Arctic). An extreme air pollution took place and aerosol optical depth (AOD) of more than 1 at 500nm occurs in middle and lower troposphere. We analyse data from the multi-wavelength Raman-lidar KARL of Alfred Wegener Institute to derive microphysical properties of the aerosol of one interesting layer from 3186 to 3306 m via regularization. We found credible and confidential microphysical parameters.

  3. Aerosols, light, and water: Measurements of aerosol optical properties at different relative humidities

    NASA Astrophysics Data System (ADS)

    Orozco, Daniel

    The Earth's atmosphere is composed of a large number of different gases as well as tiny suspended particles, both in solid and liquid state. These tiny particles, called atmospheric aerosols, have an immense impact on our health and on our global climate. Atmospheric aerosols influence the Earth's radiation budget both directly and indirectly. In the direct effect, aerosols scatter and absorb sunlight changing the radiative balance of the Earth-atmosphere system. Aerosols indirectly influence the Earth's radiation budget by modifying the microphysical and radiative properties of clouds as well as their water content and lifetime. In ambient conditions, aerosol particles experience hygroscopic growth due to the influence of relative humidity (RH), scattering more light than when the particles are dry. The quantitative knowledge of the RH effect and its influence on the light scattering coefficient and, in particular, on the phase function and polarization of aerosol particles is of substantial importance when comparing ground based observations with other optical aerosol measurements techniques such satellite and sunphotometric retrievals of aerosol optical depth and their inversions. This dissertation presents the aerosol hygroscopicity experiment investigated using a novel dryer-humidifier system, coupled to a TSI-3563 nephelometer, to obtain the light scattering coefficient (sp) as a function of relative humidity (RH) in hydration and dehydration modes. The measurements were performed in Porterville, CA (Jan 10-Feb 6, 2013), Baltimore, MD (Jul 3-30, 2013), and Golden, CO (Jul 12-Aug 10, 2014). Observations in Porterville and Golden were part of the NASA-sponsored DISCOVER-AQ project. The measured sp under varying RH in the three sites was combined with ground aerosol extinction, PM2:5mass concentrations, particle composition measurements, and compared with airborne observations performed during campaigns. The enhancement factor, f(RH), defined as the ratio of sp

  4. Comparing multiple model-derived aerosol optical properties to spatially collocated ground-based and satellite measurements

    NASA Astrophysics Data System (ADS)

    Ocko, Ilissa B.; Ginoux, Paul A.

    2017-04-01

    Anthropogenic aerosols are a key factor governing Earth's climate and play a central role in human-caused climate change. However, because of aerosols' complex physical, optical, and dynamical properties, aerosols are one of the most uncertain aspects of climate modeling. Fortunately, aerosol measurement networks over the past few decades have led to the establishment of long-term observations for numerous locations worldwide. Further, the availability of datasets from several different measurement techniques (such as ground-based and satellite instruments) can help scientists increasingly improve modeling efforts. This study explores the value of evaluating several model-simulated aerosol properties with data from spatially collocated instruments. We compare aerosol optical depth (AOD; total, scattering, and absorption), single-scattering albedo (SSA), Ångström exponent (α), and extinction vertical profiles in two prominent global climate models (Geophysical Fluid Dynamics Laboratory, GFDL, CM2.1 and CM3) to seasonal observations from collocated instruments (AErosol RObotic NETwork, AERONET, and Cloud-Aerosol Lidar with Orthogonal Polarization, CALIOP) at seven polluted and biomass burning regions worldwide. We find that a multi-parameter evaluation provides key insights on model biases, data from collocated instruments can reveal underlying aerosol-governing physics, column properties wash out important vertical distinctions, and improved models does not mean all aspects are improved. We conclude that it is important to make use of all available data (parameters and instruments) when evaluating aerosol properties derived by models.

  5. Toward Creating A Global Retrospective Climatology of Aerosol Properties

    NASA Technical Reports Server (NTRS)

    Curran, Robert J.; Mishchenko, Michael I.; Hansen, James E. (Technical Monitor)

    2000-01-01

    Tropospheric aerosols are thought to cause a significant direct and indirect climate forcing, but the magnitude of this forcing remains highly uncertain because of poor knowledge of global aerosol characteristics and their temporal changes. The standard long-term global product, the one-channel Advanced Very-High-Resolution Radiometer (AVHRR) aerosol optical thickness over the ocean, relies on a single predefined aerosol model and can be inaccurate in many cases. Furthermore, it provides no information on aerosol column number density, thus making it impossible to estimate the indirect aerosol effect on climate. Total Ozone Mapping Spectrometer (TOMS) data can be used to detect absorbing aerosols over land, but are insensitive to aerosols located below one kilometer. It is thus clear that innovative approaches must be employed in order to extract a more quantitative and accurate aerosol climatology from available satellite and other measurements, thus enabling more reliable estimates of the direct and indirect aerosol forcings. The Global Aerosol Climatology Project (GACP) was established in 1998 as part of the Global Energy and Water Cycle Experiment (GEWEX). Its main objective is to analyze satellite radiance measurements and field observations to infer the global distribution of aerosols, their properties, and their seasonal and interannual variations. The overall goal is to develop advanced global aerosol climatologies for the period of satellite data and to make the aerosol climatologies broadly available through the GACP web site.

  6. Radiative Effects of Carbonaceous and Inorganic Aerosols over California during CalNex and CARES: Observations versus Model Predictions

    NASA Astrophysics Data System (ADS)

    Vinoj, V.; Fast, J. D.; Liu, Y.

    2012-12-01

    Aerosols have been identified to be a major contributor to the uncertainty in understanding the present climate. Most of this uncertainty arises due to the lack of knowledge of their micro-physical and chemical properties as well as how to adequately represent their spatial and temporal distributions. Increased process level understanding can be achieved through carefully designed field campaigns and experiments. These measurements can be used to elucidate the aerosol properties, mixing, transport and transformation within the atmosphere and also to validate and improve models that include meteorology-aerosol-chemistry interactions. In the present study, the WRF-Chem model is used to simulate the evolution of carbonaceous and inorganic aerosols and their impact on radiation during May and June of 2010 over California when two field campaigns took place: the California Nexus Experiment (CalNex) and Carbonaceous Aerosol and Radiative Effects Study (CARES). We merged CalNex and CARES data along with data from operational networks such as, California Air Resources Board (CARB's) air quality monitoring network, the Interagency Monitoring of Protected Visual Environments (IMPROVE) network, the AErosol RObotic NETwork (AERONET), and satellites into a common dataset for the Aerosol Modeling Test bed. The resulting combined dataset is used to rigorously evaluate the model simulation of aerosol mass, size distribution, composition, and optical properties needed to understand uncertainties that could affect regional variations in aerosol radiative forcing. The model reproduced many of the diurnal, multi-day, and spatial variations of aerosols as seen in the measurements. However, regionally the performance varied with reasonably good agreement with observations around Los Angeles and Sacramento and poor agreement with observations in the vicinity of Bakersfield (although predictions aloft were much better). Some aerosol species (sulfate and nitrate) were better represented

  7. Case study of modeled aerosol optical properties during the SAFARI 2000 campaign

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuzmanoski, Maja; Box, Michael A.; Schmid, Beat

    2007-08-01

    We present modeled aerosol optical properties (single scattering albedo, asymmetry parameter, and lidar ratio) in two layers with different aerosol loadings and particle sizes, observed during the Southern African Regional Science Initiative 2000 (SAFARI 2000) campaign. The optical properties were calculated from aerosol size distributions retrieved from aerosol layer optical thickness spectra, measured using the NASA Ames airborne tracking 14-channel sunphotometer (AATS-14) and the refractive index based on the available information on aerosol chemical composition. The study focuses on sensitivity of modeled optical properties in the 0.3–1.5 μm wavelength range to assumptions regarding the mixing scenario. We considered two modelsmore » for the mixture of absorbing and nonabsorbing aerosol components commonly used to model optical properties of biomass burning aerosol: a layered sphere with absorbing core and nonabsorbing shell and the Maxwell–Garnett effective medium model. In addition, comparisons of modeled optical properties with the measurements are discussed. We also estimated the radiative effect of the difference in aerosol absorption implied by the large difference between the single scattering albedo values (~0.1 at midvisible wavelengths) obtained from different measurement methods for the case with a high amount of biomass burning particles. For that purpose, the volume fraction of black carbon was varied to obtain a range of single scattering albedo values (0.81–0.91 at λ=0.50 μm). Finally, the difference in absorption resulted in a significant difference in the instantaneous radiative forcing at the surface and the top of the atmosphere (TOA) and can result in a change of the sign of the aerosol forcing at TOA from negative to positive.« less

  8. Background aerosol over the Himalayas and Tibetan Plateau: observed characteristics of aerosol mass loading

    NASA Astrophysics Data System (ADS)

    Liu, B.; Cong, Z.; Wang, Y.; Xin, J.; Wan, X.; Pan, Y.; Liu, Z.; Wang, Y.; Zhang, G.; Kang, S.

    2016-12-01

    To investigate the atmospheric aerosols of the Himalayas and Tibetan Plateau (HTP), an observation network was established within the region's various ecosystems, including at Ngari, Qomolangma (QOMS), Nam Co, and SouthEastern Tibetan (SET) stations. In this paper we illustrate aerosol mass loadings by integrating in situ measurements with satellite and ground-based remote sensing datasets for the 2011-2013 period, on both local and large scales. Mass concentrations of these surface atmospheric aerosols were relatively low and varied with land cover, showing a general tendency of Ngari and QOMS (barren sites) > Nam Co (grassland site) > SET (forest site). Bimodal mass distributions of size-segregated particles were found at all sites, with a relatively small peak in accumulation mode and a more notable peak in coarse mode. Diurnal variations in fine aerosol masses generally displayed a bi-peak pattern at the QOMS, Nam Co and SET stations and a single-peak pattern at the Ngari station, controlled by the effects of local geomorphology, mountain-valley breeze circulation and aerosol emissions. Combining surface aerosols data and atmospheric-column aerosol optical properties, the TSP mass and aerosol optical depth (AOD) of the Multi-angle Imaging Spectroradiometer (MISR) generally decreased as land cover changed from barren to forest, in inverse relation to the PM2.5 ratios. The seasonality of aerosol mass parameters was land-cover dependent. Over forest and grassland areas, TSP mass, PM2.5 mass, MISR-AOD and fine-mode AOD were higher in spring and summer, followed by relatively lower values in autumn and winter. At the barren site (the QOMS station), there were inconsistent seasonal variations between surface TSP mass (PM2.5 mass) and atmospheric column AOD (fine-mode AOD). Our findings implicate that, HTP aerosol masses (especially their reginal characteristics and fine particle emissions) need to be treated sensitively in relation to assessments of their climatic

  9. Identifying Aerosol Type/Mixture from Aerosol Absorption Properties Using AERONET

    NASA Technical Reports Server (NTRS)

    Giles, D. M.; Holben, B. N.; Eck, T. F.; Sinyuk, A.; Dickerson, R. R.; Thompson, A. M.; Slutsker, I.; Li, Z.; Tripathi, S. N.; Singh, R. P.; hide

    2010-01-01

    Aerosols are generated in the atmosphere through anthropogenic and natural mechanisms. These sources have signatures in the aerosol optical and microphysical properties that can be used to identify the aerosol type/mixture. Spectral aerosol absorption information (absorption Angstrom exponent; AAE) used in conjunction with the particle size parameterization (extinction Angstrom exponent; EAE) can only identify the dominant absorbing aerosol type in the sample volume (e.g., black carbon vs. iron oxides in dust). This AAE/EAE relationship can be expanded to also identify non-absorbing aerosol types/mixtures by applying an absorption weighting. This new relationship provides improved aerosol type distinction when the magnitude of absorption is not equal (e.g, black carbon vs. sulfates). The Aerosol Robotic Network (AERONET) data provide spectral aerosol optical depth and single scattering albedo - key parameters used to determine EAE and AAE. The proposed aerosol type/mixture relationship is demonstrated using the long-term data archive acquired at AERONET sites within various source regions. The preliminary analysis has found that dust, sulfate, organic carbon, and black carbon aerosol types/mixtures can be determined from this AAE/EAE relationship when applying the absorption weighting for each available wavelength (Le., 440, 675, 870nm). Large, non-spherical dust particles absorb in the shorter wavelengths and the application of 440nm wavelength absorption weighting produced the best particle type definition. Sulfate particles scatter light efficiently and organic carbon particles are small near the source and aggregate over time to form larger less absorbing particles. Both sulfates and organic carbon showed generally better definition using the 870nm wavelength absorption weighting. Black carbon generation results from varying combustion rates from a number of sources including industrial processes and biomass burning. Cases with primarily black carbon showed

  10. How do the optical properties of Asian aerosols change when they cross the Pacific?

    NASA Astrophysics Data System (ADS)

    Fischer, E. V.; Jaffe, D. A.

    2009-12-01

    Primary and secondary aerosols from Asia may have important climate implications. These aerosols are emitted locally, but can then be lofted into the free troposphere and advected across the Pacific. In this analysis we used observations from the Mount Bachelor Observatory (MBO) in conjunction with satellite data to identify the dominant aerosol types in specific Asian plumes that crossed the Pacific. In situ data from MBO is used to understand the observed changes in radiative properties. A suite of gas phase and aerosol measurements were made during spring 2008 and spring 2009 at MBO (2763 masl), located in central Oregon. Here we focus on observations of dry sub-μm aerosol scattering (σsp) and absorption (σap), made with an integrating nephelometer and a particle soot absorption photometer (PSAP). Using a combination of backward trajectory calculations and satellite observations, we identified 7 well defined plumes of Asian origin. These plumes included the highest σsp (34.8 Mm-1 hourly average) and σap (4.8 Mm-1 hourly average) observed at MBO over the 2008 and 2009 spring campaigns. Of interest in this analysis is 1) whether the intensive optical properties differ between these 7 Asian events, 2) whether these differences can be linked to differences in composition, and 3) whether the intensive optical properties differ from those observed closer to the Asian source region. Preliminary results show that the plumes clustered in terms of their optical properties; plumes hypothesized to contain a large fraction of mineral dust were the most distinct. We also observed larger variability in the average scattering Ångstrom exponent of the plumes and a higher average single scatter albedo than observations closer to the Asian coast. This work will be extended to compare observations at MBO with the most recent observations from Asia as they become available.

  11. Spatial and temporal variations of aerosols around Beijing in summer 2006: 2. Local and column aerosol optical properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsui, Hitoshi; Koike, Makoto; Kondo, Yutaka

    Weather Research and Forecasting (WRF)-chem model calculations were conducted to study aerosol optical properties around Beijing, China, during the Campaign of Air Quality Research in Beijing and Surrounding Region 2006 (CAREBeijing-2006) period. In this paper, we interpret aerosol optical properties in terms of aerosol mass concentrations and their chemical compositions by linking model calculations with measurements. In general, model calculations reproduced observed features of spatial and temporal variations of various surface and column aerosol optical parameters in and around Beijing. Spatial and temporal variations of aerosol absorption, scattering, and extinction coefficient corresponded well to those of elemental carbon (primary aerosol),more » sulfate (secondary aerosol), and the total aerosol mass concentration, respectively. These results show that spatial and temporal variations of the absorption coefficient are controlled by local emissions (within 100 km around Beijing during the preceding 24 h), while those of the scattering coefficient are controlled by regional-scale emissions (within 500 km around Beijing during the preceding 3 days) under synoptic-scale meteorological conditions, as discussed in our previous study of aerosol mass concentration. Vertical profiles of aerosol extinction revealed that the contribution of secondary aerosols and their water uptake increased with altitude within the planetary boundary layer, leading to a considerable increase in column aerosol optical depth (AOD) around Beijing. These effects are the main factors causing differences in regional and temporal variations between particulate matter (PM) mass concentration at the surface and column AOD over a wide region in the northern part of the Great North China Plain.« less

  12. Use of the NASA GEOS-5 SEAC4RS Meteorological and Aerosol Reanalysis for assessing simulated aerosol optical properties as a function of smoke age

    NASA Astrophysics Data System (ADS)

    Randles, C. A.; da Silva, A. M., Jr.; Colarco, P. R.; Darmenov, A.; Buchard, V.; Govindaraju, R.; Chen, G.; Hair, J. W.; Russell, P. B.; Shinozuka, Y.; Wagner, N.; Lack, D.

    2014-12-01

    The NASA Goddard Earth Observing System version 5 (GEOS-5) Earth system model, which includes an online aerosol module, provided chemical and weather forecasts during the SEAC4RS field campaign. For post-mission analysis, we have produced a high resolution (25 km) meteorological and aerosol reanalysis for the entire campaign period. In addition to the full meteorological observing system used for routine NWP, we assimilate 550 nm aerosol optical depth (AOD) derived from MODIS (both Aqua and Terra satellites), ground-based AERONET sun photometers, and the MISR instrument (over bright surfaces only). Daily biomass burning emissions of CO, CO2, SO2, and aerosols are derived from MODIS fire radiative power retrievals. We have also introduced novel smoke "age" tracers, which provide, for a given time, a snapshot histogram of the age of simulated smoke aerosol. Because GEOS-5 assimilates remotely sensed AOD data, it generally reproduces observed (column) AOD compared to, for example, the airborne 4-STAR instrument. Constraining AOD, however, does not imply a good representation of either the vertical profile or the aerosol microphysical properties (e.g., composition, absorption). We do find a reasonable vertical structure for aerosols is attained in the model, provided actual smoke injection heights are not much above the planetary boundary layer, as verified with observations from DIAL/HRSL aboard the DC8. The translation of the simulated aerosol microphysical properties to total column AOD, needed in the aerosol assimilation step, is based on prescribed mass extinction efficiencies that depend on wavelength, composition, and relative humidity. Here we also evaluate the performance of the simulated aerosol speciation by examining in situ retrievals of aerosol absorption/single scattering albedo and scattering growth factor (f(RH)) from the LARGE and AOP suite of instruments. Putting these comparisons in the context of smoke age as diagnosed by the model helps us to

  13. Ground-based Network and Supersite Measurements for Studying Aerosol Properties and Aerosol-Cloud Interactions

    NASA Technical Reports Server (NTRS)

    Tsay, Si-Chee; Holben, Brent N.

    2008-01-01

    From radiometric principles, it is expected that the retrieved properties of extensive aerosols and clouds from reflected/emitted measurements by satellite (and/or aircraft) should be consistent with those retrieved from transmitted/emitted radiance observed at the surface. Although space-borne remote sensing observations contain large spatial domain, they are often plagued by contamination of surface signatures. Thus, ground-based in-situ and remote-sensing measurements, where signals come directly from atmospheric constituents, the sun, and the Earth-atmosphere interactions, provide additional information content for comparisons that confirm quantitatively the usefulness of the integrated surface, aircraft, and satellite datasets. The development and deployment of AERONET (AErosol RObotic NETwork) sunphotometer network and SMART-COMMIT (Surface-sensing Measurements for Atmospheric Radiative Transfer - Chemical, Optical & Microphysical Measurements of In-situ Troposphere) mobile supersite are aimed for the optimal utilization of collocated ground-based observations as constraints to yield higher fidelity satellite retrievals and to determine any sampling bias due to target conditions. To characterize the regional natural and anthropogenic aerosols, AERONET is an internationally federated network of unique sunphotometry that contains more than 250 permanent sites worldwide. Since 1993, there are more than 480 million aerosol optical depth observations and about 15 sites have continuous records longer than 10 years for annual/seasonal trend analyses. To quantify the energetics of the surface-atmosphere system and the atmospheric processes, SMART-COMMIT instrument into three categories: flux radiometer, radiance sensor and in-situ probe. Through participation in many satellite remote-sensing/retrieval and validation projects over eight years, SMART-COMMIT have gradually refine( and been proven vital for field deployment. In this paper, we will demonstrate the

  14. Remote Sensing of Spectral Aerosol Properties: A Classroom Experience

    NASA Technical Reports Server (NTRS)

    Levy, Robert C.; Pinker, Rachel T.

    2006-01-01

    Bridging the gap between current research and the classroom is a major challenge to today s instructor, especially in the sciences where progress happens quickly. NASA Goddard Space Flight Center and the University of Maryland teamed up in designing a graduate class project intended to provide a hands-on introduction to the physical basis for the retrieval of aerosol properties from state-of-the-art MODIS observations. Students learned to recognize spectral signatures of atmospheric aerosols and to perform spectral inversions. They became acquainted with the operational MODIS aerosol retrieval algorithm over oceans, and methods for its evaluation, including comparisons with groundbased AERONET sun-photometer data.

  15. DACCIWA Cloud-Aerosol Observations in West Africa Field Campaign Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiu, J Christine; Blanchard, Yann; Hill, Peter

    Interactions between aerosols and clouds, and their effects on radiation, precipitation, and regional circulations, are one of the largest uncertainties in understanding climate. With reducing uncertainties in predictions of weather, climate, and climate impacts in mind, the Dynamics-Aerosol-Chemistry-Cloud Interactions in West Africa (DACCIWA) project, funded by the European Commission, set out to improve our understanding of cloud-aerosol interactions in southern West Africa. This region is ideal for studying cloud-aerosol interactions because of its rich mix of natural and anthropogenic aerosols and diverse clouds, and because of the strong dependence on the regional and global climate of the sensitive West Africanmore » monsoon. The overview of DACCIWA is described in Knippertz et al. 2015. The interdisciplinary DACCIWA team includes not only several European and African universities, but also Met Centres in the UK, France, Germany, Switzerland, Benin, Ghana, and Nigeria. One of the crucial research activities in DACCIWA is the major field campaign in southern West Africa from June to July 2016, comprising a benchmark data set for assessing detailed processes on natural and anthropogenic emissions; atmospheric composition; air pollution and its impacts on human and ecosystem health; boundary layer processes; couplings between aerosols, clouds, and rainfall; weather systems; radiation; and the monsoon circulation. Details and highlights of the campaign can be found in Flamant et al. 2017. To provide aerosol/cloud microphysical and optical properties that are essential for model evaluations and for the linkage between ground-based, airborne, and spaceborne observations, the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility loaned two sun photometers to the DACCWIA team for the campaign from June 8 to July 29, 2016. The first sun photometer was deployed at Kumasi, Ghana (6.67962°N, 1.56019°W) by the University of

  16. Chemical Properties of Combustion Aerosols: An Overview

    EPA Science Inventory

    A wide variety of pyrogenic and anthropogenic sources emit fine aerosols to the atmosphere. The physical and chemical properties of these aerosols are of interest due to their influence on climate, human health, and visibility. Aerosol chemical composition is remarkably complex. ...

  17. Aerosol properties associated with air masses arriving into the North East Atlantic during the 2008 Mace Head EUCAARI intensive observing period: an overview

    NASA Astrophysics Data System (ADS)

    Dall'Osto, M.; Ceburnis, D.; Martucci, G.; Bialek, J.; Dupuy, R.; Jennings, S. G.; Berresheim, H.; Wenger, J. C.; Sodeau, J. R.; Healy, R. M.; Facchini, M. C.; Rinaldi, M.; Giulianelli, L.; Finessi, E.; Worsnop, D.; O'Dowd, C. D.

    2009-12-01

    As part of the EUCAARI Intensive Observing Period, a 4-week campaign to measure aerosol physical, chemical and optical properties, atmospheric structure, and cloud microphysics was conducted from mid-May to mid-June 2008 at the Mace Head Atmospheric Research Station, located at the interface of Western Europe and the NE Atlantic and centered on the west Irish coastline. During the campaign, continental air masses comprising both young and aged continental plumes were encountered, along with polar, Arctic and tropical air masses. Polluted-continental aerosol concentrations were of the order of 3000 cm-3, while background marine air aerosol concentrations were between 400-600 cm-3. The highest marine air concentrations occurred in polar air masses in which a 15 nm nucleation mode, with concentration of 1100 cm-3, was observed and attributed to open ocean particle formation. Black carbon concentrations in polluted air were between 300-400 ng m-3, and in clean marine air were less than 50 ng m-3. Continental air submicron chemical composition (excluding refractory sea salt) was dominated by organic matter, closely followed by sulphate mass. Although the concentrations and size distribution spectral shape were almost identical for the young and aged continental cases, hygroscopic growth factors (GF) and cloud condensation nuclei (CCN) to total condensation nuclei (CN) concentration ratios were significantly less in the younger pollution plume, indicating a more oxidized organic component to the aged continental plume. The difference in chemical composition and hygroscopic growth factor appear to result in a 40-50% impact on aerosol scattering coefficients and Aerosol Optical Depth, despite almost identical aerosol microphysical properties in both cases, with the higher values been recorded for the more aged case. For the CCN/CN ratio, the highest ratios were seen in the more age plume. In marine air, sulphate mass dominated the sub-micron component, followed by water

  18. CALIPSO Observations of Stratospheric Aerosols: A Preliminary Assessment

    NASA Technical Reports Server (NTRS)

    Thomason, Larry W.; Pitts, Michael C.; Winker, David M.

    2007-01-01

    We have examined the 532-nm aerosol backscatter coefficient measurements by the Cloud- Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) for their use in the observation of stratospheric aerosol. CALIPSO makes observations that span from 82 S to 82 N each day and, for each profile, backscatter coefficient values reported up to approx. 40 km. The possibility of using CALIPSO for stratospheric aerosol observations is demonstrated by the clear observation of the 20 May 2006 eruption of Montserrat in the earliest CALIPSO data in early June as well as by observations showing the 7 October 2006 eruption of Tavurvur (Rabaul). However, the very low aerosol loading within the stratosphere makes routine observations of the stratospheric aerosol far more difficult than relatively dense volcanic plumes. Nonetheless, we found that averaging a complete days worth of nighttime only data into 5-deg latitude by 1-km vertical bins reveals a stratospheric aerosol data centered near an altitude of 20 km, the clean wintertime polar vortices, and a small maximum in the lower tropical stratosphere. However, the derived values are clearly too small and often negative in much of the stratosphere. The data can be significantly improved by increasing the measured backscatter (molecular and aerosol) by approximately 5% suggesting that the current method of calibrating to a pure molecular atmosphere at 30 km is most likely the source of the low values.

  19. Aerosol and Cloud Interaction Observed From High Spectral Resolution Lidar Data

    NASA Technical Reports Server (NTRS)

    Su, Wenying; Schuster, Gregory L.; Loeb, Norman G.; Rogers, Raymond R.; Ferrare, Richard A.; Hostetler, Chris A.; Hair, Johnathan W.; Obland, Michael D.

    2008-01-01

    Recent studies utilizing satellite retrievals have shown a strong correlation between aerosol optical depth (AOD) and cloud cover. However, these retrievals from passive sensors are subject to many limitations, including cloud adjacency (or 3D) effects, possible cloud contamination, uncertainty in the AOD retrieval. Some of these limitations do not exist in High Spectral Resolution Lidar (HSRL) observations; for instance, HSRL observations are not a ected by cloud adjacency effects, are less prone to cloud contamination, and offer accurate aerosol property measurements (backscatter coefficient, extinction coefficient, lidar ratio, backscatter Angstrom exponent,and aerosol optical depth) at a neospatial resolution (less than 100 m) in the vicinity of clouds. Hence, the HSRL provides an important dataset for studying aerosol and cloud interaction. In this study, we statistically analyze aircraft-based HSRL profiles according to their distance from the nearest cloud, assuring that all profile comparisons are subject to the same large-scale meteorological conditions. Our results indicate that AODs from HSRL are about 17% higher in the proximity of clouds (approximately 100 m) than far away from clouds (4.5 km), which is much smaller than the reported cloud 3D effect on AOD retrievals. The backscatter and extinction coefficients also systematically increase in the vicinity of clouds, which can be explained by aerosol swelling in the high relative humidity (RH) environment and/or aerosol growth through in cloud processing (albeit not conclusively). On the other hand, we do not observe a systematic trend in lidar ratio; we hypothesize that this is caused by the opposite effects of aerosol swelling and aerosol in-cloud processing on the lidar ratio. Finally, the observed backscatter Angstrom exponent (BAE) does not show a consistent trend because of the complicated relationship between BAE and RH. We demonstrate that BAE should not be used as a surrogate for Angstrom

  20. Composition and physical properties of the Asian Tropopause Aerosol Layer and the North American Tropospheric Aerosol Layer: Composition of ATAL and NATAL

    DOE PAGES

    Yu, Pengfei; Toon, Owen B.; Neely, Ryan R.; ...

    2015-04-10

    Recent studies revealed layers of enhanced aerosol scattering in the upper troposphere and lower stratosphere over Asia (Asian Tropopause Aerosol Layer (ATAL)) and North America (North American Tropospheric Aerosol Layer (NATAL)). We use a sectional aerosol model (Community Aerosol and Radiation Model for Atmospheres (CARMA)) coupled with the Community Earth System Model version 1 (CESM1) to explore the composition and optical properties of these aerosol layers. The observed aerosol extinction enhancement is reproduced by CESM1/CARMA. Both model and observations indicate a strong gradient of the sulfur-to-carbon ratio from Europe to the Asia on constant pressure surfaces. We found that themore » ATAL is mostly composed of sulfates, surface-emitted organics, and secondary organics; the NATAL is mostly composed of sulfates and secondary organics. In conclusion, the model also suggests that emission increases in Asia between 2000 and 2010 led to an increase of aerosol optical depth of the ATAL by 0.002 on average which is consistent with observations.« less

  1. Composition and physical properties of the Asian Tropopause Aerosol Layer and the North American Tropospheric Aerosol Layer: Composition of ATAL and NATAL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Pengfei; Toon, Owen B.; Neely, Ryan R.

    Recent studies revealed layers of enhanced aerosol scattering in the upper troposphere and lower stratosphere over Asia (Asian Tropopause Aerosol Layer (ATAL)) and North America (North American Tropospheric Aerosol Layer (NATAL)). We use a sectional aerosol model (Community Aerosol and Radiation Model for Atmospheres (CARMA)) coupled with the Community Earth System Model version 1 (CESM1) to explore the composition and optical properties of these aerosol layers. The observed aerosol extinction enhancement is reproduced by CESM1/CARMA. Both model and observations indicate a strong gradient of the sulfur-to-carbon ratio from Europe to the Asia on constant pressure surfaces. We found that themore » ATAL is mostly composed of sulfates, surface-emitted organics, and secondary organics; the NATAL is mostly composed of sulfates and secondary organics. In conclusion, the model also suggests that emission increases in Asia between 2000 and 2010 led to an increase of aerosol optical depth of the ATAL by 0.002 on average which is consistent with observations.« less

  2. Observation and analysis of aerosol optical properties and aerosol growth in two New Year celebrations in Manila Observatory (14.64N, 127.07E)

    NASA Astrophysics Data System (ADS)

    Lagrosas, N.; Bautista, D. L. B.; Miranda, J. P.

    2016-12-01

    Aerosol optical properties and growth were measured during 2014 and 2016 New Year celebrations at Manila Observatory, Philippines. Measurements were done using a USB2000 spectrometer from 22:00 of 31 December 2013 to 03:00 of 01 January 2014 and from 18:00 of 31 December 2015 to 05:30 01 January 2016. A xenon lamp was used as a light source 150m from the spectrometer. Fireworks and firecrackers were the main sources of aerosols during these festivities. Data were collected every 60s and 10s for 2014 and 2016 respectively. The aerosol volume size distribution was derived using the parametric inversion method proposed by Kaijser (1983). The method is performed by selecting 8 wavelengths from 387.30nm to 600.00nm. The reference intensities were obtained when firework activities were considerably low and the air was assumed to be relatively clean. Using Mie theory and assuming that the volume size distribution is a linear combination of 33 bimodal lognormal distribution functions with geometric mean radii between 0.003um and 1.2um, a least-square minimization process was implemented between measured optical depths and computed optical depths. The 2016 New Year distribution showed mostly a unimodal size distribution (mean radius = 0.3um) from 23:00 to 05:30 (Fig. 1a). The mean Angstrom coefficient value during the same time interval was approximately 0.75. This could be attributed to a constant RH (100%) during this time interval. A bimodal distribution was observed when RH value was 94% from 18:30 to 21:30. The transition to a unimodal distribution was observed at 21:00 when the RH value changes from 94% to 100%. In contrast to the 2016 New Year celebration, the 2014 size distribution was bimodal from 23:30 to 02:30 (Fig 1b). The bimodal distribution is the result of firework activities before New Year. Aerosol growth was evident when the size distribution became unimodal after 02:30 (mean radius = 1.1um). The mean Angstrom coefficient, when the size distribution is

  3. Long-term observations of aerosol and cloud condensation nuclei concentrations in Barbados

    NASA Astrophysics Data System (ADS)

    Pöhlker, Mira L.; Klimach, Thomas; Krüger, Ovid O.; Hrabe de Angelis, Isabella; Ditas, Florian; Praß, Maria; Holanda, Bruna; Su, Hang; Weber, Bettina; Pöhlker, Christopher; Farrell, David A.; Stevens, Bjorn; Prospero, Joseph M.; Andreae, Meinrat O.; Pöschl, Ulrich

    2017-04-01

    Long-term observation of atmospheric aerosol and cloud condensation nuclei (CCN) concentrations has been conducted at the Ragged Point site in Barbados since August 2016. Ragged Point is a well-established station to monitor the transatlantic transport of Saharan dust outbreaks [1]. In the absence of dust plumes, it represents an ideal site to analyze the maritime boundary layer aerosol that is transported with the trade winds over the Atlantic towards Barbados [2,3]. Broad aerosol size distribution (10 nm to 10 µm) as well as size-resolved CCN measurements at 10 different supersaturations from 0.05 % to 0.84 % have been conducted. The continuous online analyses are supplemented by intensive sampling periods to probe specific aerosol properties with various offline techniques (i.e., microscopy and spectroscopy). Aerosol key properties from our measurements are compared with the continuous and in depth observation of cloud properties at Deebles Point, which is in close neighborhood to the Ragged Point site [2]. Moreover, our activities have been synchronized with the HALO-NARVAL-2 aircraft campaign in August 2016 that added further detailed information on shallow cumulus clouds, which are characteristic for the Atlantic trade winds and represent a crucial factor in the Earth climate system. Our measurements have the following two focal points: (i) We aim to obtain a detailed CCN climatology for the alternation of maritime and dust-impacted episodes at this unique coastal location. This study will complement our recent in-depth analysis for the long-term CCN variability at a remote rain forest location [4]. (ii) Furthermore, we aim to collect detailed information on the role of different aerosol populations on the properties of the climatically important shallow cumulus clouds. References: [1] Prospero, J. M., Collard, F. X., Molinie, J., Jeannot, A. (2014), Global Biogeochemical Cycles, 28, 757-773. [2] Stevens, B., et al. (2016), Bulletin of the American

  4. CALIPSO Observations of Volcanic Aerosol in the Stratosphere

    NASA Technical Reports Server (NTRS)

    Thomason, Larry W.; Pitts, Michael C.

    2008-01-01

    In the stratosphere, the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) has observed the presence of aerosol plumes associated with the eruptions several volcanoes including Montserrat (May 2006), Chaiten (May 2008), and Kasatochi (August 2008). While the dense ash plumes from these eruptions dissipate relatively quickly, CALIPSO continued to detect an enhanced aerosol layer from the Montserrat eruption from the initial observations in June 2006 well into 2008. Solar occultation missions were uniquely capable of monitoring stratospheric aerosol. However, since the end of long-lived instruments like the Stratospheric Aerosol and Gas Experiment (SAGE II), there has been no clear space-based successor instrument. A number of active instruments, some employing new techniques, are being evaluated as candidate sources of stratospheric aerosol data. Herein, we examine suitability of the CALIPSO 532-nm aerosol backscatter coefficient measurements.

  5. Spatial and Temporal Distribution of Tropospheric Clouds and Aerosols Observed by MODIS Onboard the Terra and Aqua Satellites

    NASA Technical Reports Server (NTRS)

    King, Michael D.; Platnick, Steven; Remer, Lorraine A.; Kaufman, Yoram J.

    2004-01-01

    Remote sensing of cloud and aerosol optical properties is routinely obtained using the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the Terra and Aqua satellites. Techniques that are being used to enhance our ability to characterize the global distribution of cloud and aerosol properties include well-calibrated multispectral radiometers that rely on visible, near-infrared, and thermal infrared channels. The availability of thermal channels to aid in cloud screening for aerosol properties is an important additional piece of information that has not always been incorporated into sensor designs. In this paper, we describe the radiative properties of clouds as currently determined from satellites (cloud fraction, optical thickness, cloud top pressure, and cloud effective radius), and highlight the global and regional cloud microphysical properties currently available for assessing climate variability and forcing. These include the latitudinal distribution of cloud optical and radiative properties of both liquid water and ice clouds, as well as joint histograms of cloud optical thickness and effective radius for selected geographical locations around the world. In addition, we will illustrate the radiative and microphysical properties of aerosol particles that are currently available from space-based observations, and show selected cases in which aerosol particles are observed to modify the cloud optical properties.

  6. Joint Retrieval Of Surface Reflectance And Aerosol Properties: Application To MSG/SEVIRI in the framework of the aerosol_cci project

    NASA Astrophysics Data System (ADS)

    Luffarelli, Marta; Govaerts, Yves; Goossens, Cedric

    2017-04-01

    A new versatile algorithm for the joint retrieval of surface reflectance and aerosol properties has been developed and tested at Rayference. This algorithm, named Combined Inversion of Surface and Aerosols (CISAR), includes a fast physically-based Radiative Transfer Model (RTM) accounting for the surface reflectance anisotropy and its coupling with aerosol scattering. This RTM explicitly solves the radiative transfer equation during the inversion process, without relying on pre-calculated integrals stored in LUT, allowing for a continuous variation of the state variables in the solution space. The inversion is based on a Optimal Estimation (OE) approach, which seeks for the best balance between the information coming from the observation and the a priori information. The a priori information is any additional knowledge on the observed system and it can concern the magnitude of the state variable or constraints on temporal and spectral variability. Both observations and priori information are provided with the corresponding uncertainty. For each processed spectral band, CISAR delivers the surface Bidirectional Reflectance Factor (BRF) and aerosol optical thickness, discriminating the effects of small and large particles. It also provides the associated uncertainty covariance matrix for every processed pixels. In the framework of the ESA aerosol_cci project, CISAR is applied on TOA BRF acquired by SEVIRI onboard Meteosat Second Generation (MSG) in the VIS0.6, VIS0.8 and NIR1.6 spectral bands. SEVIRI observations are accumulated during several days to document the surface anisotropy and minimize the impact of clouds. While surface radiative properties are supposed constant during this accumulation period, aerosol properties are derived on an hourly basis. The information content of each MSG/SEVIRI band will be provided based on the analysis of the posterior uncertainty covariance matrix. The analysis will demonstrate in particular the capability of CISAR to decouple

  7. Dust aerosol properties and radiative forcing observed in spring during 2001-2014 over urban Beijing, China.

    PubMed

    Yu, Xingna; Lü, Rui; Kumar, K Raghavendra; Ma, Jia; Zhang, Qiuju; Jiang, Yilun; Kang, Na; Yang, Suying; Wang, Jing; Li, Mei

    2016-08-01

    The ground-based characteristics (optical and radiative properties) of dust aerosols measured during the springtime between 2001 and 2014 were investigated over urban Beijing, China. The seasonal averaged aerosol optical depth (AOD) during spring of 2001-2014 was about 0.78 at 440 nm. During dust days, higher AOD occurred associated with lower Ångström exponent (AE). The mean AE440-870 in the springtime was about 1.0, indicating dominance of fine particles over the region. The back-trajectory analysis revealed that the dust was transported from the deserts of Inner Mongolia and Mongolia arid regions to Beijing. The aerosol volume size distribution showed a bimodal distribution pattern, with its highest peak observed in coarse mode for all episodes (especially for dust days with increased volume concentration). The single scattering albedo (SSA) increased with wavelength on dust days, indicating the presence of more scattering particles. Furthermore, the complex parts (real and imaginary) of refractive index showed distinct characteristics with lower imaginary values (also scattering) on dust days. The shortwave (SW; 0.2-4.0 μm) and longwave (LW; 4-100 μm) aerosol radiative forcing (ARF) values were computed from the Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART) model both at the top of atmosphere (TOA) and the bottom of atmosphere (BOA) during dust and non-dust (dust free) days, and the corresponding heating rates and forcing efficiencies were also estimated. The SW (LW) ARF, therefore, produced significant cooling (warming) effects at both the TOA and the BOA over Beijing.

  8. How well do satellite observations and models capture diurnal variation in aerosols over the Korean Peninsula?

    NASA Astrophysics Data System (ADS)

    Hyer, E. J.; Xian, P.; Campbell, J. R.

    2016-12-01

    Aerosol sources, sinks, and transport processes have important variations over the diurnal cycle. Advances in geostationary satellite observation have made it possible to retrieve aerosol properties over a larger fraction of the diurnal cycle in many areas. However, the conditions for retrieval of aerosol from space also have systematic diurnal variation, which must be considered when interpreting satellite data. We used surface PM2.5 observations from the Korean National Institute for Environmental Research, together with the dense network of AERONET sun photometers deployed in Korea for the KORUS-AQ mission in spring 2016, to examine diurnal variations in aerosol conditions and quantify the effect of systematic diurnal processes on daily integrated aerosol quantities of forcing and PM2.5 24-hour exposure. Time-resolved observations of aerosols from in situ data were compared to polar and geostationary satellite observations to evaluate these questions: 1) How well is diurnal variation observed in situ captured by satellite products? 2) Do the satellite products show evidence of systematic biases related to diurnally varying observing conditions? 3) What is the implication of diurnal variation for aerosol forcing estimates based on observations near solar noon? The diurnal variation diagnosed from observations was also compared to the output of the Navy Aerosol Analysis and Prediction System (NAAPS), to examine the ability of this model to capture aerosol diurnal variation. Finally, we discuss the implications of the observed diurnal variation for assimilation of aerosol observations into forecast models.

  9. Contrasting influences of aerosols on cloud properties during deficient and abundant monsoon years

    PubMed Central

    Patil, Nitin; Dave, Prashant; Venkataraman, Chandra

    2017-01-01

    Direct aerosol radiative forcing facilitates the onset of Indian monsoon rainfall, based on synoptic scale fast responses acting over timescales of days to a month. Here, we examine relationships between aerosols and coincident clouds over the Indian subcontinent, using observational data from 2000 to 2009, from the core monsoon region. Season mean and daily timescales were considered. The correlation analyses of cloud properties with aerosol optical depth revealed that deficient monsoon years were characterized by more frequent and larger decreases in cloud drop size and ice water path, but increases in cloud top pressure, with increases in aerosol abundance. The opposite was observed during abundant monsoon years. The correlations of greater aerosol abundance, with smaller cloud drop size, lower evidence of ice processes and shallower cloud height, during deficient rainfall years, imply cloud inhibition; while those with larger cloud drop size, greater ice processes and a greater cloud vertical extent, during abundant rainfall years, suggest cloud invigoration. The study establishes that continental aerosols over India alter cloud properties in diametrically opposite ways during contrasting monsoon years. The mechanisms underlying these effects need further analysis. PMID:28337991

  10. Contrasting influences of aerosols on cloud properties during deficient and abundant monsoon years.

    PubMed

    Patil, Nitin; Dave, Prashant; Venkataraman, Chandra

    2017-03-24

    Direct aerosol radiative forcing facilitates the onset of Indian monsoon rainfall, based on synoptic scale fast responses acting over timescales of days to a month. Here, we examine relationships between aerosols and coincident clouds over the Indian subcontinent, using observational data from 2000 to 2009, from the core monsoon region. Season mean and daily timescales were considered. The correlation analyses of cloud properties with aerosol optical depth revealed that deficient monsoon years were characterized by more frequent and larger decreases in cloud drop size and ice water path, but increases in cloud top pressure, with increases in aerosol abundance. The opposite was observed during abundant monsoon years. The correlations of greater aerosol abundance, with smaller cloud drop size, lower evidence of ice processes and shallower cloud height, during deficient rainfall years, imply cloud inhibition; while those with larger cloud drop size, greater ice processes and a greater cloud vertical extent, during abundant rainfall years, suggest cloud invigoration. The study establishes that continental aerosols over India alter cloud properties in diametrically opposite ways during contrasting monsoon years. The mechanisms underlying these effects need further analysis.

  11. Indirect estimation of absorption properties for fine aerosol particles using AATSR observations: a case study of wildfires in Russia in 2010

    NASA Astrophysics Data System (ADS)

    Rodriguez, E.; Kolmonen, P.; Virtanen, T. H.; Sogacheva, L.; Sundstrom, A.-M.; de Leeuw, G.

    2015-08-01

    The Advanced Along-Track Scanning Radiometer (AATSR) on board the ENVISAT satellite is used to study aerosol properties. The retrieval of aerosol properties from satellite data is based on the optimized fit of simulated and measured reflectances at the top of the atmosphere (TOA). The simulations are made using a radiative transfer model with a variety of representative aerosol properties. The retrieval process utilizes a combination of four aerosol components, each of which is defined by their (lognormal) size distribution and a complex refractive index: a weakly and a strongly absorbing fine-mode component, coarse mode sea salt aerosol and coarse mode desert dust aerosol). These components are externally mixed to provide the aerosol model which in turn is used to calculate the aerosol optical depth (AOD). In the AATSR aerosol retrieval algorithm, the mixing of these components is decided by minimizing the error function given by the sum of the differences between measured and calculated path radiances at 3-4 wavelengths, where the path radiances are varied by varying the aerosol component mixing ratios. The continuous variation of the fine-mode components allows for the continuous variation of the fine-mode aerosol absorption. Assuming that the correct aerosol model (i.e. the correct mixing fractions of the four components) is selected during the retrieval process, also other aerosol properties could be computed such as the single scattering albedo (SSA). Implications of this assumption regarding the ratio of the weakly/strongly absorbing fine-mode fraction are investigated in this paper by evaluating the validity of the SSA thus obtained. The SSA is indirectly estimated for aerosol plumes with moderate-to-high AOD resulting from wildfires in Russia in the summer of 2010. Together with the AOD, the SSA provides the aerosol absorbing optical depth (AAOD). The results are compared with AERONET data, i.e. AOD level 2.0 and SSA and AAOD inversion products. The RMSE

  12. Long term measurements of the estimated hygroscopic enhancement of aerosol optical properties

    NASA Astrophysics Data System (ADS)

    Hervo, Maxime; Sellegri, Karine; Pichon, Jean Marc; Roger, Jean Claude; Laj, Paolo

    2015-04-01

    Water vapour has a major impact on aerosol optical properties, thus on the Radiative Forcing for aerosol-radiation interaction (RFari). However there is few studies measuring this impact over a large period. Optical properties of aerosols were measured at the GAW Puy de Dôme station (1465m) over a seven year period (2006-2012). The impact of hygroscopicity on aerosol optical properties was calculated over a two year period (2010-2011). The analysis of the spatial and temporal variability of the dry optical properties showed that while no long term trend was found, a clear seasonal and diurnal variation was observed on the extensive parameters (scattering, absorption). Scattering and absorption coefficients were highest during the warm season and daytime, in concordance with the seasonality and diurnal variation of the planetary boundary layer height reaching the site. Intensive parameters (single scattering albedo, asymmetry factor, refractive index) did not show such a strong diurnal variability, but still indicated different values depending on the season. Both extensive and intensive optical parameters were sensitive to the air mass origin. A strong impact of hygroscopicity on aerosol optical properties was calculated, mainly on aerosol scattering, with a dependence on the aerosol type and the season. At 90% humidity, the scattering factor enhancement (fsca) was more than 4.4 for oceanic aerosol that have mixed with a pollution plume. Consequently, the aerosol radiative forcing was estimated to be 2.8 times higher at RH= 90% and 1.75 times higher at ambient RH when hygroscopic growth of the aerosol was considered. The hygroscopicity enhancement factor of the scattering coefficient was parameterized as a function of humidity and air mass type. To our knowledge, these results are one of the first presenting the impact of water vapour on the aerosol optical properties for a long period, and the first for a site at the border between the planetary boundary layer

  13. Modeling Optical and Radiative Properties of Clouds Constrained with CARDEX Observations

    NASA Astrophysics Data System (ADS)

    Mishra, S. K.; Praveen, P. S.; Ramanathan, V.

    2013-12-01

    Carbonaceous aerosols (CA) have important effects on climate by directly absorbing solar radiation and indirectly changing cloud properties. These particles tend to be a complex mixture of graphitic carbon and organic compounds. The graphitic component, called as elemental carbon (EC), is characterized by significant absorption of solar radiation. Recent studies showed that organic carbon (OC) aerosols absorb strongly near UV region, and this faction is known as Brown Carbon (BrC). The indirect effect of CA can occur in two ways, first by changing the thermal structure of the atmosphere which further affects dynamical processes governing cloud life cycle; secondly, by acting as cloud condensation nuclei (CCN) that can change cloud radiative properties. In this work, cloud optical properties have been numerically estimated by accounting for CAEDEX (Cloud Aerosol Radiative Forcing Dynamics Experiment) observed cloud parameters and the physico-chemical and optical properties of aerosols. The aerosol inclusions in the cloud drop have been considered as core shell structure with core as EC and shell comprising of ammonium sulfate, ammonium nitrate, sea salt and organic carbon (organic acids, OA and brown carbon, BrC). The EC/OC ratio of the inclusion particles have been constrained based on observations. Moderate and heavy pollution events have been decided based on the aerosol number and BC concentration. Cloud drop's co-albedo at 550nm was found nearly identical for pure EC sphere inclusions and core-shell inclusions with all non-absorbing organics in the shell. However, co-albedo was found to increase for the drop having all BrC in the shell. The co-albedo of a cloud drop was found to be the maximum for all aerosol present as interstitial compare to 50% and 0% inclusions existing as interstitial aerosols. The co-albedo was found to be ~ 9.87e-4 for the drop with 100% inclusions existing as interstitial aerosols externally mixed with micron size mineral dust with 2

  14. Aerosol physical properties from satellite horizon inversion

    NASA Technical Reports Server (NTRS)

    Gray, C. R.; Malchow, H. L.; Merritt, D. C.; Var, R. E.; Whitney, C. K.

    1973-01-01

    The feasibility is investigated of determining the physical properties of aerosols globally in the altitude region of 10 to 100 km from a satellite horizon scanning experiment. The investigation utilizes a horizon inversion technique previously developed and extended. Aerosol physical properties such as number density, size distribution, and the real and imaginary components of the index of refraction are demonstrated to be invertible in the aerosol size ranges (0.01-0.1 microns), (0.1-1.0 microns), (1.0-10 microns). Extensions of previously developed radiative transfer models and recursive inversion algorithms are displayed.

  15. Type-Dependent Responses of Ice Cloud Properties to Aerosols From Satellite Retrievals

    NASA Astrophysics Data System (ADS)

    Zhao, Bin; Gu, Yu; Liou, Kuo-Nan; Wang, Yuan; Liu, Xiaohong; Huang, Lei; Jiang, Jonathan H.; Su, Hui

    2018-04-01

    Aerosol-cloud interactions represent one of the largest uncertainties in external forcings on our climate system. Compared with liquid clouds, the observational evidence for the aerosol impact on ice clouds is much more limited and shows conflicting results, partly because the distinct features of different ice cloud and aerosol types were seldom considered. Using 9-year satellite retrievals, we find that, for convection-generated (anvil) ice clouds, cloud optical thickness, cloud thickness, and cloud fraction increase with small-to-moderate aerosol loadings (<0.3 aerosol optical depth) and decrease with further aerosol increase. For in situ formed ice clouds, however, these cloud properties increase monotonically and more sharply with aerosol loadings. An increase in loading of smoke aerosols generally reduces cloud optical thickness of convection-generated ice clouds, while the reverse is true for dust and anthropogenic pollution aerosols. These relationships between different cloud/aerosol types provide valuable constraints on the modeling assessment of aerosol-ice cloud radiative forcing.

  16. Characterizing the Asian Tropopause Aerosol Layer (ATAL) Using Satellite Observations, Balloon Measurements and a Chemical Transport Model

    NASA Technical Reports Server (NTRS)

    Fairlie, T. D.; Vernier, J.-P.; Liu, H.; Deshler, T.; Natarajan, M.; Bedka, K.; Wegner, T.; Baker, N.; Gadhavi, H.; Ratnam, M. V.; hide

    2016-01-01

    Satellite observations and numerical modeling studies have demonstrated that the Asian Summer Monsoon (ASM) provide a conduit for gas-phase pollutants in south Asia to reach the lower stratosphere. Now, observations from the CALIPSO satellite have revealed the Asian Tropopause Aerosol Layer (ATAL), a summertime accumulation of aerosols in the upper troposphere and lower stratosphere (UTLS), associated with the ASM anticyclone. The ATAL has potential implications for regional cloud properties, climate, and chemical processes in the UTLS. Here, we show in situ measurements from balloon-borne instruments, aircraft, and satellite observations, together with trajectory and chemical transport model (CTM) simulations to explore the origin, composition, physical, and optical properties of aerosols in the ATAL. In particular, we show balloon-data from our BATAL-2015 field campaign to India and Saudi Arabia in summer 2015, which includes in situ backscatter measurements from COBALD instruments, and the first observations of size and volatility of aerosols in the ATAL layer using optical particle counters (OPCs). Back trajectory calculations initialized from CALIPSO observations point to deep convection over North India as a principal source of ATAL aerosols. Available aircraft observations suggest significant sulfur and carbonaceous components to the ATAL, which is supported by simulations using the GEOS-Chem CTM. Source elimination studies conducted with the GEOS-Chem indicate that ATAL aerosols originate primary from south Asian sources, in contrast with some earlier studies.

  17. Long-term variability of aerosol optical properties and radiative effects in Northern Finland

    NASA Astrophysics Data System (ADS)

    Lihavainen, Heikki; Hyvärinen, Antti; Asmi, Eija; Hatakka, Juha; Viisanen, Yrjö

    2017-04-01

    We introduce long term dataset of aerosol scattering and absorption properties and combined aerosol optical properties measured in Pallas Atmosphere-Ecosystem Supersite in Norhern Finland. The station is located 170 km north of the Arctic Circle. The station is affected by both pristine Arctic air masses as well as long transported air pollution from northern Europe. We studied the optical properties of aerosols and their radiative effects in continental and marine air masses, including seasonal cycles and long-term trends. The average (median) scattering coefficient, backscattering fraction, absorption coefficient and single scattering albedo at the wavelength of 550 nm were 7.9 (4.4) 1/Mm, 0.13 (0.12), 0.74 (0.35) 1/Mm and 0.92 (0.93), respectively. We observed clear seasonal cycles in these variables, the scattering coefficient having high values during summer and low in fall, and absorption coefficient having high values during winter and low in fall. We found that the high values of the absorption coefficient and low values of the single scattering albedo were related to continental air masses from lower latitudes. These aerosols can induce an additional effect on the surface albedo and melting of snow. We observed the signal of the Arctic haze in marine (northern) air masses during March and April. The haze increased the value of the absorption coefficient by almost 80% and that of the scattering coefficient by about 50% compared with the annual-average values. We did not observe any long-term trend in the scattering coefficient, while our analysis showed a clear decreasing trend in the backscattering fraction and scattering Ångström exponent during winter. We also observed clear relationship with temperature and aerosol scattering coefficient. We will present also how these different features affects to aerosol direct radiative forcing.

  18. Optical, microphysical and radiative properties of aerosols over a tropical rural site in Kenya, East Africa: Source identification, modification and aerosol type discrimination

    NASA Astrophysics Data System (ADS)

    Boiyo, Richard; Kumar, K. Raghavendra; Zhao, Tianliang

    2018-03-01

    A better understanding of aerosol optical, microphysical and radiative properties is a crucial challenge for climate change studies. In the present study, column-integrated aerosol optical and radiative properties observed at a rural site, Mbita (0.42°S, 34.20 °E, and 1125 m above sea level) located in Kenya, East Africa (EA) are investigated using ground-based Aerosol Robotic Network (AERONET) data retrieved during January, 2007 to December, 2015. The annual mean aerosol optical depth (AOD500 nm), Ångström exponent (AE440-870 nm), fine mode fraction of AOD500 nm (FMF500 nm), and columnar water vapor (CWV, cm) were found to be 0.23 ± 0.08, 1.01 ± 0.16, 0.60 ± 0.07, and 2.72 ± 0.20, respectively. The aerosol optical properties exhibited a unimodal distribution with substantial seasonal heterogeneity in their peak values being low (high) during the local wet (dry) seasons. The observed data showed that Mbita and its environs are significantly influenced by various types of aerosols, with biomass burning and/or urban-industrial (BUI), mixed (MXD), and desert dust (DDT) aerosol types contributing to 37.72%, 32.81%, and 1.40%, respectively during the local dry season (JJA). The aerosol volume size distribution (VSD) exhibited bimodal lognormal structure with a geometric mean radius of 0.15 μm and 3.86-5.06 μm for fine- and coarse-mode aerosols, respectively. Further, analysis of single scattering albedo (SSA), asymmetry parameter (ASY) and refractive index (RI) revealed dominance of fine-mode absorbing aerosols during JJA. The averaged aerosol direct radiative forcing (ARF) retrieved from the AERONET showed a strong cooling effect at the bottom of the atmosphere (BOA) and significant warming within the atmosphere (ATM), representing the important role of aerosols played in this rural site of Kenya. Finally, the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model revealed that aerosols from distinct sources resulted in enhanced loading

  19. Using the OMI Aerosol Index and Absorption Aerosol Optical Depth to evaluate the NASA MERRA Aerosol Reanalysis

    NASA Astrophysics Data System (ADS)

    Buchard, V.; da Silva, A. M.; Colarco, P. R.; Darmenov, A.; Randles, C. A.; Govindaraju, R.; Torres, O.; Campbell, J.; Spurr, R.

    2014-12-01

    A radiative transfer interface has been developed to simulate the UV Aerosol Index (AI) from the NASA Goddard Earth Observing System version 5 (GEOS-5) aerosol assimilated fields. The purpose of this work is to use the AI and Aerosol Absorption Optical Depth (AAOD) derived from the Ozone Monitoring Instrument (OMI) measurements as independent validation for the Modern Era Retrospective analysis for Research and Applications Aerosol Reanalysis (MERRAero). MERRAero is based on a version of the GEOS-5 model that is radiatively coupled to the Goddard Chemistry, Aerosol, Radiation, and Transport (GOCART) aerosol module and includes assimilation of Aerosol Optical Depth (AOD) from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. Since AI is dependent on aerosol concentration, optical properties and altitude of the aerosol layer, we make use of complementary observations to fully diagnose the model, including AOD from the Multi-angle Imaging SpectroRadiometer (MISR), aerosol retrievals from the Aerosol Robotic Network (AERONET) and attenuated backscatter coefficients from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) mission to ascertain potential misplacement of plume height by the model. By sampling dust, biomass burning and pollution events in 2007 we have compared model produced AI and AAOD with the corresponding OMI products, identifying regions where the model representation of absorbing aerosols was deficient. As a result of this study over the Saharan dust region, we have obtained a new set of dust aerosol optical properties that retains consistency with the MODIS AOD data that were assimilated, while resulting in better agreement with aerosol absorption measurements from OMI. The analysis conducted over the South African and South American biomass burning regions indicates that revising the spectrally-dependent aerosol absorption properties in the near-UV region improves the modeled-observed AI comparisons

  20. Using the OMI aerosol index and absorption aerosol optical depth to evaluate the NASA MERRA Aerosol Reanalysis

    NASA Astrophysics Data System (ADS)

    Buchard, V.; da Silva, A. M.; Colarco, P. R.; Darmenov, A.; Randles, C. A.; Govindaraju, R.; Torres, O.; Campbell, J.; Spurr, R.

    2015-05-01

    A radiative transfer interface has been developed to simulate the UV aerosol index (AI) from the NASA Goddard Earth Observing System version 5 (GEOS-5) aerosol assimilated fields. The purpose of this work is to use the AI and aerosol absorption optical depth (AAOD) derived from the Ozone Monitoring Instrument (OMI) measurements as independent validation for the Modern Era Retrospective analysis for Research and Applications Aerosol Reanalysis (MERRAero). MERRAero is based on a version of the GEOS-5 model that is radiatively coupled to the Goddard Chemistry, Aerosol, Radiation, and Transport (GOCART) aerosol module and includes assimilation of aerosol optical depth (AOD) from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. Since AI is dependent on aerosol concentration, optical properties and altitude of the aerosol layer, we make use of complementary observations to fully diagnose the model, including AOD from the Multi-angle Imaging SpectroRadiometer (MISR), aerosol retrievals from the AErosol RObotic NETwork (AERONET) and attenuated backscatter coefficients from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) mission to ascertain potential misplacement of plume height by the model. By sampling dust, biomass burning and pollution events in 2007 we have compared model-produced AI and AAOD with the corresponding OMI products, identifying regions where the model representation of absorbing aerosols was deficient. As a result of this study over the Saharan dust region, we have obtained a new set of dust aerosol optical properties that retains consistency with the MODIS AOD data that were assimilated, while resulting in better agreement with aerosol absorption measurements from OMI. The analysis conducted over the southern African and South American biomass burning regions indicates that revising the spectrally dependent aerosol absorption properties in the near-UV region improves the modeled-observed AI comparisons

  1. Marine Stratocumulus Properties from the FPDR - PDI as a Function of Aerosol during ORACLES

    NASA Astrophysics Data System (ADS)

    Small Griswold, J. D.; Heikkila, A.

    2016-12-01

    Aerosol-cloud interactions in the southeastern Atlantic (SEA) region were investigated during year 1 of the ObseRvations of Aerosols above CLouds and their intEractionS (ORACLES) field project in Aug-Sept 2016. This region is of interest due to seasonally persistent marine stratocumulus cloud decks that are an important component of the climate system due to their radiative and hydrologic impacts. The SEA deck is unique due to the interactions between these clouds and transported biomass burning aerosol during the July-October fire season. These biomass burning aerosol play multiple roles in modifying the cloud deck through interactions with radiation as absorbing aerosol and through modifications to cloud microphysical properties as cloud condensation nuclei. This work uses in situcloud data obtained with a Flight Probe Dual Range - Phase Doppler Interferometer (FPDR - PDI), standard aerosol instrumentation on board the NASA P-3, and reanalysis data to investigate Aerosol-Cloud Interactions (ACI). The FPDR - PDI provides unique cloud microphysical observations of individual cloud drop arrivals allowing for the computation of a variety of microphysical cloud properties including individual drop size, cloud drop number concentration, cloud drop size distributions, liquid water content, and cloud thickness. The FPDR - PDI measurement technique also provides droplet spacing and drop velocity information which is used to investigate turbulence and entrainment mixing processes. We use aerosol information such as average background aerosol amount (low, mid, high) and location relative to cloud (above or mixing) to sort FPDR - PDI cloud properties. To control for meteorological co-variances we further sort the data within aerosol categories by lower tropospheric stability, vertical velocity, and surface wind direction. We then determine general marine stratocumulus cloud characteristics under each of the various aerosol categories to investigate ACI in the SEA.

  2. Systematic Relationships Between Lidar Observables and Sizes And Mineral Composition Of Dust Aerosols

    NASA Technical Reports Server (NTRS)

    Van Diedenhoven, Bastiaan; Stangl, Alexander; Perlwitz, Jan; Fridlind, Ann M.; Chowdhary, Jacek; Cairns, Brian

    2015-01-01

    The physical and chemical properties of soil dust aerosol particles fundamentally affect their interaction with climate, including shortwave absorption and radiative forcing, nucleation of cloud droplets and ice crystals, heterogeneous formation of sulfates and nitrates on the surface of dust particles, and atmospheric processing of iron into bioavailable forms that increase the productivity of marine phytoplankton. Lidar measurements, such as extinction-to-backscatter, color and depolarization ratios, are frequently used to distinguish between aerosol types with different physical and chemical properties. The chemical composition of aerosol particles determines their complex refractive index, hence affecting their backscattering properties. Here we present a study on how dust aerosol backscattering and depolarization properties at wavelengths of 355, 532 and 1064 nm are related to size and complex refractive index, which varies with the mineral composition of the dust. Dust aerosols are represented by collections of spheroids with a range of prolate and oblate aspect ratios and their optical properties are obtained using T-matrix calculations. We find simple, systematic relationships between lidar observables and the dust size and complex refractive index that may aid the use of space-based or airborne lidars for direct retrieval of dust properties or for the evaluation of chemical transport models using forward simulated lidar variables. In addition, we present first results on the spatial variation of forward-simulated lidar variables based on a dust model that accounts for the atmospheric cycle of eight different mineral types plus internal mixtures of seven mineral types with iron oxides, which was recently implemented in the NASA GISS Earth System ModelE2.

  3. Preliminary results of aerosols' properties studied with EPF measurements from the SPICAM/UV instrument

    NASA Astrophysics Data System (ADS)

    Willame, Y.; Vandaele, A.-C.; Depiesse, C.; Gillotay, D.; Kochenova, S.; Montmessin, F.

    2012-04-01

    Aerosols on Mars have an important impact on the radiative transfer properties of its atmosphere. Today their spectral properties and therefore their interaction with UV radiation are only poorly known. Improving the radiative transfer modeling requires a better knowledge of their characteristics, in particular of their opacity, phase function and single scattering albedo. We will show that such information can be accessed by using EPF observations. The SPICAM instrument on board of the Mars-Express satellite is a 2 channel spectrometer. One channel operates in the ultraviolet (118-320 nm) and the second one in the infrared (1.0-1.7μm). SPICAM has been orbiting around the red planet since 2003 and has thus provided a large set of data. The instrument is capable of measuring under different geometries (nadir, limb, occultation) and one of them, called EPF (Emission Phase Function), is a practical tool to study aerosols' properties. We have developed a new retrieval algorithm for nadir measurements based on the radiative transfer model LIDORT. This new code performs simulations of spectra taking into account gas absorption, surface reflection and scattering by aerosols and gases. The retrieval method, based on the optimal estimation, allows us up to now to deduce the ozone column density, the aerosols' optical depth and the surface albedo (with fixed wavelength dependencies). We are developing our model further in order to better study the aerosols' characteristics using EPF observations, which consist in looking at the same point on the planet while the satellite moves along the orbit. As the attempt to study all the aerosols' properties simultaneously was not convincing, we will start with studying their opacity and its altitude distribution with the other characteristics fixed. We will present preliminary results of our study on aerosols' properties and their wavelength dependencies, using EPF data. The method will be illustrated by investigating SPICAM

  4. Development of a remote sensing algorithm to retrieve atmospheric aerosol properties using multiwavelength and multipixel information

    NASA Astrophysics Data System (ADS)

    Hashimoto, Makiko; Nakajima, Teruyuki

    2017-06-01

    We developed a satellite remote sensing algorithm to retrieve the aerosol optical properties using satellite-received radiances for multiple wavelengths and pixels. Our algorithm utilizes spatial inhomogeneity of surface reflectance to retrieve aerosol properties, and the main target is urban aerosols. This algorithm can simultaneously retrieve aerosol optical thicknesses (AOT) for fine- and coarse-mode aerosols, soot volume fraction in fine-mode aerosols (SF), and surface reflectance over heterogeneous surfaces such as urban areas that are difficult to obtain by conventional pixel-by-pixel methods. We applied this algorithm to radiances measured by the Greenhouse Gases Observing Satellite/Thermal and Near Infrared Sensor for Carbon Observations-Cloud and Aerosol Image (GOSAT/TANSO-CAI) at four wavelengths and were able to retrieve the aerosol parameters in several urban regions and other surface types. A comparison of the retrieved AOTs with those from the Aerosol Robotic Network (AERONET) indicated retrieval accuracy within ±0.077 on average. It was also found that the column-averaged SF and the aerosol single scattering albedo (SSA) underwent seasonal changes as consistent with the ground surface measurements of SSA and black carbon at Beijing, China.

  5. In situ airborne measurements of aerosol optical properties during photochemical pollution events

    NASA Astrophysics Data System (ADS)

    Mallet, M.; van Dingenen, R.; Roger, J. C.; Despiau, S.; Cachier, H.

    2005-02-01

    Dry aerosol optical properties (scattering, absorbing coefficients, and single scattering albedo) were derived from in situ airborne measurements during two photochemical pollution events (25 and 26 June) observed during the Experience sur Site pour Contraindre les Modeles de Pollution atmospherique et de Transport d'Emissions (ESCOMPTE) experiment. Two flights were carried out during daytime (one during the morning and one at noon) over a domain, allowing the investigation of how an air pollution event affects the particle optical properties. Both horizontal distribution and vertical profiles are presented. Results from the horizontal mapping show that plumes of enhanced scattering and absorption are formed in the planetary boundary layer (PBL) during the day in the sea breeze-driven outflow of the coastal urban-industrial area of Marseille-Fos de Berre. The domain-averaged scattering coefficient (at 550 nm) over land σs changes from 35 (28) Mm-1 during land breeze to 63 (43) Mm-1 during sea breeze on 25 June (26 June), with local maxima reaching > 100 Mm-1. The increase in the scattering coefficient is associated with new particle formation, indicative of secondary aerosol formation. Simultaneously, the domain-averaged absorption coefficient increases from 5.6 (3.4) Mm-1 to 9.3 (8.0) Mm-1. The pollution plume leads to strong gradients in the single scattering albedo ωo over the domain studied, with local values as low as 0.73 observed inside the pollution plume. The role of photochemistry and secondary aerosol formation during the 25 June case is shown to increase ωo and to make the aerosol more `reflecting' while the plume moves away from the sources. The lower photochemical activity, observed in the 26 June case, induces a relatively higher contribution of black carbon, making the aerosol more absorbing. Results from vertical profiles at a single near-urban location in the domain indicate that the changes in optical properties happen almost entirely within

  6. Optical and microphysical properties of atmospheric aerosols in Moldova

    NASA Astrophysics Data System (ADS)

    Aculinin, Alexandr; Smicov, Vladimir

    2010-05-01

    Measurements of aerosol properties in Kishinev, Moldova are being carried out within the framework of the international AERONET program managed by NASA/GSFC since 1999. Direct solar and sky diffuse radiances are measured by using of sunphotometer Cimel-318. Aerosol optical properties are retrieved from measured radiances by using of smart computational procedures developed by the AERONET's team. The instrument is situated at the ground-based solar radiation monitoring station giving the opportunity to make simultaneous spectral (win sunphotometer) and broadband (with the set of sensors from radiometric complex) solar radiation. Detailed description of the station and investigations in progress can be found at the http://arg.phys.asm.md. Ground station is placed in an urban environment of Kishinev city (47.00N; 28.56E; 205 m a.s.l). Summary of aerosol optical and microphysical properties retrieved from direct solar and diffuse sky radiance observations at Moldova site from September 1999 to June 2009 are presented below. Number of measurements (total): 1695 Number of measurements (for ?o, n, k): 223 Range of aerosol optical depth (AOD) @440 nm: 0.03 < ?(440) < 2.30, < ?(440)>=0.25 Range of Ångström parameter < α440_870 >: 0.14 < α < 2.28 Asymmetry factor (440/670/870/1020): 0.70/0.63/0.59/0.58 ±0.04 Refraction (n) and absorption (k) indices@440 nm: 1.41 ± 0.06; 0.009 ± 0.005 Single scattering albedo < ?o >(440/670/870/1020): 0.93/0.92/0.90/0.89 ±0.04 Parameters of volume particle size distribution function: (fine mode) volume median radius r v,f , μm: 0.17 ± 0.06 particle volume concentration Cv,f, μm3/μm2: 0.04 ± 0.03 (coarse mode) volume median radius rv,c , μm: 3.08 ± 0.64 particle volume concentration Cv,c, μm3/μm2: 0.03 ± 0.03 Climatic norms of AOD@500 nm and Ångström parameter < α440_870 > at the site of observation are equal to 0.21 ± 0.06 and 1.45 ± 0.14, respectively. The aerosol type in Moldova may be considered as 'urban

  7. Global Analysis of Aerosol Properties Above Clouds

    NASA Technical Reports Server (NTRS)

    Waquet, F.; Peers, F.; Ducos, F.; Goloub, P.; Platnick, S. E.; Riedi, J.; Tanre, D.; Thieuleux, F.

    2013-01-01

    The seasonal and spatial varability of Aerosol Above Cloud (AAC) properties are derived from passive satellite data for the year 2008. A significant amount of aerosols are transported above liquid water clouds on the global scale. For particles in the fine mode (i.e., radius smaller than 0.3 m), including both clear sky and AAC retrievals increases the global mean aerosol optical thickness by 25(+/- 6%). The two main regions with man-made AAC are the tropical Southeast Atlantic, for biomass burning aerosols, and the North Pacific, mainly for pollutants. Man-made AAC are also detected over the Arctic during the spring. Mineral dust particles are detected above clouds within the so-called dust belt region (5-40 N). AAC may cause a warming effect and bias the retrieval of the cloud properties. This study will then help to better quantify the impacts of aerosols on clouds and climate.

  8. An Overview of the Tropospheric Aerosol Radiative Forcing Observational Experiment

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Chan, K. Roland (Technical Monitor)

    1997-01-01

    Aerosol effects on atmospheric radiation are a leading source of uncertainty in predicting future climate. As a result, the International Global Atmospheric Chemistry Program has established a Focus on Atmospheric Aerosols (IGAC/FAA) and endorsed a series of aerosol field campaigns. TARFOX, the second in the IGAC/FAA series, was designed to reduce this uncertainty by measuring aerosol properties and effects in the US eastern seaboard, where one of the world's major plumes of industrial haze moves from the continent over the Atlantic Ocean. TARFOX's objectives are to: 1. Make simultaneous measurements of: (a) aerosol effects on radiation fields, and (b) the chemical, physical, and optical properties of the aerosols causing those effects. 2. Perform a variety of closure studies by using overdetermined data sets to test the mutual consistency of measurements and calculations of a wide range of aerosol properties and effects. 3. Use the results of the closure studies to assess and reduce uncertainties in estimates of aerosol radiative forcing, as well as to guide future field programs. An important subset of the closure studies is tests and improvements of algorithms used to derive aerosol properties and radiative effects from satellite measurements. The TARFOX Intensive Field Period (IFP) was conducted July 10-31, 1996. It included coordinated measurements from four satellites (GOES-8, NOAA-14, ERS-2, LANDSAT), four aircraft (ER-2, C-130, C-131, and a modified Cessna), land sites, and ships. A variety of aerosol conditions was sampled, ranging from relatively clean behind frontal passages to moderately polluted with aerosol optical depths exceeding 0.5 at mid-visible wavelengths. The latter conditions included separate incidents of enhancements caused primarily by anthropogenic sources and another incident of enhancement apparently influenced by recent fog processing. Spatial gradients of aerosol optical thickness were sampled to aid in isolating aerosol effects from

  9. Microphysical and optical properties of aerosol particles in urban zone during ESCOMPTE

    NASA Astrophysics Data System (ADS)

    Mallet, M.; Roger, J. C.; Despiau, S.; Dubovik, O.; Putaud, J. P.

    2003-10-01

    Microphysical and optical properties of the main aerosol species on a peri-urban site have been investigated during the ESCOMPTE experiment. Ammonium sulfate (AS), nitrate (N), black carbon (BC), particulate organic matter (POM), sea salt (SS) and mineral aerosol (D) size distributions have been used, associated with their refractive index, to compute, from the Mie theory, the key radiative aerosol properties as the extinction coefficient Kext, the mass extinction efficiencies σext, the single scattering albedo ω0 and the asymmetry parameter g at the wavelength of 550 nm. Optical computations show that 90% of the light extinction is due to anthropogenic aerosol and only 10% is due to natural aerosol (SS and D). 44±6% of the extinction is due to (AS) and 40±6% to carbonaceous particles (20±4% to BC and 21±4% to POM). Nitrate aerosol has a weak contribution of 5±2%. Computations of the mass extinction efficiencies σext, single scattering albedo ω0 and asymmetry parameter g indicate that the optical properties of the anthropogenic aerosol are often quite different from those yet published and generally used in global models. For example, the (AS) mean specific mass extinction presents a large difference with the value classically adopted at low relative humidity ( h<60%) (2.6±0.5 instead of 6 m 2 g -1 at 550 nm). The optical properties of the total aerosol layer, including all the aerosol species, indicate a mean observed single-scattering albedo ω0=0.85±0.05, leading to an important absorption of the solar radiation and an asymmetry parameter g=0.59±0.05 which are in a reasonably good agreements with the AERONET retrieval of ω0 (=0.86±0.05) and g (=0.64±0.05) at this wavelength.

  10. The MAC aerosol climatology

    NASA Astrophysics Data System (ADS)

    Kinne, S.

    2015-12-01

    Aerosol is highly diverse in space and time. And many different aerosol optical properties are needed (consistent to each other) for the determination of radiative effects. To sidestep a complex (and uncertain) aerosol treatment (emission to mass to optics) a monthly gridded climatology for aerosol properties has been developed. This MPI Aerosol Climatology (MAC) is strongly tied to observational statistics for aerosol column optical properties by AERONET (over land) and by MAN (over oceans). To fill spatial gaps, to address decadal change and to address vertical variability, these sparsely distributed local data are extended with central data of an ensemble of output from global models with complex aerosol modules. This data merging in performed for aerosol column amount (AOD), for aerosol size (AOD,fine) and for aerosol absorption (AAOD). The resulting MAC aerosol climatology is an example for the combination of high quality local observations with spatial, temporal and vertical context from model simulations.

  11. Direct Aerosol Radiative Forcing Based on Combined A-Train Observations: Towards All-sky Estimates and Attribution to Aerosol Type

    NASA Technical Reports Server (NTRS)

    Redemann, Jens; Shinozuka, Y.; Kacenelenbogen, M.; Russell, P.; Vaughan, M.; Ferrare, R.; Hostetler, C.; Rogers, R.; Burton, S.; Livingston, J.; hide

    2014-01-01

    We describe a technique for combining CALIOP aerosol backscatter, MODIS spectral AOD (aerosol optical depth), and OMI AAOD (absorption aerosol optical depth) measurements for the purpose of estimating full spectral sets of aerosol radiative properties, and ultimately for calculating the 3-D distribution of direct aerosol radiative forcing. We present results using one year of data collected in 2007 and show comparisons of the aerosol radiative property estimates to collocated AERONET retrievals. Initial calculations of seasonal clear-sky aerosol radiative forcing based on our multi-sensor aerosol retrievals compare well with over-ocean and top of the atmosphere IPCC-2007 model-based results, and with more recent assessments in the "Climate Change Science Program Report: Atmospheric Aerosol Properties and Climate Impacts" (2009). We discuss some of the challenges that exist in extending our clear-sky results to all-sky conditions. On the basis of comparisons to suborbital measurements, we present some of the limitations of the MODIS and CALIOP retrievals in the presence of adjacent or underlying clouds. Strategies for meeting these challenges are discussed. We also discuss a methodology for using the multi-sensor aerosol retrievals for aerosol type classification based on advanced clustering techniques. The combination of research results permits conclusions regarding the attribution of aerosol radiative forcing to aerosol type.

  12. Using OMI Observations to Measure Aerosol Absorption of Biomass Burning Aerosols Above Clouds

    NASA Technical Reports Server (NTRS)

    Torres, Omar; Bhartia, P. K.; Jethva, Hiren

    2011-01-01

    The presence of absorbing aerosol layers above clouds is unambiguously detected by the TOMS/OMI UV Aerosol Index (AI) that uses satellite observations at two near-UV channels. A sensitivity study using radiative transfer calculations shows that the AI signal of resulting from the presence of aerosols above clouds is mainly driven by the aerosol absorption optical depth and the optical depth of the underlying cloud. Based on these results, an inversion algorithm has been developed to retrieve the aerosol optical depth (AOD) of aerosol layers above clouds. In this presentation we will discuss the sensitivity analysis, describe the retrieval approach, and present results of applications of the retrieval method to OMI observations over the South Atlantic Ocean. Preliminary error analyses, to be discussed, indicate that the AOD can be underestimated (up to -30%) or overestimated (up to 60%) depending on algorithmic assumptions.

  13. Aerosol Absorption in the Atmosphere: Perspectives from Global Model, Ground-Based Measurements, and Field Observations

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Dubovik, Oleg; Holben, Brent; Torres, Omar; Anderson, Tad; Quinn, Patricia; Ginoux, Paul

    2004-01-01

    Aerosol absorption in the atmosphere poses a major uncertainty in assessing the aerosol climate effects. This uncertainty arises from the poorly quantified aerosol sources, especially black carbon emissions, and our limited knowledge of aerosol mixing state and optical properties. Here we use a global model GOCART to simulate atmospheric aerosols, including sulfate, black carbon, organic carbon, dust, and sea salt. We compare the model calculated total aerosol optical thickness, extinction, and absorption with those quantities from the ground-based sun photometer measurements from AERONET, satellite retrievals from the TOMS instrument, and field observations from ACE-Asia. We will examine the most sensitive factors in determining the aerosol absorption. and the consequences of assessing the aerosol radiative forcing and atmospheric heating associated with those factors.

  14. Aerosol Absorption in the Atmosphere: Perspectives from Global Model, Ground-Based Measurements, and Field Observations

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Dubovik, Oleg; Holben, Brent; Anderson, Tad; Quinn, Patricia; Duncan, Bryan; Ginoux, Paul

    2003-01-01

    Aerosol absorption in the atmosphere poses a major uncertainty in assessing the aerosol climate effects. This uncertainty arises from the poorly quantified aerosol sources, especially black carbon emissions, and our limited knowledge of aerosol mixing state and optical properties. Here we use a global model GOCART to simulate atmospheric aerosols, including sulfate, black carbon, organic carbon, dust, and sea salt. We compare the model calculated total aerosol optical thickness, extinction, and absorption with those quantities from the ground-based sun photometer measurements from AERONET at several different wavelengths and the field observations from ACE-Asia. We will examine what are the most sensitive factors in determining the aerosol absorption, and the consequences of assessing the aerosol radiative forcing and atmospheric heating associated with those factors.

  15. Aerosol Absorption in the Atmosphere: Perspectives from Global Model, Ground-Based Measurements, and Field Observations

    NASA Technical Reports Server (NTRS)

    Chin, Main; Dubovik, Oleg; Holben, Brent; Anderson, Tad; Quinn, Patricia; Duncan, Bryan; Ginoux, Paul

    2004-01-01

    Aerosol absorption in the atmosphere poses a major uncertainty in assessing the aerosol climate effects. This uncertainty arises from the poorly quantified aerosol sources, especially black carbon emissions, and our limited knowledge of aerosol mixing state and optical properties. Here we use a global model GOCART to simulate atmospheric aerosols, including sulfate, black carbon, organic carbon, dust, and sea salt. We compare the model calculated total aerosol optical thickness, extinction, and absorption with those quantities from the ground-based sun photometer measurements from AERONET at several different wavelengths and the field observations from ACE-Asia. We will examine the most sensitive factors in determining the aerosol absorption, and the consequences of assessing the aerosol radiative forcing and atmospheric heating associated with those factors.

  16. Preliminary results of aerosols' properties studied with EPF measurements from the SPICAM/UV instrument

    NASA Astrophysics Data System (ADS)

    Willame, Yannick; Carine Vandaele, Ann; Depiesse, Cedric; Gillotay, Didier; Kochenova, Svetlana; Montmessin, Franck

    2013-04-01

    Aerosols on Mars have an important impact on the radiative transfer properties of its atmosphere. Today their spectral properties and therefore their interaction with UV radiation are only poorly known. Improving the radiative transfer modeling requires a better knowledge of their characteristics, in particular of their opacity, phase function and single scattering albedo. Part of such information can be accessed by using EPF observations. The SPICAM instrument on board of the Mars-Express satellite is a 2 channel spectrometer. One channel operates in the ultraviolet (118-320 nm) and the second one in the infrared (1.0-1.7μm). SPICAM has been orbiting around the red planet since 2003 and has thus provided a large set of data. The instrument is capable of measuring under different geometries (nadir, limb, occultation) and one of them, called EPF (Emission Phase Function), can be a tool to study aerosols' properties. We have developed a new retrieval algorithm for nadir measurements based on the radiative transfer model LIDORT. This new code performs simulations of spectra taking into account gas absorption, surface reflection and scattering by aerosols and gases. The retrieval method, based on the optimal estimation, allows us up to now to deduce the ozone column density, the aerosols' optical depth and the surface albedo (with fixed wavelength dependencies). We are developing our model further in order to better study the aerosols' characteristics using EPF observations, which consist in looking at the same point on the planet while the satellite moves along the orbit. As the attempt to study all the aerosols' properties simultaneously was not convincing, we started studying their opacity and the influence of its altitude distribution with the other characteristics fixed. We will present preliminary results of our study on aerosols' properties using EPF data from SPICAM.

  17. Aerosol midlatitude cyclone indirect effects in observations and high-resolution simulations

    NASA Astrophysics Data System (ADS)

    McCoy, Daniel T.; Field, Paul R.; Schmidt, Anja; Grosvenor, Daniel P.; Bender, Frida A.-M.; Shipway, Ben J.; Hill, Adrian A.; Wilkinson, Jonathan M.; Elsaesser, Gregory S.

    2018-04-01

    Aerosol-cloud interactions are a major source of uncertainty in inferring the climate sensitivity from the observational record of temperature. The adjustment of clouds to aerosol is a poorly constrained aspect of these aerosol-cloud interactions. Here, we examine the response of midlatitude cyclone cloud properties to a change in cloud droplet number concentration (CDNC). Idealized experiments in high-resolution, convection-permitting global aquaplanet simulations with constant CDNC are compared to 13 years of remote-sensing observations. Observations and idealized aquaplanet simulations agree that increased warm conveyor belt (WCB) moisture flux into cyclones is consistent with higher cyclone liquid water path (CLWP). When CDNC is increased a larger LWP is needed to give the same rain rate. The LWP adjusts to allow the rain rate to be equal to the moisture flux into the cyclone along the WCB. This results in an increased CLWP for higher CDNC at a fixed WCB moisture flux in both observations and simulations. If observed cyclones in the top and bottom tercile of CDNC are contrasted it is found that they have not only higher CLWP but also cloud cover and albedo. The difference in cyclone albedo between the cyclones in the top and bottom third of CDNC is observed by CERES to be between 0.018 and 0.032, which is consistent with a 4.6-8.3 Wm-2 in-cyclone enhancement in upwelling shortwave when scaled by annual-mean insolation. Based on a regression model to observed cyclone properties, roughly 60 % of the observed variability in CLWP can be explained by CDNC and WCB moisture flux.

  18. Effect of Dust and Anthropogenic Aerosols on Columnar Aerosol Optical Properties over Darjeeling (2200 m asl), Eastern Himalayas, India

    PubMed Central

    Chatterjee, Abhijit; Ghosh, Sanjay K.; Adak, Anandamay; Singh, Ajay K.; Devara, Panuganti C. S.; Raha, Sibaji

    2012-01-01

    Background The loading of atmospheric particulate matter (aerosol) in the eastern Himalaya is mainly regulated by the locally generated anthropogenic aerosols from the biomass burning and by the aerosols transported from the distance sources. These different types of aerosol loading not only affect the aerosol chemistry but also produce consequent signature on the radiative properties of aerosol. Methodology/Principal Findings An extensive study has been made to study the seasonal variations in aerosol components of fine and coarse mode aerosols and black carbon along with the simultaneous measurements of aerosol optical depth on clear sky days over Darjeeling, a high altitude station (2200 masl) at eastern Himalayas during the year 2008. We observed a heavy loading of fine mode dust component (Ca2+) during pre-monsoon (Apr – May) which was higher by 162% than its annual mean whereas during winter (Dec – Feb), the loading of anthropogenic aerosol components mainly from biomass burning (fine mode SO4 2− and black carbon) were higher (76% for black carbon and 96% for fine mode SO4 2−) from their annual means. These high increases in dust aerosols during pre-monsoon and anthropogenic aerosols during winter enhanced the aerosol optical depth by 25 and 40%, respectively. We observed that for every 1% increase in anthropogenic aerosols, AOD increased by 0.55% during winter whereas for every 1% increase in dust aerosols, AOD increased by 0.46% during pre-monsoon. Conclusion/Significance The natural dust transport process (during pre-monsoon) plays as important a role in the radiation effects as the anthropogenic biomass burning (during winter) and their differential effects (rate of increase of the AOD with that of the aerosol concentration) are also very similar. This should be taken into account in proper modeling of the atmospheric environment over eastern Himalayas. PMID:22792264

  19. Effect of dust and anthropogenic aerosols on columnar aerosol optical properties over Darjeeling (2200 m asl), eastern Himalayas, India.

    PubMed

    Chatterjee, Abhijit; Ghosh, Sanjay K; Adak, Anandamay; Singh, Ajay K; Devara, Panuganti C S; Raha, Sibaji

    2012-01-01

    The loading of atmospheric particulate matter (aerosol) in the eastern Himalaya is mainly regulated by the locally generated anthropogenic aerosols from the biomass burning and by the aerosols transported from the distance sources. These different types of aerosol loading not only affect the aerosol chemistry but also produce consequent signature on the radiative properties of aerosol. An extensive study has been made to study the seasonal variations in aerosol components of fine and coarse mode aerosols and black carbon along with the simultaneous measurements of aerosol optical depth on clear sky days over Darjeeling, a high altitude station (2200 masl) at eastern Himalayas during the year 2008. We observed a heavy loading of fine mode dust component (Ca(2+)) during pre-monsoon (Apr-May) which was higher by 162% than its annual mean whereas during winter (Dec-Feb), the loading of anthropogenic aerosol components mainly from biomass burning (fine mode SO(4)(2-) and black carbon) were higher (76% for black carbon and 96% for fine mode SO(4)(2-)) from their annual means. These high increases in dust aerosols during pre-monsoon and anthropogenic aerosols during winter enhanced the aerosol optical depth by 25 and 40%, respectively. We observed that for every 1% increase in anthropogenic aerosols, AOD increased by 0.55% during winter whereas for every 1% increase in dust aerosols, AOD increased by 0.46% during pre-monsoon. The natural dust transport process (during pre-monsoon) plays as important a role in the radiation effects as the anthropogenic biomass burning (during winter) and their differential effects (rate of increase of the AOD with that of the aerosol concentration) are also very similar. This should be taken into account in proper modeling of the atmospheric environment over eastern Himalayas.

  20. Evolution of biomass burning aerosol over the Amazon: airborne measurements of aerosol chemical composition, microphysical properties, mixing state and optical properties during SAMBBA

    NASA Astrophysics Data System (ADS)

    Morgan, W.; Allan, J. D.; Flynn, M.; Darbyshire, E.; Hodgson, A.; Liu, D.; O'Shea, S.; Bauguitte, S.; Szpek, K.; Johnson, B.; Haywood, J.; Longo, K.; Artaxo, P.; Coe, H.

    2013-12-01

    region compared with the Rainforest environment. This was reflected in the single scattering albedo of the regional smoke haze, with values of 0.9 observed in the Rainforest environments compared with a value of 0.8 in the Cerrado region. This contrast results in a net cooling and warming respectively in terms of the aerosol direct radiative effect. BC-containing particles were found to be rapidly coated in the near-field, with little evidence for additional coating upon advection and dilution. This is consistent with organic aerosol mass being approximately constant when accounting for dilution both close to source and on the regional scale. However, the bulk organic aerosol composition became increasingly oxidised with distance from source. Such properties have important implications for the life cycle and formation of particulate material, which governs its subsequent impacts. Biomass burning layers were observed aloft in the free troposphere, which has potential implications for atmospheric stability profiles and cloud formation. The results presented enhance our knowledge of biomass burning aerosol in a sensitive region of the globe, where relatively few measurement campaigns have taken place previously.

  1. Thermo-optical properties of residential coals and combustion aerosols

    NASA Astrophysics Data System (ADS)

    Pintér, Máté; Ajtai, Tibor; Kiss-Albert, Gergely; Kiss, Diána; Utry, Noémi; Janovszky, Patrik; Palásti, Dávid; Smausz, Tomi; Kohut, Attila; Hopp, Béla; Galbács, Gábor; Kukovecz, Ákos; Kónya, Zoltán; Szabó, Gábor; Bozóki, Zoltán

    2018-04-01

    In this study, we present the inherent optical properties of carbonaceous aerosols generated from various coals (hard through bituminous to lignite) and their correlation with the thermochemical and energetic properties of the bulk coal samples. The nanoablation method provided a unique opportunity for the comprehensive investigation of the generated particles under well controlled laboratory circumstances. First, the wavelength dependent radiative features (optical absorption and scattering) and the size distribution (SD) of the generated particulate matter were measured in-situ in aerosol phase using in-house developed and customised state-of-the-art instrumentation. We also investigated the morphology and microstructure of the generated particles using Transmission Electron Microscopy (TEM) and Electron Diffraction (ED). The absorption spectra of the measured samples (quantified by Absorption Angström Exponent (AAE)) were observed to be distinctive. The correlation between the thermochemical features of bulk coal samples (fixed carbon (FC) to volatile matter (VM) ratio and calorific value (CV)) and the AAE of aerosol assembly were found to be (r2 = 0.97 and r2 = 0.97) respectively. Lignite was off the fitted curves in both cases most probably due to its high optically inactive volatile material content. Although more samples are necessary to be investigated to draw statistically relevant conclusion, the revealed correlation between CV and Single Scattering Albedo (SSA) implies that climatic impact of coal combusted aerosol could depend on the thermal and energetic properties of the bulk material.

  2. A New, More Physically Based Algorithm, for Retrieving Aerosol Properties over Land from MODIS

    NASA Technical Reports Server (NTRS)

    Levy, Robert C.; Kaufman, Yoram J.; Remer, Lorraine A.; Mattoo, Shana

    2004-01-01

    The MOD Imaging Spectrometer (MODIS) has been successfully retrieving aerosol properties, beginning in early 2000 from Terra and from mid 2002 from Aqua. Over land, the retrieval algorithm makes use of three MODIS channels, in the blue, red and infrared wavelengths. As part of the validation exercises, retrieved spectral aerosol optical thickness (AOT) has been compared via scatterplots against spectral AOT measured by the global Aerosol Robotic NETwork (AERONET). On one hand, global and long term validation looks promising, with two-thirds (average plus and minus one standard deviation) of all points falling between published expected error bars. On the other hand, regression of these points shows a positive y-offset and a slope less than 1.0. For individual regions, such as along the U.S. East Coast, the offset and slope are even worse. Here, we introduce an overhaul of the algorithm for retrieving aerosol properties over land. Some well-known weaknesses in the current aerosol retrieval from MODIS include: a) rigid assumptions about the underlying surface reflectance, b) limited aerosol models to choose from, c) simplified (scalar) radiative transfer (RT) calculations used to simulate satellite observations, and d) assumption that aerosol is transparent in the infrared channel. The new algorithm attempts to address all four problems: a) The new algorithm will include surface type information, instead of fixed ratios of the reflectance in the visible channels to the mid-IR reflectance. b) It will include updated aerosol optical properties to reflect the growing aerosol retrieved from eight-plus years of AERONE". operation. c) The effects of polarization will be including using vector RT calculations. d) Most importantly, the new algorithm does not assume that aerosol is transparent in the infrared channel. It will be an inversion of reflectance observed in the three channels (blue, red, and infrared), rather than iterative single channel retrievals. Thus, this new

  3. Theophylline cocrystals prepared by spray drying: physicochemical properties and aerosolization performance.

    PubMed

    Alhalaweh, Amjad; Kaialy, Waseem; Buckton, Graham; Gill, Hardyal; Nokhodchi, Ali; Velaga, Sitaram P

    2013-03-01

    The purpose of this work was to characterize theophylline (THF) cocrystals prepared by spray drying in terms of the physicochemical properties and inhalation performance when aerosolized from a dry powder inhaler. Cocrystals of theophylline with urea (THF-URE), saccharin (THF-SAC) and nicotinamide (THF-NIC) were prepared by spray drying. Milled THF and THF-SAC cocrystals were also used for comparison. The physical purity, particle size, particle morphology and surface energy of the materials were determined. The in vitro aerosol performance of the spray-dried cocrystals, drug-alone and a drug-carrier aerosol, was assessed. The spray-dried particles had different size distributions, morphologies and surface energies. The milled samples had higher surface energy than those prepared by spray drying. Good agreement was observed between multi-stage liquid impinger and next-generation impactor in terms of assessing spray-dried THF particles. The fine particle fractions of both formulations were similar for THF, but drug-alone formulations outperformed drug-carrier formulations for the THF cocrystals. The aerosolization performance of different THF cocrystals was within the following rank order as obtained from both drug-alone and drug-carrier formulations: THF-NIC>THF-URE>THF-SAC. It was proposed that micromeritic properties dominate over particle surface energy in terms of determining the aerosol performance of THF cocrystals. Spray drying could be a potential technique for preparing cocrystals with modified physical properties.

  4. Background aerosol over the Himalayas and Tibetan Plateau: observed characteristics of aerosol mass loading

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Cong, Zhiyuan; Wang, Yuesi; Xin, Jinyuan; Wan, Xin; Pan, Yuepeng; Liu, Zirui; Wang, Yonghong; Zhang, Guoshuai; Wang, Zhongyan; Wang, Yongjie; Kang, Shichang

    2017-01-01

    To investigate the atmospheric aerosols of the Himalayas and Tibetan Plateau (HTP), an observation network was established within the region's various ecosystems, including at the Ngari, Qomolangma (QOMS), Nam Co, and Southeastern Tibetan (SET) stations. In this paper we illustrate aerosol mass loadings by integrating in situ measurements with satellite and ground-based remote sensing datasets for the 2011-2013 period, on both local and large scales. Mass concentrations of these surface atmospheric aerosols were relatively low and varied with land cover, showing a general tendency of Ngari and QOMS (barren sites) > Nam Co (grassland site) > SET (forest site). Daily averages of online PM2.5 (particulates with aerodynamic diameters below 2.5 µm) at these sites were sequentially 18.2 ± 8.9, 14.5 ± 7.4, 11.9 ± 4.9 and 11.7 ± 4.7 µg m-3. Correspondingly, the ratios of PM2.5 to total suspended particles (TSP) were 27.4 ± 6.65, 22.3 ± 10.9, 37.3 ± 11.1 and 54.4 ± 6.72 %. Bimodal mass distributions of size-segregated particles were found at all sites, with a relatively small peak in accumulation mode and a more notable peak in coarse mode. Diurnal variations in fine-aerosol masses generally displayed a bi-peak pattern at the QOMS, Nam Co and SET stations and a single-peak pattern at the Ngari station, controlled by the effects of local geomorphology, mountain-valley breeze circulation and aerosol emissions. Dust aerosol content in PM2.1 samples gave fractions of 26 % at the Ngari station and 29 % at the QOMS station, or ˜ 2-3 times that of reported results at human-influenced sites. Furthermore, observed evidence confirmed the existence of the aerodynamic conditions necessary for the uplift of fine particles from a barren land surface. Combining surface aerosol data and atmospheric-column aerosol optical properties, the TSP mass and aerosol optical depth (AOD) of the Multi-angle Imaging Spectroradiometer (MISR) generally decreased as land cover changed from

  5. Physical and Chemical Properties of Anthropogenic Aerosols: An overview

    EPA Science Inventory

    A wide variety of anthropogenic sources emit fine aerosols to the atmosphere. The physical and chemical properties of these aerosols are of interest due to their influence on climate, human health, and visibility. Aerosol chemical composition is complex. Combustion aerosols can c...

  6. Aerosol optical properties and their radiative effects in northern China

    NASA Astrophysics Data System (ADS)

    Li, Zhanqing; Xia, Xiangao; Cribb, Maureen; Mi, Wen; Holben, Brent; Wang, Pucai; Chen, Hongbin; Tsay, Si-Chee; Eck, T. F.; Zhao, Fengsheng; Dutton, E. G.; Dickerson, R. E.

    2007-11-01

    As a fast developing country covering a large territory, China is experiencing rapid environmental changes. High concentrations of aerosols with diverse properties are emitted in the region, providing a unique opportunity for understanding the impact of environmental changes on climate. Until very recently, few observational studies were conducted in the source regions. The East Asian Study of Tropospheric Aerosols: An International Regional Experiment (EAST-AIRE) attempts to characterize the physical, optical and chemical properties of the aerosols and their effects on climate over China. This study presents some preliminary results using continuous high-quality measurements of aerosol, cloud and radiative quantities made at the first EAST-AIRE baseline station at Xianghe, about 70 km east of Beijing over a period of one year (September 2004 to September 2005). It was found that the region is often covered by a thick layer of haze (with a yearly mean aerosol optical depth equal to 0.82 at 500 nm and maximum greater than 4) due primarily to anthropogenic emissions. An abrupt "cleanup" of the haze often took place in a matter of one day or less because of the passage of cold fronts. The mean single scattering albedo is approximately 0.9 but has strong day-to-day variations with maximum monthly averages occurring during the summer. Large aerosol loading and strong absorption lead to a very large aerosol radiative effect at the surface (the annual 24-hour mean values equals 24 W m-2), but a much smaller aerosol radiative effect at the top of the atmosphere (one tenth of the surface value). The boundary atmosphere is thus heated dramatically during the daytime, which may affect atmospheric stability and cloud formation. In comparison, the cloud radiative effect at the surface is only moderately higher (-41 W m-2) than the aerosol radiative effect at the surface.

  7. Primary carbonaceous aerosols and climate modeling: Classifications, global emission inventories, and observations

    NASA Astrophysics Data System (ADS)

    Sun, H.; Bond, T.

    2004-12-01

    organics in aerosols, we propose a Climate-Relevant Optical & Structural Subgroups of OC (CROSS-OC) which is a classification for organic aerosols based on structural and optical properties. We provide broad classes aiming at global models instead of very detailed classifications, which are not amenable for use in global-scale models due to the calculation cost. Organic matter (OM) which includes the hydrogen and oxygen bound to this carbon is divided into classes with varied absorption and scattering capabilities. Because our inventory tabulates emissions from specific sources, we make use of data available from source characterization. We present a global emission inventory of primary carbonaceous aerosols that has been designed for global climate modeling purpose. The inventory is based on our CROSS-OC classification and considers emissions from fossil fuels, biofuels, and open biomass burning. Fuel type, combustion type, and emission controls, and their prevalence on a regional basis are combined to determine emission factors for all types of carbonaceous aerosols. We also categorize surface concentration observations for BC and OC by region, size (super vs. sub micron), measurement type, time (including season) and date. We parallel the data format suggested by the Global Atmosphere Watch aerosol database. Work underway includes providing information on the CROSS-OC divisions in ambient aerosol when measurements contain sufficient detail.

  8. Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richard A. Ferrare; David D. Turner

    Project goals: (1) Use the routine surface and airborne measurements at the ARM SGP site, and the routine surface measurements at the NSA site, to continue our evaluations of model aerosol simulations; (2) Determine the degree to which the Raman lidar measurements of water vapor and aerosol scattering and extinction can be used to remotely characterize the aerosol humidification factor; (3) Use the high temporal resolution CARL data to examine how aerosol properties vary near clouds; and (4) Use the high temporal resolution CARL and Atmospheric Emitted Radiance Interferometer (AERI) data to quantify entrainment in optically thin continental cumulus clouds.

  9. Temporal variations in optical and microphysical properties of mineral dust and biomass burning aerosol derived from daytime Raman lidar observations over Warsaw, Poland

    NASA Astrophysics Data System (ADS)

    Janicka, Lucja; Stachlewska, Iwona S.; Veselovskii, Igor; Baars, Holger

    2017-11-01

    In July 2013, favorable weather conditions caused a severe events of advection of biomass burning particles of Canadian forest fires to Europe. The smoke layers were widely observed, especially in Western Europe. An unusual atmospheric aerosol composition was measured at the EARLINET site in Warsaw, Central Poland, during a short event that occurred between 11 and 21 UTC on 10th July 2013. Additionally to the smoke layer, mineral dust was detected in a separate layer. The long-range dust transport pathway followed an uncommon way; originating in Western Sahara, passing above middle Atlantic, and circulating over British Islands, prior to its arrival to Poland. An effective radius of 560 nm was obtained for Saharan dust over Warsaw. This relatively small effective radius is likely due to the long time of the transport. The aerosol-polarization-Raman PollyXT-UW lidar was used for a successful daytime Raman retrieval of the aerosol optical properties at selected times during this short event. The aerosol vertical structure during the inflow over Warsaw in terms of optical properties and depolarization was analyzed, indicating clear distinction of the layers. The microphysical properties were inverted from the lidar derived optical data for selected ranges as representing the smoke and the mineral dust. For smoke, the effective radius was in the range of 0.29-0.36 μm and the complex refractive index 1.36 + 0.008i, on average. For dust, the values of 0.33-0.56 μm and 1.56 + 0.004i were obtained. An evolution of the aerosol composition over Warsaw during the day was analyzed.

  10. Changes in the physico-chemical properties of Amazonian aerosols from background conditions due to urban impacts in Central Amazonia.

    NASA Astrophysics Data System (ADS)

    Artaxo, P.; Barbosa, H. M.; Brito, J.; Carbone, S.; Fiorese, C.; Andre, B.; Rizzo, L. V.; Ditas, F.; Pöhlker, C.; Pöhlker, M. L.; Saturno, J.; Holanda, B. A.; Wang, J.; Souza, R. A. F. D.; Machado, L.; Andreae, M. O.; Martin, S. T.

    2016-12-01

    The GoAmazon 2014/15 experiment (Observations and Modeling of the Green Ocean Amazon) was a great opportunity to study how urbanization can change aerosol properties under pristine conditions in a tropical rain forest. The experiment took place from January 2014 to December 2015 in the vicinity of Manaus, Brazil, where several sampling stations were operated. Natural biogenic aerosol properties were studied in 3 sampling stations upwind of Manaus (ATTO (T0a), ZF2 (T0z) and EMBRAPA (T0e)). Urban impacted aerosols were analysed in two downwind sampling stations at Tiwa (T2) and Manacapuru (T3). Properties analysed were size distribution, scattering and absorption, composition, vertical profiles and others. Remote sensing measurements were done using AERONET and MODIS, while extensive ground based measurements were done in all sampling stations. Remote sensing measurements shows important changes in aerosol optical depth (AOD), especially in the aerosol absorption component. It was also observed a reduction in cloud droplet size downwind of Manaus for liquid phase clouds. Changes in particle number and size were also very significant, that reflected in changes in the aerosol radiative forcing (RF) before and after Manaus plume. In the dry season, an average RF of -24 w/m² was observed upwind, while -17 w/m² was observed downwind, due to large scale biomass burning aerosols. Single scattering albedo (SSA) at 550 nm changed from a high value of 0.96 upwind to 0.84 downwind due to the increase in absorbing aerosols in the wet season. In the dry season, SSA at 550nm changed from 0.95 to 0.87. Aerosol composition showed a large dominance of organic aerosols for all sites, accounting for 65-75% of PM1 non refractory aerosol. Most of these were secondary organic aerosol (SOA), with very low sulfate and nitrate concentrations. The influence of the Manaus plume on aerosol properties was more intense during the wet season, because in the dry season a significant amount of

  11. Aerosol Direct Radiative Effects and Heating in the New Era of Active Satellite Observations

    NASA Astrophysics Data System (ADS)

    Matus, Alexander V.

    Atmospheric aerosols impact the global energy budget by scattering and absorbing solar radiation. Despite their impacts, aerosols remain a significant source of uncertainty in our ability to predict future climate. Multi-sensor observations from the A-Train satellite constellation provide valuable observational constraints necessary to reduce uncertainties in model simulations of aerosol direct effects. This study will discuss recent efforts to quantify aerosol direct effects globally and regionally using CloudSat's radiative fluxes and heating rates product. Improving upon previous techniques, this approach leverages the capability of CloudSat and CALIPSO to retrieve vertically resolved estimates of cloud and aerosol properties critical for accurately evaluating the radiative impacts of aerosols. We estimate the global annual mean aerosol direct effect to be -1.9 +/- 0.6 W/m2, which is in better agreement with previously published estimates from global models than previous satellite-based estimates. Detailed comparisons against a fully coupled simulation of the Community Earth System Model, however, reveal that this agreement on the global annual mean masks large regional discrepancies between modeled and observed estimates of aerosol direct effects related to model biases in cloud cover. A low bias in stratocumulus cloud cover over the southeastern Pacific Ocean, for example, leads to an overestimate of the radiative effects of marine aerosols. Stratocumulus clouds over the southeastern Atlantic Ocean can enhance aerosol absorption by 50% allowing aerosol layers to remain self-lofted in an area of subsidence. Aerosol heating is found to peak at 0.6 +/- 0.3 K/day an altitude of 4 km in September when biomass burning reaches a maximum. Finally, the contributions of observed aerosols components are evaluated to estimate the direct radiative forcing of anthropogenic aerosols. Aerosol forcing is computed using satellite-based radiative kernels that describe the

  12. Evaluation of aerosol optical properties of GEOS-Chem over East Asia during the DRAGON-Asia 2012 campaign

    NASA Astrophysics Data System (ADS)

    Jo, D. S.; Park, R.; Kim, J.

    2015-12-01

    A nested version of 3-D chemical transport model (GEOS-Chem v9-01-02) is evaluated over East Asia during the Distributed Regional Aerosol Gridded Observation Networks (DRAGON)-Asia 2012 campaign period, focusing on fine-mode aerosol optical depth (fAOD) and single scattering albedo (SSA). Both are important to assess the effect of anthropogenic aerosols on climate. We compare the daily mean simulated optical properties of aerosols with the observations from DRAGON-Asia campaign for March-May, 2012 (provided in level 2.0: cloud screened and quality assured). We find that the model reproduces the observed daily variability of fAOD (R=0.67), but overestimates the magnitude by 30%, which is in general consistent with other global model comparisons from ACCMIP. However, a significant high bias in the model is found compared to the observed SSA at 440 nm, which is important for determining the sign of aerosol radiative forcing. In order to understand causes for this gap we conduct several sensitivity tests by changing source magnitudes and input parameters of aerosols, affecting the aerosol optical properties under various atmospheric conditions, which allows us to reduce the gap and to find the optimal values in the model.

  13. Observed high aerosol loading during dust events in Delhi

    NASA Astrophysics Data System (ADS)

    Singh, Khem; Aggarwal, Shankar G.; Jha, Arvind K.; Singh, Nahar; Soni, Daya; Gupta, Prabhat K.

    2012-07-01

    The present study reports aerosol mass loadings and their chemical property during integrated campaign for aerosol and radiation budget (ICARB) in the month of March to May 2006, at NPL, New Delhi. The Thar Desert in Rajasthan is located on the western end of India and south-west of Delhi is hot and arid region with intense aeolian activity and transport of aerosol by the prevailing southwest-west summer wind. Several dust episodes were observed in Delhi during summer 2006. The dust storm peaked on 29th April, 1 ^{st} and 8 ^{th} May 2006, with very high suspended particulate matter (SPM) concentrations 1986μg/m ^{3}, 1735μg/m ^{3} and 1511μg/m ^{3}, respectively. The average concentration of SPM in the month of March, April and May 2006 was 338 μg/m ^{3}, 698 μg/m ^{3} and 732 μg/m ^{3}, respectively. The SPM filter samples were analysed for water-soluble major cations (Na ^{+}, Ca ^{2+}, K ^{+}, and Mg ^{2+}) by atomic absorption spectrophotometry (AAS). Na ^{+} and Ca ^{2+} contribute about 54% and 20%, respectively of the total identified cation mass, indicating that they were most abundant cations. Strong correlations between Na ^{+}, Ca ^{2+}, K ^{+}, and Mg ^{2+} suggest their soil and dust origin. Such a high particle concentration observed during dust events may also be useful for study the effect of these aerosols on communication medium.

  14. Spatial and Temporal Distribution of Tropospheric Clouds and Aerosols Observed by MODIS Onboard the Terra and Aqua Satellites

    NASA Technical Reports Server (NTRS)

    King, Michael D.; Platnick, Steven; Menzel, W. Paul; Ackerman, Steven A.; Remer, Lorraine A.

    2006-01-01

    Remote sensing of cloud and aerosol optical properties is routinely obtained using the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the Terra and Aqua satellites. Instruments that are being used to enhance our ability to characterize the global distribution of cloud and aerosol properties include well-calibrated multispectral radiometers that measure in the visible, near-infrared, and thermal infrared. The availability of thermal channels to enhance detection of cloud when estimating aerosol properties is an important improvement. In this paper, we describe the radiative properties of clouds as currently determined from satellites (cloud fraction, optical thickness, cloud top pressure, and cloud particle effective radius) and highlight the global/regional cloud microphysical properties currently available for assessing climate variability and forcing. These include the latitudinal distribution of cloud optical and radiative properties of both liquid water and ice clouds, as well as joint histograms of cloud optical thickness and effective particle radius for selected geographical locations around the world. In addition, we will illustrate the radiative and microphysical properties of aerosol particles (in cloud free regions) that are currently available from space-based observations, and show the latitudinal distribution of aerosol optical properties over both land and ocean surfaces.

  15. A Long-term Record of Saharan Dust Aerosol Properties from TOMS Observations: Optical Depth and Single Scattering Albedo

    NASA Technical Reports Server (NTRS)

    Torres, Omar; Bhartia, P. K.; Herman, J. R.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The interaction between the strong Rayleigh scattering in the near UV spectral region (330-380 nm) and the processes of aerosol absorption and scattering, produce a clear spectral signal in the upwelling radiance at the top of the atmosphere. This interaction is the basis of the TOMS (Total Ozone Mapping Spectrometer) aerosol retrieval technique that can be used for their characterization and to differentiate non-absorbing sulfates from strongly UV-absorbing aerosols such as mineral dust. For absorbing aerosols, the characterization is in terms of the optical depth and single scattering albedo with assumptions about the aerosol plume height. The results for non-absorbing aerosols are not dependent on plume height. Although iron compounds represent only between 5% to 8% of desert dust aerosol mass, hematite (Fe2O3) accounts for most of the near UV absorption. Because of the large ultraviolet absorption characteristic of hematite, the near UV method of aerosol sensing is especially suited for the detection and characterization of desert dust aerosols. Using the combined record of near UV measurements by the Nimbus7 (1978-1992) and Earth Probe (1996-present) TOMS instruments, a global longterm climatology of near UV optical depth and single scattering albedo has been produced. The multi-year long record of mineral aerosol properties over the area of influence of the Saharan desert, will be discussed.

  16. Columnar aerosol optical properties at AERONET sites in northern, central and southern Mexico

    NASA Astrophysics Data System (ADS)

    Carabali, Giovanni; Estévez, Hector; Florean-Cruz, Claudia; Navarro-Medina, Abigail; Valdés-Barrón, Mauro; Bonifaz-Alfonzo, Roberto; Riveros-Rosas, David; Velasco-Herrera, Víctor; Vázquez-Gálvez, Felipe

    2017-04-01

    The column-integrated optical properties of aerosol in the north, central and southern Mexico were investigated based on Sun/sky radiometer measurements made at Aerosol Robotic Network (AERONET) sites. Characterization of aerosol properties in these Mexico regions is important due to natural and anthropogenic significant events that occurred: dust storms from Sonora desert, biomass burning from south forest areas and urban/industrial from Mexico City due to the increases in fossil fuel combustion. Some cities in northern Mexico located near desert areas are affected by the dust from Sonora and Chihuahua deserts. These particles are suspended in the atmosphere due to strong wind activity that creates dust storms. In the central part of the Mexican territory, urban air pollution is one of the biggest problems. Mexico City is the most important urban area that face seriously environmental problem generated by daily anthropogenic emissions from activities of some 21 million people and the vast amount of industry. On the other hand, biomass burning in the Yucatan Peninsula, Southern Mexico, and Guatemala is an important source of anthropogenic aerosol in the troposphere (Crutzen and Andrade, 1990). The pollution from these fires affects air quality locally and is transported over the Gulf of Mexico to the United States (Wang et al., 2006). The aim of this work is to study the optical properties of different types of aerosols by analyzing a 5-year (2005-2010) data set from AErosol RObotic NETwork (AERONET). Time series of Angstrom exponent (α) and aerosol optical depth (τ) in 7 wavelengths from 340 to 1020 nm are shown. Additionally, a graphical framework to classify aerosol properties using direct sun-photometer observations in the different regions of Mexico is presented. That aerosol classification was made by applying the method described by Gobbi et al (2007), which relies on the combined analysis of α and its spectral curvature δα.

  17. Effects of mixing states on the multiple-scattering properties of soot aerosols.

    PubMed

    Cheng, Tianhai; Wu, Yu; Gu, Xingfa; Chen, Hao

    2015-04-20

    The radiative properties of soot aerosols are highly sensitive to the mixing states of black carbon particles and other aerosol components. Light absorption properties are enhanced by the mixing state of soot aerosols. Quantification of the effects of mixing states on the scattering properties of soot aerosol are still not completely resolved, especially for multiple-scattering properties. This study focuses on the effects of the mixing state on the multiple scattering of soot aerosols using the vector radiative transfer model. Two types of soot aerosols with different mixing states such as external mixture soot aerosols and internal mixture soot aerosols are studied. Upward radiance/polarization and hemispheric flux are studied with variable soot aerosol loadings for clear and haze scenarios. Our study showed dramatic changes in upward radiance/polarization due to the effects of the mixing state on the multiple scattering of soot aerosols. The relative difference in upward radiance due to the different mixing states can reach 16%, whereas the relative difference of upward polarization can reach 200%. The effects of the mixing state on the multiple-scattering properties of soot aerosols increase with increasing soot aerosol loading. The effects of the soot aerosol mixing state on upwelling hemispheric flux are much smaller than in upward radiance/polarization, which increase with increasing solar zenith angle. The relative difference in upwelling hemispheric flux due to the different soot aerosol mixing states can reach 18% when the solar zenith angle is 75°. The findings should improve our understanding of the effects of mixing states on the optical properties of soot aerosols and their effects on climate. The mixing mechanism of soot aerosols is of critical importance in evaluating the climate effects of soot aerosols, which should be explicitly included in radiative forcing models and aerosol remote sensing.

  18. Remote Sensing of Aerosol Over the Land from the Earth Observing System MODIS Instrument

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram; Tanre, Didier; Remer, Lorraine; Einaudi, Franco (Technical Monitor)

    2000-01-01

    On Dec 18, 1999, NASA launched the Moderate-Resolution Imaging Spectroradiometer (MODIS) instrument on the Earth Observing System (EOS) Terra mission, in a spectacular launch. The mission will provide morning (10:30 AM) global observations of aerosol and other related parameters. It will be followed a year later by a MODIS instrument on EOS Aqua for afternoon observations (1:30 PM). MODIS will measure aerosol over land and ocean with its eight 500 m and 250 m channels in the solar spectrum (0-41 to 2.2 micrometers). Over the land MODIS will measure the total column aerosol loading, and distinguish between submicron pollution particles and large soil particles. Standard daily products of resolution of ten kilometers and global mapped eight day and monthly products on a 1x1 degree global scale will be produced routinely and make available for no or small reproduction charge to the international community. Though the aerosol products will not be available everywhere over the land, it is expected that they will be useful for assessments of the presence, sources and transport of urban pollution, biomass burning aerosol, and desert dust. Other measurements from MODIS will supplement the aerosol information, e.g., land use change, urbanization, presence and magnitude of biomass burning fires, and effect of aerosol on cloud microphysics. Other instruments on Terra, e.g. Multi-angle Imaging SpectroRadiometer (MISR) and the Clouds and the Earth's Radiant Energy System (CERES), will also measure aerosol, its properties and radiative forcing in tandem with the MODIS measurements. During the Aqua period, there are plans to launch in 2003 the Pathfinder Instruments for Cloud and Aerosol Spaceborne Observations (PICASSO) mission for global measurements of the aerosol vertical structure, and the PARASOL mission for aerosol characterization. Aqua-MODIS, PICASSO and PARASOL will fly in formation for detailed simultaneous characterization of the aerosol three-dimensional field, which

  19. HSRL-2 Observations of Aerosol Variability During an Aerosol Build-up Event in Houston and Comparisons With WRF-Chem

    NASA Technical Reports Server (NTRS)

    Burton, Sharon P.; Saide, Pablo; Sawamura, Patricia; Hostetler, Chris; Ferrare, Rich; Scarino, Amy Jo; Berkoff, Tim; Harper, David; Cook, Tony; Rogers, Ray; hide

    2015-01-01

    The NASA Langley airborne multi-wavelength High Spectral Resolution Lidar (HSRL-2) provides vertical distribution of aerosol optical properties as curtains of aerosol extinction, backscatter and depolarization along the flight track, plus intensive properties that are used to infer aerosol type and external mixing of types. Deployed aboard the NASA Langley King Air on the DISCOVER-AQ field mission in Houston in September 2013, HSRL-2 flew a pattern that included 18 ground sites, repeated four times a day, coordinated with a suite of airborne in situ measurements. The horizontally and vertically resolved curtains of HSRL-2 measurements give an unparalleled view of the spatial and temporal variability of aerosol, which provide broad context for interpreting other measurements and models. Detailed comparisons of aerosol extinction are made with the WRF-Chem chemical transport model along the HSRL-2 flight path. The period from Sept. 11-14 is notable for a large aerosol build-up and persistent smoke layers. We investigate the aerosol properties using the vertically resolved HSRL-2 measurements and aerosol typing analysis plus WRFChem model tracers and back trajectories, and modeling of humidification effects.

  20. Vertical distribution of aerosol optical properties based on aircraft measurements over the Loess Plateau in China.

    PubMed

    Li, Junxia; Liu, Xingang; Yuan, Liang; Yin, Yan; Li, Zhanqing; Li, Peiren; Ren, Gang; Jin, Lijun; Li, Runjun; Dong, Zipeng; Li, Yiyu; Yang, Junmei

    2015-08-01

    Vertical distributions of aerosol optical properties based on aircraft measurements over the Loess Plateau were measured for the first time during a summertime aircraft campaign, 2013 in Shanxi, China. Data from four flights were analyzed. The vertical distributions of aerosol optical properties including aerosol scattering coefficients (σsc), absorption coefficients (σab), Angström exponent (α), single scattering albedo (ω), backscattering ratio (βsc), aerosol mass scattering proficiency (Qsc) and aerosol surface scattering proficiency (Qsc(')) were obtained. The mean statistical values of σsc were 77.45 Mm(-1) (at 450 nm), 50.72 Mm(-1) (at 550n m), and 32.02 Mm(-1) (at 700 nm). The mean value of σab was 7.62 Mm(-1) (at 550 nm). The mean values of α, βsc and ω were 1.93, 0.15, and 0.91, respectively. Aerosol concentration decreased with altitude. Most effective diameters (ED) of aerosols were less than 0.8 μm. The vertical profiles of σsc,, α, βsc, Qsc and Qsc(') showed that the aerosol scattering properties at lower levels contributed the most to the total aerosol radiative forcing. Both α and βsc had relatively large values, suggesting that most aerosols in the observational region were small particles. The mean values of σsc, α, βsc, Qsc, Qsc('), σab and ω at different height ranges showed that most of the parameters decreased with altitude. The forty-eight hour backward trajectories of air masses during the observation days indicated that the majority of aerosols in the lower level contributed the most to the total aerosol loading, and most of these particles originated from local or regional pollution emissions. Copyright © 2015. Published by Elsevier B.V.

  1. Uncertainties of simulated aerosol optical properties induced by assumptions on aerosol physical and chemical properties: an AQMEII-2 perspective

    EPA Science Inventory

    The calculation of aerosol optical properties from aerosol mass is a process subject to uncertainty related to necessary assumptions on the treatment of the chemical species mixing state, density, refractive index, and hygroscopic growth. In the framework of the AQMEII-2 model in...

  2. Large Contribution of Coarse Mode to Aerosol Microphysical and Optical Properties: Evidence from Ground-Based Observations of a Transpacific Dust Outbreak at a High-Elevation North American Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kassianov, E.; Pekour, M.; Flynn, C.

    Our work is motivated by previous studies of the long-range trans-Atlantic transport of Saharan dust and the observed quasi-static nature of coarse mode aerosol with a volume median diameter (VMD) of approximately 3.5 µm. We examine coarse mode contributions from the trans-Pacific transport of Asian dust to North American aerosol microphysical and optical properties using a dataset collected at the high-elevation, mountain-top Storm Peak Laboratory (SPL, 3.22 km above sea level [ASL]) and the nearby Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF, 2.76 km ASL). Data collected during the SPL Cloud Property Validation Experiment (STORMVEX, March 2011) are complemented bymore » quasi-global high-resolution model simulations coupled with aerosol chemistry. We identify dust event associated mostly with Asian plume (about 70% of dust mass) where the coarse mode with moderate (~4 µm) VMD is distinct and contributes substantially to aerosol microphysical (up to 70% for total volume) and optical (up to 45% for total scattering and aerosol optical depth) properties. Our results, when compared with previous Saharan dust studies, suggest a fairly invariant behavior of coarse mode dust aerosols. If confirmed in additional studies, this invariant behavior may simplify considerably model parameterizations for complex and size-dependent processes associated with dust transport and removal.« less

  3. An Observational Study of the Relationship between Cloud, Aerosol and Meteorology in Broken Low-Level Cloud Conditions

    NASA Technical Reports Server (NTRS)

    Loeb, Norman G.; Schuster, Gregory L.

    2008-01-01

    Global satellite analyses showing strong correlations between aerosol optical depth and 3 cloud cover have stirred much debate recently. While it is tempting to interpret the results as evidence of aerosol enhancement of cloud cover, other factors such as the influence of meteorology on both the aerosol and cloud distributions can also play a role, as both aerosols and clouds depend upon local meteorology. This study uses satellite observations to examine aerosol-cloud relationships for broken low-level cloud regions off the coast of Africa. The analysis approach minimizes the influence of large-scale meteorology by restricting the spatial and temporal domains in which the aerosol and cloud properties are compared. While distributions of several meteorological variables within 5deg 5deg latitude-longitude regions are nearly identical under low and high aerosol optical depth, the corresponding distributions of single-layer low cloud properties and top-of-atmosphere radiative fluxes differ markedly, consistent with earlier studies showing increased cloud cover with aerosol optical depth. Furthermore, fine-mode fraction and Angstrom Exponent are also larger in conditions of higher aerosol optical depth, even though no evidence of systematic latitudinal or longitudinal gradients between the low and high aerosol optical depth populations are observed. When the analysis is repeated for all 5deg 5deg latitude-longitude regions over the global oceans (after removing cases in which significant meteorological differences are found between the low and high aerosol populations), results are qualitatively similar to those off the coast of Africa.

  4. Optical properties of boreal region biomass burning aerosols in central Alaska and seasonal variation of aerosol optical depth at an Arctic coastal site

    Treesearch

    T.F. Eck; B.N. Holben; J.S. Reid; A. Sinyuk; E.J. Hyer; N.T. O' Neill; G.E. Shaw; J.R. Vande Castle; F.S. Chapin; O. Dubovik; A. Smirnov; E. Vermote; J.S. Schafer; D. Giles; I. Slutsker; M. Sorokine; W.W. Newcomb

    2009-01-01

    Long-term monitoring of aerosol optical properties at a boreal forest AERONET site in interior Alaska was performed from 1994 through 2008 (excluding winter), Large interannual variability was observed, with some years showing near background aerosol optical depth (AOD) levels while 2004 and 2005 had August monthly means similar in magnitude to peak months at major...

  5. Observations and projections of visibility and aerosol optical thickness (1956-2100) in the Netherlands: impacts of time-varying aerosol composition and hygroscopicity

    NASA Astrophysics Data System (ADS)

    Boers, R.; van Weele, M.; van Meijgaard, E.; Savenije, M.; Siebesma, A. P.; Bosveld, F.; Stammes, P.

    2015-01-01

    Time series of visibility and aerosol optical thickness for the Netherlands have been constructed for 1956-2100 based on observations and aerosol mass scenarios. Aerosol optical thickness from 1956 to 2013 has been reconstructed by converting time series of visibility to visible extinction which in turn are converted to aerosol optical thickness using an appropriate scaling depth. The reconstruction compares closely with remote sensing observations of aerosol optical thickness between 1960 and 2013. It appears that aerosol optical thickness was relatively constant over the Netherlands in the years 1955-1985. After 1985, visibility has improved, while at the same time aerosol optical thickness has decreased. Based on aerosol emission scenarios for the Netherlands three aerosol types have been identified: (1) a constant background consisting of sea salt and mineral dust, (2) a hydrophilic anthropogenic inorganic mixture, and (3) a partly hydrophobic mixture of black carbon (BC) and organic aerosols (OAs). A reduction in overall aerosol concentration turns out to be the most influential factor in the reduction in aerosol optical thickness. But during 1956-1985, an upward trend in hydrophilic aerosols and associated upward trend in optical extinction has partly compensated the overall reduction in optical extinction due to the reduction in less hydrophilic BC and OAs. A constant optical thickness ensues. This feature highlights the influence of aerosol hygroscopicity on time-varying signatures of atmospheric optical properties. Within the hydrophilic inorganic aerosol mixture there is a gradual shift from sulfur-based (1956-1985) to a nitrogen-based water aerosol chemistry (1990 onwards) but always modulated by the continual input of sodium from sea salt. From 2013 to 2100, visibility is expected to continue its increase, while at the same time optical thickness is foreseen to continue to decrease. The contribution of the hydrophilic mixture to the aerosol optical

  6. Measurements of Intensive Aerosol Optical Properties During TexAQS II

    NASA Astrophysics Data System (ADS)

    Atkinson, D. B.; Radney, J. G.; Wright, M. E.

    2007-12-01

    Time-resolved measurements of the bulk extensive aerosol optical properties - particle extinction coefficient (bext) and particle scattering coefficient (bscat) - and particle number concentrations were made as part of the six-week TRAMP experiment during the TexAQS II (2006) study. These measurements were done at a nominal surface site (the roof of an 18 story building) on the University of Houston campus near downtown Houston, Texas. Our ground-based tandem cavity ring-down transmissometer/nephelometer instrument (CRDT/N) provided the aerosol optical property measurements. A commercial Condensation Particle Counter (TSI 3007) was used to measure the number concentrations during part of the study period. The optical data was used to construct the intensive aerosol optical properties single scattering albedo ω0 at 532 nm and the Angstrom exponent for extinction between 532 nm and 1064 nm. Recent validation studies of size- selected laboratory generated aerosols are presented to illustrate the soundness of this approach using our instrument. The Angstrom exponent is compared to values from other instruments operating in the area and is found to be a characteristic of the regional air mass under some conditions. Size distributions measured during the study were used to create a new empirical adjustment to scattering measured by the Radiance Research nephelometer, resulting in improved results for particle absorption coefficient and single scattering albedo. The study average value of ω0(532 nm) = 0.78 is lower than expected from comparable field studies and even lower values are experienced during the study. Possible causes of this discrepancy are examined and the utility of using the current version of the CRDT/N instrument to measure the key radiative property ω0 is assessed. Observed episodes of rapid increases in particle number concentration with little corresponding growth in the optical properties can presumably be used to signal the occurrence of particle

  7. Characterizing and Understanding Aerosol Optical Properties: CARES - Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cappa, Christopher D; Atkinson, Dean B

    The scientific focus of this study was to use ambient measurements to develop new insights into the understanding of the direct radiative forcing by atmospheric aerosol particles. The study used data collected by the PI’s and others as part of both the 2010 U.S. Department of Energy (DOE) sponsored Carbonaceous Aerosols and Radiative Effects Study (CARES), which took place in and around Sacramento, CA, and the 2012 Clean Air for London (ClearfLo) study. We focus on measurements that were made of aerosol particle optical properties, namely the wavelength-dependent light absorption, scattering and extinction. Interpretation of these optical property measurements ismore » facilitated through consideration of complementary measurements of the aerosol particle chemical composition and size distributions. With these measurements, we addressed the following general scientific questions: 1. How does light scattering and extinction by atmospheric aerosol particles depend on particle composition, water uptake, and size? 2. To what extent is light absorption by aerosol particles enhanced through the mixing of black carbon with other particulate components? 3. What relationships exist between intensive aerosol particle optical properties, and how do these depend on particle source and photochemical aging? 4. How well do spectral deconvolution methods, which are commonly used in remote sensing, retrieve information about particle size distributions?« less

  8. Ambient Observations of Aerosols, Novel Aerosol Structures, And Their Engineering Applications

    NASA Astrophysics Data System (ADS)

    Beres, Nicholas D.

    The role of atmospheric aerosols remains a crucial issue in understanding and mitigating climate change in our world today. These particles influence the Earth by altering the Earth's delicate radiation balance, human health, and visibility. In particular, black carbon particulate matter remains the key driver in positive radiative forcing (i.e., warming) due to aerosols. Produced from the incomplete combustion of hydrocarbons, these compounds can be found in many different forms around the globe. This thesis provides an overview of three research topics: (1) the ambient characterization of aerosols in the Northern Indian Ocean, measurement techniques used, and how these aerosols influence local, regional, and global climate; (2) the exploration of novel soot superaggregate particles collected in the Northern Indian Ocean and around the globe and how the properties of these particles relate to human health and climate forcing; and (3) how aerogelated soot can be produced in a novel, one-step method utilizing an inverted flame reactor and how this material could be used in industrial settings.

  9. North Atlantic Aerosol Properties and Direct Radiative Effects: Key Results from TARFOX and ACE-2

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Livingston, J. M.; Schmid, B.; Bergstrom, Robert A.; Hignett, P.; Hobbs, P. V.; Durkee, P. A.

    2000-01-01

    Aerosol effects on atmospheric radiative fluxes provide a forcing function that can change the climate In potentially significant ways. This aerosol radiative forcing is a major source of uncertainty in understanding the observed climate change of the past century and in predicting future climate. To help reduce this uncertainty, the International Global Atmospheric Chemistry Project (IGAC) has endorsed a series of multiplatform aerosol field campaigns. The Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX) and the second Aerosol Characterization Experiment (ACE-2) were the first IGAC campaigns to address the impact of anthropogenic aerosols, Both TARFOX and ACE-2 gathered extensive data sets on aerosol properties and radiative effects, TARFOX focused on the urban-industrial haze plume flowing from the eastern United States over the western Atlantic Ocean, whereas ACE-2 studied aerosols carried over the eastern Atlantic from both European urban/industrial and African mineral sources. These aerosols often have a marked influence on the top-of-atmosphere radiances measured by satellites. Shown there are contours of aerosol optical depth derived from radiances measured by the AVHRR sensor on the NOAA-11 satellite. The contours readily show that aerosols originating in North America, Europe, and Africa impact the radiative properties of air over the North Atlantic. However, the accurate derivation of flux changes, or radiative forcing, from the satellite measured radiances or retrieved optical depths remains a difficult challenge. In this paper we summarize key initial results from TARFOX and, to a lesser extent, ACE-2, with a focus on those results that allow an improved assessment of the flux changes caused by North Atlantic aerosols at middle latitudes.

  10. Assessment of aerosol optics, microphysics, and transport process of biomass-burning haze over northern SE Asia: 7-SEAS AERONET observations

    NASA Astrophysics Data System (ADS)

    Wang, S.; Giles, D. M.; Eck, T. F.; Lin, N.; Tsay, S.; Holben, B. N.

    2013-12-01

    Initiated in 2007, the Seven South East Asian Studies (7-SEAS) is aimed to facilitate an interdisciplinary research on the aerosol environment in SE Asia (SEA) as a whole, promote international collaboration, and further enhance scientific understanding of the impact of biomass burning on clouds, atmospheric radiation, hydrological cycle, and region climates. One of the key measurements proposed in the 7-SEAS is the NASA/AERONET (AErosol RObotic NETwork) observation, which provides helpful information on columnar aerosol optical properties and allows us consistently to examine biomass-burning aerosols across northern SEA from ground-based remote-sensing point of view. In this presentation, we will focus on the two 7-SEAS field deployments, i.e. the 2012 Son La Experiment and the 2013 BASELInE (Biomass-burning Aerosols & Stratocumulus Environment: Lifecycles and Interactions Experiment). We analyze the daytime variation of aerosol by using consistent measurements from 15 of AERONET sites over Indochina, the South China Sea, and Taiwan. Spatiotemporal characteristics of aerosol optical properties (e.g., aerosol optical depth (AOD), fine/coarse mode AOD, single-scattering albedo, asymmetry factor) will be discussed. Strong diurnal variation of aerosol optical properties was observed to be attributed to planetary boundary layer (PBL) dynamics. A comparison between aerosol loading (i.e. AOD) and surface PM2.5 concentration will be presented. Our results demonstrate that smoke aerosols emitted from agriculture burning that under certain meteorological conditions can degrade regional air quality 3000 km from the source region, with additional implications for aerosol radiative forcing and regional climate change over northern SE Asia.

  11. Global volcanic aerosol properties derived from emissions, 1990-2015, using CESM1(WACCM)

    NASA Astrophysics Data System (ADS)

    Mills, Michael; Schmidt, Anja; Easter, Richard; Solomon, Susan; Kinnison, Douglas; Ghan, Steven; Neely, Ryan; Marsh, Daniel; Conley, Andrew; Bardeen, Charles; Gettelman, Andrew

    2016-04-01

    Accurate representation of global stratospheric aerosols from volcanic and non-volcanic sulfur emissions is key to understanding the cooling effects and ozone-losses that may be linked to volcanic activity. Attribution of climate variability to volcanic activity is of particular interest in relation to the post-2000 slowing in the rate of global average temperature increases. We have compiled a database of volcanic SO2 emissions and plume altitudes for eruptions from 1990 to 2015, and developed a new prognostic capability for simulating stratospheric sulfate aerosols in the Community Earth System Model (CESM). We combined these with other non-volcanic emissions of sulfur sources to reconstruct global aerosol properties from 1990 to 2015. Our calculations show remarkable agreement with ground-based lidar observations of stratospheric aerosol optical depth (SAOD), and with in situ measurements of stratospheric aerosol surface area density (SAD). These properties are key parameters in calculating the radiative and chemical effects of stratospheric aerosols. Our SAOD calculations represent a clear improvement over available satellite-based analyses, which generally ignore aerosol extinction below 15 km, a region that can contain the vast majority of stratospheric aerosol extinction at mid- and high-latitudes. Our SAD calculations greatly improve on that provided for the Chemistry-Climate Model Initiative, which misses about 60% of the SAD measured in situ on average during both volcanically active and volcanically quiescent periods. The stark differences in SAOD and SAD compared to other data sets will have significant effects on calculations of the radiative forcing of climate and global stratospheric chemistry over the period 2005-2015. In light of these results, the impact of volcanic aerosols in reducing the rate of global average temperature increases since the year 2000 should be revisited. We have made our calculated aerosol properties from January 1990 to

  12. Retrieval of tropospheric aerosol properties over land from visible and near-infrared spectral reflectance: Application over Maryland

    NASA Astrophysics Data System (ADS)

    Levy, Robert Carroll

    Aerosols are major components of the Earth's global climate system, affecting the radiation budget and cloud processes of the atmosphere. When located near the surface, high concentrations lead to lowered visibility, increased health problems and generally reduced quality of life for the human population. Over the United States mid-Atlantic region, aerosol pollution is a problem mainly during the summer. Satellites, such as the MODerate Imaging Spectrometer (MODIS), from their vantage point above the atmosphere, provide unprecedented coverage of global and regional aerosols over land. During MODIS' eight-year operation, exhaustive data validation and analyses have shown how the algorithm should be improved. This dissertation describes the development of the 'second-generation' operational algorithm for retrieval of global tropospheric aerosol properties over dark land surfaces, from MODIS-observed spectral reflectance. New understanding about global aerosol properties, land surface reflectance characteristics, and radiative transfer properties were learned in the process. This new operational algorithm performs a simultaneous inversion of reflectance in two visible channels (0.47 and 0.66 mum) and one shortwave infrared channel (2.12 mum), thereby having increased sensitivity to coarse aerosol. Inversion of the three channels retrieves the aerosol optical depth (tau) at 0.55 mum, the percentage of non-dust (fine model) aerosol (eta) and the surface reflectance. This algorithm is applied globally, and retrieves tau that is highly correlated (y = 0.02 + 1.0x, R=0.9) with ground-based sunphotometer measurements. The new algorithm estimates the global, over-land, long-term averaged tau ˜ 0.21, a 25% reduction from previous MODIS estimates. This leads to reducing estimates of global, non-desert, over-land aerosol direct radiative effect (all aerosols) by 1.7 W·m-2 (0.5 W·m-2 over the entire globe), which significantly impacts assessment of aerosol direct radiative

  13. Assessment of 10 Year Record of Aerosol Optical Depth from OMI UV Observations

    NASA Technical Reports Server (NTRS)

    Ahn, Changwoo; Torres, Omar; Jethva, Hiren

    2014-01-01

    The Ozone Monitoring Instrument (OMI) onboard the EOS-Aura satellite provides information on aerosol optical properties by making use of the large sensitivity to aerosol absorption in the near-ultraviolet (UV) spectral region. Another important advantage of using near UV observations for aerosol characterization is the low surface albedo of all terrestrial surfaces in this spectral region that reduces retrieval errors associated with land surface reflectance characterization. In spite of the 13 × 24 square kilometers coarse sensor footprint, the OMI near UV aerosol algorithm (OMAERUV) retrieves aerosol optical depth (AOD) and single-scattering albedo under cloud-free conditions from radiance measurements at 354 and 388 nanometers. We present validation results of OMI AOD against space and time collocated Aerosol Robotic Network measured AOD values over multiple stations representing major aerosol episodes and regimes. OMAERUV's performance is also evaluated with respect to those of the Aqua-MODIS Deep Blue and Terra-MISR AOD algorithms over arid and semi-arid regions in Northern Africa. The outcome of the evaluation analysis indicates that in spite of the "row anomaly" problem, affecting the sensor since mid-2007, the long-term aerosol record shows remarkable sensor stability.

  14. Vertical Distribution of Aerosols and Water Vapor Using CRISM Limb Observations

    NASA Astrophysics Data System (ADS)

    Smith, M. D.; Wolff, M. J.; Clancy, R. T.; CRISM Science; Operations Teams

    2011-12-01

    Near-infrared spectra taken in a limb-viewing geometry by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on-board the Mars Reconnaissance Orbiter (MRO) provide a useful tool for probing atmospheric structure. Specifically, the observed radiance as a function of wavelength and height above the limb allows the vertical distribution of both dust and ice aerosols to be retrieved. These data serve as an important supplement to the aerosol profiling provided by the MRO/MCS instrument allowing independent validation and giving additional information on particle physical and scattering properties through multi-wavelength studies. A total of at least ten CRISM limb observations have been taken so far covering a full Martian year. Each set of limb observations nominally contains about four dozen scans across the limb giving pole-to-pole coverage for two orbits at roughly 100 and 290 W longitude over the Tharsis and Syrtis/Hellas regions, respectively. At each longitude, limb scans are spaced roughly 10 degrees apart in latitude, with a vertical spatial resolution on the limb of roughly 800 m. Radiative transfer modeling is used to model the observations. We compute synthetic CRISM limb spectra using a discrete-ordinates radiative transfer code that accounts for multiple scattering from aerosols and accounts for spherical geometry of the limb observations by integrating the source functions along curved paths in that coordinate system. Retrieved are 14-point vertical profiles for dust and water ice aerosols with resolution of 0.4 scale heights between one and six scale heights above the surface. After the aerosol retrieval is completed, the abundances of CO2 (or surface pressure) and H2O gas are retrieved by matching the depth of absorption bands at 2000 nm for carbon dioxide and at 2600 nm for water vapor. In addition to the column abundance of water vapor, limited information on its vertical structure can also be retrieved depending on the signal available

  15. Characterization of the Aerosol Instrument Package for the In-service Aircraft Global Observing System IAGOS

    NASA Astrophysics Data System (ADS)

    Bundke, Ulrich; Berg, Marcel; Tettig, Frank; Franke, Harald; Petzold, Andreas

    2015-04-01

    The atmospheric aerosol influences the climate twofold via the direct interaction with solar radiation and indirectly effecting microphysical properties of clouds. The latter has the largest uncertainty according to the last IPPC Report. A measured in situ climatology of the aerosol microphysical properties is needed to reduce the reported uncertainty of the aerosol climate impact. The European Research Infrastructure IAGOS (In-service Aircraft for a Global Observing System; www.iagos.org) responds to the increasing requests for long-term, routine in situ observational data by using commercial passenger aircraft as measurement platform. However, scientific instrumentation for the measurement of atmospheric constituents requires major modifications before being deployable aboard in-service passenger aircraft. The IAGOS Aerosol Package (IAGOS-P2C) consists of two modified Butanol based CPCs (Model Grimm 5.410) and one optical particle counter (Model Grimm Sky OPC 1.129). A thermodenuder at 250°C is placed upstream the second CPC, thus the number concentrations of the total aerosol and the non-volatile aerosol fraction is measured. The Sky OPC measures the size distribution in the rage theoretically up to 32 μ m. Because of the inlet cut off diameter of D50=3 μ m we are using the 16 channel mode in the range of 250 nm - 2.5 μ m at 1 Hz resolution. In this presentation the IAGOS Aerosol package is characterized for pressure levels relevant for the planned application, down to cruising level of 150 hPa including the inlet system. In our aerosol lab we have tested the system against standard instrumentation with different aerosol test substances in a long duration test. Particle losses are characterized for the inlet system. In addition first results for airborne measurements are shown from a first field campaign.

  16. Decadal-scale trends in regional aerosol particle properties and their linkage to emission changes

    NASA Astrophysics Data System (ADS)

    Zhao, Bin; Jiang, Jonathan H.; Gu, Yu; Diner, David; Worden, John; Liou, Kuo-Nan; Su, Hui; Xing, Jia; Garay, Michael; Huang, Lei

    2017-05-01

    Understanding long-term trends in aerosol loading and properties is essential for evaluating the health and climatic effects of these airborne particulates as well as the effectiveness of pollution control policies. While many studies have used satellite data to examine the trends in aerosol optical depth (AOD), very few have investigated the trends in aerosol properties associated with particle size, morphology, and light absorption. In this study, we investigate decadal-scale (13-15 year) trends in aerosol loading and properties during 2001-2015 over three populous regions: the Eastern United States (EUS), Western Europe (WEU), and Eastern and Central China (ECC). We use observations from MISR (Multi-angle Imaging SpectroRadiometer) and MODIS (Moderate resolution Imaging Spectroradiometer). Relationships between aerosol property trends and air pollutant emission changes are examined. We find that annual mean AOD shows pronounced decreasing trends over EUS and WEU regions, as a result of considerable emission reductions in all major pollutants except for mineral dust and ammonia (NH3). Over the ECC region, AOD increases before 2006 due to emission increases induced by rapid economic development, fluctuates between 2006 and 2011, and subsequently decreases after 2011 in conjunction with effective emission reduction in anthropogenic primary aerosols, sulfur dioxide (SO2), and nitrogen oxides (NOx). The fraction of small-size AOD (<0.7 μm diameter), Ångstrom exponent and single-scattering albedo have generally decreased, while the fractions of large-size (>1.4 μm diameter), nonspherical and absorbing AOD have generally shown increasing trends over EUS and WEU regions, indicating that fine and light-scattering aerosol constituents have been more effectively reduced than coarse and light-absorbing constituents. These trends are consistent with the larger reduction ratios in SO2 and NOx emissions than in primary aerosols, including mineral dust and black carbon (BC

  17. Radiative effects of absorbing aerosols over northeastern India: Observations and model simulations

    NASA Astrophysics Data System (ADS)

    Gogoi, Mukunda M.; Babu, S. Suresh; Moorthy, K. Krishna; Bhuyan, Pradip Kumar; Pathak, Binita; Subba, Tamanna; Chutia, Lakhima; Kundu, Shyam Sundar; Bharali, Chandrakala; Borgohain, Arup; Guha, Anirban; De, Barin Kumar; Singh, Brajamani; Chin, Mian

    2017-01-01

    Multiyear measurements of spectral properties of aerosol absorption are examined over four geographically distinct locations of northeastern India. Results indicated significant spatiotemporal variation in aerosol absorption coefficients (σabs) with highest values in winter and lowest in monsoon. The western parts of the region, close to the outflow of Indo-Gangetic Plains, showed higher values of σabs and black carbon (BC) concentration—mostly associated with fossil fuel combustion. But, the eastern parts showed higher contributions from biomass-burning aerosols, as much as 20-25% to the total aerosol absorption, conspicuously during premonsoon season. This is attributed to a large number of burning activities over the Southeast Asian region, as depicted from Moderate Resolution Imaging Spectroradiometer fire count maps, whose spatial extent and magnitude peaks during March/April. The nearly consistent high values of aerosol index (AI) and layer height from Ozone Monitoring Instrument indicate the presence of absorbing aerosols in the upper atmosphere. The observed seasonality has been captured fairly well by Goddard Chemistry Aerosol Radiation and Transport (GOCART) as well as Weather Research and Forecasting-Chemistry (WRF-Chem) model simulations. The ratio of column-integrated optical depths due to particulate organic matter and BC from GOCART showed good coincidence with satellite-based observations, indicating the increased vertical dispersion of absorbing aerosols, probably by the additional local convection due to higher fire radiative power caused by the intense biomass-burning activities. In the WRF-Chem though underperformed by different magnitude in winter, the values are closer or overestimated near the burnt areas. Atmospheric forcing due to BC was highest ( 30 Wm-2) over the western part associated with the fossil fuel combustion.

  18. Observational Study and Parameterization of Aerosol-fog Interactions

    NASA Astrophysics Data System (ADS)

    Duan, J.; Guo, X.; Liu, Y.; Fang, C.; Su, Z.; Chen, Y.

    2014-12-01

    Studies have shown that human activities such as increased aerosols affect fog occurrence and properties significantly, and accurate numerical fog forecasting depends on, to a large extent, parameterization of fog microphysics and aerosol-fog interactions. Furthermore, fogs can be considered as clouds near the ground, and enjoy an advantage of permitting comprehensive long-term in-situ measurements that clouds do not. Knowledge learned from studying aerosol-fog interactions will provide useful insights into aerosol-cloud interactions. To serve the twofold objectives of understanding and improving parameterizations of aerosol-fog interactions and aerosol-cloud interactions, this study examines the data collected from fogs, with a focus but not limited to the data collected in Beijing, China. Data examined include aerosol particle size distributions measured by a Passive Cavity Aerosol Spectrometer Probe (PCASP-100X), fog droplet size distributions measured by a Fog Monitor (FM-120), Cloud Condensation Nuclei (CCN), liquid water path measured by radiometers and visibility sensors, along with meteorological variables measured by a Tethered Balloon Sounding System (XLS-Ⅱ) and Automatic Weather Station (AWS). The results will be compared with low-level clouds for similarities and differences between fogs and clouds.

  19. Simulations of the observation of clouds and aerosols with the Experimental Lidar in Space Equipment system.

    PubMed

    Liu, Z; Voelger, P; Sugimoto, N

    2000-06-20

    We carried out a simulation study for the observation of clouds and aerosols with the Japanese Experimental Lidar in Space Equipment (ELISE), which is a two-wavelength backscatter lidar with three detection channels. The National Space Development Agency of Japan plans to launch the ELISE on the Mission Demonstrate Satellite 2 (MDS-2). In the simulations, the lidar return signals for the ELISE are calculated for an artificial, two-dimensional atmospheric model including different types of clouds and aerosols. The signal detection processes are simulated realistically by inclusion of various sources of noise. The lidar signals that are generated are then used as input for simulations of data analysis with inversion algorithms to investigate retrieval of the optical properties of clouds and aerosols. The results demonstrate that the ELISE can provide global data on the structures and optical properties of clouds and aerosols. We also conducted an analysis of the effects of cloud inhomogeneity on retrievals from averaged lidar profiles. We show that the effects are significant for space lidar observations of optically thick broken clouds.

  20. A perspective on SOA generated in aerosol water from glyoxal and methylglyoxal and its impacts on climate-relevant aerosol properties

    NASA Astrophysics Data System (ADS)

    Sareen, N.; McNeill, V. F.

    2011-12-01

    In recent years, glyoxal and methylglyoxal have emerged to be potentially important SOA precursors with significant implications for climate-related aerosol properties. Here we will discuss how the chemistry of these and similar organic compounds in aerosol water can affect the aerosol optical and cloud formation properties. Aqueous-phase SOA production from glyoxal and methylglyoxal is a potential source of strongly light-absorbing organics, or "brown carbon". We characterized the kinetics of brown carbon formation from these precursors in mixtures of ammonium sulfate and water using UV-Vis spectrophotometry. This mechanism has been incorporated into a photochemical box model with coupled gas phase-aqueous aerosol chemistry. Methylglyoxal and related compounds also may impact an aerosol's ability to act as a cloud condensation nucleus. We recently showed via pendant drop tensiometry and aerosol chamber studies that uptake of methylglyoxal from the gas phase driven by aqueous-phase oligomerization chemistry is a potentially significant, previously unidentified source of surface-active organic material in aerosols. Results from pendant drop tensiometry showed significantly depressed surface tension in methylglyoxal-ammonium sulfate solutions. We further found that ammonium sulfate particles exposed to gas-phase methylglyoxal in a 3.5 m3 aerosol reaction chamber activate into cloud droplets at sizes up to 15% lower at a given supersaturation than do pure ammonium sulfate particles. The observed enhancement exceeds that predicted based on Henry's Law and our measurements of surface tension depression in bulk solutions, suggesting that surface adsorption of methylglyoxal plays a role in determining CCN activity. Methylglyoxal and similar gas-phase surfactants may be an important and overlooked source of enhanced CCN activity in the atmosphere. To characterize the SOA products formed in these solutions, an Aerosol Chemical Ionization Mass Spectrometer (CIMS) was used

  1. Investigation on the monthly variation of cirrus optical properties over the Indian subcontinent using cloud-aerosol lidar and infrared pathfinder satellite observation (Calipso)

    NASA Astrophysics Data System (ADS)

    Dhaman, Reji K.; Satyanarayana, Malladi; Jayeshlal, G. S.; Mahadevan Pillai, V. P.; Krishnakumar, V.

    2016-05-01

    Cirrus clouds have been identified as one of the atmospheric component which influence the radiative processes in the atmosphere and plays a key role in the Earth Radiation Budget. CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) is a joint NASA-CNES satellite mission designed to provide insight in understanding of the role of aerosols and clouds in the climate system. This paper reports the study on the variation of cirrus cloud optical properties of over the Indian sub - continent for a period of two years from January 2009 to December 2010, using cloud-aerosol lidar and infrared pathfinder satellite observations (Calipso). Indian Ocean and Indian continent is one of the regions where cirrus occurrence is maximum particularly during the monsoon periods. It is found that during the south-west monsoon periods there is a large cirrus cloud distribution over the southern Indian land masses. Also it is observed that the north-east monsoon periods had optical thick clouds hugging the coast line. The summer had large cloud formation in the Arabian Sea. It is also found that the land masses near to the sea had large cirrus presence. These cirrus clouds were of high altitude and optical depth. The dependence of cirrus cloud properties on cirrus cloud mid-cloud temperature and geometrical thickness are generally similar to the results derived from the ground-based lidar. However, the difference in macrophysical parameter variability shows the limits of space-borne-lidar and dissimilarities in regional climate variability and the nature and source of cloud nuclei in different geographical regions.

  2. Ground-based observations of aerosol-cloud interactions in the North East of the United States

    NASA Astrophysics Data System (ADS)

    Li, S.; Joseph, E.; Min, Q.

    2015-12-01

    Five years ground-based observations (2006 to 2010) of aerosol and cloud properties derived from passive radiometric sensors deployed at an atmospheric measurement field station in the Baltimore-Washington corridor operated by Howard University were used to examine aerosol indirect effect on cloud optical depth (COD), liquid water path (LWP), cloud droplet effective radius (Re) and cloud droplet number concentration (Nd). A higher frequency of clouds with small Re (<7µm) was found during summer of 2006 and 2007 along with higher frequency of abundant aerosol loading (AOD>0.5). The five-year data are screened for summer boundary layer clouds only and are separated into clean and polluted cases based on aerosol particulate matter with aerodynamic diameter≤2.5µm (PM2.5) value. Evidence of aerosol indirect effect on cloud microphysics is found where for the polluted cases the mean (and median) values of Nd distributions were elevated while the mean (and median) values of Re were decreased as compared to those for the clean cases under various LWP ranges. Relatively, the aerosol indirect effects on modifying cloud microphysical properties are found more significant with large LWP than with small LWP.

  3. Quantification of black carbon mixing state from traffic: Implications for aerosol optical properties

    DOE PAGES

    Willis, Megan D.; Healy, Robert M.; Riemer, Nicole; ...

    2016-04-14

    The climatic impacts of black carbon (BC) aerosol, an important absorber of solar radiation in the atmosphere, remain poorly constrained and are intimately related to its particle-scale physical and chemical properties. Using particle-resolved modelling informed by quantitative measurements from a soot-particle aerosol mass spectrometer, we confirm that the mixing state (the distribution of co-emitted aerosol amongst fresh BC-containing particles) at the time of emission significantly affects BC-aerosol optical properties even after a day of atmospheric processing. Both single particle and ensemble aerosol mass spectrometry observations indicate that BC near the point of emission co-exists with hydrocarbon-like organic aerosol (HOA) inmore » two distinct particle types: HOA-rich and BC-rich particles. The average mass fraction of black carbon in HOA-rich and BC-rich particle classes was < 0.1 and 0.8, respectively. Notably, approximately 90 % of BC mass resides in BC-rich particles. This new measurement capability provides quantitative insight into the physical and chemical nature of BC-containing particles and is used to drive a particle-resolved aerosol box model. Lastly, significant differences in calculated single scattering albedo (an increase of 0.1) arise from accurate treatment of initial particle mixing state as compared to the assumption of uniform aerosol composition at the point of BC injection into the atmosphere.« less

  4. Global volcanic aerosol properties derived from emissions, 1990-2014, using CESM1(WACCM)

    NASA Astrophysics Data System (ADS)

    Mills, Michael J.; Schmidt, Anja; Easter, Richard; Solomon, Susan; Kinnison, Douglas E.; Ghan, Steven J.; Neely, Ryan R.; Marsh, Daniel R.; Conley, Andrew; Bardeen, Charles G.; Gettelman, Andrew

    2016-03-01

    Accurate representation of global stratospheric aerosols from volcanic and nonvolcanic sulfur emissions is key to understanding the cooling effects and ozone losses that may be linked to volcanic activity. Attribution of climate variability to volcanic activity is of particular interest in relation to the post-2000 slowing in the rate of global average temperature increases. We have compiled a database of volcanic SO2 emissions and plume altitudes for eruptions from 1990 to 2014 and developed a new prognostic capability for simulating stratospheric sulfate aerosols in the Community Earth System Model. We used these combined with other nonvolcanic emissions of sulfur sources to reconstruct global aerosol properties from 1990 to 2014. Our calculations show remarkable agreement with ground-based lidar observations of stratospheric aerosol optical depth (SAOD) and with in situ measurements of stratospheric aerosol surface area density (SAD). These properties are key parameters in calculating the radiative and chemical effects of stratospheric aerosols. Our SAOD calculations represent a clear improvement over available satellite-based analyses, which generally ignore aerosol extinction below 15 km, a region that can contain the vast majority of stratospheric aerosol extinction at middle and high latitudes. Our SAD calculations greatly improve on that provided for the Chemistry-Climate Model Initiative, which misses about 60% of the SAD measured in situ on average during both volcanically active and volcanically quiescent periods.

  5. Fog and Cloud Induced Aerosol Modification Observed by AERONET

    NASA Technical Reports Server (NTRS)

    Eck, T. F.; Holben, B. N.; Reid, J. S.; Giles, D. M.; Rivas, M. A.; Singh, R. P.; Tripathi, S. N.; Bruegge, C. J.; Platnick, S. E.; Arnold, G. T.; hide

    2011-01-01

    Large fine mode (sub-micron radius) dominated aerosols in size distributions retrieved from AERONET have been observed after fog or low-altitude cloud dissipation events. These column-integrated size distributions have been obtained at several sites in many regions of the world, typically after evaporation of low altitude cloud such as stratocumulus or fog. Retrievals with cloud processed aerosol are sometimes bimodal in the accumulation mode with the larger size mode often approx.0.4 - 0.5 microns radius (volume distribution); the smaller mode typically approx.0.12 to aprrox.0.20 microns may be interstitial aerosol that were not modified by incorporation in droplets and/or aerosol that are less hygroscopic in nature. Bimodal accumulation mode size distributions have often been observed from in situ measurements of aerosols that have interacted with clouds, and AERONET size distribution retrievals made after dissipation of cloud or fog are in good agreement with particle sizes measured by in situ techniques for cloud-processed aerosols. Aerosols of this type and large size range (in lower concentrations) may also be formed by cloud processing in partly cloudy conditions and may contribute to the shoulder of larger size particles in the accumulation mode retrievals, especially in regions where sulfate and other soluble aerosol are a significant component of the total aerosol composition. Observed trends of increasing aerosol optical depth (AOD) as fine mode radius increased suggests higher AOD in the near cloud environment and therefore greater aerosol direct radiative forcing than typically obtained from remote sensing, due to bias towards sampling at low cloud fraction.

  6. Assessment of the improvements in accuracy of aerosol characterization resulted from additions of polarimetric measurements to intensity-only observations using GRASP algorithm (Invited)

    NASA Astrophysics Data System (ADS)

    Dubovik, O.; Litvinov, P.; Lapyonok, T.; Herman, M.; Fedorenko, A.; Lopatin, A.; Goloub, P.; Ducos, F.; Aspetsberger, M.; Planer, W.; Federspiel, C.

    2013-12-01

    During last few years we were developing GRASP (Generalized Retrieval of Aerosol and Surface Properties) algorithm designed for the enhanced characterization of aerosol properties from spectral, multi-angular polarimetric remote sensing observations. The concept of GRASP essentially relies on the accumulated positive research heritage from previous remote sensing aerosol retrieval developments, in particular those from the AERONET and POLDER retrieval activities. The details of the algorithm are described by Dubovik et al. (Atmos. Meas. Tech., 4, 975-1018, 2011). The GRASP retrieves properties of both aerosol and land surface reflectance in cloud-free environments. It is based on highly advanced statistically optimized fitting and deduces nearly 50 unknowns for each observed site. The algorithm derives a similar set of aerosol parameters as AERONET including detailed particle size distribution, the spectrally dependent the complex index of refraction and the fraction of non-spherical particles. The algorithm uses detailed aerosol and surface models and fully accounts for all multiple interactions of scattered solar light with aerosol, gases and the underlying surface. All calculations are done on-line without using traditional look-up tables. In addition, the algorithm uses the new multi-pixel retrieval concept - a simultaneous fitting of a large group of pixels with additional constraints limiting the time variability of surface properties and spatial variability of aerosol properties. This principle is expected to result in higher consistency and accuracy of aerosol products compare to conventional approaches especially over bright surfaces where information content of satellite observations in respect to aerosol properties is limited. The GRASP is a highly versatile algorithm that allows input from both satellite and ground-based measurements. It also has essential flexibility in measurement processing. For example, if observation data set includes spectral

  7. Estimates of the aerosol indirect effect over the Baltic Sea region derived from 12 years of MODIS observations

    NASA Astrophysics Data System (ADS)

    Saponaro, Giulia; Kolmonen, Pekka; Sogacheva, Larisa; Rodriguez, Edith; Virtanen, Timo; de Leeuw, Gerrit

    2017-02-01

    Retrieved from the Moderate Resolution Imaging Spectroradiometer (MODIS) on-board the Aqua satellite, 12 years (2003-2014) of aerosol and cloud properties were used to statistically quantify aerosol-cloud interaction (ACI) over the Baltic Sea region, including the relatively clean Fennoscandia and the more polluted central-eastern Europe. These areas allowed us to study the effects of different aerosol types and concentrations on macro- and microphysical properties of clouds: cloud effective radius (CER), cloud fraction (CF), cloud optical thickness (COT), cloud liquid water path (LWP) and cloud-top height (CTH). Aerosol properties used are aerosol optical depth (AOD), Ångström exponent (AE) and aerosol index (AI). The study was limited to low-level water clouds in the summer. The vertical distributions of the relationships between cloud properties and aerosols show an effect of aerosols on low-level water clouds. CF, COT, LWP and CTH tend to increase with aerosol loading, indicating changes in the cloud structure, while the effective radius of cloud droplets decreases. The ACI is larger at relatively low cloud-top levels, between 900 and 700 hPa. Most of the studied cloud variables were unaffected by the lower-tropospheric stability (LTS), except for the cloud fraction. The spatial distribution of aerosol and cloud parameters and ACI, here defined as the change in CER as a function of aerosol concentration for a fixed LWP, shows positive and statistically significant ACI over the Baltic Sea and Fennoscandia, with the former having the largest values. Small negative ACI values are observed in central-eastern Europe, suggesting that large aerosol concentrations saturate the ACI.

  8. Aerosols, clouds, and precipitation in the North Atlantic trades observed during the Barbados aerosol cloud experiment - Part 1: Distributions and variability

    NASA Astrophysics Data System (ADS)

    Jung, Eunsil; Albrecht, Bruce A.; Feingold, Graham; Jonsson, Haflidi H.; Chuang, Patrick; Donaher, Shaunna L.

    2016-07-01

    Shallow marine cumulus clouds are by far the most frequently observed cloud type over the Earth's oceans; but they are poorly understood and have not been investigated as extensively as stratocumulus clouds. This study describes and discusses the properties and variations of aerosol, cloud, and precipitation associated with shallow marine cumulus clouds observed in the North Atlantic trades during a field campaign (Barbados Aerosol Cloud Experiment- BACEX, March-April 2010), which took place off Barbados where African dust periodically affects the region. The principal observing platform was the Center for Interdisciplinary Remotely Piloted Aircraft Studies (CIRPAS) Twin Otter (TO) research aircraft, which was equipped with standard meteorological instruments, a zenith pointing cloud radar and probes that measured aerosol, cloud, and precipitation characteristics.The temporal variation and vertical distribution of aerosols observed from the 15 flights, which included the most intense African dust event during all of 2010 in Barbados, showed a wide range of aerosol conditions. During dusty periods, aerosol concentrations increased substantially in the size range between 0.5 and 10 µm (diameter), particles that are large enough to be effective giant cloud condensation nuclei (CCN). The 10-day back trajectories showed three distinct air masses with distinct vertical structures associated with air masses originating in the Atlantic (typical maritime air mass with relatively low aerosol concentrations in the marine boundary layer), Africa (Saharan air layer), and mid-latitudes (continental pollution plumes). Despite the large differences in the total mass loading and the origin of the aerosols, the overall shapes of the aerosol particle size distributions were consistent, with the exception of the transition period.The TO was able to sample many clouds at various phases of growth. Maximum cloud depth observed was less than ˜ 3 km, while most clouds were less than 1 km

  9. LOCAL AIR: Local Aerosol monitoring combining in-situ and Remote Sensing observations

    NASA Astrophysics Data System (ADS)

    Mona, Lucia; Caggiano, Rosa; Donvito, Angelo; Giannini, Vincenzo; Papagiannopoulos, Nikolaos; Sarli, Valentina; Trippetta, Serena

    2015-04-01

    The atmospheric aerosols have effects on climate, environment and health. Although the importance of the study of aerosols is well recognized, the current knowledge of the characteristics and their distribution is still insufficient, and there are large uncertainties in the current understanding of the role of aerosols on climate and the environment, both on a regional and local level. Overcoming these uncertainties requires a search strategy that integrates data from multiple platforms (eg, terrestrial, satellite, ships and planes) and the different acquisition techniques (for example, in situ measurements, remote sensing, modeling numerical and data assimilation) (Yu et al., 2006). To this end, in recent years, there have been many efforts such as the creation of networks dedicated to systematic observation of aerosols (eg, European Monitoring and Evaluation Programme-EMEP, European Aerosol Research Lidar NETwork-EARLINET, MicroPulse Lidar Network- MPLNET, and Aerosol Robotic NETwork-AERONET), the development and implementation of new satellite sensors and improvement of numerical models. The recent availability of numerous data to the ground, columnar and profiles of aerosols allows to investigate these aspects. An integrated approach between these different techniques could be able to provide additional information, providing greater insight into the properties of aerosols and their distribution and overcoming the limits of each single technique. In fact, the ground measurements allow direct determination of the physico-chemical properties of aerosols, but cannot be considered representative for large spatial and temporal scales and do not provide any information about the vertical profile of aerosols. On the other hand, the remote sensing techniques from the ground and satellite provide information on the vertical distribution of atmospheric aerosols both in the Planetary Boundary Layer (PBL), mainly characterized by the presence of aerosols originating from

  10. Volatility Properties of Internally- and Externally-Mixed Ambient Aerosols at an Anthropogenically-influenced Forest Site in Southeastern USA

    NASA Astrophysics Data System (ADS)

    Khlystov, A.; Subramanian, R.

    2015-12-01

    Secondary organic aerosol (SOA) from biogenic sources has a significant contribution to ambient aerosol loadings in Southeastern USA and thus contributes to adverse health effects of air pollution and influences regional and global climate. Volatility properties of biogenic SOA determine its concentration, reactivity, and lifetime, but are still largely unknown. As part of a larger study to assess the effect of biogenic SOA on aerosol optical properties, a set of instruments, including scanning mobility sizers (SMPS), single particle soot photometer (SP2), and a thermodenuder, was deployed during June 2015 at a Duke Forest site near Chapel Hill, NC. The site is characterized by a significant contribution of both biogenic and urban (mostly traffic) sources. Measurements of changes in aerosol volume and optical size upon heating in the thermodenuder at different temperatures are used to derive volatility properties of the ambient aerosol. A limited set of experiments was carried out using the tandem differential mobility analysis (TDMA) approach to investigate whether the ambient aerosol at the Duke Forest site is internally mixed with respect to its volatility properties. In this presentation we will discuss equilibrium and kinetic aspects of aerosol volatility observed during this study and implications of external vs. internal mixing for derivation of bulk volatility properties of ambient aerosol.

  11. Global Observations of Aerosols and Clouds from Combined Lidar and Passive Instruments to Improve Radiation Budget and Climate Studies

    NASA Technical Reports Server (NTRS)

    Winker, David M.

    1999-01-01

    Current uncertainties in the effects of clouds and aerosols on the Earth radiation budget limit our understanding of the climate system and the potential for global climate change. Pathfinder Instruments for Cloud and Aerosol Spaceborne Observations - Climatologie Etendue des Nuages et des Aerosols (PICASSO-CENA) is a recently approved satellite mission within NASA's Earth System Science Pathfinder (ESSP) program which will address these uncertainties with a unique suite of active and passive instruments. The Lidar In-space Technology Experiment (LITE) demonstrated the potential benefits of space lidar for studies of clouds and aerosols. PICASSO-CENA builds on this experience with a payload consisting of a two-wavelength polarization-sensitive lidar, an oxygen A-band spectrometer (ABS), an imaging infrared radiometer (IIR), and a wide field camera (WFC). Data from these instruments will be used to measure the vertical distributions of aerosols and clouds in the atmosphere, as well as optical and physical properties of aerosols and clouds which influence the Earth radiation budget. PICASSO-CENA will be flown in formation with the PM satellite of the NASA Earth Observing System (EOS) to provide a comprehensive suite of coincident measurements of atmospheric state, aerosol and cloud optical properties, and radiative fluxes. The mission will address critical uncertainties iin the direct radiative forcing of aerosols and clouds as well as aerosol influences on cloud radiative properties and cloud-climate radiation feedbacks. PICASSO-CENA is planned for a three year mission, with a launch in early 2003. PICASSO-CENA is being developed within the framework of a collaboration between NASA and CNES.

  12. Evaluation of applicability of high-resolution multiangle imaging photo-polarimetric observations for aerosol atmospheric correction

    NASA Astrophysics Data System (ADS)

    Kalashnikova, Olga; Garay, Michael; Xu, Feng; Diner, David; Seidel, Felix

    2016-07-01

    Multiangle spectro-polarimetric measurements have been advocated as an additional tool for better understanding and quantifying the aerosol properties needed for atmospheric correction for ocean color retrievals. The central concern of this work is the assessment of the effects of absorbing aerosol properties on remote sensing reflectance measurement uncertainty caused by neglecting UV-enhanced absorption of carbonaceous particles and by not accounting for dust nonsphericity. In addition, we evaluate the polarimetric sensitivity of absorbing aerosol properties in light of measurement uncertainties achievable for the next generation of multi-angle polarimetric imaging instruments, and demonstrate advantages and disadvantages of wavelength selection in the UV/VNIR range. In this work a vector Markov Chain radiative transfer code including bio-optical models was used to quantitatively evaluate in water leaving radiances between atmospheres containing realistic UV-enhanced and non-spherical aerosols and the SEADAS carbonaceous and dust-like aerosol models. The phase matrices for the spherical smoke particles were calculated using a standard Mie code, while those for non-spherical dust particles were calculated using the numerical approach developed for modeling dust for the AERONET network of ground-based sunphotometers. As a next step, we have developed a retrieval code that employs a coupled Markov Chain (MC) and adding/doubling radiative transfer method for joint retrieval of aerosol properties and water leaving radiance from Airborne Multiangle SpectroPolarimetric Imager-1 (AirMSPI-1) polarimetric observations. The AirMSPI-1 instrument has been flying aboard the NASA ER-2 high altitude aircraft since October 2010. AirMSPI typically acquires observations of a target area at 9 view angles between ±67° at 10 m resolution. AirMSPI spectral channels are centered at 355, 380, 445, 470, 555, 660, and 865 nm, with 470, 660, and 865 reporting linear polarization. We

  13. Global Aerosol Optical Models and Lookup Tables for the New MODIS Aerosol Retrieval over Land

    NASA Technical Reports Server (NTRS)

    Levy, Robert C.; Remer, Loraine A.; Dubovik, Oleg

    2007-01-01

    Since 2000, MODIS has been deriving aerosol properties over land from MODIS observed spectral reflectance, by matching the observed reflectance with that simulated for selected aerosol optical models, aerosol loadings, wavelengths and geometrical conditions (that are contained in a lookup table or 'LUT'). Validation exercises have showed that MODIS tends to under-predict aerosol optical depth (tau) in cases of large tau (tau greater than 1.0), signaling errors in the assumed aerosol optical properties. Using the climatology of almucantur retrievals from the hundreds of global AERONET sunphotometer sites, we found that three spherical-derived models (describing fine-sized dominated aerosol), and one spheroid-derived model (describing coarse-sized dominated aerosol, presumably dust) generally described the range of observed global aerosol properties. The fine dominated models were separated mainly by their single scattering albedo (omega(sub 0)), ranging from non-absorbing aerosol (omega(sub 0) approx. 0.95) in developed urban/industrial regions, to neutrally absorbing aerosol (omega(sub 0) approx.90) in forest fire burning and developing industrial regions, to absorbing aerosol (omega(sub 0) approx. 0.85) in regions of savanna/grassland burning. We determined the dominant model type in each region and season, to create a 1 deg. x 1 deg. grid of assumed aerosol type. We used vector radiative transfer code to create a new LUT, simulating the four aerosol models, in four MODIS channels. Independent AERONET observations of spectral tau agree with the new models, indicating that the new models are suitable for use by the MODIS aerosol retrieval.

  14. Studying aerosol light scattering based on aspect ratio distribution observed by fluorescence microscope.

    PubMed

    Li, Li; Zheng, Xu; Li, Zhengqiang; Li, Zhanhua; Dubovik, Oleg; Chen, Xingfeng; Wendisch, Manfred

    2017-08-07

    Particle shape is crucial to the properties of light scattered by atmospheric aerosol particles. A method of fluorescence microscopy direct observation was introduced to determine the aspect ratio distribution of aerosol particles. The result is comparable with that of the electron microscopic analysis. The measured aspect ratio distribution has been successfully applied in modeling light scattering and further in simulation of polarization measurements of the sun/sky radiometer. These efforts are expected to improve shape retrieval from skylight polarization by using directly measured aspect ratio distribution.

  15. Physical properties of the stratospheric aerosols

    NASA Technical Reports Server (NTRS)

    Toon, O. B.; Pollack, J. B.

    1973-01-01

    A comparison of the equilibrium vapor pressure over nitric acid solutions with observed water and nitric acid partial pressures in the stratosphere implies that nitric acid cannot be present as an aerosol particle in the lower stratosphere. A similar comparison for sulfuric acid solutions indicates that sulfuric acid aerosol particles are 75% H2SO4 by weight in water, in good agreement with direct observations. The freezing curve of H2SO4 solutions requires that the H2SO4 aerosol particles be solid or supercooled. The equilibrium vapor pressure of H2SO4 in the stratosphere is of the order of 20 picotorr. At stratospheric temperatures, ammonium sulfate is in a ferroelectric phase. As a result, polar molecules may form a surface coating on these aerosols, which may be a fertile ground for further chemical reaction.

  16. Aerosol optical properties variability during biomass burning events observed by the eole-aias depolarization lidars over Athens, Greece (2007-2016)

    NASA Astrophysics Data System (ADS)

    Mylonaki, Maria; Papayannis, Alexandros; Mamouri, Rodanthi; Argyrouli, Athina; Kokkalis, Panagiotis; Tsaknakis, Georgios; Soupiona, Ourania

    2018-04-01

    The EOLE multi-wavelength aerosol Ramandepolarization lidar, and the AIAS depolarization lidar, in synergy with a sun photometer (CIMEL), were used, in the period 2007-2016, to provide the vertical profiles of the aerosol optical properties over Athens, Greece. More than 30 biomass burning events (fresh and aged smoke particles) were observed, with smoke layers between 1.5 up to 4-5 km height, while their duration ranged from 1-3 days. Lidar ratio (LR) values ranged from 40-105 sr (at 355 nm) and from 40-100 sr (at 532 nm), while the linear particle depolarization ratio (LPDR) at both 355 and 532 nm, remained <7%. The extinction-related Ångström exponent (AEa) at 355 nm/532 nm) ranged from 0.3 to 2.1. Additionally, a case of a near-range transport of biomass burning aerosols arriving over Athens up to 4 km height, between 27 and 28 June 2016, was studied. For this case, we found LRs of the order of 70±5 sr (355 nm) and 65±15 sr (532 nm) and AEa(355 nm/532 nm) around 1.

  17. Optical properties and source analysis of aerosols over a desert area in Dunhuang, Northwest china

    NASA Astrophysics Data System (ADS)

    Ma, Yongjing; Xin, Jinyuan; Ma, Yining; Kong, Lingbin; Zhang, Kequan; Zhang, Wenyu; Wang, Yuesi; Wang, Xiuqin; Zhu, Yongfeng

    2017-08-01

    Aerosol observational data for 2012 obtained from Dunhuang Station of CARE-China (Campaign on Atmospheric Aerosol Research Network of China) were analyzed to achieve in-depth knowledge of aerosol optical properties over Dunhuang region. The results showed that the annual average aerosol optical depth (AOD) at 500 nm was 0.32±0.06, and the Ångström exponent ( α) was 0.73 ± 0.27. Aerosol optical properties revealed significant seasonal characteristics. Frequent sandstorms in MAM (March-April-May) resulted in the seasonal maximum AOD, 0.41 ± 0.04, and a relatively smaller α value, 0.44±0.04. The tourism seasons, JJA (June-July-August) and SON (September-October-November) coincide with serious emissions of small anthropogenic aerosols. While in DJF (December-January-February), the composition of the atmosphere was a mixture of dust particles and polluted aerosols released by domestic heating; the average AOD and α were 0.29 ± 0.02 and 0.66 ± 0.17, respectively. Different air masses exhibited different degrees of influence on the aerosol concentration over Dunhuang in different seasons. During MAM, ranges of AOD (0.11-1.18) and α (0.06-0.82) were the largest under the dust influence of northwest-short-distance air mass in the four trajectories. Urban aerosols transported by northwest-short-distance air mass accounted for a very large proportion in JJA and the mixed aerosols observed in SON were mainly conveyed by air masses from the west. In DJF, the similar ranges of AOD and α under the three air mass demonstrated the analogous diffusion effects on regional pollutants over Dunhuang.

  18. A Compact Airborne High Spectral Resolution Lidar for Observations of Aerosol and Cloud Optical Properties

    NASA Technical Reports Server (NTRS)

    Hostetler, Chris A.; Hair, John W.; Cook, Anthony L.

    2002-01-01

    We are in the process of developing a nadir-viewing, aircraft-based high spectral resolution lidar (HSRL) at NASA Langley Research Center. The system is designed to measure backscatter and extinction of aerosols and tenuous clouds. The primary uses of the instrument will be to validate spaceborne aerosol and cloud observations, carry out regional process studies, and assess the predictions of chemical transport models. In this paper, we provide an overview of the instrument design and present the results of simulations showing the instrument's capability to accurately measure extinction and extinction-to-backscatter ratio.

  19. Overview of ACE-Asia Spring 2001 Investigations on Aerosol Radiative Effects and Related Aerosol Properties

    NASA Technical Reports Server (NTRS)

    Russell, Philip B.; Valero, F. P. J.; Flatau, P. J.; Bergin, M.; Holben, B.; Nakajima, T.; Pilewskie, P.; Bergstrom, R.; Hipskind, R. Stephen (Technical Monitor)

    2001-01-01

    A primary, ACE-Asia objective was to quantify the interactions between aerosols and radiation in the Asia-Pacific region. Toward this end, radiometric and related aerosol measurements were made from ocean, land, air and space platforms. Models that predict aerosol fields guided the measurements and are helping integrate and interpret results. Companion overview's survey these measurement and modeling components. Here we illustrate how these components were combined to determine aerosol radiative. impacts and their relation to aerosol properties. Because clouds can obscure or change aerosol direct radiative effects, aircraft and ship sorties to measure these effects depended on predicting and finding cloud-free areas and times with interesting aerosols present. Pre-experiment satellite cloud climatologies, pre-flight aerosol and cloud forecasts, and in-flight guidance from satellite imagery all helped achieve this. Assessments of aerosol regional radiative impacts benefit from the spatiotemporal coverage of satellites, provided satellite-retrieved aerosol properties are accurate. Therefore, ACE-Asia included satellite retrieval tests, as part of many comparisons to judge the consistency (closure) among, diverse measurements. Early results include: (1) Solar spectrally resolved and broadband irradiances and optical depth measurements from the C-130 aircraft and at Kosan, Korea yielded aerosol radiative forcing efficiencies, permitting comparisons between efficiencies of ACE-Asia and INDOEX aerosols, and between dust and "pollution" aerosols. Detailed results will be presented in separate papers. (2) Based on measurements of wavelength dependent aerosol optical depth (AOD) and single scattering albedo the estimated 24-h a average aerosol radiative forcing efficiency at the surface for photosynthetically active radiation (400 - 700 nm) in Yulin, China is approx. 30 W sq m per AOD(500 nm). (3) The R/V Brown cruise from Honolulu to Sea of Japan sampled an aerosol optical

  20. Simulation of the Ozone Monitoring Instrument Aerosol Index Using the NASA Goddard Earth Observing System Aerosol Reanalysis Products

    NASA Technical Reports Server (NTRS)

    Colarco, Peter R.; Gasso, Santiago; Ahn, Changwoo; Buchard, Virginie; Da Silva, Arlindo M.; Torres, Omar

    2017-01-01

    We provide an analysis of the commonly used Ozone Monitoring Instrument (OMI) aerosol index (AI) product for qualitative detection of the presence and loading of absorbing aerosols. In our analysis, simulated top-of-atmosphere (TOA) radiances are produced at the OMI footprints from a model atmosphere and aerosol profile provided by the NASA Goddard Earth Observing System (GEOS-5) Modern-Era Retrospective Analysis for Research and Applications aerosol reanalysis (MERRAero). Having established the credibility of the MERRAero simulation of the OMI AI in a previous paper we describe updates in the approach and aerosol optical property assumptions. The OMI TOA radiances are computed in cloud-free conditions from the MERRAero atmospheric state, and the AI is calculated. The simulated TOA radiances are fed to the OMI aerosol retrieval algorithms, and its retrieved AI (OMAERUV AI) is compared to the MERRAero calculated AI. Two main sources of discrepancy are discussed: one pertaining the OMI algorithm assumptions of the surface pressure, which are generally different from what the actual surface pressure of an observation is, and the other related to simplifying assumptions in the molecular atmosphere radiative transfer used in the OMI algorithms. Surface pressure assumptions lead to systematic biases in the OMAERUV AI, particularly over the oceans. Simplifications in the molecular radiative transfer lead to biases particularly in regions of topography intermediate to surface pressures of 600hPa and 1013.25hPa. Generally, the errors in the OMI AI due to these considerations are less than 0.2 in magnitude, though larger errors are possible, particularly over land. We recommend that future versions of the OMI algorithms use surface pressures from readily available atmospheric analyses combined with high-spatial resolution topographic maps and include more surface pressure nodal points in their radiative transfer lookup tables.

  1. Simulation of the Ozone Monitoring Instrument aerosol index using the NASA Goddard Earth Observing System aerosol reanalysis products

    NASA Astrophysics Data System (ADS)

    Colarco, Peter R.; Gassó, Santiago; Ahn, Changwoo; Buchard, Virginie; da Silva, Arlindo M.; Torres, Omar

    2017-11-01

    We provide an analysis of the commonly used Ozone Monitoring Instrument (OMI) aerosol index (AI) product for qualitative detection of the presence and loading of absorbing aerosols. In our analysis, simulated top-of-atmosphere (TOA) radiances are produced at the OMI footprints from a model atmosphere and aerosol profile provided by the NASA Goddard Earth Observing System (GEOS-5) Modern-Era Retrospective Analysis for Research and Applications aerosol reanalysis (MERRAero). Having established the credibility of the MERRAero simulation of the OMI AI in a previous paper we describe updates in the approach and aerosol optical property assumptions. The OMI TOA radiances are computed in cloud-free conditions from the MERRAero atmospheric state, and the AI is calculated. The simulated TOA radiances are fed to the OMI near-UV aerosol retrieval algorithms (known as OMAERUV) is compared to the MERRAero calculated AI. Two main sources of discrepancy are discussed: one pertaining to the OMI algorithm assumptions of the surface pressure, which are generally different from what the actual surface pressure of an observation is, and the other related to simplifying assumptions in the molecular atmosphere radiative transfer used in the OMI algorithms. Surface pressure assumptions lead to systematic biases in the OMAERUV AI, particularly over the oceans. Simplifications in the molecular radiative transfer lead to biases particularly in regions of topography intermediate to surface pressures of 600 and 1013.25 hPa. Generally, the errors in the OMI AI due to these considerations are less than 0.2 in magnitude, though larger errors are possible, particularly over land. We recommend that future versions of the OMI algorithms use surface pressures from readily available atmospheric analyses combined with high-spatial-resolution topographic maps and include more surface pressure nodal points in their radiative transfer lookup tables.

  2. Physical and chemical properties of aerosols at a coastal site Paposo (Chile) during VOCALS campaign

    NASA Astrophysics Data System (ADS)

    Cordova, A. M.; Chand, D.; Wood, R.; Wallace, D.; Hegg, D. A.; Shaw, G. E.; Krejci, R.; Fochesatto, G. J.; Gallardo, L.

    2009-12-01

    One of the primary goals of the VOCALS (VAMOS* Ocean-Cloud-Atmosphere-Land Study) Regional Experiment (REx) and associated modeling program is an improved understanding of aerosol indirect effects over the southeast Pacific (SEP). Details on the program are available online at www.eol.ucar.edu/projects/vocals/. To this end, detailed aerosol physical and chemical measurements were made during REx at a coastal land site at Paposo (25o 0.4' S, 70o 27.011' W, 690 masl) in northern Chile, a site ideally positioned for studying continental aerosol sources advecting over the SEP. We present initial analysis of data from Paposo. Detailed measurements of aerosol properties were made from mid October to mid November 2008. Observations from optical particle counters (OPC), nephelometers, aethalometer, scanning mobility particle sizer (SMPS) and the chemical analysis of the submicron aerosols samples collected on teflon filters are being used in this study. Large variations in aerosols parameters were observed which corresponded with changes in meteorology, as determined using trajectory analysis. Ion Chromatograph (IC) analysis of submicron aerosol samples shows that about 41% of submicron mass is sulfate. The light scattering coefficient shows a strong non-linear correlation with aerosol size observed using an OPC. Detailed results will be presented in the AGU meeting.

  3. Investigation of the seasonal variations of aerosol physicochemical properties and their impact on cloud condensation nuclei number concentration

    NASA Astrophysics Data System (ADS)

    Logan, Timothy S.

    Aerosols are among the most complex yet widely studied components of the atmosphere not only due to the seasonal variability of their physical and chemical properties but also their effects on climate change. The three main aerosol types that are known to affect the physics and chemistry of the atmosphere are: mineral dust, anthropogenic pollution, and biomass burning aerosols. In order to understand how these aerosols affect the atmosphere, this dissertation addresses the following three scientific questions through a combination of surface and satellite observations: SQ1: What are the seasonal and regional variations of aerosol physico-chemical properties at four selected Asian sites? SQ2: How do these aerosol properties change during transpacific and intra-continental long range transport? SQ3: What are the impacts of aerosol properties on marine boundary layer cloud condensation nuclei number concentration? This dissertation uses an innovative approach to classify aerosol properties by region and season to address SQ1. This is useful because this method provides an additional dimension when investigating the physico-chemical properties of aerosols by linking a regional and seasonal dependence to both the aerosol direct and indirect effects. This method involves isolating the aerosol physico-chemical properties into four separate regions using AERONET retrieved Angstrom exponent (AEAOD) and single scattering co-albedo (o oabs) to denote aerosol size and absorptive properties. The aerosols events are then clustered by season. The method is first applied to four AERONET sites representing single mode aerosol dominant regions: weakly absorbing pollution (NASA Goddard), strongly absorbing pollution (Mexico City), mineral dust (Solar Village), and biomass burning smoke (Alta Floresta). The method is then applied to four Asian sites that represent complicated aerosol components. There are strong regional and seasonal influences of the four aerosol types over the

  4. Statistically Optimized Inversion Algorithm for Enhanced Retrieval of Aerosol Properties from Spectral Multi-Angle Polarimetric Satellite Observations

    NASA Technical Reports Server (NTRS)

    Dubovik, O; Herman, M.; Holdak, A.; Lapyonok, T.; Taure, D.; Deuze, J. L.; Ducos, F.; Sinyuk, A.

    2011-01-01

    The proposed development is an attempt to enhance aerosol retrieval by emphasizing statistical optimization in inversion of advanced satellite observations. This optimization concept improves retrieval accuracy relying on the knowledge of measurement error distribution. Efficient application of such optimization requires pronounced data redundancy (excess of the measurements number over number of unknowns) that is not common in satellite observations. The POLDER imager on board the PARASOL microsatellite registers spectral polarimetric characteristics of the reflected atmospheric radiation at up to 16 viewing directions over each observed pixel. The completeness of such observations is notably higher than for most currently operating passive satellite aerosol sensors. This provides an opportunity for profound utilization of statistical optimization principles in satellite data inversion. The proposed retrieval scheme is designed as statistically optimized multi-variable fitting of all available angular observations obtained by the POLDER sensor in the window spectral channels where absorption by gas is minimal. The total number of such observations by PARASOL always exceeds a hundred over each pixel and the statistical optimization concept promises to be efficient even if the algorithm retrieves several tens of aerosol parameters. Based on this idea, the proposed algorithm uses a large number of unknowns and is aimed at retrieval of extended set of parameters affecting measured radiation.

  5. Effects of increasing aerosol on regional climate change in China: Observation and modeling

    NASA Astrophysics Data System (ADS)

    Qian, Y.; Leung, L.; Ghan, S. J.

    2002-12-01

    We present regional simulations of climate, aerosol properties, and direct radiative forcing and climatic effects of aerosol and analyze the pollutant emissions and observed climatic data during the latter decades of last century in China. The regional model generally captures the spatial distributions and seasonal pattern of temperature and precipitation. Aerosol extinction coefficient and aerosol optical depth are generally well simulated in both magnitude and spatial distribution, which provides a reliable foundation for estimating the radiative forcing and climatic effects of aerosol. The radiative forcing of aerosol is in the range of -1 to -14 W m-2 in autumn and summer and -1 to -9 W m-2 in spring and winter, with substantial spatial variability at the sub-regional scale. A strong maximum in negative radiative forcing corresponding to the maximum optical depth is found over the Sichuan Basin, where emission as well as relative humidity are high, and stagnant atmospheric conditions inhibit pollutants dispersion. Negative radiative forcing of aerosol induces a surface cooling, which is stronger in the range of -0.6 to -1.2oC in autumn and winter than in spring (-0.3 to -0.6oC) and summer (0.0 to -0.9oC) over the Sichuan Basin and East China due to more significant effects of cloud and precipitation in the summer and spring. Aerosol-induced cooling is mainly contributed by cooling in the daytime temperature. The cooling reaches a maximum and is statistically significant in the Sichuan Basin. The effect of aerosol on precipitation is not evident in our simulations. The temporal and spatial patterns of temperature trends observed in the second half of the twentieth century, including the asymmetric daily maximum and minimum temperature trends, are at least qualitatively consistent with the simulated aerosol-induced cooling over the Sichuan Basin and East China. It supports the hypothesis that the observed temperature trends during the latter decades of the

  6. Atmospheric Aerosol Properties and Climate Impacts

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Kahn, Ralph A.; Remer, Lorraine A.; Yu, Hongbin; Rind, David; Feingold, Graham; Quinn, Patricia K.; Schwartz, Stephen E.; Streets, David G.; DeCola, Phillip; hide

    2009-01-01

    This report critically reviews current knowledge about global distributions and properties of atmospheric aerosols, as they relate to aerosol impacts on climate. It assesses possible next steps aimed at substantially reducing uncertainties in aerosol radiative forcing estimates. Current measurement techniques and modeling approaches are summarized, providing context. As a part of the Synthesis and Assessment Product in the Climate Change Science Program, this assessment builds upon recent related assessments, including the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR4, 2007) and other Climate Change Science Program reports. The objectives of this report are (1) to promote a consensus about the knowledge base for climate change decision support, and (2) to provide a synthesis and integration of the current knowledge of the climate-relevant impacts of anthropogenic aerosols for policy makers, policy analysts, and general public, both within and outside the U.S government and worldwide.

  7. Long-term observation of aerosol-cloud relationships in the Mid-Atlantic of the United States

    NASA Astrophysics Data System (ADS)

    Li, S.; Joseph, E.; Min, Q.; Yin, B.

    2014-07-01

    Long-term ground-based observations (2006 to 2010) of aerosol and cloud properties derived from passive radiometric sensors deployed at an atmospheric measurement field station in the Baltimore-Washington corridor operated by Howard University were used to examine aerosol indirect effect on cloud optical depth (COD), liquid water path (LWP), cloud droplets effective radius (Re) and cloud droplets number concentration (Nd). A higher frequency of clouds with large COD (> 20) and small Re (< 7 m) was found during summer of 2006 and 2007 along with higher frequency of abundant aerosol loading. The five-year data are screened for summer months only and are separated into clean and polluted cases based on aerosol particulate matter with aerodynamic diameter ≤ 2.5 m (PM2.5) value. Evidence of aerosol indirect effect is found where for polluted cases the mean and median values of COD and Nd distributions were elevated while the mean and median values of Re were decreased. Further reinforcing this conclusion is the result that the mean and median values of LWP distributions did not show prominent difference between clean and polluted cases, this implies that differences between the two cases of influential factors on cloud properties were relatively controlled. Moreover aerosol indirect effects were found insignificant when LWP was small but significant when LWP was large through the analysis of sensitivity of Nd to LWP under different aerosol loading and the measurements of aerosol size distribution.

  8. Uniwavelength lidar sensitivity to spherical aerosol microphysical properties for the interpretation of Lagrangian stratospheric observations

    NASA Astrophysics Data System (ADS)

    Jumelet, Julien; David, Christine; Bekki, Slimane; Keckhut, Philippe

    2009-01-01

    The determination of stratospheric particle microphysical properties from multiwavelength lidar, including Rayleigh and/or Raman detection, has been widely investigated. However, most lidar systems are uniwavelength operating at 532 nm. Although the information content of such lidar data is too limited to allow the retrieval of the full size distribution, the coupling of two or more uniwavelength lidar measurements probing the same moving air parcel may provide some meaningful size information. Within the ORACLE-O3 IPY project, the coordination of several ground-based lidars and the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) space-borne lidar is planned during measurement campaigns called MATCH-PSC (Polar Stratospheric Clouds). While probing the same moving air masses, the evolution of the measured backscatter coefficient (BC) should reflect the variation of particles microphysical properties. A sensitivity study of 532 nm lidar particle backscatter to variations of particles size distribution parameters is carried out. For simplicity, the particles are assumed to be spherical (liquid) particles and the size distribution is represented with a unimodal log-normal distribution. Each of the four microphysical parameters (i.e. log-normal size distribution parameters, refractive index) are analysed separately, while the three others are remained set to constant reference values. Overall, the BC behaviour is not affected by the initial values taken as references. The total concentration (N0) is the parameter to which BC is least sensitive, whereas it is most sensitive to the refractive index (m). A 2% variation of m induces a 15% variation of the lidar BC, while the uncertainty on the BC retrieval can also reach 15%. This result underlines the importance of having both an accurate lidar inversion method and a good knowledge of the temperature for size distribution retrieval techniques. The standard deviation ([sigma]) is the second

  9. 3D Aerosol-Cloud Radiative Interaction Observed in Collocated MODIS and ASTER Images of Cumulus Cloud Fields

    NASA Technical Reports Server (NTRS)

    Wen, Guoyong; Marshak, Alexander; Cahalan, Robert F.; Remer, Lorraine A.; Kleidman, Richard G.

    2007-01-01

    3D aerosol-cloud interaction is examined by analyzing two images containing cumulus clouds in biomass burning regions in Brazil. The research consists of two parts. The first part focuses on identifying 3D clo ud impacts on the reflectance of pixel selected for the MODIS aerosol retrieval based purely on observations. The second part of the resea rch combines the observations with radiative transfer computations to identify key parameters in 3D aerosol-cloud interaction. We found that 3D cloud-induced enhancement depends on optical properties of nearb y clouds as well as wavelength. The enhancement is too large to be ig nored. Associated biased error in 1D aerosol optical thickness retrie val ranges from 50% to 140% depending on wavelength and optical prope rties of nearby clouds as well as aerosol optical thickness. We caution the community to be prudent when applying 1D approximations in comp uting solar radiation in dear regions adjacent to clouds or when usin g traditional retrieved aerosol optical thickness in aerosol indirect effect research.

  10. Sensitivity of aerosol optical depth, single scattering albedo, and phase function calculations to assumptions on physical and chemical properties of aerosol

    EPA Science Inventory

    In coupled chemistry-meteorology simulations, the calculation of aerosol optical properties is an important task for the inclusion of the aerosol effects on the atmospheric radiative budget. However, the calculation of these properties from an aerosol profile is not uniquely defi...

  11. Vertical Profiles of Light-Absorbing Aerosol: A Combination of In-situ and AERONET Observations during NASA DISCOVER-AQ

    NASA Astrophysics Data System (ADS)

    Ziemba, L. D.; Beyersdorf, A. J.; Chen, G.; Corr, C.; Crumeyrolle, S.; Giles, D. M.; Holben, B. N.; Hudgins, C.; Martin, R.; Moore, R.; Shook, M.; Thornhill, K. L., II; Winstead, E.; Anderson, B. E.

    2014-12-01

    Understanding the vertical profile of atmospheric aerosols plays a vital role in utilizing spaceborne, column-integrated satellite observations. The properties and distribution of light-absorbing aerosol are particularly uncertain despite significant air quality and climate ramifications. Advanced retrieval algorithms are able to derive complex aerosol properties (e.g., wavelength-dependent absorption coefficient and single scattering albedo) from remote-sensing measurements, but quantitative relationships to surface conditions remain a challenge. Highly systematic atmospheric profiling during four unique deployments for the NASA DISCOVER-AQ project (Baltimore, MD, 2011; San Joaquin Valley, CA, 2013; Houston, TX, 2013; Denver, CO, 2014) allow statistical assessment of spatial, temporal, and source-related variability for light-absorbing aerosol properties in these distinct regions. In-situ sampling in conjunction with a dense network of AERONET sensors also allows evaluation of the sensitivity, limitations, and advantages of remote-sensing data products over a wide range of conditions. In-situ aerosol and gas-phase observations were made during DISCOVER-AQ aboard the NASA P-3B aircraft. Aerosol absorption coefficients were measured by a Particle Soot Absorption Photometer (PSAP). Approximately 200 profiles for each of the four deployments were obtained, from the surface (25-300m altitude) to 5 km, and are used to calculate absorption aerosol optical depths (AAODs). These are quantitatively compared to AAOD derived from AERONET Level 1.5 retrievals to 1) explore discrepancies between measurements, 2) quantify the fraction of AAOD that exists directly at the surface and is often missed by airborne sampling, and 3) evaluate the potential for deriving ground-level black carbon (BC) concentrations for air quality prediction. Aerosol size distributions are used to assess absorption contributions from mineral dust, both at the surface and aloft. SP2 (Single Particle Soot

  12. Effects of data assimilation on the global aerosol key optical properties simulations

    NASA Astrophysics Data System (ADS)

    Yin, Xiaomei; Dai, Tie; Schutgens, Nick A. J.; Goto, Daisuke; Nakajima, Teruyuki; Shi, Guangyu

    2016-09-01

    We present the one month results of global aerosol optical properties for April 2006, using the Spectral Radiation Transport Model for Aerosol Species (SPRINTARS) coupled with the Non-hydrostatic ICosahedral Atmospheric Model (NICAM), by assimilating Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol optical depth (AOD) with Local Ensemble Transform Kalman Filter (LETKF). The simulated AOD, Ångström Exponent (AE) and single scattering albedo (SSA) are validated by independent Aerosol Robotic Network (AERONET) observations over the global sites. The data assimilation has the strongest positive effect on the AOD simulation and slight positive influences on the AE and SSA simulations. For the time-averaged globally spatial distribution, the data assimilation increases the model skill score (S) of AOD, AE, and SSA from 0.55, 0.92, and 0.75 to 0.79, 0.94, and 0.80, respectively. Over the North Africa (NAF) and Middle East region where the aerosol composition is simple (mainly dust), the simulated AODs are best improved by the data assimilation, indicating the assimilation correctly modifies the wrong dust burdens caused by the uncertainties of the dust emission parameterization. Assimilation also improves the simulation of the temporal variations of the aerosol optical properties over the AERONET sites, with improved S at 60 (62%), 45 (55%) and 11 (50%) of 97, 82 and 22 sites for AOD, AE and SSA. By analyzing AOD and AE at five selected sites with best S improvement, this study further indicates that the assimilation can reproduce short duration events and ratios between fine and coarse aerosols more accurately.

  13. Aerosol physical properties in the stratosphere (APPS) radiometer design

    NASA Technical Reports Server (NTRS)

    Gray, C. R.; Woodin, E. A.; Anderson, T. J.; Magee, R. J.; Karthas, G. W.

    1977-01-01

    The measurement concepts and radiometer design developed to obtain earth-limb spectral radiance measurements for the Aerosol Physical Properties in the Stratosphere (APPS) measurement program are presented. The measurements made by a radiometer of this design can be inverted to yield vertical profiles of Rayleigh scatterers, ozone, nitrogen dioxide, aerosol extinction, and aerosol physical properties, including a Junge size-distribution parameter, and a real and imaginary index of refraction. The radiometer design provides the capacity for remote sensing of stratospheric constituents from space on platforms such as the space shuttle and satellites, and therefore provides for global measurements on a daily basis.

  14. Resolving the Aerosol Piece of the Global Climate Picture

    NASA Astrophysics Data System (ADS)

    Kahn, R. A.

    2017-12-01

    Factors affecting our ability to calculate climate forcing and estimate model predictive skill include direct radiative effects of aerosols and their indirect effects on clouds. Several decades of Earth-observing satellite observations have produced a global aerosol column-amount (AOD) record, but an aerosol microphysical property record required for climate and many air quality applications is lacking. Surface-based photometers offer qualitative aerosol-type classification, and several space-based instruments map aerosol air-mass types under favorable conditions. However, aerosol hygroscopicity, mass extinction efficiency (MEE), and quantitative light absorption, must be obtained from in situ measurements. Completing the aerosol piece of the climate picture requires three elements: (1) continuing global AOD and qualitative type mapping from space-based, multi-angle imagers and aerosol vertical distribution from near-source stereo imaging and downwind lidar, (2) systematic, quantitative in situ observations of particle properties unobtainable from space, and (3) continuing transport modeling to connect observations to sources, and extrapolate limited sampling in space and time. At present, the biggest challenges to producing the needed aerosol data record are: filling gaps in particle property observations, maintaining global observing capabilities, and putting the pieces together. Obtaining the PDFs of key particle properties, adequately sampled, is now the leading observational deficiency. One simplifying factor is that, for a given aerosol source and season, aerosol amounts often vary, but particle properties tend to be repeatable. SAM-CAAM (Systematic Aircraft Measurements to Characterize Aerosol Air Masses), a modest aircraft payload deployed frequently could fill this gap, adding value to the entire satellite data record, improving aerosol property assumptions in retrieval algorithms, and providing MEEs to translate between remote-sensing optical constraints

  15. Characterization of Wildfire-Induced Aerosol Emissions From the Maritime Continent Peatland and Central African Dry Savannah with MISR and CALIPSO Aerosol Products

    NASA Astrophysics Data System (ADS)

    Lee, Huikyo; Jeong, Su-Jong; Kalashnikova, Olga; Tosca, Mika; Kim, Sang-Woo; Kug, Jong-Seong

    2018-03-01

    Aerosol plumes from wildfires affect the Earth's climate system through regulation of the radiative budget and clouds. However, optical properties of aerosols from individual wildfire smoke plumes and their resultant impact on regional climate are highly variable. Therefore, there is a critical need for observations that can constrain the partitioning between different types of aerosols. Here we present the apparent influence of regional ecosystem types on optical properties of wildfire-induced aerosols based on remote sensing observations from two satellite instruments and three ground stations. The independent observations commonly show that the ratio of the absorbing aerosols is significantly lower in smoke plumes from the Maritime Continent than those from Central Africa, so that their impacts on regional climate are different. The observed light-absorbing properties of wildfire-induced aerosols are explained by dominant ecosystem types such as wet peatlands for the Maritime Continent and dry savannah for Central Africa, respectively. These results suggest that the wildfire-aerosol-climate feedback processes largely depend on the terrestrial environments from which the fires originate. These feedbacks also interact with climate under greenhouse warming. Our analysis shows that aerosol optical properties retrieved based on satellite observations are critical in assessing wildfire-induced aerosols forcing in climate models. The optical properties of carbonaceous aerosol mixtures used by state-of-the-art chemistry climate models may overestimate emissions for absorbing aerosols from wildfires over the Maritime Continent.

  16. Sensitivity of multiangle photo-polarimetry to absorbing aerosol vertical layering and properties: Quantifying measurement uncertainties for ACE requirements

    NASA Astrophysics Data System (ADS)

    Kalashnikova, O. V.; Garay, M. J.; Davis, A. B.; Natraj, V.; Diner, D. J.; Tanelli, S.; Martonchik, J. V.; JPl Team

    2011-12-01

    The impact of tropospheric aerosols on climate can vary greatly based upon relatively small variations in aerosol properties, such as composition, shape and size distributions, as well as vertical layering. Multi-angle polarimetric measurements have been advocated in recent years as an additional tool to better understand and retrieve the aerosol properties needed for improved predictions of aerosol radiative forcing on climate. The central concern of this work is the assessment of the effects of absorbing aerosol properties under measurement uncertainties achievable for future generation multi-angle, polarimetric imaging instruments under ACE mission requirements. As guidelines, the on-orbit performance of MISR for multi-angle intensity measurements and the reported polarization sensitivities of a MSPI prototype were adopted. In particular, we will focus on sensitivities to absorbing aerosol layering and observation-constrained refractive indices (resulting in various single scattering albedos (SSA)) of both spherical and non-spherical absorbing aerosol types. We conducted modeling experiments to determine how the measured Stokes vector elements are affected in UV-NIR range by the vertical distribution, mixing and layering of smoke and dust aerosols, and aerosol SSA under the assumption of a black and polarizing ocean surfaces. We use a vector successive-orders-of-scattering (SOS) and VLIDORT transfer codes that show excellent agreement. Based on our sensitivity studies we will demonstrate advantages and disadvantages of wavelength selection in UV-NIR range to access absorbing aerosol properties. Polarized UV channels do not show particular advantage for absorbing aerosol property characterization due to dominating molecular signal. Polarimetric SSA sensitivity is small, however needed to be considered in the future polarimetric retrievals under ACE-defined uncertainty.

  17. The impact of Mount Etna's sulphur emissions to the atmospheric composition, aerosol properties and radiative transfer in the central Mediterranean: 14 years of statistic analysis using observations and Lagrangian modelling

    NASA Astrophysics Data System (ADS)

    Sellitto, Pasquale; Zanetel, Claudia; di Sarra, Alcide; Salerno, Giuseppe; Tapparo, Andrea; Briole, Pierre; Legras, Bernard

    2016-04-01

    Volcanic eruptions influence tropospheric and stratospheric composition, the Earth's radiation budget from the regional to the global scale, and then the Earth's climate. While the impact of the strong explosive eruptions reaching the stratosphere is relatively well known, the influence of the more frequent weak volcanic activity, including passive degassing, on the tropospheric aerosol properties and on the radiation budget is still largely unknown. Most of the radiative effects of moderate eruptions are associated with changes of the aerosol size distribution, composition, and shape. Emission of primary particles, mainly ash, and secondary aerosols through gas-to-particle conversion of volatile sulphur compounds contribute to affect the aerosol properties. Mount Etna's continuous degassing and episodic explosive eruptions is an important source of particles and gases for the Mediterranean atmosphere, with, e.g., ten times larger emissions of volatile sulphur compounds than the anthropogenic sulphur emissions in the Mediterranean area. The impact of Mount Etna on the atmospheric composition, the aerosol chemical, microphysical and optical properties, the clouds occurrence and properties, the radiative balance and the regional climate in the Mediterranean are not known and probably underestimated. In this contribution, the downwind impact of Mount Etna's sulphur emissions in the central Mediterranean is estimated over the period 2000-2013 using long-term series of sulphur dioxide column and Ångströms exponent observations at the the ENEA (Ente Nazionale per l'Energia e l'Ambiente) Station for Climate Observations on the small island of Lampedusa (35.5°N, 12.6°E). These observations are linked to the information on the volcanic source, in terms of 1) the local dynamics, using a long series of trajectories and plume dispersion information obtained with the FLEXPART Lagrangian mode, and 2) the emission strength, using the long-term series of daily sulphur dioxide

  18. Aerosol climatology over Mexico City basin: Characterization of their optical properties

    NASA Astrophysics Data System (ADS)

    Carabali-Sandoval, Giovanni; Valdéz-Barrón, Mauro; Bonifaz-Alfonso, Roberto; Riveros-Rosas, David; Estévez, Héctor

    2015-04-01

    Climatology of aerosol optical depth (AOD), single scattering albedo (SSA) and size parameters were analyzed using a 15-year (1999-2014) data set from AErosol RObotic NETwork (AERONET) observations over Mexico City basin. Since urban air pollution is one of the biggest problems that face this megacity, many studies addressing these issues have been published. However few studies have examined the climatology of aerosol taking into account their optical properties over long-time period. Pollution problems in Mexico City have been generated by the daily activities of some 21 million people coupled with the vast amount of industry located within the city's metropolitan area. Another contributing factor is the unique geographical setting of the basin encompassing Mexico City. The basin covers approximately 5000 km2 of the Mexican Plateau at an average elevation of 2250 m above sea level (ASL) and is surrounded on three sides by mountains averaging over 3000 m ASL. In this work we present preliminary results of aerosol climatology in Mexico City.

  19. Analysis Of Irtf Spex Near-infrared Observations Of Uranus: Aerosol Optical Properties And Latitudinally Variable Methane

    NASA Astrophysics Data System (ADS)

    Tice, Dane; Irwin, P. G. J.; Fletcher, L. N.; Teanby, N. A.; Hurley, J.; Orton, G. S.; Davis, G. R.

    2012-10-01

    We present results from the analysis of near-infrared spectra of Uranus observed in August 2009 with the SpeX spectrograph at the NASA Infrared Telescope Facility (IRTF). Spectra range from 0.8 to 1.8 μm at a spatial resolution of 0.5” and a spectral resolution of R = 1,200. This data is particularly well-suited to characterize the optical properties of aerosols in the Uranian stratosphere and upper troposphere. This is in part due to its coverage shortward of 1.0 μm where methane absorption, which dominates the features in the Uranian near-infrared spectrum, weakens slightly. Another particularly useful aspect of the data is it’s specific, highly spectrally resolved (R > 4,000) coverage of the collision-induced hydrogen quadrupole absorption band at 825 nm, enabling us to differentiate between methane abundance and cloud opacity. An optimal-estimation retrieval code, NEMESIS, is used to analyze the spectra, and atmospheric models are developed that represent good agreement with data in the full spectral range analyzed. Aerosol single-scattering albedos that reveal a strong wavelength dependence will be discussed. Additionally, an analysis of latitudinal methane variability is undertaken, utilizing two methods of analysis. First, a reflectance study from locations along the central meridian is undertaken. The spectra from these locations are centered around 825 nm, where the collision-induced absorption feature of hydrogen is utilized to distinguish between latitudinal changes in the spectrum due to aerosol opacity and those due to methane variability. Secondly, high resolution retrievals from 0.8 - 0.9 μm portion of the spectrum and spectral resolutions between R = 4,000 and 4,500 are used to make the same distinction. Both methods will be compared and discussed, as will their indications supporting a methane enrichment in the equatorial region of the planet.

  20. Aerosol Properties over the Eastern North Pacific based on Measurements from the MAGIC Field Campaign

    NASA Astrophysics Data System (ADS)

    Lewis, E. R.; Senum, G.; Springston, S. R.; Kuang, C.

    2015-12-01

    The MAGIC field campaign, funded and operated by the ARM (Atmospheric Radiation Measurement) Climate Research Facility of the US Department of Energy, occurred between September 2012 and October, 2013 aboard the Horizon Lines cargo container ship Spirit making regular trips between Los Angeles, CA and Honolulu, HI. Along this route, which lies very near the GPCI (GCSS Pacific Cross-section Intercomparison) transect, the predominant cloud regime changes from stratocumulus near the California coast to trade-wind cumulus near Hawaii. The transition between these two regimes is poorly understood and not accurately represented in models. The goal of MAGIC was to acquire statistic of this transition and thus improve its representation in models by making repeated transects through this region and measuring properties of clouds and precipitation, aerosols, radiation, and atmospheric structure. To achieve these goals, the Second ARM Mobile Facility (AMF2) was deployed on the Horizon Spirit as it ran its regular route between Los Angeles and Honolulu. AMF2 consists of three 20-foot SeaTainers and includes three radars and other instruments to measure properties of clouds and precipitation; the Aerosol Observing System (AOS), which has a suite of instruments to measure properties of aerosols; and other instruments to measure radiation, meteorological quantities, and sea surface temperature. Two technicians accompanied the AMF2, and scientists rode the ship as observers. MAGIC made nearly 20 round trips between Los Angeles and Honolulu (and thus nearly 40 excursions through the stratocumulus-to-cumulus transition) and spent 200 days at sea, collecting an unprecedented data set. Aerosol properties measured with the AOS include number concentration and size distribution, CCN activity, hygroscopic growth, and light-scattering and absorption. Additionally, more than one hundred filter samples were collected. Aerosol properties and their spatial and temporal behavior are discussed

  1. Lidar Observations of Tropospheric Aerosols Over Northeastern South Africa During the ARREX and SAFARI-2000 Dry Season Experiments

    NASA Technical Reports Server (NTRS)

    Campbell, James R.; Welton, Ellsworth J.; Spinhirne, James D.; Ji, Qiang; Tsay, Si-Chee; Piketh, Stuart J.; Barenbrug, Marguerite; Holben, Brent; Starr, David OC. (Technical Monitor)

    2002-01-01

    During the ARREX-1999 and SAFARI-2000 Dry Season experiments a micropulse lidar (523 nm) instrument was operated at the Skukuza Airport in northeastern South Africa. The Mar was collocated with a diverse array of passive radiometric equipment. For SAFARI-2000 the processed Mar data yields a daytime time-series of layer mean/derived aerosol optical properties, including extinction-to-backscatter ratios and vertical extinction cross-section profile. Combined with 523 run aerosol optical depth and spectral Angstrom exponent calculations from available CIMEL sun-photometer data and normalized broadband flux measurements the temporal evolution of the near surface aerosol layer optical properties is analyzed for climatological trends. For the densest smoke/haze events the extinction-to-backscatter ratio is found to be between 60-80/sr, and corresponding Angstrom exponent calculations near and above 1.75. The optical characteristics of an evolving smoke event from SAFARI-2000 are extensively detailed. The advecting smoke was embedded within two distinct stratified thermodynamic layers, causing the particulate mass to advect over the instrument array in an incoherent manner on the afternoon of its occurrence. Surface broadband flux forcing due to the smoke is calculated, as is the evolution in the vertical aerosol extinction profile as measured by the Han Finally, observations of persistent elevated aerosol during ARREX-1999 are presented and discussed. The lack of corroborating observations the following year makes these observation; both unique and noteworthy in the scope of regional aerosol transport over southern Africa.

  2. Explicit and Observation-based Aerosol Treatment in Tropospheric NO2 Retrieval over China from the Ozone Monitoring Instrument

    NASA Astrophysics Data System (ADS)

    Liu, M.; Lin, J.; Boersma, F.; Pinardi, G.; Wang, Y.; Chimot, J.; Wagner, T.; Xie, P.; Eskes, H.; Van Roozendael, M.; Hendrick, F.

    2017-12-01

    Satellite retrieval of vertical column densities (VCDs) of tropospheric nitrogen dioxide (NO2) is influenced by aerosols substantially. Aerosols affect the retrieval of "effective cloud fraction (CF)" and "effective cloud top pressure (CP)" that are used in the subsequent NO2 retrieval to account for the presentence of clouds. And aerosol properties and vertical distributions directly affect the NO2 air mass factor (AMF) calculations. Our published POMINO algorithm uses a parallelized LIDORT-driven AMFv6 code to derive CF, CP and NO2 VCD. Daily information on aerosol optical properties are taken from GEOS-Chem simulations, with aerosol optical depth (AOD) further constrained by monthly MODIS AOD. However, the published algorithm does not include an observation-based constraint of aerosol vertical distribution. Here we construct a monthly climatological observation dataset of aerosol extinction profiles, based on Level-2 CALIOP data over 2007-2015, to further constrain aerosol vertical distributions. GEOS-Chem captures the temporal variations of CALIOP aerosol layer heights (ALH) but has an overall underestimate by about 0.3 km. It tends to overestimate the aerosol extinction by 10% below 2 km but with an underestimate by 30% above 2 km, leading to a low bias by 10-30% in the retrieved tropospheric NO2 VCD. After adjusting GEOS-Chem aerosol extinction profiles by the CALIOP monthly ALH climatology, the retrieved NO2 VCDs increase by 4-16% over China on a monthly basis in 2012. The improved NO2 VCDs are better correlated to independent MAX-DOAS observations at three sites than POMINO and DOMINO are - especially for the polluted cases, R2 reaches 0.76 for the adjusted POMINO, much higher than that for the published POMINO (0.68) and DOMINO (0.38). The newly retrieved CP increases by 60 hPa on average, because of a stronger aerosol screening effect. Compared to the CF used in DOMINO, which implicitly includes aerosol information, our improved CF is much lower and can

  3. Optical, physical and chemical properties of aerosols transported to a coastal site in the western Mediterranean: a focus on primary marine aerosols

    NASA Astrophysics Data System (ADS)

    Claeys, Marine; Roberts, Greg; Mallet, Marc; Arndt, Jovanna; Sellegri, Karine; Sciare, Jean; Wenger, John; Sauvage, Bastien

    2017-06-01

    As part of the ChArMEx-ADRIMED campaign (summer 2013), ground-based in situ observations were conducted at the Ersa site (northern tip of Corsica; 533 m a.s.l.) to characterise the optical, physical and chemical properties of aerosols. During the observation period, a major influence of primary marine aerosols was detected (22-26 June), with a mass concentration reaching up to 6.5 µg m-3 and representing more than 40 % of the total PM10 mass concentration. Its relatively low ratio of chloride to sodium (average of 0.57) indicates a fairly aged sea salt aerosol at Ersa. In this work, an original data set, obtained from online real-time instruments (ATOFMS, PILS-IC) has been used to characterise the ageing of primary marine aerosols (PMAs). During this PMA period, the mixing of fresh and aged PMAs was found to originate from both local and regional (Gulf of Lion) emissions, according to local wind measurements and FLEXPART back trajectories. Two different aerosol regimes have been identified: a dust outbreak (dust) originating from Algeria/Tunisia, and a pollution period with aerosols originating from eastern Europe, which includes anthropogenic and biomass burning sources (BBP). The optical, physical and chemical properties of the observed aerosols, as well as their local shortwave (SW) direct radiative effect (DRE) in clear-sky conditions, are compared for these three periods in order to assess the importance of the direct radiative impact of PMAs compared to other sources above the western Mediterranean Basin. As expected, AERONET retrievals indicate a relatively low local SW DRF during the PMA period with mean values of -11 ± 4 at the surface and -8 ± 3 W m-2 at the top of the atmosphere (TOA). In comparison, our results indicate that the dust outbreak observed at our site during the campaign, although of moderate intensity (AOD of 0.3-0.4 at 440 nm and column-integrated SSA of 0.90-0.95), induced a local instantaneous SW DRF that is nearly 3 times the effect

  4. Aerosol optical properties at rural background area in Western Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Lihavainen, H.; Alghamdi, M. A.; Hyvärinen, A.; Hussein, T.; Neitola, K.; Khoder, M.; Abdelmaksoud, A. S.; Al-Jeelani, H.; Shabbaj, I. I.; Almehmadi, F. M.

    2017-11-01

    To derive the comprehensive aerosol in situ characteristics at a rural background area in Saudi Arabia, an aerosol measurements station was established to Hada Al Sham, 60 km east from the Red Sea and the city of Jeddah. The present sturdy describes the observational data from February 2013 to February 2015 of scattering and absorption coefficients, Ångström exponents and single scattering albedo over the measurement period. The average scattering and absorption coefficients at wavelength 525 nm were 109 ± 71 Mm- 1 (mean ± SD, at STP conditions) and 15 ± 17 Mm- 1 (at STP conditions), respectively. As expected, the scattering coefficient was dominated by large desert dust particles with low Ångström scattering exponent, 0.49 ± 0.62. Especially from February to June the Ångström scattering exponent was clearly lower (0.23) and scattering coefficients higher (124 Mm- 1) than total averages because of the dust outbreak season. Aerosol optical properties had clear diurnal cycle. The lowest scattering and absorption coefficients and aerosol optical depths were observed around noon. The observed diurnal variation is caused by wind direction and speed, during night time very calm easterly winds are dominating whereas during daytime the stronger westerly winds are dominating (sea breeze). Positive Matrix Factorization mathematical tool was applied to the scattering and absorption coefficients and PM2.5 and coarse mode (PM10-PM2.5) mass concentrations to identify source characteristics. Three different factors with clearly different properties were found; anthropogenic, BC source and desert dust. Mass absorption efficiencies for BC source and desert dust factors were, 6.0 m2 g- 1 and 0.4 m2 g- 1, respectively, and mass scattering efficiencies for anthropogenic (sulphate) and desert dust, 2.5 m2 g- 1 and 0.8 m2 g- 1, respectively.

  5. Chemical and microphysical properties of the aerosol during foggy and nonfoggy episodes: a relationship between organic and inorganic content of the aerosol

    NASA Astrophysics Data System (ADS)

    Kaul, D. S.; Gupta, T.; Tripathi, S. N.

    2012-06-01

    An extensive field measurement during winter was carried out at a site located in the Indo-Gangetic Plain (IGP) which gets heavily influenced by the fog during winter almost every year. The chemical and microphysical properties of the aerosols during foggy and nonfoggy episodes and chemical composition of the fogwater are presented. Positive matrix factorization (PMF) as a tool for the source apportionment was employed to understand the sources of pollution. Four major sources viz. biomass burning, refractory, secondary and mineral dust were identified. Aerosols properties during foggy episodes were heavily influenced by almost all the sources and they caused considerable loading of almost all the organic and inorganic species during the period. The biomass generated aerosols were removed from the atmosphere by scavenging during foggy episodes. The wet removal of almost all the species by the fog droplets was observed. The K+, water soluble organic carbon (WSOC), water soluble inorganic carbon (WSIC) and NO3- were most heavily scavenged among the species and their concentrations consequently became lower than the nonfoggy episode concentrations. The production of secondary inorganic aerosol, mainly sulfate and ammonium, during foggy episodes was considerably higher than nitrate which was rather heavily scavenged and removed by the fog droplets. The fogwater analysis showed that dissolved inorganic species play a vital role in processing of organic carbon such as the formation of organo-sulfate and organo-nitrate inside the fog droplets. The formation of organo-sulfate and organo-nitrate in aerosol and the influence of acidity on the secondary organic aerosol (SOA) formation were rather found to be negligible. The study average inorganic component of the aerosol was considerably higher than the carbonaceous component during both foggy and nonfoggy episode. The secondary production of the aerosol changed the microphysical properties of aerosol which was reflected by

  6. Aerosols optical properties in Titan's detached haze layer before the equinox

    NASA Astrophysics Data System (ADS)

    Seignovert, Benoît; Rannou, Pascal; Lavvas, Panayotis; Cours, Thibaud; West, Robert A.

    2017-08-01

    UV observations with Cassini ISS Narrow Angle Camera of Titan's detached haze is an excellent tool to probe its aerosols content without being affected by the gas or the multiple scattering. Unfortunately, its low extent in altitude requires a high resolution calibration and limits the number of images available in the Cassini dataset. However, we show that it is possible to extract on each profile the local maximum of intensity of this layer and confirm its stability at 500 ± 8 km during the 2005-2007 period for all latitudes lower than 45°N. Using the fractal aggregate scattering model of Tomasko et al. (2008) and a single scattering radiative transfer model, it is possible to derive the optical properties required to explain the observations made at different phase angles. Our results indicates that the aerosols have at least ten monomers of 60 nm radius, while the typical tangential column number density is about 2 · 1010 agg m-2. Moreover, we demonstrate that these properties are constant within the error bars in the southern hemisphere of Titan over the observed time period. In the northern hemisphere, the size of the aerosols tends to decrease relatively to the southern hemisphere and is associated with a higher tangential opacity. However, the lower number of observations available in this region due to the orbital constraints is a limiting factor in the accuracy of these results. Assuming a fixed homogeneous content we notice that the tangential opacity can fluctuate up to a factor 3 among the observations at the equator. These variations could be linked with short scale temporal and/or longitudinal events changing the local density of the layer.

  7. Investigating the Spectral Dependence of Biomass Burning Aerosol Optical Properties

    NASA Astrophysics Data System (ADS)

    Odwuor, A.; Corr, C.; Pusede, S.

    2016-12-01

    Aerosol optical properties, such as light absorption and scattering, are important for understanding how aerosols affect the global radiation budget and for comparison with data gathered from remote sensing. It has been established that the optical properties of aerosols are wavelength dependent, although some remote sensing measurements do not consider this. Airborne measurements of these optical properties were used to calculate the absorption Angstrom exponent, a parameter that characterizes the wavelength dependence of light absorption by aerosols, and single scattering albedo, which measures the relative magnitude of light scattering to total extinction (scattering and absorption combined). Aerosols produced by biomass burning in Saskatchewan, Canada in July 2008 and a forest fire in Southern California, U.S. in June 2016 were included in this analysis. These wildfires were sampled by the NASA DC-8 aircraft during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) and NASA Student Airborne Research Program (SARP) missions, respectively. Aerosol absorption was measured using a particle soot photometer (PSAP) at 470, 532 and 660 nm. Scattering was measured using a 3-wavelength (450, 550 and 700 nm) nephelometer. Absorption Angstrom exponents were calculated at 470 and 660 nm and single scattering albedos were calculated at 450 and 550 nm. Results of this study indicate that disregarding the wavelength dependence of organic aerosol can understate the positive radiative forcing (warming) associated with aerosol absorption.

  8. Coupled retrieval of aerosol properties and land surface reflection using the Airborne Multiangle SpectroPolarimetric Imager

    NASA Astrophysics Data System (ADS)

    Xu, Feng; van Harten, Gerard; Diner, David J.; Kalashnikova, Olga V.; Seidel, Felix C.; Bruegge, Carol J.; Dubovik, Oleg

    2017-07-01

    The Airborne Multiangle SpectroPolarimetric Imager (AirMSPI) has been flying aboard the NASA ER-2 high-altitude aircraft since October 2010. In step-and-stare operation mode, AirMSPI acquires radiance and polarization data in bands centered at 355, 380, 445, 470*, 555, 660*, 865*, and 935 nm (* denotes polarimetric bands). The imaged area covers about 10 km by 11 km and is typically observed from nine viewing angles between ±66° off nadir. For a simultaneous retrieval of aerosol properties and surface reflection using AirMSPI, an efficient and flexible retrieval algorithm has been developed. It imposes multiple types of physical constraints on spectral and spatial variations of aerosol properties as well as spectral and temporal variations of surface reflection. Retrieval uncertainty is formulated by accounting for both instrumental errors and physical constraints. A hybrid Markov-chain/adding-doubling radiative transfer (RT) model is developed to combine the computational strengths of these two methods in modeling polarized RT in vertically inhomogeneous and homogeneous media, respectively. Our retrieval approach is tested using 27 AirMSPI data sets with low to moderately high aerosol loadings, acquired during four NASA field campaigns plus one AirMSPI preengineering test flight. The retrieval results including aerosol optical depth, single-scattering albedo, aerosol size and refractive index are compared with Aerosol Robotic Network reference data. We identify the best angular combinations for 2, 3, 5, and 7 angle observations from the retrieval quality assessment of various angular combinations. We also explore the benefits of polarimetric and multiangular measurements and target revisits in constraining aerosol property and surface reflection retrieval.

  9. Assessment of Anthropogenic and Biomass Burning Impact on Aerosol Properties over California as Observed During ARCTAS-CA

    NASA Astrophysics Data System (ADS)

    Thornhill, K. L.; Anderson, B.; Chen, G.; Beyersdorf, A. J.; Winstead, E. L.; Dibb, J. E.; Scheuer, E. M.; Weber, R.; Lathem, T. L.; Jimenez, J. L.; Cubison, M.; Kondo, Y.; Wennberg, P. O.; Weinheimer, A. J.; Wisthaler, A.

    2009-12-01

    In the summer of 2008, measurements of aerosols were made on-board the NASA DC-8 over the state of California, as part of the second phase of the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) on behalf of the California Air resources Board (CARB). The DC-8 made four flights, between 18 June and 26 June, totaling 33 hours, to examine California’s atmosphere to better understand the chemical dynamics of smog and greenhouse gases over the state. Serendipitously, from a science perspective, this time period was marked by numerous wildfires spread throughout the state. The NASA DC-8 had a suite of aerosol instruments, capable of measuring the number concentrations, optical properties, and size distributions of aerosols between 0.003 and 1500 um. In this presentation, we will characterize aerosols sampled over the Los Angeles basin, which included several missed approaches at Los Angeles International Airport (LAX), traverses through the Long Beach and Santa Barbara ship channels, sampling in and out of the marine boundary layer, and encounters with outflow of forest fires mixed with urban smog. The evolution of the aerosols during the day will be examined, as the smog builds up within the basin and the plume travels out of the basin into the surrounding atmosphere.

  10. an aerosol climatology optical properties and its associated direct radiative forcing

    NASA Astrophysics Data System (ADS)

    Kinne, Stefan

    2010-05-01

    Aerosol particles are quite complex in nature. Aerosol impacts on the distribution of radiative energy and on cloud microphysics have been debated climate impact issues. Here, a new aerosol-climatology is presented, combining the consistency and completeness of global modelling with quality data by ground-monitoring. It provides global monthly maps for spectral aerosol optical properties and for concentrations of CCN and IN. Based on the optical properties the aerosol direct forcing is determined. And with environmental data for clouds and estimates on the anthropogenic fraction from emission experiments with global modelling even the climate relevant aerosol direct forcing at the top of the atmosphere (ToA) is determined. This value is rather small near -0.2W/m2 with limited uncertainty estimated at (+/-0.3) due to uncertainties in aerosol absorption and underlying surface conditions or clouds.

  11. Use of Field Observations for Understanding Controls of Polar Low Cloud Microphysical Properties

    NASA Astrophysics Data System (ADS)

    McFarquhar, G. M.

    2016-12-01

    Although arctic clouds have a net warming effect on the Arctic surface, their radiative effect is sensitive to cloud microphysical properties, namely the sizes, phases and shapes of cloud particles. Such cloud properties are influenced by the numbers, compositions and sizes of aerosols, meteorological conditions, and surface characteristics. Uncertainty in representing cloud-aerosol interactions in varying environmental conditions and associated feedbacks is a major cause in our lack of understanding of why the Arctic is warming faster than the rest of the Earth. Here, the understanding of cloud-aerosol interactions gained from past arctic field experiments is reviewed. Such studies have characterized the structure of single-layer mixed phase clouds that are ubiquitous in the Arctic and investigated different aerosol indirect effect mechanisms acting in these clouds. But, it is still unknown what controls the amount of supercooled water in arctic clouds (especially in complex frequently occurring multi-layer clouds), how probability distributions of cloud properties and radiative heating and their subsequent impact on temperature profiles and underlying snow and sea ice cover vary with aerosol loading and composition in different surface and meteorological conditions, how the composition and concentration of arctic aerosols and cloud microphysical properties vary annually and interannually, and how cloud-aerosol-radiative interactions can be better represented in models with varying temporal and spatial scales. These needs can be addressed in two ways. First, there is a need for comprehensive and routine aircraft, UAV and tethered balloon measurements in the presence of ground, air or space-based remote sensors over a variety of surface and meteorological conditions. Second, planned observational campaigns (the Measurements of Aerosols Radiation and Clouds over the Southern Oceans MARCUS and the Southern Oceans Cloud Radiation Transport Experimental Study SOCRATES

  12. Observationally constrained estimates of carbonaceous aerosol radiative forcing.

    PubMed

    Chung, Chul E; Ramanathan, V; Decremer, Damien

    2012-07-17

    Carbonaceous aerosols (CA) emitted by fossil and biomass fuels consist of black carbon (BC), a strong absorber of solar radiation, and organic matter (OM). OM scatters as well as absorbs solar radiation. The absorbing component of OM, which is ignored in most climate models, is referred to as brown carbon (BrC). Model estimates of the global CA radiative forcing range from 0 to 0.7 Wm(-2), to be compared with the Intergovernmental Panel on Climate Change's estimate for the pre-Industrial to the present net radiative forcing of about 1.6 Wm(-2). This study provides a model-independent, observationally based estimate of the CA direct radiative forcing. Ground-based aerosol network data is integrated with field data and satellite-based aerosol observations to provide a decadal (2001 through 2009) global view of the CA optical properties and direct radiative forcing. The estimated global CA direct radiative effect is about 0.75 Wm(-2) (0.5 to 1.0). This study identifies the global importance of BrC, which is shown to contribute about 20% to 550-nm CA solar absorption globally. Because of the inclusion of BrC, the net effect of OM is close to zero and the CA forcing is nearly equal to that of BC. The CA direct radiative forcing is estimated to be about 0.65 (0.5 to about 0.8) Wm(-2), thus comparable to or exceeding that by methane. Caused in part by BrC absorption, CAs have a net warming effect even over open biomass-burning regions in Africa and the Amazon.

  13. Observationally constrained estimates of carbonaceous aerosol radiative forcing

    PubMed Central

    Chung, Chul E.; Ramanathan, V.; Decremer, Damien

    2012-01-01

    Carbonaceous aerosols (CA) emitted by fossil and biomass fuels consist of black carbon (BC), a strong absorber of solar radiation, and organic matter (OM). OM scatters as well as absorbs solar radiation. The absorbing component of OM, which is ignored in most climate models, is referred to as brown carbon (BrC). Model estimates of the global CA radiative forcing range from 0 to 0.7 Wm-2, to be compared with the Intergovernmental Panel on Climate Change’s estimate for the pre-Industrial to the present net radiative forcing of about 1.6 Wm-2. This study provides a model-independent, observationally based estimate of the CA direct radiative forcing. Ground-based aerosol network data is integrated with field data and satellite-based aerosol observations to provide a decadal (2001 through 2009) global view of the CA optical properties and direct radiative forcing. The estimated global CA direct radiative effect is about 0.75 Wm-2 (0.5 to 1.0). This study identifies the global importance of BrC, which is shown to contribute about 20% to 550-nm CA solar absorption globally. Because of the inclusion of BrC, the net effect of OM is close to zero and the CA forcing is nearly equal to that of BC. The CA direct radiative forcing is estimated to be about 0.65 (0.5 to about 0.8) Wm-2, thus comparable to or exceeding that by methane. Caused in part by BrC absorption, CAs have a net warming effect even over open biomass-burning regions in Africa and the Amazon. PMID:22753522

  14. Evidence for Natural Variability in Marine Stratocumulus Cloud Properties Due to Cloud-Aerosol

    NASA Technical Reports Server (NTRS)

    Albrecht, Bruce; Sharon, Tarah; Jonsson, Haf; Minnis, Patrick; Minnis, Patrick; Ayers, J. Kirk; Khaiyer, Mandana M.

    2004-01-01

    In this study, aircraft observations from the Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter are used to characterize the variability in drizzle, cloud, and aerosol properties associated with cloud rifts and the surrounding solid clouds observed off the coast of California. A flight made on 16 July 1999 provided measurements directly across an interface between solid and rift cloud conditions. Aircraft instrumentation allowed for measurements of aerosol, cloud droplet, and drizzle spectra. CCN concentrations were measured in addition to standard thermodynamic variables and the winds. A Forward Scatter Spectrometer Probe (FSSP) measured size distribution of cloud-sized droplets. A Cloud Imaging Probe (CIP) was used to measure distributions of drizzle-sized droplets. Aerosol distributions were obtained from a Cloud Aerosol Scatterprobe (CAS). The CAS probe measured aerosols, cloud droplets and drizzle-sized drops; for this study. The CAS probe was used to measure aerosols in the size range of 0.5 micron - 1 micron. Smaller aerosols were characterized using an Ultrafine Condensation Particle Counter (CPC) sensor. The CPC was used to measure particles with diameters greater than 0.003 micron. By subtracting different count concentrations measured with the CPC, this probe was capable of identifying ultrafine particles those falling in the size range of 3 nanometers - 7 nanometers that are believed to be associated with new particle production.

  15. COMMIT in 7-SEAS/BASELInE: Operation of and Observations from a Novel, Mobile Laboratory for Measuring In-Situ Properties of Aerosols and Gases

    NASA Technical Reports Server (NTRS)

    Pantina, Peter; Tsay, Si-Chee; Hsiao, Ta-Chih; Loftus, Adrian M.; Kuo, Ferret; Ou-Yang, Chang-Feng; Sayer, Andrew M.; Wang, Shen-Hsiang; Lin, Neng-Huei; Hsu, N. Christina; hide

    2016-01-01

    Trace gases and aerosols (particularly biomass-burning aerosols) have important implications for air quality and climate studies in Southeast Asia (SEA). This paper describes the purpose, operation, and datasets collected from NASA Goddard Space Flight Center's (NASA/GSFC) Chemical, Optical, and Microphysical Measurements of In-situ Troposphere (COMMIT) laboratory, a mobile platform designed to measure trace gases and optical/microphysical properties of naturally occurring and anthropogenic aerosols. More importantly, the laboratory houses a specialized humidification system to characterize hygroscopic growth/enhancement, a behavior that affects aerosol properties and cloud-aerosol interactions and is generally underrepresented in the current literature. A summary of the trace gas and optical/microphysical measurements is provided, along with additional detail and analysis of data collected from the hygroscopic system during the 2015 Seven South-East Asian Studies (7-SEAS) field campaign. The results suggest that data from the platform are reliable and will complement future studies of aerosols and air quality in SEA and other regions of interest.

  16. Effect of sea breeze circulation on aerosol mixing state and radiative properties in a desert setting

    NASA Astrophysics Data System (ADS)

    Derimian, Yevgeny; Choël, Marie; Rudich, Yinon; Deboudt, Karine; Dubovik, Oleg; Laskin, Alexander; Legrand, Michel; Damiri, Bahaiddin; Koren, Ilan; Unga, Florin; Moreau, Myriam; Andreae, Meinrat O.; Karnieli, Arnon

    2017-09-01

    Chemical composition, microphysical, and optical properties of atmospheric aerosol deep inland in the Negev Desert of Israel are found to be influenced by daily occurrences of sea breeze flow from the Mediterranean Sea. Abrupt increases in aerosol volume concentration and shifts of size distributions towards larger sizes, which are associated with increase in wind speed and atmospheric water content, were systematically recorded during the summertime at a distance of at least 80 km from the coast. Chemical imaging of aerosol samples showed an increased contribution of highly hygroscopic particles during the intrusion of the sea breeze. Besides a significant fraction of marine aerosols, the amount of internally mixed marine and mineral dust particles was also increased during the sea breeze period. The number fraction of marine and internally mixed particles during the sea breeze reached up to 88 % in the PM1-2. 5 and up to 62 % in the PM2. 5-10 size range. Additionally, numerous particles with residuals of liquid coating were observed by SEM/EDX analysis. Ca-rich dust particles that had reacted with anthropogenic nitrates were evidenced by Raman microspectroscopy. The resulting hygroscopic particles can deliquesce at very low relative humidity. Our observations suggest that aerosol hygroscopic growth in the Negev Desert is induced by the daily sea breeze arrival. The varying aerosol microphysical and optical characteristics perturb the solar and thermal infrared radiations. The changes in aerosol properties induced by the sea breeze, relative to the background situation, doubled the shortwave radiative cooling at the surface (from -10 to -20.5 W m-2) and increased by almost 3 times the warming of the atmosphere (from 5 to 14 W m-2), as evaluated for a case study. Given the important value of observed liquid coating of particles, we also examined the possible influence of the particle homogeneity assumption on the retrieval of aerosol microphysical characteristics

  17. Satellite observation analysis of aerosols loading effect over Monrovia-Liberia

    NASA Astrophysics Data System (ADS)

    Emetere, M. E.; Esisio, F.; Oladapo, F.

    2017-05-01

    The effect of aerosols loading most often results in aerosols retention in the atmosphere. Aside the health hazards of aerosol retention, its effect on climate change are visible. In this research, it was proposed that the effect of aerosol retention also affects rain pattern. The Tropical Rainfall Measuring Mission (TRMM) layer 3 observations and the multi-imaging spectro-reflectometer (MISR) was used for the study. The aerosols loading over were investigated using sixteen years satellite observation in Monrovia-Liberia. Its effect on the rain rate over the region was documented. The results show that aerosol loading over the region is high and may have effect on farming in the nearest future. It was affirmed that the scanty AOD data was as a result of the rain rate that is higher within May and October.

  18. Global aerosol typing from a combination of A-Train satellite observations in clear-sky and above clouds

    NASA Astrophysics Data System (ADS)

    Kacenelenbogen, M. S.; Russell, P. B.; Vaughan, M.; Redemann, J.; Shinozuka, Y.; Livingston, J. M.; Zhang, Q.

    2014-12-01

    According to the 5th Assessment Report of the Intergovernmental Panel on Climate Change (IPCC), the model estimates of Radiative Forcing due to aerosol-radiation interactions (RFari) for individual aerosol types are less certain than the total RFari [Boucher et al., 2013]. For example, the RFari specific to Black Carbon (BC) is uncertain due to an underestimation of its mass concentration near source regions [Koch et al., 2009]. Several recent studies have evaluated chemical transport model (CTM) predictions using observations of aerosol optical properties such as Aerosol Optical Depth (AOD) or Single Scattering Albedo (SSA) from satellite or ground-based instruments (e.g., Huneeus et al., [2010]). However, most passive remote sensing instruments fail to provide a comprehensive assessment of the particle type without further analysis and combination of measurements. To improve the predictions of aerosol composition in CTMs, we have developed an aerosol classification algorithm (called Specified Clustering and Mahalanobis Classification, SCMC) that assigns an aerosol type to multi-parameter retrievals by spaceborne, airborne or ground based passive remote sensing instruments [Russell et al., 2014]. The aerosol types identified by our scheme are pure dust, polluted dust, urban-industrial/developed economy, urban-industrial/developing economy, dark biomass smoke, light biomass smoke and pure marine. First, we apply the SCMC method to five years of clear-sky space-borne POLDER observations over Greece. We then use the aerosol extinction and SSA spectra retrieved from a combination of MODIS, OMI and CALIOP clear-sky observations to infer the aerosol type over the globe in 2007. Finally, we will extend the spaceborne aerosol classification from clear-sky to above low opaque water clouds using a combination of CALIOP AOD and backscatter observations and OMI absorption AOD values from near-by clear-sky pixels.

  19. Multi-year ground-based observations of aerosol-cloud interactions in the Mid-Atlantic of the United States

    NASA Astrophysics Data System (ADS)

    Li, Siwei; Joseph, Everette; Min, Qilong; Yin, Bangsheng

    2017-02-01

    The U.S. Mid-Atlantic region experiences a wide variability of aerosol loading and frequent episodes of elevated anthropogenic aerosol loading associated with urban pollution conditions during summer months. In this study, multi-year ground-based observations (2006 to 2010) of aerosol and cloud properties from passive, active and in situ measurements at an atmospheric measurement field station in the Baltimore-Washington corridor operated by Howard University were analyzed to examine aerosol indirect effect on single-layer warm clouds including cloud optical depth (COD), liquid water path (LWP), cloud droplet effective radius (Re) and cloud droplet number concentration (Nd) in this region. A greater occurrence of polluted episodes and cloud cases with smaller Re (<7 μm) were found during the polluted year summers (2006, 2007 and 2008) than the clean year summers (2009 and 2010). The measurements of aerosol particulate matter with aerodynamic diameter≤2.5 μm (PM2.5) were used to represent the aerosol loading under cloudy conditions. Significant negative relationships between cloud droplet Re and PM2.5 were observed. Cloud cases were separated into clean and polluted groups based on the value of PM2.5. The cloud droplet Re was found proportional to LWP under clean conditions but weakly dependent on LWP under polluted conditions. The Nd was proportional to LWP under polluted condition but weakly dependent on LWP under clean conditions. Moreover, the effects of increasing fine aerosol particles on modifying cloud microphysical properties were found more significant under large LWP than small LWP in this region.

  20. Updating CMAQ secondary organic aerosol properties relevant for aerosol water interactions

    EPA Science Inventory

    Properties of secondary organic aerosol (SOA) compounds in CMAQ are updated with state-of-the-science estimates from structure activity relationships to provide consistency among volatility, molecular weight, degree of oxygenation, and solubility/hygroscopicity. These updated pro...

  1. Retrieving the Height of Smoke and Dust Aerosols by Synergistic Use of VIIRS, OMPS, and CALIOP Observations

    NASA Technical Reports Server (NTRS)

    Lee, Jaehwa; Hsu, N. Christina; Bettenhausen, Corey; Sayer, Andrew M.; Seftor, Colin J.; Jeong, Myeong-Jae

    2015-01-01

    Aerosol Single scattering albedo and Height Estimation (ASHE) algorithm was first introduced in Jeong and Hsu (2008) to provide aerosol layer height as well as single scattering albedo (SSA) for biomass burning smoke aerosols. One of the advantages of this algorithm was that the aerosol layer height can be retrieved over broad areas, which had not been available from lidar observations only. The algorithm utilized aerosol properties from three different satellite sensors, i.e., aerosol optical depth (AOD) and Ångström exponent (AE) from Moderate Resolution Imaging Spectroradiometer (MODIS), UV aerosol index (UVAI) from Ozone Monitoring Instrument (OMI), and aerosol layer height from Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP). Here, we extend the application of the algorithm to Visible Infrared Imaging Radiometer Suite (VIIRS) and Ozone Mapping and Profiler Suite (OMPS) data. We also now include dust layers as well as smoke. Other updates include improvements in retrieving the AOD of nonspherical dust from VIIRS, better determination of the aerosol layer height from CALIOP, and more realistic input aerosol profiles in the forward model for better accuracy.

  2. Aerosol Optical Properties Measured Onboard the Ronald H. Brown During ACE Asia as a Function of Aerosol Chemical Composition and Source Region

    NASA Technical Reports Server (NTRS)

    Quinn, P. K.; Coffman, D. J.; Bates, T. S.; Welton, E. J.; Covert, D. S.; Miller, T. L.; Johnson, J. E.; Maria, S.; Russell, L.; Arimoto, R.

    2004-01-01

    During the ACE Asia intensive field campaign conducted in the spring of 2001 aerosol properties were measured onboard the R/V Ronald H. Brown to study the effects of the Asian aerosol on atmospheric chemistry and climate in downwind regions. Aerosol properties measured in the marine boundary layer included chemical composition; number size distribution; and light scattering, hemispheric backscattering, and absorption coefficients. In addition, optical depth and vertical profiles of aerosol 180 deg backscatter were measured. Aerosol within the ACE Asia study region was found to be a complex mixture resulting from marine, pollution, volcanic, and dust sources. Presented here as a function of air mass source region are the mass fractions of the dominant aerosol chemical components, the fraction of the scattering measured at the surface due to each component, mass scattering efficiencies of the individual components, aerosol scattering and absorption coefficients, single scattering albedo, Angstrom exponents, optical depth, and vertical profiles of aerosol extinction. All results except aerosol optical depth and the vertical profiles of aerosol extinction are reported at a relative humidity of 55 +/- 5%. An over-determined data set was collected so that measured and calculated aerosol properties could be compared, internal consistency in the data set could be assessed, and sources of uncertainty could be identified. By taking into account non-sphericity of the dust aerosol, calculated and measured aerosol mass and scattering coefficients agreed within overall experimental uncertainties. Differences between measured and calculated aerosol absorption coefficients were not within reasonable uncertainty limits, however, and may indicate the inability of Mie theory and the assumption of internally mixed homogeneous spheres to predict absorption by the ACE Asia aerosol. Mass scattering efficiencies of non-sea salt sulfate aerosol, sea salt, submicron particulate organic

  3. A-Train Aerosol Observations Preliminary Comparisons with AeroCom Models and Pathways to Observationally Based All-Sky Estimates

    NASA Technical Reports Server (NTRS)

    Redemann, J.; Livingston, J.; Shinozuka, Y.; Kacenelenbogen, M.; Russell, P.; LeBlanc, S.; Vaughan, M.; Ferrare, R.; Hostetler, C.; Rogers, R.; hide

    2014-01-01

    We have developed a technique for combining CALIOP aerosol backscatter, MODIS spectral AOD (aerosol optical depth), and OMI AAOD (absorption aerosol optical depth) retrievals for the purpose of estimating full spectral sets of aerosol radiative properties, and ultimately for calculating the 3-D distribution of direct aerosol radiative forcing. We present results using one year of data collected in 2007 and show comparisons of the aerosol radiative property estimates to collocated AERONET retrievals. Use of the recently released MODIS Collection 6 data for aerosol optical depths derived with the dark target and deep blue algorithms has extended the coverage of the multi-sensor estimates towards higher latitudes. We compare the spatio-temporal distribution of our multi-sensor aerosol retrievals and calculations of seasonal clear-sky aerosol radiative forcing based on the aerosol retrievals to values derived from four models that participated in the latest AeroCom model intercomparison initiative. We find significant inter-model differences, in particular for the aerosol single scattering albedo, which can be evaluated using the multi-sensor A-Train retrievals. We discuss the major challenges that exist in extending our clear-sky results to all-sky conditions. On the basis of comparisons to suborbital measurements, we present some of the limitations of the MODIS and CALIOP retrievals in the presence of adjacent or underlying clouds. Strategies for meeting these challenges are discussed.

  4. Aerosol and CCN properties at Princess Elisabeth station, East Antarctica: seasonality, new particle formation events and properties around precipitation events

    NASA Astrophysics Data System (ADS)

    Mangold, Alexander; Laffineur, Quentin; De Backer, Hugo; Herenz, Paul; Wex, Heike; Gossart, Alexandra; Souverijns, Niels; Gorodetskaya, Irina; Van Lipzig, Nicole

    2016-04-01

    Since 2010, several complementary ground-based instruments for measuring the aerosol composition of the Antarctic atmosphere have been operated at the Belgian Antarctic research station Princess Elisabeth, in Dronning Maud Land, East Antarctica (71.95° S, 23.35° E, 1390 m asl.). In addition, three ground-based remote sensing instruments for cloud and precipitation observations have been installed for continuous operation, including a ceilometer (cloud base height, type, vertical extent), a 24 Ghz micro-rain radar (vertical profiles of radar effective reflectivity and Doppler velocity), and a pyrometer (cloud base temperature). The station is inhabited from November to end of February and operates under remote control during the other months. In this contribution, the general aerosol and cloud condensation nuclei (CCN) properties will be described with a special focus on new particle formation events and around precipitation events. New particle formation events are important for the atmospheric aerosol budget and they also show that aerosols are not only transported to Antarctica but are also produced there, also inland. Aerosols are essential for cloud formation and therefore also for precipitation, which is the only source for mass gain of the Antarctic ice sheet. Measured aerosol properties comprise size distribution, total number, total mass concentration, mass concentration of light-absorbing aerosol and absorption coefficient and total scattering coefficient. In addition, a CCN counter has been operated during austral summers 2013/14, 2014/15 and 2015/16. The baseline total number concentration N-total was around some hundreds of particles/cm3. During new particle formation events N-total increased to some thousands of particles/cm3. Simultaneous measurements of N-total, size distribution and CCN number revealed that mostly the number of particles smaller than 100 nm increased and that the concentration of cloud condensation nuclei increased only very

  5. Optical properties and vertical distribution of pollution aerosols in the Mediterranean basin in summertime: airborne observations from the Charmex SOP0, SOP1, and SOP2 campaigns

    NASA Astrophysics Data System (ADS)

    Di Biagio, Claudia; Beekmann, Matthias; Chevallier, Servanne; Denjean, Cyrielle; Doppler, Lionel; Gaimoz, Cecile; Grand, Noel; Loisil, Rodrigue; Mallet, Marc; Pelon, Jacques; Ravetta, Francois; Sartelet, Karine; Schnitt, Sabrina; Triquet, Sylvain; Zapf, Pascal; Formenti, Paola

    2014-05-01

    The Mediterranean basin is a very complex area where high concentrations of atmospheric aerosols of different origin and types may be found. The North-Western part of the Mediterranean basin, due to its closeness with high polluted industrialized areas and coastal high populated cities, is frequently affected by severe pollution episodes. The strength of these episodes is particularly intense during summer when stable meteorological conditions favour the accumulation of pollutants in the lowermost atmospheric layers. Three intensive airborne campaigns (TRAQA, TRansport and Air QuAlity, June-July 2012), ADRIMED (Aerosol Direct Radiative Impact on the regional climate in the MEDiterranean region, June 2013) and SAFMED (Secondary Aerosol Formation in the MEDiterranean, July 2013) have been conducted over the North-Western and Central Mediterranean basin with the SAFIRE ATR-42 aircraft in the framework of the ChArMex Special Observing Periods 0 and 1. During the different campaigns the ATR-42 was equipped with a large set of instruments for the measurements of the aerosol physico-chemical (GRIMM, SMPS, PCASP, USHAS, FSSP for size distribution, and three lines for filter sampling on polycarbonate and quartz membranes in order to derive the bulk aerosol composition) and optical properties (TSI nephelometer, Magee Sci. aethalomether, and CAPS for scattering, absorption, and extinction coefficients at several wavelengths in the visible). Lidar backscatter profiles at 355, 532, and 1064 nm, meteorological parameters, upward and downward shortwave and longwave radiative fluxes, and atmospheric composition (H2O, CO2, CO, and O3) were also measured from aircraft instrumentation. In this work we present data on the aerosol physico-chemical and optical properties obtained during the 25 scientific flights of TRAQA, ADRIMED, and SAFMED performed in correspondence of pollution episodes. During the campaigns the Western Mediterranean basin was interested by different synoptic

  6. Modeling the Optical Properties of Biomass Burning Aerosols: Young Smoke Aerosols From Savanna Fires and Comparisons to Observations from SAFARI 2000

    NASA Technical Reports Server (NTRS)

    Matichuk, R. I.; Smith, J. A.; Toon, O. B.; Colarso, P. R.

    2006-01-01

    Annually, farmers in southern Africa manage their land resources and prepare their fields for cultivation by burning crop residual debris, with a peak in the burning season occurring during August and September. The emissions from these fires in southern Africa are among the greatest from fires worldwide, and the gases and aerosol particles produced adversely affect air quality large distances from their source regions, and can even be tracked in satellite imagery as they cross the Atlantic and Pacific Ocean basins. During August and September 2000 an international group of researchers participating in the Southern African Regional Science Initiate field experiment (SAFARI 2000) made extensive ground-based, airborne, and satellite measurements of these gases and aerosols in order to quantify their amounts and effects on Earth's atmosphere. In this study we interpreted the measurements of smoke aerosol particles made during SAFARI 2000 in order to better represent these particles in a numerical model simulating their transport and fate. Typically, smoke aerosols emitted from fires are concentrated by mass in particles about 0.3 micrometers in diameter (1,000,000 micrometers = 1 meter, about 3 feet); for comparison, the thickness of a human hair is about 50 micrometers, almost 200 times as great. Because of the size of these particles, at the surface they can be easily inhaled into the lungs, and in high concentrations have deleterious health effects on humans. Additionally, these particles reflect and absorb sunlight, impacting both visibility and the balance of sunlight reaching -Earth's surface, and ultimately play a role in modulating Earth's climate. Because of these important effects, it is important that numerical models used to estimate Earth's climate response to changes in atmospheric composition accurately represent the quantity and evolution of smoke particles. In our model, called the Community Aerosol and Radiation Model for Atmospheres (CARMA) we used

  7. Global Aerosol Observations

    Atmospheric Science Data Center

    2013-04-19

    ... atmosphere, directly influencing global climate and human health. Ground-based networks that accurately measure column aerosol amount and ... being used to improve Air Quality Models and for regional health studies. To assess the human-health impact of chronic aerosol exposure, ...

  8. Quantifying the risks of solid aerosol geoengineering: the role of fundamental material properties

    NASA Astrophysics Data System (ADS)

    Dykema, J. A.; Keutsch, F. N.; Keith, D.

    2017-12-01

    Solid aerosols have been considered as an alternative to sulfate aerosols for solar geoengineering due to their optical and chemical properties, which lead to different and possibly more attractive risk profiles. Solid aerosols can achieve higher solar scattering efficiency due to their higher refractive index, and in some cases may also be less effective absorbers of thermal infrared radiation. The optical properties of solid aerosols are however sensitive functions of the detailed physical properties of solid materials in question. The relevant details include the exact crystalline structure of the aerosols, the physical size of the particles, and interactions with background stratospheric molecular and particulate constituents. In this work, we examine the impact of these detailed physical properties on the radiative properties of calcite (CaCO3) solid aerosols. We examine how crystal morphology, size, chemical reactions, and interaction with background stratospheric aerosol may alter the scattering and absorption properties of calcite aerosols for solar and thermal infrared radiation. For example, in small particles, crystal lattice vibrations associated with the particle surface may lead to substantially different infrared absorption properties than bulk materials. We examine the wavelength dependence of absorption by the particles, which may lead to altered patterns of stratospheric radiative heating and equilibrium temperatures. Such temperature changes can lead to dynamical changes, with consequences for both stratospheric composition and tropospheric climate. We identify important uncertainties in the current state of understanding, investigate risks associated with these uncertainties, and survey potential approaches to quantitatively improving our knowledge of the relevant material properties.

  9. Preliminary Results from an Assimilation of TOMS Aerosol Observations Into the GOCART Model

    NASA Technical Reports Server (NTRS)

    daSilva, Arlindo; Weaver, Clark J.; Ginoux, Paul; Torres, Omar; Einaudi, Franco (Technical Monitor)

    2000-01-01

    At NASA Goddard we are developing a global aerosol data assimilation system that combines advances in remote sensing and modeling of atmospheric aerosols. The goal is to provide high resolution, 3-D aerosol distributions to the research community. Our first step is to develop a simple assimilation system for Saharan mineral aerosol. The Goddard Chemistry and Aerosol Radiation model (GOCART) provides accurate 3-D mineral aerosol size distributions that compare well with TOMS satellite observations. Surface, mobilization, wet and dry deposition, convective and long-range transport are all driven by assimilated fields from the Goddard Earth Observing System Data Assimilation System, GEOS-DAS. Our version of GOCART transports sizes from.08-10 microns and only simulates Saharan dust. TOMS radiance observations in the ultra violet provide information on the mineral and carbonaceous aerosol fields. We use two main observables in this study: the TOMS aerosol index (AI) which is directly related to the ratio of the 340 and 380 radiances and the 380 radiance. These are sensitive to the aerosol optical thickness, the single scattering albedo and the height of the aerosol layer. The Goddard Aerosol Assimilation System (GAAS) uses the Data Assimilation Office's Physical-space Statistical Analysis System (PSAS) to combine TOMS observations and GOCART model first guess fields. At this initial phase we only assimilate observations into the the GOCART model over regions of Africa and the Atlantic where mineral aerosols dominant and carbonaceous aerosols are minimal, Our preliminary results during summer show that the assimilation with TOMS data modifies both the aerosol mass loading and the single scattering albedo. Assimilated aerosol fields will be compared with assimilated aerosol fields from GOCART and AERONET observations over Cape Verde.

  10. Observations of Aerosol-Cloud Interactions with Varying Vertical Separation between Biomass-Burning Aerosols and Stratocumulus Clouds over the South East Atlantic

    NASA Astrophysics Data System (ADS)

    Gupta, S.; McFarquhar, G. M.; Poellot, M.; O'Brien, J.; Delene, D. J.; Thornhill, K. L., II

    2017-12-01

    The ObseRvations of Aerosols above Clouds and their intEractionS (ORACLES) 2016 project provided in-situ measurements and remotely sensed retrievals of aerosol and cloud properties over the South East Atlantic during September, 2016 with a second deployment scheduled for August, 2017. Biomass burning aerosol from Southern Africa is advected toward the South East Atlantic at elevated altitudes and overlies the ubiquitous stratocumulus cloud deck over the ocean. The aerosols subside farther from the coast so that the vertical displacement between the clouds and aerosols varies, and whose effect on aerosol-cloud interaction is poorly known. A NASA P-3 aircraft was equipped with a Cloud Droplet Probe CDP sizing particles between 2 and 50μm, a Cloud and Aerosol Spectrometer CAS sizing between 0.51 and 50 μm and a 2D-stereo probe 2DS, nominally sizing between 10 and 1280 μm a Cloud Imaging Probe CIP, from 25 to 1600μm, and a High Volume Precipitation Sampler HVPS-3, from 150μm to 1.92cm for measuring number distribution functions (n(D)) along with a King probe for measuring liquid water content, LWC. A Passive Cavity Aerosol Spectrometer Probe PCASP measured aerosol particles between 0.1 to 3μm. Cloud legs from three research flights are classified into different regimes based on the aerosol concentration measured in the accumulation mode by the PCASP (Na) and its location above clouds. These legs include vertical transects through clouds and sawtooths (ramped legs starting above or below the cloud layer, completing a vertical transect through the cloud and repeating this pattern for several legs). The regimes; clean, mixing and separated, correspond to conditions with Na less than 100 cm-3 above cloud top, Na greater than 100 cm-3 within 100 m above cloud top and Na greater than 100 cm-3 separated from the cloud top by more than 100 m. During the mixing regime, measurements from CAS and 2DS show that droplet concentrations and cloud optical depths increased and

  11. Optical Properties of Black and Brown Carbon Aerosols from Laboratory Combustion of Wildland Fuels

    NASA Astrophysics Data System (ADS)

    Beres, N. D.; Molzan, J.

    2015-12-01

    Aerosol light absorption in the solar spectral region (300 nm - 2300 nm) of the atmosphere is key for the direct aerosol radiative forcing, which is determined by aerosol single scattering albedo (SSA), asymmetry parameter, and by the albedo of the underlying surface. SSA is of key importance for the sign and quantity of aerosol direct radiative forcing; that is, does the aerosol make the earth look darker (heating) or whiter (cooling)? In addition, these optical properties are needed for satellite retrievals of aerosol optical depth and properties. During wildland fires, aerosol optical absorption is largely determined by black carbon (BC) and brown carbon (BrC) emissions. BC is strongly absorbing throughout the solar spectrum, while BrC absorption strongly increases toward shorter wavelength and can be neglected in the red and infrared. Optical properties of BrC emitted from wildland fires are poorly understood and need to be studied as function of fuel type and moisture content and combustion conditions. While much more is known about BC optical properties, knowledge for the ultraviolet (UV) spectral region is still lacking and critically needed for satellite remote sensing (e.g., TOMS, OMI) and for modeling of tropospheric photochemistry. Here, a project to better characterize biomass burning aerosol optical properties is described. It utilizes a laboratory biomass combustion chamber to generate aerosols through combustion of different wildland fuels of global and regional importance. Combustion aerosol optics is characterized with an integrating nephelometer to measure aerosol light scattering and a photoacoustic instrument to measure aerosol light absorption. These measurements will yield optical properties that are needed to improve qualitative and quantitative understanding of aerosol radiative forcing and satellite retrievals for absorbing carbonaceous aerosols from combustion of wildland fuels.

  12. Biomass burning aerosol over the Amazon during SAMBBA: impact of chemical composition on radiative properties

    NASA Astrophysics Data System (ADS)

    Morgan, William; Allan, James; Flynn, Michael; Darbyshire, Eoghan; Hodgson, Amy; Liu, Dantong; O'shea, Sebastian; Bauguitte, Stephane; Szpek, Kate; Langridge, Justin; Johnson, Ben; Haywood, Jim; Longo, Karla; Artaxo, Paulo; Coe, Hugh

    2014-05-01

    in the Cerrado. This led to significant differences in aerosol chemical composition, particularly in terms of the BC content, with BC being enhanced in the Cerrado region compared with the Rainforest environment. This was reflected in the single scattering albedo of the regional smoke haze, with values of 0.9 observed in the Rainforest environments compared with a value of 0.8 in the Cerrado region. This contrast results in a net cooling and warming respectively in terms of the aerosol direct radiative effect. BC-containing particles were found to be rapidly coated in the near-field, while the organic aerosol component was observed to oxidise rapidly upon advection and dilution downwind of major smoke plumes. Significant differences in the coating thickness of the BC-containing particles were observed when comparing the Rainforest and Cerrado environments. Such properties have important implications for the life cycle and formation of particulate material, as well as their optical and radiative properties. The results presented enhance our knowledge of biomass burning aerosol in a sensitive region of the globe, where relatively few measurement campaigns have taken place previously.

  13. Characterizing Organic Aerosol Processes and Climatically Relevant Properties via Advanced and Integrated Analyses of Aerosol Mass Spectrometry Datasets from DOE Campaigns and ACRF Measurements. Final report for DE-SC0007178

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Qi

    Organic aerosols (OA) are an important but poorly characterized component of the earth’s climate system. Enormous complexities commonly associated with OA composition and life cycle processes have significantly complicated the simulation and quantification of aerosol effects. To unravel these complexities and improve understanding of the properties, sources, formation, evolution processes, and radiative properties of atmospheric OA, we propose to perform advanced and integrated analyses of multiple DOE aerosol mass spectrometry datasets, including two high-resolution time-of-flight aerosol mass spectrometer (HR-AMS) datasets from intensive field campaigns on the aerosol life cycle and the Aerosol Chemical Speciation Monitor (ACSM) datasets from long-term routinemore » measurement programs at ACRF sites. In this project, we will focus on 1) characterizing the chemical (i.e., composition, organic elemental ratios), physical (i.e., size distribution and volatility), and radiative (i.e., sub- and super-saturated growth) properties of organic aerosols, 2) examining the correlations of these properties with different source and process regimes (e.g., primary, secondary, urban, biogenic, biomass burning, marine, or mixtures), 3) quantifying the evolutions of these properties as a function of photochemical processing, 4) identifying and characterizing special cases for important processes such as SOA formation and new particle formation and growth, and 5) correlating size-resolved aerosol chemistry with measurements of radiative properties of aerosols to determine the climatically relevant properties of OA and characterize the relationship between these properties and processes of atmospheric aerosol organics. Our primary goal is to improve a process-level understanding of the life cycle of organic aerosols in the Earth’s atmosphere. We will also aim at bridging between observations and models via synthesizing and translating the results and insights generated from

  14. Aerosol optical properties in the southeastern United States in summer - Part 1: Hygroscopic growth

    NASA Astrophysics Data System (ADS)

    Brock, C. A.; Wagner, N. L.; Anderson, B. E.; Attwood, A. R.; Beyersdorf, A.; Campuzano-Jost, P.; Carlton, A. G.; Day, D. A.; Diskin, G. S.; Gordon, T. D.; Jimenez, J. L.; Lack, D. A.; Liao, J.; Markovic, M. Z.; Middlebrook, A. M.; Ng, N. L.; Perring, A. E.; Richardson, M. S.; Schwarz, J. P.; Washenfelder, R. A.; Welti, A.; Xu, L.; Ziemba, L. D.; Murphy, D. M.

    2015-09-01

    Aircraft observations of meteorological, trace gas, and aerosol properties were made during May-September 2013 in the southeastern United States (US) under fair-weather, afternoon conditions with well-defined planetary boundary layer structure. Optical extinction at 532 nm was directly measured at three relative humidities and compared with extinction calculated from measurements of aerosol composition and size distribution using the κ-Köhler approximation for hygroscopic growth. Using this approach, the hygroscopicity parameter κ for the organic fraction of the aerosol must have been < 0.10 to be consistent with 75 % of the observations within uncertainties. This subsaturated κ value for the organic aerosol in the southeastern US is consistent with several field studies in rural environments. We present a new parameterization of the change in aerosol extinction as a function of relative humidity that better describes the observations than does the widely used power-law (gamma, γ) parameterization. This new single-parameter κext formulation is based upon κ-Köhler and Mie theories and relies upon the well-known approximately linear relationship between particle volume (or mass) and optical extinction (Charlson et al., 1967). The fitted parameter, κext, is nonlinearly related to the chemically derived κ parameter used in κ-Köhler theory. The values of κext we determined from airborne measurements are consistent with independent observations at a nearby ground site.

  15. Aerosol Optical Properties over Northwestern European Seas

    NASA Astrophysics Data System (ADS)

    Avgousta Floutsi, Athina; Korras Carraca, Marios Bruno; Matsoukas, Christos; Riva, Riccardo; Biskos, George

    2017-04-01

    Atmospheric aerosols, both natural and anthropogenic, can affect the regional and global climate through their direct, indirect, and semi-direct effects on the radiative energy budget of the Earth-atmosphere system. In order to quantify these effects it is necessary to determine the aerosol load. An effective way to do this is by measuring the aerosol optical depth (AOD). Besides AOD, the Fine mode Fraction (AOD of particles smaller than 1 μm / total AOD, FF) is a useful parameter for the characterization of the aerosol and provides a good proxy for particle size. In this study, we investigate the spatial and temporal variability of the AOD and FF over the Western and Northwestern European Seas (43° N - 67° N, 10° W - 31° E), where significant sources of both natural and anthropogenic particles are located. Anthropogenic particles (mostly fine mode) originate from ship activity, or from urban-industrial and biomass-burning processes in the European countries. The natural, coarse mode particles are primarily sea salt. The study is performed using Collection 006 Level-3 mean daily aerosol data from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument on board Aqua satellite, available in 1° × 1° resolution (ca. 100 km × 100 km) over the period 2002- 2014. Our results indicate significant spatial variability of the aerosol load over the study region. The highest AOD values (up to 0.32 on annual level) are observed over the English Channel and the coasts of the Netherlands and Germany. In these regions the highest FF values are also observed (up to 0.77), indicating a relatively large contribution of anthropogenic particles to the aerosol load. Offshore, both AOD and FF are lower compared to coastal regions, indicating the predominance of maritime aerosols (sea salt). The data also show a clear seasonal cycle, with larger aerosol load during spring and summer (AOD up to 0.60), and lower during autumn and winter (AOD up to 0.30). A similar

  16. CRISM Limb Observations of Aerosols and Water Vapor

    NASA Technical Reports Server (NTRS)

    Smith, Michael D.; Wolff, M.J.; Clancy, R.T.; Seelos, F.; Murchie, S.L.

    2009-01-01

    Near-infrared spectra taken in a limb-viewing geometry by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on-board the Mars Reconnaissance Orbiter (MRO) provide a useful tool for probing atmospheric structure. Here we describe preliminary work on the retrieval of vertical profiles of aerosols and water vapor from the CRISM limb observations. The first full set of CRISM limb observations was taken in July 2009, with subsequent limb observations planned once every two months. Each set of limb observations contains about four dozen scans across the limb giving pole-to-pole coverage for two orbits at roughly 100 and 290 W longitude. Radiative transfer modeling taking account of aerosol scattering in the limb-viewing geometry is used to model the observations. The retrievals show the height to which dust and water vapor extend and the location and height of water ice clouds. Results from the First set of CRISM limb observations (July 2009, Ls=300) show dust aerosol well-mixed to about three scale heights above the surface with thin water ice clouds above the dust near the equator and at mid-northern latitudes. Water vapor is concentrated at high southern latitudes.

  17. Aerosol Radiative Forcing Derived From SeaWIFS - Retrieved Aerosol Optical Properties

    NASA Technical Reports Server (NTRS)

    Chou, Mong-Dah; Chan, Pui-King; Wang, Menghua; Einaudi, Franco (Technical Monitor)

    2000-01-01

    To understand climatic implications of aerosols over global oceans, the aerosol optical properties retrieved from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) are analyzed, and the effects of the aerosols on the Earth's radiation budgets (aerosol radiative forcing, ARF) are computed using a radiative transfer model. It is found that the distribution of the SeaWiFS-retrieved aerosol optical thickness is distinctively zonal. The maximum in the equatorial region coincides with the Intertropical Convergence Zone, and the maximum in the Southern Hemispheric high latitudes coincides with the region of prevailing westerlies. The minimum aerosol optical thickness is found in the subtropical high pressure regions, especially in the Southern Hemisphere. These zonal patterns clearly demonstrate the influence of atmospheric circulation on the oceanic aerosol distribution. Over global oceans, aerosols reduce the annual mean net downward solar flux by 5.4 W m-2 at the top of the atmosphere and by 6.1 W m-2 at the surface. The largest ARF is found in the tropical Atlantic, Arabian Sea, Bay of Bengal, the coastal regions of Southeast and East Asia, and the Southern Hemispheric high latitudes. During the period of the Indonesian big fires (September-December 1997), the cooling due to aerosols is greater than 15 W m-2 at the top of the atmosphere and greater than 30 W m(exp -1) at the surface in the vicinity of the maritime continents. The atmosphere receives extra solar radiation by greater than 15 W m(exp -1) over a large area. These large changes in radiative fluxes are expected to have enhanced the atmospheric stability, weakened the atmospheric circulation, and augmented the drought condition during that period. It would be very instructive to simulate the regional climatic. The model-calculated clear sky solar flux at the top of the atmosphere is compared with that derived from the Clouds and the Earth's Radiant Energy System (CERES). The net downward solar flux of

  18. Aerosol optical properties in the southeastern United States in summer - Part 1: Hygroscopic growth

    NASA Astrophysics Data System (ADS)

    Brock, Charles A.; Wagner, Nicholas L.; Anderson, Bruce E.; Attwood, Alexis R.; Beyersdorf, Andreas; Campuzano-Jost, Pedro; Carlton, Annmarie G.; Day, Douglas A.; Diskin, Glenn S.; Gordon, Timothy D.; Jimenez, Jose L.; Lack, Daniel A.; Liao, Jin; Markovic, Milos Z.; Middlebrook, Ann M.; Ng, Nga L.; Perring, Anne E.; Richardson, Matthews S.; Schwarz, Joshua P.; Washenfelder, Rebecca A.; Welti, Andre; Xu, Lu; Ziemba, Luke D.; Murphy, Daniel M.

    2016-04-01

    Aircraft observations of meteorological, trace gas, and aerosol properties were made during May-September 2013 in the southeastern United States (US) under fair-weather, afternoon conditions with well-defined planetary boundary layer structure. Optical extinction at 532 nm was directly measured at relative humidities (RHs) of ˜ 15, ˜ 70, and ˜ 90 % and compared with extinction calculated from measurements of aerosol composition and size distribution using the κ-Köhler approximation for hygroscopic growth. The calculated enhancement in hydrated aerosol extinction with relative humidity, f(RH), calculated by this method agreed well with the observed f(RH) at ˜ 90 % RH. The dominance of organic aerosol, which comprised 65 ± 10 % of particulate matter with aerodynamic diameter < 1 µm in the planetary boundary layer, resulted in relatively low f(RH) values of 1.43 ± 0.67 at 70 % RH and 2.28 ± 1.05 at 90 % RH. The subsaturated κ-Köhler hygroscopicity parameter κ for the organic fraction of the aerosol must have been < 0.10 to be consistent with 75 % of the observations within uncertainties, with a best estimate of κ = 0.05. This subsaturated κ value for the organic aerosol in the southeastern US is broadly consistent with field studies in rural environments. A new, physically based, single-parameter representation was developed that better described f(RH) than did the widely used gamma power-law approximation.

  19. Aerosol loading in the Southeastern United States: reconciling surface and satellite observations

    NASA Astrophysics Data System (ADS)

    Ford, B.; Heald, C. L.

    2013-04-01

    We investigate the seasonality in aerosols over the Southeastern United States using observations from several satellite instruments (MODIS, MISR, CALIOP) and surface network sites (IMPROVE, SEARCH, AERONET). We find that the strong summertime enhancement in satellite-observed aerosol optical depth (factor 2-3 enhancement over wintertime AOD) is not present in surface mass concentrations (25-55% summertime enhancement). Goldstein et al. (2009) previously attributed this seasonality in AOD to biogenic organic aerosol; however, surface observations show that organic aerosol only accounts for ~35% of PM2.5 mass and exhibits similar seasonality to total PM2.5. The GEOS-Chem model generally reproduces these surface aerosol measurements, but under represents the AOD seasonality observed by satellites. We show that seasonal differences in water uptake cannot sufficiently explain the magnitude of AOD increase. As CALIOP profiles indicate the presence of additional aerosol in the lower troposphere (below 700 hPa), which cannot be explained by vertical mixing; we conclude that the discrepancy is due to a missing source of aerosols above the surface in summer.

  20. Simultaneous Retrieval of Aerosol and Surface Optical Properties from Combined Airborne- and Ground-Based Direct and Diffuse Radiometric Measurements

    NASA Technical Reports Server (NTRS)

    Gatebe, C. K.; Dubovik, O.; King, M. D.; Sinyuk, A.

    2010-01-01

    This paper presents a new method for simultaneously retrieving aerosol and surface reflectance properties from combined airborne and ground-based direct and diffuse radiometric measurements. The method is based on the standard Aerosol Robotic Network (AERONET) method for retrieving aerosol size distribution, complex index of refraction, and single scattering albedo, but modified to retrieve aerosol properties in two layers, below and above the aircraft, and parameters on surface optical properties from combined datasets (Cloud Absorption Radiometer (CAR) and AERONET data). A key advantage of this method is the inversion of all available spectral and angular data at the same time, while accounting for the influence of noise in the inversion procedure using statistical optimization. The wide spectral (0.34-2.30 m) and angular range (180 ) of the CAR instrument, combined with observations from an AERONET sunphotometer, provide sufficient measurement constraints for characterizing aerosol and surface properties with minimal assumptions. The robustness of the method was tested on observations made during four different field campaigns: (a) the Southern African Regional Science Initiative 2000 over Mongu, Zambia, (b) the Intercontinental Transport Experiment-Phase B over Mexico City, Mexico (c) Cloud and Land Surface Interaction Campaign over the Atmospheric Radiation Measurement (ARM) Central Facility, Oklahoma, USA, and (d) the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) over Elson Lagoon in Barrow, Alaska, USA. The four areas are dominated by different surface characteristics and aerosol types, and therefore provide good test cases for the new inversion method.

  1. Atmospheric Optical Properties and Spectral Analysis of Desert Aerosols

    NASA Astrophysics Data System (ADS)

    Yvgeni, D.; Karnieli, A.; Kaufman, Y. J.; Andreae, M. O.; Holben, B. N.; Maenhaut, W.

    2002-05-01

    Scientific background Aerosols can interact directly with solar and terrestrial radiation by scattering as well as absorption. In addition, they can indirectly alter the planetary albedo by modifying the properties of clouds. Objectives Investigations have been devoted to two main areas: (1) Aerosol climatology situation in the Negev desert, investigations of physical and chemical characteristics of aerosols, and study of the local and long-range transport trajectory of polluted air masses over the Negev desert; and (2) An estimation of the optical properties throughout the atmospheric column by surface measurements via performance of spectral and statistical analysis of the data received from two measurement systems. Results and conclusions Analyzed data from the Sede Boker site, in the Negev Desert of Israel, shows an increase in aerosol optical depth during the summer seasons and a decrease during winter. One of the possible reasons for this characteristic is an increase of the precipitable water (reaches 3.0-3.5 cm) due to a constant wind stream from the Mediterranean Sea in same time. The highest probability distribution of the aerosol optical depth is in the range of 0.15-0.20; and of the Angstrom parameter is in range of 0.83 - 1.07. During dust storm events, the scattering coefficient range at 670 nm and 440 nm wavelengths were inverted. It was discovered that the dust particles in this case had non-spherical character. Comparison between optical depth, measured through all atmospheric column, and scattering coefficient from surface measurements provides correlation coefficient (r) equal to 0.64. The Angstrom parameter, calculated via optical depth and via scattering coefficient, provides a correlation coefficient of 0.66. Thus we can obtain an estimate of the influence of the surface aerosol situation on column optical properties. The combined analysis of dust cloud altitude and optical depth as a function of the time indicates long-term transport and

  2. Synergic use of TOMS and Aeronet Observations for Characterization of Aerosol Absorption

    NASA Technical Reports Server (NTRS)

    Torres, O.; Bhartia, P. K.; Dubovik, O.; Holben, B.; Siniuk, A.

    2003-01-01

    The role of aerosol absorption on the radiative transfer balance of the earth-atmosphere system is one of the largest sources of uncertainty in the analysis of global climate change. Global measurements of aerosol single scattering albedo are, therefore, necessary to properly assess the radiative forcing effect of aerosols. Remote sensing of aerosol absorption is currently carried out using both ground (Aerosol Robotic Network) and space (Total Ozone Mapping Spectrometer) based observations. The satellite technique uses measurements of backscattered near ultraviolet radiation. Carbonaceous aerosols, resulting from the combustion of biomass, are one of the most predominant absorbing aerosol types in the atmosphere. In this presentation, TOMS and AERONET retrievals of single scattering albedo of carbonaceous aerosols, are compared for different environmental conditions: agriculture related biomass burning in South America and Africa and peat fires in Eastern Europe. The AERONET and TOMS derived aerosol absorption information are in good quantitative agreement. The most absorbing smoke is detected over the African Savanna. Aerosol absorption over the Brazilian rain forest is less absorbing. Absorption by aerosol particles resulting from peat fires in Eastern Europe is weaker than the absorption measured in Africa and South America. This analysis shows that the near UV satellite method of aerosol absorption characterization has the sensitivity to distinguish different levels of aerosol absorption. The analysis of the combined AERONET-TOMS observations shows a high degree of synergy between satellite and ground based observations.

  3. Aerosol optical, microphysical and radiative properties at regional background insular sites in the western Mediterranean

    NASA Astrophysics Data System (ADS)

    Sicard, Michaël; Barragan, Rubén; Dulac, François; Alados-Arboledas, Lucas; Mallet, Marc

    2016-09-01

    In the framework of the ChArMEx (the Chemistry-Aerosol Mediterranean Experiment; http://charmex.lsce.ipsl.fr/) program, the seasonal variability of the aerosol optical, microphysical and radiative properties derived from AERONET (Aerosol Robotic Network; http://aeronet.gsfc.nasa.gov/) is examined in two regional background insular sites in the western Mediterranean Basin: Ersa (Corsica Island, France) and Palma de Mallorca (Mallorca Island, Spain). A third site, Alborán (Alborán Island, Spain), with only a few months of data is considered for examining possible northeast-southwest (NE-SW) gradients of the aforementioned aerosol properties. The AERONET dataset is exclusively composed of level 2.0 inversion products available during the 5-year period 2011-2015. AERONET solar radiative fluxes are compared with ground- and satellite-based flux measurements. To the best of our knowledge this is the first time that AERONET fluxes are compared with measurements at the top of the atmosphere. Strong events (with an aerosol optical depth at 440 nm greater than 0.4) of long-range transport aerosols, one of the main drivers of the observed annual cycles and NE-SW gradients, are (1) mineral dust outbreaks predominant in spring and summer in the north and in summer in the south and (2) European pollution episodes predominant in autumn. A NE-SW gradient exists in the western Mediterranean Basin for the aerosol optical depth and especially its coarse-mode fraction, which all together produces a similar gradient for the aerosol direct radiative forcing. The aerosol fine mode is rather homogeneously distributed. Absorption properties are quite variable because of the many and different sources of anthropogenic particles in and around the western Mediterranean Basin: North African and European urban areas, the Iberian and Italian peninsulas, most forest fires and

  4. PARAGON: A Systematic, Integrated Approach to Aerosol Observation and Modeling

    NASA Technical Reports Server (NTRS)

    Diner, David J.; Kahn, Ralph A.; Braverman, Amy J.; Davies, Roger; Martonchik, John V.; Menzies, Robert T.; Ackerman, Thomas P.; Seinfeld, John H.; Anderson, Theodore L.; Charlson, Robert J.; hide

    2004-01-01

    Aerosols are generated and transformed by myriad processes operating across many spatial and temporal scales. Evaluation of climate models and their sensitivity to changes, such as in greenhouse gas abundances, requires quantifying natural and anthropogenic aerosol forcings and accounting for other critical factors, such as cloud feedbacks. High accuracy is required to provide sufficient sensitivity to perturbations, separate anthropogenic from natural influences, and develop confidence in inputs used to support policy decisions. Although many relevant data sources exist, the aerosol research community does not currently have the means to combine these diverse inputs into an integrated data set for maximum scientific benefit. Bridging observational gaps, adapting to evolving measurements, and establishing rigorous protocols for evaluating models are necessary, while simultaneously maintaining consistent, well understood accuracies. The Progressive Aerosol Retrieval and Assimilation Global Observing Network (PARAGON) concept represents a systematic, integrated approach to global aerosol Characterization, bringing together modern measurement and modeling techniques, geospatial statistics methodologies, and high-performance information technologies to provide the machinery necessary for achieving a comprehensive understanding of how aerosol physical, chemical, and radiative processes impact the Earth system. We outline a framework for integrating and interpreting observations and models and establishing an accurate, consistent and cohesive long-term data record.

  5. An Observing System Simulation Experiment (OSSE) Investigating the OMI Aerosol Products Using Simulated Aerosol and Atmospheric Fields from the NASA GEOS-5 Model

    NASA Astrophysics Data System (ADS)

    Colarco, P. R.; Gasso, S.; Jethva, H. T.; Buchard, V.; Ahn, C.; Torres, O.; daSilva, A.

    2016-12-01

    Output from the NASA Goddard Earth Observing System, version 5 (GEOS-5) Earth system model is used to simulate the top-of-atmosphere 354 and 388 nm radiances observed by the Ozone Monitoring Instrument (OMI) onboard the Aura spacecraft. The principle purpose of developing this simulator tool is to compute from the modeled fields the so-called OMI Aerosol Index (AI), which is a more fundamental retrieval product than higher level products such as the aerosol optical depth (AOD) or absorbing aerosol optical depth (AAOD). This lays the groundwork for eventually developing a capability to assimilate either the OMI AI or its radiances, which would provide further constraint on aerosol loading and absorption properties for global models. We extend the use of the simulator capability to understand the nature of the OMI aerosol retrieval algorithms themselves in an Observing System Simulation Experiment (OSSE). The simulated radiances are used to calculate the AI from the modeled fields. These radiances are also provided to the OMI aerosol algorithms, which return their own retrievals of the AI, AOD, and AAOD. Our assessment reveals that the OMI-retrieved AI can be mostly harmonized with the model-derived AI given the same radiances provided a common surface pressure field is assumed. This is important because the operational OMI algorithms presently assume a fixed pressure field, while the contribution of molecular scattering to the actual OMI signal in fact responds to the actual atmospheric pressure profile, which is accounted for in our OSSE by using GEOS-5 produced atmospheric reanalyses. Other differences between the model and OMI AI are discussed, and we present a preliminary assessment of the OMI AOD and AAOD products with respect to the known inputs from the GEOS-5 simulation.

  6. Global Aerosol Radiative Forcing Derived from Sea WiFS-Inferred Aerosol Optical Properties

    NASA Technical Reports Server (NTRS)

    Chou, Ming-Dah; Chan, Pui-King; Wang, Menghua

    1999-01-01

    Aerosol optical properties inferred from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) radiance measurements are used to compute the aerosol shortwave radiative forcing using a radiative transfer model. The aerosol optical thickness at the wavelength of 865-nm is taken from the SeaWIFS archive. It is found that the nominal optical thickness over oceans ranges from 0.1 to 0.2. Using a maritime aerosol model and the radiances measured at the various SeaWiFS channels, the Angstrom exponent is determined to be 0.2174, the single-scattering albedo to be 0.995, and the asymmetry factor to be 0.786. The radiative transfer model has eight bands in the visible and ultraviolet spectral regions and three bands in the near infrared. It includes the absorption due to aerosols, water vapor, carbon dioxide, and oxygen, and the scattering due to aerosols and gases (Rayleigh scattering). The radiative forcing is computed over global oceans for four months (January, April, July, and October, 1998) to represent four seasons. It is found that the aerosol radiative forcing is large and changes significantly with seasons near the continents with large-scale forest fires and desert dust. Averaged over oceans and the four months, the aerosol radiative forcing is approximately 7 W/sq m at the top of the atmosphere. This large radiative forcing is expected to have a significant cooling effect on the Earth's climate as implied from simulations of a number of general circulation models.

  7. Polarization of skylight in the O(2)A band: effects of aerosol properties.

    PubMed

    Boesche, Eyk; Stammes, Piet; Preusker, Réne; Bennartz, Ralf; Knap, Wouter; Fischer, Juergen

    2008-07-01

    Motivated by several observations of the degree of linear polarization of skylight in the oxygen A (O(2)A) band that do not yet have a quantitative explanation, we analyze the influence of aerosol altitude, microphysics, and optical thickness on the degree of linear polarization of the zenith skylight in the spectral region of the O(2)A band, between 755 to 775 nm. It is shown that the degree of linear polarization inside the O(2)A band is particularly sensitive to aerosol altitude. The sensitivity is strongest for aerosols within the troposphere and depends also on their microphysical properties and optical thickness. The polarization of the O(2)A band can be larger than the polarization of the continuum, which typically occurs for strongly polarizing aerosols in an elevated layer, or smaller, which typically occurs for depolarizing aerosols or cirrus clouds in an elevated layer. We show that in the case of a single aerosol layer in the atmosphere a determination of the aerosol layer altitude may be obtained. Furthermore, we show limitations of the aerosol layer altitude determination in case of multiple aerosol layers. To perform these simulations we developed a fast method for multiple scattering radiative transfer calculations in gaseous absorption bands including polarization. The method is a combination of doubling-adding and k-binning methods. We present an error estimation of this method by comparing with accurate line-by-line radiative transfer simulations. For the Motivated by several observations of the degree of linear polarization of skylight in the oxygen A (O(2)A) band that do not yet have a quantitative explanation, we analyze the influence of aerosol altitude, microphysics, and optical thickness on the degree of linear polarization of the zenith skylight in the spectral region of the O(2)A band, between 755 to 775 nm. It is shown that the degree of linear polarization inside the O(2)A band is particularly sensitive to aerosol altitude. The

  8. Optical and radiative properties of aerosols over Abu Dhabi in the United Arab Emirates

    NASA Astrophysics Data System (ADS)

    Beegum, S. Naseema; Romdhane, Haifa Ben; Ali, Mohammed Tauha; Armstrong, Peter; Ghedira, Hosni

    2016-12-01

    The present study is on the aerosol optical and radiative properties in the short-wave radiation and its climate implications at the arid city of Abu Dhabi (24.42 ∘N, 54.61 ∘E, 4.5 m MSL), in the United Arab Emirates. The direct aerosol radiative forcings (ARF) in the short-wave region at the top (TOA) and bottom of the atmosphere (BOA) are estimated using a hybrid approach, making use of discrete ordinate radiative transfer method in conjunction with the short-wave flux and spectral aerosol optical depth (AOD) measurements, over a period of 3 years (June 2012-July 2015), at Abu Dhabi located at the south-west coast of the Arabian Gulf. The inferred microphysical properties of aerosols at the measurement site indicate strong seasonal variations from the dominance of coarse mode mineral dust aerosols during spring (March-May) and summer (June-September), to the abundance of fine/accumulation mode aerosols mainly from combustion of fossil-fuel and bio-fuel during autumn (October-November) and winter (December-February) seasons. The monthly mean diurnally averaged ARF at the BOA (TOA) varies from -13.2 Wm-2 (˜-0.96 Wm-2) in November to -39.4 Wm-2 (-11.4 Wm-2) in August with higher magnitudes of the forcing values during spring/summer seasons and lower values during autumn/winter seasons. The atmospheric aerosol forcing varies from + 12.2 Wm-2 (November) to 28.2 Wm-2 (June) with higher values throughout the spring and summer seasons, suggesting the importance of mineral dust aerosols towards the solar dimming. Seasonally, highest values of the forcing efficiency at the surface are observed in spring (-85.0 ± 4.1 W m-2 τ -1) followed closely by winter (-79.2 ± 7.1 W m-2 τ -1) and the lowest values during autumn season (-54 ± 4.3 W m-2 τ -1). The study concludes with the variations of the atmospheric heating rates induced by the forcing. Highest heating rate is observed in June (0.39 K day -1) and the lowest in November (0.17 K day -1) and the temporal

  9. North Atlantic Aerosol Radiative Impacts Based on Satellite Measurements and Aerosol Intensive Properties from TARFOX and ACE-2

    NASA Technical Reports Server (NTRS)

    Bergstrom, Robert A.; Russell, Philip B.

    2000-01-01

    We estimate the impact of North Atlantic aerosols on the net shortwave flux at the tropopause by combining maps of satellite-derived aerosol optical depth (AOD) with model aerosol properties. We exclude African dust, primarily by restricting latitudes to 25-60 N. Aerosol properties were determined via column closure analyses in two recent experiments, TARFOX and ACE 2. The analyses use in situ measurements of aerosol composition and air- and ship-borne sunphotometer measurements of AOD spectra. The resulting aerosol model yields computed flux sensitivities (dFlux/dAOD) that agree with measurements by airborne flux radiometers in TARFOX. It has a midvisible single- scattering albedo of 0.9, which is in the range obtained from in situ measurements of aerosol scattering and absorption in both TARFOX and ACE 2. Combining seasonal maps of AVHRR-derived midvisible AOD with the aerosol model yields maps of 24-hour average net radiative flux changes at the tropopause. For cloud-free conditions, results range from -9 W/sq m near the eastern US coastline in the summer to -1 W/sq m in the mid-Atlantic during winter; the regional annual average is -3.5 W/sq m. Using a non- absorbing aerosol model increases these values by about 30%. We estimate the effect of clouds using ISCCP cloud-fraction maps. Because ISCCP midlatitude North Atlantic cloud fractions are relatively large, they greatly reduce the computed aerosol-induced flux changes. For example, the regional annual average decreases from -3.5 W/sq m to -0.8 W/sq m. We compare results to previous model calculations for a variety of aerosol types.

  10. North Atlantic Aerosol Radiative Effects Based on Satellite Measurements and Aerosol Intensive Properties from TARFOX and ACE-2

    NASA Technical Reports Server (NTRS)

    Bergstrom, Robert W.; Russell, Philip B.

    2000-01-01

    We estimate the impact of North Atlantic aerosols on the net shortwave flux at the tropopause by combining maps of satellite-derived aerosol optical depth (AOD) with model aerosol properties. We exclude African dust, primarily by restricting latitudes to 25-60 N. Aerosol properties were determined via column closure analyses in two recent experiments, TARFOX and ACE 2. The analyses use in situ measurements of aerosol composition and air- and ship-borne sunphotometer measurements of AOD spectra. The resulting aerosol model yields computed flux sensitivities (dFlux/dAOD) that agree with measurements by airborne flux radiometers in TARFOX. It has a midvisible single-scattering albedo of 0.9, which is in the range obtained from in situ measurements of aerosol scattering and absorption in both TARFOX and ACE 2. Combining seasonal maps of AVHRR-derived midvisible AOD with the aerosol model yields maps of 24-hour average net radiative flux changes at the tropopause. For cloud-free conditions, results range from -9 W/sq m near the eastern US coastline in the summer to -1 W/sq m in the mid-Atlantic during winter; the regional annual average is -3.5 W/sq m. Using a non- absorbing aerosol model increases these values by about 30%. We estimate the effect of clouds using ISCCP cloud-fraction maps. Because ISCCP midlatitude North Atlantic cloud fractions are relatively large, they greatly reduce the computed aerosol-induced flux changes. For example, the regional annual average decreases from -3.5 W/sq m to -0.8 W/sq m. We compare results to previous model calculations for a variety of aerosol types.

  11. North Atlantic Aerosol Radiative Impacts Based on Satellite Measurements and Aerosol Intensive Properties from TARFOX and ACE-2

    NASA Technical Reports Server (NTRS)

    Russell, Philip B.; Bergstrom, Robert W.; Schmid, Beat; Livingston, John M.

    2000-01-01

    We estimate the impact of North Atlantic aerosols on the net shortwave flux at the tropopause by combining maps of satellite-derived aerosol optical depth (AOD) with model aerosol properties. We exclude African dust, primarily by restricting latitudes to 25-60 N. Aerosol properties were determined via column closure analyses in two recent experiments, TARFOX and ACE 2. The analyses use in situ measurements of aerosol composition and air- and ship-borne sunphotometer measurements of AOD spectra. The resulting aerosol model yields computed flux sensitivities (dFlux/dAOD) that agree with measurements by airborne flux radiometers in TARFOX. It has a midvisible single-scattering albedo of 0.9, which is in the range obtained from in situ measurements of aerosol scattering and absorption in both TARFOX and ACE 2. Combining seasonal maps of AVHRR-derived midvisible AOD with the aerosol model yields maps of 24-hour average net radiative flux changes at the tropopause. For cloud-free conditions, results range from -9 W/sq m near the eastern US coastline in the summer to -1 W/sq m in the mid-Atlantic during winter; the regional annual average is -3.5 W/sq m. Using a non- absorbing aerosol model increases these values by about 30%. We estimate the effect of clouds using ISCCP cloud-fraction maps. Because ISCCP midlatitude North Atlantic cloud fractions are relatively large, they greatly reduce the computed aerosol-induced flux changes. For example, the regional annual average decreases from -3.5 W/sq m to -0.8 W/sq m. We compare results to previous model calculations for a variety of aerosol types.

  12. Evaluation of multi-model aerosol distributions over East Asia using in-situ and satellite observations during summer 2008

    NASA Astrophysics Data System (ADS)

    Quennehen, B.; Raut, J.; Law, K.; Ancellet, G.; Bazureau, A.; Thomas, J.; Daskalakis, N.; Kim, S.; Zhu, T.

    2013-12-01

    As part of the EU ECLIPSE (Evaluating the CLimate and air quality ImPacts of Short-livEd pollutants) project, which aims to quantify the climate impact of short lived climate forcers (SLCFs), including aerosols, black carbon and ozone, the WRF-Chem regional and six global (ECHAM6, EMEP, HadGEM, OsloCTM, NORESM, TM4) models are evaluated using observations in East-Asia. Simulations are compared at horizontal and vertical scales to satellite observations, as well as data from field campaigns which took place in summer 2008, and from long-term measurement stations. Models were run with the same emissions, namely, the ECLIPSE anthropogenic (based on the GAINS model), GFED 3.1 fire and RCP 6.0 ship and aircraft emissions for 2008. The initial and boundary conditions for the WRF-Chem regional model were specified from the TM4 global chemical transport model. Firstly, this study evaluates the ability of the models to simulate aerosol physical, optical and chemical properties at a large scale, both horizontally and vertically, using monthly mean satellite observations such as CALIPSO, MODIS and IASI. Secondly, model daily and hourly results are evaluated at more regional/local scales using ground-based data and measurements from summer 2008 intensive campaigns, including aircraft data (CAPMEX and CAREBEIJING). In this study, we assess aerosol total concentrations and size distributions simulated by the model. The radiative impact of anthropogenic aerosol layers has already been investigated but less is known about the influence of vertical layering in the atmosphere. Pollution layers have different radiative impacts whether they are below or above clouds and in that sense, a better understanding of their spatial and vertical extent is critical. Information about pollution layers and cloud optical properties and locations over East-Asia are determined using observations from IASI for trace gases and CALIPSO for aerosols. The radiative impact of the aerosol layers is

  13. Diurnal Cycles of Aerosol Optical Properties at Pico Tres Padres, Mexico City: Evidences for Changes in Particle Morphology and Secondary Aerosol Formation

    NASA Astrophysics Data System (ADS)

    Mazzoleni, C.; Dubey, M.; Chakrabarty, R.; Moosmuller, H.; Onasch, T.; Zavala, M.; Herndon, S.; Kolb, C.

    2007-12-01

    Aerosol optical properties affect planetary radiative balance and depend on chemical composition, size distribution, and morphology. During the MILAGRO field campaign, we measured aerosol absorption and scattering in Mexico City using the Los Alamos aerosol photoacoustic (LAPA) instrument operating at 781 nm. The LAPA was mounted on-board the Aerodyne Research Inc. mobile laboratory, which hosted a variety of gaseous and aerosol instruments. During the campaign, the laboratory was moved to different sites, capturing spatial and temporal variability. Additionally, we collected ambient aerosols on Nuclepore filters for scanning electron microscopy (SEM) analysis. SEM images of selected filters were taken to study particle morphology. Between March 7th and 19th air was sampled at the top of Pico Tres Padres, a mountain on the north side of Mexico City. Aerosol absorption and scattering followed diurnal patterns related to boundary layer height and solar insulation. We report an analysis of aerosol absorption, scattering, and morphology for three days (9th, 11th and 12th of March 2006). The single scattering albedo (SSA, ratio of scattering to total extinction) showed a drop in the tens-of-minutes-to-hour time frame after the boundary layer grew above the sampling site. Later in the day the SSA rose steadily reaching a maximum in the afternoon. The SEM images showed a variety of aerosol shapes including fractal-like aggregates, spherical particles, and other shapes. The absorption correlated with the CO2 signal and qualitatively with the fraction of fractal-like particles to the total particle count. In the afternoon the SSA qualitatively correlated with a relative increase in spherical particles and total particle count. These observed changes in optical properties and morphology can be explained by the dominant contribution of freshly emitted particles in the morning and by secondary particle formation in the afternoon. SSA hourly averaged values ranged from ~0.63 in

  14. Recent changes in stratospheric aerosol budget from ground-based and satellite observations

    NASA Astrophysics Data System (ADS)

    Khaykin, Sergey; Godin-Beekmann, Sophie; Keckhut, Philippe; Hauchecorne, Alain; Portafaix, Thierry; Begue, Nelson; Vernier, Jean-Paul; DeLand, Matthew; Bhartia, Pawan K.; Leblanc, Thierry

    2017-04-01

    Stratospheric aerosol budget plays an important role in climate variability and ozone chemistry. Observations of stratospheric aerosol by ground-based lidars represent a particular value as they ensure the continuity and coherence of stratospheric aerosol record. Ground-based lidars remain indispensable for complementing and validating satellite instruments and for filling gaps between satellite missions. On the other hand, geophysical interpretation of local observations is complicated without the knowledge of global distribution of stratospheric aerosol, which calls for a combined analysis of ground-based and space-borne observations. The present study aims at characterizing global and regional variability of stratospheric aerosol over the last 5 years using various sets of observations. We use the data provided by three lidars operated within NDACC (Network for Detection of Atmospheric Composition Change) at Haute-Provence, (44° N), Mauna Loa (21° N) and Maido (21° S) sites together with quasi-global-coverage aerosol measurements by CALIOP and OMPS satellite instruments. The local and space-borne measurements are shown to be in good agreement allowing for their synergetic use. Since the late 2012 stratospheric aerosol remained at background levels throughout the globe. Eruptions of Kelud volcano at 4° S in February 2014 and Calbuco volcano at 41° S in April 2015 resulted in a remarkable enhancement of stratospheric AOD at a wide latitude range. We explore meridional dispersion and lifetime of volcanic plumes in consideration of global atmospheric circulation. A focus is made on the poleward transport of volcanic aerosol and its detection at the mid-latitude Haute-Provence observatory. We show that the moderate eruptions in the Southern hemisphere leave a measurable imprint on the Northern mid-latitude aerosol loading. Having identified the volcanically-perturbed periods from local and global observations we examine the evolution of non-volcanic (background

  15. Aerosol loading in the Southeastern United States: reconciling surface and satellite observations

    NASA Astrophysics Data System (ADS)

    Ford, B.; Heald, C. L.

    2013-09-01

    We investigate the seasonality in aerosols over the Southeastern United States using observations from several satellite instruments (MODIS, MISR, CALIOP) and surface network sites (IMPROVE, SEARCH, AERONET). We find that the strong summertime enhancement in satellite-observed aerosol optical depth (AOD) (factor 2-3 enhancement over wintertime AOD) is not present in surface mass concentrations (25-55% summertime enhancement). Goldstein et al. (2009) previously attributed this seasonality in AOD to biogenic organic aerosol; however, surface observations show that organic aerosol only accounts for ∼35% of fine particulate matter (smaller than 2.5 μm in aerodynamic diameter, PM2.5) and exhibits similar seasonality to total surface PM2.5. The GEOS-Chem model generally reproduces these surface aerosol measurements, but underrepresents the AOD seasonality observed by satellites. We show that seasonal differences in water uptake cannot sufficiently explain the magnitude of AOD increase. As CALIOP profiles indicate the presence of additional aerosol in the lower troposphere (below 700 hPa), which cannot be explained by vertical mixing, we conclude that the discrepancy is due to a missing source of aerosols above the surface layer in summer.

  16. Characterization of Aerosol Episodes in the Greater Mediterranean Sea Area from Satellite Observations (2000-2007)

    NASA Technical Reports Server (NTRS)

    Gkikas, A.; Hatzianastassiou, N.; Mihalopoulos, N.; Torres, O.

    2015-01-01

    An algorithm able to identify and characterize episodes of different aerosol types above sea surfaces of the greater Mediterranean basin (GMB), including the Black Sea and the Atlantic Ocean off the coasts of Iberia and northwest Africa, is presented in this study. Based on this algorithm, five types of intense (strong and extreme) aerosol episodes in the GMB are identified and characterized using daily aerosol optical properties from satellite measurements, namely MODIS-Terra, Earth Probe (EP)-TOMS and OMIAura. These aerosol episodes are: (i) biomass-burning/urban-industrial (BU), (ii) desert dust (DD), (iii) dust/sea-salt (DSS), (iv) mixed (MX) and (v) undetermined (UN). The identification and characterization is made with our algorithm using a variety of aerosol properties, namely aerosol optical depth (AOD), Angstrom exponent (a), fine fraction (FF), effective radius (reff) and Aerosol Index (AI). During the study period (2000e2007), the most frequent aerosol episodes are DD, observed primarily in the western and central Mediterranean Sea, and off the northern African coasts, 7 times/year for strong episodes and 4 times/year for extreme ones, on average. The DD episodes yield 40% of all types of strong aerosol episodes in the study region, while they account for 71.5% of all extreme episodes. The frequency of occurrence of strong episodes exhibits specific geographical patterns, for example the BU are mostly observed along the coasts of southern Europe and off the Atlantic coasts of Portugal, the MX episodes off the Spanish Mediterranean coast and over the Adriatic and northern Aegean Sea, while the DSS ones over the western and central Mediterranean Sea. On the other hand, the extreme episodes for all but DD aerosol display more patchy spatial patterns. The strong episodes exhibit AOD at 550 nm as high as 1.6 in the southernmost parts of central and eastern Mediterranean Sea, which rise up to 5 for the extreme, mainly DD and DSS, episodes. Although more than

  17. Mixing State and Optical Properties of Biomass Burning Aerosol during the SAMBBA 2012 Campaign

    NASA Astrophysics Data System (ADS)

    Brooke, Jennifer; Brooks, Barbara; McQuaid, Jim; Osborne, Simon

    2013-04-01

    Emissions of black carbon are a global phenomenon associated with combustion activities with an estimated 40 % of global emissions from biomass burning. These emissions are typically dominated in regional hotspots, such as along the edges of the Amazon Basin, and contribute to the regional air quality and have associated health impacts as well as the global climatic impacts of this major source of black carbon as well as other radiatively active species. New airborne measurements will be presented of biomass burning emissions across the Amazon region from the South AMerican Biomass Burning Analysis (SAMBBA) campaign based at Porto Vehlo, Rondônia, Brazil in September 2012. This airborne campaign aboard the FAAM BAe-146 coincided with the seasonal peak in South American biomass burning emissions, which make up the most dominant source of atmospheric pollutants in the region at this time. SAMBBA included dedicated flights involving in-situ measurements and remote sensing of single plume studies through to multi-plume sampling of smouldering and flaming vegetation fires, regional haze sampling, and measurements of biogenic aerosol and gases across Amazonas. This presentation summarises early findings from the SAMBBA aircraft observations focusing on the relationship between biomass burning aerosol properties; size distributions, aerosol mixing state and optical properties from a suite of instruments onboard the FAAM BAe-146. The interplay of these properties influences the regional radiative balance impacting on weather and climate. The Leeds airborne VACC (Volatile Aerosol Concentration and Composition) instrument is designed to investigate the volatility properties of different aerosol species in order to determine aerosol composition; furthermore it can be used to infer the mixing state of the aerosol. Size distributions measured with the volatility system will be compared with ambient size distribution measurements this allows information on organic coating

  18. Optical properties of aerosols over a tropical rain forest in Xishuangbanna, South Asia

    NASA Astrophysics Data System (ADS)

    Ma, Yongjing; Xin, Jinyuan; Zhang, Wenyu; Wang, Yuesi

    2016-09-01

    Observation and analysis of the optical properties of atmospheric aerosols in a South Asian tropical rain forest showed that the annual mean aerosol optical depth (AOD) and aerosol Ångström exponent (α) at 500 nm were 0.47 ± 0.30 (± value represents the standard deviation) and 1.35 ± 0.32, respectively, from 2012 to 2014, similar with that of Amazon region. Aerosol optical properties in this region varied significantly between the dry and wet seasons. The mean AOD and α were 0.50 ± 0.32 and 1.41 ± 0.28, respectively, in the dry season and 0.41 ± 0.20 and 1.13 ± 0.41 in the wet season. Because of the combustion of the rich biomass in the dry season, fine modal smoke aerosols increased, which led to a higher AOD and smaller aerosol control mode than in the wet season. The average atmospheric humidity in the wet season was 85.50%, higher than the 79.67% during the dry season. In the very damp conditions of the wet season, the aerosol control mode was relatively larger, while AOD appeared to be lower because of the effect of aerosol hygroscopic growth and wet deposition. The trajectories were similar both in dry and wet, but with different effects on the aerosol concentration. The highest AOD values 0.66 ± 0.34 (in dry) and 0.45 ± 0.21 (in wet) both occurred in continental air masses, while smaller (0.38-0.48 in dry and 0.30-0.35 in wet) in oceanic air masses. The range of AOD values during the wet season was relatively narrow (0.30-0.45), but the dry season range was wider (0.38-0.66). For the Ångström exponent, the range in the wet season (0.74-1.34) was much greater than that in the dry season (1.33-1.54).

  19. A Global, Decadal, Quantitative Record of Absorbing Aerosols above Cloud Using OMI's Near-UV Observations

    NASA Astrophysics Data System (ADS)

    Torres, O.; Jethva, H. T.; Ahn, C.

    2016-12-01

    Aerosol-cloud interaction continues to be one of the leading uncertain components of climate models, primarily due to the lack of an adequate knowledge of the complex microphysical and radiative processes of the aerosol-cloud system. The situations when aerosols and clouds are found in the same atmospheric column, for instance, when light-absorbing aerosols such as biomass burning generated carbonaceous particles or wind-blown dust overlay low-level cloud decks, are commonly found over several regions of the world. Contrary to the known cooling effects of these aerosols in cloud-free scenario over dark surface, the overlapping situation of absorbing aerosols over cloud can potentially exert a significant level of atmospheric absorption and produces a positive radiative forcing (warming) at top-of-atmosphere. The magnitude of direct radiative effects of aerosols above cloud directly depends on the aerosol loading, microphysical and optical properties of the aerosol layer and the underlying cloud deck, and geometric cloud fraction. We help in addressing this problem by introducing a novel product of above-cloud aerosol optical depth (ACAOD) of absorbing aerosols retrieved from near-UV observations made by the Ozone Monitoring Instrument (OMI) on board NASA's Aura platform. Physically based on the strong `color ratio' effect in the near-UV caused by the spectral absorption of aerosols above cloud, the algorithm, formally named as OMACA, retrieves the optical depths of aerosols and clouds simultaneously under a prescribed state of atmosphere. Here, we present the algorithm architecture and results from an 11-year global record (2005-2015) including global climatology of frequency of occurrence and ACAOD. The theoretical uncertainty analysis and planned validation activities using measurements from upcoming field campaigns are also discussed.

  20. An aerosol climatology for a rapidly growing arid region (southern Arizona): Major aerosol species and remotely sensed aerosol properties

    NASA Astrophysics Data System (ADS)

    Sorooshian, Armin; Wonaschütz, Anna; Jarjour, Elias G.; Hashimoto, Bryce I.; Schichtel, Bret A.; Betterton, Eric A.

    2011-10-01

    This study reports a comprehensive characterization of atmospheric aerosol particle properties in relation to meteorological and back trajectory data in the southern Arizona region, which includes two of the fastest growing metropolitan areas in the United States (Phoenix and Tucson). Multiple data sets (MODIS, AERONET, OMI/TOMS, MISR, GOCART, ground-based aerosol measurements) are used to examine monthly trends in aerosol composition, aerosol optical depth (AOD), and aerosol size. Fine soil, sulfate, and organics dominate PM2.5 mass in the region. Dust strongly influences the region between March and July owing to the dry and hot meteorological conditions and back trajectory patterns. Because monsoon precipitation begins typically in July, dust levels decrease, while AOD, sulfate, and organic aerosol reach their maximum levels because of summertime photochemistry and monsoon moisture. Evidence points to biogenic volatile organic compounds being a significant source of secondary organic aerosol in this region. Biomass burning also is shown to be a major contributor to the carbonaceous aerosol budget in the region, leading to enhanced organic and elemental carbon levels aloft at a sky-island site north of Tucson (Mt. Lemmon). Phoenix exhibits different monthly trends for aerosol components in comparison with the other sites owing to the strong influence of fossil carbon and anthropogenic dust. Trend analyses between 1988 and 2009 indicate that the strongest statistically significant trends are reductions in sulfate, elemental carbon, and organic carbon, and increases in fine soil during the spring (March-May) at select sites. These results can be explained by population growth, land-use changes, and improved source controls.

  1. Broadband optical properties of biomass-burning aerosol and identification of brown carbon chromophores: OPTICAL AND CHEMICAL PROPERTIES OF BROWN CARBON AEROSOLS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bluvshtein, Nir; Lin, Peng; Flores, J. Michel

    The radiative effects of biomass burning aerosols on regional and global scale is substantial. Accurate modeling of the radiative effects of smoke aerosols require wavelength-dependent measurements and parameterizations of their optical properties in the UV and visible spectral ranges along with improved description of their chemical composition. To address this issue, we used a recently developed approach to retrieve the time- and spectral-dependent optical properties of ambient biomass burning aerosols between 300 and 650 nm wavelength during a regional bonfire festival in Israel. During the biomass burning event, the overall absorption at 400 nm increased by about two orders ofmore » magnitude, changing the size-weighted single scattering albedo from a background level of 0.95 to 0.7. Based on the new retrieval method, we provide parameterizations of the wavelength-dependent effective complex refractive index from 350 to 650 nm for freshly emitted and aged biomass burning aerosols. In addition, PM2.5 filter samples were collected for detailed off-line chemical analysis of the water soluble organics that contribute to light absorption. Nitrophenols were identified as the main organic species responsible for the increased absorption at 400-500 nm. These include species such as 4- nitrocatechol, 4-nitrophenol, nitro-syringol and nitro-guaiacol; oxidation-nitration products of methoxyphenols, known products of lignin pyrolysis. Our findings emphasize the importance of both primary and secondary organic aerosol from biomass burning in absorption of solar radiation and in effective radiative forcing.« less

  2. A Comparison of Aerosol Optical Property Measurements Made During the DOE Aerosol Intensive Operating Period and Their Effects on Regional Climate

    NASA Technical Reports Server (NTRS)

    Strawa, Anthony W.; Hallar, A. G.; Arnott, W. P.; Covert, D.; Elleman, R.; Ogren, J.; Schmid, B.; Luu, A.

    2004-01-01

    The amount of radiant energy an aerosol absorbs has profound effects on climate and air quality. It is ironic that aerosol absorption coefficient is one of the most difficult to measure aerosol properties. One of the main purposes of the DOE Aerosol Intensive Operating Period (IOP) flown in May, 2003 was to assess our ability to measure absorption coefficient in situ. This paper compares measurements of aerosol optical properties made during the IOP. Measurements of aerosol absorption coefficient were made by Particle Soot Absorption Photometer (PSAP) aboard the CIRPAS Twin-Otter (U. Washington) and on the DOE Cessna 172 (NOAA-C,MDL). Aerosol absorption coefficient was also measured by a photoacoustic instrument (DRI) that was operated on an aircraft for the first time during the IOP. A new cavity ring-down (CRD) instrument, called Cadenza (NASA-AkC), measures the aerosol extinction coefficient for 675 nm and 1550 nm light, and simultaneously measures the scattering coefficient at 675 nm. Absorption coefficient is obtained from the difference of measured extinction and scattering within the instrument. Measurements of absorption coefficient from all of these instruments during appropriate periods are compared. During the IOP, several significant aerosol layers were sampled aloft. These layers are identified in the remote (AATS-14) as well as in situ measurements. Extinction profiles measured by Cadenza are compared to those derived from the Ames Airborne Tracking Sunphotometer (AATS-14, NASA-ARC). The regional radiative impact of these layers is assessed by using the measured aerosol optical properties in a radiative transfer model.

  3. Aerosol and cloud properties derived from hyperspectral transmitted light in the southeast Atlantic sampled during field campaign deployments in 2016 and 2017

    NASA Astrophysics Data System (ADS)

    LeBlanc, S. E.; Redemann, J.; Flynn, C. J.; Segal-Rosenhaimer, M.; Kacenelenbogen, M. S.; Shinozuka, Y.; Pistone, K.; Karol, Y.; Schmidt, S.; Cochrane, S.; Chen, H.; Meyer, K.; Ferrare, R. A.; Burton, S. P.; Hostetler, C. A.; Hair, J. W.

    2017-12-01

    We present aerosol and cloud properties collected from airborne remote-sensing measurements in the southeast Atlantic during the recent NASA ObseRvations of CLouds above Aerosols and their intEractionS (ORACLES) field campaign. During the biomass burning seasons of September 2016 and August 2017, we sampled aerosol layers which overlaid marine stratocumulus clouds off the southwestern coast of Africa. We sampled these aerosol layers and the underlying clouds from the NASA P3 airborne platform with the Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR). Aerosol optical depth (AOD), along with trace gas content in the atmospheric column (water vapor, NO2, and O3), is obtained from the attenuation in the sun's direct beam, measured at the altitude of the airborne platform. Using hyperspectral transmitted light measurements from 4STAR, in conjunction with hyperspectral hemispheric irradiance measurements from the Solar Spectral Flux Radiometers (SSFR), we also obtained aerosol intensive properties (asymmetry parameter, single scattering albedo), aerosol size distributions, cloud optical depth (COD), cloud particle effective radius, and cloud thermodynamic phase. Aerosol intensive properties are retrieved from measurements of angularly resolved skylight and flight level spectral albedo using the inversion used with measurements from AERONET (Aerosol Robotic Network) that has been modified for airborne use. The cloud properties are obtained from 4STAR measurements of scattered light below clouds. We show a favorable initial comparison of the above-cloud AOD measured by 4STAR to this same product retrieved from measurements by the MODIS instrument on board the TERRA and AQUA satellites. The layer AOD observed above clouds will also be compared to integrated aerosol extinction profile measurements from the High Spectral Resolution Lidar-2 (HSRL-2).

  4. Vertically resolved aerosol properties by multi wavelengths lidar measurements

    NASA Astrophysics Data System (ADS)

    Perrone, M. R.; De Tomasi, F.; Gobbi, G. P.

    2013-07-01

    A new approach is introduced to characterize the dependence on altitude of the aerosol fine mode radius (Rf) and of the fine mode contribution (η) to the aerosol optical thickness (AOT) by three-wavelength lidar measurements. The introduced approach is based on the graphical method of Gobbi et al. (2007), which was applied to AERONET spectral extinction observations and relies on the combined analysis of the Ångstrom exponent (å) and its spectral curvature Δå. Lidar measurements at 355, 532 and 1064 nm were used in this study to retrieve the vertical profiles of å and Δå and to determine the dependence on altitude of Rf and η (532 nm) from the å-Δå combined analysis. Lidar measurements were performed at the Mathematics and Physics Department of Universita' del Salento, in south eastern Italy. Aerosol from continental Europe, the Atlantic, northern Africa, and the Mediterranean Sea are often advected over south eastern Italy and as a consequence, mixed advection patterns leading to aerosol properties varying with altitude are dominant. The proposed approach was applied to eleven measurement days to demonstrate its feasibility in different aerosol load conditions. The selected-days were characterized by AOTs spanning the 0.23-0.67, 0.15-0.41, and 0.04-0.25 range at 355, 532, and 1064 nm, respectively. Lidar ratios varied within the 28-80, 30-70, and 30-55 sr range at 355, 532, and 1064 nm, respectively, for the high variability of the aerosol optical and microphysical properties. å(355 nm, 1064 nm) values retrieved from lidar measurements ranged between 0.12 and 2.5 with mean value ±1 standard deviation equal to 1.4 ± 0.5. Δå varied within the -0.10-0.87 range with mean value equal to 0.1 ± 0.4. Rf and η (532 nm) values spanning the 0.02-0.30 μm and the 0.30-0.99 range, respectively were associated to the å-Δå data points. Rf and η values showed no dependence on the altitude. 72% of the data points were in the Δå-å space delimited by the

  5. International Workshop on Stratospheric Aerosols: Measurements, Properties, and Effects

    NASA Technical Reports Server (NTRS)

    Pueschel, Rudolf F. (Editor)

    1991-01-01

    Following a mandate by the International Aerosol Climatology Program under the auspices of International Association of Meteorology and Atmospheric Physics International Radiation Commission, 45 scientists from five nations convened to discuss relevant issues associated with the measurement, properties, and effects of stratospheric aerosols. A summary is presented of the discussions on formation and evolution, transport and fate, effects on climate, role in heterogeneous chemistry, and validation of lidar and satellite remote sensing of stratospheric aerosols. Measurements are recommended of the natural (background) and the volcanically enhanced aerosol (sulfuric acid and silica particles), the exhaust of shuttle, civil aviation and supersonic aircraft operations (alumina, soot, and ice particles), and polar stratospheric clouds (ice, condensed nitric and hydrochloric acids).

  6. Dependence of columnar aerosol size distribution, optical properties, and chemical components on regional transport in Beijing

    NASA Astrophysics Data System (ADS)

    Wang, Shuo; Zhao, Weixiong; Xu, Xuezhe; Fang, Bo; Zhang, Qilei; Qian, Xiaodong; Zhang, Weijun; Chen, Weidong; Pu, Wei; Wang, Xin

    2017-11-01

    Seasonal dependence of the columnar aerosol optical and chemical properties on regional transport in Beijing over 10 years (from January 2005 to December 2014) were analyzed by using the ground-based remote sensing combined with backward trajectory analysis. Daily air mass backward trajectories terminated in Beijing were computed with HYSPLIT-4 model and were categorized into five clusters. The columnar mass concentrations of black carbon (BC), brown carbon (BrC), dust (DU), aerosol water content (AW), and ammonium sulfate like aerosol (AS) of each cluster were retrieved from the optical data obtained from the Aerosol Robotic NETwork (AERONET) with five-component model. It was found that the columnar aerosol properties in different seasons were changed, and they were related to the air mass origins. In spring, aerosol was dominated by coarse particles. Summer was characterized by higher single scattering albedo (SSA), lower real part of complex refractive index (n), and obvious hygroscopic growth due to humid air from the south. During autumn and winter, there was an observable increase in absorption aerosol optical thickness (AAOT) and the imaginary part of complex refraction (k), with high levels of retrieved BC and BrC. However, concentrations of BC showed less dependence on the clusters during the two seasons owing to the widely spread coal heating in north China.

  7. Vertically resolved aerosol properties by multi-wavelength lidar measurements

    NASA Astrophysics Data System (ADS)

    Perrone, M. R.; De Tomasi, F.; Gobbi, G. P.

    2014-02-01

    An approach based on the graphical method of Gobbi and co-authors (2007) is introduced to estimate the dependence on altitude of the aerosol fine mode radius (Rf) and of the fine mode contribution (η) to the aerosol optical thickness (AOT) from three-wavelength lidar measurements. The graphical method of Gobbi and co-authors (2007) was applied to AERONET (AErosol RObotic NETwork) spectral extinction observations and relies on the combined analysis of the Ångstrom exponent (å) and its spectral curvature Δå. Lidar measurements at 355, 532 and 1064 nm were used in this study to retrieve the vertical profiles of å and Δå and to estimate the dependence on altitude of Rf and η(532 nm) from the å-Δå combined analysis. Lidar measurements were performed at the Department of Mathematics and Physics of the Universita' del Salento, in south-eastern Italy. Aerosol from continental Europe, the Atlantic, northern Africa, and the Mediterranean Sea are often advected over south-eastern Italy and as a consequence, mixed advection patterns leading to aerosol properties varying with altitude are dominant. The proposed approach was applied to ten measurement days to demonstrate its feasibility in different aerosol load conditions. The selected days were characterized by AOTs spanning the 0.26-0.67, 0.15-0.39, and 0.04-0.27 range at 355, 532, and 1064 nm, respectively. Mean lidar ratios varied within the 31-83, 32-84, and 11-47 sr range at 355, 532, and 1064 nm, respectively, for the high variability of the aerosol optical and microphysical properties. å values calculated from lidar extinction profiles at 355 and 1064 nm ranged between 0.1 and 2.5 with a mean value ± 1 standard deviation equal to 1.3 ± 0.7. Δå varied within the -0.1-1 range with mean value equal to 0.25 ± 0.43. Rf and η(532 nm) values spanning the 0.05-0.3 μm and the 0.3-0.99 range, respectively, were associated with the å-Δå data points. Rf and η values showed no dependence on the altitude. 60

  8. Aerosol optical properties and types over the tropical urban region of Hyderabad, India

    NASA Astrophysics Data System (ADS)

    Kharol, Shailesh Kumar; Kaskaoutis, D. G.; Rani Sharma, Anu; Kvs, Badarinath; Kambezidis, H. D.

    India is densely populated, industrialized and in the recent years has witnessed an impressive economic development. Aerosols over and around India not only affect the Indian monsoon but also the global climate. The growing population coupled with revolution in industry has resulted in higher demands for energy and transport. With more and more urbanization the usage pattern of fossil and bio-fuels are leading to changes in aerosol properties, which may cause changes in precipitation and can decelerate the hydrological cycle. Over urban areas of India aerosol emissions from fossil fuels such as coal, petrol and diesel oil dominate. Further-more, the Indian subcontinent exhibits different land characteristics ranging from vegetated areas and forests to semiarid and arid environments and tall mountains. India experiences large seasonal climatic variations, which result in extreme temperatures, rainfall and relative humidity. These meteorological and climatic features introduce large variabilities in aerosol op-tical and physico-chemical characteristics at spatial and temporal scales. In the present study, seasonal variations in aerosol properties and types were analysed over tropical urban region of Hyderabad, India during October 2007-September 2008 using MICROTOPS II sun photometer measurements. Higher aerosol optical depth (AOD) values are observed in premonsoon, while the variability of the ˚ngstrüm exponent (α) seems to be more pronounced with higher values A in winter and premonsoon and lower in the monsoon periods. The AOD at 500 nm (AOD500 ) is very large over Hyderabad, varying from 0.46±0.17 in postmonsoon to 0.65±0.22 in premon-soon periods. A discrimination of the different aerosol types over Hyderabad is also attempted using values of AOD500 and α380-870. Such discrimination is rather difficult to interpret since a single aerosol type can partly be identified only under specific conditions (e.g. anthropogenic emissions, biomass burning or dust

  9. Evaluation of AVHRR Aerosol Properties Over Mainland China from Deepblue Algorithm

    NASA Astrophysics Data System (ADS)

    Xue, Y.; Che, Y.; She, L.

    2017-12-01

    Advanced Very High Resolution Radiometer (AVHRR) on-board NOAA series satellites is the only operational senor which keeps observing surface of the Earth and cloud over 30 years since 1979. Such long time coverage helps to expand the application of AVHRR to aerosol properties retrieval over both land and ocean successfully. Recently in 2017, the Deep Blue Project has published AVHRR `Deep Blue' dataset version 001 (V001) using `Deep Blue (DB)' algorithm(Sayer et al., 2017). This dataset includes not only aerosol properties over land but also oceanic aerosol product at three periods (NOAA-11: 1989-1990, NOAA-14: 1995-1999, NOAA-18: 2006-2011). We pay much of our attention to DB's performance over mainland China. Therefore, in the presenting paper, we focus on validating AVHRR/DB dataset over different land covers in China in 2007, 2008 and 2010. Both of data from ground-based networks from the Aerosol Robotic NETwork (AERONET) and China Aerosol Remote Sensing Network (CARSNET) are used as reference data. The collocation method is to match data at a time range of of satellite pass-by and at a spatial frame of pixels around ground-based site. Totally, data from 18 AERONET and 25 CARSNET are used as shown in figure, collocating 922 matches with AERONET and 2325 matches with CARSNET. Additionally, we introduced a corrected RMS error as main evaluation metric. As a result, AVHRR/DB underestimates AOD increasingly and more uncertainties and errors will be introduced with the growth of AOD. Otherwise, the performance of AVHRR/DB are better compared with AERONET data than with CARSNET data from RMSbc of 0.35 vs. 0.42. Their Rs (0.757 vs. 0.654) prove this characteristic too. For urban areas, the performances in Beijing are better than that in Xi'an from RMSbc, otherwise RMS in Xi'an (0.324) is lower than others' (0.346 and 0.383) mainly because of small AOD observed range and low R (0.624). For croplands, those performances are at same levels with RMSbc from 0.312 to 0

  10. Global direct radiative forcing by process-parameterized aerosol optical properties

    NASA Astrophysics Data System (ADS)

    KirkevâG, Alf; Iversen, Trond

    2002-10-01

    A parameterization of aerosol optical parameters is developed and implemented in an extended version of the community climate model version 3.2 (CCM3) of the U.S. National Center for Atmospheric Research. Direct radiative forcing (DRF) by monthly averaged calculated concentrations of non-sea-salt sulfate and black carbon (BC) is estimated. Inputs are production-specific BC and sulfate from [2002] and background aerosol size distribution and composition. The scheme interpolates between tabulated values to obtain the aerosol single scattering albedo, asymmetry factor, extinction coefficient, and specific extinction coefficient. The tables are constructed by full calculations of optical properties for an array of aerosol input values, for which size-distributed aerosol properties are estimated from theory for condensation and Brownian coagulation, assumed distribution of cloud-droplet residuals from aqueous phase oxidation, and prescribed properties of the background aerosols. Humidity swelling is estimated from the Köhler equation, and Mie calculations finally yield spectrally resolved aerosol optical parameters for 13 solar bands. The scheme is shown to give excellent agreement with nonparameterized DRF calculations for a wide range of situations. Using IPCC emission scenarios for the years 2000 and 2100, calculations with an atmospheric global cliamte model (AFCM) yield a global net anthropogenic DRF of -0.11 and 0.11 W m-2, respectively, when 90% of BC from biomass burning is assumed anthropogenic. In the 2000 scenario, the individual DRF due to sulfate and BC has separately been estimated to -0.29 and 0.19 W m-2, respectively. Our estimates of DRF by BC per BC mass burden are lower than earlier published estimates. Some sensitivity tests are included to investigate to what extent uncertain assumptions may influence these results.

  11. Monthly and seasonal variations of aerosol optical properties and direct radiative forcing over Zanjan, Iran

    NASA Astrophysics Data System (ADS)

    Gharibzadeh, Maryam; Alam, Khan; Abedini, Yousefali; Bidokhti, Abbasali Aliakbari; Masoumi, Amir

    2017-11-01

    Aerosol optical properties and radiative forcing over Zanjan in northwest of Iran has been analyzed during 2010-2013. The aerosol optical and radiative properties are less studied over Zanjan, and therefore, require a careful and in depth analysis. The optical properties like Aerosol Optical Depth (AOD), Ångström Exponent (AE), ASYmmetry parameter (ASY), Single Scattering Albedo (SSA), and Aerosol Volume Size Distribution (AVSD) have been evaluated using the ground-based AErosol RObotic NETwork (AERONET) data. Higher AOD while relatively lower AE were observed in the spring and summer, which showed the presence of coarse mode particles in these seasons. An obvious increase of coarse mode particles in AVSD distribution, as well as a higher value of SSA represented considerable addition of coarse mode particles like dust into the atmosphere of Zanjan in these two seasons. Increase in AE, while a decrease in AOD was detected in the winter and fall. The presence of fine particles indicates the dominance of particles like urban-industrial aerosols from local sources especially in the winter. The Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART) model was utilized to calculate the Aerosol Radiative Forcing (ARF) at the Top of the Atmosphere (TOA), earth's surface and within the atmosphere. The annual averaged ARF values were -13.47 W m-2 and -36.1 W m-2 at the TOA and earth's surface, respectively, which indicate a significant cooling effect. Likewise, the ARF efficiencies at the TOA and earth's surface were -65.08 W m-2 and -158.43 W m-2, respectively. The annual mean atmospheric ARF and heating rate within the atmosphere were 22.63 W m-2 and 0.27 Kday-1 respectively, represented the warming effect within the atmosphere. Finally, a good agreement was found between AERONET retrieved ARF and SBDART simulated ARF.

  12. The Influence of Chemical Composition and Relative Humidity on the Optical Properties of Aerosols During the Southern Oxidant and Aerosol Study (SOAS)

    NASA Astrophysics Data System (ADS)

    Attwood, A. R.; Washenfelder, R. A.; Brock, C. A.; Brown, S. S.; Hu, W.; Campuzano Jost, P.; Day, D. A.; Palm, B. B.; Simoes de Sa, S.; Jimenez, J. L.

    2013-12-01

    Atmospheric particles are produced from a wide variety of both anthropogenic and natural sources and play an important role in the Earth's radiative budget by direct scattering and absorption of radiation. To address this impact, in situ measurements of aerosol optical, chemical and hygroscopic properties were performed during the Southern Oxidant and Aerosol Study (SOAS), which took place in the summer of 2013. Ground based measurements of sub-micron aerosol in the southeastern United States were made to investigate the influence of chemical composition and hygroscopicity on aerosol optical properties. We report the wavelength dependence of aerosol extinction cross sections measured with a novel broadband cavity enhanced spectrometer covering a wavelength range of 360-420 nm using two light emitting diodes (LED) and a separate cavity ring down (CRDS) channel. The sensitivity of the relative humidity dependence of extinction based on the type of aerosol present is examined and we show that the optical properties and hygroscopicity of aerosols are greatly influenced by the fraction of sulfate and organics within the particles. Additional data analysis from the SOAS campaign will be presented. The results, thus far, illustrate that the variability in aerosol chemical composition can impact visibility and climate forcing in this region.

  13. Climatological Aspects of the Optical Properties of Fine/Coarse Mode Aerosol Mixtures

    NASA Technical Reports Server (NTRS)

    Eck, T. F.; Holben, B. N.; Sinyuk, A.; Pinker, R. T.; Goloub, P.; Chen, H.; Chatenet, B.; Li, Z.; Singh, R. P.; Tripathi, S.N.; hide

    2010-01-01

    Aerosol mixtures composed of coarse mode desert dust combined with fine mode combustion generated aerosols (from fossil fuel and biomass burning sources) were investigated at three locations that are in and/or downwind of major global aerosol emission source regions. Multiyear monitoring data at Aerosol Robotic Network sites in Beijing (central eastern China), Kanpur (Indo-Gangetic Plain, northern India), and Ilorin (Nigeria, Sudanian zone of West Africa) were utilized to study the climatological characteristics of aerosol optical properties. Multiyear climatological averages of spectral single scattering albedo (SSA) versus fine mode fraction (FMF) of aerosol optical depth at 675 nm at all three sites exhibited relatively linear trends up to 50% FMF. This suggests the possibility that external linear mixing of both fine and coarse mode components (weighted by FMF) dominates the SSA variation, where the SSA of each component remains relatively constant for this range of FMF only. However, it is likely that a combination of other factors is also involved in determining the dynamics of SSA as a function of FMF, such as fine mode particles adhering to coarse mode dust. The spectral variation of the climatological averaged aerosol absorption optical depth (AAOD) was nearly linear in logarithmic coordinates over the wavelength range of 440-870 nm for both the Kanpur and Ilorin sites. However, at two sites in China (Beijing and Xianghe), a distinct nonlinearity in spectral AAOD in logarithmic space was observed, suggesting the possibility of anomalously strong absorption in coarse mode aerosols increasing the 870 nm AAOD.

  14. Airborne Lidar Measurements of Aerosol Optical Properties During SAFARI-2000

    NASA Technical Reports Server (NTRS)

    McGill, M. J.; Hlavka, D. L.; Hart, W. D.; Welton, E. J.; Campbell, J. R.; Starr, David OC. (Technical Monitor)

    2002-01-01

    The Cloud Physics Lidar (CPL) operated onboard the NASA ER-2 high altitude aircraft during the SAFARI-2000 field campaign. The CPL provided high spatial resolution measurements of aerosol optical properties at both 1064 nm and 532 nm. We present here results of planetary boundary layer (PBL) aerosol optical depth analysis and profiles of aerosol extinction. Variation of optical depth and extinction are examined as a function of regional location. The wide-scale aerosol mapping obtained by the CPL is a unique data set that will aid in future studies of aerosol transport. Comparisons between the airborne CPL and ground-based MicroPulse Lidar Network (MPL-Net) sites are shown to have good agreement.

  15. New Satellite Project Aerosol-UA: Remote Sensing of Aerosols in the Terrestrial Atmosphere

    NASA Technical Reports Server (NTRS)

    Milinevsky, G.; Yatskiv, Ya.; Degtyaryov, O.; Syniavskyi, I.; Mishchenko, Michael I.; Rosenbush, V.; Ivanov, Yu.; Makarov, A.; Bovchaliuk, A.; Danylevsky, V.; hide

    2016-01-01

    We discuss the development of the Ukrainian space project Aerosol-UA which has the following three main objectives: (1) to monitor the spatial distribution of key characteristics of terrestrial tropospheric and stratospheric aerosols; (2) to provide a comprehensive observational database enabling accurate quantitative estimates of the aerosol contribution to the energy budget of the climate system; and (3) quantify the contribution of anthropogenic aerosols to climate and ecological processes. The remote sensing concept of the project is based on precise orbital measurements of the intensity and polarization of sunlight scattered by the atmosphere and the surface with a scanning polarimeter accompanied by a wide-angle multispectral imager-polarimeter. Preparations have already been made for the development of the instrument suite for the Aerosol-UA project, in particular, of the multi-channel scanning polarimeter (ScanPol) designed for remote sensing studies of the global distribution of aerosol and cloud properties (such as particle size, morphology, and composition) in the terrestrial atmosphere by polarimetric and spectrophotometric measurements of the scattered sunlight in a wide range of wavelengths and viewing directions from which a scene location is observed. ScanPol is accompanied by multispectral wide-angle imager-polarimeter (MSIP) that serves to collect information on cloud conditions and Earths surface image. Various components of the polarimeter ScanPol have been prototyped, including the opto-mechanical and electronic assemblies and the scanning mirror controller. Preliminary synthetic data simulations for the retrieval of aerosol parameters over land surfaces have been performed using the Generalized Retrieval of Aerosol and Surface Properties (GRASP) algorithm. Methods for the validation of satellite data using ground-based observations of aerosol properties are also discussed. We assume that designing, building, and launching into orbit a multi

  16. Aerosol optical properties retrieved from the future space lidar mission ADM-aeolus

    NASA Astrophysics Data System (ADS)

    Martinet, Pauline; Flament, Thomas; Dabas, Alain

    2018-04-01

    The ADM-Aeolus mission, to be launched by end of 2017, will enable the retrieval of aerosol optical properties (extinction and backscatter coefficients essentially) for different atmospheric conditions. A newly developed feature finder (FF) algorithm enabling the detection of aerosol and cloud targets in the atmospheric scene has been implemented. Retrievals of aerosol properties at a better horizontal resolution based on the feature finder groups have shown an improvement mainly on the backscatter coefficient compared to the common 90 km product.

  17. Coupled Retrieval of Liquid Water Cloud and Above-Cloud Aerosol Properties Using the Airborne Multiangle SpectroPolarimetric Imager (AirMSPI)

    NASA Astrophysics Data System (ADS)

    Xu, Feng; van Harten, Gerard; Diner, David J.; Davis, Anthony B.; Seidel, Felix C.; Rheingans, Brian; Tosca, Mika; Alexandrov, Mikhail D.; Cairns, Brian; Ferrare, Richard A.; Burton, Sharon P.; Fenn, Marta A.; Hostetler, Chris A.; Wood, Robert; Redemann, Jens

    2018-03-01

    An optimization algorithm is developed to retrieve liquid water cloud properties including cloud optical depth (COD), droplet size distribution and cloud top height (CTH), and above-cloud aerosol properties including aerosol optical depth (AOD), single-scattering albedo, and microphysical properties from sweep-mode observations by Jet Propulsion Laboratory's Airborne Multiangle SpectroPolarimetric Imager (AirMSPI) instrument. The retrieval is composed of three major steps: (1) initial estimate of the mean droplet size distribution across the entire image of 80-100 km along track by 10-25 km across track from polarimetric cloudbow observations, (2) coupled retrieval of image-scale cloud and above-cloud aerosol properties by fitting the polarimetric data at all observation angles, and (3) iterative retrieval of 1-D radiative transfer-based COD and droplet size distribution at pixel scale (25 m) by establishing relationships between COD and droplet size and fitting the total radiance measurements. Our retrieval is tested using 134 AirMSPI data sets acquired during the National Aeronautics and Space Administration (NASA) field campaign ObseRvations of Aerosols above CLouds and their intEractionS. The retrieved above-cloud AOD and CTH are compared to coincident HSRL-2 (HSRL-2, NASA Langley Research Center) data, and COD and droplet size distribution parameters (effective radius reff and effective variance veff) are compared to coincident Research Scanning Polarimeter (RSP) (NASA Goddard Institute for Space Studies) data. Mean absolute differences between AirMSPI and HSRL-2 retrievals of above-cloud AOD at 532 nm and CTH are 0.03 and <0.5 km, respectively. At RSP's footprint scale ( 323 m), mean absolute differences between RSP and AirMSPI retrievals of COD, reff, and veff in the cloudbow area are 2.33, 0.69 μm, and 0.020, respectively. Neglect of smoke aerosols above cloud leads to an underestimate of image-averaged COD by 15%.

  18. Aerosol optical depth (AOD) and Angstrom exponent of aerosols observed by the Chinese Sun Hazemeter Network from August 2004 to September 2005

    Treesearch

    Jinyuan Xin; Yuesi Wang; Zhanqing Li; Pucai Wang; Wei Min Hao; Bryce L. Nordgren; Shigong Wang; Guangren Lui; Lili Wang; Tianxue Wen; Yang Sun; Bo Hu

    2007-01-01

    To reduce uncertainties in the quantitative assessment of aerosol effects on regional climate and environmental changes, extensive measurements of aerosol optical properties were made with handheld Sun photometers in the Chinese Sun Hazemeter Network (CSHNET) starting in August 2004. Regional characteristics of the aerosol optical depth (AOD) at 500 nm and Angstrom...

  19. Properties of transported African mineral dust aerosols in the Mediterranean region

    NASA Astrophysics Data System (ADS)

    Denjean, Cyrielle; Chevaillier, Servanne; Gaimoz, Cécile; Grand, Noel; Triquet, Sylvain; Zapf, Pascal; Loisil, Rodrigue; Bourrianne, Thierry; Freney, Evelyn; Dupuy, Regis; Sellegri, Karine; Schwarzenbock, Alfons; Torres, Benjamin; Mallet, Marc; Cassola, Federico; Prati, Paolo; Formenti, Paola

    2015-04-01

    The transport of mineral dust aerosols is a global phenomenon with strong climate implications. Depending on the travel distance over source regions, the atmospheric conditions and the residence time in the atmosphere, various transformation processes (size-selective sedimentation, mixing, condensation of gaseous species, and weathering) can modify the physical and chemical properties of mineral dust, which, in turn, can change the dust's optical properties. The model predictions of the radiative effect by mineral dust still suffer of the lack of certainty of these properties, and their temporal evolution with transport time. Within the frame of the ChArMex project (Chemistry-Aerosol Mediterranean experiment, http://charmex.lsce.ipsl.fr/), one intensive airborne campaign (ADRIMED, Aerosol Direct Radiative Impact in the regional climate in the MEDiterranean region, 06 June - 08 July 2013) has been performed over the Central and Western Mediterranean, one of the two major transport pathways of African mineral dust. In this study we have set up a systematic strategy to determine the optical, physical and optical properties of mineral dust to be compared to an equivalent dataset for dust close to source regions in Africa. This study is based on airborne observations onboard the SAFIRE ATR-42 aircraft, equipped with state of the art in situ instrumentation to measure the particle scattering and backscattering coefficients (nephelometer at 450, 550, and 700 nm), the absorption coefficient (PSAP at 467, 530, and 660 nm), the extinction coefficient (CAPS at 530 nm), the aerosol optical depth (PLASMA at 340 to 1640 nm), the size distribution in the extended range 40 nm - 30 µm by the combination of different particle counters (SMPS, USHAS, FSSP, GRIMM) and the chemical composition obtained by filter sampling. The chemistry and transport model CHIMERE-Dust have been used to classify the air masses according to the dust origin and transport. Case studies of dust transport

  20. Combined observational and modeling efforts of aerosol-cloud-precipitation interactions over Southeast Asia

    NASA Astrophysics Data System (ADS)

    Loftus, Adrian; Tsay, Si-Chee; Nguyen, Xuan Anh

    2016-04-01

    Low-level stratocumulus (Sc) clouds cover more of the Earth's surface than any other cloud type rendering them critical for Earth's energy balance, primarily via reflection of solar radiation, as well as their role in the global hydrological cycle. Stratocumuli are particularly sensitive to changes in aerosol loading on both microphysical and macrophysical scales, yet the complex feedbacks involved in aerosol-cloud-precipitation interactions remain poorly understood. Moreover, research on these clouds has largely been confined to marine environments, with far fewer studies over land where major sources of anthropogenic aerosols exist. The aerosol burden over Southeast Asia (SEA) in boreal spring, attributed to biomass burning (BB), exhibits highly consistent spatiotemporal distribution patterns, with major variability due to changes in aerosol loading mediated by processes ranging from large-scale climate factors to diurnal meteorological events. Downwind from source regions, the transported BB aerosols often overlap with low-level Sc cloud decks associated with the development of the region's pre-monsoon system, providing a unique, natural laboratory for further exploring their complex micro- and macro-scale relationships. Compared to other locations worldwide, studies of springtime biomass-burning aerosols and the predominately Sc cloud systems over SEA and their ensuing interactions are underrepresented in scientific literature. Measurements of aerosol and cloud properties, whether ground-based or from satellites, generally lack information on microphysical processes; thus cloud-resolving models are often employed to simulate the underlying physical processes in aerosol-cloud-precipitation interactions. The Goddard Cumulus Ensemble (GCE) cloud model has recently been enhanced with a triple-moment (3M) bulk microphysics scheme as well as the Regional Atmospheric Modeling System (RAMS) version 6 aerosol module. Because the aerosol burden not only affects cloud

  1. A Ten-Year Global Record of Absorbing Aerosols Above Clouds from OMI's Near-UV Observations

    NASA Technical Reports Server (NTRS)

    Jethva, Hiren; Torres, Omar; Ahn, Changwoo

    2016-01-01

    Aerosol-cloud interaction continues to be one of the leading uncertain components of climate models, primarily due to the lack of an adequate knowledge of the complex microphysical and radiative processes associated with the aerosol-cloud system. The situations when aerosols and clouds are found in the same atmospheric column, for instance, when light-absorbing aerosols such as biomass burning generated carbonaceous particles or wind-blown dust overlay low-level cloud decks, are commonly found over several regional of the world. Contrary to the cloud-free scenario over dark surface, for which aerosols are known to produce a net cooling effect (negative radiative forcing) on climate, the overlapping situation of absorbing aerosols over cloud can potentially exert a significant level of atmospheric absorption and produces a positive radiative forcing at top-of-atmosphere. The magnitude of direct radiative effects of aerosols above cloud depends directly on the aerosol loading, microphysical-optical properties of the aerosol layer and the underlying cloud deck, and geometric cloud fraction. We help in addressing this problem by introducing a novel product of optical depth of absorbing aerosols above clouds retrieved from near-UV observations made by the Ozone Monitoring Instrument (OMI) on board NASA's Aura platform. The presence of absorbing aerosols above cloud reduces the upwelling radiation reflected by cloud and produces a strong 'color ratio' effect in the near-UV region, which can be unambiguously detected in the OMI measurements. Physically based on this effect, the OMACA algorithm retrieves the optical depths of aerosols and clouds simultaneously under a prescribed state of atmosphere. The algorithm architecture and results from a ten-year global record including global climatology of frequency of occurrence and above-cloud aerosol optical depth, and a discussion on related future field campaigns are presented.

  2. Characterization of Optical Properties of Desert Dust and Other Aerosols Using Postive Matrix Factorization

    NASA Astrophysics Data System (ADS)

    Lihavainen, H.; Alghamdi, M.; Hyvärinen, A.; Hussein, T.; Neitola, K.; Khoder, M.; Abdelmaksoud, A. S.; Al-Jeelani, H.; Shabbaj, I. I.; Almehmadi, F. M.

    2017-12-01

    To derive the comprehensive aerosol in situ characteristics at a rural background area in Saudi Arabia, an aerosol measurements station was established to Hada Al Sham, 60 km east from the Red Sea and the city of Jeddah. The present sturdy describes the observational data from February 2013 to February 2015 of scattering and absorption coefficients, Ångström exponents and single scattering albedo over the measurement period. As expected, the scattering coefficient was dominated by large desert dust particles with low Ångström scattering exponent. Especially from February to June the Ångström scattering exponent was clearly lower and scattering coefficients higher than total averages because of the dust outbreak season. Aerosol optical properties had clear diurnal cycle. The lowest scattering and absorption coefficients and aerosol optical depths were observed around noon. The observed diurnal variation is caused by wind direction and speed, during night time very calm easterly winds are dominating whereas during daytime the stronger westerly winds are dominating (sea breeze). Positive Matrix Factorization mathematical tool was applied to the scattering and absorption coefficients and PM2.5 and coarse mode (PM10- PM2.5) mass concentrations to characterise aerosols from different sources. Analysis revealed three clearly different types of sources, anthropogenic, BC source and desert dust. These factors have clearly different seasonal and diurnal variation. The contribution of desert dust factor was dominating from February to May, whereas the contribution of anthropogenic factor is quite steady over the whole year. We estimated the mass absorption and scattering efficiencies for the factors and they agreed well with earlier observations. Hence, this method could be used to distinguish aerosol source characteristics, at least in fairly simple cases.

  3. Aerosol and Cloud Microphysical Properties in the Asir region of Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Axisa, Duncan; Kucera, Paul; Burger, Roelof; Li, Runjun; Collins, Don; Freney, Evelyn; Posada, Rafael; Buseck, Peter

    2010-05-01

    In recent advertent and inadvertent weather modification studies, a considerable effort has been made to understand the impact of varying aerosol properties and concentration on cloud properties. Significant uncertainties exist with aerosol-cloud interactions for which complex microphysical processes link the aerosol and cloud properties. Under almost all environmental conditions, increased aerosol concentrations within polluted air masses will enhance cloud droplet concentration relative to that in unperturbed regions. The interaction between dust particles and clouds are significant, yet the conditions in which dust particles become cloud condensation nuclei (CCN) are uncertain. In order to quantify this aerosol effect on clouds and precipitation, a field campaign was launched in the Asir region of Saudi Arabia as part of a Precipitation Enhancement Feasibility Study. Ground measurements of aerosol size distributions, hygroscopic growth factor, CCN concentrations as well as aircraft measurements of cloud hydrometeor size distributions were done in the Asir region of Saudi Arabia in August 2009. Research aircraft operations focused primarily on conducting measurements in clouds that are targeted for cloud top-seeding, on their microphysical characterization, especially the preconditions necessary for precipitation; understanding the evolution of droplet coalescence, supercooled liquid water, cloud ice and precipitation hydrometeors is necessary if advances are to be made in the study of cloud modification by cloud seeding. Non-precipitating mixed-phase clouds less than 3km in diameter that developed on top of the stable inversion were characterized by flying at the convective cloud top just above the inversion. Aerosol measurements were also done during the climb to cloud base height. The presentation will include a summary of the analysis and results with a focus on the unique features of the Asir region in producing convective clouds, characterization of the

  4. Aerosol-Cloud Interactions during Tropical Deep Convection: Evidence for the Importance of Free Tropospheric Aerosols

    NASA Technical Reports Server (NTRS)

    Ackerman, A.; Jensen, E.; Stevens, D.; Wang, D.; Heymsfield, A.; Miloshevich, L.; Twohy, C.; Poellot, M.; VanReken, T.; Fridland, Ann

    2003-01-01

    NASA's 2002 CRYSTAL-FACE field experiment focused on the formation and evolution of tropical cirrus cloud systems in southern Florida. Multiple aircraft extensively sampled cumulonimbus dynamical and microphysical properties, as well as characterizing ambient aerosol populations both inside and outside the full depth of the convective column. On July 18, unique measurements were taken when a powerful updraft was traversed directly by aircraft, providing a window into the primary source region of cumulonimbus anvil crystals. Observations of the updraft, entered at approximately l0 km altitude and -34 C, indicated more than 200 cloud particles per mL at vertical velocities exceeding 20 m/s and the presence of significant condensation nuclei and liquid water within the core. In this work, aerosol and cloud phase observations are integrated by simulating the updraft conditions using a large-eddy resolving model with 3 explicit multiphase microphysics, including treatment of size-resolved aerosol fields, aerosol activation and freezing, and evaporation of cloud particles back to the aerosol phase. Simulations were initialized with observed thermodynamic and aerosol size distributions profiles and convection was driven by surface fluxes assimilated from the ARPS forecast model. Model results are consistent with the conclusions that most crystals are homogeneously frozen droplets and that entrained free tropospheric aerosols may contribute a significant fraction of the crystals. Thus most anvil crystals appear to be formed aloft in updraft cores, well above cloud base. These conclusions are supported by observations of hydrometeor size distribution made while traversing the dore, as well as aerosol and cloud particle size distributions generally observed by aircraft below 4km and crystal properties generally observed by aircraft above 12km.

  5. Correlative measurements of the stratospheric aerosols

    NASA Astrophysics Data System (ADS)

    Santer, R.; Brogniez, C.; Herman, M.; Diallo, S.; Ackerman, M.

    1992-12-01

    Joint experiments were organized or available during stratospheric flights of a photopolarimeter, referred to as RADIBAL (radiometer balloon). In May 1984, RADIBAL flew simultaneously with another balloonborne experiment conducted by the Institut d'Aeronomie Spatiale de Belgique (IASB), which provides multiwavelength vertical profiles of the aerosol scattering coefficient. At this time, the El Chichon layer was observable quite directly from mountain sites. A ground-based station set up at Pic du Midi allowed an extensive description of the aerosol optical properties. The IASB and the Pic du Midi observations are consistent with the aerosol properties derived from the RADIBAL measurement analysis.

  6. Retrieval of Aerosol Properties from the Hyper Angular Rainbow Polarimeter (HARP) during the LMOS Campaign

    NASA Astrophysics Data System (ADS)

    Barbosa, H. M.; Martins, J. V.; McBride, B.; Espinosa, R.; Fernandez Borda, R. A.; Remer, L.; Dubovik, O.

    2017-12-01

    The largest impediments to estimating climate change revolve around a lack of quantitative information on aerosol forcing and our poor understanding of aerosol-cloud processes and cloud feedbacks in the climate system. This is so because global aerosol and cloud data come from satellite sensors that, today, measure limited subsets of the full Stokes parameters. Most measure only spectral intensity at one geometry, or at a severely limited set of geometries, or measure polarization non-simultaneously using a filter wheel, with a low spatial resolution. To overcome this scientific gap, the Laboratory for Aerosols, Clouds and Optics (LACO) of UMBC developed the Hyper Angular Rainbow Polarimeter (HARP): a very simple but highly effective sensor that can simultaneously measure 3 angles of polarization, at 4 different wavelengths, to observe the same target with up to 60 viewing angles, with no moving parts. The HARP-Cubesat mission will fly next January, with the main objective of proving the on-flight capabilities of a highly accurate wide FOV hyperangle imaging polarimeter for characterizing aerosol and cloud properties. AirHARP is an exact copy of the HARP sensor but prepared to fly on aircrafts. Here we report on preliminary aerosol data analysis from its first measurements during the Lake Michigan Ozone Study (LMOS) field campaign last June. We will discuss how the polarization measurements are inverted using the GRASP (Generalized Retrieval of Aerosol and Surface Properties) inversion algorithm to obtain the aerosol size distribution, complex index of refraction and sphericity. For the flights on June 8th and 12th, we will compare the retrievals with those from the Aeronet station LMOS-ZION, specially setup for the campaign.

  7. Importance of Physico-Chemical Properties of Aerosols in the Formation of Arctic Ice Clouds

    NASA Astrophysics Data System (ADS)

    Keita, S. A.; Girard, E.

    2014-12-01

    Ice clouds play an important role in the Arctic weather and climate system but interactions between aerosols, clouds and radiation are poorly understood. Consequently, it is essential to fully understand their properties and especially their formation process. Extensive measurements from ground-based sites and satellite remote sensing reveal the existence of two Types of Ice Clouds (TICs) in the Arctic during the polar night and early spring. TIC-1 are composed by non-precipitating very small (radar-unseen) ice crystals whereas TIC-2 are detected by both sensors and are characterized by a low concentration of large precipitating ice crystals. It is hypothesized that TIC-2 formation is linked to the acidification of aerosols, which inhibit the ice nucleating properties of ice nuclei (IN). As a result, the IN concentration is reduced in these regions, resulting to a smaller concentration of larger ice crystals. Over the past 10 years, several parameterizations of homogeneous and heterogeneous ice nucleation have been developed to reflect the various physical and chemical properties of aerosols. These parameterizations are derived from laboratory studies on aerosols of different chemical compositions. The parameterizations are also developed according to two main approaches: stochastic (that nucleation is a probabilistic process, which is time dependent) and singular (that nucleation occurs at fixed conditions of temperature and humidity and time-independent). This research aims to better understand the formation process of TICs using a newly-developed ice nucleation parameterizations. For this purpose, we implement some parameterizations (2 approaches) into the Limited Area version of the Global Multiscale Environmental Model (GEM-LAM) and use them to simulate ice clouds observed during the Indirect and Semi-Direct Arctic Cloud (ISDAC) in Alaska. We use both approaches but special attention is focused on the new parameterizations of the singular approach. Simulation

  8. Seasonal Differences in Tropical Western Pacific Cloud Ice, Water Vapor and Aerosols Observed From Space During ATTREX-III and POSIDON

    NASA Astrophysics Data System (ADS)

    Avery, M. A.; Rosenlof, K. H.; Vaughan, M.; Getzewich, B. J.; Thornberry, T. D.; Gao, R. S.; Rollins, A. W.; Woods, S.; Yorks, J. E.; Jensen, E. J.

    2017-12-01

    Recent aircraft missions sampling the tropical tropopause layer (TTL) in the tropical Western Pacific have provided a wealth of detailed cloud microphysical and associated aerosol, water vapor and temperature data for understanding processes that regulate stratospheric composition and hydration. This presentation seeks to provide a regional context for these measurements by comparing and contrasting active space-based observations from these time periods (Feb-Mar 2014 for ATTREX-III and Oct 2016 for POSIDON), primarily from the Clouds and Aerosol Lidar with Orthogonal Polarization (CALIOP), with the addition of Cloud Profiling Radar (CPR) and the Cloud-Aerosol Transport System (CATS) where these data sets are available. While the ATTREX III and POSIDON aircraft field missions both took place from Guam in the Western Pacific, there were striking differences between the amount, geographical distribution and properties of cirrus clouds and aerosols in the Tropical TTL. In addition to cloud and aerosol amount and location, we present geometric properties, including cloud top heights, transparent cloud and aerosol layer thicknesses and location of the 532 nm backscatter centroid, which is roughly equivalent to the layer vertical center of mass. We also present differences in the distribution of cirrus cloud extinction coefficients and ice water content, and aerosol optical depths, as detected from space, and compare these with in situ measurements and with temperature and water vapor distributions from the Microwave Limb Sounder (MLS). We find that there is more intense convection reaching the tropical tropopause during the POSIDON mission, and consequently more associated cloud ice observed during POSIDON than during ATTREX-III.

  9. Aerosol vertical distribution and optical properties over the arid and semi-arid areas of Northwest China

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Tian, P.; Cao, X.; Liang, J.

    2017-12-01

    Atmospheric aerosols affect the energy budget of the Earth-atmosphere system by direct interaction with solar radiation through scattering and absorption, also indirectly affect weather and climate by altering cloud formation, albedo, and lightning activity. To better understand the information on aerosols over the arid and semi-arid areas of Northwest China, we carried out a series of observation experiments in Wuwei, Zhangye, Dunhuang, and a permanent site SACOL (the Semi-Arid Climate and Environment Observatory of Lanzhou University) (35.95°N, 104.14°E) in Lanzhou, and optical properties using satellite and ground-based remote-sensing measurements. A modified dual-wavelength Mie-scattering lidar (L2S-SM II) inversion algorithm was proposed to simulate the optical property of dust aerosol more accurately. We introduced the physical significance of intrinsic mode functions (IMFs) and the noise component removed from the empirical mode decomposition (EMD) method into the denoising process of the micro-pulse lidar (CE370-2,Cimel) backscattering signal, and developed an EMD-based automatic data-denoising algorithm, which was proven to be better than the wavelet method. Also, we improved the cloud discrimination. On the basis of these studies, aerosol vertical distribution and optical properties were investigated. The main results were as follows:(1) Dust could be lifted up to a 8 km height over Northwest China; (2) From 2005 to 2008, and aerosol existed in the layer below 4 km at SACOL, and the daily average AOD was 87.8% below 0.4; (3) The average depolarization ratio, Ångström exponent α440/870nm and effective radius of black carbon aerosols were 0.24, 0.86±0.30 and 0.54±0.17 μm, respectively, from November 2010 to February 2011; (4) Compared to other regions of China, the Taklamakan Desert and Tibetan Plateau regions exhibit higher depolarization and color ratios because of the natural dust origin. Our studies provided the key information on the long

  10. Aerosol, Cloud and Trace Gas Observations Derived from Airborne Hyperspectral Radiance and Direct Beam Measurements in Recent Field Campaigns

    NASA Technical Reports Server (NTRS)

    Redemann, J.; Flynn, C. J.; Shinozuka, Y.; Kacenelenbogen, M.; Segal-Rosenheimer, M.; LeBlanc, S.; Russell, P. B.; Livingston, J. M.; Schmid, B.; Dunagan, S. E.; hide

    2014-01-01

    The AERONET (AErosol RObotic NETwork) ground-based suite of sunphotometers provides measurements of spectral aerosol optical depth (AOD), precipitable water and spectral sky radiance, which can be inverted to retrieve aerosol microphysical properties that are critical to assessments of aerosol-climate interactions. Because of data quality criteria and sampling constraints, there are significant limitations to the temporal and spatial coverage of AERONET data and their representativeness for global aerosol conditions. The 4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research) instrument, jointly developed by NASA Ames and PNNL with NASA Goddard collaboration, combines airborne sun tracking and AERONET-like sky scanning with spectroscopic detection. Being an airborne instrument, 4STAR has the potential to fill gaps in the AERONET data set. Dunagan et al. [2013] present results establishing the performance of the instrument, along with calibration, engineering flight test, and preliminary scientific field data. The 4STAR instrument operated successfully in the SEAC4RS [Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys] experiment in Aug./Sep. 2013 aboard the NASA DC-8 and in the DoE [Department of Energy]-sponsored TCAP [Two Column Aerosol Project, July 2012 & Feb. 2013] experiment aboard the DoE G-1 aircraft (Shinozuka et al., 2013), and acquired a wealth of data in support of mission objectives on all SEAC4RS and TCAP research flights. 4STAR provided direct beam measurements of hyperspectral AOD, columnar trace gas retrievals (H2O, O3, NO2; Segal-Rosenheimer et al., 2014), and the first ever airborne hyperspectral sky radiance scans, which can be inverted to yield the same products as AERONET ground-based observations. In addition, 4STAR measured zenith radiances underneath cloud decks for retrievals of cloud optical depth and effective diameter. In this presentation, we provide an overview of the new

  11. Direct Aerosol Radiative Forcing from Combined A-Train Observations - Preliminary Comparisons with AeroCom Models and Pathways to Observationally Based All-sky Estimates

    NASA Astrophysics Data System (ADS)

    Redemann, J.; Livingston, J. M.; Shinozuka, Y.; Kacenelenbogen, M. S.; Russell, P. B.; LeBlanc, S. E.; Vaughan, M.; Ferrare, R. A.; Hostetler, C. A.; Rogers, R. R.; Burton, S. P.; Torres, O.; Remer, L. A.; Stier, P.; Schutgens, N.

    2014-12-01

    We describe a technique for combining CALIOP aerosol backscatter, MODIS spectral AOD (aerosol optical depth), and OMI AAOD (absorption aerosol optical depth) retrievals for the purpose of estimating full spectral sets of aerosol radiative properties, and ultimately for calculating the 3-D distribution of direct aerosol radiative forcing. We present results using one year of data collected in 2007 and show comparisons of the aerosol radiative property estimates to collocated AERONET retrievals. Use of the recently released MODIS Collection 6 data for aerosol optical depths derived with the dark target and deep blue algorithms has extended the coverage of the multi-sensor estimates towards higher latitudes. Initial calculations of seasonal clear-sky aerosol radiative forcing based on our multi-sensor aerosol retrievals compare well with over-ocean and top of the atmosphere IPCC-2007 model-based results, and with more recent assessments in the "Climate Change Science Program Report: Atmospheric Aerosol Properties and Climate Impacts" (2009). For the first time, we present comparisons of our multi-sensor aerosol direct radiative forcing estimates to values derived from a subset of models that participated in the latest AeroCom initiative. We discuss the major challenges that exist in extending our clear-sky results to all-sky conditions. On the basis of comparisons to suborbital measurements, we present some of the limitations of the MODIS and CALIOP retrievals in the presence of adjacent or underlying clouds. Strategies for meeting these challenges are discussed.

  12. Evaluation of the health impact of aerosols emitted from different combustion sources: Comprehensive characterization of the aerosol physicochemical properties as well as the molecular biological and toxicological effects of the aerosols on human lung cells and macrophages.

    NASA Astrophysics Data System (ADS)

    Zimmermann, R.; Dittmar, G.; Kanashova, T.; Buters, J.; Öder, S.; Paur, H. R.; Mülhopt, S.; Dilger, M.; Weiss, C.; Harndorf, H.; Stengel, B.; Hirvonen, M. R.; Jokiniemi, J.; Hiller, K.; Sapcariu, S.; Sippula, O.; Streibel, T.; Karg, E.; Weggler, B.; Schnelle-Kreis, J.; Lintelmann, J.; Sklorz, M.; Orasche, J.; Müller, L.; Passig, J.; Gröger, T.; Jalava, P. I.; Happo, M.; Uski, O.

    2016-12-01

    A novel approach to evaluate the health effects of anthropogenic combustion emissions is the detailed comparison of comprehensive physicochemical data on the combustion aerosol properties with the biological response of aerosol-exposed lung cells. In this context the "HICE-Aerosol and Health" project consortium studies the properties as well as the biological and toxicological effects on lung cells induced by different combustion aerosol emissions (e.g. ship diesel exhaust, wood combustion effluents or automobile aerosol). Human alveolar epithelial cells (e.g. A549 cells) as well as murine macrophages were exposed to diluted emissions, using field deployable ALI-exposition systems in a mobile S2-biological laboratory. This allows a realistic lung-cell exposure by simulation of the lung situation. The cellular effects were then comprehensively characterized (cytotoxicology, transcriptomics, proteomics etc.) effects monitoring and put in context with the chemical and physical aerosol data. Emissions of wood combustion, a ship engine as well as diesel and gasoline engines were investigated. Furthermore for some experiments the atmospheric aging of the emission was simulated in a flow tube reactor using UV-light and ozone. Briefly the following order of cellular response-strength was observed: A relatively mild cellular effect is observed for the diluted wood combustion emissions, regardless if log-wood and pellet burner emissions are investigated. Similarly mild biological effects are observed for gasoline car emissions. The ship diesel engine emissions and construction machine diesel engine induced much more intense biological responses. A surprising result in this context is, that heavy fuel oil (HFO)-emissions show lower biological effect strengths than the supposedly cleaner diesel fuel emissions (DF). The HFO-emissions contain high concentrations of known toxicants (metals, polycyclic aromatics). This result was confirmed by experiments with murine macrophages

  13. Evaluation of the health impact of aerosols emitted from different combustion sources: Comprehensive characterization of the aerosol physicochemical properties as well as the molecular biological and toxicological effects of the aerosols on human lung cells and macrophages.

    NASA Astrophysics Data System (ADS)

    Zimmermann, R.; Dittmar, G.; Kanashova, T.; Buters, J.; Öder, S.; Paur, H. R.; Mülhopt, S.; Dilger, M.; Weiss, C.; Harndorf, H.; Stengel, B.; Hirvonen, M. R.; Jokiniemi, J.; Hiller, K.; Sapcariu, S.; Sippula, O.; Streibel, T.; Karg, E.; Weggler, B.; Schnelle-Kreis, J.; Lintelmann, J.; Sklorz, M.; Orasche, J.; Müller, L.; Passig, J.; Gröger, T.; Jalava, P. I.; Happo, M.; Uski, O.

    2017-12-01

    A novel approach to evaluate the health effects of anthropogenic combustion emissions is the detailed comparison of comprehensive physicochemical data on the combustion aerosol properties with the biological response of aerosol-exposed lung cells. In this context the "HICE-Aerosol and Health" project consortium studies the properties as well as the biological and toxicological effects on lung cells induced by different combustion aerosol emissions (e.g. ship diesel exhaust, wood combustion effluents or automobile aerosol). Human alveolar epithelial cells (e.g. A549 cells) as well as murine macrophages were exposed to diluted emissions, using field deployable ALI-exposition systems in a mobile S2-biological laboratory. This allows a realistic lung-cell exposure by simulation of the lung situation. The cellular effects were then comprehensively characterized (cytotoxicology, transcriptomics, proteomics etc.) effects monitoring and put in context with the chemical and physical aerosol data. Emissions of wood combustion, a ship engine as well as diesel and gasoline engines were investigated. Furthermore for some experiments the atmospheric aging of the emission was simulated in a flow tube reactor using UV-light and ozone. Briefly the following order of cellular response-strength was observed: A relatively mild cellular effect is observed for the diluted wood combustion emissions, regardless if log-wood and pellet burner emissions are investigated. Similarly mild biological effects are observed for gasoline car emissions. The ship diesel engine emissions and construction machine diesel engine induced much more intense biological responses. A surprising result in this context is, that heavy fuel oil (HFO)-emissions show lower biological effect strengths than the supposedly cleaner diesel fuel emissions (DF). The HFO-emissions contain high concentrations of known toxicants (metals, polycyclic aromatics). This result was confirmed by experiments with murine macrophages

  14. Retrieval of water vapor column abundance and aerosol properties from ChemCam passive sky spectroscopy

    NASA Astrophysics Data System (ADS)

    McConnochie, Timothy H.; Smith, Michael D.; Wolff, Michael J.; Bender, Steve; Lemmon, Mark; Wiens, Roger C.; Maurice, Sylvestre; Gasnault, Olivier; Lasue, Jeremie; Meslin, Pierre-Yves; Harri, Ari-Matti; Genzer, Maria; Kemppinen, Osku; Martínez, Germán M.; DeFlores, Lauren; Blaney, Diana; Johnson, Jeffrey R.; Bell, James F.

    2018-06-01

    We derive water vapor column abundances and aerosol properties from Mars Science Laboratory (MSL) ChemCam passive mode observations of scattered sky light. This paper covers the methodology and initial results for water vapor and also provides preliminary results for aerosols. The data set presented here includes the results of 113 observations spanning from Mars Year 31 Ls = 291° (March 30, 2013) to Mars Year 33 Ls= 127° (March 24, 2016). Each ChemCam passive sky observation acquires spectra at two different elevation angles. We fit these spectra with a discrete-ordinates multiple scattering radiative transfer model, using the correlated-k approximation for gas absorption bands. The retrieval proceeds by first fitting the continuum of the ratio of the two elevation angles to solve for aerosol properties, and then fitting the continuum-removed ratio to solve for gas abundances. The final step of the retrieval makes use of the observed CO2 absorptions and the known CO2 abundance to correct the retrieved water vapor abundance for the effects of the vertical distribution of scattering aerosols and to derive an aerosol scale height parameter. Our water vapor results give water vapor column abundance with a precision of ±0.6 precipitable microns and systematic errors no larger than ±0.3 precipitable microns, assuming uniform vertical mixing. The ChemCam-retrieved water abundances show, with only a few exceptions, the same seasonal behavior and the same timing of seasonal minima and maxima as the TES, CRISM, and REMS-H data sets that we compare them to. However ChemCam-retrieved water abundances are generally lower than zonal and regional scale from-orbit water vapor data, while at the same time being significantly larger than pre-dawn REMS-H abundances. Pending further analysis of REMS-H volume mixing ratio uncertainties, the differences between ChemCam and REMS-H pre-dawn mixing ratios appear to be much too large to be explained by large scale circulations and thus

  15. Vertical structure of aerosol distribution and radiative properties over Svalbard - observations and modelling

    NASA Astrophysics Data System (ADS)

    Kaminski, Jacek W.; Struzewska, Joanna; Markowicz, Krzysztof; Jefimow, Maciej

    2015-04-01

    In the scope of the iAREA projects (Impact of absorbing aerosols on radiative forcing in the European Arctic - http://www.igf.fuw.edu.pl/iAREA) a field campaign was undertaken in March and April 2014 on Spitzbergen. Analysis of measurements was supported by the GEM-AQ model simulations. The GEM-AQ model is a chemical weather model. The core of the model is based on a weather prediction model with environmental processes (chemistry and aerosols) implanted on-line and are interactive (i.e. providing feedback of chemistry on radiation and dynamics). Numerical experiments were performed with the computational grid resolution of ˜15 km. The emission inventory developed by NILU in the ECLIPSE project was used. Preliminary analysis revealed small but systematic overestimation of modelled AOD and background BC levels. We will present the analysis of the vertical distribution of different aerosol species and its contribution to AOD for two stations on Svalbard. Also, changes of modelled chemical composition of aerosols with altitude will be analyzed.

  16. Light-Absorbing Aerosol during NASA GRIP: Overview of Observations in the Free Troposphere and Associated with Tropical Storm Systems

    NASA Astrophysics Data System (ADS)

    Ziemba, L. D.; Beyersdorf, A. J.; Chen, G.; Corr, C. A.; Craig, L.; Dhaniyala, S.; Dibb, J. E.; Hudgins, C. H.; Ismail, S.; Latham, T.; Nenes, A.; Thornhill, K. L.; Winstead, E.; Anderson, B. E.

    2010-12-01

    Aerosols play a significant role in regulating Earth’s climate. Absorbing aerosols typically constitute a small fraction of ambient particle mass but can contribute significantly to direct and indirect climate forcing depending on size, mixing state, concentration, chemical composition, and vertical and spatial distribution. Aerosols may also significantly affect tropical storm/hurricane dynamics through direct light absorption and activation as cloud nuclei. An extensive suite of instrumentation measuring aerosol chemical, physical, and optical properties was deployed aboard the NASA DC-8 to characterize aerosol during the NASA GRIP (Genesis and Rapid Intensification Processes; August-September 2010) mission. The majority of flight time was spent at high altitude (greater than 9 km) and thus much of the sampling was done in the free troposphere, including extensive sampling in the vicinity of tropical storm systems and more diffuse cirrus clouds. With operations based in Fort Lauderdale, FL and St. Croix, U.S. Virgin Islands, a large geographic region was sampled including much of the Gulf of Mexico and tropical Atlantic Ocean. Observations are reported for light-absorbing carbon aerosol (mainly black carbon, BC) primarily using a single particle soot photometer (SP2). The SP2 employs single-particle laser-induced incandescence to provide a mass-specific measurement not subject to scattering interference that is optimal for the low concentration environments like those encountered during GRIP. BC mass concentrations, 100-500 nm size distributions, and mixing state (i.e. coating thickness of scattering material) are presented. Total and sub-micron aerosol absorption coefficients (principally from BC and dust aerosol) are reported using a particle soot absorption photometer (PSAP) along with comparisons with calculated absorption coefficients derived from SP2 observations in various conditions. In addition, dust aerosol is specifically identified using optical and

  17. Multi-Sensor Aerosol Products Sampling System

    NASA Technical Reports Server (NTRS)

    Petrenko, M.; Ichoku, C.; Leptoukh, G.

    2011-01-01

    Global and local properties of atmospheric aerosols have been extensively observed and measured using both spaceborne and ground-based instruments, especially during the last decade. Unique properties retrieved by the different instruments contribute to an unprecedented availability of the most complete set of complimentary aerosol measurements ever acquired. However, some of these measurements remain underutilized, largely due to the complexities involved in analyzing them synergistically. To characterize the inconsistencies and bridge the gap that exists between the sensors, we have established a Multi-sensor Aerosol Products Sampling System (MAPSS), which consistently samples and generates the spatial statistics (mean, standard deviation, direction and rate of spatial variation, and spatial correlation coefficient) of aerosol products from multiple spacebome sensors, including MODIS (on Terra and Aqua), MISR, OMI, POLDER, CALIOP, and SeaWiFS. Samples of satellite aerosol products are extracted over Aerosol Robotic Network (AERONET) locations as well as over other locations of interest such as those with available ground-based aerosol observations. In this way, MAPSS enables a direct cross-characterization and data integration between Level-2 aerosol observations from multiple sensors. In addition, the available well-characterized co-located ground-based data provides the basis for the integrated validation of these products. This paper explains the sampling methodology and concepts used in MAPSS, and demonstrates specific examples of using MAPSS for an integrated analysis of multiple aerosol products.

  18. The great Indian haze revisited: aerosol distribution effects on microphysical and optical properties of warm clouds over peninsular India

    NASA Astrophysics Data System (ADS)

    Ghanti, R.; Ghosh, S.

    2010-03-01

    The Indian subcontinent is undergoing a phase of rapid urbanisation. Inevitable fallout of this process is a concomitant increase in air pollution much of which can be attributed to the infamous great Indian haze phenomena. One observes that the aerosol size distributions vary considerably along the Bay of Bengal (BOB), Arabian Sea (AS) and the Indian Ocean (IO), although, the dynamical attributes are very similar, particularly over the BOB and the AS during this season. Unlike major European studies (e.g. Aerosol Characterization Experiment-2, Ghosh et al., 2005), there are no cloud microphysical modelling studies to complement these observational results for the Indian sub-continent. Ours is the first modelling study over this important region where a time-tested model (O'Dowd et al., 1999a; Ghosh et al., 2007; Rap et al., 2009) is used to obtain cloud microphysical and optical properties from observed aerosol size distributions. Un-activated aerosol particles and very small cloud droplets have to be treated specially to account for non-ideal effects-our model does this effectively yielding realistic estimate of cloud droplet number concentrations (Nc). Empirical relationships linking aerosol concentration to (Nc) yield a disproportionately higher Nc suggesting that such empirical formulations should be used with caution. Our modelling study reveals that the cloud's microphysical and optical properties are very similar along the AS and the BOB despite them having disparate dry aerosol spectral distributions. This is non-intuitive, as one would expect changes in microphysical development with widely different aerosol distributions. There is some increase in cloud droplet numbers with increased haze concentrations but much less than a simple proportion would indicate.

  19. Easy Volcanic Aerosol

    NASA Astrophysics Data System (ADS)

    Toohey, Matthew; Stevens, Bjorn; Schmidt, Hauke; Timmreck, Claudia

    2016-04-01

    Radiative forcing by stratospheric sulfate aerosol of volcanic origin is one of the strongest drivers of natural climate variability. Transient model simulations attempting to match observed climate variability, such as the CMIP historical simulations, rely on volcanic forcing reconstructions based on observations of a small sample of recent eruptions and coarse proxy data for eruptions before the satellite era. Volcanic forcing data sets used in CMIP5 were provided either in terms of optical properties, or in terms of sulfate aerosol mass, leading to significant inter-model spread in the actual volcanic radiative forcing produced by models and in their resulting climate responses. It remains therefore unclear to what degree inter-model spread in response to volcanic forcing represents model differences or variations in the forcing. In order to isolate model differences, Easy Volcanic Aerosol (EVA) provides an analytic representation of volcanic stratospheric aerosol forcing, based on available observations and aerosol model results, prescribing the aerosol's radiative properties and primary modes of spatial and temporal variability. In contrast to regriddings of observational data, EVA allows for the production of physically consistent forcing for historic and hypothetical eruptions of varying magnitude, source latitude, and season. Within CMIP6, EVA will be used to reconstruct volcanic forcing over the past 2000 years for use in the Paleo-Modeling Intercomparison Project (PMIP), and will provide forcing sets for VolMIP experiments aiming to quantify model uncertainty in the response to volcanic forcing. Here, the functional form of EVA will be introduced, along with illustrative examples including the EVA-based reconstruction of volcanic forcing over the historical period, and that of the 1815 Tambora eruption.

  20. Correlations Between Optical, Chemical and Physical Properties of Biomass Burn Aerosols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hopkins, Rebecca J.; Lewis, Keith M.; Dessiaterik, Yury

    2007-09-20

    Single scattering albedo (ω) and Angstrom absorption coefficient (αap) values are measured at 405, 532 and 870 nm for aerosols generated during controlled laboratory combustion of twelve wildland fuels. Considerable fuel dependent variation in these optical properties is observed at these wavelengths. Complementary microspectroscopy techniques are used to elucidate spatially resolved local chemical bonding, carbon-to-oxygen atomic ratios, percent of sp2 hybridization (graphitic nature), elemental composition, particle size and morphology. These parameters are compared directly with the corresponding optical properties for each combustion product, facilitating an understanding of the fuel dependent variability observed. Results indicate that combustion products can be dividedmore » into three categories based on chemical, physical and optical properties. Only materials displaying a high degree of sp2 hybridization, with chemical and physical properties characteristic of ‘soot’ or black carbon, exhibit ω and αap values that indicate a high light absorbing capacity.« less

  1. Simulation of aerosol radiative properties with the ORISAM-RAD model during a pollution event (ESCOMPTE 2001)

    NASA Astrophysics Data System (ADS)

    Mallet, M.; Pont, V.; Liousse, C.; Roger, J. C.; Dubuisson, P.

    The aim of this study is to present the organic and inorganic spectral aerosol module-radiative (ORISAM-RAD) module, allowing the 3D distribution of aerosol radiative properties (aerosol optical depth, single scattering albedo and asymmetry parameter) from the ORISAM module. In this work, we test ORISAM-RAD for one selected day (24th June) during the ESCOMPTE (expérience sur site pour contraindre les modèles de pollution atmosphérique et de transport d'emissions) experiment for an urban/industrial aerosol type. The particle radiative properties obtained from in situ and AERONET observations are used to validate our simulations. In a first time, simulations obtained from ORISAM-RAD indicate high aerosol optical depth (AOD)˜0.50-0.70±0.02 (at 440 nm) in the aerosol pollution plume, slightly lower (˜10-20%) than AERONET retrievals. In a second time, simulations of the single scattering albedo ( ωo) have been found to well reproduce the high spatial heterogeneities observed over this domain. Concerning the asymmetry parameter ( g), ORISAM-RAD simulations reveal quite uniform values over the whole ESCOMPTE domain, comprised between 0.61±0.01 and 0.65±0.01 (at 440 nm), in excellent agreement with ground based in situ measurements and AERONET retrievals. Finally, the outputs of ORISAM-RAD have been used in a radiative transfer model in order to simulate the diurnal direct radiative forcing at different locations (urban, industrial and rural). We show that anthropogenic aerosols strongly decrease surface solar radiation, with diurnal mean surface forcings comprised between -29.0±2.9 and -38.6±3.9 W m -2, depending on the sites. This decrease is due to the reflection of solar radiations back to space (-7.3±0.8<Δ FTOA<-12.3±1.2 W m -2) and to its absorption into the aerosol layer (21.1±2.1<Δ FATM<26.3±2.6 W m -2). These values are found to be consistent with those measured at local scale.

  2. Distribution of Aerosols in the Arctic as Observed by CALIOP

    NASA Astrophysics Data System (ADS)

    Winker, D.; Kittaka, C.

    2007-12-01

    The Arctic climate is now recognized to be uniquely sensitive to atmospheric perturbations. Pollution aerosols and smoke from boreal fires have potentially important impacts on Arctic climate but there are many uncertainties. Aerosol in the Arctic, generally referred to as "Arctic haze", has been studied with great interest for over thirty years. Much has been learned about the composition and sources of the haze yet our knowledge is largely based on long term measurements at a very few widely dispersed sites, augmented by modeling activities and occasional field campaigns. Transport pathways from source regions into the Arctic are not well understood. Emission patterns have changed over the last several decades, but the impact of this on concentrations and distribution of Arctic haze are understood only in the crudest sense. Due to poor lighting conditions, extended periods of darkness, and surfaces covered by snow and ice, satellite sensors have been unable to provide much information on Arctic haze to date. The CALIPSO satellite carries CALIOP, a two-wavelength polarization lidar, optimized for profiling clouds and aerosols. CALIOP has been acquiring global observations since June 2006 and provides our first opportunity to observe the distribution and seasonal variation of aerosol in the Arctic. The Arctic is characterized by the prevalence of optically thin ice clouds and clouds composed of supercooled water, often occurring in the same atmospheric column along with aerosol. CALIOP depolarization signals are used to discriminate Arctic haze from optically thin cirrus and diamond dust. Two-wavelength returns aid in the discrimination of aerosol and optically thin water cloud. Results of initial analyses of CALIOP aerosol observations in the Arctic will be presented. This work is a preliminary analysis in support of the NASA Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) field campaign planned for April 2008.

  3. Ground-based SMART-COMMIT Measurements for Studying Aerosol and Cloud Properties

    NASA Technical Reports Server (NTRS)

    Tsay, Si-Chee

    2008-01-01

    From radiometric principles, it is expected that the retrieved properties of extensive aerosols and clouds from reflected/emitted measurements by satellite (and/or aircraft) should be consistent with those retrieved from transmitted/emitted radiance observed at the surface. Although space-borne remote sensing observations cover large spatial domain, they are often plagued by contamination of surface signatures. Thus, ground-based in-situ and remote-sensing measurements, where signals come directly from atmospheric constituents, the sun, and/or the Earth-atmosphere interactions, provide additional information content for comparisons that confirm quantitatively the usefulness of the integrated surface, aircraft, and satellite data sets. The development and deployment of SMARTCOMMIT (Surface-sensing Measurements for Atmospheric Radiative Transfer - Chemical, Optical & Microphysical Measurements of In-situ Troposphere) mobile facilities are aimed for the optimal utilization of collocated ground-based observations as constraints to yield higher fidelity satellite retrievals and to determine any sampling bias due to target conditions. To quantify the energetics of the surface-atmosphere system and the atmospheric processes, SMART-COMMIT instruments fall into three categories: flux radiometer, radiance sensor and in-situ probe. In this paper, we will demonstrate the capability of SMART-COMMIT in recent field campaigns (e.g., CRYSTAL-FACE, UAE 2, BASEASIA, NAMMA) that were designed and executed to study the compelling variability in temporal scale of both anthropogenic and natural aerosols (e.g., biomass-burning smoke, airborne dust) and cirrus clouds. We envision robust approaches in which well-collocated ground-based measurements and space-borne observations will greatly advance our knowledge of extensive aerosols and clouds.

  4. Aerosol Properties Derived from Airborne Sky Radiance and Direct Beam Measurements in Recent NASA and DoE Field Campaigns

    NASA Technical Reports Server (NTRS)

    Redemann, J.; Flynn, C. J.; Shinozuka, Y.; Russell, P. B.; Kacenelenbogen, M.; Segal-Rosenheimer, M.; Livingston, J. M.; Schmid, B.; Dunagan, S. E.; Johnson, R. R.; hide

    2014-01-01

    The AERONET (AErosol RObotic NETwork) ground-based suite of sunphotometers provides measurements of spectral aerosol optical depth (AOD), precipitable water and spectral sky radiance, which can be inverted to retrieve aerosol microphysical properties that are critical to assessments of aerosol-climate interactions. Because of data quality criteria and sampling constraints, there are significant limitations to the temporal and spatial coverage of AERONET data and their representativeness for global aerosol conditions.The 4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research) instrument, jointly developed by NASA Ames and PNNL (Pacific Northwest National Laboratory) with NASA Goddard collaboration, combines airborne sun tracking and AERONET-like sky scanning with spectroscopic detection. Being an airborne instrument, 4STAR has the potential to fill gaps in the AERONET data set. The 4STAR instrument operated successfully in the SEAC4RS (Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys) experiment in Aug./Sep. 2013 aboard the NASA DC-8 and in the DoE (Department of Energy)-sponsored TCAP (Two Column Aerosol Project, July 2012 & Feb. 2013) experiment aboard the DoE G-1 aircraft. 4STAR provided direct beam measurements of hyperspectral AOD, columnar trace gas retrievals (H2O, O3, NO2), and the first ever airborne hyperspectral sky radiance scans, which can be inverted to yield the same products as AERONET ground-based observations. In this presentation, we provide an overview of the new 4STAR capabilities, with an emphasis on 26 high-quality sky radiance measurements carried out by 4STAR in SEAC4RS. We compare collocated 4STAR and AERONET sky radiances, as well as their retrievals of aerosol microphysical properties for a subset of the available case studies. We summarize the particle property and air-mass characterization studies made possible by the combined 4STAR direct beam and sky radiance

  5. Aerosol Observability and Predictability: From Research to Operations for Chemical Weather Forecasting. Lagrangian Displacement Ensembles for Aerosol Data Assimilation

    NASA Technical Reports Server (NTRS)

    da Silva, Arlindo

    2010-01-01

    A challenge common to many constituent data assimilation applications is the fact that one observes a much smaller fraction of the phase space that one wishes to estimate. For example, remotely sensed estimates of the column average concentrations are available, while one is faced with the problem of estimating 3D concentrations for initializing a prognostic model. This problem is exacerbated in the case of aerosols because the observable Aerosol Optical Depth (AOD) is not only a column integrated quantity, but it also sums over a large number of species (dust, sea-salt, carbonaceous and sulfate aerosols. An aerosol transport model when driven by high-resolution, state-of-the-art analysis of meteorological fields and realistic emissions can produce skillful forecasts even when no aerosol data is assimilated. The main task of aerosol data assimilation is to address the bias arising from inaccurate emissions, and Lagrangian misplacement of plumes induced by errors in the driving meteorological fields. As long as one decouples the meteorological and aerosol assimilation as we do here, the classic baroclinic growth of error is no longer the main order of business. We will describe an aerosol data assimilation scheme in which the analysis update step is conducted in observation space, using an adaptive maximum-likelihood scheme for estimating background errors in AOD space. This scheme includes e explicit sequential bias estimation as in Dee and da Silva. Unlikely existing aerosol data assimilation schemes we do not obtain analysis increments of the 3D concentrations by scaling the background profiles. Instead we explore the Lagrangian characteristics of the problem for generating local displacement ensembles. These high-resolution state-dependent ensembles are then used to parameterize the background errors and generate 3D aerosol increments. The algorithm has computational complexity running at a resolution of 1/4 degree, globally. We will present the result of

  6. Satellite-based Assessment of Global Warm Cloud Properties Associated with Aerosols, Atmospheric Stability, and Diurnal Cycle

    NASA Technical Reports Server (NTRS)

    Matsui, Toshihisa; Masunaga, Hirohiko; Kreidenweis, Sonia M.; Pielke, Roger A., Sr.; Tao, Wei-Kuo; Chin, Mian; Kaufman, Yoram J.

    2006-01-01

    This study examines variability in marine low cloud properties derived from semi-global observations by the Tropical Rainfall Measuring Mission (TRMM) satellite, as linked to the aerosol index (AI) and lower-tropospheric stability (LTS). AI is derived from the Moderate Resolution Imaging Spectroradiometer (Terra MODIS) sensor and the Goddard Chemistry Aerosol Radiation and Transportation (GOCART) model, and is used to represent column-integrated aerosol concentrations. LTS is derived from the NCEP/NCAR reanalysis, and represents the background thermodynamic environment in which the clouds form. Global statistics reveal that cloud droplet size tends to be smallest in polluted (high-AI) and strong inversion (high-LTS) environments. Statistical quantification shows that cloud droplet size is better correlated with AI than it is with LTS. Simultaneously, the cloud liquid water path (CLWP) tends to decrease as AI increases. This correlation does not support the hypothesis or assumption that constant or increased CLWP is associated with high aerosol concentrations. Global variability in corrected cloud albedo (CCA), the product of cloud optical depth and cloud fraction, is very well explained by LTS, while both AI and LTS are needed to explain local variability in CCA. Most of the local correlations between AI and cloud properties are similar to the results from the global statistics, while weak anomalous aerosol-cloud correlations appear locally in the regions where simultaneous high (low) AI and low (high) LTS compensate each other. Daytime diurnal cycles explain additional variability in cloud properties. CCA has the largest diurnal cycle in high-LTS regions. Cloud droplet size and CLWP have weak diurnal cycles that differ between clean and polluted environments. The combined results suggest that investigations of marine low cloud radiative forcing and its relationship to hypothesized aerosol indirect effects must consider the combined effects of aerosols

  7. Reconciling aerosol light extinction measurements from spaceborne lidar observations and in-situ measurements in the Arctic

    NASA Astrophysics Data System (ADS)

    Tesche, M.; Rastak, N.; Charlson, R. J.; Glantz, P.; Zieger, P.; Hansson, H.-C.

    2014-03-01

    In this study we investigate to what degree it is possible to reconcile continuously recorded particle light extinction coefficients derived from dry in-situ measurements at Zeppelin station (78.92° N, 11.85° E, 475 m a.s.l.) at Ny-Ålesund, Svalbard, that are recalculated to ambient relative humidity, and simultaneous ambient observations with the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) aboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite. To our knowledge, this represents the first study that compares spaceborne lidar measurements to optical aerosol properties from short-term in-situ observations (averaged over 5 h) on a case-by-case basis. Finding suitable comparison cases requires an elaborate screening and matching of the CALIOP data with respect to the location of the Zeppelin station as well as in the selection of temporal and spatial averaging intervals for both the ground-based and spaceborne observations. Trustworthy reconciliation of these data cannot be achieved with the closest approach method that is often used in matching CALIOP observations to those taken at ground sites due to the transport pathways of the air parcels that were sampled. The use of trajectories allowed us to establish a connection between spaceborne and ground-based observations for 57 individual overpasses out of a total of 2018 that occurred in our region of interest around Svalbard (0 to 25° E; 75 to 82° N) in the considered year of 2008. Matches could only be established during winter and spring, since the low aerosol load during summer in connection with the strong solar background and the high occurrence rate of clouds strongly influences the performance and reliability of CALIOP observations. Extinction coefficients in the range from 1 to 100 Mm-1 were found for successful matches with an agreement of a factor of 1.85 (median value for a range from 0.38 to 17.9) between the findings of in-situ and spaceborne

  8. Comparison of aerosol optical properties above clouds between POLDER and AeroCom models over the South East Atlantic Ocean during the fire season

    NASA Astrophysics Data System (ADS)

    Peers, F.; Bellouin, N.; Waquet, F.; Ducos, F.; Goloub, P.; Mollard, J.; Myhre, G.; Skeie, R. B.; Takemura, T.; Tanré, D.; Thieuleux, F.; Zhang, K.

    2016-04-01

    Aerosol properties above clouds have been retrieved over the South East Atlantic Ocean during the fire season 2006 using satellite observations from POLDER (Polarization and Directionality of Earth Reflectances). From June to October, POLDER has observed a mean Above-Cloud Aerosol Optical Thickness (ACAOT) of 0.28 and a mean Above-Clouds Single Scattering Albedo (ACSSA) of 0.87 at 550 nm. These results have been used to evaluate the simulation of aerosols above clouds in five Aerosol Comparisons between Observations and Models (Goddard Chemistry Aerosol Radiation and Transport (GOCART), Hadley Centre Global Environmental Model 3 (HadGEM3), European Centre Hamburg Model 5-Hamburg Aerosol Module 2 (ECHAM5-HAM2), Oslo-Chemical Transport Model 2 (OsloCTM2), and Spectral Radiation-Transport Model for Aerosol Species (SPRINTARS)). Most models do not reproduce the observed large aerosol load episodes. The comparison highlights the importance of the injection height and the vertical transport parameterizations to simulate the large ACAOT observed by POLDER. Furthermore, POLDER ACSSA is best reproduced by models with a high imaginary part of black carbon refractive index, in accordance with recent recommendations.

  9. Vertical distribution of aerosol optical properties in the Po Valley during the 2012 summer campaigns

    NASA Astrophysics Data System (ADS)

    Bucci, Silvia; Cristofanelli, Paolo; Decesari, Stefano; Marinoni, Angela; Sandrini, Silvia; Größ, Johannes; Wiedensohler, Alfred; Di Marco, Chiara F.; Nemitz, Eiko; Cairo, Francesco; Di Liberto, Luca; Fierli, Federico

    2018-04-01

    Studying the vertical distribution of aerosol particle physical and chemical properties in the troposphere is essential to understand the relative importance of local emission processes vs. long-range transport for column-integrated aerosol properties (e.g. the aerosol optical depth, AOD, affecting regional climate) as well as for the aerosol burden and its impacts on air quality at the ground. The main objective of this paper is to investigate the transport of desert dust in the middle troposphere and its intrusion into the planetary boundary layer (PBL) over the Po Valley (Italy), a region considered one of the greatest European pollution hotspots for the frequency that particulate matter (PM) limit values are exceeded. Events of mineral aerosol uplift from local (soil) sources and phenomena of hygroscopic growth at the ground are also investigated, possibly affecting the PM concentration in the region as well. During the PEGASOS 2012 field campaign, an integrated observing-modelling system was set up based on near-surface measurements (particle concentration and chemistry), vertical profiling (backscatter coefficient profiles from lidar and radiosoundings) and Lagrangian air mass transport simulations by FLEXPART model. Measurements were taken at the San Pietro Capofiume supersite (44°39' N, 11°37' E; 11 m a.s.l.), located in a rural area relatively close to some major urban and industrial emissive areas in the Po Valley. Mt. Cimone (44°12' N, 10°42' E; 2165 m a.s.l.) WMO/GAW station observations are also included in the study to characterize regional-scale variability. Results show that, in the Po Valley, aerosol is detected mainly below 2000 m a.s.l. with a prevalent occurrence of non-depolarizing particles ( > 50 % throughout the campaign) and a vertical distribution modulated by the PBL daily evolution. Two intense events of mineral dust transport from northern Africa (19-21 and 29 June to 2 July) are observed, with layers advected mainly above 2000 m

  10. Preliminary results of aerosols' optical properties studied with EPF measurements from the SPICAM/UV instrument

    NASA Astrophysics Data System (ADS)

    Willame, Y.; Vandaele, A.-C.; Depiesse, C.; Gillotay, D.; Kochenova, S.; Montmessin, F.

    2011-10-01

    Aerosols on Mars have an important impact on the radiative transfer properties of its atmosphere. Today their spectral properties and therefore their interaction with UV radiation are only poorly known. Improving the radiative transfer modeling requires a better knowledge of their characteristics, in particular of their phase function, single scattering albedo and opacity. We will show that such information can be accessed by using EPF observations.

  11. Effect of Diwali Firecrackers on Air Quality and Aerosol Optical Properties over Mega City (Delhi) in India

    NASA Astrophysics Data System (ADS)

    Sateesh, M.; Soni, V. K.; Raju, P. V. S.

    2018-06-01

    In this paper, the variations of aerosol properties due to crackers burning during Diwali event (11th-18th 2012) over mega city Delhi were investigated. The sky radiometer POM-2 aerosol optical property data from Skynet-India along with ambient air pollution data were critically analyzed. The aerosol optical depth (AOD) at 500 nm was 1.60 on 13th November, the Diwali day, and its value a maximum of 1.84 on 16th November. Due to stable atmosphere over Delhi during post Diwali, aerosols accumulate and remain in the atmosphere for longer time, which leads to higher AOD on 16th November. A lower value of single-scattering albedo (SSA) was observed at a longer wavelength (1020 nm) during the entire period that clearly indicates the dominance of absorbing-type black carbon aerosol. SSA showed a steep decrease after 16th November. Asymmetry parameter decreased to a maximum of 0.79 for the shorter wavelength at 340 nm and 0.632 is reported at the higher wavelength 1020 nm. Asymmetry parameter showed a decrease in value just after Diwali on 14th November, this suggesting the dominance of fine-mode aerosol from anthropogenic activities. The lowest value of the refractive index (1.4527) on 14th and 15th November indicates the higher loading of absorbing-type aerosol which may be associated with firecracker burning of Diwali festival. The significant correlation with the value of r = 0.9 was observed between sky radiometer and MODIS AOD with a standard deviation of 0.31 and an RMSE of 0.17 during the event. Radiative forcing and heating rate were estimated using SBDART. The maximum average concentrations 2641 and 1876 μg/m3 of PM10 and PM2.5, respectively, were observed on the Diwali night. A highest of 109 ppb surface ozone was reported in the night at 23:00 IST, which can be attributed to burning of the firecrackers.

  12. Aerosol properties and their impacts on surface CCN at the ARM Southern Great Plains site during the 2011 Midlatitude Continental Convective Clouds Experiment

    NASA Astrophysics Data System (ADS)

    Logan, Timothy; Dong, Xiquan; Xi, Baike

    2018-02-01

    Aerosol particles are of particular importance because of their impacts on cloud development and precipitation processes over land and ocean. Aerosol properties as well as meteorological observations from the Department of Energy Atmospheric Radiation Measurement (ARM) platform situated in the Southern Great Plains (SGP) are utilized in this study to illustrate the dependence of continental cloud condensation nuclei (CCN) number concentration ( N CCN) on aerosol type and transport pathways. ARM-SGP observations from the 2011 Midlatitude Continental Convective Clouds Experiment field campaign are presented in this study and compared with our previous work during the 2009-10 Clouds, Aerosol, and Precipitation in the Marine Boundary Layer field campaign over the current ARM Eastern North Atlantic site. Northerly winds over the SGP reflect clean, continental conditions with aerosol scattering coefficient ( σ sp) values less than 20 Mm-1 and N CCN values less than 100 cm-3. However, southerly winds over the SGP are responsible for the observed moderate to high correlation ( R) among aerosol loading ( σ sp < 60 Mm-1) and N CCN, carbonaceous chemical species (biomass burning smoke), and precipitable water vapor. This suggests a common transport mechanism for smoke aerosols and moisture via the Gulf of Mexico, indicating a strong dependence on air mass type. NASA MERRA-2 reanalysis aerosol and chemical data are moderately to highly correlated with surface ARM-SGP data, suggesting that this facility can represent surface aerosol conditions in the SGP, especially during strong aerosol loading events that transport via the Gulf of Mexico. Future long-term investigations will help to understand the seasonal influences of air masses on aerosol, CCN, and cloud properties over land in comparison to over ocean.

  13. Retrieval of Aerosol Properties

    NASA Astrophysics Data System (ADS)

    de Leeuw, Gerrit; Kinne, Stefan; Léon, Jean-Francois; Pelon, Jacques; Rosenfeld, Daniel; Schaap, Martijn; Veefkind, Pepijn J.; Veihelmann, Ben; Winker, David M.; von Hoyningen-Huene, Wolfgang

    Atmospheric aerosol is a suspension of liquid and solid particles in air, i.e. the aerosol includes both particles and its surrounding medium; in practice aerosol is usually referred to as the suspended matter, i.e. the particles or the droplets, depending on their aggregation state.

  14. Aerosol and Cloud Properties during the Cloud Cheju ABC Plume -Asian Monsoon Experiment (CAPMEX) 2008: Linking between Ground-based and UAV Measurements

    NASA Astrophysics Data System (ADS)

    Kim, S.; Yoon, S.; Venkata Ramana, M.; Ramanathan, V.; Nguyen, H.; Park, S.; Kim, M.

    2009-12-01

    Cheju Atmospheric Brown Cloud (ABC) Plume-Monsoon Experiment (CAPMEX), comprehsensive ground-based measurements and a series of data-gathering flights by specially equipped autonomous unmanned aerial vehicles (AUAVs) for aerosol and cloud, had conducted at Jeju (formerly, Cheju), South Korea during August-September 2008, to improve our understanding of how the reduction of anthropogenic emissions in China (so-called “great shutdown” ) during and after the Summer Beijing Olympic Games 2008 effcts on the air quliaty and radiation budgets and how atmospheric brown clouds (ABCs) influences solar radiation budget off Asian continent. Large numbers of in-situ and remote sensing instruments at the Gosan ABC observatory and miniaturized instruments on the aircraft measure a range of properties such as the quantity of soot, size-segregated aerosol particle numbers, total particle numbers, size-segregated cloud droplet numbers (only AUAV), aerosol scattering properties (only ground), aerosol vertical distribution, column-integrated aerosol properties, and meteorological variables. By integrating ground-level and high-elevation AUAV measurements with NASA-satellite observations (e.g., MODIS, CALIPSO), we investigate the long range transport of aerosols, the impact of ABCs on clouds, and the role of biogenic and anthropogenic aerosols on cloud condensation nuclei (CCN). In this talk, we will present the results from CAPMEX focusing on: (1) the characteristics of aerosol optical, physical and chemical properties at Gosan observatory, (2) aerosol solar heating calculated from the ground-based micro-pulse lidar and AERONET sun/sky radiometer synergy, and comparison with direct measurements from UAV, and (3) aerosol-cloud interactions in conjunction with measurements by satellites and Gosan observatory.

  15. Trans-Pacific transport and evolution of aerosols: Evaluation of quasi-global WRF-Chem simulation with multiple observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Zhiyuan; Zhao, Chun; Huang, Jianping

    A fully coupled meteorology-chemistry model (WRF-Chem, the Weather Research and Forecasting model coupled with chemistry) has been configured to conduct quasi-global simulation for 5 years (2010–2014) and evaluated with multiple observation data sets for the first time. The evaluation focuses on the simulation over the trans-Pacific transport region using various reanalysis and observational data sets for meteorological fields and aerosol properties. The simulation generally captures the overall spatial and seasonal variability of satellite retrieved aerosol optical depth (AOD) and absorbing AOD (AAOD) over the Pacific that is determined by the outflow of pollutants and dust and the emissions of marine aerosols.more » The assessment of simulated extinction Ångström exponent (EAE) indicates that the model generally reproduces the variability of aerosol size distributions as seen by satellites. In addition, the vertical profile of aerosol extinction and its seasonality over the Pacific are also well simulated. The difference between the simulation and satellite retrievals can be mainly attributed to model biases in estimating marine aerosol emissions as well as the satellite sampling and retrieval uncertainties. Compared with the surface measurements over the western USA, the model reasonably simulates the observed magnitude and seasonality of dust, sulfate, and nitrate surface concentrations, but significantly underestimates the peak surface concentrations of carbonaceous aerosol likely due to model biases in the spatial and temporal variability of biomass burning emissions and secondary organic aerosol (SOA) production. A sensitivity simulation shows that the trans-Pacific transported dust, sulfate, and nitrate can make significant contribution to surface concentrations over the rural areas of the western USA, while the peaks of carbonaceous aerosol surface concentrations are dominated by the North American emissions. Both the retrievals and simulation show

  16. Trans-Pacific transport and evolution of aerosols: Evaluation of quasi-global WRF-Chem simulation with multiple observations

    DOE PAGES

    Hu, Zhiyuan; Zhao, Chun; Huang, Jianping; ...

    2016-05-10

    A fully coupled meteorology-chemistry model (WRF-Chem, the Weather Research and Forecasting model coupled with chemistry) has been configured to conduct quasi-global simulation for 5 years (2010–2014) and evaluated with multiple observation data sets for the first time. The evaluation focuses on the simulation over the trans-Pacific transport region using various reanalysis and observational data sets for meteorological fields and aerosol properties. The simulation generally captures the overall spatial and seasonal variability of satellite retrieved aerosol optical depth (AOD) and absorbing AOD (AAOD) over the Pacific that is determined by the outflow of pollutants and dust and the emissions of marine aerosols.more » The assessment of simulated extinction Ångström exponent (EAE) indicates that the model generally reproduces the variability of aerosol size distributions as seen by satellites. In addition, the vertical profile of aerosol extinction and its seasonality over the Pacific are also well simulated. The difference between the simulation and satellite retrievals can be mainly attributed to model biases in estimating marine aerosol emissions as well as the satellite sampling and retrieval uncertainties. Compared with the surface measurements over the western USA, the model reasonably simulates the observed magnitude and seasonality of dust, sulfate, and nitrate surface concentrations, but significantly underestimates the peak surface concentrations of carbonaceous aerosol likely due to model biases in the spatial and temporal variability of biomass burning emissions and secondary organic aerosol (SOA) production. A sensitivity simulation shows that the trans-Pacific transported dust, sulfate, and nitrate can make significant contribution to surface concentrations over the rural areas of the western USA, while the peaks of carbonaceous aerosol surface concentrations are dominated by the North American emissions. Both the retrievals and simulation show

  17. Trans-Pacific transport and evolution of aerosols: evaluation of quasi-global WRF-Chem simulation with multiple observations

    NASA Astrophysics Data System (ADS)

    Hu, Zhiyuan; Zhao, Chun; Huang, Jianping; Leung, L. Ruby; Qian, Yun; Yu, Hongbin; Huang, Lei; Kalashnikova, Olga V.

    2016-05-01

    A fully coupled meteorology-chemistry model (WRF-Chem, the Weather Research and Forecasting model coupled with chemistry) has been configured to conduct quasi-global simulation for 5 years (2010-2014) and evaluated with multiple observation data sets for the first time. The evaluation focuses on the simulation over the trans-Pacific transport region using various reanalysis and observational data sets for meteorological fields and aerosol properties. The simulation generally captures the overall spatial and seasonal variability of satellite retrieved aerosol optical depth (AOD) and absorbing AOD (AAOD) over the Pacific that is determined by the outflow of pollutants and dust and the emissions of marine aerosols. The assessment of simulated extinction Ångström exponent (EAE) indicates that the model generally reproduces the variability of aerosol size distributions as seen by satellites. In addition, the vertical profile of aerosol extinction and its seasonality over the Pacific are also well simulated. The difference between the simulation and satellite retrievals can be mainly attributed to model biases in estimating marine aerosol emissions as well as the satellite sampling and retrieval uncertainties. Compared with the surface measurements over the western USA, the model reasonably simulates the observed magnitude and seasonality of dust, sulfate, and nitrate surface concentrations, but significantly underestimates the peak surface concentrations of carbonaceous aerosol likely due to model biases in the spatial and temporal variability of biomass burning emissions and secondary organic aerosol (SOA) production. A sensitivity simulation shows that the trans-Pacific transported dust, sulfate, and nitrate can make significant contribution to surface concentrations over the rural areas of the western USA, while the peaks of carbonaceous aerosol surface concentrations are dominated by the North American emissions. Both the retrievals and simulation show small

  18. Physico-chemical properties of aerosols in Sao Paulo, Brazil and mechanisms of secondary organic aerosol formation.

    NASA Astrophysics Data System (ADS)

    Artaxo, Paulo; Ferreira de Brito, Joel; Varanda Rizzo, Luciana; Luiza Godoy, Maria; Godoy, Jose Marcus

    2013-04-01

    Megacities emissions are increasingly becoming a global issue, where emissions from the transportation sector play an increasingly important role. Sao Paulo is a megacity with a population of about 18 million people, 7 million cars and large-scale industrial emissions. As a result of the vehicular and industrial emissions, the air quality in Sao Paulo is bellow WMO standards for aerosol particles and ozone. Many uncertainties are found on gas- and particulate matter vehicular emission factors and their following atmospheric processes, e.g. secondary organic aerosol formation. Due to the uniqueness of the vehicular fuel in Brazil, largely based on ethanol use, such characterization currently holds further uncertainties. To improve the understanding of the role of this unique emission characteristics, we are running a source apportionment study in Sao Paulo focused on the mechanisms of organic aerosol formation. One of the goals of this study is a quantitative aerosol source apportionment focused on vehicular emissions, including ethanol and gasohol (both fuels used by light-duty vehicles). This study comprises four sampling sites with continuous measurements for one year, where trace elements and organic aerosol are being measured for PM2.5 and PM10 along with real-time NOx, O3, PM10 and CO measurements. Aerosol optical properties and size distribution are being measured on a rotation basis between sampling stations. Furthermore, a Proton-Transfer-Reaction Mass Spectrometer (PTR-MS) and an Aerosol Chemical Speciation Monitor (ACSM) are used to measure in real time VOCs and aerosol composition, respectively. Trace elements were measured using XRF and OC/EC analysis was determined with a Sunset OC/EC instrument. A TSI Nephelometer with 3 wavelengths measure light scattering and a MAAP measure black carbon. Results show aerosol number concentrations ranging between 10,000 and 35,000 cm-3, mostly concentrated in the nucleation and Aitken modes, with a peak in size at 80

  19. Scanning elastic lidar observations of aerosol transport in New York City

    NASA Astrophysics Data System (ADS)

    Diaz, Adrian; Dominguez, Victor; Dobryansky, Selma; Wu, Yonghua; Arend, Mark; Vladutescu, Daniela Viviana; Gross, Barry; Moshary, Fred

    2018-04-01

    In this study, spatial distribution of aerosols in New York City is observed using a scanning eyesafe 532 nm elastic-backscatter micro-pulse lidar system. Observations show dynamics of the boundary layer and inhomogeneous distribution and transport of aerosols. The data acquired are complemented with simultaneous measurements of particulate matter and wind speed and direction. Furthermore, the system observations are validated by comparing them with a colocated multi-wavelength lidar.

  20. New Directions: Emerging Satellite Observations of Above-cloud Aerosols and Direct Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Yu, Hongbin; Zhang, Zhibo

    2013-01-01

    Spaceborne lidar and passive sensors with multi-wavelength and polarization capabilities onboard the A-Train provide unprecedented opportunities of observing above-cloud aerosols and direct radiative forcing. Significant progress has been made in recent years in exploring these new aerosol remote sensing capabilities and generating unique datasets. The emerging observations will advance the understanding of aerosol climate forcing.

  1. Influence of Observed Diurnal Cycles of Aerosol Optical Depth on Aerosol Direct Radiative Effect

    NASA Technical Reports Server (NTRS)

    Arola, A.; Eck, T. F.; Huttunen, J.; Lehtinen, K. E. J.; Lindfors, A. V.; Myhre, G.; Smirinov, A.; Tripathi, S. N.; Yu, H.

    2013-01-01

    The diurnal variability of aerosol optical depth (AOD) can be significant, depending on location and dominant aerosol type. However, these diurnal cycles have rarely been taken into account in measurement-based estimates of aerosol direct radiative forcing (ADRF) or aerosol direct radiative effect (ADRE). The objective of our study was to estimate the influence of diurnal aerosol variability at the top of the atmosphere ADRE estimates. By including all the possible AERONET sites, we wanted to assess the influence on global ADRE estimates. While focusing also in more detail on some selected sites of strongest impact, our goal was to also see the possible impact regionally.We calculated ADRE with different assumptions about the daily AOD variability: taking the observed daily AOD cycle into account and assuming diurnally constant AOD. Moreover, we estimated the corresponding differences in ADREs, if the single AOD value for the daily mean was taken from the the Moderate Resolution Imaging Spectroradiometer (MODIS) Terra or Aqua overpass times, instead of accounting for the true observed daily variability. The mean impact of diurnal AOD variability on 24 h ADRE estimates, averaged over all AERONET sites, was rather small and it was relatively small even for the cases when AOD was chosen to correspond to the Terra or Aqua overpass time. This was true on average over all AERONET sites, while clearly there can be much stronger impact in individual sites. Examples of some selected sites demonstrated that the strongest observed AOD variability (the strongest morning afternoon contrast) does not typically result in a significant impact on 24 h ADRE. In those cases, the morning and afternoon AOD patterns are opposite and thus the impact on 24 h ADRE, when integrated over all solar zenith angles, is reduced. The most significant effect on daily ADRE was induced by AOD cycles with either maximum or minimum AOD close to local noon. In these cases, the impact on 24 h ADRE was

  2. Morphology and Optical Properties of Mixed Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Fard, Mehrnoush M.; Krieger, Ulrich; Rudich, Yinon; Marcolli, Claudia; Peter, Thomas

    2015-04-01

    Experiments and modeling studies have shown that deliquesced aerosols can be present not only as one-phase system containing organics, inorganic salts and water, but often as two-phase systems consisting of a predominantly organic and a predominantly inorganic aqueous phase 1,2. Recent laboratory studies conducted with model mixtures representing tropospheric aerosols1,2,3, secondary organic aerosol (SOA) from smog chamber experiments4, and field measurements5 suggest that liquid- liquid phase separations (LLPS) is indeed a common phenomenon in mixed organic/ ammonium sulfate (AS) particles. During LLPS, particles may adopt different morphologies mainly core- shell and partially engulfed. A core- shell configuration will have consequences for heterogeneous chemistry and hygroscopicity and as a result will alter the optical properties of the particles since the aqueous inorganic-rich phase will be totally enclosed by a probably highly viscous organic coating with low diffusivity for reactants and water. The primary objective of this project is to establish a method for investigating the morphology of mixed inorganic and absorbing organic compounds of atmospheric relevance and study their radiative properties before, during, and after phase transitions mainly during LLPS. This will be the first study looking into the radiative effect of LLPS in detail. In this first experiment, the behavior of single droplets of carminic acid (CA)/ AS/ H2O mixture was monitored during relative humidity (RH) cycles using optical microscopy. The same mixture particle was levitated in an electrodynamic balance (EDB) and the change in its absorption properties was measured at varying RH. We also intend to determine the occurrence of LLPS in accumulation- sized particles and the change in their absorption using a cavity ring down aerosol spectrometer. If LLPS alters the absorptive properties of the suggested model aerosols significantly, absorption measurements of accumulation mode

  3. Determinants of Low Cloud Properties - An Artificial Neural Network Approach Using Observation Data Sets

    NASA Astrophysics Data System (ADS)

    Andersen, Hendrik; Cermak, Jan

    2015-04-01

    This contribution studies the determinants of low cloud properties based on the application of various global observation data sets in machine learning algorithms. Clouds play a crucial role in the climate system as their radiative properties and precipitation patterns significantly impact the Earth's energy balance. Cloud properties are determined by environmental conditions, as cloud formation requires the availability of water vapour ("precipitable water") and condensation nuclei in sufficiently saturated conditions. A main challenge in the research of aerosol-cloud interactions is the separation of aerosol effects from meteorological influence. To gain understanding of the processes that govern low cloud properties in order to increase accuracy of climate models and predictions of future changes in the climate system is thus of great importance. In this study, artificial neural networks are used to relate a selection of predictors (meteorological parameters, aerosol loading) to a set of predictands (cloud microphysical and optical properties). As meteorological parameters, wind direction and velocity, sea level pressure, static stability of the lower troposphere, atmospheric water vapour and temperature at the surface are used (re-analysis data by the European Centre for Medium-Range Weather Forecasts). In addition to meteorological conditions, aerosol loading is used as a predictor of cloud properties (MODIS collection 6 aerosol optical depth). The statistical model reveals significant relationships between predictors and predictands and is able to represent the aerosol-cloud-meteorology system better than frequently used bivariate relationships. The most important predictors can be identified by the additional error when excluding one predictor at a time. The sensitivity of each predictand to each of the predictors is analyzed.

  4. Development the EarthCARE aerosol classification scheme

    NASA Astrophysics Data System (ADS)

    Wandinger, Ulla; Baars, Holger; Hünerbein, Anja; Donovan, Dave; van Zadelhoff, Gerd-Jan; Fischer, Jürgen; von Bismarck, Jonas; Eisinger, Michael; Lajas, Dulce; Wehr, Tobias

    2015-04-01

    The Earth Clouds, Aerosols and Radiation Explorer (EarthCARE) mission is a joint ESA/JAXA mission planned to be launched in 2018. The multi-sensor platform carries a cloud-profiling radar (CPR), a high-spectral-resolution cloud/aerosol lidar (ATLID), a cloud/aerosol multi-spectral imager (MSI), and a three-view broad-band radiometer (BBR). Three out of the four instruments (ATLID, MSI, and BBR) will be able to sense the global aerosol distribution and contribute to the overarching EarthCARE goals of sensor synergy and radiation closure with respect to aerosols. The high-spectral-resolution lidar ATLID obtains profiles of particle extinction and backscatter coefficients, lidar ratio, and linear depolarization ratio as well as the aerosol optical thickness (AOT) at 355 nm. MSI provides AOT at 670 nm (over land and ocean) and 865 nm (over ocean). Next to these primary observables the aerosol type is one of the required products to be derived from both lidar stand-alone and ATLID-MSI synergistic retrievals. ATLID measurements of the aerosol intensive properties (lidar ratio, depolarization ratio) and ATLID-MSI observations of the spectral AOT will provide the basic input for aerosol-type determination. Aerosol typing is needed for the quantification of anthropogenic versus natural aerosol loadings of the atmosphere, the investigation of aerosol-cloud interaction, assimilation purposes, and the validation of atmospheric transport models which carry components like dust, sea salt, smoke and pollution. Furthermore, aerosol classification is a prerequisite for the estimation of direct aerosol radiative forcing and radiative closure studies. With an appropriate underlying microphysical particle description, the categorization of aerosol observations into predefined aerosol types allows us to infer information needed for the calculation of shortwave radiative effects, such as mean particle size, single-scattering albedo, and spectral conversion factors. In order to ensure

  5. MODIS Observation of Aerosols over Southern Africa During SAFARI 2000: Data, Validation, and Estimation of Aerosol Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Ichoku, Charles; Kaufman, Yoram; Remer, Lorraine; Chu, D. Allen; Mattoo, Shana; Tanre, Didier; Levy, Robert; Li, Rong-Rong; Kleidman, Richard; Lau, William K. M. (Technical Monitor)

    2001-01-01

    Aerosol properties, including optical thickness and size parameters, are retrieved operationally from the MODIS sensor onboard the Terra satellite launched on 18 December 1999. The predominant aerosol type over the Southern African region is smoke, which is generated from biomass burning on land and transported over the southern Atlantic Ocean. The SAFARI-2000 period experienced smoke aerosol emissions from the regular biomass burning activities as well as from the prescribed burns administered on the auspices of the experiment. The MODIS Aerosol Science Team (MAST) formulates and implements strategies for the retrieval of aerosol products from MODIS, as well as for validating and analyzing them in order to estimate aerosol effects in the radiative forcing of climate as accurately as possible. These activities are carried out not only from a global perspective, but also with a focus on specific regions identified as having interesting characteristics, such as the biomass burning phenomenon in southern Africa and the associated smoke aerosol, particulate, and trace gas emissions. Indeed, the SAFARI-2000 aerosol measurements from the ground and from aircraft, along with MODIS, provide excellent data sources for a more intensive validation and a closer study of the aerosol characteristics over Southern Africa. The SAFARI-2000 ground-based measurements of aerosol optical thickness (AOT) from both the automatic Aerosol Robotic Network (AERONET) and handheld Sun photometers have been used to validate MODIS retrievals, based on a sophisticated spatio-temporal technique. The average global monthly distribution of aerosol from MODIS has been combined with other data to calculate the southern African aerosol daily averaged (24 hr) radiative forcing over the ocean for September 2000. It is estimated that on the average, for cloud free conditions over an area of 9 million square kin, this predominantly smoke aerosol exerts a forcing of -30 W/square m C lose to the terrestrial

  6. Combined use of optical and electron microscopic techniques for the measurement of hygroscopic property, chemical composition, and morphology of individual aerosol particles.

    PubMed

    Ahn, Kang-Ho; Kim, Sun-Man; Jung, Hae-Jin; Lee, Mi-Jung; Eom, Hyo-Jin; Maskey, Shila; Ro, Chul-Un

    2010-10-01

    In this work, an analytical method for the characterization of the hygroscopic property, chemical composition, and morphology of individual aerosol particles is introduced. The method, which is based on the combined use of optical and electron microscopic techniques, is simple and easy to apply. An optical microscopic technique was used to perform the visual observation of the phase transformation and hygroscopic growth of aerosol particles on a single particle level. A quantitative energy-dispersive electron probe X-ray microanalysis, named low-Z particle EPMA, was used to perform a quantitative chemical speciation of the same individual particles after the measurement of the hygroscopic property. To validate the analytical methodology, the hygroscopic properties of artificially generated NaCl, KCl, (NH(4))(2)SO(4), and Na(2)SO(4) aerosol particles of micrometer size were investigated. The practical applicability of the analytical method for studying the hygroscopic property, chemical composition, and morphology of ambient aerosol particles is demonstrated.

  7. aerosol radiative effects and forcing: spatial and temporal distributions

    NASA Astrophysics Data System (ADS)

    Kinne, Stefan

    2014-05-01

    A monthly climatology for aerosol optical properties based on a synthesis from global modeling and observational data has been applied to illustrate spatial distributions and global averages of aerosol radiative impacts. With the help of a pre-industrial reference for aerosol optical properties from global modeling, also the aerosol direct forcing (ca -0.35W/m2 globally and annual averaged) and their spatial and seasonal distributions and contributions by individual aerosol components are estimated. Finally, CCN and IN concentrations associated with this climatology are applied to estimate aerosol indirect effects and forcing.

  8. Meteorological and Aerosol effects on Marine Cloud Microphysical Properties

    NASA Astrophysics Data System (ADS)

    Sanchez, K. J.; Russell, L. M.; Modini, R. L.; Frossard, A. A.; Ahlm, L.; Roberts, G.; Hawkins, L. N.; Schroder, J. C.; Wang, Z.; Lee, A.; Abbatt, J.; Lin, J.; Nenes, A.; Wonaschuetz, A.; Sorooshian, A.; Noone, K.; Jonsson, H.; Albrecht, B. A.; Desiree, T. S.; Macdonald, A. M.; Seinfeld, J.; Zhao, R.

    2015-12-01

    Both meteorology and microphysics affect cloud formation and consequently their droplet distributions and shortwave reflectance. The Eastern Pacific Emitted Aerosol Cloud Experiment (EPEACE) and the Stratocumulus Observations of Los-Angeles Emissions Derived Aerosol-Droplets (SOLEDAD) studies provide detailed measurements in 6 case studies of both cloud thermodynamic properties and initial particle number distribution and composition, as well as the resulting cloud drop distribution and composition. This study uses simulations of a detailed chemical and microphysical aerosol-cloud parcel (ACP) model with explicit kinetic drop activation to reproduce the observed cloud droplet distribution and composition. Four of the cases examined had a sub-adiabatic lapse rate, which was shown to have fewer droplets due to decreased maximum supersaturation, lower LWC and higher cloud base height, consistent with previous findings. These detailed case studies provided measured thermodynamics and microphysics that constrained the simulated droplet size distribution sufficiently to match the droplet number within 6% and the size within 19% for 4 of the 6 cases, demonstrating "closure" or consistency of the measured composition with the measured CCN spectra and the inferred and modeled supersaturation. The contribution of organic components to droplet formation shows small effects on the droplet number and size in the 4 marine cases that had background aerosol conditions with varying amounts of coastal, ship or other non-biogenic sources. In contrast, the organic fraction and hygroscopicity increased the droplet number and size in the cases with generated smoke and cargo ship plumes that were freshly emitted and not yet internally mixed with the background particles. The simulation results show organic hygroscopicity causes small effects on cloud reflectivity (<0.7%) with the exception of the cargo ship plume and smoke plume which increased absolute cloud reflectivity fraction by 0

  9. Self-assembly of marine exudate particles and their impact on the CCN properties of nascent marine aerosol

    NASA Astrophysics Data System (ADS)

    Schill, S.; Zimmermann, K.; Ryder, O. S.; Campbell, N.; Collins, D. B.; Gianneschi, N.; Bertram, T. H.

    2013-12-01

    Spontaneous self-assembly of marine exudate particles has previously been observed in filtered seawater samples. The chemicophysical properties of these particles may alter the chemical composition and CCN properties of nascent marine aerosol, yet to date simultaneous measurement of seawater exudate particle formation rates and number distributions, with aerosol particle formation rates and CCN activity are lacking. Here, we use a novel Marine Aerosol Reference Tank (MART) system to experimentally mimic a phytoplankton bloom via sequential addition of biological surrogates, including sterol, galactose, lipopolysaccharide, BSA protein, and dipalmitoylphosphatidylcholine. Nascent sea-spray aerosol are generated in the MART system via a continuous plunging waterfall. Exudate particle assembly in the water is monitored via dynamic light scattering (DLS) and transmission electron microscopy (TEM) to obtain both the assembly kinetics of the particles as well as particle number distributions Simultaneous characterization of both particle production rates and super-saturated particle hygroscopicity are also discussed. This study permits analysis of the controlling role of the molecular composition of dissolved organic carbon in setting the production rates of colloidal material in the surface oceans.

  10. Development of a generalized multi-pixel and multi-parameter satellite remote sensing algorithm for aerosol properties

    NASA Astrophysics Data System (ADS)

    Hashimoto, M.; Nakajima, T.; Takenaka, H.; Higurashi, A.

    2013-12-01

    We develop a new satellite remote sensing algorithm to retrieve the properties of aerosol particles in the atmosphere. In late years, high resolution and multi-wavelength, and multiple-angle observation data have been obtained by grand-based spectral radiometers and imaging sensors on board the satellite. With this development, optimized multi-parameter remote sensing methods based on the Bayesian theory have become popularly used (Turchin and Nozik, 1969; Rodgers, 2000; Dubovik et al., 2000). Additionally, a direct use of radiation transfer calculation has been employed for non-linear remote sensing problems taking place of look up table methods supported by the progress of computing technology (Dubovik et al., 2011; Yoshida et al., 2011). We are developing a flexible multi-pixel and multi-parameter remote sensing algorithm for aerosol optical properties. In this algorithm, the inversion method is a combination of the MAP method (Maximum a posteriori method, Rodgers, 2000) and the Phillips-Twomey method (Phillips, 1962; Twomey, 1963) as a smoothing constraint for the state vector. Furthermore, we include a radiation transfer calculation code, Rstar (Nakajima and Tanaka, 1986, 1988), numerically solved each time in iteration for solution search. The Rstar-code has been directly used in the AERONET operational processing system (Dubovik and King, 2000). Retrieved parameters in our algorithm are aerosol optical properties, such as aerosol optical thickness (AOT) of fine mode, sea salt, and dust particles, a volume soot fraction in fine mode particles, and ground surface albedo of each observed wavelength. We simultaneously retrieve all the parameters that characterize pixels in each of horizontal sub-domains consisting the target area. Then we successively apply the retrieval method to all the sub-domains in the target area. We conducted numerical tests for the retrieval of aerosol properties and ground surface albedo for GOSAT/CAI imager data to test the algorithm

  11. A New Algorithm for Retrieving Aerosol Properties Over Land from MODIS Spectral Reflectance

    NASA Technical Reports Server (NTRS)

    Levy, Robert C.; Remer, Lorraine A.; Mattoo, Shana; Vermote, Eric F.; Kaufman, Yoram J.

    2006-01-01

    Since first light in early 2000, operational global quantitative retrievals of aerosol properties over land have been made from MODIS observed spectral reflectance. These products have been continuously evaluated and validated, and opportunities for improvements have been noted. We have replaced the original algorithm by improving surface reflectance assumptions, the aerosol model optical properties and the radiative transfer code used to create the lookup tables. The new algorithm (known as Version 5.2 or V5.2) performs a simultaneous inversion of two visible (0.47 and 0.66 micron) and one shortwave-IR (2.12 micron) channel, making use of the coarse aerosol information content contained in the 2.12 micron channel. Inversion of the three channels yields three nearly independent parameters, the aerosol optical depth (tau) at 0.55 micron, the non-dust or fine weighting (eta) and the surface reflectance at 2.12 micron. Finally, retrievals of small magnitude negative tau values (down to -0.05) are considered valid, thus normalizing the statistics of tau in near zero tau conditions. On a 'test bed' of 6300 granules from Terra and Aqua, the products from V5.2 show marked improvement over those from the previous versions, including much improved retrievals of tau, where the MODIS/AERONET tau (at 0.55 micron) regression has an equation of: y = 1.01+0.03, R = 0.90. Mean tau for the test bed is reduced from 0.28 to 0.21.

  12. Evaluating WRF-Chem multi-scale model in simulating aerosol radiative properties over the tropics – A case study over India

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seethala, C.; Pandithurai, G.; Fast, Jerome D.

    We utilized WRF-Chem multi-scale model to simulate the regional distribution of aerosols, optical properties and its effect on radiation over India for a winter month. The model is evaluated using measurements obtained from upper-air soundings, AERONET sun photometers, various satellite instruments, and pyranometers operated by the Indian Meteorological Department. The simulated downward shortwave flux was overestimated when the effect of aerosols on radiation and clouds was neglected. Downward shortwave radiation from a simulation that included aerosol-radiation interaction processes was 5 to 25 Wm{sup -2} closer to the observations, while a simulation that included aerosol-cloud interaction processes were another 1 tomore » 20 Wm{sup -2} closer to the observations. For the few observations available, the model usually underestimated particulate concentration. This is likely due to turbulent mixing, transport errors and the lack of secondary organic aerosol treatment in the model. The model efficiently captured the broad regional hotspots such as high aerosol optical depth over Indo-Gangetic basin as well as the northwestern and southern part of India. The regional distribution of aerosol optical depth compares well with AVHRR aerosol optical depth and the TOMS aerosol index. The magnitude and wavelength-dependence of simulated aerosol optical depth was also similar to the AERONET observations across India. Differences in surface shortwave radiation between simulations that included and neglected aerosol-radiation interactions were as high as -25 Wm{sup -2}, while differences in surface shortwave radiation between simulations that included and neglect aerosol-radiation-cloud interactions were as high as -30 Wm{sup -2}. The spatial variations of these differences were also compared with AVHRR observation. This study suggests that the model is able to qualitatively simulate the impact of aerosols on radiation over India; however, additional measurements of

  13. Development of 2-D-MAX-DOAS and retrievals of trace gases and aerosols optical properties

    NASA Astrophysics Data System (ADS)

    Ortega, Ivan

    Air pollution is a major problem worldwide that adversely a_ects human health, impacts ecosystems and climate. In the atmosphere, there are hundreds of important compounds participating in complex atmospheric reactions linked to air quality and climate. Aerosols are relevant because they modify the radiation balance, a_ect clouds, and thus Earth albedo. The amount of aerosol is often characterized by the vertical integral through the entire height of the atmosphere of the logarithm fraction of incident light that is extinguished called Aerosol Optical Depth (AOD). The AOD at 550 nm (AOD550) over land is 0.19 (multi annual global mean), and that over oceans is 0.13. About 43 % of the Earth surface shows AOD550 smaller than 0.1. There is a need for measurement techniques that are optimized to measure aerosol optical properties under low AOD conditions, sample spatial scales that resemble satellite ground-pixels and atmospheric models, and help integrate remote sensing and in-situ observations to obtain optical closure on the effects of aerosols and trace gases in our changing environment. In this work, I present the recent development of the University of Colorado two dimensional (2-D) Multi-AXis Differential Optical Absorption Spectroscopy (2-D-MAX-DOAS) instrument to measure the azimuth and altitude distribution of trace gases and aerosol optical properties simultaneously with a single instrument. The instrument measures solar scattered light from any direction in the sky, including direct sun light in the hyperspectral domain. In Chapter 2, I describe the capabilities of 2-D measurements in the context of retrievals of azimuth distributions of nitrogen dioxide (NO2), formaldehyde (HCHO), and glyoxal (CHOCHO), which are precursors for tropospheric O3 and aerosols. The measurements were carried out during the Multi-Axis DOAS Comparison campaign for Aerosols and Trace gases (MAD-CAT) campaign in Mainz, Germany and show the ability to bridge spatial scales to

  14. Trends in aerosol abundances and distributions

    NASA Technical Reports Server (NTRS)

    Turco, R. P.; Mccormick, M. P.; Clancy, R. T.; Curran, R.; Deluisi, J.; Hamill, P.; Kent, G.; Rosen, J. M.; Toon, O. B.; Yue, G.

    1989-01-01

    The properties of aerosols that reside in the upper atmosphere are described. Special emphasis is given to the influence these aerosols have on ozone observation systems, mainly through radiative effects, and on ambient ozone concentrations, mainly through chemical effects. It has long been appreciated that stratospheric particles can interfere with the remote sensing of ozone distribution. The mechanism and magnitude of this interference are evaluated. Separate sections deal with the optical properties of upper atmospheric aerosols, long-term trends in stratospheric aerosols, perturbations of the stratospheric aerosol layer by volcanic eruptions, and estimates of the impacts that such particles have on remotely measured ozone concentrations. Another section is devoted to a discussion of the polar stratospheric clouds (PSC's). These unique clouds, recently discovered by satellite observation, are now thought to be intimately connected with the Antarctic ozone hole. Accordingly, interest in PSC's has grown considerably in recent years. This chapter describes what we know about the morphology, physical chemistry, and microphysics of PSC's.

  15. The analysis of in situ and retrieved aerosol properties measured during three airborne field campaigns

    NASA Astrophysics Data System (ADS)

    Corr, Chelsea A.

    Aerosols can directly influence climate, visibility, and photochemistry by scattering and absorbing solar radiation. Aerosol chemical and physical properties determine how efficiently a particle scatters and/or absorbs incoming short-wave solar radiation. Because many types of aerosol can act as nuclei for cloud droplets (CCN) and a smaller population of airborne particles facilitate ice crystal formation (IN), aerosols can also alter cloud-radiation interactions which have subsequent impacts on climate. Thus aerosol properties determine the magnitude and sign of both the direct and indirect impacts of aerosols on radiation-dependent Earth System processes. This dissertation will fill some gaps in our understanding of the role of aerosol properties on aerosol absorption and cloud formation. Specifically, the impact of aerosol oxidation on aerosol spectral (350nm < lambda< 500nm) absorption was examined for two biomass burning plumes intercepted by the NASA DC-S aircraft during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) mission in Spring and Summer 2008. Spectral aerosol single scattering albedo (SSA) retrieved using actinic flux measured aboard the NASA DC-8 was used to calculate the aerosol absorption Angstrom exponents (AAE) for a 6-day-old plume on April 17 th and a 3-hour old plume on June 29th. Higher AAE values for the April 17th plume (6.78+/-0.38) indicate absorption by aerosol was enhanced in the ultraviolet relative to the visible portion of the short-wave spectrum in the older plume compared to the fresher plume (AAE= 3.34 0.11). These differences were largely attributed to the greater oxidation of the organic aerosol in the April 17th plume which can arise either from the aging of primary organic aerosol or the formation of spectrally-absorbing secondary organic aerosol. The validity of the actinic flux retrievals used above were also evaluated in this work by the comparison of SSA retrieved using

  16. Natural and Anthropogenic Aerosol Trends from Satellite and Surface Observations and Model Simulations over the North Atlantic Ocean from 2002 to 2012

    NASA Technical Reports Server (NTRS)

    Jongeward, Andrew R.; Li, Zhanqing; He, Hao; Xiong, Xiaoxiong

    2016-01-01

    Aerosols contribute to Earths radiative budget both directly and indirectly, and large uncertainties remain in quantifying aerosol effects on climate. Variability in aerosol distribution and properties, as might result from changing emissions and transport processes, must be characterized. In this study, variations in aerosol loading across the eastern seaboard of theUnited States and theNorthAtlanticOcean during 2002 to 2012 are analyzed to examine the impacts of anthropogenic emission control measures using monthly mean data from MODIS, AERONET, and IMPROVE observations and Goddard Chemistry Aerosol Radiation and Transport (GOCART) model simulation.MODIS observes a statistically significant negative trend in aerosol optical depth (AOD) over the midlatitudes (-0.030 decade(sup-1)). Correlation analyses with surface AOD from AERONET sites in the upwind region combined with trend analysis from GOCART component AOD confirm that the observed decrease in the midlatitudes is chiefly associated with anthropogenic aerosols that exhibit significant negative trends from the eastern U.S. coast extending over the western North Atlantic. Additional analysis of IMPROVE surface PM(sub 2.5) observations demonstrates statistically significant negative trends in the anthropogenic components with decreasing mass concentrations over the eastern United States. Finally, a seasonal analysis of observational datasets is performed. The negative trend seen by MODIS is strongest during spring (MAM) and summer (JJA) months. This is supported by AERONET seasonal trends and is identified from IMPROVE seasonal trends as resulting from ammonium sulfate decreases during these seasons.

  17. Effects of morphology on the radiative properties of internally mixed light absorbing carbon aerosols with different aging status.

    PubMed

    Cheng, Tianhai; Wu, Yu; Chen, Hao

    2014-06-30

    Light absorbing carbon aerosols play a substantial role in climate change through radiative forcing, which is the dominant absorber of solar radiation. Radiative properties of light absorbing carbon aerosols are strongly dependent on the morphological factors and the mixing mechanism of black carbon with other aerosol components. This study focuses on the morphological effects on the optical properties of internally mixed light absorbing carbon aerosols using the numerically exact superposition T-matrix method. Three types aerosols with different aging status such as freshly emitted BC particles, thinly coated light absorbing carbon aerosols, heavily coated light absorbing carbon aerosols are studied. Our study showed that morphological factors change with the aging of internally mixed light absorbing carbon aerosols to result in a dramatic change in their optical properties. The absorption properties of light absorbing carbon aerosols can be enhanced approximately a factor of 2 at 0.67 um, and these enhancements depend on the morphological factors. A larger shell/core diameter ratio of volume-equivalent shell-core spheres (S/C), which indicates the degree of coating, leads to stronger absorption. The enhancement of absorption properties accompanies a greater enhancement of scattering properties, which is reflected in an increase in single scattering albedo (SSA). The enhancement of single scattering albedo due to the morphological effects can reach a factor of 3.75 at 0.67 μm. The asymmetry parameter has a similar yet smaller enhancement. Moreover, the corresponding optical properties of shell-and-core model determined by using Lorenz -Mie solutions are presented for comparison. We found that the optical properties of internally mixed light absorbing carbon aerosol can differ fundamentally from those calculated for the Mie theory shell-and-core model, particularly for thinly coated light absorbing carbon aerosols. Our studies indicate that the complex morphology

  18. Optical properties of Southern Hemisphere aerosols: Report of the joint CSIRO/NASA study

    NASA Technical Reports Server (NTRS)

    Gras, John L.; Platt, C. Martin; Huffaker, R. Milton; Jones, William D.; Kavaya, Michael J.; Gras, John L.

    1988-01-01

    This study was made in support of the LAWS and GLOBE programs, which aim to design a suitable Doppler lidar system for measuring global winds from a satellite. Observations were taken from 5 deg S to 45 deg S along and off the E and SE Australian coast, thus obtaining representative samples over a large latitude range. Observations were made between 0 and 6 km altitude of aerosol physical and chemical properties in situ from the CSIRO F-27 aircraft; of lidar backscatter coefficients at 10.6 micron wavelength from the F-27 aircraft; of lidar backscatter profiles at 0.694 microns at Sale, SE Australia; and of lidar backscatter profiles at 0.532 microns at Cowley Beach, NE Australia. Both calculations and observations in the free troposphere gave a backscatter coefficient of 1-2 x 10 to the -11/m/sr at 10.6 microns, although the accuracies of the instruments were marginal at this level. Equivalent figures were 2-8 x 10 to the -9/m/sr (aerosol) and 9 x 10 to the -9 to 2 x 10 to the -8/m/sr (lidar) at 0.694 microns wavelength at Sale; and 3.7 x 10 to the -9/m/sr (aerosol) and 10 to the -8 to 10 to the -7/m/sr (lidar) at 0.532 microns wavelength at Cowley Beach. The measured backscatter coefficients at 0.694 and 0.532 microns were consistently higher than the values calculated from aerosol size distributions by factors of typically 2 to 10.

  19. Direct radiative effects of aerosols over South Asia from observations and modeling

    NASA Astrophysics Data System (ADS)

    Nair, Vijayakumar S.; Babu, S. Suresh; Manoj, M. R.; Moorthy, K. Krishna; Chin, Mian

    2017-08-01

    Quantitative assessment of the seasonal variations in the direct radiative effect (DRE) of composite aerosols as well as the constituent species over the Indian sub continent has been carried out using a synergy of observations from a dense network of ground based aerosol observatories and modeling based on chemical transport model simulations. Seasonal variation of aerosol constituents depict significant influence of anthropogenic aerosol sources in winter and the dominance of natural sources in spring, even though the aerosol optical depth doesn't change significantly between these two seasons. A significant increase in the surface cooling and atmospheric warming has been observed as season changes from winter (DRESUR = -28 ± 12 W m-2 and DREATM = +19.6 ± 9 W m-2) to spring (DRESUR = -33.7 ± 12 W m-2 and DREATM = +27 ± 9 W m-2). Interestingly, springtime aerosols are more absorptive in nature compared to winter and consequently the aerosol induced diabatic heating of the atmosphere goes as high as 1 K day-1 during spring, especially over eastern India. The atmospheric DRE due to dust aerosols (+14 ± 7 W m-2) during spring overwhelms that of black carbon DRE (+11.8 ± 6 W m-2) during winter. The DRE at the top of the atmosphere is mostly governed by the anthropogenic aerosols during all the seasons. The columnar aerosol loading, its anthropogenic fraction and radiative effects shows a steady increase with latitude across Indian mainland leading to a larger aerosol-induced atmospheric warming during spring than in winter.

  20. Aerosol Optical Properties of Smoke from the Las Conchas Wildfire, Los Alamos, NM

    NASA Astrophysics Data System (ADS)

    Gorkowski, K.; Dubey, M. K.; Flowers, B. A.; Aiken, A. C.; Klein, B. Z.; Mazzoleni, C.; Sharma, N.; China`, S.

    2011-12-01

    The Las Conchas wildfire in Northern New Mexico started on June, 26 2011 and spread rapidly, eventually burning an area of 634 km2 (245 mi2). Due to the close proximity to the fire, the Los Alamos National Laboratory (LANL) was shut down and the town evacuated for several days. Immediately after LANL reopened (7/6/2011) the Earth and Environmental Sciences Division (EES-14) attained unique measurements of the smoke by sampling the ambient air. Three Integrated Photoacoustic/Nephelometer Spectrometers (DMT Inc.) were set up to measure aerosol light absorption and scattering coefficients. A University of Northwest Switzerland thermodenuder was used to remove compounds that are volatile at temperatures up to 200C. The aerosol's optical properties were measured before and after denuding the sample at 405nm (blue), 532nm (green), 781nm (red), and for non-denuded particles also at 375nm (ultraviolet). The aerosol size distributions were measured after the denuder with a Laser Aerosol Spectrometer (LAS, TSI Inc.) and black carbon was measured with a Single Particle Soot Photometer (SP2, DMT Inc.). Additionally, ambient measurements of Total Particulate Matter (PM2.5 and PM10) were collected continuously at the LANL air monitoring stations. These measurements are used in conjunction with numerical simulations to determine the bulk optical properties of the aerosol. Aerosols in wildfire smoke are composed of organic and black carbon (soot) particles that are formed during wood combustion and pyrolysis. The optical properties of the smoke particles are complex and lead to large uncertainties in assessing the global climate. During the measurement period, the Las Conchas fire provided very high particle concentrations (up to 200 μg/m3) that were exploited to investigate their optical properties. By heating the particles to temperatures ranging from 75 to 200C in the denuder, volatile organics were removed and the optical properties of the remaining particles were measured

  1. Dust aerosol and optical properties over North Africa simulated with the ALADIN numerical prediction model from 2006 to 2010

    NASA Astrophysics Data System (ADS)

    Mokhtari, M.; Tulet, P.; Fischer, C.; Bouteloup, Y.; Bouyssel, F.; Brachemi, O.

    2015-02-01

    The seasonal cycle and optical properties of mineral dust aerosols in North Africa were simulated for the period from 2006 to 2010 using the numerical atmospheric model ALADIN coupled to the surface scheme SURFEX. The particularity of the simulations is that the major physical processes responsible for dust emission and transport, as well as radiative effects, are taken into account at short timescales and mesoscale resolution. The aim of these simulations is to quantify the dust emission and deposition, locate the major areas of dust emission and establish a climatology of aerosol optical properties in North Africa. The mean monthly Aerosol Optical Thickness (AOT) simulated by ALADIN is compared with the AOTs derived from the standard Dark Target (DT) and Deep Blue (DB) algorithms of the Aqua-MODIS (MODerate resolution Imaging Spectroradiometer) products over North Africa, and with a set of sun photometer measurements located at Banizoumbou, Cinzana, Soroa, Mbour and Capo Verde. The vertical distribution of dust aerosol represented by extinction profiles is also analysed using CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) observations. The annual dust emission simulated by ALADIN over North Africa is 878 Tg year-1. The Bodélé depression appears to be the main area of dust emission in North Africa, with an average estimate of about 21.6 Tg year-1. The simulated AOTs are in good agreement with satellite and sun photometer observations. The positions of the maxima of the modelled AOTs over North Africa match the observed positions, and the ALADIN simulations satisfactorily reproduce the various dust events over the 2006-2010 period. The AOT climatology proposed in this paper provides a solid database of optical properties and consolidates the existing climatology over this region derived from satellites, the AERONET network and Regional Climate Models. Moreover, the three-dimensional distribution of the simulated AOTs also provides information about the

  2. Studies of seasonal variations of aerosol optical properties with use of remote techniques

    NASA Astrophysics Data System (ADS)

    Strzalkowska, Agata; Zielinski, Tymon; Petelski, Tomasz; Pakszys, Paulina; Markuszewski, Piotr; Makuch, Przemyslaw

    2014-05-01

    According to the IPCC report, atmospheric aerosols due to their properties -extinction of Sun and Earth radiation and participation in processes of creation of clouds, are among basic "unknowns" in climate studies. Aerosols have large effect on the radiation balance of the Earth which has a significant impact on climate changes. They are also a key issue in the case of remote sensing measurements. The optical properties of atmospheric aerosols depend not only on their type but also on physical parameters such as pressure, humidity, wind speed and direction. The wide range of properties in which atmospheric aerosols affect Earth's climate is the reason of high unrelenting interest of scientists from different disciplines such as physics, chemistry and biology. Numerous studies have dealt with aerosol optical properties, e.g. Dubovik et al. (2002), but only in a few have regarded the influence of meteorological parameters on the optical properties of aerosols in the Baltic Sea area. Studies of aerosol properties over the Baltic were conducted already in the last forty years, e.g. Zielinski T. et. al. (1999) or Zielinski T. & A. Zielinski (2002). The experiments carried out at that time involved only one measuring instrument -e.g. LIDAR (range of 1 km) measurements and they were conducted only in selected areas of the Polish coastal zone. Moreover in those publications authors did not use measurements performed on board of research vessel (R/V Oceania), which belongs to Institute of Oceanology Polish Academy of Science (IO PAN) or data received from satellite measurements. In 2011 Zdun and Rozwadowska performed an analysis of all data derived from the AERONET station on the Gotland Island. The data were divided into seasons and supplemented by meteorological factors. However, so far no comprehensive study has been carried out for the entire Baltic Sea area. This was the reason to conduct further research of SEasonal Variations of Aerosol optical depth over the Baltic

  3. Observations of stratospheric aerosols associated with the El Chichon eruption

    NASA Technical Reports Server (NTRS)

    Thomas, L.; Vaughan, G.; Jenkins, D. B.; Wareing, D.; Farrington, M.

    1986-01-01

    Lidar observations of aerosols were carried out at Aberystwyth between Nov. 1982 and Dec. 1985 using a frequency doubled and frequency tripled Nd/Yag laser and a receiver incorporating a 1 m diameter in a Newtonian telescope configuration. In analyses of the experimental data attention is paid to the magnitude of the coefficient relating extinction and backscatter, the choice being related to the possible presence of aerosols in the upper troposphere and the atmospheric densities employed in the normalisation procedure. The aerosol loading showed marked day to day changes in early months and an overall decay was apparent only after April 1983, this decay being consistent with an e sup -1 time of about 7 months. The general decay was accompanied by a lowering of the layer but layers of aerosols were shown intermittently at heights above the main layer in winter months. The height variations of photon counts corrected for range, or of aerosol backscatter ratio, showed clear signatures of the tropopause. A strong correlation was found between the heights of the tropopause identified from the lidar measurements and from radiosonde-borne temperature measurements. A notable feature of the observations is the appearance of very sharp height gradients of backscatter ratio which seem to be produced by differential advection.

  4. Neural Network (NN) retrievals of Stratocumulus cloud properties using multi-angle polarimetric observations during ORACLES

    NASA Astrophysics Data System (ADS)

    Segal-Rosenhaimer, M.; Knobelspiesse, K. D.; Redemann, J.; Cairns, B.; Alexandrov, M. D.

    2016-12-01

    The ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) campaign is taking place in the South-East Atlantic during the Austral Spring for three consecutive years from 2016-2018. The study area encompasses one of the Earth's three semi-permanent subtropical Stratocumulus (Sc) cloud decks, and experiences very large aerosol optical depths, mainly biomass burning, originating from Africa. Over time, cloud optical depth (COD), lifetime and cloud microphysics (number concentration, effective radii Reff and precipitation) are expected to be influenced by indirect aerosol effects. These changes play a key role in the energetic balance of the region, and are part of the core investigation objectives of the ORACLES campaign, which acquires measurements of clean and polluted scenes of above cloud aerosols (ACA). Simultaneous retrievals of aerosol and cloud optical properties are being developed (e.g. MODIS, OMI), but still challenging, especially for passive, single viewing angle instruments. By comparison, multiangle polarimetric instruments like RSP (Research Scanning Polarimeter) show promise for detection and quantification of ACA, however, there are no operational retrieval algorithms available yet. Here we describe a new algorithm to retrieve cloud and aerosol optical properties from observations by RSP flown on the ER-2 and P-3 during the 2016 ORACLES campaign. The algorithm is based on training a NN, and is intended to retrieve aerosol and cloud properties simultaneously. However, the first step was to establish the retrieval scheme for low level Sc cloud optical properties. The NN training was based on simulated RSP total and polarized radiances for a range of COD, Reff, and effective variances, spanning 7 wavelength bands and 152 viewing zenith angles. Random and correlated noise were added to the simulations to achieve a more realistic representation of the signals. Before introducing the input variables to the network, the signals are projected

  5. Retrieval of water vapor column abundance and aerosol properties from ChemCam passive sky spectroscopy

    DOE PAGES

    McConnochie, Timothy H.; Smith, Michael D.; Wolff, Michael J.; ...

    2017-11-03

    In this work, we derive water vapor column abundances and aerosol properties from Mars Science Laboratory (MSL) ChemCam passive mode observations of scattered sky light. This paper covers the methodology and initial results for water vapor and also provides preliminary results for aerosols. The data set presented here includes the results of 113 observations spanning from Mars Year 31 L s = 291° (March 30, 2013) to Mars Year 33 L s= 127° (March 24, 2016). Each ChemCam passive sky observation acquires spectra at two different elevation angles. We fit these spectra with a discrete-ordinates multiple scattering radiative transfer model,more » using the correlated-k approximation for gas absorption bands. The retrieval proceeds by first fitting the continuum of the ratio of the two elevation angles to solve for aerosol properties, and then fitting the continuum-removed ratio to solve for gas abundances. The final step of the retrieval makes use of the observed CO 2 absorptions and the known CO 2 abundance to correct the retrieved water vapor abundance for the effects of the vertical distribution of scattering aerosols and to derive an aerosol scale height parameter. Our water vapor results give water vapor column abundance with a precision of ±0.6 precipitable microns and systematic errors no larger than ±0.3 precipitable microns, assuming uniform vertical mixing. The ChemCam-retrieved water abundances show, with only a few exceptions, the same seasonal behavior and the same timing of seasonal minima and maxima as the TES, CRISM, and REMS-H data sets that we compare them to. However ChemCam-retrieved water abundances are generally lower than zonal and regional scale from-orbit water vapor data, while at the same time being significantly larger than pre-dawn REMS-H abundances. Pending further analysis of REMS-H volume mixing ratio uncertainties, the differences between ChemCam and REMS-H pre-dawn mixing ratios appear to be much too large to be explained by large

  6. Retrieval of water vapor column abundance and aerosol properties from ChemCam passive sky spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McConnochie, Timothy H.; Smith, Michael D.; Wolff, Michael J.

    In this work, we derive water vapor column abundances and aerosol properties from Mars Science Laboratory (MSL) ChemCam passive mode observations of scattered sky light. This paper covers the methodology and initial results for water vapor and also provides preliminary results for aerosols. The data set presented here includes the results of 113 observations spanning from Mars Year 31 L s = 291° (March 30, 2013) to Mars Year 33 L s= 127° (March 24, 2016). Each ChemCam passive sky observation acquires spectra at two different elevation angles. We fit these spectra with a discrete-ordinates multiple scattering radiative transfer model,more » using the correlated-k approximation for gas absorption bands. The retrieval proceeds by first fitting the continuum of the ratio of the two elevation angles to solve for aerosol properties, and then fitting the continuum-removed ratio to solve for gas abundances. The final step of the retrieval makes use of the observed CO 2 absorptions and the known CO 2 abundance to correct the retrieved water vapor abundance for the effects of the vertical distribution of scattering aerosols and to derive an aerosol scale height parameter. Our water vapor results give water vapor column abundance with a precision of ±0.6 precipitable microns and systematic errors no larger than ±0.3 precipitable microns, assuming uniform vertical mixing. The ChemCam-retrieved water abundances show, with only a few exceptions, the same seasonal behavior and the same timing of seasonal minima and maxima as the TES, CRISM, and REMS-H data sets that we compare them to. However ChemCam-retrieved water abundances are generally lower than zonal and regional scale from-orbit water vapor data, while at the same time being significantly larger than pre-dawn REMS-H abundances. Pending further analysis of REMS-H volume mixing ratio uncertainties, the differences between ChemCam and REMS-H pre-dawn mixing ratios appear to be much too large to be explained by large

  7. Retrieval of aerosol properties and water leaving radiance from multi-angle spectro-polarimetric measurement over coastal waters

    NASA Astrophysics Data System (ADS)

    Gao, M.; Zhai, P.; Franz, B. A.; Hu, Y.; Knobelspiesse, K. D.; Xu, F.; Ibrahim, A.

    2017-12-01

    Ocean color remote sensing in coastal waters remains a challenging task due to the complex optical properties of aerosols and ocean water properties. It is highly desirable to develop an advanced ocean color and aerosol retrieval algorithm for coastal waters, to advance our capabilities in monitoring water quality, improve our understanding of coastal carbon cycle dynamics, and allow for the development of more accurate circulation models. However, distinguishing the dissolved and suspended material from absorbing aerosols over coastal waters is challenging as they share similar absorption spectrum within the deep blue to UV range. In this paper we report a research algorithm on aerosol and ocean color retrieval with emphasis on coastal waters. The main features of our algorithm include: 1) combining co-located measurements from a hyperspectral ocean color instrument (OCI) and a multi-angle polarimeter (MAP); 2) using the radiative transfer model for coupled atmosphere and ocean system (CAOS), which is based on the highly accurate and efficient successive order of scattering method; and 3) incorporating a generalized bio-optical model with direct accounting of the total absorption of phytoplankton, CDOM and non-algal particles(NAP), and the total scattering of phytoplankton and NAP for improved description of ocean light scattering. The non-linear least square fitting algorithm is used to optimize the bio-optical model parameters and the aerosol optical and microphysical properties including refractive indices and size distributions for both fine and coarse modes. The retrieved aerosol information is used to calculate the atmospheric path radiance, which is then subtracted from the OCI observations to obtain the water leaving radiance contribution. Our work aims to maximize the use of available information from the co-located dataset and conduct the atmospheric correction with minimal assumptions. The algorithm will contribute to the success of current MAP

  8. Negative Aerosol-Cloud re Relationship From Aircraft Observations Over Hebei, China

    NASA Astrophysics Data System (ADS)

    Zhao, Chuanfeng; Qiu, Yanmei; Dong, Xiaobo; Wang, Zhien; Peng, Yiran; Li, Baodong; Wu, Zhihui; Wang, Yang

    2018-01-01

    Using six flights observations in September 2015 over Hebei, China, this study shows a robust negative aerosol-cloud droplet effective radius (re) relationship for liquid clouds, which is different from previous studies that found positive aerosol-cloud re relationship over East China using satellite observations. A total of 27 cloud samples was analyzed with the classification of clean and polluted conditions using lower and upper 1/3 aerosol concentration at 200 m below the cloud bases. By normalizing the profiles of cloud droplet re, we found significant smaller values under polluted than under clean condition at most heights. Moreover, the averaged profiles of cloud liquid water content (LWC) show larger values under polluted than clean conditions, indicating even stronger negative aerosol-cloud re relationship if LWC is kept constant. The droplet size distributions further demonstrate that more droplets concentrate within smaller size ranges under polluted conditions. Quantitatively, the aerosol-cloud interaction is found around 0.10-0.19 for the study region.

  9. Analysis and interpretation of lidar observations of the stratospheric aerosol

    NASA Technical Reports Server (NTRS)

    Hamill, P.; Swissler, T. J.; Osborn, M.; Mccormick, M. P.

    1980-01-01

    Data obtained with a 48 in. telescope lidar system are compared with results obtained using a one-dimensional stratospheric aerosol model to analyze various microphysical processes influencing the formation of this aerosol. Special attention is given to the following problems: (1) how lidar data can help determine the composition of the aerosol particles and (2) how the layer corresponds to temperature profile variations. The lidar record during the period 1974 to 1979 shows a considerable decrease of the peak value of the backscatter ratio. Seasonal variations in the aerosol layer and a gradual decrease in stratospheric loading are observed. The aerosol model simulates a background stratospheric aerosol layer, and it predicts stratospheric aerosol concentrations and compositions. Numerical experiments are carried out by using the model and by comparing the theoretical results with the experimentally obtained lidar record. Comparisons show that the backscatter profile is consistent with the composition when the particles are sulfuric acid and water; it is not consistent with an ammonium sulfate composition. It is shown that the backscatter ratio is not sensitive to the composition or stratospheric loading of condensation nuclei such as meteoritic debris.

  10. Observation of hydration of single, modified carbon aerosols

    NASA Technical Reports Server (NTRS)

    Wyslouzil, B. E.; Carleton, K. L.; Sonnenfroh, D. M.; Rawlins, W. T.; Arnold, S.

    1994-01-01

    We have compared the hydration behavior of single carbon particles that have been treated by exposure to gaseous H2SO4 with that of untreated particles. Untreated carbon particles did not hydrate as the relative humidity varied from 0 to 80% at 23 C. In contrast, treated particles hydrated under subsaturation conditions; mass increases of up to 30% were observed. The mass increase is consistent with sulfuric acid equilibration with the ambient relative humidity in the presence of inert carbon. For the samples studied, the average amount of absorbed acid was 14% +/- 6% by weight, which corresponds to a surface coverage of approximately 0.1 monolayer. The mass fraction of surface-absorbed acid is comparable to the soluble mass fraction observed by Whitefield et al. (1993) in jet aircraft engine aerosols. Estimates indicate this mass fraction corresponds to 0.1% of the available SO2 exiting an aircraft engine ending up as H2SO4 on the carbon aerosol. If this heterogeneous process occurs early enough in the exhaust plume, it may compete with homogeneous nucleation as a mechanism for producing sulfuric acid rich aerosols.

  11. A study of remotely sensed aerosol properties from ground-based sun and sky scanning radiometers

    NASA Astrophysics Data System (ADS)

    Giles, David M.

    Aerosol particles impact human health by degrading air quality and affect climate by heating or cooling the atmosphere. The Indo-Gangetic Plain (IGP) of Northern India, one of the most populous regions in the world, produces and is impacted by a variety of aerosols including pollution, smoke, dust, and mixtures of them. The NASA Aerosol Robotic Network (AERONET) mesoscale distribution of Sun and sky-pointing instruments in India was established to measure aerosol characteristics at sites across the IGP and around Kanpur, India, a large urban and industrial center in the IGP, during the 2008 pre-monsoon (April-June). This study focused on detecting spatial and temporal variability of aerosols, validating satellite retrievals, and classifying the dominant aerosol mixing states and origins. The Kanpur region typically experiences high aerosol loading due to pollution and smoke during the winter and high aerosol loading due to the addition of dust to the pollution and smoke mixture during the pre-monsoon. Aerosol emissions in Kanpur likely contribute up to 20% of the aerosol loading during the pre-monsoon over the IGP. Aerosol absorption also increases significantly downwind of Kanpur indicating the possibility of the black carbon emissions from aerosol sources such as coal-fired power plants and brick kilns. Aerosol retrievals from satellite show a high bias when compared to the mesoscale distributed instruments around Kanpur during the pre-monsoon with few high quality retrievals due to imperfect aerosol type and land surface characteristic assumptions. Aerosol type classification using the aerosol absorption, size, and shape properties can identify dominant aerosol mixing states of absorbing dust and black carbon particles. Using 19 long-term AERONET sites near various aerosol source regions (Dust, Mixed, Urban/Industrial, and Biomass Burning), aerosol absorption property statistics are expanded upon and show significant differences when compared to previous work

  12. Utilizing NASA Airborne Data to Investigate the Influence of Fuel Type on Biomass Burning Aerosol Properties

    NASA Astrophysics Data System (ADS)

    Odwuor, A.; Corr, C.; Griffin, R. J.; Pusede, S.; Anderson, B.; Beyersdorf, A. J.; Campuzano Jost, P.; Chen, G.; Day, D. A.; Diskin, G. S.; Jimenez, J. L.; Moore, R.; Nault, B.; Schwarz, J. P.; Shook, M.; Thornhill, K. L., II; Winstead, E.; Armin, W.; Ziemba, L. D.

    2017-12-01

    Climate models and satellite aerosol classification retrievals rely on well-characterized aerosol optical properties (e.g., scattering and absorption coefficients) that vary with aerosol type. However, generalized parameterizations of aerosol optical properties are weakened by actual variability in aerosol chemical and physical properties that arises from factors independent of aerosol source (e.g., meteorology). This is particularly true for biomass burning (BB) aerosol, which can vary in composition and size depending on burn conditions (e.g., smoldering versus flaming) and fuel. This work investigates the relationships between BB aerosol chemical, physical, and optical properties and fuel. We compare BB aerosol measured in fire plumes associated with distinct fuel types sampled during three NASA airborne research campaigns: boreal forest fires during the Arctic Research of the Troposphere from Aircraft and Satellites (ARCTAS) mission in Saskatchewan, Canada in July 2008; agricultural fires during the Studies of Emissions and Atmospheric Composition, Clouds, and Climate Coupling by Regional Surveys (SEAC4RS) over the continental U.S. in August/September 2013; and scrubland fires during the Student Airborne Research Program (SARP) mission in Southern California, U.S. in June 2016. Mean modified combustion efficiency values between 0.9 and 0.92 for the agricultural plumes and between 0.92 and 0.99 for the boreal and scrubland plumes indicate a significant flaming component to these fires. Despite similarities in burn conditions, SSA at 550nm was consistently lower for the agricultural and scrubland fires ( 0.92) compared to the boreal forest ( 0.96). While the ratio of black carbon to organic aerosol (OA) was similar among fires, differences in the OA were noted; f44/f60 ratios derived from Aerosol Mass Spectrometer OA measurements were consistently higher (>5) in scrubland and agricultural fires compared to boreal forest fires (<5). This suggests the amount of

  13. Spatial Variability of AERONET Aerosol Optical Properties and Satellite Data in South Korea during NASA DRAGON-Asia Campaign.

    PubMed

    Lee, Hyung Joo; Son, Youn-Suk

    2016-04-05

    We investigated spatial variability in aerosol optical properties, including aerosol optical depth (AOD), fine-mode fraction (FMF), and single scattering albedo (SSA), observed at 21 Aerosol Robotic Network (AERONET) sites and satellite remote sensing data in South Korea during the spring of 2012. These dense AERONET networks established in a National Aeronautics and Space Administration (NASA) field campaign enabled us to examine the spatially detailed aerosol size distribution and composition as well as aerosol levels. The springtime particle air quality was characterized by high background aerosol levels and high contributions of coarse-mode aerosols to total aerosols. We found that between-site correlations and coefficient of divergence for AOD and FMF strongly relied on the distance between sites, particularly in the south-north direction. Higher AOD was related to higher population density and lower distance from highways, and the aerosol size distribution and composition reflected source-specific characteristics. The ratios of satellite NO2 to AOD, which indicate the relative contributions of local combustion sources to aerosol levels, represented higher local contributions in metropolitan Seoul and Pusan. Our study demonstrates that the aerosol levels were determined by both local and regional pollution and that the relative contributions of these pollutions to aerosols generated spatial heterogeneity in the particle air quality.

  14. Aerosol properties and their influences on surface cloud condensation nuclei during CAP-MBL and MC3E

    NASA Astrophysics Data System (ADS)

    Logan, T.; Dong, X.; Xi, B.

    2016-12-01

    Aerosol particles are of particular importance because of their influences on cloud development and precipitation processes over land and ocean. Aerosol physical and chemical properties and their ability to activate as cloud condensation nuclei (CCN) as well as influence CCN number concentration (NCCN) during the 2011 Midlatitude Continental Convective Clouds Experiment (MC3E) over the Southern Great Plains (SGP) region and the 2009-2010 Clouds, Aerosol, and Precipitation in the Marine Boundary Layer (CAP-MBL) over the Azores are presented in this study. Both regions periodically observe increases in NCCN when sulfate pollution and biomass burning smoke are present but over ocean, mineral dust diminishes NCCN. During clean conditions over the ocean, sea salt is the main contributor to CCN production, and strong (weak) surface winds and turbulent conditions can enhance (diminish) NCCN. Over the SGP, there were moderate to high correlations (R > 0.5) between increased magnitudes of aerosol loading (ssp), NCCN, chemical species, and PWV suggesting a shared common transport mechanism via the Gulf of Mexico further indicating the strong dependence on air mass type (e.g., marine vs. continental). Further investigations will greatly help to understand the seasonal influences of air masses on aerosol, NCCN, and cloud properties.

  15. Assessment of Aerosol Optical Property and Radiative Effect for the Layer Decoupling Cases over the Northern South China Sea During the 7-SEAS Dongsha Experiment

    NASA Technical Reports Server (NTRS)

    Pani, Shantau Kumar; Wang, Sheng-Hsiang; Lin, Neng-Huei; Tsay, Si-Chee; Lolli, Simone; Chuang, Ming-Tung; Lee, Chung-Te; Chantara, Somporn; Yu, Jin-Yi

    2016-01-01

    The aerosol radiative effect can be modulated by the vertical distribution and optical properties of aerosols, particularly when aerosol layers are decoupled. Direct aerosol radiative effects over the northern South China Sea (SCS) were assessed by incorporating an observed data set of aerosol optical properties obtained from the Seven South East Asian Studies (7-SEAS)/Dongsha Experiment into a radiative transfer model. Aerosol optical properties for a two-layer structure of aerosol transport were estimated. In the radiative transfer calculations, aerosol variability (i.e., diversity of source region, aerosol type, and vertical distribution) for the complex aerosol environment was also carefully quantified. The column-integrated aerosol optical depth (AOD) at 500nm was 0.1-0.3 for near-surface aerosols and increased 1-5 times in presence of upper layer biomass-burning aerosols. A case study showed the strong aerosol absorption (single-scattering albedo (omega) approx. = 0.92 at 440nm wavelength) exhibited by the upper layer when associated with predominantly biomass-burning aerosols, and the omega (approx. = 0.95) of near-surface aerosols was greater than that of the upper layer aerosols because of the presence of mixed type aerosols. The presence of upper level aerosol transport could enhance the radiative efficiency at the surface (i.e., cooling) and lower atmosphere (i.e., heating) by up to -13.7 and +9.6W/sq m2 per AOD, respectively. Such enhancement could potentially modify atmospheric stability, can influence atmospheric circulation, as well as the hydrological cycle over the tropical and low-latitude marginal northern SCS.

  16. Assessment of aerosol optical property and radiative effect for the layer decoupling cases over the northern South China Sea during the 7-SEAS/Dongsha Experiment

    NASA Astrophysics Data System (ADS)

    Pani, Shantanu Kumar; Wang, Sheng-Hsiang; Lin, Neng-Huei; Tsay, Si-Chee; Lolli, Simone; Chuang, Ming-Tung; Lee, Chung-Te; Chantara, Somporn; Yu, Jin-Yi

    2016-05-01

    The aerosol radiative effect can be modulated by the vertical distribution and optical properties of aerosols, particularly when aerosol layers are decoupled. Direct aerosol radiative effects over the northern South China Sea (SCS) were assessed by incorporating an observed data set of aerosol optical properties obtained from the Seven South East Asian Studies (7-SEAS)/Dongsha Experiment into a radiative transfer model. Aerosol optical properties for a two-layer structure of aerosol transport were estimated. In the radiative transfer calculations, aerosol variability (i.e., diversity of source region, aerosol type, and vertical distribution) for the complex aerosol environment was also carefully quantified. The column-integrated aerosol optical depth (AOD) at 500 nm was 0.1-0.3 for near-surface aerosols and increased 1-5 times in presence of upper layer biomass-burning aerosols. A case study showed the strong aerosol absorption (single-scattering albedo (ω) ≈ 0.92 at 440 nm wavelength) exhibited by the upper layer when associated with predominantly biomass-burning aerosols, and the ω (≈0.95) of near-surface aerosols was greater than that of the upper layer aerosols because of the presence of mixed type aerosols. The presence of upper level aerosol transport could enhance the radiative efficiency at the surface (i.e., cooling) and lower atmosphere (i.e., heating) by up to -13.7 and +9.6 W m-2 per AOD, respectively. Such enhancement could potentially modify atmospheric stability, can influence atmospheric circulation, as well as the hydrological cycle over the tropical and low-latitude marginal northern SCS.

  17. Variability in optical properties of atmospheric aerosols and their frequency distribution over a mega city "New Delhi," India.

    PubMed

    Tiwari, S; Tiwari, Suresh; Hopke, P K; Attri, S D; Soni, V K; Singh, Abhay Kumar

    2016-05-01

    The role of atmospheric aerosols in climate and climate change is one of the largest uncertainties in understanding the present climate and in capability to predict future climate change. Due to this, the study of optical properties of atmospheric aerosols over a mega city "New Delhi" which is highly polluted and populated were conducted for two years long to see the aerosol loading and its seasonal variability using sun/sky radiometer data. Relatively higher mean aerosol optical depth (AOD) (0.90 ± 0.38) at 500 nm and associated Angstrom exponent (AE) (0.82 ± 0.35) for a pair of wavelength 400-870 nm is observed during the study period indicating highly turbid atmosphere throughout the year. Maximum AOD value is observed in the months of June and November while minimum is in transition months March and September. Apart from this, highest value of AOD (AE) value is observed in the post-monsoon [1.00 ± 0.42 (1.02 ± 0.16)] season followed by the winter [0.95 ± 0.36 (1.02 ± 0.20)] attributed to significance contribution of urban as well as biomass/crop residue burning aerosol which is further confirmed by aerosol type discrimination based on AOD vs AE. During the pre-monsoon season, mostly dust and mixed types aerosols are dominated. AODs value at shorter wavelength observed maximum in June and November while at longer wavelength maximum AOD is observed in June only. For the better understanding of seasonal aerosol modification process, the aerosol curvature effect is studied which show a strong seasonal dependency under a high turbid atmosphere, which are mainly associated with various emission sources. Five days air mass back trajectories were computed. They suggest different patterns of particle transport during the different seasons. Results suggest that mixtures of aerosols are present in the urban environment, which affect the regional air quality as well as climate. The present study will be very much useful to the modeler for

  18. Investigation of Atmospheric Aerosol properties by Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Sevalia, Barry; Joseph, Kelli; Gasseller, Morewell

    The effects of aerosols on the atmosphere, climate, and public health are among the central topics in current environmental research. Aerosol particles scatter and absorb solar and terrestrial radiation, they are involved in the formation of clouds and precipitation as cloud condensation and ice nuclei, and they affect the abundance and distribution of atmospheric trace gases by chemical reactions and other multiphase processes. Moreover, airborne particles play an important role in the spreading of biological organisms, reproductive materials, and pathogens and they can cause or enhance respiratory, cardiovascular, infectious, and allergic diseases. In this study we use two distinct methods to characterize atmospheric aerosol particles. With the AFM, we use analytical and interpretative techniques to deduce fundamental physical properties of the aerosol particles such as particle sizes and morphology. The microscopy techniques are then compared and complemented with optical techniques that employ hand held sun photometers to measure aerosol optical thickness (AOT) of the atmosphere. The chemical nature of the aerosols is investigated by exposing the samples to a stream of ozone gas and then reimage them. Using this approach, we are only able to classify particles as organic, gr Maryam Foroozesh, Ph.D. Chair, Division of Mathematical and Physical Sciences Head, Department of Chemistry.

  19. Relationship between fluid bed aerosol generator operation and the aerosol produced

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carpenter, R.L.; Yerkes, K.

    1980-12-01

    The relationships between bed operation in a fluid bed aerosol generator and aerosol output were studied. A two-inch diameter fluid bed aerosol generator (FBG) was constructed using stainless steel powder as a fluidizing medium. Fly ash from coal combustion was aerosolized and the influence of FBG operating parameters on aerosol mass median aerodynamic diameter (MMAD), geometric standard deviation (sigma/sub g/) and concentration was examined. In an effort to extend observations on large fluid beds to small beds using fine bed particles, minimum fluidizing velocities and elutriation constant were computed. Although FBG minimum fluidizing velocity agreed well with calculations, FBG elutriationmore » constant did not. The results of this study show that the properties of aerosols produced by a FBG depend on fluid bed height and air flow through the bed after the minimum fluidizing velocity is exceeded.« less

  20. Direct Radiative Effects of Aerosols Over South Asia From Observations and Modeling

    NASA Technical Reports Server (NTRS)

    Nair, Vijayakumar S.; Babu, S. Suresh; Manoj, M. R.; Moorthy, Krishna K.; Chin, Mian

    2016-01-01

    Quantitative assessment of the seasonal variations in the direct radiative effect (DRE) of composite aerosols as well as the constituent species over the Indian sub continent has been carried out using a synergy of observations from a dense network of ground based aerosol observatories and modeling based on chemical transport model simulations. Seasonal variation of aerosol constituents depict significant influence of anthropogenic aerosol sources in winter and the dominance of natural sources in spring, even though the aerosol optical depth doesn't change significantly between these two seasons. A significant increase in the surface cooling and atmospheric warming has been observed as season changes from winter DRE(sub SUR) = -28 +/- 12 W m(exp -2) and DRE(sub ATM) = +19.6 +/- 9 W m(exp -2) to spring DRE(sub SUR) = -33.7 +/- 12 W m(exp -2) and DRE(sub ATM) = +27 +/- 9 W m(exp-2). Interestingly, springtime aerosols are more absorptive in nature compared to winter and consequently the aerosol induced diabatic heating of the atmosphere goes as high as approximately 1 K day(exp -1) during spring, especially over eastern India. The atmospheric DRE due to dust aerosols (+14 +/- 7 W m(exp 2) during spring overwhelms that of black carbon DRE (+11.8 +/- 6 W m(exp -2) during winter. The DRE at the top of the atmosphere is mostly governed by the anthropogenic aerosols during all the seasons. The columnar aerosol loading, its anthropogenic fraction and radiative effects shows a steady increase with latitude across Indian mainland leading to a larger aerosol-induced atmospheric warming during spring than in winter.

  1. Temporal Variation of Aerosol Properties at a Rural Continental Site and Study of Aerosol Evolution through Growth Law Analysis

    NASA Technical Reports Server (NTRS)

    Wang, Jian; Collins, Don; Covert, David; Elleman, Robert; Ferrare, Richard A.; Gasparini, Roberto; Jonsson, Haflidi; Ogren, John; Sheridan, Patrick; Tsay, Si-Chee

    2006-01-01

    Aerosol size distributions were measured by a Scanning Mobility Particle Sizer (SMPS) onboard the CIRPAS Twin Otter aircraft during 16 flights at the Southern Great Plains (SGP) site in northern central Oklahoma as part of the Aerosol Intensive Operation period in May, 2003. During the same period a second SMPS was deployed at a surface station and provided continuous measurements. Combined with trace gas measurements at the SGP site and back-trajectory analysis, the aerosol size distributions provided insights into the sources of aerosols observed at the SGP site. High particle concentrations, observed mostly during daytime, were well correlated with the sulfur dioxide (SO2) mixing ratios, suggesting nucleation involving sulfuric acid is likely the main source of newly formed particles at the SGP. Aerosols within plumes originating from wildfires in Central America were measured at the surface site. Vertically compact aerosol layers, which can be traced back to forest fires in East Asia, were intercepted at altitudes over 3000 meters. Analyses of size dependent particle growth rates for four periods during which high cloud coverage was observed indicate growth dominated by volume controlled reactions. Sulfate accounts for 50% to 72% of the increase in aerosol volume concentration; the rest of the volume concentration increase was likely due to secondary organic species. The growth law analyses and meteorological conditions indicate that the sulfate was produced mainly through aqueous oxidation of SO2 in clouds droplets and hydrated aerosol particles.

  2. Global and Seasonal Aerosol Optical Depths Derived From Ultraviolet Observations by Satellites (TOMS)

    NASA Technical Reports Server (NTRS)

    Herman, J. R.; Torres, O.

    1999-01-01

    It has been shown that absorbing aerosols (dust, smoke, volcanic ash) can be detected in the ultraviolet wavelengths (331 nm to 380 nm) from satellite observations (TOMS, Total Ozone Mapping Spectrometer) over both land and water. The theoretical basis for these observations and their conversions to optical depths is discussed in terms of an aerosol index AI or N-value residue (assigned positive for absorbing aerosols). The theoretical considerations show that negative values of the AI frequently represent the presence of non-absorbing aerosols (NA) in the troposphere (mostly pollution in the form of sulfates, hydrocarbons, etc., and some natural sulfate aerosols) with particle sizes near 0.1 to 0.2 microns or less. The detection of small-particle non-absorbing aerosols from the measured backscattered radiances is based on the observed wavelength dependence from Mie scattering after the background Rayleigh scattering is subtracted. The Mie scattering from larger particles, 1 micron or more (e.g., cloud water droplets) has too small a wavelength dependence to be detected by this method. In regions that are mostly cloud free, aerosols of all sizes can be seen in the single channel 380 nm or 360 nm radiance data. The most prominent Al feature observed is the strong asymmetry in aerosol amount between the Northern and Southern Hemispheres, with the large majority of NA occurring above 20degN latitude. The maximum values of non-absorbing aerosols are observed over the eastern U.S. and most of western Europe corresponding to the areas of highest industrial pollution. Annual cycles in the amount of NA are observed over Europe and North America with maxima occurring in the summer corresponding to times of minimum wind transport. Similarly, the maxima in the winter over the Atlantic Ocean occurs because of wind borne transport from the land. Most regions of the world have the maximum amount of non-absorbing aerosol in the December to January period except for the eastern

  3. Aerosol climatology over the Mexico City basin: Characterization of optical properties

    NASA Astrophysics Data System (ADS)

    Carabali, Giovanni; Estévez, Héctor Raúl; Valdés-Barrón, Mauro; Bonifaz-Alfonzo, Roberto; Riveros-Rosas, David; Velasco-Herrera, Víctor Manuel; Vázquez-Gálvez, Felipe Adrián

    2017-09-01

    Climatology of Aerosol Optical Depth (AOD), Single Scattering Albedo (SSA), and aerosol particle-size distribution were analyzed using a 15-year (1999-2014) dataset from AErosol RObotic NETwork (AERONET) observations over the Mexico City (MC) basin. The atmosphere over this site is dominated by two main aerosol types, represented by urban/industrial pollution and biomass-burning particles. Due to the specific meteorological conditions within the basin, seasons are usually classified into three as follows: Dry Winter (DW) (November-February); Dry Spring (DS) (March-April), and the RAiny season (RA) (May-October), which are mentioned throughout this article. Using a CIMEL sun photometer, we conducted continuous observations over the MC urban area from January 1999 to December 2014. Aerosol Optical Depth (AOD), Ångström exponent (α440-870), Single Scattering Albedo (SSA), and aerosol particle-size distribution were derived from the observational data. The overall mean AOD500 during the 1999-2014 period was 0.34 ± 0.07. The monthly mean AOD reached a maximal value of 0.49 in May and a minimal value of 0.27 in February and March. The average α440-870 value for the period studied was 1.50 ± 0.16. The monthly average of α440-870 reached a minimal value of 1.32 in August and a maximal value of 1.61 in May. Average SSA at 440 nm was 0.89 throughout the observation period, indicating that aerosols over Mexico City are composed mainly of absorptive particles. Concentrations of fine- and coarse-mode aerosols over MC were highest in DS season compared with other seasons, especially for particles with radii measuring between 0.1 and 0.2 μm. Results from the Spectral De-convolution Algorithm (SDA) show that fine-mode aerosols dominated AOD variability in MC. In the final part of this article, we present a classification of aerosols in MC by using the graphical method proposed by Gobbi et al. (2007), which is based on the combined analysis of α and its spectral curvature

  4. Near-Cloud Aerosol Properties from the 1 Km Resolution MODIS Ocean Product

    NASA Technical Reports Server (NTRS)

    Varnai, Tamas; Marshak, Alexander

    2014-01-01

    This study examines aerosol properties in the vicinity of clouds by analyzing high-resolution atmospheric correction parameters provided in the MODIS (Moderate Resolution Imaging Spectroradiometer) ocean color product. The study analyzes data from a 2 week long period of September in 10 years, covering a large area in the northeast Atlantic Ocean. The results indicate that on the one hand, the Quality Assessment (QA) flags of the ocean color product successfully eliminate cloud-related uncertainties in ocean parameters such as chlorophyll content, but on the other hand, using the flags introduces a sampling bias in atmospheric products such as aerosol optical thickness (AOT) and Angstrom exponent. Therefore, researchers need to select QA flags by balancing the risks of increased retrieval uncertainties and sampling biases. Using an optimal set of QA flags, the results reveal substantial increases in optical thickness near clouds-on average the increase is 50% for the roughly half of pixels within 5 km from clouds and is accompanied by a roughly matching increase in particle size. Theoretical simulations show that the 50% increase in 550nm AOT changes instantaneous direct aerosol radiative forcing by up to 8W/m2 and that the radiative impact is significantly larger if observed near-cloud changes are attributed to aerosol particles as opposed to undetected cloud particles. These results underline that accounting for near-cloud areas and understanding the causes of near-cloud particle changes are critical for accurate calculations of direct aerosol radiative forcing.

  5. An operational retrieval algorithm for determining aerosol optical properties in the ultraviolet

    NASA Astrophysics Data System (ADS)

    Taylor, Thomas E.; L'Ecuyer, Tristan S.; Slusser, James R.; Stephens, Graeme L.; Goering, Christian D.

    2008-02-01

    This paper describes a number of practical considerations concerning the optimization and operational implementation of an algorithm used to characterize the optical properties of aerosols across part of the ultraviolet (UV) spectrum. The algorithm estimates values of aerosol optical depth (AOD) and aerosol single scattering albedo (SSA) at seven wavelengths in the UV, as well as total column ozone (TOC) and wavelength-independent asymmetry factor (g) using direct and diffuse irradiances measured with a UV multifilter rotating shadowband radiometer (UV-MFRSR). A novel method for cloud screening the irradiance data set is introduced, as well as several improvements and optimizations to the retrieval scheme which yield a more realistic physical model for the inversion and increase the efficiency of the algorithm. Introduction of a wavelength-dependent retrieval error budget generated from rigorous forward model analysis as well as broadened covariances on the a priori values of AOD, SSA and g and tightened covariances of TOC allows sufficient retrieval sensitivity and resolution to obtain unique solutions of aerosol optical properties as demonstrated by synthetic retrievals. Analysis of a cloud screened data set (May 2003) from Panther Junction, Texas, demonstrates that the algorithm produces realistic values of the optical properties that compare favorably with pseudo-independent methods for AOD, TOC and calculated Ångstrom exponents. Retrieval errors of all parameters (except TOC) are shown to be negatively correlated to AOD, while the Shannon information content is positively correlated, indicating that retrieval skill improves with increasing atmospheric turbidity. When implemented operationally on more than thirty instruments in the Ultraviolet Monitoring and Research Program's (UVMRP) network, this retrieval algorithm will provide a comprehensive and internally consistent climatology of ground-based aerosol properties in the UV spectral range that can be used

  6. Intercomparison and Evaluation of Global Aerosol Microphysical Properties Among Aerocom Models of a Range of Complexity

    NASA Technical Reports Server (NTRS)

    Mann, G. W.; Carslaw, K. S.; Reddington, C. L.; Pringle, K. J.; Schulz, M.; Asmi, A.; Spracklen, D. V.; Ridley, D. A.; Woodhouse, M. T.; Lee, L. A.; hide

    2014-01-01

    Many of the next generation of global climate models will include aerosol schemes which explicitly simulate the microphysical processes that determine the particle size distribution. These models enable aerosol optical properties and cloud condensation nuclei (CCN) concentrations to be determined by fundamental aerosol processes, which should lead to a more physically based simulation of aerosol direct and indirect radiative forcings. This study examines the global variation in particle size distribution simulated by 12 global aerosol microphysics models to quantify model diversity and to identify any common biases against observations. Evaluation against size distribution measurements from a new European network of aerosol supersites shows that the mean model agrees quite well with the observations at many sites on the annual mean, but there are some seasonal biases common to many sites. In particular, at many of these European sites, the accumulation mode number concentration is biased low during winter and Aitken mode concentrations tend to be overestimated in winter and underestimated in summer. At high northern latitudes, the models strongly underpredict Aitken and accumulation particle concentrations compared to the measurements, consistent with previous studies that have highlighted the poor performance of global aerosol models in the Arctic. In the marine boundary layer, the models capture the observed meridional variation in the size distribution, which is dominated by the Aitken mode at high latitudes, with an increasing concentration of accumulation particles with decreasing latitude. Considering vertical profiles, the models reproduce the observed peak in total particle concentrations in the upper troposphere due to new particle formation, although modelled peak concentrations tend to be biased high over Europe. Overall, the multimodel- mean data set simulates the global variation of the particle size distribution with a good degree of skill, suggesting

  7. Modelled and observed changes in aerosols and surface solar radiation over Europe between 1960 and 2009

    NASA Astrophysics Data System (ADS)

    Turnock, S. T.; Spracklen, D. V.; Carslaw, K. S.; Mann, G. W.; Woodhouse, M. T.; Forster, P. M.; Haywood, J.; Johnson, C. E.; Dalvi, M.; Bellouin, N.; Sanchez-Lorenzo, A.

    2015-08-01

    Substantial changes in anthropogenic aerosols and precursor gas emissions have occurred over recent decades due to the implementation of air pollution control legislation and economic growth. The response of atmospheric aerosols to these changes and the impact on climate are poorly constrained, particularly in studies using detailed aerosol chemistry-climate models. Here we compare the HadGEM3-UKCA (Hadley Centre Global Environment Model-United Kingdom Chemistry and Aerosols) coupled chemistry-climate model for the period 1960-2009 against extensive ground-based observations of sulfate aerosol mass (1978-2009), total suspended particle matter (SPM, 1978-1998), PM10 (1997-2009), aerosol optical depth (AOD, 2000-2009), aerosol size distributions (2008-2009) and surface solar radiation (SSR, 1960-2009) over Europe. The model underestimates observed sulfate aerosol mass (normalised mean bias factor (NMBF) = -0.4), SPM (NMBF = -0.9), PM10 (NMBF = -0.2), aerosol number concentrations (N30 NMBF = -0.85; N50 NMBF = -0.65; and N100 NMBF = -0.96) and AOD (NMBF = -0.01) but slightly overpredicts SSR (NMBF = 0.02). Trends in aerosol over the observational period are well simulated by the model, with observed (simulated) changes in sulfate of -68 % (-78 %), SPM of -42 % (-20 %), PM10 of -9 % (-8 %) and AOD of -11 % (-14 %). Discrepancies in the magnitude of simulated aerosol mass do not affect the ability of the model to reproduce the observed SSR trends. The positive change in observed European SSR (5 %) during 1990-2009 ("brightening") is better reproduced by the model when aerosol radiative effects (ARE) are included (3 %), compared to simulations where ARE are excluded (0.2 %). The simulated top-of-the-atmosphere aerosol radiative forcing over Europe under all-sky conditions increased by > 3.0 W m-2 during the period 1970-2009 in response to changes in anthropogenic emissions and aerosol concentrations.

  8. Aerosol Optical Depth as Observed by the Mars Science Laboratory REMS UV Photodiodes

    NASA Astrophysics Data System (ADS)

    Smith, M. D.; Zorzano, M. P.; Lemmon, M. T.; Martín-Torres, J.; Mendaza de Cal, T.

    2016-12-01

    Systematic observations taken by the REMS UV photodiodes on a daily basis throughout the landed Mars Science Laboratory mission provide a highly useful tool for characterizing aerosols above Gale Crater. Radiative transfer modeling is used to model the more than two Mars Years of observations taken to date taking into account multiple scattering from aerosols and the extended field of view of the REMS UV photodiodes. The retrievals show in detail the annual cycle of aerosol optical depth, which is punctuated with numerous short timescale events of increased optical depth. Dust deposition onto the photodiodes is accounted for by comparison with aerosol optical depth derived from direct imaging of the Sun by Mastcam. The effect of dust on the photodiodes is noticeable, but does not dominate the signal. Cleaning of dust from the photodiodes was observed in the season around Ls=270°, but not during other seasons. Systematic deviations in the residuals from the retrieval fit are indicative of changes in aerosol effective particle size, with larger particles present during periods of increased optical depth. This seasonal dependence of aerosol particle size is expected as dust activity injects larger particles into the air, while larger aerosols settle out of the atmosphere more quickly leading to a smaller average particle size over time.

  9. Aerosol optical depth as observed by the Mars Science Laboratory REMS UV photodiodes

    NASA Astrophysics Data System (ADS)

    Smith, Michael D.; Zorzano, María-Paz; Lemmon, Mark; Martín-Torres, Javier; Mendaza de Cal, Teresa

    2016-12-01

    Systematic observations taken by the REMS UV photodiodes on a daily basis throughout the landed Mars Science Laboratory mission provide a highly useful tool for characterizing aerosols above Gale Crater. Radiative transfer modeling is used to model the approximately 1.75 Mars Years of observations taken to date taking into account multiple scattering from aerosols and the extended field of view of the REMS UV photodiodes. The retrievals show in detail the annual cycle of aerosol optical depth, which is punctuated with numerous short timescale events of increased optical depth. Dust deposition onto the photodiodes is accounted for by comparison with aerosol optical depth derived from direct imaging of the Sun by Mastcam. The effect of dust on the photodiodes is noticeable, but does not dominate the signal. Cleaning of dust from the photodiodes was observed in the season around Ls=270°, but not during other seasons. Systematic deviations in the residuals from the retrieval fit are indicative of changes in aerosol effective particle size, with larger particles present during periods of increased optical depth. This seasonal dependence of aerosol particle size is expected as dust activity injects larger particles into the air, while larger aerosols settle out of the atmosphere more quickly leading to a smaller average particle size over time.

  10. Morphology and Optical Properties of Mixed Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Fard, Mehrnoush M.; Krieger, Ulrich; Rudich, Yinon; Marcolli, Claudia; Peter, Thomas

    2016-04-01

    Experiments and modeling studies have shown that deliquesced aerosols can exist not only as one-phase system containing organics, inorganic salts and water, but often as two-phase systems consisting of a predominantly organic and a predominantly inorganic aqueous phase (1,2). Recent laboratory studies conducted with model mixtures representing tropospheric aerosols (1,2,3), secondary organic aerosol (SOA) from smog chamber experiments (4), and field measurements (5) suggest that liquid-liquid phase separations (LLPS) is indeed a common phenomenon in mixed organic/ inorganic particles. During LLPS, particles may adopt different morphologies mainly core-shell and partially engulfed. A core-shell configuration will have consequences for heterogeneous chemistry and hygroscopicity and as a result will alter the optical properties of the particles in particular for organic phases containing absorbing molecules, e.g. brown carbon. The primary objective of this project is to establish a method for investigating the morphology of mixed inorganic and absorbing organic compounds of atmospheric relevance and study their radiative properties before, during, and after phase transitions mainly during LLPS. This will be the first study looking into the radiative effect of LLPS in detail. Our ternary model system consist of ammonium sulfate (AS)/ Polyethylene Glycol (PEG)/ and water (H2O). Carminic acid (CA) was added as a proxy for an absorbing organic compound to the system. The behavior of single droplets of above ternary mixture was monitored during relative humidity (RH) cycles using optical microscopy. The same ternary mixture particle was levitated in an electrodynamic balance (EDB) and the change in its absorption properties was measured at varying RH. In addition, Mie-code modeling is used to predict the absorption efficiency of the same ternary system and the result will be compared with the data obtained from EDB experiment. We also intend to determine the occurrence of

  11. Sensitivity of Multiangle Imaging to the Optical and Microphysical Properties of Biomass Burning Aerosols

    NASA Technical Reports Server (NTRS)

    Chen, Wei-Ting; Kahn, Ralph A.; Nelson, David; Yau, Kevin; Seinfeld, John H.

    2008-01-01

    The treatment of biomass burning (BB) carbonaceous particles in the Multiangle Imaging SpectroRadiometer (MISR) Standard Aerosol Retrieval Algorithm is assessed, and algorithm refinements are suggested, based on a theoretical sensitivity analysis and comparisons with near-coincident AERONET measurements at representative BB sites. Over the natural ranges of BB aerosol microphysical and optical properties observed in past field campaigns, patterns of retrieved Aerosol Optical Depth (AOD), particle size, and single scattering albedo (SSA) are evaluated. On the basis of the theoretical analysis, assuming total column AOD of 0.2, over a dark, uniform surface, MISR can distinguish two to three groups in each of size and SSA, except when the assumed atmospheric particles are significantly absorbing (mid-visible SSA approx.0.84), or of medium sizes (mean radius approx.0.13 pin); sensitivity to absorbing, medium-large size particles increases considerably when the assumed column AOD is raised to 0.5. MISR Research Aerosol Retrievals confirm the theoretical results, based on coincident AERONET inversions under BB-dominated conditions. When BB is externally mixed with dust in the atmosphere, dust optical model and surface reflection uncertainties, along with spatial variability, contribute to differences between the Research Retrievals and AERONET. These results suggest specific refinements to the MISR Standard Aerosol Algorithm complement of component particles and mixtures. They also highlight the importance for satellite aerosol retrievals of surface reflectance characterization, with accuracies that can be difficult to achieve with coupled surface-aerosol algorithms in some higher AOD situations.

  12. First Transmitted Hyperspectral Light Measurements and Cloud Properties from Recent Field Campaign Sampling Clouds Under Biomass Burning Aerosol

    NASA Technical Reports Server (NTRS)

    Leblanc, S.; Redemann, Jens; Shinozuka, Yohei; Flynn, Connor J.; Segal Rozenhaimer, Michal; Kacenelenbogen, Meloe Shenandoah; Pistone, Kristina Marie Myers; Schmidt, Sebastian; Cochrane, Sabrina

    2016-01-01

    We present a first view of data collected during a recent field campaign aimed at measuring biomass burning aerosol above clouds from airborne platforms. The NASA ObseRvations of CLouds above Aerosols and their intEractionS (ORACLES) field campaign recently concluded its first deployment sampling clouds and overlying aerosol layer from the airborne platform NASA P3. We present results from the Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR), in conjunction with the Solar Spectral Flux Radiometers (SSFR). During this deployment, 4STAR sampled transmitted solar light either via direct solar beam measurements and scattered light measurements, enabling the measurement of aerosol optical thickness and the retrieval of information on aerosol particles in addition to overlying cloud properties. We focus on the zenith-viewing scattered light measurements, which are used to retrieve cloud optical thickness, effective radius, and thermodynamic phase of clouds under a biomass burning layer. The biomass burning aerosol layer present above the clouds is the cause of potential bias in retrieved cloud optical depth and effective radius from satellites. We contrast the typical reflection based approach used by satellites to the transmission based approach used by 4STAR during ORACLES for retrieving cloud properties. It is suspected that these differing approaches will yield a change in retrieved properties since light transmitted through clouds is sensitive to a different cloud volume than reflected light at cloud top. We offer a preliminary view of the implications of these differences in sampling volumes to the calculation of cloud radiative effects (CRE).

  13. SEOM's Sentinel-3/OLCI' project CAWA: advanced GRASP aerosol retrieval

    NASA Astrophysics Data System (ADS)

    Dubovik, Oleg; litvinov, Pavel; Huang, Xin; Aspetsberger, Michael; Fuertes, David; Brockmann, Carsten; Fischer, Jürgen; Bojkov, Bojan

    2016-04-01

    The CAWA "Advanced Clouds, Aerosols and WAter vapour products for Sentinel-3/OLCI" ESA-SEOM project aims on the development of advanced atmospheric retrieval algorithms for the Sentinel-3/OLCI mission, and is prepared using Envisat/MERIS and Aqua/MODIS datasets. This presentation discusses mainly CAWA aerosol product developments and results. CAWA aerosol retrieval uses recently developed GRASP algorithm (Generalized Retrieval of Aerosol and Surface Properties) algorithm described by Dubovik et al. (2014). GRASP derives extended set of atmospheric parameters using multi-pixel concept - a simultaneous fitting of a large group of pixels under additional a priori constraints limiting the time variability of surface properties and spatial variability of aerosol properties. Over land GRASP simultaneously retrieves properties of both aerosol and underlying surface even over bright surfaces. GRAPS doesn't use traditional look-up-tables and performs retrieval as search in continuous space of solution. All radiative transfer calculations are performed as part of the retrieval. The results of comprehensive sensitivity tests, as well as results obtained from real Envisat/MERIS data will be presented. The tests analyze various aspects of aerosol and surface reflectance retrieval accuracy. In addition, the possibilities of retrieval improvement by means of implementing synergetic inversion of a combination of OLCI data with observations by SLSTR are explored. Both the results of numerical tests, as well as the results of processing several years of Envisat/MERIS data illustrate demonstrate reliable retrieval of AOD (Aerosol Optical Depth) and surface BRDF. Observed retrieval issues and advancements will be discussed. For example, for some situations we illustrate possibilities of retrieving aerosol absorption - property that hardly accessible from satellite observations with no multi-angular and polarimetric capabilities.

  14. Aerosol Optical Depth as Observed by the Mars Science Laboratory REMS UV Photodiodes

    NASA Technical Reports Server (NTRS)

    Smith, M. D.; Zorzano, M.-P.; Lemmon, M.; Martin-Torres, J.; Mendaza de Cal, T.

    2017-01-01

    Systematic observations taken by the REMS UV photodiodes on a daily basis throughout the landed Mars Science Laboratory mission provide a highly useful tool for characterizing aerosols above Gale Crater. Radiative transfer modeling is used to model the approximately two Mars Years of observations taken to date taking into account multiple scattering from aerosols and the extended field of view of the REMS UV photodiodes. The retrievals show in detail the annual cycle of aerosol optical depth, which is punctuated with numerous short timescale events of increased optical depth. Dust deposition onto the photodiodes is accounted for by comparison with aerosol optical depth derived from direct imaging of the Sun by Mastcam. The effect of dust on the photodiodes is noticeable, but does not dominate the signal. Cleaning of dust from the photodiodes was observed in the season around Ls=270deg, but not during other seasons. Systematic deviations in the residuals from the retrieval fit are indicative of changes in aerosol effective particle size, with larger particles present during periods of increased optical depth. This seasonal dependence of aerosol particle size is expected as dust activity injects larger particles into the air, while larger aerosols settle out of the atmosphere more quickly leading to a smaller average particle size over time. A full description of these observations, the retrieval algorithm, and the results can be found in Smith et al. (2016).

  15. Chemical apportionment of aerosol optical properties during the Asia-Pacific Economic Cooperation summit in Beijing, China

    NASA Astrophysics Data System (ADS)

    Han, Tingting; Xu, Weiqi; Chen, Chen; Liu, Xingang; Wang, Qingqing; Li, Jie; Zhao, Xiujuan; Du, Wei; Wang, Zifa; Sun, Yele

    2015-12-01

    We have investigated the chemical and optical properties of aerosol particles during the 2014 Asia-Pacific Economic Cooperation (APEC) summit in Beijing, China, using the highly time-resolved measurements by a high-resolution aerosol mass spectrometer and a cavity attenuated phase shift extinction monitor. The average (±σ) extinction coefficient (bext) and absorption coefficient (bap) were 186.5 (±184.5) M m-1 and 23.3 (±21.9) M m-1 during APEC, which were decreased by 63% and 56%, respectively, compared to those before APEC primarily due to strict emission controls. The aerosol composition and size distributions showed substantial changes during APEC; as a response, the mass scattering efficiency (MSE) of PM1 was decreased from 4.7 m2 g-1 to 3.5 m2 g-1. Comparatively, the average single-scattering albedo (SSA) remained relatively unchanged, illustrating the synchronous reductions of bext and bap during APEC. MSE and SSA were found to increase as function of the oxidation degree of organic aerosol (OA), indicating a change of aerosol optical properties during the aging processes. The empirical relationships between chemical composition and particle extinction were established using a multiple linear regression model. Our results showed the largest contribution of ammonium nitrate to particle extinction, accounting for 35.1% and 29.3% before and during APEC, respectively. This result highlights the important role of ammonium nitrate in the formation of severe haze pollution during this study period. We also observed very different optical properties of primary and secondary aerosol. Owing to emission controls in Beijing and surrounding regions and also partly the influences of meteorological changes, the average bext of secondary aerosol during APEC was decreased by 71% from 372.3 M m-1 to 108.5 M m-1, whereas that of primary aerosol mainly from cooking, traffic, and biomass burning emissions showed a smaller reduction from 136.7 M m-1 to 71.3 M m-1. As a result

  16. Direct Radiative Effect of Aerosols Based on PARASOL and OMI Satellite Observations

    NASA Technical Reports Server (NTRS)

    Lacagnina, Carlo; Hasekamp, Otto P.; Torres, Omar

    2017-01-01

    Accurate portrayal of the aerosol characteristics is crucial to determine aerosol contribution to the Earth's radiation budget. We employ novel satellite retrievals to make a new measurement-based estimate of the shortwave direct radiative effect of aerosols (DREA), both over land and ocean. Global satellite measurements of aerosol optical depth, single-scattering albedo (SSA), and phase function from PARASOL (Polarization and Anisotropy of Reflectances for Atmospheric Sciences coupled with Observations from a Lidar) are used in synergy with OMI (Ozone Monitoring Instrument) SSA. Aerosol information is combined with land-surface bidirectional reflectance distribution function and cloud characteristics from MODIS (Moderate Resolution Imaging Spectroradiometer) satellite products. Eventual gaps in observations are filled with the state-of-the-art global aerosol model ECHAM5-HAM2. It is found that our estimate of DREA is largely insensitive to model choice. Radiative transfer calculations show that DREA at top-of-atmosphere is -4.6 +/- 1.5 W/sq m for cloud-free and -2.1 +/- 0.7 W/sq m for all-sky conditions, during year 2006. These fluxes are consistent with, albeit generally less negative over ocean than, former assessments. Unlike previous studies, our estimate is constrained by retrievals of global coverage SSA, which may justify different DREA values. Remarkable consistency is found in comparison with DREA based on CERES (Clouds and the Earth's Radiant Energy System) and MODIS observations.

  17. Aerosol Meteorology of Maritime Continent for the 2012 7SEAS Southwest Monsoon Intensive Study - Part 2: Philippine Receptor Observations of Fine-Scale Aerosol Behavior

    NASA Technical Reports Server (NTRS)

    Reid, Jeffrey S.; Lagrosas, Nofel D.; Jonsson, Haflidi H.; Reid, Elizabeth A.; Atwood, Samuel A.; Boyd, Thomas J.; Ghate, Virendra P.; Xian, Peng; Posselt, Derek J.; Simpas, James B.; hide

    2016-01-01

    The largest 7 Southeast Asian Studies (7SEAS) operations period within the Maritime Continent (MC) occurred in the August-September 2012 biomass burning season. Data included were observations aboard the MY Vasco, dispatched to the Palawan Archipelago and Sulu Sea of the Philippines for September 2012. At these locations, the Vasco observed MC smoke and pollution entering the southwest monsoon (SWM) monsoonal trough. Here we describe the research cruise findings and the finer-scale aerosol meteorology of this convectively active region. This 2012 cruise complemented a 2-week cruise in 2011 and was generally consistent with previous findings in terms of how smoke emission and transport related to monsoonal flows, tropical cyclones (TC), and the covariance between smoke transport events and the atmosphere's thermodynamic structure. Biomass burning plumes were usually mixed with significant amounts of anthropogenic pollution. Also key to aerosol behavior were squall lines and cold pools propagating across the South China Sea (SCS) and scavenging aerosol particles in their path. However, the 2012 cruise showed much higher modulation in aerosol frequency than its 2011 counterpart. Whereas in 2011 large synoptic-scale aerosol events transported high concentrations of smoke into the Philippines over days, in 2012 measured aerosol events exhibited a much shorter-term variation, sometimes only 312h. Strong monsoonal flow reversals were also experienced in 2012. Nucleation events in cleaner and polluted conditions, as well as in urban plumes, were observed. Perhaps most interestingly, several cases of squall lines preceding major aerosol events were observed, as opposed to 2011 observations where these lines largely scavenged aerosol particles from the marine boundary layer. Combined, these observations indicate pockets of high and low particle counts that are not uncommon in the region. These perturbations are difficult to observe by satellite and very difficult to model

  18. Aerosol meteorology of Maritime Continent for the 2012 7SEAS southwest monsoon intensive study - Part 2: Philippine receptor observations of fine-scale aerosol behavior

    NASA Astrophysics Data System (ADS)

    Reid, Jeffrey S.; Lagrosas, Nofel D.; Jonsson, Haflidi H.; Reid, Elizabeth A.; Atwood, Samuel A.; Boyd, Thomas J.; Ghate, Virendra P.; Xian, Peng; Posselt, Derek J.; Simpas, James B.; Uy, Sherdon N.; Zaiger, Kimo; Blake, Donald R.; Bucholtz, Anthony; Campbell, James R.; Chew, Boon Ning; Cliff, Steven S.; Holben, Brent N.; Holz, Robert E.; Hyer, Edward J.; Kreidenweis, Sonia M.; Kuciauskas, Arunas P.; Lolli, Simone; Oo, Min; Perry, Kevin D.; Salinas, Santo V.; Sessions, Walter R.; Smirnov, Alexander; Walker, Annette L.; Wang, Qing; Yu, Liya; Zhang, Jianglong; Zhao, Yongjing

    2016-11-01

    The largest 7 Southeast Asian Studies (7SEAS) operations period within the Maritime Continent (MC) occurred in the August-September 2012 biomass burning season. Data included were observations aboard the M/Y Vasco, dispatched to the Palawan Archipelago and Sulu Sea of the Philippines for September 2012. At these locations, the Vasco observed MC smoke and pollution entering the southwest monsoon (SWM) monsoonal trough. Here we describe the research cruise findings and the finer-scale aerosol meteorology of this convectively active region. This 2012 cruise complemented a 2-week cruise in 2011 and was generally consistent with previous findings in terms of how smoke emission and transport related to monsoonal flows, tropical cyclones (TC), and the covariance between smoke transport events and the atmosphere's thermodynamic structure. Biomass burning plumes were usually mixed with significant amounts of anthropogenic pollution. Also key to aerosol behavior were squall lines and cold pools propagating across the South China Sea (SCS) and scavenging aerosol particles in their path. However, the 2012 cruise showed much higher modulation in aerosol frequency than its 2011 counterpart. Whereas in 2011 large synoptic-scale aerosol events transported high concentrations of smoke into the Philippines over days, in 2012 measured aerosol events exhibited a much shorter-term variation, sometimes only 3-12 h. Strong monsoonal flow reversals were also experienced in 2012. Nucleation events in cleaner and polluted conditions, as well as in urban plumes, were observed. Perhaps most interestingly, several cases of squall lines preceding major aerosol events were observed, as opposed to 2011 observations where these lines largely scavenged aerosol particles from the marine boundary layer. Combined, these observations indicate pockets of high and low particle counts that are not uncommon in the region. These perturbations are difficult to observe by satellite and very difficult to model

  19. The Two-Column Aerosol Project: Phase I-Overview and impact of elevated aerosol layers on aerosol optical depth

    DOE PAGES

    Berg, Larry K.; Fast, Jerome D.; Barnard, James C.; ...

    2016-01-08

    The Two-Column Aerosol Project (TCAP), conducted from June 2012 through June 2013, was a unique study designed to provide a comprehensive data set that can be used to investigate a number of important climate science questions, including those related to aerosol mixing state and aerosol radiative forcing. The study was designed to sample the atmosphere between and within two atmospheric columns; one fixed near the coast of North America (over Cape Cod, MA) and a second moveable column over the Atlantic Ocean several hundred kilometers from the coast. The U.S. Department of Energy's (DOE) Atmospheric Radiation Measurement (ARM) Mobile Facilitymore » (AMF) was deployed at the base of the Cape Cod column, and the ARM Aerial Facility was utilized for the summer and winter intensive observation periods. One important finding from TCAP is that four of six nearly cloud-free flight days had aerosol layers aloft in both the Cape Cod and maritime columns that were detected using the nadir pointing second-generation NASA high-spectral resolution lidar (HSRL-2). In addition, these layers contributed up to 60% of the total observed aerosol optical depth (AOD). Many of these layers were also intercepted by the aircraft configured for in situ sampling, and the aerosol in the layers was found to have increased amounts of biomass burning material and nitrate compared to aerosol found near the surface. Lastly, while there was a great deal of spatial and day-to-day variability in the aerosol chemical composition and optical properties, no systematic differences between the two columns were observed.« less

  20. The Two-Column Aerosol Project: Phase I - Overview and Impact of Elevated Aerosol Layers on Aerosol Optical Depth

    NASA Technical Reports Server (NTRS)

    Berg, Larry K.; Fast, Jerome D.; Barnard, James C.; Burton, Sharon P.; Cairns, Brian; Chand, Duli; Comstock, Jennifer M.; Dunagan, Stephen; Ferrare, Richard A.; Flynn, Connor J.; hide

    2015-01-01

    The Two-Column Aerosol Project (TCAP), conducted from June 2012 through June 2013, was a unique study designed to provide a comprehensive data set that can be used to investigate a number of important climate science questions, including those related to aerosol mixing state and aerosol radiative forcing. The study was designed to sample the atmosphere be tween and within two atmospheric columns; one fixed near the coast of North America (over Cape Cod, MA) and a second moveable column over the Atlantic Ocean several hundred kilometers from the coast. The U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF) was deployed at the base of the Cape Cod column, and the ARM Aerial Facility was utilized for the summer and winter intensive observation periods. One important finding from TCAP is that four of six nearly cloud-free flight days had aerosol layers aloft in both the Cape Cod and maritime columns that were detected using the nadir pointing second-generation NASA high-spectral resolution lidar (HSRL-2).These layer s contributed up to 60 of the total observed aerosol optical depth (AOD). Many of these layers were also intercepted by the aircraft configured for in situ sampling, and the aerosol in the layers was found to have increased amounts of biomass burning material and nitrate compared to aerosol found near the surface. In addition, while there was a great deal of spatial and day-to-day variability in the aerosol chemical composition and optical properties, no systematic differences between the two columns were observed.

  1. The Two-Column Aerosol Project: Phase I—Overview and impact of elevated aerosol layers on aerosol optical depth

    NASA Astrophysics Data System (ADS)

    Berg, Larry K.; Fast, Jerome D.; Barnard, James C.; Burton, Sharon P.; Cairns, Brian; Chand, Duli; Comstock, Jennifer M.; Dunagan, Stephen; Ferrare, Richard A.; Flynn, Connor J.; Hair, Johnathan W.; Hostetler, Chris A.; Hubbe, John; Jefferson, Anne; Johnson, Roy; Kassianov, Evgueni I.; Kluzek, Celine D.; Kollias, Pavlos; Lamer, Katia; Lantz, Kathleen; Mei, Fan; Miller, Mark A.; Michalsky, Joseph; Ortega, Ivan; Pekour, Mikhail; Rogers, Ray R.; Russell, Philip B.; Redemann, Jens; Sedlacek, Arthur J.; Segal-Rosenheimer, Michal; Schmid, Beat; Shilling, John E.; Shinozuka, Yohei; Springston, Stephen R.; Tomlinson, Jason M.; Tyrrell, Megan; Wilson, Jacqueline M.; Volkamer, Rainer; Zelenyuk, Alla; Berkowitz, Carl M.

    2016-01-01

    The Two-Column Aerosol Project (TCAP), conducted from June 2012 through June 2013, was a unique study designed to provide a comprehensive data set that can be used to investigate a number of important climate science questions, including those related to aerosol mixing state and aerosol radiative forcing. The study was designed to sample the atmosphere between and within two atmospheric columns; one fixed near the coast of North America (over Cape Cod, MA) and a second moveable column over the Atlantic Ocean several hundred kilometers from the coast. The U.S. Department of Energy's (DOE) Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF) was deployed at the base of the Cape Cod column, and the ARM Aerial Facility was utilized for the summer and winter intensive observation periods. One important finding from TCAP is that four of six nearly cloud-free flight days had aerosol layers aloft in both the Cape Cod and maritime columns that were detected using the nadir pointing second-generation NASA high-spectral resolution lidar (HSRL-2). These layers contributed up to 60% of the total observed aerosol optical depth (AOD). Many of these layers were also intercepted by the aircraft configured for in situ sampling, and the aerosol in the layers was found to have increased amounts of biomass burning material and nitrate compared to aerosol found near the surface. In addition, while there was a great deal of spatial and day-to-day variability in the aerosol chemical composition and optical properties, no systematic differences between the two columns were observed.

  2. Sources and Removal of Springtime Arctic Aerosol

    NASA Astrophysics Data System (ADS)

    Willis, M. D.; Burkart, J.; Bozem, H.; Kunkel, D.; Schulz, H.; Hanna, S.; Aliabadi, A. A.; Bertram, A. K.; Hoor, P. M.; Herber, A. B.; Leaitch, R.; Abbatt, J.

    2017-12-01

    The sources and removal mechanisms of pollution transported to Arctic regions are key factors in controlling the impact of short-lived climate forcing agents on Arctic climate. We lack a predictive understanding of pollution transport to Arctic regions largely due to poor understanding of removal mechanisms and aerosol chemical and physical processing both within the Arctic and during transport. We present vertically resolved observations of aerosol physical and chemical properties in High Arctic springtime. While much previous work has focused on characterizing episodic events of high pollutant concentrations transported to Arctic regions, here we focus on measurements made under conditions consistent with chronic Arctic Haze, which is more representative of the pollution seasonal maximum observed at long term monitoring stations. On six flights based at Alert and Eureka, Nunavut, Canada, we observe evidence for vertical variations in both aerosol sources and removal mechanisms. With support from model calculations, we show evidence for sources of partially neutralized aerosol with higher organic aerosol (OA) and black carbon content in the middle troposphere, compared to lower tropospheric aerosol with higher amounts of acidic sulfate. Further, we show evidence for aerosol depletion relative to carbon monoxide, both in the mid-to-upper troposphere and within the Arctic Boundary Layer (ABL). Dry deposition, with relatively low removal efficiency, was responsible for aerosol removal in the ABL while ice or liquid-phase scavenging was responsible for aerosol removal at higher altitudes during transport. Overall, we find that vertical variations in both regional and remote aerosol sources, and removal mechanisms, combine with long aerosol residence times to drive the properties of springtime Arctic aerosol.

  3. Information Content of Bistatic Lidar Observations of Aerosols from Space

    NASA Technical Reports Server (NTRS)

    Alexandrov, Mikhail D.; Mishchenko, Michael I.

    2017-01-01

    We present, for the first time, a quantitative retrieval error-propagation study for a bistatic high spectral resolution lidar (HSRL) system intended for detailed quasi-global monitoring of aerosol properties from space. Our results demonstrate that supplementing a conventional monostatic HSRL with an additional receiver flown in formation at a scattering angle close to 165 degrees dramatically increases the information content of the measurements and allows for a sufficiently accurate characterization of tropospheric aerosols. We conclude that a bistatic HSRL system would far exceed the capabilities of currently flown or planned orbital instruments in monitoring global aerosol effects on the environment and on the Earth's climate. We also demonstrate how the commonly used a priori 'regularization' methodology can artificially reduce the propagated uncertainties and can thereby be misleading as to the real retrieval capabilities of a measurement system.

  4. Aerosol optical properties during firework, biomass burning and dust episodes in Beijing

    NASA Astrophysics Data System (ADS)

    Yu, Xingna; Shi, Chanzhen; Ma, Jia; Zhu, Bin; Li, Mei; Wang, Jing; Yang, Suying; Kang, Na

    2013-12-01

    In order to characterize the aerosol optical properties during different pollution episodes that occurred in Beijing, the aerosol loading, scattering, and size distributions are presented using solar and sky radiance measurements from 2001 to 2010 in this paper. A much higher aerosol loading than the background level was observed during the pollution episodes. The average aerosol optical depth (AOD) is largest during dust episodes coupled with the lowest Ångström exponent (α), while higher AOD and lower α were more correlated with firework and biomass burning days. The total mean AOD at 440, 675, 870 and 1020 nm were 0.24, 0.49, 0.64 and 1.38 in the clean, firework display, biomass burning and dust days, respectively. The mean α for dust days was 0.51 and exceeded 1.1 for the remaining episodes. The size distribution of the dusty periods was dominated by the coarse mode, but the coarse mode was similar magnitude to the fine mode during the firework and biomass burning days. The volume concentration of the coarse mode during the dust days increased by a magnitude of more than 2-8 times that derived in the other three aerosol conditions, suggesting that dust is the major contributor of coarse mode particles in Beijing. The single scattering albedo (SSA) values also increased during the pollution episodes. The overall mean SSA at the four wavelengths were 0.865, 0.911, 0.922 and 0.931 in clean, firework display, biomass burning, and dust days in Beijing, respectively. However, in the blue spectral range, the dust aerosols exhibited pronounced absorption.

  5. Aerosol Models for the CALIPSO Lidar Inversion Algorithms

    NASA Technical Reports Server (NTRS)

    Omar, Ali H.; Winker, David M.; Won, Jae-Gwang

    2003-01-01

    We use measurements and models to develop aerosol models for use in the inversion algorithms for the Cloud Aerosol Lidar and Imager Pathfinder Spaceborne Observations (CALIPSO). Radiance measurements and inversions of the AErosol RObotic NETwork (AERONET1, 2) are used to group global atmospheric aerosols using optical and microphysical parameters. This study uses more than 105 records of radiance measurements, aerosol size distributions, and complex refractive indices to generate the optical properties of the aerosol at more 200 sites worldwide. These properties together with the radiance measurements are then classified using classical clustering methods to group the sites according to the type of aerosol with the greatest frequency of occurrence at each site. Six significant clusters are identified: desert dust, biomass burning, urban industrial pollution, rural background, marine, and dirty pollution. Three of these are used in the CALIPSO aerosol models to characterize desert dust, biomass burning, and polluted continental aerosols. The CALIPSO aerosol model also uses the coarse mode of desert dust and the fine mode of biomass burning to build a polluted dust model. For marine aerosol, the CALIPSO aerosol model uses measurements from the SEAS experiment 3. In addition to categorizing the aerosol types, the cluster analysis provides all the column optical and microphysical properties for each cluster.

  6. The regime of biomass burning aerosols over the Mediterranean basin based on satellite observations

    NASA Astrophysics Data System (ADS)

    Kalaitzi, Nikoleta; Gkikas, Antonis; Papadimas, Christos. D.; Hatzianastassiou, Nikolaos; Torres, Omar; Mihalopoulos, Nikolaos

    2016-04-01

    Biomass burning (BB) aerosol particles have significant effects on global and regional climate, as well as on regional air quality, visibility, cloud processes and human health.Biomass burning contributes by about 40% to the global emission of black carbonBC, and BB aerosols can exert a significant positive radiative forcing. The BB aerosols can originate from natural fires and human induced burning, such as wood or agricultural waste. However, the magnitude, but also the sign of the radiative forcing of BB aerosols is still uncertain, according to the third assessment report of IPCC (2013). Moreover, there are significant differences between different models as to their representation (inventories) of BB aerosols, more than for others, e.g. of fossil fuel origin. Therefore, it is important to better understand the spatial and temporal regime of BB aerosols. This is attempted here for the broader Mediterranean basin, which is a very interesting study area for aerosols, also being one of the most climaticallysensitive world regions. The determination of spatial and temporal regime of Mediterranean BB aerosols premises the identification of these particles at a complete spatial and long temporal coverage. Such a complete coverage is only ensured by contemporary satellite observations, which offer a challenging ability to characterize the existence of BB aerosols. This is possible thanks to the current availability of derived satellite products offering information on the size and absorption/scattering ability of aerosol particles. A synergistic use of such satellite aerosol data is made here, in conjunction with a developed algorithm, in order to identify the existence of BB aerosols over the Mediterranean basin over the 11-year period from 2005 to 2015. The algorithm operates, on a daily basis and at 1°×1°latitude-longitude resolution, setting threshold values (criteria) for specific physical and optical properties, which are representative of BB aerosols. More

  7. A COMPARISON OF CMAQ-BASED AEROSOL PROPERTIES WITH IMPROVE, MODIS, AND AERONET DATA

    EPA Science Inventory

    We compare select aerosol Properties derived from the Community Multiscale Air Quality (CMAQ) model-simulated aerosol mass concentrations with routine data from the National Aeronautics and Space Administration (NASA) satellite-borne Moderate Resolution Imaging Spectro-radiometer...

  8. Developing and diagnosing climate change indictors of regional aerosol optical properties

    NASA Astrophysics Data System (ADS)

    Sullivan, Ryan C.; Levy, Robert C.; da Silva, Arlindo M.; Pryor, Sara C.

    2017-04-01

    The US Global Change Research Program has developed climate indicators (CIs) to track changes in the physical, chemical, biological, and societal components of the climate system. Given the importance of atmospheric aerosol particles to clouds and radiative forcing, human mortality and morbidity, and biogeochemical cycles, we propose new aerosol particle CIs applicable to the US National Climate Assessment (NCA). Here we define these aerosol CIs and use them to quantify temporal trends in each NCA region. Furthermore, we use a synoptic classification (e.g., meteorological variables), and gas and particle emissions inventories to diagnose and attribute causes of observed changes. Our CIs are derived using output from the satellite-constrained Modern-Era Retrospective Analysis for Research and Application, Version 2 (MERRA-2) reanalysis. MERRA-2 provides estimates of column-integrated aerosol optical properties at 0.625° by 0.5° resolution, including aerosol optical depth (AOD), Ångström exponent (AE), and single scattering albedo (SSA), which are related to aerosol loading, relative particle size, and chemical composition, respectively. For each NCA region, and for each aerosol variable, we derive statistics that describe mean and extreme values, as well as two metrics (spatial autocorrelation and coherence) that describe the spatial scales of aerosol variability. Consistent with previous analyses of aerosol precursor emissions and near-surface fine aerosol mass concentrations in the US, analyses of our aerosol CIs show that since 2000, both mean and extreme AOD have decreased over most NCA regions. There are significant (α = 0.05, using the non-parametric Kendall's tau) decreases in AOD for the Northeast (NE), Southeast (SE), Midwest (MW), and lower Great Plains (GPl) regions, and notable but not significant decreases in the Southwest (SW). AOD has increased for the Northwest (NW; significant) and upper Great Plains (GPu; not significant). Over all regions

  9. MISR Aerosol Typing

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph A.

    2014-01-01

    AeroCom is an open international initiative of scientists interested in the advancement of the understanding of global aerosol properties and aerosol impacts on climate. A central goal is to more strongly tie and constrain modeling efforts to observational data. A major element for exchanges between data and modeling groups are annual meetings. The meeting was held September 20 through October 2, 1014 and the organizers would like to post the presentations.

  10. Study of Aerosol Optical Properties Over Two Sites in the Foothills of the Central Himalayas

    NASA Astrophysics Data System (ADS)

    Rupakheti, D.; Kang, S.; Cong, Z.; Rupakheti, M.; Tripathee, L.; Panday, A. K.; Holben, B.

    2018-04-01

    Atmospheric aerosol possesses impacts on climate system and ecological environments, human health and agricultural productivity. The environment over Himalayas and Tibetan Plateau region are continuously degraded due to the transport of pollution from the foothills of the Himalayas; mostly the Indo-Gangetic Plain (IGP). Thus, analysis of aerosol optical properties over two sites; Lumbini and Kathmandu (the southern slope of central Himalayas) using AERONET's CIMEL sun photometer were conducted in this study. Aerosol optical depth (AOD at 500 nm), angstrom exponent (α or AE), volume size distribution (VSD), single scattering albedo (SSA) and asymmetry parameter (AP) were studied for 2013-2014 and the average AOD was found to be: 0.64 ± 0.41 (Lumbini) and 0.45 ± 0.30 (Kathmandu). The average AE was found to be: 1.25 ± 0.24 and 1.26 ± 0.18 respectively for two sites. The relation between AOD and AE was used to discriminate the aerosol types over these sites which indicated anthropogenic, mixed and biomass burning origin aerosol constituted the major aerosol types in Lumbini and Kathmandu. A clear bi-modal distribution of aerosol volume size was observed with highest volume concentration during the post-monsoon season in fine mode and pre-monsoon season in coarse mode (Lumbini) and highest value over both modes during pre-monsoon season in Kathmandu. The single scattering albedo (SSA) and asymmetry parameter (AP) analyses suggested aerosols over the Himalayan foothills sites are dominated by absorbing and anthropogenic aerosols from urban and industrial activities and biomass burning. Long-term studies are essential to understand and characterize the nature of aerosol over this research gap zone.

  11. Retrieval of aerosol optical and micro-physical properties with 2D-MAX-DOAS

    NASA Astrophysics Data System (ADS)

    Ortega, Ivan; Coburn, Sean; Hostetler, Chris; Ferrare, Rich; Hair, Johnathan; Kassianov, Evgueni; Barnard, James; Berg, Larry; Schmid, Beat; Tomlinson, Jason; Hodges, Gary; Lantz, Kathy; Wagner, Thomas; Volkamer, Rainer

    2015-04-01

    Recent retrievals of 2 dimensional (2D) Multi-AXis Differential Optical Absorption Spectroscopy (2D-MAX-DOAS) have highlighted its importance in order to infer diurnal horizontal in-homogeneities around the measurement site. In this work, we expand the capabilities of 2D measurements in order to estimate simultaneously aerosol optical and micro-physical properties. Specifically, we present a retrieval method to obtain: (1) aerosol optical thickness (AOT) in the boundary layer (BL) and free troposphere (FT) and (2) the effective complex refractive index and the effective radius of the aerosol column size distribution. The retrieval method to obtain AOT is based on an iterative comparison of measured normalized radiances, oxygen collision pair (O4), and absolute Raman Scattering Probability (RSP) with the forward model calculations derived with the radiative transfer model McArtim based on defined aerosol extinction profiles. Once the aerosol load is determined we use multiple scattering phase functions and single scattering albedo (SSA) obtained with Mie calculations which then constrain the RTM to forward model solar almucantar normalized radiances. The simulated almucantar normalized radiances are then compared to the measured normalized radiances. The best-fit, determined by minimizing the root mean square, retrieves the complex refractive index, and effective radius. We apply the retrieval approach described above to measurements carried out during the 2012 intensive operation period of the Two Column Aerosol Project (TCAP) held on Cape Cod, MA, USA. Results are presented for two ideal case studies with both large and small aerosol loading and similar air mass outflow from the northeast coast of the US over the West Atlantic Ocean. The aerosol optical properties are compared with several independent instruments, including the NASA Langley airborne High Spectral Resolution Lidar (HSRL-2) for highly resolved extinction profiles during the overpasses, and with the

  12. Variability of aerosol optical depth and aerosol radiative forcing over Northwest Himalayan region

    NASA Astrophysics Data System (ADS)

    Saheb, Shaik Darga; Kant, Yogesh; Mitra, D.

    2016-05-01

    In recent years, the aerosol loading in India is increasing that has significant impact on the weather/climatic conditions. The present study discusses the analysis of temporal (monthly and seasonal) variation of aerosol optical depth(AOD) by the ground based observations from sun photometer and estimate the aerosol radiative forcing and heating rate over selected station Dehradun in North western Himalayas, India during 2015. The in-situ measurements data illustrate that the maximum seasonal average AOD observed during summer season AOD at 500nm ≍ 0.59+/-0.27 with an average angstrom exponent, α ≍0.86 while minimum during winter season AOD at 500nm ≍ 0.33+/-0.10 with angstrom exponent, α ≍1.18. The MODIS and MISR derived AOD was also compared with the ground measured values and are good to be in good agreement. Analysis of air mass back trajectories using HYSPLIT model reveal that the transportation of desert dust during summer months. The Optical Properties of Aerosols and clouds (OPAC) model was used to compute the aerosol optical properties like single scattering albedo (SSA), Angstrom coefficient (α) and Asymmetry(g) parameter for each day of measurement and they are incorporated in a Discrete Ordinate Radiative Transfer model, i.e Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART) to estimate the direct short-wave (0.25 to 4 μm) Aerosol Radiative forcing at the Surface (SUR), the top-of-atmosphere (TOA) and Atmosphere (ATM). The maximum Aerosol Radiative Forcing (ARF) was observed during summer months at SUR ≍ -56.42 w/m2, at TOA ≍-21.62 w/m2 whereas in ATM ≍+34.79 w/m2 with corresponding to heating rate 1.24°C/day with in lower atmosphere.

  13. The Apparent Bluing of Aerosols Near Clouds

    NASA Technical Reports Server (NTRS)

    Marshak, Alexander

    2008-01-01

    Numerous studies based on satellite observations have reported that aerosol optical depths increase with increasing cloud cover. Part of the increase comes from the humidification and consequent growth of aerosol particles in the moist cloud environment, but part comes from 3D cloud-radiative transfer effects on the retrieved aerosol properties. Often, discerning whether the observed increases in aerosol optical depths are artifacts or real proves difficult. I describe a simple model that quantifies the enhanced illumination of cloud-free columns in the vicinity of clouds that are used in the aerosol retrievals. This model is based on the assumption that the enhancement in the cloud-free column radiance comes from enhanced Rayleigh scattering that results from the presence of the nearby clouds. This assumption leads to a larger increase of AOT for shorter wavelengths, or to a "bluing" of aerosols near clouds. Examples from the MODIS observations that illustrate the apparent bluing of aerosols near clouds will be discussed.

  14. A new technique for measuring aerosols with moonlight observations and a sky background model

    NASA Astrophysics Data System (ADS)

    Jones, Amy; Noll, Stefan; Kausch, Wolfgang; Kimeswenger, Stefan; Szyszka, Ceszary; Unterguggenberger, Stefanie

    2014-05-01

    There have been an ample number of studies on aerosols in urban, daylight conditions, but few for remote, nocturnal aerosols. We have developed a new technique for investigating such aerosols using our sky background model and astronomical observations. With a dedicated observing proposal we have successfully tested this technique for nocturnal, remote aerosol studies. This technique relies on three requirements: (a) sky background model, (b) observations taken with scattered moonlight, and (c) spectrophotometric standard star observations for flux calibrations. The sky background model was developed for the European Southern Observatory and is optimized for the Very Large Telescope at Cerro Paranal in the Atacama desert in Chile. This is a remote location with almost no urban aerosols. It is well suited for studying remote background aerosols that are normally difficult to detect. Our sky background model has an uncertainty of around 20 percent and the scattered moonlight portion is even more accurate. The last two requirements are having astronomical observations with moonlight and of standard stars at different airmasses, all during the same night. We had a dedicated observing proposal at Cerro Paranal with the instrument X-Shooter to use as a case study for this method. X-Shooter is a medium resolution, echelle spectrograph which covers the wavelengths from 0.3 to 2.5 micrometers. We observed plain sky at six different distances (7, 13, 20, 45, 90, and 110 degrees) to the Moon for three different Moon phases (between full and half). Also direct observations of spectrophotometric standard stars were taken at two different airmasses for each night to measure the extinction curve via the Langley method. This is an ideal data set for testing this technique. The underlying assumption is that all components, other than the atmospheric conditions (specifically aerosols and airglow), can be calculated with the model for the given observing parameters. The scattered

  15. Baseline Maritime Aerosol: Methodology to Derive the Optical Thickness and Scattering Properties

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.; Smirnov, Alexander; Holben, Brent N.; Dubovik, Oleg; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Satellite Measurements of the global distribution of aerosol and their effect on climate should be viewed in respect to a baseline aerosol. In this concept, concentration of fine mode aerosol particles is elevated above the baseline by man-made activities (smoke or urban pollution), while coarse mode by natural processes (e.g. dust or sea-spray). Using 1-3 years of measurements in 10 stations of the Aerosol Robotic network (ACRONET we develop a methodology and derive the optical thickness and properties of this baseline aerosol for the Pacific and Atlantic Oceans. Defined as the median for periods of stable optical thickness (standard deviation < 0.02) during 2-6 days, the median baseline aerosol optical thickness over the Pacific Ocean is 0.052 at 500 am with Angstrom exponent of 0.77, and 0.071 and 1.1 respectively, over the Atlantic Ocean.

  16. Vertical Structure of Aerosols and Mineral Dust Over the Bay of Bengal From Multisatellite Observations

    NASA Astrophysics Data System (ADS)

    Lakshmi, N. B.; Nair, Vijayakumar S.; Suresh Babu, S.

    2017-12-01

    The vertical distribution of aerosol and dust extinction coefficient over the Bay of Bengal is examined using the satellite observations (Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP) and Moderate Resolution Imaging Spectroradiometer (MODIS)) for the period from 2006 to 2017. Distinct seasonal pattern is observed in the vertical structure of both aerosol and dust over the Bay of Bengal with an enhancement of 24% in the aerosol extinction above 1 km from winter (December, January and February) to premonsoon (March, April, and May). Significant contribution of dust is observed over the northern Bay of Bengal during premonsoon season where 22% of the total aerosol extinction is contributed by dust aerosols transported from the nearby continental regions. During winter, dust transport is found to be less significant with fractional contribution of 10%-13% to the total aerosol optical depth over the Bay of Bengal. MODIS-derived dust fraction (fine mode based) shows an overestimation up to twofold compared to CALIOP dust fraction (depolarization based), whereas the Goddard Chemistry Aerosol Radiation and Transport-simulated dust fraction underestimates the satellite-derived dust fractions over the Bay of Bengal. Though the long-term variation in dust aerosol showed a decreasing trend over the Bay of Bengal, the confidence level is insufficient in establishing the robustness of the observed trend. However, significant dust-induced heating is observed above the boundary layer during premonsoon season. This dust-induced elevated heating can affect the convection over the Bay of Bengal which will have implication on the monsoon dynamics over the Indian region.

  17. Absorbing and scattering aerosols over the source region of biomass burning emissions: Implications in the assessment of optical and radiative properties

    NASA Astrophysics Data System (ADS)

    Singh, Atinderpal; Srivastava, Rohit; Rastogi, Neeraj; Singh, Darshan

    2016-02-01

    The current study focuses on the assessment of model simulated optical and radiative properties of aerosols incorporating the measured chemical composition of aerosol samples collected at Patiala during October, 2011-February, 2012. Monthly average mass concentration of PM2.5, elemental carbon (EC), primary organic carbon (POC), water-soluble (WS) and insoluble (INS) aerosols ranged from 120 to 192, 6.2 to 7.2, 20 to 39, 59 to 111 and 35 to 90 μg m-3, respectively. Mass concentration of different components of aerosols was further used for the assessment of optical properties derived from Optical Properties of Aerosols and Clouds (OPAC) model simulations. Microtops based measured aerosol optical depth (AOD500) ranged from 0.47 to 0.62 showing maximum value during November and December, and minimum during February. Ångström exponent (α380-870) remained high (>0.90) throughout the study period except in February (0.74), suggesting predominance of fine mode particles over the study region. The observed ratio of scattering to absorbing aerosols was incorporated in OPAC model simulations and single scattering albedo (SSA at 500 nm) so obtained ranged between 0.80 and 0.92 with relatively low values during the period of extensive biomass burning. In the present study, SBDART based estimated values of aerosol radiative forcing (ARF) at the surface (SRF) and top of the atmosphere (TOA) ranged from -31 to -66 Wm-2 and -2 to -18 W m-2 respectively. The atmospheric ARF, ranged between + 18 and + 58 Wm-2 resulting in the atmospheric heating rate between 0.5 and 1.6 K day-1. These results signify the role of scattering and absorbing aerosols in affecting the magnitude of aerosol forcing.

  18. Aerosol particle properties in a South American megacity

    NASA Astrophysics Data System (ADS)

    Ulke, Ana; Torres-Brizuela, Marcela; Raga, Graciela; Baumgardner, Darrel; Cancelada, Marcela

    2015-04-01

    The subtropical city of Buenos Aires is located on the western shore of Río de la Plata, on the southeastern coast of Argentina. It is the second largest metropolitan area in South America, with a population density of around 14 thousand people per km2. When all 24 counties of the Great Buenos Aires Metropolitan Area are included it is the third-largest conurbation in Latin America, with a population of around fifteen million inhabitants. The generalized worldwide trend to concentrate human activities in urban regions that continue to expand in area, threatens the local and regional environment. Air pollution in the Buenos Aires airshed is due to local sources (mainly the mobile sources, followed by the electric power plants and some industries) and to distant sources (like biomass burning, dust, marine aerosols and occasionally volcanic ash) whose products arrive in the city area due to the regional transport patterns. Previous research suggests that ambient aerosol particle concentrations should be considered an air quality problem. A field campaign was conducted in Buenos Aires in 2011 in order to characterize some aerosol particles properties measured for the first time in the city. Measurements began in mid- April and continued until December. The field observations were done in a collaborative effort between the Universities of Mexico (UNAM) and Buenos Aires (UBA). A suite of instruments was installed on the roof of an UBA laboratory and classroom buildings (34.54° S, 58.44° W) at an altitude of approximately 30 m above sea level. The measurements included the number concentration of condensation nuclei (CN) larger than approximately 50 nm, the mass concentration of particle-bound polycyclic aromatic hydrocarbons (PPAH), the scattering (Bscat) and absorption (Babs) coefficients at 550 nm and the vertical profiles of backscattered light from aerosols at a wavelength of 910 nm using a ceilometer. In addition, a weather station recorded the meteorological

  19. Measuring Aerosol Optical Properties with the Ozone Monitoring Instrument (OMI)

    NASA Technical Reports Server (NTRS)

    Veefkind, J. P.; Torres, O.; Syniuk, A.; Decae, R.; deLeeuw, G.

    2003-01-01

    The Ozone Monitoring Instrument (OMI) is the Dutch-Finnish contribution to the NASA EOS-Aura mission scheduled for launch in January 2004. OM1 is an imaging spectrometer that will measure the back-scattered Solar radiance between 270 an 500 nm. With its relatively high spatial resolution (13x24 sq km at nadir) and daily global coverage. OM1 will make a major contribution to our understanding of atmospheric chemistry and to climate research. OM1 will provide data continuity with the TOMS instruments. One of the pleasant surprises of the TOMS data record was its information on aerosol properties. First, only the absorbing aerosol index, which is sensitive to elevated lay- ers of aerosols such as desert dust and smoke aerosols, was derived. Recently these methods were further improved to yield aerosol optical thickness and single scattering albedo over land and ocean for 19 years of TOMS data (1979-1992,1997-2002), making it one of the longest and most valuable time series for aerosols presently available. Such long time series are essential to quantify the effect of aerosols on the Earth& climate. The OM1 instrument is better suited to measure aerosols than the TOMS instruments because of the smaller footprint, and better spectral coverage. The better capabilities of OMI will enable us to provide an improved aerosol product, but the knowledge will also be used for further analysis of the aerosol record from TOMS. The OM1 aerosol product that is currently being developed for OM1 combines the TOMS experience and the multi-spectral techniques that are used in the visible and near infrared. The challenge for this new product is to provide aerosol optical thickness and single scattering albedo from the near ultraviolet to the visible (330-500 nm) over land and ocean. In this presentation the methods for deriving the OM1 aerosol product will be presented. Part of these methods developed for OM1 can already be applied to TOMS data and results of such analysis will be shown.

  20. Two-Column Aerosol Project (TCAP) Field Campaign Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berg, Larry K

    This study included the deployment of the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility’s Mobile Facility (AMF), ARM Mobile Aerosol Observing System (MAOS) and the ARM Aerial Facility (AAF). The study was a collaborative effort involving scientists from DOE national laboratories, NOAA, NASA, and universities. The AAF and MAOS were deployed for two approximately month-long Intensive Operational Periods (IOPs) conducted in June 2012 and February 2013. Seasonal differences in the aerosol chemical and optical properties observed using the AMF, AAF, and MAOS are presented in this report. The total mass loading of aerosol is found tomore » be much greater in the summer than in the winter, with the difference associated with greater amounts of organic aerosol. The mass fraction of organic aerosol is much reduced in the winter, when sulfate is the dominant aerosol type. Surprisingly, very little sea-salt aerosol was observed in the summer. In contrast, much more sea salt aerosol was observed in the winter. The mass loading of black carbon is nearly the same in both seasons. These differences lead to a relative increase in the aerosol light absorption in the winter and an associated decrease in observed single-scattering albedo. Measurements of aerosol mixing state were made using a single-particle mass spectrometer, which showed that the majority of the summertime aerosol consisted of organic compounds mixed with various amounts of sulfate. A number of other findings are also summarized in the report, including: impact of aerosol layers aloft on the column aerosol optical depth; documentation of the aerosol properties at the AMF; differences in the aerosol properties associated with both columns, which are not systematic but reflect the complicated meteorological and chemical processes that impact aerosol as it is advected away from North America; and new instruments and data-processing techniques for measuring both

  1. Observation-based estimation of aerosol-induced reduction of planetary boundary layer height

    NASA Astrophysics Data System (ADS)

    Zou, Jun; Sun, Jianning; Ding, Aijun; Wang, Minghuai; Guo, Weidong; Fu, Congbin

    2017-09-01

    Radiative aerosols are known to influence the surface energy budget and hence the evolution of the planetary boundary layer. In this study, we develop a method to estimate the aerosol-induced reduction in the planetary boundary layer height (PBLH) based on two years of ground-based measurements at a site, the Station for Observing Regional Processes of the Earth System (SORPES), at Nanjing University, China, and radiosonde data from the meteorological station of Nanjing. The observations show that increased aerosol loads lead to a mean decrease of 67.1 W m-2 for downward shortwave radiation (DSR) and a mean increase of 19.2 W m-2 for downward longwave radiation (DLR), as well as a mean decrease of 9.6 Wm-2 for the surface sensible heat flux (SHF) in the daytime. The relative variations of DSR, DLR and SHF are shown as a function of the increment of column mass concentration of particulate matter (PM2.5). High aerosol loading can significantly increase the atmospheric stability in the planetary boundary layer during both daytime and nighttime. Based on the statistical relationship between SHF and PM2.5 column mass concentrations, the SHF under clean atmospheric conditions (same as the background days) is derived. In this case, the derived SHF, together with observed SHF, are then used to estimate changes in the PBLH related to aerosols. Our results suggest that the PBLH decreases more rapidly with increasing aerosol loading at high aerosol loading. When the daytime mean column mass concentration of PM2.5 reaches 200 mg m-2, the decrease in the PBLH at 1600 LST (local standard time) is about 450 m.

  2. Observations of Dust Using the NASA Geoscience Laser Altimeter System (GLAS): New New Measurements of Aerosol Vertical Distribution From Space

    NASA Technical Reports Server (NTRS)

    Welton, Ellsworth; Spinhirne, James D.; Palm, Steven P.; Hlavka, Dennis; Hart, William

    2003-01-01

    On January 12, 2003 NASA launched the first satellite-based lidar, the Geoscience Laser -Altimeter System (GLAS), onboard the ICESat spacecraft. The GLAS atmospheric measurements introduce a fundamentally new and important tool for understanding the atmosphere and climate. In the past, aerosols have only been studied from space using images gathered by passive sensors. Analysis of this passive data has lead to an improved understanding of aerosol properties, spatial distribution, and their effect on the earth's climate. However, these images do not show the aerosol's vertical distribution. As a result, a key piece of information has been missing. The measurements now obtained by GLAS will provide information on the vertical distribution of aerosols and clouds, and improve our ability to study their transport processes and aerosol-cloud interactions. Here we show an overview of GLAS, provide an update of its current status, and present initial observations of dust profiles. In particular, a strategy of characterizing the height profile of dust plumes over source regions will be presented.

  3. Aerosol meteorology of Maritime Continent for the 2012 7SEAS southwest monsoon intensive study – Part 2: Philippine receptor observations of fine-scale aerosol behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reid, Jeffrey S.; Lagrosas, Nofel D.; Jonsson, Haflidi H.

    The largest 7 Southeast Asian Studies (7SEAS) operations period within the Maritime Continent (MC) occurred in the August–September 2012 biomass burning season. Data included were observations aboard the M/Y Vasco, dispatched to the Palawan Archipelago and Sulu Sea of the Philippines for September 2012. At these locations, the Vasco observed MC smoke and pollution entering the southwest monsoon (SWM) monsoonal trough. Here we describe the research cruise findings and the finer-scale aerosol meteorology of this convectively active region. This 2012 cruise complemented a 2-week cruise in 2011 and was generally consistent with previous findings in terms of how smoke emission and transportmore » related to monsoonal flows, tropical cyclones (TC), and the covariance between smoke transport events and the atmosphere's thermodynamic structure. Biomass burning plumes were usually mixed with significant amounts of anthropogenic pollution. Also key to aerosol behavior were squall lines and cold pools propagating across the South China Sea (SCS) and scavenging aerosol particles in their path. However, the 2012 cruise showed much higher modulation in aerosol frequency than its 2011 counterpart. Whereas in 2011 large synoptic-scale aerosol events transported high concentrations of smoke into the Philippines over days, in 2012 measured aerosol events exhibited a much shorter-term variation, sometimes only 3$-$12 h. Strong monsoonal flow reversals were also experienced in 2012. Nucleation events in cleaner and polluted conditions, as well as in urban plumes, were observed. Perhaps most interestingly, several cases of squall lines preceding major aerosol events were observed, as opposed to 2011 observations where these lines largely scavenged aerosol particles from the marine boundary layer. Combined, these observations indicate pockets of high and low particle counts that are not uncommon in the region. These perturbations are difficult to observe by satellite and very

  4. Validation of Satellite Aerosol Retrievals from AERONET Ground-Based Measurements

    NASA Technical Reports Server (NTRS)

    Holben, Brent; Remer, Lorraine; Torres, Omar; Zhao, Tom; Smith, David E. (Technical Monitor)

    2001-01-01

    Accurate and comprehensive assessment of the parameters that control key atmospheric and biospheric processes including assessment of anthropogenic effects on climate change is a fundamental measurement objective of NASA's EOS program (King and Greenstone, 1999). Satellite assessment programs and associated global climate models require validation and additional parameterization with frequent reliable ground-based observations. A critical and highly uncertain element of the measurement program is characterization of tropospheric aerosols requiring basic observations of aerosols optical and microphysical properties. Unfortunately as yet we do not know the aerosol burden man is contributing to the atmosphere and thus we will have no definitive measure of change for the future. This lack of aerosol assessment is the impetus for some of the EOS measurement activities (Kaufman et al., 1997; King et al., 1999) and the formation of the AERONET program (Holben et al., 1998). The goals of the AERONET program are to develop long term monitoring at globally distributed sites providing critical data for multiannual trend changes in aerosol loading and optical properties with the specific goal of providing a data base for validation of satellite derived aerosol optical properties. The AERONET program has evolved into an international federated network of approximately 100 ground-based remote sensing monitoring stations to characterize the optical and microphysical properties of aerosols.

  5. Measurements of Aerosol Vertical Profiles and Optical Properties during INDOEX 1999 Using Micro-Pulse Lidars

    NASA Technical Reports Server (NTRS)

    Welton, Ellsworth J.; Voss, Kenneth J.; Quinn, Patricia K.; Flatau, Piotr J.; Markowicz, Krzysztof; Campbell, James R.; Spinhirne, James D.; Gordon, Howard R.; Johnson, James E.; Starr, David OC. (Technical Monitor)

    2001-01-01

    Micro-pulse lidar systems (MPL) were used to measure aerosol properties during the Indian Ocean Experiment (INDOEX) 1999 field phase. Measurements were made from two platforms: the NOAA ship RN Ronald H. Brown, and the Kaashidhoo Climate Observatory (KCO) in the Maldives. Sunphotometers were used to provide aerosol optical depths (AOD) needed to calibrate the MPL. This study focuses on the height distribution and optical properties (at 523 nm) of aerosols observed during the campaign. The height of the highest aerosols (top height) was calculated and found to be below 4 km for most of the cruise. The marine boundary layer (MBL) top was calculated and found to be less than 1 km. MPL results were combined with air mass trajectories, radiosonde profiles of temperature and humidity, and aerosol concentration and optical measurements. Humidity varied from approximately 80% near the surface to 50% near the top height during the entire cruise. The average value and standard deviation of aerosol optical parameters were determined for characteristic air mass regimes. Marine aerosols in the absence of any continental influence were found to have an AOD of 0.05 +/- 0.03, an extinction-to-backscatter ratio (S-ratio) of 33 +/- 6 sr, and peak extinction values around 0.05/km (near the MBL top). The marine results are shown to be in agreement with previously measured and expected values. Polluted marine areas over the Indian Ocean, influenced by continental aerosols, had AOD values in excess of 0.2, S-ratios well above 40 sr, and peak extinction values approximately 0.20/km (near the MBL top). The polluted marine results are shown to be similar to previously published values for continental aerosols. Comparisons between MPL derived extinction near the ship (75 m) and extinction calculated at ship-level using scattering measured by a nephelometer and absorption using a PSAP were conducted. The comparisons indicated that the MPL algorithm (using a constant S-ratio throughout the

  6. Optical, physical, and chemical properties of springtime aerosol over Barrow Alaska in 2008

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shantz, Nicole C.; Gultepe, Ismail; Andrews, Elisabeth

    2014-03-06

    Airborne observations from four flights during the 2008 Indirect and Semi-Direct Aerosol Campaign (ISDAC) are used to examine some cloud-free optical, physical, and chemical properties of aerosol particles in the springtime Arctic troposphere. The number concentrations of particles larger than 0.12 μm (Na>120), important for light extinction and cloud droplet formation, ranged from 15 to 2260 cm -3, with the higher Na>120 cases dominated by measurements from two flights of long-range transported biomass burning (BB) aerosols. The two other flights examined here document a relatively clean aerosol and an Arctic Haze aerosol impacted by larger particles largely composed of dust.more » For observations from the cleaner case and the BB cases, the particle light scattering coefficients at low relative humidity (RH<20%) increased nonlinearly with increasing Na>120, driven mostly by an increase in mean sizes of particles with increasing Na>120 (BB cases). For those three cases, particle light absorption coefficients also increased nonlinearly with increasing Na>120 and linearly with increasing submicron particle volume concentration. In addition to black carbon, brown carbon was estimated to have increased light absorption coefficients by 27% (450 nm wavelength) and 14% (550 nm) in the BB cases. For the case with strong dust influence, the absorption relative to submicron particle volume was small compared with the other cases. There was a slight gradient of Passive Cavity Aerosol Spectrometer Probe (PCASP) mean volume diameter (MVD) towards smaller sizes with increasing height, which suggests more scavenging of the more elevated particles, consistent with a typically longer lifetime of particles higher in the atmosphere. However, in approximately 10% of the cases, the MVD increased (>0.4 μm) with increasing altitude, suggesting transport of larger fine particle mass (possibly coarse particle mass) at high levels over the Arctic. This may be because of transport of

  7. Perspectives of Future Satellite Observations for Studying Aerosol-Cloud Interactions

    NASA Astrophysics Data System (ADS)

    Vane, D. G.; Stephens, G. L.

    2008-12-01

    There are many studies that examine the effects of aerosol on clouds and the consequence of these effects for climate. Much of the focus of these interactions revolve around two types of indirect effects. Using the A- Train as a resource for studying these interactions as a way of defining the requirements for future new missions, we find that the sensitivity of the cloud albedo, as observed by CERES, to aerosol varies according to these various conditions and does not simply correlate with decreased particle size as is typically assumed. It is clear that these effects require more in-depth information about cloud water path, and the occurrence and amount of precipitation and the environmental conditions in which the interactions take place. Information about the motions in clouds, the depths of clouds and more resolved microphysical details on cloud and drizzle are essential to study these effects. Perhaps more important than indirect effects on cloud albedo are the possible effects of aerosol on precipitation. There is much speculation about such influences and the A-Train observations are beginning to reveal much insight on such effects. These observations appear to suggest that the effects on shallow clouds is to delay precipitation production and reduce rainfall as has been speculated. The effects of aerosol on the precipitation falling from deep convection is less clear and more difficult to observe, although many model studies consistently suggest that the effects might be even more pronounced than on shallow convection through, among other mechanisms, the invigoration of storms via freezing of elevated water contents in updrafts. Such studies are now clearly pointing to the need to define the water contents and microphysics of hydrometeors in convective updrafts. This talk draws on these results as a way of framing the definition of the cloud-aerosol and precipitation component of the ACE mission of the decadal survey. This mission represents the follow

  8. Observations of Aerosol-Radiation-Cloud Interactions in the South-East Atlantic: First Results from the ORACLES Deployments in 2016 and 2017

    NASA Technical Reports Server (NTRS)

    Redemann, Jens; Wood, R.; Zuidema, P.; Diner, D.; Van Harten, G.; Xu, F.; Cairns, B.; Knobelspiesse, K.; Segal Rozenhaimer, M.

    2017-01-01

    Southern Africa produces almost a third of the Earths biomass burning (BB) aerosol particles. Particles lofted into the mid-troposphere are transported westward over the South-East (SE) Atlantic, home to one of the three permanent subtropical stratocumulus (Sc) cloud decks in the world. The SE Atlantic stratocumulus deck interacts with the dense layers of BB aerosols that initially overlay the cloud deck, but later subside and often mix into the clouds. These interactions include adjustments to aerosol-induced solar heating and microphysical effects, and their global representation in climate models remains one of the largest uncertainties in estimates of future climate. Hence, new observations over the SE Atlantic have significant implications for regional and global climate change predictions.The low-level clouds in the SE Atlantic have limited vertical extent and therefore present favorable conditions for their exploration with remote sensing. On the other hand, the normal coexistence of BB aerosols and Sc clouds in the same scene also presents significant challenges to conventional remote sensing techniques. We describe first results from NASAs airborne ORACLES (ObseRvations of Aerosols Above Clouds and Their IntEractionS) deployments in September 2016 and August 2017. We emphasize the unique role of polarimetric observations by two instruments, the Research Scanning Polarimeter (RSP) and the Airborne Multi-angle SpectroPolarimeter Imager (AirMSPI), and describe how these instruments help address specific ORACLES science objectives. Initial assessments of polarimetric observation accuracy for key cloud and aerosol properties will be presented, in as far as the preliminary nature of measurements permits.

  9. Spectral Absorption Properties of Aerosol Particles from 350-2500nm

    NASA Technical Reports Server (NTRS)

    Martins, J. Vanderlei; Artaxo, Paulo; Kaufman, Yoram J.; Castanho, Andrea D.; Remer, Lorraine A.

    2009-01-01

    The aerosol spectral absorption efficiency (alpha (sub a) in square meters per gram) is measured over an extended wavelength range (350 2500 nm) using an improved calibrated and validated reflectance technique and applied to urban aerosol samples from Sao Paulo, Brazil and from a site in Virginia, Eastern US, that experiences transported urban/industrial aerosol. The average alpha (sub a) values (approximately 3 square meters per gram at 550 nm) for Sao Paulo samples are 10 times larger than alpha (sub a) values obtained for aerosols in Virginia. Sao Paulo aerosols also show evidence of enhanced UV absorption in selected samples, probably associated with organic aerosol components. This extra UV absorption can double the absorption efficiency observed from black carbon alone, therefore reducing by up to 50% the surface UV fluxes, with important implications for climate, UV photolysis rates, and remote sensing from space.

  10. Aerosol growth in Titan's ionosphere.

    PubMed

    Lavvas, Panayotis; Yelle, Roger V; Koskinen, Tommi; Bazin, Axel; Vuitton, Véronique; Vigren, Erik; Galand, Marina; Wellbrock, Anne; Coates, Andrew J; Wahlund, Jan-Erik; Crary, Frank J; Snowden, Darci

    2013-02-19

    Photochemically produced aerosols are common among the atmospheres of our solar system and beyond. Observations and models have shown that photochemical aerosols have direct consequences on atmospheric properties as well as important astrobiological ramifications, but the mechanisms involved in their formation remain unclear. Here we show that the formation of aerosols in Titan's upper atmosphere is directly related to ion processes, and we provide a complete interpretation of observed mass spectra by the Cassini instruments from small to large masses. Because all planetary atmospheres possess ionospheres, we anticipate that the mechanisms identified here will be efficient in other environments as well, modulated by the chemical complexity of each atmosphere.

  11. Physical and Optical/Radiative Properties of Arctic Aerosols: Potential Effects on Arctic Climate

    NASA Technical Reports Server (NTRS)

    Pueschel, R. F.; Kinne, S. A.; Gore, Warren J. (Technical Monitor)

    1994-01-01

    We have determined the abundance of light-scattering sulfuric acid (H2SO4/H2O) and light-absorbing black carbon aerosol (BCA) in Spring 1992 in the Arctic atmosphere by airborne in situ sampling with impactors, and measured particle sizes and morphologies by scanning electron microscopy. The mass of BCA in the Arctic troposphere is one percent of the total aerosol, reduced to one part in 104 in the stratosphere. A Mie algorithm permits the calculation of the optical properties of the various aerosol components, and an algorithm developed by Ackerman and Toon and modified to serve our needs lets us calculate the optical effects of the black carbon aerosol that is mixed internally with the sulfuric acid aerosol. It follows that the effect of internally-mixed BCA on the aerosol scattering and absorption properties depends on its location within the droplet. BCA concentrated near the droplet surface has a greater effect on absorption of solar radiation than does the same amount of BCA located near its center. Single scatter albedos of the combined system are omega(sub 0)=1.0 in the post-Pinatubo Arctic stratosphere, and as low as 0.94 in the troposphere. The aerosol has the potential to regionally warm the Arctic earth-atmosphere system, because of the high surface albedo of the snow-covered Arctic.

  12. Optical properties and aging of light-absorbing secondary organic aerosol

    DOE PAGES

    Liu, Jiumeng; Lin, Peng; Laskin, Alexander; ...

    2016-10-14

    The light-absorbing organic aerosol (OA) commonly referred to as “brown carbon” (BrC) has attracted considerable attention in recent years because of its potential to affect atmospheric radiation balance, especially in the ultraviolet region and thus impact photochemical processes. A growing amount of data has indicated that BrC is prevalent in the atmosphere, which has motivated numerous laboratory and field studies; however, our understanding of the relationship between the chemical composition and optical properties of BrC remains limited. We conducted chamber experiments to investigate the effect of various volatile organic carbon (VOC) precursors, NO x concentrations, photolysis time, and relative humidity (RH) on the lightmore » absorption of selected secondary organic aerosols (SOA). Light absorption of chamber-generated SOA samples, especially aromatic SOA, was found to increase with NO x concentration, at moderate RH, and for the shortest photolysis aging times. The highest mass absorption coefficient (MAC) value is observed from toluene SOA products formed under high-NO x conditions at moderate RH, in which nitro-aromatics were previously identified as the major light-absorbing compounds. BrC light absorption is observed to decrease with photolysis time, correlated with a decline of the organic nitrate fraction of SOA. SOA formed from mixtures of aromatics and isoprene absorb less visible (Vis) and ultraviolet (UV) light than SOA formed from aromatic precursors alone on a mass basis. However, the mixed SOA absorption was underestimated when optical properties were predicted using a two-product SOA formation model, as done in many current climate models. Further investigation, including analysis on detailed mechanisms, are required to explain the discrepancy.« less

  13. Optical Properties and Aging of Light Absorbing Secondary Organic Aerosol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jiumeng; Lin, Peng; Laskin, Alexander

    2016-10-14

    The light-absorbing organic aerosol (OA), commonly referred to as “brown carbon (BrC)”, has attracted considerable attention in recent years because of its potential to affect atmospheric radiation balance, especially in the ultraviolet region and thus impact photochemical processes. A growing amount of data has indicated that BrC is prevalent in the atmosphere, which has motivated numerous laboratory and field studies; however, our understanding of the relationship between the chemical composition and optical properties of BrC remains limited. We conducted chamber experiments to investigate the effect of various VOC precursors, NOx concentrations, photolysis time and relative humidity (RH) on the lightmore » absorption of selected secondary organic aerosols (SOA). Light absorption of chamber generated SOA samples, especially aromatic SOA, was found to increase with NOx concentration, at moderate RH, and for the shortest photolysis aging times. The highest mass absorption coefficients (MAC) value is observed from toluene SOA products formed under high NOx conditions at moderate RH, in which nitro-aromatics were previously identified as the major light absorbing compounds. BrC light absorption is observed to decrease with photolysis time, correlated with a decline of the organonitrate fraction of SOA. SOA formed from mixtures of aromatics and isoprene absorb less visible and UV light than SOA formed from aromatic precursors alone on a mass basis. However, the mixed-SOA absorption was underestimated when optical properties were predicted using a two-product SOA formation model, as done in many current climate models. Further investigation, including analysis on detailed mechanisms, are required to explain the discrepancy.« less

  14. Toward a Combined SAGE II-HALOE Aerosol Climatology: An Evaluation of HALOE Version 19 Stratospheric Aerosol Extinction Coefficient Observations

    NASA Technical Reports Server (NTRS)

    Thomason, L. W.

    2012-01-01

    Herein, the Halogen Occultation Experiment (HALOE) aerosol extinction coefficient data is evaluated in the low aerosol loading period after 1996 as the first necessary step in a process that will eventually allow the production of a combined HALOE/SAGE II (Stratospheric Aerosol and Gas Experiment) aerosol climatology of derived aerosol products including surface area density. Based on these analyses, it is demonstrated that HALOE's 3.46 microns is of good quality above 19 km and suitable for scientific applications above that altitude. However, it is increasingly suspect at lower altitudes and should not be used below 17 km under any circumstances after 1996. The 3.40 microns is biased by about 10% throughout the lower stratosphere due to the failure to clear NO2 but otherwise appears to be a high quality product down to 15 km. The 2.45 and 5.26 micron aerosol extinction coefficient measurements are clearly biased and should not be used for scientific applications after the most intense parts of the Pinatubo period. Many of the issues in the aerosol data appear to be related to either the failure to clear some interfering gas species or doing so poorly. For instance, it is clear that the 3.40micronaerosol extinction coefficient measurements can be improved through the inclusion of an NO2 correction and could, in fact, end up as the highest quality overall HALOE aerosol extinction coefficient measurement. It also appears that the 2.45 and 5.26 micron channels may be improved by updating the Upper Atmosphere Pilot Database which is used as a resource for the removal of gas species otherwise not available from direct HALOE measurements. Finally, a simple model to demonstrate the promise of mixed visible/infrared aerosol extinction coefficient ensembles for the retrieval of bulk aerosol properties demonstrates that a combined HALOE/SAGE II aerosol climatology is feasible and may represent a substantial improvement over independently derived data sets.

  15. Characterization of Ambient Black Carbon Aerosols

    NASA Astrophysics Data System (ADS)

    Zhang, R.; Levy, M. E.; Zheng, J.; Molina, L. T.

    2013-12-01

    Because of the strong absorption over a broad range of the electromagnetic spectra, black carbon (BC) is a key short-lived climate forcer, which contributes significantly to climate change by direct radiative forcing and is the second most important component causing global warming after carbon dioxide. The impact of BC on the radiative forcing of the Earth-Atmosphere system is highly dependent of the particle properties. In this presentation, emphasis will be placed on characterizing BC containing aerosols in at the California-Mexico border to obtain a greater understanding of the atmospheric aging and properties of ambient BC aerosols. A comprehensive set of directly measured aerosol properties, including the particle size distribution, effective density, hygroscopicity, volatility, and several optical properties, will be discussed to quantify the mixing state and composition of ambient particles. In Tijuana, Mexico, submicron aerosols are strongly influenced by vehicle emissions; subsequently, the BC concentration in Tijuana is considerably higher than most US cities with an average BC concentration of 2.71 × 2.65 g cm-3. BC accounts for 24.75 % × 9.44 of the total submicron concentration on average, but periodically accounts for over 50%. This high concentration of BC strongly influences many observed aerosol properties such as single scattering albedo, hygroscopicity, effective density, and volatility.

  16. Column and Near-surface Aerosol Properties during TCAP: Temporal Changes in a Coastal Region

    NASA Astrophysics Data System (ADS)

    Kassianov, E.; Barnard, J.; Pekour, M. S.; Berg, L. K.; Shilling, J. E.; Fast, J. D.; Michalsky, J. J.; Lantz, K. O.; Hodges, G.

    2013-12-01

    An important problem facing climate-related studies is to separate the impacts of naturally occurring and anthropogenic aerosol. This problem is even more challenging in coastal regions located downwind of large metropolitan areas. Cape Cod situated on the easternmost portion of Massachusetts (along the east coast of the United States) is an example of one of these regions. The Two-Column Aerosol Project (TCAP; http://campaign.arm.gov/tcap/) was designed to study the evolution of optical, microphysical and chemical properties of both marine aerosol and aerosol transported from North America to the Atlantic as well as their impact on the radiation energy budget. The TCAP has been recently conducted (2012-2013) on Cape Cod with support from the U.S. Department of Energy's (DOE's) Atmospheric Radiation Measurement (ARM) Program (http://www.arm.gov/). During the TCAP, the ground-based ARM Mobile Facility (AMF) was deployed on Cape Cod. The AMF site (at 41.87°N; 70.28°W) was equipped with numerous instruments for sampling aerosol, cloud and radiative properties, including a Multi-Filter Rotating Shadowband Radiometer (MFRSR), a Scanning Mobility Particle Sizer (SMPS), an Aerodynamic Particle Sizer (APS), a three-wavelength nephelometer, and suite of instruments to measure the aerosol chemical composition. In this study we present an analysis of diurnal and day-to-day variability of the column and near-surface aerosol properties obtained from remote sensing (MFRSR data) and in situ measurements (SMPS, APS, nephelometer, chemical composition), respectively. The importance of this variability to direct aerosol radiative forcing at different time scales and its relation to the long-range transport will be discussed. Some regional model results will also be presented.

  17. Spatial distribution analysis of the OMI aerosol layer height: a pixel-by-pixel comparison to CALIOP observations

    NASA Astrophysics Data System (ADS)

    Chimot, Julien; Pepijn Veefkind, J.; Vlemmix, Tim; Levelt, Pieternel F.

    2018-04-01

    A global picture of atmospheric aerosol vertical distribution with a high temporal resolution is of key importance not only for climate, cloud formation, and air quality research studies but also for correcting scattered radiation induced by aerosols in absorbing trace gas retrievals from passive satellite sensors. Aerosol layer height (ALH) was retrieved from the OMI 477 nm O2 - O2 band and its spatial pattern evaluated over selected cloud-free scenes. Such retrievals benefit from a synergy with MODIS data to provide complementary information on aerosols and cloudy pixels. We used a neural network approach previously trained and developed. Comparison with CALIOP aerosol level 2 products over urban and industrial pollution in eastern China shows consistent spatial patterns with an uncertainty in the range of 462-648 m. In addition, we show the possibility to determine the height of thick aerosol layers released by intensive biomass burning events in South America and Russia from OMI visible measurements. A Saharan dust outbreak over sea is finally discussed. Complementary detailed analyses show that the assumed aerosol properties in the forward modelling are the key factors affecting the accuracy of the results, together with potential cloud residuals in the observation pixels. Furthermore, we demonstrate that the physical meaning of the retrieved ALH scalar corresponds to the weighted average of the vertical aerosol extinction profile. These encouraging findings strongly suggest the potential of the OMI ALH product, and in more general the use of the 477 nm O2 - O2 band from present and future similar satellite sensors, for climate studies as well as for future aerosol correction in air quality trace gas retrievals.

  18. Lidar measurements of wildfire smoke aerosols in the atmosphere above Sofia, Bulgaria

    NASA Astrophysics Data System (ADS)

    Peshev, Zahary Y.; Deleva, Atanaska D.; Dreischuh, Tanja N.; Stoyanov, Dimitar V.

    2016-01-01

    Presented are results of lidar measurements and characterization of wildfire caused smoke aerosols observed in the atmosphere above the city of Sofia, Bulgaria, related to two local wildfires raging in forest areas near the city. A lidar systems based on a frequency-doubled Nd:YAG laser operated at 532 nm and 1064 nm is used in the smoke aerosol observations. It belongs to the Sofia LIDAR Station (at Laser Radars Laboratory, Institute of Electronics, Bulgarian Academy of Sciences), being a part of the European Aerosol Lidar Network. Optical, dynamical, microphysical, and geometrical properties and parameters of the observed smoke aerosol particles and layers are displayed and analyzed, such as: range/height-resolved profiles of the aerosol backscatter coefficient; integral aerosol backscattering; sets of colormaps displaying time series of the height distribution of the aerosol density; topologic, geometric, and volumetric properties of the smoke aerosol layers; time-averaged height profiles of backscatter-related Ångström exponent (BAE). Obtained results of retrieving and profiling smoke aerosols are commented in their relations to available meteorological and air-mass-transport forecasting and modelling data.

  19. simplified aerosol representations in global modeling

    NASA Astrophysics Data System (ADS)

    Kinne, Stefan; Peters, Karsten; Stevens, Bjorn; Rast, Sebastian; Schutgens, Nick; Stier, Philip

    2015-04-01

    The detailed treatment of aerosol in global modeling is complex and time-consuming. Thus simplified approaches are investigated, which prescribe 4D (space and time) distributions of aerosol optical properties and of aerosol microphysical properties. Aerosol optical properties are required to assess aerosol direct radiative effects and aerosol microphysical properties (in terms of their ability as aerosol nuclei to modify cloud droplet concentrations) are needed to address the indirect aerosol impact on cloud properties. Following the simplifying concept of the monthly gridded (1x1 lat/lon) aerosol climatology (MAC), new approaches are presented and evaluated against more detailed methods, including comparisons to detailed simulations with complex aerosol component modules.

  20. Aerosol optical, microphysical and radiative forcing properties during variable intensity African dust events in the Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Fernández, A. J.; Molero, F.; Salvador, P.; Revuelta, A.; Becerril-Valle, M.; Gómez-Moreno, F. J.; Artíñano, B.; Pujadas, M.

    2017-11-01

    Aerosol measurements at two AERONET (AErosol RObotic NETwork) sites of the Iberian Peninsula: Madrid (40°.45N, 3.72W) and La Coruña (43°.36N, 8°.42W) have been analyzed for the period 2012-2015 to assess aerosol optical properties (intensive and extensive) throughout the atmospheric column and their radiative forcing (RF) and radiative forcing efficiency (RFeff) estimates at the Bottom and Top Of Atmosphere (BOA and TOA respectively). Specific conditions as dust-free and African dust have been considered for the study. Unprecedented, this work uses the quantification of the African dust aerosol at ground level which allows us to study such AERONET products at different intensity levels of African events: Low (L), High (H) and very high (VH). The statistical difference between dust-free and African dust conditions on the aforementioned parameters, quantified by means of the non-parametric Kolmogorov-Smirnov test, is quite clear in Madrid, however it is not in La Coruña. Scattering Angstrom Exponent (SAE) and Absorption Angstrom Exponent (AAE) were found to be 1.64 ± 0.29 and 1.14 ± 0.23 respectively in Madrid for dust-free conditions because typical aerosol sources are traffic emissions and residential heating, and black carbon is an important compound in this aerosol kind. On the other hand, SAE and AAE were 0.96 ± 0.60 and 1.44 ± 0.51 for African dust conditions in this location. RF (at shortwave radiation) seems to decrease as the African dust contribution at ground level is larger which indicates the cooling effect of African dust aerosol in Madrid. We have also proved the potential of a 2D-cluster analysis based on AAE and SAE to differentiate both situations in Madrid. Conversely, it is suggested that aerosols observed in La Coruña under dust-free conditions might come from different sources. Then, SAE and AAE are not good enough indicators to distinguish between dust-free and African dust conditions. Besides, as La Coruña is at a further distance

  1. Large-Scale Covariability Between Aerosol and Precipitation Over the 7-SEAS Region: Observations and Simulations

    NASA Technical Reports Server (NTRS)

    Huang, Jingfeng; Hsu, N. Christina; Tsay, Si-Chee; Zhang, Chidong; Jeong, Myeong Jae; Gautam, Ritesh; Bettenhausen, Corey; Sayer, Andrew M.; Hansell, Richard A.; Liu, Xiaohong; hide

    2012-01-01

    One of the seven scientific areas of interests of the 7-SEAS field campaign is to evaluate the impact of aerosol on cloud and precipitation (http://7-seas.gsfc.nasa.gov). However, large-scale covariability between aerosol, cloud and precipitation is complicated not only by ambient environment and a variety of aerosol effects, but also by effects from rain washout and climate factors. This study characterizes large-scale aerosol-cloud-precipitation covariability through synergy of long-term multi ]sensor satellite observations with model simulations over the 7-SEAS region [10S-30N, 95E-130E]. Results show that climate factors such as ENSO significantly modulate aerosol and precipitation over the region simultaneously. After removal of climate factor effects, aerosol and precipitation are significantly anti-correlated over the southern part of the region, where high aerosols loading is associated with overall reduced total precipitation with intensified rain rates and decreased rain frequency, decreased tropospheric latent heating, suppressed cloud top height and increased outgoing longwave radiation, enhanced clear-sky shortwave TOA flux but reduced all-sky shortwave TOA flux in deep convective regimes; but such covariability becomes less notable over the northern counterpart of the region where low ]level stratus are found. Using CO as a proxy of biomass burning aerosols to minimize the washout effect, large-scale covariability between CO and precipitation was also investigated and similar large-scale covariability observed. Model simulations with NCAR CAM5 were found to show similar effects to observations in the spatio-temporal patterns. Results from both observations and simulations are valuable for improving our understanding of this region's meteorological system and the roles of aerosol within it. Key words: aerosol; precipitation; large-scale covariability; aerosol effects; washout; climate factors; 7- SEAS; CO; CAM5

  2. UV-Vis-IR spectral complex refractive indices and optical properties of brown carbon aerosol from biomass burning

    NASA Astrophysics Data System (ADS)

    Sumlin, Benjamin J.; Heinson, Yuli W.; Shetty, Nishit; Pandey, Apoorva; Pattison, Robert S.; Baker, Stephen; Hao, Wei Min; Chakrabarty, Rajan K.

    2018-02-01

    Constraining the complex refractive indices, optical properties and size of brown carbon (BrC) aerosols is a vital endeavor for improving climate models and satellite retrieval algorithms. Smoldering wildfires are the largest source of primary BrC, and fuel parameters such as moisture content, source depth, geographic origin, and fuel packing density could influence the properties of the emitted aerosol. We measured in situ spectral (375-1047 nm) optical properties of BrC aerosols emitted from smoldering combustion of Boreal and Indonesian peatlands across a range of these fuel parameters. Inverse Lorenz-Mie algorithms used these optical measurements along with simultaneously measured particle size distributions to retrieve the aerosol complex refractive indices (m = n + iκ). Our results show that the real part n is constrained between 1.5 and 1.7 with no obvious functionality in wavelength (λ), moisture content, source depth, or geographic origin. With increasing λ from 375 to 532 nm, κ decreased from 0.014 to 0.003, with corresponding increase in single scattering albedo (SSA) from 0.93 to 0.99. The spectral variability of κ follows the Kramers-Kronig dispersion relation for a damped harmonic oscillator. For λ ≥ 532 nm, both κ and SSA showed no spectral dependency. We discuss differences between this study and previous work. The imaginary part κ was sensitive to changes in FPD, and we hypothesize mechanisms that might help explain this observation.

  3. Long-term study of aerosol-cloud-precipitation interaction over the eastern part of India using satellite observations during pre-monsoon season

    NASA Astrophysics Data System (ADS)

    Kant, Sunny; Panda, Jagabandhu; Pani, Shantanu Kumar; Wang, Pao K.

    2018-05-01

    This study attempts to analyze possible aerosol-cloud-precipitation interaction over the eastern part of India including Bhubaneswar city and the whole Odisha region primarily using a long-term satellite-based dataset from 2000 to 2016 during pre-monsoon period. Relationship between aerosol optical depth (AOD), rainfall, and cloud properties is examined by taking convectively driven rain events. The two-sample student's t test is used to compute "p" value of datasets that are statically significant. Role of aerosols in governing cloud properties is analyzed through the variation of COD (cloud optical depth) and CER (cloud effective radius) in the AOD ranges 0.2-0.8. A relatively stronger and affirmative AOD-CER relationship is observed over Bhubaneswar city compared to Odisha region though the aerosols still play an appreciable role for the later too. The AOD-COD relationship is weak over both the regions. For Odisha, relationships between aerosol and cloud parameters are insignificant irrespective of rainfall regimes. Fostering of heavy rainfall over these regions takes place due to invigoration and microphysical effect during pre-monsoon months, depending upon meteorological conditions. Liquid water content and presence of a mixed-phase zone, both seem to be quite important in the convectively driven precipitation over Odisha region including Bhubaneswar city.

  4. Vacuum FTIR Observation on the Dynamic Hygroscopicity of Aerosols under Pulsed Relative Humidity.

    PubMed

    Leng, Chun-Bo; Pang, Shu-Feng; Zhang, Yun; Cai, Chen; Liu, Yong; Zhang, Yun-Hong

    2015-08-04

    A novel approach based on a combination of a pulse RH controlling system and a rapid scan vacuum FTIR spectrometer (PRHCS-RSVFTIR) was utilized to investigate dynamic hygroscopicity of two atmospheric aerosols: ammonium sulfate ((NH4)2SO4) and magnesium sulfate (MgSO4). In this approach, rapid-scan infrared spectra of water vapor and aerosols were obtained to determine relative humidity (RH) in sample cell and hygroscopic property of aerosols with a subsecond time resolution. Heterogeneous nucleation rates of (NH4)2SO4 were, for the first time, measured under low RH conditions (<35% RH). In addition, studies of MgSO4 aerosols revealed that water mass transport may be limited by different processes depending on RH values (surface limited at 40% < RH < 52% and bulk phase limited at RH < 40%). Furthermore, we are also the first to report water diffusion constants in micron size MgSO4 aerosols at very low RH values. Our results have shown that the PRHCS-RSVFTIR is well-suited for determination of hygroscopicity of atmospheric aerosols and water transport and nucleation kinetics of liquid aerosols.

  5. Intercomparison and closure calculations using measurements of aerosol species and optical properties during the Yosemite Aerosol Characterization Study

    NASA Astrophysics Data System (ADS)

    Malm, William C.; Day, Derek E.; Carrico, Christian; Kreidenweis, Sonia M.; Collett, Jeffrey L.; McMeeking, Gavin; Lee, Taehyoung; Carrillo, Jacqueline; Schichtel, Bret

    2005-07-01

    Physical and optical properties of inorganic aerosols have been extensively studied, but less is known about carbonaceous aerosols, especially as they relate to the non-urban settings such as our nation's national parks and wilderness areas. Therefore an aerosol characterization study was conceived and implemented at one national park that is highly impacted by carbonaceous aerosols, Yosemite. The primary objective of the study was to characterize the physical, chemical, and optical properties of a carbon-dominated aerosol, including the ratio of total organic matter weight to organic carbon, organic mass scattering efficiencies, and the hygroscopic characteristics of a carbon-laden ambient aerosol, while a secondary objective was to evaluate a variety of semi-continuous monitoring systems. Inorganic ions were characterized using 24-hour samples that were collected using the URG and Interagency Monitoring of Protected Visual Environments (IMPROVE) monitoring systems, the micro-orifice uniform deposit impactor (MOUDI) cascade impactor, as well as the semi-continuous particle-into-liquid sampler (PILS) technology. Likewise, carbonaceous material was collected over 24-hour periods using IMPROVE technology along with the thermal optical reflectance (TOR) analysis, while semi-continuous total carbon concentrations were measured using the Rupprecht and Patashnick (R&P) instrument. Dry aerosol number size distributions were measured using a differential mobility analyzer (DMA) and optical particle counter, scattering coefficients at near-ambient conditions were measured with nephelometers fitted with PM10 and PM2.5 inlets, and "dry" PM2.5 scattering was measured after passing ambient air through Perma Pure Nafion® dryers. In general, the 24-hour "bulk" measurements of various aerosol species compared more favorably with each other than with the semi-continuous data. Semi-continuous sulfate measurements correlated well with the 24-hour measurements, but were biased low by

  6. Indirect and Semi-Direct Aerosol Campaign: The Impact of Arctic Aerosols on Clouds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McFarquhar, Greg; Ghan, Steven J.; Verlinde, J.

    2011-02-01

    A comprehensive dataset of microphysical and radiative properties of aerosols and clouds in the arctic boundary layer in the vicinity of Barrow, Alaska was collected in April 2008 during the Indirect and Semi-Direct Aerosol Campaign (ISDAC) sponsored by the Department of Energy Atmospheric Radiation Measurement (ARM) and Atmospheric Science Programs. The primary aim of ISDAC was to examine indirect effects of aerosols on clouds that contain both liquid and ice water. The experiment utilized the ARM permanent observational facilities at the North Slope of Alaska (NSA) in Barrow. These include a cloud radar, a polarized micropulse lidar, and an atmosphericmore » emitted radiance interferometer as well as instruments specially deployed for ISDAC measuring aerosol, ice fog, precipitation and spectral shortwave radiation. The National Research Council of Canada Convair-580 flew 27 sorties during ISDAC, collecting data using an unprecedented 42 cloud and aerosol instruments for more than 100 hours on 12 different days. Data were obtained above, below and within single-layer stratus on 8 April and 26 April 2008. These data enable a process-oriented understanding of how aerosols affect the microphysical and radiative properties of arctic clouds influenced by different surface conditions. Observations acquired on a heavily polluted day, 19 April 2008, are enhancing this understanding. Data acquired in cirrus on transit flights between Fairbanks and Barrow are improving our understanding of the performance of cloud probes in ice. Ultimately the ISDAC data will be used to improve the representation of cloud and aerosol processes in models covering a variety of spatial and temporal scales, and to determine the extent to which long-term surface-based measurements can provide retrievals of aerosols, clouds, precipitation and radiative heating in the Arctic.« less

  7. The Vertical Distribution of Thin Features Over the Arctic Analysed from CALIPSO Observations. Part 2; Aerosols

    NASA Technical Reports Server (NTRS)

    Devasthale, Abhya; Tjernstrom, Michael; Omar, Ali H.

    2010-01-01

    Influx of aerosols from the mid-latitudes has a wide range of impacts on the Arctic atmosphere. In this study, the capability of the CALIPSO-CALIOP instrument to provide accurate observations of aerosol layers is exploited to characterize their vertical distribution, probability density functions (PDFs) of aerosol layer thickness, base and top heights, and optical depths over the Arctic for the 4-yr period from June 2006 to May 2010. It is shown that the bulk of aerosols, from about 65% in winter to 45% in summer, are confined below the lowermost kilometer of the troposphere. In the middle troposphere (3-5 km), spring and autumn seasons show slightly higher aerosol amounts compared to other two seasons. The relative vertical distribution of aerosols shows that clean continental aerosol is the largest contributor in all seasons except in summer, when layers of polluted continental aerosols are almost as large. In winter and spring, polluted continental aerosols are the second largest contributor to the total number of observed aerosol layers, whereas clean marine aerosol is the second largest contributor in summer and autumn. The PDFs of the geometrical thickness of the observed aerosol layers peak about 400-700 m. Polluted continental and smoke aerosols, which are associated with the intrusions from mid-latitudes, have much broader distributions of optical and geometrical thicknesses, suggesting that they appear more often optically thicker and higher up in the troposphere.

  8. [Aerosol optical properties during different air-pollution episodes over Beijing].

    PubMed

    Shi, Chan-Zhen; Yu, Xing-Na; Zhou, Bin; Xiang, Lei; Nie, Hao-Hao

    2013-11-01

    Based on the 2005-2011 data from Aerosol Robotic Network (AERONET), this study conducted analysis on aerosol optical properties over Beijing during different air-pollution episodes (biomass burning, CNY firework, dust storm). The aerosol optical depth (AOD) showed notable increases in the air-pollution episodes while the AOD (at 440 nm) during dust storm was 4. 91, 4. 07 and 2.65 times higher as background, biomass burning and firework aerosols. AOD along with Angstrom exponent (alpha) can be used to determine the aerosol types. The dust aerosol had the highest AOD and the lowest alpha. The alpha value of firework (1.09) was smaller than biomass burning (1.21) and background (1.27), indicating that coarse particles were dominant in the former type. Higher AOD of burnings (than background) can be attributed to the optical extinction capability of black carbon aerosol. The single scattering albedo (SSA) was insensitive to wavelength. The SSA value of dust (0.934) was higher than background (0.878), biomass burning (0.921) and firework (0.905). Additionally, the extremely large SSA of burnings here maybe was caused by the aging smoke, hygroscopic growth and so on. The peak radius of aerosol volume size distributions were 0.1-0.2 microm and 2.24 -3.85 microm in clear and polluted conditions. The value of volume concentration ratio between coarse and fine particles was in the order of clear background (1.04), biomass burning (1.10), CNY firework (1.91) and dust storm (4.96) episode.

  9. Retrieval of Aerosol Optical Depth Above Clouds from OMI Observations: Sensitivity Analysis, Case Studies

    NASA Technical Reports Server (NTRS)

    Torres, O.; Jethva, H.; Bhartia, P. K.

    2012-01-01

    A large fraction of the atmospheric aerosol load reaching the free troposphere is frequently located above low clouds. Most commonly observed aerosols above clouds are carbonaceous particles generally associated with biomass burning and boreal forest fires, and mineral aerosols originated in arid and semi-arid regions and transported across large distances, often above clouds. Because these aerosols absorb solar radiation, their role in the radiative transfer balance of the earth atmosphere system is especially important. The generally negative (cooling) top of the atmosphere direct effect of absorbing aerosols, may turn into warming when the light-absorbing particles are located above clouds. The actual effect depends on the aerosol load and the single scattering albedo, and on the geometric cloud fraction. In spite of its potential significance, the role of aerosols above clouds is not adequately accounted for in the assessment of aerosol radiative forcing effects due to the lack of measurements. In this paper we discuss the basis of a simple technique that uses near-UV observations to simultaneously derive the optical depth of both the aerosol layer and the underlying cloud for overcast conditions. The two-parameter retrieval method described here makes use of the UV aerosol index and reflectance measurements at 388 nm. A detailed sensitivity analysis indicates that the measured radiances depend mainly on the aerosol absorption exponent and aerosol-cloud separation. The technique was applied to above-cloud aerosol events over the Southern Atlantic Ocean yielding realistic results as indicated by indirect evaluation methods. An error analysis indicates that for typical overcast cloudy conditions and aerosol loads, the aerosol optical depth can be retrieved with an accuracy of approximately 54% whereas the cloud optical depth can be derived within 17% of the true value.

  10. Retrieval of Aerosol Phase Function and Polarized Phase Function from Polarization of Skylight for Different Observation Geometries

    NASA Astrophysics Data System (ADS)

    Li, L.; Qie, L. L.; Xu, H.; Li, Z. Q.

    2018-04-01

    The phase function and polarized phase function are important optical parameters, which describe scattering properties of atmospheric aerosol particles. Polarization of skylight induced by the scattering processes is sensitive to the scattering properties of aerosols. The Stokes parameters I, Q, U and the polarized radiance Lp of skylight measured by the CIMEL dual-polar sun-sky radiometer CE318- DP can be use to retrieve the phase function and polarized phase function, respectively. Two different observation geometries (i.e., the principal plane and almucantar) are preformed by the CE318-DP to detect skylight polarization. Polarization of skylight depends on the illumination and observation geometries. For the same solar zenith angle, retrievals of the phase function and the polarized phase function are still affected by the observation geometry. The performance of the retrieval algorithm for the principal plane and almucantar observation geometries was assessed by the numerical experiments at two typical high and low sun's positions (i.e. solar zenith angles are equal to 45° and 65°). Comparing the results for the principal plane and almucantar geometries, it is recommended to utilize the principal plane observations to retrieve the phase function when the solar zenith angle is small. The Stokes parameter U and the polarized radiance Lp from the almucantar observations are suggested to retrieve the polarized phase function, especially for short wavelength channels (e.g., 440 and 500 nm).

  11. Aerosol and Cloud Observations and Data Products by the GLAS Polar Orbiting Lidar Instrument

    NASA Technical Reports Server (NTRS)

    Spinhirne, J. D.; Palm, S. P.; Hlavka, D. L.; Hart, W. D.; Mahesh, A.; Welton, E. J.

    2005-01-01

    The Geoscience Laser Altimeter System (GLAS) launched in 2003 is the first polar orbiting satellite lidar. The instrument was designed for high performance observations of the distribution and optical scattering cross sections of clouds and aerosol. The backscatter lidar operates at two wavelengths, 532 and 1064 nm. Both receiver channels meet and exceed their design goals, and beginning with a two month period through October and November 2003, an excellent global lidar data set now exists. The data products for atmospheric observations include the calibrated, attenuated backscatter cross section for cloud and aerosol; height detection for multiple cloud layers; planetary boundary layer height; cirrus and aerosol optical depth and the height distribution of aerosol and cloud scattering cross section profiles. The data sets are now in open release through the NASA data distribution system. The initial results on global statistics for cloud and aerosol distribution has been produced and in some cases compared to other satellite observations. The sensitivity of the cloud measurements is such that the 70% global cloud coverage result should be the most accurate to date. Results on the global distribution of aerosol are the first that produce the true height distribution for model inter-comparison.

  12. Characterizing Aerosol Distributions and Optical Properties Using the NASA Langley High Spectral Resolution Lidar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hostetler, Chris; Ferrare, Richard

    The objective of this project was to provide vertically and horizontally resolved data on aerosol optical properties to assess and ultimately improve how models represent these aerosol properties and their impacts on atmospheric radiation. The approach was to deploy the NASA Langley Airborne High Spectral Resolution Lidar (HSRL) and other synergistic remote sensors on DOE Atmospheric Science Research (ASR) sponsored airborne field campaigns and synergistic field campaigns sponsored by other agencies to remotely measure aerosol backscattering, extinction, and optical thickness profiles. Synergistic sensors included a nadir-viewing digital camera for context imagery, and, later in the project, the NASA Goddard Institutemore » for Space Studies (GISS) Research Scanning Polarimeter (RSP). The information from the remote sensing instruments was used to map the horizontal and vertical distribution of aerosol properties and type. The retrieved lidar parameters include profiles of aerosol extinction, backscatter, depolarization, and optical depth. Products produced in subsequent analyses included aerosol mixed layer height, aerosol type, and the partition of aerosol optical depth by type. The lidar products provided vertical context for in situ and remote sensing measurements from other airborne and ground-based platforms employed in the field campaigns and was used to assess the predictions of transport models. Also, the measurements provide a data base for future evaluation of techniques to combine active (lidar) and passive (polarimeter) measurements in advanced retrieval schemes to remotely characterize aerosol microphysical properties. The project was initiated as a 3-year project starting 1 January 2005. It was later awarded continuation funding for another 3 years (i.e., through 31 December 2010) followed by a 1-year no-cost extension (through 31 December 2011). This project supported logistical and flight costs of the NASA sensors on a dedicated aircraft, the

  13. Aerosol-Cloud Interactions in the South-East Atlantic: Knowledge Gaps, Planned Observations to Address Them, and Implications for Global Climate Change Modeling

    NASA Technical Reports Server (NTRS)

    Redemann, Jens; Wood, R.; Zuidema, P.; Haywood, J.; Luna, B.; Abel, S.

    2015-01-01

    Southern Africa produces almost a third of the Earth's biomass burning (BB) aerosol particles, yet the fate of these particles and their influence on regional and global climate is poorly understood. Particles lofted into the mid-troposphere are transported westward over the South-East (SE) Atlantic, home to one of the three permanent subtropical Stratocumulus (Sc) cloud decks in the world. The stratocumulus "climate radiators" are critical to the regional and global climate system. They interact with dense layers of BB aerosols that initially overlay the cloud deck, but later subside and are mixed into the clouds. These interactions include adjustments to aerosol-induced solar heating and microphysical effects. As emphasized in the latest IPCC report, the global representation of these aerosol-cloud interaction processes in climate models is one of the largest uncertainty in estimates of future climate. Hence, new observations over the SE Atlantic have significant implications for global climate change scenarios. We discuss the current knowledge of aerosol and cloud property distributions based on satellite observations and sparse suborbital sampling, and describe planned field campaigns in the region. Specifically, we describe the scientific objectives and implementation of the following four synergistic, international research activities aimed at providing a process-level understanding of aerosol-cloud interactions over the SE Atlantic: 1) ORACLES (Observations of Aerosols above Clouds and their interactions), a five-year investigation between 2015 and 2019 with three Intensive Observation Periods (IOP), recently funded by the NASA Earth-Venture Suborbital Program, 2) CLARIFY-2016 (Cloud-Aerosol-Radiation Interactions and Forcing: Year 2016), a comprehensive observational and modeling programme funded by the UK's Natural Environment Research Council (NERC), and supported by the UK Met Office. 3) LASIC (Layered Atlantic Smoke Interactions with Clouds), a funded

  14. Atmospheric soundings by SPICAM occultation observations: aerosol and ozone vertical profiles

    NASA Astrophysics Data System (ADS)

    Montmessin, F.

    2005-12-01

    The SPICAM instrument is a highly versatile, dual spectrometer probing both the UV and the NIR spectral region and is currently flying around Mars onboard Mars Express. Since the beginning of MEx operations, SPICAM has collected about thousand atmospheric profiles while observing in a solar or a stellar occultation mode. UV spectra bear the signatures of several species; i.e carbon dioxide, ozone and aerosols, while infrared spectra potentially bring information on atmospheric condensates and on water vapor. This presentation will focus on the measured aerosol, ozone and water vapor profiles. For the aerosol, we will emphasize the numerous observations made in the polar night and will also discuss some high altitude clouds discovered in the southern hemisphere. Ozone and water vapor profiles will be presented along with some General Circulation Model comparisons. This work has been supported by CNES.

  15. Vertical Distribution of Dust and Water Ice Aerosols from CRISM Limb-geometry Observations

    NASA Technical Reports Server (NTRS)

    Smith, Michael Doyle; Wolff, Michael J.; Clancy, Todd; Kleinbohl, Armin; Murchie, Scott L.

    2013-01-01

    [1] Near-infrared spectra taken in a limb-viewing geometry by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on board the Mars Reconnaissance Orbiter provide a useful tool for probing atmospheric structure. Specifically, the observed radiance as a function of wavelength and height above the limb enables the vertical distribution of both dust and water ice aerosols to be retrieved. More than a dozen sets of CRISM limb observations have been taken so far providing pole-to-pole cross sections, spanning more than a full Martian year. Radiative transfer modeling is used to model the observations taking into account multiple scattering from aerosols and the spherical geometry of the limb observations. Both dust and water ice vertical profiles often show a significant vertical structure for nearly all seasons and latitudes that is not consistent with the well-mixed or Conrath-v assumptions that have often been used in the past for describing aerosol vertical profiles for retrieval and modeling purposes. Significant variations are seen in the retrieved vertical profiles of dust and water ice aerosol as a function of season. Dust typically extends to higher altitudes (approx. 40-50km) during the perihelion season than during the aphelion season (<20km), and the Hellas region consistently shows more dust mixed to higher altitudes than other locations. Detached water ice clouds are common, and water ice aerosols are observed to cap the dust layer in all seasons.

  16. Aerosol cloud interactions in southeast Pacific stratocumulus: satellite observations, in situ data and regional modeling

    NASA Astrophysics Data System (ADS)

    George, Rhea

    The influence of anthropogenic aerosols on cloud radiative properties in the persistent southeast Pacific stratocumulus deck is investigated using MODIS satellite observations, in situ data from the VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx), and WRF-Chem, a regional model with interactive chemistry and aerosols. An albedo proxy is derived based on the fractional coverage of low cloud (a macrophysical field) and the cloud albedo, with the latter broken down into contributions from microphysics (cloud droplet concentration, Nd and macrophysics (liquid water path). Albedo variability is dominated by low cloud fraction variability, except within 10-15° of the South American coast, where cloud albedo variability contributes significantly. Covariance between cloud fraction and cloud albedo also contributes significantly to the variance in albedo, which highlights how complex and inseparable the factors controlling albedo are. N d variability contributes only weakly, which emphasizes that attributing albedo variability to the indirect effects of aerosols against the backdrop of natural meteorological variability is extremely challenging. Specific cases of aerosol changes can have strong impacts on albedo. We identify a pathway for periodic anthropogenic aerosol transport to the unpolluted marine stratocumulus >1000 km offshore, which strongly enhances Nd and albedo in zonally-elongated 'hook'-shaped arc. Hook development occurs with Nd increasing to polluted levels over the remote ocean primarily due to entrainment of a large number of small aerosols from the free troposphere that contribute a relatively small amount of aerosol mass to the marine boundary layer. Strong, deep offshore flow needed to transport continental aerosols to the remote ocean is favored by a trough approaching the South American coast and a southeastward shift of the climatological subtropical high pressure system. DMS significantly influences the aerosol number and

  17. Helicopter-borne observations of the continental background aerosol in combination with remote sensing and ground-based measurements

    NASA Astrophysics Data System (ADS)

    Düsing, Sebastian; Wehner, Birgit; Seifert, Patric; Ansmann, Albert; Baars, Holger; Ditas, Florian; Henning, Silvia; Ma, Nan; Poulain, Laurent; Siebert, Holger; Wiedensohler, Alfred; Macke, Andreas

    2018-01-01

    This paper examines the representativeness of ground-based in situ measurements for the planetary boundary layer (PBL) and conducts a closure study between airborne in situ and ground-based lidar measurements up to an altitude of 2300 m. The related measurements were carried out in a field campaign within the framework of the High-Definition Clouds and Precipitation for Advancing Climate Prediction (HD(CP)2) Observational Prototype Experiment (HOPE) in September 2013 in a rural background area of central Europe.The helicopter-borne probe ACTOS (Airborne Cloud and Turbulence Observation System) provided measurements of the aerosol particle number size distribution (PNSD), the aerosol particle number concentration (PNC), the number concentration of cloud condensation nuclei (CCN-NC), and meteorological atmospheric parameters (e.g., temperature and relative humidity). These measurements were supported by the ground-based 3+2 wavelength polarization lidar system PollyXT, which provided profiles of the particle backscatter coefficient (σbsc) for three wavelengths (355, 532, and 1064 nm). Particle extinction coefficient (σext) profiles were obtained by using a fixed backscatter-to-extinction ratio (also lidar ratio, LR). A new approach was used to determine profiles of CCN-NC for continental aerosol. The results of this new approach were consistent with the airborne in situ measurements within the uncertainties.In terms of representativeness, the PNSD measurements on the ground showed a good agreement with the measurements provided with ACTOS for lower altitudes. The ground-based measurements of PNC and CCN-NC are representative of the PBL when the PBL is well mixed. Locally isolated new particle formation events on the ground or at the top of the PBL led to vertical variability in the cases presented here and ground-based measurements are not entirely representative of the PBL. Based on Mie theory (Mie, 1908), optical aerosol properties under ambient conditions for

  18. UAV measurements of aerosol properties at the Cyprus institute

    NASA Astrophysics Data System (ADS)

    Neitola, Kimmo; Sciare, Jean; Keleshis, Christos; Pikridas, Michael; Argyrides, Marios; Vouterakos, Panagiotis; Antoniou, Panyiota; Apostolou, Apostolos; Savvides, Constantinos; Vrekoussis, Mihalis; Mihalopoulos, Nikos; Biskos, George; Gao, Ru-Shan; Murphy, Daniel; Schrod, Jann; Weber, Daniel; Bingemer, Heinz; Mocnik, Grisa

    2017-04-01

    Unmanned Aerial Vehicles (UAVs) provide a cost-effective and easy-to-use method to document the vertical profiles of aerosol particles and their physical and optical properties, within and above the boundary layer. These observations combined with satellite and ground data together can provide important information and model constrains regarding the impact of aerosols on the air quality and regional climate. Cyprus is a unique place to observe long-range transported pollution and dust originating from different areas (Europe, Africa, Turkey, and Middle East) and perform such aerosol profiling. The USRL team at the Cyprus Institute has recently started weekly routine flights with a newly developed UAV fleet to build a unique dataset of vertical profile observations. Instrumentation on the UAVs includes miniature Scanning Aerosol Sun Photometer (miniSASP, Murphy et al., 2015), Printed Optical Particle Spectrometer (POPS, Gao et al., 2016), Ice nuclei sampler (IN) and Dual Wavelength absorption Prototype (DWP) together with the measured meteorological parameters (P, T and RH). The UAV fleet is still expanding, as well as the instrumentation, and preliminary test flights have led to very promising results. The UAV ascend up to approximately the middle of the boundary layer, defined by LIDAR measurements at Limassol, where the UAV will fly on one altitude for several minutes ensuring stable data collection. After flying on one altitude, the UAV will continue ascending above the boundary layer, where another level flight will take place for data gathering, before descending for safe landing. The miniSASP measures the sun irradiance and sky radiance at four wavelengths (460, 550, 670 and 680nm) by doing continuous almucantar scans every 30 s. The instrument installation compensates for the pitch and roll of the UAV with 4 Hz frequency. For this reason, the flights are designed to maintain level flight conditions, to ensure proper data acquisition, and to obtain data from

  19. Aerosol Properties under Air Quality Control Measures of APEC 2014 in Beijing

    NASA Astrophysics Data System (ADS)

    Chen, X.; Xu, H.; Lv, Y.; Xie, Y.; Li, K.; Li, Z.; Li, D.; Ma, Y.; Mei, X.

    2015-12-01

    Because the economic and society were developing fast in the middle of last century, Los Angeles and London both were polluted by photochemical smog, which massacred thousands of people. Now, many regions are often covered by heavy haze in those large developing countries, especially in China and India. The Asia-Pacific Economic Cooperation (APEC) was held in Beijing during 5-11 November 2014. Beijing, Hebei, Tianjin, Shandong, Shanxi, Inner Mongolia reduced air pollution emissions for the APEC 2014 meeting held in Beijing. Only in Hebei province, there were 1028 factories stopped or restricted and 881 construction sites stopped. Half of the cars were prohibited driving even in the Zibo city which is 400 km far from Beijing. For scientific aims, these control measures were indeed a huge and uncommon atmospheric experiment led by the government. During the experiment, what did the "APEC Blue" mean? We analyzed aerosol properties with the data of an AERONET site in Beijing which is located 500m far from the main reception hall of APEC 2014. The Cimel solar photometers can give a series parameters of aerosol and water vapor. In this paper, we used CE318 solar photometer which is the main instrument of NASA AERONET. The CE318 of RADI belongs to the Chinese SONET (Sun-sky radiometer Observation NETwork) too. We analyzed the total, coarse and fine Aerosol Optical Depth (AOD), Fine-Mode Fraction (FMF) and Ångström exponent, Size Distribution and Real Refractive Index. In conclusion, the aerosol properties were analysed with the measurements of a sun photometer. During the APEC 2014, AOD decreased obviously with a 0.27 mean value compared with the annual mean 0.7. Around Beijing, the southern is polluted emission area including the cross part of Shandong, Shanxi, Hebei, Henan four provinces, and the northern is clean for less fine mode particles emission in the large Inner Mongolia province. In fact, during the APEC 2014, the weather condition was not good for the

  20. Aeronet-based Microphysical and Optical Properties of Smoke-dominated Aerosol near Source Regions and Transported over Oceans, and Implications for Satellite Retrievals of Aerosol Optical Depth

    NASA Technical Reports Server (NTRS)

    Sayer, A. M.; Hsu, N. C.; Eck, T. F.; Smirnov, A.; Holben, B. N.

    2013-01-01

    Smoke aerosols from biomass burning are an important component of the global aerosol cycle. Analysis of Aerosol Robotic Network (AERONET) retrievals of size distribution and refractive index reveals variety between biomass burning aerosols in different global source regions, in terms of aerosol particle size and single scatter albedo (SSA). Case studies of smoke transported to coastal/island AERONET sites also mostly lie within the range of variability at near-source sites. Two broad families of aerosol properties are found, corresponding to sites dominated by boreal forest burning (larger, broader fine mode, with midvisible SSA 0.95), and those influenced by grass, shrub, or crop burning with additional forest contributions (smaller, narrower particles with SSA 0.88-0.9 in the midvisible). The strongest absorption is seen in southern African savanna at Mongu (Zambia), with average SSA 0.85 in the midvisible. These can serve as candidate sets of aerosol microphysicaloptical properties for use in satellite aerosol optical depth (AOD) retrieval algorithms. The models presently adopted by these algorithms over ocean are often insufficiently absorbing to represent these biomass burning aerosols. A corollary of this is an underestimate of AOD in smoke outflow regions, which has important consequences for applications of these satellite datasets.

  1. Aerosol optical properties along the northeast coast of North America during the New England Air Quality Study-Intercontinental Transport and Chemical Transformation 2004 campaign and the influence of aerosol composition

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Rood, Mark J.; Carrico, Christian M.; Covert, David S.; Quinn, Patricia K.; Bates, Timothy S.

    2007-05-01

    Optical and hygroscopic properties of submicrometer diameter aerosol particles were measured on board the NOAA R/V Ronald H. Brown as part of the NEAQS-ITCT field campaign. The campaign occurred along the northeast coast of North America during the summer of 2004. A scanning relative humidity (RH) nephelometry system (humidograph) measured total light scattering and backscattering coefficients (σsp and σbsp, respectively) at three wavelengths (λs) and RH = 26% and while RH was scanned between 40% and 85%. These measurements were combined with aerosol light absorption and composition measurements to describe σsp, σbsp, single scattering albedo (ω), Ångström exponent (å), and hemispheric backscatter fraction (b) at a low reference RH of 26 ± 4% and the aerosol's hygroscopic properties based on its optical response up to 85% RH. Humidogram curve structure was dominated by hygroscopic growth without hysteresis (76% frequency). Dependence of the aerosol's σsp values with changes in RH, fσsp(RH, 26), was observed to decrease with increasing mass fraction of particulate organic matter (POM, FO). Statistical analyses indicated that increasing FO resulted in a less hygroscopic aerosol, while increasing molar equivalence ratio (ER) resulted in lower hysteresis factors based on the aerosols' optical responses at a 0.95 confidence level. ω showed little RH dependence while å and b decreased with increasing RH values. Values for å(λ1, λ2), b, and fσsp(82, 26) increased with increasing λ values. Sensitivities of top of the atmosphere aerosol radiative forcing to changes in ω, b, and σsp with RH were also estimated.

  2. COARSEMAP: synthesis of observations and models for coarse-mode aerosols

    NASA Astrophysics Data System (ADS)

    Wiedinmyer, C.; Lihavainen, H.; Mahowald, N. M.; Alastuey, A.; Albani, S.; Artaxo, P.; Bergametti, G.; Batterman, S.; Brahney, J.; Duce, R. A.; Feng, Y.; Buck, C.; Ginoux, P. A.; Chen, Y.; Guieu, C.; Cohen, D.; Hand, J. L.; Harrison, R. M.; Herut, B.; Ito, A.; Losno, R.; Gomez, D.; Kanakidou, M.; Landing, W. M.; Laurent, B.; Mihalopoulos, N.; Mackey, K.; Maenhaut, W.; Hueglin, C.; Milando, C.; Miller, R. L.; Myriokefaitakis, S.; Neff, J. C.; Pandolfi, M.; Paytan, A.; Perez Garcia-Pando, C.; Prank, M.; Prospero, J. M.; Tamburo, E.; Varrica, D.; Wong, M.; Zhang, Y.

    2017-12-01

    Coarse mode aerosols influence Earth's climate and biogeochemistry by interacting with long-wave radiation, promoting ice nucleation, and contributing important elements to biogeochemical cycles during deposition. Yet coarse mode aerosols have received less emphasis in the scientific literature. Here we present first efforts to globally synthesize available mass concentration, composition and optical depth data and modeling for the coarse mode aerosols (<10 µm) in a new project called "COARSEMAP" (http://www.geo.cornell.edu/eas/PeoplePlaces/Faculty/mahowald/COARSEMAP/). We seek more collaborators who have observational data, especially including elemental or composition data, and/or who are interested in detailed modeling of the coarse mode. The goal will be publications synthesizing data with models, as well as providing synthesized results to the wider community.

  3. Satellite Observations of the Effect of Natural and Anthropogenic Aerosols on Clouds

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.

    2006-01-01

    Our knowledge of atmospheric aerosols (smoke, pollution, dust or sea salt particles, small enough to be suspended in the air), their evolution, composition, variability in space and time and interaction with clouds and precipitation is still lacking despite decades of research. Understanding the global aerosol system is critical to quantifying anthropogenic climate change, to determine climate sensitivity from observations and to understand the hydrological cycle. While a single instrument was used to demonstrate 50 years ago that the global CO2 levels are rising, posing threat of global warming, we need an array of satellites and field measurements coupled with chemical transport models to understand the global aerosol system. This complexity of the aerosol problem results from their short lifetime (1 week) and variable chemical composition. A new generation of satellites provides exciting opportunities to measure the global distribution of aerosols, distinguishing natural from anthropogenic aerosol and measuring their interaction with clouds and climate.

  4. Observational insights into aerosol formation from isoprene.

    PubMed

    Worton, David R; Surratt, Jason D; Lafranchi, Brian W; Chan, Arthur W H; Zhao, Yunliang; Weber, Robin J; Park, Jeong-Hoo; Gilman, Jessica B; de Gouw, Joost; Park, Changhyoun; Schade, Gunnar; Beaver, Melinda; Clair, Jason M St; Crounse, John; Wennberg, Paul; Wolfe, Glenn M; Harrold, Sara; Thornton, Joel A; Farmer, Delphine K; Docherty, Kenneth S; Cubison, Michael J; Jimenez, Jose-Luis; Frossard, Amanda A; Russell, Lynn M; Kristensen, Kasper; Glasius, Marianne; Mao, Jingqiu; Ren, Xinrong; Brune, William; Browne, Eleanor C; Pusede, Sally E; Cohen, Ronald C; Seinfeld, John H; Goldstein, Allen H

    2013-10-15

    Atmospheric photooxidation of isoprene is an important source of secondary organic aerosol (SOA) and there is increasing evidence that anthropogenic oxidant emissions can enhance this SOA formation. In this work, we use ambient observations of organosulfates formed from isoprene epoxydiols (IEPOX) and methacrylic acid epoxide (MAE) and a broad suite of chemical measurements to investigate the relative importance of nitrogen oxide (NO/NO2) and hydroperoxyl (HO2) SOA formation pathways from isoprene at a forested site in California. In contrast to IEPOX, the calculated production rate of MAE was observed to be independent of temperature. This is the result of the very fast thermolysis of MPAN at high temperatures that affects the distribution of the MPAN reservoir (MPAN / MPA radical) reducing the fraction that can react with OH to form MAE and subsequently SOA (F(MAE formation)). The strong temperature dependence of F(MAE formation) helps to explain our observations of similar concentrations of IEPOX-derived organosulfates (IEPOX-OS; ~1 ng m(-3)) and MAE-derived organosulfates (MAE-OS; ~1 ng m(-3)) under cooler conditions (lower isoprene concentrations) and much higher IEPOX-OS (~20 ng m(-3)) relative to MAE-OS (<0.0005 ng m(-3)) at higher temperatures (higher isoprene concentrations). A kinetic model of IEPOX and MAE loss showed that MAE forms 10-100 times more ring-opening products than IEPOX and that both are strongly dependent on aerosol water content when aerosol pH is constant. However, the higher fraction of MAE ring opening products does not compensate for the lower MAE production under warmer conditions (higher isoprene concentrations) resulting in lower formation of MAE-derived products relative to IEPOX at the surface. In regions of high NOx, high isoprene emissions and strong vertical mixing the slower MPAN thermolysis rate aloft could increase the fraction of MPAN that forms MAE resulting in a vertically varying isoprene SOA source.

  5. Optical properties of mineral dust aerosol in the thermal infrared

    NASA Astrophysics Data System (ADS)

    Köhler, Claas H.

    2017-02-01

    The optical properties of mineral dust and biomass burning aerosol in the thermal infrared (TIR) are examined by means of Fourier Transform Infrared Spectrometer (FTIR) measurements and radiative transfer (RT) simulations. The measurements were conducted within the scope of the Saharan Mineral Dust Experiment 2 (SAMUM-2) at Praia (Cape Verde) in January and February 2008. The aerosol radiative effect in the TIR atmospheric window region 800-1200 cm-1 (8-12 µm) is discussed in two case studies. The first case study employs a combination of IASI measurements and RT simulations to investigate a lofted optically thin biomass burning layer with emphasis on its potential influence on sea surface temperature (SST) retrieval. The second case study uses ground based measurements to establish the importance of particle shape and refractive index for benchmark RT simulations of dust optical properties in the TIR domain. Our research confirms earlier studies suggesting that spheroidal model particles lead to a significantly improved agreement between RT simulations and measurements compared to spheres. However, room for improvement remains, as the uncertainty originating from the refractive index data for many aerosol constituents prohibits more conclusive results.

  6. Direct observation of aqueous secondary organic aerosol from biomass-burning emissions

    PubMed Central

    Massoli, Paola; Paglione, Marco; Giulianelli, Lara; Carbone, Claudio; Rinaldi, Matteo; Decesari, Stefano; Sandrini, Silvia; Costabile, Francesca; Gobbi, Gian Paolo; Pietrogrande, Maria Chiara; Visentin, Marco; Scotto, Fabiana; Fuzzi, Sandro; Facchini, Maria Cristina

    2016-01-01

    The mechanisms leading to the formation of secondary organic aerosol (SOA) are an important subject of ongoing research for both air quality and climate. Recent laboratory experiments suggest that reactions taking place in the atmospheric liquid phase represent a potentially significant source of SOA mass. Here, we report direct ambient observations of SOA mass formation from processing of biomass-burning emissions in the aqueous phase. Aqueous SOA (aqSOA) formation is observed both in fog water and in wet aerosol. The aqSOA from biomass burning contributes to the “brown” carbon (BrC) budget and exhibits light absorption wavelength dependence close to the upper bound of the values observed in laboratory experiments for fresh and processed biomass-burning emissions. We estimate that the aqSOA from residential wood combustion can account for up to 0.1–0.5 Tg of organic aerosol (OA) per y in Europe, equivalent to 4–20% of the total OA emissions. Our findings highlight the importance of aqSOA from anthropogenic emissions on air quality and climate. PMID:27551086

  7. Radiative Impact of Observed and Simulated Aerosol Layers Over the East Coast of North America

    NASA Astrophysics Data System (ADS)

    Berg, L. K.; Fast, J. D.; Burton, S. P.; Chand, D.; Comstock, J. M.; Ferrare, R. A.; Hair, J. W.; Hostetler, C. A.; Hubbe, J. M.; Kassianov, E.; Rogers, R. R.; Sedlacek, A. J., III; Shilling, J. E.; Tomlinson, J. M.; Wilson, J. M.; Zelenyuk, A.

    2014-12-01

    The vertical distribution of particles in the atmospheric column can have a large impact on the radiative forcing and cloud microphysics. A recent climatology constructed using data collected by the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) suggests elevated layers of aerosol are quite common near the North American east coast during both winter and summer. The Two-Column Aerosol Project (TCAP), conducted from June 2012 through June 2013, was a unique study utilizing both in situ and remotely sensed measurements designed to provide a comprehensive data set that can be used to investigate science questions related to aerosol radiative forcing and the vertical distribution of aerosol. The study sampled the atmosphere at a number of altitudes within two atmospheric columns; one located near the coast of North America (over Cape Cod, MA) and a second over the Atlantic Ocean several hundred kilometers from the coast. TCAP included the yearlong deployment of the U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF) located at the base of the Cape Cod column, as well as summer and winter aircraft intensive observation periods (IOPs) using the ARM Aerial Facility. One important finding from the TCAP summer IOP is the relatively common occurrence (during four of the six nearly cloud-free flights) of elevated aerosol layers in both the Cape Cod and maritime columns that were detected using the nadir pointing second-generation NASA Langley Research Center High-Spectral Resolution Lidar (HSRL-2). These elevated layers contributed up to 60% of the total observed aerosol optical depth (AOD). Many of these layers were also intercepted by the aircraft configured for in situ sampling, and the aerosol in the layers was found to have increased amounts of biomass burning material and nitrate compared to aerosol found near the surface. Both the in situ and remote sensing observations have been compared to

  8. Simultaneous Retrieval of Multiple Aerosol Parameters Using a Multi-Angular Approach

    NASA Technical Reports Server (NTRS)

    Kuo, K. S.; Weger, R. C.; Welch, R. M.

    1997-01-01

    Atmospheric aerosol particles, both natural and anthropogenic, are important to the earth's radiative balance through their direct and indirect effects. They scatter the incoming solar radiation (direct effect) and modify the shortwave reflective properties of clouds by acting as cloud condensation nuclei (indirect effect). Although it has been suggested that aerosols exert a net cooling influence on climate, this effect has received less attention than the radiative forcing due to clouds and greenhouse gases. In order to understand the role that aerosols play in a changing climate, detailed and accurate observations are a prerequisite. The retrieval of aerosol optical properties by satellite remote sensing has proven to be a difficult task. The difficulty results mainly from the tenuous nature and variable composition of aerosols. To date, with single-angle satellite observations, we can only retrieve reliably against dark backgrounds, such as over oceans and dense vegetation. Even then, assumptions must be made concerning the chemical composition of aerosols. The best hope we have for aerosol retrievals over bright backgrounds are observations from multiple angles, such as those provided by the MISR and POLDER instruments. In this investigation we examine the feasibility of simultaneous retrieval of multiple aerosol optical parameters using reflectances from a typical set of twelve angles observed by the French POLDER instrument. The retrieved aerosol optical parameters consist of asymmetry factor, single scattering albedo, surface albedo, and optical thickness.

  9. Aerosol properties over the western Mediterranean Basin: temporal and spatial variability

    NASA Astrophysics Data System (ADS)

    Lyamani, H.; Valenzuela, A.; Perez-Ramirez, D.; Toledano, C.; Granados-Muñoz, M. J.; Olmo, F. J.; Alados-Arboledas, L.

    2014-08-01

    This study focuses on the analysis of AERONET aerosol data obtained over Alborán Island (35.95° N, 3.01° W, 15 m a.s.l.) in the western Mediterranean from July 2011 to January 2012. Additional aerosol data from three nearest AERONET stations and the Maritime Aerosol Network (MAN) were also analyzed in order to investigate the aerosol temporal and spatial variations over this scarcely explored region. Aerosol load over Alborán was significantly larger than that reported for open oceanic areas not affected by long-range transport. High aerosol loads over Alborán were mainly associated with desert dust transport from North Africa and occasional advection of anthropogenic fine particles from Italy. The fine particle load observed over Alborán was surprisingly similar to that obtained over the other three nearest AERONET stations in spite of the large differences in local aerosol sources. The results from MAN acquired over the Mediterranean Sea, Black Sea and Atlantic Ocean from July to November 2011 revealed a pronounced predominance of fine particles during the cruise period. Alborán was significantly less influenced by anthropogenic particles than the Black Sea and central and eastern Mediterranean regions during the cruise period. Finally, the longer AERONET dataset from Málaga (36.71° N, 4.4° W, 40 m a.s.l.), port city in southern Spain, shows that no significant changes in columnar aerosol loads since the European Directive on ship emissions was implemented in 2010 were observed over this site.

  10. Indirect and semi-direct aerosol campaign: The impact of Arctic aerosols on clouds

    DOE PAGES

    McFarquhar, Greg M.; Ghan, Steven; Verlinde, Johannes; ...

    2011-02-01

    A comprehensive dataset of microphysical and radiative properties of aerosols and clouds in the boundary layer in the vicinity of Barrow, Alaska, was collected in April 2008 during the Indirect and Semi-Direct Aerosol Campaign (ISDAC). ISDAC's primary aim was to examine the effects of aerosols, including those generated by Asian wildfires, on clouds that contain both liquid and ice. ISDAC utilized the Atmospheric Radiation Measurement Pro- gram's permanent observational facilities at Barrow and specially deployed instruments measuring aerosol, ice fog, precipitation, and radiation. The National Research Council of Canada Convair-580 flew 27 sorties and collected data using an unprecedented 41more » stateof- the-art cloud and aerosol instruments for more than 100 h on 12 different days. Aerosol compositions, including fresh and processed sea salt, biomassburning particles, organics, and sulfates mixed with organics, varied between flights. Observations in a dense arctic haze on 19 April and above, within, and below the single-layer stratocumulus on 8 and 26 April are enabling a process-oriented understanding of how aerosols affect arctic clouds. Inhomogeneities in reflectivity, a close coupling of upward and downward Doppler motion, and a nearly constant ice profile in the single-layer stratocumulus suggests that vertical mixing is responsible for its longevity observed during ISDAC. Data acquired in cirrus on flights between Barrow and Fairbanks, Alaska, are improving the understanding of the performance of cloud probes in ice. Furthermore, ISDAC data will improve the representation of cloud and aerosol processes in models covering a variety of spatial and temporal scales, and determine the extent to which surface measurements can provide retrievals of aerosols, clouds, precipitation, and radiative heating.« less

  11. The GAW Aerosol Lidar Observation Network (GALION) as a source of near-real time aerosol profile data for model evaluation and assimilation

    NASA Astrophysics Data System (ADS)

    Hoff, R. M.; Pappalardo, G.

    2010-12-01

    In 2007, the WMO Global Atmospheric Watch’s Science Advisory Group on Aerosols described a global network of lidar networks called GAW Aerosol Lidar Observation Network (GALION). GALION has a purpose of providing expanded coverage of aerosol observations for climate and air quality use. Comprised of networks in Asia (AD-NET), Europe (EARLINET and CIS-LINET), North America (CREST and CORALNET), South America (ALINE) and with contribution from global networks such as MPLNET and NDACC, the collaboration provides a unique capability to define aerosol profiles in the vertical. GALION is designed to supplement existing ground-based and column profiling (AERONET, PHOTONS, SKYNET, GAWPFR) stations. In September 2010, GALION held its second workshop and one component of discussion focussed how the network would integrate into model needs. GALION partners have contributed to the Sand and Dust Storm Warning and Analysis System (SDS-WAS) and to assimilation in models such as DREAM. This paper will present the conclusions of those discussions and how these observations can fit into a global model analysis framework. Questions of availability, latency, and aerosol parameters that might be ingested into models will be discussed. An example of where EARLINET and GALION have contributed in near-real time observations was the suite of measurements during the Eyjafjallajokull eruption in Iceland and its impact on European air travel. Lessons learned from this experience will be discussed.

  12. Vertical distribution of Martian aerosols from SPICAM/Mars-Express limb observations

    NASA Astrophysics Data System (ADS)

    Fedorova, A.; Korablev, O.; Bertaux, J.-L.; Rodin, A.; Perrier, S.; Moroz, V. I.

    Limb spectroscopic observations provide invaluable information about vertical distribution of main atmospheric components in the Martian atmosphere, in particular vertical distribution and structure of aerosols, which play an important role in the heat balance of the planet. Only limited set of successful limb spectroscopic observations have been carried out on Mars so far, including those by MGS/TES spectrometer and Thermoscan and Auguste experiments of Phobos mission. Currently SPICAM instrument onboard Mars-Express spacecraft has accomplished several sequences of limb observations. First analysis of limb sounding data received by SPICAM IR and UV channels, which imply the presence of fine, deep, optically thin aerosol fraction extended over broad range of altitudes, is presented.

  13. Aerosol Size, CCN, and Black Carbon Properties at a Coastal Site in the Eastern U.S.

    NASA Astrophysics Data System (ADS)

    Royalty, T. M.; Petters, M. D.; Grieshop, A. P.; Meskhidze, N.; Reed, R. E.; Phillips, B.; Dawson, K. W.

    2015-12-01

    Atmospheric aerosols play an important role in regulating the global radiative budget through direct and indirect effects. To date, the role of sea spray aerosols in modulating climate remains poorly understood. Here we present results from measurements performed at the United States Army Corps of Engineers' Field Research Facility in Duck, North Carolina, USA. Aerosol mobility size distributions (10-600 nm), refractory black carbon (rBC) and scattering particle size distributions (200-620 nm), and size resolved cloud condensation nuclei distributions (.07% - .6% supersaturation) were collected at the end of a 560m pier. Aerosol characteristics associated with northerly, high wind speed (15+ m s-1) flow originating from an oceanic trajectory are contrasted with aerosol properties observed during a weak to moderate westerly flow originating from a continental trajectory. Both marine and continental air masses had aerosol with bi-modal number size distributions with modes centered at 30nm and 140nm. In the marine air-mass, the CCN concentration at supersaturation of 0.4%, total aerosol number, surface, and volume concentration were low. rBC number concentration (D > 200 nm) associated with the marine air-mass was an order of magnitude less than continental number concentration and indicative of relatively unpolluted air. These measurements are consistent with measurements from other coastal sites under marine influence. The relative proportion of Aitken mode size particles increased from 1:2 to 2:1 while aerosol surface area was < 25 μm2 cm-3, suggesting that conditions upwind were potentially conducive to new particle formation. Overall, these results will contribute a better understanding to composition and size variation of marine aerosols.

  14. Interpreting the Ultraviolet Aerosol Index Observed with the OMI Satellite Instrument to Understand Absorption by Organic Aerosols: Implications for Atmospheric Oxidation and Direct Radiative Effects

    NASA Technical Reports Server (NTRS)

    Hammer, Melanie S.; Martin, Randall V.; Donkelaar, Aaron van; Buchard, Virginie; Torres, Omar; Ridley, David A.; Spurr, Robert J. D.

    2016-01-01

    Satellite observations of the ultraviolet aerosol index (UVAI) are sensitive to absorption of solar radiation by aerosols; this absorption affects photolysis frequencies and radiative forcing. We develop a global simulation of the UVAI using the 3-D chemical transport model GEOSChem coupled with the Vector Linearized Discrete Ordinate Radiative Transfer model (VLIDORT). The simulation is applied to interpret UVAI observations from the Ozone Monitoring Instrument (OMI) for the year 2007. Simulated and observed values are highly consistent in regions where mineral dust dominates the UVAI, but a large negative bias (-0.32 to -0.97) exists between simulated and observed values in biomass burning regions. We determine effective optical properties for absorbing organic aerosol, known as brown carbon (BrC), and implement them into GEOS-Chem to better represent observed UVAI values over biomass burning regions. The inclusion of absorbing BrC decreases the mean bias between simulated and OMI UVAI values from -0.57 to -0.09 over West Africa in January, from -0.32 to +0.0002 over South Asia in April, from -0.97 to -0.22 over southern Africa in July, and from -0.50 to +0.33 over South America in September. The spectral dependence of absorption after including BrC in the model is broadly consistent with reported observations for biomass burning aerosol, with absorbing Angstrom exponent (AAE) values ranging from 2.9 in the ultraviolet (UV) to 1.3 across the UV-Near IR spectrum. We assess the effect of the additional UV absorption by BrC on atmospheric photochemistry by examining tropospheric hydroxyl radical (OH) concentrations in GEOS-Chem. The inclusion of BrC decreases OH by up to 30% over South America in September, up to 20% over southern Africa in July, and up to 15% over other biomass burning regions. Global annual mean OH concentrations in GEOS-Chem decrease due to the presence of absorbing BrC, increasing the methyl chloroform lifetime from 5.62 to 5.68 years, thus

  15. Reconciling the aerosol-liquid water path relationship in the ECHAM6-HAM GCM and the Aerosol_cci/Cloud_cci (A)ATSR dataset by minimizing the effect of aerosol swelling

    NASA Astrophysics Data System (ADS)

    Neubauer, D.; Christensen, M.; Lohmann, U.; Poulsen, C. A.

    2016-12-01

    Studies using present day variability to assess statistical relationships between aerosol and cloud properties find different strengths of these relationships between satellite data and general circulation model (GCM) data. This discrepancy can be explained by structural uncertainties due to differences in the analysis/observational scale and the process scale or spurious relationships between aerosol and cloud properties. Such spurious relationships are the growth of aerosol particles in the humid environment surrounding clouds, misclassification of partly cloudy satellite pixels as cloud free pixels, brightening of aerosol particles by sunlight reflected at cloud edges, or effects of clouds on aerosol like processing of aerosol particles in clouds by nucleation or impact scavenging and subsequent growth by heterogeneous chemistry and release by cloud droplet evaporation or wet scavenging of aerosol particles. To minimize the effects of spatial aggregation and spurious relationships we apply a new nearest neighbour approach to high resolution (A)ATSR datasets from the Aerosol_cci and Cloud_cci projects of the Climate Change Initiative (CCI) programme of ESA. For the ECHAM6-HAM GCM we quantify the impact of using dry aerosol (without aerosol water) in the analysis to mimic the effect of the nearest neighbour approach. The aerosol-liquid water path relationship in ECHAM6-HAM is systematically stronger than in (A)ATSR data and cannot be explained by an overestimation of autoconversion when using diagnostic precipitation but rather by aerosol swelling in regions where humidity is high and clouds are present. When aerosol water is removed from the analysis in ECHAM6-HAM the strength of the aerosol-liquid water path relationship agrees much better with the ones of (A)ATSR or MODIS. We further find that while the observed relationships of different satellite sensors ((A)ATSR vs. MODIS) are not always consistent for tested environmental conditions the relationships in

  16. Analysis of Aerosol Physical and Chemical Properties on the Coast of the Japanese Sea (Tango peninsula) during ACE-Asia

    NASA Astrophysics Data System (ADS)

    Tohno, S.; Hoeller, R.; Ito, K.; Onishi, Y.; Ma, C. J.; Kasahara, M.; Cahill, T. A.; Cliff, S.

    2001-12-01

    During springtime the Japanese archipelago is periodically influenced by haze events originating from the Asian continent. The sources of these materials include both anthropogenic and natural aerosol, including the well-known yellow sand (Kosa) events, which can be recognized at places as far as Hawaii and the west coast of the United States. But there is also strong evidenced, which we want to support in this study, that these Kosa events are accompanied by strongly absorbing material as well as sulfates and organics. The springtime of 2001 was characterized by several strong dust events, which happened to be during the international ACE-Asia campaign. We participated in the ACE observation network by setting up a monitoring station during the period March 19 to April 6, 2001 for the measurement of aerosol optical, physical and chemical properties as well as observations of sky radiation. The measurement site is located on the coast of the Japanese Sea (Tango Peninsula, Kyoto Prefecture). Tango was chosen as an observation site, since it is relatively unpolluted and can therefore serve as a background site for studies of the direct impact of the mainland Asian outflow on the western Pacific area. The purpose of this work is to perform local and column closure experiments on aerosol properties, and to distinguish the anthropogenic part of the aerosol from the natural one. For this purpose, backward air-mass trajectories are calculated to identify potential sources of the observed aerosol. For measurements of aerosol mass-size distributions we used 12-stage low-pressure impactors, which were subsequently analyzed for elemental and ionic concentrations by PIXE, and Ion-chromatography, respectively. In addition, to get both the necessary time- and size-resolution, a DRUM sampler was operated with continuous collection and analysis for mass and optical transmission from 320 nm to 850 nm. Analysis is scheduled by synchrotron-XRF to < 0.1 ng/m3 for trace elemental

  17. Generating Aerosol Data Products from Airborne in-situ Observations made during 2011 DISCOVER-AQ Field Campaign

    NASA Astrophysics Data System (ADS)

    Thornhill, K. L.; Anderson, B. E.; Winstead, E. L.; Chen, G.; Beyersdorf, A. J.; Ziemba, L. D.

    2011-12-01

    In July 2011, the first of four DISCOVER-AQ (Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality) planned field campaigns was completed. The investigation is a broad collaboration between federal and state agencies and academic institutions with the primary goal of improving the interpretation of satellite observations of surface-level trace gas and aerosol parameters by making detailed correlative measurements from aircraft and ground-based instruments in urban regions plagued by air-quality issues. Phase I studied the air-quality of the lower troposphere in and around the Washington, D.C. and Baltimore areas along the I-95 corridor. In-situ airborne data is essential in providing a link between the broad swath satellite measurements and the measurements made by ground based sensors. This is accomplished by examining the relationship between column-integrated values obtained through in-situ sampling and surface measured values, as aircraft can fully characterize atmospheric chemical/aerosol constituents at a given time and location. To that end, the NASA P-3B was instrumented to record fast-response measurements of various gas-phase tracers and aerosol characteristics of pollution. A flight pattern was created and executed for each of the 14 research flights that had the P-3B performing a series of spiral ascents/descents over six ground sites to perform detailed vertical characterizations of the chemical and aerosol structure. The in-situ aerosol characterization was performed by the NASA Langley Aerosol Research Group Experiment (LARGE) using 15 instruments to measure aerosol microphysical, chemical and optical properties. In this presentation we discuss the process in which aerosol science data is generated, from the collection of more than 10 GB of data per 8 hour flight, to the initial QA/QC required to produce a preliminary data product within 24 hours of landing, through final data submission

  18. Influence of air mass origin on aerosol properties at a remote Michigan forest site

    NASA Astrophysics Data System (ADS)

    VanReken, T. M.; Mwaniki, G. R.; Wallace, H. W.; Pressley, S. N.; Erickson, M. H.; Jobson, B. T.; Lamb, B. K.

    2015-04-01

    The northern Great Lakes region of North America is a large, relatively pristine area. To date, there has only been limited study of the atmospheric aerosol in this region. During summer 2009, a detailed characterization of the atmospheric aerosol was conducted at the University of Michigan Biological Station (UMBS) as part of the Community Atmosphere-Biosphere Interactions Experiment (CABINEX). Measurements included particle size distribution, water-soluble composition, and CCN activity. Aerosol properties were strongly dependent on the origin of the air masses reaching the site. For ∼60% of the study period, air was transported from sparsely populated regions to the northwest. During these times aerosol loadings were low, with mean number and volume concentrations of 1630 cm-3 and 1.91 μm3 cm-3, respectively. The aerosol during clean periods was dominated by organics, and exhibited low hygroscopicities (mean κ = 0.18 at s = 0.3%). When air was from more populated regions to the east and south (∼29% of the time), aerosol properties reflected a stronger anthropogenic influence, with 85% greater particle number concentrations, 2.5 times greater aerosol volume, six times more sulfate mass, and increased hygroscopicity (mean к = 0.24 at s = 0.3%). These trends are have the potential to influence forest-atmosphere interactions and should be targeted for future study.

  19. Influence of air mass origin on aerosol properties at a remote Michigan forest site

    DOE PAGES

    VanReken, T. M.; Mwaniki, G. R.; Wallace, H. W.; ...

    2015-02-10

    The northern Great Lakes region of North America is a large, relatively pristine area. To date, there has only been limited study of the atmospheric aerosol in this region. During summer 2009, a detailed characterization of the atmospheric aerosol was conducted at the University of Michigan Biological Station (UMBS) as part of the Community Atmosphere–Biosphere Interactions Experiment (CABINEX). Measurements included particle size distribution, water-soluble composition, and CCN activity. Aerosol properties were strongly dependent on the origin of the air masses reaching the site. For ~60% of the study period, air was transported from sparsely populated regions to the northwest. Duringmore » these times aerosol loadings were low, with mean number and volume concentrations of 1630 cm -3 and 1.91 μm 3 cm -3, respectively. The aerosol during clean periods was dominated by organics, and exhibited low hygroscopicities (mean κ = 0.18 at s = 0.3%). When air was from more populated regions to the east and south (~29% of the time), aerosol properties reflected a stronger anthropogenic influence, with 85% greater particle number concentrations, 2.5 times greater aerosol volume, six times more sulfate mass, and increased hygroscopicity (mean к = 0.24 at s = 0.3%). Furthermore, these trends are have the potential to influence forest–atmosphere interactions and should be targeted for future study.« less

  20. Discussion of vicarious calibration of GOSAT/TANSO-CAI UV-band (380nm) and aerosol retrieval in wildfire region in the OCO-2 and GOSAT observation campaign at Railroad Valley in 2016

    NASA Astrophysics Data System (ADS)

    Hashimoto, M.; Kuze, A.; Bruegge, C. J.; Shiomi, K.; Kataoka, F.; Kikuchi, N.; Arai, T.; Kasai, K.; Nakajima, T.

    2016-12-01

    The GOSAT (Greenhouse Gases Observing Satellite) / TANSO-CAI (Cloud and Aerosol Imager, CAI) is an imaging sensor to measure cloud and aerosol properties and observes reflected sunlight from the atmosphere and surface of the ground. The sensor has four bands from near ultraviolet (near-UV) to shortwave infrared, 380, 674, 870 and 1600nm. The field of view size is 0.5 km for band-1 through band-3, and 1.5km for band-4. Band-1 (380nm) is one of unique function of the CAI. The near-UV observation offers several advantages for the remote sensing of aerosols over land: Low reflectance of most surfaces; Sensitivity to absorbing aerosols; Absorption of trace gases is weak (Höller et al., 2004). CAI UV-band is useful to distinguish absorbing aerosol (smoke) from cloud. GOSAT-2/TANSO-CAI-2 that will be launched in the future also has UV-bands, 340 and 380nm. We carried out an experiment to calibrate CAI UV-band radiance using data taken in a field campaign of OCO-2 and GOSAT at Railroad Valley in 2016. The campaign period is June 27 to July 3 in 2016. We measured surface reflectance by using USB4000 Spectrometer with 74-UV collimating lens (Ocean Optics) and Spectralon (Labsphere). USB4000 is a UV spectrometer, and its measurement range from 300 to 520nm. We simulated CAI UV-band radiance using a vector type of radiation transfer code, i.e. including polarization calculation, pstar3 (Ota et al., 2010) using measured surface reflectance and atmospheric data, pressure and relative humidity by radiosonde in the same campaign, and aerosol optical depth by AERONET, etc. Then, we evaluated measured UV radiances with the simulated data. We show the result of vicarious calibration of CAI UV-band in the campaign, and discuss about this method for future sensor, CAI-2. Around the campaign period, there was wildfire around Los Angeles, and aerosol optical thickness (AOT) observed by AERONET at Rail Road valley and Caltech sites is also high. We tried to detect and retrieve aerosol