These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

LOSA-M2 aerosol Raman lidar  

SciTech Connect

The scanning LOSA-M2 aerosol Raman lidar, which is aimed at probing atmosphere at wavelengths of 532 and 1064 nm, is described. The backscattered light is received simultaneously in two regimes: analogue and photon-counting. Along with the signals of elastic light scattering at the initial wavelengths, a 607-nm Raman signal from molecular nitrogen is also recorded. It is shown that the height range of atmosphere probing can be expanded from the near-Earth layer to stratosphere using two (near- and far-field) receiving telescopes, and analogue and photon-counting lidar signals can be combined into one signal. Examples of natural measurements of aerosol stratification in atmosphere along vertical and horizontal paths during the expeditions to the Gobi Desert (Mongolia) and Lake Baikal areas are presented.

Balin, Yu S; Bairashin, G S; Kokhanenko, G P; Penner, I E; Samoilova, S V [V.E. Zuev Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences, Tomsk (Russian Federation)

2011-10-31

2

2.1 RAMAN LIDAR PROFILING OF WATER VAPOR AND AEROSOLS OVER THE ARM SGP SITE  

E-print Network

2.1 RAMAN LIDAR PROFILING OF WATER VAPOR AND AEROSOLS OVER THE ARM SGP SITE Richard A. Ferrare *1-the-clock profiling of water vapor and aerosols (Goldsmith et al., 1998). These Raman lidar profiles are important; Turner et al., 1999). These aerosol and water vapor profiles (Raman lidar) and temperature profiles (AERI

3

Scanning Raman lidar measurements of atmospheric water vapor and aerosols  

SciTech Connect

The principal objective of the Department of Energy`s (DOE) Atmospheric Radiation Measurement Program (ARM) is to develop a better understanding of the atmospheric radiative balance in order to improve the parameterization of radiative processes in general circulation models (GCMs) which are used to study climate change. Meeting this objective requires detailed measurements of both water vapor and aerosols since these atmospheric constituents affect the radiation balance directly, through scattering and absorption of solar and infrared radiation, and indirectly, through their roles in cloud formation and dissipation. Over the past several years, we have been investigating how the scanning Raman lidar developed at the NASA/Goddard Space Flight Center (GSFC) can provide the water vapor and aerosol measurements necessary for such modeling. The lidar system has provided frequent, high resolution profiles of atmospheric water vapor and aerosols in nighttime operations during two recent field experiments. The first experiment was ATMIS-11 (Atmospheric Moisture Intercomparison Study) conducted in July-August 1992, and the second was the Convection and Moisture Experiment (CAMEX) conducted during September-October 1993. We present a brief description of the lidar system and examples of the water vapor and aerosol measurements acquired during these experiments.

Ferrare, R.A.; Evans, K.D. [Hughes STX Corp., Lanham, MD (United States); Melfi, S.H.; Whiteman, D.N. [NASA/Goddard Space Flight Center, Greenbelt, MD (United States)

1995-04-01

4

Ice formation in Saharan dust over central Europe observed with temperature//humidity//aerosol Raman lidar  

E-print Network

. For the first time, an aerosol/cloud study presents height profiles of temperature, water vapor mixing ratio//humidity//aerosol Raman lidar Albert Ansmann, Ina Mattis, Detlef Mu¨ller, Ulla Wandinger, Marcus Radlach, and Dietrich-wave-induced clouds and a glaciating altocumulus layer were continuously monitored with lidar at Leipzig, Germany

Damoah, Richard

5

Raman-shifted eye-safe aerosol lidar.  

PubMed

The design features of, and first observations from, a new elastic backscatter lidar system at a wavelength of 1543 nm are presented. The transmitter utilizes stimulated Raman scattering in high-pressure methane to convert fundamental Nd:YAG radiation by means of the 1st Stokes shift. The wavelength-converting gas cell features multipass operation and internal fans. Unlike previous lidar developments that used Raman scattering in methane, the pump beam is not focused in the present configuration. This feature prevents optical breakdown of the gas inside the cell. Additionally, the gas cell is injection seeded by a diode to improve conversion efficiency and beam quality. The receiver uses a 40.6-cm-diameter telescope and a 200-microm InGaAs avalanche photodiode. The system is capable of operating in a dual-wavelength mode (1064 and 1543 nm simultaneously) for comparison or in a completely eye-safe mode. The system is capable of transmitting an energy of more than 200 mJ/pulse at 10 Hz. Aerosol backscatter data from vertical and horizontal pointing periods are shown. PMID:15250558

Mayor, Shane D; Spuler, Scott M

2004-07-01

6

Measurements of Stratospheric Pinatubo Aerosol Extinction Profiles by a Raman Lidar  

NASA Technical Reports Server (NTRS)

The Raman lidar has been used for remote measurements of water vapor, ozone and atmospheric temperature in the lower troposphere because the Raman cross section is three orders smaller than the Rayleigh cross section. We estimated the extinction coefficients of the Pinatubo volcanic aerosol in the stratosphere using a Raman lidar. If the precise aerosol extinction coefficients are derived, the backscatter coefficient of a Mie scattering lidar will be more accurately estimated. The Raman lidar has performed to measure density profiles of some species using Raman scattering. Here we used a frequency-doubled Nd:YAG laser for transmitter and received nitrogen vibrational Q-branch Raman scattering signal. Ansmann et al. (1990) derived tropospherical aerosol extinction profiles with a Raman lidar. We think that this method can apply to dense stratospheric aerosols such as Pinatubo volcanic aerosols. As dense aerosols are now accumulated in the stratosphere by Pinatubo volcanic eruption, the error of Ramen lidar signal regarding the fluctuation of air density can be ignored.

Abo, Makoto; Nagasawa, Chikao

1992-01-01

7

Raman lidar measurements of Pinatubo aerosols over southeastern Kansas during November?December 1991  

Microsoft Academic Search

aerosols. In this paper we discuss measurements of the Pinatubo aerosols made by a new Raman lidar system developed at NASA\\/GSFC. We report measurements of scattering ratio, backscattering, extinction, extinction\\/backscattering ratio, and optical thiclmess of these aerosols made by this system while deployed in southeastern Kansas during November and

R. A. Ferrare; S. H. Melfi; D. N. Whiteman; K. D. Evans

1992-01-01

8

Suggestion for qualitative lidar identification of different types of aerosol using the two-wavelength rotational Raman and elastic lidar  

Microsoft Academic Search

Aerosols are important parameters in the meteorological and environmental fields, and remote aerosol identification is extremely desirable. We have proposed and designed a two-wavelength (355 and 532nm) rotational Raman and elastic lidar that can measure the wavelength dependence of the aerosol backscattering coefficient without any assumptions about the Ångström coefficient or the overlapping function from low (100m) to high (10km)

Dukhyeon Kim; Hyungki Cha

2006-01-01

9

Aerosol products by CALIOP at 532 nm and by a ground-based Raman lidar at 355 nm: Intercomparison methodology  

Microsoft Academic Search

A methodology has been implemented to compare ground-based Raman lidar measurements at 355nm to measurements at 532nm with the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) onboard the Cloud-Aerosol-Lidar and Infrared-Pathfinder-Satellite-Observation (CALIPSO) and contribute to the validation of level 2 (version 2) aerosol products. In particular, lidar measurements performed at Lecce (40°20?N, 18°6?E) in 2006, 2008, and 2009 within the European

M. R. Perrone; F. De Tomasi; P. Burlizzi

2011-01-01

10

New Examination of the Raman Lidar Technique for Water Vapor and Aerosols. Paper 1; Evaluating the Temperature Dependent Lidar Equations  

NASA Technical Reports Server (NTRS)

The intent of this paper and its companion is to compile together the essential information required for the analysis of Raman lidar water vapor and aerosol data acquired using a single laser wavelength. In this first paper several details concerning the evaluation of the lidar equation when measuring Raman scattering are considered. These details include the influence of the temperature dependence of both pure rotational and vibrational-rotational Raman scattering on the lidar profile. These are evaluated for the first time using a new form of the lidar equation. The results indicate that, for the range of temperatures encountered in the troposphere, the magnitude of the temperature dependent effect can reach 10% or more for narrowband Raman water vapor measurements. Also the calculation of atmospheric transmission is examined carefully including the effects of depolarization. Different formulations of Rayleigh cross section determination commonly used in the lidar field are compared revealing differences up to 5% among the formulations. The influence of multiple scattering on the measurement of aerosol extinction using the Raman lidar technique is considered as are several photon pulse-pileup correction techniques.

Whiteman, David N.

2003-01-01

11

Mie-Rayleigh-Raman lidar for measurement of atmospheric temperature and aerosol extinction  

Microsoft Academic Search

A Mie-Rayleigh-Raman lidar contains a 200mJ-532nm laser, a 400mm telescope and three detection channels was constructed in this paper. The three detection channels are Mie channel, Rayleigh channel and Raman channel respectively. For the intensity of the aerosol backscattering in boundary layers, analog PMT is used in the Mie channel, from the signal of the analog PMT aerosol extinction can

Lingbing Bu; Xingyou Huang; Nianwen Cao; Jiansong Huang; Li Guan; Kunling Shan

2009-01-01

12

Raman lidar profiling of water vapor and aerosols over the ARM SGP Site  

SciTech Connect

The authors have developed and implemented automated algorithms to retrieve profiles of water vapor mixing ratio, aerosol backscattering, and aerosol extinction from Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) Raman Lidar data acquired during both daytime and nighttime operations. The Raman lidar sytem is unique in that it is turnkey, automated system designed for unattended, around-the-clock profiling of water vapor and aerosols. These Raman lidar profiles are important for determining the clear-sky radiative flux, as well as for validating the retrieval algorithms associated with satellite sensors. Accurate, high spatial and temporal resolution profiles of water vapor are also required for assimilation into mesoscale models to improve weather forecasts. The authors have also developed and implemented routines to simultaneously retrieve profiles of relative humidity. These routines utilize the water vapor mixing ratio profiles derived from the Raman lidar measurements together with temperature profiles derived from a physical retrieval algorithm that uses data from a collocated Atmospheric Emitted Radiance Interferometer (AERI) and the Geostationary Operational Environmental Satellite (GOES). These aerosol and water vapor profiles (Raman lidar) and temperature profiles (AERI+GOES) have been combined into a single product that takes advantage of both active and passive remote sensors to characterize the clear sky atmospheric state above the CART site.

Ferrare, R.A.

2000-01-09

13

RAMAN LIDAR PROFILING OF WATER VAPOR AND AEROSOLS OVER THE ARM SGP SITE.  

SciTech Connect

We have developed and implemented automated algorithms to retrieve profiles of water vapor mixing ratio, aerosol backscattering, and aerosol extinction from Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) Raman Lidar data acquired during both daytime and nighttime operations. This Raman lidar system is unique in that it is turnkey, automated system designed for unattended, around-the-clock profiling of water vapor and aerosols (Goldsmith et al., 1998). These Raman lidar profiles are important for determining the clear-sky radiative flux, as well as for validating the retrieval algorithms associated with satellite sensors. Accurate, high spatial and temporal resolution profiles of water vapor are also required for assimilation into mesoscale models to improve weather forecasts. We have also developed and implemented routines to simultaneously retrieve profiles of relative humidity. These routines utilize the water vapor mixing ratio profiles derived from the Raman lidar measurements together with temperature profiles derived from a physical retrieval algorithm that uses data from a collocated Atmospheric Emitted Radiance Interferometer (AERI) and the Geostationary Operational Environmental Satellite (GOES) (Feltz et al., 1998; Turner et al., 1999). These aerosol and water vapor profiles (Raman lidar) and temperature profiles (AERI+GOES) have been combined into a single product that takes advantage of both active and passive remote sensors to characterize the clear sky atmospheric state above the CART site.

FERRARE,R.A.

2000-01-09

14

Improved method to retrieve aerosol optical properties from combined elastic backscatter and Raman lidar data  

NASA Astrophysics Data System (ADS)

An improved method that has the potential to improve the retrieval of aerosol optics properties (backscatter/extinction coefficients) from elastic-Raman lidar data is presented. Aerosol backscatter coefficients can be retrieved by choosing the reference height at near-range rather than conventional far-range when the signal-to-noise ratios are low at the far-range or aloft aerosol layers and clouds appear there. Significant retrieval errors in aerosol backscatter coefficients caused by large uncertainties of the aerosol reference value at far-range can be reduced. To avoid the ill-posed retrievals of aerosol extinction from the conventional Raman method, the new method derives the aerosol extinction and lidar ratio with the constrained Fernald inversions by independent aerosol backscatter coefficients from above proposed method. The numerical simulations demonstrated that the proposed method provides good accuracy and resolution of aerosol profile retrievals. And the method is also applied to elastic-Raman lidar measurements at the Hampton University, Hampton, Virginia.

Su, Jia; Wu, Yonghua; McCormick, M. Patrick; Lei, Liqiao; Lee, Robert B.

2014-07-01

15

Atmospheric aerosol characterization combining multi-wavelength Raman lidar and MAX-DOAS measurements in Gwanjgu  

NASA Astrophysics Data System (ADS)

Integrated approach has been adopted at the ADvanced Environmental Research Center (ADEMRC), Gwangju Institute of Science and Technology (GIST), Korea for effective monitoring of atmospheric aerosol. Various active and passive optical remote sensing techniques such as multi-wavelength (3?+2?+1?) Raman LIDAR, sun-photometry, MAX-DOAS, and satellite retrieval have been utilized. This integrated monitoring system approach combined with in-situ surface measurement is to allow better characterization of physical and optical properties of atmospheric aerosol. Information on the vertical distribution and microphysical properties of atmospheric aerosol is important for understanding its transport characteristics as well as radiative effect. The GIST multi-wavelength (3? + 2?+1?) Raman lidar system can measure vertical profiles of optical properties of atmospheric aerosols such as extinction coefficients at 355 and 532nm, particle backscatter coefficients at 355, 532 and 1064 nm, and depolarization ratio at 532nm. The incomplete overlap between the telescope field-of-view and beam divergence of the transmitting laser significantly affects lidar measurement, resulting in higher uncertainty near the surface where atmospheric aerosols of interest are concentrated. Differential Optical Absorption Spectroscopy (DOAS) technique is applied as a complementary tool for the detection of atmospheric aerosols near the surface. The passive Multi-Axis DOAS (MAX-DOAS) technique uses scattered sunlight as a light source from several viewing directions. Recently developed aerosol retrieval algorithm based on O4 slant column densities (SCDs) measured at UV and visible wavelengths has been utilized to derive aerosol information (e.g., aerosol optical depth (AOD) and aerosol extinction coefficients (AECs)) in the lower troposphere. The aerosol extinction coefficient at 356 nm was retrieved for the 0-1 and 1-2 km layers based on the MAX-DOAS measurements using the retrieval algorithm. Ground-based measurements of tropospheric aerosol using multi-wavelength Raman lidar system and a mobile MAX-DOAS system had been carried out at the Gwangju Institute of Science and Technology (GIST). To evaluate the performance of the integrated measurement system (Lidar + MAX-DOAS), an aerosol retrieval method called STAR (satellite aerosol retrieval) has been applied to compare the satellite AOD products with those based on the Raman lidar and MAX-DOAS measurements. It allows complete monitoring of atmospheric aerosols' vertical profiles for better estimation of their radiative effects on atmospheric environment and climate change.

Chong, Jihyo; Shin, Dong Ho; Kim, Kwang Chul; Lee, Kwon-Ho; Shin, Sungkyun; Noh, Young M.; Müller, Detlef; Kim, Young J.

2011-11-01

16

Ceilometer aerosol profiling vs. Raman lidar in the frame of INTERACT campaign of ACTRIS  

NASA Astrophysics Data System (ADS)

Despite their differences from more advanced and more powerful lidars, the low construction and operation cost of ceilometers, originally designed for cloud base height monitoring, has fostered their use for the quantitative study of aerosol properties. The large number of ceilometers available worldwide represents a strong motivation to investigate both the extent to which they can be used to fill in the geographical gaps between advanced lidar stations and also how their continuous data flow can be linked to existing networks of the more advanced lidars, like EARLINET (European Aerosol Research LIdar NETwork). In this paper, multi-wavelength Raman lidar measurements are used to investigate the capability of ceilometers to provide reliable information about atmospheric aerosol content through the INTERACT (INTERcomparison of Aerosol and Cloud Tracking) campaign carried out at the CNR-IMAA Atmospheric Observatory (760 m a.s.l., 40.60° N, 15.72° E), in the framework of ACTRIS (Aerosol Clouds Trace gases Research InfraStructure) FP7 project. This work is the first time that three different commercial ceilometers with an advanced Raman lidar are compared over a period of six months. The comparison of the attenuated backscatter profiles from a multi-wavelength Raman lidar and three ceilometers (CHM15k, CS135s, CT25K) reveals differences due to the expected discrepancy in the SNR but also due to effect of changes in the ambient temperature on the short and mid-term stability of ceilometer calibration. A large instability of ceilometers in the incomplete overlap region has also been observed, making the use of a single overlap correction function for the whole duration of the campaign critical. Therefore, technological improvements of ceilometers towards their operational use in the monitoring of the atmospheric aerosol in the low and free troposphere are needed.

Madonna, F.; Amato, F.; Vande Hey, J.; Pappalardo, G.

2014-12-01

17

Automated Retrievals of Water Vapor and Aerosol Profiles from an Operational Raman Lidar  

SciTech Connect

Automated routines have been developed to derive water vapor mixing ratio, relative humidity, aerosol extinction and backscatter coefficient, and linear depolarization profiles, as well as total precipitable water vapor and aerosol optical thickness, from the operational Raman lidar at the Atmospheric Radiation Measurement (ARM) program's site in north-central Oklahoma. These routines have been devised to maintain the calibration of these data products, which have proven sensitive to the automatic alignment adjustments that are made periodically by the instrument. Since this Raman lidar does not scan, aerosol extinction cannot be directly computed below approximately 800 m due to the incomplete overlap of the outgoing laser beam with the detector's field of view. Therefore, the extinction-to-backscatter ratio at 1 km is used with the aerosol backscatter coefficient profile to compute aerosol extinction from 60 m to the level of complete overlap. Comparisons of aerosol optical depth derived using these algorithms with a collocated CIMEL sun photometer for clear-sky days over an approximate 2-yr period show a slope of 0.90 with a correlation coefficient of 0.884. Furthermore, comparing the aerosol extinction profile retrieved from this system with that from the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center's scanning Raman lidar agrees within 10% for the single available case.

Turner, David D.; Ferrare, R. A.; Heilman Brasseur, L. A.; Feltz, W. F.; Tooman, T. P.

2002-01-01

18

III-posed retrieval of aerosol extinction coefficient profiles from Raman lidar data by regularization.  

PubMed

In the analysis of Raman lidar measurements of aerosol extinction, it is necessary to calculate the derivative of the logarithm of the ratio between the atmospheric number density and the range-corrected lidar-received power. The statistical fluctuations of the Raman signal can produce large fluctuations in the derivative and thus in the aerosol extinction profile. To overcome this difficult situation we discuss three methods: Tikhonov regularization, variational, and the sliding best-fit (SBF). Three methods are performed on the profiles taken from the European Aerosol Research Lidar Network lidar database simulated at the Raman shifted wavelengths of 387 and 607 nm associated with the emitted signals at 355 and 532 nm. Our results show that the SBF method does not deliver good results for low fluctuation in the profile. However, Tikhonov regularization and the variational method yield very good aerosol extinction coefficient profiles for our examples. With regard to, e.g., the 532 nm wavelength, the L2 errors of the aerosol extinction coefficient profile by using the SBF, Tikhonov, and variational methods with respect to synthetic noisy data are 0.0015(0.0024), 0.00049(0.00086), and 0.00048(0.00082), respectively. Moreover, the L2 errors by using the Tikhonov and variational methods with respect to a more realistic noisy profile are 0.0014(0.0016) and 0.0012(0.0016), respectively. In both cases the L2 error given in parentheses concerns the second example. PMID:18382597

Pornsawad, Pornsarp; Böckmann, Christine; Ritter, Christoph; Rafler, Mathias

2008-04-01

19

Examination of the traditional raman lidar technique. II. Evaluating the ratios for water vapor and aerosols.  

PubMed

In a companion paper [Appl. Opt. 42, 2571 (2003)] the temperature dependence of Raman scattering and its influence on the Raman and Rayleigh-Mie lidar equations were examined. New forms of the lidar equation were developed to account for this temperature sensitivity.Here those results are used to derive the temperature-dependent forms of the equations for the water vapor mixing ratio, the aerosol scattering ratio, the aerosol backscatter coefficient, and the extinction-to-backscatter ratio. The error equations are developed, the influence of differential transmission is studied, and several laser sources are considered in the analysis. The results indicate that the temperature functions become significant when narrowband detection is used. Errors of 5% and more can be introduced into the water-vapor mixing ratio calculation at high altitudes, and errors larger than 10% are possible for calculations of aerosol scattering ratio and thus of aerosol backscatter coefficient and of extinction-to-backscatter ratio. PMID:12776995

Whiteman, David N

2003-05-20

20

2, 75107, 2002 Raman lidar  

E-print Network

determined at 532 nm, but here the majority of the measurements has been restricted to heights aboveACPD 2, 75­107, 2002 Raman lidar measurements of tropospheric aerosols J. Schneider and R. Eixmann of routine Raman lidar measurements of tropospheric aerosols: Planetary boundary layer heights, extinction

Boyer, Edmond

21

Backscatter properties of hygroscopic aerosols using models, combined multiwavelength Raman lidar, GPS, and radiosonds  

Microsoft Academic Search

In this paper, we explore the possibility of determining the nature and variability of urban aerosol hygroscopic properties using multi-wavelength Raman lidar measurements at 355nm, as well as backscatter measurements at 532nm and 1064nm. The addition of these longer wavelength channels allow us to more accurately validate the homogeneity of the aerosol layer as well as provide additional multiwavelength information

Daniela-Viviana Vladutescu; Barry Gross; Yonghua Wu; Leona Charles; Fred Moshary; Samir Ahmed

2007-01-01

22

GPS calibrated multiwavelength water vapor Raman lidar measurements to assess urban aerosol hygroscopicity  

Microsoft Academic Search

In this paper, we explore the possibility of determining thenature and variability of urban aerosol hygroscopic properties using multi-wavelength Raman lidar measurements at 355nm, as well as backscatter measurements at 532nm and 1064nm.. The addition of these longer wavelength channels allow us to more accurately validate the homogeneity of the aerosol layer as well as provide additional multiwavelength information that

Daniela Viviana Vladutescu; Barry Gross; Yonghua Wu; Alex Gilerson; Fred Moshary; Samir Ahmed

2007-01-01

23

Can we measure the aerosol and cloud liquid characteristics by using Mie and liquid-water Raman lidar?  

Microsoft Academic Search

Liquid water Raman signal was measured and normalized by Mie and water vapor Raman signals. In simple theoretical point of view, these normalized cloud liquid water lidar signals have information about the aerosol hydroscopic characteristics and cloud size information. We obtained the qualitative information for these parameters at the cloud and normal atmospheric aerosol. Here we have discussed the possibility

Dukhyeon Kim; Sunho Park; Hai-Du Cheong; Wonseok Choi; Yong-Gi Kim; Moonsang Yun; Imkang Song

2011-01-01

24

New Examination of the Traditional Raman Lidar Technique II: Temperature Dependence Aerosol Scattering Ratio and Water Vapor Mixing Ratio Equations  

NASA Technical Reports Server (NTRS)

In a companion paper, the temperature dependence of Raman scattering and its influence on the Raman water vapor signal and the lidar equations was examined. New forms of the lidar equation were developed to account for this temperature sensitivity. Here we use those results to derive the temperature dependent forms of the equations for the aerosol scattering ratio, aerosol backscatter coefficient, extinction to backscatter ratio and water vapor mixing ratio. Pertinent analysis examples are presented to illustrate each calculation.

Whiteman, David N.; Abshire, James B. (Technical Monitor)

2002-01-01

25

Mie-Rayleigh-Raman lidar for measurement of atmospheric temperature and aerosol extinction  

NASA Astrophysics Data System (ADS)

A Mie-Rayleigh-Raman lidar contains a 200mJ-532nm laser, a 400mm telescope and three detection channels was constructed in this paper. The three detection channels are Mie channel, Rayleigh channel and Raman channel respectively. For the intensity of the aerosol backscattering in boundary layers, analog PMT is used in the Mie channel, from the signal of the analog PMT aerosol extinction can be obtained. The Rayleigh channel detects the Rayleigh backscattering of the atmospheric molecular, while the Raman channel detects the vibrational Raman signal of N2, which is 607nm in the system. From the Rayleigh and Raman channels above, air density profile and then the temperature profile from 5Km to 55Km can be inverted. Primary measurement results were also presented in this paper, to verify the accuracy of the temperature, comparison was conducted between the lidar measurement and the atmospheric model. The result showed good agreements. Backscattering coefficient of aerosol in the range of 10Km was also presented in the end, which indicated the ability of aerosol monitoring.

Bu, Lingbing; Huang, Xingyou; Cao, Nianwen; Huang, Jiansong; Guan, Li; Shan, Kunling

2009-07-01

26

Water Measurements using a Raman Lidar  

NASA Technical Reports Server (NTRS)

The research record for the usefulness of Raman Lidar in addressing a broad range of important atmospheric research topics is well established. Raman lidar technology has been used to measure tropospheric aerosols, stratospheric aerosols and cirrus clouds. Arguably the most important measurements offered by Raman lidar for both dynamic and radiative studies, however, is that of water vapor. We will describe large improvements in Raman lidar measurements of water vapor made possible through recent technology upgrades. Furthermore, we will present the use of Raman lidar to study liquid water in the atmosphere and describe current research into the use of Raman lidar measurements to estimate ice water content of cirrus clouds.

Whiteman, D. N.; Demoz, B.; Wang, Z.; Veselovskii, I.; Evans, K.; DiGirolamo, P.

2002-01-01

27

Evaluation of Daytime Measurements of Aerosols and Water Vapor made by an Operational Raman Lidar over the Southern Great Plains  

NASA Technical Reports Server (NTRS)

Raman lidar water vapor and aerosol extinction profiles acquired during the daytime over the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site in northern Oklahoma (36.606 N, 97.50 W, 315 m) are evaluated using profiles measured by in situ and remote sensing instruments deployed during the May 2003 Aerosol Intensive Operations Period (IOP). The automated algorithms used to derive these profiles from the Raman lidar data were first modified to reduce the adverse effects associated with a general loss of sensitivity of the Raman lidar since early 2002. The Raman lidar water vapor measurements, which are calibrated to match precipitable water vapor (PWV) derived from coincident microwave radiometer (MWR) measurements were, on average, 5-10% (0.3-0.6 g/m(exp 3) higher than the other measurements. Some of this difference is due to out-of-date line parameters that were subsequently updated in the MWR PWV retrievals. The Raman lidar aerosol extinction measurements were, on average, about 0.03 km(exp -1) higher than aerosol measurements derived from airborne Sun photometer measurements of aerosol optical thickness and in situ measurements of aerosol scattering and absorption. This bias, which was about 50% of the mean aerosol extinction measured during this IOP, decreased to about 10% when aerosol extinction comparisons were restricted to aerosol extinction values larger than 0.15 km(exp -1). The lidar measurements of the aerosol extinction/backscatter ratio and airborne Sun photometer measurements of the aerosol optical thickness were used along with in situ measurements of the aerosol size distribution to retrieve estimates of the aerosol single scattering albedo (omega(sub o)) and the effective complex refractive index. Retrieved values of omega(sub o) ranged from (0.91-0.98) and were in generally good agreement with omega(sub o) derived from airborne in situ measurements of scattering and absorption. Elevated aerosol layers located between about 2.6 and 3.6 km were observed by the Raman lidar on May 25 and May 27. The airborne measurements and lidar retrievals indicated that these layers, which were likely smoke produced by Siberian forest fires, were primarily composed of relatively large particles (r(sub eff) approximately 0.23 micrometers), and that the layers were relatively nonabsorbing (omega(sub o) approximately 0.96-0.98). Preliminary results show that major modifications that were made to the Raman lidar system during 2004 have dramatically improved the sensitivity in the aerosol and water vapor channels and reduced random errors in the aerosol scattering ratio and water vapor retrievals by an order of magnitude.

Ferrare, Richard; Turner, David; Clayton, Marian; Schmid, Beat; Covert, David; Elleman, Robert; Orgren, John; Andrews, Elisabeth; Goldsmith, John E. M.; Jonsson, Hafidi

2006-01-01

28

Raman lidar system for the measurement of water vapor and aerosols in the Earth's atmosphere.  

PubMed

A nighttime operating Raman lidar system that is designed for the measurement of high vertical and temporal resolution profiles of the water vapor mixing ratio and the aerosol backscattering ratio is described. The theory of the measurements is presented. Particular attention is given to operational problems that have been solved during the development of the system. Data are presented from Sept. 1987 and described in their meteorological context. PMID:20725252

Whiteman, D N; Melfi, S H; Ferrare, R A

1992-06-01

29

Raman lidar system for the measurement of water vapor and aerosols in the earth's atmosphere  

NASA Technical Reports Server (NTRS)

A nighttime operating Raman lidar system that is designed for the measurement of high vertical and temporal resolution profiles of the water vapor mixing ratio and the aerosol backscattering ratio is described. The theory of the measurements is presented. Particular attention is given to operational problems that have been solved during the development of the system. Data are presented from Sept. 1987 and described in their meteorological context.

Whiteman, D. N.; Melfi, S. H.; Ferrare, R. A.

1992-01-01

30

Atmospheric aerosol characterization combining multi-wavelength Raman lidar and MAX-DOAS measurements in Gwanjgu  

Microsoft Academic Search

Integrated approach has been adopted at the ADvanced Environmental Research Center (ADEMRC), Gwangju Institute of Science and Technology (GIST), Korea for effective monitoring of atmospheric aerosol. Various active and passive optical remote sensing techniques such as multi-wavelength (3beta+2alpha+1delta) Raman LIDAR, sun-photometry, MAX-DOAS, and satellite retrieval have been utilized. This integrated monitoring system approach combined with in-situ surface measurement is to

Jihyo Chong; Dong Ho Shin; Kwang Chul Kim; Kwon-Ho Lee; Sungkyun Shin; Young M. Noh; Detlef Müller; Young J. Kim

2011-01-01

31

Vertical Profiling of Atmospheric Backscatter with a Raman-Aerosol Lidar  

NASA Astrophysics Data System (ADS)

Aerosols have a strong impact on the planet's thermal balance, air quality, and a variety of atmospheric processes and phenomena. In this work we present some results from a long term lidar observation of tropospheric aerosols over the city of Sofia, Bulgaria, within the framework of the European project "EARLINET-ASSOS." Vertical profiles of the aerosol backscattering coefficient and range corrected lidar signals are processed and analyzed. The temporal evolution and the spatial distribution of atmospheric aerosol fields are illustrated by 2D-colormaps in height-time coordinates. We present here several cases of aerosol loading: transport of Saharan dust (at altitudes from 3 km to 5 km), highly situated layers (from 9 km to 15 km), and anthropogenic smog (up to 2 km). All measurements were performed by using the two aerosol spectral channels of a combined Raman-aerosol lidar developed in the Laser Radar Lab, Institute of Electronics, Bulgarian Academy of Sciences. It is based on a Q-switched powerful frequency-doubled Nd:YAG laser (output pulse power: up to 1 J at 1064 nm; up to 100 mJ at 532 nm; pulse duration 15 ns FWHM; repetition rate 2 Hz). A Cassegrain telescope (35 cm diameter, 200 cm focal length) collects the backscattered radiation. The lidar receiving system is based on novel smart high sensitive photo-receiving modules. The acquisition system provides signal registration with spatial resolution of 15 m (100 MHz 14-bit ADC). It allows for detection, storage, and processing of large volume lidar data. Our observations are in good agreement with the forecasts of Barcelona Supercomputing Center, concerning Saharan dust transport.

Deleva, Atanaska D.; Peshev, Zahary Y.; Slesar, Alexander S.; Denisov, Sergey; Avramov, Lachezar A.; Stoyanov, Dimitar V.

2010-01-01

32

Advanced Raman water vapor lidar  

Microsoft Academic Search

Water vapor and aerosols are important atmospheric constituents. Knowledge of the structure of water vapor is important in understanding convective development, atmospheric stability, the interaction of the atmosphere with the surface, and energy feedback mechanisms and how they relate to global warming calculations. The Raman Lidar group at the NASA Goddard Space Flight Center (GSFC) developed an advanced Raman Lidar

David N. Whiteman; S. Harvey Melfi; Richard A. Ferrare; Keith A. Evans; Luis Ramos-Izquierdo; O. Glenn Staley; Raymond W. Disilvestre; Inna Gorin; Kenneth R. Kirks; William A. Mamakos

1992-01-01

33

CART and GSFC raman lidar measurements of atmospheric aerosol backscattering and extinction profiles for EOS validation and ARM radiation studies  

NASA Technical Reports Server (NTRS)

The aerosol retrieval algorithms used by the Moderate-Resolution Imaging Spectroradiometer (MODIS) and Multi-Angle Imaging SpectroRadiometer (MISR) sensors on the Earth Observing Satellite (EOS) AM-1 platform operate by comparing measured radiances with tabulated radiances that have been computed for specific aerosol models. These aerosol models are based almost entirely on surface and/or column averaged measurements and so may not accurately represent the ambient aerosol properties. Therefore, to validate these EOS algorithms and to determine the effects of aerosols on the clear-sky radiative flux, we have begun to evaluate the vertical variability of ambient aerosol properties using the aerosol backscattering and extinction profiles measured by the Cloud and Radiation Testbed (CART) and NASA Goddard Space Flight Center (GSFC) Raman Lidars. Using the procedures developed for the GSFC Scanning Raman Lidar (SRL), we have developed and have begun to implement algorithms for the CART Raman Lidar to routinely provide profiles of aerosol extinction and backscattering during both nighttime and ,daytime operations. Aerosol backscattering and extinction profiles are computed for both lidar systems using data acquired during the 1996 and 1997 Water Vapor Intensive Operating Periods (IOPs). By integrating these aerosol extinction profiles, we derive measurements of aerosol optical thickness and compare these with coincident sun photometer measurements. We also use these measurements to measure the aerosol extinction/backscatter ratio S(sub a) (i.e. 'lidar ratio'). Furthermore, we use the simultaneous water vapor measurements acquired by these Raman lidars to investigate the effects of water vapor on aerosol optical properties.

Ferrare, R. A.; Turner, D. D.; Melfi, S. H.; Whiteman, D. N.; Schwenner, G.; Evans, K. D.; Goldsmith, J. E. M.; Tooman, T.

1998-01-01

34

CART and GSFC Raman lidar measurements of atmospheric aerosol backscattering and extinction profiles for EOS validation and ARM radiation studies  

SciTech Connect

The aerosol retrieval algorithms used by the Moderate-Resolution Imaging Spectroradiometer (MODIS) and Multi-Angle Imaging SpectroRadiometer (MISR) sensors on the Earth Observing Satellite (EOS) AM-1 platform operate by comparing measured radiances with tabulated radiances that have been computed for specific aerosol models. These aerosol models are based almost entirely on surface and/or column averaged measurements and so may not accurately represent the ambient aerosol properties. Therefore, to validate these EOS algorithms and to determine the effects of aerosols on the clear-sky radiative flux, the authors have begun to evaluate the vertical variability of ambient aerosol properties using the aerosol backscattering and extinction profiles measured by the Cloud and Radiation Testbed (CART) and NASA Goddard Space Flight Center (GSFC) Raman Lidars. Using the procedures developed for the GSFC Scanning Raman Lidar (SRL), the authors have developed and have begun to implement algorithms for the CART Raman Lidar to routinely provide profiles of aerosol extinction and backscattering during both nighttime and daytime operations. Aerosol backscattering and extinction profiles are computed for both lidar systems using data acquired during the 1996 and 1997 Water Vapor Intensive Operating Periods (IOPs). By integrating these aerosol extinction profiles, they derive measurements of aerosol optical thickness and compare these with coincident sun photometer measurements. They also use these measurements to measure the aerosol extinction/backscatter ratio S{sub a} (i.e. lidar ratio). Furthermore, they use the simultaneous water vapor measurements acquired by these Raman lidars to investigate the effects of water vapor on aerosol optical properties.

Ferrare, R.A. [National Aeronautics and Space Administration, Hampton, VA (United States). Langley Research Center; Turner, D.D. [Pacific Northwest National Lab., Richland, WA (United States); Melfi, S.H.; Evans, K.D. [Univ. of Maryland, Baltimore, MD (United States); Whiteman, D.N.; Schwemmer, G. [National Aeronautics and Space Administration, Greenbelt, MD (United States); Goldsmith, J.E.M.; Tooman, T. [Sandia National Labs., Livermore, CA (United States)

1998-04-01

35

CART Raman Lidar Aerosol and Water Vapor Measurements in the Vicinity of Clouds  

NASA Technical Reports Server (NTRS)

Aerosol and water vapor profiles acquired by the Raman lidar instrument located at the Climate Research Facility (CRF) at Southern Great Plains (SGP) provide data necessary to investigate the atmospheric variability in the vicinity of clouds near the top of the planetary boundary layer (PBL). Recent CARL upgrades and modifications to the routine processing algorithms afforded the necessarily high temporal and vertical data resolutions for these investigations. CARL measurements are used to investigate the behavior of aerosol backscattering and extinction and their correlation with water vapor and relative humidity.

Clayton, Marian B.; Ferrare, Richard A.; Turner, David; Newsom, Rob; Sivaraman, Chitra

2008-01-01

36

Backscatter properties of hygroscopic aerosols using models, combined multiwavelength Raman lidar, GPS, and radiosonds  

NASA Astrophysics Data System (ADS)

In this paper, we explore the possibility of determining the nature and variability of urban aerosol hygroscopic properties using multi-wavelength Raman lidar measurements at 355nm, as well as backscatter measurements at 532nm and 1064nm. The addition of these longer wavelength channels allow us to more accurately validate the homogeneity of the aerosol layer as well as provide additional multiwavelength information that can be used to validate and modify the aerosol models underlying the hygroscopic trends observed in the Raman channel. In support of our hygroscopic measurements, we also discuss our calibration procedures for both the aerosol and water vapor profiles. The calibration algorithm we ultimately use for the water vapor measurements are twilight measurements where water vapor radiosonde data from the OKX station in NYS, are combined with total water vapor obtained from a GPS MET station. These sondes are then time correlated with independent near surface RH measurements to address any bias issues that may occur due to imperfect calibration due to lidar overlap issues and SNR limitations in seeing the water vapor at high altitudes. In particular, we investigate the possibility of using ratio optical scatter measurements which eliminate the inherent problem of variable particle number and illustrate the sensitivity of different hygroscopic aerosols to these measurements.

Vladutescu, Daniela-Viviana; Gross, Barry; Wu, Yonghua; Charles, Leona; Moshary, Fred; Ahmed, Samir

2007-09-01

37

GPS calibrated multiwavelength water vapor Raman lidar measurements to assess urban aerosol hygroscopicity  

NASA Astrophysics Data System (ADS)

In this paper, we explore the possibility of determining thenature and variability of urban aerosol hygroscopic properties using multi-wavelength Raman lidar measurements at 355nm, as well as backscatter measurements at 532nm and 1064nm.. The addition of these longer wavelength channels allow us to more accurately validate the homogeneity of the aerosol layer as well as provide additional multiwavelength information that can be used to validate and modify the aerosol models underlying the hygroscopic trends observed in the Raman channel. In support of our hygroscopic measurements, we also discuss our calibration procedures for both the aerosol and water vapor profiles. The calibration algorithm we ultimately use for the water vapor measurements are twilight measurements where water vapor radiosonde data from the OKX station in NYS, are combined with total water vapor obtained from a GPS MET station. These sondes are then time correlated with independent near surface RH measurements to address any bias issues that may occur due to imperfect calibration due to lidar overlap issues and SNR limitations in seeing the water vapor at high altitudes.. In particular, we investigate the possibility of using ratio optical scatter measurments which eliminate the inherent problem of variable particle number and illustrate the sensitivity of different hygroscopic aerosols to these measurements. We find that the use of combine backscatter color ratios between 355 and 1064 together with the conventional extinction to backscatter ratio at 355nm should be able to improve retrieval of hygroscopic properties.

Vladutescu, Daniela Viviana; Gross, Barry; Wu, Yonghua; Gilerson, Alex; Moshary, Fred; Ahmed, Samir

2007-10-01

38

Retrieval of microphysical properties of aerosol particles from one-wavelength Raman lidar and multiwavelength Sun photometer observations  

Microsoft Academic Search

Aerosol Raman lidar observations of particle extinction and backscatter coefficients at 532nm are combined with Sun photometer observations of the particle optical depth at six wavelengths from 381–1044nm to derive column-integrated microphysical properties of boundary-layer aerosol such as volume and surface concentrations, effective radius, refractive index, and single scattering albedo. The method is based on our well-tested lidar inversion algorithm

Matthias Tesche; Detlef Müller; Albert Ansmann; Min Hu; Yuanghang Zhang

2008-01-01

39

Evaluation of daytime measurements of aerosols and water vapor made by an operational Raman lidar over the Southern Great Plains  

Microsoft Academic Search

Raman lidar water vapor and aerosol extinction profiles acquired during the daytime over the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site in northern Oklahoma (36.606 N, 97.50 W, 315 m) are evaluated using profiles measured by in situ and remote sensing instruments deployed during the May 2003 Aerosol Intensive Operations Period (IOP). The automated

Richard Ferrare; David Turner; Marian Clayton; Beat Schmid; Jens Redemann; David Covert; Robert Elleman; John Ogren; Elisabeth Andrews; John E. M. Goldsmith; Haflidi Jonsson

2006-01-01

40

Suggestion for qualitative lidar identification of different types of aerosol using the two-wavelength rotational Raman and elastic lidar  

NASA Astrophysics Data System (ADS)

Aerosols are important parameters in the meteorological and environmental fields, and remote aerosol identification is extremely desirable. We have proposed and designed a two-wavelength (355 and 532nm) rotational Raman and elastic lidar that can measure the wavelength dependence of the aerosol backscattering coefficient without any assumptions about the Ångström coefficient or the overlapping function from low (100m) to high (10km) altitude, depending on the weather conditions. We have measured the differences in the backscattering ratios (BRs) among a cloud, aerosol in the boundary layer, and Asian dust. The ratio of the aerosol backscattering coefficients between two wavelengths is a fingerprint of an aerosol, which is similar to the Ångström coefficient. The BR value for a typical aerosol ranged from 0.56 to 0.4 in the boundary layer and from 0.5 to 0.1 for Asian dust. The BR value of water droplet was not unique but was spread over a wide range because of its size distributions.

Kim, Dukhyeon; Cha, Hyungki

2006-10-01

41

Observations of atmospheric water vapor, aerosol, and cloud with a Raman lidar  

NASA Astrophysics Data System (ADS)

To realize the improvement of signal-to-noise ratio and rejection rate for elastic Mie-Rayleigh signals, a set of dichroic mirrors and narrow-band interference filters with high efficiency was proposed to constitute a new spectroscopy for atmospheric water vapor, aerosol, and cloud studies. Based on the curves of signal-to-noise ratio at three different channels, the actual rejection rates of elastic Mie-Rayleigh signals at the Raman channels were found to be higher than eight orders of magnitude with the cloudy conditions. Continuous nighttime observations showed that the statistical error of the water vapor mixing ratio was <10% at a height of 2.3 km with an aerosol backscatter ratio of 17. Temporal variations of water vapor and aerosols were obtained under the conditions of cloud and cloud-free, the change relevance between aerosol and water vapor was analyzed, and the growth characteristics of water vapor and aerosols showed a good agreement within the cloud layers. Obtained results indicate achievement of the continuous detection of water vapor, aerosol, and cloud with a high efficiency and stability by Raman lidar.

Yufeng, Wang; Fei, Gao; Chengxuan, Zhu; Qing, Yan; Dengxin, Hua

2014-11-01

42

Correlation Study of Water Vapor and Aerosol Distributions in Troposphere Using Scanning Raman Lidar  

NASA Astrophysics Data System (ADS)

Aiming at the study of water vapor and aerosol distributions in the lower atmosphere from the Otlica observatory, Slovenia (45.93°N, 13.91°E, elevation 945 m above sea level), we have built a new Raman lidar in parallel to the existing Mie lidar. The new system is oriented towards the Adriatic coast with a fixed azimuth angle of 235.1° and shares the transmitter (tripled Nd:YAG pulsed laser at 355 nm with pulse energy of 100 mJ and repetition rate of 20 Hz) and mechanical support with scanning functionality in zenith angle with the Mie lidar. The receiver part of the Raman lidar employs custom optics using a low f-number aspheric lens, designed to maximize the coupling of lidar returns collected by a parabolic mirror with a diameter of 800 mm and focal length of 410 mm and the 1000 ?m core multi-mode optical fiber used to transport the light to the polychromator for spectral analysis. In the polychromator, 5-nm bandwidth interference filters combined with dichroic beam splitters were used to separate the vibrational Raman signals of nitrogen and water wapor molecules. The three return signals were detected by photo-multiplier tubes and sampled by transient recorders in photon-counting mode. System functionality was assessed in a number of preliminary experiments, where water vapor concentrations were calibrated using radiosonde data. During the nights of 24-25 August 2011 a series of measurements of water vapor and aerosol distributions along the lidar line of sight were performed at various elevation angles. In the vertical measurements, two layers with larger water vapor content were visible at altitudes of 1.5 km and 4.0 km with relative humidity in both cases exceeding 75%. Aerosol extinction decreased linearly between the altitudes of 2 km and 4.5 km, with aerosol layers appearing at 4.0 km, 4.7 km and 5.6 km. In horizontal measurements, the water vapor mixing ratio and the relative humidity were found to be almost constant in the range of 1.5 km to 4.5 km with a sudden drop in close range (at 0.7 km), which corresponds to the variation in the terrain configuration along the line of sight. Between 2.5 km and 5.0 km the atmospheric extinction was also found to be constant with values of about 0.15 km-1. The measurements at an inclination of 25° showed linear decrease of water vapor concentration between the ranges of 1.5 km and 5.0 km with a number of indistinct peaks, while a linear increase of aerosol extinction was found in the same range with several aerosol layers between the altitudes of 2.2 km and 2.8 km. The correlation between water vapor and aerosol distributions was investigated by comparing the aerosol extinction to the water vapor mixing ratio. As no correlation was found, we conclude that the aerosols detected in the study region were predominantly non-hygroscopic.

Gao, F.; Stanic, S.; Bergant, K.; He, T.-Y.

2012-04-01

43

Turn-key Raman lidar for profiling atmospheric water vapor, clouds, and aerosols.  

PubMed

We describe an operational, self-contained, fully autonomous Raman lidar system that has been developed for unattended, around-the-clock atmospheric profiling of water vapor, aerosols, and clouds. During a 1996 three-week intensive observational period, the system operated during all periods of good weather (339 out of 504 h), including one continuous five-day period. The system is based on a dual-field-of-view design that provides excellent daytime capability without sacrificing nighttime performance. It is fully computer automated and runs unattended following a simple, brief (~5-min) start-up period. We discuss the theory and design of the system and present detailed analyses of the derivation of water-vapor profiles from the lidar measurements. PMID:18285967

Goldsmith, J E; Blair, F H; Bisson, S E; Turner, D D

1998-07-20

44

Turn-key Raman lidar for profiling atmospheric water vapor, clouds, and aerosols  

SciTech Connect

We describe an operational, self-contained, fully autonomous Raman lidar system that has been developed for unattended, around-the-clock atmospheric profiling of water vapor, aerosols, and clouds. During a 1996 three-week intensive observational period, the system operated during all periods of good weather (339 out of 504 h), including one continuous five-day period. The system is based on a dual-field-of-view design that provides excellent daytime capability without sacrificing nighttime performance. It is fully computer automated and runs unattended following a simple, brief ({approximately}5-min) start-up period. We discuss the theory and design of the system and present detailed analysis of the derivation of water-vapor profiles from the lidar measurements. {copyright} 1998 Optical Society of America

Goldsmith, J.E.M.; Blair, Forest H.; Bisson, Scott E. [Sandia National Laboratories, P. O. Box 969, MS 9409, Livermore, California 94551-0969 (United States)] Turner, David D. [Pacific Northwest National Laboratory, P. O. Box 999, Richland, Washington 99352 (United States)

1998-07-01

45

Raman lidar and sun photometer measurements of aerosols and water vapor during the ARM RCS experiment  

NASA Technical Reports Server (NTRS)

The first Atmospheric Radiation Measurement (ARM) Remote Cloud Study (RCS) Intensive Operations Period (IOP) was held during April 1994 at the Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site near Lamont, Oklahoma. This experiment was conducted to evaluate and calibrate state-of-the-art, ground based remote sensing instruments and to use the data acquired by these instruments to validate retrieval algorithms developed under the ARM program. These activities are part of an overall plan to assess general circulation model (GCM) parameterization research. Since radiation processes are one of the key areas included in this parameterization research, measurements of water vapor and aerosols are required because of the important roles these atmospheric constituents play in radiative transfer. Two instruments were deployed during this IOP to measure water vapor and aerosols and study their relationship. The NASA/Goddard Space Flight Center (GSFC) Scanning Raman Lidar (SRL) acquired water vapor and aerosol profile data during 15 nights of operations. The lidar acquired vertical profiles as well as nearly horizontal profiles directed near an instrumented 60 meter tower. Aerosol optical thickness, phase function, size distribution, and integrated water vapor were derived from measurements with a multiband automatic sun and sky scanning radiometer deployed at this site.

Ferrare, R. A.; Whiteman, D. N.; Melfi, S. H.; Evans, K. D.; Holben, B. N.

1995-01-01

46

One year of Raman lidar observations of free tropospheric aerosol layers over South Africa  

NASA Astrophysics Data System (ADS)

Raman lidar data obtained over a one year period has been analyzed in relation to aerosol layers in the free troposphere over the Highveld in South Africa. In total, 375 layers were observed above the boundary layer during the period 30 January 2010-31 January 2011. The seasonal behavior of aerosol layer geometrical characteristics, as well as intensive and extensive optical properties were studied. The highest center heights of free tropospheric layers were observed during the South African spring (2520 ± 970 m a.g.l.). The geometrical layer depth was found to be maximum during spring, while it did not show any significant difference for the rest of the seasons. The variability of the analyzed intensive and extensive optical properties was high during all seasons. This was attributed to the mixing state of aerosols and the different transport paths of the aerosol layers. Layers were observed at a mean altitude of 2100 ± 1000 m a.g.l. with an average lidar ratio of 67 ± 25 sr (mean value with one standard deviation) at 355 nm and a mean extinction-related Ångström exponent of 1.9 ± 0.8 between 355 and 532 nm during the period under study. During southern hemispheric spring, the biomass burning activity is clearly reflected in the optical properties of the observed free tropospheric layers. Specifically, lidar ratios at 355 nm were 57 ± 20 sr , 65 ± 23 sr, 59 ± 22 sr and 89 ± 21 sr during summer (December-February), winter (June-August), autumn (March-May) and spring (September-November), respectively. The extinction-related Ångström exponents between 355 and 532 nm measured during summer, winter, autumn and spring were 2.4 ± 0.9, 1.8 ± 0.6, 1.8 ± 0.9 and 1.8 ± 0.6, respectively. The mean columnar aerosol optical depth (AOD) obtained from lidar measurements was found to be 0.46 ± 0.35 at 355 nm and 0.25 ± 0.2 at 532 nm.The contribution of free tropospheric aerosols on the AOD had a wide range of values with a mean contribution of 46%.

Giannakaki, E.; Pfüller, A.; Korhonen, K.; Mielonen, T.; Laakso, L.; Vakkari, V.; Baars, H.; Engelmann, R.; Beukes, J. P.; Van Zyl, P. G.; Josipovic, M.; Tiitta, P.; Chiloane, K.; Piketh, S.; Lihavainen, H.; Lehtinen, K. E. J.; Komppula, M.

2015-01-01

47

Multiyear aerosol observations with dual-wavelength Raman lidar in the framework of EARLINET  

NASA Astrophysics Data System (ADS)

For the first time, a Raman lidar operating simultaneously in the ultraviolet (UV) and in the visible wavelength range was employed to measure vertical profiles of volume extinction coefficients of particles at 355 and 532 nm, the respective Ångström exponent, and the 355-nm and 532-nm extinction-to-backscatter ratio (lidar ratio) on a routine basis for several years. The long-term observations were performed at Leipzig (52°N, 12°E), Germany, in the framework of the European Aerosol Research Lidar Network (EARLINET) project from May 2000 to March 2003. The lidar data were acquired under nighttime conditions. The main findings describe the mean optical properties of central European haze (anthropogenic particles) and can be summarized as follows. The 3-year mean, planetary boundary layer (PBL) extinction coefficients were 191 Mm-1 at 355 nm and 94 Mm-1 at 532 nm. The respective mean Ångström exponent (for the 355-532-nm wavelength range) was 1.4 in the upper PBL (above 1000 m). The PBL stretched, on average, to heights of 1300 m (winter) and 2350 m (summer). PBL mean particle optical depths were 0.38 (355 nm, ±0.23 standard deviation) and 0.18 (532 nm, ±0.11 standard deviation). Free tropospheric particles contributed 2% (clean free troposphere) to 88% (major Saharan dust events) to the tropospheric optical depth. The average was 17% (355 nm) and 22% (532 nm) in 2000-2003. Ångström exponents in the free troposphere of about one reflect the dominant influence of Saharan dust and aged smoke on the optical properties in this height range. Three-year mean lidar ratios of 58 sr (355 nm) and 53 sr (532 nm) were found in the upper part of the PBL. Free tropospheric lidar ratios were on average 52 sr (355 nm) and 53 sr (532 nm). From combined observations with the Aerosol Robotic Network (AERONET) Sun photometer and the EARLINET lidar, extinction-to-backscatter ratios at 1064 nm were estimated to be, on average, 45 sr. A comparison with optical measurements made at the Leipzig University from 1990 to 1994 indicates that the PBL extinction coefficient at 532 nm decreased by a factor of about 2 (summer half year) to almost 5 (winter season) since the unification of Germany (1990), mainly caused by the industrial breakdown in eastern Germany in the early 1990s.

Mattis, Ina; Ansmann, Albert; Müller, Detlef; Wandinger, Ulla; Althausen, Dietrich

2004-07-01

48

New Examination of the Traditional Raman Lidar Technique II: Evaluating the Ratios for Water Vapor and Aerosols  

NASA Technical Reports Server (NTRS)

In a companion paper, the temperature dependence of Raman scattering and its influence on the Raman and Rayleigh-Mie lidar equations was examined. New forms of the lidar equation were developed to account for this temperature sensitivity. Here those results are used to derive the temperature dependent forms of the equations for the water vapor mixing ratio, aerosol scattering ratio, aerosol backscatter coefficient, and extinction to backscatter ratio (Sa). The error equations are developed, the influence of differential transmission is studied and different laser sources are considered in the analysis. The results indicate that the temperature functions become significant when using narrowband detection. Errors of 5% and more can be introduced in the water vapor mixing ratio calculation at high altitudes and errors larger than 10% are possible for calculations of aerosol scattering ratio and thus aerosol backscatter coefficient and extinction to backscatter ratio.

Whiteman, David N.

2003-01-01

49

Raman Lidar (RL) Handbook  

SciTech Connect

The Raman lidar at the ARM Climate Research Facility (ACRF) Southern Great Plains (SGP) Central Facility (SGPRL) is an active, ground-based laser remote sensing instrument that measures height and time resolved profiles of water vapor mixing ratio and several cloud- and aerosol-related quantities. The system is a non-commercial custom-built instrument developed by Sandia National Laboratories specifically for the ARM Program. It is fully computer automated, and will run unattended for many days following a brief (~5-minute) startup period. The self-contained system (requiring only external electrical power) is housed in a climate-controlled 8’x8’x20’ standard shipping container.

Newsom, RK

2009-03-01

50

Raman LIDAR Detection of Cloud Base  

NASA Technical Reports Server (NTRS)

Advantages introduced by Raman lidar systems for cloud base determination during precipitating periods are explored using two case studies of light rain and virga conditions. A combination of the Raman lidar derived profiles of water vapor mixing ratio and aerosol scattering ratio, together with the Raman scattered signals from liquid drops, can minimize or even eliminate some of the problems associated with cloud boundary detection using elastic backscatter lidars.

Demoz, Belay; Starr, David; Whiteman, David; Evans, Keith; Hlavka, Dennis; Peravali, Ravindra

1999-01-01

51

Feasibility study of integral property retrieval for tropospheric aerosol from Raman lidar data using principal component analysis.  

PubMed

A method is introduced to derive integral properties of the aerosol size distribution, e.g., aerosol mass, from tropospheric multiwavelength Raman lidar aerosol extinction and backscatter data, using an adapted form of the principal component analysis (PCA) technique. Since the refractive index of general tropospheric aerosols is variable and aerosol types can vary within one profile, an inversion technique applied in the troposphere should account for varying aerosol refractive indices. Using PCA, if a sufficiently complete set of appropriate refractive index dependent kernels is used, no a priori information about the aerosol type is necessary for the inversion of integral properties. In principle, the refractive index itself can be retrieved, but this quantity is more sensitive to measurement errors than the various integral properties of the aerosol size distribution. Here, the PCA technique adapted for use in the troposphere is introduced, the refractive index information content of the kernel sets is investigated, and error analyses are presented. The technique is then applied to actual tropospheric Raman lidar measurements. PMID:23545974

de Graaf, Martin; Apituley, Arnoud; Donovan, David P

2013-04-01

52

The applicability of a scanning Raman lidar for measurements of aerosols and water vapor  

Microsoft Academic Search

Assessing atmospheric water vapor measurements to the level of accuracy required for improving atmospheric radiation parameterizations has been difficult to achieve. This thesis describes how a new sensor, the NASA\\/GSFC Scanning Raman Lidar (SRL), is used to improve assessments of water vapor measurements. Water vapor profiles measured at night by this lidar during two field experiments are compared with those

Richard Anthony Ferrare

1997-01-01

53

Implementation of Raman lidar for profiling of atmospheric water vapor and aerosols at the SGP CART site  

SciTech Connect

There are clearly identified scientific requirements for continuous profiling of atmospheric water vapor at the SGP CART (southern great plains cloud and radiation testbed) site. Research conducted at several laboratories, including our own collaboration in a previous ARM Instrument Development Project, has demonstrated the suitability of Raman lidar for providing measurements that are an excellent match to those requirements. We are currently building a ruggedized Raman lidar system that will reside permanently at the CART site, and that is computer-automated to minimize requirements for operator interaction. In addition to profiling water vapor through most of the troposphere during nighttime and through the boundary layer during daytime, the lidar will provide quantitative characterizations of aerosols and clouds, including depolarization measurements for particle phase studies.

Goldsmith, J.E.M.; Bisson, S.E.; Blair, F.H. [Sandia National Labs., Livermore, CA (United States); Whiteman, D.N.; Melfi, S.H. [National Aeronautics and Space Administration, Greenbelt, MD (United States). Goddard Space Flight Center; Ferrare, R.A. [Hughes STX Corp., Lanham, MD (United States)

1994-05-01

54

Determination of stratospheric aerosol microphysical properties from independent extinction and backscattering measurements with a Raman lidar.  

PubMed

An algorithm that permits the retrieval of profiles of particle mass and surface-area concentrations in the stratospheric aerosol layer from independently measured aerosol (particle and Rayleigh) and molecule (Raman or Rayleigh) backscatter signals is developed. The determination is based on simultaneously obtained particle extinction and backscatter profiles and on relations between optical and microphysical properties found from Mie-scattering calculations for realistic stratospheric particle size distributions. The size distributions were measured with particle counters released on balloons from Laramie, Wyoming, between June 1991 and April 1994. Mass and surface-area concentrations can be retrieved with relative errors of 10-20% and 20-40%, respectively, with a laser wavelength of 355 nm and with errors of 20-30% and 30-60%, respectively, with a laser wavelength of 308 nm. Lidar measurements taken within the first three years after the eruption of Mt. Pinatubo in June 1991 are shown. Surface-area concentrations around 20 µm(2) cm(-3) and mass concentrations of 3 to 6 µg m(-3) were found until spring 1993. PMID:21068952

Wandinger, U; Ansmann, A; Reichardt, J; Deshler, T

1995-12-20

55

Raman lidar measurements of water vapor and aerosol/clouds during the FIRE/SPECTRE field campaign  

SciTech Connect

The FIRE/SPECTRE field campaign was conducted during November- December 1991 in Coffeyville, Kansas. The main objective of FIRE (First ISCCP (International Satellite Cloud Climatology Project) Regional Experiment) was to study the development and radiative characteristics of cirrus clouds. The SPECTRE (Spectral Radiation Experiment) project was designed to acquire the necessary atmospheric observations to compare radiative measurements with radiative transfer theory, with special emphasis on understanding the water vapor spectral continuum. A complete understanding of water vapor, its distribution with height, and its temporal variation was important for both experiments. A ground-based Raman Lidar was deployed at Coffeyville, Kansas from November 12 until December 7, 1991. During the campaign, the lidar operated during 14 observation periods. The periods ranged in length from 3.5 hours to 12 hours for a total operating time of approximately 119 hours. During each of the operational periods the lidar obtained vertical profiles of water vapor mixing ratio and aerosol scattering ratio once every minute with vertical resolution of 75 meters from near the earth's surface to an altitude of 9--10 km for water vapor and higher for aerosols. Several balloon-sondes were launched during each operational period providing an independent measurement of humidity with altitude. For each operational period, the 1-minute profiles of water vapor mixing ratio and aerosol scattering ratio are composited to give a color- coded time-height display of water vapor and aerosol scattering, respectively.

Melfi, S.H.; Whiteman, D. (National Aeronautics and Space Administration, Greenbelt, MD (United States). Goddard Space Flight Center); Ferrare, R. (Universities Space Research Associates, Columbia, MD (United States)); Evans, K. (Hughes-STX, Lanham, MD (United States)); Goldsmith, J.E.M.; Lapp, M.; Bisson, S.E. (Sandia National Labs., Livermore, CA (United States))

1992-01-01

56

Raman lidar measurements of water vapor and aerosol/clouds during the FIRE/SPECTRE field campaign  

SciTech Connect

The FIRE/SPECTRE field campaign was conducted during November- December 1991 in Coffeyville, Kansas. The main objective of FIRE [First ISCCP (International Satellite Cloud Climatology Project) Regional Experiment] was to study the development and radiative characteristics of cirrus clouds. The SPECTRE [Spectral Radiation Experiment] project was designed to acquire the necessary atmospheric observations to compare radiative measurements with radiative transfer theory, with special emphasis on understanding the water vapor spectral continuum. A complete understanding of water vapor, its distribution with height, and its temporal variation was important for both experiments. A ground-based Raman Lidar was deployed at Coffeyville, Kansas from November 12 until December 7, 1991. During the campaign, the lidar operated during 14 observation periods. The periods ranged in length from 3.5 hours to 12 hours for a total operating time of approximately 119 hours. During each of the operational periods the lidar obtained vertical profiles of water vapor mixing ratio and aerosol scattering ratio once every minute with vertical resolution of 75 meters from near the earth`s surface to an altitude of 9--10 km for water vapor and higher for aerosols. Several balloon-sondes were launched during each operational period providing an independent measurement of humidity with altitude. For each operational period, the 1-minute profiles of water vapor mixing ratio and aerosol scattering ratio are composited to give a color- coded time-height display of water vapor and aerosol scattering, respectively.

Melfi, S.H.; Whiteman, D. [National Aeronautics and Space Administration, Greenbelt, MD (United States). Goddard Space Flight Center; Ferrare, R. [Universities Space Research Associates, Columbia, MD (United States); Evans, K. [Hughes-STX, Lanham, MD (United States); Goldsmith, J.E.M.; Lapp, M.; Bisson, S.E. [Sandia National Labs., Livermore, CA (United States)

1992-07-01

57

Final Technical Report. Cloud and Radiation Testbed (CART) Raman Lidar measurement of atmospheric aerosols for the Atmospheric Radiation Measurement (ARM) Program  

SciTech Connect

Vertical profiles of aerosol extinction are required for determination of the effects of aerosols on the clear-sky radiative flux. Since recent studies have demonstrated the inability to compute these profiles on surface aerosol measurements alone, vertical profiles of aerosol optical properties must be acquired to compute aerosol radiative effects throughout the entire atmospheric column. Following the recommendation of the ARM Aerosol Working Group, the investigator developed, evaluated, and implemented algorithms for the CART Raman Lidar to provide profiles of aerosol extinction and backscattering. By virtue of its ability to measure vertical profiles of both aerosol extinction and water vapor simultaneously in the same scattering volume, we used the resulting profiles from the CART Raman Lidar to investigate the impact of water vapor and relative humidity on aerosol extinction throughout the column on a continuous and routine basis. The investigator used these the CART Raman Lidar aerosol extinction and backscattering profiles to evaluate the vertical variability of aerosol extinction and the extinction/backscatter ratio over the ARM SGP site.

Ferrare, Richard A.

2002-08-19

58

Raman-shifted eye-safe aerosol lidar (REAL) in 2010: instrument status and two-component wind measurements  

NASA Astrophysics Data System (ADS)

This paper and corresponding seminar given on 20 September 2010 at the 16th International School for Quantum Electronics in Nesebar, Bulgaria, will describe the key hardware aspects of the Raman-shifted Eye-safe Aerosol Lidar (REAL) and recent advances in extracting two-component wind vector fields from the images it produces. The REAL is an eye-safe, ground-based, scanning, elastic aerosol backscatter lidar operating at 1.54 microns wavelength. Operation at this wavelength offers several advantages compared to other laser wavelengths including: (1) maximum eye-safety, (2) invisible beam, (3) superior performance photodetectors compared with those used at longer wavelengths, (4) low atmospheric molecular scattering when compared with operation at shorter wavelengths, (5) good aerosol backscattering, (6) atmospheric transparency, and (7) availability of optical and photonic components used in the modern telecommunations industry. A key issue for creating a high-performance direct-detection lidar at 1.5 microns is the use of InGaAs avalanche photodetectors that have active areas of at most 200 microns in diameter. The small active area imposes a maximum limitation on the field-of-view of the receiver (about 0.54 mrad full-angle for REAL). As a result, a key requirement is a transmitter that can produce a pulsed (>10 Hz) beam with low divergence (<0.25 mrad full-angle), high pulse-energy (>150 mJ), and short pulse-duration (<10 ns). The REAL achieves this by use of a commercially-available flashlamp-pumped Nd:YAG laser and a custom high-pressure methane gas cell for wavelength shifting via stimulated Raman scattering. The atmospheric aerosol features in the images that REAL produces can be tracked to infer horizontal wind vectors. The method of tracking macroscopic aerosol features has an advantage over Doppler lidars in that two components of motion can be sensed. (Doppler lidars can sense only the radial component of flow.) Two-component velocity estimation is done by computing two-dimensional cross-correlation functions (CCFs) and noting the displacement of the peak of the CCF with respect to the origin. Motion vectors derived from this method are compared with coincident sonic anemometer measurements at 1.6 km range. Preliminary results indicate the method performs best when the atmosphere is stable with light winds.

Mayor, Shane D.

2010-10-01

59

Independent measurements of PM2.5 and PM10 in tropospheric aerosol with a multiwavelength polarization Raman lidar  

NASA Astrophysics Data System (ADS)

A new advanced scanning multi-wavelength polarization Raman lidar system has been designed and implemented. It is three transmitted wavelengths and eight receiver channels. Nd:YAG laser emits simultaneously at 355, 532, and 1064 nm. The elastically backscattered signals, again with polarization discrimination at 355 and 532 nm, the nitrogen Raman signals at 387 and 607 nm, and the water-vapor Raman signal at 407 nm are detected. Vertical profiles of the three backscatter coefficients at 355, 532, and 1064 nm, of the two extinction coefficients at 355 and 532 nm, are determined both by Klett-Fernald and Raman method. The microphysical particle parameters are retrieved from backscatter coefficients at three wavelengths and extinction coefficients at two wavelengths by regularization. We selected experimental data of typical weather from the measurement areas both Bejing and Dunhuang in different weather, e.g. cloudy, clear, haze. The experiment results were derive by inversion, and they mainly include temporal evolution of the two extinction coefficients at 355 and 532 nm, the three backscatter coefficients at 355, 532, and 1064 nm, effective radius, PM2.5, and PM10. Our aim is to study the aerosol properties directly at source in order to analyze the transportation path for pollution and dust aerosol by the temporal evolution of PM2.5 and PM10.

Yang, Xiaoyu; Zhao, Yiming; Li, Lianghai; Yu, Yong; Wang, Lidong

2014-11-01

60

Implementation of Raman lidar for profiling of atmospheric water vapor and aerosols at the Southern Great Plains Cloud and Radiation Testbed Site  

SciTech Connect

There are clearly identified scientific requirements for continuous profiling of atmospheric water vapor at the Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site. Research conducted at several laboratories, including our own collaboration in a previous Instrument Development Project for the Atmospheric Radiation Measurement (ARM) Program, has demonstrated the suitability of Raman lidar for providing measurements that are an excellent match to those requirements. We are currently building a rugged Raman lidar system that will reside permanently at the CART site and that is computer-automated to reduce the requirements for operator interaction. In addition to the design goal of profiling water vapor through most of the troposphere during nighttime and through the boundary layer during daytime, the lidar is intended to provide quantitative characterizations of aerosols and clouds, including depolarization measurements for particle phase studies. Raman lidar systems detect selected species by monitoring the wavelength-shifted molecular return produced by Raman scattering from the chosen molecule or molecules. For water-vapor measurements, the nitrogen Raman signal is observed simultaneously with the water-vapor Raman signal; proper ratioing of the signals yields the water-vapor mixing ratio. Similarly, when the backscatter signal at the laser wavelength (which contains contributions from both Rayleigh and aerosol scattering) is also recorded simultaneously, the ratio of the backscatter signal to the nitrogen Raman signal yields a quantitative measurement of the aerosol scattering ratio. A variety of aerosol and cloud parameters can be derived from this measurement. In aerosol-free regions of the atmosphere, temperature profiles can be derived from the density measurements obtained from the nitrogen Raman signal.

Goldsmith, J.E.M.; Bisson, S.E.; Blair, F.H. [Sandia National Labs., Livermore, CA (United States); Whiteman, D.N.; Melfi, S.H. [NASA/Goddard Space Flight Facility, Greenbelt, MD (United States); Ferrare, R.A. [Hughes STX Corp., Lanham, MD (United States)

1995-04-01

61

RAMSES: German Meteorological Service autonomous Raman lidar for water vapor, temperature, aerosol, and cloud measurements.  

PubMed

The Raman lidar for atmospheric moisture sensing (RAMSES) for unattended, continuous multiparameter atmospheric profiling is presented. A seeded frequency-tripled Nd:YAG laser serves as the light source. A nine-channel polychromator, nonfiber coupled to the main telescope (790 mm diameter), is used for far-range measurements. Near-range observations are performed with a three-channel polychromator, fiber coupled to a secondary telescope (200 mm diameter). Measurement parameters are water-vapor mixing ratio (MR), temperature, and the optical particle parameters, which are extinction coefficient, backscatter coefficient, lidar ratio, and depolarization ratio at 355 nm. Profiles of water-vapor MR are measured from close to the surface up to 14 km at night and 5 km during the day under favorable atmospheric conditions in 20 min. Temperature profiles of the troposphere and lower stratosphere are determined with the rotational-Raman technique. For the detection of the rotational Raman signals, a new beamsplitter/interference-filter experimental setup is implemented that is compact, robust, and easy to align. Furthermore, the polychromator design allows two independent methods for calibrating measurements of depolarization ratio. RAMSES optical design concept and experimental setup are detailed, and a description of the operational near-real-time data evaluation software is given. A multiday observation is discussed to illustrate the measurement capabilities of RAMSES. PMID:23207381

Reichardt, Jens; Wandinger, Ulla; Klein, Volker; Mattis, Ina; Hilber, Bernhard; Begbie, Robert

2012-12-01

62

In-situ, sunphotometer and Raman lidar observations of aerosol transport events in the western Mediterranean during the June 2013 ChArMEx campaign  

NASA Astrophysics Data System (ADS)

We present a preliminary analysis of aerosol observations performed in June 2013 in the western Mediterranean at two stations set up in Barcelona and Menorca (Spain) in the framework of the ChArMEx (Chemistry Aerosol Mediterranean Experiment) project. The Barcelona station was equipped with the following fixed instruments belonging to the Universitat Politècnica de Catalunya (UPC): an AERONET (Aerosol Robotic Network) sun-photometer, an MPL (Micro Pulse Lidar) lidar and the UPC multi-wavelength lidar. The MPL lidar works at 532 nm and has a depolarization channel, while the UPC lidar works at 355, 532 and 1064 nm, and also includes two N2- (at 387 and 607 nm) and one H2O-Raman (at 407 nm) channels. The MPL system works continuously 24 hour/day. The UPC system was operated on alert in coordination with the research aircrafts plans involved in the campaign. In Cap d'en Font, Menorca, the mobile laboratory of the Laboratoire des Sciences du Climat et de l'Environnement hosted an automated (AERONET) and a manual (Microtops) 5-lambda sunphotometer, a 3-lambda nephelometer, a 7-lambda aethalometer, as well as the LSCE Water vapor Aerosol LIdar (WALI). This mini Raman lidar, first developed and validated for the HyMEX (Hydrological cycle in the Mediterranean eXperiment) campaign in 2012, works at 355 nm for eye safety and is designed with a short overlap distance (<300m) to probe the lower troposphere. It includes depolarization, N2- and H2O-Raman channels. H2O observations have been calibrated on-site by different methods and show good agreement with balloon measurements. Observations at Cap d'en Font were quasi-continuous from June 10th to July 3rd, 2013. The lidar data at both stations helped direct the research aircrafts and balloon launches to interesting plumes of particles in real time for in-situ measurements. Among some light pollution background from the European continent, a typical Saharan dust event and an unusual American dust/biomass burning event are highlighted in our measurements. The lidar ratio, depolarization ratio and water content, as well as the usual aerosol vertical distribution and extinction properties provided by the Raman lidars, and the size distributions provided by AERONET, prove very helpful in characterizing particle types and sources, especially for the multi-layer situations observed. Further on, the study of parameters extracted during this campaign will allow us an assessment of the local direct aerosol radiative forcing.

Totems, Julien; Sicard, Michael; Bertolin, Santi; Boytard, Mai-Lan; Chazette, Patrick; Comeron, Adolfo; Dulac, Francois; Hassanzadeh, Sahar; Lange, Diego; Marnas, Fabien; Munoz, Constantino; Shang, Xiaoxia

2014-05-01

63

Raman Lidar Retrievals of Mixed Layer Heights  

NASA Astrophysics Data System (ADS)

Accurate determination of the atmospheric mixing layer (ML) height is important for modeling the transport of aerosols and aerosol precursors and forecasting air quality. Aerosol and water vapor profiles measured by the DOE ARM SGP and the new TWP (Darwin) ground based Raman lidars provide direct measurements of the vertical structure of ML. We have developed automated algorithms to identify sharp gradients in aerosols and water vapor at the top of the ML and have used these algorithms to derive ML heights for extended periods over the last few years. During the afternoon, these ML heights generally compare favorably with ML heights derived from potential temperature profiles derived from coincident radiosondes. However, retrieving ML heights via lidar measurements of water vapor and aerosol gradients is problematic in the presence of elevated aerosol and water vapor layers which are often observed, especially at night. Consequently, we take advantage of recent modifications to these lidars that permit continuous temperature profiling, and compute ML heights using potential temperature profiles derived from Raman lidar and Atmospheric Emitted Radiance Interferometer (AERI) measurements. The resulting ML heights agree well with ML heights derived from radiosondes and provide a more realistic representation of the diurnal ML behavior. We use the Raman lidar aerosol and water vapor profiles and ML heights to derive the fractions of total column precipitable water vapor and aerosol optical thickness within and above the ML and show how the ML heights and these fractions vary with time of day and season. The SGP Raman lidar measurements show that the fraction of the aerosol optical thickness and precipitable water vapor above the ML increases from 30-60% during the day to 60-80% at night. The Darwin Raman lidar measurements reveal a shallow, moist cloud-topped ML with little diurnal variability during the austral summer and deeper ML with more diurnal variability during the austral winter. The Darwin Raman lidar measurements of the diurnal and seasonal variabilities of ML heights and the aerosol and water vapor distributions relative to these ML heights will also be presented.

Ferrare, R. A.; Clayton, M.; Turner, D. D.; Newsom, R. K.; Goldsmith, J.

2012-12-01

64

Vertical profiling of Asian dust with multi-wavelength aerosol depolarization Raman lidar in Gwangju, Korea during DRAGON  

NASA Astrophysics Data System (ADS)

The Distributed Regional Aerosol Gridded Observation Networks (DRAGON) campaign, which was carried out in Korea from March to May 2013, aimed at validating satellite remote sensing data of aerosol optical and microphysical parameters. Anthropogenic pollution and Asian dust from the East Asian Mainland prevailed over the Korean peninsula during the DRAGON campaign. Validation of the data products requires knowledge on the vertical distribution of aerosol pollution and the knowledge of aerosol types, e.g., urban haze and dust. For this purpose we operated a multi-wavelength aerosol depolarization Raman lidar on the campus of the Gwangju Institute of Science and Technology (GIST) in Gwangju, Korea (35.10° N, 126.53° E). The system provides us with particle backscatter coefficients at 355, 532 and 1064 nm, extinction coefficients at 355 and 532nm, and the linear particle depolarization ratio at 532nm. Two upgraded sun photometers of the Aerosol Robotic Network (AERONET) with improved capabilities for dust measurements were also deployed. In our contribution we will present optical properties of Asian dust on the basis of lidar and sun photometer observations. One sun photometer was equipped with a measurement channel at 1640 nm channel and the second sun photometer carried out polarization measurements. Data could be collected on thirty-eight days We analyzed the geometrical and optical properties of Asian dust on the basis of backward trajectories in order to identify the main source regions of the observed dust layers. The height resolved statistical analysis of the DRAGON dataset reveals that the geometrical depth of the Asian dust layers was between 1 km and 4 km in 72% of all cases. Geometrical depths above 4 km were found in 20% of all cases. We found geometrical depths of 10 km in 3.3% of all cases. The vertical distribution of the dust layers was typically located in two different heights. In 51.5% of the measurements we observed Asian dust between 4 and 11km height above sea level. In 48.5% of the cases dust was below 4 km height above sea level.

Shin, D.; Mueller, D.; Noh, Y.; Shin, S.; Kim, Y. J.

2013-12-01

65

Advanced Raman water vapor lidar  

NASA Technical Reports Server (NTRS)

Water vapor and aerosols are important atmospheric constituents. Knowledge of the structure of water vapor is important in understanding convective development, atmospheric stability, the interaction of the atmosphere with the surface, and energy feedback mechanisms and how they relate to global warming calculations. The Raman Lidar group at the NASA Goddard Space Flight Center (GSFC) developed an advanced Raman Lidar for use in measuring water vapor and aerosols in the earth's atmosphere. Drawing on the experience gained through the development and use of our previous Nd:YAG based system, we have developed a completely new lidar system which uses a XeF excimer laser and a large scanning mirror. The additional power of the excimer and the considerably improved optical throughput of the system have resulted in approximately a factor of 25 improvement in system performance for nighttime measurements. Every component of the current system has new design concepts incorporated. The lidar system consists of two mobile trailers; the first (13m x 2.4m) houses the lidar instrument, the other (9.75m x 2.4m) is for system control, realtime data display, and analysis. The laser transmitter is a Lambda Physik LPX 240 iCC operating at 400 Hz with a XeF gas mixture (351 nm). The telescope is a .75m horizontally mounted Dall-Kirkham system which is bore sited with a .8m x 1.1m elliptical flat which has a full 180 degree scan capability - horizon to horizon within a plane perpendicular to the long axis of the trailer. The telescope and scan mirror assembly are mounted on a 3.65m x .9m optical table which deploys out the rear of the trailer through the use of a motor driven slide rail system. The Raman returns from water vapor (403 nm), nitrogen (383 nm) and oxygen (372 nm) are measured in addition to the direct Rayleigh/Mie backscatter (351). The signal from each of these is split at about a 5/95 ratio between two photomultiplier detectors. The 5 percent detector is used for measurements below about 4.0 km, while the 95 percent detector provides the information above this level.

Whiteman, David N.; Melfi, S. Harvey; Ferrare, Richard A.; Evans, Keith A.; Ramos-Izquierdo, Luis; Staley, O. Glenn; Disilvestre, Raymond W.; Gorin, Inna; Kirks, Kenneth R.; Mamakos, William A.

1992-01-01

66

Application of the polarization Raman Mie lidar system to monitor the particulate matter and water vapor in the aerosol pollution and haze episodes  

NASA Astrophysics Data System (ADS)

To monitor the temporal and spatial characteristics of particulate matter and water vapor in the aerosol pollution and haze episodes, the polarization Raman Mie lidar system has been developed. The lidar system includes four detection channels and it can measure the extinction coefficient and depolarization ratio of particulate matter as well as water vapor mixing ratio. The extinction coefficient indicates the visibility of atmosphere and it associates with the concentration of particulate matter. The depolarization ratio demonstrates the nonsphericity of particulate matter and is useful to distinguish the dust and pollution aerosol. The water vapor mixing ratio denotes the content of water vapor in the air and it is an important factor to influence of the hygroscopic growth on the pollution aerosol. The lidar system can operate in the automatic and continuous modes through a window on the roof of the observation room regards of the weather, and it takes continuous measurement from 20 November 2013 to 6 February 2014 over Hefei, China. During the experiment, the typical results of particulate matter measured with lidar in clear air, aerosol pollution and haze, and dust episodes are analyzed and given. The lidar observations are also compared with the air quality data and the meteorological data on the ground.

Xie, Chenbo; Zhao, Ming; Shang, Zhen; Wang, Bangxin; Zhong, Zhiqing; Liu, Dong; Wang, Yingjian

2014-11-01

67

Turn-key Raman lidar for profiling atmospheric water vapor, clouds, and aerosols at the US Southern Great Plains Climate Study Site  

SciTech Connect

There are clearly identified scientific requirements for continuous profiling of atmospheric water vapor at the Department of Energy, Atmospheric Radiation Measurement program, Southern Great Plains CART (Cloud and Radiation Testbed) site in northern Oklahoma. Research conducted at several laboratories has demonstrated the suitability of Raman lidar for providing measurements that are an excellent match to those requirements. We have developed and installed a ruggedized Raman lidar system that resides permanently at the CART site, and that is computer automated to eliminate the requirements for operator interaction. In addition to the design goal of profiling water vapor through most of the troposphere during nighttime and through the boundary layer during daytime, the lidar provides quantitative characterizations of aerosols and clouds, including depolarization measurements for particle phase studies.

Goldsmith, J.E.M.; Blair, F.H.; Bisson, S.E.

1997-12-31

68

Aerosol lidar ``M4``  

SciTech Connect

Small carrying aerosol lidar in which is used small copper vapor laser ``Malachite`` as source of sounding optical pulses is described. The advantages of metal vapor laser and photon counting mode in acquisition system of lidar gave ability to get record results: when lidar has dimensions (1 x .6 x .3 m) and weight (65 kg), it provides the sounding of air industrial pollutions at up to 20 km range in scanning sector 90{degree}. Power feed is less than 800 Wt. Lidar can be disposed as stationary so on the car, helicopter, light plane. Results of location of smoke tails and city smog in situ experiments are cited. Showed advantages of work of acquisition system in photon counting mode when dynamic range of a signal is up to six orders.

Shelevoy, C.D.; Andreev, Y.M. [Super Computer Devices Co. Ltd., Tomsk (Russian Federation); [Siberian State Medical Univ., Tomsk (Russian Federation)

1994-12-31

69

Airborne Raman lidar.  

PubMed

We designed and tested an airborne lidar system using Raman scattering to make simultaneous measurements of methane, water vapor, and temperature in a series of flights on a NASA-operated C-130 aircraft. We present the results for methane detection, which show that the instrument has the requisite sensitivity to atmospheric trace gases. Ultimately these measurements can be used to examine the transport of chemically processed air from within the polar vortex to mid-latitudinal regions and the exchange of stratospheric air between tropical and mid-latitudinal regions. PMID:21151318

Heaps, W S; Burris, J

1996-12-20

70

Monitoring O3 with solar-blind Raman lidars.  

PubMed

The benefits of retrieving ozone concentration profiles by a use of a single Raman signal rather than the Raman differential absorption lidar (DIAL) technique are investigated by numerical simulations applied either to KrF- (248 nm) or to quadrupled Nd:YAG- (266 nm) based Raman lidars, which are used for both daytime and nighttime monitoring of the tropospheric water-vapor mixing ratio. It is demonstrated that ozone concentration profiles of adequate accuracy and spatial and temporal resolution can be retrieved under low aerosol loading by a single Raman lidar because of the large value of the ozone absorption cross section both at 248 nm and at 266 nm. Then experimental measurements of Raman signals provided by the KrF-based lidar operating at the University of Lecce (40 degrees 20'N, 18 degrees 6'E) are used to retrieve ozone concentration profiles by use of the Raman DIAL technique and the nitrogen Raman signal. PMID:18357117

de Tomasi, F; Perrone, M R; Protopapa, M L

2001-03-20

71

YAG aerosol lidar  

NASA Technical Reports Server (NTRS)

The Global Atmospheric Backscatter Experiment (GLOBE) Mission, using the NASA DC-8 aircraft platform, is designed to provide the magnitude and statistical distribution of atmospheric backscatter cross section at lidar operating wavelengths. This is a fundamental parameter required for the Doppler lidar proposed to be used on a spacecraft platform for global wind field measurements. The prime measurements will be made by a CO2 lidar instrument in the 9 to 10 micron range. These measurements will be complemented with the Goddard YAG Aerosol Lidar (YAL) data in two wavelengths, 0.532 and 1.06 micron, in the visible and near-infrared. The YAL, is being designed to utilize as much existing hardware, as feasible, to minimize cost and reduce implementation time. The laser, energy monitor, telescope and detector package will be mounted on an optical breadboard. The optical breadboard is mounted through isolation mounts between two low boy racks. The detector package will utilize a photomultiplier tube for the 0.532 micron channel and a silicon avalanche photo detector (APD) for the 1.06 micron channel.

Sullivan, R.

1988-01-01

72

Regularized algorithm for Raman lidar data processing.  

PubMed

A regularized algorithm that has the potential to improve the quality of Raman lidar data processing is presented. Compared to the conventional scheme, the proposed algorithm has the advantage, which results from the fact that it is based on a well-posed procedure. That is, the profile of the aerosol backscatter coefficient is computed directly, using the explicit relationships, without numerical differentiation. Thereafter, the profile of the lidar ratio is retrieved as a regularized solution of a first-kind Volterra integral equation. Once these two steps have been completed, the profile of the aerosol extinction coefficient is computed by a straightforward multiplication. The numerical simulations demonstrated that the proposed algorithm provides good accuracy and resolution of aerosol profile retrievals. The error analysis showed that the retrieved profiles are continuous functions of the measurement errors and of the a priori information uncertainties. PMID:17676091

Shcherbakov, Valery

2007-08-01

73

Raman augmentation for Rayleigh lidar  

NASA Astrophysics Data System (ADS)

Raman detection has recently been added to the Air Force Geophysics Laboratory's ground based lidar system (GLEAM) to augment that system's Rayleigh lidar measurements. In this paper we examine the possibilities of using the Raman measurements to self-normalize, and downwardly extend our measurements of stratosphere and lower mesosphere molecular density. By combining inelastic (Raman) and elastic (Rayleigh plus Mie) scatter measurements, one can isolate the Mie component of the scattering using the techniques of Cooney and correct the data to eliminate the effects of atmospheric attenuation.

Moskowitz, W. P.; Davidson, G.; Sipler, D.; Philbrick, C. R.; Dao, P.

1988-09-01

74

Raman lidar observations of cloud liquid water.  

PubMed

We report the design and the performances of a Raman lidar for long-term monitoring of tropospheric aerosol backscattering and extinction coefficients, water vapor mixing ratio, and cloud liquid water. We focus on the system's capabilities of detecting Raman backscattering from cloud liquid water. After describing the system components, along with the current limitations and options for improvement, we report examples of observations in the case of low-level cumulus clouds. The measurements of the cloud liquid water content, as well as the estimations of the cloud droplet effective radii and number densities, obtained by combining the extinction coefficient and cloud water content within the clouds, are critically discussed. PMID:15617280

Rizi, Vincenzo; Iarlori, Marco; Rocci, Giuseppe; Visconti, Guido

2004-12-10

75

Aerosol and Water Vapor Raman Lidar System at CEILAP, Buenos Aires, Argentina. Case Study: November 07, 2006  

Microsoft Academic Search

A multiwavelength backscatter LIDAR (Light Detection And Ranging) was developed and operates at Centro de Investigaciones en Láseres y Aplicaciones, CEILAP (CITEFA-CONICET), (34.5 S and 58.5 W) to study the atmospheric properties such as the aerosol optical parameters, the boundary layer evolution, and the water vapor vertical distribution. The emission system is based on a Nd:YAG laser emitting at the

Lidia Ana Otero; Pablo Roberto Ristori; Eduardo Jaime Quel

2008-01-01

76

Aerosol and Water Vapor Raman Lidar System at CEILAP, Buenos Aires, Argentina. Case Study: November 07, 2006  

Microsoft Academic Search

A multiwavelength backscatter LIDAR (Light Detection And Ranging) was developed and operates at Centro de Investigaciones en La´seres y Aplicaciones, CEILAP (CITEFA-CONICET), (34.5 S and 58.5 W) to study the atmospheric properties such as the aerosol optical parameters, the boundary layer evolution, and the water vapor vertical distribution. The emission system is based on a Nd:YAG laser emitting at the

Lidia Ana Otero; Pablo Roberto Ristori; Eduardo Jaime Quel

2008-01-01

77

One-year observations of particle lidar ratio over the tropical Indian Ocean with Raman lidar  

Microsoft Academic Search

Observations of the extinction-to-backscatter ratio (lidar ratio) of South and Southeast Asian aerosol particles are presented for the wavelength of 532nm. Raman lidar measurements were performed in the Maldives (4.1° N, 73.3° E) in the framework of the Indian Ocean Experiment (INDOEX) in 1999\\/2000. These observations in the tropics are an important contribution to a growing global lidar-ratio climatology which

Kathleen Franke; Albert Ansmann; Detlef Milllet; Dietrich Althausen; Frank Wagner; Rinus Scheele

2001-01-01

78

Examination of the traditional Raman lidar technique. I. Evaluating the temperature-dependent lidar equations.  

PubMed

The essential information required for the analysis of Raman lidar water vapor and aerosol data acquired by use of a single laser wavelength is compiled here and in a companion paper [Appl. Opt. 42, 2593 (2003)]. Various details concerning the evaluation of the lidar equations when Raman scattering is measured are covered. These details include the influence of the temperature dependence of both pure rotational and vibrational-rotational Raman scattering on the lidar profile. The full temperature dependence of the Rayleigh-Mie and Raman lidar equations are evaluated by use of a new form of the lidar equation where all the temperature dependence is carried in a single term. The results indicate that, for the range of temperatures encountered in the troposphere, the magnitude of the temperature-dependent effect can reach 10% or more for narrowband Raman water-vapor measurements. Also, the calculation of atmospheric transmission, including the effects of depolarization, is examined carefully. Various formulations of Rayleigh cross-section determination commonly used in the lidar field are compared and reveal differences of as much as 5% among the formulations. The influence of multiple scattering on the measurement of aerosol extinction with the Raman lidar technique is considered, as are several photon pulse pileup-correction techniques. PMID:12776994

Whiteman, David N

2003-05-20

79

LIDAR Measurements During Aerosols99  

NASA Technical Reports Server (NTRS)

The Aerosols99 cruise took place during the period from January 14, to February 8 1999 on the R/V Ron Brown. The cruise track was almost a straight line from Norfolk, Va. to Cape Town, South Africa and afforded the opportunity to sample several different aerosol regimes over the North and South Atlantic. A Micro Pulse LIDAR system was used continually during this cruise to profile the aerosol vertical structure. Inversions of this data illustrated a varying vertical structure depending on the dominant air mass. In clean maritime aerosols in the Northern and Southern Hemispheres the aerosols were capped at 1 km. When a Dust event from Africa was encountered the aerosol extinction increased its maximum height to above 2 km. During a period in which the air mass was dominated by biomass burning from Southern Africa, the aerosol layer extended to 4 km. Comparisons of the aerosol optical depth derived from LIDAR inversion and surface sunphotometers showed an agreement within +/- 0.05 RMS Similar comparisons between the extinction measured with a nephelometer and particle soot absorption photometer (at 19 m altitude) and the lowest LIDAR measurement (75 m) showed good agreement (+/- 0.014/km . The LIDAR underestimated surface extinction during periods when an elevated aerosol layer was present over a relatively clean surface layer, but otherwise gave accurate results.

Voss, Kenneth J.; Welton, Ellsworth J.; Quinn, Patricia K.; Johnson, James; Thompson, Anne; Einaudi, Franco (Technical Monitor)

2000-01-01

80

Lidar measurements during Aerosols99  

NASA Astrophysics Data System (ADS)

The Aerosols99 cruise (January 14 to February 8, 1999) went between Norfolk, Virginia, and Cape Town, South Africa. A Micropulse lidar system was used almost continually during this cruise to profile the aerosol vertical structure. Inversions of this data illustrated a varying vertical structure depending on the dominant air mass. In clean maritime aerosols in the Northern and Southern Hemispheres the aerosols were capped at 1 km. When a dust event from Africa was encountered, the aerosol extinction increased its maximum height to above 2 km. During a period in which the air mass was dominated by biomass burning from southern Africa, the aerosol layer extended to 4 km. Comparisons of the aerosol optical depth (AOD) derived from lidar inversion and surface Sun photometers showed an agreement within ±0.05 RMS. Similar comparisons between the extinction measured with a nephelometer and particle soot absorption photometer (at 19 m altitude) and the lowest lidar measurement (75 m) showed good agreement (±0.014 km-1). The lidar underestimated surface extinction during periods when an elevated aerosol layer (total AOD > 0.10) was present over a relatively clean (aerosol extinction < 0.05 km-1) surface layer, but otherwise gave accurate results.

Voss, Kenneth J.; Welton, Ellsworth J.; Quinn, Patricia K.; Johnson, James; Thompson, Anne M.; Gordon, Howard R.

2001-09-01

81

Raman water vapor lidar calibration  

Microsoft Academic Search

We show here new results of a Raman LIDAR calibration methodology effort putting emphasis in the assessment of the cross-section ratio between water vapor and nitrogen by the use of a calibrated NIST traceable tungsten lamp. Therein we give a step by step procedure of how to employ such equipment by means of a mapping\\/scanning procedure over the receiving optics

E. Landulfo; R. F. da Costa; A. S. Torres; F. J. S. Lopes; D. N. Whiteman; D. D. Venable

2009-01-01

82

One-year observations of particle lidar ratio over the tropical Indian Ocean with Raman lidar  

NASA Astrophysics Data System (ADS)

Observations of the extinction-to-backscatter ratio (lidar ratio) of South and Southeast Asian aerosol particles are presented for the wavelength of 532nm. Raman lidar measurements were performed in the Maldives (4.1° N, 73.3° E) in the framework of the Indian Ocean Experiment (INDOEX) in 1999/2000. These observations in the tropics are an important contribution to a growing global lidar-ratio climatology which is needed for an improved determination of the particle optical depth with ground-based and spaceborne lidars. The lidar ratio was found to be a useful quantity to trace back different pollution sources and to identify less and considerably light-absorbing particles. During the winter/spring seasons heavily polluted air from India and Southeast Asia was advected to the lidar site. Under these conditions lidar ratios up to 110sr were observed in the lofted pollution plumes above 1000m height. According to backward trajectories the highest lidar ratios were found for airmasses which crossed the eastern and northeastern parts of India. Large lidar ratios >70sr indicate small, considerably absorbing aerosol particles. Below 1000m height, the lidar ratio typically ranged from 30-60sr. The marine boundary layer contained a mixture of marine and anthropogenic particles. Under clean, marine conditions in October 1999, lidar ratios <30sr were found.

Franke, Kathleen; Ansmann, Albert; Müller, Detlef; Althausen, Dietrich; Wagner, Frank; Scheele, Rinus

83

Meteorological water vapor Raman lidar: advances  

Microsoft Academic Search

We present the design and preliminary results of a water vapor Raman lidar, developed explicitly for meteorological applications. The lidar was designed for Meteoswiss as a fully automated, eye-safe instrument for routine water vapor measurements in the troposphere. The lidar is capable of day and nighttime vertical profiling of the tropospheric water vapor with 15 to 30 min temporal resolution.

T. Dinoev; P. Ristori; Y. Arshinov; S. Bobrovnikov; I. Serikov; B. Calpini; H. van den Bergh; V. Simeonov

2006-01-01

84

What Good is Raman Water Vapor Lidar?  

NASA Technical Reports Server (NTRS)

Raman lidar has been used to quantify water vapor in the atmosphere for various scientific studies including mesoscale meteorology and satellite validation. Now the international networks of NDACC and GRUAN have interest in using Raman water vapor lidar for detecting trends in atmospheric water vapor concentrations. What are the data needs for addressing these very different measurement challenges. We will review briefly the scientific needs for water vapor accuracy for each of these three applications and attempt to translate that into performance specifications for Raman lidar in an effort to address the question in the title of "What good is Raman water vapor Iidar."

Whitman, David

2011-01-01

85

Development of a Raman lidar simulation tool  

NASA Technical Reports Server (NTRS)

Raman Lidar is a useful and powerful tool for remote probing of the atmosphere. With Raman Lidars, one can accurately determine the identity and concentration of a particular molecular specie present in the atmosphere. We present the results from a program to develop a simulation capability of Raman Lidar systems for the remote detection of atmospheric gases and/or air polluting hydrocarbons. Our model, which integrates remote Raman spectroscopy with SPARTA's BACKSCAT atmospheric lidar simulation package, permits accurate determination of the performance of a Raman Lidar system. The accuracy with which our model operates is due to the accurate calculation, at any given excitation wavelength, of the differential scattering cross section for the molecular specie under investigation. We show excellent correlation of our calculated cross section data with experimental data from the published literature. In addition, the use of our BACKSCAT package, which provides a user friendly environment to define the operating conditions, provides an accurate calculation of the atmospheric extinction at both the excitation and Raman shifted wavelengths. Our code can be used to accurately predict the performance of a Raman Lidar system, the concentration and identification of a specie in the atmosphere, or the feasibility of making Raman measurements.

Grasso, R. J.; Hummel, J. R.

1992-01-01

86

Development of a Raman lidar simulation tool  

NASA Astrophysics Data System (ADS)

Raman Lidar is a useful and powerful tool for remote probing of the atmosphere. With Raman Lidars, one can accurately determine the identity and concentration of a particular molecular specie present in the atmosphere. We present the results from a program to develop a simulation capability of Raman Lidar systems for the remote detection of atmospheric gases and/or air polluting hydrocarbons. Our model, which integrates remote Raman spectroscopy with SPARTA's BACKSCAT atmospheric lidar simulation package, permits accurate determination of the performance of a Raman Lidar system. The accuracy with which our model operates is due to the accurate calculation, at any given excitation wavelength, of the differential scattering cross section for the molecular specie under investigation. We show excellent correlation of our calculated cross section data with experimental data from the published literature. In addition, the use of our BACKSCAT package, which provides a user friendly environment to define the operating conditions, provides an accurate calculation of the atmospheric extinction at both the excitation and Raman shifted wavelengths. Our code can be used to accurately predict the performance of a Raman Lidar system, the concentration and identification of a specie in the atmosphere, or the feasibility of making Raman measurements.

Grasso, R. J.; Hummel, J. R.

1992-07-01

87

Seasonal characteristics of lidar ratios measured with a Raman lidar at Gwangju, Korea in spring and autumn  

Microsoft Academic Search

Vertical profiles of aerosol lidar ratios at wavelengths of 355 and 532nm were measured with the GIST\\/ADEMRC (Gwangju Institute of Science & Technology\\/ADvanced Environmental Monitoring Research Center) multi-wavelength Raman lidar system at Gwangju, Korea (35.10°N, 126.53°E) during several observation periods between February 2004 and May 2005. The total number of observed aerosol layers was 63, of which 38 and 25

Young M. Noh; Young J. Kim; Detlef Müller

2008-01-01

88

Observation of atmospheric aerosol using a multiwavelength lidar system at Kwangju, Korea  

NASA Astrophysics Data System (ADS)

A multi-wavelength lidar system that can measure simultaneously spectral extinction coefficient and depolarization ratio has been developed and tested. Some results from lidar measurements aerosol extinction coefficient, lidar ratio, and depolarization ratio of aerosols are presented. Lidar transmit system generates 20 Hz laser pulses at 355nm, 532nm, and 1064nm with an Nd:YAG laser. Backscattered light from atmospheric aerosol particles is collected with three Cassegrain type telescopes. Signal detection unit has 7-channels consisting of two 532nm channels and one 1064nm channel for measuring the stratospheric aerosols, two 532nm channels for the tropospheric aerosols, and 387nm channel for Raman scattering measurements. Aerosol observation has been conducted since December 2002 at Kwangju (35°10`N, 126°53`), Korea. Raman channel permitted better determination of optical properties of continental aerosols. The profile of the depolarization ratio is determined at 532 nm and used to investigate particle shape.

Choi, Sungchul; Noh, Youngmin; Kim, Youngjoon

2004-02-01

89

Aerosol backscatter lidar calibration and data interpretation  

NASA Technical Reports Server (NTRS)

A treatment of the various factors involved in lidar data acquisition and analysis is presented. This treatment highlights sources of fundamental, systematic, modeling, and calibration errors that may affect the accurate interpretation and calibration of lidar aerosol backscatter data. The discussion primarily pertains to ground based, pulsed CO2 lidars that probe the troposphere and are calibrated using large, hard calibration targets. However, a large part of the analysis is relevant to other types of lidar systems such as lidars operating at other wavelengths; continuous wave (CW) lidars; lidars operating in other regions of the atmosphere; lidars measuring nonaerosol elastic or inelastic backscatter; airborne or Earth-orbiting lidar platforms; and lidars employing combinations of the above characteristics.

Kavaya, M. J.; Menzies, R. T.

1984-01-01

90

Advanced Aerosol Lidar Ratio Determination Algorithms Using Aerosol Covariance Models  

NASA Astrophysics Data System (ADS)

We present an algorithm to determine the extinction to backscatter (lidar) ratio (Sa), an important parameter used in the determination of the aerosol extinction and subsequently the optical depth from lidar backscatter measurements. This scheme applies to Sa determination at 532 nm and 1064 nm for a space-based two-wavelength lidar such as CALIOP on the Cloud and Aerosol Lidar and Infrared Pathfinder Spaceborne Observations (CALIPSO) satellite. The algorithm applies the Mahalanobis distance to CALIOP measurements of backscatter and depolarization and initial estimates of Sa at both wavelengths to identify the most likely aerosol model from a family of a priori probability distributions of lidar ratio, backscatter and depolarization determined from previously generated classification of High Spectral Resolution Lidar (HSRL) aerosol measurements. The HSRL record includes aerosol type specific distributions of Sa at 532 nm. We use auxiliary measurements of pairs of 532 nm and 1064 nm Sa for Urban, Smoke, Marine, and Dust aerosols from AERONET and field measurements, the NASA African Monsoon Multidisciplinary Analyses (NAMMA) and Shoreline Environmental Aerosol Study (SEAS), to develop piecewise covariance matrices using the HSRL distributions of these four aerosol types. Covariance matrices including lidar ratio at both wavelengths can also be obtained through the Enhanced Constrained Ratio Aerosol Method (E-CRAM) applied to HSRL data. We explore the application of the aerosol model matching method to CALIOP data and compare the results with HSRL 532 nm Sa distributions for coincident flights.

Hostetler, C. A.; Omar, A. H.; Burton, S. P.; Vaughan, M.; Rogers, R.; Ferrare, R. A.; Reagan, J. A.; McPherson, C.

2011-12-01

91

Raman lidar/AERI PBL Height Product  

SciTech Connect

Planetary Boundary Layer (PBL) heights have been computed using potential temperature profiles derived from Raman lidar and AERI measurements. Raman lidar measurements of the rotational Raman scattering from nitrogen and oxygen are used to derive vertical profiles of potential temperature. AERI measurements of downwelling radiance are used in a physical retrieval approach (Smith et al. 1999, Feltz et al. 1998) to derive profiles of temperature and water vapor. The Raman lidar and AERI potential temperature profiles are merged to create a single potential temperature profile for computing PBL heights. PBL heights were derived from these merged potential temperature profiles using a modified Heffter (1980) technique that was tailored to the SGP site (Della Monache et al., 2004). PBL heights were computed on an hourly basis for the period January 1, 2009 through December 31, 2011. These heights are provided as meters above ground level.

Ferrare, Richard

2012-12-14

92

Raman lidar/AERI PBL Height Product  

DOE Data Explorer

Planetary Boundary Layer (PBL) heights have been computed using potential temperature profiles derived from Raman lidar and AERI measurements. Raman lidar measurements of the rotational Raman scattering from nitrogen and oxygen are used to derive vertical profiles of potential temperature. AERI measurements of downwelling radiance are used in a physical retrieval approach (Smith et al. 1999, Feltz et al. 1998) to derive profiles of temperature and water vapor. The Raman lidar and AERI potential temperature profiles are merged to create a single potential temperature profile for computing PBL heights. PBL heights were derived from these merged potential temperature profiles using a modified Heffter (1980) technique that was tailored to the SGP site (Della Monache et al., 2004). PBL heights were computed on an hourly basis for the period January 1, 2009 through December 31, 2011. These heights are provided as meters above ground level.

Ferrare, Richard

93

[Obtaining aerosol backscattering coefficient using pure rotational Raman spectrum].  

PubMed

Atmospheric aerosol backscattering coefficient ratio can be obtained with the ratio of elastic signal to the total rotational Raman backscattering signal without assuming the ratio of aerosol extinction to backscatter. Generally, the intensity ofpartial rotational Raman spectrum lines instead of the total rotational Raman spectrum lines is measured. The intensity of the total rotational Raman spectrum lines is not dependent on the temperature, but the intensity of the partialrotational Raman spectrumlines is dependent on the temperature. So calculating aerosol backscattering coefficient ratio with the intensity of the partial rotational Raman spectrum lines would lead to an error. In the present paper, the change in the intensity sums of different rotational Raman spectrum lines with temperature was simulated and the errors of aerosol backscattering coefficient ratio derived from them were discussed. A new method was presented for measuring aerosol backscattering coefficient ratio, which needed not to measure the intensity of the total rotational Raman spectrum lines. Aerosol backscattering coefficient ratio could be obtained with the atmospheric temperature and a single rotational Raman spectrum line. Finally, a erosol backscattering coefficient ratio profiles of the atmosphere were acquired with the combined Raman lidar of our lab. The results show that there is no need to assume any relation between aerosol backscattering and extinction or to consider any wavelength calibration to determine the aerosol scattering coefficient. PMID:19123401

Su, Jia; Zhang, Yin-chao; Hu, Shun-xing; Zhao, Pei-tao; Cao, Kai-fa; Wang, Shao-lin; Xie, Jun

2008-10-01

94

The mobile Water vapor Aerosol Raman LIdar and its implication in the framework of the HyMeX and ChArMEx programs: application to a dust transport process  

NASA Astrophysics Data System (ADS)

The increasing importance of the coupling of water and aerosol cycles in environmental applications requires observation tools that allow simultaneous measurements of these two fundamental processes for climatological and meteorological studies. For this purpose, a new mobile Raman lidar, WALI (Water vapor and Aerosol LIdar), has been developed and implemented within the framework of the international HyMeX and ChArMEx programs. This paper presents the key properties of this new device and its first applications to scientific studies. The lidar uses an eye-safe emission in the ultraviolet range at 354.7 nm and a set of compact refractive receiving telescopes. Cross-comparisons between rawinsoundings performed from balloon or aircraft and lidar measurements have shown a good agreement in the derived water vapor mixing ratio (WVMR). The discrepancies are generally less than 0.5 g kg-1 and therefore within the error bars of the respective instruments. A detailed study of the uncertainty of the WVMR retrieval was conducted and shows values between 7 and 11%, which is largely constrained by the quality of the lidar calibration. It also proves that the lidar is able to measure the WVMR during daytime over a range of about 1 km. In addition the WALI system provides measurements of aerosol optical properties such as the lidar ratio (LR) or the particulate depolarization ratio (PDR). An important example of scientific application addressing the main objectives of the HyMeX and ChArMEx programs is then presented, following an event of desert dust aerosols over the Balearic Islands in October 2012. This dust intrusion may have had a significant impact on the intense precipitations that occurred over southwestern France and the Spanish Mediterranean coasts. During this event, the LR and PDR values obtained are in the ranges of ~45-63 ± 6 and 0.10-0.19 ± 0.01 sr, respectively, which is representative of dust aerosols. The dust layers are also shown to be associated with significant WVMR, i.e., between 4 and 6.7 g kg-1.

Chazette, P.; Marnas, F.; Totems, J.

2014-06-01

95

Raman lidar measurements of atmospheric properties  

SciTech Connect

The capability of Raman lidar techniques to make accurate measurements of the structure properties and species of the atmosphere has been investigated. The LANT lidar which was developed at PSU during the past several years has focused on the application of Raman vibrational and rotational scattering results. Measurements have been carried out during several campaign periods which demonstrate the performance of Raman lidar techniques compared to standard rawinsonde balloon payload measurements. The investigation has included water vapor and molecular nitrogen profiles determined from the 1st Stokes vibrational Raman transitions from laser wavelengths of 532 run, 355 nm and 266 mn. The profiles of the N{sub 2} vibrational Raman scatter provide true extinction measurements in the lower atmosphere. Water vapor profiles are determined from the ratio of signals measured at the following wavelength pairs: 660/607, 407/387 and 294/283. The fact that the profile is determined from a signal ratio removes most of the factors which would result in errors in the profiles. The temperature structure has been measured using the rotational Raman scattering in the region between 526 and 532 mn. Measurements have been carried out to evaluate the performance and show the capability of Raman lidar to measure the profiles of atmospheric structure properties and water vapor in the lower atmosphere during night conditions and to determine the daytime measurement capability.

Philbrick, C.R. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Electrical Engineering and Applied Research Lab.

1994-12-31

96

Raman lidar and sunphotometric measurements of aerosol optical properties over Thessaloniki, Greece during a biomass burning episode  

Microsoft Academic Search

The influence of biomass burning smoke on the aerosol loading in the free troposphere over Thessaloniki, Greece (40.5°N, 22.9°E) is discussed in this paper. A selected case during summer 2001 is presented, when very high aerosol optical depth values were observed, benefiting from the synergy of various remote sensing instruments. The data that were collected allow the characterization of the

D. S. Balis; V. Amiridis; C. Zerefos; E. Gerasopoulos; M. Andreae; P. Zanis; A. Kazantzidis; S. Kazadzis; A. Papayannis

2003-01-01

97

Experimental determination of Raman lidar geometric form factor combining Raman and elastic return  

NASA Astrophysics Data System (ADS)

A straightforward method is presented for the determination of the geometric form factor in Raman-Mie lidar by using elastic backscatter signal from different altitudes and derived particle backscatter coefficients. The theory is briefly described. The error of this method is discussed and a comparison with the method proposed by Wandinger and Ansmann indicates the improved accuracy of the new method. The effect of the determined geometric form factor error on aerosol extinction coefficient retrieval is further discussed. The results of the experiment show that the derived aerosol extinction coefficient profile is less affected by the geometric form factor error when the atmospheric aerosol concentration is higher.

Chen, Hao; Chen, Siying; Zhang, Yinchao; Chen, He; Guo, Pan; Chen, Binglong

2014-12-01

98

INTERCOMPARISON OF WATER VAPOR CALIBRATION CONSTANTS DERIVED FROM IN-SITU AND DISTANT SOUNDINGS FOR A RAMAN-LIDAR OPERATING IN THE AMAZON  

E-print Network

Ambiente, INPA/UEA, Manaus-AM - Brazil ABSTRACT Water vapor profiles derived from UV Raman Lidar mea.1. This paper focus on the Raman-Lidar system used for mea- surements of water vapor and aerosol optical water vapor mea- surements, lidar profiles were calibrated with collocated soundings launched during

Barbosa, Henrique

99

Density measurements with combined Raman-Rayleigh lidar  

NASA Astrophysics Data System (ADS)

Rayleigh lidar reliably measures relative densities in the region above 30 km. In this region, atmospheric extinction can be neglected and backscattering is primarily due to Rayleigh scattering. However, when density measurements are needed for the lower stratosphere two complications arise: the contribution of aerosol (Mie and Rayleigh) scattering to the Rayleigh signal and the effect of aerosol attenuation. Vibrational Raman scattering, being an elastic process for molecules only, can be used to resolve the first ambiguity. The second difficulty requires an inversion technique to help determine the attenuation profile from the lidar signal and provide a transmission correction of this signal. For the lower stratosphere, the technique adopted is a three-step treatment of data. In step 1, Klett inversion is applied on the elastic scattering signal (Mie and Rayleigh) to obtain a transmission altitude profile. In step 2, the molecular signal from the Raman lidar is corrected for atmospheric attenuation. In step 3, Raman data for below 5 km is spliced to Rayleigh data for above 25 km to give the entire profile of neutral density.

Dao, Phan; Klemetti, Wayne; Sipler, Dwight; Moskowitz, W. P.; Davidson, G.

1989-01-01

100

The mobile Water vapor Aerosol Raman LIdar and its implication in the frame of the HyMeX and ChArMEx programs: application to a dust transport process  

NASA Astrophysics Data System (ADS)

The increasing importance of the coupling of water and aerosol cycles in environmental applications requires observation tools which allow simultaneous measurements of these two fundamental processes for climatological and meteorological studies. In this purpose, a new mobile Raman lidar, WALI (Water vapor and Aerosol LIDAR), has been developed and implemented within the framework of the international HyMeX/IODA-MED and ChArMEx programs. This paper presents the key properties of this new device and its first applications to scientific studies. The lidar uses an eye-safe emission in the ultra-violet range at 354.7 nm and a set of compact refractive receptors. Cross-comparisons between rawindsoundings performed from balloon or aircraft and lidar measurements have shown a good agreement in the derived water vapor mixing ratio (WVMR). The discrepancies are generally less than 0.5 g kg-1 and therefore within the error bars of the instruments. A detailed study of the uncertainties was conducted and shows a 7 to 11% accuracy of the WVMR retrieval, which is largely constrained by the quality of the calibration. It also proves that the lidar is able to measure the WVMR during the day over a range of about 1 km. The WALI system otherwise provides measurements of aerosol optical properties such as the lidar ratio (LR) or the particulate depolarization ratio (PDR). An important example of scientific application addressing the main objectives of the HyMeX and ChArMEx programs is then presented, following an event of desert dust aerosols over the Balearic Islands. This dust intrusion may have had a significant impact on the intense precipitations that occurred over southwestern France and the Spanish Mediterranean coasts. During this event, the LR and PDR values obtained are in the ranges of ~ 45-63 ± 6 sr and 0.1-0.19 ± 0.01, respectively, which is representative of dust aerosols. The dust layers are also shown to be associated with significant WVMR, i.e. between 4 and 6.7 g kg-1.

Chazette, P.; Marnas, F.; Totems, J.

2013-12-01

101

GROUND BASED LIDAR OBSERVATIONS OF AEROSOL AND CIRRUS CLOUDS OPTICAL PROPERTIES IN CENTRAL AMAZON DURING THE DRY SEASON  

E-print Network

to perform continuous measurements of aerosols and water vapor and aiming to study and monitor the atmosphereGROUND BASED LIDAR OBSERVATIONS OF AEROSOL AND CIRRUS CLOUDS OPTICAL PROPERTIES IN CENTRAL AMAZON Paulo, São Paulo, S.P., Brazil E-mail: hbarbosa@if.usp.br A permanent UV Raman Lidar station, designed

Barbosa, Henrique

102

Water Vapor Raman LIDAR Within the Ndsc  

Microsoft Academic Search

This work is a joint effort to provide best water vapor measurements in the upper troposphere lower stratosphere within the NDSC. It is only recently that NDSC decided to include water vapor lidar measurements as a standard tool. While the NDSC project is centered on the stratosphere, detection of the Raman measurements is improved to reach the highest altitude. Here

Philippe Keckhut; Gelsomina Pappalardo; Arnoud Apituley; Fernando Congeduti; Thierry Leblanc; Franz Immler; Marion Muller; Choo Hie Lee; Laurent Robert; Valentin Simeonov; Geraint Vaughan; Dave Whiteman

2004-01-01

103

Compact water-vapor Raman lidar  

Microsoft Academic Search

Continuous monitoring of atmospheric water vapor mixing ratio profiles, especially within the planetary boundary layer is required for weather assessment, global circulation models and atmospheric studies. Although conventional lidar techniques based on Raman scattering or differential absorption are capable of such measurements, they are usually large, expensive systems with high power lasers which pose eye safety problems. This paper describes

Savyasachee L. Mathur; Coorg R. Prasad

1999-01-01

104

Observations of marine aerosol by a shipborne multiwavelength lidar over the Yellow Sea of China  

NASA Astrophysics Data System (ADS)

Aerosol particles are important both because they affect atmospheric processes and, after deposition to the sea surface, because they affect processes in sea water. Aerosols have a strong impact on climate both due to scattering and absorption of incoming solar radiation (direct effect) and through their effects on cloud properties and associated cloud albedo (first indirect effect) and precipitation (second indirect effect). A shipborne multiwavelength Mie/Raman/Polarization aerosol lidar developed for marine aerosol is presented. The shipborne aerosol lidar (SAL) is able to measure aerosol backscatter and extinction coefficient as well as depolarization in the altitude range 0 to 20 km. The instrument is installed in a 2 m*2 m*2 m container. Preliminary results of investigation of marine aerosol properties on the basis of multiwavelength lidar onboard the Xiangyanghong Number 8 Research ship on the Yellow Sea and Jiaozhou Bay of China are presented.

Wang, Zhangjun; Du, Libin; Li, Xianxin; Meng, Xiangqian; Chen, Chao; Qu, Junle; Wang, Xiufen; Liu, Xingtao; Kabanov, V. V.

2014-11-01

105

Improvement of NIES lidar network observations by adding Raman scatter measurement function  

NASA Astrophysics Data System (ADS)

We have conducted ground-based lidar network observations in wide areas of East Asia using two-wavelength (532 and 1064nm) backscatter and one-wavelength (532nm) depolarization Mie-scatter lidars for more than ten years. To realize more advanced aerosol classification and retrieval, we improved the Mie-scatter lidars at several main sites by adding a N2 Raman scatter measurement channel (607nm). This Mie-Raman lidar system provides 1?+2?+1? data at nighttime: extinction coefficient (?) at 532nm, backscatter coefficients (?) at 532 and 1064nm, and depolarization ratio (?) at 532nm. We also developed an algorithm to estimate vertical profiles of 532nm extinction coefficients of black carbon, dust, sea-salt, and air-pollution aerosols consisting of a mixture of sulfate, nitrate, and organic carbon substances (SF-NT-OC) using the 1?+2?+1? data. With this method, we assume an external mixture of aerosol components and prescribe their size distributions, refractive indexes, and particle shapes. The measured lidar data are automatically transferred to the NIES data server. We developed an algorithm to estimate particle optical properties (1?+2?+1? data), planetary boundary layer (PBL) height, and scene classification identifiers representing molecule-rich, aerosol-rich, or cloud-rich layer automatically and provide their quick-looks in semi-realtime on the website (http://www-lidar.nies.go.jp/shingakujutsu/Raman/).

Nishizawa, Tomoaki; Sugimoto, Nobuo; Matsui, Ichiro; Shimizu, A.

2012-11-01

106

Characterization of aerosols in East Asia with the Asian Dust and Aerosol Lidar Observation Network (AD-Net)  

NASA Astrophysics Data System (ADS)

Continuous observations of aerosols are being conducted with the Asian Dust and aerosol lidar observation Network (AD-Net). Currently, two-wavelength (1064 nm and 532 nm) polarization-sensitive (532 nm) lidars are operated at 20 stations in East Asia. At the primary stations (6 stations), nitrogen vibrational Raman scattering is also measured to obtain the extinction coefficient at 532 nm. Recently, continuous observations with a three-wavelength (1064 nm, 532 nm and 355 nm) lidar having a high-spectral-resolution receiver at 532 nm and a Raman receiver at 355 nm and polarization-sensitive receivers at 532 nm and 355 nm) was started in Tsukuba. Also, continuous observations with multi-wavelength Raman lidars are being prepared in Fukuoka, Okinawa Hedo, and Toyama. A data analysis method for deriving distributions of aerosol components (weak absorption fine (such as sulfate), weak absorption coarse (sea salt), strong absorption fine (black carbon), non-spherical (dust)) has been developed for these multi-parameter lidars. Major subjects of the current studies with AD-Net include data assimilation of multi-parameter lidars, mixing states of Asian dust with air pollution particulate matter, and validation of EarthCARE ATLID based on the aerosol component analysis method.

Sugimoto, Nobuo; Nishizawa, Tomoaki; Shimizu, Atsushi; Matsui, Ichiro; Jin, Yoshitaka

2014-11-01

107

Vertical profiling of Saharan dust with Raman lidars and airborne HSRL in southern Morocco during SAMUM  

Microsoft Academic Search

ABSTRACT Three ground-based Raman lidars and an airborne high-spectral-resolution lidar (HSRL) were operated during SAMUM 2006 in southern Morocco to measure height profiles of the volume extinction coefficient, the extinction-to-backscatter ratio and the depolarization ratio of dust particles in the Saharan dust layer at several wavelengths. Aerosol Robotic Network (AERONET) Sun photometer observations and radiosoundings of meteorological parameters complemented the

Matthias Tesche; Albert Ansmann; Detlef Müller; Dietrich Althausen; Ina Mattis; Birgit Heese; Volker Freudenthaler; Matthias Wiegner; Michael Esselborn; Gianluca Pisani; Peter Knippertz

2009-01-01

108

Performance Modeling of an Airborne Raman Water-Vapor Lidar  

Microsoft Academic Search

We have developed a sophisticated Raman lidar numerical model to simulate the performance of two ground-based Raman water-vapor lidar systems. After verifying the model using these ground-based measurements, we then used the model to simulate the water-vapor measurement capability of an airborne Raman lidar under both daytime and nighttime conditions for a wide range of water-vapor conditions. The results indicate

David N. Whiteman; Geary Schwemmer; Timothy Berkoff; Henry Plotkin; Luis Ramos-Izquierdo; Gelsomina Pappalardo

2001-01-01

109

Two-wavelength lidar inversion algorithm for determination of aerosol extinction-to-backscatter ratio and its application to CALIPSO lidar measurements  

Microsoft Academic Search

A modified two-wavelength lidar inversion algorithm is proposed to aid in the retrieval of aerosol extinction-to-backscatter ratios (lidar ratio) as well as backscatter coefficients and extinction color ratios from simultaneous two-wavelength elastic backscatter lidar measurements. To demonstrate the feasibility of the algorithm, both the Raman method and the two-wavelength method have been applied to the ground-based measurements at 355 and

Xiaomei Lu; Yuesong Jiang; Xuguo Zhang; Xuan Wang; Nicola Spinelli

2011-01-01

110

Lidar aerosol backscatter measurements - Systematic, modeling, and calibration error considerations  

NASA Technical Reports Server (NTRS)

Sources of systematic, modeling, and calibration errors that affect the interpretation and calibration of lidar aerosol backscatter data are discussed. The treatment pertains primarily to ground-based pulsed CO2 lidars that probe the troposphere and are calibrated using hard calibration targets. However, a large part of the analysis is relevant to other types of lidar system such as lidars operating at other wavelengths; CW focused lidars; airborne or earth-orbiting lidars; lidars measuring other regions of the atmosphere; lidars measuring nonaerosol elastic or inelastic backscatter; and lidars employing other calibration techniques.

Kavaya, M. J.; Menzies, R. T.

1985-01-01

111

Preliminary measurements of tropospheric water vapor using Raman lidar system in the Great Lakes area  

Microsoft Academic Search

Obtaining high resolution vertical profiles of water vapor is crucially important to understand short and long term global climate changes. Raman lidar technique is widely recognized as the most effective tool to study water vapor and aerosols profiles in the lower atmosphere. The Great lakes area is one of the ideal areas to study the environmental impact of water vapor

Watheq Al-Basheer; Kevin B. Strawbridge; Bernard J. Firanski

2011-01-01

112

Demonstration of Aerosol Property Profiling by Multi-wavelength Lidar Under Varying Relative Humidity Conditions  

NASA Technical Reports Server (NTRS)

The feasibility of using a multi-wavelength Mie-Raman lidar based on a tripled Nd:YAG laser for profiling aerosol physical parameters in the planetary boundary layer (PBL) under varying conditions of relative humidity (RH) is studied. The lidar quantifies three aerosol backscattering and two extinction coefficients and from these optical data the particle parameters such as concentration, size and complex refractive index are retrieved through inversion with regularization. The column-integrated, lidar-derived parameters are compared with results from the AERONET sun photometer. The lidar and sun photometer agree well in the characterization of the fine mode parameters, however the lidar shows less sensitivity to coarse mode. The lidar results reveal a strong dependence of particle properties on RH. The height regions with enhanced RH are characterized by an increase of backscattering and extinction coefficient and a decrease in the Angstrom exponent coinciding with an increase in the particle size. We present data selection techniques useful for selecting cases that can support the calculation of hygroscopic growth parameters using lidar. Hygroscopic growth factors calculated using these techniques agree with expectations despite the lack of co-located radiosonde data. Despite this limitation, the results demonstrate the potential of multi-wavelength Raman lidar technique for study of aerosol humidification process.

Whiteman, D.N.; Veselovskii, I.; Kolgotin, A.; Korenskii, M.; Andrews, E.

2008-01-01

113

Advances in Raman Lidar Measurements of Water Vapor  

NASA Technical Reports Server (NTRS)

Recent technology upgrades to the NASA/GSFC Scanning Raman Lidar have permitted significant improvements in the daytime and nighttime measurement of water vapor using Raman lidar. Numerical simulation has been used to study the temperature sensitivity of the narrow spectral band measurements presented here.

Whiteman, D. N.; Evans, K.; Demoz, B.; DiGirolamo, P.; Mielke, B.; Stein, B.; Goldsmith, J. E. M.; Tooman, T.; Turner, D.; Starr, David OC. (Technical Monitor)

2002-01-01

114

Performance modeling of an airborne Raman water-vapor lidar.  

PubMed

We have developed a sophisticated Raman lidar numerical model to simulate the performance of two ground-based Raman water-vapor lidar systems. After verifying the model using these ground-based measurements, we then used the model to simulate the water-vapor measurement capability of an airborne Raman lidar under both daytime and nighttime conditions for a wide range of water-vapor conditions. The results indicate that, under many circumstances, the daytime measurements possess comparable quality to an existing airborne differential absorption water-vapor lidar whereas the nighttime measurements have improved spatial and temporal resolution. In addition, an airborne Raman lidar can offer measurements that are difficult or impossible with the differential absorption lidar technique. PMID:18357011

Whiteman, D N; Schwemmer, G; Berkoff, T; Plotkin, H; Ramos-Izquierdo, L; Pappalardo, G

2001-01-20

115

EARLINET: towards an advanced sustainable European aerosol lidar network  

NASA Astrophysics Data System (ADS)

The European Aerosol Research Lidar Network, EARLINET, was founded in 2000 as a research project for establishing a quantitative, comprehensive, and statistically significant database for the horizontal, vertical, and temporal distribution of aerosols on a continental scale. Since then EARLINET has continued to provide the most extensive collection of ground-based data for the aerosol vertical distribution over Europe. This paper gives an overview of the network's main developments since 2000 and introduces the dedicated EARLINET special issue, which reports on the present innovative and comprehensive technical solutions and scientific results related to the use of advanced lidar remote sensing techniques for the study of aerosol properties as developed within the network in the last 13 years. Since 2000, EARLINET has developed greatly in terms of number of stations and spatial distribution: from 17 stations in 10 countries in 2000 to 27 stations in 16 countries in 2013. EARLINET has developed greatly also in terms of technological advances with the spread of advanced multiwavelength Raman lidar stations in Europe. The developments for the quality assurance strategy, the optimization of instruments and data processing, and the dissemination of data have contributed to a significant improvement of the network towards a more sustainable observing system, with an increase in the observing capability and a reduction of operational costs. Consequently, EARLINET data have already been extensively used for many climatological studies, long-range transport events, Saharan dust outbreaks, plumes from volcanic eruptions, and for model evaluation and satellite data validation and integration. Future plans are aimed at continuous measurements and near-real-time data delivery in close cooperation with other ground-based networks, such as in the ACTRIS (Aerosols, Clouds, and Trace gases Research InfraStructure Network) www.actris.net, and with the modeling and satellite community, linking the research community with the operational world, with the aim of establishing of the atmospheric part of the European component of the integrated global observing system.

Pappalardo, G.; Amodeo, A.; Apituley, A.; Comeron, A.; Freudenthaler, V.; Linné, H.; Ansmann, A.; Bösenberg, J.; D'Amico, G.; Mattis, I.; Mona, L.; Wandinger, U.; Amiridis, V.; Alados-Arboledas, L.; Nicolae, D.; Wiegner, M.

2014-08-01

116

Density measurements with combined Raman-Rayleigh LIDAR (Light Detection And Ranging)  

NASA Astrophysics Data System (ADS)

A combined Raman-Rayleigh Lidar (Light Detection And Ranging) has recently been implemented at the Air Force Geophysics Laboratory's ground-based lidar station to measure neutral density from the lower stratosphere to the upper mesosphere. Rayleigh Lidar reliability measures relative densities in the region above 30 km. In this region, atmospheric extinction can be neglected and backscattering is primarily due to Rayleigh scattering. However, when density measurements are needed for the lower stratosphere two complications arise: the contribution of aerosol (Mie and Rayleigh) signal and the effect of aerosol attenuation. Vibrational Raman scattering, being an elastic process for molecules only, can be used to resolve the first ambiguity. The second difficulty requires an inversion technique to help determine the attenuation profile from the Lidar signal and provide a transmission correction of this signal. For the lower stratosphere, the technique adopted in this laboratory is a three-step treatment of data. In step 1 Klett inversion is applied on the elastic scattering signal (Mie and Rayleigh) to obtain a transmission altitude profile. In step 2 the molecular signal from the Raman Lidar is corrected for atmospheric attenuation. In step 3 Raman data for below 25 km is spliced to Rayleigh data for above 25 km to give the entire profile of neutral density.

Dao, Phan; Klemetti, Wayne; Sipler, Dwight; Moskowitz, W. P.; Davidson, G.

1989-01-01

117

Spectrally resolved Raman lidar measurements of gaseous and liquid water in the atmosphere.  

PubMed

A spectrally resolved Raman lidar based on a tripled Nd:YAG laser is built for measuring gaseous and liquid water in the atmosphere. A double-grating polychromator with a reciprocal linear dispersion of ~0.237 nm mm(-1) is designed to achieve the wavelength separation and the suppression of elastic backscatter. A 32-channel linear-array photomultiplier tube is employed to sample atmospheric Raman water spectrum between 401.65 and 408.99 nm. The lidar-observed Raman water spectrum in the very clear atmosphere is nearly invariable in shape. It is dominated by water vapor, and can serve as background reference for Raman lidar identification of the phase state of atmospheric water under various weather conditions. The lidar has measured also the Raman water spectrum of an aerosol/liquid water layer. The spectrum showed a moderate increase of the signal on both sides of the Q-branch of water vapor. Noting that under clear weather conditions the Raman water spectrum intensity stays at a very low level in the 401.6-404.7 nm range, the Raman water signal in this portion can be used to estimate the liquid water content in the layer. PMID:24085202

Liu, Fuchao; Yi, Fan

2013-10-01

118

Chamber LIDAR measurements of aerosolized biological simulants  

NASA Astrophysics Data System (ADS)

A chamber aerosol LIDAR is being developed to perform well-controlled tests of optical scattering characteristics of biological aerosols, including Bacillus atrophaeus (BG) and Bacillus thuringiensis (BT), for validation of optical scattering models. The 1.064 ?m, sub-nanosecond pulse LIDAR allows sub-meter measurement resolution of particle depolarization ratio or backscattering cross-section at a 1 kHz repetition rate. Automated data acquisition provides the capability for real-time analysis or recording. Tests administered within the refereed 1 cubic meter chamber can provide high quality near-field backscatter measurements devoid of interference from entrance and exit window reflections. Initial chamber measurements of BG depolarization ratio are presented.

Brown, David M.; Thrush, Evan P.; Thomas, Michael E.; Siegrist, Karen M.; Baldwin, Kevin; Quizon, Jason; Carter, Christopher C.

2009-05-01

119

Raman lidar water vapor measurements performed at CNR-IMAA  

Microsoft Academic Search

A Raman lidar system for water vapor measurements is operational at Istituto di Metodologie per l'Analisi Ambientale (IMAA),in Tito Scalo, Potenza, (Southern Italy, 40°36'N, 15°44'E, 760 m above sea level) since July 2002. The Raman technique is widely employed for tropospheric water vapor measurements with high vertical and temporal resolution. In principle, Raman lidar measurement of water vapor can be

C. Cornacchia; A. Amodeo; G. D'Amico; F. Madonna; L. Mona; G. Pappalardo

2005-01-01

120

Performance Modeling of an Airborne Raman Water Vapor Lidar  

NASA Technical Reports Server (NTRS)

A sophisticated Raman lidar numerical model had been developed. The model has been used to simulate the performance of two ground-based Raman water vapor lidar systems. After tuning the model using these ground-based measurements, the model is used to simulate the water vapor measurement capability of an airborne Raman lidar under both day-and night-time conditions for a wide range of water vapor conditions. The results indicate that, under many circumstances, the daytime measurements possess comparable resolution to an existing airborne differential absorption water vapor lidar while the nighttime measurement have higher resolution. In addition, a Raman lidar is capable of measurements not possible using a differential absorption system.

Whiteman, D. N.; Schwemmer, G.; Berkoff, T.; Plotkin, H.; Ramos-Izquierdo, L.; Pappalardo, G.

2000-01-01

121

Water vapor measurements by lidar: Raman and DIAL campaigns  

Microsoft Academic Search

Ground-based water vapor measurements by lidar have been performed in Potenza, Southern Italy, by the application of the Raman and the DIAL techniques. Raman measurements have been accomplished through the simultaneous detection of the backscattered radiation in the vibrational Raman bands of water vapor and molecular nitrogen as stimulated by a 355 nm beam, while DIAL measurements at 720 nm

Paolo Di Girolamo

2000-01-01

122

Comparison of Aerosol Optical Properties and Water Vapor Among Ground and Airborne Lidars and Sun Photometers During TARFOX  

NASA Technical Reports Server (NTRS)

We compare aerosol optical thickness (AOT) and precipitable water vapor (PWV) measurements derived from ground and airborne lidars and sun photometers during the Tropospheric Aerosol Radiative Forcing Observational Experiment. Such comparisons are important to verify the consistency between various remote sensing measurements before employing them in any assessment of the impact of aerosols on the global radiation balance. Total scattering ratio and extinction profiles measured by the ground-based NASA Goddard Space Flight Center scanning Raman lidar system, which operated from Wallops Island, Virginia (37.86 deg N, 75.51 deg W); are compared with those measured by the Lidar Atmospheric Sensing Experiment (LASE) airborne lidar system aboard the NASA ER-2 aircraft. Bias and root-mean-square differences indicate that these measurements generally agreed within about 10%. Aerosol extinction profiles and estimates of AOT are derived from both lidar measurements using a value for the aerosol extinction/backscattering ratio S(sub a) = 60 sr for the aerosol extinction/backscattering ratio, which was determined from the Raman lidar measurements. The lidar measurements of AOT are found to be generally within 25% of the AOT measured by the NASA Ames Airborne Tracking Sun Photometer (AATS-6). However, during certain periods the lidar and Sun photometer measurements of AOT differed significantly, possibly because of variations in the aerosol physical characteristics (e.g., size, composition) which affect S(sub a). Estimates of PWV, derived from water vapor mixing ratio profiles measured by LASE, are within 5-10% of PWV derived from the airborne Sun photometer. Aerosol extinction profiles measured by both lidars show that aerosols were generally concentrated in the lowest 2-3 km.

Ferrare, R.; Ismail, S.; Browell, E.; Brackett, V.; Clayton, M.; Kooi, S.; Melfi, S. H.; Whiteman, D.; Schwemmer, G.; Evans, K.

2000-01-01

123

Lidar observations of Nabro volcano aerosol layers in the stratosphere over Gwangju, Korea  

NASA Astrophysics Data System (ADS)

We report on the first Raman lidar measurements of stratospheric aerosol layers in the upper troposphere and lower stratosphere over Korea. The data were taken with the multiwavelength aerosol Raman lidar at Gwangju (35.10° N, 126.53° E), Korea. The volcanic ash particles and gases were released around 12 June 2011 during the eruption of the Nabro volcano (13.37° N, 41.7° E) in Eritrea, east Africa. Forward trajectory computations show that the volcanic aerosols were advected from North Africa to East Asia. The first observation of the stratospheric aerosol layers over Korea was on 19 June 2011. The stratospheric aerosol layers appeared between 15 and 17 km height a.s.l. The aerosol layers' maximum value of the backscatter coefficient and the linear particle depolarization ratio at 532 nm were 1.5 ± 0.3 Mm-1 sr-1 and 2.2%, respectively. We found these values at 16.4 km height a.s.l. 44 days after this first observation, we observed the stratospheric aerosol layer again. We continuously probed the upper troposphere and lower stratosphere for this aerosol layer during the following 5 months, until December 2011. The aerosol layers typically occurred between 10 and 20 km height a.s.l. The stratospheric aerosol optical depth and the maximum backscatter coefficient at 532 nm decreased during these 5 months.

Shin, D.; Müller, D.; Lee, K.; Shin, S.; Kim, Y. J.; Song, C. K.; Noh, Y. M.

2015-01-01

124

Raman lidar characterization using a reference lamp  

NASA Astrophysics Data System (ADS)

The determination of the amount of water vapor in the atmosphere using lidar is a calibration dependent technique. Different collocated instruments are used for this purpose, like radiossoundings and microwave radiometers. When there are no collocated instruments available, an independente lamp mapping calibration technique can be used. Aiming to stabilish an independ technique for the calibration of the six channels Nd-YAG Raman lidar system located at the Center for Lasers and Applications (CLA), S˜ao Paulo, Brazil, an optical characterization of the system was first performed using a reference tungsten lamp. This characterization is useful to identify any possible distortions in the interference filters, telescope mirror and stray light contamination. In this paper we show three lamp mapping caracterizations (01/16/2014, 01/22/2014, 04/09/2014). The first day is used to demostrate how the tecnique is useful to detect stray light, the second one how it is sensible to the position of the filters and the third one demostrates a well optimized optical system.

Landulfo, Eduardo; da Costa, Renata F.; Rodrigues, Patricia F.; da Silva Lopes, Fábio J.

2014-10-01

125

Upper tropospheric humidity measurements by Raman lidar above Payerne, Switzerland, in the frame of NDACC  

NASA Astrophysics Data System (ADS)

The Raman lidar for Meteorological Observations, RALMO, is a Raman lidar for water vapor, temperature and aerosol profiling deployed at the aerological station of Payerne, Switzerland. The instrument is fully automatic and operational since beginning of 2008 performing quasi continuous day and nighttime measurements with a temporal resolution of 30 min. Since 2013 the water vapor measurements are also performed in the frame of NDACC. In this study the data set has been reprocessed taking only nighttime and clear sky data using long integration times of several hours. In this configuration water vapor mixing ratio can be retrieved up to the tropopause with an uncertainty of 10 % or better. Comparisons with radiosoundings reveal that the lidar agrees with the RS92 and SnowWhite hygrometers within 20 % up to 12 km in terms of water vapor mixing ratio. The validation results and the 6 year time series of upper tropospheric humidity will be presented and discussed.

Haefele, Alexander; Philipona, Rolf; Calpini, Bertrand; Simeonov, Valentin

2014-05-01

126

Considerations about the lognormality of the aerosol lidar signal fluctuations  

NASA Astrophysics Data System (ADS)

Physical analysis and mathematical description are given of the factors conditioning the formation and the fluctuation statistics of the aerosol lidar signals. The considerations are based on the assumption of incoherent scattering from aerosol particles occupying the "scattering laser-pulse volume" having specific cross-section and length. The influence of the atmospheric refractive turbulence is also taken into account. Different types of statistics of the aerosol field and different design parameters of the lidar system are considered as well, as essential factors determining the fluctuation level and distribution. It is shown that the aerosol lidar signal fluctuations can indeed have nearly log-normal distribution, as is frequently assumed, under determinate environment and lidar-design conditions including the probability density distribution and the mean number and variance of the scattering aerosol particles, the temporal and spatial correlation characteristics of the aerosol concentration, the refractive turbulence intensity, the radii of and the distance between the scattering volume and the aperture of the lidar receiving optical system, etc. Thus, the modeling of aerosol lidar signals and the interpretation of aerosol lidar data may be based on the assumption of log-normal statistics of the signal fluctuations whose level is derived on the basis of reasonable physical concepts and determined by the above-indicated conditions and parameters of concern.

Gurdev, Ljuan L.; Dreischuh, Tanja N.; Peshev, Zahary Y.; Stoyanov, Dimitar V.

2015-01-01

127

Comparison of Aerosol Optical Properties and Water Vapor Among Ground and Airborne Lidars and Sun Photometers During TARFOX  

NASA Technical Reports Server (NTRS)

We compare aerosol optical thickness (AOT) and precipitable water vapor (PWV) measurements derived from ground and airborne lidars and Sun photometers during TARFOX (Tropospheric Aerosol Radiative Forcing Observational Experiment). Such comparisons are important to verify the consistency between various remote sensing measurements before employing them in any assessment of the impact of aerosols on the global radiation balance. Total scattering ratio and extinction profiles measured by the ground-based NASA/GSFC Scanning Raman Lidar (SRL) system, which operated from Wallops Island, Virginia (37.86 deg N, 75.51 deg W), are compared with those measured by the Lidar Atmospheric Sensing Experiment (LASE) airborne lidar system aboard the NASA ER-2 aircraft. Bias and rms differences indicate that these measurements generally agreed within about 10%. Aerosol extinction profiles and estimates of AOT are derived from both lidar measurements using a value for the aerosol extinction/backscattering ratio S(sub a)=60 sr for the aerosol extinction/backscattering ratio, which was determined from the Raman lidar measurements.

Ferrare, R.; Ismail, S.; Browell, E.; Brackett, V.; Clayton, M.; Kooi, S.; Melfi, S. H.; Whiteman, D.; Schwemmer, G.; Evans, K.; Russell, P.; Livingston, J.; Schmid, B.; Holben, B.; Remer, L.; Smirnov, A.; Hobbs, P. V.

2000-01-01

128

Airborne and Ground-Based Measurements Using a High-Performance Raman Lidar  

NASA Technical Reports Server (NTRS)

A high-performance Raman lidar operating in the UV portion of the spectrum has been used to acquire, for the first time using a single lidar, simultaneous airborne profiles of the water vapor mixing ratio, aerosol backscatter, aerosol extinction, aerosol depolarization and research mode measurements of cloud liquid water, cloud droplet radius, and number density. The Raman Airborne Spectroscopic Lidar (RASL) system was installed in a Beechcraft King Air B200 aircraft and was flown over the mid-Atlantic United States during July August 2007 at altitudes ranging between 5 and 8 km. During these flights, despite suboptimal laser performance and subaperture use of the telescope, all RASL measurement expectations were met, except that of aerosol extinction. Following the Water Vapor Validation Experiment Satellite/Sondes (WAVES_2007) field campaign in the summer of 2007, RASL was installed in a mobile trailer for groundbased use during the Measurements of Humidity and Validation Experiment (MOHAVE-II) field campaign held during October 2007 at the Jet Propulsion Laboratory s Table Mountain Facility in southern California. This ground-based configuration of the lidar hardware is called Atmospheric Lidar for Validation, Interagency Collaboration and Education (ALVICE). During theMOHAVE-II field campaign, during which only nighttime measurements were made, ALVICE demonstrated significant sensitivity to lower-stratospheric water vapor. Numerical simulation and comparisons with a cryogenic frost-point hygrometer are used to demonstrate that a system with the performance characteristics of RASL ALVICE should indeed be able to quantify water vapor well into the lower stratosphere with extended averaging from an elevated location like Table Mountain. The same design considerations that optimize Raman lidar for airborne use on a small research aircraft are, therefore, shown to yield significant dividends in the quantification of lower-stratospheric water vapor. The MOHAVE-II measurements, along with numerical simulation, were used to determine that the likely reason for the suboptimal airborne aerosol extinction performance during theWAVES_2007 campaign was amisaligned interference filter. With full laser power and a properly tuned interference filter,RASL is shown to be capable ofmeasuring themain water vapor and aerosol parameters with temporal resolutions of between 2 and 45 s and spatial resolutions ranging from 30 to 330 m from a flight altitude of 8 km with precision of generally less than 10%, providing performance that is competitive with some airborne Differential Absorption Lidar (DIAL) water vapor and High Spectral Resolution Lidar (HSRL) aerosol instruments. The use of diode-pumped laser technology would improve the performance of an airborne Raman lidar and permit additional instrumentation to be carried on board a small research aircraft. The combined airborne and ground-based measurements presented here demonstrate a level of versatility in Raman lidar that may be impossible to duplicate with any other single lidar technique.

Whiteman, David N.; Rush, Kurt; Rabenhorst, Scott; Welch, Wayne; Cadirola, Martin; McIntire, Gerry; Russo, Felicita; Adam, Mariana; Venable, Demetrius; Connell, Rasheen; Veselovskii, Igor; Forno, Ricardo; Mielke, Bernd; Stein, Bernhard; Leblanc, Thierry; McDermid, Stuart; Voemel, Holger

2010-01-01

129

Aerosol Measurements by the Globally Distributed Micro Pulse Lidar Network  

NASA Technical Reports Server (NTRS)

Full time measurements of the vertical distribution of aerosol are now being acquired at a number of globally distributed MP (micro pulse) lidar sites. The MP lidar systems provide full time profiling of all significant cloud and aerosol to the limit of signal attenuation from compact, eye safe instruments. There are currently eight sites in operation and over a dozen planned. At all sited there are also passive aerosol and radiation measurements supporting the lidar data. Four of the installations are at Atmospheric Radiation Measurement program sites. The network operation includes instrument operation and calibration and the processing of aerosol measurements with standard retrievals and data products from the network sites. Data products include optical thickness and extinction cross section profiles. Application of data is to supplement satellite aerosol measurements and to provide a climatology of the height distribution of aerosol. The height distribution of aerosol is important for aerosol transport and the direct scattering and absorption of shortwave radiation in the atmosphere. Current satellite and other data already provide a great amount of information on aerosol distribution, but no passive technique can adequately resolve the height profile of aerosol. The Geoscience Laser Altimeter System (GLAS) is an orbital lidar to be launched in early 2002. GLAS will provide global measurements of the height distribution of aerosol. The MP lidar network will provide ground truth and analysis support for GLAS and other NASA Earth Observing System data. The instruments, sites, calibration procedures and standard data product algorithms for the MPL network will be described.

Spinhirne, James; Welton, Judd; Campbell, James; Berkoff, Tim; Starr, David (Technical Monitor)

2001-01-01

130

Argentinian multi-wavelength scanning Raman lidar to observe night sky atmospheric transmission  

E-print Network

This paper discusses the multi-wavelength scanning Raman lidar being built at Lidar Division, CEILAP (CITEDEF-CONICET) in the frame of the Argentinean Cherenkov Telescope Array (CTA) collaboration to measure the spectral characteristics of the atmospheric aerosol extinction profiles to provide better transmission calculations at the future CTA site. This lidar emits short laser pulses of 7-9 ns at 355, 532 and 1064 nm at 50 Hz with nominal energy of 125 mJ at 1064 nm. This wavelengths are also used to retrieve the atmospheric (air, aerosol and clouds) backscattered radiation in the UV, VIS and IR ranges. Raman capabilities were added in the UV and VIS wavelengths to retrieve the spectral characteristics of the aerosol extinction and the water vapor profile. Due to the expected low aerosol optical depth of the future site, the short observation period as well as the extension of the observation, an enhanced collection area is required. This system uses six 40 cm f/2.5 newtonian telescopes to avoid dealing with...

Pallotta, Juan; Otero, Lidia; Chouza, Fernando; Raul, Delia; Gonzalez, Francisco; Etchegoyen, Alberto; Quel, Eduardo

2013-01-01

131

Advances in Raman Lidar Measurements of Water Vapor, Cirrus Clouds and Carbon Dioxide  

NASA Technical Reports Server (NTRS)

Narrow-band interference filters with improved transmission in the ultraviolet have been developed under NASA-funded research and used in the Raman Airborne Spectroscopic Lidar (RASL) in ground- based, upward-looking tests. RASL is an airborne Raman Lidar system designed to measure water vapor mixing ratio, and aerosol backscatter/extinction/depolarization. It also possesses the capability to make experimental measurements of cloud liquid water and carbon dioxide. It is being prepared for first flight tests during the summer of 2006. With the newly developed filters installed in RASL, measurements were made of atmospheric water vapor, cirrus cloud optical properties and carbon dioxide that improve upon any previously demonstrated using Raman lidar. Daytime boundary layer profiling of water vapor mixing ratio is performed with less than 5% random error using temporal and spatial resolution of 2-minutes and 60 - 210, respectively. Daytime cirrus cloud optical depth and extinction- to-backscatter ratio measurements are made using 1-minute average. Sufficient signal strength is demonstrated to permit the simultaneous profiling of carbon dioxide and water vapor mixing ratio into the free troposphere during the nighttime. Downward-looking from an airborne RASL should possess the same measurement statistics with approximately a factor of 5 - 10 decrease in averaging time. A description of the technology improvements are provided followed by examples of the improved Raman lidar measurements.

Whiteman, David N.; Potter, John R.; Tola, Rebecca; Rush, Kurt; Veselovskii, Igor; Cadirola, Martin; Comer, Joseph

2006-01-01

132

Retrieval of aerosol mass concentration from elastic lidar data  

NASA Astrophysics Data System (ADS)

Agricultural aerosol sources can contribute significantly to air pollution in many regions of the country. Characterization of the aerosol emissions of agricultural operations is required to establish a scientific basis for crafting regulations concerning agricultural aerosols. A new lidar instrument for measuring aerosol emissions is described, as well as two new algorithms for converting lidar measurements into aerosol concentration data. The average daily aerosol emission rate is estimated from a dairy using lidar. The Aglite Lidar is a portable scanning lidar for mapping the concentration of particulate matter from agricultural and other sources. The instrument is described and performance and lidar sensitivity data are presented. Its ability to map aerosol plumes is demonstrated, as well as the ability to extract wind-speed information from the lidar data. An iterative least-squares method is presented for estimating the solution to the lidar equation. The method requires a priori knowledge of aerosol relationships from point sensors. The lidar equation is formulated and solved in vector form. The solution is stable for signals with extremely low signal-to-noise ratios and for signals at ranges far beyond the boundary point. Another lidar algorithm is also presented as part of a technique for estimating aerosol concentration and particle-size distribution. This technique uses a form of the extended Kalman filter, wherein the target aerosol is represented as a linear combination of basis-aerosols. For both algorithms, the algorithm is demonstrated using both synthetic test data and field measurements of biological aerosol simulants. The estimated particle size distribution allows straightforward calculation of parameters such as volume-fraction concentration and effective radius. Particulate matter emission rates from a dairy in the San Joaquin Valley of California were investigated during June 2008. Vertical particulate matter concentration profiles were measured both upwind and downwind of the facility using lidar, and a mass balance technique was used to estimate the average emission rate. Emission rates were also estimated using an inverse modeling technique coupled with the filter-based measurements. The concentrations measured by lidar and inverse modeling are of similar magnitude to each other, as well as to those from studies with similar conditions.

Marchant, Christian C.

133

Lidar observations of high-altitude aerosol layers (cirrus clouds)  

NASA Astrophysics Data System (ADS)

Aerosols, clouds and aerosol-cloud interactions are recognized as the key factors influencing the climate. Clouds are the primary modulators of the Earth's radiative budget. This paper focuses on the detection of high-altitude aerosol layers in the troposphere over mid-latitude lidar station in Sofia, Bulgaria. They are situated in the height-region 6 km÷16 km, with thickness in the range 0.2 km÷5 km and have varying optical characteristics. On the basis of the general utilized classification of the Cirrus clouds, high values of the calculated atmospheric backscatter coefficient and Angströmexponent estimation results we conclude that the registered strongly scattered aerosol layers are Cirrus clouds. Lidar measurements are performed with an aerosol lidar, equipped with Nd:YAG laser at wavelengths 532 nm and 1064 nm. Mainly, lidar data are presented in terms of vertical atmospheric backscatter coefficient profiles. We also include 2Dcolormap in height-time coordinates build on the basis of so called range corrected signals. It shows in general changes of the aerosol stratification over the lidar station during the measurement period. We employed HYSPLIT backward trajectories and DREAM forecasts to analyze the lidar profile outlines and characterize the events during which Cirrus cloud samples were observed. So was remarked that most of the results were obtained during Saharan dust long-way transport over the city of Sofia. Reported experimental examples are extracted from regular lidar investigations of the atmosphere within the frame of European project EARLINET.

Deleva, Atanaska D.; Grigorov, Ivan V.

2013-03-01

134

Multi-wavelength Raman lidar observations of the Eyjafjallajökull volcanic cloud over Potenza, Southern Italy  

NASA Astrophysics Data System (ADS)

Multi-wavelength Raman lidar measurements were performed at CNR-IMAA Atmospheric Observatory (CIAO) during the entire Eyjafjallajökull explosive eruptive period in April-May 2010, whenever weather conditions permitted. A methodology for volcanic layer identification and accurate aerosol typing has been developed on the basis both of the multi-wavelength Raman lidar measurements and EARLINET measurements performed at CIAO since 2000. The aerosol mask for lidar measurements performed at CIAO during the 2010 Eyjafjallajökull eruption has been obtained. Volcanic aerosol layers have been observed in different periods: 19-22 April, 27-29 April, 8-9 May, 13-14 May and 18-19 May. A maximum aerosol optical depth of about 0.12-0.13 was observed on 20 April, 22:00 UTC and 13 May, 20:30 UTC. Volcanic particles have been detected both at low altitudes, in the free troposphere and in the upper troposphere. Intrusions into the PBL have been revealed on 21-22 April and 13 May. In the April-May period Saharan dust intrusions typically occur in Southern Italy. For the period under investigations, a Saharan dust intrusion was observed on 13-14 May: dust and volcanic particles have been simultaneously observed at CIAO both at separated different levels and mixed within the same layer. Lidar ratios at 355 and 532 nm, Ångström exponent at 355/532 nm, backscatter related Ångström exponent at 532/1064 nm and particle linear depolarization ratio at 532 nm measured inside the detected volcanic layers have been discussed. The dependence of these quantities on relative humidity (RH) has been investigated by using co-located microwave profiler measurements. The particle linear depolarization ratio increasing with RH, lidar ratio values at 355 nm around 80 sr, and values of the ratio of lidar ratios greater than 1 suggest the presence of sulfates mixed with continental aerosol. Lower lidar ratio values (around 40 sr) increasing with RH and values of the ratio of lidar ratios lower than 1 indicate the presence of some aged ash inside these sulfate layers.

Mona, L.; Amodeo, A.; D'Amico, G.; Giunta, A.; Madonna, F.; Pappalardo, G.

2011-04-01

135

Observation and analysis of urban boundary layer characteristics with Raman-Mie lidar  

NASA Astrophysics Data System (ADS)

Long-term observations of atmosphere aerosol optical properties over Xi'an area have been carried out by a Raman-Mie lidar and a Micro-pulsed 3D Scanning Mie lidar, which were built at Xi'an University of technology with the laser wavelength of 355nm and 532nm, respectively. The Raman-Mie lidar is used for observation of the atmospheric temperature, water vapor and aerosol profiles simultaneously. In order to deeply discuss the temporal-spatial evolution of the mixed-layer within the urban boundary layer (UBL), the method of combining the absolute minimum of first derivative and second derivative of the range-squared-corrected signal (RSCS) of lidar was used to retrieve the mixed-layer depth (MLD). By using continuous observations of 24-hour (THI display), the MLD in temporal and spatial variation are clearly revealed. Also, the results of continuous observations from July 2006 to October 2011 have been analyzed for revealing the seasonal cycle and the annual cycle of the MLD. By analyzing the average MLD, it is obviously shown that the MLD of seasonal cycle is higher in summer than in winter over Xi'an area. Otherwise, by investigating the relationship of atmospheric boundary layer height, relative humidity and temperature, and the dependence characteristics and a general disciplinarian between them are then obtained. The achievement is of great importance for studying the proliferation of urban pollution and obtaining a complete meteorological status of the urban atmosphere.

Yan, Qing; Hua, Dengxin; Wang, Yufeng; Li, Shichun; Kobayashi, Takao

2012-11-01

136

Case study of Raman lidar measurements of Asian dust events in 2000 and 2001 at Nagoya and Tsukuba, Japan  

Microsoft Academic Search

Vertical distributions of aerosol optical properties and relative humidity were measured with a Raman lidar at Nagoya and Tsukuba, Japan, during the Asian dust events in 2000 and 2001.The data obtained on 23 April 2001 showed a maximum of aerosol backscattering ratio (R) of 3.5–4.0 at 532nm at an altitude of 5km over both measurement sites. Around that height the

Tetsu Sakai; Takashi Shibata; Yasunobu Iwasaka; Tomohiro Nagai; Masahisa Nakazato; Takatsugu Matsumura; Akinori Ichiki; Yoon-Suk Kim; Koichi Tamura; Dmitry Troshkin; Saipul Hamdi

2002-01-01

137

Aerosol lidar and MODIS satellite comparisons for future aerosol loading forecast  

NASA Astrophysics Data System (ADS)

Knowledge of the concentration and distribution of atmospheric aerosols using both airborne lidar and satellite instruments is a field of active research. An aircraft based aerosol lidar has been used to study the distribution of atmospheric aerosols in the California Central Valley and eastern US coast. Concurrently, satellite aerosol retrievals, from the MODIS (Moderate Resolution Imaging Spectroradiometer) instrument aboard the Terra and Aqua satellites, were take over the Central Valley. The MODIS Level 2 aerosol data product provides retrieved ambient aerosol optical properties (e.g., optical depth (AOD) and size distribution) globally over ocean and land at a spatial resolution of 10 km. The Central Valley topography was overlaid with MODIS AOD (5x5 km2 resolution) and the aerosol scattering vertical profiles from a lidar flight. Backward air parcel trajectories for the lidar data show that air from the Pacific and northern part of the Central Valley converge confining the aerosols to the lower valley region and below the mixed layer. Below an altitude of 1 km, the lidar aerosol and MODIS AOD exhibit good agreement. Both data sets indicate a high presence of aerosols near Bakersfield and the Tehachapi Mountains. These and other results to be presented indicate that the majority of the aerosols are below the mixed layer such that the MODIS AOD should correspond well with surface measurements. Lidar measurements will help interpret satellite AOD retrievals so that one day they can be used on a routine basis for prediction of boundary layer aerosol pollution events.

De Young, Russell; Szykman, James; Severance, Kurt; Chu, D. Allen; Rosen, Rebecca; Al-Saadi, Jassim

2006-08-01

138

Aerosol Lidar and MODIS Satellite Comparisons for Future Aerosol Loading Forecast  

NASA Technical Reports Server (NTRS)

Knowledge of the concentration and distribution of atmospheric aerosols using both airborne lidar and satellite instruments is a field of active research. An aircraft based aerosol lidar has been used to study the distribution of atmospheric aerosols in the California Central Valley and eastern US coast. Concurrently, satellite aerosol retrievals, from the MODIS (Moderate Resolution Imaging Spectroradiometer) instrument aboard the Terra and Aqua satellites, were take over the Central Valley. The MODIS Level 2 aerosol data product provides retrieved ambient aerosol optical properties (e.g., optical depth (AOD) and size distribution) globally over ocean and land at a spatial resolution of 10 km. The Central Valley topography was overlaid with MODIS AOD (5x5 sq km resolution) and the aerosol scattering vertical profiles from a lidar flight. Backward air parcel trajectories for the lidar data show that air from the Pacific and northern part of the Central Valley converge confining the aerosols to the lower valley region and below the mixed layer. Below an altitude of 1 km, the lidar aerosol and MODIS AOD exhibit good agreement. Both data sets indicate a high presence of aerosols near Bakersfield and the Tehachapi Mountains. These and other results to be presented indicate that the majority of the aerosols are below the mixed layer such that the MODIS AOD should correspond well with surface measurements. Lidar measurements will help interpret satellite AOD retrievals so that one day they can be used on a routine basis for prediction of boundary layer aerosol pollution events.

DeYoung, Russell; Szykman, James; Severance, Kurt; Chu, D. Allen; Rosen, Rebecca; Al-Saadi, Jassim

2006-01-01

139

Combined Raman-elastic backscatter lidar method for the measurement of backscatter ratios.  

PubMed

A variation of the conventional combined Raman-elastic backscatter lidar method, the 1-2-3 lidar method, is described and analyzed. This method adds a second transmitter wavelength to the conventional combined Raman-elastic backscatter lidar. This transmitter wavelength is identical to that of the Raman receiver. One can generate the transmitted beam at this wavelength by Raman shifting the laser radiation in molecular nitrogen or oxygen. Measuring a second elastic lidar signal at the Raman-shifted wavelength makes it possible to eliminate differential transmission effects that can cause systematic errors in conventional combined Raman-elastic backscatter lidar. PMID:18259327

Moosmüller, H; Wilkerson, T D

1997-07-20

140

ELF and ALEX SURF WINTER WAVES: Lidar Intercomparison of Aerosol and Water Vapor Measurements in the Baltimore-Washington Metropolitan Area During the Winter Water Vapor Validation Experiments (WAVES) 2008 campaign  

Microsoft Academic Search

Elastic and Raman lidar measurements were conducted to measure the vertical distribution of aerosols and water vapor during the Water Vapor Validation Experiments (WAVES) 2008 campaign by the University of Maryland Baltimore County (UMBC) Atmospheric Lidar Group at UMBC, at the same time as measurements at Howard University's Beltsville Research Station (26.5 km distant). The lidar profiles of atmospheric water

R. Delgado; M. Weldegaber; R. C. Wilson; W. McMillan; K. J. McCann; M. Woodman; B. Demoz; M. Adam; R. Connell; D. Venable; E. Joseph; S. Rabenhorst; L. Twigg; T. McGee; D. N. Whiteman; R. M. Hoff

2008-01-01

141

Lidar vertical profiling of water vapor and aerosols in the Great Lakes Region: A tool for understanding lower atmospheric dynamics  

NASA Astrophysics Data System (ADS)

Results of a recently developed water vapor Raman lidar instrument at Environment Canada's Center for Atmospheric Research Experiments (CARE) are shown for selected days of summer and winter seasons. The basic components of the Raman water vapor lidar consist of a 30 Hz, Q-switched Nd:YAG high-powered laser utilizing the third harmonic (355 nm), beam steering optics, a 0.76 m Cassegrain telescope and three detection channels to simultaneously observe the vertical profiles of aerosols, water vapor, and nitrogen from near ground up to 9.5 km. By manipulating the inelastic backscattering lidar signals from the Raman nitrogen channel (386.7 nm) and Raman water vapor channel (407.5 nm), vertical profiles of water vapor mixing ratio (WVMR) are deduced, calibrated, and compared against WVMR profiles obtained from coincident and collocated radiosonde profiles. The average standard deviation, in the water vapor mixing ratio, is estimated to be less than 10% between the sonde and lidar measurements. In addition, comparisons between simultaneous WVMR profiles and aerosol profiles obtained from a simple aerosol backscatter lidar, also located at the CARE facility, provide insight into the complex dynamic mixing of the lower atmosphere and their subsequent impact on climate and air quality.

Al-Basheer, Watheq; Strawbridge, Kevin B.

2015-02-01

142

Gluing for Raman lidar systems using the lamp mapping technique.  

PubMed

In the context of combined analog and photon counting (PC) data acquisition in a Lidar system, glue coefficients are defined as constants used for converting an analog signal into a virtual PC signal. The coefficients are typically calculated using Lidar profile data taken under clear, nighttime conditions since, in the presence of clouds or high solar background, it is difficult to obtain accurate glue coefficients from Lidar backscattered data. Here we introduce a new method in which we use the lamp mapping technique (LMT) to determine glue coefficients in a manner that does not require atmospheric profiles to be acquired and permits accurate glue coefficients to be calculated when adequate Lidar profile data are not available. The LMT involves scanning a halogen lamp over the aperture of a Lidar receiver telescope such that the optical efficiency of the entire detection system is characterized. The studies shown here involve two Raman lidar systems; the first from Howard University and the second from NASA/Goddard Space Flight Center. The glue coefficients determined using the LMT and the Lidar backscattered method agreed within 1.2% for the water vapor channel and within 2.5% for the nitrogen channel for both Lidar systems. We believe this to be the first instance of the use of laboratory techniques for determining the glue coefficients for Lidar data analysis. PMID:25608203

Walker, Monique; Venable, Demetrius; Whiteman, David N

2014-12-20

143

Multi-wavelength Raman lidar observations of the Eyjafjallajökull volcanic cloud over Potenza, southern Italy  

NASA Astrophysics Data System (ADS)

During the eruption of Eyjafjallajökull in April-May 2010 multi-wavelength Raman lidar measurements were performed at the CNR-IMAA Atmospheric Observatory (CIAO), whenever weather conditions permitted observations. A methodology both for volcanic layer identification and accurate aerosol typing has been developed. This methodology relies on the multi-wavelength Raman lidar measurements and the support of long-term lidar measurements performed at CIAO since 2000. The aerosol mask for lidar measurements performed at CIAO during the 2010 Eyjafjallajökull eruption has been obtained. Volcanic aerosol layers were observed in different periods: 19-22 April, 27-29 April, 8-9 May, 13-14 May and 18-19 May. A maximum aerosol optical depth of about 0.12-0.13 was observed on 20 April, 22:00 UTC and 13 May, 20:30 UTC. Volcanic particles were detected at low altitudes, in the free troposphere and in the upper troposphere. Occurrences of volcanic particles within the PBL were detected on 21-22 April and 13 May. A Saharan dust event was observed on 13-14 May: dust and volcanic particles were simultaneously detected at CIAO at separated different altitudes as well as mixed within the same layer. Lidar ratios at 355 and 532 nm, the Ångström exponent at 355/532 nm, the backscatter-related Ångström exponent at 532/1064 nm and the particle linear depolarization ratio at 532 nm measured inside the detected volcanic layers are discussed. The dependence of these quantities on relative humidity has been investigated by using co-located microwave profiler measurements. The measured values of these intensive parameters indicate the presence of volcanic sulfates/continental mixed aerosol in the volcanic aerosol layers observed at CIAO. In correspondence of the maxima observed in the volcanic aerosol load on 19-20 April and 13 May, different values of intensive parameters were observed. Apart from the occurrence of sulfate aerosol, these values indicate also the presence of some ash which is affected by the aging during transport over Europe.

Mona, L.; Amodeo, A.; D'Amico, G.; Giunta, A.; Madonna, F.; Pappalardo, G.

2012-02-01

144

Methodology for error analysis and simulation of lidar aerosol measurements  

NASA Technical Reports Server (NTRS)

A methodology is presented for objective and automated determination of the uncertainty in lidar aerosol measurements. This methodology is based on standard error-propagation procedures, a large data base on atmospheric behavior, and long experience in lidar data processing. Algebraic expressions for probable error are derived as a function of the relevant parameters. The validity of these expressions is then tested by making simulated measurements and analyses in which random errors of appropriate size are injected at proper steps of the measurement and analysis process. An illustrative example is given where the methodology is applied to a new lidar system now being used for airborne measurements of the stratospheric aerosol.

Russell, P. B.; Swissler, T. J.; Mccormick, M. P.

1979-01-01

145

Airborne High Spectral Resolution Lidar Measurements of Atmospheric Aerosols  

NASA Astrophysics Data System (ADS)

NASA Langley Research Center (LaRC) recently developed an airborne High Spectral Resolution Lidar (HSRL) to measure aerosol distributions and optical properties. The HSRL technique takes advantage of the spectral distribution of the lidar return signal to discriminate aerosol and molecular signals and thereby measure aerosol extinction and backscatter independently. The LaRC instrument employs the HSRL technique to measure aerosol backscatter and extinction profiles at 532 nm and the standard backscatter lidar technique to measure aerosol backscatter profiles at 1064 nm. Depolarization profiles are measured at both wavelengths. Since March 2006, the airborne HSRL has acquired over 215 flight hours of data deployed on the NASA King Air B200 aircraft during several field experiments. Most of the flights were conducted during two major field experiments. The first major experiment was the joint Megacity Initiative: Local and Global Research Observations (MILAGRO) /Megacity Aerosol Experiment in Mexico City (MAX-MEX)/Intercontinental Chemical Transport Experiment-B (INTEX B) experiment that was conducted during March 2006 to investigate the evolution and transport of pollution from Mexico City. The second major experiment was the Texas Air Quality Study (TEXAQS)/Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS) that was conducted during August and September 2006 to investigate climate and air quality in the Houston/Gulf of Mexico region. Several flights were also conducted to help validate the Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP) lidar on board the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite (CALIPSO) satellite. In February 2007, several flights were carried out as part of an Environmental Protection Agency (EPA) experiment to assess air quality in central California. Airborne HSRL data acquired during these missions were used to quantify aerosol extinction and optical thickness contributed by various aerosol types. Several B200 flights conducted during MILAGRO were coordinated with flights carried out by the Department of Energy G-1 aircraft, the National Center for Atmospheric Research (NCAR) C-130 aircraft, and/or the Sky Research J-31 aircraft. In situ measurements of aerosol microphysical properties acquired on G-1 and C-130 are being used to investigate the ability to discern various aerosol types using the HSRL data. Aerosol extinction profiles derived from the in situ measurements and from the NASA Ames Airborne Tracking Sun Photometer on board the J-31 are being used to assess the HSRL aerosol extinction profiles. Additional applications of airborne HSRL data to be discussed include: 1) characterization of the spatial and vertical distributions of aerosols, 2) investigation of aerosol variability near clouds, 3) evaluation of model simulations of aerosol transport, and 4) assessments of aerosol optical properties derived from a combination of surface, airborne, and satellite measurements.

Ferrare, R.; Hostetler, C.; Hair, J.; Cook, A.; Harper, D.; Kleinman, L.; Clarke, A.; Russell, P.; Redemann, J.; Livingston, J.; Szykman, J.; Al-Saadi, J.

2007-05-01

146

PollyNET: a network of multiwavelength polarization Raman lidars  

NASA Astrophysics Data System (ADS)

PollyNET is a growing global network of automatized multiwavelength polarization Raman lidars of type Polly (Althausen et al., 2009). The goal of this network is to conduct advanced remote measurements of aerosol profiles and clouds by the same type of instrument. Since 2006 this network assists the controlling and adjustment activities of Polly systems. A central facility receives the data from the Polly measurements. The observational data are displayed in terms of quicklooks at http://polly:tropos.de in near real time. In this way, the network serves as a central information platform for inquisitive scientists. PollyNET comprises permanent stations at Leipzig (Germany), Kuopio (Finland), Evora (Portugal), Baengnyeong Island (South Korea), Stockholm (Sweden), and Warsaw (Poland). Non-permanent stations have been used during several field experiments under both urban and very remote conditions - like the Amazon rainforest. These non-permanent stations were lasting from several weeks up to one year and have been located in Brazil, India, China, South Africa, Chile, and also aboard the German research vessels Polarstern and Meteor across the Atlantic. Within PollyNET the interaction and knowledge exchange is encouraged between the Polly operators. This includes maintenance support in system calibration procedures and distribution of latest hardware and software improvements. This presentation introduces the PollyNET. Main features of the Polly systems will be presented as well as recent instrumental developments. Some measurement highlights achieved within PollyNET are depicted.

Althausen, Dietrich; Engelmann, Ronny; Baars, Holger; Heese, Birgit; Kanitz, Thomas; Komppula, Mika; Giannakaki, Eleni; Pfüller, Anne; Silva, Ana Maria; Preißler, Jana; Wagner, Frank; Rascado, Juan Luis; Pereira, Sergio; Lim, Jae-Hyun; Ahn, Joon Young; Tesche, Matthias; Stachlewska, Iwona S.

2013-10-01

147

The application of lidar to stratospheric aerosol studies  

NASA Technical Reports Server (NTRS)

The global climatology and understanding of stratospheric aerosols evolving primarily from lidar and satellite measurements is presented. The importance of validation of these remotely sensed data with in situ measurements is also discussed. The advantage of lidar for providing high vertical and horizontal resolution and its independence from a remote source for measurement will become evident with examples of long term lidar data sets at fixed sites and the use of lidar on airborne platforms. Volcanic impacts of the last 20 years are described with emphasis on the last 8 years where satellite data are available. With satellite and high resolution lidar measurements, an understanding of the global circulation of volcanic material is attempted along with the temporal change of aerosol physical parameters and the stratospheric cleansing or decay times associated with these eruptions.

Mccormick, M. P.

1986-01-01

148

First results from the aerosol lidar and backscatter sonde intercomparison campaign STRAIT'1997 at table mountain facility during February-March 1997  

NASA Technical Reports Server (NTRS)

First results of an intercomparison measurement campaign between three aerosol lidar instruments and in-situ backscatter sondes performed at Table Mountain Facility (34.4 deg N, 117.7 deg E, 2280 m asl) in February-March 1997 are presented. During the campaign a total of 414 hours of lidar data were acquired by the Aerosol-Temperature-Lidar (ATL, Goddard Space Flight Center) the Mobile-aerosol-Raman-Lidar (MARL, Alfred Wegener Institute), and the TMF-Aerosol-Lidar (TAL, Jet Propulsion Laboratory), and four backscatter sondes were launched. From the data set altitude profiles of backscatter ratio and volume depolarization of stratospheric background aerosols at altitudes between 15 and 25 km and optically thin high-altitude cirrus clouds at altitudes below 13 km are derived. On the basis of a sulfuric acid aerosol model color ratio profiles obtained from two wavelength lidar data are compared to the corresponding profiles derived from the sonde observations. We find an excellent agreement between the in-situ and ATL lidar data with respect to backscatter and color ratio. Cirrus clouds were present on 16 of 26 nights during the campaign. Lidar observations with 17 minute temporal and 120-300 m spatial resolution indicate high spatial and temporal variability of the cirrus layers. Qualitative agreement is found between concurrent lidar measurements of backscatter ratio and volume depolarization.

Beyerle, G.; Gross, M. R.; Haner, D. A.; Kjome, N. T.; McDermid, I. S.; McGee, T. J.; Rosen, J. M.; Schaefer, H. - J.; Schrems, O.

1998-01-01

149

Nonlinear Raman spectroscopy without tunable laser and application to lidar  

NASA Astrophysics Data System (ADS)

Various kinds of nonlinear Raman spectroscopy, such as coherent anti-Stokes Raman spectroscopy (CARS), stimulated Raman gain spectroscopy (SRGS), photo-acoustic Raman spectroscopy (PARS), and thermal-lens Raman spectroscopy (TLRS), can be applied for the detection of molecules in the atmosphere. In traditional nonlinear Raman spectroscopy, two lasers whose frequency difference was tuned to the Raman shift frequency had to be prepared. We proposed a new configuration using a Nd:YAG laser and a Raman prepared. We proposed a new configuration using a Nd:YAG laser and a Raman shifter. The Raman shifter contained the same kind of gas to be measured, so that efficient Raman-shifted beam was automatically generated in this simple configuration. We demonstrated sensitive detection of H2 and CH4 in the atmosphere by various kinds of nonlinear Raman spectroscopy above mentioned.The detection limit was approximately 1-30 ppm level in every method using a sample gas cell. In the case of SRGS, remote sensing is possible, and the detection sensitivity can be increased using long optical pass as in the absorption spectroscopy, because the signal is obtained by a coherent light beam and there is no limitation caused by phase-matching condition. Using the Mie scattering in the atmosphere as a distributed mirror, a new type of nonlinear Raman lidar can be constructed. In this paper, we discussed on the possibilities of long-pass and lidar measurement for the detection of CH4, H2 and CO2 by SRGS using a pulsed Nd:YAG laser.

Maeda, Mitsuo; Oki, Yuji; Nonaka, Yujii; Nakazono, Shinichiro; Vasa, Nilesh J.

2001-02-01

150

Lidar-radar synergy for characterizing properties of ultragiant volcanic aerosol  

NASA Astrophysics Data System (ADS)

The atmospheric aerosol has a relevant effect on our life influencing climate, aviation safety, air quality and natural hazards. The identification of aerosol layers through inspection of continuous measurements is strongly recommended for quantifying their contribution to natural hazards and air quality and to establish suitable alerting systems. In particular, the study of ultragiant aerosols may improve the knowledge of physical-chemical processes underlying the aerosol-cloud interactions and the effect of giant nuclei as a potential element to expedite the warm-rain process. Moreover, the identification and the characterization of ultragiant aerosols may strongly contribute to quantify their impact on human health and their role in airplane engine damages or in visibility problems, especially in case of extreme events as explosive volcanic eruptions. During spring 2010, volcanic aerosol layers coming from Eyjafjallajökull volcano were observed over most of the European countries, using lidar technique. From 19 April to 19 May 2010, they were also observed at CNR-IMAA Atmospheric Observatory (CIAO) with the multi-wavelength Raman lidar systems of the Potenza EARLINET station (40.60N, 15.72E, 760 m a.s.l), Southern Italy. During this period, ultragiant aerosol were also observed at CIAO using a co-located Ka-band MIRA-36 Doppler microwave radar operating at 8.45 mm (35.5 GHz). The Ka-band radar observed in four separate days (19 April, 7, 10, 13 May) signatures consistent with the observations of non-spherical ultragiant aerosol characterized by anomalous values of linear depolarization ratio higher than -4 dB, probably related to the occurrence of multiple effects as particle alignment and presence of an ice coating. 7-days backward trajectory analysis shows that the air masses corresponding to the ultragiant aerosol observed by the radar were coming from the Eyjafjallajökull volcano area. Only in one case the trajectories do not come directly from Iceland, but from Central Europe where many lidar observations confirm the presence of volcanic aerosol in the previous days. Therefore, both CIAO lidar observations and the backtrajectory analysis suggests a volcanic origin of the ultragiant aerosol observed by the radar, revealing that these particles might have travelled for more than 4000 km after their injection into the atmosphere. The reported observation fostered a study, reported in this work, about the performances of multi-wavelength Raman lidars in the identification and the characterization of ultragiant aerosols layers in the troposphere. Results from simulations using Mie, T-Matrix and ray-tracing codes will be presented and compared with the observations performed in April-May 2010 during the Eyjafjallajökull eruption. Sensitivity ranges in detection of aerosol layer are pointed out in terms of experimental limits of both lidar and radar techniques and of aerosol optical depth. Moreover, recommendations for use of a combined lidar-radar approach for the aerosol typing and for the retrieval of their microphysical properties are reported.

Madonna, F.; Amodeo, A.; D'Amico, G.; Giunta, A.; Mona, L.; Pappalardo, G.

2011-12-01

151

Global Aerosol Profiling by Orbital Lidar, GLAS Results and Validation  

NASA Technical Reports Server (NTRS)

The Geoscience Laser Altimeter System (GLAS) launched in 2003 is the first polar orbiting satellite lidar. The instrument was designed for high performance observations of the distribution and optical scattering cross sections of clouds and aerosol. GLAS is approaching six months of on orbit data operation. These data from thousands of orbits illustrate the ability of space lidar to accurately and dramatically measure the height distribution of global aerosol to an unprecedented degree. There were many intended science applications of the GLAS data and significant results have already been realized. profiling is a fundamentally new measurement from space with multiple applications. A most important aerosol application is providing input to global aerosol generation and transport models. Another is improved measurement of aerosol optical depth. A main approach to verify the aerosol optical depth retrieval is comparison to surface measurements by Aeronet. A special feature of the GLAS satellite bus is to rapidly point the lidar instrument at off nadir targets with less than 100 m accuracy. About a dozen selected Aeronet sites were pointed at whenever the G U S lidar came within 5 degrees of zenith. These plus a more general comparison to nearby sites support the G U S data product values. In addition the GUS data can be used to add vertical distribution information to Aeronet aerosol measurements.. As an EOS project instrument, GLAS data products are openly available to the science community. First year results from G U S are summarized.

Spinhirne, J. D.; Palm, S. P.; Hlavka, D. L.; Hart, W. D.; Mahesh, A.; Welton, E. J.

2004-01-01

152

Global Aerosol Profiling by Orbital Lidar, GLAS Results and Validation  

NASA Technical Reports Server (NTRS)

The Geoscience Laser Altimeter System (GLAS) launched in 2003 is the first polar orbiting satellite lidar. The instrument was designed for high performance observations of the distribution and optical scattering cross sections of clouds and aerosol. GLAS is approaching six months of on orbit data operation. These data from thousands of orbits illustrate the ability of space lidar to accurately and dramatically measure the height distribution of global aerosol to an unprecedented degree. There were many intended science applications of the GLAS data and significant results have already been realized, profiling is a fundamentally new measurement from space with multiple applications. A most important aerosol application is providing input to global aerosol generation transport models. Another is improved measurement of aerosol optical depth. A main approach to verify the aerosol optical depth retrieval is comparison to surface measurements by Aeronet. A special feature of the GLAS satellite bus is to rapidly point the lidar instrument at off nadir targets with less than 100 m accuracy. About a dozen selected Aeronet sites were pointed at whenever the GLAS lidar came within 5 degrees of zenith. These plus a more general comparison to nearby sites support the GLAS data product values. In addition the GLAS data can be used to add vertical distribution information to Aeronet aerosol measurements. As an EOS project instrument, GLAS data products are openly available to the science community. First year results from GLAS are summarized.

Spinhirne, J. D.; Palm, S. P.; Hlavka, D. L.; Hart, W. D.; Mahesh, A.; Welton, E. J.

2004-01-01

153

Analysis and interpretation of lidar observations of the stratospheric aerosol  

NASA Technical Reports Server (NTRS)

Data obtained with a 48 in. telescope lidar system are compared with results obtained using a one-dimensional stratospheric aerosol model to analyze various microphysical processes influencing the formation of this aerosol. Special attention is given to the following problems: (1) how lidar data can help determine the composition of the aerosol particles and (2) how the layer corresponds to temperature profile variations. The lidar record during the period 1974 to 1979 shows a considerable decrease of the peak value of the backscatter ratio. Seasonal variations in the aerosol layer and a gradual decrease in stratospheric loading are observed. The aerosol model simulates a background stratospheric aerosol layer, and it predicts stratospheric aerosol concentrations and compositions. Numerical experiments are carried out by using the model and by comparing the theoretical results with the experimentally obtained lidar record. Comparisons show that the backscatter profile is consistent with the composition when the particles are sulfuric acid and water; it is not consistent with an ammonium sulfate composition. It is shown that the backscatter ratio is not sensitive to the composition or stratospheric loading of condensation nuclei such as meteoritic debris.

Hamill, P.; Swissler, T. J.; Osborn, M.; Mccormick, M. P.

1980-01-01

154

Airborne high spectral resolution lidar for measuring aerosol extinction and backscatter coefficients.  

PubMed

An airborne high spectral resolution lidar (HSRL) based on an iodine absorption filter and a high-power frequency-doubled Nd:YAG laser has been developed to measure backscatter and extinction coefficients of aerosols and clouds. The instrument was operated aboard the Falcon 20 research aircraft of the German Aerospace Center (DLR) during the Saharan Mineral Dust Experiment in May-June 2006 to measure optical properties of Saharan dust. A detailed description of the lidar system, the analysis of its data products, and measurements of backscatter and extinction coefficients of Saharan dust are presented. The system errors are discussed and airborne HSRL results are compared to ground-based Raman lidar and sunphotometer measurements. PMID:18204721

Esselborn, Michael; Wirth, Martin; Fix, Andreas; Tesche, Matthias; Ehret, Gerhard

2008-01-20

155

Raman Lidar Profiles Best Estimate Value-Added Product Technical Report  

SciTech Connect

The ARM Raman lidars are semi-autonomous ground-based systems that transmit at a wavelength of 355 nm with 300 mJ, {approx}5 ns pulses, and a pulse repetition frequency of 30Hz. Signals from the various detection channels are processed to produce time- and height-resolved estimates of several geophysical quantities, such as water vapor mixing ratio, relative humidity, aerosol scattering ratio, backscatter, optical depth, extinction, and depolarization ratio. Data processing is currently handled by a suite of six value-added product (VAP) processes. Collectively, these processes are known as the Raman Lidar Profiles VAP (RLPROF). The top-level best-estimate (BE) VAP process was introduced in order to bring together the most relevant information from the intermediate-level VAPs. As such, the BE process represents the final stage in data processing for the Raman lidar. Its principal function is to extract the primary variables from each of the intermediate-level VAPs, perform additional quality control, and combine all of this information into a single output file for the end-user. The focus of this document is to describe the processing performed by the BE VAP process.

Newson, R

2012-01-18

156

Raman lidar profiling of atmospheric water vapor: Simultaneous measurements with two collocated systems  

Microsoft Academic Search

Raman lidar is a leading candidate for providing the detailed space - and time-resolved measurements of water vapor needed by a variety of atmospheric studies. Simultaneous measurements of atmospheric water vapor are described using two collocated Raman lidar systems. These lidar systems, developed at the NASA\\/Goddard Space Flight Center and Sandia National Laboratories, acquired approximately 12 hours of simultaneous water

J. E. M. Goldsmith; Scott E. Bisson; Richard A. Ferrare; Keith D. Evans; David N. Whiteman; S. H. Melfi

1994-01-01

157

Microphysical aerosol parameters from multiwavelength lidar.  

PubMed

The hybrid regularization technique developed at the Institute of Mathematics of Potsdam University (IMP) is used to derive microphysical properties such as effective radius, surface-area concentration, and volume concentration, as well as the single-scattering albedo and a mean complex refractive index, from multiwavelength lidar measurements. We present the continuation of investigations of the IMP method. Theoretical studies of the degree of ill-posedness of the underlying model, simulation results with respect to the analysis of the retrieval error of microphysical particle properties from multiwavelength lidar data, and a comparison of results for different numbers of backscatter and extinction coefficients are presented. Our analysis shows that the backscatter operator has a smaller degree of ill-posedness than the operator for extinction. This fact underlines the importance of backscatter data. Moreover, the degree of ill-posedness increases with increasing particle absorption, i.e., depends on the imaginary part of the refractive index and does not depend significantly on the real part. Furthermore, an extensive simulation study was carried out for logarithmic-normal size distributions with different median radii, mode widths, and real and imaginary parts of refractive indices. The errors of the retrieved particle properties obtained from the inversion of three backscatter (355, 532, and 1064 nm) and two extinction (355 and 532 nm) coefficients were compared with the uncertainties for the case of six backscatter (400, 710, 800 nm, additionally) and the same two extinction coefficients. For known complex refractive index and up to 20% normally distributed noise, we found that the retrieval errors for effective radius, surface-area concentration, and volume concentration stay below approximately 15% in both cases. Simulations were also made with unknown complex refractive index. In that case the integrated parameters stay below approximately 30%, and the imaginary part of the refractive index stays below 35% for input noise up to 10% in both cases. In general, the quality of the retrieved aerosol parameters depends strongly on the imaginary part owing to the degree of ill-posedness. It is shown that under certain constraints a minimum data set of three backscatter coefficients and two extinction coefficients is sufficient for a successful inversion. The IMP algorithm was finally tested for a measurement case. PMID:15770990

Böckmann, Christine; Mironova, Irina; Müller, Detlef; Schneidenbach, Lars; Nessler, Remo

2005-03-01

158

A study on the use of radar and lidar for characterizing ultragiant aerosol  

NASA Astrophysics Data System (ADS)

19 April to 19 May 2010, volcanic aerosol layers originating from the Eyjafjallajökull volcano were observed at the Institute of Methodologies for Environmental Analysis of the National Research Council of Italy Atmospheric Observatory, named CIAO (40.60°N, 15.72°E, 760 m above sea level), in Southern Italy with a multiwavelength Raman lidar. During this period, ultragiant aerosols were also observed at CIAO using a colocated 8.45 mm wavelength Doppler radar. The Ka-band radar signatures observed in four separate days (19 April and 7, 10, and 13 May) are consistent with the observation of nonspherical ultragiant aerosols characterized by values of linear depolarization ratio (LDR) higher than -4 dB. Air mass back trajectory analysis suggests a volcanic origin of the ultragiant aerosols observed by the radar. The observed values of the radar reflectivity (Ze) are consistent with a particle effective radius (r) larger than 50-75 µm. Scattering simulations based on the T-matrix approach show that the high LDR values can be explained if the observed particles have an absolute aspect ratio larger than 3.0 and consist of an internal aerosol core and external ice shell, with a variable radius ratio ranging between 0.2 and 0.7 depending on the shape and aspect ratio. Comparisons between daytime vertical profiles of aerosol backscatter coefficient (?) as measured by lidar and radar LDR reveal a decrease of ? where ultragiant particles are observed. Scattering simulations based on Mie theory show how the lidar capability in typing ultragiant aerosols could be limited by low number concentrations or by the presence of an external ice shell covering the aerosol particles. Preferential vertical alignment of the particles is discussed as another possible reason for the decrease of ?.

Madonna, F.; Amodeo, A.; D'Amico, G.; Pappalardo, G.

2013-09-01

159

NASA/GSFC Scanning Raman Lidar Measurements of Water Vapor and Clouds During IHOP  

NASA Technical Reports Server (NTRS)

The NASA/GSFC Scanning Raman Lidar (SRL) participated in the International H2O Project (IHOP) that occurred in May and June, 2002 in the midwestern part of the U.S. The SRL acquired measurements of water vapor, aerosols, cloud liquid and ice water, and temperature for more than 200 hours during IHOP. Here we report on the SRL water vapor and cirrus cloud measurements with particular emphasis being given to the measurements of June 19-20, 2002, which are motivating cirrus cloud model comparison studies.

Whiteman, David N.; Demoz, Belay; DiGirolamo, Paolo; Comer, Joe; Wang, Zhien; Lin, Rei-Fong; Evans, Keith; Veselovskii, Igor

2004-01-01

160

Simultaneous analog and photon counting detection for Raman lidar  

SciTech Connect

The Atmospheric Radiation Measurement program Raman Lidar was upgraded in 2004 with a new data system that provides simultaneous measurements of both the photomultiplier analog output voltage and photon counts. This paper describes recent improvements to the algorithm used to merge these two signals into a single signal with improved dynamic range. The impact of modifications to the algorithm are evaluated by comparing profiles of water vapor mixing ratio from the lidar with sonde measurements. The modifications that were implemented resulted in a reduction of the mean bias in the daytime mixing ratio from a 4% dry bias to well within 1%.

Newsom, Rob K.; Turner, David D.; Mielke, Bernd; Clayton, Marian F.; Ferrare, Richard; Sivaraman, Chitra

2009-07-10

161

Multiple-wavelength Raman lidar measurements of atmospheric water vapor  

SciTech Connect

Height profiles of atmospheric water vapor obtained using a multiple-wavelength Raman lidar are examined. The water vapor profiles exhibit vertical structure with scales on the order of the resolution of the lidar (75 m). To determine whether such structure is atmospheric in origin, measurements obtained simultaneously in a common volume at two independent wavelengths were compared. Correlation of the gradients of the water vapor profiles obtained from these two wavelengths yielded an average correlation factor of 0.88. It was also observed that for the given meteorological conditions, the vertical structure decorrelated with a time constant of approximately three hours. 7 refs., 4 figs., 1 tab.

Rajan, S.; Kane, T.J.; Philbrick, C.R. [Pennsylvania State Univ., University Park, PA (United States)] [Pennsylvania State Univ., University Park, PA (United States)

1994-11-15

162

Light Detection And Ranging (LIDAR) Analysis of Atmospheric Aerosols  

NASA Astrophysics Data System (ADS)

Aerosols are small particles suspended in the atmosphere for periods ranging from hours to years in length, and may be derived from natural or anthropogenic sources. The aerosols perturb the radiation balance in the atmosphere by scattering and absorbing sunlight, and by serving as cloud condensation nuclei. Recent climate studies have shown that aerosols may produce a cooling effect of comparable magnitude to the heating caused by greenhouse gases. In addition to effecting the climate, aerosols interfere with the remote sensing of the earth’s surface and atmosphere from satellite based sensors. In order to better understand the radiative influence of atmospheric aerosols, surface based measurements of their optical properties are performed. LIDAR (LIght Detection And Ranging) instruments are used to determine the height of aerosol layers and the vertical profile of the aerosol scattering coefficient (m-1) and optical depth (dimensionless). A description of our LIDAR system, an explanation of the algorithms used to analyze the LIDAR signals, and an overview of various fieldwork studies will be presented.

Welton, Ellsworth J.; Voss, Kenneth J.; Gordon, Howard R.

1998-11-01

163

NEW REMOTELY-OPERATED RAMAN-MIE-RAYLEIGH LIDAR IN THE HIGH CANADIAN ARCTIC  

E-print Network

. The CANDAC Raman Lidar (CRL) is built around two Nd:YAG lasers, one operating at the second harmonic of 532nmNEW REMOTELY-OPERATED RAMAN-MIE-RAYLEIGH LIDAR IN THE HIGH CANADIAN ARCTIC Graeme J. Nott, Matthew with seven channels at both green and UV wavelengths and will measure rotational Raman and Rayleigh

Duck, Thomas J.

164

Observation of atmospheric aerosol using a multiwavelength lidar system at Kwangju, Korea  

Microsoft Academic Search

A multi-wavelength lidar system that can measure simultaneously spectral extinction coefficient and depolarization ratio has been developed and tested. Some results from lidar measurements aerosol extinction coefficient, lidar ratio, and depolarization ratio of aerosols are presented. Lidar transmit system generates 20 Hz laser pulses at 355nm, 532nm, and 1064nm with an Nd:YAG laser. Backscattered light from atmospheric aerosol particles is

Sungchul Choi; Youngmin Noh; Youngjoon Kim

2004-01-01

165

Lidar determination of the composition of atmosphere aerosols  

NASA Technical Reports Server (NTRS)

Theoretical and experimental studies of the feasibility of using DIfferential SCatter (DISC) lidar to measure the composition of atmospheric aerosols are described. This technique involves multiwavelength measurements of the backscatter cross section of aerosols in the middle infrared, where a number of materials display strong restrahlen features that significantly modulate the backscatter spectrum. The theoretical work indicates that a number of materials of interest, including sulfuric acid, ammonium sulfate, and silicates, can be discriminated among with a CO2 lidar. An initial evaluation of this procedure was performed in which cirrus clouds and lower altitude tropospheric aerosols were developed. The observed ratio spectrum of the two types of aerosol displays structure that is in crude accord with theoretical expectations.

Wright, M. L.

1980-01-01

166

Development of a scanning, solar-blind, water Raman lidar.  

PubMed

The need for an instrument capable of measuring water-vapor fluxes over mixed canopy and large areas has long been recognized. Such a device would greatly enhance the study of evapotranspiration processes and has great practical value for water management. To address this problem, a scanning water Raman lidar has been designed and constructed. Analytical methods have also been developed to take advantage of the type of information that this lidar can generate. The lidar is able to measure the absolute water content and calculate the evaporative flux quickly over relatively large areas. This capability provides new opportunities for the study of microscale atmospheric processes. The variogram data indicate that the spatial sampling size must be of the order of 10 m if fluxes and scalars are to be properly represented. Examples of data are presented. PMID:20935738

Eichinger, W E; Cooper, D I; Archuletta, F L; Hof, D; Holtkamp, D B; Karl, R R; Quick, C R; Tiee, J

1994-06-20

167

Development of a scanning, solar-blind, water Raman lidar  

SciTech Connect

The need for an instrument capable of measuring water-vapor fluxes over mixed canopy and large areas has long been recognized. Such a device would greatly enhance the study of evapotranspiration processes and has great practical value for water management. To address this problem, a scanning water Raman lidar has been designed and constructed. Analytical methods have also been developed to take advantage of the type of information that this lidar can generate. The lidar is able to measure the absolute water content and calculate the evaporative flux quickly over relatively large areas. This capability provides new opportunities for the study of microscale atmospheric processes. The variogram data indicate that the spatial sampling size must be of the order of 10 m if fluxes and scalars are to be properly represented. Examples of data are presented.

Eichinger, W.E.; Cooper, D.I.; Archuletta, F.L.; Hof, D.E.; Holtkamp, D.B.; Karl, R.R. Jr.; Quick, C.R. Jr.; Tiee, J.J. (Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States))

1994-06-20

168

Spaceborne profiling of atmospheric temperature and particle extinction with pure rotational Raman lidar and of relative humidity in combination with differential absorption lidar: performance simulations.  

PubMed

The performance of a spaceborne temperature lidar based on the pure rotational Raman (RR) technique in the UV has been simulated. Results show that such a system deployed onboard a low-Earth-orbit satellite would provide global-scale clear-sky temperature measurements in the troposphere and lower stratosphere with precisions that satisfy World Meteorological Organization (WMO) threshold observational requirements for numerical weather prediction and climate research applications. Furthermore, nighttime temperature measurements would still be within the WMO threshold observational requirements in the presence of several cloud structures. The performance of aerosol extinction measurements from space, which can be carried out simultaneously with temperature measurements by RR lidar, is also assessed. Furthermore, we discuss simulations of relative humidity measurements from space obtained from RR temperature measurements and water-vapor data measured with the differential absorption lidar (DIAL) technique. PMID:16623245

Di Girolamo, Paolo; Behrendt, Andreas; Wulfmeyer, Volker

2006-04-10

169

Spaceborne profiling of atmospheric temperature and particle extinction with pure rotational Raman lidar and of relative humidity in combination with differential absorption lidar: performance simulations  

SciTech Connect

The performance of a spaceborne temperature lidar based on the pure rotational Raman (RR) technique in the UV has been simulated. Results show that such a system deployed onboard a low-Earth-orbit satellite would provide global-scale clear-sky temperature measurements in the troposphere and lower stratosphere with precisions that satisfy World Meteorological Organization (WMO) threshold observational requirements for numerical weather prediction and climate research applications. Furthermore, nighttime temperature measurements would still be within the WMO threshold observational requirements in the presence of several cloud structures. The performance of aerosol extinction measurements from space, which can be carried out simultaneously with temperature measurements by RR lidar, is also assessed. Furthermore, we discuss simulations of relative humidity measurements from space obtained from RR temperature measurements and water-vapor data measured with the differential absorption lidar (DIAL) technique.

Di Girolamo, Paolo; Behrendt, Andreas; Wulfmeyer, Volker

2006-04-10

170

Light scattering characteristics of various aerosol types derived from multiple wavelength lidar observations  

NASA Technical Reports Server (NTRS)

The present study demonstrates the potential of a multiple-wavelength lidar for discriminating between several aerosol types on the basis of the wavelength dependence of the aerosol backscatter coefficient. The two-component lidar equation was solved under the assumption of similarity in the derived profiles of backscatter coefficients for each wavelength. It is shown that a three-wavelength lidar system operating at 300, 600, and 1064nm can provide unique information for discriminating between various aerosol types (continental, maritime, Saharan-dust, stratospheric aerosols in a tropopause fold event, and tropical forest aerosols). Mie calculations were made using in situ aerosol data and aerosol models to compare with the lidar results. The disagreement between the theoretical and empirical results in some cases was substantial. These differences may be partly due to uncertainties in the lidar data analysis and aerosol characteristics and also due to the conventional assumption of aerosol sphericity for the aerosol Mie calculations.

Sasano, Yasuhiro; Browell, Edward V.

1989-01-01

171

Daytime Raman lidar profiling of atmospheric water vapor  

SciTech Connect

Detailed measurements of the distribution of water vapor in the atmosphere are needed for a variety of scientific inquiries, including global climate change and related issues in radiative processes (water vapor is the major greenhouse gas in the atmosphere), and studies of a variety of atmospheric processes such as cloud formation and atmospheric circulation. The Raman lidar is a leading candidate for an instrument capable of the detailed, time- and space-resolved measurements required by these and other studies.

Goldsmith, J.E.M.; Bisson, S.E.

1994-08-01

172

Ozone and water-vapor measurements by Raman lidar in the planetary boundary layer: error sources and field measurements.  

PubMed

A new lidar instrument has been developed to measure tropospheric ozone and water vapor at low altitude. The lidar uses Raman scattering of an UV beam from atmospheric nitrogen, oxygen, and water vapor to retrieve ozone and water-vapor vertical profiles. By numerical simulation we investigate the sensitivity of the method to both atmospheric and device perturbations. The aerosol optical effect in the planetary boundary layer, ozone interference in water-vapor retrieval, statistical error, optical cross talk between Raman-shifted channels, and optical cross talk between an elastically backscattered signal in Raman-shifted signals and an afterpulse effect are studied in detail. In support of the main conclusions of this model study, time series of ozone and water vapor obtained at the Swiss Federal Institute of Technology in Lausanne and during a field campaign in Crete are presented. They are compared with point monitor and balloon sounding measurements for daytime and nighttime conditions. PMID:18357316

Lazzarotto, B; Frioud, M; Larchevêque, G; Mitev, V; Quaglia, P; Simeonov, V; Thompson, A; van den Bergh, H; Calpini, B

2001-06-20

173

Verification measurement of a polarization Raman elastic-backscatter lidar  

NASA Technical Reports Server (NTRS)

By measuring the depolarization of light Raman scattered from a gas of known number density (nitrogen), it is possible to determine the influence of multiple scattering on lidar signals. In order to realize such measurements, linearly polarized laser light is emitted and two components of the nitrogen Raman signals, with E vectors parallel (parallel P sub lambda R) and perpendicular (perpendicular P sub lambda R) to the plane of polarization of the laser light, are measured. The depolarization ratio, delta sub lambda R = perpendicular P sub lambda R/parallel P sub lambda R, is constant if only the Raman scattering process contributes to the signal. Any variation of the depolarization is caused by additional elastic, and, thus, multiple scattering. If the contribution of multiple scattered light to the lidar signals is known, other parameters determined with the systems such as extinction, backscattering, and the depolarization of elastically scattered light, can be corrected for this influence. The lidar system used for the polarization measurements, especially the receiver setup, is described. The calibration of the apparatus and a clear air measurement are discussed.

Schulze, Christoph; Wandinger, Ulla; Ansmann, Albert; Weitkamp, Claus; Michaelis, Walfried

1992-01-01

174

Lidar for remote sensing; Proceedings of the Meeting, Berlin, Germany, June 24-26, 1992  

SciTech Connect

The present volume on lidar for remote sensing discusses lidar system techniques for remote sensing of atmospheric pollution, airborne and surface-based lidar for environmental sensing of water and oceans, Doppler lidar for wind sensing and related measurement, aerosol measurements using lidar, ozone, water vapor, temperature, and density sensing with lidar systems, and new lidar technology systems and concepts. Attention is given to remote sensing of air pollution over large European cities by lidar, differential absorption lidar monitoring of atmospheric atomic mercury, an experimental evaluation of an airborne depth-sounding lidar, and remote sensing of the sea by tunable multichannel lidar. Topics addressed include recent developments in lidar techniques to measure the wind in the middle atmosphere, recent stratospheric aerosol measurements with a combined Raman elastic-backscatter lidar, the development of an eye-safe IR aerosol lidar, and temperature measurement by rotational Raman lidar.

Becherer, R.J.; Werner, C.

1992-01-01

175

Uniwavelength lidar sensitivity to spherical aerosol microphysical properties for the interpretation of Lagrangian stratospheric observations  

Microsoft Academic Search

The determination of stratospheric particle microphysical properties from multiwavelength lidar, including Rayleigh and\\/or Raman detection, has been widely investigated. However, most lidar systems are uniwavelength operating at 532nm. Although the information content of such lidar data is too limited to allow the retrieval of the full size distribution, the coupling of two or more uniwavelength lidar measurements probing the same

Julien Jumelet; Christine David; Slimane Bekki; Philippe Keckhut

2009-01-01

176

Comparison of Aerosol Classification From Airborne High Spectral Resolution Lidar and the CALIPSO Vertical Feature Mask  

NASA Technical Reports Server (NTRS)

Knowledge of aerosol composition and vertical distribution is crucial for assessing the impact of aerosols on climate. In addition, aerosol classification is a key input to CALIOP aerosol retrievals, since CALIOP requires an inference of the lidar ratio in order to estimate the effects of aerosol extinction and backscattering. In contrast, the NASA airborne HSRL-1 directly measures both aerosol extinction and backscatter, and therefore the lidar ratio (extinction-to-backscatter ratio). Four aerosol intensive properties from HSRL-1 are combined to infer aerosol type. Aerosol classification results from HSRL-1 are used here to validate the CALIOP aerosol type inferences.

Burton, Sharon P.; Ferrare, Rich A.; Omar, Ali H.; Vaughan, Mark A.; Rogers, Raymond R.; Hostetler, Chris a.; Hair, Johnathan W.; Obland, Michael D.; Butler, Carolyn F.; Cook, Anthony L.; Harper, David B.

2012-01-01

177

[Obtaining aerosol backscattering coefficient using pure rotational Raman-Mie scattering spectrum].  

PubMed

Both the traditional Klett and Fernald methods used to obtain atmospheric aerosol backscattering coefficient require the hypothesis of relationship between the extinction coefficient and backscattering coefficient, and this will bring error. According to the theory that the pure rotational Raman backscattering coefficient is only related to atmospheric temperature and pressure, a new method is presented for inverting aerosol backscattering coefficient, which needed the intensity of elastic scattering and rotational Raman combined with atmospheric temperature and pressure obtained with the sounding balloons in this article. This method can not only eliminate the errors of the traditional Klett and Fernald methods caused by the hypothesis, but also avoid the error caused by the correction of the overlap. Finally, the aerosol backscattering coefficient was acquired by using this method and the data obtained via the Raman-Mie scattering Lidar of our lab. And the result was compared with that of Klett and Fernald. PMID:23387171

Rong, Wei; Chen, Si-Ying; Zhang, Yin-Chao; Chen, He; Guo, Pan

2012-11-01

178

Vertical profiling of Saharan dust with Raman lidars and airborne HSRL in southern Morocco during SAMUM  

NASA Astrophysics Data System (ADS)

ABSTRACT Three ground-based Raman lidars and an airborne high-spectral-resolution lidar (HSRL) were operated during SAMUM 2006 in southern Morocco to measure height profiles of the volume extinction coefficient, the extinction-to-backscatter ratio and the depolarization ratio of dust particles in the Saharan dust layer at several wavelengths. Aerosol Robotic Network (AERONET) Sun photometer observations and radiosoundings of meteorological parameters complemented the ground-based activities at the SAMUM station of Ouarzazate. Four case studies are presented. Two case studies deal with the comparison of observations of the three ground-based lidars during a heavy dust outbreak and of the ground-based lidars with the airborne lidar. Two further cases show profile observations during satellite overpasses on 19 May and 4 June 2006. The height resolved statistical analysis reveals that the dust layer top typically reaches 4-6km height above sea level (a.s.l.), sometimes even 7km a.s.l.. Usually, a vertically inhomogeneous dust plume with internal dust layers was observed in the morning before the evolution of the boundary layer started. The Saharan dust layer was well mixed in the early evening. The 500nm dust optical depth ranged from 0.2-0.8 at the field site south of the High Atlas mountains, Ångström exponents derived from photometer and lidar data were between 0-0.4. The volume extinction coefficients (355, 532nm) varied from 30-300Mm-1 with a mean value of 100Mm-1 in the lowest 4km a.s.l.. On average, extinction-to-backscatter ratios of 53-55sr (+/-7-13sr) were obtained at 355, 532 and 1064nm.

Tesche, Matthias; Ansmann, Albert; Müller, Detlef; Althausen, Dietrich; Mattis, Ina; Heese, Birgit; Freudenthaler, Volker; Wiegner, Matthias; Esselborn, Michael; Pisani, Gianluca; Knippertz, Peter

2009-02-01

179

Methodology for the independent calibration of Raman backscatter water-vapor lidar systems.  

PubMed

We present a method for the independent calibration of Raman backscatter water-vapor lidar systems. Particular attention is given to the resolution of instrumental changes in the short and the long terms. The method reposes on the decomposition of the instrument function, which allows the lidar calibration coefficient to be re-expressed as the product of two terms, one describing the instrumental transmission and detection efficiency and the other describing the wavelength-dependent convolution of the Raman backscatter cross sections with the instrument function. The origins of changes in instrument response necessitate the experimental determination of the system detection efficiency. Two external light sources for calibration are assessed: zenith observation of diffuse sunlight and a xenon arc lamp. The results favor use of the diffuse-sunlight measurement but highlight the need for simultaneous sunphotometer measurements to constrain modeled aerosol optical properties. Quantum mechanical models of the Raman cross sections are described, and errors in determining the cross sections and their convolution with the instrument function are discussed in detail. The calibration coefficients deduced by using the independent method are compared with coefficients deduced from Vaisala H-Humicap radiosonde measurements. These results agree to within current calibration errors (15%, unconstrained aerosol parameters), and a change in calibration coefficient following instrument modification is reproduced satisfactorily. Results from modeling and intercomparison studies are extended to estimate the calibration accuracy and the precision of the diffuse-sunlight method with constrained modeled aerosol parameters. Changes in the calibration coefficient in the short and the long terms should be resolved to 4(6)% and 6(9)%, respectively, which is comparable or better than the precision of existing dependent methods of calibration. The reduction of the absolute calibration error remains an outstanding issue for all calibration methods. PMID:18324098

Sherlock, V; Hauchecorne, A; Lenoble, J

1999-09-20

180

Lidar measurements of the Kasatochi aerosol plume in August and September 2008 in Ny-Ålesund, Spitsbergen  

NASA Astrophysics Data System (ADS)

The eruptions of the Kasatochi volcano on 7 and 8 August 2008 led to an enhanced stratospheric aerosol load which was studied with the Koldewey Aerosol Raman Lidar (KARL) and the Micro Pulse Lidar (MPL) at the French-German Arctic Research Base AWIPEV in Ny-Ålesund, Spitsbergen at 78.55°N, 11.56°E. During all KARL measurements from 15 August to 24 September 2008 (approximately 30 h of data), we detected distinct layers of enhanced aerosol backscatter in the lower stratosphere and the tropopause region, whose origination at the Kasatochi site can be shown by trajectory calculations. We found a 125% increase in aerosol optical depth compared to the mean values from 2004 to 2007 at 3 weeks after the eruption, validated by sunphotometer measurements. Differences in volume depolarization and color ratio signatures of the layers indicate a sinking movement of the bigger particles to the layer bottom. Furthermore, within higher stratospheric aerosol layers monitored after 25 August 2008, we observed the volume depolarization maximum to be up to 0.8 km below the backscatter maximum. Backscatter and depolarization measurements from 1 September 2008, on which data were collected over 13 h during daylight and darkness, are analyzed in detail. Calculations of the lidar ratio in the lowest aerosol layer as well as the estimation of microphysical parameters of the aerosol particles were performed.

Hoffmann, A.; Ritter, C.; Stock, M.; Maturilli, M.; Eckhardt, S.; Herber, A.; Neuber, R.

2010-01-01

181

Raman water-vapor lidar implemented on an existing lidar system in the southern tropics  

Microsoft Academic Search

A Raman lidar dedicated to night-time tropospheric water-vapor high-resolution measurements is currently being developed at Réunion island in the south-western Indian Ocean. To our knowledge, it is the first permanent instrument of its kind in this tropical region. The geophysical and instrumental interests and issues on the radiative, dynamical and chemical plans for such a measurement, specially in the tropics,

Laurent Robert; Philippe Keckhut; Jean Leveau; Fabrice Chane-Ming; Jacques Porteneuve

2003-01-01

182

Vertically resolved aerosol properties by multi wavelengths lidar measurements  

NASA Astrophysics Data System (ADS)

A new approach is introduced to characterize the dependence on altitude of the aerosol fine mode radius (Rf) and of the fine mode contribution (?) to the aerosol optical thickness (AOT) by three-wavelength lidar measurements. The introduced approach is based on the graphical method of Gobbi et al. (2007), which was applied to AERONET spectral extinction observations and relies on the combined analysis of the Ångstrom exponent (å) and its spectral curvature ?å. Lidar measurements at 355, 532 and 1064 nm were used in this study to retrieve the vertical profiles of å and ?å and to determine the dependence on altitude of Rf and ? (532 nm) from the å-?å combined analysis. Lidar measurements were performed at the Mathematics and Physics Department of Universita' del Salento, in south eastern Italy. Aerosol from continental Europe, the Atlantic, northern Africa, and the Mediterranean Sea are often advected over south eastern Italy and as a consequence, mixed advection patterns leading to aerosol properties varying with altitude are dominant. The proposed approach was applied to eleven measurement days to demonstrate its feasibility in different aerosol load conditions. The selected-days were characterized by AOTs spanning the 0.23-0.67, 0.15-0.41, and 0.04-0.25 range at 355, 532, and 1064 nm, respectively. Lidar ratios varied within the 28-80, 30-70, and 30-55 sr range at 355, 532, and 1064 nm, respectively, for the high variability of the aerosol optical and microphysical properties. å(355 nm, 1064 nm) values retrieved from lidar measurements ranged between 0.12 and 2.5 with mean value ±1 standard deviation equal to 1.4 ± 0.5. ?å varied within the -0.10-0.87 range with mean value equal to 0.1 ± 0.4. Rf and ? (532 nm) values spanning the 0.02-0.30 ?m and the 0.30-0.99 range, respectively were associated to the å-?å data points. Rf and ? values showed no dependence on the altitude. 72% of the data points were in the ?å-å space delimited by the ? and Rf curves varying within 0.70-0.95 and 0.15-0.05 ?m, respectively for the dominance of fine mode particles in driving the AOT over south eastern Italy. Volume depolarization vertical profiles retrieved from lidar measurements, aerosol products from AERONET sunphotometer measurements collocated in space and time, the BSC-DREAM model, analytical back trajectories, and satellite images were used to demonstrate the robustness of the proposed method.

Perrone, M. R.; De Tomasi, F.; Gobbi, G. P.

2013-07-01

183

Lidar observations of Kasatochi volcano aerosols in the troposphere and stratosphere  

E-print Network

Lidar observations of Kasatochi volcano aerosols in the troposphere and stratosphere L. Bitar,1,2 T. Citation: Bitar, L., T. J. Duck, N. I. Kristiansen, A. Stohl, and S. Beauchamp (2010), Lidar observations

Duck, Thomas J.

184

Boundary layer heights determinate from Raman multiwavelengths lidar and microwave radiometer measurements  

NASA Astrophysics Data System (ADS)

Planetary boundary layer (PBL) is the lowest part of the troposphere that is directly influenced by friction and solar heating from earth's surface. Accurate determination of the boundary layer heights is critical in understanding the regional air quality. Lidar systems have been widely used to examine the structure and variability of the boundary layer (BL) heights (Brook et al 2000, Talianu et al 2006, Madonna et al, 2011). This paper aims to develop a method of assessing the PBL heights using Raman multi-wavelengths lidar - RALI measurements. RALI system has three elastic (1064nm, 532nm, 355nm) and two Raman (607nm, 387nm) channels. This method is based on the vertical gradient accurate calculation of the ratio between signal collected from elastic and inelastic channels. From 500m up to 10 km this will give information about vertical distributions of aerosols layers. We have chosen to use as method for validation the one described by Stull (Stull 1988) based on virtual potential temperature. The vertical gradient of the virtual potential temperature gives also information about the stability of stratification. Temperature, pressure and humidity profiles provided by the microwave radiometer (collocated with the lidar system) have been used to determine virtual potential temperature profiles. The PBL heights calculated from virtual potential temperature have been compared with PBL heights determinate from lidar data collected before and after sunset measurements, in Magurele (Longitude: 26.029 E, Latitude: 44.348 N, a.s.l: 93m), near Bucharest, June to August 2011. Results from lidar data showed the breakdown of the boundary layer after sunset and is visible on almost every day of measurements. The height of the boundary layer has been determined and lies between 700 and 800 meters during 2011 summer time. These results have been similar with the outputs of the virtual potential temperature method and a good correlation of the two methods has been found. Therefore we validated the method based on Raman multi-wavelength lidar measurements to calculate PBL heights as a reliable and useful tool.

Talianu, C.; Nicolae, D.; Carstea, E.; Belegante, L.

2012-04-01

185

Aerosol profiling with lidar in the Amazon Basin during the wet and dry season  

NASA Astrophysics Data System (ADS)

For the first time, multiwavelength polarization Raman lidar observations of optical and microphysical particle properties over the Amazon Basin are presented. The fully automated advanced Raman lidar was deployed 60 km north of Manaus, Brazil (2.5°S, 60°W) in the Amazon rain forest from January to November 2008. The measurements thus cover both the wet season (Dec-June) and the dry or burning season (July-Nov). Two cases studies of young and aged smoke plumes are discussed in terms of spectrally resolved optical properties (355, 532, and 1064 nm) and further lidar products such as particle effective radius and single-scattering albedo. These measurement examples confirm that biomass burning aerosols show a broad spectrum of optical, microphysical, and chemical properties. The statistical analysis of the entire measurement period revealed strong differences between the pristine wet and the polluted dry season. African smoke and dust advection frequently interrupt the pristine phases during the wet season. Compared to pristine wet season conditions, the particle scattering coefficients in the lowermost 2 km of the atmosphere were found to be enhanced, on average, by a factor of 4 during periods of African aerosol intrusion and by a factor of 6 during the dry (burning) season. Under pristine conditions, the particle extinction coefficients and optical depth for 532 nm wavelength were frequently as low as 10-30 Mm-1 and <0.05, respectively. During the dry season, biomass burning smoke plumes reached to 3-5 km height and caused a mean optical depth at 532 nm of 0.26. On average during that season, particle extinction coefficients (532 nm) were of the order of 100 Mm-1 in the main pollution layer (up to 2 km height). Ångström exponents were mainly between 1.0 and 1.5, and the majority of the observed lidar ratios were between 50-80 sr.

Baars, H.; Ansmann, A.; Althausen, D.; Engelmann, R.; Heese, B.; Müller, D.; Artaxo, P.; Paixao, M.; Pauliquevis, T.; Souza, R.

2012-11-01

186

Uncertainty in Cloud Aerosol Transport System (CATS) Doppler Lidar Products and Measurements  

Microsoft Academic Search

The Cloud Aerosol Transport System (CATS) is both a high spectral resolution lidar and Doppler lidar currently being developed at NASA Goddard Space Flight Center for use as a demonstrator instrument for NASA's Aerosol Cloud Ecosystem (ACE) Mission. CATS is intended to fly on NASA's high-altitude ER-2 aircraft. CATS will be capable of measuring both aerosol properties and horizontal wind

P. A. Selmer

2010-01-01

187

Simultaneous analog and photon counting detection for Raman lidar.  

PubMed

The Atmospheric Radiation Measurement program Raman lidar was upgraded in 2004 with a new data system that provides simultaneous measurements of both the photomultiplier analog output voltage and photon counts. We describe recent improvements to the algorithm used to merge these two signals into a single signal with improved dynamic range. The effect of modifications to the algorithm are evaluated by comparing profiles of water vapor mixing ratio from the lidar with radiosonde measurements over a six month period. The modifications that were implemented resulted in a reduction of the mean bias in the daytime water vapor mixing ratio from a 3% dry bias to well within 1%. This improvement was obtained by ignoring the temporal variation of the glue coefficients and using only the nighttime average glue coefficients throughout the entire diurnal cycle. PMID:19593341

Newsom, Rob K; Turner, David D; Mielke, Bernd; Clayton, Marian; Ferrare, Richard; Sivaraman, Chitra

2009-07-10

188

Optimization of band-pass filtering parameters of a Raman lidar detecting atmospheric water vapor  

Microsoft Academic Search

It is very important for daytime Raman lidar measurement of water vapor to determine the parameters of a band-pass filter, which are pertinent to the lidar signal to noise ratio (SNR). The simulated annealing (SA) algorithm method has an advantage in finding the extremum of a certain cost function. In this paper, the Raman spectrum of water vapor is simulated

Kai-Fa Cao; Shun-Xing Hu; Ying-jian Wang

2012-01-01

189

Relative-humidity profiling in the troposphere with a Raman lidar.  

PubMed

We describe a Raman-lidar-based approach to acquiring profiles of the relative humidity of air. For this purpose we combined in one instrument the Raman-lidar techniques that are used for the profiling of water vapor and temperature. This approach enabled us to acquire, for the first time to our knowledge, vertical profiles of relative humidity through the entire troposphere exclusively from Raman-lidar data. The methods applied to determining the water-vapor mixing ratio, temperature, and relative humidity and the corresponding uncertainties caused by systematic errors and signal noise are presented. The lidar-derived profiles are compared with profiles measured with radiosondes. Radiosonde observations are also used to calibrate the Raman lidar. Close agreement of the profiles of relative humidity measured with lidar and those measured with radiosonde demonstrates the potential of this novel approach. PMID:12396198

Mattis, Ina; Ansmann, Albert; Althausen, Dietrich; Jaenisch, Volker; Wandinger, Ulla; Müller, Detlef; Arshinov, Yuri F; Bobrovnikov, Sergej M; Serikov, Ilya B

2002-10-20

190

Differential absorption and Raman lidar for water vapor profile measurements - A review  

NASA Technical Reports Server (NTRS)

Differential absorption lidar and Raman lidar have been applied to the range-resolved measurements of water vapor density for more than 20 years. Results have been obtained using both lidar techniques that have led to improved understanding of water vapor distributions in the atmosphere. This paper reviews the theory of the measurements, including the sources of systematic and random error; the progress in lidar technology and techniques during that period, including a brief look at some of the lidar systems in development or proposed; and the steps being taken to improve such lidar systems.

Grant, William B.

1991-01-01

191

Compact Efficient Lidar Receiver for Measuring Atmospheric Aerosols  

NASA Technical Reports Server (NTRS)

A small, light weight, and efficient aerosol lidar receiver was constructed and tested. Weight and space savings were realized by using rigid optic tubes and mounting cubes to package the steering optics and detectors in a compact assembly. The receiver had a 1064nm channel using an APD detector. The 532nm channel was split (90/10) into an analog channel (90%) and a photon counting channel (10%). The efficiency of the 1064nm channel with optical filter was 44.0%. The efficiency of the analog 532nm channel was 61.4% with the optical filter, and the efficiency of the 532nm photon counting channel was 7.6% with the optical filter. The results of the atmospheric tests show that the detectors were able to consistently return accurate results. The lidar receiver was able to detect distinct cloud layers, and the lidar returns also agreed across the different detectors. The use of a light weight fiber-coupled telescope reduced weight and allowed great latitude in detector assembly positioning due to the flexibility enabled by the use of fiber optics. The receiver is now ready to be deployed for aircraft or ground based aerosol lidar measurements.

Gili, Christopher; De Young, Russell

2006-01-01

192

Project of the aerosol spaceborne lidar Tectonica-A  

NASA Astrophysics Data System (ADS)

The time and place of hazardous tectonic phenomena can be predicted most efficiently with the use of spaceborne systems. In Russia a network of small satellites equipped with detectors of different types is being developed to detect places of future earthquakes. Feasibility of application of optical detectors is based on the following interesting fact. The number density of atmospheric aerosol particles with sizes from 0.1 to 1.0 micrometers tends to increase with time above geological faults several hours or tens of hours ahead of a volcanic eruption or an earthquake. As a rule, epicenters of possible hazardous tectonic phenomena are in the regions of the Earth where only remote means can be used to detect anomalous aerosol number density. The first lidars intended for remote cloud sensing have already been tested on board the Shuttle and Mir space stations that orbited at altitudes of 350-400 km. To evaluate the feasibility of spaceborne detection of anomalous surface aerosol emissions, we did calculations for the model of the aerosol atmosphere developed at the Institute of Atmospheric Optics using the experimental data obtained at the TRINITI and the Sankt-Petersburg State University. The light scattering theory demonstrates that wavelengths of 1.06, 0.532, and 0.355 micrometers are most suitable for sensing of anomalous aerosol emissions. The garnet lasers with diode pumping have already been manufactured commercially. They nave suitable energetic parameters, weight, and overall dimensions. A receiving telescope on the basis of metal- coated carbon plastic mirrors can be used to receive signals from anomalous aerosol emissions in the photon counting mode at night and to detect regions with enhanced number density of finely dispersed aerosol fraction. Technical and technological peculiarities of spaceborne lidar detection of anomalous aerosols are discussed in the present report.

Matvienko, Gennadii G.; Kokhanenko, Grigorii P.; Shamanaev, Vitalii S.; Alekseev, Vladimir A.

1998-12-01

193

Error analysis of Raman differential absorption lidar ozone measurements in ice clouds.  

PubMed

A formalism for the error treatment of lidar ozone measurements with the Raman differential absorption lidar technique is presented. In the presence of clouds wavelength-dependent multiple scattering and cloud-particle extinction are the main sources of systematic errors in ozone measurements and necessitate a correction of the measured ozone profiles. Model calculations are performed to describe the influence of cirrus and polar stratospheric clouds on the ozone. It is found that it is sufficient to account for cloud-particle scattering and Rayleigh scattering in and above the cloud; boundary-layer aerosols and the atmospheric column below the cloud can be neglected for the ozone correction. Furthermore, if the extinction coefficient of the cloud is ?0.1 km(-1), the effect in the cloud is proportional to the effective particle extinction and to a particle correction function determined in the limit of negligible molecular scattering. The particle correction function depends on the scattering behavior of the cloud particles, the cloud geometric structure, and the lidar system parameters. Because of the differential extinction of light that has undergone one or more small-angle scattering processes within the cloud, the cloud effect on ozone extends to altitudes above the cloud. The various influencing parameters imply that the particle-related ozone correction has to be calculated for each individual measurement. Examples of ozone measurements in cirrus clouds are discussed. PMID:18354611

Reichardt, J

2000-11-20

194

Lidar profiling of aerosol optical properties from Paris to Lake Baikal (Siberia)  

NASA Astrophysics Data System (ADS)

In June 2013, a ground-based mobile lidar performed the 10 000 km ride from Paris to Ulan-Ude, near Lake Baikal, profiling for the first time aerosol optical properties all the way from Western Europe to central Siberia. The instrument was equipped with N2-Raman and depolarization channels that enabled an optical speciation of aerosols in the low and middle troposphere. The backscatter-to-extinction ratio (BER) and particle depolarization ratio (PDR) at 355 nm have been retrieved. The BER in the lower boundary layer (300-700 m) was found to be 0.017 ± 0.009 sr-1 in average during the campaign, with slightly higher values in background conditions near Lake Baikal (0.021 ± 0.010 sr-1 in average) corresponding to dust-like particles. PDR values observed in Russian cities (>1.7%) are higher than the ones measured in European cities (<1.3%) due to the lifting of terrigenous aerosols by traffic on roads with a bad tarmac. Biomass burning layers from grassland or/and forest fires in southern Russia exhibit BER values ranging from 0.010 to 0.015 sr-1 and from 2 to 3% for the PDR. Desert dust aerosols originating from the Caspian and Aral seas regions were characterized for the first time, with a BER (PDR) of 0.022 sr-1 (21%) for pure dust, and 0.011 sr-1 (15%) for a mix between dust and biomass burning. The lidar observations also showed that this dust event extended over 2300 km and lasted for ~6 days. Measurements from the Moderate Resolution Imaging Spectrometer (MODIS) show that our results are comparable in terms of aerosol optical thickness (between 0.05 and 0.40 at 355 nm) with the mean aerosol load encountered throughout our route.

Dieudonné, E.; Chazette, P.; Marnas, F.; Totems, J.; Shang, X.

2014-11-01

195

The double grating monochromator's design for pure rotational Raman lidar  

NASA Astrophysics Data System (ADS)

The pure rotational Raman lidar temperature measurement system is usually used for retrieval of atmospheric temperature according to the echo signal ratio of high and low-level quantum numbers of N2 molecules which are consistent with the exponential relationship. An effective method to detect the rotational Raman spectrum is taking a double grating monochromator. In this paper the detection principle and the structure of the dual-grating monochromator are described, with analysis of rotational Raman's Stokes and anti-Stokes spectrums of N2 molecule, the high order and lower order quantum number of the probe spectrum are resolved, then the specific design parameters are presented. Subsequently spectral effect is simulated with Zemax software. The simulation result indicates that under the condition of the probe laser wavelength of 532nm and using double-grating spectrometer which is comprised by two blazed gratings, Raman spectrums of 529.05nm, 530.40nm, 533.77nm, 535.13nm can be separated well, and double-grating monochromator has high diffraction efficiency.

Ge, Xian-ying; Chen, He; Zhang, Yin-chao; Chen, Si-ying; Guo, Pan; Mu, Tao-tao; Bu, Zhi-chao; Yang, Jian

2013-09-01

196

Stable Calibration of Raman Lidar Water-Vapor Measurements  

NASA Technical Reports Server (NTRS)

A method has been devised to ensure stable, long-term calibration of Raman lidar measurements that are used to determine the altitude-dependent mixing ratio of water vapor in the upper troposphere and lower stratosphere. Because the lidar measurements yield a quantity proportional to the mixing ratio, rather than the mixing ratio itself, calibration is necessary to obtain the factor of proportionality. The present method involves the use of calibration data from two sources: (1) absolute calibration data from in situ radiosonde measurements made during occasional campaigns and (2) partial calibration data obtained by use, on a regular schedule, of a lamp that emits in a known spectrum determined in laboratory calibration measurements. In this method, data from the first radiosonde campaign are used to calculate a campaign-averaged absolute lidar calibration factor (t(sub 1)) and the corresponding campaign-averaged ration (L(sub 1)) between lamp irradiances at the water-vapor and nitrogen wavelengths. Depending on the scenario considered, this ratio can be assumed to be either constant over a long time (L=L(sub 1)) or drifting slowly with time. The absolutely calibrated water-vapor mixing ratio (q) obtained from the ith routine off-campaign lidar measurement is given by q(sub 1)=P(sub 1)/t(sub 1)=LP(sub 1)/P(sup prime)(sub 1) where P(sub 1) is water-vapor/nitrogen measurement signal ration, t(sub 1) is the unknown and unneeded overall efficiency ratio of the lidar receiver during the ith routine off-campaign measurement run, and P(sup prime)(sub 1) is the water-vapor/nitrogen signal ratio obtained during the lamp run associated with the ith routine off-campaign measurement run. If L is assumed constant, then the lidar calibration is routinely obtained without the need for new radiosonde data. In this case, one uses L=L(sub 1) = P(sup prime)(sub 1)/t(sub 1), where P(sub 1)(sup prime) is the water-vapor/nitrogen signal ratio obtained during the lamp run associated with the first radiosonde campaign. If L is assumed to drift slowly, then it is necessary to postpone calculation of a(sub 1) until after a second radiosonde campaign. In this case, one obtains a new value, L(sub 2), from the second radiosonde campaign, and for the ith routine off-campaign measurement run, one uses an intermediate value of L obtained by simple linear time interpolation between L(sub 1) and L(sub 2).

Leblanc, Thierry; McDermid, Iain S.

2008-01-01

197

Vertically resolved aerosol properties by multi-wavelength lidar measurements  

NASA Astrophysics Data System (ADS)

An approach based on the graphical method of Gobbi and co-authors (2007) is introduced to estimate the dependence on altitude of the aerosol fine mode radius (Rf) and of the fine mode contribution (?) to the aerosol optical thickness (AOT) from three-wavelength lidar measurements. The graphical method of Gobbi and co-authors (2007) was applied to AERONET (AErosol RObotic NETwork) spectral extinction observations and relies on the combined analysis of the Ångstrom exponent (å) and its spectral curvature ?å. Lidar measurements at 355, 532 and 1064 nm were used in this study to retrieve the vertical profiles of å and ?å and to estimate the dependence on altitude of Rf and ?(532 nm) from the å-?å combined analysis. Lidar measurements were performed at the Department of Mathematics and Physics of the Universita' del Salento, in south-eastern Italy. Aerosol from continental Europe, the Atlantic, northern Africa, and the Mediterranean Sea are often advected over south-eastern Italy and as a consequence, mixed advection patterns leading to aerosol properties varying with altitude are dominant. The proposed approach was applied to ten measurement days to demonstrate its feasibility in different aerosol load conditions. The selected days were characterized by AOTs spanning the 0.26-0.67, 0.15-0.39, and 0.04-0.27 range at 355, 532, and 1064 nm, respectively. Mean lidar ratios varied within the 31-83, 32-84, and 11-47 sr range at 355, 532, and 1064 nm, respectively, for the high variability of the aerosol optical and microphysical properties. å values calculated from lidar extinction profiles at 355 and 1064 nm ranged between 0.1 and 2.5 with a mean value ± 1 standard deviation equal to 1.3 ± 0.7. ?å varied within the -0.1-1 range with mean value equal to 0.25 ± 0.43. Rf and ?(532 nm) values spanning the 0.05-0.3 ?m and the 0.3-0.99 range, respectively, were associated with the å-?å data points. Rf and ? values showed no dependence on the altitude. 60% of the data points were in the ?å-å space delimited by the ? and Rf curves varying within 0.80-0.99 and 0.05-0.15 ?m, respectively, for the dominance of fine-mode particles in driving the AOT over south-eastern Italy. Vertical profiles of the linear particle depolarization ratio retrieved from lidar measurements, aerosol products from AERONET sun photometer measurements collocated in space and time, analytical back trajectories, satellite true colour images, and dust concentrations from the BSC-DREAM (Barcelona Super Computing Center-Dust REgional Atmospheric Model) model were used to demonstrate the robustness of the proposed method.

Perrone, M. R.; De Tomasi, F.; Gobbi, G. P.

2014-02-01

198

Novel Co:MgF2 lidar for aerosol profiler  

NASA Technical Reports Server (NTRS)

Lidars are of great interest because of their unique capabilities in remote sensing applications in sounding of the atmosphere, meteorology, and climatology. In this small business innovative research (SBIR) phase II program, laser sources including Co:MgF2, CTH:YAG, CTH:YSGG, CT:YAG, and Er:Glass were evaluated. Modulator of fused silica and TeO2 materials with Brewster's angle end faces were used with these lasers as acousto-optical (AO) Q-switches. A higher hold-off energy and hence a higher Q-switched energy was obtained by using a high power RF driver. The report provides performance characteristics of these lasers. The tunable (1.75-2.50 microns) Co:MgF2 laser damaged the TeO2 Q-switch cell. However, the CTH:YAG laser operating at 2.09 microns provided output energy of over 300 mJ/p in 50 ns pulse width using the fused silica Q-switch. This Q-switched CTH:YAG laser was used in a breadboard vertical aerosol profiler. A 40 cm diameter telescope, InSb and InGaAs detectors were used in the receiver. The data obtained using this lidar is provided in the report. The data shows that the eye safe lidar using CTH:YAG laser for the vertical aerosol density and range measurements is the viable approach.

Acharekar, M. A.

1993-01-01

199

Feasibility Study For A Spaceborne Ozone/Aerosol Lidar System  

NASA Technical Reports Server (NTRS)

Because ozone provides a shield against harmful ultraviolet radiation, determines the temperature profile in the stratosphere, plays important roles in tropospheric chemistry and climate, and is a health risk near the surface, changes in natural ozone layers at different altitudes and their global impact are being intensively researched. Global ozone coverage is currently provided by passive optical and microwave satellite sensors that cannot deliver high spatial resolution measurements and have particular limitations in the troposphere. Vertical profiling DIfferential Absorption Lidars (DIAL) have shown excellent range-resolved capabilities, but these systems have been large, inefficient, and have required continuous technical attention for long term operations. Recently, successful, autonomous DIAL measurements have been performed from a high-altitude aircraft (LASE - Lidar Atmospheric Sensing Experiment), and a space-qualified aerosol lidar system (LITE - Laser In-space Technology Experiment) has performed well on Shuttle. Based on the above successes, NASA and the Canadian Space Agency are jointly studying the feasibility of developing ORACLE (Ozone Research with Advanced Cooperative Lidar Experiments), an autonomously operated, compact DIAL instrument to be placed in orbit using a Pegasus class launch vehicle.

Campbell, Richard E.; Browell, Edward V.; Ismail, Syed; Dudelzak, Alexander E.; Carswell, Allan I.; Ulitsky, Arkady

1997-01-01

200

A new cloud and aerosol layer detection method based on micropulse lidar measurements  

E-print Network

) [Clothiaux et al., 1995], or from temperature and water vapor profiles [Zhang et al., 2013]. The micropulseA new cloud and aerosol layer detection method based on micropulse lidar measurements Chuanfeng algorithm to detect aerosols and clouds based on micropulse lidar measurements. A semidiscretization

Li, Zhanqing

201

Performance modeling of daytime Raman lidar systems for profiling atmospheric water vapor  

NASA Technical Reports Server (NTRS)

We describe results from a comprehensive computer model developed to guide optimization of an ultraviolet Raman lidar system for measuring daytime profiles of atmospheric water vapor. Daytime measurements present added challenges because of the difficulties inherent in detecting Raman signals against solar backgrounds. We are pursuing two concepts for optimizing the daytime performance of a Raman lidar system. The first involves operating the system in the solar blind region of the ultraviolet spectrum. The second concept involves operation of the system in a narrowband, narrow field-of-view mode. Calculations for lidar systems based on both concepts are presented.

Goldsmith, J. E. M.; Ferrare, Richard A.

1992-01-01

202

Differential absorption and Raman lidar for water vapor profile measurements; A review  

SciTech Connect

Differential absorption lidar and Raman lidar have been applied to the range-resolved measurements of water vapor density for more than 20 years. During this period, there have been considerable advances in laser and lidar technology, as well as in the understanding of the factors required to optimize both lidar techniques for water vapor measurements. Results have been obtained using both lidar techniques that have led to improved understanding of water vapor distributions in the atmosphere. This paper reviews the theory of the measurements, including the sources of systematic and random error; the progress in lidar technology and techniques during that period, including a brief look at some of the lidar systems in development or proposed; and the steps being taken to improve such lidar systems.

Grant, W.B. (NASA/Langley Research Center, Atmospheric Sciences Div., MS 401A, Hampton, VA (US))

1991-01-01

203

Lidar measurements of tropospheric aerosol and water vapor profiles during the winter season campaigns over the metropolitan area of Sao Paulo, Brazil  

NASA Astrophysics Data System (ADS)

The so-called Metropolitan Area of São Paulo, one of the largest megacities in the world, faces several problems related to the air quality due the high concentrations of aerosols produced either by local sources or by long-range transporting. Concerned with the elevated concentrations of aerosol and their impact in the air quality and the climate changes inside MASP, a measurement campaign were conducted during the South hemisphere winter of 2012, when the low temperatures and the low level of precipitation contribute to the poor dispersion of aerosols. A Raman Lidar system and air quality monitoring stations from University of São Paulo and Environment Agency of São Paulo State (CETESB) were employed in order to monitor the increasing of aerosol load in the atmosphere. Satellite data, in synergy with HYSPLIT air masses backward trajectories, were applied to track the aerosol from the long-range distanced regions to Metropolitan Area of São Paulo. In the beginning of September 2012, MASP experienced episodes of high air pollution concentration, reaching Aerosol Optical Depth (AOD) values up to 0.89 at 550 nm and particulate matter concentration up to 293 µ g/cm3 . Particle lidar ratio values of 60 to 70 sr retrieved by a Raman Lidar system at 532 nm provided information of the aerosol type, helping to determine the influence of biomass burning advected from large range distance to megacities such as São Paulo

Lopes, Fábio J. S.; Moreira, Gregori A.; Rodrigues, Patricia F.; Guerrero-Rascado, Juan Luis; Andrade, Maria F.; Landulfo, Eduardo

2014-10-01

204

Analysis and Calibration of CRF Raman Lidar Cloud Liquid Water Measurements  

SciTech Connect

The Atmospheric Radiation Measurement (ARM) Raman lidar (RL), located at the Southern Great Plains (SGP) Climate Research Facility (CRF), is a unique state-of-the-art active remote sensor that is able to measure profiles of water vapor, aerosol, and cloud properties at high temporal and vertical resolution throughout the diurnal cycle. In October 2005, the capability of the RL was extended by the addition of a new detection channel that is sensitive to the Raman scattering of liquid water. This new channel permits the system, in theory, to measure profiles of liquid water content (LWC) by the RL. To our knowledge, the ARM RL is the only operation lidar with this capability. The liquid water Raman backscattering cross-section is a relatively weak and spectrally broad feature, relative to the water vapor Raman backscatter signal. The wide bandpass required to achieve reasonable signal-to-noise in the liquid water channel essentially eliminates the ability to measure LWC profiles during the daytime in the presence of large solar background, and thus all LWC observations are nighttime only. Additionally, the wide bandpass increases the probability that other undesirable signals, such as fluorescence from aerosols, may contaminate the observation. The liquid water Raman cross-section has a small amount of overlap with the water vapor Raman cross-section, and thus there will be a small amount of ‘cross-talk’ between the two signals, with water vapor contributing a small amount of signal to the LWC observation. And finally, there is significant uncertainty in the actual strength of the liquid water Raman cross-section in the literature. The calibrated LWC profiles, together with the coincident cloud backscatter observations also made by the RL, can be used to derive profiles of cloud droplet effective radius. By combining these profiles of effective radius in the lower portion of the cloud with the aerosol extinction measurements made below the cloud by the RL, the first aerosol indirect effect can be investigated using a single instrument, thereby reducing the uncertainty associated with aligning the different sampling periods and fields of view of multiple instruments. We have applied a “first principles” calibration to the LWC profiles. This approach requires that the relative differences in optical efficiency between the water vapor and liquid water channels be known; this relative difference is easily computed using the efficiency values of the beam splitters and interference filters in the lidar that were provided by the vendors of these components. The first principles approach then transfers the calibration from the water vapor mixing ratio to the LWC using the difference in the optical efficiency and an interpolated value of the liquid water Raman cross section from the literature, and the better established water vapor Raman cross section. After accounting for all known error sources, the vertical integral of LWC was compared against a similar value retrieved from a co-located ground-based infrared radiometer. The RL and infrared radiometer have significantly different fields of view; thus to compare the two sensors the data were averaged to 5 min intervals where only cloudy samples were included in the average of each. While there is fair scatter in the data (r=0.47), there is also a clear indication of a positive correlation between the infrared and the RL values. The value of the slope of the regression is 0.49, which indicates a tendency of the RL measurements to underestimate the total liquid amount with respect to the infrared retrieval. Research continues to investigate the source of the bias, but the most likely candidate is the large uncertainty in the liquid water Raman cross-section as there have been no direct measurements made of this parameter at the lidar’s laser wavelength of 355 nm. The calibrated LWC profile was then used together with the cloud backscatter coefficient profile from the RL to derive profiles of cloud droplet effective radius and cloud droplet number density. These profiles o

Turner, D.D.

2007-10-31

205

Role of updrafts in aerosol-cloud interactions: lidar observations of layered warm clouds over central Europe  

NASA Astrophysics Data System (ADS)

Twenty nine cases of layered liquid-water cloud systems were observed with dual-field-of-view (dual-FOV) Raman lidar over the polluted central European site of Leipzig, Germany, between September 2010 and September 2012. For the first time, a detailed lidar-based study of aerosol-cloud-dynamics relationship was conducted. A collocated Doppler lidar provided information on vertical velocity and thus on updraft and downdraft occurrence. The novel dual-FOV lidar permits the retrieval of the particle extinction coefficient (used as aerosol proxy just below cloud base) and cloud properties such as droplet effective radius and cloud droplet number concentration in the lower part of optically thin cloud layers. Here, we present the key results of our statistical analysis of the 2010-2012 observations. Besides a clear aerosol effect on cloud droplet number concentration in the lower part of the convectively weak cloud layers during updraft periods, meteorological effects (turbulent mixing, entrainment of dry air) were found to diminish the observable aerosol effect higher up in the clouds. The corresponding aerosol-cloud interaction (ACI) parameter based on changes in cloud droplet number concentration with aerosol loading was found to be close to 0.8 at 30-70 m above cloud base during updraft periods which points to values around 1 at cloud base (0-30 m above cloud base). Our findings are extensively compared with literature values and agree well with airborne observations. As a conclusion, ACI studies over continental sites should include vertical wind observations to avoid a~bias (too low values) in the obtained ACI results.

Schmidt, J.; Ansmann, A.; Bühl, J.; Wandinger, U.

2014-12-01

206

Lidar Investigation of Aerosol Pollution Distribution near a Coal Power Plant  

NASA Technical Reports Server (NTRS)

Using aerosol lidars with high spatial and temporal resolution with the possibility of real-time data interpretation can solve a large number of ecological problems related to the aerosol-field distribution and variation and the structure of convective flows. Significantly less expensive specialized lidars are used in studying anthropogenic aerosols in the planetary boundary layer. Here, we present results of lidar measurements of the mass-concentration field around a coal-fired power plant with intensive local aerosol sources. We studied the pollution evolution as a function of the emission dynamics and the presence of retaining layers. The technique used incorporates complex analysis of three types of lidar mapping: horizontal map of the aerosol field, vertical cross-section map, and a series of profiles along a selected path. The lidar-sounding cycle was performed for the time of atmosphere's quasi-stationarity.

Mitsev, TS.; Kolarov, G.

1992-01-01

207

Aerosol optical properties in the ABL over arctic sea ice from airborne aerosol lidar measurements  

NASA Astrophysics Data System (ADS)

Between 2009 and 2013 aerosols, sea ice properties and meteorological variables were measured during several airborne campaigns covering a wide range of the western Arctic Ocean. The campaigns were carried out with the aircraft Polar 5 of the German Alfred-Wegener-Institute (AWI) during spring and summer periods. Optical properties of accumulation mode aerosol and clouds were measured with the nadir looking AMALi aerosol lidar covering the atmospheric boundary layer and the free troposphere up to 3000m, while dropsondes provided coincident vertical profiles of meteorological quantities. Based on these data we discuss the vertical distribution of aerosol backscatter in and above the atmospheric boundary layer and its dependence on relative humidity, dynamics and underlying sea ice properties. We analyze vertical profiles of lidar and coincident dropsonde measurements from various locations in the European and Canadian Arctic from spring and summer campaigns. Sea ice cover is derived from modis satellite and aircraft onboard camera images. The aerosol load in the arctic atmospheric boundary layer shows a high variability. Various meteorological parameters and in particular boundary layer properties are discussed with their respective influence on aerosol features. To investigate the effect of the frequency and size of open water patches on aerosol properties, we relate the profiles to the sea ice properties influencing the atmosphere in the upwind region.

Schmidt, Lukas; Neuber, Roland; Ritter, Christoph; Maturilli, Marion; Dethloff, Klaus; Herber, Andreas

2014-05-01

208

Retrieving aerosol microphysical properties by Lidar-Radiometer Inversion Code (LIRIC) for different aerosol types  

NASA Astrophysics Data System (ADS)

(Lidar-Radiometer Inversion Code) is applied to combined lidar and Sun photometer data from Granada station corresponding to different case studies. The main aim of this analysis is to evaluate the stability of LIRIC output volume concentration profiles for different aerosol types, loadings, and vertical distributions of the atmospheric aerosols. For this purpose, in a first part, three case studies corresponding to different atmospheric situations are analyzed to study the influence of the user-defined input parameters in LIRIC when varied in a reasonable range. Results evidence the capabilities of LIRIC to retrieve vertical profiles of microphysical properties during daytime by the combination of the lidar and the Sun photometer systems in an automatic and self-consistent way. However, spurious values may be obtained in the lidar incomplete overlap region depending on the structure of the aerosol layers. In a second part, the use of a second Sun photometer located in Cerro Poyos, in the same atmospheric column as Granada but at higher altitude, allowed us to obtain LIRIC retrievals from two different altitudes with independent Sun photometer measurements in order to check the self-consistency and robustness of the method. Retrievals at both levels are compared, providing a very good agreement (differences below 5 µm3/cm3) in those cases with the same aerosol type in the whole atmospheric column. However, some assumptions such as the height independency of parameters (sphericity, size distribution, or refractive index, among others) need to be carefully reviewed for those cases with the presence of aerosol layers corresponding to different types of atmospheric aerosols.

Granados-Muñoz, M. J.; Guerrero-Rascado, J. L.; Bravo-Aranda, J. A.; Navas-Guzmán, F.; Valenzuela, A.; Lyamani, H.; Chaikovsky, A.; Wandinger, U.; Ansmann, A.; Dubovik, O.; Grudo, J. O.; Alados-Arboledas, L.

2014-04-01

209

Development of a temperature and water vapor Raman lidar for turbulent observations  

Microsoft Academic Search

A new generation Raman LIDAR system is developed for high spatial (1.5 m) and temporal (1 s) resolution humidity and temperature measurements in the lower atmosphere. A multi-telescope array is used so that a near constant LIDAR signal is obtained from 10 m out to 500 m. The system is operated in the solar blind spectral region and corrected for

Pablo Ristori; Martin Froidevaux; Todor Dinoev; Ilya Serikov; Valentin Simeonov; Marc Parlange; Hubert Van den Bergh

2005-01-01

210

Methodology for the Independent Calibration of Raman Backscatter Water-Vapor Lidar Systems  

Microsoft Academic Search

We present a method for the independent calibration of Raman backscatter water-vapor lidar systems. Particular attention is given to the resolution of instrumental changes in the short and the long terms. The method reposes on the decomposition of the instrument function, which allows the lidar calibration coefficient to be re-expressed as the product of two terms, one describing the instrumental

Vanessa Sherlock; Alain Hauchecorne; Jacqueline Lenoble

1999-01-01

211

Development of a deployable aerosol\\/water vapor lidar to characterize the atmosphere  

Microsoft Academic Search

A trailer-based lidar, named Humidity and Aerosol Lidar (HAL), is being built as a remote sensing tool to characterize atmospheric aerosol and water vapor in the line-of-sight. Water vapor and aerosol in the lower atmosphere are critical components affecting the propagation of high-energy laser beams and microwave. The sensor is developed to collect high temporal and vertical resolution data of

Phan D. Dao; Anthony Dentamaro

2003-01-01

212

Comparison of measurements by the NASA/GSFC scanning Raman lidar and the DOE/ARM CART Raman lidar  

SciTech Connect

Latent heat transfer through evaporation and condensation of water vapor is the most important energy transport mechanism in the atmosphere. In addition, water vapor is the most active greenhouse gas. Any global warning scenario must take accurate account of the spatial and temporal variation of water vapor in order to account for both of these effects. Due to the great importance of water vapor in atmospheric radiation studies, specific intensive operations periods (IOPs) have been hosted by the Department of Energy`s Atmospheric Radiation Measurements (ARM) program. One of the goals of these IOPs has been to determine the quality of and explain any discrepancies among a wide variety of water vapor measuring instruments. Raman lidar systems developed by NASA/Goddard Space Flight Center and DOE/Sandia National Laboratories have participated in the two Water Vapor IOPs (WVIOPs) held at the Southern Great Plains (SGP) Cloud and Radiation Testbed Site (CART) site during 1996 (WVIOP1) and 1997 (WVIOP2). Detailed comparisons of these two systems is ongoing but this effort has already resulted in numerous improvements in design and data analysis for both lidar systems.

Whiteman, D. [National Aeronautics and Space Administration, Greenbelt, MD (United States). Goddard Space Flight Center; Turner, D. [Pacific Northwest National Lab., Richland, WA (United States); Evans, K. [Joint Center for Earth Systems Technology, Baltimore, MD (United States)] [and others

1998-04-01

213

Comparison of measurements by the NASA/GSFC scanning raman lidar and the DOE/ARM CART raman lidar  

NASA Technical Reports Server (NTRS)

Latent heat transfer through evaporation and condensation of water vapor is the most important energy transport mechanism in the atmosphere. In addition, water vapor is the most active greenhouse gas. Any global warming scenario must take accurate account of the spatial and temporal variation of water vapor in order to account for both of these effects. Due to the great importance of water vapor in atmospheric radiation studies, specific intensive operations periods (IOPs) have been hosted by the Department of Energy's Atmospheric Radiation Measurements (ARM) program. One of the goals of these IOPs has been to determine the quality of and explain any discrepancies among a wide variety of water vapor measuring instruments. Raman lidar systems developed by NASA/Goddard Space Flight Center and DOE/Sandia National Laboratories have participated in the two Water Vapor IOPs (WVIOPs) held at the Southern Great Plains (SGP) Cloud and Radiation Testbed Site (CART) site during 1996 (WVIOP1) and 1997 (WVIOP2). Detailed comparisons of these two systems is ongoing but this effort has already resulted in numerous improvements in design and data analysis for both lidar systems.

Whiteman, David; Turner, David; Evans, Keith; Demoz, Belay; Melfi, Harvey; Schwemmer, Geary; Cadirola, Martin; Ferrare, Richard; Goldsmith, John; Tooman, Tim; Wise, Stacy

1998-01-01

214

Airborne lidar measurements of El Chichon stratospheric aerosols  

NASA Technical Reports Server (NTRS)

A NASA Electra airplane, outfitted with a lidar system, was flown in January to February 1983 between the latitudes of 27 deg N and 76 deg N. One of the primary purposes of this mission was to determine the spatial distribution and aerosol characteristics of the El Chichon-produced stratospheric material. This report presents the lidar data from that flight mission. Representative profiles of lidar backscatter ratio, plots of the integrated backscattering function versus latitude, and contours of backscatter mixing ratio versus altitude and latitude are given. It addition, tables containing numerical values of the backscatter ratio and backscattering function versus altitude are supplied for each profile. The largest amount of material produced by the El Chichon eruptions of late March to early April 1982, which was measured by this flight, resided between 35 deg N and 52 deg N. Peak backscatter ratios at a wavelength of 0.6943 micro m decreased from 8 to 10 at the lower latitudes to 3 at the higher latitudes. Backscatter ratio profiles taken while crossing the polar vortex show that the high-altitude material from El Chichon arrived at the north polar region sometime after the winter polar vortex was established. This report presents the results of this mission in a ready-to-use format for atmospheric and climatic studies.

Mccormick, M. P.; Osborn, M. T.

1985-01-01

215

Airborne lidar measurements of El Chichon stratospheric aerosols, January 1984  

NASA Technical Reports Server (NTRS)

A lidar-equipped NASA Electra aircraft was flown in January 1984 between the latitude of 38 and 90 deg N. One of the primary purposes of this mission was to determine the spatial distribution and aerosol characteristics of El Chichon produced stratospheric material. Lidar data from that portion of the flight mission between 38 deg N and 77 deg N is presented. Representative profiles of lidar backscatter ratio, a plot of the integral backscattering function versus latitude, and contours of backscatter mixing ratio versus altitude and latitude are given. In addition, tables containing numerical values of the backscatter ratio and backscattering function versus altitude are applied for each profile. These data clearly show that material produced by the El Chichon eruptions of late March-early April 1982 had spread throughout the latitudes covered by this mission, and that the most massive portion of the material resided north of 55 deg N and was concentrated below 17 km in a layer that peaked at 13 to 15 km. In this latitude region, peak backscatter ratios at a wavelength of 0.6943 microns were approximately 3 and the peak integrated backscattering function was about 15 X 10 to the -4/sr corresponding to a peak optical depth of approximately 0.07. This report presents the results of this mission in a ready-to-use format for atmospheric and climatic studies.

Mccormick, M. Patrick; Osborn, M. T.

1987-01-01

216

Airborne lidar measurements of El Chichon stratospheric aerosols, May 1983  

NASA Technical Reports Server (NTRS)

An experimental survey flight to determine the spatial distribution and aerosol characteristics of the El Chichon-produced stratospheric aerosol was conducted in May 1983. The mission included several different sensors flown abroad the NASA Convair 990 at latitudes between 72 deg. and 56 deg. S. This report presents the lidar data from that flight mission. Representative profiles of lidar backscatter ratio, plots of integrated backscattering function versus latitude, and contours of backscatter mixing ratio versus altitude and latitude are given. In addition, tables containing numerical values of the backscatter ratio and backscattering function versus altitude are supplied for each profile. By May 1983, material produced by the El Chichon eruptions of late March-early April 1982 had spread throughout the latitudes covered by this mission. However, the most massive portion of the material resided north of 33 deg. N and was concentrared below 21 km. In this latitude region (33 deg. N to 72 deg. N), peak backscatter ratios at a wavelength of 0.6943 microns varied between 3.5 and 4.5, and the peak integratred backscattering function was about 18 X 10 to the -4 power/sr, corresponding to a peak optical depth calculated to be approximately 0.08. This report presents the results of this mission in a ready-to-use format for atmospheric and climatic studies.

Mccormick, M. P.; Osborn, M. T.

1986-01-01

217

NASA/GSFC Scanning Raman Lidar Measurements of Water Vapor and Clouds during the International H2O Project (IHOP) Field Campaign  

NASA Technical Reports Server (NTRS)

The NASA/GSFC Scanning Raman Lidar (SFL) acquired approximately 200 hours of water vapor, aerosol and cloud measurements during the IHOP field campaign. The detailed water vapor structure of events such as a dryline passage and internal bores were revealed. We discuss the error characteristics of the instrument as well as the water vapor and cirrus cloud structure during the 19-20 June bore event.

Whiteman, David; Demoz, Belay; DiGirolamo, Paolo; Wang, Zhi-En; Evans, Keith; Lin, Ruei-Fong

2003-01-01

218

Comparison of lidar water vapor measurements using Raman scatter at 266 nm and 532 nm  

SciTech Connect

The performance of the Lidar Atmospheric Profile Sensor (LAPS) instrument for measurements of water vapor in the lower troposphere has been investigated. LAPS is an automated lidar system that measures water vapor from the vibrational Raman backscatter in the visible and in the ultraviolet wavelength range. The authors present a comparison of water vapor profiles measured with the lidar and balloon sondes as well as measured with the two lidar channels. With the UV channels it is possible to infer ozone profiles in the boundary layer. Data are presented that reveal the high variability of the water vapor in the boundary layer.

Balsiger, F.; Philbrick, C.R. [Pennsylvania State Univ., State College, PA (United States). Applied Research Lab.

1996-12-31

219

Feasibility study of water vapor and temperature retrieval using a combined vibrational rotational Raman and Mie scattering multi-wavelength lidar  

NASA Astrophysics Data System (ADS)

A multi-wavelength Raman lidar system which includes both vibrational rotational Raman and Mie scattering spectra has been designed and described. A retrieval algorithm for water vapor and temperature has also been developed based on the potential observations from this Raman lidar system. The performance of this retrieval method and the new lidar system has been evaluated with a synthetic test. Using the U.S. standard atmosphere model and main parameters of this lidar system, we have obtained signal to noise ratio (SNR) of water-vapor backscatter signals under different circumstances of aerosol content, pulse emission energy and signal integration time. With the model calculated backscatter signals, both atmospheric water-vapor and temperature profiles have been retrieved and their uncertainties have been analyzed. These synthetic tests indicate that our new lidar system can obtain profiles of water-vapor and temperature at both day and night time, but with different detection heights. The retrieval algorithm shows less than 30% relative error for water vapor mixing ratio and good accuracy with a minimum detection of temperature less than 2 K.

Lv, Min; Zhao, Chuanfeng; Wang, Qianqian; Li, Zhanqing

2014-11-01

220

Raman lidar profiling of atmospheric water vapor: Simultaneous measurements with two collocated systems  

NASA Technical Reports Server (NTRS)

Raman lidar is a leading candidate for providing the detailed space- and time-resolved measurements of water vapor needed by a variety of atmospheric studies. Simultaneous measurements of atmospheric water vapor are described using two collocated Raman lidar systems. These lidar systems, developed at the NASA/Goddard Space Flight Center and Sandia National Laboratories, acquired approximately 12 hours of simultaneous water vapor data during three nights in November 1992 while the systems were collocated at the Goddard Space Flight Center. Although these lidar systems differ substantially in their design, measured water vapor profiles agreeed within 0.15 g/kg between altitudes of 1 and 5 km. Comparisons with coincident radiosondes showed all instruments agreed within 0.2 g/kg in this same altitude range. Both lidars also clearly showed the advection of water vapor in the middle troposphere and the pronounced increase in water vapor in the nocturnal boundary layer that occurred during one night.

Goldsmith, J. E. M.; Bisson, Scott E.; Ferrare, Richard A.; Evans, Keith D.; Whiteman, David N.; Melfi, S. H.

1994-01-01

221

Water vapor variance measurements using a Raman lidar  

NASA Technical Reports Server (NTRS)

Because of the importance of atmospheric water vapor variance, we have analyzed data from the NASA/Goddard Raman lidar to obtain temporal scales of water vapor mixing ratio as a function of altitude over observation periods extending to 12 hours. The ground-based lidar measures water vapor mixing ration from near the earth's surface to an altitude of 9-10 km. Moisture profiles are acquired once every minute with 75 m vertical resolution. Data at each 75 meter altitude level can be displayed as a function of time from the beginning to the end of an observation period. These time sequences have been spectrally analyzed using a fast Fourier transform technique. An example of such a temporal spectrum obtained between 00:22 and 10:29 UT on December 6, 1991 is shown in the figure. The curve shown on the figure represents the spectral average of data from 11 height levels centered on an altitude of 1 km (1 plus or minus .375 km). The spectra shows a decrease in energy density with frequency which generally follows a -5/3 power law over the spectral interval 3x10 (exp -5) to 4x10 (exp -3) Hz. The flattening of the spectrum for frequencies greater than 6x10 (exp -3) Hz is most likely a measure of instrumental noise. Spectra like that shown in the figure are calculated for other altitudes and show changes in spectral features with height. Spectral analysis versus height have been performed for several observation periods which demonstrate changes in water vapor mixing ratio spectral character from one observation period to the next. The combination of these temporal spectra with independent measurements of winds aloft provide an opportunity to infer spatial scales of moisture variance.

Evans, K.; Melfi, S. H.; Ferrare, R.; Whiteman, D.

1992-01-01

222

A short-standoff bistatic lidar system for aerosol cloud backscatter and fluorescence cross section, and depolarization ratio measurement  

NASA Astrophysics Data System (ADS)

We have designed a short-standoff bistatic lidar system, used for the direct measurement of the optical backscatter at 355-nm and 1064-nm and laser induced fluorescence (LIF) cross sections as well as depolarization ratio of aerosols inside a vacuum sealed, aerosol flow chamber. The 355- and 1064-nm beams are sent through the aerosol chamber at an angle of ~2° with respect to the field of view of the receiver optics to ensure that measurements reflect true backscatter. This bistatic lidar configuration naturally defines a limited region in space where the laser beams and the receiver field of view overlap, a region that can be easily quantified using a standard calibration procedure. Our technique also takes advantage of a specially designed vacuum sealed, aerosol flow chamber that provides a well-mixed, uniform aerosol distribution over the region of sensitivity. Both modeling results and experimental measurements confirm that little particle loss is observed inside the aerosol flow chamber. A TSI aerodynamic particle sizer (APS) is used to measure the aerosol concentration in the chamber, and the N2 concentration can be calculated using the measured temperature and pressure of the air inside the chamber. Optical backscatter and LIF cross sections are determined by comparing the measured elastic and LIF signals with the N2 Raman scattering signal from the same sample volume, a technique which eliminates the need for absolute radiometric calibration of the system. Instead, all detectors in the system are calibrated relative to the N2 Raman channel and the unknown aerosol cross sections are determined by taking the ratio of the backscatter (or LIF) signals to the Raman signal and multiplying by the well-known Raman cross section of N2. Particulate population depolarization parameters are determined by measuring the rejected polarized light from a Glan Laser prism polarizer and comparing those intensity measurements with that of the direct backscatter intensity. This work will focus on particle specific optical backscatter cross-sections and depolarization ratios for atmospherically relevant particle populations including Arizona road dust, black carbon, ammonium sulfate, and sodium chloride. Preliminary results of the absolute scattering cross-section and polarization parameters will be presented. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Glen, C.; Schmitt, R. L.; Sickafoose, S.; Johnson, M. S.; Shagam, R.; Reichardt, T.; Sanchez, A.; Servantes, B.

2012-12-01

223

Single-scattering albedo profiling of mixed Asian dust plumes with multiwavelength Raman lidar  

NASA Astrophysics Data System (ADS)

This study presents results of vertically-resolved single-scattering albedo of mixed Asian dust plumes, i.e. the total single-scattering albedo. The mixed Asian dust plumes are comprised of a mixture of pure dust particles and the non-dust part, e.g. urban/industrial pollution and smoke from biomass burning. The mixed Asian dust plumes were observed with multiwavelength Raman lidar which provides vertical profiles of particle backscatter coefficients at 355, 532, and 1064 nm and extinction coefficients at 355 and 532 nm. The optical data serve as input for an inversion algorithm that provides profiles of microphysical particle properties which subsequently are used for computing single-scattering albedo. This study presents results of dust plumes observed on 24 February 2004, 9 and 18 March 2004, 2 April 2004, and 24 February and 4 May 2005. The lidar measurements were carried out at Gwangju (35.10° N, 126.53° E), South Korea. The optical data of the mixed-dust plumes were separated into the pure dust content and the non-dust part. We used the linear particle depolarization ratio measured at 532 nm for this separation. The backscatter and extinction coefficients then were used to derive single-scattering albedo of the non-dust part of the mixed-dust plumes. The value 0.96 ± 0.02 at 532 nm for the single-scattering albedo of pure dust part was used. This value was obtained from single-scattering albedo of dust observed in various dust source regions. In another step the “total” single-scattering albedo of these mixed-dust plumes was calculated by using the optical depth of the dust and the non-dust part as weighting function. The single-scattering albedo of the non-dust particles of the mixed-dust plume varied from 0.63 to 0.93 for all observations presented in this study. The single-scattering albedo of the mixed-dust plumes was 0.71-0.95, and it was always higher than the single-scattering albedo of the non-dust part of the mixed-dust plumes. Single-scattering albedo varied with height on each measurement day. These differences seem to be quantitatively related to the degree of mixing of dust with urban pollution and the light-absorption properties of the pollution (non-dust) particles in these plumes which traveled along different transport pathways to the lidar site. The layer-mean lidar-derived single-scattering albedos of the examples shown in this study were compared to single-scattering albedo derived from AERONET (Aerosol Robotic Network) Sun/sky radiometer observations. This radiometer is located next to the lidar. The total layer-mean lidar-derived single-scattering albedos (at 532 nm) on 18 March and 2 April 2004, and on 24 February and 4 May 2005 were 0.91 ± 0.02, 0.90 ± 0.03, 0.91 ± 0.02, and 0.92 ± 0.02, respectively. The lidar-derived single-scattering albedos are similar to those based on the Sun/sky radiometer data if the different measurement wavelengths of the lidar and Sun/sky radiometer are taken account of.

Noh, Young M.

2014-10-01

224

An intercomparison of lidar-derived aerosol optical properties with airborne measurements near Tokyo during ACE-Asia  

E-print Network

a good agreement in the backscattering coefficient at 532 nm among lidars and in situ 180° backscatter. This agrees well with nighttime Raman lidar measurements made later on this same dust layer as it passed over

Clarke, Antony

225

Measurements of upper tropospheric moisture with a Raman lidar  

SciTech Connect

We describe water vapor profile measurements made with the Sandia Raman lidar. The goal of this study is to determine the effect of convection on the upper tropospheric moisture budget. At present, considerable controversy exists over the nature of the vertical redistribution of water vapor in a changing climate, and particularly the distribution of water vapor in the upper troposphere. Although upper tropospheric moisture concentrations are several orders of magnitude lower than those near the surface, upper tropospheric moisture exerts an important influence on climate. On a per-molecule basis, greenhouse absorption due to water vapor is about one hundred times more effective at high altitudes than at low altitudes. Several one-dimensional radiative convective models have been used to demonstrate the importance of upper tropospheric moisture on climate. What these models show is that for a given fractional increase in water vapor at a given altitude the response or change in surface temperature is qualitatively the same. Understanding upper tropospheric moistening processes are therefore of prime importance in addressing the water vapor feedback question. The goal of this study is to determine the upper tropospheric moisture budget associated with convective events, and in particular to extend process models to higher altitudes than have been achieved previously.

Bisson, S.E.; Goldsmith, J.E.M. [Sandia National Labs., Livermore, CA (United States); Del Genio, A.D. [National Aeronautics and Space Administration, New York, NY (United States). Goddard Inst. for Space Studies

1994-08-01

226

Laser frequency converters for aerosol and gas lidar systems  

NASA Astrophysics Data System (ADS)

Estimations are carried out on creation possibilities of all solid state laser sources capable significantly or fully to solve the problem of the universal Aerosol-Gas Lidar System design. 'Best existing Ho2+:ILF and Nd:YAG lasers supplied with LBO, KTA, KTP, BBO, CLBO, DLAP; GaSe, GaSe:In, AgGaxIn1-xSe2, LiInS2, LiInSe2, AgGaS2, AgGaxIn1-xS2, and HgGa2S4 frequency converters are considered. The investigation results show development of UV to FIR laser source is really to carry out with efficiencies from one-two up to several tens pro cents in several ways.

Andreev, Yuri M.; Geiko, Pavel P.

2000-12-01

227

A Remotely Operated Lidar for Aerosol, Temperature, and Water Vapor Profiling in the High Arctic  

E-print Network

A Remotely Operated Lidar for Aerosol, Temperature, and Water Vapor Profiling in the High Arctic G of higher temporal resolu- tion are required. Lidar measurements of tropospheric water vapor have been coefficients, depolarization ratio, tropospheric temperature, and water vapor mixing ratio. Variable field

Duck, Thomas J.

228

Aerosol optical and microphysical retrievals from a hybrid multiwavelength lidar data set - DISCOVER-AQ 2011  

NASA Astrophysics Data System (ADS)

Retrievals of aerosol microphysical properties (effective radius, volume and surface-area concentrations) and aerosol optical properties (complex index of refraction and single-scattering albedo) were obtained from a hybrid multiwavelength lidar data set for the first time. In July 2011, in the Baltimore-Washington DC region, synergistic profiling of optical and microphysical properties of aerosols with both airborne (in situ and remote sensing) and ground-based remote sensing systems was performed during the first deployment of DISCOVER-AQ. The hybrid multiwavelength lidar data set combines ground-based elastic backscatter lidar measurements at 355 nm with airborne High-Spectral-Resolution Lidar (HSRL) measurements at 532 nm and elastic backscatter lidar measurements at 1064 nm that were obtained less than 5 km apart from each other. This was the first study in which optical and microphysical retrievals from lidar were obtained during the day and directly compared to AERONET and in situ measurements for 11 cases. Good agreement was observed between lidar and AERONET retrievals. Larger discrepancies were observed between lidar retrievals and in situ measurements obtained by the aircraft and aerosol hygroscopic effects are believed to be the main factor in such discrepancies.

Sawamura, P.; Müller, D.; Hoff, R. M.; Hostetler, C. A.; Ferrare, R. A.; Hair, J. W.; Rogers, R. R.; Anderson, B. E.; Ziemba, L. D.; Beyersdorf, A. J.; Thornhill, K. L.; Winstead, E. L.; Holben, B. N.

2014-09-01

229

LIDAR Measurements of the Vertical Distribution of Aerosol Optical and Physical Properties over Central Asia  

EPA Science Inventory

The vertical structure of aerosol optical and physical properties was measured by Lidar in Eastern Kyrgyzstan, Central Asia, from June 2008 to May 2009. Lidar measurements were supplemented with surface-based measurements of PM2.5 and PM10 mass and chemical ...

230

High altitude Balloon Borne Lidar experiment for the study of aerosols and clouds  

Microsoft Academic Search

Ground based light detection and ranging (LIDAR) instruments are routinely used for the study of aerosols and clouds using remote sensing technique. Such measurements can only give local\\/regional scale data. Space based system can provide data on global scale and the same can be used for climate modeling and weather forecasting applications. Development of a Balloon Borne Lidar (BBL) system

RK Manchanda; S. Ramaratnam; AR Krishnan; B. Presenna Kumar; J. Jeswin Vetha Jeyasingh; S. Sreekumar; Sherly Joy; S. Thirupathirajan; Y. Bhavanikumar; Anand Devarajan

2010-01-01

231

Use of probability distribution functions for discriminating between cloud and aerosol in lidar backscatter data  

Microsoft Academic Search

In this paper, we describe the algorithm that will be used during the upcoming Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) mission for discriminating between clouds and aerosols detected in two-wavelength backscatter lidar profiles. We first analyze single-test and multiple-test classification approaches based on one-dimensional (1-D) and multidimensional probability distribution functions (PDFs) in the context of a two-class feature

Zhaoyan Liu; Mark A. Vaughan; David M. Winker; Chris A. Hostetler; Lamont R. Poole; Dennis Hlavka; William Hart; Matthew McGill

2004-01-01

232

Polar winter cloud depolarization measurements with the CANDAC Rayleigh-Mie-Raman Lidar  

NASA Astrophysics Data System (ADS)

Clouds introduce a significant positive forcing to the Arctic radiation budget and this is strongest during the polar winter when shortwave radiation is absent (Intrieri et al., 2002). The amount of forcing depends on the occurrence probability and optical depth of the clouds as well as the cloud particle phase (Ebert and Curry 1992). Mixed-phase clouds are particularly complex as they involve interactions between three phases of water (vapour, liquid and ice) coexisting in the same cloud. Although significant progress has been made in characterizing wintertime Arctic clouds (de Boer et al., 2009 and 2011), there is considerable variability in the relative abundance of particles of each phase, in the morphology of solid particles, and in precipitation rates depending on the meteorology at the time. The Canadian Network for the Detection of Atmospheric Change (CANDAC) Rayleigh-Mie-Raman Lidar (CRL) was installed in the Canadian High Arctic at Eureka, Nunavut (80°N, 86°W) in 2008-2009. The remotely-operated system began with measurement capabilities for multi-wavelength aerosol extinction, water vapour mixing ratio, and tropospheric temperature profiles, as well as backscatter cross section coefficient and colour ratio. In 2010, a new depolarization channel was added. The capability to measure the polarization state of the return signal allows the characterization of the cloud in terms of liquid and ice water content, enabling the lidar to probe all three phases of water in these clouds. Lidar depolarization results from 2010 and 2011 winter clouds at Eureka will be presented, with a focus on differences in downwelling radiation between mixed phase clouds and ice clouds. de Boer, G., E.W. Eloranta, and M.D. Shupe (2009), Arctic mixed-phase stratiform cloud properties from multiple years of surface-based measurements at two high-latitude locations, Journal of Atmospheric Sciences, 66 (9), 2874-2887. de Boer, G., H. Morrison, M. D. Shupe, and R. Hildner (2011), Evidence of liquid dependent ice nucleation in high-latitude stratiform clouds from surface remote sensors, Geophysical Research Letters, 38, L01803. Ebert, EE and J.A .Curry (1992), A parameterization of ice cloud optical properties for climate models, Journal of Geophysical Research 97:3831-3836. Intrieri JM, Fairall CW, Shupe MD, Persson POG, Andreas EL, Guest PS, Moritz RE. 2002. An annual cycle of Arctic surface cloud forcing at SHEBA. Journal of Geophysical Research 107 NO. C10, 8039 . Noel, V., H. Chepfer, M. Haeffelin, and Y. Morille (2006), Classification of ice crystal shapes in midlatitude ice clouds from three years of lidar observations over the SIRTA observatory. Journal of the Atmospheric Sciences, 63:2978 - 2991.

McCullough, E. M.; Nott, G. J.; Duck, T. J.; Sica, R. J.; Doyle, J. G.; Pike-thackray, C.; Drummond, J. R.

2011-12-01

233

Stratospheric aerosol increase after eruption of Pinatubo observed with lidar and aureolemeter  

NASA Technical Reports Server (NTRS)

An increase in the amount of stratospheric aerosol due to the Pinatubo eruption (June 12-15, 1991, 15.14 deg N, 120.35 deg E) was observed from the end of June, 1991 by a lidar in NIES (National Institute for Environmental Studies), Tsukuba (36.0 deg N, 140.1 deg E). After large fluctuations in summer of 1991, the amount of the aerosols increased in mid-September as a result of enhanced transportation from the subtropical region. In autumn and winter of 1991, dense aerosol layers were continuously observed. Aureolemeter (scanning spectral radiometer) measurements were also carried out with lidar measurements and columnar size distribution of stratospheric aerosols was estimated for some cases. Collaborative measurements with the lidar and aureolemeter provided some information on height distribution of the surface area of aerosols in late 1991.

Hayashida, Sachiko; Sasano, Yasuhiro; Nakane, Hideaki; Matsui, Ichiro; Hayasaka, Tadahiro

1994-01-01

234

Remote daytime measurements of tropospheric temperature profiles with a rotational Raman lidar.  

PubMed

Tropospheric temperature profiles have been measured at daytime with a rotational Raman lidar. The lidar operates in the solar-blind spectral region with KrF laser radiation that is Raman shifted in hydrogen to 276.787 nm. This wavelength corresponds to the resonance absorption of a thallium atomic-vapor f ilter that is used to suppress the large elastic-backscatter signal. The rotational Raman signal is analyzed with an echelle grating spectrometer that separates spectral regions with different temperature sensitivities in both the Stokes and the anti-Stokes Raman spectra. Simultaneously, profiles of water vapor and ozone can be determined by means of vibrational Raman backscattering. PMID:19876332

Zeyn, J; Lahmann, W; Weitkamp, C

1996-08-15

235

Lidar measurements of the post-fuego stratospheric aerosol  

NASA Technical Reports Server (NTRS)

Fifteen lidar observations of the stratospheric aerosol were made between February and November 1975. All observations revealed the greatly increased particulate backscattering that followed the eruption of the volcano Fuego in October 1974. Vertical structure consisted initially of multiple layers, which later merged to form a single, broader peak. Essentially all of the increased scattering was confined to altitudes below 20 km. Hence, aerosol layer centroids in 1975 were typically several km below their altitude prior to the eruption. Radiative and thermal consequences of the measured post-Fuego layer were computed using several recently published models. The models predict a temperature increase of several K at the altitude of the layer, caused by the infrared absorption bands of the sulfuric acid particles. The surface temperature decrease predicted by the models is considerably smaller than 1 K, partly because of the small optical thickness of the volcanic layer, and partly because of its short residence time relative to the earth-ocean thermal response time.

Russell, P. B.; Hake, R. D., Jr.; Viezee, W.

1976-01-01

236

Effect of aerosol particle microstructure on cw Doppler lidar signal statistics.  

PubMed

Analysis of signal statistical characteristics is carried out, and estimation errors of the radial wind velocity are calculated by use of numerical simulation of a cw Doppler lidar return, taking into account the atmospheric aerosol microstructure. It has been found that, at small sounded volume, the large particles contribute significantly to the scattered field. As a result the lidar return probability density function distribution can differ significantly from a Gaussian distribution. Neglect of the aerosol microstructure effect results in considerable underestimation of the error of cw Doppler lidar velocity estimates at small sounded volume. PMID:18354536

Banakh, V A; Smalikho, I N; Werner, C

2000-10-20

237

Estimation of spatially distributed latent heat flux over complex terrain from a Raman lidar  

Microsoft Academic Search

A method is presented in which estimates of evaporation may be made over an area approaching three quarters of a square kilometer, with relatively fine (25m) spatial resolution, using three-dimensional measurements of water vapor concentration from a scanning Raman lidar. The method is based upon Monin–Obukhov similarity theory applied to spatially and temporally averaged data. Data from the lidar is

W. Eichinger; D. Cooper; J. Kaob; L. C. Chen; L. Hipps; J. Prueger

2000-01-01

238

New algorithm to derive the microphysical properties of the aerosols from lidar measurements using OPAC aerosol classification schemes  

NASA Astrophysics Data System (ADS)

This paper presents a new method to retrieve the aerosol complex refractive index and effective radius from multiwavelength lidar data, using an integrated model-measurement approach. In the model, aerosols are assumed to be a non-spherical ensemble of internally mixed components, with variable proportions. OPAC classification schemes and basic components are used to calculate the microphysical properties, which are then fed into the T-matrix calculation code to generate the corresponding optical parameters. Aerosol intensive parameters (lidar ratios, extinction and backscatter Angstrom coefficients, and linear particle depolarization ratios) are computed at the altitude of the aerosol layers determined from lidar measurements, and iteratively compared to the values obtained by simulation for a certain aerosol type, for which the critical component's proportion in the overall mixture is varied. Microphysical inversion based on the Truncated Singular Value Decomposition (TSVD) algorithm is performed for selected cases of spherical aerosols, and comparative results of the two methods are shown. Keywords: Lidar, aerosols, Data inversion, Optical parameters, Complex Refractive Index Acknowledgments: This work has been supported by grants of the Romanian National Authority for Scientific Research, Programme for Research- Space Technology and Advanced Research - STAR, project numbers 38/2012 - CAPESA and 55/2013 - CARESSE, and by the European Community's FP7-INFRASTRUCTURES-2010-1 under grant no. 262254 - ACTRIS and by the European Community's FP7-PEOPLE-2011-ITN under grant no. 289923 - ITARS

Talianu, Camelia; Labzovskii, Lev; Toanca, Florica

2014-05-01

239

A case study of using Raman lidar measurements in high-accuracy GPS applications  

NASA Astrophysics Data System (ADS)

This paper investigates the impact of rapid small-scale water vapor fluctuations on GPS height determination. Water vapor measurements from a Raman lidar are used for documenting the water vapor heterogeneities and correcting GPS signal propagation delays in clear sky conditions. We use data from four short observing sessions (6 h) during the VAPIC experiment (15 May-15 June 2004). The retrieval of wet delays from our Raman lidar is shown to agree well with radiosonde retrievals (bias and standard deviation (SD) were smaller than 1 and 2.8 mm, respectively) and microwave radiometers (from two different instruments, bias was 6.0/-6.6 mm and SD 1.3/3.8 mm). A standard GPS data analysis is shown to fail in accurately reproducing fast zenith wet delay (ZWD) variations. The ZWD estimates could be improved when mean post-fit phase residuals were removed. Several methodologies for integrating zenith lidar observations into the GPS data processing are also presented. The final method consists in using lidar wet delays for correcting a priori the GPS phase observations and estimating a scale factor for the lidar wet delays jointly with the GPS station position. The estimation of this scale factor allows correcting for a mis-calibration in the lidar data and provides in the same way an estimate of the Raman lidar instrument constant. The agreement of this constant with an independent determination using radiosonde data is at the level of 1-4%. The lidar wet delays were derived by ray-tracing from zenith pointing measurements: further improvement in GPS positioning is expected from slant path lidar measurements that would properly account for water vapor anisotropy.

Bosser, Pierre; Bock, Olivier; Thom, Christian; Pelon, Jacques; Willis, Pascal

2010-04-01

240

Two-wavelength lidar characterization of atmospheric aerosol fields at low altitudes over heterogeneous terrain  

NASA Astrophysics Data System (ADS)

The possibilities for applying multiwavelength elastic lidar probing of the atmosphere to help monitor air-quality over large industrial and densely populated areas, based predominantly on the use and analysis of commonly obtainable backscatter-related lidar quantities, are examined. Presented are two-wavelength (1064/532 nm) lidar observations on the spatial distribution, structure, composition, and temporal evolution of close-to-surface atmospheric aerosol fields over heterogeneous orographic areas (adjacent city, plain, and mountain) near Sofia, Bulgaria. Selected winter-time evening lidar measurements are described. Range profiles, histograms, and evolutional range-time diagrams of the aerosol backscatter coefficients, range-corrected lidar signals, normalized standard deviations, and backscatter-related Ångström exponents (BAE) are analyzed. Near-perfect correlation between the aerosol density distribution and orographic differentiation of the underlying terrain is established, finding expression in a sustained horizontal stratification of the probed atmospheric domains. Distinctive features in the spatial distribution and temporal evolution of both the fine- and coarse aerosol fractions are revealed in correlation with terrain's orography. Zonal aerosol particle size distributions are qualitatively characterized by using an approach based on BAE occurrence frequency distribution analysis. Assumptions are made about the aerosol particle type, origin, and dominating size as connected (by transport-modeling data) to local pollution sources. Specifics and patterns of temporal dynamics of the fine- and coarse aerosol fraction density distributions and movements, revealed by using statistical analysis of lidar data, are discussed. The obtained results prove the capability of the used two-wavelength lidar approach to perform fast-, reliable, and self-consistent characterization of important optical-, micro-physical-, and dynamical properties of atmospheric aerosols over broad areas with high temporal- and range resolution.

Peshev, Zahary Y.; Dreischuh, Tanja N.; Toncheva, Eleonora N.; Stoyanov, Dimitar V.

2012-01-01

241

AGLITE: a multiwavelength lidar for aerosol size distributions, flux, and concentrations  

NASA Astrophysics Data System (ADS)

We report on the design, construction and operation of a new multiwavelength lidar developed for the Agricultural Research Service of the United States Department of Agriculture and its program on particle emissions from animal production facilities. The lidar incorporates a laser emitting simultaneous, pulsed Nd laser radiation at 355, 532 and 1064 nm at a PRF of 10 kHz. Lidar backscatter and extinction data are modeled to extract the aerosol information. All-reflective optics combined with dichroic and interferometric filters permit all the wavelength channels to be measured simultaneously, day or night, using photon counting by PMTs, an APD, and high speed scaling. The lidar is housed in a transportable trailer for all-weather operation at any accessible site. The laser beams are directed in both azimuth and elevation to targets of interest. We describe application of the lidar in a multidisciplinary atmospheric study at a swine production farm in Iowa. Aerosol plumes emitted from the hog barns were prominent phenomena, and their variations with temperature, turbulence, stability and feed cycle were studied, using arrays of particle samplers and turbulence detectors. Other lidar measurements focused on air motion as seen by long duration scans of the farm region. Successful operation of this lidar confirms the value of multiwavelength, eye-safe lidars for agricultural aerosol measurements.

Wilkerson, Thomas D.; Zavyalov, Vladimir V.; Bingham, Gail E.; Swasey, Jason A.; Hancock, Jed J.; Crowther, Blake G.; Cornelsen, Scott S.; Marchant, Christian; Cutts, James N.; Huish, David C.; Earl, Curtis L.; Andersen, Jan M.; Cox, McLain L.

2006-05-01

242

Significance of multiple scattering from tropospheric aerosols for ground-based backscatter lidar measurements.  

PubMed

The influence of multiple scattering on the retrieval of extinction coefficients of tropospheric aerosols from ground-based backscatter lidar measurements is numerically modeled. In a first step, lidar returns are computed by means of a Monte Carlo code for model atmospheres with different aerosol types and different extinction coefficient profiles. In so doing, synthetic lidar signals with and without multiple scattering can be simulated. In a second step, both types of signal are inverted by the most frequently used analytical solution, which, however, is based on the single-scatter assumption. From a comparison of the results, the error of the retrieved aerosol-extinction profiles can be quantitatively determined. It was found that the contribution of multiply scattered photons to the lidar signals is typically below 10% and never exceeds 20%. The relative errors of the retrieved aerosol-extinction profile in the planetary boundary layer are still smaller; they were determined to be less than 3% for all aerosol types, even for extinction coefficients as large as 3.9 km(-1). Thus, for ground-based lidar measurements and typical meteorological conditions, errors caused by neglecting multiple scattering are by far less significant than other errors in lidar data evaluation. PMID:18324018

Ackermann, J; Völger, P; Wiegner, M

1999-08-20

243

Towards quantifying mesoscale flows in the troposphere using Raman lidar and Sondes  

NASA Technical Reports Server (NTRS)

Water vapor plays an important role in the energetics of the boundary layer processes which in turn play a key role in regulating regional and global climate. It plays a primary role in Earth's hydrological cycle, in radiation balance as a direct absorber of infrared radiation, and in atmospheric circulation as a latent heat energy source, as well as in determining cloud development and atmospheric stability. Water vapor concentration, expressed as a mass mixing ratio (g kg(exp -l)), is conserved in all meteorological processes except condensation and evaporation. This property makes it an ideal choice for studying many of the atmosphere's dynamic features. Raman scattering measurements from lidar also allow retrieval of water vapor mixing ratio profiles at high temporal and vertical resolution. Raman lidars sense water vapor to altitudes not achievable with towers and surface systems, sample the atmosphere at much higher temporal resolution than radiosondes or satellites, and do not require strong vertical gradients or turbulent fluctuations in temperature that is required by acoustic sounders and radars. Analysis of highly-resolved water vapor profiles are used here to characterize two important mesoscale flows: thunderstorm outflows and a cold front passage. The data were obtained at the Atmospheric Radiation Measurement Site (CART) by the groundbased Department of Energy/Sandia National Laboratories lidar (CART Raman lidar or CARL) and Goddard Space Flight Center Scanning Raman Lidar (SRL). A detailed discussion of the SRL and CARL performance during the IOPs is given by others in this meeting.

Demoz, B.; Starr, D.; Evans, K.; Whiteman, D.; Melfi, S.; Turner, D.; Ferrare, R.; Goldsmith, J.; Schwemmer, G.; Cadirola, M.

1998-01-01

244

Retrieval of type-dependent integral aerosol properties from  

E-print Network

) b( 532 nm) b(1064 nm) Raman lidar equation: ( ) ( ) ( ) ( ) ( ) 0 2 0 exp d z Ra 0 Ra E O z P z = z Receiver Telescope `Field Of View' Aerosol layer #12;( 355 nm + 387 nm) a ( 532 nm + 607 nm) b( 355 nmRetrieval of type-dependent integral aerosol properties from Raman lidar data using Principle

Graaf, Martin de

245

A theoretical/experimental program to develop active optical pollution sensors: Quantitative remote Raman lidar measurements of pollutants from stationary sources  

NASA Technical Reports Server (NTRS)

Typical pollutant gas concentrations at the stack exits of stationary sources can be estimated to be about 500 ppm under the present emission standards. Raman lidar has a number of advantages which makes it a valuable tool for remote measurements of these stack emissions. Tests of the Langley Research Center Raman lidar at a calibration tank indicate that night measurements of SO2 concentrations and stack opacity are possible. Accuracies of 10 percent are shown to be achievable from a distance of 300 m within 30 min integration times for 500 ppm SO2 at the stack exits. All possible interferences were examined quantitatively (except for the fluorescence of aerosols in actual stack emissions) and found to have negligible effect on the measurements. An early test at an instrumented stack is strongly recommended.

Poultney, S. K.; Brumfield, M. L.; Siviter, J. S.

1975-01-01

246

Forest Fire Smoke Layers Observed in the Free Troposphere over Portugal with a Multiwavelength Raman Lidar: Optical and Microphysical Properties  

PubMed Central

Vertically resolved optical and microphysical properties of biomass burning aerosols, measured in 2011 with a multiwavelength Raman lidar, are presented. The transportation time, within 1-2 days (or less), pointed towards the presence of relatively fresh smoke particles over the site. Some strong layers aloft were observed with particle backscatter and extinction coefficients (at 355?nm) greater than 5?Mm?1?sr?1 and close to 300?Mm?1, respectively. The particle intensive optical properties showed features different from the ones reported for aged smoke, but rather consistent with fresh smoke. The Ångström exponents were generally high, mainly above 1.4, indicating a dominating accumulation mode. Weak depolarization values, as shown by the small depolarization ratio of 5% or lower, were measured. Furthermore, the lidar ratio presented no clear wavelength dependency. The inversion of the lidar signals provided a set of microphysical properties including particle effective radius below 0.2??m, which is less than values previously observed for aged smoke particles. Real and imaginary parts of refractive index of about 1.5-1.6 and 0.02i, respectively, were derived. The single scattering albedo was in the range between 0.85 and 0.93; these last two quantities indicate the nonnegligible absorbing characteristics of the observed particles. PMID:25114964

Nepomuceno Pereira, Sérgio; Guerrero-Rascado, Juan Luis; Silva, Ana Maria; Wagner, Frank

2014-01-01

247

Comparison of Aerosol Classification from Airborne High Spectral Resolution Lidar and the CALIPSO Vertical Feature Mask  

NASA Astrophysics Data System (ADS)

The NASA Langley Research Center (LaRC) airborne High Spectral Resolution Lidar (HSRL-1) on the NASA B200 aircraft has acquired large datasets of aerosol extinction (532nm), backscatter (532 and 1064nm), and depolarization (532 and 1064nm) profiles during 349 science flights in 19 field missions across North America since 2006. The extinction-to-backscatter ratio ("lidar ratio"), aerosol depolarization ratios, and backscatter color ratio measurements from HSRL-1 are scale-invariant parameters that depend on aerosol type but not concentration. These four aerosol intensive parameters are combined to qualitatively classify HSRL aerosol measurements into eight separate composition types. The classification methodology uses models formed from "training cases" with known aerosol type. The remaining measurements are then compared with these models using the Mahalanobis distance. Aerosol products from the CALIPSO satellite include aerosol type information as well, which is used as input to the CALIPSO aerosol retrieval. CALIPSO aerosol types are inferred using a mix of aerosol loading-dependent parameters, estimated aerosol depolarization, and location, altitude, and surface type information. The HSRL instrument flies beneath the CALIPSO satellite orbit track, presenting the opportunity for comparisons between the HSRL aerosol typing and the CALIPSO Vertical Feature Mask Aerosol Subtype product, giving insight into the performance of the CALIPSO aerosol type algorithm. We find that the aerosol classification from the two instruments frequently agree for marine aerosols and pure dust, and somewhat less frequently for pollution and smoke. In addition, the comparison suggests that the CALIPSO polluted dust type is overly inclusive, encompassing cases of dust combined with marine aerosol as well as cases without much evidence of dust. Qualitative classification of aerosol type combined with quantitative profile measurements of aerosol backscatter and extinction has many useful applications. The HSRL products are used to apportion AOT by type and vertical location in the column, and to characterize the frequency of cases where multiple types are present in the column. Resolving scenes with multiple types in the column is not possible with passive imaging radiometer and polarimeter measurements. The HSRL aerosol type also has higher resolution than the CALIPSO layer-wise product and provides insight into the performance of CALIPSO layer separation. Information about the vertical distribution of aerosol types is useful for estimating radiative forcing, understanding aerosol lifetime and transport, and assessing the predictions of transport models. CALIPSO has been a pathfinder, providing the first long-term global data set of aerosol vertical distribution. Based on our results, a future satellite lidar similar to CALIPSO, but with the addition of polarization sensitivity at 1064 nm and the HSRL technique at 532 nm, could provide a significant advance in characterizing the vertical distribution of aerosol.

Burton, S. P.; Ferrare, R. A.; Omar, A. H.; Hostetler, C. A.; Hair, J. W.; Rogers, R.; Obland, M. D.; Butler, C. F.; Cook, A. L.; Harper, D. B.

2012-12-01

248

Aerosol Profile Measurements from the NASA Langley Research Center Airborne High Spectral Resolution Lidar  

NASA Technical Reports Server (NTRS)

Since achieving first light in December of 2005, the NASA Langley Research Center (LaRC) Airborne High Spectral Resolution Lidar (HSRL) has been involved in seven field campaigns, accumulating over 450 hours of science data across more than 120 flights. Data from the instrument have been used in a variety of studies including validation and comparison with the Cloud- Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite mission, aerosol property retrievals combining passive and active instrument measurements, aerosol type identification, aerosol-cloud interactions, and cloud top and planetary boundary layer (PBL) height determinations. Measurements and lessons learned from the HSRL are leading towards next-generation HSRL instrument designs that will enable even further studies of aerosol intensive and extensive parameters and the effects of aerosols on the climate system. This paper will highlight several of the areas in which the NASA Airborne HSRL is making contributions to climate science.

Obland, Michael D.; Hostetler, Chris A.; Ferrare, Richard A.; Hair, John W.; Roers, Raymond R.; Burton, Sharon P.; Cook, Anthony L.; Harper, David B.

2008-01-01

249

Variation in daytime troposphereic aerosol via LIDAR and sunphotometer measurements in Penang, Malaysia  

NASA Astrophysics Data System (ADS)

Aerosol is one of the important factors that will influence the air quality, visibility, clouds, and precipitation processes in the troposphere. In this work, we investigated the variation of aerosol during daytime in Penang, Malaysia in certain days within July 2013. Vertical LIDAR scattering ratio and backscattering profiles, and columnar optical properties (optical depth, Angström exponent) of aerosols were measured using Raymetrics LIDAR and a CIMEL sunphotometer respectively. Specifically, we have determined the daytime variation of intensity and distribution level of aerosol, as well as the planetary boundary layer (PBL) and cloud classification. Subsequently, the data of columnar aerosol optical depth (AOD) and size distribution in the atmospheric were used to quantify the properties of aerosol variation during daytime over Penang, Malaysia.

Tan, F. Y.; Hee, W. S.; Hwee, S. L.; Abdullah, K.; Tiem, L. Y.; Matjafri, M. Z.; Lolli, S.; Holben, B.; Welton, E. J.

2014-03-01

250

Cloud liquid water, mean droplet radius, and number density measurements using a Raman lidar  

SciTech Connect

A new technique for measuring cloud liquid water, mean droplet radius, and droplet number density is outlined. The technique is based on simultaneously measuring Raman and Mie scattering from cloud liquid droplets using a Raman lidar. Laboratory experiments on liquid microspheres have shown that the intensity of Raman scattering is proportional to the amount of liquid present in the spheres. This fact is used as a constraint on calculated Mie intensity assuming a gamma function particle size distribution. The resulting retrieval technique is shown to give stable solutions with no false minima. It is tested using Raman lidar data where the liquid water signal was seen as an enhancement to the water vapor signal. The general relationship of retrieved average radius and number density is consistent with traditional cloud physics models. Sensitivity to the assumed maximum cloud liquid water amount and the water vapor mixing ratio calibration are tested. Improvements to the technique are suggested. (c) 1999 American Geophysical Union.

Whiteman, David N. [Laser Remote Sensing Branch, NASA Goddard Space Flight Center, Greenbelt, Maryland (United States)] [Laser Remote Sensing Branch, NASA Goddard Space Flight Center, Greenbelt, Maryland (United States); Melfi, S. Harvey [Department of Physics, University of Maryland, Baltimore County, Baltimore (United States)] [Department of Physics, University of Maryland, Baltimore County, Baltimore (United States)

1999-12-27

251

Measurement of multiple scattering effects with a polarization Raman elastic-backscatter lidar  

NASA Technical Reports Server (NTRS)

A new method for the determination of multiple scattering effects is described. A polarization Raman elastic backscatter lidar is used, which allows the measurement of the depolarization of both the elastically backscattered light and the light Raman scattered from nitrogen molecules. With this technique the depolarization effect due to multiple scattering can be separated from single scattering polarization. Presented here are a short discussion of the idea and a measurement example.

Wandinger, Ulla; Ansmann, Albert; Weitkamp, Claus; Michaelis, Walfried

1992-01-01

252

Airborne High Spectral Resolution Lidar Aerosol Measurements and Comparisons with Transport Models  

NASA Astrophysics Data System (ADS)

The NASA Langley Research Center (LaRC) airborne High Spectral Resolution Lidar (HSRL) measured aerosol distributions and optical properties during several field experiments in 2006 and 2007. These experiments include: 1) the joint Megacity Initiative: Local and Global Research Observations (MILAGRO) /Megacity Aerosol Experiment in Mexico City (MAX-MEX)/Intercontinental Chemical Transport Experiment-B (INTEX B) experiment, 2) the Texas Air Quality Study (TEXAQS)/Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS), 3) the San Joaquin Valley experiment, 4) the Cumulus Humilis Aerosol Processing Study (CHAPS), and 5) the Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) and Twilight Zone (CATZ) experiment. The LaRC airborne HSRL uses the spectral distribution of the lidar return signal to measure aerosol extinction and backscatter profiles independently at 532 nm and uses standard backscatter lidar techniques to derive aerosol backscatter and extinction profiles at 1064 nm. Aerosol depolarization profiles are measured at both wavelengths. The HSRL collected over 350 hours of aerosol measurements during these experiments. Airborne HSRL data acquired during these missions were used to infer aerosol types, characterize the spatial and vertical distributions of these aerosol types, and to apportion aerosol extinction and optical thickness (AOT) among the various aerosol types. Initial results show that a mixture of nonspherical (i.e. dust) and urban aerosols accounted for over half of the AOT measured by the HSRL during the MILAGRO flights over Mexico; in contrast, during the GoMACCS and CALIPSO validation flights over Houston and the eastern U.S., respectively, urban/biomass aerosols accounted for 80-90% of the AOT. Preliminary investigations using airborne in situ measurements of aerosol microphysical properties generally support the variability of aerosol types inferred from the HSRL data. The distributions of aerosol extinction, optical thickness, and aerosol types in relation to the Planetary Boundary Layer (PBL) and free troposphere will also be discussed. The HSRL measurements were also used to help evaluate the ability of transport models to reproduce aerosol extinction and optical thickness profiles and represent horizontal and vertical variations in aerosol types. This presentation will describe how the HSRL measurements were used to assess these models as well as how the model simulations were used to help interpret the HSRL measurements. Simulations from several models will be discussed.

Ferrare, R.; Hostetler, C.; Hair, J.; Cook, A.; Harper, D.; Burton, S.; Obland, M.; Rogers, R.; Kleinman, L.; Clarke, A.; Fast, J.; Chin, M.; Carmichael, G.; Tang, Y.; Emmons, L.; Pierce, B.; Kittaka, C.

2007-12-01

253

Aerosol profiles determined with lidar and sun-photometer over the Pearl River Delta, China.  

NASA Astrophysics Data System (ADS)

The priority program "Megacities-Megachallenge - Informal Dynamics of Global Change" is a large interdisciplinary project funded by the German Research Foundation (DFG). One of the subproject deals with mega-urbanisation in the Pearl River Delta, South-China, with special respect to particulate air pollution and public health. In the frame of this subproject the vertical distribution of aerosol optical properties are investigated by measurements with the multiwavelength-Raman-polarization lidar PollyXT of the IfT. The instrument can measure the particle backscatter coefficient at 355 nm, 532 nm, and 1064 nm, the particle extinction coefficients at 355 nm and 532 nm, and the particle linear depolarization ratio at 532 nm. These measurements are supported by a dual-polar sun photometer that provides height integrated data as the aerosol optical depth and the degree of linear depolarization. These instruments are placed at the East campus of the Sun Yat-sen University in Guangzhou, China. Guangzhou and the Pearl River Delta is a developing area with currently around 11 Million inhabitants. The measurements started in November 2011 and are supposed to continue for at least half a year covering the late autumn and winter season and parts of the spring season. Extensions of the measurements towards a whole seasonal cycle are planned. Thus, different meteorological conditions will lead to particle transport from several source regions. Different aerosol types are expected to be observed during the measurement period: urban particles from local and regional sources as well as dust from the deserts in Central Asia. The observed particles can be distinguished by analyzing their optical properties at several wavelengths. In particular, the depolarization measurements from both instruments promise a better determination of the particle shape.

Heese, B.; Althausen, D.; Bauditz, M.; Deng, R.; Bao, R.; Li, Z.

2012-04-01

254

Assessing the Temperature Dependence of Narrow-Band Raman Water Vapor Lidar Measurements: A Practical Approach  

NASA Technical Reports Server (NTRS)

Narrow-band detection of the Raman water vapor spectrum using the lidar technique introduces a concern over the temperature dependence of the Raman spectrum. Various groups have addressed this issue either by trying to minimize the temperature dependence to the point where it can be ignored or by correcting for whatever degree of temperature dependence exists. The traditional technique for performing either of these entails accurately measuring both the laser output wavelength and the water vapor spectral passband with combined uncertainty of approximately 0.01 nm. However, uncertainty in interference filter center wavelengths and laser output wavelengths can be this large or larger. These combined uncertainties translate into uncertainties in the magnitude of the temperature dependence of the Raman lidar water vapor measurement of 3% or more. We present here an alternate approach for accurately determining the temperature dependence of the Raman lidar water vapor measurement. This alternate approach entails acquiring sequential atmospheric profiles using the lidar while scanning the channel passband across portions of the Raman water vapor Q-branch. This scanning is accomplished either by tilt-tuning an interference filter or by scanning the output of a spectrometer. Through this process a peak in the transmitted intensity can be discerned in a manner that defines the spectral location of the channel passband with respect to the laser output wavelength to much higher accuracy than that achieved with standard laboratory techniques. Given the peak of the water vapor signal intensity curve, determined using the techniques described here, and an approximate knowledge of atmospheric temperature, the temperature dependence of a given Raman lidar profile can be determined with accuracy of 0.5% or better. A Mathematica notebook that demonstrates the calculations used here is available from the lead author.

Whiteman, David N.; Venable, Demetrius D.; Walker, Monique; Cardirola, Martin; Sakai, Tetsu; Veselovskii, Igor

2013-01-01

255

Assessing the temperature dependence of narrow-band Raman water vapor lidar measurements: a practical approach.  

PubMed

Narrow-band detection of the Raman water vapor spectrum using the lidar technique introduces a concern over the temperature dependence of the Raman spectrum. Various groups have addressed this issue either by trying to minimize the temperature dependence to the point where it can be ignored or by correcting for whatever degree of temperature dependence exists. The traditional technique for performing either of these entails accurately measuring both the laser output wavelength and the water vapor spectral passband with combined uncertainty of approximately 0.01 nm. However, uncertainty in interference filter center wavelengths and laser output wavelengths can be this large or larger. These combined uncertainties translate into uncertainties in the magnitude of the temperature dependence of the Raman lidar water vapor measurement of 3% or more. We present here an alternate approach for accurately determining the temperature dependence of the Raman lidar water vapor measurement. This alternate approach entails acquiring sequential atmospheric profiles using the lidar while scanning the channel passband across portions of the Raman water vapor Q-branch. This scanning is accomplished either by tilt-tuning an interference filter or by scanning the output of a spectrometer. Through this process a peak in the transmitted intensity can be discerned in a manner that defines the spectral location of the channel passband with respect to the laser output wavelength to much higher accuracy than that achieved with standard laboratory techniques. Given the peak of the water vapor signal intensity curve, determined using the techniques described here, and an approximate knowledge of atmospheric temperature, the temperature dependence of a given Raman lidar profile can be determined with accuracy of 0.5% or better. A Mathematica notebook that demonstrates the calculations used here is available from the lead author. PMID:23913054

Whiteman, David N; Venable, Demetrius D; Walker, Monique; Cadirola, Martin; Sakai, Tetsu; Veselovskii, Igor

2013-08-01

256

Raman Lidar Measurements during the International HZO Project. 1; Instrumentation and Analysis Techniques, Popular Summary  

NASA Technical Reports Server (NTRS)

The amount of water vapor in the atmosphere helps to determine the likelihood that severe storms may develop. The concentration of water vapor, though, is highly variable in space and time. And yet small changes in water vapor concentration over a short period of time or over a short spatial distance can determine whether a storm may or may not develop. Therefore, in order to improve the ability to forecast severe weather such as thunderstorms it is important to measure water vapor in the atmosphere with high spatial and temporal resolution. One of the most attractive research tools for measuring water vapor in the atmosphere with high spatial and temporal resolution is a Raman lidar. A Raman lidar consists of a laser transmitter, a telescope receiver and optics and electronics for processing opticand electronic signals. A laser pulse is emitted into the atmosphere and it interacts with molecules in the atmosphere causing them to become excited and to emit, through the Raman process, photons of different wavelength than emitted by the laser. The molecule that emitted these emitted. This is the way that a Raman lidar identifies water vapor molecules in the atmosphere. can be identified based on the wavelength of the photons One of the great challenges in Raman lidar measurements has been to make useful daytime measurements of the water vapor profile under bright daytime conditions. In this first of two papers, we describe the instrumentation and analysis of the first documented Raman lidar that is able to measure water vapor in the daytime with sufficient quality to permit the study of developing storm systems.

Whiteman, D. N.; Demoz, B.; DiGirolamo, P.; Comer, J.; Veselovskii, I.; Evans, K.; Wang, Z.; Cadirola, M.; Rush, K.; Schwemmer, G.; Gentry, B.

2005-01-01

257

Accuracy of Raman lidar water vapor calibration and its applicability to long-term measurements.  

PubMed

A Raman lidar calibration method adapted to the long-term monitoring of atmospheric water vapor is proposed. The accuracy of Raman lidar water vapor profiles is limited by that of the calibration process. Typically, calibration using in situ balloon-borne measurements suffers from the nonsimultaneity and noncollocation of the lidar and in situ measurements, while calibration from passive remote sensors suffers from the lower accuracy of the retrievals and incomplete sampling of the water vapor column observed by lidar. We propose a new hybrid calibration method using a combination of absolute calibration from radiosonde campaigns and routine-basis (off-campaign) partial calibration using a standard lamp. This new method takes advantage of the stability of traceable calibrated lamps as reliable sources of known spectral irradiance combined with the best available in situ measurements. An integrated approach is formulated, which can be used for the future long-term monitoring of water vapor by Raman lidars within the international Network for the Detection of Atmospheric Composition Change and other networks. PMID:18936807

Leblanc, Thierry; McDermid, I Stuart

2008-10-20

258

UV Raman lidar measurements of relative humidity for the characterization of cirrus cloud microphysical properties  

NASA Astrophysics Data System (ADS)

Raman lidar measurements performed in Potenza by the Raman lidar system BASIL in the presence of cirrus clouds are discussed. Measurements were performed on 6 September 2004 in the frame of the Italian phase of the EAQUATE Experiment. The major feature of BASIL is represented by its capability to perform high-resolution and accurate measurements of atmospheric temperature and water vapour, and consequently relative humidity, both in daytime and night-time, based on the application of the rotational and vibrational Raman lidar techniques in the UV. BASIL is also capable to provide measurements of the particle backscatter and extinction coefficient, and consequently lidar ratio (at the time of these measurements, only at one wavelength), which are fundamental to infer geometrical and microphysical properties of clouds. A case study is discussed in order to assess the capability of Raman lidars to measure humidity in presence of cirrus clouds, both below and inside the cloud. While air inside the cloud layers is observed to be always under-saturated with respect to water, both ice super-saturation and under-saturation conditions are found inside these clouds. Upper tropospheric moistening is observed below the lower cloud layer. The synergic use of the data derived from the ground based Raman Lidar and of spectral radiances measured by the NAST-I Airborne Spectrometer allows the determination of the temporal evolution of the atmospheric cooling/heating rates due to the presence of the cirrus cloud. Lidar measurements beneath the cirrus cloud layer have been interpreted using a 1-D cirrus cloud model with explicit microphysics. The 1-D simulations indicate that sedimentation-moistening has contributed significantly to the moist anomaly, but other mechanisms are also contributing. This result supports the hypothesis that the observed mid-tropospheric humidification is a real feature which is strongly influenced by the sublimation of precipitating ice crystals. Results illustrated in this study demonstrate that Raman lidars, like the one used in this study, can resolve the spatial and temporal scales required for the study of cirrus cloud microphysical processes and appear sensitive enough to reveal and quantify upper tropospheric humidification associated with cirrus cloud sublimation.

di Girolamo, P.; Summa, D.; Lin, R.-F.; Maestri, T.; Rizzi, R.; Masiello, G.

2009-11-01

259

UV Raman lidar measurements of relative humidity for the characterization of cirrus cloud microphysical properties  

NASA Astrophysics Data System (ADS)

Raman lidar measurements performed in Potenza by the Raman lidar system BASIL in the presence of cirrus clouds are discussed. Measurements were performed on 6 September 2004 in the frame of Italian phase of the EAQUATE Experiment. The major feature of BASIL is represented by its capability to perform high-resolution and accurate measurements of atmospheric temperature and water vapour, and consequently relative humidity, both in daytime and night-time, based on the application of the rotational and vibrational Raman lidar techniques in the UV. BASIL is also capable to provide measurements of the particle backscatter and extinction coefficient, and consequently lidar ratio (at the time of these measurements only at one wavelength), which are fundamental to infer geometrical and microphysical properties of clouds. A case study is discussed in order to assess the capability of Raman lidars to measure humidity in presence of cirrus clouds, both below and inside the cloud. While air inside the cloud layers is observed to be always under-saturated with respect to water, both ice super-saturation and under-saturation conditions are found inside these clouds. Upper tropospheric moistening is observed below the lower cloud layer. The synergic use of the data derived from the ground based Raman Lidar and of spectral radiances measured by the NAST-I Airborne Spectrometer allows to determine the temporal evolution of the atmospheric cooling/heating rates due to the presence of the cirrus cloud anvil. Lidar measurements beneath the cirrus cloud layer have been interpreted using a 1-D cirrus cloud model with explicit microphysics. The 1-D simulations indicates that sedimentation-moistening has contributed significantly to the moist anomaly, but other mechanisms are also contributing. This result supports the hypothesis that the observed mid-tropospheric humidification is a real feature which is strongly influenced by the sublimation of precipitating ice crystals. Results illustrated in this study demonstrate that Raman lidars, like the one used in this study, can resolve the spatial and temporal scales required for the study of cirrus cloud microphysical processes and appears sensitive enough to reveal and quantify upper tropospheric humidification associated with cirrus cloud sublimation.

di Girolamo, P.; Summa, D.; Lin, R.-F.; Maestri, T.; Rizzi, R.; Masiello, G.

2009-07-01

260

Raman Lidar Measurements during the International H2O Project. Part I: Instrumentation and Analysis Techniques  

Microsoft Academic Search

The NASA Goddard Space Flight Center (GSFC) Scanning Raman Lidar (SRL) participated in the International H2O Project (IHOP), which occurred in May and June 2002 in the midwestern part of the United States. The SRL received extensive optical modifications prior to and during the IHOP campaign that added new measurement capabilities and enabled unprecedented daytime water vapor measurements by a

D. N. Whiteman; B. Demoz; P. di Girolamo; J. Comer; I. Veselovskii; K. Evans; Z. Wang; M. Cadirola; K. Rush; G. Schwemmer; B. Gentry; S. H. Melfi; B. Mielke; D. Venable; T. van Hove

2006-01-01

261

Implementation and validation of a Raman lidar measurement of middle and upper tropospheric water vapor.  

PubMed

Implementation of a Raman lidar measurement of middle and upper tropospheric water vapor is described for a system that uses a 532-nm exciting wavelength, fiber-optic signal transfer, and Q-branch selection. Particular attention is given to the minimization of systematic biases introduced by fluorescent reemission of energy associated with elastic backscatter returns. We compare lidar profiles with collocated radiosonde measurements by using the Vaisala H-Humicap capacitive captor. The variations in the water-vapor concentrations on vertical scales of the order of 1 km in the upper troposphere observed by the two instruments present significant differences. Independent characterization of random and systematic lidar measurement errors and radiosonde sensor response characteristics lead to the conclusion that these differences are due to radiosonde sensor response. These intercomparisons indicate that the lidar measurement can provide important information on water-vapor distributions in the radiatively important 8-11-km region. PMID:18324099

Sherlock, V; Garnier, A; Hauchecorne, A; Keckhut, P

1999-09-20

262

Trends and variability of aerosol vertical distribution and properties using micro-LIDAR and sun-photometer measurements  

NASA Astrophysics Data System (ADS)

The Sahara desert is the most important global source of mineral dust. Vertical distribution of dust particles and their variability can be studied/monitored from ground-based remote sensing system such as LIDAR. However, regular LIDAR measurements reported in literature are mostly focusing on aged aerosol having been transported over long or medium distances and therefore more addressing to mixing of dust with other aerosols types. Since 2006, routine automatic LIDAR measurements are performed 24 hours per day, 7 days per week, at Dakar, Senegal, simultaneously to AERONET sun-photometer. Joint LIDAR-sun-photometer inversion has been applied to 6 years of measurements to derive aerosol extinction profile, ?ext(z), as well as an effective aerosol extinction-to-backscatter ratio (LIDAR ratio, Sa). Assessment of data quality, monitoring of instrument performances, improvements and validation of automatic inversion method have been performed. A first analysis of time series of these aerosols parameters is presented.

Mortier, Augustin; Goloub, Philippe; Podvin, Thierry; Tanré, Didier; Deroo, Christine; Chiapello, Isabelle; Diallo, Aboubakry; NDiaye, Thierno

2013-05-01

263

Lidar determination of winds by aerosol inhomogeneities: motion velocity in the planetary boundary layer.  

PubMed

The paper presents results from lidar measurements of wind velocity in the planetary boundary layer using correlation data processing. Two lidars are used in our experiments: a ruby lidar operating along slant paths and a YAG:Nd lidar operating for near vertical sounding used by us for the first time. On the basis of our experience the optimal sizes of aerosol inhomogeneities (30-300 m), the duration of the experiments (2-10 min), and the repetition rate of laser shots (fractions of hertz to several hertz) are determined. The results are compared to independent data obtained from anemometer measurements, theodolite- and radar-tracked pilot balloons. The range of differences is ~1-2 m/s in speed and 10-15 degrees in direction. Preliminary results from the use of lidar data to remotely sound the wind speed for various atmospheric stratifications and synoptic situations are described as well. PMID:20531786

Kolev, I; Parvanov, O; Kaprielov, B

1988-06-15

264

A considerable effect of stratospheric aerosol on lidar-detected ozone profile and a three-wavelength inversion technique for both ozone and aerosol  

NASA Technical Reports Server (NTRS)

As far as the Differential Absorption Lidar (DIAL) technique is concerned, it is important that the off-line wavelength is close to the on-line wavelength in order to avoid a messy computation of the atmospheric aerosol scattering. However, the two wavelengths of ozone-DIAL are usually considerably different. Usually, an excimer laser of 308nm (on-line) and Raman shifting of 353nm or the third harmonic of a Nd-YAG laser with 355nm (off-line) are selected for measurements of the stratospheric ozone, and there is a difference of 45nm or 47nm between them. Because of the difference there is a difference in the atmospheric scatterings of the two wavelengths. This can cause some error in the retrieved ozone profile if the aerosol scattering is neglected. This paper is devoted to a study of the effect of the stratospheric aerosol on the ozone solution, and a three-wavelength detection technique is proposed for obtaining the more exact ozone profile and the aerosol profile in the stratosphere.

Qiu, Jinhuan

1992-01-01

265

NDSC and JPL stratospheric lidars  

NASA Technical Reports Server (NTRS)

The Network for the Detection of Stratospheric Change is an international cooperation providing a set of high-quality, remote-sensing instruments at observing stations around the globe. A brief description of the NDSC and its goals is presented. Lidar has been selected as the NDSC instrument for measurements of stratospheric profiles of ozone, temperature, and aerosol. The Jet Propulsion Laboratory has developed and implemented two stratospheric lidar systems for NDSC. These are located at Table Mountain, California, and at Mauna Loa, Hawaii. These systems, which utilize differential absorption lidar, Rayleigh lidar, raman lidar, and backscatter lidar, to measure ozone, temperature, and aerosol profiles in the stratosphere are briefly described. Examples of results obtained for both long-term and individual profiles are presented.

McDermid, I. Stuart

1995-01-01

266

Raman lidar profiling of atmospheric water vapor: Simultaneous measurements with two collocated systems  

SciTech Connect

Raman lidar is a leading candidate for providing the detailed space - and time-resolved measurements of water vapor needed by a variety of atmospheric studies. Simultaneous measurements of atmospheric water vapor are described using two collocated Raman lidar systems. These lidar systems, developed at the NASA/Goddard Space Flight Center and Sandia National Laboratories, acquired approximately 12 hours of simultaneous water vapor data during three nights in November 1992 while the systems were collocated at the Goddard Space Flight Center. Although these lidar systems differ substantially in their design, measured water vapor profiles agreed within 0.15 g kg[sup [minus]1] between altitudes of 1 and 5 km. Comparisons with coincident radiosondes showed all instruments agreed within 0.2 g kg[sup [minus]1] in this same altitude range. Both lidars also clearly showed the advection of water vapor in the middle troposphere and the pronounced increase in water vapor in the nocturnal boundary layer that occurred during one night. 17 refs., 5 figs., 1 tab.

Goldsmith, J.E.M.; Bisson, S.E. (Sandia National Labs., Livermore, CA (United States)); Ferrare, R.A.; Evans, K.D.; Whiteman, D.N.; Melfi, S.H. (NASA/Goddard Space Flight Center, Greenbelt, MD (United States))

1994-06-01

267

Aerosol statistics and pollution forecast based on lidar measurements in Bucharest, Romania  

NASA Astrophysics Data System (ADS)

Recently, the Romanian lidar group implemented a routine monitoring scheme over Bucharest for the observation of aerosol optical properties in the troposphere. The measurements are provided twice per week at specific times (at 9:00 UT and 13:00 UT) for at least 2 hours per observation time. The purpose is to establish a quantitative comprehensive database of both horizontal and vertical distribution of aerosol over Bucharest and surrounding industrial areas, using a Nd:YAG laser based lidar system, operating at 1064 and 532 nm wavelengths, which provides in real time aerosol profiles up to 10 Km high, with a 6 m spatial resolution. In this paper, a statistical analysis obtained from several months of regular measurements is presented, ordinary and special events being outlined. For further analysis, the integration in atmospheric transport models of aerosol's spatial and temporal distribution derived from lidar measurements and complementary meteorological data was pursued. The novelty of this technique consists in using the OpenGIS technology (Open Geographical Information Systems), which permits the visualization and complex analysis of pollution in natural environment: numerical model of terrain, vegetation, meteorological and atmospheric characteristics. Lidar data are integrated as location type, direction and sense, as from the view-point of their temporal distribution. The position information is processed through an azimuthal projection GIS data server, considering the radial distribution of data centered to the coordinate point of installation location. Several codes were modified in order to obtain forecast aerosols trajectories and to evidence the impact on nearby regions.

Nicolae, Doina; Talianu, Camelia; Ionescu, Constantin; Ciobanu, Mircea; Ciuciu, Jeni

2005-10-01

268

Orbiting lidar simulations. I - Aerosol and cloud measurements by an independent-wavelength technique  

NASA Technical Reports Server (NTRS)

Aerosol and cloud measurements have been simulated for a Space Shuttle lidar. Expected errors - in signal, transmission, density, and calibration - are calculated algebraically and checked by simulating measurements and retrievals using random-number generators. By day, vertical structure is retrieved for tenuous clouds, Saharan aerosols, and boundary layer aerosols (at 0.53 and 1.06 micron) as well as strong volcanic stratospheric aerosols (at 0.53 micron). By night, all these constituents are retrieved plus upper tropospheric and stratospheric aerosols (at 1.06 micron), mesospheric aerosols (at 0.53 micron), and noctilucent clouds (at 1.06 and 0.53 micron). The vertical resolution was 0.1-0.5 km in the troposphere, 0.5-2.0 km above, except 0.25-1.0 km in the mesospheric cloud and aerosol layers; horizontal resolution was 100-2000 km.

Russell, P. B.; Morley, B. M.; Livingston, J. M.; Grams, G. W.; Patterson, E. M.

1982-01-01

269

IIP Update: A Packaged Coherent Doppler Wind Lidar Transceiver. Doppler Aerosol WiNd Lidar (DAWN)  

NASA Technical Reports Server (NTRS)

The state-of-the-art 2-micron coherent Doppler wind lidar breadboard at NASA/LaRC will be engineered and compactly packaged consistent with future aircraft flights. The packaged transceiver will be integrated into a coherent Doppler wind lidar system test bed at LaRC. Atmospheric wind measurements will be made to validate the packaged technology. This will greatly advance the coherent part of the hybrid Doppler wind lidar solution to the need for global tropospheric wind measurements.

Kavaya, Michael J.; Koch, Grady J.; Yu, Jirong; Trieu, Bo C.; Amzajerdian, Farzin; Singh, Upendra N.; Petros, Mulugeta

2006-01-01

270

Raman Lidar Water Vapor Measurements at the DOE SGP CART Site  

NASA Technical Reports Server (NTRS)

The NASA/GSFC Scanning Raman Lidar (SRL) was deployed to the Department of Energy's (DOE) Cloud and Radiation Testbed site in northern Oklahoma September - December, 2000 for two DOE sponsored field campaigns: 1) the Water Vapor Intensive Operations Experiment 2000 and 2) the Atmospheric Radiations Measurement First International Satellite Cloud Climatology Experiment Experiment (AFWEX). WvIOP2000 focussed on water vapor measurements in the lower troposphere while AFWEX focussed on upper tropospheric water vapor. For the first time ever, four water vapor lidars were operated simultaneously: one airborne and three ground-based systems. Intercomparisons of these measurements and others will be presented at the meeting.

Whiteman, David N.; Smith, David E. (Technical Monitor)

2001-01-01

271

Optical Properties of Aerosols - Clouds - Contrails and Water Vapor Mixing Ratio By Lidar From The Jungfraujoch Research Station (3580 M Asl)  

NASA Astrophysics Data System (ADS)

The direct (as suspended particles) and indirect (by induced clouds/contrails) effects of the aerosols on the Sun - Earth system radiation budget is still remaining an important climate topic [IPCC, Report 2001]. The indirect effect is very complex (difficult to be quantified) is influencing also the hydrological cycle (evaporation/precipitation rates) [Ramamathan et al.,Science, Dec 2001]. Thus more space-time resolved measure- ments in order to retrieve optical, chemical and microphysical properties of aerosols are still needed. In this context the implementation of a new multi-wavelength (Ra- man) lidar system at the Jungfraujoch station (3580m ASL, January 2000) allows the retrieval of aerosols backscatter and extinction coefficients at 355nm, 532nm and 1064nm with a vertical resolution around 100 to 200m in the upper troposphere and lower stratosphere (UTLS). Depolarization studies (e.g. clouds) are also performed detecting parallel and cross polarization signals at 532nm. The water vapor mixing ratio retrieval is based on the spontaneous Raman shifts (387nm for N2 and 408nm for H2O) of the 355nm. This work will focus mainly on the results obtained using a 20cm diameter Newtonian configuration telescope. The Jungfraujoch lidar is part of the EARLINET European lidar network for aerosols measurements and is operating since May 2000. Furthermore these range resolved lidar measurements are bringing new insights in some of the column density measurements performed by FTIR or Sun photometry, or the passive microwave measurements, and are also linked to the direct "in situ" aerosols measurements.

Larchevêque, G.; Balin, I.; Quaglia, P.; Nessler, R.; Simeonov, V.; van den Bergh, H.; Calpini, B.

272

Study and mitigation of calibration error sources in a water vapour Raman lidar  

NASA Astrophysics Data System (ADS)

The monitoring of water vapour throughout the atmosphere is important for many scientific applications (weather forecasting, climate research, calibration of GNSS altimetry measurements). Measuring water vapour remains a technical challenge because of its high variability in space and time. The major issues are achieving long-term stability (e.g., for climate trends monitoring) and high accuracy (e.g. for calibration/validation applications). LAREG and LOEMI at Institut National de l'Information Géographique et Forestière (IGN) have developed a mobile scanning water vapour Raman lidar in collaboration with LATMOS at CNRS. This system aims at providing high accuracy water vapour measurements throughout the troposphere for calibrating GNSS wet delay signals and thus improving vertical positioning. Current developments aim at improving the calibration method and long term stability of the system to allow the Raman lidar to be used as a reference instrument. The IGN-LATMOS lidar was deployed in the DEMEVAP (Development of Methodologies for Water Vapour Measurement) campaign that took place in 2011 at the Observatoire de Haute Provence. The goals of DEMEVAP were to inter-compare different water vapour sounding techniques (lidars, operational and research radiosondes, GPS,…) and to study various calibration methods for the Raman lidar. A significant decrease of the signals and of the calibration constants of the IGN-LATMOS Raman lidar has been noticed all along the campaign. This led us to study the likely sources of uncertainty and drifts in each part of the instrument: emission, reception and detection. We inventoried several error sources as well as instability sources. The impact of the temperature dependence of the Raman lines on the filter transmission or the fluorescence in the fibre, are examples of the error sources. We investigated each error source and each instability source (uncontrolled laser beam jitter, temporal fluctuations of the photomultiplier gain and spatial inhomogeneity in the sensitivity of the photomultiplier photocathode,…) separately using theoretical analysis, numerical and optical simulations, and laboratory experiments. The instability induced by the use of an optics fibre for coupling the signal collected by the telescope to the detectors is especially investigated. We quantified the impact of all these error sources on the water vapour and nitrogen Raman channels measurements and on the change in the differential calibration constant and we tried to implement an experimental solution to minimize the variations.

David, Leslie; Bock, Olivier; Bosser, Pierre; Thom, Christian; Pelon, Jacques

2014-05-01

273

Liquid Water Cloud Measurements Using the Raman Lidar Technique: Current Understanding and Future Research Needs  

NASA Technical Reports Server (NTRS)

This paper describes recent work in the Raman lidar liquid water cloud measurement technique. The range-resolved spectral measurements at the National Aeronautics and Space Administration Goddard Space Flight Center indicate that the Raman backscattering spectra measured in and below low clouds agree well with theoretical spectra for vapor and liquid water. The calibration coefficients of the liquid water measurement for the Raman lidar at the Atmospheric Radiation Measurement Program Southern Great Plains site of the U.S. Department of Energy were determined by comparison with the liquid water path (LWP) obtained with Atmospheric Emitted Radiance Interferometer (AERI) and the liquid water content (LWC) obtained with the millimeter wavelength cloud radar and water vapor radiometer (MMCR-WVR) together. These comparisons were used to estimate the Raman liquid water cross-sectional value. The results indicate a bias consistent with an effective liquid water Raman cross-sectional value that is 28%-46% lower than published, which may be explained by the fact that the difference in the detectors' sensitivity has not been accounted for. The LWP of a thin altostratus cloud showed good qualitative agreement between lidar retrievals and AERI. However, the overall ensemble of comparisons of LWP showed considerable scatter, possibly because of the different fields of view of the instruments, the 350-m distance between the instruments, and the horizontal inhomogeneity of the clouds. The LWC profiles for a thick stratus cloud showed agreement between lidar retrievals andMMCR-WVR between the cloud base and 150m above that where the optical depth was less than 3. Areas requiring further research in this technique are discussed.

Tetsu, Sakai; Whiteman, David N.; Russo, Felicita; Turner, David D.; Veselovskii, Igor; Melfi, S. Harvey; Nagai, Tomohiro; Mano, Yuzo

2013-01-01

274

Aerosol and Cloud Interaction Observed From High Spectral Resolution Lidar Data  

NASA Technical Reports Server (NTRS)

Recent studies utilizing satellite retrievals have shown a strong correlation between aerosol optical depth (AOD) and cloud cover. However, these retrievals from passive sensors are subject to many limitations, including cloud adjacency (or 3D) effects, possible cloud contamination, uncertainty in the AOD retrieval. Some of these limitations do not exist in High Spectral Resolution Lidar (HSRL) observations; for instance, HSRL observations are not a ected by cloud adjacency effects, are less prone to cloud contamination, and offer accurate aerosol property measurements (backscatter coefficient, extinction coefficient, lidar ratio, backscatter Angstrom exponent,and aerosol optical depth) at a neospatial resolution (less than 100 m) in the vicinity of clouds. Hence, the HSRL provides an important dataset for studying aerosol and cloud interaction. In this study, we statistically analyze aircraft-based HSRL profiles according to their distance from the nearest cloud, assuring that all profile comparisons are subject to the same large-scale meteorological conditions. Our results indicate that AODs from HSRL are about 17% higher in the proximity of clouds (approximately 100 m) than far away from clouds (4.5 km), which is much smaller than the reported cloud 3D effect on AOD retrievals. The backscatter and extinction coefficients also systematically increase in the vicinity of clouds, which can be explained by aerosol swelling in the high relative humidity (RH) environment and/or aerosol growth through in cloud processing (albeit not conclusively). On the other hand, we do not observe a systematic trend in lidar ratio; we hypothesize that this is caused by the opposite effects of aerosol swelling and aerosol in-cloud processing on the lidar ratio. Finally, the observed backscatter Angstrom exponent (BAE) does not show a consistent trend because of the complicated relationship between BAE and RH. We demonstrate that BAE should not be used as a surrogate for Angstrom exponent, especially at high RH.

Su, Wenying; Schuster, Gregory L.; Loeb, Norman G.; Rogers, Raymond R.; Ferrare, Richard A.; Hostetler, Chris A.; Hair, Johnathan W.; Obland, Michael D.

2008-01-01

275

High altitude Balloon Borne Lidar experiment for the study of aerosols and clouds  

NASA Astrophysics Data System (ADS)

Ground based light detection and ranging (LIDAR) instruments are routinely used for the study of aerosols and clouds using remote sensing technique. Such measurements can only give local/regional scale data. Space based system can provide data on global scale and the same can be used for climate modeling and weather forecasting applications. Development of a Balloon Borne Lidar (BBL) system was taken up as a precursor to the development of Space Borne Lidar system by Indian Space Research Organization (ISRO). A downward looking low power, high PRF laser based lidar system (Micro Pulse Lidar) operating at 532nm having 150mm Cassegrain type small telescope and a photomultiplier tube based photon counting data acquisition system was developed for the measurement of backscattered signal from aerosols and clouds. The BBL instrument was flown successfully in a high altitude balloon platform from National Balloon Facility in Hyderabad. The balloon reached a ceiling altitude of 35 km and scientific data on aerosol and clouds were collected for duration of 5 hours. This paper describes the design challenges and the technical complexity associated with the laser based active payload in a balloon platform. Preliminary results of the experiment will also be presented.

Manchanda, R. K.; Ramaratnam, S.; Krishnan, A. R.; Presenna Kumar, Bharghavan; Jeswin Vetha Jeyasingh, J.; Sreekumar, S.; Joy, Sherly; Thirupathirajan, S.; Bhavanikumar, Y.; Devarajan, Anand

276

Ground-truth aerosol lidar observations: can the Klett solutions obtained from ground and space be equal for the same aerosol case?  

SciTech Connect

Upcoming multiyear satellite lidar aerosol observations need strong support by a worldwide ground-truth lidar network. In this context the question arises as to whether the ground stations can deliver the same results as obtained from space when the Klett formalism is applied to elastic backscatter lidar data for the same aerosol case. This question is investigated based on simulations of observed cases of simple and complex aerosol layering. The results show that the differences between spaceborne and ground-based observations can be as large as20% for the backscatter and extinction coefficients and the optimum estimates of the column lidar ratios. In cases with complex aerosol layering, the application of the two-layer approach can lead to similar results (space, ground) and accurate products provided that horizontally homogeneous aerosol conditions are given.

Ansmann, Albert

2006-05-10

277

Aerosol and Cloud Observations and Data Products by the GLAS Polar Orbiting Lidar Instrument  

NASA Technical Reports Server (NTRS)

The Geoscience Laser Altimeter System (GLAS) launched in 2003 is the first polar orbiting satellite lidar. The instrument was designed for high performance observations of the distribution and optical scattering cross sections of clouds and aerosol. The backscatter lidar operates at two wavelengths, 532 and 1064 nm. Both receiver channels meet and exceed their design goals, and beginning with a two month period through October and November 2003, an excellent global lidar data set now exists. The data products for atmospheric observations include the calibrated, attenuated backscatter cross section for cloud and aerosol; height detection for multiple cloud layers; planetary boundary layer height; cirrus and aerosol optical depth and the height distribution of aerosol and cloud scattering cross section profiles. The data sets are now in open release through the NASA data distribution system. The initial results on global statistics for cloud and aerosol distribution has been produced and in some cases compared to other satellite observations. The sensitivity of the cloud measurements is such that the 70% global cloud coverage result should be the most accurate to date. Results on the global distribution of aerosol are the first that produce the true height distribution for model inter-comparison.

Spinhirne, J. D.; Palm, S. P.; Hlavka, D. L.; Hart, W. D.; Mahesh, A.; Welton, E. J.

2005-01-01

278

Doppler Lidar Measurements of Tropospheric Wind Profiles Using the Aerosol Double Edge Technique  

NASA Technical Reports Server (NTRS)

The development of a ground based direct detection Doppler lidar based on the recently described aerosol double edge technique is reported. A pulsed, injection seeded Nd:YAG laser operating at 1064 nm is used to make range resolved measurements of atmospheric winds in the free troposphere. The wind measurements are determined by measuring the Doppler shift of the laser signal backscattered from atmospheric aerosols. The lidar instrument and double edge method are described and initial tropospheric wind profile measurements are presented. Wind profiles are reported for both day and night operation. The measurements extend to altitudes as high as 14 km and are compared to rawinsonde wind profile data from Dulles airport in Virginia. Vertical resolution of the lidar measurements is 330 m and the rms precision of the measurements is a low as 0.6 m/s.

Gentry, Bruce M.; Li, Steven X.; Mathur, Savyasachee; Korb, C. Laurence; Chen, Huailin

2000-01-01

279

URBAN AEROSOLS SURVEY USING LIDAR AND NUMERICAL MODEL S. GEFFROY1  

E-print Network

. PERKINS2 , J.P. WOLF1 and P. RAIROUX1 'LASIM, University Claude-Bernard Lyonl, 43 bd. 11 Nov., F-69622 Vileurbanne Cedex, France. 2 LMFA, Ecole Centrale de Lyon, F-69131 Ecully Cedex, France. 3 INERIS, Parc technologique ALATA BP2, F-60550 Verneuil-en-Halatte, France. Keywords: LIDAR, URBAN AEROSOLS, MODEL, IMPACT

Boyer, Edmond

280

Measurement of the Lidar Ratio for Atmospheric Aerosols using a 180-Backscatter Nephelometer  

E-print Network

modified an integrating nephelometer, which measures the scattering component of light extinction, by addition of a backward pointing laser light source such that the detected light corresponds to integrated of ~20%. Key words: lidar ratio, nephelometer, backscatter, climate forcing, aerosol, light scattering

281

The 48-inch lidar aerosol measurements taken at the Langley Research Center  

NASA Technical Reports Server (NTRS)

This report presents lidar data taken between July 1991 and December 1992 using a ground-based 48-inch lidar instrument at the Langley Research Center in Hampton, Virginia. Seventy lidar profiles (approximately one per week) were obtained during this period, which began less than 1 month after the eruption of the Mount Pinatubo volcano in the Philippines. Plots of backscattering ratio as a function of altitude are presented for each data set along with tables containing numerical values of the backscattering ratio and backscattering coefficient versus altitude. The enhanced aerosol backscattering seen in the profiles highlights the influence of the Mount Pinatubo eruption on the stratospheric aerosol loading over Hampton. The long-term record of the profiles gives a picture of the evolution of the aerosol cloud, which reached maximum loading approximately 8 months after the eruption and then started to decrease gradually. NASA RP-1209 discusses 48-inch lidar aerosol measurements taken at the Langley Research Center from May 1974 to December 1987.

Woods, David C.; Osborn, M. T.; Winker, D. M.; Decoursey, R. J.; Youngbluth, Otto, Jr.

1994-01-01

282

Comparison of Modeled Backscatter using Measured Aerosol Microphysics with Focused CW Lidar Data over Pacific  

NASA Technical Reports Server (NTRS)

During NASA's GLObal Backscatter Experiment (GLOBE) II flight mission over the Pacific Ocean in May-June 1990, extensive aerosol backscatter data sets from two continuous wave, focused CO2 Doppler lidars and an aerosol microphysics data set from a laser optical particle counter (LOPC) were obtained. Changes in aerosol loading in various air masses with associated changes in chemical composition, from sulfuric acid and sulfates to dustlike crustal material, significantly affected aerosol backscatter, causing variation of about 3 to 4 orders of magnitude. Some of the significant backscatter features encountered in different air masses were the low backscatter in subtropical air with even lower values in the tropics near the Intertropical Convergence Zone (ITCZ), highly variable backscatter in the ITCZ, mid-tropospheric aerosol backscatter background mode, and high backscatter in an Asian dust plume off the Japanese coast. Differences in aerosol composition and backscatter for northern and southern hemisphere also were observed. Using the LOPC measurements of physical and chemical aerosol properties, we determined the complex refractive index from three different aerosol mixture models to calculate backscatter. These values provided a well-defined envelope of modeled backscatter for various atmospheric conditions, giving good agreement with the lidar data over a horizontal sampling of approximately 18000 km in the mid-troposphere.

Srivastava, Vandana; Clarke, Antony D.; Jarzembski, Maurice A.; Rothermel, Jeffry

1997-01-01

283

Assimilation of lidar signals: application to aerosol forecasting in the western Mediterranean basin  

NASA Astrophysics Data System (ADS)

This paper presents a new application of assimilating lidar signals to aerosol forecasting. It aims at investigating the impact of a ground-based lidar network on the analysis and short-term forecasts of aerosols through a case study in the Mediterranean basin. To do so, we employ a data assimilation (DA) algorithm based on the optimal interpolation method developed in the Polair3D chemistry transport model (CTM) of the Polyphemus air quality modelling platform. We assimilate hourly averaged normalised range-corrected lidar signals (PR2) retrieved from a 72 h period of intensive and continuous measurements performed in July 2012 by ground-based lidar systems of the European Aerosol Research Lidar Network (EARLINET) integrated into the Aerosols, Clouds, and Trace gases Research InfraStructure (ACTRIS) network and an additional system in Corsica deployed in the framework of the pre-ChArMEx (Chemistry-Aerosol Mediterranean Experiment)/TRAQA (TRAnsport à longue distance et Qualité de l'Air) campaign. This lidar campaign was dedicated to demonstrating the potential operationality of a research network like EARLINET and the potential usefulness of assimilation of lidar signals to aerosol forecasts. Particles with an aerodynamic diameter lower than 2.5 ?m (PM2.5) and those with an aerodynamic diameter higher than 2.5 ?m but lower than 10 ?m (PM10-2.5) are analysed separately using the lidar observations at each DA step. First, we study the spatial and temporal influences of the assimilation of lidar signals on aerosol forecasting. We conduct sensitivity studies on algorithmic parameters, e.g. the horizontal correlation length (Lh) used in the background error covariance matrix (50 km, 100 km or 200 km), the altitudes at which DA is performed (0.75-3.5 km, 1.0-3.5 km or 1.5-3.5 km a.g.l.) and the assimilation period length (12 h or 24 h). We find that DA with Lh = 100 km and assimilation from 1.0 to 3.5 km a.g.l. during a 12 h assimilation period length leads to the best scores for PM10 and PM2.5 during the forecast period with reference to available measurements from surface networks. Secondly, the aerosol simulation results without and with lidar DA using the optimal parameters (Lh = 100 km, an assimilation altitude range from 1.0 to 3.5 km a.g.l. and a 12 h DA period) are evaluated using the level 2.0 (cloud-screened and quality-assured) aerosol optical depth (AOD) data from AERONET, and mass concentration measurements (PM10 or PM2.5) from the French air quality (BDQA) network and the EMEP-Spain/Portugal network. The results show that the simulation with DA leads to better scores than the one without DA for PM2.5, PM10and AOD. Additionally, the comparison of model results to evaluation data indicates that the temporal impact of assimilating lidar signals is longer than 36 h after the assimilation period.

Wang, Y.; Sartelet, K. N.; Bocquet, M.; Chazette, P.; Sicard, M.; D'Amico, G.; Léon, J. F.; Alados-Arboledas, L.; Amodeo, A.; Augustin, P.; Bach, J.; Belegante, L.; Binietoglou, I.; Bush, X.; Comerón, A.; Delbarre, H.; García-Vízcaino, D.; Guerrero-Rascado, J. L.; Hervo, M.; Iarlori, M.; Kokkalis, P.; Lange, D.; Molero, F.; Montoux, N.; Muñoz, A.; Muñoz, C.; Nicolae, D.; Papayannis, A.; Pappalardo, G.; Preissler, J.; Rocadenbosch, F.; Sellegri, K.; Wagner, F.; Dulac, F.

2014-11-01

284

Development and applications of tunable, narrow band lasers and stimulated Raman scattering devices for atmospheric lidar  

NASA Technical Reports Server (NTRS)

The main thrust of the program was the study of stimulated Raman processes for application to atmospheric lidar measurements. This has involved the development of tunable lasers, the detailed study of stimulated Raman scattering, and the use of the Raman-shifted light for new measurements of molecular line strengths and line widths. The principal spectral region explored in this work was the visible and near-IR wavelengths between 500 nm and 1.5 microns. Recent alexandrite ring laser experiments are reported. The experiments involved diode injection-locking, Raman shifting, and frequency-doubling. The experiments succeeded in producing tunable light at 577 and 937 nm with line widths in the range 80-160 MHz.

Wilkerson, Thomas D.

1993-01-01

285

Development of a 9.3 micrometer CW LIDAR for the study of atmospheric aerosol  

NASA Technical Reports Server (NTRS)

This report provides a brief summary of the basic requirements to obtain coherent or heterodyne mixing of the optical radiation backscattered by atmospheric aerosols with that from a fixed frequency source. The continuous wave (CW) mode of operation for a coherent lidar is reviewed along with the associated lidar transfer equation. A complete optical design of the three major subsystems of a CW, coherent lidar is given. Lens design software is implemented to model and optimize receiver performance. Techniques for the opto-mechanical assembly and some of the critical tolerances of the coherent lidar are provided along with preliminary tests of the subsystems. Included in these tests is a comparison of the experimental and the theoretical average power signal-to-noise ratio. The analog to digital software used to evaluate the power spectrum of the backscattered signal is presented in the Appendix of this report.

Whiteside, B. N.; Schotland, R. M.

1993-01-01

286

ARM Raman Lidar Measurements of High Ice Supersaturation in Cirrus Clouds  

SciTech Connect

Water vapor amounts in the upper troposphere are crucial to understanding the radiative feedback of cirrus clouds on the Earth's climate. We use a unique, year-long dataset of water vapor mixing ratio inferred from ground-based Raman lidar measurements to study the role of ice supersaturation in ice nucleation processes. We find that ice supersaturation occurs 31% of the time in over 300,000 data points. We also examine the distribution of ice supersaturation with height and find that in the uppermost portion of a cloud layer, the air is ice supersaturated 43% of the time. These measurements show that large ice supersaturation is common in cirrus clouds, which supports the theory of ice forming homogeneously. Given the continuous nature of these Raman lidar measurements, our results have important implications for studying ice nucleation processes using cloud microphysical models.

Comstock, Jennifer M.; Ackerman, Thomas P.; Turner, David D.

2004-09-01

287

Evidence of High Ice Supersaturation in Cirrus Clouds Using ARM Raman Lidar Measurements  

SciTech Connect

Water vapor amounts in the upper troposphere are crucial to understanding the radiative feedback of cirrus clouds on the Earth’s climate. We use a unique, year-long dataset of water vapor mixing ratio inferred from ground-based Raman lidar measurements to study the role of ice supersaturation in ice nucleation processes. We find that ice supersaturation occurs 31% of the time in over 300,000 data points. We also examine the distribution of ice supersaturation with height and find that in the uppermost portion of a cloud layer, the air is ice supersaturated 43% of the time. These measurements show that large ice supersaturation is common in cirrus clouds, which supports the theory of ice forming homogeneously. Given the continuous nature of these Raman lidar measurements, our results have important implications for studying ice nucleation processes using cloud microphysical models.

Comstock, Jennifer M.; Ackerman, Thomas P.; Turner, David D.

2004-06-05

288

Aerosols and cirrus clouds over Hanoi, Vietnam: comparison between satellite products and results derived from ground-based lidar measurements  

NASA Astrophysics Data System (ADS)

In this paper, we present examples of aerosol and Cirrus cloud altitude profiles over Hanoi, Vietnam, measured with the ground LIDAR setup of the Institute of Physics. Comparisons are made to LIDAR data collected by the Calipso satellite of the NASA A-Train during its orbits over the Hanoi area. The height distributions for both surface aerosols and Cirrus clouds derived from ground and satellite observations are generally consistent, with distributions between 2km-3km, and 8km-15km respectively for aerosols and Cirrus clouds. Cirrus cloud locations inferred from an analysis of limb spectral radiances obtained by the SCIAMACHY satellite are also consistent with the LIDAR data.

Dothe, H.; Dinh, Trung van; Bui, Hai van; Gruninger, J. H.

2014-11-01

289

Lidar-measured atmospheric N? vibrational-rotational Raman spectra and consequent temperature retrieval.  

PubMed

We have built a spectrally resolved Raman lidar to measure atmospheric N? Stokes vibrational-rotational Raman spectra. The lidar applies a double-grating polychromator with a reciprocal linear dispersion of ~0.12 nm mm(-1) for the wavelength separation and a 32-channel linear-array photomultiplier tube for sampling the spectral signals. The lidar can together measure the individual S- and O-branch line signals from J = 0 (2) through 14 (16). A comparison shows an excellent agreement between the lidar-measured and theoretically-calculated spectra. Based on the signal ratio of two individual lines (e.g., S-branch J = 6 and 12), the atmospheric temperature profiles are derived without requiring a calibration from another reference temperature. In terms of the envelope shape of an even-J section of the measured S-branch lines, we have also developed a new temperature retrieval approach without needing a calibration from reference temperature data. Both the approaches can give rise to reasonable temperature profiles comparable to that from local radiosonde. PMID:25402026

Liu, Fuchao; Yi, Fan

2014-11-17

290

Observations of water vapor by ground-based microwave radiometers and Raman lidar  

SciTech Connect

In November to December 1991, a substantial number of remote sensors and in situ instruments were operated together in Coffeyville, Kansas, during the climate experiment FIRE II. Included in the suite of instruments were (1) the NOAA Environmental Technology Laboratory (ETL) three-channel microwave radiometer, (2) the NASA GSFC Raman lidar, (3) ETL radio acoustic sounding system (RASS), and (4) frequent, research-quality radiosondes. The Raman lidar operated only at night and the focus of this portion of the experiment concentrated on clear conditions. The lidar data, together with frequent radiosondes and measurements of temperature profiles (every 15 min) by RASS allowed profiles of temperature and absolute humidity to be estimated every minute. The authors compared 2-min measurements of brightness temperature (T{sub b}) with calculations of T{sub b} that were based on the Liebe and Layton, and Liebe et al. microwave propagation models, as well as the Waters model. The comparisons showed the best agreement at 20.6 GHz with the Waters model, with the Liebe et al. model being best at 31.65 GHz. The results at 90 GHz gave about equal success with the Liebe and Layton, and Liebe et al. models. Comparisons of precipitable water vapor derived independently from the two instruments also showed excellent agreement, even for averages as short as 2 min. The rms difference between Raman and radiometric determinations of precipitable water vapor was 0.03 cm which is roughly 2%. The experiments clearly demonstrate the potentisdal of simultaneous operation of radiometers and Raman lidars for fundamental physical studies of water vapor. 31 refs., 5 figs., 5 tabs.

Han, Y.; Snider, J.B.; Westwater, E.R. [NOAA Environmental Research Lab., Boulder, CO (United States)] [NOAA Environmental Research Lab., Boulder, CO (United States); Melfi, S.H. [NASA Goddard Space Flight Center, Greenbelt, MD (United States)] [NASA Goddard Space Flight Center, Greenbelt, MD (United States); Ferrare, R.A. [Hughes-STX Corp., Lanham, MD (United States)] [Hughes-STX Corp., Lanham, MD (United States)

1994-09-20

291

Observations of water vapor by ground-based microwave radiometers and Raman lidar  

NASA Technical Reports Server (NTRS)

In November to December 1991, a substantial number of remote sensors and in situ instruments were operated together in Coffeyville, Kansas, during the climate experiment First ISCCP Regional Experiment Phase 2 (FIRE 2). Includede in the suite of instruments were (1) the NOAA Environmental Technology Laboratory (ETL) three-channel microwave radiometer, (2) the NASA GSFC Raman lidar, (3) ETL radio acoustic sounding system (RASS), and (4) frequent, research-quality radiosondes. The Raman lidar operated only at night and the focus of this portion of the experiment concentrated on clear conditions. The lidar data, together with frequent radiosondes and measurements of temperature profiles (every 15 min) by RASS allowed profiles of temperature and absolute humidity to be estimated every minute. We compared 20 min measurements of brightness temperature (T(sub b) with calculations of T(sub b) that were based on the Liebe and Layton (1987) and Liebe et al. (1993) microwave propagation models, as well as the Waters (1976) model. The comparisons showed the best agreement at 20.6 GHz with the Waters model, with the Liebe et al. (1993) model being best at 31.65 GHz. The results at 90 GHz gave about equal success with the Liebe and Layton (1987) and Liebe et al. (1993) models. Comparisons of precipitable water vapor derived independently from the two instruments also showed excellent agreement, even for averages as short as 2 min. The rms difference between Raman and radiometric determinations of precipitable water vapor was 0.03 cm which is roughly 2%. The experiments clearly demonstrate the potential of simultaneous operation of radiometers and Raman lidars for fundamental physical studies of water vapor.

Han, Yong; Snider, J. B.; Westwater, E. R.; Melfi, S. H.; Ferrare, R. A.

1994-01-01

292

The ground-based lidar combined with sunphotometer for aerosol optical depth retrieval  

NASA Astrophysics Data System (ADS)

Aerosol particles are important components of the earth-atmosphere system, not only affecting atmospheric visibility of the earth's surface from space, but also be an important element to the occurrence of cloud that aerosol particles serve as the primary source of cloud condensation nuclei(CCN). Remote sensing of aerosol properties from space/satellite can reveal the tendency of temporal-spatial distribution in global scale, however, whose precision can't satisfy the request of quantitative remote sensing. Thus, in this paper proposes the method combined sunphotometer (passive measurements) and Lidar (active remote sensing measurements) developed by Wuhan University to retrieve the aerosol optical depth. The primary results show that the proposed method improved the precision of aerosol optical depth effectively. Furthermore, long-term atmospheric and aerosol data could be obtained by consecutive Lidar and sunphotometer observations. Also these data will be used for emending the existing atmospheric model and aerosol type, and make them more compliant for China area application.

Mao, Feiyue; Gong, Wei; Zhu, Zhongmin; Li, Pingxiang

2008-10-01

293

Backscatter Modeling at 2.1 Micron Wavelength for Space-Based and Airborne Lidars Using Aerosol Physico-Chemical and Lidar Datasets  

NASA Technical Reports Server (NTRS)

Space-based and airborne coherent Doppler lidars designed for measuring global tropospheric wind profiles in cloud-free air rely on backscatter, beta from aerosols acting as passive wind tracers. Aerosol beta distribution in the vertical can vary over as much as 5-6 orders of magnitude. Thus, the design of a wave length-specific, space-borne or airborne lidar must account for the magnitude of 8 in the region or features of interest. The SPAce Readiness Coherent Lidar Experiment under development by the National Aeronautics and Space Administration (NASA) and scheduled for launch on the Space Shuttle in 2001, will demonstrate wind measurements from space using a solid-state 2 micrometer coherent Doppler lidar. Consequently, there is a critical need to understand variability of aerosol beta at 2.1 micrometers, to evaluate signal detection under varying aerosol loading conditions. Although few direct measurements of beta at 2.1 micrometers exist, extensive datasets, including climatologies in widely-separated locations, do exist for other wavelengths based on CO2 and Nd:YAG lidars. Datasets also exist for the associated microphysical and chemical properties. An example of a multi-parametric dataset is that of the NASA GLObal Backscatter Experiment (GLOBE) in 1990 in which aerosol chemistry and size distributions were measured concurrently with multi-wavelength lidar backscatter observations. More recently, continuous-wave (CW) lidar backscatter measurements at mid-infrared wavelengths have been made during the Multicenter Airborne Coherent Atmospheric Wind Sensor (MACAWS) experiment in 1995. Using Lorenz-Mie theory, these datasets have been used to develop a method to convert lidar backscatter to the 2.1 micrometer wavelength. This paper presents comparison of modeled backscatter at wavelengths for which backscatter measurements exist including converted beta (sub 2.1).

Srivastava, V.; Rothermel, J.; Jarzembski, M. A.; Clarke, A. D.; Cutten, D. R.; Bowdle, D. A.; Spinhirne, J. D.; Menzies, R. T.

1999-01-01

294

Global Monitoring of Clouds and Aerosols Using a Network of Micro-Pulse Lidar Systems  

NASA Technical Reports Server (NTRS)

Long-term global radiation programs, such as AERONET and BSRN, have shown success in monitoring column averaged cloud and aerosol optical properties. Little attention has been focused on global measurements of vertically resolved optical properties. Lidar systems are the preferred instrument for such measurements. However, global usage of lidar systems has not been achieved because of limits imposed by older systems that were large, expensive, and logistically difficult to use in the field. Small, eye-safe, and autonomous lidar systems are now currently available and overcome problems associated with older systems. The first such lidar to be developed is the Micro-pulse lidar System (MPL). The MPL has proven to be useful in the field because it can be automated, runs continuously (day and night), is eye-safe, can easily be transported and set up, and has a small field-of-view which removes multiple scattering concerns. We have developed successful protocols to operate and calibrate MPL systems. We have also developed a data analysis algorithm that produces data products such as cloud and aerosol layer heights, optical depths, extinction profiles, and the extinction-backscatter ratio. The algorithm minimizes the use of a priori assumptions and also produces error bars for all data products. Here we present an overview of our MPL protocols and data analysis techniques. We also discuss the ongoing construction of a global MPL network in conjunction with the AERONET program. Finally, we present some early results from the MPL network.

Welton, Ellsworth J.; Campbell, James R.; Spinhirne, James D.; Scott, V. Stanley

2000-01-01

295

Comments on: Accuracy of Raman Lidar Water Vapor Calibration and its Applicability to Long-Term Measurements  

NASA Technical Reports Server (NTRS)

In a recent publication, LeBlanc and McDermid proposed a hybrid calibration technique for Raman water vapor lidar involving a tungsten lamp and radiosondes. Measurements made with the lidar telescope viewing the calibration lamp were used to stabilize the lidar calibration determined by comparison with radiosonde. The technique provided a significantly more stable calibration constant than radiosondes used alone. The technique involves the use of a calibration lamp in a fixed position in front of the lidar receiver aperture. We examine this configuration and find that such a configuration likely does not properly sample the full lidar system optical efficiency. While the technique is a useful addition to the use of radiosondes alone for lidar calibration, it is important to understand the scenarios under which it will not provide an accurate quantification of system optical efficiency changes. We offer examples of these scenarios.

Whiteman, David N.; Venable, Demetrius; Landulfo, Eduardo

2012-01-01

296

Advances In Global Aerosol Modeling Applications Through Assimilation of Satellite-Based Lidar Measurements  

NASA Astrophysics Data System (ADS)

Modeling the instantaneous three-dimensional aerosol field and its downwind transport represents an endeavor with many practical benefits foreseeable to air quality, aviation, military and science agencies. The recent proliferation of multi-spectral active and passive satellite-based instruments measuring aerosol physical properties has served as an opportunity to develop and refine the techniques necessary to make such numerical modeling applications possible. Spurred by high-resolution global mapping of aerosol source regions, and combined with novel multivariate data assimilation techniques designed to consider these new data streams, operational forecasts of visibility and aerosol optical depths are now available in near real-time1. Active satellite-based aerosol profiling, accomplished using lidar instruments, represents a critical element for accurate analysis and transport modeling. Aerosol source functions, alone, can be limited in representing the macrophysical structure of injection scenarios within a model. Two-dimensional variational (2D-VAR; x, y) assimilation of aerosol optical depth from passive satellite observations significantly improves the analysis of the initial state. However, this procedure can not fully compensate for any potential vertical redistribution of mass required at the innovation step. The expense of an inaccurate vertical analysis of aerosol structure is corresponding errors downwind, since trajectory paths within successive forecast runs will likely diverge with height. In this paper, the application of a newly-designed system for 3D-VAR (x,y,z) assimilation of vertical aerosol extinction profiles derived from elastic-scattering lidar measurements is described [Campbell et al., 2009]. Performance is evaluated for use with the U. S. Navy Aerosol Analysis and Prediction System (NAAPS) by assimilating NASA/CNES satellite-borne Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) 0.532 ?m measurements [Winker et al., 2009]. Inversion retrievals of aerosol extinction are performed for one-degree latitudinal averages of CALIOP backscatter signal (thus matching the horizontal resolution of NAAPS) by constraining total column transmission using the model estimate of AOD at the corresponding wavelength. As such, this system serves as a post-processing module predicated on newly-operational NAAPS aerosol analysis fields that feature 2D-VAR assimilation of NASA Moderate Resolution Infrared Spectroradiometer (MODIS) AOD observations [Zhang and Reid, 2006; Zhang et al., 2008]. We describe the influence of 3D-VAR assimilation on NAAPS analyses and forecasts by considering the physical evolution of Saharan dust plumes during their advection across the tropical Atlantic basin. Steps taken towards characterizing spatial covariance parameters that broaden the horizontal influence of information obtained along the limited lidar orbital swath are discussed. This latter context is critical when comparing the efficacy and impact of 3D-VAR assimilation with that of 2D-VAR procedures, which benefit from passive observations with a relatively wide field-of-view and, therefore, greater/more routine global coverage. With multiple satellite-lidar projects either pending launch or in design stages, including the dual ESA missions (AEOLUS and EarthCARE), we describe the potential impact of future 3D-VAR assimilation activities; both for NAAPS forecast capabilities, and the anticipated growth in aerosol transport modeling efforts at federal and cooperative global agencies worldwide. 1 http://www.nrlmry.navy.mil/aerosol/ References Campbell, J. R., J. S. Reid, D. L. Westphal, J. Zhang, E. J. Hyer, and E. J. Welton, CALIOP aerosol subset processing for global aerosol transport model data assimilation, in press, J. Selected Topics Appl. Earth Obs. Rem. Sens., December 2009. Winker, D. M., M. A. Vaughan, A. Omar, Y. Hu, K. A. Powell, Z. Liu, W. H. Hunt, and S. A. Young, Overview of the CALIPSO mission and CALIOP data processing algorithms, J. Atmos. Oceanic. Technol., 26, DOI:10.1175/2009JTECHA1281.1, 2009. Zhang,

Campbell, James; Hyer, Edward; Zhang, Jianglong; Reid, Jeffrey; Westphal, Douglas; Xian, Peng; Vaughan, Mark

2010-05-01

297

Developing a portable, autonomous aerosol backscatter lidar for network or remote operations  

NASA Astrophysics Data System (ADS)

Lidar has the ability to detect the complex vertical structure of the atmosphere and can therefore identify the existence and extent of aerosols with high spatial and temporal resolution, making it well suited for understanding atmospheric dynamics and transport processes. Environment Canada has developed a portable, autonomous lidar system that can be monitored remotely and operated continuously except during precipitation events. The lidar, housed in a small trailer, simultaneously emits two wavelengths of laser light (1064 nm and 532 nm) at energies of approximately 150 mJ/pulse/wavelength and detects the backscatter signal at 1064 nm and both polarizations at 532 nm. For laser energies of this magnitude, the challenge resides in designing a system that meets the airspace safety requirements for autonomous operations. Through the combination of radar technology, beam divergence, laser cavity interlocks and using computer log files, this risk was mitigated. A Continuum Inlite small footprint laser is the backbone of the system because of three design criteria: requiring infrequent flash lamp changes compared to previous Nd : YAG Q-switch lasers, complete software control capability and a built-in laser energy monitoring system. A computer-controlled interface was designed to monitor the health of the system, adjust operational parameters and maintain a climate-controlled environment. Through an Internet connection, it also transmitted the vital performance indicators and data stream to allow the lidar profile data for multiple instruments from near ground to 15 km, every 10 s, to be viewed, in near real-time via a website. The details of the system design and calibration will be discussed and the success of the instrument as tested within the framework of a national lidar network dubbed CORALNet (Canadian Operational Research Aerosol Lidar Network). In addition, the transport of a forest fire plume across the country will be shown as evidenced by the lidar network, HYSPLIT back trajectories, MODIS imagery and CALIPSO overpasses.

Strawbridge, K. B.

2013-03-01

298

Developing a portable, autonomous aerosol backscatter lidar for network or remote operations  

NASA Astrophysics Data System (ADS)

Lidar has the ability to detect the complex vertical structure of the atmosphere and can therefore identify the existence and extent of aerosols with high spatial and temporal resolution, making it well-suited for understanding atmospheric dynamics and transport processes. Environment Canada has developed a portable, autonomous lidar system that can be monitored remotely and operate continuously except during precipitation events. The lidar, housed in a small trailer, simultaneously emits two wavelengths of laser light (1064 nm and 532 nm) at energies of approximately 150 mJ/pulse/wavelength and detects the backscatter signal at 1064 nm and both polarizations at 532 nm. For laser energies of this magnitude, the challenge resides in designing a system that meets the airspace safety requirements for autonomous operations. Through the combination of radar technology, beam divergence, laser cavity interlocks and using computer log files, this risk was mitigated. A Continuum Inlite small footprint laser is the backbone of the system because of three design criteria: requiring infrequent flash lamp changes compared to previous Nd:YAG Q-switch lasers, complete software control capability and a built-in laser energy monitoring system. A computer-controlled interface was designed to monitor the health of the system, adjust operational parameters and maintain a climate-controlled environment. Through an internet connection, it also transmitted the vital performance indicators and data stream to allow the lidar profile data for multiple instruments from near ground to 15 km, every 10 s, to be viewed, in near real-time via a website. The details of the system design and calibration will be discussed and the success of the instrument as tested within the framework of a national lidar network dubbed CORALNet (Canadian Operational Research Aerosol Lidar Network). In addition, the transport of a forest fire plume across the country will be shown as evidenced by the lidar network, HYSPLIT back trajectories, MODIS imagery and CALIPSO overpasses.

Strawbridge, K. B.

2012-11-01

299

A lidar system for remote sensing of aerosols and water vapor from NSTS and Space Station Freedom  

Microsoft Academic Search

The Tropical Atmospheric Lidar Observing System (TALOS) is proposed to be developed as a Differential Absorption Lidar (DIAL) system for flight aboard the earth orbiting Space Station Freedom. TALOS will be capable of making high resolution vertical profile measurements of tropospheric water and tropospheric and stratospheric aerosols, clouds and temperature.

Joseph F. Delorme

1989-01-01

300

A compact mobile ozone lidar for atmospheric ozone and aerosol profiling  

NASA Astrophysics Data System (ADS)

A compact mobile differential absorption lidar (DIAL) system has been developed at NASA Langley Research Center to provide ozone, aerosol and cloud atmospheric measurements in a mobile trailer for ground-based atmospheric ozone air quality campaigns. This lidar is integrated into the Tropospheric Ozone Lidar Network (TOLNet) currently made up of four other ozone lidars across the country. The lidar system consists of a UV and green laser transmitter, a telescope and an optical signal receiver with associated Licel photon counting and analog channels. The laser transmitter consists of a Q-switched Nd:YLF inter-cavity doubled laser pumping a Ce:LiCAF tunable UV laser with all the associated power and lidar control support units on a single system rack. The system has been configured to enable mobile operation from a trailer and was deployed to Denver, CO July 15-August 15, 2014 supporting the DISCOVER-AQ campaign. Ozone curtain plots and the resulting science are presented.

De Young, Russell; Carrion, William; Pliutau, Denis

2014-10-01

301

Intercomparison of Pulsed Lidar Data with Flight Level CW Lidar Data and Modeled Backscatter from Measured Aerosol Microphysics Near Japan and Hawaii  

NASA Technical Reports Server (NTRS)

Aerosol backscatter coefficient data were examined from two nights near Japan and Hawaii undertaken during NASA's Global Backscatter Experiment (GLOBE) in May-June 1990. During each of these two nights the aircraft traversed different altitudes within a region of the atmosphere defined by the same set of latitude and longitude coordinates. This provided an ideal opportunity to allow flight level focused continuous wave (CW) lidar backscatter measured at 9.11-micron wavelength and modeled aerosol backscatter from two aerosol optical counters to be compared with pulsed lidar aerosol backscatter data at 1.06- and 9.25-micron wavelengths. The best agreement between all sensors was found in the altitude region below 7 km, where backscatter values were moderately high at all three wavelengths. Above this altitude the pulsed lidar backscatter data at 1.06- and 9.25-micron wavelengths were higher than the flight level data obtained from the CW lidar or derived from the optical counters, suggesting sample volume effects were responsible for this. Aerosol microphysics analysis of data near Japan revealed a strong sea-salt aerosol plume extending upward from the marine boundary layer. On the basis of sample volume differences, it was found that large particles were of different composition compared with the small particles for low backscatter conditions.

Cutten, D. R.; Spinhirne, J. D.; Menzies, R. T.; Bowdle, D. A.; Srivastava, V.; Pueschel, R. F.; Clarke, A. D.; Rothermel, J.

1998-01-01

302

Lidar observation of the 2011 Puyehue-Cordón Caulle volcanic aerosols at Lauder, New Zealand  

NASA Astrophysics Data System (ADS)

On 4 June 2011, the Puyehue-Cordón Caulle volcanic complex (40.6° S, 72.1° W) in Chile erupted violently and injected volcanic aerosols into the atmosphere. For the safety of civil aviation, continuous lidar observations were made at Lauder, New Zealand (45.0° S, 169.7° E), from 11 June through 6 July 2011. The purpose of our study is to quantify the influence of the volcanic ejections from large eruptions, and we use the data from the ground-based lidar observation. We analyzed lidar data at a wavelength of 532 nm and derived the backscattering ratio and depolarization ratio profiles. During June and July, within the altitude range of 10-15 km, the volcanic aerosols had high depolarization ratios (20-35%), an indication of non-spherical volcanic ash particles. The time series of the backscattering ratio during continuous observations had three peaks occurring at about 12-day intervals: 26.7 at 11.2 km on 11 June, 18.1 at 12.0 km on 23 June, and 5.3 at 11.1 km on 6 July. The optical depth of the volcanic aerosols was 0.45 on 11 June, when the continuous lidar observation started, 0.31 on 23 June, and 0.12 on 6 July. The depolarization ratio values remained high up to a month after the eruption, and the small wavelength exponent calculated from the backscattering coefficients at 532 nm and 1064 nm suggests that a major constituent of the volcanic aerosols was large, non-spherical particles. The presence of volcanic ash in the stratosphere might affect the error in Greenhouse gases Observing SATellite (GOSAT) XCO2 retrieval using the 1.6 ?m band. We briefly discuss the influence of the increased aerosols on GOSAT products.

Nakamae, K.; Uchino, O.; Morino, I.; Liley, B.; Sakai, T.; Nagai, T.; Yokota, T.

2014-11-01

303

Engineering of a water-vapour, Raman, elastic-backscatter Lidar at the Technical University of Catalonia (Spain)  

NASA Astrophysics Data System (ADS)

Implementation of the pure-vibrational Raman spectra lidar method for simultaneous measurements of atmospheric water-vapour, aerosol extinction and backscatter coefficients is reported. A Q-switched Nd:YAG laser provides the three elastic wavelengths of 1064, 532 and 355 nm while the return signal is collected by a 40-cm aperture telescope. A spot-to-spot fiber bundle conveys the light from the telescope focal plane to a specific polychromator especially simulated and designed with care on minimizing optical losses and physical dimensions. The reception field of view, which is limited by the fiber bundle characteristics, is the same for all wavelengths. By means of four customised dichroic filters and beam splitters, light is separated into the three elastic wavelengths (355, 532, 1064 nm) as well as the 386.7- and 607.4-nm N II-Raman-shifted wavelengths, and the 407.5-nm H IIO-Raman-shifted wavelength. Signal detection is achieved by using avalanche photodiodes at 1064 and 532 nm and analog acquisition while photomultiplier tubes and fast photon counting acquisition at the rest of the wavelengths. A specific design of the optoelectronics of the receiving channels is controlled by a distributed CPU thanks to a user-friendly LabView TM interface. User-configurable scanning tools are built-in, but can also be customized. In this work an overview of the system though particularly geared to the polychromator unit is presented as well as a power link-budget assessment, which is to include simulation of end-to-end transmissivities, will be discussed for the main channels involved. The first measurements have already been made at 1064, 532, and 607.4 nm.

Kumar, Dhiraj; Sicard, Michaël; Tomás, Sergio; Muñoz, Constantino; Rocadenbosch, Francesc; Comerón, Adolfo

2006-09-01

304

Raman Lidar Measurements of Water Vapor and Cirrus Clouds During the Passage of Hurricane Bonnie  

NASA Technical Reports Server (NTRS)

The NASA/GSFC Scanning Raman Lidar (SRL) was stationed on Andros Island in the Bahamas during August - September, 1998 as a part of the third Convection and Moisture Experiment (CAMEX-3) which focussed on hurricane development and tracking. During the period August 21 - 24, hurricane Bonnie passed near Andros Island and influenced the water vapor and cirrus cloud measurements acquired by the SRL. Two drying signatures related to the hurricane were recorded by the SRL (Scanning Raman Lidar) and other sensors. Cirrus cloud optical depths (at 351 nm) were also measured during this period. Optical depth values ranged from approximately 0.01 to 1.4. The influence of multiple scattering on these optical depth measurements was studied with the conclusion that the measured values of optical depth are less than the actual value by up to 20% . The UV/IR cirrus cloud optical depth ratio was estimated based on a comparison of lidar and GOES measurements. Simple radiative transfer model calculations compared with GOES satellite brightness temperatures indicate that satellite radiances are significantly affected by the presence of cirrus clouds if IR optical depths are approximately 0.02 or greater. This has implications for satellite cirrus detection requirements.

Whiteman, D. N.; Evans, K. D.; Demoz, B.; Starr, D. OC; Tobin, D.; Feltz, W.; Jedlovec, G. J.; Gutman, S. I.; Schwemmer, G. K.; Cardirola, M.; Melfi, S. H.; Schmidlin, F. J.

2000-01-01

305

A New Way to Measure Cirrus Ice Water Content by Using Ice Raman Scatter with Raman Lidar  

NASA Technical Reports Server (NTRS)

High and cold cirrus clouds mainly contain irregular ice crystals, such as, columns, hexagonal plates, bullet rosettes, and dendrites, and have different impacts on the climate system than low-level clouds, such as stratus, stratocumulus, and cumulus. The radiative effects of cirrus clouds on the current and future climate depend strongly on cirrus cloud microphysical properties including ice water content (IWC) and ice crystal sizes, which are mostly an unknown aspect of cinus clouds. Because of the natural complexity of cirrus clouds and their high locations, it is a challenging task to get them accurately by both remote sensing and in situ sampling. This study presents a new method to remotely sense cirrus microphysical properties by using ice Raman scatter with a Raman lidar. The intensity of Raman scattering is fundamentally proportional to the number of molecules involved. Therefore, ice Raman scattering signal provides a more direct way to measure IWC than other remote sensing methods. Case studies show that this method has the potential to provide essential information of cirrus microphysical properties to study cloud physical processes in cirrus clouds.

Wang, Zhien; Whiteman, David N.; Demoz, Belay; Veselovskii, Igor

2004-01-01

306

Characterizing Aerosol Distributions and Optical Properties Using the NASA Langley High Spectral Resolution Lidar  

SciTech Connect

The objective of this project was to provide vertically and horizontally resolved data on aerosol optical properties to assess and ultimately improve how models represent these aerosol properties and their impacts on atmospheric radiation. The approach was to deploy the NASA Langley Airborne High Spectral Resolution Lidar (HSRL) and other synergistic remote sensors on DOE Atmospheric Science Research (ASR) sponsored airborne field campaigns and synergistic field campaigns sponsored by other agencies to remotely measure aerosol backscattering, extinction, and optical thickness profiles. Synergistic sensors included a nadir-viewing digital camera for context imagery, and, later in the project, the NASA Goddard Institute for Space Studies (GISS) Research Scanning Polarimeter (RSP). The information from the remote sensing instruments was used to map the horizontal and vertical distribution of aerosol properties and type. The retrieved lidar parameters include profiles of aerosol extinction, backscatter, depolarization, and optical depth. Products produced in subsequent analyses included aerosol mixed layer height, aerosol type, and the partition of aerosol optical depth by type. The lidar products provided vertical context for in situ and remote sensing measurements from other airborne and ground-based platforms employed in the field campaigns and was used to assess the predictions of transport models. Also, the measurements provide a data base for future evaluation of techniques to combine active (lidar) and passive (polarimeter) measurements in advanced retrieval schemes to remotely characterize aerosol microphysical properties. The project was initiated as a 3-year project starting 1 January 2005. It was later awarded continuation funding for another 3 years (i.e., through 31 December 2010) followed by a 1-year no-cost extension (through 31 December 2011). This project supported logistical and flight costs of the NASA sensors on a dedicated aircraft, the subsequent analysis and archival of the data, and the presentation of results in conferences, workshops, and publications. DOE ASR field campaigns supported under this project included - MAX-Mex /MILAGRO (2006) - TexAQS 2006/GoMACCS (2006) - CHAPS (2007) - RACORO (2009) - CARE/CalNex (2010) In addition, data acquired on HSRL airborne field campaigns sponsored by other agencies were used extensively to fulfill the science objectives of this project and the data acquired have been made available to other DOE ASR investigators upon request.

Hostetler, Chris; Ferrare, Richard

2013-02-14

307

Bistatic imaging lidar measurements of aerosols, fogs, and clouds in the lower atmosphere  

NASA Astrophysics Data System (ADS)

We have been developing a bistatic imaging lidar using a high sensitive CCD camera with an image intensifier as a high speed shutter for measuring spatial distributions of aerosols, fogs and clouds in the lower atmosphere at daytime as well as at nighttime. The bistatic imaging lidar was applied to two field observation campaigns. One was made cooperatively with a wind profiler and a radiosonde at Moriya (36 km north of Tokyo) for five days from May 26 to 30, 1997 and another cooperatively with a monostatic lidar at Hakuba alpine ski area of Nagano for 10 days from February 7 to 16, 1998 during the period of the 18th Winter Olympic Games in Japan. We report the results obtained at both campaigns and discuss the ability of this system in measuring the meteorological features of the local lower atmosphere under different conditions.

Lin, Jinming; Mishima, Hidetsugu; Kawahara, Takuya D.; Saito, Yasunori; Nomura, Akio; Yamaguchi, Kenji; Morikawa, Kimio

1998-08-01

308

Using Airborne High Spectral Resolution Lidar Data to Evaluate Combined Active Plus Passive Retrievals of Aerosol Extinction Profiles  

NASA Technical Reports Server (NTRS)

We derive aerosol extinction profiles from airborne and space-based lidar backscatter signals by constraining the retrieval with column aerosol optical thickness (AOT), with no need to rely on assumptions about aerosol type or lidar ratio. The backscatter data were acquired by the NASA Langley Research Center airborne High Spectral Resolution Lidar (HSRL) and by the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite. The HSRL also simultaneously measures aerosol extinction coefficients independently using the high spectral resolution lidar technique, thereby providing an ideal data set for evaluating the retrieval. We retrieve aerosol extinction profiles from both HSRL and CALIOP attenuated backscatter data constrained with HSRL, Moderate-Resolution Imaging Spectroradiometer (MODIS), and Multiangle Imaging Spectroradiometer column AOT. The resulting profiles are compared with the aerosol extinction measured by HSRL. Retrievals are limited to cases where the column aerosol thickness is greater than 0.2 over land and 0.15 over water. In the case of large AOT, the results using the Aqua MODIS constraint over water are poorer than Aqua MODIS over land or Terra MODIS. The poorer results relate to an apparent bias in Aqua MODIS AOT over water observed in August 2007. This apparent bias is still under investigation. Finally, aerosol extinction coefficients are derived from CALIPSO backscatter data using AOT from Aqua MODIS for 28 profiles over land and 9 over water. They agree with coincident measurements by the airborne HSRL to within +/-0.016/km +/- 20% for at least two-thirds of land points and within +/-0.028/km +/- 20% for at least two-thirds of ocean points.

Burton, S. P.; Ferrare, R. A.; Hostetler, C. A.; Hair, J. W.; Kittaka, C.; Vaughn, M. A.; Remer, L. A.

2010-01-01

309

Scanning Raman lidar measurements of atmospheric water vapor during a cold frontal passage  

NASA Technical Reports Server (NTRS)

The NASA/Goddard Space Flight Center Scanning Raman Lidar (SRL) had a highly successful deployment at the Department of Energy Cloud and Radiation Testbed (CART) Site in Billings, OK during April, 1994 for the first Intensive Operation Period (IOP) hosted there. During the IOP, the SRL operated from just after sundown to just before sunrise for all declared evenings of operation. The lidar acquired more than 123 hours of data over 15 nights with less than 1 hour of data lost due to minor system malfunction. The SRL acquired data both on the vertical and in scanning mode toward an instrumented 60 m tower during various meteorological conditions such as an intense cold frontal passage on April 15 which is the focus of this presentation.

Whiteman, D. N.; Melfi, S. H.; Starr, D. O. C.; Ferrare, R. A.; Evans, K. D.; Lare, A. R.

1995-01-01

310

Daytime Raman lidar measurements of water vapor during the ARM 1997 water vapor intensive observation period  

SciTech Connect

Because of the importance of water vapor, the ARM program initiated a series of three intensive operating periods (IOPs) at its CART (Cloud And Radiation Testbed) site. The goal of these IOPs is to improve and validate the state-of-the-art capabilities in measuring water vapor. To date, two of the planned three IOPs have occurred: the first was in September of 1996, with an emphasis on the lowest kilometer, while the second was conducted from September--October 1997 with a focus on both the upper troposphere and lowest kilometer. These IOPs provided an excellent opportunity to compare measurements from other systems with those made by the CART Raman lidar. This paper addresses primarily the daytime water vapor measurements made by the lidar system during the second of these IOPs.

Turner, D.D. [Pacific Northwest National Lab., Richland, WA (United States); Goldsmith, J.E.M. [Sandia National Labs., Livermore, CA (United States)

1998-04-01

311

Midlatitude cirrus classification at Rome Tor Vergata through a multichannel Raman-Mie-Rayleigh lidar  

NASA Astrophysics Data System (ADS)

A methodology to identify and characterize cirrus clouds has been developed and applied to the multichannel-multiwavelength Rayleigh-Mie-Raman (RMR) lidar in Rome Tor Vergata (RTV). A set of 167 cirrus cases, defined on the basis of quasi-stationary temporal period conditions, has been selected in a data set consisting of about 500 h of nighttime lidar sessions acquired between February 2007 and April 2010. The derived lidar parameters (effective height, geometrical and optical thickness and mean back-scattering ratio) and the cirrus mid-height temperature (estimated from the radiosonde data of Pratica di Mare, WMO, World Meteorological Organization, site no. 16245) of this sample have been analyzed by the means of a clustering multivariate analysis. This approach identified four cirrus classes above the RTV site: two thin cirrus clusters in mid- and upper troposphere and two thick cirrus clusters in mid-upper troposphere. These results, which are very similar to those derived through the same approach at the lidar site of the Observatoire de Haute-Provence (OHP), allows characterization of cirrus clouds over the RTV site and attests to the robustness of such classification. To acquire some indications about the cirrus generation methods for the different classes, analyses of the extinction-to-backscatter ratio (lidar ratio, LReff, in terms of frequency distribution functions and dependencies on the mid-height cirrus temperature, have been performed. A preliminary study relating some meteorological parameters (e.g., relative humidity, wind components) to cirrus clusters has also been conducted. The RTV cirrus results, recomputed through the cirrus classification by Sassen and Cho (1992), show good agreement with other midlatitude lidar cirrus observations for the relative occurrence of subvisible (SVC), thin and opaque cirrus classes (10%, 49% and 41%, respectively). The overall mean value of cirrus optical depth is 0.37 ± 0.18, while most retrieved LReff values range between 10-60 sr, and the estimated mean value is 31 ± 15 sr, similar to LR values of lower latitude cirrus measurements. The obtained results are consistent with previous studies conducted with different systems and confirm that cirrus classification based on a statistical approach seems to be a good tool both to validate the height-resolved cirrus fields calculated by models and to investigate the key processes governing cirrus formation and evolution. However, the lidar ratio and optical depth analyses are affected by some uncertainties (e.g., lidar error noise, multiple scattering effects, supercooled water clouds) that reduce the confidence of the results. Future studies are needed to improve the characterization of the cirrus optical properties and, thus, the determination of their radiative impact.

Dionisi, D.; Keckhut, P.; Liberti, G. L.; Cardillo, F.; Congeduti, F.

2013-12-01

312

First lidar measurements of water vapor and aerosols from a high-altitude aircraft  

NASA Technical Reports Server (NTRS)

Water vapor plays an important role in many atmospheric processes related to radiation, climate change, atmospheric dynamics, meteorology, the global hydrologic cycle, and atmospheric chemistry, and yet our knowledge of the global distribution of water vapor is very limited. The differential absorption lidar (DIAL) technique has the potential of providing needed high resolution water vapor measurements from aircraft and from space, and the Lidar Atmospheric Sensing Experiment (LASE) is a key step in the development of this capability. The LASE instrument is the first fully engineered, autonomous DIAL system, and it is designed to operate from a high-altitude aircraft (ER-2) and to make water vapor and aerosol profile measurements across the troposphere. The LASE system was flown from the NASA Wallops Flight Facility in a series of engineering flights during September 1994. This paper discusses the characteristics of the LASE system and presents the first LASE measurements of water vapor and aerosol profiles.

Browell, Edward V.; Ismail, Syed

1995-01-01

313

Backscattering measurements of atmospheric aerosols at CO2 laser wavelengths: implications of aerosol spectral structure on differential-absorption lidar retrievals of molecular species.  

PubMed

The volume backscattering coefficients of atmospheric aerosol were measured with a tunable CO2 lidar system at various wavelengths in Utah (a desert environment) along a horizontal path a few meters above the ground. In deducing the aerosol backscattering, a deconvolution (to remove the smearing effect of the long CO2 lidar pulse and the lidar limited bandwidth) and a constrained-slope method were employed. The spectral shape beta(lambda) was similar for all the 13 measurements during a 3-day period. A mean aerosol backscattering-wavelength dependence beta(lambda) was computed from the measurements and used to estimate the error Delta(CL) (concentration-path-length product) in differential-absorption lidar measurements for various gases caused by the systematic aerosol differential backscattering and the error that is due to fluctuations in the aerosol backscattering. The water-vapor concentration-path-length product CL and the average concentration C = /L for a path length L computed from the range-resolved lidar measurements is consistently in good agreement with the water-vapor concentration measured by a meteorological station. However, I was unable to deduce, reliably, the range-resolved water-vapor concentration C(r), which is the derivative of the range-dependent product CL, because of the effect of residual noise caused mainly by errors in the deconvolved lidar measurements. PMID:18319835

Ben-David, A

1999-04-20

314

Lidar measurements of Raman scattering at ultraviolet wavelength from mineral dust over East Asia.  

PubMed

We developed a novel measurement channel that utilizes Raman scattering from silicon dioxide (SiO2) quartz at an ultraviolet wavelength (361 nm). The excitation of the Raman signals is done at the primary wavelength of 355 nm emitted from a lidar instrument. In combination with Raman signals from scattering from nitrogen molecules, we may infer the mineral-quartz-related backscatter coefficient. This technique thus allows us to identify in a comparably direct way the mineral quartz content in mixed pollution plumes that consist, e.g., of a mix of desert dust and urban pollution. We tested the channel for the complex situation of East Asian pollution. We find good agreement of the inferred mineral-quartz-related backscatter coefficient to results obtained with another mineral quartz channel which was operated at 546 nm (primary emission wavelength at 532 nm), the functionality of which has already been shown for a lidar system in Tsukuba (Japan). The advantage of the novel channel is that it provides a better signal-to-noise ratio because of the shorter measurement wavelength. PMID:21263697

Tatarov, Boyan; Müller, Detlef; Shin, Dong Ho; Shin, Sung Kyun; Mattis, Ina; Seifert, Patric; Noh, Young Min; Kim, Y J; Sugimoto, Nobuo

2011-01-17

315

Affordable lidar for atmospheric aerosol and cloud studies  

NASA Astrophysics Data System (ADS)

The Vaisala ceilometer LD-40 'Tropopauser' is a compact eye-safe lidar measuring continuously under all possible climatic conditions and scanning the atmosphere up to a height of 13000 m. It uses laser diodes with 855 nm wavelength that are pulsed at an average frequency of 4000 Hz. The distance of the system's range bins is 7.5 m. Its main purpose is reporting cloud base heights and vertical visibility for aviation safety purposes. This paper focuses on the additional parameters this affordable lidar is able to report due to its advanced technical properties. These parameters include kind of precipitation detected, presence and distance of cirrus, extinction coefficients within clouds, vertical profiles of planetary boundary layer backscatter power, and a comparison of cloud coverage detected by a ceilometer with values obtained with a total cloud coverage scanner. Comparison instruments include regular radiosonde soundings performed at the Meteorological Observatory Lindenberg of the German Weather Service.

Muenkel, Christoph; Leiterer, Ulrich; Dier, Horst-D.

2002-01-01

316

Optical, microphysical, mass and geometrical properties of aged volcanic particles observed over Athens, Greece, during the Eyjafjallajökull eruption in April 2010 through synergy of Raman lidar and sunphotometer measurements  

NASA Astrophysics Data System (ADS)

Vertical profiles of the optical (extinction and backscatter coefficients, lidar ratio and Ångström exponent), microphysical (mean effective radius, mean refractive index, mean number concentration) and geometrical properties as well as the mass concentration of volcanic particles from the Eyjafjallajökull eruption were retrieved at selected heights over Athens, Greece, using multi-wavelength Raman lidar measurements performed during the period 21-24 April 2010. Aerosol Robotic Network (AERONET) particulate columnar measurements along with inversion schemes were initialized together with lidar observations to deliver the aforementioned products. The well-known FLEXPART (FLEXible PARTicle dispersion model) model used for volcanic dispersion simulations is initiated as well in order to estimate the horizontal and vertical distribution of volcanic particles. Compared with the lidar measurements within the planetary boundary layer over Athens, FLEXPART proved to be a useful tool for determining the state of mixing of ash with other, locally emitted aerosol types. The major findings presented in our work concern the identification of volcanic particles layers in the form of filaments after 7-day transport from the volcanic source (approximately 4000 km away from our site) from the surface and up to 10 km according to the lidar measurements. Mean hourly averaged lidar signals indicated that the layer thickness of volcanic particles ranged between 1.5 and 2.2 km. The corresponding aerosol optical depth was found to vary from 0.01 to 0.18 at 355 nm and from 0.02 up to 0.17 at 532 nm. Furthermore, the corresponding lidar ratios (S) ranged between 60 and 80 sr at 355 nm and 44 and 88 sr at 532 nm. The mean effective radius of the volcanic particles estimated by applying inversion scheme to the lidar data found to vary within the range 0.13-0.38 ?m and the refractive index ranged from 1.39+0.009i to 1.48+0.006i. This high variability is most probably attributed to the mixing of aged volcanic particles with other aerosol types of local origin. Finally, the LIRIC (LIdar/Radiometer Inversion Code) lidar/sunphotometric combined inversion algorithm has been applied in order to retrieve particle concentrations. These have been compared with FLEXPART simulations of the vertical distribution of ash showing good agreement concerning not only the geometrical properties of the volcanic particles layers but also the particles mass concentration.

Kokkalis, P.; Papayannis, A.; Amiridis, V.; Mamouri, R. E.; Veselovskii, I.; Kolgotin, A.; Tsaknakis, G.; Kristiansen, N. I.; Stohl, A.; Mona, L.

2013-09-01

317

Atmospheric aerosol backscatter measurements using a tunable coherent CO2 lidar  

NASA Technical Reports Server (NTRS)

Measurements of atmospheric aerosol backscatter coefficients, using a coherent CO2 lidar at 9.25- and 10.6-micron wavelengths, are described. Vertical profiles of the volume backscatter coefficient beta have been measured to a 10-km altitude over the Pasadena, CA, region. These measurements indicate a wide range of variability in beta both in and above the local boundary layer. Certain profiles also indicate a significant enhancement in beta at the 9.25-micron wavelength compared with beta at the 10.6-micron wavelength, which possibly indicates a major contribution to the volume backscatter from ammonium sulfate aerosol particles.

Menzies, R. T.; Kavaya, M. J.; Flamant, P. H.; Haner, D. A.

1984-01-01

318

Scanning Raman Lidar Measurements During the WVIOP2000 and AFWEX Field Experiments  

NASA Technical Reports Server (NTRS)

The NASA/Goddard Space Flight Center Scanning Raman Lidar (SRL) participated in the Water Vapor IOP 2000 (WVIOP2000) and ARM FIRE Water Vapor Experiment (AFWEX) at the DOE SGP CART site in northern Oklahoma. These experiments occurred during the period of September and December, 2000. The goals of both the WVIOP2000 and AFWEX were to better characterize the water vapor measurement capability of numerous sensors in the lower atmosphere and upper troposphere, respectively. The SRL received several hardware upgrades in anticipation of these experiments that permitted improved measurements of water vapor during the daytime and in the upper troposphere (UT). The daytime SRL water vapor error statistics were demonstrated a factor of 2-3 improvement compared to the permanently stationed CART Raman lidar (CARL). The performance of the SRL in the UT showed improvements as well. The technological upgrades that permitted these improved SRL measurements could also be implemented in the CARL system. Data examples demonstrating the new daytime and upper tropospheric measurement capability of the SRL will be shown at the meeting. In addition, preliminary analysis will be presented on several topics: 1) inter comparison of the water vapor measurements for several water vapor sensors including SRL, CARL, the NASA/Langley Lidar Atmospheric Sensing Experiment (LASE) flown onboard the NASA DC-8, in-situ sensors flown on the DC-8, and the Max Planck Institute Differential Absorption Lidar 2) comparison of cirrus cloud measurements using SRL and CARL and 3) case studies of meteorological events that occurred during the IOPs such as a cold frontal passage on the night of September 23.

Whiteman, David N.; Evans, K. D.; Berkoff, T. B.; Demoz, B. D.; DiGirolamo, P.; Smith, David E. (Technical Monitor)

2001-01-01

319

Absolute calibration of LIDAR Thomson scattering systems by rotational Raman scattering  

SciTech Connect

Absolute calibration of LIDAR Thomson scattering systems on large fusion devices may be achieved using rotational Raman scattering. The choice of calibrating gas molecule presents different options and design trade-offs and is likely to be strongly dependent on the laser wavelength selected. Raman scattering of hydrogenic molecules produces a very broad spectrum, however, with far fewer scattered photons than scattering from nitrogen or oxygen at the same gas pressure. Lower laser wavelengths have the advantage that the Raman cross section increases, {sigma}{sub Raman}{proportional_to}1/{lambda}{sub 0}{sup 4}, but the disadvantage that the spectral width of the scattered spectrum decreases, {Delta}{lambda}{sub Raman}{proportional_to}{lambda}{sub 0}{sup 2}. This narrower spectrum makes measurement closer to the laser wavelength necessary. The design of the calibration technique presents a number of challenges. Some of these challenges are generic to all Thomson scattering systems. These include detecting a sufficient number of photoelectrons and designing filters that measure close to the laser wavelength while simultaneously achieving adequate blocking of the laser wavelength. An issue specific to LIDAR systems arises since the collection optics operates over a wide range of depth of field. This wide depth of field has the effect of changing the angle of light incident on the optical interference filter with plasma major radius. The angular distribution then determines the effective spectral transmission function of the interference filter and hence impacts on the accuracy of the absolute calibration. One method that can be used to increase absolute calibration accuracy is collecting both Stokes and anti-Stokes lines with optical filter transmission bands specifically designed to reduce systematic uncertainty.

Scannell, R.; Beurskens, M.; Kempenaars, M.; Naylor, G. [EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Walsh, M. [CHD Department, Diagnostics Division, ITER Organisation, Cadarache, 13106 St. Paul-lez-Durance (France); O'Gorman, T. [Department of Electrical and Electronic Engineering, University College Cork, Cork (Ireland); Pasqualotto, R. [Consorzio RFX-Associazione Euratom-Enea sulla Fusione, Corso Stati Uniti 4, I-35127 Padova (Italy)

2010-04-15

320

Use of Probability Distribution Functions for Discriminating Between Cloud and Aerosol in Lidar Backscatter Data  

NASA Technical Reports Server (NTRS)

In this paper we describe the algorithm hat will be used during the upcoming Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) mission for discriminating between clouds and aerosols detected in two wavelength backscatter lidar profiles. We first analyze single-test and multiple-test classification approaches based on one-dimensional and multiple-dimensional probability density functions (PDFs) in the context of a two-class feature identification scheme. From these studies we derive an operational algorithm based on a set of 3-dimensional probability distribution functions characteristic of clouds and aerosols. A dataset acquired by the Cloud Physics Lidar (CPL) is used to test the algorithm. Comparisons are conducted between the CALIPSO algorithm results and the CPL data product. The results obtained show generally good agreement between the two methods. However, of a total of 228,264 layers analyzed, approximately 5.7% are classified as different types by the CALIPSO and CPL algorithm. This disparity is shown to be due largely to the misclassification of clouds as aerosols by the CPL algorithm. The use of 3-dimensional PDFs in the CALIPSO algorithm is found to significantly reduce this type of error. Dust presents a special case. Because the intrinsic scattering properties of dust layers can be very similar to those of clouds, additional algorithm testing was performed using an optically dense layer of Saharan dust measured during the Lidar In-space Technology Experiment (LITE). In general, the method is shown to distinguish reliably between dust layers and clouds. The relatively few erroneous classifications occurred most often in the LITE data, in those regions of the Saharan dust layer where the optical thickness was the highest.

Liu, Zhaoyan; Vaughan, Mark A.; Winker, Davd M.; Hostetler, Chris A.; Poole, Lamont R.; Hlavka, Dennis; Hart, William; McGill, Mathew

2004-01-01

321

Aerosol source areas identification based on lidar sounding data and back trajectories statistics  

NASA Astrophysics Data System (ADS)

Data of aerosol measurements from October 2004 to December 2006 and a collection of back trajectories arriving at a monitoring site at the measurement instants were used to reveal main aerosol source areas with the help of the residence time analysis. Overall aerosol content in the vertical atmosphere column was measured in Minsk (Belarus; Belsk, Poland) with the help of multiwavelength aerosol lidar and sun-scanning spectral radiometer. 3D five day back trajectories were calculated using wind field data provided by Republican GidroMeteoCenter of Republic Belarus. These data were supplemented with the vertical velocity data and the wind field in the planetary boundary layer. It was found that the most powerful aerosol source areas are beyond of Belarus and Poland territories. They are on the south-east, south and south-west directions to monitoring stations. Revealed sources are close to the expert EMEP aerosol emission data. On the average the south territories affect the most atmosphere conditions at the monitoring sites. About 60% of aerosols in Minsk and about 50% of aerosols in Belsk have a transboundary origin.

Chaikovsky, A.; Kabashnikov, V.; Kuzmin, V.; Pietruczuk, A.; Sobolewski, P.

2007-06-01

322

Evaluations of Thin Cirrus Contamination and Screening in Ground Aerosol Observations Using Collocated Lidar Systems  

NASA Technical Reports Server (NTRS)

Cirrus clouds, particularly sub visual high thin cirrus with low optical thickness, are difficult to be screened in operational aerosol retrieval algorithms. Collocated aerosol and cirrus observations from ground measurements, such as the Aerosol Robotic Network (AERONET) and the Micro-Pulse Lidar Network (MPLNET), provide us with an unprecedented opportunity to examine the susceptibility of operational aerosol products to thin cirrus contamination. Quality assured aerosol optical thickness (AOT) measurements were also tested against the CALIPSO vertical feature mask (VFM) and the MODIS-derived thin cirrus screening parameters for the purpose of evaluating thin cirrus contamination. Key results of this study include: (1) Quantitative evaluations of data uncertainties in AERONET AOT retrievals are conducted. Although AERONET cirrus screening schemes are successful in removing most cirrus contamination, strong residuals displaying strong spatial and seasonal variability still exist, particularly over thin cirrus prevalent regions during cirrus peak seasons, (2) Challenges in matching up different data for analysis are highlighted and corresponding solutions proposed, and (3) Estimation of the relative contributions from cirrus contamination to aerosol retrievals are discussed. The results are valuable for better understanding and further improving ground aerosol measurements that are critical for aerosol-related climate research.

Huang, Jingfeng; Hsu, N. Christina; Tsay, Si-Chee; Holben, Brent N.; Welton, Ellsworth J.; Smirnov, Alexander; Jeong, Myeong-Jae; Hansell, Richard A.; Berkoff, Timothy A.

2012-01-01

323

Airborne DIAL and ground-based Raman lidar measurements of water vapor over the Southern Great Plains  

Microsoft Academic Search

Measurements of water vapor profiles over the Southern Great Plains acquired by two different lidars are presented. NASA's airborne DIAL Lidar Atmospheric Sensing Experiment (LASE) system measured water vapor, aerosol, and cloud profiles during the ARM\\/FIRE Water Vapor Experiment (AFWEX) in November-December 2000 and during the International H2O Project (IHOP) in May-June 2002. LASE measurements acquired during AFWEX are used

Richard A. Ferrare; Edward V. Browell; Syed Ismail; Susan Kooi; Vince G. Brackett; Marian Clayton; Anthony Notari; Carolyn F. Butler; John Barrick; Glenn Diskin; Barry Lesht; Frank J. Schmidlin; Dave Turner; David Whiteman; Larry Miloshevich

2003-01-01

324

Water vapor measurements by Raman lidar during the ARM 1997 water vapor intensive observation period  

SciTech Connect

Water vapor is the most important greenhouse gas in the atmosphere, as it is the most active infrared absorber and emitter of radiation, and it also plays an important role in energy transport and cloud formation. Accurate, high resolution measurements of this variable are critical in order to improve the understanding of these processes and thus their ability to model them. Because of the importance of water vapor, the Department of Energy`s Atmospheric Radiation Measurement (ARM) program initiated a series of three intensive operating periods (IOPs) at its Cloud and Radiation Testbed (CART) site in northern Oklahoma. The goal of these IOPs is to improve and validate the state-of-the-art capabilities in measuring water vapor. To date, two of the planned three IOPs have occurred: the first was in September of 1996, with an emphasis on the lowest kilometer, while the second was conducted from September--October 1997 with a focus on both the upper troposphere and lowest kilometer. The ARM CART site is the home of several different water vapor measurement systems. These systems include a Raman lidar, a microwave radiometer, a radiosonde launch site, and an instrumented tower. During these IOPs, additional instrumentation was brought to the site to augment the normal measurements in the attempt to characterize the CART instruments and to address the need to improve water vapor measurement capabilities. Some of the instruments brought to the CART site include a scanning Raman lidar system from NASA/GSFC, additional microwave radiometers from NOAA/ETL, a chilled mirror that was flown on a tethersonde and kite system, and dewpoint hygrometer instruments flow on the North Dakota Citation. This paper will focus on the Raman lidar intercomparisons from the second IOP.

Turner, D.D. [Pacific Northwest National Lab., Richland, WA (United States); Whiteman, D.N.; Schwemmer, G.K. [National Aeronautics and Space Administration, Greenbelt, MD (United States). Goddard Space Flight Center; Evans, K.D. [Univ. of Maryland, Baltimore, MD (United States)]|[National Aeronautics and Space Administration, Greenbelt, MD (United States). Goddard Space Flight Center; Melfi, S.H. [Univ. of Maryland, Baltimore, MD (United States); Goldsmith, J.E. [Sandia National Labs., Livermore, CA (United States)

1998-04-01

325

Measurements of daytime and upper tropospheric water vapor profiles by Raman lidar  

SciTech Connect

One of the most important atmospheric constituents needed for climate and meteorological studies is water vapor. Water vapor plays an important role in driving atmospheric circulations through latent heat release and in determining the earth`s radiation budget, both through its radiative effects (water vapor is the major greenhouse gas) and cloud formation. The vertical distribution of water vapor is particularly important because it not only determines convective stability but radiative effects are also strongly altitude dependent. At present, considerable controversy exists over the nature of the vertical redistribution of water vapor in a changing climate, and particularly the distribution of water vapor in the upper troposphere. Understanding upper tropospheric moistening processes such as deep convection are therefore of prime importance in addressing the water vapor feedback question. A powerful, proven technique for the continuous measurement of nighttime water vapor profiles (in clear skies or up to the lowest cloud level) with high spatial and temporal resolution is Raman lidar. As part of the U.S. Department of Energy`s (DOE) Atmospheric Radiation Measurement (ARM) program, a high performance dual field-of-view (fov), narrowband Raman lidar system capable of both daytime and nighttime operation has been developed. In this paper, the Sandia Raman lidar system is discussed along with its application to two problems of current interest: daytime tropospheric water vapor profile measurements and upper tropospheric water vapor. We present recent measurements of upper tropospheric moisture made at the DOE Cloud and Radiation Testbed site (CART) in Oklahoma. Recent daytime measurements are also presented.

Bisson, S.E.; Goldsmith, J.E.M.

1995-03-01

326

Aerosol optical and microphysical properties as derived from collocated measurements using polarization lidar and direct sampling  

NASA Astrophysics Data System (ADS)

Collocated and simultaneous measurements of aerosols near the ground were conducted using a lidar and aerosol sampler at Tsukuba, Japan, to clarify the relationship between lidar-derived optical properties and in-situ microphysical properties. The total linear particle depolarization ratio (?p) ranged from 14% to 18% when nonspherical mineral dust particles were predominant in the supermicrometer range on May 7-8, 2008, whereas it ranged from 6% to 7% when spherical sea-salt particles were predominant in that range on September 3-4, 2008. Sulfates and nitrates were predominant in the submicrometer range for these two periods. Water-dialysis analysis on May 6-7 indicated that 29% of the coarse particles were water insoluble, whereas 70% were water soluble or nearly soluble on September 3-4. The ratio of dry mass concentration to the backscattering coefficient (M/?p) was 34-39 g m-2 sr on May 7-8 and 6.2-6.3 g m-2 sr on September 3-4. Our results provide evidence that lidar-derived ?p and ?p capture the aerosol mass concentration and relative abundance of the spherical and nonspherical particles although the microphysical properties vary significantly for individual particles.

Sakai, Tetsu; Nagai, Tomohiro; Mano, Yuzo; Zaizen, Yuji; Inomata, Yayoi

2012-12-01

327

Validation of a novel ultraviolet lidar system with relative Raman-scattering cross sections determined from atmospheric measurements.  

PubMed

We have developed an ultraviolet lidar system in which the upwelled laser beam and the telescope field of view can be made to overlap at any specified location in space. We refer to this system as the Selected Overlap Lidar Experiment. We discuss validation of our system by calculating relative Raman-scattering cross sections (with respect to the nitrogen scattering cross section) for oxygen and water vapor using data collected during field operations of our lidar. Our relative cross sections are consistent with those obtained by other researchers making similar measurements in laboratory environments. PMID:11905564

Farah, Ahmed M; Venable, Demetrius D; Thorpe, Arthur N; Marsh, Frederick; Heaps, William S

2002-01-20

328

The application of a scanning, water Raman-lidar as a probe of the atmospheric boundary layer  

SciTech Connect

A scanning water Raman-lidar has been designed and constructed to study surface-atmosphere processes with high spatial and temporal resolution. Analytical methods are also being developed to analyze the information this lidar can take. The lidar is able to measure the absolute water content and then calculate evaporative fluxes and other atmospheric parameters quickly over relatively large areas. This capability provides new opportunities for the study of microscale atmospheric processes. Examples of data and analyses are presented. An analysis is presented which determines the spatial and temporal resolution which is required of a remote sensor in the boundary layer.

Eichinger, W.E.; Cooper, D.I. (Los Alamos National Lab., NM (United States)); Parlange, M.; Katul, G. (Univ. of California, Davis (United States))

1993-01-01

329

Using Airborne High Spectral Resolution Lidar Data to Evaluate Combined Active Plus Passive Retrievals of Aerosol Extinction Profiles  

NASA Technical Reports Server (NTRS)

Aerosol extinction profiles are derived from backscatter data by constraining the retrieval with column aerosol optical thickness (AOT), for example from coincident MODIS observations and without reliance on a priori assumptions about aerosol type or optical properties. The backscatter data were acquired with the NASA Langley High Spectral Resolution Lidar (HSRL). The HSRL also simultaneously measures extinction independently, thereby providing an ideal data set for evaluating the constrained retrieval of extinction from backscatter. We will show constrained extinction retrievals using various sources of column AOT, and examine comparisons with the HSRL extinction measurements and with a similar retrieval using data from the CALIOP lidar on the CALIPSO satellite.

Burton, S. P.; Ferrare, R. A.; Kittaka, C.; Hostetler, C. A.; Hair, J. W.; Obland, M. D.; Rogers, R. R.; Cook, A. L.; Haper, D. B.

2008-01-01

330

Benefit of depolarization ratio at ? = 1064 nm for the retrieval of the aerosol microphysics from lidar measurements  

NASA Astrophysics Data System (ADS)

A better quantification of aerosol microphysical and optical properties is required to improve the modelling of aerosol effects on weather and climate. This task is methodologically demanding due to the huge diversity of aerosol composition and of their shape and size distribution, and due to the complexity of the relation between the microphysical and optical properties. Lidar remote sensing is a valuable tool to gain spatially and temporally resolved information on aerosol properties. Advanced lidar systems provide sufficient information on the aerosol optical properties for the retrieval of important aerosol microphysical properties. Recently, the mass concentration of transported volcanic ash, which is relevant for the flight safety of airplanes, was retrieved from measurements of such lidar systems in Southern Germany. The relative uncertainty of the retrieved mass concentration was on the order of ±50%. The present study investigates improvements of the retrieval accuracy when the capability of measuring the linear depolarization ratio at 1064 nm is added to the lidar setup. The lidar setups under investigation are based on the setup of MULIS and POLIS of the LMU in Munich which measure the linear depolarization ratio at 355 nm and 532 nm with high accuracy. By comparing results of retrievals applied to simulated lidar measurements with and without the depolarization at 1064 nm it is found that the availability of 1064 nm depolarization measurements reduces the uncertainty of the retrieved mass concentration and effective particle size by a factor of about 2-3. This significant improvement in accuracy is the result of the increased sensitivity of the lidar setup to larger particles. However, the retrieval of the single scattering albedo, which is relevant for the radiative transfer in aerosol layers, does hardly benefit from the availability of 1064 nm depolarization measurements.

Gasteiger, J.; Freudenthaler, V.

2014-05-01

331

High resolution Raman lidar measurements for the characterization of the water vapour inflow in the frame of the Hydrological Cycle in the Mediterranean Experiment  

NASA Astrophysics Data System (ADS)

The University of BASILicata Raman Lidar system (BASIL) was deployed in Candillargues (Southern France, Lat: 43°37' N, Long: 4° 4' E) in the frame of the Hydrological Cycle in the Mediterranean Experiment - HyMeX. Within this experiment a major field campaign (Special Observation Period 1-SOP1, September to November 2012) took place over the Northwestern Mediterranean Sea and its surrounding coastal regions in France, Italy and Spain, with a specific focus on the study of heavy precipitation and flash-flood events. During HyMeX-SOP1, BASIL operated between 5 September and 5 November 2012, collecting more than 600 hours of measurements, distributed over 51 measurement days and 19 intensive observation periods (IOPs). The major feature of BASIL is represented by its capability to perform high-resolution and accurate measurements of atmospheric temperature and water vapour, both in daytime and night-time, based on the application of the rotational and vibrational Raman lidar techniques in the UV (Di Girolamo et al., 2004, 2006, 2009). This makes it an ideal tool for the characterization of the water vapour inflow in Southern France, which is important piece of information to improve the comprehension and forecasting capabilities of heavy precipitations in the Northwestern Mediterranean basin. Preliminary measurements from this field deployment will be illustrated and discussed at the Conference. These measurements allow to monitor and characterize the marine atmospheric flow that transport moist and conditionaly unstable air towards the coasts, which is feeding into the HPE events in Southern France. Measurements from BASIL can also be used to better characterize Planetary Boundary Layer moisture transport mechanisms from the surface to deep-convection systems. Besides temperature and water vapour, BASIL also provides measurements of the particle (aerosol/cloud) backscattering coefficient at 355, 532 and 1064 nm, of the particle extinction coefficient at 355 and 532 nm and of particle depolarization at 355 and 532 nm. The simultaneous characterization of the three-dimensional fields of water vapour, temperature and aerosol/cloud have the potential to lead to a better comprehension of the life cycle of HPE events around the Mediterranean Basin and ultimately lead to an improvement of cloud microphysical parameterization in Numerical Weather Prediction (NWP) models. References Di Girolamo, P., R. Marchese, D. N. Whiteman, B. B. Demoz, 2004: Rotational Raman Lidar measurements of atmospheric temperature in the UV, Geophysical Research Letters, 31, L01106, doi:10.1029/2003GL018342. Di Girolamo, P., A. Behrendt, and V. Wulfmeyer, 2006:. Spaceborne profiling of atmospheric temperature and particle extinction with pure rotational Raman lidar and of relative humidity in combination with differential absorption lidar: performance simulations, Applied Optics, 45, No. 11, 2474-2494, doi:10.1364/AO.45.002474. Di Girolamo, P., D. Summa, R. Ferretti, 2009: Multiparameter Raman Lidar Measurements for the Characterization of a Dry Stratospheric Intrusion Event, Journal of Atmospheric and Oceanic Technology, 26, No. 9, pp. 1742-1762, doi:10.1175/2009JTECHA1253.1.

Di Girolamo, Paolo; Cacciani, Marco; Stelitano, Dario; Summa, Donato

2013-04-01

332

Compact Ozone Lidar for Atmospheric Ozone and Aerosol Measurements  

NASA Technical Reports Server (NTRS)

A small compact ozone differential absorption lidar capable of being deployed on a small aircraft or unpiloted atmospheric vehicle (UAV) has been tested. The Ce:LiCAF tunable UV laser is pumped by a quadrupled Nd:YLF laser. Test results on the laser transmitter demonstrated 1.4 W in the IR and 240 mW in the green at 1000 Hz. The receiver consists of three photon-counting channels, which are a far field PMT, a near field UV PMT, and a green PMT. Each channel was tested for their saturation characteristics.

Marcia, Joel; DeYoung, Russell J.

2007-01-01

333

Design of an airborne lidar for stratospheric aerosol measurements  

NASA Technical Reports Server (NTRS)

A modular, multiple-telescope receiving concept is developed to gain a relatively large receiver collection aperture without requiring extensive modifications to the aircraft. This concept, together with the choice of a specific photodetector, signal processing, and data recording system capable of maintaining approximately 1% precision over the required large signal amplitude range, is found to be common to all of the options. It is recommended that development of the lidar begin by more detailed definition of solutions to these important common signal detection and recording problems.

Evans, W. E.

1977-01-01

334

Calibration of the Purple Crow Lidar vibrational Raman water-vapour mixing ratio and temperature measurements  

NASA Astrophysics Data System (ADS)

Purple Crow Lidar (PCL) measurements of the vibrational Raman-shifted backscatter from water vapour and nitrogen molecules allows height profiles of the water-vapour mixing ratio to be measured from 500 m up into the lower stratosphere. In addition, the Raman nitrogen measurements allow the determination of temperature profiles from about 10 to 40 km altitude. However, external calibration of these measurements is necessary to compensate for instrumental effects, uncertainties in our knowledge of the relevant molecular cross sections, and atmospheric transmission. A comparison of the PCL-derived water-vapour concentration and temperature profiles with routine radiosonde measurements from Detroit and Buffalo on 37 and 141 nights, respectively, was undertaken to provide this calibration. The calibration is then applied to the measurements and monthly mean-temperature and water-vapour profiles are determined.

Argall, P. S.; Sica, R. J.; Bryant, C. R.; Algara-Siller, M.; Schijns, H.

2007-02-01

335

Three-wavelength dual differential absorption lidar method for stratospheric ozone measurements in the presence of volcanic aerosols.  

PubMed

We present a three-wavelength dual differential absorption lidar (dual-DIAL) method with which one can obtain an accurate stratospheric ozone profile in the presence of volcanic aerosols. Results of theoretical analysis and comparisons with conventional DIAL and backscatter correction methods show that the three-wavelength dual-DIAL method greatly reduces the effect of volcanic aerosol on stratospheric ozone measurements, and system errors that are due to aerosols are kept at a low level. In addition this method is almost completely insensitive to wavelength dependence of aerosol backscatter, its spatial change, and spatial inhomogeneity of aerosol loading. Therefore, one does not need to know detailed information about these aerosol properties, and accurate stratospheric ozone profiles can be obtained directly from lidar return signals. An example of the experimental result indicates that the proposed method is effective. PMID:18250798

Wang, Z; Nakane, H; Hu, H; Zhou, J

1997-02-20

336

NASA/GSFC Scanning Raman Lidar Measurements of Water Vapor and Cirrus Clouds during WVIOP2000 and AFWEX  

NASA Technical Reports Server (NTRS)

The NASA/GSFC Scanning Raman Lidar (SRL) was deployed to the Southern Great Plains CART site from September - December, 2000 and participated in two field campaigns devoted to comparisons of various water vapor measurement technologies and calibrations. These campaigns were the Water Vapor Intensive Operations Period 2000 (WVIOP2000) and the ARM FIRE Water Vapor Experiment (AFWEX). WVIOP2000 was devoted to validating water vapor measurements in the lower atmosphere while AFWEX had similar goals but for measurements in the upper troposphere. The SRL was significantly upgraded both optically and electronically prior to these field campaigns. These upgrades enabled the SRL to demonstrate the highest resolution lidar measurements of water vapor ever acquired during the nighttime and the highest S/N Raman lidar measurements of water vapor in the daytime; more than a factor of 2 increase in S/N versus the DOE CARL Raman Lidar. Examples of these new measurement capabilities along with comparisons of SRL and CARL, LASE, MPI-DIAL, in-situ sensors, radiosonde, and others will be presented. The profile comparisons of the SRL and CARL have revealed what appears to be an overlap correction or countrate correction problem in CARL. This may be involved in an overall dry bias in the precipitable water calibration of CARL with respect to the MWR of approx. 4%. Preliminary analysis indicates that the application of a temperature dependent correction to the narrowband Raman lidar measurements of water vapor improves the lidar/Vaisala radiosonde comparisons of upper tropospheric water vapor. Other results including the comparison of the first-ever simultaneous measurements from four water vapor lidar systems, a bore-wave event captured at high resolution by the SRL and cirrus cloud optical depth studies using the SRL and CARL will be presented at the meeting.

Whiteman, D. N.; Evans, K. D.; DiGirolamo, P.; Demoz, B. B.; Turner, D.; Comstock, J.; Ismail, S.; Ferrare, R. A.; Browell, E. V.; Goldsmith, J. E. M.; Abshire, James B. (Technical Monitor)

2002-01-01

337

AGLITE: a multi-wavelength lidar for measuring emitted aerosol concentrations and fluxes and air motion from agricultural facilities  

NASA Astrophysics Data System (ADS)

AGLITE is a multi-wavelength lidar developed for the Agricultural Research Service (ARS), United States Department of Agriculture (USDA) and its program on particle emissions from animal production facilities. The lidar transmitter is a 10 kHz pulsed NdYAG laser at 355, 532 and 1064 nm. We analyze lidar backscatter and extinction to extract aerosol physical properties. All-reflective optics and dichroic and interferometric filters permit all wavelengths to be measured simultaneously, day or night, using photon counting by MTs, an APD, and fast data acquisition. The lidar housing is a transportable trailer suitable for all-weather operation at any accessible site. We direct the laser and telescope FOVs to targets of interest in both azimuth and elevation. The lidar has been applied in atmospheric studies at a swine production farm in Iowa and a dairy in Utah. Prominent aerosol plumes emitted from the swine facility were measured as functions of temperature, turbulence, stability and the animal feed cycle. Particle samplers and turbulence detectors were used by colleagues specializing in those fields. Lidar measurements also focused on air motion as seen by scans of the farm volume. The value of multi-wavelength, eye-safe lidars for agricultural aerosol measurements has been confirmed by the successful operation of AGLITE.

Wilkerson, Thomas D.; Bingham, Gail E.; Zavyalov, Vladimir V.; Swasey, Jason A.; Hancock, Jed J.; Crowther, Blake G.; Cornelsen, Scott S.; Marchant, Christian; Cutts, James N.; Huish, David C.; Earl, Curtis L.; Andersen, Jan M.; Cox, McLain L.

2006-12-01

338

Measurements of Aerosol Vertical Profiles and Optical Properties during INDOEX 1999 Using Micro-Pulse Lidars  

NASA Technical Reports Server (NTRS)

Micro-pulse lidar systems (MPL) were used to measure aerosol properties during the Indian Ocean Experiment (INDOEX) 1999 field phase. Measurements were made from two platforms: the NOAA ship RN Ronald H. Brown, and the Kaashidhoo Climate Observatory (KCO) in the Maldives. Sunphotometers were used to provide aerosol optical depths (AOD) needed to calibrate the MPL. This study focuses on the height distribution and optical properties (at 523 nm) of aerosols observed during the campaign. The height of the highest aerosols (top height) was calculated and found to be below 4 km for most of the cruise. The marine boundary layer (MBL) top was calculated and found to be less than 1 km. MPL results were combined with air mass trajectories, radiosonde profiles of temperature and humidity, and aerosol concentration and optical measurements. Humidity varied from approximately 80% near the surface to 50% near the top height during the entire cruise. The average value and standard deviation of aerosol optical parameters were determined for characteristic air mass regimes. Marine aerosols in the absence of any continental influence were found to have an AOD of 0.05 +/- 0.03, an extinction-to-backscatter ratio (S-ratio) of 33 +/- 6 sr, and peak extinction values around 0.05/km (near the MBL top). The marine results are shown to be in agreement with previously measured and expected values. Polluted marine areas over the Indian Ocean, influenced by continental aerosols, had AOD values in excess of 0.2, S-ratios well above 40 sr, and peak extinction values approximately 0.20/km (near the MBL top). The polluted marine results are shown to be similar to previously published values for continental aerosols. Comparisons between MPL derived extinction near the ship (75 m) and extinction calculated at ship-level using scattering measured by a nephelometer and absorption using a PSAP were conducted. The comparisons indicated that the MPL algorithm (using a constant S-ratio throughout the lower troposphere) calculates extinction near the surface in agreement with the ship-level measurements only when the MBL aerosols are well mixed with aerosols above. Finally, a review of the MPL extinction profiles showed that the model of aerosol vertical extinction developed during an earlier INDOEX field campaign (at the Maldives) did not correctly describe the true vertical distribution over the greater Indian Ocean region. Using the average extinction profile and AOD obtained during marine conditions, a new model of aerosol vertical extinction was determined for marine atmospheres over the Indian Ocean. A new model of aerosol vertical extinction for polluted marine atmospheres was also developed using the average extinction profile and AOD obtained during marine conditions influenced by continental aerosols.

Welton, Ellsworth J.; Voss, Kenneth J.; Quinn, Patricia K.; Flatau, Piotr J.; Markowicz, Krzysztof; Campbell, James R.; Spinhirne, James D.; Gordon, Howard R.; Johnson, James E.; Starr, David OC. (Technical Monitor)

2001-01-01

339

Study of the statistics of water vapor mixing ratio determined from Raman lidar measurements.  

PubMed

The statistical properties of atmospheric water vapor mixing ratio (WVMR) determined as the ratio of Raman lidar signals backscattered from water vapor and nitrogen molecules are studied. It is shown that WVMR estimates can be biased by a small percentage at low signal photon-counting rates due to fluctuations in the nitrogen signal in the denominator of the ratio, the magnitude of the bias being linked to the signal-to-noise ratio of the nitrogen signal. This is particularly important when unbiased estimates are required as in the case of climate studies and global positioning system (GPS) signal calibration. Different bias corrections and a modified ratio formulation are proposed in order to correct or eliminate this bias. The method is successfully applied in processing signals obtained with an experimental Raman lidar system devoted to calibrate GPS signals for slant path delays. It is shown to reduce biases into negligible values in both WVMR and wet path delay estimates in the range interval of 0-7 km. PMID:18026556

Bosser, Pierre; Bock, Olivier; Thom, Christian; Pelon, Jacques

2007-11-20

340

Towards quantifying mesoscale flows in the troposphere using Raman lidar and sondes  

SciTech Connect

Water vapor plays an important role in the energetics of the boundary layer processes which in turn play a key role in regulating regional and global climate. It plays a primary role in Earth`s hydrological cycle, in radiation balance as a direct absorber of infrared radiation, and in atmospheric circulation as a latent heat energy source as well as in determining cloud development and atmospheric stability. Water vapor concentration, expressed as a mass mixing ratio, is conserved in all meteorological processes except condensation and evaporation. This property makes it an ideal choice for studying many of the atmosphere`s dynamic features. Raman scattering measurements from lidar also allow retrieval of water vapor mixing ratio profiles at high temporal and vertical resolution. Raman lidars sense water vapor to altitudes not achievable with towers and surface systems, sample the atmosphere at much higher temporal resolution than radiosondes or satellites, and do not require strong vertical gradients or turbulent fluctuations in temperature that is required by acoustic sounders and radars. Analysis of highly resolved water vapor profiles are used here to characterize two important mesoscale flows: thunderstorm outflows and a cold front passage.

Demoz, B.; Evans, K. [Univ. of Maryland Baltimore County, Baltimore, MD (United States); Starr, D. [NASA, Greenbelt, MD (United States). Goddard Space Flight Center] [and others

1998-03-01

341

Benefit of depolarization ratio at ? = 1064 nm for the retrieval of the aerosol microphysics from lidar measurements  

NASA Astrophysics Data System (ADS)

A better quantification of aerosol properties is required for improving the modelling of aerosol effects on weather and climate. This task is methodologically demanding due to the diversity of the microphysical properties of aerosols and the complex relation between their microphysical and optical properties. Advanced lidar systems provide spatially and temporally resolved information on the aerosol optical properties that is sufficient for the retrieval of important aerosol microphysical properties. Recently, the mass concentration of transported volcanic ash, which is relevant for the flight safety of aeroplanes, was retrieved from measurements of such lidar systems in southern Germany. The relative uncertainty of the retrieved mass concentration was on the order of ±50%. The present study investigates improvements of the retrieval accuracy when the capability of measuring the linear depolarization ratio at 1064 nm is added to the lidar setup. The lidar setups under investigation are based on those of MULIS and POLIS of the Ludwig-Maximilians-Universität in Munich (Germany) which measure the linear depolarization ratio at 355 and 532 nm with high accuracy. The improvements are determined by comparing uncertainties from retrievals applied to simulated measurements of this lidar setup with uncertainties obtained when the depolarization at 1064 nm is added to this setup. The simulated measurements are based on real lidar measurements of transported Eyjafjallajökull volcano ash. It is found that additional 1064 nm depolarization measurements significantly reduce the uncertainty of the retrieved mass concentration and effective particle size. This significant improvement in accuracy is the result of the increased sensitivity of the lidar setup to larger particles. The size dependence of the depolarization does not vary strongly with refractive index, thus we expect similar benefits for the retrieval in case of measurements of other volcanic ash compositions and also for transported desert dust. For the retrieval of the single scattering albedo, which is relevant to the radiative transfer in aerosol layers, no significant improvements were found.

Gasteiger, J.; Freudenthaler, V.

2014-11-01

342

Six-channel polychromator design and implementation for the UPC elastic/Raman lidar  

NASA Astrophysics Data System (ADS)

A 6-channel dichroic-based polychromator is presented as the spectrally selective unit for the U.P.C. elastic/Raman lidar. Light emission is made at 355-nm (ultraviolet, UV), 532-nm (visible, VIS) and 1064-nm (near infrared, NIR) wavelengths. In reception, the polychromator is the spectral separation unit that separates the laser backscattered composite return into 3 elastic (355, 532, 1064-nm wavelengths) and 3 Raman channels (386.7, 607.4 and 407.5-nm (water-vapor) wavelengths). The polychromator houses photo-multiplier tubes (PMT) for all the channels except for the NIR one, which is avalanche photodiode (APD) based. The optomechanical design uses 1-inch optics and Eurorack standards. The APD-based receiver uses a XY-axis translation/elevation micro-positioning stage due to its comparatively small active area and motorised neutral density filters are used in all PMT-based channels to avoid detector saturation. The design has been specially optimized to provide homogeneous spatial light distribution onto the photodetectors and good mechanical repeatability. All channels are acquired in mixed analog and photon-counting mode using Licel® transient recorders, which are controlled by means of a user friendly LabVIEWTM interface. The paper focuses on the main polychromator optical design parameters, that is, light collimation trade-offs, end-to-end transmissivity, net channel responsivity, light distribution and spot size onto the photodetectors. The polychromator along with the rest of the U.P.C. lidar system has successfully been tested during a recent lidar system intercomparison campaign carried out in Madrid, Spain) during Oct. 2010.

Kumar, Dhiraj; Rocadenbosch, Francesc; Sicard, Micha"l.; Comeron, Adolfo; Muñoz, Constantino; Lange, Diego; Tomás, Sergio; Gregorio, Eduard

2011-11-01

343

Performance of the Lidar Design and Data Algorithms for the GLAS Global Cloud and Aerosol Measurements  

NASA Technical Reports Server (NTRS)

The Geoscience Laser Altimeter System (GLAS) launched in early 2003 is the first polar orbiting satellite lidar. The instrument design includes high performance observations of the distribution and optical scattering cross sections of atmospheric clouds and aerosol. The backscatter lidar operates at two wavelengths, 532 and 1064 nm. For the atmospheric cloud and aerosol measurements, the 532 nm channel was designed for ultra high efficiency with solid state photon counting detectors and etalon filtering. Data processing algorithms were developed to calibrate and normalize the signals and produce global scale data products of the height distribution of cloud and aerosol layers and their optical depths and particulate scattering cross sections up to the limit of optical attenuation. The paper will concentrate on the effectiveness and limitations of the lidar channel design and data product algorithms. Both atmospheric receiver channels meet and exceed their design goals. Geiger Mode Avalanche Photodiode modules are used for the 532 nm signal. The operational experience is that some signal artifacts and non-linearity require correction in data processing. As with all photon counting detectors, a pulse-pile-up calibration is an important aspect of the measurement. Additional signal corrections were found to be necessary relating to correction of a saturation signal-run-on effect and also for daytime data, a small range dependent variation in the responsivity. It was possible to correct for these signal errors in data processing and achieve the requirement to accurately profile aerosol and cloud cross section down to 10-7 llm-sr. The analysis procedure employs a precise calibration against molecular scattering in the mid-stratosphere. The 1064 nm channel detection employs a high-speed analog APD for surface and atmospheric measurements where the detection sensitivity is limited by detector noise and is over an order of magnitude less than at 532 nm. A unique feature of the GLAS is a full acquisition of the surface return pulse, which has important application to the atmospheric transmission retrieval.

Spinhirne, James D.; Palm, Stephen P.; Hlavka, Dennis L.; Hart, William D.

2007-01-01

344

Observation of volcanic aerosol transfer over Siberian - Far Eastern lidar network  

NASA Astrophysics Data System (ADS)

Now there are three stratospheric lidar stations in Siberia and Far East. The first of them has been in operation for a few decades in Institute of Atmosphere Optics SB RAS, Tomsk. The other two stations were build under technical support of Tomsk specialists in U.G. Shafer Institute of Cosmophysical Iinvestigations and Aeronomy SB RAS, Yakutsk, in 2004 and in Institute of Cosmophysical Researches and Radio Wave Propagation, Kamchatka, in 2007. These three stations are intended for monitoring of vertical structure of aerosol and temperature fields in the middle atmosphere. The presence of ionospheric and meteorological stations at these locations enables to compare lidar stations and satellite data with ground based and balloon data. Several considerable eruptions have taken place in northern hemisphere over the last three years, Kasatochi and Okmok volcano eruptions on Aleutian Islands in summer of 2008, and Sarychev peak volcano eruption in summer of 2009 , as well as Eyjafijallajokull volcano eruption in spring of 2010 in Iceland. Aerosol layers, resulting from volcanic activity, have been observed in the upper troposphere and the stratosphere over Tomsk. Confirmation of volcanic origin of aerosol layers has been obtained by back trajectories method. In these investigations the original procedure of back trajectory calculations based on wind velocity satellite data from BADC has been applied. The obtained trajectories correspond well to trajectories calculated by application of HYSPLIT software package, available at NOAA site. The results of calculations, in their turn, have been confirmed by satellite data on carbon dioxide atmosphere pollution after volcanic eruption. As a result of lidar monitoring of an aerosol during volcanic eruption such as Sarychev peak, it has been revealed, that even rather weak eruptions can result in the significant filling up of the stratosphere with volcanic eruption product. This investigation is supported under grant 10-05-00907a by the Russian Fund of Basic Research and Ministry of Science and Education of Russian Federation ( project ? 2.1.1/ 6996).

Cheremisin, A. A.; Marichev, V. N.; Novikov, P. V.

2010-09-01

345

Instrumental correction of the uneven PMT aging effect on the calibration constant of a water vapor Raman lidar  

NASA Astrophysics Data System (ADS)

The water vapor profile derived from Raman lidar measurements is obtained by taking the ratio of water vapor and nitrogen Raman-shifted signals. The proportionality factor that converts the signal ratio to water vapor/air mixing ratio is referred to as lidar calibration constant. The calibration constant depends on the water vapor and nitrogen Raman cross sections and on the efficiencies of the respective Raman channels including the photomultiplier tube (PMT) efficiency. Unequal, gradual changes in the PMTs efficiencies due to fatigue effects may lead to gradual alteration of the calibration constant. Such an effect has been observed during the seven- year continuous operation of the RAman Lidar for Moisture Observations (RALMO)1 . A more detailed research2 , has shown that the calibration constant change is more pronounced during summer time probably due to the higher light exposure. Periodical recalibration of the lidar with radiosonde measurements is used to correct the calibration constant. This approach, however, induces additional systematic errors due to the nature of the calibration procedure and the dispersion of the radiosonde parameters. We present a new, instrumental method for automated correction of the calibration constant. By this method, a correction factor is deduced from the ratio of the signals of the two photomultipliers which are illuminated simultaneously by a single, stabilized UV-LED light source. The LED light is delivered to the photomultipliers by a set of additional mirrors and a beam splitter installed inside the grating polychromator used to separate the Raman signals. The correction measurements are taken before midnight. To minimize the data loss, the lidar's laser is operated during the measurements and a shatter at the polychromator entrance is used to block any atmospheric signals. The use of stabilized light source also allows evaluating the individual photomultipliers aging rates, essential for the instrument maintenance.

Simeonov, Valentin; Fastig, Shlomo; Haefele, Alexander; Calpini, Bertrand

2014-10-01

346

Cloud and Aerosol Measurements from the GLAS Polar Orbiting Lidar: First Year Results  

NASA Technical Reports Server (NTRS)

The Geoscience Laser Altimeter System (GLAS) launched in 2003 is the first polar orbiting satellite lidar. The instrument was designed for high performance observations of the distribution and optical scattering cross sections of clouds and aerosol. GLAS is approaching six months of on orbit data operation. These data from thousands of orbits illustrate the ability of space lidar to accurately and dramatically measure the height distribution of global cloud and aerosol to an unprecedented degree. There were many intended science applications of the GLAS data and significant results have already been realized. One application is the accurate height distribution and coverage of global cloud cover with one goal of defining the limitation and inaccuracies of passive retrievals. Comparison to MODIS cloud retrievals shows notable discrepancies. Initial comparisons to NOAA 14&15 satellite cloud retrievals show basic similarity in overall cloud coverage, but important differences in height distribution. Because of the especially poor performance of passive cloud retrievals in polar regions, and partly because of high orbit track densities, the GLAS measurements are by far the most accurate measurement of Arctic and Antarctica cloud cover from space to date. Global aerosol height profiling is a fundamentally new measurement from space with multiple applications. A most important aerosol application is providing input to global aerosol generation and transport models. Another is improved measurement of aerosol optical depth. Oceanic surface energy flux derivation from PBL and LCL height measurements is another application of GLAS data that is being pursued. A special area of work for GLAS data is the correction and application of multiple scattering effects. Stretching of surface return pulses in excess of 40 m from cloud propagation effects and other interesting multiple scattering phenomena have been observed. As an EOS project instrument, GLAS data products are openly available to the science community. First year results from GLAS are summarized.

Spinhirne, J. D.; Palm, S. P.; Hlavka, D. L.; Hart, W. D.; Mahesh, A.; Welton, E. J.

2004-01-01

347

El Chichon aerosols in the stratosphere: Analyses of lidar data and calculations of radiation budget  

NASA Technical Reports Server (NTRS)

Lidar observation at Fukuoka has provided over four years the data of ElChichon aerosols in the stratosphere. Analyses of the data show that an enormous amount of volcanic aerosols has continuously decreased since the beginning of 1983 with significant fluctuations. These fluctuations reveal themselves as a seasonal variation of aerosol content with a maximum in winter-spring and a minimum in summer. The vertical structure of the aerosol layer also shows the seasonal variation. Although the height of a peak around 18 km in the vertical profile of scattering ratio show littel variation, the higher second peak appears frequently from late fall and the lower third peak from late winter to late spring just as two and more tropopauses appear in these periods. The mechanism which causes the seasonal variation will be discussed in terms of the transport by the atmoshperic circulation and the removal through the tropopause gap. Radiation budget in the atmosphere was calculated taking into account the large amount of aerosols observed in the early stages of the El Chichon event. The heating rate of the atmosphere is more than 1 K in the bottom region of the stratosphere even in the nighttime. The possible effect of the volcanic aerosols on the other geophysical phenomena will be discussed using the calculated values of the heating rate.

Fujiwara, M.; Akiyoshi, H.; Otsuka, N.

1986-01-01

348

Measurements of high resolution atmospheric water-vapor profiles by use of a solar blind Raman lidar.  

PubMed

Presented here are preliminary results of measurements of atmospheric water-vapor profiles which were obtained by use of a solar blind Raman lidar. Interesting new features of the data gathered include high spatial resolution during daylight hours along with associated measurement errors. PMID:18216910

Cooney, J; Petri, K; Salik, A

1985-01-01

349

Combined Raman lidar for the measurement of atmospheric temperature, water vapor, particle extinction coefficient, and particle backscatter coefficient.  

PubMed

The lidar of the Radio Science Center for Space and Atmosphere (RASC; Kyoto, Japan) make use of two pure rotational Raman (MR) signals for both the measurement of the atmospheric temperature profile and the derivation of a temperature-independent Raman reference signal. The latter technique is new and leads to significant smaller measurement uncertainties compared with the commonly used vibrational Raman lidar technique. For the measurement of temperature, particle extinction coefficient, particle backscatter coefficient, and humidity simultaneously, only four lidar signal are needed the elastic Cabannes backscatter signal, two RR signals, and the vibrational Raman water vapor signal. The RASC lidar provides RR signals of unprecedented intensity. Although only 25% of the RR signal intensities can be used with the present data-acquisition electronics, the 1-s -statistical uncertainty of nighttime temperature measurements is lower than for previous systems and is < 1K up to 11-km height for, e.g., a resolution of 500 m and 9 min. In addition, RR measurements in daytime also have become feasible. PMID:12510935

Behrendt, Andreas; Nakamura, Takuji; Onishi, Michitaka; Baumgart, Rudolf; Tsuda, Toshitaka

2002-12-20

350

Global View of Aerosol Vertical Distributions from CALIPSO Lidar Measurements and GOCART Simulations: Regional and Seasonal Variations  

NASA Technical Reports Server (NTRS)

This study examines seasonal variations of the vertical distribution of aerosols through a statistical analysis of the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) lidar observations from June 2006 to November 2007. A data-screening scheme is developed to attain good quality data in cloud-free conditions, and the polarization measurement is used to separate dust from non-dust aerosol. The CALIPSO aerosol observations are compared with aerosol simulations from the Goddard Chemistry Aerosol Radiation Transport (GOCART) model and aerosol optical depth (AOD) measurements from the MODerate resolution Imaging Spectroradiometer (MODIS). The CALIPSO observations of geographical patterns and seasonal variations of AOD are generally consistent with GOCART simulations and MODIS retrievals especially near source regions, while the magnitude of AOD shows large discrepancies in most regions. Both the CALIPSO observation and GOCART model show that the aerosol extinction scale heights in major dust and smoke source regions are generally higher than that in industrial pollution source regions. The CALIPSO aerosol lidar ratio also generally agrees with GOCART model within 30% on regional scales. Major differences between satellite observations and GOCART model are identified, including (1) an underestimate of aerosol extinction by GOCART over the Indian sub-continent, (2) much larger aerosol extinction calculated by GOCART than observed by CALIPSO in dust source regions, (3) much weaker in magnitude and more concentrated aerosol in the lower atmosphere in CALIPSO observation than GOCART model over transported areas in midlatitudes, and (4) consistently lower aerosol scale height by CALIPSO observation than GOCART model. Possible factors contributing to these differences are discussed.

Yu, Hongbin; Chin, Mian; Winker, David M.; Omar, Ali H.; Liu, Zhaoyan; Kittaka, Chieko; Diehl, Thomas

2010-01-01

351

Offshore Wind Measurements Using Doppler Aerosol Wind Lidar (DAWN) at NASA Langley Research Center  

NASA Technical Reports Server (NTRS)

The latest flight demonstration of Doppler Aerosol Wind Lidar (DAWN) at NASA Langley Research Center (LaRC) is presented. The goal of the campaign was to demonstrate the improvement of DAWN system since the previous flight campaign in 2012 and the capabilities of DAWN and the latest airborne wind profiling algorithm APOLO (Airborne Wind Profiling Algorithm for Doppler Wind Lidar) developed at LaRC. The comparisons of APOLO and another algorithm are discussed utilizing two and five line-of-sights (LOSs), respectively. Wind parameters from DAWN were compared with ground-based radar measurements for validation purposes. The campaign period was June - July in 2013 and the flight altitude was 8 km in inland toward Charlotte, NC, and offshores in Virginia Beach, VA and Ocean City, MD. The DAWN system was integrated into a UC12B with two operators onboard during the campaign.

Beyon, Jeffrey Y.; Koch, Grady J.; Kavaya, Michael J.

2014-01-01

352

Aerosol properties computed from aircraft-based observations during the ACE- Asia campaign. 2; A case study of lidar ratio closure and aerosol radiative effects  

NASA Technical Reports Server (NTRS)

For a vertical profile with three distinct layers (marine boundary, pollution and dust), observed during the ACE-Asia campaign, we carried out a comparison between the modeled lidar ratio vertical profile and that obtained from collocated airborne NASA AATS-14 sunphotometer and shipborne Micro-Pulse Lidar (MPL) measurements. Vertically resolved lidar ratio was calculated from two size distribution vertical profiles - one obtained by inversion of sunphotometer-derived extinction spectra, and one measured in-situ - combined with the same refractive index model based on aerosol chemical composition. The aerosol model implies single scattering albedos of 0.78 - 0.81 and 0.93 - 0.96 at 0.523 microns (the wavelength of the lidar measurements), in the pollution and dust layers, respectively. The lidar ratios calculated from the two size distribution profiles have close values in the dust layer; they are however, significantly lower than the lidar ratios derived from combined lidar and sunphotometer measurements, most probably due to the use of a simple nonspherical model with a single particle shape in our calculations. In the pollution layer, the two size distribution profiles yield generally different lidar ratios. The retrieved size distributions yield a lidar ratio which is in better agreement with that derived from lidar/sunphotometer measurements in this layer, with still large differences at certain altitudes (the largest relative difference was 46%). We explain these differences by non-uniqueness of the result of the size distribution retrieval and lack of information on vertical variability of particle refractive index. Radiative transfer calculations for this profile showed significant atmospheric radiative forcing, which occurred mainly in the pollution layer. We demonstrate that if the extinction profile is known then information on the vertical structure of absorption and asymmetry parameter is not significant for estimating forcing at TOA and the surface, while it is of importance for estimating vertical profiles of radiative forcing and heating rates.

Kuzmanoski, Maja; Box, M. A.; Schmid, B.; Box, G. P.; Wang, J.; Russell, P. B.; Bates, D.; Jonsson, H. H.; Welton, Ellsworth J.; Flagan, R. C.

2005-01-01

353

Lidar Investigation of Tropical Nocturnal Boundary Layer Aerosols and Cloud Macrophysics  

SciTech Connect

Observational evidence of two-way association between nocturnal boundary layer aerosols and cloud macrophysical properties under different meteorological conditions is reported in this paper. The study has been conducted during 2008-09 employing a high space-time resolution polarimetric micro-pulse lidar over a tropical urban station in India. Firstly, the study highlights the crucial role of boundary layer aerosols and background meteorology on the formation and structure of low-level stratiform clouds in the backdrop of different atmospheric stability conditions. Turbulent mixing induced by the wind shear at the station, which is associated with a complex terrain, is found to play a pivotal role in the formation and structural evolution of nocturnal boundary layer clouds. Secondly, it is shown that the trapping of energy in the form of outgoing terrestrial radiation by the overlying low-level clouds can enhance the aerosol mixing height associated with the nocturnal boundary layer. To substantiate this, the long-wave heating associated with cloud capping has been quantitatively estimated in an indirect way by employing an Advanced Research Weather Research and Forecasting (WRF-ARW) model version 2.2 developed by National Center for Atmospheric Research (NCAR), Colorado, USA, and supplementary data sets; and differentiated against other heating mechanisms. The present investigation as well establishes the potential of lidar remote-sensing technique in exploring some of the intriguing aspects of the cloud-environment relationship.

Manoj, M. G.; Devara, PC S.; Taraphdar, Sourav

2013-10-01

354

Technique for correcting effects of long CO(2) laser pulses in aerosol-backscattered coherent lidar returns.  

PubMed

The convolution effect in aerosol backscattered CO(2) coherent lidar returns caused by the long tail of the laser pulse is analyzed by modifying the original lidar equation and introducing a correction function C(r)(R). The characteristics of the correction function and its effect on differential absorption lidar water vapor measurements are investigated for coherent lidars. A deconvolution technique is developed consisting of a leastsquares fitting and iteration procedure for retrieval of the mean value of the atmospheric backscattering coefficient beta and a reverse filtering procedure for estimating the fluctuation components of the beta profile. Data obtained with the WPL coherent CO(2) lidar are reanalyzed using the above method, giving improved estimates of the structures and the mean water vapor content. PMID:20531828

Zhao, Y; Hardesty, R M

1988-07-01

355

LABVIEW graphical user interface for precision multichannel alignment of Raman lidar at Jet Propulsion Laboratory, Table Mountain Facility.  

PubMed

The Jet Propulsion Laboratory operates lidar systems at Table Mountain Facility (TMF), California (34.4 degrees N, 117.7 degrees W) and Mauna Loa Observatory, Hawaii (19.5 degrees N, 155.6 degrees W) under the framework of the Network for the Detection of Atmospheric Composition Change. To complement these systems a new Raman lidar has been developed at TMF with particular attention given to optimizing water vapor profile measurements up to the tropopause and lower stratosphere. The lidar has been designed for accuracies of 5% up to 12 km in the free troposphere and a detection capability of <5 ppmv. One important feature of the lidar is a precision alignment system using range resolved data from eight Licel transient recorders, allowing fully configurable alignment via a LABVIEW/C++ graphical user interface (GUI). This allows the lidar to be aligned on any channel while simultaneously displaying signals from other channels at configurable altitude/bin combinations. The general lidar instrumental setup and the details of the alignment control system, data acquisition, and GUI alignment software are described. Preliminary validation results using radiosonde and lidar intercomparisons are briefly presented. PMID:19044439

Aspey, R A; McDermid, I S; Leblanc, T; Howe, J W; Walsh, T D

2008-09-01

356

LABVIEW graphical user interface for precision multichannel alignment of Raman lidar at Jet Propulsion Laboratory, Table Mountain Facility  

NASA Astrophysics Data System (ADS)

The Jet Propulsion Laboratory operates lidar systems at Table Mountain Facility (TMF), California (34.4°N, 117.7°W) and Mauna Loa Observatory, Hawaii (19.5°N, 155.6°W) under the framework of the Network for the Detection of Atmospheric Composition Change. To complement these systems a new Raman lidar has been developed at TMF with particular attention given to optimizing water vapor profile measurements up to the tropopause and lower stratosphere. The lidar has been designed for accuracies of 5% up to 12 km in the free troposphere and a detection capability of <5 ppmv. One important feature of the lidar is a precision alignment system using range resolved data from eight Licel transient recorders, allowing fully configurable alignment via a LABVIEW/C++ graphical user interface (GUI). This allows the lidar to be aligned on any channel while simultaneously displaying signals from other channels at configurable altitude/bin combinations. The general lidar instrumental setup and the details of the alignment control system, data acquisition, and GUI alignment software are described. Preliminary validation results using radiosonde and lidar intercomparisons are briefly presented.

Aspey, R. A.; McDermid, I. S.; Leblanc, T.; Howe, J. W.; Walsh, T. D.

2008-09-01

357

Upper tropospheric water vapor: A field campaign of two Raman lidars, Airborne hygrometers, and Radiosondes  

NASA Technical Reports Server (NTRS)

Water vapor in the atmosphere plays an important role in radiative transfer and the process of radiative balance so critical for understanding global change. It is the principal ingredient in cloud formation, one of the most difficult atmospheric processes to model, and the most variable component of the Earth-atmosphere albedo. And as a free molecule, it is the most active infrared absorber and emitter, thus, the most important greenhouse gas. The radiative impact of water vapor is important at all levels of the atmosphere. Even though moisture decreases by several orders-of-magnitude from the Earth's surface to the tropopause, recent research has shown that, from a radiative standpoint, a small percentage change in water vapor at any level is nearly equivalent. Therefore accurate and precise measurements of this important atmospheric constituent are needed at all levels to evaluate the full radiative impact. The need for improved measurements in the upper troposphere is particularly important because of the generally hostile (very dry and cold) conditions encountered. Because of the importance of water vapor to the understanding of radiative transfer, the Department of Energy's Atmospheric Radiation Measurements (ARM) program initiated a series of measurement campaigns at the Cloud And Radiation Testbed (CART) site in Oklahoma, especially focused on atmospheric water vapor. Three water vapor intensive observation period (water vapor IOP) campaigns were planned. Two of the water vapor IOP campaigns have been completed: the first IOP was held during the fall of 1996 with a focus on boundary layer water vapor measurements, and the second was conducted during the fall of 1997 with a focus on both boundary layer moisture e and moisture in the upper troposphere. This paper presents a review of the intercomparisons of water vapor measurements in the upper troposphere aquired during the second water vapor IOP. Data to be presented include water vapor measurements ements from: two Raman Lidars, the NASA Goddard Scanning Raman Lidar (SRL) and the CART Raman Lidar (CARL), a number of Vaisala radiosondes launched during the IOP campaign, and a dew point hygrometer flown on the University of North Dakota Cessna Citation Aircraft.

Melfi, S. Harvey; Turner, Dave; Evans, Keith; Whiteman, Dave; Schwemmer, Geary; Ferrare, Richard

1998-01-01

358

Cloud-Aerosol LIDAR and Infrared Pathfinder Satellite Observation (CALIPSO) Spacecraft: Independent Technical Assessment  

NASA Technical Reports Server (NTRS)

CALIPSO is a joint science mission between the CNES, LaRC and GSFC. It was selected as an Earth System Science Pathfinder satellite mission in December 1998 to address the role of clouds and aerosols in the Earth's radiation budget. The spacecraft includes a NASA light detecting and ranging (LIDAR) instrument, a NASA wide-field camera and a CNES imaging infrared radiometer. The scope of this effort was a review of the Proteus propulsion bus design and an assessment of the potential for personnel exposure to hydrazine propellant.

Gilbrech, Richard J.; McManamen, John P.; Wilson, Timmy R.; Robinson, Frank; Schoren, William R.

2004-01-01

359

Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds  

SciTech Connect

The 'Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds' project focused extensively on the analysis and utilization of water vapor and aerosol profiles derived from the ARM Raman lidar at the Southern Great Plains ARM site. A wide range of different tasks were performed during this project, all of which improved quality of the data products derived from the lidar or advanced the understanding of atmospheric processes over the site. These activities included: upgrading the Raman lidar to improve its sensitivity; participating in field experiments to validate the lidar aerosol and water vapor retrievals; using the lidar aerosol profiles to evaluate the accuracy of the vertical distribution of aerosols in global aerosol model simulations; examining the correlation between relative humidity and aerosol extinction, and how these change, due to horizontal distance away from cumulus clouds; inferring boundary layer turbulence structure in convective boundary layers from the high-time-resolution lidar water vapor measurements; retrieving cumulus entrainment rates in boundary layer cumulus clouds; and participating in a field experiment that provided data to help validate both the entrainment rate retrievals and the turbulent profiles derived from lidar observations.

Turner, David, D.; Ferrare, Richard, A.

2011-07-06

360

Lidar  

NASA Technical Reports Server (NTRS)

Lidar is an optical radar technique employing laser energy. Variations in signal intensity as a function of range provide information on atmospheric constituents, even when these are too tenuous to be normally visible. The theoretical and technical basis of the technique is described and typical values of the atmospheric optical parameters given. The significance of these parameters to atmospheric and meteorological problems is discussed. While the basic technique can provide valuable information about clouds and other material in the atmosphere, it is not possible to determine particle size and number concentrations precisely. There are also inherent difficulties in evaluating lidar observations. Nevertheless, lidar can provide much useful information as is shown by illustrations. These include lidar observations of: cirrus cloud, showing mountain wave motions; stratification in clear air due to the thermal profile near the ground; determinations of low cloud and visibility along an air-field approach path; and finally the motion and internal structure of clouds of tracer materials (insecticide spray and explosion-caused dust) which demonstrate the use of lidar for studying transport and diffusion processes.

Collis, R. T. H.

1969-01-01

361

Femtosecond Coherent Anti-Stokes Raman Spectroscopy (CARS) As Next Generation Nonlinear LIDAR Spectroscopy and Microscopy  

SciTech Connect

Nonlinear spectroscopy using coherent anti-Stokes Raman scattering and femtosecond laser pulses has been successfully developed as powerful tools for chemical analysis and biological imaging. Recent developments show promising possibilities of incorporating CARS into LIDAR system for remote detection of molecular species in airborne particles. The corresponding theory is being developed to describe nonlinear scattering of a mesoscopic particle composed of complex molecules by laser pulses with arbitrary shape and spectral content. Microscopic many-body transform theory is used to compute the third order susceptibility for CARS in molecules with known absorption spectrum and vibrational modes. The theory is combined with an integral scattering formula and Mie-Lorentz formulae, giving a rigorous formalism which provides powerful numerical experimentation of CARS spectra, particularly on the variations with the laser parameters and the direction of detection.

Ooi, C. H. Raymond [School of Engineering, Monash University, Jalan Lagoon Selatan, Bandar Sunway, 46150 Selangor DarulEhsan, Malaysia and Department of Physics, Korea University, Anam-dong, Seongbuk-gu, Seoul, 136-713 (Korea, Republic of)

2009-07-10

362

Temperature Variability in the Stratosphere Obtained from 7 years of Vibrational-Raman- lidar Measurements  

NASA Astrophysics Data System (ADS)

The Purple Crow Lidar (PCL) is a large power-aperture product monostatic laser radar located at the Delaware Observatory (42° 52' N, 81° 23' W, 225 m elevation above sea level) near the campus of The University of Western Ontario. It is capable of measuring temperature and wave parameters from 10 to 110 km altitude, as well as water vapor in the troposphere and stratosphere. We use upper tropospheric and stratospheric vibrational Raman N2 backscatter-derived temperatures to form a climatology for the years 1999 to 2007 from 10 to 30 km altitude. The lidar temperatures are validated using coincident radiosondes measurements from Detroit and Buffalo. The measured temperatures show good agreement with the radiosonde soundings. An agreement of ±1 K is found during summer months and ±2.5 K during the winter months, validating the calibration of the lidar to within the geophysical variability of the measurements. Comparison between the PCL measurements and atmospheric models shows the PCL measurements are 5 K or less colder than CIRA-86 below 25 km and 2.5 K warmer above during the summer months. Below 16 km the PCL measurements are 5 K or less colder than the MSIS-90 model, while above this region, the PCL agrees to about ±3.5 K or less. The temperature differences between the PCL measurements and the models are consistent with the differences between the atmospheric models and the Detroit and Buffalo radiosonde measurements. The temperature differences compared to the models are consistent with previous comparisons between other radiosondes and satellite data sets, confirming that these differences with the models are real. We will highlight nights which show significant variations from the long-term averages, and when possible, the evolution of the variations.

Iserhienrhien, B.; Sica, R. J.; Argall, P. S.

2009-05-01

363

Parameterization of Stratospheric Aerosol Physical Properties on the Basis of Nd:YAG Lidar Observations.  

PubMed

An extension to the 355- and 1064-nm wavelengths of a numerical optical model originally developed at 532 nm is presented. The resulting parameterization allows estimates of stratospheric aerosol surface area, volume, and extinction-to-backscatter ratio from lidar measurements obtained at one of the two Nd:YAG laser wavelengths. Functional relationships that link single-wavelength backscatter to each of the physical variables are provided for sulfate aerosol types ranging from background to heavy volcanic under environmental conditions representative of the global lower stratosphere. The behavior of the functional relationships at the three Nd:YAG wavelengths is compared. Relative errors of model estimates range between 10% and 50%, depending on wavelength and backscatter cross sections. These values are comparable with the ones that characterize in situ particle counters. The inference of particle effective radius and the application of the method to the interpretation of supercooled polar stratospheric cloud observations are discussed. PMID:18285928

Gobbi, G P

1998-07-20

364

Raman Lidar Measurements of Water Vapor and Cirrus Clouds During The Passage of Hurricane Bonnie  

NASA Technical Reports Server (NTRS)

The NASA/GSFC Scanning Raman Lidar (SRL) was stationed on Andros Island in the Bahamas during August - September, 1998 as a part of the third Convection and Moisture Experiment (CAMEX-3) which focussed on hurricane development and tracking. During the period August 21 - 24, hurricane Bonnie passed near Andros Island and influenced the water vapor and cirrus cloud measurements acquired by the SRL. Two drying signatures related to the hurricane were recorded by the SRL and other sensors. Cirrus cloud optical depths (at 351 nm) were also measured during this period. Optical depth values ranged from less than 0.01 to 1.5. The influence of multiple scattering on these optical depth measurements was studied. A correction technique is presented which minimizes the influences of multiple scattering and derives information about cirrus cloud optical and physical properties. The UV/IR cirrus cloud optical depth ratio was estimated based on a comparison of lidar and GOES measurements. Simple radiative transfer model calculations compared with GOES satellite brightness temperatures indicate that satellite radiances are significantly affected by the presence of cirrus clouds if IR optical depths are approximately 0.005 or greater. Using the ISCCP detection threshold for cirrus clouds on the GOES data presented here, a high bias of up to 40% in the GOES precipitable water retrieval was found.

Whiteman, D. N.; Evans, K. D.; Demoz, B.; Starr, D OC.; Eloranta, E. W.; Tobin, D.; Feltz, W.; Jedlovec, G. J.; Gutman, S. I.; Schwemmer, G. K.; Smith, David E. (Technical Monitor)

2000-01-01

365

Raman Lidar Measurements During the International H2O Project. 2; Instrument Comparisons and Case Studies  

NASA Technical Reports Server (NTRS)

The NASA/GSFC Scanning Raman Lidar (SRL) participated in the International H2O Project (IHOP) that occurred in May and June, 2002 in the midwestern part of the U. S. The SRL system configuration and methods of data analysis were described in part I of this paper. In this second part, comparisons of SRL water vapor measurements and those of chilled mirror radiosonde and LASE airborne water vapor lidar are performed. Two case studies are presented; one for daytime and one for nighttime. The daytime case study is of a convectively driven boundary layer event and is used to characterize the SRL water vapor random error characteristics. The nighttime case study is of a thunderstorm-generated cirrus cloud case that is studied in it s meteorological context. Upper tropospheric humidification due to precipitation from the cirrus cloud is quantified as is the cirrus cloud ice water content and particle depolarization ratio. These detailed cirrus cloud measurements are being used in a cirrus cloud modeling study.

Whiteman, D. N.; Demoz, B.; DiGirolamo, P.; Corner, J.; Veselovskii, I.; Evans, K.; Wang, Z.; Sabatino, D.; Schwemmer, G.; Gentry, B.

2005-01-01

366

Southern Hemisphere Lidar Measurements of the Aerosol Clouds from Mt. Pinatubo and Mt. Hudson  

NASA Technical Reports Server (NTRS)

On 19 Jul., 1991, during tests to determine the ability of the newly-modified CSIRO Ns:YAG lidar to measure signals from the stratosphere before the arrival of dust from the eruption of Mt. Pinatubo, a strongly scattering layer was detected at an altitude of 2 km. That evening, the spectacular sunset and twilight were typical of volcanically disturbed conditions. Lidar measurements at 532 nm were made between 1400 and 1500 EST (0400-0500 UT) on 19 Jul. through broken cloud. Approximately 3800 laser firings were averaged in 256 shot blocks. These and subsequent data have been analyzed to produce profiles of aerosol volume backscatter function and scattering ratio. Clouds again prevented a clear view of the twilights on the next two nights, although there was some evidence for an enhanced glow. The evidence suggested that the aerosol layer had disappeared. An explanation for this disappearance and the earlier than expected arrival of the layer over Melbourne was required. Nimbus 7 TOMS data for 23 Jun. showed that the SO2 from the eruption had extended at least 11000 km to the west and that the southern boundary of the cloud had reached 15 degrees S just 8 days after the climactic eruption. It can be assumed that this cloud also contained dust and sulphuric acid aerosol. It was proposed that a section had then been broken away from the main cloud and carried south by a large scale eddy between the low latitude easterlies and the strong mid-latitude westerlies which finally carried the aerosol cloud over southern Australia. Accompanying 30 mb wind data showed a counter clockwise circulation, responsible for the transport, located in the South Atlantic Ocean.

Young, Stuart A.; Manson, Peter J.; Patterson, Graeme R.

1992-01-01

367

Oceanic Lidar  

NASA Technical Reports Server (NTRS)

Instrument concepts which measure ocean temperature, chlorophyll, sediment and Gelbstoffe concentrations in three dimensions on a quantitative, quasi-synoptic basis were considered. Coastal zone color scanner chlorophyll imagery, laser stimulated Raman temperaure and fluorescence spectroscopy, existing airborne Lidar and laser fluorosensing instruments, and their accuracies in quantifying concentrations of chlorophyll, suspended sediments and Gelbstoffe are presented. Lidar applications to phytoplankton dynamics and photochemistry, Lidar radiative transfer and signal interpretation, and Lidar technology are discussed.

Carder, K. L. (editor)

1981-01-01

368

Lidar Measurements of Stratospheric Ozone, Aerosols and Temperature during the SAUNA Campaign at Sodankyla, Finland  

NASA Technical Reports Server (NTRS)

The Sodankyla Total Column Ozone Intercomparison (SAUNA) campaign took place at the Finnish Meteorological Institute Arctic Research Center (FMI-ARC) at Sodankyla, Finland (67.37 N) in two separate phases during early spring 2006, and winter 2007. These campaigns has several goals: to determine and improve the accuracy of total column ozone measurements during periods of low solar zenith angle and high total column ozone; to determine the effect of ozone profile shape on the total column retrieval; and to make validate satellite ozone measurements under these same conditions. The GSFC Stratospheric Ozone Lidar (STROZ), which makes profile measurements of ozone temperature, aerosols and water vapor participated in both phases of the campaign. During the deployments, more than 30 profile measurements were made by the lidar instrument, along with Dobson, Brewer, DOAS, ozonesonde, and satellite measurements. The presentation will concentrate on STROZ lidar results from the second phase of the campaign and comparisons with other instruments will be discussed. This will include both ground-based and satellite comparisons.

McGee, T.; Twigg, L.; Sumnicht, G.; McPeters, R.; Bojkov, B.; Kivi, R.

2008-01-01

369

Comments on ''Accuracy of Raman lidar water vapor calibration and its applicability to long-term measurements''  

SciTech Connect

In a recent publication, Leblanc and McDermid [Appl. Opt., 47, 5592 (2008)]APOPAI0003-693510.1364/AO.47.005592 proposed a hybrid calibration technique for Raman water vapor lidar involving a tungsten lamp and radiosondes. Measurements made with the lidar telescope viewing the calibration lamp were used to stabilize the lidar calibration determined by comparison with radiosonde. The technique provided a significantly more stable calibration constant than radiosondes used alone. The technique involves the use of a calibration lamp in a fixed position in front of the lidar receiver aperture. We examine this configuration and find that such a configuration likely does not properly sample the full lidar system optical efficiency. While the technique is a useful addition to the use of radiosondes alone for lidar calibration, it is important to understand the scenarios under which it will not provide an accurate quantification of system optical efficiency changes. We offer examples of these scenarios. Scanning of the full telescope aperture with the calibration lamp can circumvent most of these limitations. Based on the work done to date, it seems likely that the use of multiple calibration lamps in different fixed positions in front of the telescope may provide sufficient redundancy for long-term calibration needs. Further full-aperture scanning experiments, performed over an extended period of time, are needed to determine a ''best practice'' for the use of multiple calibration lamps in the hybrid technique.

Whiteman, David N.; Venable, Demetrius; Landulfo, Eduardo

2011-05-20