Science.gov

Sample records for aerosol raman lidar

  1. LOSA-M2 aerosol Raman lidar

    SciTech Connect

    Balin, Yu S; Bairashin, G S; Kokhanenko, G P; Penner, I E; Samoilova, S V

    2011-10-31

    The scanning LOSA-M2 aerosol Raman lidar, which is aimed at probing atmosphere at wavelengths of 532 and 1064 nm, is described. The backscattered light is received simultaneously in two regimes: analogue and photon-counting. Along with the signals of elastic light scattering at the initial wavelengths, a 607-nm Raman signal from molecular nitrogen is also recorded. It is shown that the height range of atmosphere probing can be expanded from the near-Earth layer to stratosphere using two (near- and far-field) receiving telescopes, and analogue and photon-counting lidar signals can be combined into one signal. Examples of natural measurements of aerosol stratification in atmosphere along vertical and horizontal paths during the expeditions to the Gobi Desert (Mongolia) and Lake Baikal areas are presented.

  2. Improvement of Raman lidar algorithm for quantifying aerosol extinction

    NASA Technical Reports Server (NTRS)

    Russo, Felicita; Whiteman, David; Demoz, Belay; Hoff, Raymond

    2005-01-01

    Aerosols are particles of different composition and origin and influence the formation of clouds which are important in atmospheric radiative balance. At the present there is high uncertainty on the effect of aerosols on climate and this is mainly due to the fact that aerosol presence in the atmosphere can be highly variable in space and time. Monitoring of the aerosols in the atmosphere is necessary to better understanding many of these uncertainties. A lidar (an instrument that uses light to detect the extent of atmospheric aerosol loading) can be particularly useful to monitor aerosols in the atmosphere since it is capable to record the scattered intensity as a function of altitude from molecules and aerosols. One lidar method (the Raman lidar) makes use of the different wavelength changes that occur when light interacts with the varying chemistry and structure of atmospheric aerosols. One quantity that is indicative of aerosol presence is the aerosol extinction which quantifies the amount of attenuation (removal of photons), due to scattering, that light undergoes when propagating in the atmosphere. It can be directly measured with a Raman lidar using the wavelength dependence of the received signal. In order to calculate aerosol extinction from Raman scattering data it is necessary to evaluate the rate of change (derivative) of a Raman signal with respect to altitude. Since derivatives are defined for continuous functions, they cannot be performed directly on the experimental data which are not continuous. The most popular technique to find the functional behavior of experimental data is the least-square fit. This procedure allows finding a polynomial function which better approximate the experimental data. The typical approach in the lidar community is to make an a priori assumption about the functional behavior of the data in order to calculate the derivative. It has been shown in previous work that the use of the chi-square technique to determine the most likely functional behavior of the data prior to actually calculating the derivative eliminates the need for making a priori assumptions. We note that the a priori choice of a model itself can lead to larger uncertainties as compared to the method that is validated here. In this manuscript, the chi-square technique that determines the most likely functional behavior is validated through numerical simulation and by application to a large body of Raman lidar measurements. In general, we show that the chi-square approach to evaluate aerosol extinction yields lower extinction uncertainty than the traditional technique. We also use the technique to study the feasibility of developing a general characterization of the extinction uncertainty that could permit the uncertainty in Raman lidar aerosol extinction measurements to be estimated accurately without the use of the chi-square technique.

  3. Measurements of Stratospheric Pinatubo Aerosol Extinction Profiles by a Raman Lidar

    NASA Technical Reports Server (NTRS)

    Abo, Makoto; Nagasawa, Chikao

    1992-01-01

    The Raman lidar has been used for remote measurements of water vapor, ozone and atmospheric temperature in the lower troposphere because the Raman cross section is three orders smaller than the Rayleigh cross section. We estimated the extinction coefficients of the Pinatubo volcanic aerosol in the stratosphere using a Raman lidar. If the precise aerosol extinction coefficients are derived, the backscatter coefficient of a Mie scattering lidar will be more accurately estimated. The Raman lidar has performed to measure density profiles of some species using Raman scattering. Here we used a frequency-doubled Nd:YAG laser for transmitter and received nitrogen vibrational Q-branch Raman scattering signal. Ansmann et al. (1990) derived tropospherical aerosol extinction profiles with a Raman lidar. We think that this method can apply to dense stratospheric aerosols such as Pinatubo volcanic aerosols. As dense aerosols are now accumulated in the stratosphere by Pinatubo volcanic eruption, the error of Ramen lidar signal regarding the fluctuation of air density can be ignored.

  4. Measurement of tropospheric aerosol in São Paulo area using a new upgraded Raman LIDAR system

    NASA Astrophysics Data System (ADS)

    Landulfo, Eduardo; Rodrigues, Patrícia F.; da Silva Lopes, Fábio Juliano; Bourayou, Riad

    2012-11-01

    Elastic backscatter LIDAR systems have been used to determine aerosol profile concentration in several areas such as weather, pollution and air quality monitoring. In order to determine the aerosol extinction and backscattering profiles, the Klett inversion method is largely used, but this method suffers from lack of information since there are two unknown variables to be determined using only one measured LIDAR signal, and assumption of the LIDAR ratio (the relation between the extinction and backscattering coefficients) is needed. When a Raman LIDAR system is used, the inelastic backscattering signal is affected by aerosol extinction but not by aerosol backscatter, which allows this LIDAR to uniquely determine extinction and backscattering coefficients without any assumptions or any collocated instruments. The MSP-LIDAR system, set-up in a highly dense suburban area in the city of São Paulo, has been upgraded to a Raman LIDAR, and in its actual 6-channel configuration allows it to monitor elastic backscatter at 355 and 532 nm together with nitrogen and water vapor Raman backscatters at 387nm and 608 nm and 408nm and 660 nm, respectively. Thus, the measurements of aerosol backscattering, extinction coefficients and water vapor mixing ratio in the Planetary Boundary Layer (PBL) are becoming available. The system will provide the important meteorological parameters such as Aerosol Optical Depth (AOD) and will be used for the study of aerosol variations in lower troposphere over the city of São Paulo, air quality monitoring and for estimation of humidity impact on the aerosol optical properties, without any a priori assumption. This study will present the first results obtained with this upgraded LIDAR system, demonstrating the high quality of obtained aerosol and water vapor data. For that purpose, we compared the data obtained with the new MSP-Raman LIDAR with a mobile Raman LIDAR collocated at the Center for Lasers and Applications, Nuclear and Energy Research Institute in São Paulo and radiosonde data from Campo de Marte Airport, in São Paulo.

  5. Raman Lidar Measurements of Aerosol Extinction and Backscattering. Report 1; Methods and Comparisons

    NASA Technical Reports Server (NTRS)

    Ferrare, R. A.; Melfi, S. H.; Whiteman, D. N.; Evans, K. D.; Leifer, R.

    1998-01-01

    This paper examines the aerosol backscattering and extinction profiles measured at night by the NASA Goddard Space Flight Center Scanning Raman Lidar (SRL) during the remote cloud sensing (RCS) intensive operations period (IOP) at the Department of Energy Atmospheric Radiation Measurement (ARM) southern Great Plains (SGP) site in April 1994. These lidar data are used to derive aerosol profiles for altitudes between 0.0 1 5 and 5 km. Since this lidar detects Raman scattering from nitrogen and oxygen molecules as well as the elastic scattering from molecules and aerosols, it measures both aerosol backscattering and extinction simultaneously. The aerosol extinction/backscattering ratio varied between approximately 30 sr and 75 sr at 351 nm. Aerosol optical thicknesses derived by integrating the lidar profiles of aerosol extinction measured at night between 0. I and 5 km are found to be about 10-40% lower than those measured by a Sun photometer during the day. This difference is attributed to the contribution by stratospheric aerosols not included in the lidar estimates as well as to diurnal differences in aerosol properties and concentrations. Aerosol profiles close to the surface were acquired by pointing the lidar nearly horizontally. Measurements of aerosol scattering from a tower-mounted nephelometer are found to be 40% lower than lidar measurements of aerosol extinction over a wide range of relative humidities even after accounting for the difference in wavelengths. The reasons for this difference are not clear but may be due to the inability of the nephelometer to accurately measure scattering by large particles.

  6. New Examination of the Raman Lidar Technique for Water Vapor and Aerosols. Paper 1; Evaluating the Temperature Dependent Lidar Equations

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.

    2003-01-01

    The intent of this paper and its companion is to compile together the essential information required for the analysis of Raman lidar water vapor and aerosol data acquired using a single laser wavelength. In this first paper several details concerning the evaluation of the lidar equation when measuring Raman scattering are considered. These details include the influence of the temperature dependence of both pure rotational and vibrational-rotational Raman scattering on the lidar profile. These are evaluated for the first time using a new form of the lidar equation. The results indicate that, for the range of temperatures encountered in the troposphere, the magnitude of the temperature dependent effect can reach 10% or more for narrowband Raman water vapor measurements. Also the calculation of atmospheric transmission is examined carefully including the effects of depolarization. Different formulations of Rayleigh cross section determination commonly used in the lidar field are compared revealing differences up to 5% among the formulations. The influence of multiple scattering on the measurement of aerosol extinction using the Raman lidar technique is considered as are several photon pulse-pileup correction techniques.

  7. Ceilometer aerosol profiling versus Raman lidar in the frame of the INTERACT campaign of ACTRIS

    NASA Astrophysics Data System (ADS)

    Madonna, F.; Amato, F.; Vande Hey, J.; Pappalardo, G.

    2015-05-01

    Despite their differences from more advanced and more powerful lidars, the low construction and operation cost of ceilometers (originally designed for cloud base height monitoring) has fostered their use for the quantitative study of aerosol properties. The large number of ceilometers available worldwide represents a strong motivation to investigate both the extent to which they can be used to fill in the geographical gaps between advanced lidar stations and also how their continuous data flow can be linked to existing networks of the more advanced lidars, like EARLINET (European Aerosol Research Lidar Network). In this paper, multi-wavelength Raman lidar measurements are used to investigate the capability of ceilometers to provide reliable information about atmospheric aerosol properties through the INTERACT (INTERcomparison of Aerosol and Cloud Tracking) campaign carried out at the CNR-IMAA Atmospheric Observatory (760 m a.s.l., 40.60° N, 15.72° E), in the framework of the ACTRIS (Aerosol Clouds Trace gases Research InfraStructure) FP7 project. This work is the first time that three different commercial ceilometers with an advanced Raman lidar are compared over a period of 6 months. The comparison of the attenuated backscatter coefficient profiles from a multi-wavelength Raman lidar and three ceilometers (CHM15k, CS135s, CT25K) reveals differences due to the expected discrepancy in the signal to noise ratio (SNR) but also due to changes in the ambient temperature on the short and mid-term stability of ceilometer calibration. Therefore, technological improvements are needed to move ceilometers towards operational use in the monitoring of atmospheric aerosols in the low and free troposphere.

  8. Ceilometer aerosol profiling vs. Raman lidar in the frame of INTERACT campaign of ACTRIS

    NASA Astrophysics Data System (ADS)

    Madonna, F.; Amato, F.; Vande Hey, J.; Pappalardo, G.

    2014-12-01

    Despite their differences from more advanced and more powerful lidars, the low construction and operation cost of ceilometers, originally designed for cloud base height monitoring, has fostered their use for the quantitative study of aerosol properties. The large number of ceilometers available worldwide represents a strong motivation to investigate both the extent to which they can be used to fill in the geographical gaps between advanced lidar stations and also how their continuous data flow can be linked to existing networks of the more advanced lidars, like EARLINET (European Aerosol Research LIdar NETwork). In this paper, multi-wavelength Raman lidar measurements are used to investigate the capability of ceilometers to provide reliable information about atmospheric aerosol content through the INTERACT (INTERcomparison of Aerosol and Cloud Tracking) campaign carried out at the CNR-IMAA Atmospheric Observatory (760 m a.s.l., 40.60° N, 15.72° E), in the framework of ACTRIS (Aerosol Clouds Trace gases Research InfraStructure) FP7 project. This work is the first time that three different commercial ceilometers with an advanced Raman lidar are compared over a period of six months. The comparison of the attenuated backscatter profiles from a multi-wavelength Raman lidar and three ceilometers (CHM15k, CS135s, CT25K) reveals differences due to the expected discrepancy in the SNR but also due to effect of changes in the ambient temperature on the short and mid-term stability of ceilometer calibration. A large instability of ceilometers in the incomplete overlap region has also been observed, making the use of a single overlap correction function for the whole duration of the campaign critical. Therefore, technological improvements of ceilometers towards their operational use in the monitoring of the atmospheric aerosol in the low and free troposphere are needed.

  9. Automated Retrievals of Water Vapor and Aerosol Profiles from an Operational Raman Lidar

    SciTech Connect

    Turner, David D.; Ferrare, R. A.; Heilman Brasseur, L. A.; Feltz, W. F.; Tooman, T. P.

    2002-01-01

    Automated routines have been developed to derive water vapor mixing ratio, relative humidity, aerosol extinction and backscatter coefficient, and linear depolarization profiles, as well as total precipitable water vapor and aerosol optical thickness, from the operational Raman lidar at the Atmospheric Radiation Measurement (ARM) program's site in north-central Oklahoma. These routines have been devised to maintain the calibration of these data products, which have proven sensitive to the automatic alignment adjustments that are made periodically by the instrument. Since this Raman lidar does not scan, aerosol extinction cannot be directly computed below approximately 800 m due to the incomplete overlap of the outgoing laser beam with the detector's field of view. Therefore, the extinction-to-backscatter ratio at 1 km is used with the aerosol backscatter coefficient profile to compute aerosol extinction from 60 m to the level of complete overlap. Comparisons of aerosol optical depth derived using these algorithms with a collocated CIMEL sun photometer for clear-sky days over an approximate 2-yr period show a slope of 0.90 with a correlation coefficient of 0.884. Furthermore, comparing the aerosol extinction profile retrieved from this system with that from the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center's scanning Raman lidar agrees within 10% for the single available case.

  10. Design and development of multiwavelength Mie-Polarization-Raman aerosol lidar system

    NASA Astrophysics Data System (ADS)

    Wang, Zhang-jun; Du, Li-bin; Li, Xian-xin; Chen, Chao; Qu, Jun-le; Liu, Jie; Lv, Bin

    2013-09-01

    Atmospheric aerosols play a major role in many atmospheric processes concerning the earth's radiation budget, air quality, clouds and percipitation, and atmospheric chemistry. A multiwavelength Mie-Polarization-Raman lidar system is developing at Shandong Academy of Sciences Institute of Oceanorgraphic Instrumentation (SDIOI), which is used for the profiling of optical and physical aerosol properties. This system is specifically designed for characterizing marine aerosol which consists of a complex mix of different aerosol types. The aerosol lidar consists of a tripled Nd:YAG laser with three wavelengths, 30 cm telescope, six receiver channels and data acquistion subsystem. It provides particle backscatter coefficients at 355, 532 and 1064 nm (3?), extinction coefficients at 355 and 532 nm (2?), and depolarization ratio (?). There are two Raman channels to collect the Raman signals backscattered by nitrogen molecules at 607 nm and by water vapor moecules at 407 nm. In this paper, we mainly describe the details of the optical setup, structure and performance of the lidar system. At last, the simulated signals based on the specifications are presented to demonstrate the capabilities of the lidar system.

  11. PollyNET: a global network of automated Raman-polarization lidars for continuous aerosol profiling

    NASA Astrophysics Data System (ADS)

    Baars, H.; Kanitz, T.; Engelmann, R.; Althausen, D.; Heese, B.; Komppula, M.; Preißler, J.; Tesche, M.; Ansmann, A.; Wandinger, U.; Lim, J.-H.; Ahn, J. Y.; Stachlewska, I. S.; Amiridis, V.; Marinou, E.; Seifert, P.; Hofer, J.; Skupin, A.; Schneider, F.; Bohlmann, S.; Foth, A.; Bley, S.; Pfüller, A.; Giannakaki, E.; Lihavainen, H.; Viisanen, Y.; Hooda, R. K.; Pereira, S.; Bortoli, D.; Wagner, F.; Mattis, I.; Janicka, L.; Markowicz, K. M.; Achtert, P.; Artaxo, P.; Pauliquevis, T.; Souza, R. A. F.; Sharma, V. P.; van Zyl, P. G.; Beukes, J. P.; Sun, J. Y.; Rohwer, E. G.; Deng, R.; Mamouri, R. E.; Zamorano, F.

    2015-10-01

    A global vertically resolved aerosol data set covering more than 10 years of observations at more than 20 measurement sites distributed from 63° N to 52° S and 72° W to 124° E has been achieved within the Raman and polarization lidar network PollyNET. This network consists of portable, remote-controlled multiwavelength-polarization-Raman lidars (Polly) for automated and continuous 24/7 observations of clouds and aerosols. PollyNET is an independent, voluntary, and scientific network. All Polly lidars feature a standardized instrument design and apply unified calibration, quality control, and data analysis. The observations are processed in near-real time without manual intervention, and are presented online at http://polly.tropos.de. The paper gives an overview of the observations on four continents and two research vessels obtained with eight Polly systems. The specific aerosol types at these locations (mineral dust, smoke, dust-smoke and other dusty mixtures, urban haze, and volcanic ash) are identified by their Ångström exponent, lidar ratio, and depolarization ratio. The vertical aerosol distribution at the PollyNET locations is discussed on the basis of more than 55 000 automatically retrieved 30 min particle backscatter coefficient profiles at 532 nm. A seasonal analysis of measurements at selected sites revealed typical and extraordinary aerosol conditions as well as seasonal differences. These studies show the potential of PollyNET to support the establishment of a global aerosol climatology that covers the entire troposphere.

  12. Simulation of improved daytime capabilities to retrieve aerosol extinction coefficient using Rotational Raman lidars

    NASA Astrophysics Data System (ADS)

    Madonna, Fabio; Amodeo, Aldo

    2015-04-01

    So far, most of the multi-wavelength Raman lidar observations of aerosols are performed at night, because Raman signals are weak compared to daylight background. Different techniques have been developed to improve Raman lidar daytime capabilities in the past years. Indeed, the retrieval of aerosol extinction during daytime is feasible through the detection of backscattered radiation due to the pure Rotational Raman Spectrum (PRRS) of molecular nitrogen or oxygen, much brighter than the vibration-rotation spectrum. The existing techniques for the measure of PRRS are based on small-bandwidth emitter and receiver systems and on a small receiver field of view to suppress the daylight background. They have been successfully tested and implemented in a few systems which are already in operational use within EARLINET (European Aerosol research Lidar NETwork). In this work, several different configurations used as receiver for a lidar system detecting the PRRS in daytime conditions are compared by means of numerical simulations. The configurations are mainly differentiated by the design of the spectral selection unit implemented in the receiver of each lidar system, based on a narrow-bandwidth filters, broad-band filters, grating spectrometers, and hybrid solutions. The research of configurations able to be more easily implemented on a large number of lidar systems within ACTRIS are explored. To show the performances of the investigated lidar configurations, a blind test has been carried out to get the simulated performances in the retrieval of the aerosol extinction profile during night-time and daytime starting from a known scenario. The atmospheric scenario used as the reference profile is represented by one of the night-time measurements with MUSA (MUlti-wavelength system for Aerosol) lidar at CNR-IMAA Atmospheric Observatory - CIAO (15.72E, 40.60N , 760 m a.s.l., Potenza, Italy). Though all the configuration considered in the blind test proved to be solid to suppression of solar background, the simulations shows that PRRS can be efficiently used to provide accurate aerosol extinction profiles only if the lidar receiver shows a suppression of the elastically backscattered radiation in the order of 10-5. This requirement is well satisfied only using receivers equipped with a double-grating spectrometer filtering the backscattered radiation in a sequential way, or using broad interference filters selected in order to be temperature independent and stable in the detection of the PRRS at different environmental temperatures and incident angles of the backscattered radiation.

  13. Estimation of black carbon content for biomass burning aerosols from multi-channel Raman lidar data

    NASA Astrophysics Data System (ADS)

    Talianu, Camelia; Marmureanu, Luminita; Nicolae, Doina

    2015-04-01

    Biomass burning due to natural processes (forest fires) or anthropical activities (agriculture, thermal power stations, domestic heating) is an important source of aerosols with a high content of carbon components (black carbon and organic carbon). Multi-channel Raman lidars provide information on the spectral dependence of the backscatter and extinction coefficients, embedding information on the black carbon content. Aerosols with a high content of black carbon have large extinction coefficients and small backscatter coefficients (strong absorption), while aerosols with high content of organic carbon have large backscatter coefficients (weak absorption). This paper presents a method based on radiative calculations to estimate the black carbon content of biomass burning aerosols from 3b+2a+1d lidar signals. Data is collected at Magurele, Romania, at the cross-road of air masses coming from Ukraine, Russia and Greece, where burning events are frequent during both cold and hot seasons. Aerosols are transported in the free troposphere, generally in the 2-4 km altitude range, and reaches the lidar location after 2-3 days. Optical data are collected between 2011-2012 by a multi-channel Raman lidar and follows the quality assurance program of EARLINET. Radiative calculations are made with libRadTran, an open source radiative model developed by ESA. Validation of the retrievals is made by comparison to a co-located C-ToF Aerosol Mass Spectrometer. Keywords: Lidar, aerosols, biomass burning, radiative model, black carbon Acknowledgment: This work has been supported by grants of the Romanian National Authority for Scientific Research, Programme for Research- Space Technology and Advanced Research - STAR, project no. 39/2012 - SIAFIM, and by Romanian Partnerships in priority areas PNII implemented with MEN-UEFISCDI support, project no. 309/2014 - MOBBE

  14. New Examination of the Traditional Raman Lidar Technique II: Temperature Dependence Aerosol Scattering Ratio and Water Vapor Mixing Ratio Equations

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.; Abshire, James B. (Technical Monitor)

    2002-01-01

    In a companion paper, the temperature dependence of Raman scattering and its influence on the Raman water vapor signal and the lidar equations was examined. New forms of the lidar equation were developed to account for this temperature sensitivity. Here we use those results to derive the temperature dependent forms of the equations for the aerosol scattering ratio, aerosol backscatter coefficient, extinction to backscatter ratio and water vapor mixing ratio. Pertinent analysis examples are presented to illustrate each calculation.

  15. Use of rotational Raman measurements in multiwavelength aerosol lidar for evaluation of particle backscattering and extinction

    NASA Astrophysics Data System (ADS)

    Veselovskii, I.; Whiteman, D. N.; Korenskiy, M.; Suvorina, A.; Pérez-Ramírez, D.

    2015-10-01

    Vibrational Raman scattering from nitrogen is commonly used in aerosol lidars for evaluation of particle backscattering (?) and extinction (?) coefficients. However, at mid-visible wavelengths, particularly in the daytime, previous measurements have possessed low signal-to-noise ratio. Also, vibrational scattering is characterized by a significant frequency shift of the Raman component, so for the calculation of ? and ? information about the extinction Ångström exponent is needed. Simulation results presented in this study demonstrate that ambiguity in the choice of Ångström exponent can be the a significant source of uncertainty in the calculation of backscattering coefficients when optically thick aerosol layers are considered. Both of these issues are addressed by the use of pure-rotational Raman (RR) scattering, which is characterized by a higher cross section compared to nitrogen vibrational scattering, and by a much smaller frequency shift, which essentially removes the sensitivity to changes in the Ångström exponent. We describe a practical implementation of rotational Raman measurements in an existing Mie-Raman lidar to obtain aerosol extinction and backscattering at 532 nm. A 2.3 nm width interference filter was used to select a spectral range characterized by low temperature sensitivity within the anti-Stokes branch of the RR spectrum. Simulations demonstrate that the temperature dependence of the scattering cross section does not exceed 1.5 % in the 230-300 K range, making correction for this dependence quite easy. With this upgrade, the NASA GSFC multiwavelength Raman lidar has demonstrated useful ?532 measurements and was used for regular observations. Examples of lidar measurements and inversion of optical data to the particle microphysics are given.

  16. Raman lidar system for the measurement of water vapor and aerosols in the earth's atmosphere

    NASA Technical Reports Server (NTRS)

    Whiteman, D. N.; Melfi, S. H.; Ferrare, R. A.

    1992-01-01

    A nighttime operating Raman lidar system that is designed for the measurement of high vertical and temporal resolution profiles of the water vapor mixing ratio and the aerosol backscattering ratio is described. The theory of the measurements is presented. Particular attention is given to operational problems that have been solved during the development of the system. Data are presented from Sept. 1987 and described in their meteorological context.

  17. Evaluation of Daytime Measurements of Aerosols and Water Vapor made by an Operational Raman Lidar over the Southern Great Plains

    NASA Technical Reports Server (NTRS)

    Ferrare, Richard; Turner, David; Clayton, Marian; Schmid, Beat; Covert, David; Elleman, Robert; Orgren, John; Andrews, Elisabeth; Goldsmith, John E. M.; Jonsson, Hafidi

    2006-01-01

    Raman lidar water vapor and aerosol extinction profiles acquired during the daytime over the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site in northern Oklahoma (36.606 N, 97.50 W, 315 m) are evaluated using profiles measured by in situ and remote sensing instruments deployed during the May 2003 Aerosol Intensive Operations Period (IOP). The automated algorithms used to derive these profiles from the Raman lidar data were first modified to reduce the adverse effects associated with a general loss of sensitivity of the Raman lidar since early 2002. The Raman lidar water vapor measurements, which are calibrated to match precipitable water vapor (PWV) derived from coincident microwave radiometer (MWR) measurements were, on average, 5-10% (0.3-0.6 g/m(exp 3) higher than the other measurements. Some of this difference is due to out-of-date line parameters that were subsequently updated in the MWR PWV retrievals. The Raman lidar aerosol extinction measurements were, on average, about 0.03 km(exp -1) higher than aerosol measurements derived from airborne Sun photometer measurements of aerosol optical thickness and in situ measurements of aerosol scattering and absorption. This bias, which was about 50% of the mean aerosol extinction measured during this IOP, decreased to about 10% when aerosol extinction comparisons were restricted to aerosol extinction values larger than 0.15 km(exp -1). The lidar measurements of the aerosol extinction/backscatter ratio and airborne Sun photometer measurements of the aerosol optical thickness were used along with in situ measurements of the aerosol size distribution to retrieve estimates of the aerosol single scattering albedo (omega(sub o)) and the effective complex refractive index. Retrieved values of omega(sub o) ranged from (0.91-0.98) and were in generally good agreement with omega(sub o) derived from airborne in situ measurements of scattering and absorption. Elevated aerosol layers located between about 2.6 and 3.6 km were observed by the Raman lidar on May 25 and May 27. The airborne measurements and lidar retrievals indicated that these layers, which were likely smoke produced by Siberian forest fires, were primarily composed of relatively large particles (r(sub eff) approximately 0.23 micrometers), and that the layers were relatively nonabsorbing (omega(sub o) approximately 0.96-0.98). Preliminary results show that major modifications that were made to the Raman lidar system during 2004 have dramatically improved the sensitivity in the aerosol and water vapor channels and reduced random errors in the aerosol scattering ratio and water vapor retrievals by an order of magnitude.

  18. Vertical Profiling of Atmospheric Backscatter with a Raman-Aerosol Lidar

    NASA Astrophysics Data System (ADS)

    Deleva, Atanaska D.; Peshev, Zahary Y.; Slesar, Alexander S.; Denisov, Sergey; Avramov, Lachezar A.; Stoyanov, Dimitar V.

    2010-01-01

    Aerosols have a strong impact on the planet's thermal balance, air quality, and a variety of atmospheric processes and phenomena. In this work we present some results from a long term lidar observation of tropospheric aerosols over the city of Sofia, Bulgaria, within the framework of the European project "EARLINET-ASSOS." Vertical profiles of the aerosol backscattering coefficient and range corrected lidar signals are processed and analyzed. The temporal evolution and the spatial distribution of atmospheric aerosol fields are illustrated by 2D-colormaps in height-time coordinates. We present here several cases of aerosol loading: transport of Saharan dust (at altitudes from 3 km to 5 km), highly situated layers (from 9 km to 15 km), and anthropogenic smog (up to 2 km). All measurements were performed by using the two aerosol spectral channels of a combined Raman-aerosol lidar developed in the Laser Radar Lab, Institute of Electronics, Bulgarian Academy of Sciences. It is based on a Q-switched powerful frequency-doubled Nd:YAG laser (output pulse power: up to 1 J at 1064 nm; up to 100 mJ at 532 nm; pulse duration 15 ns FWHM; repetition rate 2 Hz). A Cassegrain telescope (35 cm diameter, 200 cm focal length) collects the backscattered radiation. The lidar receiving system is based on novel smart high sensitive photo-receiving modules. The acquisition system provides signal registration with spatial resolution of 15 m (100 MHz 14-bit ADC). It allows for detection, storage, and processing of large volume lidar data. Our observations are in good agreement with the forecasts of Barcelona Supercomputing Center, concerning Saharan dust transport.

  19. CART Raman Lidar Aerosol and Water Vapor Measurements in the Vicinity of Clouds

    NASA Technical Reports Server (NTRS)

    Clayton, Marian B.; Ferrare, Richard A.; Turner, David; Newsom, Rob; Sivaraman, Chitra

    2008-01-01

    Aerosol and water vapor profiles acquired by the Raman lidar instrument located at the Climate Research Facility (CRF) at Southern Great Plains (SGP) provide data necessary to investigate the atmospheric variability in the vicinity of clouds near the top of the planetary boundary layer (PBL). Recent CARL upgrades and modifications to the routine processing algorithms afforded the necessarily high temporal and vertical data resolutions for these investigations. CARL measurements are used to investigate the behavior of aerosol backscattering and extinction and their correlation with water vapor and relative humidity.

  20. CART and GSFC Raman lidar measurements of atmospheric aerosol backscattering and extinction profiles for EOS validation and ARM radiation studies

    SciTech Connect

    Ferrare, R.A.; Turner, D.D.; Melfi, S.H.; Evans, K.D.; Whiteman, D.N.; Schwemmer, G.; Goldsmith, J.E.M.; Tooman, T.

    1998-04-01

    The aerosol retrieval algorithms used by the Moderate-Resolution Imaging Spectroradiometer (MODIS) and Multi-Angle Imaging SpectroRadiometer (MISR) sensors on the Earth Observing Satellite (EOS) AM-1 platform operate by comparing measured radiances with tabulated radiances that have been computed for specific aerosol models. These aerosol models are based almost entirely on surface and/or column averaged measurements and so may not accurately represent the ambient aerosol properties. Therefore, to validate these EOS algorithms and to determine the effects of aerosols on the clear-sky radiative flux, the authors have begun to evaluate the vertical variability of ambient aerosol properties using the aerosol backscattering and extinction profiles measured by the Cloud and Radiation Testbed (CART) and NASA Goddard Space Flight Center (GSFC) Raman Lidars. Using the procedures developed for the GSFC Scanning Raman Lidar (SRL), the authors have developed and have begun to implement algorithms for the CART Raman Lidar to routinely provide profiles of aerosol extinction and backscattering during both nighttime and daytime operations. Aerosol backscattering and extinction profiles are computed for both lidar systems using data acquired during the 1996 and 1997 Water Vapor Intensive Operating Periods (IOPs). By integrating these aerosol extinction profiles, they derive measurements of aerosol optical thickness and compare these with coincident sun photometer measurements. They also use these measurements to measure the aerosol extinction/backscatter ratio S{sub a} (i.e. lidar ratio). Furthermore, they use the simultaneous water vapor measurements acquired by these Raman lidars to investigate the effects of water vapor on aerosol optical properties.

  1. Raman Lidar Profiling of Aerosols Over the Central US; Diurnal Variability and Comparisons with the GOCART Model

    NASA Technical Reports Server (NTRS)

    Ferrare, R. A.; Chin, M.; Clayton, M.; Turner, D.

    2002-01-01

    We use profiles of aerosol extinction, water vapor mixing ratio, and relative humidity measured by the ARM SGP Raman lidar in northern Oklahoma to show how the vertical distributions of aerosol extinction and water vapor vary throughout the diurnal cycle. While significant (20-30%) variations in aerosol extinction occurred near the surface as well as aloft, smaller (approximately 10%) variations were observed in the diurnal variability of aerosol optical thickness (AOT). The diurnal variations in aerosol extinction profiles are well correlated with corresponding variations in the average relative humidity profiles. The water vapor mixing ratio profiles and integrated water vapor amounts generally show less diurnal variability. The Raman lidar profiles are also used to evaluate the aerosol optical thickness and aerosol extinction profiles simulated by the GOCART global aerosol model. Initial comparisons show that the AOT simulated by GOCART was in closer agreement with the AOT derived from the Raman lidar and Sun photometer measurements during November 2000 than during September 2000. For both months, the vertical variability in average aerosol extinction profiles simulated by GOCART is less than the variability in the corresponding Raman lidar profiles.

  2. Observations of atmospheric water vapor, aerosol, and cloud with a Raman lidar

    NASA Astrophysics Data System (ADS)

    Yufeng, Wang; Fei, Gao; Chengxuan, Zhu; Qing, Yan; Dengxin, Hua

    2014-11-01

    To realize the improvement of signal-to-noise ratio and rejection rate for elastic Mie-Rayleigh signals, a set of dichroic mirrors and narrow-band interference filters with high efficiency was proposed to constitute a new spectroscopy for atmospheric water vapor, aerosol, and cloud studies. Based on the curves of signal-to-noise ratio at three different channels, the actual rejection rates of elastic Mie-Rayleigh signals at the Raman channels were found to be higher than eight orders of magnitude with the cloudy conditions. Continuous nighttime observations showed that the statistical error of the water vapor mixing ratio was <10% at a height of 2.3 km with an aerosol backscatter ratio of 17. Temporal variations of water vapor and aerosols were obtained under the conditions of cloud and cloud-free, the change relevance between aerosol and water vapor was analyzed, and the growth characteristics of water vapor and aerosols showed a good agreement within the cloud layers. Obtained results indicate achievement of the continuous detection of water vapor, aerosol, and cloud with a high efficiency and stability by Raman lidar.

  3. Intercomparison of aerosol optical parameters from WALI and R-MAN510 aerosol Raman lidars in the framework of HyMeX campaign

    NASA Astrophysics Data System (ADS)

    Boytard, Mai-Lan; Royer, Philippe; Chazette, Patrick; Shang, Xiaoxia; Marnas, Fabien; Totems, Julien; Bizard, Anthony; Bennai, Baya; Sauvage, Laurent

    2013-04-01

    The HyMeX program (Hydrological cycle in Mediterranean eXperiment) aims at improving our understanding of hydrological cycle in the Mediterranen and at a better quantification and forecast of high-impact weather events in numerical weather prediction models. The first Special Observation Period (SOP1) took place in September/October 2012. During this period two aerosol Raman lidars have been deployed at Menorca Island (Spain) : one Water-vapor and Aerosol Raman LIdar (WALI) operated by LSCE/CEA (Laboratoire des Sciences du Climat et de l'Environnement/Commissariat à l'Energie Atomique) and one aerosol Raman and dual-polarization lidar (R-Man510) developed and commercialized by LEOSPHERE company. Both lidars have been continuously running during the campaign and have provided information on aerosol and cloud optical properties under various atmospheric conditions (maritime background aerosols, dust events, cirrus clouds...). We will present here the results of intercomparisons between R-Man510, and WALI aerosol lidar systems and collocated sunphotometer measurements. Limitations and uncertainties on the retrieval of extinction coefficients, depolarization ratio, aerosol optical depths and detection of atmospheric structures (planetary boundary layer height, aerosol/cloud layers) will be discussed according atmospheric conditions. The results will also be compared with theoretical uncertainty assessed with direct/inverse model of lidar profiles.

  4. Raman lidar and sun photometer measurements of aerosols and water vapor during the ARM RCS experiment

    NASA Technical Reports Server (NTRS)

    Ferrare, R. A.; Whiteman, D. N.; Melfi, S. H.; Evans, K. D.; Holben, B. N.

    1995-01-01

    The first Atmospheric Radiation Measurement (ARM) Remote Cloud Study (RCS) Intensive Operations Period (IOP) was held during April 1994 at the Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site near Lamont, Oklahoma. This experiment was conducted to evaluate and calibrate state-of-the-art, ground based remote sensing instruments and to use the data acquired by these instruments to validate retrieval algorithms developed under the ARM program. These activities are part of an overall plan to assess general circulation model (GCM) parameterization research. Since radiation processes are one of the key areas included in this parameterization research, measurements of water vapor and aerosols are required because of the important roles these atmospheric constituents play in radiative transfer. Two instruments were deployed during this IOP to measure water vapor and aerosols and study their relationship. The NASA/Goddard Space Flight Center (GSFC) Scanning Raman Lidar (SRL) acquired water vapor and aerosol profile data during 15 nights of operations. The lidar acquired vertical profiles as well as nearly horizontal profiles directed near an instrumented 60 meter tower. Aerosol optical thickness, phase function, size distribution, and integrated water vapor were derived from measurements with a multiband automatic sun and sky scanning radiometer deployed at this site.

  5. Combined Raman elastic-backscatter lidar for vertical profiling of stratospheric aerosol and climatology of background stratospheric aerosol over Siberia

    NASA Astrophysics Data System (ADS)

    Zuev, Vladimir; Burlakov, Vladimir D.; Dolgii, Sergey I.; Elnikov, Andrey V.; Nevzorov, Aleksey V.

    2004-12-01

    At Siberian Lidar Station (SLS) in Institute of Atmospheric Optics, Siberian Branch of Russian Academy of Sciences, Tomsk (56.5 °N 85.1°E) we perform regular lidar measurements of the profiles of vertical distribution of optical characteristics of stratospheric aerosol at wavelength 532 nm with receiving telescope of a diameter of 03. m. The temperature profile is measured in the altitude interval 10-70 km: from molecular backscattering signal at wavelength 532 nm in altitude range 30-70 km and from signal of Raman scattering by nitrogen at wavelength 607 nm in altitude range 10-30 km with receiving telescope of a diameter 2.2m. In this paper we analyze the data of long-term (since 1986) lidar observations of stratospheric aerosol layer, performed at Siberian Lidar Station and data of expedition measurements in summer-fall periods of 2001-3003, obtained in Siberian region from middle to subpolar latitudes (from 52° to 69°N and from 73° to 106° E). Main attention is paid to analysis of data of last years of measurements obtained under conditions of "new" background period of long-term absence of explosive volcanic eruptions (last observed in June 1991).

  6. New Examination of the Traditional Raman Lidar Technique II: Evaluating the Ratios for Water Vapor and Aerosols

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.

    2003-01-01

    In a companion paper, the temperature dependence of Raman scattering and its influence on the Raman and Rayleigh-Mie lidar equations was examined. New forms of the lidar equation were developed to account for this temperature sensitivity. Here those results are used to derive the temperature dependent forms of the equations for the water vapor mixing ratio, aerosol scattering ratio, aerosol backscatter coefficient, and extinction to backscatter ratio (Sa). The error equations are developed, the influence of differential transmission is studied and different laser sources are considered in the analysis. The results indicate that the temperature functions become significant when using narrowband detection. Errors of 5% and more can be introduced in the water vapor mixing ratio calculation at high altitudes and errors larger than 10% are possible for calculations of aerosol scattering ratio and thus aerosol backscatter coefficient and extinction to backscatter ratio.

  7. Inversion of multiwavelength Raman lidar data for retrieval of bimodal aerosol size distribution

    NASA Astrophysics Data System (ADS)

    Veselovskii, Igor; Kolgotin, Alexei; Griaznov, Vadim; Müller, Detlef; Franke, Kathleen; Whiteman, David N.

    2004-02-01

    We report on the feasibility of deriving microphysical parameters of bimodal particle size distributions from Mie-Raman lidar based on a triple Nd:YAG laser. Such an instrument provides backscatter coefficients at 355, 532, and 1064 nm and extinction coefficients at 355 and 532 nm. The inversion method employed is Tikhonov's inversion with regularization. Special attention has been paid to extend the particle size range for which this inversion scheme works to ~10 ?m, which makes this algorithm applicable to large particles, e.g., investigations concerning the hygroscopic growth of aerosols. Simulations showed that surface area, volume concentration, and effective radius are derived to an accuracy of ~50% for a variety of bimodal particle size distributions. For particle size distributions with an effective radius of <1 ?m the real part of the complex refractive index was retrieved to an accuracy of +/-0.05, the imaginary part was retrieved to 50% uncertainty. Simulations dealing with a mode-dependent complex refractive index showed that an average complex refractive index is derived that lies between the values for the two individual modes. Thus it becomes possible to investigate external mixtures of particle size distributions, which, for example, might be present along continental rims along which anthropogenic pollution mixes with marine aerosols. Measurement cases obtained from the Institute for Tropospheric Research six-wavelength aerosol lidar observations during the Indian Ocean Experiment were used to test the capabilities of the algorithm for experimental data sets. A benchmark test was attempted for the case representing anthropogenic aerosols between a broken cloud deck. A strong contribution of particle volume in the coarse mode of the particle size distribution was found.

  8. Inversion of multiwavelength Raman lidar data for retrieval of bimodal aerosol size distribution.

    PubMed

    Veselovskii, Igor; Kolgotin, Alexei; Griaznov, Vadim; Müller, Detlef; Franke, Kathleen; Whiteman, David N

    2004-02-10

    We report on the feasibility of deriving microphysical parameters of bimodal particle size distributions from Mie-Raman lidar based on a triple Nd:YAG laser. Such an instrument provides backscatter coefficients at 355, 532, and 1064 nm and extinction coefficients at 355 and 532 nm. The inversion method employed is Tikhonov's inversion with regularization. Special attention has been paid to extend the particle size range for which this inversion scheme works to approximately 10 microm, which makes this algorithm applicable to large particles, e.g., investigations concerning the hygroscopic growth of aerosols. Simulations showed that surface area, volume concentration, and effective radius are derived to an accuracy of approximately 50% for a variety of bimodal particle size distributions. For particle size distributions with an effective radius of < 1 microm the real part of the complex refractive index was retrieved to an accuracy of +/- 0.05, the imaginary part was retrieved to 50% uncertainty. Simulations dealing with a mode-dependent complex refractive index showed that an average complex refractive index is derived that lies between the values for the two individual modes. Thus it becomes possible to investigate external mixtures of particle size distributions, which, for example, might be present along continental rims along which anthropogenic pollution mixes with marine aerosols. Measurement cases obtained from the Institute for Tropospheric Research six-wavelength aerosol lidar observations during the Indian Ocean Experiment were used to test the capabilities of the algorithm for experimental data sets. A benchmark test was attempted for the case representing anthropogenic aerosols between a broken cloud deck. A strong contribution of particle volume in the coarse mode of the particle size distribution was found. PMID:15008501

  9. Validation of Temperature Measurements from the Airborne Raman Ozone Temperature and Aerosol Lidar During SOLVE

    NASA Technical Reports Server (NTRS)

    Burris, John; McGee, Thomas; Hoegy, Walter; Lait, Leslie; Twigg, Laurence; Sumnicht, Grant; Heaps, William; Hostetler, Chris; Bui, T. Paul; Neuber, Roland; Bhartia, P. K. (Technical Monitor)

    2001-01-01

    The Airborne Raman Ozone, Temperature and Aerosol Lidar (AROTEL) participated in the recent Sage III Ozone Loss and Validation Experiment (SOLVE) by providing profiles of aerosols, polar stratospheric clouds (PSCs), ozone and temperature with high vertical and horizontal resolution. Temperatures were derived from just above the aircraft to approximately 60 kilometers geometric altitude with a reported vertical resolution of between 0.5 and 1.5 km. The horizontal footprint varied from 4 to 70 km. This paper explores the measurement uncertainties associated with the temperature retrievals and makes comparisons with independent, coincident, measurements of temperature. Measurement uncertainties range from 0.1 K to approximately 4 K depending on altitude and integration time. Comparisons between AROTEL and balloon sonde temperatures retrieved under clear sky conditions using both Rayleigh and Raman scattered data showed AROTEL approximately 1 K colder than sonde values. Comparisons between AROTEL and the Meteorological Measurement System (MMS) on NASA's ER-2 show AROTEL being from 2-3 K colder for altitudes ranging from 14 to 18 km. Temperature comparisons between AROTEL and the United Kingdom Meteorological Office's model showed differences of approximately 1 K below approximately 25 km and a very strong cold bias of approximately 12 K at altitudes between 30 and 35 km.

  10. Raman Lidar (RL) Handbook

    SciTech Connect

    Newsom, RK

    2009-03-01

    The Raman lidar at the ARM Climate Research Facility (ACRF) Southern Great Plains (SGP) Central Facility (SGPRL) is an active, ground-based laser remote sensing instrument that measures height and time resolved profiles of water vapor mixing ratio and several cloud- and aerosol-related quantities. The system is a non-commercial custom-built instrument developed by Sandia National Laboratories specifically for the ARM Program. It is fully computer automated, and will run unattended for many days following a brief (~5-minute) startup period. The self-contained system (requiring only external electrical power) is housed in a climate-controlled 8’x8’x20’ standard shipping container.

  11. Raman LIDAR Detection of Cloud Base

    NASA Technical Reports Server (NTRS)

    Demoz, Belay; Starr, David; Whiteman, David; Evans, Keith; Hlavka, Dennis; Peravali, Ravindra

    1999-01-01

    Advantages introduced by Raman lidar systems for cloud base determination during precipitating periods are explored using two case studies of light rain and virga conditions. A combination of the Raman lidar derived profiles of water vapor mixing ratio and aerosol scattering ratio, together with the Raman scattered signals from liquid drops, can minimize or even eliminate some of the problems associated with cloud boundary detection using elastic backscatter lidars.

  12. Improved method for retrieving the aerosol optical properties without the numerical derivative for Raman-Mie lidar

    NASA Astrophysics Data System (ADS)

    Gong, Wei; Wang, Wei; Mao, Feiyue; Zhang, Jinye

    2015-08-01

    Raman-Mie light detection and ranging (lidar) is a very useful tool for research on atmospheric aerosol optical properties with high spatial-temporal resolution. However, many uncertainties still exist in data retrieval because traditional retrieval methods need to calculate the numerical derivative for aerosol extinction coefficient (AEC), which may cause large errors, particularly with low signal-to-noise ratios. Thus, we present an improved method for retrieving aerosol optical properties. We re-formulate the N2-Raman lidar equation to obtain an unknown term which contains the AEC at the Mie wavelength. We replace the unknown term of the equation in traditional method for retrieving aerosol backscatter coefficient (ABC). Then, AEC can be retrieved by the accurate ABC and Mie lidar signal without calculating the numerical derivative. Tests on the simulated and measured signals show that results of our method and those of the traditional method have similar tendencies. However, our method is more accurate and robust, and the significant errors of AEC caused by the numerical derivative can be reduced.

  13. Raman Lidar Measurements of Aerosol Extinction and Backscattering. Report 2; Derivation of Aerosol Real Refractive Index, Single-Scattering Albedo, and Humidification Factor using Raman Lidar and Aircraft Size Distribution

    NASA Technical Reports Server (NTRS)

    Ferrare, R. A.; Melfi, S. H.; Whiteman, D. N.; Evans, K. D.; Poellot, M.; Kaufman, Y. J.

    1998-01-01

    Aerosol backscattering and extinction profiles measured by the NASA Goddard Space Flight Center Scanning Raman Lidar (SRL) during the remote cloud sensing (RCS) intensive operations period (IOP) at the Department of Energy Atmospheric Radiation Measurement (ARM) southern Great Plains (SGP) site during two nights in April 1994 are discussed. These profiles are shown to be consistent with the simultaneous aerosol size distribution measurements made by a PCASP (Passive Cavity Aerosol Spectrometer Probe) optical particle counter flown on the University of North Dakota Citation aircraft. We describe a technique which uses both lidar and PCASP measurements to derive the dependence of particle size on relative humidity, the aerosol real refractive index n, and estimate the effective single-scattering albedo Omega(sub 0). Values of n ranged between 1.4-1.5 (dry) and 1.37-1.47 (wet); Omega(sub 0) varied between 0.7 and 1.0. The single-scattering albedo derived from this technique is sensitive to the manner in which absorbing particles are represented in the aerosol mixture; representing the absorbing particles as an internal mixture rather than the external mixture assumed here results in generally higher values of Omega(sub 0). The lidar measurements indicate that the change in particle size with relative humidity as measured by the PCASP can be represented in the form discussed by Hattel with the exponent gamma = 0.3 + or - 0.05. The variations in aerosol optical and physical characteristics captured in the lidar and aircraft size distribution measurements are discussed in the context of the meteorological conditions observed during the experiment.

  14. Retrieval of aerosol and volcanic ash properties from Raman lidar with optimal estimation

    E-print Network

    Oxford, University of

    extinction and backscatter from two-channel Raman lidar observations. Optimal estimation A schematic then be shown that the iteration, xi+1 = xi + [(1 + i)S-1 a + KT i S-1 y Ki]-1 {KT i S-1 y [y - F(xi, b)] - S-1 from six simulated cases (dashed) when retrieving backscatter and extinction (green) or log backscatter

  15. Final Technical Report. Cloud and Radiation Testbed (CART) Raman Lidar measurement of atmospheric aerosols for the Atmospheric Radiation Measurement (ARM) Program

    SciTech Connect

    Ferrare, Richard A.

    2002-08-19

    Vertical profiles of aerosol extinction are required for determination of the effects of aerosols on the clear-sky radiative flux. Since recent studies have demonstrated the inability to compute these profiles on surface aerosol measurements alone, vertical profiles of aerosol optical properties must be acquired to compute aerosol radiative effects throughout the entire atmospheric column. Following the recommendation of the ARM Aerosol Working Group, the investigator developed, evaluated, and implemented algorithms for the CART Raman Lidar to provide profiles of aerosol extinction and backscattering. By virtue of its ability to measure vertical profiles of both aerosol extinction and water vapor simultaneously in the same scattering volume, we used the resulting profiles from the CART Raman Lidar to investigate the impact of water vapor and relative humidity on aerosol extinction throughout the column on a continuous and routine basis. The investigator used these the CART Raman Lidar aerosol extinction and backscattering profiles to evaluate the vertical variability of aerosol extinction and the extinction/backscatter ratio over the ARM SGP site.

  16. Aerosol characteristics in Phimai, Thailand determined by continuous observation with a polarization sensitive Mie-Raman lidar and a sky radiometer

    NASA Astrophysics Data System (ADS)

    Sugimoto, Nobuo; Shimizu, Atsushi; Nishizawa, Tomoaki; Matsui, Ichiro; Jin, Yoshitaka; Khatri, Pradeep; Irie, Hitoshi; Takamura, Tamio; Aoki, Kazuma; Thana, Boossarasiri

    2015-06-01

    Distributions and optical characteristics of aerosols were continuously observed with a polarization-sensitive (532 nm), Mie-scattering (532 and 1064 nm) and Raman-scattering (607 nm) lidar and a sky radiometer in Phimai, Thailand. Polarization lidar measurements indicated that high concentration plumes of spherical aerosols considered as biomass burning smoke were often observed in the dry season. Plumes of non-spherical aerosols considered as long-range transported soil dust from Africa, the Middle East, or Northeast Asia were occasionally observed. Furthermore, low-concentration non-spherical aerosols were almost always observed in the atmospheric mixing layer. Extinction coefficient profiles of spherical aerosols and non-spherical dust exhibited different diurnal variations, and spherical aerosols including smoke were distributed in higher altitudes in the mixing layer and residual layer. The difference can be explained by hygroscopic growth of smoke particles and buoyancy of the smoke. Analysis of seasonal variations of optical properties derived from the Raman lidar and the sky radiometer confirmed that the lidar ratio, aerosol optical depth, and Angstrom exponent were higher in the dry season (October-May) and lower in the wet season (June-September). The single scattering albedo was lower in the dry season. These seasonal variations are explained by frequent biomass burning in the dry season consistent with previous studies in Southeast Asian region. At the same time, the present work confirmed that soil dust was a major aerosol component in Phimai, Thailand.

  17. One-year aerosol profiling with EUCAARI Raman lidar at Shangdianzi GAW station: Beijing plume and seasonal variations

    NASA Astrophysics Data System (ADS)

    HäNel, A.; Baars, H.; Althausen, D.; Ansmann, A.; Engelmann, R.; Sun, J. Y.

    2012-07-01

    The study examines seasonal and air-flow-dependent variations of the vertical distribution of aerosols at the Global Atmospheric Watch (GAW) station of Shangdianzi in the North China Plain 100 km northeast of Beijing. One-year Raman lidar observations of profiles of aerosol extinction and backscatter coefficients at 532 nm were performed from April 2009 to March 2010 in the framework of the European Aerosol Cloud Climate and Air Quality Interactions (EUCAARI) project. In the nighttime statistics a two-layer structure with the main haze layer reaching to 1-1.5 km height asl and an elevated aerosol layer on top with a top height of 2.5-5 km height asl was generally observed. A case study of a Beijing haze plume is presented to document the drastic changes in the environmental conditions over the background monitoring station during the passage of a strong haze front. Aerosol optical depth (AOD) and extinction coefficients increased from 0.2 to 1.2 and from 200 Mm-1 to 1000 Mm-1, respectively, within less than two hours. The statistical analysis revealed layer mean extinction coefficients of the haze layer most frequently from 200-600 Mm-1 and typically from 50-100 Mm-1in the elevated layer. The AOD ranged from about 0.3 for northerly air flows to, on average, 0.95 during southerly air flows. The lidar ratio shows a narrow distribution peaking at 60 sr in the haze layer caused by anthropogenic fine-mode aerosol and a broad distribution from 40-90 sr in the elevated layer caused by the complex mixture of aged desert dust, biomass burning smoke, and industrial pollution over eastern Asia.

  18. RAMSES: German Meteorological Service autonomous Raman lidar for water vapor, temperature, aerosol, and cloud measurements.

    PubMed

    Reichardt, Jens; Wandinger, Ulla; Klein, Volker; Mattis, Ina; Hilber, Bernhard; Begbie, Robert

    2012-12-01

    The Raman lidar for atmospheric moisture sensing (RAMSES) for unattended, continuous multiparameter atmospheric profiling is presented. A seeded frequency-tripled Nd:YAG laser serves as the light source. A nine-channel polychromator, nonfiber coupled to the main telescope (790 mm diameter), is used for far-range measurements. Near-range observations are performed with a three-channel polychromator, fiber coupled to a secondary telescope (200 mm diameter). Measurement parameters are water-vapor mixing ratio (MR), temperature, and the optical particle parameters, which are extinction coefficient, backscatter coefficient, lidar ratio, and depolarization ratio at 355 nm. Profiles of water-vapor MR are measured from close to the surface up to 14 km at night and 5 km during the day under favorable atmospheric conditions in 20 min. Temperature profiles of the troposphere and lower stratosphere are determined with the rotational-Raman technique. For the detection of the rotational Raman signals, a new beamsplitter/interference-filter experimental setup is implemented that is compact, robust, and easy to align. Furthermore, the polychromator design allows two independent methods for calibrating measurements of depolarization ratio. RAMSES optical design concept and experimental setup are detailed, and a description of the operational near-real-time data evaluation software is given. A multiday observation is discussed to illustrate the measurement capabilities of RAMSES. PMID:23207381

  19. In-situ, sunphotometer and Raman lidar observations of aerosol transport events in the western Mediterranean during the June 2013 ChArMEx campaign

    NASA Astrophysics Data System (ADS)

    Totems, Julien; Sicard, Michael; Bertolin, Santi; Boytard, Mai-Lan; Chazette, Patrick; Comeron, Adolfo; Dulac, Francois; Hassanzadeh, Sahar; Lange, Diego; Marnas, Fabien; Munoz, Constantino; Shang, Xiaoxia

    2014-05-01

    We present a preliminary analysis of aerosol observations performed in June 2013 in the western Mediterranean at two stations set up in Barcelona and Menorca (Spain) in the framework of the ChArMEx (Chemistry Aerosol Mediterranean Experiment) project. The Barcelona station was equipped with the following fixed instruments belonging to the Universitat Politècnica de Catalunya (UPC): an AERONET (Aerosol Robotic Network) sun-photometer, an MPL (Micro Pulse Lidar) lidar and the UPC multi-wavelength lidar. The MPL lidar works at 532 nm and has a depolarization channel, while the UPC lidar works at 355, 532 and 1064 nm, and also includes two N2- (at 387 and 607 nm) and one H2O-Raman (at 407 nm) channels. The MPL system works continuously 24 hour/day. The UPC system was operated on alert in coordination with the research aircrafts plans involved in the campaign. In Cap d'en Font, Menorca, the mobile laboratory of the Laboratoire des Sciences du Climat et de l'Environnement hosted an automated (AERONET) and a manual (Microtops) 5-lambda sunphotometer, a 3-lambda nephelometer, a 7-lambda aethalometer, as well as the LSCE Water vapor Aerosol LIdar (WALI). This mini Raman lidar, first developed and validated for the HyMEX (Hydrological cycle in the Mediterranean eXperiment) campaign in 2012, works at 355 nm for eye safety and is designed with a short overlap distance (<300m) to probe the lower troposphere. It includes depolarization, N2- and H2O-Raman channels. H2O observations have been calibrated on-site by different methods and show good agreement with balloon measurements. Observations at Cap d'en Font were quasi-continuous from June 10th to July 3rd, 2013. The lidar data at both stations helped direct the research aircrafts and balloon launches to interesting plumes of particles in real time for in-situ measurements. Among some light pollution background from the European continent, a typical Saharan dust event and an unusual American dust/biomass burning event are highlighted in our measurements. The lidar ratio, depolarization ratio and water content, as well as the usual aerosol vertical distribution and extinction properties provided by the Raman lidars, and the size distributions provided by AERONET, prove very helpful in characterizing particle types and sources, especially for the multi-layer situations observed. Further on, the study of parameters extracted during this campaign will allow us an assessment of the local direct aerosol radiative forcing.

  20. Study of aerosol hygroscopic events over the Cabauw experimental site for atmospheric research (CESAR) using the multi-wavelength Raman lidar Caeli

    NASA Astrophysics Data System (ADS)

    Fernández, A. J.; Apituley, A.; Veselovskii, I.; Suvorina, A.; Henzing, J.; Pujadas, M.; Artíñano, B.

    2015-11-01

    This article presents a study of aerosol optical and microphysical properties under different relative humidity (RH) but well mixed layer conditions using optical and microphysical aerosol properties from multi-wavelength (MW) Raman lidar and in-situ aerosol observations collected at the Cabauw Experimental Site for Atmospheric Research (CESAR). Two hygroscopic events are described through 3 backscatter (?) and 2 extinction (?) coefficients which in turn provide intensive parameters such as the backscatter-related Ångström exponent (å?) and the lidar ratio (LR). Along with it, profiles of RH were inferred from Raman lidar observations and therefore, as a result of varying humidity conditions, a shift on the aerosol optical properties can be described. Thus, it is observed that as RH increases, aerosols uptake water vapour, augment their size and consequently the å? diminishes whereas the LR increases. The enhancement factor based on the backscatter coefficient at 532 nm, which characterizes the aerosol from hygroscopic standpoint, is also estimated. Finally, microphysical properties that are necessary for aerosol radiative forcing estimates - such as volume, effective radii, refractive index and size distribution, all vertically resolved - are retrieved using the inversion with regularization. Using this method, two hygroscopic events are described in detail.

  1. Raman Lidar Retrievals of Mixed Layer Heights

    NASA Astrophysics Data System (ADS)

    Ferrare, R. A.; Clayton, M.; Turner, D. D.; Newsom, R. K.; Goldsmith, J.

    2012-12-01

    Accurate determination of the atmospheric mixing layer (ML) height is important for modeling the transport of aerosols and aerosol precursors and forecasting air quality. Aerosol and water vapor profiles measured by the DOE ARM SGP and the new TWP (Darwin) ground based Raman lidars provide direct measurements of the vertical structure of ML. We have developed automated algorithms to identify sharp gradients in aerosols and water vapor at the top of the ML and have used these algorithms to derive ML heights for extended periods over the last few years. During the afternoon, these ML heights generally compare favorably with ML heights derived from potential temperature profiles derived from coincident radiosondes. However, retrieving ML heights via lidar measurements of water vapor and aerosol gradients is problematic in the presence of elevated aerosol and water vapor layers which are often observed, especially at night. Consequently, we take advantage of recent modifications to these lidars that permit continuous temperature profiling, and compute ML heights using potential temperature profiles derived from Raman lidar and Atmospheric Emitted Radiance Interferometer (AERI) measurements. The resulting ML heights agree well with ML heights derived from radiosondes and provide a more realistic representation of the diurnal ML behavior. We use the Raman lidar aerosol and water vapor profiles and ML heights to derive the fractions of total column precipitable water vapor and aerosol optical thickness within and above the ML and show how the ML heights and these fractions vary with time of day and season. The SGP Raman lidar measurements show that the fraction of the aerosol optical thickness and precipitable water vapor above the ML increases from 30-60% during the day to 60-80% at night. The Darwin Raman lidar measurements reveal a shallow, moist cloud-topped ML with little diurnal variability during the austral summer and deeper ML with more diurnal variability during the austral winter. The Darwin Raman lidar measurements of the diurnal and seasonal variabilities of ML heights and the aerosol and water vapor distributions relative to these ML heights will also be presented.

  2. Application of the polarization Raman Mie lidar system to monitor the particulate matter and water vapor in the aerosol pollution and haze episodes

    NASA Astrophysics Data System (ADS)

    Xie, Chenbo; Zhao, Ming; Shang, Zhen; Wang, Bangxin; Zhong, Zhiqing; Liu, Dong; Wang, Yingjian

    2014-11-01

    To monitor the temporal and spatial characteristics of particulate matter and water vapor in the aerosol pollution and haze episodes, the polarization Raman Mie lidar system has been developed. The lidar system includes four detection channels and it can measure the extinction coefficient and depolarization ratio of particulate matter as well as water vapor mixing ratio. The extinction coefficient indicates the visibility of atmosphere and it associates with the concentration of particulate matter. The depolarization ratio demonstrates the nonsphericity of particulate matter and is useful to distinguish the dust and pollution aerosol. The water vapor mixing ratio denotes the content of water vapor in the air and it is an important factor to influence of the hygroscopic growth on the pollution aerosol. The lidar system can operate in the automatic and continuous modes through a window on the roof of the observation room regards of the weather, and it takes continuous measurement from 20 November 2013 to 6 February 2014 over Hefei, China. During the experiment, the typical results of particulate matter measured with lidar in clear air, aerosol pollution and haze, and dust episodes are analyzed and given. The lidar observations are also compared with the air quality data and the meteorological data on the ground.

  3. Turn-key Raman lidar for profiling atmospheric water vapor, clouds, and aerosols at the US Southern Great Plains Climate Study Site

    SciTech Connect

    Goldsmith, J.E.M.; Blair, F.H.; Bisson, S.E.

    1997-12-31

    There are clearly identified scientific requirements for continuous profiling of atmospheric water vapor at the Department of Energy, Atmospheric Radiation Measurement program, Southern Great Plains CART (Cloud and Radiation Testbed) site in northern Oklahoma. Research conducted at several laboratories has demonstrated the suitability of Raman lidar for providing measurements that are an excellent match to those requirements. We have developed and installed a ruggedized Raman lidar system that resides permanently at the CART site, and that is computer automated to eliminate the requirements for operator interaction. In addition to the design goal of profiling water vapor through most of the troposphere during nighttime and through the boundary layer during daytime, the lidar provides quantitative characterizations of aerosols and clouds, including depolarization measurements for particle phase studies.

  4. Advanced Raman water vapor lidar

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.; Melfi, S. Harvey; Ferrare, Richard A.; Evans, Keith A.; Ramos-Izquierdo, Luis; Staley, O. Glenn; Disilvestre, Raymond W.; Gorin, Inna; Kirks, Kenneth R.; Mamakos, William A.

    1992-01-01

    Water vapor and aerosols are important atmospheric constituents. Knowledge of the structure of water vapor is important in understanding convective development, atmospheric stability, the interaction of the atmosphere with the surface, and energy feedback mechanisms and how they relate to global warming calculations. The Raman Lidar group at the NASA Goddard Space Flight Center (GSFC) developed an advanced Raman Lidar for use in measuring water vapor and aerosols in the earth's atmosphere. Drawing on the experience gained through the development and use of our previous Nd:YAG based system, we have developed a completely new lidar system which uses a XeF excimer laser and a large scanning mirror. The additional power of the excimer and the considerably improved optical throughput of the system have resulted in approximately a factor of 25 improvement in system performance for nighttime measurements. Every component of the current system has new design concepts incorporated. The lidar system consists of two mobile trailers; the first (13m x 2.4m) houses the lidar instrument, the other (9.75m x 2.4m) is for system control, realtime data display, and analysis. The laser transmitter is a Lambda Physik LPX 240 iCC operating at 400 Hz with a XeF gas mixture (351 nm). The telescope is a .75m horizontally mounted Dall-Kirkham system which is bore sited with a .8m x 1.1m elliptical flat which has a full 180 degree scan capability - horizon to horizon within a plane perpendicular to the long axis of the trailer. The telescope and scan mirror assembly are mounted on a 3.65m x .9m optical table which deploys out the rear of the trailer through the use of a motor driven slide rail system. The Raman returns from water vapor (403 nm), nitrogen (383 nm) and oxygen (372 nm) are measured in addition to the direct Rayleigh/Mie backscatter (351). The signal from each of these is split at about a 5/95 ratio between two photomultiplier detectors. The 5 percent detector is used for measurements below about 4.0 km, while the 95 percent detector provides the information above this level.

  5. Aerosol lidar ``M4``

    SciTech Connect

    Shelevoy, C.D.; Andreev, Y.M.

    1994-12-31

    Small carrying aerosol lidar in which is used small copper vapor laser ``Malachite`` as source of sounding optical pulses is described. The advantages of metal vapor laser and photon counting mode in acquisition system of lidar gave ability to get record results: when lidar has dimensions (1 x .6 x .3 m) and weight (65 kg), it provides the sounding of air industrial pollutions at up to 20 km range in scanning sector 90{degree}. Power feed is less than 800 Wt. Lidar can be disposed as stationary so on the car, helicopter, light plane. Results of location of smoke tails and city smog in situ experiments are cited. Showed advantages of work of acquisition system in photon counting mode when dynamic range of a signal is up to six orders.

  6. Atmospheric Science Research Using Raman Lidar at NASA/GSFC

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.; Abshire, James B. (Technical Monitor)

    2002-01-01

    A broad overview of the research that is taking place in the Code 924 Raman Lidar group will be presented. The measurement capabilities of two instruments, the Scanning Raman Lidar (SRL) and the Raman Airborne Spectroscopic Lidar (RASL), will be discussed. Case studies to be presented include: 1) high resolution measurements of water vapor during a boundary layer bore wave event; 2) a study of the influence of thin cirrus clouds on satellite retrievals of water vapor; 3) the retrieval of warm cloud properties such as droplet radius and number density; and 4) remote aerosol characterization using multiwavelength lidar and others.

  7. REFRACTIVE INDEX AND INTEGRAL AEROSOL PROPERTIES RETRIEVAL FROM RAMAN LIDAR DATA USING PRINCIPLE COMPONENT ANALYSIS

    E-print Network

    Graaf, Martin de

    , to derive microphysical aerosol quantities, has been hampered by the fact that the inversion problem is ill models, including sea salt, soot, and mineral aerosol, using the sensitivity of the PCA kernels

  8. Studying Atmospheric Aerosol by Lidar

    NASA Astrophysics Data System (ADS)

    Gobbi, G. P.

    During the past three decades laser radars (lidars) become an important tool for the range-resolved remote-sensing of atmospheric constituents. Amongst these are aerosols, that represent a strong, poorly-known modulator of the Earth's climate. In this chapter the reader will first find an introduction to the lidar technique in terms of instrumental components. The lidar equation, describing the factors controlling the atmosphere- backscattered signal will then be addressed. Solution of the lidar equation to retrieve optical properties of atmospheric aerosol will be considered. Finally, a method to retrieve aerosol extinction, surface area and volume from single-wavelength lidar observations will be discussed. These arguments should suffice to deal with both the managing of simple lidar systems and with the comprehension of the large amount of information that forthcoming, space-based lidars will provide in the near future.

  9. YAG aerosol lidar

    NASA Astrophysics Data System (ADS)

    Sullivan, R.

    The Global Atmospheric Backscatter Experiment (GLOBE) Mission, using the NASA DC-8 aircraft platform, is designed to provide the magnitude and statistical distribution of atmospheric backscatter cross section at lidar operating wavelengths. This is a fundamental parameter required for the Doppler lidar proposed to be used on a spacecraft platform for global wind field measurements. The prime measurements will be made by a CO2 lidar instrument in the 9 to 10 micron range. These measurements will be complemented with the Goddard YAG Aerosol Lidar (YAL) data in two wavelengths, 0.532 and 1.06 micron, in the visible and near-infrared. The YAL, is being designed to utilize as much existing hardware, as feasible, to minimize cost and reduce implementation time. The laser, energy monitor, telescope and detector package will be mounted on an optical breadboard. The optical breadboard is mounted through isolation mounts between two low boy racks. The detector package will utilize a photomultiplier tube for the 0.532 micron channel and a silicon avalanche photo detector (APD) for the 1.06 micron channel.

  10. YAG aerosol lidar

    NASA Technical Reports Server (NTRS)

    Sullivan, R.

    1988-01-01

    The Global Atmospheric Backscatter Experiment (GLOBE) Mission, using the NASA DC-8 aircraft platform, is designed to provide the magnitude and statistical distribution of atmospheric backscatter cross section at lidar operating wavelengths. This is a fundamental parameter required for the Doppler lidar proposed to be used on a spacecraft platform for global wind field measurements. The prime measurements will be made by a CO2 lidar instrument in the 9 to 10 micron range. These measurements will be complemented with the Goddard YAG Aerosol Lidar (YAL) data in two wavelengths, 0.532 and 1.06 micron, in the visible and near-infrared. The YAL, is being designed to utilize as much existing hardware, as feasible, to minimize cost and reduce implementation time. The laser, energy monitor, telescope and detector package will be mounted on an optical breadboard. The optical breadboard is mounted through isolation mounts between two low boy racks. The detector package will utilize a photomultiplier tube for the 0.532 micron channel and a silicon avalanche photo detector (APD) for the 1.06 micron channel.

  11. Examination of the traditional Raman lidar technique. I. Evaluating the temperature-dependent lidar equations

    NASA Astrophysics Data System (ADS)

    Whiteman, David N.

    2003-05-01

    The essential information required for the analysis of Raman lidar water vapor and aerosol data acquired by use of a single laser wavelength is compiled here and in a companion paper [Appl. Opt. 42, 2593 (2003)]. Various details concerning the evaluation of the lidar equations when Raman scattering is measured are covered. These details include the influence of the temperature dependence of both pure rotational and vibrational-rotational Raman scattering on the lidar profile. The full temperature dependence of the Rayleigh-Mie and Raman lidar equations are evaluated by use of a new form of the lidar equation where all the temperature dependence is carried in a single term. The results indicate that, for the range of temperatures encountered in the troposphere, the magnitude of the temperature-dependent effect can reach 10% or more for narrowband Raman water-vapor measurements. Also, the calculation of atmospheric transmission, including the effects of depolarization, is examined carefully. Various formulations of Rayleigh cross-section determination commonly used in the lidar field are compared and reveal differences of as much as 5% among the formulations. The influence of multiple scattering on the measurement of aerosol extinction with the Raman lidar technique is considered, as are several photon pulse pileup-correction techniques.

  12. One-year observations of Mount Pinatubo aerosol with an advanced Raman lidar over Germany at 53. 5[degree]N

    SciTech Connect

    Ansmann, A. ); Wandinger, U.; Weitkamp, C. )

    1993-02-01

    A combined Raman elastic-backscatter lidar is utilized to observe the development of the stratospheric perturbation after the strong eruptions of Mount Pinatubo in June 1991. Height profiles of the particle extinction and backscatter coefficients are determined simultaneously and independently of each other. From these data the area-weighted mean particle radius and the aerosol surface area and mass are determined. The lidar measurements are taken at Geesthacht in northern Germany (53.5[degree]N, 10.5[degree]E). The Pinatubo aerosol layer is located between the tropopause and about 24 km height. Traces of stratospheric aerosol were frequently found down to 5 km height. The optical depth of the stratospheric aerosol layer has been of the order of 0.15 in 1992. The ratio of optical depth to column-integrated backscatter varied between about 15 and 60 sr. Most values were found between 20 and 30 sr. Extinction-to-backscatter ratios >50, between 20 and 30, and <15sr indicate effective particle radii <0.2, between 0.2 and 0.75, and >0.75 [mu]m, respectively, as Mie scattering calculations show. Variations of the extinction-to-backscatter ratio with height between about 10 and 99 sr were observed. Column aerosol mass and surface area were of the order of 0.05 gm[sup [minus]2] and 2.5 [times] 10[sup 11] [mu]m[sup 2] m[sup [minus]2] in the first half of 1992. 7 refs., 4 figs.

  13. LIDAR Measurements During Aerosols99

    NASA Technical Reports Server (NTRS)

    Voss, Kenneth J.; Welton, Ellsworth J.; Quinn, Patricia K.; Johnson, James; Thompson, Anne; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The Aerosols99 cruise took place during the period from January 14, to February 8 1999 on the R/V Ron Brown. The cruise track was almost a straight line from Norfolk, Va. to Cape Town, South Africa and afforded the opportunity to sample several different aerosol regimes over the North and South Atlantic. A Micro Pulse LIDAR system was used continually during this cruise to profile the aerosol vertical structure. Inversions of this data illustrated a varying vertical structure depending on the dominant air mass. In clean maritime aerosols in the Northern and Southern Hemispheres the aerosols were capped at 1 km. When a Dust event from Africa was encountered the aerosol extinction increased its maximum height to above 2 km. During a period in which the air mass was dominated by biomass burning from Southern Africa, the aerosol layer extended to 4 km. Comparisons of the aerosol optical depth derived from LIDAR inversion and surface sunphotometers showed an agreement within +/- 0.05 RMS Similar comparisons between the extinction measured with a nephelometer and particle soot absorption photometer (at 19 m altitude) and the lowest LIDAR measurement (75 m) showed good agreement (+/- 0.014/km . The LIDAR underestimated surface extinction during periods when an elevated aerosol layer was present over a relatively clean surface layer, but otherwise gave accurate results.

  14. Measurement of urban aerosol optical properties by ground counter-look elastic lidars

    NASA Astrophysics Data System (ADS)

    Song, Changbo; Boselli, Antonella; He, Yuntao; Sannino, Alessia; Spinelli, Nicola; Wang, Xuan

    2015-04-01

    Many lidar systems have been developed and implemented for measurements of aerosol optical properties and for air pollution studies in urban areas. However, most of these lidar systems are elastic lidar. In order to retrieve aerosol optical properties from elastic backscatter lidar returns, it is necessary to assume some hypotheses that directly regard the nature of the particles, such as lidar ratio. In this paper, a new elastic lidar, named counter-look elastic lidar, will be presented. This counter-look elastic lidar utilizes two identical elastic lidars to measure aerosol optical properties without any hypotheses. The two elastic lidars are located at different places and face to each other. Each lidar receives the return signal scattered by the same aerosol and molecules in laser irradiation path between two places. Then a simple retrieval method can be used to calculate the aerosol optical properties between the two places. Compared to Elastic-Raman lidar and High Spectral Resolution Lidar, the proposed counter-look elastic lidar can use low power eye-safe laser and all available wavelengths. The counter-look elastic lidar is low cost and can be used in both day time and night time. With this lidar, urban aerosol optical properties and their spatial distribution can be directly measured, including backscatter coefficient, extinction coefficient and lidar ratio. To demonstrate the proposed measurement, a couple of counter-look elastic lidars have been developed and tested by using 532nm wavelength laser and elastic receiving channels. In this experiment, two elastic lidars were put in two different places to across an urban area. Lidar return signal has been acquired in both day and night time and urban aerosol optical properties have been calculated directly basing on those signals. According to aerosol optical properties, the characterization of aerosols was obtained and the aerosol of anthropic and natural origin can be distinguished.

  15. Raman lidar observations of particle hygroscopicity during COPS

    NASA Astrophysics Data System (ADS)

    Stelitano, D.; Di Girolamo, P.; Summa, D.

    2012-04-01

    The characterization of particle hygroscopicity has primary importance for climate monitoring and prediction. Model studies have demonstrated that relative humidity (RH) has a critical influence on aerosol climate forcing. The relationship between aerosol backscattering and relative humidity has been investigated in numerous studies (among others, Pahlow et al., 2006; Wulfmeyer and Feingold, 2000; Veselovskii et al., 2009). Hygroscopic properties of aerosols influence particle size distribution and refractive index and hence their radiative effects. Aerosol particles tend to grow at large relative humidity values as a result of their hygroscopicity. Raman lidars with aerosol, water vapour and temperature measurement capability are potentially attractive tools for studying aerosol hygroscopicity as in fact they can provide continuous altitude-resolved measurements of particle optical, size and microphysical properties, as well as relative humidity, without perturbing the aerosols or their environment. Specifically, the University of Basilicata Raman lidar system (BASIL) considered for the present study, has the capability to perform all-lidar measurements of relative humidity based on the application of both the rotational and the vibrational Raman lidar techniques in the UV. BASIL was operational in Achern (Black Forest, Lat: 48.64 ° N, Long: 8.06 ° E, Elev.: 140 m) between 25 May and 30 August 2007 in the framework of the Convective and Orographically-induced Precipitation Study (COPS). During COPS, BASIL collected more than 500 hours of measurements, distributed over 58 measurement days and 34 intensive observation periods (IOPs). The present analysis is focused on selected case studies characterized by the presence of different aerosol types with different hygroscopic behaviour. The observed behaviour, dependent upon aerosol composition, may range from hygrophobic to strongly hygroscopic. Results from the different case studies will be illustrated and discussed at the Conference.

  16. What Good is Raman Water Vapor Lidar?

    NASA Technical Reports Server (NTRS)

    Whitman, David

    2011-01-01

    Raman lidar has been used to quantify water vapor in the atmosphere for various scientific studies including mesoscale meteorology and satellite validation. Now the international networks of NDACC and GRUAN have interest in using Raman water vapor lidar for detecting trends in atmospheric water vapor concentrations. What are the data needs for addressing these very different measurement challenges. We will review briefly the scientific needs for water vapor accuracy for each of these three applications and attempt to translate that into performance specifications for Raman lidar in an effort to address the question in the title of "What good is Raman water vapor Iidar."

  17. Particle backscatter, extinction, and lidar ratio profiling with Raman lidar in south and north China.

    PubMed

    Tesche, Matthias; Ansmann, Albert; Müller, Detlef; Althausen, Dietrich; Engelmann, Ronny; Hu, Min; Zhang, Yuanghang

    2007-09-01

    Aerosol Raman lidar observations of profiles of the particle extinction and backscatter coefficients and the respective extinction-to-backscatter ratio (lidar ratio) were performed under highly polluted conditions in the Pearl River Delta (PRD) in southern China in October 2004 and at Beijing during a clear period with moderately polluted to background aerosol conditions in January 2005. The anthropogenic haze in the PRD is characterized by volume light-extinction coefficients of particles ranging from approximately 200 to 800 Mm(-1) and lidar ratios mostly between 40 and 55 sr (average of 47+/-6 sr). Almost clean air masses were observed throughout the measurements of the Beijing campaign. These air masses originated from arid desert-steppe-like regions (greater Gobi area). Extinction values usually varied between 100 and 300 Mm(-1), and the lidar ratios were considerably lower (compared with PRD values) with values mostly from 30 to 45 sr (average of 38+/-7 sr). Gobi dust partly influenced the observations. Unexpectedly low lidar ratios of approximately 25 sr were found for a case of background aerosol with a low optical depth of 0.05. The low lidar ratios are consistent with Mie-scattering calculations applied to ground-based observations of particle size distributions. PMID:17805366

  18. Particle backscatter, extinction, and lidar ratio profiling with Raman lidar in south and north China

    SciTech Connect

    Tesche, Matthias; Ansmann, Albert; Mueller, Detlef; Althausen, Dietrich; Engelmann, Ronny; Hu Min; Zhang Yuanghang

    2007-09-01

    Aerosol Raman lidar observations of profiles of the particle extinction and backscatter coefficients and the respective extinction-to-backscatter ratio (lidar ratio) were performed under highly polluted conditions in the Pearl River Delta (PRD) in southern China in October 2004 and at Beijing during a clear period with moderately polluted to background aerosol conditions in January 2005. The anthropogenic haze in the PRD is characterized by volume light-extinction coefficients of particles ranging from approximately 200 to800 Mm-1 and lidar ratios mostly between 40 and 55 sr (average of47{+-}6 sr). Almost clean air masses were observed throughout the measurements of the Beijing campaign. These air masses originated from arid desert-steppe-like regions (greater Gobi area).Extinction values usually varied between 100 and300 Mm-1, and the lidar ratios were considerably lower (compared with PRD values) with values mostly from 30 to 45 sr (average of38{+-}7 sr). Gobi dust partly influenced the observations. Unexpectedly low lidar ratios of approximately 25 sr were found for a case of background aerosol with a low optical depth of 0.05. The low lidar ratios are consistent with Mie-scattering calculations applied to ground-based observations of particle size distributions.

  19. Raman lidar/AERI PBL Height Product

    SciTech Connect

    Ferrare, Richard

    2012-12-14

    Planetary Boundary Layer (PBL) heights have been computed using potential temperature profiles derived from Raman lidar and AERI measurements. Raman lidar measurements of the rotational Raman scattering from nitrogen and oxygen are used to derive vertical profiles of potential temperature. AERI measurements of downwelling radiance are used in a physical retrieval approach (Smith et al. 1999, Feltz et al. 1998) to derive profiles of temperature and water vapor. The Raman lidar and AERI potential temperature profiles are merged to create a single potential temperature profile for computing PBL heights. PBL heights were derived from these merged potential temperature profiles using a modified Heffter (1980) technique that was tailored to the SGP site (Della Monache et al., 2004). PBL heights were computed on an hourly basis for the period January 1, 2009 through December 31, 2011. These heights are provided as meters above ground level.

  20. Two-component horizontal wind vectors from the Raman-shifted Eye-safe Aerosol Lidar (REAL)

    NASA Astrophysics Data System (ADS)

    Mayor, S. D.

    2012-12-01

    Two-component horizontal wind vectors were calculated by applying a cross-correlation algorithm to square image blocks extracted from consecutive pairs of elastic backscatter lidar scans. The resulting vector components were compared with corresponding horizontal wind components from tower-mounted sonic anemometers located at the center of the image blocks at a range of 1.61 km. 180245 pairs of vectors derived from 75 days of field data collected between 19 March and 11 June 2007 were used in the analysis. Examples of time series comparisons from 4-h periods during light, strong, and changing wind conditions will be presented. The correlation between lidar-derived components and sonic anemometer components changes as a function of the mean backscatter signal-to-noise ratio (SNR) in the block area, maxima of the cross-correlation function (CCF), observed wind speed, and turbulent kinetic energy (TKE). The correlation between the lidar-derived velocity components and sonic anemometer wind components tends to be highest during light wind conditions with low TKE. Although the correlation of high frequency perturbations tends to be poor during windy and turbulent conditions, the technique is capable of sensing the mean flow. Examples of 2-dimensional, 2-component, flow fields will be presented. The NSF/NCAR REAL at California State University Chico. Streamlined flow field from 2-component vectors derived from 2 scans of the REAL and application of the cross-correlation technique. The area of the image spans 4 km by 4 km.

  1. Studying Taklamakan aerosol properties with lidar (STAPL)

    NASA Astrophysics Data System (ADS)

    Cottle, Paul; Mueller, Detlef; Shin, Dong-Ho; Zhang, Xiao Xiao; Feng, Guanglong; McKendry, Ian; Strawbridge, Kevin

    2013-10-01

    By now, the global impacts of atmospheric dust have been well-established. Nevertheless, relevant properties such as size distribution, depolarization ratio, and even single-scattering albedo have been shown to vary substantially between dust producing regions and are also strongly dependant on the conditions under which the dust is emitted. Even greater variations have been documented during the process of long-range transport. With continued improvement of detection technologies, research focus is increasingly turning to refinement of our knowledge of these properties of dust in order to better account for the presence of dust in models and data analysis. The purpose of this study is to use a combination of lidar data and models to directly observe the changing properties of dust layers as they are transported from their origin in the Taklamakan Desert of western China. With the co-operation of the Xinjiang Institute of Ecology and Geography, a portable micropulse lidar system was installed at Aksu National Field on the northern edge of the Tarim Basin in late April 2013, during the Spring dust storm season. Over six days, data were collected on the optical properties of dust emissions passing over this location. The measurements of this lidar have shown the dust over Aksu on these days to have a significantly higher depolarization ratio than has been previously reported for the region. Model results show this dust was then transported across the region at least as far as Korea and Japan. Models from the Naval Aerosol Analysis and Prediction System (NAAPS) show that during transport the dust layers became intermixed with sulfate emissions from industrial sources in China as well as smoke from wildfires burning in south-east Asia and Siberia. The multi-wavelength raman-elastic lidar located in Gwangju South Korea was used to observe the vertical structure of the layers as well as optical properties such as colour ratio, depolarization ratio and extinction coeffcient after regional-scale transportation and mixing with other aerosols. By comparing the observations of the Gwangju lidar with those taken near the source at Aksu, we investigate the extent of the change in optical properties of the dust layers over time. There is some evidence that the layers were also transported in some form to North America but these observations are preliminary and will require further investigation.

  2. Multi-wavelength Raman lidar, sunphotometric and aircraft measurements in combination with inversion models for the estimation of the aerosol optical and physico-chemical properties over Athens, Greece

    NASA Astrophysics Data System (ADS)

    Mamouri, R. E.; Papayannis, A.; Amiridis, V.; Müller, D.; Kokkalis, P.; Rapsomanikis, S.; Karageorgos, E. T.; Tsaknakis, G.; Nenes, A.; Kazadzis, S.; Remoundaki, E.

    2012-01-01

    A novel procedure has been developed to retrieve, simultaneously, the optical, microphysical and chemical properties of tropospheric aerosols with a multi-wavelength Raman lidar system in the troposphere over an urban site (Athens, Greece: 37.9° N, 23.6° E, 200 m a.s.l.) using data obtained during the European Space Agency (ESA) THERMOPOLIS project which took place between 15-31 July 2009 over the Greater Athens Area (GAA). We selected to apply our procedure for a case study of intense aerosol layers occurred on 20-21 July 2009. The National Technical University of Athens (NTUA) EOLE 6-wavelength Raman lidar system has been used to provide the vertical profiles of the optical properties of aerosols (extinction and backscatter coefficients, lidar ratio) and the water vapor mixing ratio. An inversion algorithm was used to derive the mean aerosol microphysical properties (mean effective radius - reff), single-scattering albedo (?) and mean complex refractive index (m) at selected heights in the 2-3 km height region. We found that reff was 0.3-0.4 ?m, ? at 532 nm ranged from 0.63 to 0.88 and m ranged from 1.45 + 0.015i to 1.56 + 0.05i, in good accordance with in situ aircraft measurements. The final data set of the aerosol microphysical properties along with the water vapor and temperature profiles were incorporated into the ISORROPIA model to infer an in situ aerosol composition consistent with the retrieved m and ? values. The retrieved aerosol chemical composition in the 2-3 km height region gave a variable range of sulfate (0-60%) and organic carbon (OC) content (0-50%), although the OC content increased (up to 50%) and the sulfate content dropped (up to 30%) around 3 km height; in connection with the retrieved low ? value (0.63), indicates the presence of absorbing biomass burning smoke mixed with urban haze. Finally, the retrieved aerosol microphysical properties were compared with column-integrated sunphotometer data.

  3. Autonomous Ozone and Aerosol Lidar Platform: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Strawbridge, K. B.

    2014-12-01

    Environment Canada is developing an autonomous tropospheric ozone and aerosol lidar system for deployment in support of short-term field studies. Tropospheric ozone and aerosols (PM10 and PM2.5) are important atmospheric constituents in low altitude pollution affecting human health and vegetation. Ozone is photo-chemically active with nitrogen oxides and can have a distinct diurnal variability. Aerosols contribute to the radiative budget, are a tracer for pollution transport, undergo complex mixing, and contribute to visibility and cloud formation. This particular instrument will employ two separate lidar transmitter and receiver assemblies. The tropospheric ozone lidar, based on the differential absorption lidar (DIAL) technique, uses the fourth harmonics of a Nd:YAG laser directed into a CO2 Raman cell to produce 276 nm, 287nm and 299 nm (first to third Stokes lines) output wavelengths. The aerosol lidar is based on the 3+2 design using a tripled Nd:YAG to output 355 nm, 532 nm and 1064nm wavelengths. Both lidars will be housed in a modified cargo trailer allowing for easy deployment to remote areas. The unit can be operated and monitored 24 hours a day via an internet link and requires an external power source. Simultaneous ozone and aerosol lidar measurements will provide the vertical context necessary to understand the complex mixing and transformation of pollutants - particularly when deployed near other ground-based in-situ sensors. Preliminary results will be shown from a summer field study at the Centre For Atmospheric Research Experiments (CARE).

  4. Multi-wavelength Raman lidar, sun photometric and aircraft measurements in combination with inversion models for the estimation of the aerosol optical and physico-chemical properties over Athens, Greece

    NASA Astrophysics Data System (ADS)

    Mamouri, R. E.; Papayannis, A.; Amiridis, V.; Müller, D.; Kokkalis, P.; Rapsomanikis, S.; Karageorgos, E. T.; Tsaknakis, G.; Nenes, A.; Kazadzis, S.; Remoundaki, E.

    2012-07-01

    A novel procedure has been developed to retrieve, simultaneously, the optical, microphysical and chemical properties of tropospheric aerosols with a multi-wavelength Raman lidar system in the troposphere over an urban site (Athens, Greece: 37.9° N, 23.6° E, 200 m a.s.l.) using data obtained during the European Space Agency (ESA) THERMOPOLIS project, which took place between 15-31 July 2009 over the Greater Athens Area (GAA). We selected to apply our procedure for a case study of intense aerosol layers that occurred on 20-21 July 2009. The National Technical University of Athens (NTUA) EOLE 6-wavelength Raman lidar system has been used to provide the vertical profiles of the optical properties of aerosols (extinction and backscatter coefficients, lidar ratio) and the water vapor mixing ratio. An inversion algorithm was used to derive the mean aerosol microphysical properties (mean effective radius (reff), single-scattering albedo ?) and mean complex refractive index (m)) at selected heights in the 2-3 km height region. We found that reff was 0.14-0.4 (±0.14) ?m, ? was 0.63-0.88 (±0.08) (at 532 nm) and m ranged from 1.44 (±0.10) + 0.01 (±0.01)i to 1.55 (±0.12) + 0.06 (±0.02)i, in good agreement (only for the reff values) with in situ aircraft measurements. The water vapor and temperature profiles were incorporated into the ISORROPIA II model to propose a possible in situ aerosol composition consistent with the retrieved m and ? values. The retrieved aerosol chemical composition in the 2-3 km height region gave a variable range of sulfate (0-60%) and organic carbon (OC) content (0-50%), although the OC content increased (up to 50%) and the sulfate content dropped (up to 30%) around 3 km height; the retrieved low ? value (0.63), indicates the presence of absorbing biomass burning smoke mixed with urban haze. Finally, the retrieved aerosol microphysical properties were compared with column-integrated sun photometer CIMEL data.

  5. North-south cross sections of the vertical aerosol distribution over the Atlantic Ocean from multiwavelength Raman/polarization lidar during Polarstern cruises

    PubMed Central

    Kanitz, T; Ansmann, A; Engelmann, R; Althausen, D

    2013-01-01

    Shipborne aerosol lidar observations were performed aboard the research vessel Polarstern in 2009 and 2010 during three north-south cruises from about 50°N to 50°S. The aerosol data set provides an excellent opportunity to characterize and contrast the vertical aerosol distribution over the Atlantic Ocean in the polluted northern and relatively clean southern hemisphere. Three case studies, an observed pure Saharan dust plume, a Patagonian dust plume east of South America, and a case of a mixed dust/smoke plume west of Central Africa are exemplarily shown and discussed by means of their optical properties. The meridional transatlantic cruises were used to determine the latitudinal cross section of the aerosol optical thickness (AOT). Profiles of particle backscatter and extinction coefficients are presented as mean profiles for latitudinal belts to contrast northern- and southern-hemispheric aerosol loads and optical effects. Results of lidar observations at Punta Arenas (53°S), Chile, and Stellenbosch (34°S), South Africa, are shown and confirm the lower frequency of occurrence of free-tropospheric aerosol in the southern hemisphere than in the northern hemisphere. The maximum latitudinal mean AOT of 0.27 was found in the northern tropics (0– 15°N) in the Saharan outflow region. Marine AOT is typically 0.05 ± 0.03. Particle optical properties are presented separately for the marine boundary layer and the free troposphere. Concerning the contrast between the anthropogenically influenced midlatitudinal aerosol conditions in the 30– 60°N belt and the respective belt in the southern hemisphere over the remote Atlantic, it is found that the AOT and extinction coefficients for the vertical column from 0–5km (total aerosol column) and 1–5km height (lofted aerosol above the marine boundary layer) are a factor of 1.6 and 2 higher at northern midlatitudes than at respective southern midlatitudes, and a factor of 2.5 higher than at the clean marine southern-hemispheric site of Punta Arenas. The strong contrast is confined to the lowermost 3km of the atmosphere. PMID:25821662

  6. Lidar network observation of tropospheric aerosols

    NASA Astrophysics Data System (ADS)

    Sugimoto, Nobuo; Matsui, Ichiro; Shimizu, Atsushi; Nishizawa, Tomoaki; Hara, Yukari; Uno, Itsushi

    2010-10-01

    This paper presents the results of recent studies on tropospheric aerosols, including Asian dust and forest fire smoke using the NIES Lidar Network, CALIPSO/CALIOP and chemical transport models. The NIES Lidar Network is a network of two-wavelength (532nm, 1064nm) polarization (532nm) lidars in East Asia. Currently the lidars are continuously operated at about 20 locations in Japan, Korea, China, Mongolia, and Thailand, in cooperation with various research institutes and universities. The network is a part of the Asian Dust Network (ADNet), SKYNET, and the GAW Aerosol Lidar Observation Network (GALION). The data from most of the lidar stations are transferred to NIES in realtime and automatically processed to derive the attenuated backscattering coefficients at 532nm and 1064nm, the volume depolarization ratio at 532nm, and the estimated dust and spherical aerosol extinction coefficients at 532nm. The data from the network are used in various research activities on Asian dust, regional air pollution, and the effects of aerosols on climate and the environment. The data are also used for real-time monitoring (for early warning assessment) of Asian dust. The results of recent studies on long-range transport of Asian dust, optical characteristics of forest fire plumes, aerosol climatology, etc. will be described.

  7. Improvement of NIES lidar network observations by adding Raman scatter measurement function

    NASA Astrophysics Data System (ADS)

    Nishizawa, Tomoaki; Sugimoto, Nobuo; Matsui, Ichiro; Shimizu, A.

    2012-11-01

    We have conducted ground-based lidar network observations in wide areas of East Asia using two-wavelength (532 and 1064nm) backscatter and one-wavelength (532nm) depolarization Mie-scatter lidars for more than ten years. To realize more advanced aerosol classification and retrieval, we improved the Mie-scatter lidars at several main sites by adding a N2 Raman scatter measurement channel (607nm). This Mie-Raman lidar system provides 1?+2?+1? data at nighttime: extinction coefficient (?) at 532nm, backscatter coefficients (?) at 532 and 1064nm, and depolarization ratio (?) at 532nm. We also developed an algorithm to estimate vertical profiles of 532nm extinction coefficients of black carbon, dust, sea-salt, and air-pollution aerosols consisting of a mixture of sulfate, nitrate, and organic carbon substances (SF-NT-OC) using the 1?+2?+1? data. With this method, we assume an external mixture of aerosol components and prescribe their size distributions, refractive indexes, and particle shapes. The measured lidar data are automatically transferred to the NIES data server. We developed an algorithm to estimate particle optical properties (1?+2?+1? data), planetary boundary layer (PBL) height, and scene classification identifiers representing molecule-rich, aerosol-rich, or cloud-rich layer automatically and provide their quick-looks in semi-realtime on the website (http://www-lidar.nies.go.jp/shingakujutsu/Raman/).

  8. Raman lidar characterization of PBL structure during COPS

    NASA Astrophysics Data System (ADS)

    Summa, D.; Di Girolamo, P.; Stelitano, D.; Di Iorio, T.

    2012-04-01

    The planetary boundary layer includes the portion of the atmosphere which is directly influenced by the presence of the Earth's surface. Aerosol particles trapped within the PBL can be used as tracers to study boundary-layer vertical structure and time variability. Aerosols can be dispersed out of the PBL during strong convection or temporary breaks of the capping temperature inversion. As a result of this, elastic backscatter signals collected by lidar systems can be used to determine the height and the internal structure of the PBL. Our analysis considers a method based on the first order derivative of the range-corrected elastic signal (RCS), which is a modified version of the method defined by Seibert et al. (2000) and Sicard et al. (2006). The analysis is focused on selected case studies collected by the Raman lidar system BASIL during the Convective and Orographically-induced Precipitation Study (COPS), held in Southern Germany and Eastern France in the period 01 June - 31 August 2007. Measurements were performed by the Raman lidar system BASIL, which was operational in Achern (Black Forest, Lat: 48.64 ° N, Long: 8.06 ° E, Elev.: 140 m). During COPS, BASIL collected more than 500 hours of measurements, distributed over 58 measurement days and 34 intensive observation periods (IOPs), covering both night-time and daytime and the transitions between the two. Therefore BASIL data during COPS represent a unique source of information for the study of the boundary layer structure and evolution. Potential temperature profiles obtained from the radiosonde data were used to get an additional estimate of the boundary layer height. Estimates of the PBL height and structure for specific case studies obtained from the lidar data and their comparison with estimates obtained from the radiosonde data will be illustrated and discussed at the Conference.

  9. Atmospheric temperature measurements, using Raman lidar

    NASA Technical Reports Server (NTRS)

    Salzman, J. A.; Coney, T. A.

    1974-01-01

    The Raman-shifted return of a lidar system had been used to make atmospheric temperature measurements. The measurements were made along a horizontal path at temperatures ranging from -30 to 30 C and at ranges of about 100 meters. The temperature data were acquired by recording the intensity ratio of two portions of the rotational Raman spectrum, which were simultaneously sampled from a preset range. These tests verified that the theoretical predictions formulated in the design of the system were adequate. Measurements were made to an accuracy of + or - 4 C with 1-minute temporal resolution.

  10. SAHARAN DESERT DUST MICROPHYSICAL PROPERTIES FROM PRINCIPLE COMPONENT ANALYSIS (PCA) INVERSION OF RAMAN LIDAR DATA OVER WESTERN EUROPE

    E-print Network

    Graaf, Martin de

    around 18 UTC is about 0.75. Backtrajectories were computed using NOAA's Hybrid Single Particle. However, the top air parcel, ending at around 4 km alti- tude clearly has a different origin and history Vapour, Aerosol and Cloud Lidar) 1 is a Raman lidar built by the National Institute for Public Health

  11. Lidar monitoring aerosol pollution at industrial regions

    NASA Astrophysics Data System (ADS)

    Chaikovsky, Anatoly P.; Hutko, I. S.; Ivanov, Arkady P.; Osipenko, Fyodor P.; Shcherbakov, V. N.; Tauroginskaya, S. B.; Kovalev, A. A.; Samusenko, A. M.

    1995-09-01

    Laser equipment and methodology have been developed to monitor the power of dust sources ejecting aerosol pollution to atmosphere, and the distribution of aerosol mass concentration at regions of large factories. This work is directed to describe lidar technique of atmospheric aerosol monitoring. Technical parameters of lidar stations and results of experimental investigation are presented. The measurements were implemented by the multiwavelength lidar 'Glory-M', which has 7 working wavelengths within the range 0.38-1.0 micrometers , and mobile lidars station (MLS). The lidar design provides measuring the intensity and the depolarization of backscatter signals. Two problems have been considered. The first one is ivnestigating aerosol optical parameter spectra over the boundary atmoshperic layer both at background and industrial regions. The extinction spectra for industrial regions are different from low power, as for background ones. The obtained data will enable one to correct the atmosphere spectra deformation in observing different regions of the Earth from satellites and aircraft. The second problem is invesitigating spatial distribution of dust over regions of industrial centers. The dust flows and power of outbursts have been estimated. The maps of dust mass concentration at the regions of the large factories have been constructed.

  12. Aerosol and cloud typing with an automated 24/7 aerosol lidar

    NASA Astrophysics Data System (ADS)

    Baars, Holger; Seifert, Patric; Wandinger, Ulla

    2015-04-01

    Modern sophisticated multi-wavelength Raman polarization lidars have the ability to measure autonomous and unattended in 24/7 mode. These aerosol lidars can deliver backscatter, extinction, and depolarization profiles of the atmosphere which can be used for a target categorization, i.e. the determination of different aerosol and cloud types. However, to derive the optical particle properties a calibration of the lidar signals in the free atmosphere, where only Rayleigh scattering occurs, is needed. This calibration is usually done manually case by case and thus prohibits automatic data analysis and particle typing. To overcome this limitation, the mobile EARLINET lidar PollyXT of TROPOS was deployed continuously without changes in the instrumental setup during two field campaigns in the framework of the German HD(CP)2 project to obtain temporally stable lidar signals. The temporal stability together with the high performance and good characterization of the lidar lead to the possibility of an absolute lidar calibration. The corresponding calibration constant was derived in two ways: first by using manually Raman and Klett retrievals for selected periods and second by using the aerosol optical depth (AOD) from co-located AERONET sun photometer measurements. The derived calibration constants show a high temporal stability and a good agreement between both methods and thus allowed the continuous calibration of the lidar and the retrieval of the attenuated backscatter coefficient at three wavelengths. In addition, the calibrated volume depolarization ratio, obtained following EARLINET recommendations, is continuously available. After correction for the molecular contribution, these four quantities were used for an aerosol and cloud typing in terms of particle size and shape. The final categorization leads to 11 categories, e.g. clean atmosphere, small spherical particles, large non-spherical particles, water droplets, ice crystals and corresponding mixtures. In this contribution, the application of this methodology for several case studies and the statistical analysis from the two field campaigns will be shown. For future applications it is planned to implement this approach in the CLOUDNET retrieval at sites for which an appropriate lidar is available to make use of the full instrument synergy which is required for advanced aerosol-cloud-interaction studies.

  13. New Examination of the Traditional Raman Lidar Technique. 1; Temperature Dependence and the Calculation of Atmospheric Transmission

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.; Abshire, James B. (Technical Monitor)

    2002-01-01

    The intent of this paper and its companion paper is to pull together the essential information required for the traditional Raman lidar data analysis to be performed. As a part of this, complications such as the temperature dependence of the water vapor signal is evaluated through numerical simulation. A new form of the lidar equation is presented that accounts for the temperature dependence of Raman scattering. Also the calculation of atmospheric transmission is examined carefully. Several photon correction techniques are considered as is the influence of multiple scattering on the measurement of aerosol extinction using the Raman lidar technique.

  14. Towards an aerosol classification scheme for EarthCARE lidar observations

    NASA Astrophysics Data System (ADS)

    Gross, Silke; Gasteiger, Josef; Sauer, Daniel; Weinzierl, Bernadett

    2013-04-01

    Aerosols are a major component of the Earth's atmosphere and have substantial impact on the Earth's radiation budget and on the hydrological cycle. The distribution of aerosols and their microphysical and optical properties vary strongly with space and time. Furthermore the vertical distribution of aerosols and the presence of clouds affect the sign and magnitude of the aerosol radiative forcing. To improve our knowledge about the climate impact of aerosols regular observations with high temporal and vertical resolution are required. Space borne lidar measurements are an appropriate tool to obtain altitude resolved information of the aerosol distribution on global scale. However, an aerosol classification from current space borne lidar measurements is only possible with further assumptions. The next generation satellite mission of the European Space Agency, the Earth Clouds, Aerosols and Radiation Explorer (EarthCARE) mission, expected for launch in 2015, will be equipped with a polarization sensitive high spectral resolution lidar (HSRL) system operating at 355 nm (ATLID - Atmospheric Lidar). The potential of polarization sensitive HSRL measurements for aerosol type classification was demonstrated on the basis of airborne HSRL measurements. However, these airborne measurements were performed at 532 nm. The open question is how the results of these HSRL classification schemes at 532 nm can be transferred to measurements at 355 nm with ATLID on EarthCARE. We will present an analysis of the wavelength dependence of the optical properties required for an aerosol type classification based on ATLID measurements, the particle linear depolarization ratio and the particle lidar ratio. For this analysis we use ground based measurements of polarization sensitive Raman lidar systems at 355 nm and 532 nm and airborne HSRL measurements at 532 nm. Furthermore we use model simulations of the lidar-relevant optical properties of different aerosol types taking into account their particle shapes. Airborne in-situ measurements of the size distribution and refractive index of several aerosol types are used as input parameters for the model simulations.

  15. Demonstration of Aerosol Property Profiling by Multi-wavelength Lidar Under Varying Relative Humidity Conditions

    NASA Technical Reports Server (NTRS)

    Whiteman, D.N.; Veselovskii, I.; Kolgotin, A.; Korenskii, M.; Andrews, E.

    2008-01-01

    The feasibility of using a multi-wavelength Mie-Raman lidar based on a tripled Nd:YAG laser for profiling aerosol physical parameters in the planetary boundary layer (PBL) under varying conditions of relative humidity (RH) is studied. The lidar quantifies three aerosol backscattering and two extinction coefficients and from these optical data the particle parameters such as concentration, size and complex refractive index are retrieved through inversion with regularization. The column-integrated, lidar-derived parameters are compared with results from the AERONET sun photometer. The lidar and sun photometer agree well in the characterization of the fine mode parameters, however the lidar shows less sensitivity to coarse mode. The lidar results reveal a strong dependence of particle properties on RH. The height regions with enhanced RH are characterized by an increase of backscattering and extinction coefficient and a decrease in the Angstrom exponent coinciding with an increase in the particle size. We present data selection techniques useful for selecting cases that can support the calculation of hygroscopic growth parameters using lidar. Hygroscopic growth factors calculated using these techniques agree with expectations despite the lack of co-located radiosonde data. Despite this limitation, the results demonstrate the potential of multi-wavelength Raman lidar technique for study of aerosol humidification process.

  16. Lidar network observations of tropospheric aerosols

    NASA Astrophysics Data System (ADS)

    Sugimoto, Nobuo; Matsui, Ichiro; Shimizu, Atsushi; Nishizawa, Tomoaki; Hara, Yukari; Xie, Chenbo; Uno, Itsushi; Yumimoto, Keiya; Wang, Zifa; Yoon, Soon-Chang

    2008-12-01

    Observations of tropospheric aerosols (mineral dust, air-pollution aerosols, etc.) and clouds are being conducted using a network of two-wavelength (1064nm, 532nm) polarization (532nm) lidars in the East Asian region. Currently, the lidars are operated continuously at 23 locations in Japan, Korea, China, Mongolia and Thailand. A real-time data processing system was developed for the network, and the data products such as the attenuated backscatter coefficients and the estimated extinction coefficients for non-spherical and spherical aerosols are generated automatically for online network stations. The data are used in the real-time monitoring of Asian dust as well as in the studies of regional air pollution and climate change.

  17. EARLINET: towards an advanced sustainable European aerosol lidar network

    NASA Astrophysics Data System (ADS)

    Pappalardo, G.; Amodeo, A.; Apituley, A.; Comeron, A.; Freudenthaler, V.; Linné, H.; Ansmann, A.; Bösenberg, J.; D'Amico, G.; Mattis, I.; Mona, L.; Wandinger, U.; Amiridis, V.; Alados-Arboledas, L.; Nicolae, D.; Wiegner, M.

    2014-08-01

    The European Aerosol Research Lidar Network, EARLINET, was founded in 2000 as a research project for establishing a quantitative, comprehensive, and statistically significant database for the horizontal, vertical, and temporal distribution of aerosols on a continental scale. Since then EARLINET has continued to provide the most extensive collection of ground-based data for the aerosol vertical distribution over Europe. This paper gives an overview of the network's main developments since 2000 and introduces the dedicated EARLINET special issue, which reports on the present innovative and comprehensive technical solutions and scientific results related to the use of advanced lidar remote sensing techniques for the study of aerosol properties as developed within the network in the last 13 years. Since 2000, EARLINET has developed greatly in terms of number of stations and spatial distribution: from 17 stations in 10 countries in 2000 to 27 stations in 16 countries in 2013. EARLINET has developed greatly also in terms of technological advances with the spread of advanced multiwavelength Raman lidar stations in Europe. The developments for the quality assurance strategy, the optimization of instruments and data processing, and the dissemination of data have contributed to a significant improvement of the network towards a more sustainable observing system, with an increase in the observing capability and a reduction of operational costs. Consequently, EARLINET data have already been extensively used for many climatological studies, long-range transport events, Saharan dust outbreaks, plumes from volcanic eruptions, and for model evaluation and satellite data validation and integration. Future plans are aimed at continuous measurements and near-real-time data delivery in close cooperation with other ground-based networks, such as in the ACTRIS (Aerosols, Clouds, and Trace gases Research InfraStructure Network) www.actris.net, and with the modeling and satellite community, linking the research community with the operational world, with the aim of establishing of the atmospheric part of the European component of the integrated global observing system.

  18. Development of eye-safe lidar for aerosol measurements

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Wilderson, Thomas D.

    1990-01-01

    Research is summarized on the development of an eye safe Raman conversion system to carry out lidar measurements of aerosol and clouds from an airborne platform. Radiation is produced at the first Stokes wavelength of 1.54 micron in the eye safe infrared, when methane is used as the Raman-active medium, the pump source being a Nd:YAG laser at 1.064 micron. Results are presented for an experimental study of the dependence of the 1.54 micron first Stokes radiation on the focusing geometry, methane gas pressure, and pump energy. The specific new technique developed for optimizing the first Stokes generation involves retroreflecting the backward-generated first Stokes light back into the Raman cell as a seed Stokes beam which is then amplified in the temporal tail of the pump beam. Almost 20 percent conversion to 1.54 micron is obtained. Complete, assembled hardware for the Raman conversion system was delivered to the Goddard Space Flight Center for a successful GLOBE flight (1989) to measure aerosol backscatter around the Pacific basin.

  19. Atmospheric aerosol and Doppler lidar studies

    NASA Technical Reports Server (NTRS)

    Rothermel, Jeff; Bowdle, D. A.; Srivastava, V.; Jarzembski, M.; Cutten, D.; Mccaul, E. W., Jr.

    1991-01-01

    Experimental and theoretical studies were performed of atmospheric aerosol backscatter and atmospheric dynamics with Doppler lidar as a primary tool. Activities include field and laboratory measurement and analysis efforts. The primary focus of activities related to understanding aerosol backscatter is the GLObal Backscatter Experiment (GLOBE) program. GLOBE is a multi-element effort designed toward developing a global aerosol model to describe tropospheric clean background backscatter conditions that Laser Atmospheric Wind Sounder (LAWS) is likely to encounter. Two survey missions were designed and flown in the NASA DC-8 in November 1989 and May to June 1990 over the remote Pacific Ocean, a region where backscatter values are low and where LAWS wind measurements could make a major contribution. The instrument complement consisted of pulsed and continuous-wave (CW) CO2 gas and solid state lidars measuring aerosol backscatter, optical particle counters measuring aerosol concentration, size distribution, and chemical composition, a filter/impactor system collecting aerosol samples for subsequent analysis, and integrating nephelometers measuring visible scattering coefficients. The GLOBE instrument package and survey missions were carefully planned to achieve complementary measurements under clean background backscatter conditions.

  20. A combined Raman lidar for low tropospheric studies

    NASA Technical Reports Server (NTRS)

    Arshinov, Y. F.; Bobrovnikov, S. M.; Zuev, V. E.; Nadeev, A. I.; Shelevoy, K. D.

    1986-01-01

    One of the main goals of laser sensing of the atmosphere was the development of techniques and facilities for remote determination of atmospheric meteorological and optical parameters. Of lidar techniques known at present the Raman-lidar technique occupies a specific place. On the one hand Raman lidar returns due to scattering on different molecular species are very simple for interpretation and for extracting the information on the atmospheric parameters sought, but, on the other hand, the performance of these techniques in a lidar facility is overburdened with some serious technical difficulties due to extremely low cross sections of Raman effect. Some results of investigations into this problem is presented which enables the construction of a combined Raman lidar capable of acquiring simultaneously the profiles of atmospheric temperature, humidity, and some optical characteristics in the ground atmospheric layer up to 1 km height. The operation of this system is briefly discussed.

  1. Strong aerosol-cloud interaction in altocumulus during updraft periods: lidar observations over central Europe

    NASA Astrophysics Data System (ADS)

    Schmidt, J.; Ansmann, A.; Bühl, J.; Wandinger, U.

    2015-09-01

    For the first time, a liquid-water cloud study of the aerosol-cloud-dynamics relationship, solely based on lidar, was conducted. Twenty-nine cases of pure liquid-water altocumulus layers were observed with a novel dual-field-of-view Raman lidar over the polluted central European site of Leipzig, Germany, between September 2010 and September 2012. By means of the novel Raman lidar technique, cloud properties such as the droplet effective radius and cloud droplet number concentration (CDNC) in the lower part of altocumulus layers are obtained. The conventional aerosol Raman lidar technique provides the aerosol extinction coefficient (used as aerosol proxy) below cloud base. A collocated Doppler lidar measures the vertical velocity at cloud base and thus updraft and downdraft occurrence. Here, we present the key results of our statistical analysis of the 2010-2012 observations. Besides a clear aerosol effect on cloud droplet number concentration in the lower part of the altocumulus layers during updraft periods, turbulent mixing and entrainment of dry air is assumed to be the main reason for the found weak correlation between aerosol proxy and CDNC higher up in the cloud. The corresponding aerosol-cloud interaction parameter based on changes in cloud droplet number concentration with aerosol loading was found to be close to 0.8 at 30-70 m above cloud base during updraft periods and below 0.4 when ignoring vertical-wind information in the analysis. Our findings are extensively compared with literature values and agree well with airborne observations.

  2. Characterization of particle hygroscopicity by Raman lidar: Selected case studies from the convective and orographically-induced precipitation study

    NASA Astrophysics Data System (ADS)

    Stelitano, Dario; Di Girolamo, Paolo; Summa, Donato

    2013-05-01

    The characterization of particle hygroscopicity has primary importance for climate monitoring and prediction. Model studies have demonstrated that relative humidity (RH) has a critical influence on aerosol climate forcing. Hygroscopic properties of aerosols influence particle size distribution and refractive index and hence their radiative effects. Aerosol particles tend to grow at large relative humidity values as a result of their hygroscopicity. Raman lidars with aerosol, water vapor and temperature measurement capability are potentially attractive tools for studying aerosol hygroscopicity as in fact they can provide continuous altitude-resolved measurements of particle optical, size and microphysical properties, as well as relative humidity, without perturbing the aerosols or their environment. Specifically, the University of Basilicata Raman lidar system (BASIL) considered for the present study, has the capability to perform all-lidar measurements of relative humidity based on the application of both the rotational and the vibrational Raman lidar techniques in the UV. BASIL was operational in Achern (Black Forest, Lat: 48.64° N, Long: 8.06° E, Elev.: 140 m) between 25 May and 30 August 2007 in the framework of the Convective and Orographically-induced Precipitation Study (COPS). The present analysis is focused on selected case studies characterized by the presence of different aerosol types with different hygroscopic behavior. The observed behavior, dependent upon aerosol composition, may range from hygrophobic to strongly hygroscopic.

  3. Rotational Raman Lidar for Lower Tropospheric Temperature Profiling

    NASA Technical Reports Server (NTRS)

    Kobayashi, Takao; Taira, Takunori; Yamamoto, Takanobu; Hori, Akihiro; Kitada, Toshinobu

    1992-01-01

    Accurate sensing of the tropospheric temperature profile is basically needed in meteorology and 3D mapping of the boundary layer atmospheric temperature over urban and industrial areas. Several temperature lidar techniques were investigated, including Differential Absorption Lidar (DIAL), rotational and vibrational Raman, Rayleigh and high resolution Rayleigh schemes. For the tropospheric applications, the rotational Raman scheme looks potentially advantageous, but several stringent technical problems still remain to be solved. Reported here are the continuing efforts of the system development of the rotational Raman lidar.

  4. Lidar observations of Nabro volcano aerosol layers in the stratosphere over Gwangju, Korea

    NASA Astrophysics Data System (ADS)

    Shin, D.; Müller, D.; Lee, K.; Shin, S.; Kim, Y. J.; Song, C. K.; Noh, Y. M.

    2015-01-01

    We report on the first Raman lidar measurements of stratospheric aerosol layers in the upper troposphere and lower stratosphere over Korea. The data were taken with the multiwavelength aerosol Raman lidar at Gwangju (35.10° N, 126.53° E), Korea. The volcanic ash particles and gases were released around 12 June 2011 during the eruption of the Nabro volcano (13.37° N, 41.7° E) in Eritrea, east Africa. Forward trajectory computations show that the volcanic aerosols were advected from North Africa to East Asia. The first observation of the stratospheric aerosol layers over Korea was on 19 June 2011. The stratospheric aerosol layers appeared between 15 and 17 km height a.s.l. The aerosol layers' maximum value of the backscatter coefficient and the linear particle depolarization ratio at 532 nm were 1.5 ± 0.3 Mm-1 sr-1 and 2.2%, respectively. We found these values at 16.4 km height a.s.l. 44 days after this first observation, we observed the stratospheric aerosol layer again. We continuously probed the upper troposphere and lower stratosphere for this aerosol layer during the following 5 months, until December 2011. The aerosol layers typically occurred between 10 and 20 km height a.s.l. The stratospheric aerosol optical depth and the maximum backscatter coefficient at 532 nm decreased during these 5 months.

  5. Comparison of Aerosol Optical Properties and Water Vapor Among Ground and Airborne Lidars and Sun Photometers During TARFOX

    NASA Technical Reports Server (NTRS)

    Ferrare, R.; Ismail, S.; Browell, E.; Brackett, V.; Clayton, M.; Kooi, S.; Melfi, S. H.; Whiteman, D.; Schwemmer, G.; Evans, K.

    2000-01-01

    We compare aerosol optical thickness (AOT) and precipitable water vapor (PWV) measurements derived from ground and airborne lidars and sun photometers during the Tropospheric Aerosol Radiative Forcing Observational Experiment. Such comparisons are important to verify the consistency between various remote sensing measurements before employing them in any assessment of the impact of aerosols on the global radiation balance. Total scattering ratio and extinction profiles measured by the ground-based NASA Goddard Space Flight Center scanning Raman lidar system, which operated from Wallops Island, Virginia (37.86 deg N, 75.51 deg W); are compared with those measured by the Lidar Atmospheric Sensing Experiment (LASE) airborne lidar system aboard the NASA ER-2 aircraft. Bias and root-mean-square differences indicate that these measurements generally agreed within about 10%. Aerosol extinction profiles and estimates of AOT are derived from both lidar measurements using a value for the aerosol extinction/backscattering ratio S(sub a) = 60 sr for the aerosol extinction/backscattering ratio, which was determined from the Raman lidar measurements. The lidar measurements of AOT are found to be generally within 25% of the AOT measured by the NASA Ames Airborne Tracking Sun Photometer (AATS-6). However, during certain periods the lidar and Sun photometer measurements of AOT differed significantly, possibly because of variations in the aerosol physical characteristics (e.g., size, composition) which affect S(sub a). Estimates of PWV, derived from water vapor mixing ratio profiles measured by LASE, are within 5-10% of PWV derived from the airborne Sun photometer. Aerosol extinction profiles measured by both lidars show that aerosols were generally concentrated in the lowest 2-3 km.

  6. Two-component vector wind fields by scanning aerosol lidar

    NASA Astrophysics Data System (ADS)

    Mayor, S. D.; Derian, P.; Hamada, M.; Mauzey, C. F.

    2014-12-01

    Observations of two or more wind components that resolve turbulent perturbations over large areas remain a challenge in the atmospheric boundary layer community. One successful approach to multi-component flow measurement in the engineering community is particle image velocimetry (PIV). This presentation will report on recent progress in the development and validation of two motion estimation algorithms that can be applied to aerosol backscatter imagery to provide two-component horizontal wind fields. The algorithms being developed and tested are a traditional cross-correlation method (i.e., Schols & Eloranta, JGR, 1992) and a new wavelet-based optical flow method (Dérian et al., NMTMA, 2013). These algorithms have been applied to imagery from the Raman-shifted Eye-safe Aerosol Lidar (REAL) collected in Dixon, California, in 2007 (as part of CHATS) and in Chico, California in 2013. The resulting 2-component winds were compared against the same from sonic anemometers and a Doppler lidar. Our results include new insights on the performance of the cross-correaltion algorithm and new experiences with wavelet-based optical flow. Animations of turbulent flow in the atmospheric surface layer over approximately 10-square km areas with 15 s frame update rates will be presented. (Vectors may be spaced as closely as every 10 m, but the spatial resolution is larger and dynamic and related to the availability of small scale aerosol features in the imagery.) In addition to flow visualizations, time-series and space-series comparisons of the wind components with those from sonic anemometer and Doppler lidar data will be presented.

  7. Impact of clouds on aerosol scattering as observed by lidar

    E-print Network

    Oxford, University of

    distribution. Lidars most commonly estimate the aerosol backscatter coefficient, , being the cross-section]. Observation with lidar Lidar is an active remote sensing technique, conceptually similar to radar, that monitors the light backscattered from a laser beam. The height of the scattering feature is calculated from

  8. Upper tropospheric humidity measurements by Raman lidar above Payerne, Switzerland, in the frame of NDACC

    NASA Astrophysics Data System (ADS)

    Haefele, Alexander; Philipona, Rolf; Calpini, Bertrand; Simeonov, Valentin

    2014-05-01

    The Raman lidar for Meteorological Observations, RALMO, is a Raman lidar for water vapor, temperature and aerosol profiling deployed at the aerological station of Payerne, Switzerland. The instrument is fully automatic and operational since beginning of 2008 performing quasi continuous day and nighttime measurements with a temporal resolution of 30 min. Since 2013 the water vapor measurements are also performed in the frame of NDACC. In this study the data set has been reprocessed taking only nighttime and clear sky data using long integration times of several hours. In this configuration water vapor mixing ratio can be retrieved up to the tropopause with an uncertainty of 10 % or better. Comparisons with radiosoundings reveal that the lidar agrees with the RS92 and SnowWhite hygrometers within 20 % up to 12 km in terms of water vapor mixing ratio. The validation results and the 6 year time series of upper tropospheric humidity will be presented and discussed.

  9. Characterization of fresh and aged biomass burning events using multiwavelength Raman lidar and mass spectrometry

    NASA Astrophysics Data System (ADS)

    Nicolae, D.; Nemuc, A.; Müller, D.; Talianu, C.; Vasilescu, J.; Belegante, L.; Kolgotin, A.

    2013-04-01

    This paper focuses on optical and microphysical properties of long-range transported biomass burning (BB) aerosols and their variation with atmospheric evolution (ageing), as observed by a multiwavelength Raman lidar, part of EARLINET (European Aerosol LIdar NETwork). Chemical analysis of the atmospheric aerosol was done using a colocated aerosol mass spectrometer (AMS). One relevant optical parameter for the ageing process is the Ångström exponent. In our study, we find that it decreases from 2 for fresh to 1.4-0.5 for aged smoke particles. The ratio of lidar (extinction-to-backscatter) ratios (LR532/LR355) changes rapidly from values <1 for fresh to >1 for aged particles. The imaginary part of the refractive index is the most sensitive microphysical parameter. It decreases sharply from 0.05 to less than 0.01 for fresh and aged smoke particles, respectively. Single-scattering albedo (SSA) varies from 0.74 to 0.98 depending on aerosol age and source. The AMS was used to measure the marker ions of wood-burning particles during 2 days of measurements when the meteorological conditions favored the downward mixing of aerosols from lofted layers. Particle size distribution and particle effective radius from both AMS and lidar are similar, i.e., particle effective radii were approximately 0.27 µm for fresh BB aerosol particles. Microphysical aerosol properties from inversion of the lidar data agree with similar studies carried out in different regions on the globe. Our study shows that the Ångström exponent LR532/LR355 and the imaginary part of the refractive index can be used to clearly distinguish between fresh and aged smoke particles.

  10. Identification of aerosol composition from multi-wavelength lidar measurements

    NASA Technical Reports Server (NTRS)

    Wood, S. A.

    1984-01-01

    This paper seeks to develop the potential of lidar for the identification of the chemical composition of atmospheric aerosols. Available numerical computations suggest that aerosols can be identified by the wavelength dependence of aerosol optical properties. Since lidar can derive the volume backscatter coefficient as a function of wavelength, a multi-wavelength lidar system may be able to provide valuable information on the composition of aerosols. This research theoretically investigates the volume backscatter coefficients for the aerosol classes, sea-salts, and sulfates, as a function of wavelength. The results show that these aerosol compositions can be characterized and identified by their backscatter wavelength dependence. A method to utilize multi-wavelength lidar measurements to discriminate between compositionally different thin aerosol layers is discussed.

  11. SPATIAL AND TEMPORAL VARIATION IN EVAPOTRANSPIRATION USING RAMAN LIDAR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Los Alamos Raman lidar has been used to make high resolution (25m) estimates of the evapotranspiration rate over adjacent corn and soybean canopies. The lidar makes three-dimensional measurements of the water vapor content of the atmosphere directly above the canopy that are inverted using Monin...

  12. Scanning Mobile Lidar for Aerosol Tracking and Biological Aerosol Identification

    NASA Astrophysics Data System (ADS)

    He, Tingyao; Bergant, Klemen; Filip?i?, Andrej; Forte, Biagio; Gao, Fei; Stani?, Samo; Veberi?, Darko; Zavrtanik, Marko

    2010-05-01

    Optical properties of non-biological aerosols containing aromatic hydrocarbons, such as industrial chemicals and engine exhausts, have already been thoroughly studied using remote sensing techniques. However, because of their complex composition and characteristics, the identification of biological aerosols, such as fungi, pollen and bacteria that are present in the environment remains a rather difficult task. The collection of information on both non-biological and biological aerosols is of great importance for understanding their interrelation, physical and chemical properties and their influence on human health and the environment. Biological and non-biological aerosols can be simultaneously detected, tracked and identified by a scanning mobile Mie-fluorescence lidar. The device developed at the University of Nova Gorica can perform azimuth and zenith angle scans with an angular resolution of 0.1°, as well as operate in both day and night-time conditions. Aerosols of biological origin are identified through the detection of the fluorescence of the amino acid tryptophan which is present in almost all substances of biological origin. In our system, the transmitter is a solid state Nd:YAG laser which is capable of simultaneous emission of light at a base wavelength of 1064 nm (IR) and its quadrupled wavelength of 266 nm (UV) at a maximum repetition rate of 10 Hz. Tryptophan contained in biological aerosols is excited by the 266 nm laser pulses and the returning fluorescence signals are detected in the spectral band centered at 295 nm. The receiver is a Newtonian telescope which uses a 300 mm parabolic mirror to direct received light into three detection channels - two elastic backscatter channels (IR and UV) and a fluorescence channel. First experiments show that the detection range of the lidar reaches 10 km in the IR channel and 3 km in the UV channel. Based on the preliminary simulations of the signal-to-noise ratio, the detection range for biological fluorescence signals at 295 nm is estimated to be 2 km. The measurements of the time-series indicate that the mobile lidar is capable of detecting and profiling clouds and aerosols in its detection range. Our future plans include establishing an automated, unattended environmental monitoring system that will allow full time continuous measurements in the desired solid angle around the lidar station.

  13. Airborne and Ground-Based Measurements Using a High-Performance Raman Lidar

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.; Rush, Kurt; Rabenhorst, Scott; Welch, Wayne; Cadirola, Martin; McIntire, Gerry; Russo, Felicita; Adam, Mariana; Venable, Demetrius; Connell, Rasheen; Veselovskii, Igor; Forno, Ricardo; Mielke, Bernd; Stein, Bernhard; Leblanc, Thierry; McDermid, Stuart; Voemel, Holger

    2010-01-01

    A high-performance Raman lidar operating in the UV portion of the spectrum has been used to acquire, for the first time using a single lidar, simultaneous airborne profiles of the water vapor mixing ratio, aerosol backscatter, aerosol extinction, aerosol depolarization and research mode measurements of cloud liquid water, cloud droplet radius, and number density. The Raman Airborne Spectroscopic Lidar (RASL) system was installed in a Beechcraft King Air B200 aircraft and was flown over the mid-Atlantic United States during July August 2007 at altitudes ranging between 5 and 8 km. During these flights, despite suboptimal laser performance and subaperture use of the telescope, all RASL measurement expectations were met, except that of aerosol extinction. Following the Water Vapor Validation Experiment Satellite/Sondes (WAVES_2007) field campaign in the summer of 2007, RASL was installed in a mobile trailer for groundbased use during the Measurements of Humidity and Validation Experiment (MOHAVE-II) field campaign held during October 2007 at the Jet Propulsion Laboratory s Table Mountain Facility in southern California. This ground-based configuration of the lidar hardware is called Atmospheric Lidar for Validation, Interagency Collaboration and Education (ALVICE). During theMOHAVE-II field campaign, during which only nighttime measurements were made, ALVICE demonstrated significant sensitivity to lower-stratospheric water vapor. Numerical simulation and comparisons with a cryogenic frost-point hygrometer are used to demonstrate that a system with the performance characteristics of RASL ALVICE should indeed be able to quantify water vapor well into the lower stratosphere with extended averaging from an elevated location like Table Mountain. The same design considerations that optimize Raman lidar for airborne use on a small research aircraft are, therefore, shown to yield significant dividends in the quantification of lower-stratospheric water vapor. The MOHAVE-II measurements, along with numerical simulation, were used to determine that the likely reason for the suboptimal airborne aerosol extinction performance during theWAVES_2007 campaign was amisaligned interference filter. With full laser power and a properly tuned interference filter,RASL is shown to be capable ofmeasuring themain water vapor and aerosol parameters with temporal resolutions of between 2 and 45 s and spatial resolutions ranging from 30 to 330 m from a flight altitude of 8 km with precision of generally less than 10%, providing performance that is competitive with some airborne Differential Absorption Lidar (DIAL) water vapor and High Spectral Resolution Lidar (HSRL) aerosol instruments. The use of diode-pumped laser technology would improve the performance of an airborne Raman lidar and permit additional instrumentation to be carried on board a small research aircraft. The combined airborne and ground-based measurements presented here demonstrate a level of versatility in Raman lidar that may be impossible to duplicate with any other single lidar technique.

  14. A water vapor Raman lidar as part of the Swiss meteorology service

    NASA Astrophysics Data System (ADS)

    Dinoev, T.; Arshinov, Y.; Bobrovnikov, S.; Ristori, P.; Calpini, B.; van den Bergh, H.; Parlange, M. B.; Simeonov, V.

    2009-09-01

    Vertical water vapor profiles with high time resolution are necessary for improved numerical weather prediction (NWP). Meteorological services rely, in part, on NWP models for short to mid-term weather forecasting. Typically vertical water vapor profiles are acquired from twice a day radiosonde observations which have time resolution insufficient to resolve rapidly changing meteorological phenomena. New operational instruments with near real-time sampling of the water vapor field are needed. Raman LIDARs can provide vertical humidity profiles within the troposphere with time and range resolution suitable for NWP model assimilation and validation. That is why in 2004 the Swiss meteo-service (MeteoSwiss), the Swiss Federal Institute of Technology in Lausanne (EPFL), and the Swiss National Science Foundation (SNSF), initiated a project to build an automated Raman lidar for day and night vertical profiling of tropospheric water vapor and aerosol properties. Currently RALMO (Raman Lidar for meteorological observations) is operational at MeteoSwiss aerological station at Payerne. It is fully automated, self-contained, eye-safe instrument for day and night-time vertical profiling of water vapor mixing ratio, aerosol backscatter, and extinction within the troposphere. The lidar profiles of water vapor mixing ratio have vertical resolution from 15 m (boundary layer) to 100-450 m (free troposphere) and time resolution of 2 min (boundary layer) to 30 min (free troposphere). The range resolved aerosol extinction and backscatter coefficients are measured with similar resolution. The lidar operational range is from ~50 m to 5 km during daytime (detection limit of 0.2 g/kg), and from ~50 m to 10 km night-time. LabView based software allows continuous fully automated operation. Automated data treatment software reads the accumulated lidar data, derives vertical profiles of water vapor mixing ratio (grams per kilogram of dry air) estimates statistical error, and stores the result for upload to MeteoSwiss. The operational time resolution is 30 min whereas the vertical resolution is 30 m; it is decreased if needed by steps of 30 m to keep the relative mixing ratio error below 10 %. Aerosol backscatter and extinction retrieval algorithms are available as well. In order to study the range independence and long term stability of the lidar calibration constant we carried out several intercomparisons of operationally retrieved lidar profiles with collocated radiosondes. We used Vaisala RS 92 and Snow-White chilled mirror hygrometer radiosondes attached to single balloon. In all cases there is excellent agreement of the lidar derived mixing ratio profiles with the radiosondes.

  15. Comparison of Aerosol Optical Properties and Water Vapor Among Ground and Airborne Lidars and Sun Photometers During TARFOX

    NASA Technical Reports Server (NTRS)

    Ferrare, R.; Ismail, S.; Browell, E.; Brackett, V.; Clayton, M.; Kooi, S.; Melfi, S. H.; Whiteman, D.; Schwemmer, G.; Evans, K.; Russell, P.; Livingston, J.; Schmid, B.; Holben, B.; Remer, L.; Smirnov, A.; Hobbs, P. V.

    2000-01-01

    We compare aerosol optical thickness (AOT) and precipitable water vapor (PWV) measurements derived from ground and airborne lidars and Sun photometers during TARFOX (Tropospheric Aerosol Radiative Forcing Observational Experiment). Such comparisons are important to verify the consistency between various remote sensing measurements before employing them in any assessment of the impact of aerosols on the global radiation balance. Total scattering ratio and extinction profiles measured by the ground-based NASA/GSFC Scanning Raman Lidar (SRL) system, which operated from Wallops Island, Virginia (37.86 deg N, 75.51 deg W), are compared with those measured by the Lidar Atmospheric Sensing Experiment (LASE) airborne lidar system aboard the NASA ER-2 aircraft. Bias and rms differences indicate that these measurements generally agreed within about 10%. Aerosol extinction profiles and estimates of AOT are derived from both lidar measurements using a value for the aerosol extinction/backscattering ratio S(sub a)=60 sr for the aerosol extinction/backscattering ratio, which was determined from the Raman lidar measurements.

  16. Characterization of the planetary boundary layer height and structure by Raman lidar: comparison of different approaches

    NASA Astrophysics Data System (ADS)

    Summa, D.; Di Girolamo, P.; Stelitano, D.; Cacciani, M.

    2013-06-01

    The Planetary Boundary Layer (PBL) includes the portion of the atmosphere which is directly influenced by the presence of the Earth's surface. Aerosol particles trapped within the PBL can be used as tracers to study the boundary-layer vertical structure and time variability. As a result of this, elastic backscatter signals collected by lidar systems can be used to determine the height and the internal structure of the PBL. The present analysis considers three different methods to estimate the PBL height. A first method is based on the determination of the first order derivative of the logarithm of the range-corrected elastic lidar signals. Estimates of the PBL height for specific case studies obtained from this approach are compared with simultaneous estimates from the potential temperature profiles measured by radiosondes launched simultaneously to lidar operation. Additional estimates of the boundary layer height are based on the determination of the first order derivative of the range-corrected rotational Raman lidar signals. This latter approach results to be successfully applicable also in the afternoon-evening decaying phase of the PBL, when the effectiveness of the approach based on the elastic lidar signals may be compromised or altered by the presence of the residual layer. Results from these different approaches are compared and discussed in the paper, with a specific focus on selected case studies collected by the University of Basilicata Raman lidar system BASIL during the Convective and Orographically-induced Precipitation Study (COPS).

  17. Characterization of the planetary boundary layer height and structure by Raman lidar: comparison of different approaches

    NASA Astrophysics Data System (ADS)

    Summa, D.; Di Girolamo, P.; Stelitano, D.; Cacciani, M.

    2013-12-01

    The planetary boundary layer (PBL) includes the portion of the atmosphere which is directly influenced by the presence of the earth's surface. Aerosol particles trapped within the PBL can be used as tracers to study the boundary-layer vertical structure and time variability. As a result of this, elastic backscatter signals collected by lidar systems can be used to determine the height and the internal structure of the PBL. The present analysis considers three different methods to estimate the PBL height. The first method is based on the determination of the first-order derivative of the logarithm of the range-corrected elastic lidar signals. Estimates of the PBL height for specific case studies obtained through this approach are compared with simultaneous estimates from the potential temperature profiles measured by radiosondes launched simultaneously to lidar operation. Additional estimates of the boundary layer height are based on the determination of the first-order derivative of the range-corrected rotational Raman lidar signals. This latter approach results to be successfully applicable also in the afternoon-evening decaying phase of the PBL, when the effectiveness of the approach based on the elastic lidar signals may be compromised or altered by the presence of the residual layer. Results from these different approaches are compared and discussed in the paper, with a specific focus on selected case studies collected by the University of Basilicata Raman lidar system BASIL during the Convective and Orographically-induced Precipitation Study (COPS).

  18. Advances in Raman Lidar Measurements of Water Vapor, Cirrus Clouds and Carbon Dioxide

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.; Potter, John R.; Tola, Rebecca; Rush, Kurt; Veselovskii, Igor; Cadirola, Martin; Comer, Joseph

    2006-01-01

    Narrow-band interference filters with improved transmission in the ultraviolet have been developed under NASA-funded research and used in the Raman Airborne Spectroscopic Lidar (RASL) in ground- based, upward-looking tests. RASL is an airborne Raman Lidar system designed to measure water vapor mixing ratio, and aerosol backscatter/extinction/depolarization. It also possesses the capability to make experimental measurements of cloud liquid water and carbon dioxide. It is being prepared for first flight tests during the summer of 2006. With the newly developed filters installed in RASL, measurements were made of atmospheric water vapor, cirrus cloud optical properties and carbon dioxide that improve upon any previously demonstrated using Raman lidar. Daytime boundary layer profiling of water vapor mixing ratio is performed with less than 5% random error using temporal and spatial resolution of 2-minutes and 60 - 210, respectively. Daytime cirrus cloud optical depth and extinction- to-backscatter ratio measurements are made using 1-minute average. Sufficient signal strength is demonstrated to permit the simultaneous profiling of carbon dioxide and water vapor mixing ratio into the free troposphere during the nighttime. Downward-looking from an airborne RASL should possess the same measurement statistics with approximately a factor of 5 - 10 decrease in averaging time. A description of the technology improvements are provided followed by examples of the improved Raman lidar measurements.

  19. Relevance of a kite-based calibration for a water vapour Raman lidar

    NASA Astrophysics Data System (ADS)

    Totems, J.; Chazette, P.

    2015-10-01

    We present a calibration method for a water vapour Raman lidar using a meteorological probe on-board a kite, flown steadily above the lidar site, within the framework of the Hydrological Cycle in the Mediterranean Experiment (HyMeX) and Chemistry-Aerosols Radiative Effect in the Mediterranean (ChArMEx) campaigns. The experiment was carried on in Menorca (Spain) during June 2013, using the mobile Water vapour and Aerosol Lidar WALI. The kite calibration showed a much better degree of co-location with the lidar system than could be achieved with radiosondes, and allowed to calibrate measurements below the full overlap range between the emitter and the receiver. A range-dependent water vapour lidar calibration was determined, with an uncertainty of 2 % in the altitude range 90-8000 m. Water vapour measurements were further compared with radiosondes, showing very good agreement in the lower troposphere (1-5 km) and a relative mean and standard deviation of 5 and 9 %, respectively. Moreover, a reasonable agreement with MODIS integrated water vapour content is found, with a relative mean and standard deviation of 3 and 16 %. However, a discrepancy was found with AERONET retrievals, showing the latter to be underestimated by 28 %. Reanalyses from the ECMWF/IFS numerical weather prediction model were also in agreement with the temporal evolution highlighted with the lidar, with no measurable drift in integrated content over the period.

  20. Multi-wavelength Raman lidar observations of the Eyjafjallajökull volcanic cloud over Potenza, Southern Italy

    NASA Astrophysics Data System (ADS)

    Mona, L.; Amodeo, A.; D'Amico, G.; Giunta, A.; Madonna, F.; Pappalardo, G.

    2011-04-01

    Multi-wavelength Raman lidar measurements were performed at CNR-IMAA Atmospheric Observatory (CIAO) during the entire Eyjafjallajökull explosive eruptive period in April-May 2010, whenever weather conditions permitted. A methodology for volcanic layer identification and accurate aerosol typing has been developed on the basis both of the multi-wavelength Raman lidar measurements and EARLINET measurements performed at CIAO since 2000. The aerosol mask for lidar measurements performed at CIAO during the 2010 Eyjafjallajökull eruption has been obtained. Volcanic aerosol layers have been observed in different periods: 19-22 April, 27-29 April, 8-9 May, 13-14 May and 18-19 May. A maximum aerosol optical depth of about 0.12-0.13 was observed on 20 April, 22:00 UTC and 13 May, 20:30 UTC. Volcanic particles have been detected both at low altitudes, in the free troposphere and in the upper troposphere. Intrusions into the PBL have been revealed on 21-22 April and 13 May. In the April-May period Saharan dust intrusions typically occur in Southern Italy. For the period under investigations, a Saharan dust intrusion was observed on 13-14 May: dust and volcanic particles have been simultaneously observed at CIAO both at separated different levels and mixed within the same layer. Lidar ratios at 355 and 532 nm, Ångström exponent at 355/532 nm, backscatter related Ångström exponent at 532/1064 nm and particle linear depolarization ratio at 532 nm measured inside the detected volcanic layers have been discussed. The dependence of these quantities on relative humidity (RH) has been investigated by using co-located microwave profiler measurements. The particle linear depolarization ratio increasing with RH, lidar ratio values at 355 nm around 80 sr, and values of the ratio of lidar ratios greater than 1 suggest the presence of sulfates mixed with continental aerosol. Lower lidar ratio values (around 40 sr) increasing with RH and values of the ratio of lidar ratios lower than 1 indicate the presence of some aged ash inside these sulfate layers.

  1. Spaceborne observations of the lidar ratio of marine aerosols

    NASA Astrophysics Data System (ADS)

    Dawson, K. W.; Meskhidze, N.; Josset, D.; Gassó, S.

    2015-03-01

    Retrievals of aerosol optical depth (AOD) from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) satellite sensor require the assumption of the extinction-to-backscatter ratio, also known as the lidar ratio. This paper evaluates a new method to calculate the lidar ratio of marine aerosols using two independent sources: the AOD from the Synergized Optical Depth of Aerosols (SODA) project and the integrated attenuated backscatter from CALIOP. With this method, the particulate lidar ratio can be derived for individual CALIOP retrievals in single aerosol layer, cloud-free columns over the ocean. Global analyses are carried out using CALIOP level 2, 5 km marine aerosol layer products and the collocated SODA nighttime data from December 2007 to November 2010. The global mean lidar ratio for marine aerosols was found to be 26 sr, roughly 30% higher than the current value prescribed by the CALIOP standard retrieval algorithm. Data analysis also showed considerable spatiotemporal variability in the calculated lidar ratio over the remote oceans. The calculated marine aerosol lidar ratio is found to vary with the mean ocean surface wind speed (U10). An increase in U10 reduces the mean lidar ratio for marine regions from 32 ± 17 sr (for 0 < U10 < 4 m s-1) to 22 ± 7 sr (for U10 > 15 m s-1). Such changes in the lidar ratio are expected to have a corresponding effect on the marine AOD from CALIOP. The outcomes of this study are relevant for future improvements of the SODA and CALIOP operational product and could lead to more accurate retrievals of marine AOD.

  2. Shipborne measurements with a modular multipurpose mobile lidar system for tropospheric and stratospheric aerosol observations

    NASA Astrophysics Data System (ADS)

    Schaefer, Juergen; Schrems, Otto; Beyerle, Georg; Hofer, Bernd; Mildner, Wolfgang; Theopold, Felix A.

    1997-05-01

    In our contribution water vapor and aerosol measurements with a new modular two wavelength Rayleigh Raman lidar instrument are described. A comparison of the data with radiosonde data are shown and the results discussed. The new mobile aerosol Raman lidar (MARL) is able to measure aerosol backscatter and extinction coefficient as well as depolarization in the altitude range 5 to 50 km. The system is operational since July 1996 and participated at the ALBATROSS (atmospheric chemistry and lidar studies above the Atlantic Ocean related to ozone and other trace gases in the tropo and stratosphere) campaign aboard the German research vessel Polarstern on a cruise from Bremerhaven, Germany to Punta Quilla, Argentina in October/November 1996. Key parts of the lidar system include a frequency doubled and tripled Nd:YAG laser, a large receiving telescope mirror (1.15 m diameter) and a sophisticated polychromator. The system's power aperture product is more than 9 Wm2 on each wavelength (532 nm and 355 nm). The instrument is installed in a standard 20 ft ISO container and is operational in polar as well as tropical environments wherever a supply with electrical power is available.

  3. Improvements in Raman Lidar Measurements Using New Interference Filter Technology

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.; Potter, John R.; Tola, Rebecca; Veselovskii, Igor; Cadirola, Martin; Rush, Kurt; Comer, Joseph

    2006-01-01

    Narrow-band interference filters with improved transmission in the ultra-violet have been developed under NASA-funded research and used in the Raman Airborne Spectroscopic Lidar (RASL) in ground-based, upward-looking tests. Measurements were made of atmospheric water vapor, cirrus cloud optical properties and carbon dioxide that improve upon any previously demonstrated using Raman lidar. Daytime boundary and mixed layer profiling of water vapor mixing ratio up to an altitude of approximately 4 h is performed with less than 5% random error using temporal and spatial resolution of 2-minutes and 60 - 210, respectively. Daytime cirrus cloud optical depth and extinction-to-backscatter ratio measurements are made using 1 -minute average. Sufficient signal strength is demonstrated to permit the simultaneous profiling of carbon dioxide and water vapor mixing ratio into the free troposphere during the nighttime. A description of the filter technology developments is provided followed by examples of the improved Raman lidar measurements.

  4. Aerosol Lidar and MODIS Satellite Comparisons for Future Aerosol Loading Forecast

    NASA Technical Reports Server (NTRS)

    DeYoung, Russell; Szykman, James; Severance, Kurt; Chu, D. Allen; Rosen, Rebecca; Al-Saadi, Jassim

    2006-01-01

    Knowledge of the concentration and distribution of atmospheric aerosols using both airborne lidar and satellite instruments is a field of active research. An aircraft based aerosol lidar has been used to study the distribution of atmospheric aerosols in the California Central Valley and eastern US coast. Concurrently, satellite aerosol retrievals, from the MODIS (Moderate Resolution Imaging Spectroradiometer) instrument aboard the Terra and Aqua satellites, were take over the Central Valley. The MODIS Level 2 aerosol data product provides retrieved ambient aerosol optical properties (e.g., optical depth (AOD) and size distribution) globally over ocean and land at a spatial resolution of 10 km. The Central Valley topography was overlaid with MODIS AOD (5x5 sq km resolution) and the aerosol scattering vertical profiles from a lidar flight. Backward air parcel trajectories for the lidar data show that air from the Pacific and northern part of the Central Valley converge confining the aerosols to the lower valley region and below the mixed layer. Below an altitude of 1 km, the lidar aerosol and MODIS AOD exhibit good agreement. Both data sets indicate a high presence of aerosols near Bakersfield and the Tehachapi Mountains. These and other results to be presented indicate that the majority of the aerosols are below the mixed layer such that the MODIS AOD should correspond well with surface measurements. Lidar measurements will help interpret satellite AOD retrievals so that one day they can be used on a routine basis for prediction of boundary layer aerosol pollution events.

  5. [Dual-wavelength Mie lidar observations of tropospheric aerosols].

    PubMed

    Chi, Ru-Li; Wu, De-Cheng; Liu, Bo; Zhou, Jun

    2009-06-01

    A new dual-wavelength Mie lidar (DWL) is introduced. The DWL can be used to monitor the optical properties of tropospheric aerosol at 532 and 1 064 nm wavelength and their spatial and temporal variations, and to research aerosol size distribution with altitude. This lidar adopted four channels to receive the far and near range backscattering signal at 532 and 1 064 nm wavelength respectively. In order to enhance the capability of daytime measurement, the system employed a narrow band interference filter to separate the main backscattering signal of lidar return, including Mie backscattering signal and Rayleigh backscattering signal from the total backscattering signal including non-elastic scattering signal and solar spectrum, by cooperating with an iris to depress the majority of sky background noise. Overall structure and specifications of the lidar, as well as data processing method, were described. The lidar system has been operated in Hefei (117. 16 degrees E, 31.90 degrees N). The profile of extinction coefficient of tropospheric aerosol and its temporal-spatial distribution were obtained. Angstrom exponent and optical depth of aerosol were also discussed. The observational results have shown that this lidar works well both during the day and at night and has the ability to measure the tropospheric aerosols and to manifest the temporal and spatial distributions of the aerosols with high precision. PMID:19810510

  6. Application of resonance Raman LIDAR for chemical species identification

    SciTech Connect

    Chen, C.L.; Heglund, D.L.; Ray, M.D.; Harder, D.; Dobert, R.; Leung, K.P.; Wu, M.; Sedlacek, A.

    1997-07-01

    BNL has been developing a remote sensing technique for the detection of atmospheric pollutants based on the phenomenon of resonance Raman LIDAR that has also incorporated a number of new techniques/technologies designed to extend it`s performance envelope. When the excitation frequency approaches an allowed electronic transition of the molecule, an enormous enhancement of the inelastic scattering cross-section can occur, often up to 2 to 4 orders-of-magnitude, and is referred to as resonance Raman (RR), since the excitation frequency is in resonance with an allowed electronic transition. Exploitation of this enhancement along with new techniques such as pattern recognition algorithms to take advantage of the spectral fingerprint and a new laser frequency modulation technique designed to suppress broadband fluorescence, referred to as Frequency modulated Excitation Raman Spectroscopy (FreMERS) and recent developments in liquid edge filter technology, for suppression of the elastic channel, all help increase the overall performance of Raman LIDAR.

  7. Optical design and development of the Near Range Lidar system for aerosol investigation at Belsk

    NASA Astrophysics Data System (ADS)

    Posyniak, Michal; Piatruczuk, Aleksander; Szkop, Artur

    2015-04-01

    The development of the lidar system in the Central Geophysics Observatory at Belsk (Poland) is presented. Belsk is an aerosol background site located in a rural area about 50 km south from Warsaw. A new near range (NR) lidar was added to the existing far range (FR) lidar system to enable the acquisition of lidar signals at the distance of a few hundred meters from the device. In the existing design of the FR lidar a 600 mm diameter mirror was used which resultedin anoverlap over 1500 mmaking this device suitable for observations of aerosols in free troposphere and lower stratosphere but not in the Planetary Boundary Layer (PBL).To enable measurements in the PBL the near range detection systemwas designed as a complement of the existing FR lidar. A secondtelescope with a set of detectors was used with the same laser as in the FR system as a light source. The Nd:YAGpulselasergenerates three wavelengths (1064, 532 and 355 nm).Energies of light pulses are about 320 mJ while their repetition rate is 15 Hz. In the optical receiver of the NR lidar a telescope with a 150 mm diameter parabolic mirror with optical fiber (1 mm core diameter) as a field stop was used. Our analysis shows that full overlap of the laser beam and the NR telescope field of view is expected at about 150 m. A polichromator based on dichroic beam splitters and a set of narrow band pass filters were used to separate wavelengths. The design of the NR lidar easily allows to add Raman channels to the system. The acquisition of the analog lidar echoes was done by photomultipliers (at 355 and 532 nm) and the avalanche photodiode (at 1064 nm). 14 bit analog to digital converters coupled with PC computer by USB 2.0 were also used.

  8. Quantitative remote measurements of pollutants from stationary sources using Raman lidar

    NASA Technical Reports Server (NTRS)

    Poultney, S. K.; Brumfield, M. L.; Siviter, J. H., Jr.

    1977-01-01

    The several advantages of Raman lidar for remote measurements of stationary source emissions were quantitatively evaluated using a calibration tank at a distance of 300 m at night. Measurements of approximately 10 to the 3rd ppm SO2 with a 12% accuracy were demonstrated in an observation time of 15 min using a 1.5-J ruby laser at 30 pulses/min, 6-m range resolution, interference filters, photon counting detection, and a 20-cm receiver. Measurement accuracy was checked by measuring known concentrations of SO2 in the tank, by tuning the interference filters through the SO2 Raman line, and by varying the CO2 concentration to very high levels during the SO2 measurements. Evaluation of the seriousness of induced fluorescence from plume aerosols failed due to the inability to simulate the plume aerosols.

  9. The application of lidar to stratospheric aerosol studies

    NASA Technical Reports Server (NTRS)

    Mccormick, M. P.

    1986-01-01

    The global climatology and understanding of stratospheric aerosols evolving primarily from lidar and satellite measurements is presented. The importance of validation of these remotely sensed data with in situ measurements is also discussed. The advantage of lidar for providing high vertical and horizontal resolution and its independence from a remote source for measurement will become evident with examples of long term lidar data sets at fixed sites and the use of lidar on airborne platforms. Volcanic impacts of the last 20 years are described with emphasis on the last 8 years where satellite data are available. With satellite and high resolution lidar measurements, an understanding of the global circulation of volcanic material is attempted along with the temporal change of aerosol physical parameters and the stratospheric cleansing or decay times associated with these eruptions.

  10. Raman Lidar Profiles–Temperature (RLPROFTEMP) Value-Added Product

    SciTech Connect

    Newsom, RK; Sivaraman, C; McFarlane, SA

    2012-10-31

    The purpose of this document is to describe the Raman Lidar Profiles–Temperature (RLPROFTEMP) value-added product (VAP) and the procedures used to derive atmospheric temperature profiles from the raw RL measurements. Sections 2 and 4 describe the input and output variables, respectively. Section 3 discusses the theory behind the measurement and the details of the algorithm, including calibration and overlap correction.

  11. First results from the aerosol lidar and backscatter sonde intercomparison campaign STRAIT'1997 at table mountain facility during February-March 1997

    NASA Technical Reports Server (NTRS)

    Beyerle, G.; Gross, M. R.; Haner, D. A.; Kjome, N. T.; McDermid, I. S.; McGee, T. J.; Rosen, J. M.; Schaefer, H. - J.; Schrems, O.

    1998-01-01

    First results of an intercomparison measurement campaign between three aerosol lidar instruments and in-situ backscatter sondes performed at Table Mountain Facility (34.4 deg N, 117.7 deg E, 2280 m asl) in February-March 1997 are presented. During the campaign a total of 414 hours of lidar data were acquired by the Aerosol-Temperature-Lidar (ATL, Goddard Space Flight Center) the Mobile-aerosol-Raman-Lidar (MARL, Alfred Wegener Institute), and the TMF-Aerosol-Lidar (TAL, Jet Propulsion Laboratory), and four backscatter sondes were launched. From the data set altitude profiles of backscatter ratio and volume depolarization of stratospheric background aerosols at altitudes between 15 and 25 km and optically thin high-altitude cirrus clouds at altitudes below 13 km are derived. On the basis of a sulfuric acid aerosol model color ratio profiles obtained from two wavelength lidar data are compared to the corresponding profiles derived from the sonde observations. We find an excellent agreement between the in-situ and ATL lidar data with respect to backscatter and color ratio. Cirrus clouds were present on 16 of 26 nights during the campaign. Lidar observations with 17 minute temporal and 120-300 m spatial resolution indicate high spatial and temporal variability of the cirrus layers. Qualitative agreement is found between concurrent lidar measurements of backscatter ratio and volume depolarization.

  12. Lidar-radar synergy for characterizing properties of ultragiant volcanic aerosol

    NASA Astrophysics Data System (ADS)

    Madonna, F.; Amodeo, A.; D'Amico, G.; Giunta, A.; Mona, L.; Pappalardo, G.

    2011-12-01

    The atmospheric aerosol has a relevant effect on our life influencing climate, aviation safety, air quality and natural hazards. The identification of aerosol layers through inspection of continuous measurements is strongly recommended for quantifying their contribution to natural hazards and air quality and to establish suitable alerting systems. In particular, the study of ultragiant aerosols may improve the knowledge of physical-chemical processes underlying the aerosol-cloud interactions and the effect of giant nuclei as a potential element to expedite the warm-rain process. Moreover, the identification and the characterization of ultragiant aerosols may strongly contribute to quantify their impact on human health and their role in airplane engine damages or in visibility problems, especially in case of extreme events as explosive volcanic eruptions. During spring 2010, volcanic aerosol layers coming from Eyjafjallajökull volcano were observed over most of the European countries, using lidar technique. From 19 April to 19 May 2010, they were also observed at CNR-IMAA Atmospheric Observatory (CIAO) with the multi-wavelength Raman lidar systems of the Potenza EARLINET station (40.60N, 15.72E, 760 m a.s.l), Southern Italy. During this period, ultragiant aerosol were also observed at CIAO using a co-located Ka-band MIRA-36 Doppler microwave radar operating at 8.45 mm (35.5 GHz). The Ka-band radar observed in four separate days (19 April, 7, 10, 13 May) signatures consistent with the observations of non-spherical ultragiant aerosol characterized by anomalous values of linear depolarization ratio higher than -4 dB, probably related to the occurrence of multiple effects as particle alignment and presence of an ice coating. 7-days backward trajectory analysis shows that the air masses corresponding to the ultragiant aerosol observed by the radar were coming from the Eyjafjallajökull volcano area. Only in one case the trajectories do not come directly from Iceland, but from Central Europe where many lidar observations confirm the presence of volcanic aerosol in the previous days. Therefore, both CIAO lidar observations and the backtrajectory analysis suggests a volcanic origin of the ultragiant aerosol observed by the radar, revealing that these particles might have travelled for more than 4000 km after their injection into the atmosphere. The reported observation fostered a study, reported in this work, about the performances of multi-wavelength Raman lidars in the identification and the characterization of ultragiant aerosols layers in the troposphere. Results from simulations using Mie, T-Matrix and ray-tracing codes will be presented and compared with the observations performed in April-May 2010 during the Eyjafjallajökull eruption. Sensitivity ranges in detection of aerosol layer are pointed out in terms of experimental limits of both lidar and radar techniques and of aerosol optical depth. Moreover, recommendations for use of a combined lidar-radar approach for the aerosol typing and for the retrieval of their microphysical properties are reported.

  13. Raman Lidar Profiles Best Estimate Value-Added Product Technical Report

    SciTech Connect

    Newson, R

    2012-01-18

    The ARM Raman lidars are semi-autonomous ground-based systems that transmit at a wavelength of 355 nm with 300 mJ, {approx}5 ns pulses, and a pulse repetition frequency of 30Hz. Signals from the various detection channels are processed to produce time- and height-resolved estimates of several geophysical quantities, such as water vapor mixing ratio, relative humidity, aerosol scattering ratio, backscatter, optical depth, extinction, and depolarization ratio. Data processing is currently handled by a suite of six value-added product (VAP) processes. Collectively, these processes are known as the Raman Lidar Profiles VAP (RLPROF). The top-level best-estimate (BE) VAP process was introduced in order to bring together the most relevant information from the intermediate-level VAPs. As such, the BE process represents the final stage in data processing for the Raman lidar. Its principal function is to extract the primary variables from each of the intermediate-level VAPs, perform additional quality control, and combine all of this information into a single output file for the end-user. The focus of this document is to describe the processing performed by the BE VAP process.

  14. Global Aerosol Profiling by Orbital Lidar, GLAS Results and Validation

    NASA Technical Reports Server (NTRS)

    Spinhirne, J. D.; Palm, S. P.; Hlavka, D. L.; Hart, W. D.; Mahesh, A.; Welton, E. J.

    2004-01-01

    The Geoscience Laser Altimeter System (GLAS) launched in 2003 is the first polar orbiting satellite lidar. The instrument was designed for high performance observations of the distribution and optical scattering cross sections of clouds and aerosol. GLAS is approaching six months of on orbit data operation. These data from thousands of orbits illustrate the ability of space lidar to accurately and dramatically measure the height distribution of global aerosol to an unprecedented degree. There were many intended science applications of the GLAS data and significant results have already been realized, profiling is a fundamentally new measurement from space with multiple applications. A most important aerosol application is providing input to global aerosol generation transport models. Another is improved measurement of aerosol optical depth. A main approach to verify the aerosol optical depth retrieval is comparison to surface measurements by Aeronet. A special feature of the GLAS satellite bus is to rapidly point the lidar instrument at off nadir targets with less than 100 m accuracy. About a dozen selected Aeronet sites were pointed at whenever the GLAS lidar came within 5 degrees of zenith. These plus a more general comparison to nearby sites support the GLAS data product values. In addition the GLAS data can be used to add vertical distribution information to Aeronet aerosol measurements. As an EOS project instrument, GLAS data products are openly available to the science community. First year results from GLAS are summarized.

  15. Global Aerosol Profiling by Orbital Lidar, GLAS Results and Validation

    NASA Technical Reports Server (NTRS)

    Spinhirne, J. D.; Palm, S. P.; Hlavka, D. L.; Hart, W. D.; Mahesh, A.; Welton, E. J.

    2004-01-01

    The Geoscience Laser Altimeter System (GLAS) launched in 2003 is the first polar orbiting satellite lidar. The instrument was designed for high performance observations of the distribution and optical scattering cross sections of clouds and aerosol. GLAS is approaching six months of on orbit data operation. These data from thousands of orbits illustrate the ability of space lidar to accurately and dramatically measure the height distribution of global aerosol to an unprecedented degree. There were many intended science applications of the GLAS data and significant results have already been realized. profiling is a fundamentally new measurement from space with multiple applications. A most important aerosol application is providing input to global aerosol generation and transport models. Another is improved measurement of aerosol optical depth. A main approach to verify the aerosol optical depth retrieval is comparison to surface measurements by Aeronet. A special feature of the GLAS satellite bus is to rapidly point the lidar instrument at off nadir targets with less than 100 m accuracy. About a dozen selected Aeronet sites were pointed at whenever the G U S lidar came within 5 degrees of zenith. These plus a more general comparison to nearby sites support the G U S data product values. In addition the GUS data can be used to add vertical distribution information to Aeronet aerosol measurements.. As an EOS project instrument, GLAS data products are openly available to the science community. First year results from G U S are summarized.

  16. A trasportable lidar system for water vapor, temperature and aerosol profiles

    NASA Astrophysics Data System (ADS)

    Medaglia, C. M.; Congeduti, F.; D'Aulerio, P.; Fierli, F.; Baldetti, P.; Belardinelli, F.

    2003-04-01

    Rayleigh/Mie/Raman lidar system, with capabilities of simultaneous measurements of water vapor mixing ratio, temperature and aerosol, is operational in Rome, Italy (42° N, 13° E), since the beginning of 2002. As the system is transportable, the instrument was deployed in Northern Italy for the Mesoscale Alpine Programme campaign. Three orders of collectors of different size are used to receive the backscattered radiation from different atmospheric layers in order to extend the altitude range from the Planetary Boundary Layer up to the upper mesosphere. The basic data acquisition resolution is 75 m in altitude and 1 min in time, that can be decreased depending on the accuracy needed for the retrieval of the atmospheric paramenters. The overall features of the lidar will lead possible both climatic database acquisition and detailed process studies. Moreover, the design of the reception system will allow maximizing the water vapor signal in the lower stratosphere. For this reason, the Rome RMR lidar is involved in the NDSC network assessment of the quality of the lidar water vapor measurements in the Upper troposphere-Lower Stratosphere region. The temperature profile is obtained in the upper stratosphere and mesosphere by the Rayleigh technique and validated by comparison with several NDSC Rayleigh lidar inversion algorithms. Tests are in progress to assess whether the N2 Raman signal can be inverted, with a similar procedure, to extend the temperature profile down to the layer where the aerosols layers are present. The technical features of the lidar system are briefly described. Particular attention is given to the accuracy of the water vapor measurement and to examples of temperature profiling and their current applications.

  17. Simultaneous analog and photon counting detection for Raman lidar

    SciTech Connect

    Newsom, Rob K.; Turner, David D.; Mielke, Bernd; Clayton, Marian F.; Ferrare, Richard; Sivaraman, Chitra

    2009-07-10

    The Atmospheric Radiation Measurement program Raman Lidar was upgraded in 2004 with a new data system that provides simultaneous measurements of both the photomultiplier analog output voltage and photon counts. This paper describes recent improvements to the algorithm used to merge these two signals into a single signal with improved dynamic range. The impact of modifications to the algorithm are evaluated by comparing profiles of water vapor mixing ratio from the lidar with sonde measurements. The modifications that were implemented resulted in a reduction of the mean bias in the daytime mixing ratio from a 4% dry bias to well within 1%.

  18. [Obtaining aerosol backscattering coefficient using pure rotational Raman-Mie scattering spectrum].

    PubMed

    Rong, Wei; Chen, Si-Ying; Zhang, Yin-Chao; Chen, He; Guo, Pan

    2012-11-01

    Both the traditional Klett and Fernald methods used to obtain atmospheric aerosol backscattering coefficient require the hypothesis of relationship between the extinction coefficient and backscattering coefficient, and this will bring error. According to the theory that the pure rotational Raman backscattering coefficient is only related to atmospheric temperature and pressure, a new method is presented for inverting aerosol backscattering coefficient, which needed the intensity of elastic scattering and rotational Raman combined with atmospheric temperature and pressure obtained with the sounding balloons in this article. This method can not only eliminate the errors of the traditional Klett and Fernald methods caused by the hypothesis, but also avoid the error caused by the correction of the overlap. Finally, the aerosol backscattering coefficient was acquired by using this method and the data obtained via the Raman-Mie scattering Lidar of our lab. And the result was compared with that of Klett and Fernald. PMID:23387171

  19. Airborne Lidar Measurements of Aerosol Optical Properties During SAFARI-2000

    NASA Technical Reports Server (NTRS)

    McGill, M. J.; Hlavka, D. L.; Hart, W. D.; Welton, E. J.; Campbell, J. R.; Starr, David OC. (Technical Monitor)

    2002-01-01

    The Cloud Physics Lidar (CPL) operated onboard the NASA ER-2 high altitude aircraft during the SAFARI-2000 field campaign. The CPL provided high spatial resolution measurements of aerosol optical properties at both 1064 nm and 532 nm. We present here results of planetary boundary layer (PBL) aerosol optical depth analysis and profiles of aerosol extinction. Variation of optical depth and extinction are examined as a function of regional location. The wide-scale aerosol mapping obtained by the CPL is a unique data set that will aid in future studies of aerosol transport. Comparisons between the airborne CPL and ground-based MicroPulse Lidar Network (MPL-Net) sites are shown to have good agreement.

  20. Water-Vapor Raman Lidar System Reaches Higher Altitude

    NASA Technical Reports Server (NTRS)

    Leblanc, Thierry; McDermid, I. Stewart

    2010-01-01

    A Raman lidar system for measuring the vertical distribution of water vapor in the atmosphere is located at the Table Mountain Facility (TMF) in California. Raman lidar systems for obtaining vertical water-vapor profiles in the troposphere have been in use for some time. The TMF system incorporates a number of improvements over prior such systems that enable extension of the altitude range of measurements through the tropopause into the lower stratosphere. One major obstacle to extension of the altitude range is the fact that the mixing ratio of water vapor in the tropopause and the lower stratosphere is so low that Raman lidar measurements in this region are limited by noise. Therefore, the design of the TMF system incorporates several features intended to maximize the signal-to-noise ratio. These features include (1) the use of 355-nm-wavelength laser pulses having an energy (0.9 J per pulse) that is high relative to the laser-pulse energy levels of prior such systems, (2) a telescope having a large aperture (91 cm in diameter) and a narrow field of view (angular width .0.6 mrad), and (3) narrow-bandpass (wavelength bandwidth 0.6 nm) filters for the water-vapor Raman spectral channels. In addition to the large-aperture telescope, three telescopes having apertures 7.5 cm in diameter are used to collect returns from low altitudes.

  1. Lidar sensing of aerosols and clouds in the troposphere and stratosphere

    NASA Technical Reports Server (NTRS)

    Reagan, John A.; Mccormick, M. Patrick; Spinhirne, James D.

    1989-01-01

    Advances in the development and application of lidar as a tool for the remote sensing of atmospheric aerosols and clouds are reviewed. The lidar sensing technique is described, and various approaches for solving the lidar equation to retrieve aerosol properties are summarized. Examples are presented of lidar applications to aerosol and cloud sensing in both the troposphere and stratosphere. These include environmental monitoring, atmospheric-boundary-layer studies, retrieval of aerosol optical and physical properties, sensing of clouds, and investigation of volcanic effects in the stratosphere. Comments are offered regarding the future outlook for aerosol and cloud sensing by both ground-based and spaceborne lidars.

  2. Lidar data assimilation for improved analyses of volcanic aerosol events

    NASA Astrophysics Data System (ADS)

    Lange, Anne Caroline; Elbern, Hendrik

    2014-05-01

    Observations of hazardous events with release of aerosols are hardly analyzable by today's data assimilation algorithms, without producing an attenuating bias. Skillful forecasts of unexpected aerosol events are essential for human health and to prevent an exposure of infirm persons and aircraft with possibly catastrophic outcome. Typical cases include mineral dust outbreaks, mostly from large desert regions, wild fires, and sea salt uplifts, while the focus aims for volcanic eruptions. In general, numerical chemistry and aerosol transport models cannot simulate such events without manual adjustments. The concept of data assimilation is able to correct the analysis, as long it is operationally implemented in the model system. Though, the tangent-linear approximation, which describes a substantial precondition for today's cutting edge data assimilation algorithms, is not valid during unexpected aerosol events. As part of the European COPERNICUS (earth observation) project MACC II and the national ESKP (Earth System Knowledge Platform) initiative, we developed a module that enables the assimilation of aerosol lidar observations, even during unforeseeable incidences of extreme emissions of particulate matter. Thereby, the influence of the background information has to be reduced adequately. Advanced lidar instruments comprise on the one hand the aspect of radiative transfer within the atmosphere and on the other hand they can deliver a detailed quantification of the detected aerosols. For the assimilation of maximal exploited lidar data, an appropriate lidar observation operator is constructed, compatible with the EURAD-IM (European Air Pollution and Dispersion - Inverse Model) system. The observation operator is able to map the modeled chemical and physical state on lidar attenuated backscatter, transmission, aerosol optical depth, as well as on the extinction and backscatter coefficients. Further, it has the ability to process the observed discrepancies with lidar data in a variational data assimilation algorithm. The implemented method is tested by the assimilation of CALIPSO attenuated backscatter data that were taken during the eruption of the Eyjafjallajökull volcano in April 2010. It turned out that the implemented module is fully capable to integrate unexpected aerosol events in an automatic way into reasonable analyses. The estimations of the aerosol mass concentrations showed promising properties for the application of observations that are taken by lidar systems with both, higher and lower sophistication than CALIOP.

  3. Radiative effect of aerosols above the northern and southern Atlantic Ocean as determined from shipborne lidar observations

    NASA Astrophysics Data System (ADS)

    Kanitz, T.; Ansmann, A.; Seifert, P.; Engelmann, R.; Kalisch, J.; Althausen, D.

    2013-11-01

    The direct solar radiative effect of aerosols over the Atlantic Ocean was investigated on the basis of aerosol Raman/polarization lidar observations aboard the research vessel Polarsternbetween Germany (50°N) and either South America (50°S) or South Africa (40°S) in 2009 and 2010. First, a case study of complex aerosol conditions with marine aerosol, dust, and smoke particles in the boundary layer and free troposphere is presented to demonstrate that detailed knowledge of aerosol layering (boundary layer, free troposphere) and aerosol mixing state is required for an accurate determination of the resulting radiative effects. A statistical analysis based on all lidar observations revealed the highest daily mean radiative effect (-43±59 W m-2at the surface, -14±18 W m-2at top of atmosphere) in the latitudinal belt from 0°N-15°N in the Saharan dust outflow region. Mean aerosol radiative effects of the polluted northern and clean southern midlatitudes were contrasted. In the northern midlatitudes, the averaged aerosol radiative effect of all simulations was -24±33 W m-2at the surface which is a factor of 1.6 higher than at similar southern hemispheric latitudes. The simulations based on the lidar observations are in good agreement with colocated pyranometer measurements.

  4. Aerosol Models for the CALIPSO Lidar Inversion Algorithms

    NASA Technical Reports Server (NTRS)

    Omar, Ali H.; Winker, David M.; Won, Jae-Gwang

    2003-01-01

    We use measurements and models to develop aerosol models for use in the inversion algorithms for the Cloud Aerosol Lidar and Imager Pathfinder Spaceborne Observations (CALIPSO). Radiance measurements and inversions of the AErosol RObotic NETwork (AERONET1, 2) are used to group global atmospheric aerosols using optical and microphysical parameters. This study uses more than 105 records of radiance measurements, aerosol size distributions, and complex refractive indices to generate the optical properties of the aerosol at more 200 sites worldwide. These properties together with the radiance measurements are then classified using classical clustering methods to group the sites according to the type of aerosol with the greatest frequency of occurrence at each site. Six significant clusters are identified: desert dust, biomass burning, urban industrial pollution, rural background, marine, and dirty pollution. Three of these are used in the CALIPSO aerosol models to characterize desert dust, biomass burning, and polluted continental aerosols. The CALIPSO aerosol model also uses the coarse mode of desert dust and the fine mode of biomass burning to build a polluted dust model. For marine aerosol, the CALIPSO aerosol model uses measurements from the SEAS experiment 3. In addition to categorizing the aerosol types, the cluster analysis provides all the column optical and microphysical properties for each cluster.

  5. Spaceborne profiling of atmospheric temperature and particle extinction with pure rotational Raman lidar and of relative humidity in combination with differential absorption lidar: performance simulations

    SciTech Connect

    Di Girolamo, Paolo; Behrendt, Andreas; Wulfmeyer, Volker

    2006-04-10

    The performance of a spaceborne temperature lidar based on the pure rotational Raman (RR) technique in the UV has been simulated. Results show that such a system deployed onboard a low-Earth-orbit satellite would provide global-scale clear-sky temperature measurements in the troposphere and lower stratosphere with precisions that satisfy World Meteorological Organization (WMO) threshold observational requirements for numerical weather prediction and climate research applications. Furthermore, nighttime temperature measurements would still be within the WMO threshold observational requirements in the presence of several cloud structures. The performance of aerosol extinction measurements from space, which can be carried out simultaneously with temperature measurements by RR lidar, is also assessed. Furthermore, we discuss simulations of relative humidity measurements from space obtained from RR temperature measurements and water-vapor data measured with the differential absorption lidar (DIAL) technique.

  6. EARLINET Raman Lidar PollyXT: the neXT generation

    NASA Astrophysics Data System (ADS)

    Engelmann, R.; Kanitz, T.; Baars, H.; Heese, B.; Althausen, D.; Skupin, A.; Wandinger, U.; Komppula, M.; Stachlewska, I. S.; Amiridis, V.; Marinou, E.; Mattis, I.; Linné, H.; Ansmann, A.

    2015-07-01

    The atmospheric science community demands for autonomous and quality-assured vertically resolved measurements of aerosol and cloud properties. For this purpose, a portable lidar called Polly was developed at TROPOS in 2003. The lidar system was continuously improved with gained experience from EARLINET, worldwide field campaigns and institute collaborations within the last 10 years. Here we present recent changes of the setup of our portable multiwavelength Raman and polarization lidar PollyXT and the improved capabilities of the system by means of a case study. Our latest developed system includes an additional near-range receiver unit for Raman measurements of the backscatter and extinction coefficient down to 120 m above ground, a water-vapor channel, and channels for simultaneous measurements of the particle linear depolarization at 355 and 532 nm. Quality improvements were achieved by following consequently the EARLINET guidelines and own developments. A modified ship radar ensures measurements in agreement with air-traffic safety regulations and allows 24/7 monitoring of the atmospheric state with PollyXT.

  7. Aerosol Measurements by the GLAS Space Borne Lidar

    NASA Technical Reports Server (NTRS)

    Spinhirne, James D.; Palm, Steven P.; Hlavka, Dennis L.; Hart, William D.; Welton, Ellsworth J.

    2003-01-01

    Beginning in February 2003, the Geoscience Laser Altimeter System (GLAS) provides global coverage lidar measurement of the height distribution of aerosol in the atmosphere. The characteristic and value of the unique data will be presented. The instrument is a basic backscatter lidar that operates at two wavelengths, 532 and 1064 nm. The mission data products for atmospheric observations include the calibrated, observed, attenuated backscatter cross section for cloud and aerosol; height detection for multiple cloud layers; planetary boundary layer height; cirrus and aerosol optical depth and the height distribution of aerosol and cloud scattering cross section profiles. The data is expected to significantly enhance knowledge of the distribution, transport and influence of atmospheric aerosol and thin clouds. Initial results from the 1064 nm channel show strong aerosol loading in many regions of the world. From the initial performance and verification experiments, aerosol backscatter cross sections down to sever times 10(exp -6)I/m-sr are detected. In August the 532 nm channel will also provide aerosol profiles but with a projected order of magnitude more sensitivity, and full data products including aerosol optical depths will be generated. Results from these first several months of operation will be presented.

  8. Evaluation of a Raman Lidar for Atmospheric Water Vapour Profiling

    NASA Astrophysics Data System (ADS)

    Kunz, G. J.; deLeeuw, G.

    2002-04-01

    Knowledge of the vertical profile of atmospheric water vapour is important for predicting atmospheric refraction effects for radar and infrared applications. A model is developed to calculate the performance of a vibrational Raman lidar for measuring vertical profiles of atmospheric water vapour, based on the current transmitter and receiver properties of the TNO-FEL backscatter lidar. Calculations are carried out for the four harmonics of the Nd:YAG laser. These calculations show that maximum ranges of approximately 50 m can be obtained for single shot operation during day time with each of the 532, 355 and 266 nm wavelengths (respectively the second, third and fourth harmonics). The maximum range at the fundamental wavelength is only a few meters due to the limited Raman cross section at this wavelength and the limited sensitivity of the detector at the Raman wavelength. By operating the system under night-time conditions, the maximum range increases to about 160 m. The maximum range could further be improved if noise free amplifiers would be available. It is estimated that the maximum range will increase to 360 m if a pre-amplifier is available with an equivalent noise current of 9. 10-13 W/Hz1/2 and a bandwidth of at least 30 MHz. Larger ranges can be obtained by averaging multiple signals. For increasing the maximum range by a factor of 10, the required number of shots is approximately 10,000, which takes about 10 minutes for a 20 Hz lidar system.

  9. Calibration of Multi-wavelength Raman Polarization Lidar

    NASA Astrophysics Data System (ADS)

    Wang, Xuan; Boselli, Antonella; Sannino, Alessia; Song, Changbo; Spinelli, Nicola; Zhao, Yiming; Pan, Chao

    2015-03-01

    The current high energy cosmic ray detection technology, including Cherenkov telescopes and fluorescence detector, is mainly limited by uncertainties in the determination of atmospheric parameters. LIDARs are currently the best suited technology to get atmospheric parameters for the atmosphere correction of high energy cosmic ray observatory data with one single instrument. A new Multi-wavelength Raman Polarization Lidar (AMPLE) has been developed and introduced in this paper. In order to provide precise and accurate results, lidar system should be calibrated before using for atmosphere correction in cosmic rays observatory. The calibration methods and results of AMPLE have been presented, including overlap function calibration, multi-wavelength channel calibration, depolarization calibration. In order to verify the accuracy of parameter measured by AMPLE lidar system, the comparison with radio sounder and sun-photometer has been done. The results show AMPLE lidar system has the ability to precisely measure the vertical profile of the atmosphere properties without any assumption and is a good choice for cosmic rays observatory to get atmosphere correction information.

  10. Multifrequency Lidar Probing of the Microstructure of Multicomponent Urban Aerosols

    NASA Astrophysics Data System (ADS)

    Lisenko, S. A.; Kugeiko, M. M.; Khomich, V. V.

    2015-03-01

    We consider the inverse problem of recovering the microstructure of multicomponent urban aerosols from lidar signals measured at ? = 0.355, 0.532, 1.064, and 1.5 ?m. To solve this problem, we use a regression method based on previously constructed regression relations between the optical and microstructural parameters of the aerosol, and a numerical method including parametrization of the particle size distribution and regularization with selection of the regularization parameter using the residual. With closed numerical modeling, we show that it is possible to recover the mass concentrations of particles of sizes ?1 ?m, ?2.5 ?m, and ?10 ?m (respirable particles). The regression method for solving the inverse problem is significantly more robust than its iterative analog relative to variations in the complex refractive indices of the aerosol components and uncertainties in the optical measurements. We have obtained equations for multiple regressions between the mass concentrations of respirable aerosol fractions and the spectral extinction coefficients of the aerosol, allowing us to interpret the data from multifrequency lidar probing with minimal use of a priori information. We have carried out a numerical experiment on lidar probing of the microstructure of aerosol in the background atmosphere and in a smoke plume using the regressions obtained, demonstrating the possibility of complete automation of the measurement process.

  11. Lidar profiling of aerosol optical properties from Paris to Lake Baikal (Siberia)

    NASA Astrophysics Data System (ADS)

    Dieudonné, E.; Chazette, P.; Marnas, F.; Totems, J.; Shang, X.

    2015-05-01

    In June 2013, a ground-based mobile lidar performed the ~10 000 km ride from Paris to Ulan-Ude, near Lake Baikal, profiling for the first time aerosol optical properties all the way from western Europe to central Siberia. The instrument was equipped with N2-Raman and depolarization channels that enabled an optical speciation of aerosols in the low and middle troposphere. The extinction-to-backscatter ratio (also called lidar ratio or LR) and particle depolarization ratio (PDR) at 355 nm have been retrieved. The LR in the lower boundary layer (300-700 m) was found to be 63 ± 17 sr on average during the campaign with a distribution slightly skewed toward higher values that peaks between 50 and 55 sr. Although the difference is small, PDR values observed in Russian cities (>2%, except after rain) are systematically higher than the ones measured in Europe (<1%), which is probably an effect of the lifting of terrigenous aerosols by traffic on roads. Biomass burning layers from grassland or/and forest fires in southern Russia exhibit LR values ranging from 65 to 107 sr and from 3 to 4% for the PDR. During the route, desert dust aerosols originating from the Caspian and Aral seas regions were characterized for the first time, with a LR (PDR) of 43 ± 14 sr (23 ± 2%) for pure dust. The lidar observations also showed that this dust event extended over 2300 km and lasted for ~6 days. Measurements from the Moderate Resolution Imaging Spectrometer (MODIS) show that our results are comparable in terms of aerosol optical thickness (between 0.05 and 0.40 at 355 nm) with the mean aerosol load encountered throughout our route.

  12. Middle atmosphere Doppler lidar and aerosol observations on scales down to seconds

    NASA Astrophysics Data System (ADS)

    Baumgarten, G.; Chandran, A.; Fiedler, J.; Hildebrand, J.; Hoffmann, P.; Kaifler, N.; Luebken, F.; Randall, C. E.; Lumpe, J. D.

    2011-12-01

    Noctilucent clouds (NLC) are the visible manifestation of ice particles in the polar summer mesopause region. These clouds are often modulated by gravity waves on scales of seconds and a few 100 m. Since 1997 NLC have been observed regularly by the ALOMAR Rayleigh/Mie/Raman (RMR) lidar in Northern Norway at 69N, 16E. Only recently the lidar was upgraded to allow higher temporal resolution. Now the modulation of the NLC layer can be observed with sub-second time resolution even during daytime. The lidar also uses a molecular absorption spectrometer to calculate Doppler winds in the strato- and mesosphere. In combination with simultaneous temperature and aerosol measurements the propagation of gravity waves can be investigated. We present high resolution lidar observations of waves in NLC. We observe that the spectrum of fluctuations follows those of saturated gravity waves down to the signal to noise limit of about 10 seconds. Using the capability of the lidar to perform observations at two different locations in the NLC layer we compare those to satellite observations by the cloud imaging and particle size (CIPS) instrument with a horizontal resolution of about 5 km. We observe that the horizontal and temporal structure agrees well only when taking coincident (<10min) and common volume (<10 km) observations. We present initial results on the propagation of waves in temperature and wind throughout the middle atmosphere.

  13. Global Lidar Observations of Aerosol Distribution and Radiative Influence

    NASA Technical Reports Server (NTRS)

    Spinhirne, James; Starr, David OC. (Technical Monitor)

    2001-01-01

    A very visible impact of human activities is the brownish aerosol haze that pervades many industrialized regions as well as areas in the subtropics and tropics where biomass burning occurs. Well known examples are the Asian Brown Cloud, Arctic Haze and East Coast Haze. Atmospheric transport transforms this haze into regional and hemispheric aerosol layers of significant concentrations. The overall impact on the radiation balance of the atmosphere, surface solar irradiance and other meteorology factors is recognized as a major uncertainty for climate change. In order to understand the impact, the global distribution of aerosol and their properties must be known. . A missing element of observations, but critical for understanding transport has been the height distribution of aerosol. Lidar measurements of aerosol height distribution have been important in GLOBE, ACE, INDOEX and other field studies A network of continuously operating eye safe lidar ground sites has now been established for baseline aerosol profiling. In 2002 NASA will launch the Geoscience Laser Altimeter System (GLAS) mission which will provide for the first time global observations of the height distribution of aerosol. The combination of these and other modem satellite observations, field experiments and models of global aerosol composition and transport should begin to unravel the impacts of particles in the atmosphere.

  14. Comparison of Aerosol Classification From Airborne High Spectral Resolution Lidar and the CALIPSO Vertical Feature Mask

    NASA Technical Reports Server (NTRS)

    Burton, Sharon P.; Ferrare, Rich A.; Omar, Ali H.; Vaughan, Mark A.; Rogers, Raymond R.; Hostetler, Chris a.; Hair, Johnathan W.; Obland, Michael D.; Butler, Carolyn F.; Cook, Anthony L.; Harper, David B.

    2012-01-01

    Knowledge of aerosol composition and vertical distribution is crucial for assessing the impact of aerosols on climate. In addition, aerosol classification is a key input to CALIOP aerosol retrievals, since CALIOP requires an inference of the lidar ratio in order to estimate the effects of aerosol extinction and backscattering. In contrast, the NASA airborne HSRL-1 directly measures both aerosol extinction and backscatter, and therefore the lidar ratio (extinction-to-backscatter ratio). Four aerosol intensive properties from HSRL-1 are combined to infer aerosol type. Aerosol classification results from HSRL-1 are used here to validate the CALIOP aerosol type inferences.

  15. Atmospheric aerosol and gas sensing using Scheimpflug lidar

    NASA Astrophysics Data System (ADS)

    Mei, Liang; Brydegaard, Mikkel

    2015-04-01

    This work presents a new lidar technique for atmospheric remote sensing based on Scheimpflug principle, which describes the relationship between nonparallel image- and object-planes[1]. When a laser beam is transmitted into the atmosphere, the implication is that the backscattering echo of the entire illuminated probe volume can be in focus simultaneously without diminishing the aperture. The range-resolved backscattering echo can be retrieved by using a tilted line scan or two-dimensional CCD/CMOS camera. Rather than employing nanosecond-pulsed lasers, cascade detectors, and MHz signal sampling, all of high cost and complexity, we have developed a robust and inexpensive atmospheric lidar system based on compact laser diodes and array detectors. We present initial applications of the Scheimpflug lidar for atmospheric aerosol monitoring in bright sunlight, with a 3 W, 808 nm CW laser diode. Kilohertz sampling rates are also achieved with applications for wind speed and entomology [2]. Further, a proof-of-principle demonstration of differential absorption lidar (DIAL) based on the Scheimpflug lidar technique is presented [3]. By utilizing a 30 mW narrow band CW laser diode emitting at around 760 nm, the detailed shape of an oxygen absorption line can be resolved remotely with an integration time of 6 s and measurement cycle of 1 minute during night time. The promising results demonstrated in this work show potential for the Scheimpflug lidar technique for remote atmospheric aerosol and gas sensing, and renews hope for robust and realistic instrumentation for atmospheric lidar sensing. [1] F. Blais, "Review of 20 years of range sensor development," Journal of Electronic Imaging, vol. 13, pp. 231-243, Jan 2004. [2] M. Brydegaard, A. Gebru, and S. Svanberg, "Super resolution laser radar with blinking atmospheric particles - application to interacting flying insects " Progress In Electromagnetics Research, vol. 147, pp. 141-151, 2014. [3] L. Mei and M. Brydegaard, "Contineous-wave differential absorption lidar," Submitted to Laser and Photonics Reviews, 2014.

  16. Saharan desert dust microphysical properties from PCA inversion of Raman lidar data over

    E-print Network

    Graaf, Martin de

    Saharan desert dust microphysical properties from PCA inversion of Raman lidar data over Western Europe M. de Graaf1, D.P. Donovan1, A. Apituley1,2, K.M. Wilson1,2 In May 2009 a Saharan desert dust desert dust was advected from the Sahara over Leipzig (Fig. 1). The Raman lidar measurements (Fig. 2

  17. Aerosol profiling with lidar in the Amazon Basin during the wet and dry season

    NASA Astrophysics Data System (ADS)

    Baars, H.; Ansmann, A.; Althausen, D.; Engelmann, R.; Heese, B.; Müller, D.; Artaxo, P.; Paixao, M.; Pauliquevis, T.; Souza, R.

    2012-11-01

    For the first time, multiwavelength polarization Raman lidar observations of optical and microphysical particle properties over the Amazon Basin are presented. The fully automated advanced Raman lidar was deployed 60 km north of Manaus, Brazil (2.5°S, 60°W) in the Amazon rain forest from January to November 2008. The measurements thus cover both the wet season (Dec-June) and the dry or burning season (July-Nov). Two cases studies of young and aged smoke plumes are discussed in terms of spectrally resolved optical properties (355, 532, and 1064 nm) and further lidar products such as particle effective radius and single-scattering albedo. These measurement examples confirm that biomass burning aerosols show a broad spectrum of optical, microphysical, and chemical properties. The statistical analysis of the entire measurement period revealed strong differences between the pristine wet and the polluted dry season. African smoke and dust advection frequently interrupt the pristine phases during the wet season. Compared to pristine wet season conditions, the particle scattering coefficients in the lowermost 2 km of the atmosphere were found to be enhanced, on average, by a factor of 4 during periods of African aerosol intrusion and by a factor of 6 during the dry (burning) season. Under pristine conditions, the particle extinction coefficients and optical depth for 532 nm wavelength were frequently as low as 10-30 Mm-1 and <0.05, respectively. During the dry season, biomass burning smoke plumes reached to 3-5 km height and caused a mean optical depth at 532 nm of 0.26. On average during that season, particle extinction coefficients (532 nm) were of the order of 100 Mm-1 in the main pollution layer (up to 2 km height). Ångström exponents were mainly between 1.0 and 1.5, and the majority of the observed lidar ratios were between 50-80 sr.

  18. Aerosol analysis techniques and results from micro pulse lidar

    NASA Technical Reports Server (NTRS)

    Hlavka, Dennis L.; Spinhirne, James D.; Campbell, James R.; Reagan, John A.; Powell, Donna

    1998-01-01

    The effect of clouds and aerosol on the atmospheric energy balance is a key global change problem. Full knowledge of aerosol distributions is difficult to obtain by passive sensing alone. Aerosol and cloud retrievals in several important areas can be significantly improved with active remote sensing by lidar. Micro Pulse Lidar (MPL) is an aerosol and cloud profilometer that provides a detailed picture of the vertical structure of boundary layer and elevated dust or smoke plume aerosols. MPL is a compact, fully eyesafe, ground-based, zenith pointing instrument capable of full-time, long-term unattended operation at 523 nm. In October of 1993, MPL began taking full-time measurements for the Atmospheric Radiation Measurement (ARM) program at its Southern Great Plains (SGP) site and has since expanded to ARM sites in the Tropical West Pacific (TWP) and the North Slope of Alaska (NSA). Other MPL's are moving out to some of the 60 world-wide Aerosol Robotic Network (AERONET) sites which are already equipped with automatic sun-sky scanning spectral radiometers providing total column optical depth measurements. Twelve additional MPL's have been purchased by NASA to add to the aerosol and cloud database of the EOS ground validation network. The original MPL vertical resolution was 300 meters but the newer versions have a vertical resolution of 30 meters. These expanding data sets offer a significant new resource for atmospheric radiation analysis. Under the direction of Jim Spinhirne, the MPL analysis team at NASA/GSFC has developed instrument correction and backscatter analysis techniques for ARM to detect cloud boundaries and analyze vertical aerosol structures. A summary of MPL applications is found in Hlavka (1997). With the aid of independent total column optical depth instruments such as the Multifilter Rotating Shadowband Radiometer (MFRSR) at the ARM sites or sun photometers at the AERONET sites, the MPL data can be calibrated, and time-resolved vertical profiles of aerosol optical depth as well as aerosol extinction can be calculated. The techniques used to calibrate the lidar, calculate the aerosol extinction-to-backscatter ratio, and produce profiles of aerosol extinction and aerosol optical depths, will be described. Results using these techniques will be presented for case studies at the ARM site in the Tropical West Pacific and later in the Southern Great Plains.

  19. Simultaneous analog and photon counting detection for Raman lidar.

    PubMed

    Newsom, Rob K; Turner, David D; Mielke, Bernd; Clayton, Marian; Ferrare, Richard; Sivaraman, Chitra

    2009-07-10

    The Atmospheric Radiation Measurement program Raman lidar was upgraded in 2004 with a new data system that provides simultaneous measurements of both the photomultiplier analog output voltage and photon counts. We describe recent improvements to the algorithm used to merge these two signals into a single signal with improved dynamic range. The effect of modifications to the algorithm are evaluated by comparing profiles of water vapor mixing ratio from the lidar with radiosonde measurements over a six month period. The modifications that were implemented resulted in a reduction of the mean bias in the daytime water vapor mixing ratio from a 3% dry bias to well within 1%. This improvement was obtained by ignoring the temporal variation of the glue coefficients and using only the nighttime average glue coefficients throughout the entire diurnal cycle. PMID:19593341

  20. A New Stratospheric Aerosol Product from CALIPSO Lidar Measurements

    NASA Astrophysics Data System (ADS)

    Kar, J.; Vaughan, M.; Trepte, C. R.; Winker, D. M.; Vernier, J. P.; Pitts, M. C.; Young, S. A.; Liu, Z.; Lucker, P.; Tackett, J. L.; Omar, A. H.

    2014-12-01

    Stratospheric aerosols are derived from precursor SO2 and OCS gases transported from the lower troposphere. Volcanic injections can also enhance aerosol loadings far above background levels. The latter can exert a significant influence on the Earth's radiation budget for major and even minor eruptions. Careful measurements are needed, therefore, to monitor the distribution and evolution of stratospheric aerosols for climate related studies. The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) mission has been acquiring profile measurements of clouds and aerosols since 2006, leading to major advances in our understanding of tropospheric aerosol and cloud properties and the processes that control them. The CALIPSO products have also enabled new insights into polar stratospheric clouds and stratospheric aerosols. Vernier et al (2009,JGR,114,D00H10) reported on the construction of a modified CALIPSO lidar product that corrected minor artifacts with the original lidar calibration that affected stratospheric aerosol investigations. A significantly improved CALIPSO Lidar Version 4 Level 1 product has been recently released addressing these calibration issues and has resulted in enhanced signal levels and a highly stable record over the span of the mission. Based on this product, a new 3D gridded stratospheric CALIPSO data product is under development and being targeted for release in 2015. A key emphasis of this new product is to bridge the measurement gap between the SAGE II and SAGE III data record (1984-2005) and the start of measurements from the new SAGE III instrument to be deployed on the International Space Station in 2016. The primary parameters delivered in the CALIPSO stratospheric data products will be attenuated scattering ratio and aerosol extinction profiles, both averaged over one month intervals and binned into an equal angle grid of constant latitude and longitude with a vertical resolution of 900m. We will present the overall scheme for developing this product, as well as comparisons of our preliminary results with other datasets having temporal and spatial measurement overlaps such as OSIRIS and GOMOS and possibly OMPS. Signatures of volcanic effects and transport effects such as the quasi-biennial oscillation (QBO) as captured in the product will be presented.

  1. Tracking aerosol plumes: lidar, modeling, and in situ measurement

    NASA Astrophysics Data System (ADS)

    Calhoun, Ron J.; Heap, Robert; Sommer, Jeffrey; Princevac, Marko; Peccia, Jordan; Fernando, H.

    2004-09-01

    The authors report on recent progress of on-going research at Arizona State University for tracking aerosol plumes using remote sensing and modeling approaches. ASU participated in a large field experiment, Joint Urban 2003, focused on urban and suburban flows and dispersion phenomena which took place in Oklahoma City during summer 2003. A variety of instruments were deployed, including two Doppler-lidars. ASU deployed one lidar and the Army Research deployed the other. Close communication and collaboration has produced datasets which will be available for dual Doppler analysis. The lidars were situated in a way to provide insight into dynamical flow structures caused by the urban core. Complementary scanning by the two lidars during the July 4 firework display in Oklahoma City demonstrated that smoke plumes could be tracked through the atmosphere above the urban area. Horizontal advection and dispersion of the smoke plumes were tracked on two horizontal planes by the ASU lidar and in two vertical planes with a similar lidar operated by the Army Research Laboratory. A number of plume dispersion modeling systems are being used at ASU for the modeling of plumes in catastrophic release scenarios. Progress using feature tracking techniques and data fusion approaches is presented for utilizing single and dual radial velocity fields from coherent Doppler lidar to improve dispersion modeling. The possibility of producing sensor/computational tools for civil and military defense applications appears worth further investigation. An experiment attempting to characterize bioaerosol plumes (using both lidar and in situ biological measurements) associated with the application of biosolids on agricultural fields is in progress at the time of writing.

  2. Error analysis of Raman differential absorption lidar ozone measurements in ice clouds.

    PubMed

    Reichardt, J

    2000-11-20

    A formalism for the error treatment of lidar ozone measurements with the Raman differential absorption lidar technique is presented. In the presence of clouds wavelength-dependent multiple scattering and cloud-particle extinction are the main sources of systematic errors in ozone measurements and necessitate a correction of the measured ozone profiles. Model calculations are performed to describe the influence of cirrus and polar stratospheric clouds on the ozone. It is found that it is sufficient to account for cloud-particle scattering and Rayleigh scattering in and above the cloud; boundary-layer aerosols and the atmospheric column below the cloud can be neglected for the ozone correction. Furthermore, if the extinction coefficient of the cloud is ?0.1 km(-1), the effect in the cloud is proportional to the effective particle extinction and to a particle correction function determined in the limit of negligible molecular scattering. The particle correction function depends on the scattering behavior of the cloud particles, the cloud geometric structure, and the lidar system parameters. Because of the differential extinction of light that has undergone one or more small-angle scattering processes within the cloud, the cloud effect on ozone extends to altitudes above the cloud. The various influencing parameters imply that the particle-related ozone correction has to be calculated for each individual measurement. Examples of ozone measurements in cirrus clouds are discussed. PMID:18354611

  3. GLAS Dual-Wavelength Lidar Aerosol Retrievals via CRAM

    NASA Astrophysics Data System (ADS)

    Reagan, J. A.; Wang, Z.; Palm, S.; Spinhirne, J.

    2005-12-01

    Profiles of aerosol backscatter and extinction and layer averaged aerosol extinction-to-backscatter ratio, Sa, values have been retrieved from selected dual-wavelength lidar measurements made with the Geoscience Laser Altimeter System (GLAS) on the ICESat mission during the fall of 2003 (the period when both the 532 and 1064 nm lidar channels were operating close to expected performance levels). As is well know, aerosol backscatter and extinction profiles cannot be retrieved unambiguously from lidar observations without an assumption linking aerosol extinction and backscatter (e.g., Sa is reasonably spatially constant through a solution layer) as well as requiring additional boundary value or parameter specification information (e.g., a layer optical depth or specified value of Sa). The approach employed for spaceborne lidar aerosol retrievals (e.g., LITE, GLAS ICESat and upcoming CALIPSO missions) has been/will be to employ a look-up table approach to select climatological/geographically based model Sa values when alternate, less uncertain methods for either defining Sa or providing the needed auxiliary optical depth information are unavailable. Simply selecting the mean of Sa values cited in the literature is subject to too much uncertainty (Sa standard deviation ~ 30%) to yield retrievals sufficiently accurate to be really useful. A recent in-depth analysis of the global aerosol solar radiometer network, AERONET, data base has defined a relatively few, well defined aerosol types/models that predominately characterize aerosols observed around the world (Cattrall et al., JGR, 110, D10511, 2005). These model aerosols have well bounded Sa standard deviations of ~ 15% or less. However, assuming a specific model/Sa value for a given retrieval, even using climatological/geographic considerations in the model selection, does not assure that the model really applies/that the retrieval is really correct. This is where the Constrained Ratio Aerosol Model-fit (CRAM) approach (Reagan et al., Proc. IGARSS 2004, IEEE, pp. 1940-1943, 2004) can be applied to further bound/reduce uncertainty in the retrievals. Specifically, the aerosol models are characterized by spectral ratios (i.e., dual-wavelength, 532 to 1064 nm, ratios of backscatter extinction and Sa), with uncertainty windows, that permit aerosol retrievals to be obtained subject to the constraint that the lidar data yield retrievals with spectral ratio parameters consistent with a given assumed model (or models). CRAM has been successfully applied to both smoke and dust layers revealed in GLAS image data collected in October 2003. As these layers were elevated with clean regions below them, this permitted an independent determination of Sa via the self-transmittance retrieval approach, which further substantiated that the layers were well characterized by the assumed dust and smoke models. Presentation and discussion of the results obtained from these CRAM based aerosol retrievals, plus an overview of the CRAM approach and associated aerosol models, will constitute the major portion of this paper presentation.

  4. Airborne high spectral resolution lidar for profiling aerosol optical properties.

    PubMed

    Hair, Johnathan W; Hostetler, Chris A; Cook, Anthony L; Harper, David B; Ferrare, Richard A; Mack, Terry L; Welch, Wayne; Isquierdo, Luis Ramos; Hovis, Floyd E

    2008-12-20

    A compact, highly robust airborne High Spectral Resolution Lidar (HSRL) that provides measurements of aerosol backscatter and extinction coefficients and aerosol depolarization at two wavelengths has been developed, tested, and deployed on nine field experiments (over 650 flight hours). A unique and advantageous design element of the HSRL system is the ability to radiometrically calibrate the instrument internally, eliminating any reliance on vicarious calibration from atmospheric targets for which aerosol loading must be estimated. This paper discusses the design of the airborne HSRL, the internal calibration and accuracy of the instrument, data products produced, and observations and calibration data from the first two field missions: the Joint Intercontinental Chemical Transport Experiment--Phase B (INTEX-B)/Megacity Aerosol Experiment--Mexico City (MAX-Mex)/Megacities Impacts on Regional and Global Environment (MILAGRO) field mission (hereafter MILAGRO) and the Gulf of Mexico Atmospheric Composition and Climate Study/Texas Air Quality Study II (hereafter GoMACCS/TexAQS II). PMID:19104525

  5. Cirrus and aerosol lidar profilometer - analysis and results

    SciTech Connect

    Spinhirne, J.D.; Scott, V.S.; Reagan, J.A.; Galbraith, A.

    1996-04-01

    A cloud and aerosol lidar set from over a year of near continuous operation of a micro pulse lidar (MPL) instrument at the Cloud and Radiation Testbed (CART) site has been established. MPL instruments are to be included in the Ames Research Center (ARC) instrument compliments for the SW Pacific and Arctic ARM sites. Operational processing algorithms are in development for the data sets. The derived products are to be cloud presence and classification, base height, cirrus thickness, cirrus optical thickness, cirrus extinction profile, aerosol optical thickness and profile, and planetary boundary layer (PBL) height. A cloud presence and base height algorithm is in use, and a data set from the CART site is available. The scientific basis for the algorithm development of the higher level data products and plans for implementation are discussed.

  6. Lidar profiling of aerosol optical properties from Paris to Lake Baikal (Siberia)

    NASA Astrophysics Data System (ADS)

    Dieudonné, E.; Chazette, P.; Marnas, F.; Totems, J.; Shang, X.

    2014-11-01

    In June 2013, a ground-based mobile lidar performed the 10 000 km ride from Paris to Ulan-Ude, near Lake Baikal, profiling for the first time aerosol optical properties all the way from Western Europe to central Siberia. The instrument was equipped with N2-Raman and depolarization channels that enabled an optical speciation of aerosols in the low and middle troposphere. The backscatter-to-extinction ratio (BER) and particle depolarization ratio (PDR) at 355 nm have been retrieved. The BER in the lower boundary layer (300-700 m) was found to be 0.017 ± 0.009 sr-1 in average during the campaign, with slightly higher values in background conditions near Lake Baikal (0.021 ± 0.010 sr-1 in average) corresponding to dust-like particles. PDR values observed in Russian cities (>1.7%) are higher than the ones measured in European cities (<1.3%) due to the lifting of terrigenous aerosols by traffic on roads with a bad tarmac. Biomass burning layers from grassland or/and forest fires in southern Russia exhibit BER values ranging from 0.010 to 0.015 sr-1 and from 2 to 3% for the PDR. Desert dust aerosols originating from the Caspian and Aral seas regions were characterized for the first time, with a BER (PDR) of 0.022 sr-1 (21%) for pure dust, and 0.011 sr-1 (15%) for a mix between dust and biomass burning. The lidar observations also showed that this dust event extended over 2300 km and lasted for ~6 days. Measurements from the Moderate Resolution Imaging Spectrometer (MODIS) show that our results are comparable in terms of aerosol optical thickness (between 0.05 and 0.40 at 355 nm) with the mean aerosol load encountered throughout our route.

  7. Compact Efficient Lidar Receiver for Measuring Atmospheric Aerosols

    NASA Technical Reports Server (NTRS)

    Gili, Christopher; De Young, Russell

    2006-01-01

    A small, light weight, and efficient aerosol lidar receiver was constructed and tested. Weight and space savings were realized by using rigid optic tubes and mounting cubes to package the steering optics and detectors in a compact assembly. The receiver had a 1064nm channel using an APD detector. The 532nm channel was split (90/10) into an analog channel (90%) and a photon counting channel (10%). The efficiency of the 1064nm channel with optical filter was 44.0%. The efficiency of the analog 532nm channel was 61.4% with the optical filter, and the efficiency of the 532nm photon counting channel was 7.6% with the optical filter. The results of the atmospheric tests show that the detectors were able to consistently return accurate results. The lidar receiver was able to detect distinct cloud layers, and the lidar returns also agreed across the different detectors. The use of a light weight fiber-coupled telescope reduced weight and allowed great latitude in detector assembly positioning due to the flexibility enabled by the use of fiber optics. The receiver is now ready to be deployed for aircraft or ground based aerosol lidar measurements.

  8. Spatial and temporal variation in evapotranspiration using Raman lidar

    NASA Astrophysics Data System (ADS)

    Eichinger, W. E.; Cooper, D. I.; Hipps, L. E.; Kustas, W. P.; Neale, C. M. U.; Prueger, J. H.

    2006-02-01

    The Los Alamos Raman lidar has been used to make high resolution (25 m) estimates of the evapotranspiration rate over adjacent corn and soybean canopies. The lidar makes three-dimensional measurements of the water vapor content of the atmosphere directly above the canopy that are inverted using Monin-Obukhov similarity theory. This may be used to examine the relationship between evapotranspiration and surface moisture/soil type. Lidar estimates of evapotranspiration reveal a high degree of spatial variability over corn and soybean fields that may be associated with small elevation changes in the area. The spatial structure of the variability is characterized using a structure function and correlation function approach. The power law relationship found by other investigators for soil moisture is not clear in the data for evapotranspiration, nor is the data a straight line over the measured lags. The magnitude of the structure function and the slope changes with time of day, with a probable connection to the amount of evapotranspiration and the spatial variability of the water vapor source. The data used was taken during the soil moisture-atmosphere coupling experiment (SMACEX) conducted in the Walnut Creek Watershed near Ames, Iowa in June and July 2002.

  9. Polar stratospheric clouds over Finland in the 2012/2013 Arctic winter measured by two Raman lidars

    NASA Astrophysics Data System (ADS)

    Hoffmann, Anne; Giannakaki, Eleni; Kivi, Rigel; Schrems, Otto; Immler, Franz; Komppula, Mika

    2013-04-01

    Already in December 2012, the Arctic stratospheric vortex reached temperatures sufficiently low for polar stratospheric cloud (PSC) formation over wide areas of Northern Europe and whole Finland. Within Finland, stratospheric aerosol lidar measurements have been and are performed with two Raman lidar systems, the PollyXT, owned by the Finnish Meteorological Institute (FMI) and situated well below the Arctic circle close to Kuopio (63 N, 27 E) and the MARL lidar owned by the Alfred-Wegener-Institute for Polar and Marine Research (AWI), and situated at the FMI Arctic Research Centre in Sodankylä (67 N, 26 E). The PollyXT has been designed as an autonomous tropospheric lidar system, but it has proven to be able to detect aerosol backscatter and depolarization at least as high up as 25 km. Measurements are ongoing as far as low clouds allow for stratospheric analysis with both lidars until the end of PSC season in February. For the winter 2012/2013, PSC occurrence frequency, types and characteristics will be determined. Comparative analysis with Calipso lidar profiles covering Finland will be performed. Preliminary results from December 17-24 show PSCs detected in Kuopio during seven days with the PollyXT lidar. The altitude of the clouds varied in the range of 17-25 km. In Sodankylä the measurements were running on one day during the period and PSCs were observed between altitudes 17-25 km. For the same time period (December 17-24, 2012) CALIPSO has observed stratospheric layers at all overpasses over Finland (9 tracks on five days). The clouds were observed between 18.5 and 26 km, with varying geometric and optical thickness.

  10. Stable Calibration of Raman Lidar Water-Vapor Measurements

    NASA Technical Reports Server (NTRS)

    Leblanc, Thierry; McDermid, Iain S.

    2008-01-01

    A method has been devised to ensure stable, long-term calibration of Raman lidar measurements that are used to determine the altitude-dependent mixing ratio of water vapor in the upper troposphere and lower stratosphere. Because the lidar measurements yield a quantity proportional to the mixing ratio, rather than the mixing ratio itself, calibration is necessary to obtain the factor of proportionality. The present method involves the use of calibration data from two sources: (1) absolute calibration data from in situ radiosonde measurements made during occasional campaigns and (2) partial calibration data obtained by use, on a regular schedule, of a lamp that emits in a known spectrum determined in laboratory calibration measurements. In this method, data from the first radiosonde campaign are used to calculate a campaign-averaged absolute lidar calibration factor (t(sub 1)) and the corresponding campaign-averaged ration (L(sub 1)) between lamp irradiances at the water-vapor and nitrogen wavelengths. Depending on the scenario considered, this ratio can be assumed to be either constant over a long time (L=L(sub 1)) or drifting slowly with time. The absolutely calibrated water-vapor mixing ratio (q) obtained from the ith routine off-campaign lidar measurement is given by q(sub 1)=P(sub 1)/t(sub 1)=LP(sub 1)/P(sup prime)(sub 1) where P(sub 1) is water-vapor/nitrogen measurement signal ration, t(sub 1) is the unknown and unneeded overall efficiency ratio of the lidar receiver during the ith routine off-campaign measurement run, and P(sup prime)(sub 1) is the water-vapor/nitrogen signal ratio obtained during the lamp run associated with the ith routine off-campaign measurement run. If L is assumed constant, then the lidar calibration is routinely obtained without the need for new radiosonde data. In this case, one uses L=L(sub 1) = P(sup prime)(sub 1)/t(sub 1), where P(sub 1)(sup prime) is the water-vapor/nitrogen signal ratio obtained during the lamp run associated with the first radiosonde campaign. If L is assumed to drift slowly, then it is necessary to postpone calculation of a(sub 1) until after a second radiosonde campaign. In this case, one obtains a new value, L(sub 2), from the second radiosonde campaign, and for the ith routine off-campaign measurement run, one uses an intermediate value of L obtained by simple linear time interpolation between L(sub 1) and L(sub 2).

  11. Light scattering characteristics of various aerosol types derived from multiple wavelength lidar observations.

    PubMed

    Sasano, Y; Browell, E V

    1989-05-01

    The present study demonstrates the potential of a multiple wavelength lidar for discriminating between several aerosol types such as maritime, continental, stratospheric, and desert aerosols on the basis of wavelength dependence of the aerosol backscatter coefficient. In the analysis of lidar signals, the two-component lidar equation was solved under the assumption of similarity in the derived profiles of backscatter coefficients for each wavelength, and this made it possible to reduce the uncertainty in the extinction/backscatter ratio, which is a key parameter in the lidar solution. It is shown that a three-wavelength lidar system operating at 300, 600, and 1064 nm can provide unique information for discriminating between various aerosol types such as continental, maritime, Saharan dust, stratospheric aerosols in a tropopause fold event, and tropical forest aerosols. Measurement error estimation was also made through numerical simulations. Mie calculations were made using in situ aerosol data and aerosol models to compare with the lidar results. There was disagreement between the theoretical and empirical results, which in some cases was substantial. These differences may be partly due to uncertainties in the lidar data analysis and aerosol characteristics and also due to the conventional assumption of aerosol sphericity for the aerosol Mie calculations. PMID:20548724

  12. The Refurbishment and Upgrade of the Atmospheric Radiation Measurement Raman Lidar

    SciTech Connect

    Turner, D.D.; Goldsmith, J.E.M.

    2005-03-18

    The Atmospheric Radiation Measurement Program (ARM) Climate Research Facility (ACRF) Raman lidar (CARL) is an autonomous, turn-key system that profiles water vapor, aerosols, and clouds throughout the diurnal cycle for days without attention (Goldsmith et al. 1998). CARL was first deployed to the Southern Great Plains CRF during the summer of 1996 and participated in the 1996 and 1997 water vapor intensive operational periods (IOPs). Since February 1998, the system has collected over 38,000 hrs of data (equivalent of almost 4.4 years), with an average monthly uptime of 62% during this time period. This unprecedented performance by CARL makes it the premier operational Raman lidar in the world. Unfortunately, CARL began degrading in early 2002. This loss of sensitivity, which affected all observed variables, was very gradual and thus was not identified until the autumn of 2003. Analysis of the data suggested the problem was not associated with the laser or transmit portion of the system, but rather in the detection subsystem, as both the background values and the peak signals showed a marked decreases over this time period. The loss of sensitivity of a factor of 2-4, depending on the channel, resulted in higher random error in the retrieved products, such as the aerosol backscatter coefficient and water vapor mixing ratio. Figure 1 shows the random error at 2 km for aerosol backscatter coefficient (top) and water vapor mixing ratio (middle), in terms of percent of the signal for both average daytime (red) and nighttime (blue) data from 1998 to 2005. The seasonal variation of water vapor is easily seen in the random error in the water vapor mixing ratio data. The loss of sensitivity also affected the maximum range of the usable data, as illustrated by the dramatic decrease in the maximum height seen in the water vapor mixing ratio data (bottom). This degradation, which results in much larger random errors, greatly hinders the analysis of data sets such as the Aerosol IOP (March 2003) and the AIRS Water Vapor Experiment (December 2003). The degradation and its impact on the Aerosol IOP analysis are reported in Ferrare et al. 2005.

  13. Analysis and Calibration of CRF Raman Lidar Cloud Liquid Water Measurements

    SciTech Connect

    Turner, D.D. Whiteman, D.N. Russo, F.

    2007-10-31

    The Atmospheric Radiation Measurement (ARM) Raman lidar (RL), located at the Southern Great Plains (SGP) Climate Research Facility (CRF), is a unique state-of-the-art active remote sensor that is able to measure profiles of water vapor, aerosol, and cloud properties at high temporal and vertical resolution throughout the diurnal cycle. In October 2005, the capability of the RL was extended by the addition of a new detection channel that is sensitive to the Raman scattering of liquid water. This new channel permits the system, in theory, to measure profiles of liquid water content (LWC) by the RL. To our knowledge, the ARM RL is the only operation lidar with this capability. The liquid water Raman backscattering cross-section is a relatively weak and spectrally broad feature, relative to the water vapor Raman backscatter signal. The wide bandpass required to achieve reasonable signal-to-noise in the liquid water channel essentially eliminates the ability to measure LWC profiles during the daytime in the presence of large solar background, and thus all LWC observations are nighttime only. Additionally, the wide bandpass increases the probability that other undesirable signals, such as fluorescence from aerosols, may contaminate the observation. The liquid water Raman cross-section has a small amount of overlap with the water vapor Raman cross-section, and thus there will be a small amount of ‘cross-talk’ between the two signals, with water vapor contributing a small amount of signal to the LWC observation. And finally, there is significant uncertainty in the actual strength of the liquid water Raman cross-section in the literature. The calibrated LWC profiles, together with the coincident cloud backscatter observations also made by the RL, can be used to derive profiles of cloud droplet effective radius. By combining these profiles of effective radius in the lower portion of the cloud with the aerosol extinction measurements made below the cloud by the RL, the first aerosol indirect effect can be investigated using a single instrument, thereby reducing the uncertainty associated with aligning the different sampling periods and fields of view of multiple instruments. We have applied a “first principles” calibration to the LWC profiles. This approach requires that the relative differences in optical efficiency between the water vapor and liquid water channels be known; this relative difference is easily computed using the efficiency values of the beam splitters and interference filters in the lidar that were provided by the vendors of these components. The first principles approach then transfers the calibration from the water vapor mixing ratio to the LWC using the difference in the optical efficiency and an interpolated value of the liquid water Raman cross section from the literature, and the better established water vapor Raman cross section. After accounting for all known error sources, the vertical integral of LWC was compared against a similar value retrieved from a co-located ground-based infrared radiometer. The RL and infrared radiometer have significantly different fields of view; thus to compare the two sensors the data were averaged to 5 min intervals where only cloudy samples were included in the average of each. While there is fair scatter in the data (r=0.47), there is also a clear indication of a positive correlation between the infrared and the RL values. The value of the slope of the regression is 0.49, which indicates a tendency of the RL measurements to underestimate the total liquid amount with respect to the infrared retrieval. Research continues to investigate the source of the bias, but the most likely candidate is the large uncertainty in the liquid water Raman cross-section as there have been no direct measurements made of this parameter at the lidar’s laser wavelength of 355 nm. The calibrated LWC profile was then used together with the cloud backscatter coefficient profile from the RL to derive profiles of cloud droplet effective radius and cloud droplet number density. These profiles o

  14. Aglite Lidar: A Portable Elastic Lidar System for Investigating Aerosol and Wind Motions at or Around Agricultural Production Facilities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Aglite Lidar is a portable scanning lidar that can be quickly deployed at agricultural and other air quality study sites. The purpose of Aglite is to map the concentration of PM10 and PM2.5 in aerosol plumes from agricultural and other sources. Aglite uses a high-repetition rate low-pulse energy...

  15. AGLITE Lidar: A Portable Elastic Lidar System for Investigating Aerosol and Wind Motions at or Around Agricultural Production Facilities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The AGLITE Lidar is a portable scanning lidar that can be quickly deployed at agricultural and other air quality study sites. The purpose of AGLITE is to map the concentration of PM10 and PM2.5 in aerosol plumes from agricultural sources. AGLITE uses a high-repetition rate low-pulse-energy 3-wavelen...

  16. Novel Co:MgF2 lidar for aerosol profiler

    NASA Technical Reports Server (NTRS)

    Acharekar, M. A.

    1993-01-01

    Lidars are of great interest because of their unique capabilities in remote sensing applications in sounding of the atmosphere, meteorology, and climatology. In this small business innovative research (SBIR) phase II program, laser sources including Co:MgF2, CTH:YAG, CTH:YSGG, CT:YAG, and Er:Glass were evaluated. Modulator of fused silica and TeO2 materials with Brewster's angle end faces were used with these lasers as acousto-optical (AO) Q-switches. A higher hold-off energy and hence a higher Q-switched energy was obtained by using a high power RF driver. The report provides performance characteristics of these lasers. The tunable (1.75-2.50 microns) Co:MgF2 laser damaged the TeO2 Q-switch cell. However, the CTH:YAG laser operating at 2.09 microns provided output energy of over 300 mJ/p in 50 ns pulse width using the fused silica Q-switch. This Q-switched CTH:YAG laser was used in a breadboard vertical aerosol profiler. A 40 cm diameter telescope, InSb and InGaAs detectors were used in the receiver. The data obtained using this lidar is provided in the report. The data shows that the eye safe lidar using CTH:YAG laser for the vertical aerosol density and range measurements is the viable approach.

  17. Feasibility Study For A Spaceborne Ozone/Aerosol Lidar System

    NASA Technical Reports Server (NTRS)

    Campbell, Richard E.; Browell, Edward V.; Ismail, Syed; Dudelzak, Alexander E.; Carswell, Allan I.; Ulitsky, Arkady

    1997-01-01

    Because ozone provides a shield against harmful ultraviolet radiation, determines the temperature profile in the stratosphere, plays important roles in tropospheric chemistry and climate, and is a health risk near the surface, changes in natural ozone layers at different altitudes and their global impact are being intensively researched. Global ozone coverage is currently provided by passive optical and microwave satellite sensors that cannot deliver high spatial resolution measurements and have particular limitations in the troposphere. Vertical profiling DIfferential Absorption Lidars (DIAL) have shown excellent range-resolved capabilities, but these systems have been large, inefficient, and have required continuous technical attention for long term operations. Recently, successful, autonomous DIAL measurements have been performed from a high-altitude aircraft (LASE - Lidar Atmospheric Sensing Experiment), and a space-qualified aerosol lidar system (LITE - Laser In-space Technology Experiment) has performed well on Shuttle. Based on the above successes, NASA and the Canadian Space Agency are jointly studying the feasibility of developing ORACLE (Ozone Research with Advanced Cooperative Lidar Experiments), an autonomously operated, compact DIAL instrument to be placed in orbit using a Pegasus class launch vehicle.

  18. MPLNET lidar data assimilation in the ECMWF MACC-II Aerosol system: evaluation of model performances at NCU lidar station

    NASA Astrophysics Data System (ADS)

    Lolli, Simone; Welton, Ellsworth J.; Benedetti, Angela; Jones, Luke; Suttie, Martin; Wang, Sheng-Hsiang

    2014-10-01

    Atmospheric profiles of the optical aerosol properties through the retrieved backscattering or extinction coefficients by lidar measurements can improve drastically the MACC-II aerosol model performances on vertical dimension. Currently the MODIS Aerosol Optical Depth data (both from Terra and Aqua) are assimilated into the model. Being a columnintegrated quantity, these data do not modify the model aerosol vertical profile, especially if the aerosols are not interactive with the meteorology. Since 1999, the MPLNET lidar network provides continuously lidar data measurements from worldwide permanent stations (currently 21), deployed from the Arctic to the Antarctic regions and in tropical and equatorial zones. The purpose of this study is to show the first preliminary results of the intercomparison of MPLNET lidar data against the ECWMF MACC-II aerosol model, for a selected MPLNET permanent observational site at National Central University of Taiwan. Assessing the model performances it is the first step for future near-real time lidar data assimilation into MACC-II aerosol model forecast.

  19. Performance modeling of ultraviolet Raman lidar systems for daytime profiling of atmospheric water vapor

    NASA Technical Reports Server (NTRS)

    Ferrare, R. A.; Whiteman, D. N.; Melfi, S. H.; Goldsmith, J. E. M.; Bisson, S. E.; Lapp, M.

    1991-01-01

    We describe preliminary results from a comprehensive computer model developed to guide optimization of a Raman lidar system for measuring daytime profiles of atmospheric water vapor, emphasizing an ultraviolet, solar-blind approach.

  20. Retrieving aerosol microphysical properties by Lidar-Radiometer Inversion Code (LIRIC) for different aerosol types

    NASA Astrophysics Data System (ADS)

    Granados-Muñoz, M. J.; Guerrero-Rascado, J. L.; Bravo-Aranda, J. A.; Navas-Guzmán, F.; Valenzuela, A.; Lyamani, H.; Chaikovsky, A.; Wandinger, U.; Ansmann, A.; Dubovik, O.; Grudo, J. O.; Alados-Arboledas, L.

    2014-04-01

    LIRIC (Lidar-Radiometer Inversion Code) is applied to combined lidar and Sun photometer data from Granada station corresponding to different case studies. The main aim of this analysis is to evaluate the stability of LIRIC output volume concentration profiles for different aerosol types, loadings, and vertical distributions of the atmospheric aerosols. For this purpose, in a first part, three case studies corresponding to different atmospheric situations are analyzed to study the influence of the user-defined input parameters in LIRIC when varied in a reasonable range. Results evidence the capabilities of LIRIC to retrieve vertical profiles of microphysical properties during daytime by the combination of the lidar and the Sun photometer systems in an automatic and self-consistent way. However, spurious values may be obtained in the lidar incomplete overlap region depending on the structure of the aerosol layers. In a second part, the use of a second Sun photometer located in Cerro Poyos, in the same atmospheric column as Granada but at higher altitude, allowed us to obtain LIRIC retrievals from two different altitudes with independent Sun photometer measurements in order to check the self-consistency and robustness of the method. Retrievals at both levels are compared, providing a very good agreement (differences below 5 µm3/cm3) in those cases with the same aerosol type in the whole atmospheric column. However, some assumptions such as the height independency of parameters (sphericity, size distribution, or refractive index, among others) need to be carefully reviewed for those cases with the presence of aerosol layers corresponding to different types of atmospheric aerosols.

  1. Lidar Investigation of Aerosol Pollution Distribution near a Coal Power Plant

    NASA Technical Reports Server (NTRS)

    Mitsev, TS.; Kolarov, G.

    1992-01-01

    Using aerosol lidars with high spatial and temporal resolution with the possibility of real-time data interpretation can solve a large number of ecological problems related to the aerosol-field distribution and variation and the structure of convective flows. Significantly less expensive specialized lidars are used in studying anthropogenic aerosols in the planetary boundary layer. Here, we present results of lidar measurements of the mass-concentration field around a coal-fired power plant with intensive local aerosol sources. We studied the pollution evolution as a function of the emission dynamics and the presence of retaining layers. The technique used incorporates complex analysis of three types of lidar mapping: horizontal map of the aerosol field, vertical cross-section map, and a series of profiles along a selected path. The lidar-sounding cycle was performed for the time of atmosphere's quasi-stationarity.

  2. Lidar Observation and mass conversion of Urban Aerosol Plumes

    NASA Astrophysics Data System (ADS)

    Loaec, Sophie; Thobois, Ludovic

    2013-04-01

    In order to characterize the shape and dynamics of urban particle, experimental campaigns took place in the Paris region, using the transportable Leosphere Aerosol Lidar System (ALS) at 355nm, 1.5m spatial resolution. This instrument is provided with a scanning device that enables 2D and 3D scanning to detect particle plumes. This communication focuses on different environment types, including road tunnels and urban road. For these measurements the lidar was placed in horizontal and vertical position. From range corrected backscattered signal, it is possible, for horizontal measurement, to retrieve through the slope method the extinction coefficient and then detect the different plumes and their origins. With PM10 measurements, an approximation of the mass concentration has been done for horizontal scanning.

  3. Simulation of coherent Doppler wind lidar measurement from space based on CALIPSO lidar global aerosol observations

    NASA Astrophysics Data System (ADS)

    Wu, Dong; Tang, Jiayuan; Liu, Zhaoyan; Hu, Yongxiang

    2013-06-01

    The performance of a space-based 2.1-?m coherent Doppler wind lidar (CDWL) measurement at a single laser shot in clear-air conditions is computer simulated, based on the coherent Doppler lidar theory developed in the recent decades, and using the global aerosol distribution derived from one year (March 2007-February 2008) of the CALIPSO lidar measurements. The accuracy of radial wind velocity good estimates and the fraction of good estimates, depending on backscattered signals from aerosols, generally decrease with altitude. A critical altitude is defined as the altitude below which the good estimate fraction of velocity estimates is larger than 90.0%. With a laser pulse energy of 250mJ at an off-nadir pointing angle of 45°, a telescope of 1m in diameter and a vertical range resolution of ˜800m, this critical altitude can reach an altitude of 4.0-5.0km between 20°S and 40°N where dust and biomass burning aerosols are ubiquitous. The critical altitude gradually decreases as approaching the two poles and drops to 0.5-1.5km in the polar regions. When the laser pulse energy is reduced to 100mJ, the critical altitude is generally decreased by ˜0.5km and can still reach an altitude of 3.5-4.5km in the dust and smoke aerosol enriched tropical and subtropical regions. A laser pulse energy of only a few millijoules can still achieve velocity measurements with an RMS error smaller than 1ms-1 and a good estimate fraction better than 90% in the lowest kilometers of the troposphere.

  4. Study of Droplet Activation in Thin Clouds Using Ground-based Raman Lidar and Ancillary Remote Sensors

    NASA Astrophysics Data System (ADS)

    Rosoldi, Marco; Madonna, Fabio; Gumà Claramunt, Pilar; Pappalardo, Gelsomina

    2015-04-01

    Studies on global climate change show that the effects of aerosol-cloud interactions (ACI) on the Earth's radiation balance and climate, also known as indirect aerosol effects, are the most uncertain among all the effects involving the atmospheric constituents and processes (Stocker et al., IPCC, 2013). Droplet activation is the most important and challenging process in the understanding of ACI. It represents the direct microphysical link between aerosols and clouds and it is probably the largest source of uncertainty in estimating indirect aerosol effects. An accurate estimation of aerosol-clouds microphysical and optical properties in proximity and within the cloud boundaries represents a good frame for the study of droplet activation. This can be obtained by using ground-based profiling remote sensing techniques. In this work, a methodology for the experimental investigation of droplet activation, based on ground-based multi-wavelength Raman lidar and Doppler radar technique, is presented. The study is focused on the observation of thin liquid water clouds, which are low or midlevel super-cooled clouds characterized by a liquid water path (LWP) lower than about 100 gm-2(Turner et al., 2007). These clouds are often optically thin, which means that ground-based Raman lidar allows the detection of the cloud top and of the cloud structure above. Broken clouds are primarily inspected to take advantage of their discontinuous structure using ground based remote sensing. Observations are performed simultaneously with multi-wavelength Raman lidars, a cloud Doppler radar and a microwave radiometer at CIAO (CNR-IMAA Atmospheric Observatory: www.ciao.imaa.cnr.it), in Potenza, Southern Italy (40.60N, 15.72E, 760 m a.s.l.). A statistical study of the variability of optical properties and humidity in the transition from cloudy regions to cloud-free regions surrounding the clouds leads to the identification of threshold values for the optical properties, enabling the discrimination between clouds and cloudless regions. Furthermore, a statistical study of the Doppler radar moments allows to retrieve droplet size and vertical velocities close to the cloud base. First evidences of a correlation between updrafts and downdrafts and aerosol effective radius have been found.

  5. NASA/GSFC Scanning Raman Lidar Measurements of Water Vapor and Clouds during the International H2O Project (IHOP) Field Campaign

    NASA Technical Reports Server (NTRS)

    Whiteman, David; Demoz, Belay; DiGirolamo, Paolo; Wang, Zhi-En; Evans, Keith; Lin, Ruei-Fong

    2003-01-01

    The NASA/GSFC Scanning Raman Lidar (SFL) acquired approximately 200 hours of water vapor, aerosol and cloud measurements during the IHOP field campaign. The detailed water vapor structure of events such as a dryline passage and internal bores were revealed. We discuss the error characteristics of the instrument as well as the water vapor and cirrus cloud structure during the 19-20 June bore event.

  6. Assessment of aloft aerosol layers by ground-based lidar, satellite CALIPSO and model

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Cordero, L.; Nazmi, C.; Gross, B.; Moshary, F.; Ahmed, S. A.

    2013-12-01

    Aloft aerosol layers injected from dust storms and biomass burning are often transported over the long-distance, thus playing important roles in climate radiative forcing and air quality in the regional and continental scale. In particular, they are critical to satellite remote sensing of air quality, e.g. using satellite column aerosol optical depth (AOD) to evaluate surface PM2.5 concentration, because the aloft aerosol layer can make a substantial contribution to total AOD. These aloft aerosol plumes have been extensively observed or identified by the ground-lidar and space-borne lidar CALIOP/CALIPSO, as well as the global aerosol transport such as NRL-NAAPS. In this study, the aloft aerosol layers are investigated with a regional NOAA-CREST Lidar Network (CLN) in the East Coast of U.S., spaceborne lidar CAIPSO observations and NAAPS model forecast. We first analyze the height distribution and seasonal occurrence of aloft aerosol plumes from the multi-year CLN-lidar dataset. We also explore specific aloft aerosol layers and type classifications between NAAPS-model and CLN-lidar observations to asses NAAPS with special attention to time slices when MODIS AOD assimilation is present or not. Moreover, we assess the potential of NAAPS to identify and separate between aloft aerosol layers ('unclear' sky) and the non-aloft-layer ('clear' sky). This identification is very important in filtering the use of satellite AOD retrievals in potential PM2.5 estimators.

  7. Feasibility study of water vapor and temperature retrieval using a combined vibrational rotational Raman and Mie scattering multi-wavelength lidar

    NASA Astrophysics Data System (ADS)

    Lv, Min; Zhao, Chuanfeng; Wang, Qianqian; Li, Zhanqing

    2014-11-01

    A multi-wavelength Raman lidar system which includes both vibrational rotational Raman and Mie scattering spectra has been designed and described. A retrieval algorithm for water vapor and temperature has also been developed based on the potential observations from this Raman lidar system. The performance of this retrieval method and the new lidar system has been evaluated with a synthetic test. Using the U.S. standard atmosphere model and main parameters of this lidar system, we have obtained signal to noise ratio (SNR) of water-vapor backscatter signals under different circumstances of aerosol content, pulse emission energy and signal integration time. With the model calculated backscatter signals, both atmospheric water-vapor and temperature profiles have been retrieved and their uncertainties have been analyzed. These synthetic tests indicate that our new lidar system can obtain profiles of water-vapor and temperature at both day and night time, but with different detection heights. The retrieval algorithm shows less than 30% relative error for water vapor mixing ratio and good accuracy with a minimum detection of temperature less than 2 K.

  8. Urban atmospheric boundary layer height by aerosol lidar and ceilometer

    NASA Astrophysics Data System (ADS)

    Choi, M. H.; Park, M. S.; Park, S. H.

    2014-12-01

    The characteristics of urban atmospheric boundary layer (ABL) height on January, April, July and October 2014 using the gradient method by a ceilometer with a wavelength of 910 nm and an aerosol lidar with a wavelength of 532 and 1064 nm installed at two urban sites (Gwanghwamun and Jungnang) in Korea are analyzed. The Gwanghwamun site located at urban commercial area is 10 km apart from the Jungnang site located at urban residential area. The ABL height is determined by a height with a strong gradient of vertical backscatter intensity. It is found that the ABL height at both sites show a similar pattern and has a strong diurnal variation with a steep increase at 09-12 KST with a maximum in the late afternoon. And it is not determined clearly and the correlation between the ABL height by a ceilometer and that by an aerosol lidar is relatively low in case of high PM10 concentration such as Asian dust, haze and smog. Uncertainty of ABL height is also found to be strongly affected by the weather phenomena such as rain, haze or fog.

  9. Water vapor variance measurements using a Raman lidar

    NASA Technical Reports Server (NTRS)

    Evans, K.; Melfi, S. H.; Ferrare, R.; Whiteman, D.

    1992-01-01

    Because of the importance of atmospheric water vapor variance, we have analyzed data from the NASA/Goddard Raman lidar to obtain temporal scales of water vapor mixing ratio as a function of altitude over observation periods extending to 12 hours. The ground-based lidar measures water vapor mixing ration from near the earth's surface to an altitude of 9-10 km. Moisture profiles are acquired once every minute with 75 m vertical resolution. Data at each 75 meter altitude level can be displayed as a function of time from the beginning to the end of an observation period. These time sequences have been spectrally analyzed using a fast Fourier transform technique. An example of such a temporal spectrum obtained between 00:22 and 10:29 UT on December 6, 1991 is shown in the figure. The curve shown on the figure represents the spectral average of data from 11 height levels centered on an altitude of 1 km (1 plus or minus .375 km). The spectra shows a decrease in energy density with frequency which generally follows a -5/3 power law over the spectral interval 3x10 (exp -5) to 4x10 (exp -3) Hz. The flattening of the spectrum for frequencies greater than 6x10 (exp -3) Hz is most likely a measure of instrumental noise. Spectra like that shown in the figure are calculated for other altitudes and show changes in spectral features with height. Spectral analysis versus height have been performed for several observation periods which demonstrate changes in water vapor mixing ratio spectral character from one observation period to the next. The combination of these temporal spectra with independent measurements of winds aloft provide an opportunity to infer spatial scales of moisture variance.

  10. A short-standoff bistatic lidar system for aerosol cloud backscatter and fluorescence cross section, and depolarization ratio measurement

    NASA Astrophysics Data System (ADS)

    Glen, C.; Schmitt, R. L.; Sickafoose, S.; Johnson, M. S.; Shagam, R.; Reichardt, T.; Sanchez, A.; Servantes, B.

    2012-12-01

    We have designed a short-standoff bistatic lidar system, used for the direct measurement of the optical backscatter at 355-nm and 1064-nm and laser induced fluorescence (LIF) cross sections as well as depolarization ratio of aerosols inside a vacuum sealed, aerosol flow chamber. The 355- and 1064-nm beams are sent through the aerosol chamber at an angle of ~2° with respect to the field of view of the receiver optics to ensure that measurements reflect true backscatter. This bistatic lidar configuration naturally defines a limited region in space where the laser beams and the receiver field of view overlap, a region that can be easily quantified using a standard calibration procedure. Our technique also takes advantage of a specially designed vacuum sealed, aerosol flow chamber that provides a well-mixed, uniform aerosol distribution over the region of sensitivity. Both modeling results and experimental measurements confirm that little particle loss is observed inside the aerosol flow chamber. A TSI aerodynamic particle sizer (APS) is used to measure the aerosol concentration in the chamber, and the N2 concentration can be calculated using the measured temperature and pressure of the air inside the chamber. Optical backscatter and LIF cross sections are determined by comparing the measured elastic and LIF signals with the N2 Raman scattering signal from the same sample volume, a technique which eliminates the need for absolute radiometric calibration of the system. Instead, all detectors in the system are calibrated relative to the N2 Raman channel and the unknown aerosol cross sections are determined by taking the ratio of the backscatter (or LIF) signals to the Raman signal and multiplying by the well-known Raman cross section of N2. Particulate population depolarization parameters are determined by measuring the rejected polarized light from a Glan Laser prism polarizer and comparing those intensity measurements with that of the direct backscatter intensity. This work will focus on particle specific optical backscatter cross-sections and depolarization ratios for atmospherically relevant particle populations including Arizona road dust, black carbon, ammonium sulfate, and sodium chloride. Preliminary results of the absolute scattering cross-section and polarization parameters will be presented. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  11. Microphysical aerosol parameters of spheroidal particles via regularized inversion of lidar data

    NASA Astrophysics Data System (ADS)

    Samaras, Stefanos; Böckmann, Christine

    2015-04-01

    One of the main topics in understanding the aerosol impact on climate requires the investigation of the spatial and temporal variability of microphysical properties of particles, e.g., the complex refractive index, the effective radius, the volume and surface-area concentration, and the single-scattering albedo. Remote sensing is a technique used to monitor aerosols in global coverage and fill in the observational gap. This research topic involves using multi-wavelength Raman lidar systems to extract the microphysical properties of aerosol particles, along with depolarization signals to account for the non-sphericity of the latter. Given, the optical parameters (measured by a lidar), the kernel functions, which summarize the size, shape and composition of particles, we solve for the size distribution of the particles modeled by a Fredholm integral system and further calculate the refractive index. This model works well for spherical particles (e.g. smoke); the kernel functions are derived from relatively simplified formulas (Mie scattering theory) and research has led to successful retrievals for particles which at least resemble a spherical geometry (small depolarization ratio). Obviously, more complicated atmospheric structures (e.g dust) require employment of non-spherical kernels and/or more complicated models which are investigated in this paper. The new model is now a two-dimensional one including the aspect ratio of spheroidal particles. The spheroidal kernel functions are able to be calculated via T-Matrix; a technique used for computing electromagnetic scattering by single, homogeneous, arbitrarily shaped particles. In order to speed up the process and massively perform simulation tests, we created a software interface using different regularization methods and parameter choice rules. The following methods have been used: Truncated singular value decomposition and Pade iteration with the discrepancy principle, and Tikhonov regularization with the L-curve-method as well as the generalized cross validation method. Data can be read directly from netcdf-files of the EARLINET data base. First promising results will be shown.

  12. Lidar validation of SAGE II aerosol measurements after the 1991 Mount Pinatubo eruption

    E-print Network

    Robock, Alan

    Lidar validation of SAGE II aerosol measurements after the 1991 Mount Pinatubo eruption Juan Carlos Experiment (SAGE) II instrument made extensive aerosol extinction retrievals using the limb-viewing technique. In regions of high-aerosol loading, SAGE II was not able to make measurements, resulting in large information

  13. CALIPSO V3-00 Lidar Level 3 Aerosol Product Release

    Atmospheric Science Data Center

    2015-10-15

    CALIPSO V3-00 Lidar Level 3 Aerosol Product Release Thursday, October 15, 2015 ...   Version 3.00 of the CALIOP Level 3 Aerosol Profile product contains several improvements to the initial beta ... reduced biases in single-species averages and corrected mean aerosol optical depth calculations.   The monthly product is available ...

  14. Temporal consistency of lidar observables during aerosol transport events in the framework of the ChArMEx/ADRIMED campaign at Menorca Island in June 2013

    NASA Astrophysics Data System (ADS)

    Chazette, P.; Totems, J.; Ancellet, G.; Pelon, J.; Sicard, M.

    2015-11-01

    We performed synergetic daytime and night-time active and passive remote sensing observations at Menorca (Balearic Island, Spain), over more than 3 weeks during the Chemistry-Aerosol Mediterranean Experiment/Aerosol Direct Radiative Effect in the Mediterranean (ChArMEx/ADRIMED) special observation period (SOP 1a, June-July 2013). We characterized the aerosol optical properties and type in the low and middle troposphere using an automated procedure combining Rayleigh-Mie-Raman lidar (355, 387 and 407 nm) with depolarization (355 nm) and AERONET Cimel® sun-photometer data. Results show a high variability due to varying dynamical forcing. The mean column-averaged lidar backscatter-to-extinction ratio (BER) was close to 0.024 sr-1 (lidar ratio of ∼ 41.7 sr), with a large dispersion of ±33 % over the whole observation period due to changing atmospheric transport regimes and aerosol sources. The ground-based remote sensing measurements, coupled with satellite observations, allowed to document (i) dust particles up to 5 km a.s.l. in altitude originating from Morocco and Algeria from 15 to 18 June with a peak in aerosol optical thickness (AOT) of 0.25 ± 0.05 at 355 nm, (ii) a long-range transport of biomass burning aerosol (AOT = 0.18 ± 0.16) related to North American forest fires detected from 26 to 28 June 2013 by the lidar between 2 and 7 km and (iii) mixture of local sources including marine aerosol particles and pollution from Spain. During the biomass burning event, the high value of the particle depolarization ratio (8-14 %) may imply the presence of dust-like particles mixed with the biomass burning aerosols in the mid troposphere. We show also linearity with SEVIRI retrievals of the aerosol optical thickness within 35 % relative bias, which is discussed as a function of aerosol type.

  15. Macrophysical Properties of Tropical Cirrus Clouds from the CALIPSO Satellite and from Ground-based Micropulse and Raman Lidars

    SciTech Connect

    Thorsen, Tyler J.; Fu, Qiang; Comstock, Jennifer M.; Sivaraman, Chitra; Vaughan, Mark A.; Winker, D.; Turner, David D.

    2013-08-27

    Lidar observations of cirrus cloud macrophysical properties over the U.S. Department of Energy Atmospheric Radiation Measurement (ARM) program Darwin, Australia site are compared from the Cloud-Aerosol Lidar and In- frared Pathfinder Satellite Observation (CALIPSO) satellite, the ground-based ARM micropulse lidar (MPL), and the ARM Raman lidar (RL). Comparisons are made using the subset of profiles where the lidar beam is not fully attenuated. Daytime measurements using the RL are shown to be relatively unaffected by the solar background and are therefore suited for checking the validity of diurnal cycles. RL and CALIPSO cloud fraction profiles show good agreement while the MPL detects significantly less cirrus, particularly during the daytime. Both MPL and CALIPSO observations show that cirrus clouds occur less frequently during the day than at night at all altitudes. In contrast, the RL diurnal cy- cle is significantly different than zero only below about 11 km; where it is the opposite sign (i.e. more clouds during the daytime). For cirrus geomet- rical thickness, the MPL and CALIPSO observations agree well and both datasets have signficantly thinner clouds during the daytime than the RL. From the examination of hourly MPL and RL cirrus cloud thickness and through the application of daytime detection limits to all CALIPSO data we find that the decreased MPL and CALIPSO cloud thickness during the daytime is very likely a result of increased daytime noise. This study highlights the vast im- provement the RL provides (compared to the MPL) in the ARM program's ability to observe tropical cirrus clouds as well as a valuable ground-based lidar dataset for the validation of CALIPSO observations and to help im- prove our understanding of tropical cirrus clouds.

  16. Single-scattering albedo profiling of mixed Asian dust plumes with multiwavelength Raman lidar

    NASA Astrophysics Data System (ADS)

    Noh, Young M.

    2014-10-01

    This study presents results of vertically-resolved single-scattering albedo of mixed Asian dust plumes, i.e. the total single-scattering albedo. The mixed Asian dust plumes are comprised of a mixture of pure dust particles and the non-dust part, e.g. urban/industrial pollution and smoke from biomass burning. The mixed Asian dust plumes were observed with multiwavelength Raman lidar which provides vertical profiles of particle backscatter coefficients at 355, 532, and 1064 nm and extinction coefficients at 355 and 532 nm. The optical data serve as input for an inversion algorithm that provides profiles of microphysical particle properties which subsequently are used for computing single-scattering albedo. This study presents results of dust plumes observed on 24 February 2004, 9 and 18 March 2004, 2 April 2004, and 24 February and 4 May 2005. The lidar measurements were carried out at Gwangju (35.10° N, 126.53° E), South Korea. The optical data of the mixed-dust plumes were separated into the pure dust content and the non-dust part. We used the linear particle depolarization ratio measured at 532 nm for this separation. The backscatter and extinction coefficients then were used to derive single-scattering albedo of the non-dust part of the mixed-dust plumes. The value 0.96 ± 0.02 at 532 nm for the single-scattering albedo of pure dust part was used. This value was obtained from single-scattering albedo of dust observed in various dust source regions. In another step the “total” single-scattering albedo of these mixed-dust plumes was calculated by using the optical depth of the dust and the non-dust part as weighting function. The single-scattering albedo of the non-dust particles of the mixed-dust plume varied from 0.63 to 0.93 for all observations presented in this study. The single-scattering albedo of the mixed-dust plumes was 0.71-0.95, and it was always higher than the single-scattering albedo of the non-dust part of the mixed-dust plumes. Single-scattering albedo varied with height on each measurement day. These differences seem to be quantitatively related to the degree of mixing of dust with urban pollution and the light-absorption properties of the pollution (non-dust) particles in these plumes which traveled along different transport pathways to the lidar site. The layer-mean lidar-derived single-scattering albedos of the examples shown in this study were compared to single-scattering albedo derived from AERONET (Aerosol Robotic Network) Sun/sky radiometer observations. This radiometer is located next to the lidar. The total layer-mean lidar-derived single-scattering albedos (at 532 nm) on 18 March and 2 April 2004, and on 24 February and 4 May 2005 were 0.91 ± 0.02, 0.90 ± 0.03, 0.91 ± 0.02, and 0.92 ± 0.02, respectively. The lidar-derived single-scattering albedos are similar to those based on the Sun/sky radiometer data if the different measurement wavelengths of the lidar and Sun/sky radiometer are taken account of.

  17. Spaceborne lidar measurement accuracy - Simulation of aerosol, cloud, molecular density, and temperature retrievals

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Morley, B. M.; Browell, E. V.

    1982-01-01

    In connection with studies concerning the use of an orbiting optical radar (lidar) to conduct aerosol and cloud measurements, attention has been given to the accuracy with which lidar return signals could be measured. However, signal-measurement error is not the only source of error which can affect the accuracy of the derived information. Other error sources are the assumed molecular-density and atmospheric-transmission profiles, and the lidar calibration factor (which relates signal to backscatter coefficient). The present investigation has the objective to account for the effects of all these errors sources for several realistic combinations of lidar parameters, model atmospheres, and background lighting conditions. In addition, a procedure is tested and developed for measuring density and temperature profiles with the lidar, and for using the lidar-derived density profiles to improve aerosol retrievals.

  18. Laser frequency converters for aerosol and gas lidar systems

    NASA Astrophysics Data System (ADS)

    Andreev, Yuri M.; Geiko, Pavel P.

    2000-12-01

    Estimations are carried out on creation possibilities of all solid state laser sources capable significantly or fully to solve the problem of the universal Aerosol-Gas Lidar System design. 'Best existing Ho2+:ILF and Nd:YAG lasers supplied with LBO, KTA, KTP, BBO, CLBO, DLAP; GaSe, GaSe:In, AgGaxIn1-xSe2, LiInS2, LiInSe2, AgGaS2, AgGaxIn1-xS2, and HgGa2S4 frequency converters are considered. The investigation results show development of UV to FIR laser source is really to carry out with efficiencies from one-two up to several tens pro cents in several ways.

  19. LIDAR Measurements of the Vertical Distribution of Aerosol Optical and Physical Properties over Central Asia

    EPA Science Inventory

    The vertical structure of aerosol optical and physical properties was measured by Lidar in Eastern Kyrgyzstan, Central Asia, from June 2008 to May 2009. Lidar measurements were supplemented with surface-based measurements of PM2.5 and PM10 mass and chemical ...

  20. Aerosol optical and microphysical retrievals from a hybrid multiwavelength lidar data set - DISCOVER-AQ 2011

    NASA Astrophysics Data System (ADS)

    Sawamura, P.; Müller, D.; Hoff, R. M.; Hostetler, C. A.; Ferrare, R. A.; Hair, J. W.; Rogers, R. R.; Anderson, B. E.; Ziemba, L. D.; Beyersdorf, A. J.; Thornhill, K. L.; Winstead, E. L.; Holben, B. N.

    2014-09-01

    Retrievals of aerosol microphysical properties (effective radius, volume and surface-area concentrations) and aerosol optical properties (complex index of refraction and single-scattering albedo) were obtained from a hybrid multiwavelength lidar data set for the first time. In July 2011, in the Baltimore-Washington DC region, synergistic profiling of optical and microphysical properties of aerosols with both airborne (in situ and remote sensing) and ground-based remote sensing systems was performed during the first deployment of DISCOVER-AQ. The hybrid multiwavelength lidar data set combines ground-based elastic backscatter lidar measurements at 355 nm with airborne High-Spectral-Resolution Lidar (HSRL) measurements at 532 nm and elastic backscatter lidar measurements at 1064 nm that were obtained less than 5 km apart from each other. This was the first study in which optical and microphysical retrievals from lidar were obtained during the day and directly compared to AERONET and in situ measurements for 11 cases. Good agreement was observed between lidar and AERONET retrievals. Larger discrepancies were observed between lidar retrievals and in situ measurements obtained by the aircraft and aerosol hygroscopic effects are believed to be the main factor in such discrepancies.

  1. Balloon-borne and Raman lidar observations of Asian dust and cirrus cloud properties over Tsukuba, Japan

    NASA Astrophysics Data System (ADS)

    Sakai, Tetsu; Orikasa, Narihiro; Nagai, Tomohiro; Murakami, Masataka; Tajiri, Takuya; Saito, Atsushi; Yamashita, Katsuya; Hashimoto, Akihiro

    2014-03-01

    The vertical distributions of the microphysical and optical properties of tropospheric aerosols and cirrus cloud were measured using an instrumented balloon and a ground-based Raman lidar over Tsukuba, Japan (36°N, 140°E), during the Asian dust events on 9 and 21 May 2007 to investigate the influence of Asian mineral dust on ice cloud formation in the upper troposphere. The instrumented balloon measured the particle size distribution, ice crystal images, dew/frost point, relative humidity, and temperature. The Raman lidar measured the particle backscattering and extinction coefficients and the depolarization ratio at a wavelength of 532 nm. The results of the balloon measurements showed that supermicrometer (0.7 to 2.8 µm in optical-equivalent radius) dust particles and ice crystals (10 to 400 µm in maximum dimension) were present in the upper troposphere (8 to 12 km in altitude), with number concentrations varying from 5 × 10-3 to 0.6 cm-3 for dust and from 5 × 10-3 to 0.15 cm-3 for ice crystals. The Raman lidar measurement indicated that the particle depolarization ratios were 15 to 35% in the altitude range of 6 to 12 km, indicating the predominance of nonspherical particles in the region. The temperature ranged from -33 to -63°C, and the relative humidity with respect to ice (RHi), estimated from the total (vapor plus condensate) water content obtained with the Snow White hygrometer in the cloud, was 130% at maximum on 9 May, which was close to the activation point of Asian mineral dust as ice nuclei to form ice crystals.

  2. A theoretical/experimental program to develop active optical pollution sensors: Quantitative remote Raman lidar measurements of pollutants from stationary sources

    NASA Technical Reports Server (NTRS)

    Poultney, S. K.; Brumfield, M. L.; Siviter, J. S.

    1975-01-01

    Typical pollutant gas concentrations at the stack exits of stationary sources can be estimated to be about 500 ppm under the present emission standards. Raman lidar has a number of advantages which makes it a valuable tool for remote measurements of these stack emissions. Tests of the Langley Research Center Raman lidar at a calibration tank indicate that night measurements of SO2 concentrations and stack opacity are possible. Accuracies of 10 percent are shown to be achievable from a distance of 300 m within 30 min integration times for 500 ppm SO2 at the stack exits. All possible interferences were examined quantitatively (except for the fluorescence of aerosols in actual stack emissions) and found to have negligible effect on the measurements. An early test at an instrumented stack is strongly recommended.

  3. Water Vapor Measurements by Howard University Raman Lidar during the WAVES 2006 Campaign

    NASA Technical Reports Server (NTRS)

    Adam, M.; Demoz, B. B.; Whiteman, D. N.; Venable, D. D.; Joseph E.; Gambacorta, A.; Wei, J.; Shephard, M. W.; Miloshevich, L. M.; Barnet, C. D.; Herman, R. L.; Fitzgibbon, J.; Connell, R.

    2009-01-01

    Retrieval of water vapor mixing ratio using the Howard University Raman Lidar is presented with emphasis on three aspects: i) performance of the lidar against collocated radiosondes and Raman lidar, ii) investigation of the atmospheric state variables when poor agreement between lidar and radiosondes values occurred and iii) a comparison with satellite-based measurements. The measurements were acquired during the Water Vapor Validation Experiment Sondes/Satellites 2006 field campaign. Ensemble averaging of water vapor mixing ratio data from ten night-time comparisons with Vaisala RS92 radiosondes shows on average an agreement within 10 % up to approx. 8 km. A similar analysis of lidar-to-lidar data of over 700 profiles revealed an agreement to within 20 % over the first 7 km (10 % below 4 km). A grid analysis, defined in the temperature - relative humidity space, was developed to characterize the lidar - radiosonde agreement and quantitatively localizes regions of strong and weak correlations as a function of altitude, temperature or relative humidity. Three main regions of weak correlation emerge: i) regions of low relative humidity and low temperature, ii) moderate relative humidity at low temperatures and iii) low relative humidity at moderate temperatures. Comparison of Atmospheric InfraRed Sounder and Tropospheric Emission Sounder satellites retrievals of moisture with that of Howard University Raman Lidar showed a general agreement in the trend but the formers miss a lot of the details in atmospheric structure due to their low resolution. A relative difference of about 20 % is usually found between lidar and satellites measurements.

  4. Separating Dust Mixtures and Other External Aerosol Mixtures Using Airborne High Spectral Resolution Lidar Data

    NASA Astrophysics Data System (ADS)

    Burton, S. P.; Ferrare, R. A.; Vaughan, M.; Hostetler, C. A.; Rogers, R. R.; Hair, J. W.; Cook, A. L.; Harper, D. B.

    2013-12-01

    Knowledge of aerosol type is important for source attribution and for determining the magnitude and assessing the consequences of aerosol radiative forcing. The NASA Langley Research Center airborne High Spectral Resolution Lidar (HSRL-1) has acquired considerable datasets of both aerosol extensive parameters (e.g. aerosol optical depth) and intensive parameters (e.g. aerosol depolarization ratio, lidar ratio) that can be used to infer aerosol type. An aerosol classification methodology has been used extensively to classify HSRL-1 aerosol measurements of different aerosol types including dust, smoke, urban pollution, and marine aerosol. However, atmospheric aerosol is frequently not a single pure type, but instead occurs as a mixture of types, and this mixing affects the optical and radiative properties of the aerosol. Here we present a comprehensive and unified set of rules for characterizing external mixtures using several key aerosol intensive parameters: extinction-to-backscatter ratio (i.e. lidar ratio), backscatter color ratio, and depolarization ratio. Our mixing rules apply not just to the scalar values of aerosol intensive parameters, but to multi-dimensional normal distributions with variance in each measurement dimension. We illustrate the applicability of the mixing rules using examples of HSRL-1 data where mixing occurred between different aerosol types, including advected Saharan dust mixed with the marine boundary layer in the Caribbean Sea and locally generated dust mixed with urban pollution in the Mexico City surroundings. For each of these cases we infer a time-height cross section of mixing ratio along the flight track and we partition aerosol extinction into portions attributed to the two pure types. Since multiple aerosol intensive parameters are measured and included in these calculations, the techniques can also be used for cases without significant depolarization (unlike similar work by earlier researchers), and so a third example of a mixture of smoke plus marine aerosol is also explored.

  5. Towards quantifying mesoscale flows in the troposphere using Raman lidar and Sondes

    NASA Technical Reports Server (NTRS)

    Demoz, B.; Starr, D.; Evans, K.; Whiteman, D.; Melfi, S.; Turner, D.; Ferrare, R.; Goldsmith, J.; Schwemmer, G.; Cadirola, M.

    1998-01-01

    Water vapor plays an important role in the energetics of the boundary layer processes which in turn play a key role in regulating regional and global climate. It plays a primary role in Earth's hydrological cycle, in radiation balance as a direct absorber of infrared radiation, and in atmospheric circulation as a latent heat energy source, as well as in determining cloud development and atmospheric stability. Water vapor concentration, expressed as a mass mixing ratio (g kg(exp -l)), is conserved in all meteorological processes except condensation and evaporation. This property makes it an ideal choice for studying many of the atmosphere's dynamic features. Raman scattering measurements from lidar also allow retrieval of water vapor mixing ratio profiles at high temporal and vertical resolution. Raman lidars sense water vapor to altitudes not achievable with towers and surface systems, sample the atmosphere at much higher temporal resolution than radiosondes or satellites, and do not require strong vertical gradients or turbulent fluctuations in temperature that is required by acoustic sounders and radars. Analysis of highly-resolved water vapor profiles are used here to characterize two important mesoscale flows: thunderstorm outflows and a cold front passage. The data were obtained at the Atmospheric Radiation Measurement Site (CART) by the groundbased Department of Energy/Sandia National Laboratories lidar (CART Raman lidar or CARL) and Goddard Space Flight Center Scanning Raman Lidar (SRL). A detailed discussion of the SRL and CARL performance during the IOPs is given by others in this meeting.

  6. Comparison of aerosol extinction between lidar and SAGE II over Gadanki, a tropical station in India

    NASA Astrophysics Data System (ADS)

    Kulkarni, P.; Ramachandran, S.

    2015-03-01

    An extensive comparison of aerosol extinction has been performed using lidar and Stratospheric Aerosol and Gas Experiment (SAGE) II data over Gadanki (13.5° N, 79.2° E), a tropical station in India, following coincident criteria during volcanically quiescent conditions from 1998 to 2005. The aerosol extinctions derived from lidar are higher than SAGE II during all seasons in the upper troposphere (UT), while in the lower-stratosphere (LS) values are closer. The seasonal mean percent differences between lidar and SAGE II aerosol extinctions are > 100% in the UT and < 50% above 25 km. Different techniques (point and limb observations) played the major role in producing the observed differences. SAGE II aerosol extinction in the UT increases as the longitudinal coverage is increased as the spatial aerosol extent increases, while similar extinction values in LS confirm the zonal homogeneity of LS aerosols. The study strongly emphasized that the best meteorological parameters close to the lidar measurement site in terms of space and time and Ba (sr-1), the ratio between aerosol backscattering and extinction, are needed for the tropics for a more accurate derivation of aerosol extinction.

  7. Ultraviolet mini-Raman lidar for stand-off, in situ identification of chemical surface contaminants

    SciTech Connect

    Ray, Mark D.; Sedlacek, Arthur J.; Wu, Ming

    2000-09-01

    The Mini-Raman Lidar System (MRLS) is a portable chemical sensor that combines the spectral fingerprinting of Raman spectroscopy with the principles of solar-blind ultraviolet lidar for short-range, noncontact detection and identification of unknown substances on surfaces. The MRLS has the potential to detect contaminant films several microns thick at distances of meters and bulk quantities of substances at distances of tens of meters. The signal acquisition time is less than 1 min. The device has application to those involved in emergency response, environmental remediation, and military reconnaissance who respond initially at the site of a chemical spill or attack. (c) 2000 American Institute of Physics.

  8. Lidar measurements of the post-fuego stratospheric aerosol

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Hake, R. D., Jr.; Viezee, W.

    1976-01-01

    Fifteen lidar observations of the stratospheric aerosol were made between February and November 1975. All observations revealed the greatly increased particulate backscattering that followed the eruption of the volcano Fuego in October 1974. Vertical structure consisted initially of multiple layers, which later merged to form a single, broader peak. Essentially all of the increased scattering was confined to altitudes below 20 km. Hence, aerosol layer centroids in 1975 were typically several km below their altitude prior to the eruption. Radiative and thermal consequences of the measured post-Fuego layer were computed using several recently published models. The models predict a temperature increase of several K at the altitude of the layer, caused by the infrared absorption bands of the sulfuric acid particles. The surface temperature decrease predicted by the models is considerably smaller than 1 K, partly because of the small optical thickness of the volcanic layer, and partly because of its short residence time relative to the earth-ocean thermal response time.

  9. The Cloud-Aerosol Transport System (CATS): a New Lidar for Aerosol and Cloud Profiling from the International Space Station

    NASA Technical Reports Server (NTRS)

    Welton, Ellsworth J.; McGill, Matthew J.; Yorks, John E.; Hlavka, Dennis L.; Hart, William D.; Palm, Stephen P.; Colarco, Peter R.

    2011-01-01

    Spaceborne lidar profiling of aerosol and cloud layers has been successfully implemented during a number of prior missions, including LITE, ICESat, and CALIPSO. Each successive mission has added increased capability and further expanded the role of these unique measurements in wide variety of applications ranging from climate, to air quality, to special event monitoring (ie, volcanic plumes). Many researchers have come to rely on the availability of profile data from CALIPSO, especially data coincident with measurements from other A-Train sensors. The CALIOP lidar on CALIPSO continues to operate well as it enters its fifth year of operations. However, active instruments have more limited lifetimes than their passive counterparts, and we are faced with a potential gap in lidar profiling from space if the CALIOP lidar fails before a new mission is operational. The ATLID lidar on EarthCARE is not expected to launch until 2015 or later, and the lidar component of NASA's proposed Aerosols, Clouds, and Ecosystems (ACE) mission would not be until after 2020. Here we present a new aerosol and cloud lidar that was recently selected to provide profiling data from the International Space Station (ISS) starting in 2013. The Cloud-Aerosol Transport System (CATS) is a three wavelength (1064, 532, 355 nm) elastic backscatter lidar with HSRL capability at 532 nm. Depolarization measurements will be made at all wavelengths. The primary objective of CATS is to continue the CALIPSO aerosol and cloud profile data record, ideally with overlap between both missions and EarthCARE. In addition, the near real time data capability of the ISS will enable CATS to support operational applications such as air quality and special event monitoring. The HSRL channel will provide a demonstration of technology and a data testbed for direct extinction retrievals in support of ACE mission development. An overview of the instrument and mission will be provided, along with a summary of the science objectives and simulated data.

  10. Refinement of calipso aerosol retrieval models through analysis of airborne high spectral resolution lidar data

    NASA Astrophysics Data System (ADS)

    McPherson, Christopher J.

    2011-12-01

    The deepening of scientific understanding of atmospheric aerosols figures substantially into stated goals for climate change research and a variety of internationally collaborative earth observation missions. One such mission is the joint NASA/Centre National d'Etudes Spatiales (CNES) Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) mission, whose primary instrument is the Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP), a spaceborne two-wavelength, elastic-scatter lidar, which has been making continuous, global observations of atmospheric aerosols and clouds since June of 2006, shortly after its launch in April of the same year. The work presented in this dissertation consists of the development of an aerosol retrieval strategy to improve aerosol retrievals from lidar data from the CALIPSO mission, as well as a comprehensive formulation of accompanying aerosol models based on a thorough analysis of data from an airborne High Spectral Resolution Lidar (HSRL) instrument. The retrieval methodology, known as the Constrained Ratio Aerosol Model-fit (CRAM) technique, is a means of exploiting the available dual-wavelength information from CALIOP to constrain the possible solutions to the problem of aerosol retrieval from elastic-scatter lidar so as to be consistent with theoretically or empirically known aerosol models. Constraints applied via CRAM are manifested in spectral ratios of scattering parameters corresponding to observationally-based aerosol models. Consequently, accurate and representative models incorporating various spectral scattering parameters are instrumental to the successful implementation of a methodology like CRAM. The aerosol models arising from this work are derived from measurements made by the NASA Langley Research Center (LaRC) airborne HSRL instrument, which has the capability to measure both aerosol scattering parameters (i.e., backscatter and extinction) independently at 532 nm. The instrument also incorporates an elastic-scatter channel at 1064 nm, facilitating the incorporation of dual-wavelength information by way of particular constraints. The intent in developing these new models is to furnish as satisfactory a basis as possible for retrieval techniques such as CRAM, whose approach to the problem of aerosol retrieval attempts to make optimal use of the available spectral information from multi-wavelength lidar, thus providing a framework for improving aerosol retrievals from CALIPSO and furthering the scientific goals related to atmospheric aerosols.

  11. Atmospheric lidar research applying to H2O, O2 and aerosols

    NASA Technical Reports Server (NTRS)

    Mcilrath, T. J.; Wilkerson, T. D.

    1977-01-01

    Experimental research on a near infrared tunable dye laser was reported, and theoretical simulations were presented for various lidar configurations. The visible and nearinfrared wavelengths considered were suitable for observations of aerosols, water vapor, molecular oxygen pressure and temperature in the troposphere and above. The first phase of development work was described on a ruby pumped, tunable dye laser for the wavelength region 715 to 740 nanometers. Lidar simulations were summarized for measurements of H2O and for two color lidar observations of aerosols in the atmosphere.

  12. Forest Fire Smoke Layers Observed in the Free Troposphere over Portugal with a Multiwavelength Raman Lidar: Optical and Microphysical Properties

    PubMed Central

    Nepomuceno Pereira, Sérgio; Guerrero-Rascado, Juan Luis; Silva, Ana Maria; Wagner, Frank

    2014-01-01

    Vertically resolved optical and microphysical properties of biomass burning aerosols, measured in 2011 with a multiwavelength Raman lidar, are presented. The transportation time, within 1-2 days (or less), pointed towards the presence of relatively fresh smoke particles over the site. Some strong layers aloft were observed with particle backscatter and extinction coefficients (at 355?nm) greater than 5?Mm?1?sr?1 and close to 300?Mm?1, respectively. The particle intensive optical properties showed features different from the ones reported for aged smoke, but rather consistent with fresh smoke. The Ångström exponents were generally high, mainly above 1.4, indicating a dominating accumulation mode. Weak depolarization values, as shown by the small depolarization ratio of 5% or lower, were measured. Furthermore, the lidar ratio presented no clear wavelength dependency. The inversion of the lidar signals provided a set of microphysical properties including particle effective radius below 0.2??m, which is less than values previously observed for aged smoke particles. Real and imaginary parts of refractive index of about 1.5-1.6 and 0.02i, respectively, were derived. The single scattering albedo was in the range between 0.85 and 0.93; these last two quantities indicate the nonnegligible absorbing characteristics of the observed particles. PMID:25114964

  13. Characterization of long-range transported Saharan dust at the Caribbean by dual-wavelength depolarization Raman lidar measurements

    NASA Astrophysics Data System (ADS)

    Groß, S.; Freudenthaler, V.; Schepanski, K.; Toledano, C.; Schäfler, A.; Ansmann, A.; Weinzierl, B.

    2015-07-01

    Dual-wavelength Raman and depolarization lidar observations were performed during the SALTRACE campaign at Barbados in June and July 2013 to characterize the optical properties and vertical distribution of long-range transported Saharan dust at the end of its way across the Atlantic Ocean. Four major dust events were studied during the measurements from 15 June to 13 July 2013 with aerosol optical depths of up to 0.6. The vertical aerosol distribution was characterized by a three-layer structure consisting of the boundary layer, the entrainment or mixing layer, and the pure Saharan dust layer. The upper boundary of the pure dust layer reached up to 4.5 km height. The contribution of the pure dust layer was about half of the total AOD. The total dust contribution was about 50-70 % of the total AOD. The lidar ratio within the pure dust layer was found to be wavelength independent with mean values of 53 ± 5 sr at 355 nm and 56 ± 7 sr at 532 nm. For the particle linear depolarization ratio wavelength independent mean values of 0.26 ± 0.03 at 355 nm and 0.27 ± 0.01 at 532 nm have been found.

  14. AGLITE: a multiwavelength lidar for aerosol size distributions, flux, and concentrations

    NASA Astrophysics Data System (ADS)

    Wilkerson, Thomas D.; Zavyalov, Vladimir V.; Bingham, Gail E.; Swasey, Jason A.; Hancock, Jed J.; Crowther, Blake G.; Cornelsen, Scott S.; Marchant, Christian; Cutts, James N.; Huish, David C.; Earl, Curtis L.; Andersen, Jan M.; Cox, McLain L.

    2006-05-01

    We report on the design, construction and operation of a new multiwavelength lidar developed for the Agricultural Research Service of the United States Department of Agriculture and its program on particle emissions from animal production facilities. The lidar incorporates a laser emitting simultaneous, pulsed Nd laser radiation at 355, 532 and 1064 nm at a PRF of 10 kHz. Lidar backscatter and extinction data are modeled to extract the aerosol information. All-reflective optics combined with dichroic and interferometric filters permit all the wavelength channels to be measured simultaneously, day or night, using photon counting by PMTs, an APD, and high speed scaling. The lidar is housed in a transportable trailer for all-weather operation at any accessible site. The laser beams are directed in both azimuth and elevation to targets of interest. We describe application of the lidar in a multidisciplinary atmospheric study at a swine production farm in Iowa. Aerosol plumes emitted from the hog barns were prominent phenomena, and their variations with temperature, turbulence, stability and feed cycle were studied, using arrays of particle samplers and turbulence detectors. Other lidar measurements focused on air motion as seen by long duration scans of the farm region. Successful operation of this lidar confirms the value of multiwavelength, eye-safe lidars for agricultural aerosol measurements.

  15. Optical properties of long-range transported Saharan dust over Barbados as measured by dual-wavelength depolarization Raman lidar measurements

    NASA Astrophysics Data System (ADS)

    Groß, S.; Freudenthaler, V.; Schepanski, K.; Toledano, C.; Schäfler, A.; Ansmann, A.; Weinzierl, B.

    2015-10-01

    Dual-wavelength Raman and depolarization lidar observations were performed during the Saharan Aerosol Long-range Transport and Aerosol-Cloud interaction Experiment in Barbados in June and July 2013 to characterize the optical properties and vertical distribution of long-range transported Saharan dust after transport across the Atlantic Ocean. Four major dust events were studied during the measurements from 15 June to 13 July 2013 with aerosol optical depths at 532 nm of up to 0.6. The vertical aerosol distribution was characterized by a three-layer structure consisting of the boundary layer, the entrainment or mixing layer and the pure Saharan dust layer. The upper boundary of the pure dust layer reached up to 4.5 km in height. The contribution of the pure dust layer was about half of the total aerosol optical depth at 532 nm. The total dust contribution was about 50-70 % of the total aerosol optical depth at 532 nm. The lidar ratio within the pure dust layer was found to be wavelength independent with mean values of 53 ± 5 sr at 355 nm and 56 ± 7 sr at 532 nm. For the particle linear depolarization ratio, wavelength-independent mean values of 0.26 ± 0.03 at 355 nm and 0.27 ± 0.01 at 532 nm have been found.

  16. Ultraviolet high-spectral-resolution Doppler lidar for measuring wind field and aerosol optical properties

    SciTech Connect

    Imaki, Masaharu; Kobayashi, Takao

    2005-10-01

    An ultraviolet incoherent Doppler lidar that incorporates the high-spectral-resolution (HSR) technique has been developed for measuring the wind field and aerosol optical properties in the troposphere. An injection seeded and tripled Nd:YAG laser at an ultraviolet wavelength of 355 nm was used in the lidar system. The HRS technique can resolve the aerosol Mie backscatter and the molecular Rayleigh backscatter to derive the signal components. By detecting the Mie backscatter, a great increase in the Doppler filter sensitivity was realized compared to the conventional incoherent Doppler lidars that detected the Rayleigh backscatter. The wind velocity distribution in a two-dimensional cross section was measured. By using the HSR technique, multifunction and absolute value measurements were realized for aerosol extinction, and volume backscatter coefficients; the laser beam transmittance, the lidar ratio, and the backscatter ratio are derived from these measurements.

  17. Influence of daylight and noise current on cloud and aerosol observations by spaceborne elastic scattering lidar.

    PubMed

    Nakajima, T Y; Imai, T; Uchino, O; Nagai, T

    1999-08-20

    The influence of daylight and noise current on cloud and aerosol observations by realistic spaceborne lidar was examined by computer simulations. The reflected solar radiations, which contaminate the daytime return signals of lidar operations, were strictly and explicitly estimated by accurate radiative transfer calculations. It was found that the model multilayer cirrus clouds and the boundary layer aerosols could be observed during the daytime and the nighttime with only a few laser shots. However, high background noise and noise current make it difficult to observe volcanic aerosols in middle and upper atmospheric layers. Optimal combinations of the laser power and receiver field of view are proposed to compensate for the negative influence that is due to these noises. For the computer simulations, we used a realistic set of lidar parameters similar to the Experimental Lidar in-Space Equipment of the National Space Development Agency of Japan. PMID:18324021

  18. An Aerosol Extinction-to-Backscatter Ratio Database Derived from the NASA Micro-Pulse Lidar Network: Applications for Space-based Lidar Observations

    NASA Technical Reports Server (NTRS)

    Welton, Ellsworth J.; Campbell, James R.; Spinhime, James D.; Berkoff, Timothy A.; Holben, Brent; Tsay, Si-Chee; Bucholtz, Anthony

    2004-01-01

    Backscatter lidar signals are a function of both backscatter and extinction. Hence, these lidar observations alone cannot separate the two quantities. The aerosol extinction-to-backscatter ratio, S, is the key parameter required to accurately retrieve extinction and optical depth from backscatter lidar observations of aerosol layers. S is commonly defined as 4*pi divided by the product of the single scatter albedo and the phase function at 180-degree scattering angle. Values of S for different aerosol types are not well known, and are even more difficult to determine when aerosols become mixed. Here we present a new lidar-sunphotometer S database derived from Observations of the NASA Micro-Pulse Lidar Network (MPLNET). MPLNET is a growing worldwide network of eye-safe backscatter lidars co-located with sunphotometers in the NASA Aerosol Robotic Network (AERONET). Values of S for different aerosol species and geographic regions will be presented. A framework for constructing an S look-up table will be shown. Look-up tables of S are needed to calculate aerosol extinction and optical depth from space-based lidar observations in the absence of co-located AOD data. Applications for using the new S look-up table to reprocess aerosol products from NASA's Geoscience Laser Altimeter System (GLAS) will be discussed.

  19. SAM II (Stratospheric Aerosol Measurement II) and lidar aerosol profile comparisons during AASE (Airborne Arctic Stratospheric Expedition)

    SciTech Connect

    Osborn, M.T. ); Poole, L.R. ); Wang, Pihuan )

    1990-03-01

    The NASA Langley Research Center (LaRC) aerosol lidar system was one of several instruments that flew aboard a DC-8 during the Airborne Arctic Stratospheric Expedition (AASE). Several of the Stratospheric Aerosol Measurement II (SAM II) altitude profiles of aerosol extinction were close enough in time and space to allow for intercomparison with the lidar measurements of aerosol backscatter. Comparisons between three SAM II 1.0 {mu} aerosol extinction profiles and analogous profiles inferred from nearly simultaneous airborne lidar measurements are discussed. As expected, the comparison made during homogeneous background aerosol conditions was excellent, with agreement within error bars. The other two comparisons show the first near-simultaneous SAM II/lidar measurements of a polar stratospheric cloud (PSC). The comparison made well within the edge of a relatively homogeneous PSC layer was also good, especially using an extinction-to-backscatter model derived from in situ PSC particle size measurements. The comparison made near the edge of a PSC showing considerable spatial and temporal variability was poor, likely due to rapid changes which may occur near the cloud edge.

  20. Study of absolute detection technique with the rotational Raman lidar for atmospheric temperature

    NASA Astrophysics Data System (ADS)

    Li, Shichun; Wei, Pengpeng; Gong, Xin; Hua, Dengxin

    2015-10-01

    The rotational Raman lidar is a valid tool to profile atmospheric temperature. But the fact that its proper operation generally needs a certain collocated device for calibration seriously restricts application in the meteorology and environment fields. We propose an absolute detection technique of atmospheric temperature with the rotational Raman lidar, which is based on the dependence of rotational Raman spectral envelope on temperature. To retrieve atmospheric temperature without calibration, six rotational Raman spectra of nitrogen molecule are chosen from the anti-Strokes branch. A temperature retrieval algorithm is presented and analyzed based on the least square principle. A two-cascade Raman spectroscopic filter is constructed by one first-order diffraction grating, one convex lens, one linear fiber array and 6 groups of fiber Bragg gratings. This lidar is configured with a 300-mJ pulse energy laser and a 250-mm clear aperture telescope. Simulation results show that it can extract the nitrogen molecules rotational Raman spectral lines, and that atmospheric temperature profile obtained through absolute retrieval algorithm can be up to 3.5 km with less than 0.5-K deviation within 17 minutes interval.

  1. Assessing the temperature dependence of narrow-band Raman water vapor lidar measurements: a practical approach.

    PubMed

    Whiteman, David N; Venable, Demetrius D; Walker, Monique; Cadirola, Martin; Sakai, Tetsu; Veselovskii, Igor

    2013-08-01

    Narrow-band detection of the Raman water vapor spectrum using the lidar technique introduces a concern over the temperature dependence of the Raman spectrum. Various groups have addressed this issue either by trying to minimize the temperature dependence to the point where it can be ignored or by correcting for whatever degree of temperature dependence exists. The traditional technique for performing either of these entails accurately measuring both the laser output wavelength and the water vapor spectral passband with combined uncertainty of approximately 0.01 nm. However, uncertainty in interference filter center wavelengths and laser output wavelengths can be this large or larger. These combined uncertainties translate into uncertainties in the magnitude of the temperature dependence of the Raman lidar water vapor measurement of 3% or more. We present here an alternate approach for accurately determining the temperature dependence of the Raman lidar water vapor measurement. This alternate approach entails acquiring sequential atmospheric profiles using the lidar while scanning the channel passband across portions of the Raman water vapor Q-branch. This scanning is accomplished either by tilt-tuning an interference filter or by scanning the output of a spectrometer. Through this process a peak in the transmitted intensity can be discerned in a manner that defines the spectral location of the channel passband with respect to the laser output wavelength to much higher accuracy than that achieved with standard laboratory techniques. Given the peak of the water vapor signal intensity curve, determined using the techniques described here, and an approximate knowledge of atmospheric temperature, the temperature dependence of a given Raman lidar profile can be determined with accuracy of 0.5% or better. A Mathematica notebook that demonstrates the calculations used here is available from the lead author. PMID:23913054

  2. Assessing the Temperature Dependence of Narrow-Band Raman Water Vapor Lidar Measurements: A Practical Approach

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.; Venable, Demetrius D.; Walker, Monique; Cardirola, Martin; Sakai, Tetsu; Veselovskii, Igor

    2013-01-01

    Narrow-band detection of the Raman water vapor spectrum using the lidar technique introduces a concern over the temperature dependence of the Raman spectrum. Various groups have addressed this issue either by trying to minimize the temperature dependence to the point where it can be ignored or by correcting for whatever degree of temperature dependence exists. The traditional technique for performing either of these entails accurately measuring both the laser output wavelength and the water vapor spectral passband with combined uncertainty of approximately 0.01 nm. However, uncertainty in interference filter center wavelengths and laser output wavelengths can be this large or larger. These combined uncertainties translate into uncertainties in the magnitude of the temperature dependence of the Raman lidar water vapor measurement of 3% or more. We present here an alternate approach for accurately determining the temperature dependence of the Raman lidar water vapor measurement. This alternate approach entails acquiring sequential atmospheric profiles using the lidar while scanning the channel passband across portions of the Raman water vapor Q-branch. This scanning is accomplished either by tilt-tuning an interference filter or by scanning the output of a spectrometer. Through this process a peak in the transmitted intensity can be discerned in a manner that defines the spectral location of the channel passband with respect to the laser output wavelength to much higher accuracy than that achieved with standard laboratory techniques. Given the peak of the water vapor signal intensity curve, determined using the techniques described here, and an approximate knowledge of atmospheric temperature, the temperature dependence of a given Raman lidar profile can be determined with accuracy of 0.5% or better. A Mathematica notebook that demonstrates the calculations used here is available from the lead author.

  3. Raman Lidar Measurements during the International HZO Project. 1; Instrumentation and Analysis Techniques, Popular Summary

    NASA Technical Reports Server (NTRS)

    Whiteman, D. N.; Demoz, B.; DiGirolamo, P.; Comer, J.; Veselovskii, I.; Evans, K.; Wang, Z.; Cadirola, M.; Rush, K.; Schwemmer, G.; Gentry, B.

    2005-01-01

    The amount of water vapor in the atmosphere helps to determine the likelihood that severe storms may develop. The concentration of water vapor, though, is highly variable in space and time. And yet small changes in water vapor concentration over a short period of time or over a short spatial distance can determine whether a storm may or may not develop. Therefore, in order to improve the ability to forecast severe weather such as thunderstorms it is important to measure water vapor in the atmosphere with high spatial and temporal resolution. One of the most attractive research tools for measuring water vapor in the atmosphere with high spatial and temporal resolution is a Raman lidar. A Raman lidar consists of a laser transmitter, a telescope receiver and optics and electronics for processing opticand electronic signals. A laser pulse is emitted into the atmosphere and it interacts with molecules in the atmosphere causing them to become excited and to emit, through the Raman process, photons of different wavelength than emitted by the laser. The molecule that emitted these emitted. This is the way that a Raman lidar identifies water vapor molecules in the atmosphere. can be identified based on the wavelength of the photons One of the great challenges in Raman lidar measurements has been to make useful daytime measurements of the water vapor profile under bright daytime conditions. In this first of two papers, we describe the instrumentation and analysis of the first documented Raman lidar that is able to measure water vapor in the daytime with sufficient quality to permit the study of developing storm systems.

  4. Selection Algorithm for the CALIPSO Lidar Aerosol Extinction-to-Backscatter Ratio

    NASA Technical Reports Server (NTRS)

    Omar, Ali H.; Winker, David M.; Vaughan, Mark A.

    2006-01-01

    The extinction-to-backscatter ratio (S(sub a)) is an important parameter used in the determination of the aerosol extinction and subsequently the optical depth from lidar backscatter measurements. We outline the algorithm used to determine Sa for the Cloud and Aerosol Lidar and Infrared Pathfinder Spaceborne Observations (CALIPSO) lidar. S(sub a) for the CALIPSO lidar will either be selected from a look-up table or calculated using the lidar measurements depending on the characteristics of aerosol layer. Whenever suitable lofted layers are encountered, S(sub a) is computed directly from the integrated backscatter and transmittance. In all other cases, the CALIPSO observables: the depolarization ratio, delta, the layer integrated attenuated backscatter, beta, and the mean layer total attenuated color ratio, gamma, together with the surface type, are used to aid in aerosol typing. Once the type is identified, a look-up-table developed primarily from worldwide observations, is used to determine the S(sub a) value. The CALIPSO aerosol models include desert dust, biomass burning, background, polluted continental, polluted dust, and marine aerosols.

  5. Aerosol Profile Measurements from the NASA Langley Research Center Airborne High Spectral Resolution Lidar

    NASA Technical Reports Server (NTRS)

    Obland, Michael D.; Hostetler, Chris A.; Ferrare, Richard A.; Hair, John W.; Roers, Raymond R.; Burton, Sharon P.; Cook, Anthony L.; Harper, David B.

    2008-01-01

    Since achieving first light in December of 2005, the NASA Langley Research Center (LaRC) Airborne High Spectral Resolution Lidar (HSRL) has been involved in seven field campaigns, accumulating over 450 hours of science data across more than 120 flights. Data from the instrument have been used in a variety of studies including validation and comparison with the Cloud- Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite mission, aerosol property retrievals combining passive and active instrument measurements, aerosol type identification, aerosol-cloud interactions, and cloud top and planetary boundary layer (PBL) height determinations. Measurements and lessons learned from the HSRL are leading towards next-generation HSRL instrument designs that will enable even further studies of aerosol intensive and extensive parameters and the effects of aerosols on the climate system. This paper will highlight several of the areas in which the NASA Airborne HSRL is making contributions to climate science.

  6. Variation in daytime troposphereic aerosol via LIDAR and sunphotometer measurements in Penang, Malaysia

    NASA Astrophysics Data System (ADS)

    Tan, F. Y.; Hee, W. S.; Hwee, S. L.; Abdullah, K.; Tiem, L. Y.; Matjafri, M. Z.; Lolli, S.; Holben, B.; Welton, E. J.

    2014-03-01

    Aerosol is one of the important factors that will influence the air quality, visibility, clouds, and precipitation processes in the troposphere. In this work, we investigated the variation of aerosol during daytime in Penang, Malaysia in certain days within July 2013. Vertical LIDAR scattering ratio and backscattering profiles, and columnar optical properties (optical depth, Angström exponent) of aerosols were measured using Raymetrics LIDAR and a CIMEL sunphotometer respectively. Specifically, we have determined the daytime variation of intensity and distribution level of aerosol, as well as the planetary boundary layer (PBL) and cloud classification. Subsequently, the data of columnar aerosol optical depth (AOD) and size distribution in the atmospheric were used to quantify the properties of aerosol variation during daytime over Penang, Malaysia.

  7. UV Raman lidar measurements of relative humidity for the characterization of cirrus cloud microphysical properties

    NASA Astrophysics Data System (ADS)

    di Girolamo, P.; Summa, D.; Lin, R.-F.; Maestri, T.; Rizzi, R.; Masiello, G.

    2009-07-01

    Raman lidar measurements performed in Potenza by the Raman lidar system BASIL in the presence of cirrus clouds are discussed. Measurements were performed on 6 September 2004 in the frame of Italian phase of the EAQUATE Experiment. The major feature of BASIL is represented by its capability to perform high-resolution and accurate measurements of atmospheric temperature and water vapour, and consequently relative humidity, both in daytime and night-time, based on the application of the rotational and vibrational Raman lidar techniques in the UV. BASIL is also capable to provide measurements of the particle backscatter and extinction coefficient, and consequently lidar ratio (at the time of these measurements only at one wavelength), which are fundamental to infer geometrical and microphysical properties of clouds. A case study is discussed in order to assess the capability of Raman lidars to measure humidity in presence of cirrus clouds, both below and inside the cloud. While air inside the cloud layers is observed to be always under-saturated with respect to water, both ice super-saturation and under-saturation conditions are found inside these clouds. Upper tropospheric moistening is observed below the lower cloud layer. The synergic use of the data derived from the ground based Raman Lidar and of spectral radiances measured by the NAST-I Airborne Spectrometer allows to determine the temporal evolution of the atmospheric cooling/heating rates due to the presence of the cirrus cloud anvil. Lidar measurements beneath the cirrus cloud layer have been interpreted using a 1-D cirrus cloud model with explicit microphysics. The 1-D simulations indicates that sedimentation-moistening has contributed significantly to the moist anomaly, but other mechanisms are also contributing. This result supports the hypothesis that the observed mid-tropospheric humidification is a real feature which is strongly influenced by the sublimation of precipitating ice crystals. Results illustrated in this study demonstrate that Raman lidars, like the one used in this study, can resolve the spatial and temporal scales required for the study of cirrus cloud microphysical processes and appears sensitive enough to reveal and quantify upper tropospheric humidification associated with cirrus cloud sublimation.

  8. UV Raman lidar measurements of relative humidity for the characterization of cirrus cloud microphysical properties

    NASA Astrophysics Data System (ADS)

    di Girolamo, P.; Summa, D.; Lin, R.-F.; Maestri, T.; Rizzi, R.; Masiello, G.

    2009-11-01

    Raman lidar measurements performed in Potenza by the Raman lidar system BASIL in the presence of cirrus clouds are discussed. Measurements were performed on 6 September 2004 in the frame of the Italian phase of the EAQUATE Experiment. The major feature of BASIL is represented by its capability to perform high-resolution and accurate measurements of atmospheric temperature and water vapour, and consequently relative humidity, both in daytime and night-time, based on the application of the rotational and vibrational Raman lidar techniques in the UV. BASIL is also capable to provide measurements of the particle backscatter and extinction coefficient, and consequently lidar ratio (at the time of these measurements, only at one wavelength), which are fundamental to infer geometrical and microphysical properties of clouds. A case study is discussed in order to assess the capability of Raman lidars to measure humidity in presence of cirrus clouds, both below and inside the cloud. While air inside the cloud layers is observed to be always under-saturated with respect to water, both ice super-saturation and under-saturation conditions are found inside these clouds. Upper tropospheric moistening is observed below the lower cloud layer. The synergic use of the data derived from the ground based Raman Lidar and of spectral radiances measured by the NAST-I Airborne Spectrometer allows the determination of the temporal evolution of the atmospheric cooling/heating rates due to the presence of the cirrus cloud. Lidar measurements beneath the cirrus cloud layer have been interpreted using a 1-D cirrus cloud model with explicit microphysics. The 1-D simulations indicate that sedimentation-moistening has contributed significantly to the moist anomaly, but other mechanisms are also contributing. This result supports the hypothesis that the observed mid-tropospheric humidification is a real feature which is strongly influenced by the sublimation of precipitating ice crystals. Results illustrated in this study demonstrate that Raman lidars, like the one used in this study, can resolve the spatial and temporal scales required for the study of cirrus cloud microphysical processes and appear sensitive enough to reveal and quantify upper tropospheric humidification associated with cirrus cloud sublimation.

  9. Measurement of an aerosol episode in Buenos Aires, Argentina using sunphotometer and lidar data

    NASA Astrophysics Data System (ADS)

    Otero, L.; Ristori, P.; Wolfram, E.; Holben, B.; Quel, E.

    2005-08-01

    An intensive study of an aerosol intrusion episode in Buenos Aires is presented. We have combined back-trajectories calculations (HYSPLIT) and satellite images with the aim of revealing the origin of these air masses. The aerosol intensive properties were characterized using a collocated sun-photometer from the AERONET network. The corresponding pressure levels for each air mass were obtained by means of a LIDAR system, which was also used to calculate the aerosol extinction profiles for the available wavelengths.

  10. Vertical distribution of aerosol extinction cross section and inference of aerosol imaginary index in the troposphere by lidar technique

    NASA Technical Reports Server (NTRS)

    Spinhirne, J. D.; Reagan, J. A.; Herman, B. M.

    1980-01-01

    The paper reports on vertical profiles of aerosol extinction and backscatter in the troposphere which were obtained from multi zenith angle lidar measurements. It is reported that a direct slant path solution was found to be not possible due to horizontal inhomogeneity of the atmosphere. Attention is given to the use of a regression analysis with respect to zenith angle for a layer integration of the angle dependent lidar equation in order to determine the optical thickness and aerosol extinction-to-backscatter ratio for defined atmospheric layers and the subsequent evaluation of cross-section profiles.

  11. Aerosol optical and microphysical retrievals from a hybrid multiwavelength lidar dataset - DISCOVER-AQ 2011

    NASA Astrophysics Data System (ADS)

    Sawamura, P.; Müller, D.; Hoff, R. M.; Hostetler, C. A.; Ferrare, R. A.; Hair, J. W.; Rogers, R. R.; Anderson, B. E.; Ziemba, L. D.; Beyersdorf, A. J.; Thornhill, K. L.; Winstead, E. L.; Holben, B. N.

    2014-03-01

    Retrievals of aerosol microphysical properties (e.g. effective radius, volume and surface-area concentrations) and aerosol optical properties (e.g. complex index of refraction and single scattering albedo) were obtained from a hybrid multiwavelength lidar dataset for the first time. In July of 2011, in the Baltimore-Washington DC region, synergistic profiling of optical and microphysical properties of aerosols with both airborne in-situ and ground-based remote sensing systems was performed during the first deployment of DISCOVER-AQ. The hybrid multiwavelength lidar dataset combines elastic ground-based measurements at 355 nm with airborne High Spectral Resolution Lidar (HSRL) measurements at 532 nm and elastic measurements at 1064 nm that were obtained less than 5 km apart of each other. This was the first study in which optical and microphysical retrievals from lidar were obtained during the day and directly compared to AERONET and in-situ measurements for 11 cases. Good agreement was observed between lidar and AERONET retrievals. Larger discrepancies were observed between lidar retrievals and in-situ measurements obtained by the aircraft and aerosol hygroscopic effects are believed to be the main factor of such discrepancies.

  12. Remote sensing of seawater and drifting ice in Svalbard fjords by compact Raman LIDAR

    E-print Network

    Bunkin, Alexey F; Lednev, Vasily N; Lushnikov, Dmitry L; Marchenko, Aleksey V; Morozov, Eugene G; Pershin, Sergey M; Yulmetov, Renat N

    2013-01-01

    A compact Raman LIDAR system for remote sensing of sea and drifting ice was developed at the Wave Research Center at the Prokhorov General Physics Institute of the RAS. The developed system is based on a diode pumped solid state YVO4:Nd laser combined with compact spectrograph equipped with gated detector. The system exhibits high sensitivity and can be used for mapping or depth profiling of different parameters within many oceanographic problems. Light weight (~20 kg) and low power consumption (300 W) make possible to install the device on any vehicle including unmanned aircraft or submarine system. The Raman LIDAR presented was used for Svalbard fjords study and analysis of different influence of the open sea and glaciers on the water properties. Temperature, phytoplankton, and dissolved organic matter distributions in the seawater were studied in the Ice Fjord, Van Mijen Fjord and Rinders Fjord. Drifting ice and seawater in the Rinders Fjord were characterized by the Raman spectroscopy and fluorescence. It...

  13. Trends and variability of aerosol vertical distribution and properties using micro-LIDAR and sun-photometer measurements

    NASA Astrophysics Data System (ADS)

    Mortier, Augustin; Goloub, Philippe; Podvin, Thierry; Tanré, Didier; Deroo, Christine; Chiapello, Isabelle; Diallo, Aboubakry; NDiaye, Thierno

    2013-05-01

    The Sahara desert is the most important global source of mineral dust. Vertical distribution of dust particles and their variability can be studied/monitored from ground-based remote sensing system such as LIDAR. However, regular LIDAR measurements reported in literature are mostly focusing on aged aerosol having been transported over long or medium distances and therefore more addressing to mixing of dust with other aerosols types. Since 2006, routine automatic LIDAR measurements are performed 24 hours per day, 7 days per week, at Dakar, Senegal, simultaneously to AERONET sun-photometer. Joint LIDAR-sun-photometer inversion has been applied to 6 years of measurements to derive aerosol extinction profile, ?ext(z), as well as an effective aerosol extinction-to-backscatter ratio (LIDAR ratio, Sa). Assessment of data quality, monitoring of instrument performances, improvements and validation of automatic inversion method have been performed. A first analysis of time series of these aerosols parameters is presented.

  14. Airborne lidar observations of ozone and aerosols in the wintertime Arctic stratosphere

    NASA Technical Reports Server (NTRS)

    Browell, Edward V.

    1991-01-01

    The procedures used in making the lidar measurements of O3 and aerosols are discussed, and selected data samples of O3 and aerosol distributions observed during flights between Stavanger (59 deg N, 3 deg E) and the North Pole between about 40 deg W and 20 deg E meridians are presented. The 'on' and 'off'; laser wavelengths used for the DIAL measurements during the Airborne Arctic Stratospheric Expedition (AASE) were 301.5 and 311 nm, respectively. An intercomparison between airborne DIAL and ozonesonde measurements of O3 in the vicinity of Bear Island is shown. The DIAL profiles were obtained by averaging the lidar returns over a 5-min period and then calculating the DIAL O3 profile. Lidar measurements at 603 and 1064 nm are used to infer physical characteristics of the different types of aerosols observed during the AASE.

  15. Comparison of Summer and Winter California Central Valley Aerosol Distributions from Lidar and MODIS Measurements

    NASA Technical Reports Server (NTRS)

    Lewis, Jasper R., Jr.; DeYoung, Russell J.; Chu, D. Allen

    2010-01-01

    Aerosol distributions from two aircraft lidar campaigns conducted in the California Central Valley are compared in order to identify seasonal variations. Aircraft lidar flights were conducted in June 2003 and February 2008. While the PM2.5 concentration is highest in the winter, the aerosol optical depth measured from MODIS is highest in the summer. A seasonal comparison shows that PM2.5 in the winter can exceed summer PM2.5 by 55%, while summer AOD exceeds winter AOD by 43%. Higher temperatures wildfires in the summer produce elevated aerosol layers that are detected by satellite measurements, but not surface particulate matter monitors. Measurements of the boundary layer height from lidar instruments are necessary to incorporate satellite measurements with air quality measurements.

  16. The Cloud-Aerosol Transport System (CATS): A New Lidar for Aerosol and Cloud Profiling from the International Space Station

    NASA Technical Reports Server (NTRS)

    Welton, Ellsworth J.; McGill, Mathew J.; Yorks. John E.; Hlavka, Dennis L.; Hart, William D.; Palm, Stephen P.; Colarco, Peter R.

    2012-01-01

    Spaceborne lidar profiling of aerosol and cloud layers has been successfully implemented during a number of prior missions, including LITE, ICESat, and CALIPSO. Each successive mission has added increased capability and further expanded the role of these unique measurements in wide variety of applications ranging from climate, to air quality, to special event monitoring (ie, volcanic plumes). Many researchers have come to rely on the availability of profile data from CALIPSO, especially data coincident with measurements from other A-Train sensors. The CALIOP lidar on CALIPSO continues to operate well as it enters its fifth year of operations. However, active instruments have more limited lifetimes than their passive counterparts, and we are faced with a potential gap in lidar profiling from space if the CALIOP lidar fails before a new mission is operational. The ATLID lidar on EarthCARE is not expected to launch until 2015 or later, and the lidar component of NASA's proposed Aerosols, Clouds, and Ecosystems (ACE) mission would not be until after 2020. Here we present a new aerosol and cloud lidar that was recently selected to provide profiling data from the International Space Station (ISS) starting in 2013. The Cloud-Aerosol Transport System (CATS) is a three wavelength (1064,532,355 nm) elastic backscatter lidar with HSRL capability at 532 nm. Depolarization measurements will be made at all wavelengths. The primary objective of CATS is to continue the CALIPSO aerosol and cloud profile data record, ideally with overlap between both missions and EarthCARE. In addition, the near real time (NRT) data capability ofthe ISS will enable CATS to support operational applications such as aerosol and air quality forecasting and special event monitoring. The HSRL channel will provide a demonstration of technology and a data testbed for direct extinction retrievals in support of ACE mission development. An overview of the instrument and mission will be provided, along with a summary of the science objectives and simulated data. Input from the ICAP community is desired to help plan our NRT mission goals and interactions with ICAP forecasters.

  17. Lidar determination of winds by aerosol inhomogeneities: motion velocity in the planetary boundary layer.

    PubMed

    Kolev, I; Parvanov, O; Kaprielov, B

    1988-06-15

    The paper presents results from lidar measurements of wind velocity in the planetary boundary layer using correlation data processing. Two lidars are used in our experiments: a ruby lidar operating along slant paths and a YAG:Nd lidar operating for near vertical sounding used by us for the first time. On the basis of our experience the optimal sizes of aerosol inhomogeneities (30-300 m), the duration of the experiments (2-10 min), and the repetition rate of laser shots (fractions of hertz to several hertz) are determined. The results are compared to independent data obtained from anemometer measurements, theodolite- and radar-tracked pilot balloons. The range of differences is ~1-2 m/s in speed and 10-15 degrees in direction. Preliminary results from the use of lidar data to remotely sound the wind speed for various atmospheric stratifications and synoptic situations are described as well. PMID:20531786

  18. Nd:YAG and ruby based lidar systems for remote sensing of atmospheric aerosols

    NASA Technical Reports Server (NTRS)

    Fuller, W. H., Jr.

    1985-01-01

    The application of solid-state lasers to the study of stratospheric and tropospheric aerosols is analyzed. A 48-inch mobile lidar which operates in the 0.6943, 1.06, 0.3472, and 0.5300 micron ranges is utilized to monitor the stratosphere. The detectors of the system consist of photomultipliers, and the dual-channel, computer-based data-acquisition-system which provides on-line plotting of scattering ratio profiles. The components of the 14-inch aperture, dual-wavelength airborne lidar system that operates with ruby and Nd:YAG transmitters are described. An 8-inch, down-looking airborne lidar with silicon diode or photomultiplier detectors was developed. The capabilities of the system alone and when combined with the 14-inch lidar are discussed. Examples of the data provided by the three lidar systems are presented, revealing the reliability and operational efficiency of the systems.

  19. Eye-safe coherent lidar detection using a 1.5-um Raman laser

    NASA Astrophysics Data System (ADS)

    Monarski, Timothy W.; Hannon, Stephen M.; Gatt, Philip

    2001-09-01

    We present data on a novel short-pulse eyesafe lidar transceiver for utilization in high-resolution heterodyne detection Doppler wind sensing. Operating at 20 Hz, the transmitter is a 1.3 micrometers pumped solid state Raman laser running at 1.556 micrometers , and is injection seeded using a direct diode master oscillator. This system is coupled to a hemispherical scanner to measure atmospheric winds, with the data validated against a commercially-available 2 micrometers lidar system. We typically measured atmospheric returns from greater than 2 km, with range resolution less than 6 m.

  20. Liquid Water Cloud Measurements Using the Raman Lidar Technique: Current Understanding and Future Research Needs

    NASA Technical Reports Server (NTRS)

    Tetsu, Sakai; Whiteman, David N.; Russo, Felicita; Turner, David D.; Veselovskii, Igor; Melfi, S. Harvey; Nagai, Tomohiro; Mano, Yuzo

    2013-01-01

    This paper describes recent work in the Raman lidar liquid water cloud measurement technique. The range-resolved spectral measurements at the National Aeronautics and Space Administration Goddard Space Flight Center indicate that the Raman backscattering spectra measured in and below low clouds agree well with theoretical spectra for vapor and liquid water. The calibration coefficients of the liquid water measurement for the Raman lidar at the Atmospheric Radiation Measurement Program Southern Great Plains site of the U.S. Department of Energy were determined by comparison with the liquid water path (LWP) obtained with Atmospheric Emitted Radiance Interferometer (AERI) and the liquid water content (LWC) obtained with the millimeter wavelength cloud radar and water vapor radiometer (MMCR-WVR) together. These comparisons were used to estimate the Raman liquid water cross-sectional value. The results indicate a bias consistent with an effective liquid water Raman cross-sectional value that is 28%-46% lower than published, which may be explained by the fact that the difference in the detectors' sensitivity has not been accounted for. The LWP of a thin altostratus cloud showed good qualitative agreement between lidar retrievals and AERI. However, the overall ensemble of comparisons of LWP showed considerable scatter, possibly because of the different fields of view of the instruments, the 350-m distance between the instruments, and the horizontal inhomogeneity of the clouds. The LWC profiles for a thick stratus cloud showed agreement between lidar retrievals andMMCR-WVR between the cloud base and 150m above that where the optical depth was less than 3. Areas requiring further research in this technique are discussed.

  1. Detection of stratospheric sulfuric Acid aerosols with polarization lidar: theory, simulations, and observations.

    PubMed

    Beyerle, G

    2000-09-20

    The derivation of backscatter ratio profiles from polarization lidar measurements is discussed. The method is based on differences in depolarization between molecular backscattering and backscattering from spherical aerosol particles. Simulations show that the polarization algorithms yield backscatter ratios with uncertainties comparable with those obtained by Klett's method, provided that the backscattering process is dominated by molecular scattering. The technique could be utilized for monitoring the stratospheric sulfuric acid aerosol layer during periods of background conditions. The polarization analysis method is discussed in light of simulation results and is applied to polarization lidar profiles observed during the ALBATROSS 1996 field measurement campaign. PMID:18350097

  2. Detection of Stratospheric Sulfuric Acid Aerosols with Polarization Lidar: Theory, Simulations, and Observations

    NASA Astrophysics Data System (ADS)

    Beyerle, Georg

    2000-09-01

    The derivation of backscatter ratio profiles from polarization lidar measurements is discussed. The method is based on differences in depolarization between molecular backscattering and backscattering from spherical aerosol particles. Simulations show that the polarization algorithms yield backscatter ratios with uncertainties comparable with those obtained by Klett s method, provided that the backscattering process is dominated by molecular scattering. The technique could be utilized for monitoring the stratospheric sulfuric acid aerosol layer during periods of background conditions. The polarization analysis method is discussed in light of simulation results and is applied to polarization lidar profiles observed during the ALBATROSS 1996 field measurement campaign.

  3. NDSC and JPL stratospheric lidars

    NASA Technical Reports Server (NTRS)

    McDermid, I. Stuart

    1995-01-01

    The Network for the Detection of Stratospheric Change is an international cooperation providing a set of high-quality, remote-sensing instruments at observing stations around the globe. A brief description of the NDSC and its goals is presented. Lidar has been selected as the NDSC instrument for measurements of stratospheric profiles of ozone, temperature, and aerosol. The Jet Propulsion Laboratory has developed and implemented two stratospheric lidar systems for NDSC. These are located at Table Mountain, California, and at Mauna Loa, Hawaii. These systems, which utilize differential absorption lidar, Rayleigh lidar, raman lidar, and backscatter lidar, to measure ozone, temperature, and aerosol profiles in the stratosphere are briefly described. Examples of results obtained for both long-term and individual profiles are presented.

  4. Remote sensing of the atmosphere by resonance Raman LIDAR

    SciTech Connect

    Sedlacek, A.J.; Harder, D.; Leung, K.P.; Zuhoski, P.B. Jr.; Burr, D.; Chen, C.L.

    1994-12-01

    When in resonance, Raman scattering exhibits strong enhancement ranging from four to six orders of magnitude. This physical phenomenon has been applied to remote sensing of the Earth`s atmosphere. With a 16 inch Cassegrain telescope and spectrometer/ CCD-detector system, 70-150 ppm-m of SO{sub 2} in the atmosphere has been detected at a distance of 0.5 kilometer. This system can be used to detect/monitor chemical effluence in the atmosphere by their unique Raman fingerprints. Experimental result together with detailed resonance Raman and atmospheric laser propagation effects will be discussed.

  5. Development of a deployable aerosol/water vapor lidar to characterize the atmosphere

    NASA Astrophysics Data System (ADS)

    Dao, Phan D.; Dentamaro, Anthony

    2003-09-01

    A trailer-based lidar, named Humidity and Aerosol Lidar (HAL), is being built as a remote sensing tool to characterize atmospheric aerosol and water vapor in the line-of-sight. Water vapor and aerosol in the lower atmosphere are critical components affecting the propagation of high-energy laser beams and microwave. The sensor is developed to collect high temporal and vertical resolution data of atmospheric aerosols and water vapor. This ground-based system also serves as a demonstration and an engineering study of a flight-capable sensor for real-time diagnostic of the atmosphere. The lidar, operating on the principles of differential absorption, could measure water vapor to 10 km altitudes. It also measures aerosols and cloud backscatter at altitudes up to 18 km and ranges up to 90 km. Operating with a hemispherical scanner, the sensor could map the 3-dimensional field of aerosols and water vapor and provide vertical as well as horizontal structures. A unidirectional Alexandrite ring laser, operating in single mode near 727.49 nm, is the laser source. The sensor is designed to operate in day and night time. A description of the system, its wavelength calibration unit, the transmitter-receiver system and projected performance will be discussed. Results of the photo-acoustic calibration cell and wavelength selections will be presented. Preliminary results of water vapor and aerosols will be discussed.

  6. Airborne LIDAR Measurements of Aerosol and Ozone Above the Alberta Oil Sands Region

    NASA Astrophysics Data System (ADS)

    Aggarwal, M.; Whiteway, J. A.; Seabrook, J.; Gray, L. H.

    2014-12-01

    Lidar measurements of ozone and aerosol were conducted from a Twin Otter aircraft above the oil sands region of northern Alberta. The field campaign was carried out with a total of five flights out of Fort McMurray, Alberta during the period between August 22 and August 26, 2013. Significant amounts of aerosol were observed within the boundary layer, up to a height of 1.6 km, but the ozone concentration remained at or below background levels. On August 24th the lidar observed a separated layer of aerosol above the boundary layer, at a height of 1.8 km, in which the ozone mixing ratio increased to 70 ppbv. Backward trajectory calculations revealed that the air containing this separated aerosol layer had passed over an area of forest fires. Directly below the layer of forest fire smoke, in the pollution from the oil sands industry, the measured ozone mixing ratio was lower than the background levels (?35 ppbv).

  7. IIP Update: A Packaged Coherent Doppler Wind Lidar Transceiver. Doppler Aerosol WiNd Lidar (DAWN)

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J.; Koch, Grady J.; Yu, Jirong; Trieu, Bo C.; Amzajerdian, Farzin; Singh, Upendra N.; Petros, Mulugeta

    2006-01-01

    The state-of-the-art 2-micron coherent Doppler wind lidar breadboard at NASA/LaRC will be engineered and compactly packaged consistent with future aircraft flights. The packaged transceiver will be integrated into a coherent Doppler wind lidar system test bed at LaRC. Atmospheric wind measurements will be made to validate the packaged technology. This will greatly advance the coherent part of the hybrid Doppler wind lidar solution to the need for global tropospheric wind measurements.

  8. Detection the Atmospheric Carbon Dioxide using the Raman Lidar in Beijing

    NASA Astrophysics Data System (ADS)

    zhao, Y.

    2013-12-01

    Atmospheric carbon dioxide (CO2) is a key parameter characterizing the state of the atmosphere at any given time and location. An adequate comprehension of meteorological processes and climate phenomena requires accurate measurements of atmospheric CO2 with global coverage and high temporal and spatial resolution. Based on laser atmosphere backscattering spectrum, we designed a Raman lidar system for measurement of atmospheric CO2 , in which 354.7nm third harmonic of Nd:YAG laser is transmitted with 350mJ pulse energy and repetition rate of 20Hz. The receiver employs a photo multiplier tube with quantum efficiency of 25% and 200MHz photon counter, which detects Raman backscattering 371.66nm. The data shows that the signal to noise ratio below 5km is greater than 10. Moreover, combinatorial filter is used to reject interference presented by 354.7nm intense Mie-Rayleigh backscattering and 375.4nm Raman backscattering by the oxygen. As an invariable parameter, the Raman return signal at 386.7nm from atmospheric N2 is used for reference signal. Meanwhile, the wavelet analysis method is used to retrieve the atmospheric CO2 concentration. Most important, we carried out the detection in Beijing for one year. The profile of troposphere atmospheric CO2 is presented. Moreover, we summarized the character of spatial and temporal distribution for the atmospheric CO2 below the 5km. Keywords: atmospheric carbon dioxide, Raman lidar, scattering spectrum, concentration

  9. Evidence of High Ice Supersaturation in Cirrus Clouds Using ARM Raman Lidar Measurements

    SciTech Connect

    Comstock, Jennifer M.; Ackerman, Thomas P.; Turner, David D.

    2004-06-05

    Water vapor amounts in the upper troposphere are crucial to understanding the radiative feedback of cirrus clouds on the Earth’s climate. We use a unique, year-long dataset of water vapor mixing ratio inferred from ground-based Raman lidar measurements to study the role of ice supersaturation in ice nucleation processes. We find that ice supersaturation occurs 31% of the time in over 300,000 data points. We also examine the distribution of ice supersaturation with height and find that in the uppermost portion of a cloud layer, the air is ice supersaturated 43% of the time. These measurements show that large ice supersaturation is common in cirrus clouds, which supports the theory of ice forming homogeneously. Given the continuous nature of these Raman lidar measurements, our results have important implications for studying ice nucleation processes using cloud microphysical models.

  10. ARM Raman Lidar Measurements of High Ice Supersaturation in Cirrus Clouds

    SciTech Connect

    Comstock, Jennifer M.; Ackerman, Thomas P.; Turner, David D.

    2004-09-01

    Water vapor amounts in the upper troposphere are crucial to understanding the radiative feedback of cirrus clouds on the Earth's climate. We use a unique, year-long dataset of water vapor mixing ratio inferred from ground-based Raman lidar measurements to study the role of ice supersaturation in ice nucleation processes. We find that ice supersaturation occurs 31% of the time in over 300,000 data points. We also examine the distribution of ice supersaturation with height and find that in the uppermost portion of a cloud layer, the air is ice supersaturated 43% of the time. These measurements show that large ice supersaturation is common in cirrus clouds, which supports the theory of ice forming homogeneously. Given the continuous nature of these Raman lidar measurements, our results have important implications for studying ice nucleation processes using cloud microphysical models.

  11. Aerosol and Cloud Interaction Observed From High Spectral Resolution Lidar Data

    NASA Technical Reports Server (NTRS)

    Su, Wenying; Schuster, Gregory L.; Loeb, Norman G.; Rogers, Raymond R.; Ferrare, Richard A.; Hostetler, Chris A.; Hair, Johnathan W.; Obland, Michael D.

    2008-01-01

    Recent studies utilizing satellite retrievals have shown a strong correlation between aerosol optical depth (AOD) and cloud cover. However, these retrievals from passive sensors are subject to many limitations, including cloud adjacency (or 3D) effects, possible cloud contamination, uncertainty in the AOD retrieval. Some of these limitations do not exist in High Spectral Resolution Lidar (HSRL) observations; for instance, HSRL observations are not a ected by cloud adjacency effects, are less prone to cloud contamination, and offer accurate aerosol property measurements (backscatter coefficient, extinction coefficient, lidar ratio, backscatter Angstrom exponent,and aerosol optical depth) at a neospatial resolution (less than 100 m) in the vicinity of clouds. Hence, the HSRL provides an important dataset for studying aerosol and cloud interaction. In this study, we statistically analyze aircraft-based HSRL profiles according to their distance from the nearest cloud, assuring that all profile comparisons are subject to the same large-scale meteorological conditions. Our results indicate that AODs from HSRL are about 17% higher in the proximity of clouds (approximately 100 m) than far away from clouds (4.5 km), which is much smaller than the reported cloud 3D effect on AOD retrievals. The backscatter and extinction coefficients also systematically increase in the vicinity of clouds, which can be explained by aerosol swelling in the high relative humidity (RH) environment and/or aerosol growth through in cloud processing (albeit not conclusively). On the other hand, we do not observe a systematic trend in lidar ratio; we hypothesize that this is caused by the opposite effects of aerosol swelling and aerosol in-cloud processing on the lidar ratio. Finally, the observed backscatter Angstrom exponent (BAE) does not show a consistent trend because of the complicated relationship between BAE and RH. We demonstrate that BAE should not be used as a surrogate for Angstrom exponent, especially at high RH.

  12. Observations of water vapor by ground-based microwave radiometers and Raman lidar

    NASA Technical Reports Server (NTRS)

    Han, Yong; Snider, J. B.; Westwater, E. R.; Melfi, S. H.; Ferrare, R. A.

    1994-01-01

    In November to December 1991, a substantial number of remote sensors and in situ instruments were operated together in Coffeyville, Kansas, during the climate experiment First ISCCP Regional Experiment Phase 2 (FIRE 2). Includede in the suite of instruments were (1) the NOAA Environmental Technology Laboratory (ETL) three-channel microwave radiometer, (2) the NASA GSFC Raman lidar, (3) ETL radio acoustic sounding system (RASS), and (4) frequent, research-quality radiosondes. The Raman lidar operated only at night and the focus of this portion of the experiment concentrated on clear conditions. The lidar data, together with frequent radiosondes and measurements of temperature profiles (every 15 min) by RASS allowed profiles of temperature and absolute humidity to be estimated every minute. We compared 20 min measurements of brightness temperature (T(sub b) with calculations of T(sub b) that were based on the Liebe and Layton (1987) and Liebe et al. (1993) microwave propagation models, as well as the Waters (1976) model. The comparisons showed the best agreement at 20.6 GHz with the Waters model, with the Liebe et al. (1993) model being best at 31.65 GHz. The results at 90 GHz gave about equal success with the Liebe and Layton (1987) and Liebe et al. (1993) models. Comparisons of precipitable water vapor derived independently from the two instruments also showed excellent agreement, even for averages as short as 2 min. The rms difference between Raman and radiometric determinations of precipitable water vapor was 0.03 cm which is roughly 2%. The experiments clearly demonstrate the potential of simultaneous operation of radiometers and Raman lidars for fundamental physical studies of water vapor.

  13. Aerosol and Cloud Observations and Data Products by the GLAS Polar Orbiting Lidar Instrument

    NASA Technical Reports Server (NTRS)

    Spinhirne, J. D.; Palm, S. P.; Hlavka, D. L.; Hart, W. D.; Mahesh, A.; Welton, E. J.

    2005-01-01

    The Geoscience Laser Altimeter System (GLAS) launched in 2003 is the first polar orbiting satellite lidar. The instrument was designed for high performance observations of the distribution and optical scattering cross sections of clouds and aerosol. The backscatter lidar operates at two wavelengths, 532 and 1064 nm. Both receiver channels meet and exceed their design goals, and beginning with a two month period through October and November 2003, an excellent global lidar data set now exists. The data products for atmospheric observations include the calibrated, attenuated backscatter cross section for cloud and aerosol; height detection for multiple cloud layers; planetary boundary layer height; cirrus and aerosol optical depth and the height distribution of aerosol and cloud scattering cross section profiles. The data sets are now in open release through the NASA data distribution system. The initial results on global statistics for cloud and aerosol distribution has been produced and in some cases compared to other satellite observations. The sensitivity of the cloud measurements is such that the 70% global cloud coverage result should be the most accurate to date. Results on the global distribution of aerosol are the first that produce the true height distribution for model inter-comparison.

  14. Comparison of Modeled Backscatter using Measured Aerosol Microphysics with Focused CW Lidar Data over Pacific

    NASA Technical Reports Server (NTRS)

    Srivastava, Vandana; Clarke, Antony D.; Jarzembski, Maurice A.; Rothermel, Jeffry

    1997-01-01

    During NASA's GLObal Backscatter Experiment (GLOBE) II flight mission over the Pacific Ocean in May-June 1990, extensive aerosol backscatter data sets from two continuous wave, focused CO2 Doppler lidars and an aerosol microphysics data set from a laser optical particle counter (LOPC) were obtained. Changes in aerosol loading in various air masses with associated changes in chemical composition, from sulfuric acid and sulfates to dustlike crustal material, significantly affected aerosol backscatter, causing variation of about 3 to 4 orders of magnitude. Some of the significant backscatter features encountered in different air masses were the low backscatter in subtropical air with even lower values in the tropics near the Intertropical Convergence Zone (ITCZ), highly variable backscatter in the ITCZ, mid-tropospheric aerosol backscatter background mode, and high backscatter in an Asian dust plume off the Japanese coast. Differences in aerosol composition and backscatter for northern and southern hemisphere also were observed. Using the LOPC measurements of physical and chemical aerosol properties, we determined the complex refractive index from three different aerosol mixture models to calculate backscatter. These values provided a well-defined envelope of modeled backscatter for various atmospheric conditions, giving good agreement with the lidar data over a horizontal sampling of approximately 18000 km in the mid-troposphere.

  15. Retrievals of Profiles of Fine And Coarse Aerosols Using Lidar And Radiometric Space Measurements

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram; Tanre, Didier; Leon, Jean-Francois; Pelon, Jacques; Lau, William K. M. (Technical Monitor)

    2002-01-01

    In couple of years we expect the launch of the CALIPSO lidar spaceborne mission designed to observe aerosols and clouds. CALIPSO will collect profiles of the lidar attenuated backscattering coefficients in two spectral wavelengths (0.53 and 1.06 microns). Observations are provided along the track of the satellite around the globe from pole to pole. The attenuated backscattering coefficients are sensitive to the vertical distribution of aerosol particles, their shape and size. However the information is insufficient to be mapped into unique aerosol physical properties and vertical distribution. Infinite number of physical solutions can reconstruct the same two wavelength backscattered profile measured from space. CALIPSO will fly in formation with the Aqua satellite and the MODIS spectro-radiometer on board. Spectral radiances measured by MODIS in six channels between 0.55 and 2.13 microns simultaneously with the CALIPSO observations can constrain the solutions and resolve this ambiguity, albeit under some assumptions. In this paper we describe the inversion method and apply it to aircraft lidar and MODIS data collected over a dust storm off the coast of West Africa during the SHADE experiment. It is shown that the product of the single scattering albedo, omega, and the phase function, P, for backscattering can be retrieved from the synergism between measurements avoiding a priori hypotheses required for inverting lidar measurements alone. The resultant value of (omega)P(180 deg.) = 0.016/sr are significantly different from what is expected using Mie theory, but are in good agreement with recent results obtained from lidar observations of dust episodes. The inversion is robust in the presence of noise of 10% and 20% in the lidar signal in the 0.53 and 1.06 pm channels respectively. Calibration errors of the lidar of 5 to 10% can cause an error in optical thickness of 20 to 40% respectively in the tested cases. The lidar calibration errors cause degradation in the ability to fit the MODIS data. Therefore the MODIS measurements can be used to identify the calibration problem and correct for it. The CALIPSO-MODIS measurements of the profiles of fine and coarse aerosols, together with CALIPSO measurements of clouds vertical distribution, is expected to be critically important in understanding aerosol transport across continents and political boundaries, and to study aerosol-cloud interaction and its effect on precipitation and global forcing of climate.

  16. The 48-inch lidar aerosol measurements taken at the Langley Research Center

    NASA Technical Reports Server (NTRS)

    Woods, David C.; Osborn, M. T.; Winker, D. M.; Decoursey, R. J.; Youngbluth, Otto, Jr.

    1994-01-01

    This report presents lidar data taken between July 1991 and December 1992 using a ground-based 48-inch lidar instrument at the Langley Research Center in Hampton, Virginia. Seventy lidar profiles (approximately one per week) were obtained during this period, which began less than 1 month after the eruption of the Mount Pinatubo volcano in the Philippines. Plots of backscattering ratio as a function of altitude are presented for each data set along with tables containing numerical values of the backscattering ratio and backscattering coefficient versus altitude. The enhanced aerosol backscattering seen in the profiles highlights the influence of the Mount Pinatubo eruption on the stratospheric aerosol loading over Hampton. The long-term record of the profiles gives a picture of the evolution of the aerosol cloud, which reached maximum loading approximately 8 months after the eruption and then started to decrease gradually. NASA RP-1209 discusses 48-inch lidar aerosol measurements taken at the Langley Research Center from May 1974 to December 1987.

  17. Lidar System for Airborne Measurement of Clouds and Aerosols

    NASA Technical Reports Server (NTRS)

    McGill, Matthew; Scott, V. Stanley; Izquierdo, Luis Ramos; Marzouk, Joe

    2008-01-01

    A lidar system for measuring optical properties of clouds and aerosols at three wavelengths is depicted. The laser transmitter is based on a Nd:YVO4 laser crystal pumped by light coupled to the crystal via optical fibers from laser diodes that are located away from the crystal to aid in dissipating the heat generated in the diodes and their drive circuits. The output of the Nd:YVO4 crystal has a wavelength of 1064 nm, and is made to pass through frequency-doubling and frequency-tripling crystals. As a result, the net laser output is a collinear superposition of beams at wavelengths of 1064, 532, and 355 nm. The laser operates at a pulse-repetition rate of 5 kHz, emitting per-pulse energies of 50 microJ at 1064 nm, 25 microJ at 532 nm and 50 microJ at 355 nm. An important feature of this system is an integrating sphere located between the laser output and the laser beam expander lenses. The integrating sphere collects light scattered from the lenses. Three energy-monitor detectors are located at ports inside the integrating sphere. Each of these detectors is equipped with filters such that the laser output energy is measured independently for each wavelength. The laser output energy is measured on each pulse to enable the most accurate calibration possible. The 1064-nm and 532-nm photodetectors are, more specifically, single photon-counting modules (SPCMs). When used at 1064 nm, these detectors have approximately 3% quantum efficiency and low thermal noise (fewer than 200 counts per second). When used at 532 nm, the SPCMs have quantum efficiency of about 60%. The photodetector for the 355-nm channel is a photon-counting photomultiplier tube having a quantum efficiency of about 20%. The use of photon-counting detectors is made feasible by the low laser pulse energy. The main advantage of photon-counting is ease of inversion of data without need for complicated calibration schemes like those necessary for analog detectors. The disadvantage of photon-counting detectors is that they inherently have narrow dynamic ranges. However, by using photon-counting detectors along with a high-repetition rate laser, it is possible to obtain wide dynamic range through accumulation of counts over many pulses.

  18. Assimilation of lidar signals: application to aerosol forecasting in the western Mediterranean basin

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Sartelet, K. N.; Bocquet, M.; Chazette, P.; Sicard, M.; D'Amico, G.; Léon, J. F.; Alados-Arboledas, L.; Amodeo, A.; Augustin, P.; Bach, J.; Belegante, L.; Binietoglou, I.; Bush, X.; Comerón, A.; Delbarre, H.; García-Vízcaino, D.; Guerrero-Rascado, J. L.; Hervo, M.; Iarlori, M.; Kokkalis, P.; Lange, D.; Molero, F.; Montoux, N.; Muñoz, A.; Muñoz, C.; Nicolae, D.; Papayannis, A.; Pappalardo, G.; Preissler, J.; Rocadenbosch, F.; Sellegri, K.; Wagner, F.; Dulac, F.

    2014-11-01

    This paper presents a new application of assimilating lidar signals to aerosol forecasting. It aims at investigating the impact of a ground-based lidar network on the analysis and short-term forecasts of aerosols through a case study in the Mediterranean basin. To do so, we employ a data assimilation (DA) algorithm based on the optimal interpolation method developed in the Polair3D chemistry transport model (CTM) of the Polyphemus air quality modelling platform. We assimilate hourly averaged normalised range-corrected lidar signals (PR2) retrieved from a 72 h period of intensive and continuous measurements performed in July 2012 by ground-based lidar systems of the European Aerosol Research Lidar Network (EARLINET) integrated into the Aerosols, Clouds, and Trace gases Research InfraStructure (ACTRIS) network and an additional system in Corsica deployed in the framework of the pre-ChArMEx (Chemistry-Aerosol Mediterranean Experiment)/TRAQA (TRAnsport à longue distance et Qualité de l'Air) campaign. This lidar campaign was dedicated to demonstrating the potential operationality of a research network like EARLINET and the potential usefulness of assimilation of lidar signals to aerosol forecasts. Particles with an aerodynamic diameter lower than 2.5 ?m (PM2.5) and those with an aerodynamic diameter higher than 2.5 ?m but lower than 10 ?m (PM10-2.5) are analysed separately using the lidar observations at each DA step. First, we study the spatial and temporal influences of the assimilation of lidar signals on aerosol forecasting. We conduct sensitivity studies on algorithmic parameters, e.g. the horizontal correlation length (Lh) used in the background error covariance matrix (50 km, 100 km or 200 km), the altitudes at which DA is performed (0.75-3.5 km, 1.0-3.5 km or 1.5-3.5 km a.g.l.) and the assimilation period length (12 h or 24 h). We find that DA with Lh = 100 km and assimilation from 1.0 to 3.5 km a.g.l. during a 12 h assimilation period length leads to the best scores for PM10 and PM2.5 during the forecast period with reference to available measurements from surface networks. Secondly, the aerosol simulation results without and with lidar DA using the optimal parameters (Lh = 100 km, an assimilation altitude range from 1.0 to 3.5 km a.g.l. and a 12 h DA period) are evaluated using the level 2.0 (cloud-screened and quality-assured) aerosol optical depth (AOD) data from AERONET, and mass concentration measurements (PM10 or PM2.5) from the French air quality (BDQA) network and the EMEP-Spain/Portugal network. The results show that the simulation with DA leads to better scores than the one without DA for PM2.5, PM10and AOD. Additionally, the comparison of model results to evaluation data indicates that the temporal impact of assimilating lidar signals is longer than 36 h after the assimilation period.

  19. Multiwavelength lidar measurements of stratospheric aerosols above Spitsbergen during winter 1992/93

    SciTech Connect

    Beyerle, G.; Neuber, R.; Schrems, O. ); Wittrock, F. ); Knudsen, B. )

    1994-01-01

    Using a multiwavelength lidar the authors measured aerosols from the tropopause to altitudes of 30 km in the period December 1992 to March 1993. They analyzed backscatter and depolarization measurements to infer information on aerosol size and phase. During most of this period they saw evidence of a liquid drop aerosol layer in the lower stratosphere which was of a volcanic origin. In January they observed polar stratospheric clouds on numerous occasions, and particle size was found to depend strongly on the cooling rate.

  20. Systematic Relationships Between Lidar Observables and Sizes And Mineral Composition Of Dust Aerosols

    NASA Technical Reports Server (NTRS)

    Van Diedenhoven, Bastiaan; Stangl, Alexander; Perlwitz, Jan; Fridlind, Ann M.; Chowdhary, Jacek; Cairns, Brian

    2015-01-01

    The physical and chemical properties of soil dust aerosol particles fundamentally affect their interaction with climate, including shortwave absorption and radiative forcing, nucleation of cloud droplets and ice crystals, heterogeneous formation of sulfates and nitrates on the surface of dust particles, and atmospheric processing of iron into bioavailable forms that increase the productivity of marine phytoplankton. Lidar measurements, such as extinction-to-backscatter, color and depolarization ratios, are frequently used to distinguish between aerosol types with different physical and chemical properties. The chemical composition of aerosol particles determines their complex refractive index, hence affecting their backscattering properties. Here we present a study on how dust aerosol backscattering and depolarization properties at wavelengths of 355, 532 and 1064 nm are related to size and complex refractive index, which varies with the mineral composition of the dust. Dust aerosols are represented by collections of spheroids with a range of prolate and oblate aspect ratios and their optical properties are obtained using T-matrix calculations. We find simple, systematic relationships between lidar observables and the dust size and complex refractive index that may aid the use of space-based or airborne lidars for direct retrieval of dust properties or for the evaluation of chemical transport models using forward simulated lidar variables. In addition, we present first results on the spatial variation of forward-simulated lidar variables based on a dust model that accounts for the atmospheric cycle of eight different mineral types plus internal mixtures of seven mineral types with iron oxides, which was recently implemented in the NASA GISS Earth System ModelE2.

  1. Cloud and Aerosol Retrieval for the 2001 GLAS Satellite Lidar Mission

    NASA Technical Reports Server (NTRS)

    Hart, William D.; Palm, Stephen P.; Spinhirne, James D.

    2000-01-01

    The Geoscience Laser Altimeter System (GLAS) is scheduled for launch in July of 2001 aboard the Ice, Cloud and Land Elevation Satellite (ICESAT). In addition to being a precision altimeter for mapping the height of the Earth's icesheets, GLAS will be an atmospheric lidar, sensitive enough to detect gaseous, aerosol, and cloud backscatter signals, at horizontal and vertical resolutions of 175 and 75m, respectively. GLAS will be the first lidar to produce temporally continuous atmospheric backscatter profiles with nearly global coverage (94-degree orbital inclination). With a projected operational lifetime of five years, GLAS will collect approximately six billion lidar return profiles. The large volume of data dictates that operational analysis algorithms, which need to keep pace with the data yield of the instrument, must be efficient. So, we need to evaluate the ability of operational algorithms to detect atmospheric constituents that affect global climate. We have to quantify, in a statistical manner, the accuracy and precision of GLAS cloud and aerosol observations. Our poster presentation will show the results of modeling studies that are designed to reveal the effectiveness and sensitivity of GLAS in detecting various atmospheric cloud and aerosol features. The studies consist of analyzing simulated lidar returns. Simulation cases are constructed either from idealized renditions of atmospheric cloud and aerosol layers or from data obtained by the NASA ER-2 Cloud Lidar System (CLS). The fabricated renditions permit quantitative evaluations of operational algorithms to retrieve cloud and aerosol parameters. The use of observational data permits the evaluations of performance for actual atmospheric conditions. The intended outcome of the presentation is that climatology community will be able to use the results of these studies to evaluate and quantify the impact of GLAS data upon atmospheric modeling efforts.

  2. Comments on: Accuracy of Raman Lidar Water Vapor Calibration and its Applicability to Long-Term Measurements

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.; Venable, Demetrius; Landulfo, Eduardo

    2012-01-01

    In a recent publication, LeBlanc and McDermid proposed a hybrid calibration technique for Raman water vapor lidar involving a tungsten lamp and radiosondes. Measurements made with the lidar telescope viewing the calibration lamp were used to stabilize the lidar calibration determined by comparison with radiosonde. The technique provided a significantly more stable calibration constant than radiosondes used alone. The technique involves the use of a calibration lamp in a fixed position in front of the lidar receiver aperture. We examine this configuration and find that such a configuration likely does not properly sample the full lidar system optical efficiency. While the technique is a useful addition to the use of radiosondes alone for lidar calibration, it is important to understand the scenarios under which it will not provide an accurate quantification of system optical efficiency changes. We offer examples of these scenarios.

  3. Lidar Inter-Comparison Exercise Final Campaign Report

    SciTech Connect

    Protat, A; Young, S

    2015-02-01

    The objective of this field campaign was to evaluate the performance of the new Leosphere R-MAN 510 lidar, procured by the Australian Bureau of Meteorology, by testing it against the MicroPulse Lidar (MPL) and Raman lidars, at the Darwin Atmospheric Radiation Measurement (ARM) site. This lidar is an eye-safe (355 nm), turn-key mini Raman lidar, which allows for the detection of aerosols and cloud properties, and the retrieval of particulate extinction profiles. To accomplish this evaluation, the R-MAN 510 lidar has been operated at the Darwin ARM site, next to the MPL, Raman lidar, and Vaisala ceilometer (VCEIL) for three months (from 20 January 2013 to 20 April 2013) in order to collect a sufficient sample size for statistical comparisons.

  4. Gas dispersion measurements using a mobile Raman lidar system

    NASA Technical Reports Server (NTRS)

    Houston, J. D.; Brown, D. R.

    1986-01-01

    The exploitation of natural gas resources to supply energy demands has resulted in the need to engineer pipelines and plants capable of handling extremely high pressures and throughputs. Consequently, more attention has been directed to evaluating the consequences of releases of material whether accidental or deliberate in nature. An important aspect of assessing the consequences of a release is an understanding of how gas disperses in the atmosphere over a wide range of release and atmospheric conditions. The most cost effective way of providing such information is through the development and use of reliable theoretical prediction methods. The need for some form of remote sensing device was identified. The various possibilities studied led to the conclusion that LIDAR (Light Detection And Ranging) offered the most suitable method. The system designed and built is described, and its recent use in monitoring operational ventings from a high pressure transmission system is discussed.

  5. Airborne High Spectral Resolution Lidar Aerosol Measurements during MILAGRO and TEXAQS/GOMACCS

    NASA Technical Reports Server (NTRS)

    Ferrare, Richard; Hostetler, Chris; Hair, John; Cook Anthony; Harper, David; Burton, Sharon; Clayton, Marian; Clarke, Antony; Russell, Phil; Redemann, Jens

    2007-01-01

    Two1 field experiments conducted during 2006 provided opportunities to investigate the variability of aerosol properties near cities and the impacts of these aerosols on air quality and radiative transfer. The Megacity Initiative: Local and Global Research Observations (MILAGRO) /Megacity Aerosol Experiment in Mexico City (MAX-MEX)/Intercontinental Chemical Transport Experiment-B (INTEX-B) joint experiment conducted during March 2006 investigated the evolution and transport of pollution from Mexico City. The Texas Air Quality Study (TEXAQS)/Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS) (http://www.al.noaa.gov/2006/) conducted during August and September 2006 investigated climate and air quality in the Houston/Gulf of Mexico region. During both missions, the new NASA Langley airborne High Spectral Resolution Lidar (HSRL) was deployed on the NASA Langley B200 King Air aircraft and measured profiles of aerosol extinction, backscattering, and depolarization to: 1) characterize the spatial and vertical distributions of aerosols, 2) quantify aerosol extinction and optical thickness contributed by various aerosol types, 3) investigate aerosol variability near clouds, 4) evaluate model simulations of aerosol transport, and 5) assess aerosol optical properties derived from a combination of surface, airborne, and satellite measurements.

  6. Backscatter Modeling at 2.1 Micron Wavelength for Space-Based and Airborne Lidars Using Aerosol Physico-Chemical and Lidar Datasets

    NASA Technical Reports Server (NTRS)

    Srivastava, V.; Rothermel, J.; Jarzembski, M. A.; Clarke, A. D.; Cutten, D. R.; Bowdle, D. A.; Spinhirne, J. D.; Menzies, R. T.

    1999-01-01

    Space-based and airborne coherent Doppler lidars designed for measuring global tropospheric wind profiles in cloud-free air rely on backscatter, beta from aerosols acting as passive wind tracers. Aerosol beta distribution in the vertical can vary over as much as 5-6 orders of magnitude. Thus, the design of a wave length-specific, space-borne or airborne lidar must account for the magnitude of 8 in the region or features of interest. The SPAce Readiness Coherent Lidar Experiment under development by the National Aeronautics and Space Administration (NASA) and scheduled for launch on the Space Shuttle in 2001, will demonstrate wind measurements from space using a solid-state 2 micrometer coherent Doppler lidar. Consequently, there is a critical need to understand variability of aerosol beta at 2.1 micrometers, to evaluate signal detection under varying aerosol loading conditions. Although few direct measurements of beta at 2.1 micrometers exist, extensive datasets, including climatologies in widely-separated locations, do exist for other wavelengths based on CO2 and Nd:YAG lidars. Datasets also exist for the associated microphysical and chemical properties. An example of a multi-parametric dataset is that of the NASA GLObal Backscatter Experiment (GLOBE) in 1990 in which aerosol chemistry and size distributions were measured concurrently with multi-wavelength lidar backscatter observations. More recently, continuous-wave (CW) lidar backscatter measurements at mid-infrared wavelengths have been made during the Multicenter Airborne Coherent Atmospheric Wind Sensor (MACAWS) experiment in 1995. Using Lorenz-Mie theory, these datasets have been used to develop a method to convert lidar backscatter to the 2.1 micrometer wavelength. This paper presents comparison of modeled backscatter at wavelengths for which backscatter measurements exist including converted beta (sub 2.1).

  7. Lidar measurements of ozone and aerosol distributions during the 1992 airborne Arctic stratospheric expedition

    NASA Technical Reports Server (NTRS)

    Browell, Edward V.; Butler, Carolyn F.; Fenn, Marta A.; Grant, William B.; Ismail, Syed; Carter, Arlen F.

    1994-01-01

    The NASA Langley airborne differential absorption lidar system was operated from the NASA Ames DC-8 aircraft during the 1992 Airborne Arctic Stratospheric Expedition to investigate the distribution of stratospheric aerosols and ozone (O3) across the Arctic vortex from January to March 1992. Aerosols from the Mt. Pinatubo eruption were found outside and inside the Arctic vortex with distinctly different scattering characteristics and spatial distributions in the two regions. The aerosol and O3 distributions clearly identified the edge of the vortex and provided additional information on vortex dynamics and transport processes. Few polar stratospheric clouds were observed during the AASE-2; however, those that were found had enhanced scattering and depolarization over the background Pinatubo aerosols. The distribution of aerosols inside the vortex exhibited relatively minor changes during the AASE-2. Ozone depletion inside the vortex as limited to less than or equal to 20 percent in the altitude region from 15-20 km.

  8. Airborne coherent continuous wave CO2 Doppler lidars for aerosol backscatter measurement

    NASA Technical Reports Server (NTRS)

    Rothermel, Jeffry; Jones, William D.; Hampton, Diana; Srivastava, Vandana; Jarzembski, Maurice

    1991-01-01

    Two focused coherent, continuous wave (CW) lidars have been developed by the Marshall Space Flight Center (MSFC) for airborne and ground-based measurement of aerosol backscatter coefficients. The first of these instruments uses a mixture of CO2 and other gases, and measures backscatter at 10.6 m. The second lidar uses an isotope of carbon dioxide, which enables lasing at 9.1 m. The 10.6 m backscatter measurement serves as a reference to allow variations in backscatter due to aerosol concentration to be distinguished from variations due to spectral variability. The 10.6 m lidar has been used in airborne field programs since 1981. Development of the 9.1 m lidar was completed in early 1989. Recently, both lidars were flown on the NASA/Ames Research Center DC-8 research aircraft in the remote Pacific Basin as part of the NASA GLObal Backscatter Experiment (GLOBE) survey missions. The GLOBE program, of which the survey missions are the centerpieces, supports design and simulation studies for NASA's prospective Laser Atmospheric Wind Sounder (LAWS).

  9. Lidar Measurements of Aerosol and Ozone Distributions During the 1992 Airborne Arctic Stratospheric Expedition

    NASA Technical Reports Server (NTRS)

    Browell, E. V.; Butler, C. F.; Fenn, M. A.; Grant, W. B.; Carter, A. F.

    1992-01-01

    The LaRC airborne lidar system was operated from the ARC DC-8 aircraft during the 1992 Airborne Arctic Stratospheric Expedition (ASEE-2) to investigate the distribution of stratospheric aerosols and O3 across the Arctic vortex from Jan. to Mar. 1992. Monthly flights were made across the Arctic vortex from Anchorage, Alaska, to Stavanger, Norway, and then back to Bangor, Maine, and additional round-trip flights north into the vortex were made each month from either Stavanger or Bangor depending on the location of the vortex that month. The airborne lidar system uses the differential absorption lidar (DIAL) technique at laser wavelengths of 301.5 and 310.8 nm to measure O3 profiles above the DC-8 over the 12-25 km altitude range. Lidar measurements of aerosol backscatter and depolarization profiles over the 12-30 km altitude range are made simultaneously with the O3 measurements using infrared (IR) and visible (VIS) laser wavelengths of 603 and 1064 nm, respectively. The measurements of Pinatubo aerosols, polar stratospheric clouds, and O3 made with the airborne DIAL system during the AASE-2 expedition and to chemical and dynamical process that contribute to O3 depletion in the wintertime Arctic stratosphere.

  10. Remote Sensing of Wind Fields and Aerosol Distribution with Airborne Scanning Doppler Lidar

    NASA Technical Reports Server (NTRS)

    Rothermel, Jeffry; Cutten, Dean R.; Johnson, Steven C.; Jazembski, Maurice; Arnold, James E. (Technical Monitor)

    2001-01-01

    The coherent Doppler laser radar (lidar), when operated from an airborne platform, is a unique tool for the study of atmospheric and surface processes and features. This is especially true for scientific objectives requiring measurements in optically-clear air, where other remote sensing technologies such as Doppler radar are typically at a disadvantage. The atmospheric lidar remote sensing groups of several US institutions, led by Marshall Space Flight Center, have developed an airborne coherent Doppler lidar capable of mapping the wind field and aerosol structure in three dimensions. The instrument consists of an eye-safe approx. 1 Joule/pulse lidar transceiver, telescope, scanner, inertial measurement unit, and flight computer system to orchestrate all subsystem functions and tasks. The scanner is capable of directing the expanded lidar beam in a variety of ways, in order to extract vertically-resolved wind fields. Horizontal resolution is approx. 1 km; vertical resolution is even finer. Winds are obtained by measuring backscattered, Doppler-shifted laser radiation from naturally-occurring aerosol particles (of order 1 micron diameter). Measurement coverage depends on aerosol spatial distribution and composition. Velocity accuracy has been verified to be approx. 1 meter per second. A variety of applications have been demonstrated during the three flight campaigns conducted during 1995-1998. Examples will be shown during the presentation. In 1995, boundary layer winds over the ocean were mapped with unprecedented resolution. In 1996, unique measurements were made of. flow over the complex terrain of the Aleutian Islands; interaction of the marine boundary layer jet with the California coastal mountain range; a weak dry line in Texas - New Mexico; the angular dependence of sea surface scattering; and in-flight radiometric calibration using the surface of White Sands National Monument. In 1998, the first measurements of eyewall and boundary layer winds within a hurricane were made with the airborne Doppler lidar. Potential applications and plans for improvement will also be described.

  11. Remote Sensing of Wind Fields and Aerosol Distributions with Airborne Scanning Doppler Lidar

    NASA Technical Reports Server (NTRS)

    Rothermel, Jeffry; Cutten, Dean R.; Goodman, H. Michael (Technical Monitor)

    2000-01-01

    The coherent Doppler lidar, when operated from an airborne platform, offers a unique measurement capability for study of atmospheric and surface processes and feature. This is especially true for scientific objectives requiring measurements in optically-clear air, where other remote sensing technologies such as Doppler radar are at a disadvantage in terms of spatial resolution and coverage. The atmospheric lidar remote sensing groups of several US institutions, led by Marshall Space Flight Center, have developed an airborne coherent Doppler lidar capable of mapping the wind field and aerosol structure in three dimensions. The instrument consists of about a 1 Joule/pulse (eyesafe) lidar transceiver, telescope, scanner, inertial measurement unit, and operations control system to orchestrate all subsystem functions and tasks. The scanner is capable of directing the expanded lidar beam in a variety of ways, in order to extract vertically resolved wind fields. Horizontal resolution is about 1 km; vertical resolution is even finer. Winds are obtained by measuring backscattered, Doppler-shifted laser radiation from naturally-occurring aerosol particles (on an order of 1 micron in diameter). Measurement coverage depends on aerosol spatial distribution and concentration. Velocity accuracy has been verified to be about 1 m/s. A variety of applications has been demonstrated during the three flight campaigns conducted during 1995-1998. Examples will be shown during the presentation. In 1995, boundary layer winds over the ocean were mapped with unprecedented resolution. In 1996, unique measurements were made of flow over the complex terrain of the Aleutian Islands; interaction of the marine boundary layer jet with the California coastal mountain range; a weak dry line in Texas - New Mexico; an upper tropospheric jet stream; the angular dependence of sea surface scattering; and in-flight radiometric calibration using the surface of White Sands National Monument. In 1998, the first measurements of eyewall and boundary layer winds within a hurricane were made with the airborne Doppler lidar. Potential future applications, and plans for improvements, will also be identified.

  12. A three-beam aerosol backscatter correlation lidar for three-component wind profiling

    NASA Astrophysics Data System (ADS)

    Radhakrishnan Mylapore, Anand; Schwemmer, Geary K.; Prasad, Coorg R.; Lee, Sangwoo; Achey, Alexander; Hwang, In Heon; Mehta, Nikhil; Yakshin, Mikhail; Novoselov, Konstantin; Prasad, Narasimha S.

    2014-06-01

    In this paper, we describe the development of a three-beam elastic lidar that utilizes aerosol backscatter correlation to measure three-component wind profiles for detecting and tracking aircraft wake vortices; turbulence intensity and wind shear profiles. High-resolution time-resolved wind information can currently be obtained with ultrasonic or hot-wire anemometers suitable for local point measurements, or with Doppler wind lidars that only measure line-of-sight wind speeds and have to be scanned over large measurement cone angles for obtaining three-component winds. By tracking the motion of aerosol structures along and between three near-parallel laser beams, our lidar obtains three-component wind speed profiles along the field of view (FOV) of the lidar beams. Our prototype lidar wind profiler (LWP) has three 8-inch transceiver modules placed in a near-parallel configuration on a two-axis pan-tilt scanner to measure winds up to 2km away. Passively q-switched near-infrared (1030nm) Yb:YAG lasers generate 12 - 18ns wide pulses at high repetition rate (about 10KHz) that are expanded and attenuated to eye-safe levels. Sensitive low noise detection is achieved even in daytime using a narrow FOV receiver, together with narrowband interference filters and single photoncounting Geiger-mode Si detectors. A multi-channel scaler retrieves the lidar return with 7.8ns bins (˜1.2m spatial resolution) and stores accumulated counts once every 50ms (20 profiles/sec). We adapted optical flow algorithms to obtain the movement of aerosol structures between the beams. The performance of our prototype LWP was validated using sonic anemometer measurements.

  13. Tropospheric ozone and aerosols measured by airborne lidar during the 1988 Arctic boundary layer experiment

    NASA Technical Reports Server (NTRS)

    Browell, Edward V.; Butler, Carolyn F.; Kooi, Susan A.

    1991-01-01

    Ozone (O3) and aerosol distributions were measured from an aircraft using a differential absorption lidar (DIAL) system as part of the 1988 NASA Global Tropospheric Experiment - Arctic Boundary Layer Experiment (ABLE-3A) to study the sources and sinks of gases and aerosols over the tundra regions of Alaska during the summer. The tropospheric O3 budget over the Arctic was found to be strongly influenced by stratospheric intrusions. Regions of low aerosol scattering and enhanced O3 mixing ratios were usually correlated with descending air from the upper troposphere or lower stratosphere. Several cases of continental polar air masses were examined during the experiment. The aerosol scattering associated with these air masses was very low, and the atmospheric distribution of aerosols was quite homogeneous for those air masses that had been transported over the ice for greater than or = 3 days. The transition in O3 and aerosol distributions from tundra to marine conditions was examined several times. The aerosol data clearly show an abrupt change in aerosol scattering properties within the mixed layer from lower values over the tundra to generally higher values over the water. The distinct differences in the heights of the mixed layers in the two regions was also readily apparent. Several cases of enhanced O3 were observed during ABLE-3 in conjunction with enhanced aerosol scattering in layers in the free atmosphere. Examples are presented of the large scale variations of O3 and aerosols observed with the airborne lidar system from near the surface to above the tropopause over the Arctic during ABLE-3.

  14. Fourier transform Raman lidar for trace gas detection and quantification

    SciTech Connect

    Sentell, J.C.

    1994-12-31

    The Raman technique, while a valuable tool in chemical and combustion research, is limited in many remote sensing applications because of the low Raman scattering cross-section, which may be three to five orders of magnitude below the Rayleigh (elastic) values. Two concepts for increasing the signal level are discussed. First, use a range-gated Fourier transform spectrometer to increase the system throughput and allow multiplexing advantages. The spectrum is obtained by performing a FFT on the resulting interferogram. Second, since the cross section goes as the fourth power of the optical frequency, use ultra-violet laser illumination, and separate the resulting fluorescence radiation by placing a known dispersion on the transmitted waveform. The techniques for achieving this function, and the mathematical formulation for the phase-modulated auto-correlation which result, are not evaluated in this paper. However, the approach does not appreciably lower the available resolution because the limits are imposed by the sampling function inherent to the finite-duration Michelson mirror scan. A conceptual design using a long-pulse, flashlamp-pumped dye laser is shown, and typical performance equations in the detection of Freon 12, CCl{sub 2}F{sub 2}, are presented. For a one joule laser and a thirty (30) cm aperture operating in darkness, a concentration of 10{sup 23} molecules/m{sup 3} can be detected in a 60 km visibility at a range of 3.4 km. Much greater performance is obtained against molecules exhibiting the resonance Raman effect, such as nitrogen dioxide.

  15. Raman Lidar Measurements of Water Vapor and Cirrus Clouds During the Passage of Hurricane Bonnie

    NASA Technical Reports Server (NTRS)

    Whiteman, D. N.; Evans, K. D.; Demoz, B.; Starr, D. OC; Tobin, D.; Feltz, W.; Jedlovec, G. J.; Gutman, S. I.; Schwemmer, G. K.; Cardirola, M.; Melfi, S. H.; Schmidlin, F. J.

    2000-01-01

    The NASA/GSFC Scanning Raman Lidar (SRL) was stationed on Andros Island in the Bahamas during August - September, 1998 as a part of the third Convection and Moisture Experiment (CAMEX-3) which focussed on hurricane development and tracking. During the period August 21 - 24, hurricane Bonnie passed near Andros Island and influenced the water vapor and cirrus cloud measurements acquired by the SRL. Two drying signatures related to the hurricane were recorded by the SRL (Scanning Raman Lidar) and other sensors. Cirrus cloud optical depths (at 351 nm) were also measured during this period. Optical depth values ranged from approximately 0.01 to 1.4. The influence of multiple scattering on these optical depth measurements was studied with the conclusion that the measured values of optical depth are less than the actual value by up to 20% . The UV/IR cirrus cloud optical depth ratio was estimated based on a comparison of lidar and GOES measurements. Simple radiative transfer model calculations compared with GOES satellite brightness temperatures indicate that satellite radiances are significantly affected by the presence of cirrus clouds if IR optical depths are approximately 0.02 or greater. This has implications for satellite cirrus detection requirements.

  16. Lidar Observations of Tropical High-altitude Cirrus Clouds: Results form Dual Wavelength Raman Lidar Measurements During the ALBATROSS Campaign 1996

    NASA Technical Reports Server (NTRS)

    Neuber, R.; Wegener, Alfred; Schrems, O.; McDermid, I. S.

    1997-01-01

    Results from dual wavelength Raman Lidar Observations of tropical high-altitude cirrus clouds are reported. Based on 107 hours of night-time measurements cirrus cloud were present in more than 50% of the observations at latitudes between 23.5 degress S and 23.5 degrees N and altitudes between 11 and 16km.

  17. A study on typical aerosol extinction profile under clear sky condition in Beijing measured by ground-based Lidar

    NASA Astrophysics Data System (ADS)

    Lv, Yang; Chen, Xingfeng; Li, Zhengqiang; Liu, Zhao; Xu, Hua; Li, Donghui; Zhang, Wanchun; Li, Kaitao; Zhang, Ying

    2015-10-01

    Information on the vertical distribution of aerosol is important for understanding its transport characteristics as well as aerosol retrieval uncertainty. In this paper, the believable lidar ratio under clear sky condition during December 2014 is determined from ground-based lidar and sun-photometer site in Beijing. Then two methods are adopted to derive typical aerosol extinction profiles by averaging attenuated backscatter and retrieved extinction profiles respectively. The results indicate that the former vertical gradient of dispersion (standard deviation) is smaller than the latter. Moreover, the comparison of the aerosol extinction coefficient profiles shows a good consistency above 2km but significant difference below that altitude.

  18. Developing a portable, autonomous aerosol backscatter lidar for network or remote operations

    NASA Astrophysics Data System (ADS)

    Strawbridge, K. B.

    2012-11-01

    Lidar has the ability to detect the complex vertical structure of the atmosphere and can therefore identify the existence and extent of aerosols with high spatial and temporal resolution, making it well-suited for understanding atmospheric dynamics and transport processes. Environment Canada has developed a portable, autonomous lidar system that can be monitored remotely and operate continuously except during precipitation events. The lidar, housed in a small trailer, simultaneously emits two wavelengths of laser light (1064 nm and 532 nm) at energies of approximately 150 mJ/pulse/wavelength and detects the backscatter signal at 1064 nm and both polarizations at 532 nm. For laser energies of this magnitude, the challenge resides in designing a system that meets the airspace safety requirements for autonomous operations. Through the combination of radar technology, beam divergence, laser cavity interlocks and using computer log files, this risk was mitigated. A Continuum Inlite small footprint laser is the backbone of the system because of three design criteria: requiring infrequent flash lamp changes compared to previous Nd:YAG Q-switch lasers, complete software control capability and a built-in laser energy monitoring system. A computer-controlled interface was designed to monitor the health of the system, adjust operational parameters and maintain a climate-controlled environment. Through an internet connection, it also transmitted the vital performance indicators and data stream to allow the lidar profile data for multiple instruments from near ground to 15 km, every 10 s, to be viewed, in near real-time via a website. The details of the system design and calibration will be discussed and the success of the instrument as tested within the framework of a national lidar network dubbed CORALNet (Canadian Operational Research Aerosol Lidar Network). In addition, the transport of a forest fire plume across the country will be shown as evidenced by the lidar network, HYSPLIT back trajectories, MODIS imagery and CALIPSO overpasses.

  19. Developing a portable, autonomous aerosol backscatter lidar for network or remote operations

    NASA Astrophysics Data System (ADS)

    Strawbridge, K. B.

    2013-03-01

    Lidar has the ability to detect the complex vertical structure of the atmosphere and can therefore identify the existence and extent of aerosols with high spatial and temporal resolution, making it well suited for understanding atmospheric dynamics and transport processes. Environment Canada has developed a portable, autonomous lidar system that can be monitored remotely and operated continuously except during precipitation events. The lidar, housed in a small trailer, simultaneously emits two wavelengths of laser light (1064 nm and 532 nm) at energies of approximately 150 mJ/pulse/wavelength and detects the backscatter signal at 1064 nm and both polarizations at 532 nm. For laser energies of this magnitude, the challenge resides in designing a system that meets the airspace safety requirements for autonomous operations. Through the combination of radar technology, beam divergence, laser cavity interlocks and using computer log files, this risk was mitigated. A Continuum Inlite small footprint laser is the backbone of the system because of three design criteria: requiring infrequent flash lamp changes compared to previous Nd : YAG Q-switch lasers, complete software control capability and a built-in laser energy monitoring system. A computer-controlled interface was designed to monitor the health of the system, adjust operational parameters and maintain a climate-controlled environment. Through an Internet connection, it also transmitted the vital performance indicators and data stream to allow the lidar profile data for multiple instruments from near ground to 15 km, every 10 s, to be viewed, in near real-time via a website. The details of the system design and calibration will be discussed and the success of the instrument as tested within the framework of a national lidar network dubbed CORALNet (Canadian Operational Research Aerosol Lidar Network). In addition, the transport of a forest fire plume across the country will be shown as evidenced by the lidar network, HYSPLIT back trajectories, MODIS imagery and CALIPSO overpasses.

  20. Aerosol Backscatter from Airborne Continuous Wave CO2 Lidars Over Western North America and the Pacific Ocean

    NASA Technical Reports Server (NTRS)

    Jarzembski, Maurice A.; Srivastava, Vandana; Rothermel, Jeffry

    1999-01-01

    Atmospheric aerosol backscatter, beta, variability gives a direct indication of aerosol loading. Since aerosol variability is governed by regional sources and sinks as well as affected by its transport due to meteorological conditions, it is important to characterize this loading at different locations and times. Lidars are sensitive instruments that can effectively provide high-resolution, large-scale sampling of the atmosphere remotely by measuring aerosol beta, thereby capturing detailed temporal and spatial variability of aerosol loading, Although vertical beta profiles are usually obtained by pulsed lidars, airborne-focused CW lidars, with high sensitivity and short time integration, can provide higher resolution sampling in the vertical, thereby revealing detailed structure of aerosol layers. During the 1995 NASA Multicenter Airborne Coherent Atmospheric Wind Sensor (MACAWS) mission, NASA MSFC airborne-focused CW CO2 Doppler lidars, operating at 9.1 and 10.6-micrometers wavelength, obtained high resolution in situ aerosol beta measurements to characterize aerosol variability. The observed variability in beta at 9.1-micrometers wavelength with altitude is presented as well as comparison with some pulsed lidar profiles.

  1. Remote Sensing of Aerosol Optical and Microphysical Properties using Polarization and Lidar Techniques

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael

    2003-01-01

    Tropospheric aerosols cause a substantial forcing of the terrestrial climate, but the magnitude of this forcing remains largely unknown. This explains the significant interest of the climate community to the prospect of measuring key aerosol properties from space using advanced remote sensing techniques. It has been known for a long time that polarization of the scattered light is much more sensitive to the aerosol microphysics than the scattered intensity. It is, therefore, not surprising that the most recent addition to the New Polar Orbiting Operational Environmental Satellite System (NPOESS) payload is the so-called Aerosol Polarimetry Sensor (APS). The main objective of this instrument is to measure the aerosol and cloud properties with accuracy and coverage sufficient for a reliable estimate of the direct and indirect aerosol forcings of climate. Accordingly, the first part of this lecture course will focus on describing the basic concept of the APS, the physical principles of polarization data analyses, and the results already obtained with an aircraft version of the APS. Polar stratospheric clouds (PSCs) represent another poorly understood aerosol component of the terrestrial atmosphere which affects the climate by supporting chemical reactions destroying the ozone layer. The high altitude of the PSCs and their predominant occurrence in high latitude and polar regions make it very difficult to study PSCs using conventional in situ techniques. Most of the information that we have about this type of clouds has been gathered using ground-based polarization lidars. The second part of the course will focus on explaining the physical principles of the polarization lidar technique and describing retrievals of PSC particle microphysical characteristics by converting I multispectral lidar measurements of the backscattered intensity and depolarization.

  2. Anomalies in Sea Spray Aerosol Optical Properties Detected by NASA High Spectral Resolution Lidar

    NASA Astrophysics Data System (ADS)

    Dawson, K. W.; Meskhidze, N.; Hu, Y.

    2013-12-01

    Data from a NASA flight mission over the Azores Archipelago off the western coast of Africa are analyzed to identify anomalies in sea spray aerosol optical properties associated with ocean biological production. The weeklong flight campaign began October 11, 2012 and focused on the sampling of clean marine air with little contamination from other sources like African dust or continental pollution. The NASA High Spectral Resolution Lidar (HSRL) has a laser that emits a pulse at two wavelengths (0.532 and 1.064 ?m) and a receiver that measures the backscattered radiation as a function of altitude. From this instrument, three important optical properties relevant to our study are derived: the aerosol lidar ratio, color ratio, and depolarization ratio, analysis of which can give insight into aerosol type, size, and shape respectively. To analyze the optical properties of aerosols within the marine boundary layer, one needs to accurately predict the boundary layer height and the presence of clouds in the optical path of the HSRL. Therefore, this study first introduces a new cloud-screening algorithm and then applies a boundary layer detection algorithm to filter the aerosol sample. Our analysis for the cloud free regions revealed statistically significant anomalies in particle depolarization ratio (?>10%) that were well correlated with surface chlorophyll-a concentrations (R?0.5) detected by NASA's MODerate Imaging Spectroradiometer (MODIS). Other parameters such as the lidar ratio and color ratio that are influenced by the aerosol size distribution and physiochemical properties will also be discussed. This study suggests that HSRL is suitable for exploring the effects of ocean biological production on clean marine aerosol optical properties.

  3. A Compact Mobile Ozone Lidar for Atmospheric Ozone and Aerosol Profiling

    NASA Technical Reports Server (NTRS)

    De Young, Russell; Carrion, William; Pliutau, Denis

    2014-01-01

    A compact mobile differential absorption lidar (DIAL) system has been developed at NASA Langley Research Center to provide ozone, aerosol and cloud atmospheric measurements in a mobile trailer for ground-based atmospheric ozone air quality campaigns. This lidar is integrated into the Tropospheric Ozone Lidar Network (TOLNet) currently made up of four other ozone lidars across the country. The lidar system consists of a UV and green laser transmitter, a telescope and an optical signal receiver with associated Licel photon counting and analog channels. The laser transmitter consist of a Q-switched Nd:YLF inter-cavity doubled laser pumping a Ce:LiCAF tunable UV laser with all the associated power and lidar control support units on a single system rack. The system has been configured to enable mobile operation from a trailer and was deployed to Denver, CO July 15-August 15, 2014 supporting the DISCOVER-AQ campaign. Ozone curtain plots and the resulting science are presented.

  4. Lidar observation of the 2011 Puyehue-Cordón Caulle volcanic aerosols at Lauder, New Zealand

    NASA Astrophysics Data System (ADS)

    Nakamae, K.; Uchino, O.; Morino, I.; Liley, B.; Sakai, T.; Nagai, T.; Yokota, T.

    2014-11-01

    On 4 June 2011, the Puyehue-Cordón Caulle volcanic complex (40.6° S, 72.1° W) in Chile erupted violently and injected volcanic aerosols into the atmosphere. For the safety of civil aviation, continuous lidar observations were made at Lauder, New Zealand (45.0° S, 169.7° E), from 11 June through 6 July 2011. The purpose of our study is to quantify the influence of the volcanic ejections from large eruptions, and we use the data from the ground-based lidar observation. We analyzed lidar data at a wavelength of 532 nm and derived the backscattering ratio and depolarization ratio profiles. During June and July, within the altitude range of 10-15 km, the volcanic aerosols had high depolarization ratios (20-35%), an indication of non-spherical volcanic ash particles. The time series of the backscattering ratio during continuous observations had three peaks occurring at about 12-day intervals: 26.7 at 11.2 km on 11 June, 18.1 at 12.0 km on 23 June, and 5.3 at 11.1 km on 6 July. The optical depth of the volcanic aerosols was 0.45 on 11 June, when the continuous lidar observation started, 0.31 on 23 June, and 0.12 on 6 July. The depolarization ratio values remained high up to a month after the eruption, and the small wavelength exponent calculated from the backscattering coefficients at 532 nm and 1064 nm suggests that a major constituent of the volcanic aerosols was large, non-spherical particles. The presence of volcanic ash in the stratosphere might affect the error in Greenhouse gases Observing SATellite (GOSAT) XCO2 retrieval using the 1.6 ?m band. We briefly discuss the influence of the increased aerosols on GOSAT products.

  5. Using artificial neural networks to retrieve the aerosol type from multi-spectral lidar data

    NASA Astrophysics Data System (ADS)

    Nicolae, Doina; Belegante, Livio; Talianu, Camelia; Vasilescu, Jeni

    2015-04-01

    Aerosols can influence the microphysical and macrophysical properties of clouds and hence impact the energy balance, precipitation and the hydrological cycle. They have different scattering and absorption properties depending on their origin, therefore measured optical properties can be used to retrieve their physical properties, as well as to estimate their chemical composition. Due to the measurement limitations (spectral, uncertainties, range) and high variability of the aerosol properties with environmental conditions (including mixing during transport), the identification of the aerosol type from lidar data is still not solved. However, ground, airborne and space-based lidars provide more and more observations to be exploited. Since 2000, EARLINET collected more than 20,000 aerosol vertical profiles under various meteorological conditions, concerning local or long-range transport of aerosols in the free troposphere. This paper describes the basic algorithm for aerosol typing from optical data using the benefits of artificial neural networks. A relevant database was built to provide sufficient training cases for the neural network, consisting of synthetic and measured aerosol properties. Synthetic aerosols were simulated starting from the microphysical properties of basic components, internally mixed in various proportions. The algorithm combines the GADS database (Global Aerosol DataSet) to OPAC model (Optical Properties of Aerosol and Clouds) and T-Matrix code in order to compute, in an iterative way, the intensive optical properties of each aerosol type. Both pure and mixed aerosol types were considered, as well as their particular non-sphericity and hygroscopicity. Real aerosol cases were picked up from the ESA-CALIPSO database, as well as EARLINET datasets. Specific selection criteria were applied to identify cases with accurate optical data and validated sources. Cross-check of the synthetic versus measured aerosol intensive parameters was performed in order to ensure the homogeneity and consistency of the inputs considered for the neural network. Pure aerosol types are not sufficiently represented by the observations, as well as the mixtures of marine and volcanic, therefore only synthetic properties can be used for those. A Multilayer Perceptron neural network with three hidden layers was built and trained to retrieve the aerosol type based on 3a+2b+1d lidar data. Five pure aerosol types and eight mixtures were considered. About 70% of the total number of cases was used to train the network, 20% for the internal auto-testing and adjustments, and 10% for blind testing. Supervised training was applied until more than 90% of the synthetic cases, respectively more than 80% of the measurement cases were correctly identified. Preliminary results are presented, underlining the advantages and disadvantages of the neural network algorithm compared to other methods. Acknowledgements: This work was supported by a grant of the Romanian National Authority for Scientific Research, Program for research - Space Technology and Avanced Research - STAR, project no. 98/2013-DARLIOES, and by the ESA contract no. 4000110671/14/I-LG, NATALI. Keywords: EARLINET, ESA-CALIPSO, lidar, aerosol typing

  6. Impact of clouds on aerosol scattering as observed by lidar

    E-print Network

    Oxford, University of

    a + KT i S-1 Ki]-1 (2) {KT i S-1 [y - F (xi)] - S-1 a (xi - xa)}, where S |a are the measurement and extinction profiles, a and a, with the magnitude of Rayleigh scattering estimated from radiosonde to aerosols, which can be written in terms of aerosol extinction as, Ta(, zi) = exp - a(, zi) + a(, z0) 2

  7. Demonstration of a new and innovative ozone lidar`s capability to measure vertical profiles of ozone concentration and aerosol in the lower troposphere. Final report

    SciTech Connect

    Zhao, Y.; Hardesty, R.M.; Gaynor, J.E.

    1994-12-01

    This report describes the ozone lidar experiments conducted by NOAA`s Environmental Technology Laboratory (ETL) in California in 1993. The main objectives of the experiments were: (1) to verify the capability of the ETL ozone lidar for remotely sensing ozone and aerosol profiles in the lower troposphere, (2) to test the integrity of the lidar system and the mobile laboratory for further system improvements, (3) to improve the data retrieval algorithm and processing techniques for better accuracy of ozone observations, and (4) to test the performance of this lidar in a very polluted environment like the Los Angeles air basin, and obtain first-hand information about ozone and aerosol vertical distribution in this region.

  8. Lidar measurements of Raman scattering at ultraviolet wavelength from mineral dust over East Asia.

    PubMed

    Tatarov, Boyan; Müller, Detlef; Shin, Dong Ho; Shin, Sung Kyun; Mattis, Ina; Seifert, Patric; Noh, Young Min; Kim, Y J; Sugimoto, Nobuo

    2011-01-17

    We developed a novel measurement channel that utilizes Raman scattering from silicon dioxide (SiO2) quartz at an ultraviolet wavelength (361 nm). The excitation of the Raman signals is done at the primary wavelength of 355 nm emitted from a lidar instrument. In combination with Raman signals from scattering from nitrogen molecules, we may infer the mineral-quartz-related backscatter coefficient. This technique thus allows us to identify in a comparably direct way the mineral quartz content in mixed pollution plumes that consist, e.g., of a mix of desert dust and urban pollution. We tested the channel for the complex situation of East Asian pollution. We find good agreement of the inferred mineral-quartz-related backscatter coefficient to results obtained with another mineral quartz channel which was operated at 546 nm (primary emission wavelength at 532 nm), the functionality of which has already been shown for a lidar system in Tsukuba (Japan). The advantage of the novel channel is that it provides a better signal-to-noise ratio because of the shorter measurement wavelength. PMID:21263697

  9. Characterization of convection-related parameters by Raman lidar: Selected case studies from the convective and orographically-induced precipitation study

    NASA Astrophysics Data System (ADS)

    Di Girolamo, Paolo; Summa, Donato; Stelitano, Dario

    2013-05-01

    An approach to determine the convective available potential energy (CAPE) and the convective inhibition (CIN) based on the use of data from a Raman lidar system is illustrated in this work. The use of Raman lidar data allows to provide high temporal resolution measurements (5 min) of CAPE and CIN and follow their evolution over extended time periods covering the full cycle of convective activity. Lidar-based measurements of CAPE and CIN are obtained from Raman lidar measurements of the temperature and water vapor mixing ratio profiles and the surface measurements of temperature, pressure and dew point temperature provided by a surface weather station. The approach is applied to the data collected by the Raman lidar system BASIL in the frame of COPS. Attention was focused on 15 July and 25-26 July 2007. Lidar-based measurements are in good agreement with simultaneous measurements from radiosondes and with estimates from different mesoscale models.

  10. Absolute calibration of LIDAR Thomson scattering systems by rotational Raman scattering

    NASA Astrophysics Data System (ADS)

    Scannell, R.; Beurskens, M.; Kempenaars, M.; Naylor, G.; Walsh, M.; O'Gorman, T.; Pasqualotto, R.

    2010-04-01

    Absolute calibration of LIDAR Thomson scattering systems on large fusion devices may be achieved using rotational Raman scattering. The choice of calibrating gas molecule presents different options and design trade-offs and is likely to be strongly dependent on the laser wavelength selected. Raman scattering of hydrogenic molecules produces a very broad spectrum, however, with far fewer scattered photons than scattering from nitrogen or oxygen at the same gas pressure. Lower laser wavelengths have the advantage that the Raman cross section increases, ?Raman?1/?04, but the disadvantage that the spectral width of the scattered spectrum decreases, ??Raman??02. This narrower spectrum makes measurement closer to the laser wavelength necessary. The design of the calibration technique presents a number of challenges. Some of these challenges are generic to all Thomson scattering systems. These include detecting a sufficient number of photoelectrons and designing filters that measure close to the laser wavelength while simultaneously achieving adequate blocking of the laser wavelength. An issue specific to LIDAR systems arises since the collection optics operates over a wide range of depth of field. This wide depth of field has the effect of changing the angle of light incident on the optical interference filter with plasma major radius. The angular distribution then determines the effective spectral transmission function of the interference filter and hence impacts on the accuracy of the absolute calibration. One method that can be used to increase absolute calibration accuracy is collecting both Stokes and anti-Stokes lines with optical filter transmission bands specifically designed to reduce systematic uncertainty.

  11. Intercomparison of Pulsed Lidar Data with Flight Level CW Lidar Data and Modeled Backscatter from Measured Aerosol Microphysics Near Japan and Hawaii

    NASA Technical Reports Server (NTRS)

    Cutten, D. R.; Spinhirne, J. D.; Menzies, R. T.; Bowdle, D. A.; Srivastava, V.; Pueschel, R. F.; Clarke, A. D.; Rothermel, J.

    1998-01-01

    Aerosol backscatter coefficient data were examined from two nights near Japan and Hawaii undertaken during NASA's Global Backscatter Experiment (GLOBE) in May-June 1990. During each of these two nights the aircraft traversed different altitudes within a region of the atmosphere defined by the same set of latitude and longitude coordinates. This provided an ideal opportunity to allow flight level focused continuous wave (CW) lidar backscatter measured at 9.11-micron wavelength and modeled aerosol backscatter from two aerosol optical counters to be compared with pulsed lidar aerosol backscatter data at 1.06- and 9.25-micron wavelengths. The best agreement between all sensors was found in the altitude region below 7 km, where backscatter values were moderately high at all three wavelengths. Above this altitude the pulsed lidar backscatter data at 1.06- and 9.25-micron wavelengths were higher than the flight level data obtained from the CW lidar or derived from the optical counters, suggesting sample volume effects were responsible for this. Aerosol microphysics analysis of data near Japan revealed a strong sea-salt aerosol plume extending upward from the marine boundary layer. On the basis of sample volume differences, it was found that large particles were of different composition compared with the small particles for low backscatter conditions.

  12. Daytime Raman lidar measurements of water vapor during the ARM 1997 water vapor intensive observation period

    SciTech Connect

    Turner, D.D.; Goldsmith, J.E.M.

    1998-04-01

    Because of the importance of water vapor, the ARM program initiated a series of three intensive operating periods (IOPs) at its CART (Cloud And Radiation Testbed) site. The goal of these IOPs is to improve and validate the state-of-the-art capabilities in measuring water vapor. To date, two of the planned three IOPs have occurred: the first was in September of 1996, with an emphasis on the lowest kilometer, while the second was conducted from September--October 1997 with a focus on both the upper troposphere and lowest kilometer. These IOPs provided an excellent opportunity to compare measurements from other systems with those made by the CART Raman lidar. This paper addresses primarily the daytime water vapor measurements made by the lidar system during the second of these IOPs.

  13. Characterizing Aerosol Distributions and Optical Properties Using the NASA Langley High Spectral Resolution Lidar

    SciTech Connect

    Hostetler, Chris; Ferrare, Richard

    2013-02-14

    The objective of this project was to provide vertically and horizontally resolved data on aerosol optical properties to assess and ultimately improve how models represent these aerosol properties and their impacts on atmospheric radiation. The approach was to deploy the NASA Langley Airborne High Spectral Resolution Lidar (HSRL) and other synergistic remote sensors on DOE Atmospheric Science Research (ASR) sponsored airborne field campaigns and synergistic field campaigns sponsored by other agencies to remotely measure aerosol backscattering, extinction, and optical thickness profiles. Synergistic sensors included a nadir-viewing digital camera for context imagery, and, later in the project, the NASA Goddard Institute for Space Studies (GISS) Research Scanning Polarimeter (RSP). The information from the remote sensing instruments was used to map the horizontal and vertical distribution of aerosol properties and type. The retrieved lidar parameters include profiles of aerosol extinction, backscatter, depolarization, and optical depth. Products produced in subsequent analyses included aerosol mixed layer height, aerosol type, and the partition of aerosol optical depth by type. The lidar products provided vertical context for in situ and remote sensing measurements from other airborne and ground-based platforms employed in the field campaigns and was used to assess the predictions of transport models. Also, the measurements provide a data base for future evaluation of techniques to combine active (lidar) and passive (polarimeter) measurements in advanced retrieval schemes to remotely characterize aerosol microphysical properties. The project was initiated as a 3-year project starting 1 January 2005. It was later awarded continuation funding for another 3 years (i.e., through 31 December 2010) followed by a 1-year no-cost extension (through 31 December 2011). This project supported logistical and flight costs of the NASA sensors on a dedicated aircraft, the subsequent analysis and archival of the data, and the presentation of results in conferences, workshops, and publications. DOE ASR field campaigns supported under this project included - MAX-Mex /MILAGRO (2006) - TexAQS 2006/GoMACCS (2006) - CHAPS (2007) - RACORO (2009) - CARE/CalNex (2010) In addition, data acquired on HSRL airborne field campaigns sponsored by other agencies were used extensively to fulfill the science objectives of this project and the data acquired have been made available to other DOE ASR investigators upon request.

  14. Midlatitude cirrus classification at Rome Tor Vergata through a multichannel Raman-Mie-Rayleigh lidar

    NASA Astrophysics Data System (ADS)

    Dionisi, D.; Keckhut, P.; Liberti, G. L.; Cardillo, F.; Congeduti, F.

    2013-12-01

    A methodology to identify and characterize cirrus clouds has been developed and applied to the multichannel-multiwavelength Rayleigh-Mie-Raman (RMR) lidar in Rome Tor Vergata (RTV). A set of 167 cirrus cases, defined on the basis of quasi-stationary temporal period conditions, has been selected in a data set consisting of about 500 h of nighttime lidar sessions acquired between February 2007 and April 2010. The derived lidar parameters (effective height, geometrical and optical thickness and mean back-scattering ratio) and the cirrus mid-height temperature (estimated from the radiosonde data of Pratica di Mare, WMO, World Meteorological Organization, site no. 16245) of this sample have been analyzed by the means of a clustering multivariate analysis. This approach identified four cirrus classes above the RTV site: two thin cirrus clusters in mid- and upper troposphere and two thick cirrus clusters in mid-upper troposphere. These results, which are very similar to those derived through the same approach at the lidar site of the Observatoire de Haute-Provence (OHP), allows characterization of cirrus clouds over the RTV site and attests to the robustness of such classification. To acquire some indications about the cirrus generation methods for the different classes, analyses of the extinction-to-backscatter ratio (lidar ratio, LReff, in terms of frequency distribution functions and dependencies on the mid-height cirrus temperature, have been performed. A preliminary study relating some meteorological parameters (e.g., relative humidity, wind components) to cirrus clusters has also been conducted. The RTV cirrus results, recomputed through the cirrus classification by Sassen and Cho (1992), show good agreement with other midlatitude lidar cirrus observations for the relative occurrence of subvisible (SVC), thin and opaque cirrus classes (10%, 49% and 41%, respectively). The overall mean value of cirrus optical depth is 0.37 ± 0.18, while most retrieved LReff values range between 10-60 sr, and the estimated mean value is 31 ± 15 sr, similar to LR values of lower latitude cirrus measurements. The obtained results are consistent with previous studies conducted with different systems and confirm that cirrus classification based on a statistical approach seems to be a good tool both to validate the height-resolved cirrus fields calculated by models and to investigate the key processes governing cirrus formation and evolution. However, the lidar ratio and optical depth analyses are affected by some uncertainties (e.g., lidar error noise, multiple scattering effects, supercooled water clouds) that reduce the confidence of the results. Future studies are needed to improve the characterization of the cirrus optical properties and, thus, the determination of their radiative impact.

  15. Scanning Raman Lidar Measurements During the WVIOP2000 and AFWEX Field Experiments

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.; Evans, K. D.; Berkoff, T. B.; Demoz, B. D.; DiGirolamo, P.; Smith, David E. (Technical Monitor)

    2001-01-01

    The NASA/Goddard Space Flight Center Scanning Raman Lidar (SRL) participated in the Water Vapor IOP 2000 (WVIOP2000) and ARM FIRE Water Vapor Experiment (AFWEX) at the DOE SGP CART site in northern Oklahoma. These experiments occurred during the period of September and December, 2000. The goals of both the WVIOP2000 and AFWEX were to better characterize the water vapor measurement capability of numerous sensors in the lower atmosphere and upper troposphere, respectively. The SRL received several hardware upgrades in anticipation of these experiments that permitted improved measurements of water vapor during the daytime and in the upper troposphere (UT). The daytime SRL water vapor error statistics were demonstrated a factor of 2-3 improvement compared to the permanently stationed CART Raman lidar (CARL). The performance of the SRL in the UT showed improvements as well. The technological upgrades that permitted these improved SRL measurements could also be implemented in the CARL system. Data examples demonstrating the new daytime and upper tropospheric measurement capability of the SRL will be shown at the meeting. In addition, preliminary analysis will be presented on several topics: 1) inter comparison of the water vapor measurements for several water vapor sensors including SRL, CARL, the NASA/Langley Lidar Atmospheric Sensing Experiment (LASE) flown onboard the NASA DC-8, in-situ sensors flown on the DC-8, and the Max Planck Institute Differential Absorption Lidar 2) comparison of cirrus cloud measurements using SRL and CARL and 3) case studies of meteorological events that occurred during the IOPs such as a cold frontal passage on the night of September 23.

  16. Mid-latitude Rayleigh-Mie-Raman Lidar for Observations from 15 to 120 km

    NASA Astrophysics Data System (ADS)

    Wickwar, V. B.; Sox, L.; Heron, J. P.; Emerick, M. T.

    2013-12-01

    The original Rayleigh scatter lidar system that ran from 1993-2004 at the Atmospheric Lidar Observatory (ALO; 41.7° N, 111.8° W) in the Center for Atmospheric and Space Sciences (CASS) on the campus of Utah State University (USU) is undergoing a series of upgrades to transform it into a Rayleigh-Mie-Raman (RMR) scatter lidar. The original lidar covered the mesosphere from 45 to 90 km. The upgraded system will cover the region from approximately 15 to 120 km. The scientific impetus for these upgrades is to enable measurements of densities and temperatures throughout the middle atmosphere, covering most of the stratosphere, all of the mesosphere and well into the lower thermosphere. Initially, at the upper end, this will provide good information about the poorly observed region between 90 and 120 km. When the whole system comes on line, it will better enable coupling studies across these regions. By normalizing the relative densities to NCEP reanalysis or radiosonde densities below 30 km, the densities will become absolute all the way up to 120 km. By adding these new observations to those from the original data set, we will continue to examine temperature trends in the mesosphere. The upgrade is based on increasing the telescope collecting area to almost 5 m2 and increasing the 532 nm laser power to 42 W at 30 Hz. The combined effect is a 70 times increase in sensitivity. This increase enables us to go higher. It will also enable us to go lower by making Raman observations possible in the stratosphere, which will allow us to untangle the Rayleigh and Mie returns. Initial observations are approaching 120 km. These observations show significant temperature differences at the highest altitudes when compared to the MSISe00 empirical model.

  17. Lidar and in situ observations of continental and Saharan aerosol: closure analysis of particles optical and physical properties

    NASA Astrophysics Data System (ADS)

    Gobbi, G. P.; Barnaba, F.; van Dingenen, R.; Putaud, J. P.; Mircea, M.; Facchini, M. C.

    2003-12-01

    Single wavelength polarization lidar observations collected at Mt. Cimone (44.2º N, 10.7º E, 1870 m a.s.l.) during the June 2000 MINATROC campaign are analyzed to derive tropospheric profiles of aerosol extinction, depolarization, surface area and volume. Lidar retrievals for the 2170-2245 m level are compared to the same variables as computed from in situ measurements of particles size distributions, performed at the mountain top Station (2165 m a.s.l.) by a differential mobility analyzer (DMA) and an optical particle counter (OPC). A sensitivity analysis of this closure experiment shows that mean relative differences between the backscatter coefficients obtained by the two techniques undergo a sharp decrease when hygroscopic growth to ambient humidity is considered for the DMA dataset, otherwise representative of dry aerosols. Minimization of differences between lidar and size distribution-derived backscatter coefficients allowed to find values of the "best" refractive index, specific to each measurement. These results show the refractive index to increase for air masses proceeding from Africa and Western Europe. Lidar depolarization was observed to minimize mainly in airmasses proceeding from Western Europe, thus indicating a spherical, i.e. liquid nature for such aerosols. Conversely, African, Mediterranean and East Europe aerosol showed a larger depolarizing fraction, mainly due to coexisting refractory and soluble fractions. The analysis shows average relative differences between lidar and in-situ observations of 5% for backscatter, 36% for extinction 41% for surface area and 37% for volume. These values are well within the expected combined uncertainties of the lidar and in situ retrievals. Average differences further decrease during the Saharan dust transport event, when a lidar signal inversion model considering non-spherical scatterers is employed. The quality of the closure obtained between particle counter and lidar-derived aerosol surface area and volume observations constitutes a validation of the technique adopted to retrieve such aerosol properties on the basis of single-wavelength lidar observations.

  18. An Extention of the Raman-lidar Technique to Measure the Velocity and Temperature of the Atmospheric Emission Jets from Stacks

    NASA Technical Reports Server (NTRS)

    Arshinov, Yu. F.; Bobrovnikov, S. M.; Shumskii, V. K.; Popov, A. G.; Serikov, I. B.

    1992-01-01

    If a Raman lidar possesses a proper spatial resolution sufficient for acquiring profiles of return signals across an emission jet, then the difference in number densities of nitrogen molecules within the jet and outside it will cause a dip in the lidar return signal from nitrogen. Experimentation showed that the Raman lidar technique can accurately measure the velocity and temperature of atmospheric emission from smoke stacks.

  19. Optical, microphysical, mass and geometrical properties of aged volcanic particles observed over Athens, Greece, during the Eyjafjallajökull eruption in April 2010 through synergy of Raman lidar and sunphotometer measurements

    NASA Astrophysics Data System (ADS)

    Kokkalis, P.; Papayannis, A.; Amiridis, V.; Mamouri, R. E.; Veselovskii, I.; Kolgotin, A.; Tsaknakis, G.; Kristiansen, N. I.; Stohl, A.; Mona, L.

    2013-09-01

    Vertical profiles of the optical (extinction and backscatter coefficients, lidar ratio and Ångström exponent), microphysical (mean effective radius, mean refractive index, mean number concentration) and geometrical properties as well as the mass concentration of volcanic particles from the Eyjafjallajökull eruption were retrieved at selected heights over Athens, Greece, using multi-wavelength Raman lidar measurements performed during the period 21-24 April 2010. Aerosol Robotic Network (AERONET) particulate columnar measurements along with inversion schemes were initialized together with lidar observations to deliver the aforementioned products. The well-known FLEXPART (FLEXible PARTicle dispersion model) model used for volcanic dispersion simulations is initiated as well in order to estimate the horizontal and vertical distribution of volcanic particles. Compared with the lidar measurements within the planetary boundary layer over Athens, FLEXPART proved to be a useful tool for determining the state of mixing of ash with other, locally emitted aerosol types. The major findings presented in our work concern the identification of volcanic particles layers in the form of filaments after 7-day transport from the volcanic source (approximately 4000 km away from our site) from the surface and up to 10 km according to the lidar measurements. Mean hourly averaged lidar signals indicated that the layer thickness of volcanic particles ranged between 1.5 and 2.2 km. The corresponding aerosol optical depth was found to vary from 0.01 to 0.18 at 355 nm and from 0.02 up to 0.17 at 532 nm. Furthermore, the corresponding lidar ratios (S) ranged between 60 and 80 sr at 355 nm and 44 and 88 sr at 532 nm. The mean effective radius of the volcanic particles estimated by applying inversion scheme to the lidar data found to vary within the range 0.13-0.38 ?m and the refractive index ranged from 1.39+0.009i to 1.48+0.006i. This high variability is most probably attributed to the mixing of aged volcanic particles with other aerosol types of local origin. Finally, the LIRIC (LIdar/Radiometer Inversion Code) lidar/sunphotometric combined inversion algorithm has been applied in order to retrieve particle concentrations. These have been compared with FLEXPART simulations of the vertical distribution of ash showing good agreement concerning not only the geometrical properties of the volcanic particles layers but also the particles mass concentration.

  20. Measurements of daytime and upper tropospheric water vapor profiles by Raman lidar

    SciTech Connect

    Bisson, S.E.; Goldsmith, J.E.M.

    1995-03-01

    One of the most important atmospheric constituents needed for climate and meteorological studies is water vapor. Water vapor plays an important role in driving atmospheric circulations through latent heat release and in determining the earth`s radiation budget, both through its radiative effects (water vapor is the major greenhouse gas) and cloud formation. The vertical distribution of water vapor is particularly important because it not only determines convective stability but radiative effects are also strongly altitude dependent. At present, considerable controversy exists over the nature of the vertical redistribution of water vapor in a changing climate, and particularly the distribution of water vapor in the upper troposphere. Understanding upper tropospheric moistening processes such as deep convection are therefore of prime importance in addressing the water vapor feedback question. A powerful, proven technique for the continuous measurement of nighttime water vapor profiles (in clear skies or up to the lowest cloud level) with high spatial and temporal resolution is Raman lidar. As part of the U.S. Department of Energy`s (DOE) Atmospheric Radiation Measurement (ARM) program, a high performance dual field-of-view (fov), narrowband Raman lidar system capable of both daytime and nighttime operation has been developed. In this paper, the Sandia Raman lidar system is discussed along with its application to two problems of current interest: daytime tropospheric water vapor profile measurements and upper tropospheric water vapor. We present recent measurements of upper tropospheric moisture made at the DOE Cloud and Radiation Testbed site (CART) in Oklahoma. Recent daytime measurements are also presented.

  1. Water vapor measurements by Raman lidar during the ARM 1997 water vapor intensive observation period

    SciTech Connect

    Turner, D.D.; Whiteman, D.N.; Schwemmer, G.K.; Evans, K.D. |; Melfi, S.H.; Goldsmith, J.E.

    1998-04-01

    Water vapor is the most important greenhouse gas in the atmosphere, as it is the most active infrared absorber and emitter of radiation, and it also plays an important role in energy transport and cloud formation. Accurate, high resolution measurements of this variable are critical in order to improve the understanding of these processes and thus their ability to model them. Because of the importance of water vapor, the Department of Energy`s Atmospheric Radiation Measurement (ARM) program initiated a series of three intensive operating periods (IOPs) at its Cloud and Radiation Testbed (CART) site in northern Oklahoma. The goal of these IOPs is to improve and validate the state-of-the-art capabilities in measuring water vapor. To date, two of the planned three IOPs have occurred: the first was in September of 1996, with an emphasis on the lowest kilometer, while the second was conducted from September--October 1997 with a focus on both the upper troposphere and lowest kilometer. The ARM CART site is the home of several different water vapor measurement systems. These systems include a Raman lidar, a microwave radiometer, a radiosonde launch site, and an instrumented tower. During these IOPs, additional instrumentation was brought to the site to augment the normal measurements in the attempt to characterize the CART instruments and to address the need to improve water vapor measurement capabilities. Some of the instruments brought to the CART site include a scanning Raman lidar system from NASA/GSFC, additional microwave radiometers from NOAA/ETL, a chilled mirror that was flown on a tethersonde and kite system, and dewpoint hygrometer instruments flow on the North Dakota Citation. This paper will focus on the Raman lidar intercomparisons from the second IOP.

  2. Using Airborne High Spectral Resolution Lidar Data to Evaluate Combined Active Plus Passive Retrievals of Aerosol Extinction Profiles

    NASA Technical Reports Server (NTRS)

    Burton, S. P.; Ferrare, R. A.; Hostetler, C. A.; Hair, J. W.; Kittaka, C.; Vaughn, M. A.; Remer, L. A.

    2010-01-01

    We derive aerosol extinction profiles from airborne and space-based lidar backscatter signals by constraining the retrieval with column aerosol optical thickness (AOT), with no need to rely on assumptions about aerosol type or lidar ratio. The backscatter data were acquired by the NASA Langley Research Center airborne High Spectral Resolution Lidar (HSRL) and by the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite. The HSRL also simultaneously measures aerosol extinction coefficients independently using the high spectral resolution lidar technique, thereby providing an ideal data set for evaluating the retrieval. We retrieve aerosol extinction profiles from both HSRL and CALIOP attenuated backscatter data constrained with HSRL, Moderate-Resolution Imaging Spectroradiometer (MODIS), and Multiangle Imaging Spectroradiometer column AOT. The resulting profiles are compared with the aerosol extinction measured by HSRL. Retrievals are limited to cases where the column aerosol thickness is greater than 0.2 over land and 0.15 over water. In the case of large AOT, the results using the Aqua MODIS constraint over water are poorer than Aqua MODIS over land or Terra MODIS. The poorer results relate to an apparent bias in Aqua MODIS AOT over water observed in August 2007. This apparent bias is still under investigation. Finally, aerosol extinction coefficients are derived from CALIPSO backscatter data using AOT from Aqua MODIS for 28 profiles over land and 9 over water. They agree with coincident measurements by the airborne HSRL to within +/-0.016/km +/- 20% for at least two-thirds of land points and within +/-0.028/km +/- 20% for at least two-thirds of ocean points.

  3. Vertical Aerosol Backscatter Variability from an Airborne Focused Continuous Wave CO2 Lidar

    NASA Technical Reports Server (NTRS)

    Jarzembski, Maurice A.; Srivastava, Vandana; Rothermel, Jeffry

    1998-01-01

    Atmospheric aerosol backscatter measurements using a continuous wave focused Doppler lidar at 9.1 micron wavelength were obtained over western North America and the Pacific Ocean during 13 - 26 September, 1995 as part of National Aeronautics and Space Administration's (NASA) Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS) mission on board the NASA DC8 aircraft. Backscatter variability was measured for approximately 52 flight hours, covering equivalent horizontal distance of approximately 25,000 km in the troposphere. Quasi-vertical backscatter profiles were also obtained during various ascents and descents which ranged between approximately 0.1 to 12.0 km altitude. Aerosol haze layers were encountered at different altitudes. Similarities and differences for aerosol loading over land and over ocean were observed. A mid-tropospheric aerosol backscatter background mode was found with modal value approximately 1O(exp -10)/m/sr, consistent with previous airborne and ground-based datasets.

  4. Lidar measurements of stratospheric aerosols over Menlo Park, California, October 1972 - March 1974

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Viezee, W.; Hake, R. D.

    1974-01-01

    During an 18-month period, 30 nighttime observations of stratospheric aerosols were made using a ground based ruby lidar located near the Pacific coast of central California (37.5 deg. N, 122.2 deg. W). Vertical profiles of the lidar scattering ratio and the particulate backscattering coefficient were obtained by reference to a layer of assumed negligible particulate content. An aerosol layer centered near 21 km was clearly evident in all observations, but its magnitude and vertical distribution varied considerably throughout the observation period. A reduction of particulate backscattering in the 23- to 30-km layer during late January 1973 appears to have been associated with the sudden stratospheric warming which occurred at that time.

  5. First lidar measurements of water vapor and aerosols from a high-altitude aircraft

    NASA Technical Reports Server (NTRS)

    Browell, Edward V.; Ismail, Syed

    1995-01-01

    Water vapor plays an important role in many atmospheric processes related to radiation, climate change, atmospheric dynamics, meteorology, the global hydrologic cycle, and atmospheric chemistry, and yet our knowledge of the global distribution of water vapor is very limited. The differential absorption lidar (DIAL) technique has the potential of providing needed high resolution water vapor measurements from aircraft and from space, and the Lidar Atmospheric Sensing Experiment (LASE) is a key step in the development of this capability. The LASE instrument is the first fully engineered, autonomous DIAL system, and it is designed to operate from a high-altitude aircraft (ER-2) and to make water vapor and aerosol profile measurements across the troposphere. The LASE system was flown from the NASA Wallops Flight Facility in a series of engineering flights during September 1994. This paper discusses the characteristics of the LASE system and presents the first LASE measurements of water vapor and aerosol profiles.

  6. Derivation of Mount Pinatubo stratospheric aerosol mean size distribution by means of a multiwavelength lidar.

    PubMed

    Guasta, M D; Morandi, M; Stefanutti, L; Stein, B; Wolf, J P

    1994-08-20

    A multiwavelength lidar operated in Sodankyla, Finland, during the European Arctic Stratospheric Ozone Experiment (December 1991-March 1992). It produced vertical profiles of stratospheric aerosols at four wavelengths. The determination of aerosol mean size distribution has been performed by use of extinction/backscattering ratios as obtained from lidar data processing at 355, 352, and 750 nm. Lognormal distributions of sulfuric particles with mode radius of r(m) = 0.12-0.25 µm and corresponding widths of s = 2-1.6 have been retrieved as best fits of experimental data, in good agreement with in situ measurements. A successful attempt to derive bimodal log-normal distributions is also described, together with the experimental and theoretical problems involved. PMID:20935970

  7. Validation of a novel ultraviolet lidar system with relative Raman-scattering cross sections determined from atmospheric measurements

    NASA Astrophysics Data System (ADS)

    Farah, Ahmed M.; Venable, Demetrius D.; Thorpe, Arthur N.; Marsh, Frederick; Heaps, William S.

    2002-01-01

    We have developed an ultraviolet lidar system in which the upwelled laser beam and the telescope field of view can be made to overlap at any specified location in space. We refer to this system as the Selected Overlap Lidar Experiment. We discuss validation of our system by calculating relative Raman-scattering cross sections (with respect to the nitrogen scattering cross section) for oxygen and water vapor using data collected during field operations of our lidar. Our relative cross sections are consistent with those obtained by other researchers making similar measurements in laboratory environments.

  8. Evaluations of Thin Cirrus Contamination and Screening in Ground Aerosol Observations Using Collocated Lidar Systems

    NASA Technical Reports Server (NTRS)

    Huang, Jingfeng; Hsu, N. Christina; Tsay, Si-Chee; Holben, Brent N.; Welton, Ellsworth J.; Smirnov, Alexander; Jeong, Myeong-Jae; Hansell, Richard A.; Berkoff, Timothy A.

    2012-01-01

    Cirrus clouds, particularly sub visual high thin cirrus with low optical thickness, are difficult to be screened in operational aerosol retrieval algorithms. Collocated aerosol and cirrus observations from ground measurements, such as the Aerosol Robotic Network (AERONET) and the Micro-Pulse Lidar Network (MPLNET), provide us with an unprecedented opportunity to examine the susceptibility of operational aerosol products to thin cirrus contamination. Quality assured aerosol optical thickness (AOT) measurements were also tested against the CALIPSO vertical feature mask (VFM) and the MODIS-derived thin cirrus screening parameters for the purpose of evaluating thin cirrus contamination. Key results of this study include: (1) Quantitative evaluations of data uncertainties in AERONET AOT retrievals are conducted. Although AERONET cirrus screening schemes are successful in removing most cirrus contamination, strong residuals displaying strong spatial and seasonal variability still exist, particularly over thin cirrus prevalent regions during cirrus peak seasons, (2) Challenges in matching up different data for analysis are highlighted and corresponding solutions proposed, and (3) Estimation of the relative contributions from cirrus contamination to aerosol retrievals are discussed. The results are valuable for better understanding and further improving ground aerosol measurements that are critical for aerosol-related climate research.

  9. Volcanic aerosol layers observed by Lidar at South Pole, September 1991-June 1992

    SciTech Connect

    Cacciani, M.; Girolamo, P.D.; Sarra, A. di; Fiocco, G.; Fua, D. )

    1993-05-07

    The authors report on lidar observations of volcanic aerosols made at Amudsen-Scott, South Pole, during September 1991 to June 1992. Two major eruptions occured during 1991, Mt. Pinatubo in the Philippines, and Mt. Hudson in Chile. The stratospheric cloud formed by gas-to-particle interactions was inhibited from spreading over the south pole by the polar vertex, but was able to spread into this area in the spring. Measurements were made of integrated backscatter and of the aerosol mass loading and are reported in the paper.

  10. A Compact Airborne High Spectral Resolution Lidar for Observations of Aerosol and Cloud Optical Properties

    NASA Technical Reports Server (NTRS)

    Hostetler, Chris A.; Hair, John W.; Cook, Anthony L.

    2002-01-01

    We are in the process of developing a nadir-viewing, aircraft-based high spectral resolution lidar (HSRL) at NASA Langley Research Center. The system is designed to measure backscatter and extinction of aerosols and tenuous clouds. The primary uses of the instrument will be to validate spaceborne aerosol and cloud observations, carry out regional process studies, and assess the predictions of chemical transport models. In this paper, we provide an overview of the instrument design and present the results of simulations showing the instrument's capability to accurately measure extinction and extinction-to-backscatter ratio.

  11. High resolution Raman lidar measurements for the characterization of the water vapour inflow in the frame of the Hydrological Cycle in the Mediterranean Experiment

    NASA Astrophysics Data System (ADS)

    Di Girolamo, Paolo; Cacciani, Marco; Stelitano, Dario; Summa, Donato

    2013-04-01

    The University of BASILicata Raman Lidar system (BASIL) was deployed in Candillargues (Southern France, Lat: 43°37' N, Long: 4° 4' E) in the frame of the Hydrological Cycle in the Mediterranean Experiment - HyMeX. Within this experiment a major field campaign (Special Observation Period 1-SOP1, September to November 2012) took place over the Northwestern Mediterranean Sea and its surrounding coastal regions in France, Italy and Spain, with a specific focus on the study of heavy precipitation and flash-flood events. During HyMeX-SOP1, BASIL operated between 5 September and 5 November 2012, collecting more than 600 hours of measurements, distributed over 51 measurement days and 19 intensive observation periods (IOPs). The major feature of BASIL is represented by its capability to perform high-resolution and accurate measurements of atmospheric temperature and water vapour, both in daytime and night-time, based on the application of the rotational and vibrational Raman lidar techniques in the UV (Di Girolamo et al., 2004, 2006, 2009). This makes it an ideal tool for the characterization of the water vapour inflow in Southern France, which is important piece of information to improve the comprehension and forecasting capabilities of heavy precipitations in the Northwestern Mediterranean basin. Preliminary measurements from this field deployment will be illustrated and discussed at the Conference. These measurements allow to monitor and characterize the marine atmospheric flow that transport moist and conditionaly unstable air towards the coasts, which is feeding into the HPE events in Southern France. Measurements from BASIL can also be used to better characterize Planetary Boundary Layer moisture transport mechanisms from the surface to deep-convection systems. Besides temperature and water vapour, BASIL also provides measurements of the particle (aerosol/cloud) backscattering coefficient at 355, 532 and 1064 nm, of the particle extinction coefficient at 355 and 532 nm and of particle depolarization at 355 and 532 nm. The simultaneous characterization of the three-dimensional fields of water vapour, temperature and aerosol/cloud have the potential to lead to a better comprehension of the life cycle of HPE events around the Mediterranean Basin and ultimately lead to an improvement of cloud microphysical parameterization in Numerical Weather Prediction (NWP) models. References Di Girolamo, P., R. Marchese, D. N. Whiteman, B. B. Demoz, 2004: Rotational Raman Lidar measurements of atmospheric temperature in the UV, Geophysical Research Letters, 31, L01106, doi:10.1029/2003GL018342. Di Girolamo, P., A. Behrendt, and V. Wulfmeyer, 2006:. Spaceborne profiling of atmospheric temperature and particle extinction with pure rotational Raman lidar and of relative humidity in combination with differential absorption lidar: performance simulations, Applied Optics, 45, No. 11, 2474-2494, doi:10.1364/AO.45.002474. Di Girolamo, P., D. Summa, R. Ferretti, 2009: Multiparameter Raman Lidar Measurements for the Characterization of a Dry Stratospheric Intrusion Event, Journal of Atmospheric and Oceanic Technology, 26, No. 9, pp. 1742-1762, doi:10.1175/2009JTECHA1253.1.

  12. Estimation of multiple-aerosol concentration and backscatter using multi-wavelength range-resolved lidar

    NASA Astrophysics Data System (ADS)

    Warren, Russell E.; Vanderbeek, Richard G.

    2007-09-01

    Previous work by the authors has produced statistically based methods for detecting, estimating and classifying aerosol materials in the atmosphere using multiple-wavelength range-resolved CO2 lidar. This work has thus far been limited to the presence of a single aerosol material at a given time within the lidar line-of-sight. Practical implementation requires the ability to detect and discriminate multiple aerosol materials present simultaneously such as smoke and dust in addition to hazardous materials. Treating mixtures of materials necessitates fundamentally different approaches from the single-material case since neither the aerosol backscatter wavelength-dependence nor the concentrations as a function of range are known. Because of this, linear processing cannot resolve the mixture data into its components unambiguously, and non-linear methods must be considered. In this paper we describe an empirical Bayes (EB) approach for resolving mixtures of aerosol into their components. The basic idea of EB is to use the same data to estimate the prior distribution of a set of parameters as that used to estimate the parameters themselves. In our case the concentration and backscatter are the parameters that are estimated with the help of a prior distribution of the backscatter. We implement the EB estimator through the EM (Expectation Maximization) algorithm. The resulting processor is applied to injections of interferent dust into data sets collected by ECBC during JBSDS testing at Dugway Proving Ground, UT in 2006.

  13. Calibration of the Purple Crow Lidar vibrational Raman water-vapour mixing ratio and temperature measurements

    NASA Astrophysics Data System (ADS)

    Argall, P. S.; Sica, R. J.; Bryant, C. R.; Algara-Siller, M.; Schijns, H.

    2007-02-01

    Purple Crow Lidar (PCL) measurements of the vibrational Raman-shifted backscatter from water vapour and nitrogen molecules allows height profiles of the water-vapour mixing ratio to be measured from 500 m up into the lower stratosphere. In addition, the Raman nitrogen measurements allow the determination of temperature profiles from about 10 to 40 km altitude. However, external calibration of these measurements is necessary to compensate for instrumental effects, uncertainties in our knowledge of the relevant molecular cross sections, and atmospheric transmission. A comparison of the PCL-derived water-vapour concentration and temperature profiles with routine radiosonde measurements from Detroit and Buffalo on 37 and 141 nights, respectively, was undertaken to provide this calibration. The calibration is then applied to the measurements and monthly mean-temperature and water-vapour profiles are determined.

  14. Space-based laser for a cloud and aerosol backscatter lidar

    SciTech Connect

    Stadler, John H.; Hostetler, Chris A.; Williams-Byrd, Julie; Hovis, Floyd; Bradford, Charles M.; Schwiesow, Ron

    1999-01-22

    NASA Langley Research Center in conjunction with Ball Aerospace and Technologies Corp., are developing a small, lightweight, diode-pumped Nd:YAG laser to enable a spaceborne backscatter lidar to measure clouds and aerosols. The frequency-doubled laser has total output energy of 220 mJ at 27 Hz. The laser has been specifically designed for space applications and features conductive cooling and a minimum three-year design life.

  15. Comparison of Summer and Winter California Central Valley Aerosol Distributions from Lidar and MODIS Measurements

    NASA Technical Reports Server (NTRS)

    Lewis, Jasper; DeYoung, Russell; Ferrare, Richard; Chu, D. Allen

    2010-01-01

    Aerosol distributions from two aircraft lidar campaigns conducted in the California Central Valley are compared in order to identify seasonal variations. Aircraft lidar flights were conducted in June 2003 and February 2007. While the ground PM(sub 2.5) concentration is highest in the winter, the aerosol optical depth measured from MODIS is highest in the summer. A seasonal comparison shows that PM(sub 2.5) in the winter can exceed summer PM(sub 2.5) by 55%, while summer AOD exceeds winter AOD by 43%. Higher temperatures and wildfires in the summer produce elevated aerosol layers that are detected by satellite measurements, but not surface particulate matter monitors. Temperature inversions, especially during the winter, contribute to higher PM(sub 2.5) measurements at the surface. Measurements of the boundary layer height from lidar instruments provide valuable information need to understand the relationship between satellite measurements of optical depth and in-situ measurements of PM(sub 2.5).

  16. Ruby lidar observations and trajectory analysis of stratospheric aerosols injected by the volcanic eruptions of El Chichon

    NASA Astrophysics Data System (ADS)

    Uchino, O.; Tabata, T.; Akita, I.; Okada, Y.; Naito, K.

    1985-12-01

    Large amounts of aerosol particles and gases were injected into the lower stratosphere by the violet volcanic eruptions of El Chichon on March 28, and April 3 and 4, 1982. Observational results obtained by a ruby lidar at Tsukuba (36.1 deg N, 140.1 deg E) are shown, and some points of latitude dispersion processes of aerosols are discussed.

  17. Ruby lidar observations and trajectory analysis of stratospheric aerosols injected by the volcanic eruptions of El Chichon

    NASA Technical Reports Server (NTRS)

    Uchino, O.; Tabata, T.; Akita, I.; Okada, Y.; Naito, K.

    1985-01-01

    Large amounts of aerosol particles and gases were injected into the lower stratosphere by the violet volcanic eruptions of El Chichon on March 28, and April 3 and 4, 1982. Observational results obtained by a ruby lidar at Tsukuba (36.1 deg N, 140.1 deg E) are shown, and some points of latitude dispersion processes of aerosols are discussed.

  18. One Year of Doppler Lidar Observations Characterizing Boundary Layer Wind, Turbulence, and Aerosol Structure During the Indianapolis Flux Experiment

    NASA Astrophysics Data System (ADS)

    Hardesty, R. M.; Brewer, A.; Shepson, P. B.; Cambaliza, M. O. L.; Salmon, O. E.; Heimburger, A. M. F.; Davis, K. J.; Lauvaux, T.; McGowan, L. E.; Miles, N. L.; Richardson, S.; Sarmiento, D. P.; Karion, A.; Sweeney, C.; Iraci, L. T.; Hillyard, P. W.; Podolske, J. R.; Gurney, K. R.; Razlivanov, I. N.; Song, Y.; Turnbull, J. C.; Whetstone, J. R.; Possolo, A.; Prasad, K.

    2014-12-01

    The Indianapolis Flux Experiment (INFLUX) is aimed at improving methods for estimation of greenhouse gas emissions at urban scales. INFLUX observational components include several-times-per-month aircraft measurements of gas concentrations and meteorological parameters, as well as a number of towers observing CO2, CH4, and CO and a single continuously operating Doppler lidar to estimate wind, turbulence and aerosol structure in the boundary layer. The observations are used to develop top-down emissions estimates from the aircraft measurements and as input to inversion models. The Doppler lidar provides information on boundary layer structure for both the aircraft and inversion studies. A commercial Doppler lidar characterized by low pulse energy and high pulse repetition rate has operated for well over a year at a site NE of downtown Indianapolis. The lidar produces profiles of horizontal wind speed, vertical velocity variance, and aerosol structure two to three times per hour. These data are then used to investigate boundary layer mixing and thickness and horizontal transport as inputs for the flux calculations. During its one year deployment the lidar generally operated reliably with few outages. Comparisons with aircraft spirals over the site and with the NOAA High Resolution research Doppler lidar deployed to Indianapolis for one month during May, 2014, were used to assess the performance of the INFLUX lidar. Measurements agreed quite well when aerosol loading was sufficient for lidar observations throughout the boundary layer. However, low aerosol loading during some periods limited the range of the lidar and precluded characterization of the full boundary layer. We present an overall assessment of the commercial Doppler lidar for providing the needed information on boundary layer structure for emission estimations, and show variability of the boundary layer observations over diurnal, seasonal, and annual cycles. Recommendations on system design changes to obtain data under a more complete range of atmosphere conditions are suggested.

  19. NASA/GSFC Scanning Raman Lidar Measurements of Water Vapor and Cirrus Clouds during WVIOP2000 and AFWEX

    NASA Technical Reports Server (NTRS)

    Whiteman, D. N.; Evans, K. D.; DiGirolamo, P.; Demoz, B. B.; Turner, D.; Comstock, J.; Ismail, S.; Ferrare, R. A.; Browell, E. V.; Goldsmith, J. E. M.; Abshire, James B. (Technical Monitor)

    2002-01-01

    The NASA/GSFC Scanning Raman Lidar (SRL) was deployed to the Southern Great Plains CART site from September - December, 2000 and participated in two field campaigns devoted to comparisons of various water vapor measurement technologies and calibrations. These campaigns were the Water Vapor Intensive Operations Period 2000 (WVIOP2000) and the ARM FIRE Water Vapor Experiment (AFWEX). WVIOP2000 was devoted to validating water vapor measurements in the lower atmosphere while AFWEX had similar goals but for measurements in the upper troposphere. The SRL was significantly upgraded both optically and electronically prior to these field campaigns. These upgrades enabled the SRL to demonstrate the highest resolution lidar measurements of water vapor ever acquired during the nighttime and the highest S/N Raman lidar measurements of water vapor in the daytime; more than a factor of 2 increase in S/N versus the DOE CARL Raman Lidar. Examples of these new measurement capabilities along with comparisons of SRL and CARL, LASE, MPI-DIAL, in-situ sensors, radiosonde, and others will be presented. The profile comparisons of the SRL and CARL have revealed what appears to be an overlap correction or countrate correction problem in CARL. This may be involved in an overall dry bias in the precipitable water calibration of CARL with respect to the MWR of approx. 4%. Preliminary analysis indicates that the application of a temperature dependent correction to the narrowband Raman lidar measurements of water vapor improves the lidar/Vaisala radiosonde comparisons of upper tropospheric water vapor. Other results including the comparison of the first-ever simultaneous measurements from four water vapor lidar systems, a bore-wave event captured at high resolution by the SRL and cirrus cloud optical depth studies using the SRL and CARL will be presented at the meeting.

  20. Comparison Between Lidar and Nephelometer Measurements of Aerosol Hygroscopicity at the Southern Great Plains Atmospheric Radiation Measurement Site

    NASA Technical Reports Server (NTRS)

    Pahlow, M.; Feingold, G.; Jefferson, A.; Andrews, E.; Ogren, J. A.; Wang, J.; Lee, Y.-N.; Ferrare, R. A.

    2004-01-01

    Aerosol hygroscopicity has a significant effect on radiative properties of aerosols. Here a lidar method, applicable to cloud-capped, well-mixed atmospheric boundary layers, is employed to determine the hygroscopic growth factor f(RH) under unperturbed, ambient atmospheric conditions. The data used for the analysis were collected under a wide range of atmospheric aerosol levels during both routine measurement periods and during the intensive operations period (IOP) in May 2003 at the Southern Great Plains (SGP) Climate Research Facility in Oklahoma, USA, as part of the Atmospheric Radiation Measurement (ARM) program. There is a good correlation (approx. 0.7) between a lidar-derived growth factor (measured over the range 85% RH to 96% RH) with a nephelometer-derived growth factor measured over the RH range 40% to 85%. For these RH ranges, the slope of the lidar-derived growth factor is much steeper than that of the nephelometer-derived growth factor, reflecting the rapid increase in particle size with increasing RH. The results are corroborated by aerosol model calculations of lidar and nephelometer equivalent f(RH) based on in situ aerosol size and composition measurements during the IOP. It is suggested that the lidar method can provide useful measurements of the dependence of aerosol optical properties on relative humidity, and under conditions closer to saturation than can currently be achieved with humidified nephelometers.

  1. Using Airborne High Spectral Resolution Lidar Data to Evaluate Combined Active Plus Passive Retrievals of Aerosol Extinction Profiles

    NASA Technical Reports Server (NTRS)

    Burton, S. P.; Ferrare, R. A.; Kittaka, C.; Hostetler, C. A.; Hair, J. W.; Obland, M. D.; Rogers, R. R.; Cook, A. L.; Haper, D. B.

    2008-01-01

    Aerosol extinction profiles are derived from backscatter data by constraining the retrieval with column aerosol optical thickness (AOT), for example from coincident MODIS observations and without reliance on a priori assumptions about aerosol type or optical properties. The backscatter data were acquired with the NASA Langley High Spectral Resolution Lidar (HSRL). The HSRL also simultaneously measures extinction independently, thereby providing an ideal data set for evaluating the constrained retrieval of extinction from backscatter. We will show constrained extinction retrievals using various sources of column AOT, and examine comparisons with the HSRL extinction measurements and with a similar retrieval using data from the CALIOP lidar on the CALIPSO satellite.

  2. Combined Retrievals of Boreal Forest Fire Aerosol Properties with a Polarimeter and Lidar

    NASA Technical Reports Server (NTRS)

    Knobelspiesse, K.; Cairns, B.; Ottaviani, M.; Ferrare, R.; Haire, J.; Hostetler, C.; Obland, M.; Rogers, R.; Redemann, J.; Shinozuka, Y.; Clarke, A.; Freitag, S.; Howell, S.; Kapustin, V.; McNaughton, C.

    2011-01-01

    Absorbing aerosols play an important, but uncertain, role in the global climate. Much of this uncertainty is due to a lack of adequate aerosol measurements. While great strides have been made in observational capability in the previous years and decades, it has become increasingly apparent that this development must continue. Scanning polarimeters have been designed to help resolve this issue by making accurate, multi-spectral, multi-angle polarized observations. This work involves the use of the Research Scanning Polarimeter (RSP). The RSP was designed as the airborne prototype for the Aerosol Polarimetery Sensor (APS), which was due to be launched as part of the (ultimately failed) NASA Glory mission. Field observations with the RSP, however, have established that simultaneous retrievals of aerosol absorption and vertical distribution over bright land surfaces are quite uncertain. We test a merger of RSP and High Spectral Resolution Lidar (HSRL) data with observations of boreal forest fire smoke, collected during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS). During ARCTAS, the RSP and HSRL instruments were mounted on the same aircraft, and validation data were provided by instruments on an aircraft flying a coordinated flight pattern. We found that the lidar data did indeed improve aerosol retrievals using an optimal estimation method, although not primarily because of the constraints imposed on the aerosol vertical distribution. The more useful piece of information from the HSRL was the total column aerosol optical depth, which was used to select the initial value (optimization starting point) of the aerosol number concentration. When ground based sun photometer network climatologies of number concentration were used as an initial value, we found that roughly half of the retrievals had unrealistic sizes and imaginary indices, even though the retrieved spectral optical depths agreed within uncertainties to independent observations. The convergence to an unrealistic local minimum by the optimal estimator is related to the relatively low sensitivity to particles smaller than 0.1 ( m) at large optical thicknesses. Thus, optimization algorithms used for operational aerosol retrievals of the fine mode size distribution, when the total optical depth is large, will require initial values generated from table look-ups that exclude unrealistic size/complex index mixtures. External constraints from lidar on initial values used in the optimal estimation methods will also be valuable in reducing the likelihood of obtaining spurious retrievals.

  3. Towards quantifying mesoscale flows in the troposphere using Raman lidar and sondes

    SciTech Connect

    Demoz, B.; Evans, K.; Starr, D.

    1998-03-01

    Water vapor plays an important role in the energetics of the boundary layer processes which in turn play a key role in regulating regional and global climate. It plays a primary role in Earth`s hydrological cycle, in radiation balance as a direct absorber of infrared radiation, and in atmospheric circulation as a latent heat energy source as well as in determining cloud development and atmospheric stability. Water vapor concentration, expressed as a mass mixing ratio, is conserved in all meteorological processes except condensation and evaporation. This property makes it an ideal choice for studying many of the atmosphere`s dynamic features. Raman scattering measurements from lidar also allow retrieval of water vapor mixing ratio profiles at high temporal and vertical resolution. Raman lidars sense water vapor to altitudes not achievable with towers and surface systems, sample the atmosphere at much higher temporal resolution than radiosondes or satellites, and do not require strong vertical gradients or turbulent fluctuations in temperature that is required by acoustic sounders and radars. Analysis of highly resolved water vapor profiles are used here to characterize two important mesoscale flows: thunderstorm outflows and a cold front passage.

  4. Design of an airborne lidar for stratospheric aerosol measurements

    NASA Technical Reports Server (NTRS)

    Evans, W. E.

    1977-01-01

    A modular, multiple-telescope receiving concept is developed to gain a relatively large receiver collection aperture without requiring extensive modifications to the aircraft. This concept, together with the choice of a specific photodetector, signal processing, and data recording system capable of maintaining approximately 1% precision over the required large signal amplitude range, is found to be common to all of the options. It is recommended that development of the lidar begin by more detailed definition of solutions to these important common signal detection and recording problems.

  5. Compact Ozone Lidar for Atmospheric Ozone and Aerosol Measurements

    NASA Technical Reports Server (NTRS)

    Marcia, Joel; DeYoung, Russell J.

    2007-01-01

    A small compact ozone differential absorption lidar capable of being deployed on a small aircraft or unpiloted atmospheric vehicle (UAV) has been tested. The Ce:LiCAF tunable UV laser is pumped by a quadrupled Nd:YLF laser. Test results on the laser transmitter demonstrated 1.4 W in the IR and 240 mW in the green at 1000 Hz. The receiver consists of three photon-counting channels, which are a far field PMT, a near field UV PMT, and a green PMT. Each channel was tested for their saturation characteristics.

  6. Modeling LIDAR Detection of Biological Aerosols to Determine Optimum Implementation Strategy

    SciTech Connect

    Sheen, David M.; Aker, Pam M.

    2007-09-19

    This report summarizes work performed for a larger multi-laboratory project named the Background Interferent Measurement and Standards project. While originally tasked to develop algorithms to optimize biological warfare agent detection using UV fluorescence LIDAR, the current uncertainties in the reported fluorescence profiles and cross sections the development of any meaningful models. It was decided that a better approach would be to model the wavelength-dependent elastic backscattering from a number of ambient background aerosol types, and compare this with that generated from representative sporulated and vegetative bacterial systems. Calculations in this report show that a 266, 355, 532 and 1064 nm elastic backscatter LIDAR experiment will allow an operator to immediately recognize when sulfate, VOC-based or road dust (silicate) aerosols are approaching, independent of humidity changes. It will be more difficult to distinguish soot aerosols from biological aerosols, or vegetative bacteria from sporulated bacteria. In these latter cases, the elastic scattering data will most likely have to be combined with UV fluorescence data to enable a more robust categorization.

  7. Lidar Measurements of the Vertical Distribution of Aerosol Optical and Physical Properties over Central Asia

    DOE PAGESBeta

    Chen, Boris B.; Sverdlik, Leonid G.; Imashev, Sanjar A.; Solomon, Paul A.; Lantz, Jeffrey; Schauer, James J.; Shafer, Martin M.; Artamonova, Maria S.; Carmichael, Gregory R.

    2013-01-01

    The vertical structure of aerosol optical and physical properties was measured by Lidar in Eastern Kyrgyzstan, Central Asia, from June 2008 to May 2009. Lidar measurements were supplemented with surface-based measurements of PM 2.5 and PM 10 mass and chemical composition in both size fractions. Dust transported into the region is common, being detected 33% of the time. The maximum frequency occurred in the spring of 2009. Dust transported to Central Asia comes from regional sources, for example, Taklimakan desert and Aral Sea basin, and from long-range transport, for example, deserts of Arabia, Northeast Africa, Iran, and Pakistan. Regionalmore »sources are characterized by pollution transport with maximum values of coarse particles within the planetary boundary layer, aerosol optical thickness, extinction coefficient, integral coefficient of aerosol backscatter, and minimum values of the Ångström exponent. Pollution associated with air masses transported over long distances has different characteristics during autumn, winter, and spring. During winter, dust emissions were low resulting in high values of the Ångström exponent (about 0.51) and the fine particle mass fraction (64%). Dust storms were more frequent during spring with an increase in coarse dust particles in comparison to winter. The aerosol vertical profiles can be used to lower uncertainty in estimating radiative forcing. « less

  8. Improved simulation of aerosol, cloud, and density measurements by shuttle lidar

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Morley, B. M.; Livingston, J. M.; Grams, G. W.; Patterson, E. W.

    1981-01-01

    Data retrievals are simulated for a Nd:YAG lidar suitable for early flight on the space shuttle. Maximum assumed vertical and horizontal resolutions are 0.1 and 100 km, respectively, in the boundary layer, increasing to 2 and 2000 km in the mesosphere. Aerosol and cloud retrievals are simulated using 1.06 and 0.53 microns wavelengths independently. Error sources include signal measurement, conventional density information, atmospheric transmission, and lidar calibration. By day, tenuous clouds and Saharan and boundary layer aerosols are retrieved at both wavelengths. By night, these constituents are retrieved, plus upper tropospheric, stratospheric, and mesospheric aerosols and noctilucent clouds. Density, temperature, and improved aerosol and cloud retrievals are simulated by combining signals at 0.35, 1.06, and 0.53 microns. Particlate contamination limits the technique to the cloud free upper troposphere and above. Error bars automatically show effect of this contamination, as well as errors in absolute density nonmalization, reference temperature or pressure, and the sources listed above. For nonvolcanic conditions, relative density profiles have rms errors of 0.54 to 2% in the upper troposphere and stratosphere. Temperature profiles have rms errors of 1.2 to 2.5 K and can define the tropopause to 0.5 km and higher wave structures to 1 or 2 km.

  9. Fully Automated Detection of Cloud and Aerosol Layers in the CALIPSO Lidar Measurements

    NASA Technical Reports Server (NTRS)

    Vaughan, Mark A.; Powell, Kathleen A.; Kuehn, Ralph E.; Young, Stuart A.; Winker, David M.; Hostetler, Chris A.; Hunt, William H.; Liu, Zhaoyan; McGill, Matthew J.; Getzewich, Brian J.

    2009-01-01

    Accurate knowledge of the vertical and horizontal extent of clouds and aerosols in the earth s atmosphere is critical in assessing the planet s radiation budget and for advancing human understanding of climate change issues. To retrieve this fundamental information from the elastic backscatter lidar data acquired during the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) mission, a selective, iterated boundary location (SIBYL) algorithm has been developed and deployed. SIBYL accomplishes its goals by integrating an adaptive context-sensitive profile scanner into an iterated multiresolution spatial averaging scheme. This paper provides an in-depth overview of the architecture and performance of the SIBYL algorithm. It begins with a brief review of the theory of target detection in noise-contaminated signals, and an enumeration of the practical constraints levied on the retrieval scheme by the design of the lidar hardware, the geometry of a space-based remote sensing platform, and the spatial variability of the measurement targets. Detailed descriptions are then provided for both the adaptive threshold algorithm used to detect features of interest within individual lidar profiles and the fully automated multiresolution averaging engine within which this profile scanner functions. The resulting fusion of profile scanner and averaging engine is specifically designed to optimize the trade-offs between the widely varying signal-to-noise ratio of the measurements and the disparate spatial resolutions of the detection targets. Throughout the paper, specific algorithm performance details are illustrated using examples drawn from the existing CALIPSO dataset. Overall performance is established by comparisons to existing layer height distributions obtained by other airborne and space-based lidars.

  10. Aerosol concentration measurements with a lidar ceilometer: results of a one year measuring campaign

    NASA Astrophysics Data System (ADS)

    Muenkel, Christoph; Emeis, Stefan; Mueller, Wolfgang J.; Schaefer, Klaus P.

    2004-02-01

    The Vaisala ceilometer CT25K is an eye-safe commercial lidar mainly used to report cloud base heights and vertical visibility for aviation safety purposes. Compared to ceilometers with biaxial optics, its single lens design provides a higher signal-to-noise ratio for lidar return signals from distances below about 600 m, thus increasing its abilities to examine the mixing layer. A CT25K ceilometer took part in the environmental research project VALIUM at the Lower Saxony State Agency for Ecology (NLO) in Hannover, Germany, investigating the air pollution in an urban surrounding with various sensors. Lidar return signals are reported every 15 s with a height resolution of 15 m. This paper covers two aspects of the interpretation of these signals. The aerosol backscatter of the atmosphere up to 30 m is compared to the PM10 concentration reported by an in situ sensor every 30 minutes, and the results are interpreted in respect of meteorological parameters such as humidity, temperature, wind, and global radiation. With relative humidity values below 62 % and no rain present the correlation between ceilometer backscatter and PM10 values is good enough to qualify standard ceilometers as instruments for a quantitative analysis of the atmospheric aerosol contents. Backscatter values up to 1000 m height are presented that allow an estimation of the convective boundary layer top in dry weather situations. The atmospheric boundary layer structures derived from ceilometer data are compared to those reported by a SODAR and a RASS that also took part in the VALIUM research project. Finally the backscatter data quality of a double lens ceilometer is compared to that of the single lens CT25K ceilometer to investigate to what extent these lidar systems are also able to report aerosol concentration.

  11. Measurements of Aerosol Vertical Profiles and Optical Properties during INDOEX 1999 Using Micro-Pulse Lidars

    NASA Technical Reports Server (NTRS)

    Welton, Ellsworth J.; Voss, Kenneth J.; Quinn, Patricia K.; Flatau, Piotr J.; Markowicz, Krzysztof; Campbell, James R.; Spinhirne, James D.; Gordon, Howard R.; Johnson, James E.; Starr, David OC. (Technical Monitor)

    2001-01-01

    Micro-pulse lidar systems (MPL) were used to measure aerosol properties during the Indian Ocean Experiment (INDOEX) 1999 field phase. Measurements were made from two platforms: the NOAA ship RN Ronald H. Brown, and the Kaashidhoo Climate Observatory (KCO) in the Maldives. Sunphotometers were used to provide aerosol optical depths (AOD) needed to calibrate the MPL. This study focuses on the height distribution and optical properties (at 523 nm) of aerosols observed during the campaign. The height of the highest aerosols (top height) was calculated and found to be below 4 km for most of the cruise. The marine boundary layer (MBL) top was calculated and found to be less than 1 km. MPL results were combined with air mass trajectories, radiosonde profiles of temperature and humidity, and aerosol concentration and optical measurements. Humidity varied from approximately 80% near the surface to 50% near the top height during the entire cruise. The average value and standard deviation of aerosol optical parameters were determined for characteristic air mass regimes. Marine aerosols in the absence of any continental influence were found to have an AOD of 0.05 +/- 0.03, an extinction-to-backscatter ratio (S-ratio) of 33 +/- 6 sr, and peak extinction values around 0.05/km (near the MBL top). The marine results are shown to be in agreement with previously measured and expected values. Polluted marine areas over the Indian Ocean, influenced by continental aerosols, had AOD values in excess of 0.2, S-ratios well above 40 sr, and peak extinction values approximately 0.20/km (near the MBL top). The polluted marine results are shown to be similar to previously published values for continental aerosols. Comparisons between MPL derived extinction near the ship (75 m) and extinction calculated at ship-level using scattering measured by a nephelometer and absorption using a PSAP were conducted. The comparisons indicated that the MPL algorithm (using a constant S-ratio throughout the lower troposphere) calculates extinction near the surface in agreement with the ship-level measurements only when the MBL aerosols are well mixed with aerosols above. Finally, a review of the MPL extinction profiles showed that the model of aerosol vertical extinction developed during an earlier INDOEX field campaign (at the Maldives) did not correctly describe the true vertical distribution over the greater Indian Ocean region. Using the average extinction profile and AOD obtained during marine conditions, a new model of aerosol vertical extinction was determined for marine atmospheres over the Indian Ocean. A new model of aerosol vertical extinction for polluted marine atmospheres was also developed using the average extinction profile and AOD obtained during marine conditions influenced by continental aerosols.

  12. AGLITE: a multi-wavelength lidar for measuring emitted aerosol concentrations and fluxes and air motion from agricultural facilities

    NASA Astrophysics Data System (ADS)

    Wilkerson, Thomas D.; Bingham, Gail E.; Zavyalov, Vladimir V.; Swasey, Jason A.; Hancock, Jed J.; Crowther, Blake G.; Cornelsen, Scott S.; Marchant, Christian; Cutts, James N.; Huish, David C.; Earl, Curtis L.; Andersen, Jan M.; Cox, McLain L.

    2006-12-01

    AGLITE is a multi-wavelength lidar developed for the Agricultural Research Service (ARS), United States Department of Agriculture (USDA) and its program on particle emissions from animal production facilities. The lidar transmitter is a 10 kHz pulsed NdYAG laser at 355, 532 and 1064 nm. We analyze lidar backscatter and extinction to extract aerosol physical properties. All-reflective optics and dichroic and interferometric filters permit all wavelengths to be measured simultaneously, day or night, using photon counting by MTs, an APD, and fast data acquisition. The lidar housing is a transportable trailer suitable for all-weather operation at any accessible site. We direct the laser and telescope FOVs to targets of interest in both azimuth and elevation. The lidar has been applied in atmospheric studies at a swine production farm in Iowa and a dairy in Utah. Prominent aerosol plumes emitted from the swine facility were measured as functions of temperature, turbulence, stability and the animal feed cycle. Particle samplers and turbulence detectors were used by colleagues specializing in those fields. Lidar measurements also focused on air motion as seen by scans of the farm volume. The value of multi-wavelength, eye-safe lidars for agricultural aerosol measurements has been confirmed by the successful operation of AGLITE.

  13. Instrumental correction of the uneven PMT aging effect on the calibration constant of a water vapor Raman lidar

    NASA Astrophysics Data System (ADS)

    Simeonov, Valentin; Fastig, Shlomo; Haefele, Alexander; Martucci, Giovanni; Calpini, Bertrand

    2015-04-01

    The water vapor profile derived from Raman lidar measurements is obtained from the ratio of water vapor to nitrogen Raman-shifted returns. The proportionality factor converting the signal ratio to water vapor/air mixing ratio is referred to as lidar calibration constant. The calibration constant is a function of the water vapor and nitrogen Raman cross sections and the efficiencies of the respective Raman channels including the photomultiplier tubes (PMT) efficiencies. Unequal, gradual changes in the water vapor and nitrogen channels PMT efficiencies due to aging effects lead to steady alteration of the calibration constant. This effect has been observed during the seven- year continuous operation of the RAman Lidar for Meteorological Observations (RALMO)1. A more detailed research2, has shown that the calibration constant change is more pronounced during summer time, which is explained by the higher daylight exposure of the PMTs during this period. Periodical recalibration of the lidar with radiosonde measurements is used to correct the calibration constant. This approach, however, induces additional systematic errors due to the nature of the calibration procedure and because of sonde-to-sonde accuracy variations. The systematic errors could induce artefacts leading to an incorrect interpretation of certain data points in the framework of climatological studies. To resolve this problem we developed a new, instrumental method for automated correction of the lidar calibration constant. By this method, the change in the water vapor and the nitrogen PMTs efficiencies are estimated from the PMTs responses measured when they are illuminated simultaneously by a single stabilized LED light source. A correction factor is deduced from the ratio of the signals of the two photomultipliers. The correction measurements are taken automatically once daily before midnight. The correction is applied when the correction factor exceeds a predefined threshold for several days. The method principle, the instrumental setup and preliminary results will be presented. References a. T. Dinoev, V. Simeonov, Y. Archinov, S. Bobrovnikov, P. Ristori, B. Calpini, M. Parlange, H. Van den Bergh, "Raman Lidar for Meteorological Observations, RALMO - Part I: Instrument description", Atmosph. Meas. Techn., 6, pp.1329-1346, (2013) b. E. Brocard, R. Philipona, A. Haefele, G. Romanens, D. Ruffieux, V. Simeonov, and B. Calpini, " Raman Lidar for Meteorological Observations, RALMO - Part 2: Validation of water vapour measurements", Atmosph. Meas. Techn. , 6, pp. 1347-1358, (2013)

  14. Cloud and Aerosol Measurements from the GLAS Polar Orbiting Lidar: First Year Results

    NASA Technical Reports Server (NTRS)

    Spinhirne, J. D.; Palm, S. P.; Hlavka, D. L.; Hart, W. D.; Mahesh, A.; Welton, E. J.

    2004-01-01

    The Geoscience Laser Altimeter System (GLAS) launched in 2003 is the first polar orbiting satellite lidar. The instrument was designed for high performance observations of the distribution and optical scattering cross sections of clouds and aerosol. GLAS is approaching six months of on orbit data operation. These data from thousands of orbits illustrate the ability of space lidar to accurately and dramatically measure the height distribution of global cloud and aerosol to an unprecedented degree. There were many intended science applications of the GLAS data and significant results have already been realized. One application is the accurate height distribution and coverage of global cloud cover with one goal of defining the limitation and inaccuracies of passive retrievals. Comparison to MODIS cloud retrievals shows notable discrepancies. Initial comparisons to NOAA 14&15 satellite cloud retrievals show basic similarity in overall cloud coverage, but important differences in height distribution. Because of the especially poor performance of passive cloud retrievals in polar regions, and partly because of high orbit track densities, the GLAS measurements are by far the most accurate measurement of Arctic and Antarctica cloud cover from space to date. Global aerosol height profiling is a fundamentally new measurement from space with multiple applications. A most important aerosol application is providing input to global aerosol generation and transport models. Another is improved measurement of aerosol optical depth. Oceanic surface energy flux derivation from PBL and LCL height measurements is another application of GLAS data that is being pursued. A special area of work for GLAS data is the correction and application of multiple scattering effects. Stretching of surface return pulses in excess of 40 m from cloud propagation effects and other interesting multiple scattering phenomena have been observed. As an EOS project instrument, GLAS data products are openly available to the science community. First year results from GLAS are summarized.

  15. Performance of the Lidar Design and Data Algorithms for the GLAS Global Cloud and Aerosol Measurements

    NASA Technical Reports Server (NTRS)

    Spinhirne, James D.; Palm, Stephen P.; Hlavka, Dennis L.; Hart, William D.

    2007-01-01

    The Geoscience Laser Altimeter System (GLAS) launched in early 2003 is the first polar orbiting satellite lidar. The instrument design includes high performance observations of the distribution and optical scattering cross sections of atmospheric clouds and aerosol. The backscatter lidar operates at two wavelengths, 532 and 1064 nm. For the atmospheric cloud and aerosol measurements, the 532 nm channel was designed for ultra high efficiency with solid state photon counting detectors and etalon filtering. Data processing algorithms were developed to calibrate and normalize the signals and produce global scale data products of the height distribution of cloud and aerosol layers and their optical depths and particulate scattering cross sections up to the limit of optical attenuation. The paper will concentrate on the effectiveness and limitations of the lidar channel design and data product algorithms. Both atmospheric receiver channels meet and exceed their design goals. Geiger Mode Avalanche Photodiode modules are used for the 532 nm signal. The operational experience is that some signal artifacts and non-linearity require correction in data processing. As with all photon counting detectors, a pulse-pile-up calibration is an important aspect of the measurement. Additional signal corrections were found to be necessary relating to correction of a saturation signal-run-on effect and also for daytime data, a small range dependent variation in the responsivity. It was possible to correct for these signal errors in data processing and achieve the requirement to accurately profile aerosol and cloud cross section down to 10-7 llm-sr. The analysis procedure employs a precise calibration against molecular scattering in the mid-stratosphere. The 1064 nm channel detection employs a high-speed analog APD for surface and atmospheric measurements where the detection sensitivity is limited by detector noise and is over an order of magnitude less than at 532 nm. A unique feature of the GLAS is a full acquisition of the surface return pulse, which has important application to the atmospheric transmission retrieval.

  16. Observation of aerosol in the mixing layer by a ground-based lidar ceilometer

    NASA Astrophysics Data System (ADS)

    Muenkel, Christoph; Emeis, Stefan M.; Mueller, Wolfgang J.; Schaefer, Klaus P.

    2003-04-01

    The Vaisala ceilometer CT25K is an eye-safe commercial lidar mainly used to report cloud base heights and vertical visibility for aviation safety purposes. Compared to ceilometers with bi-axial optics, its single-lens design provides a higher signal-to-noise ratio for lidar return signals from distances below about 600 m, thus increasing its abilities to examine the mixing layer. A CT25K ceilometer takes part in the environmental measuring campaign VALIUM at the Lower Saxony State Agency for Ecology (NLO) in Hannover, Germany, investigating the air pollution in an urban surrounding with various sensors. Lidar return signals are reported every 15 s with a height resolution of 15 m. This paper concentrates on the interpretation of these signals in respect of the aerosol backscatter of the atmosphere up to 30 m. Every 30 minutes the NLO reports PM10 and PM2.5 concentrations measured with in-situ sensors installed 20 m above the ceilometer. Humidity and precipitation monitor sensors help ruling out weather situations with water droplets contributing mainly to the ceilometer backscatter signal. Data collected between 01. 03. 2002 and 31. 07. 2002 show that during dry weather situations there is a correlation of more than 80% between the dust concentration and the aerosol backscatter, allowing a quantitative analysis of the atmospheric dust contents with a standard ceilometer. The ratio PM10/PM2.5 of in situ measurements is investigated also giving a regression function and a correlation coefficient.

  17. Mineral dust observed with AERONET Sun photometer, Raman lidar, and in situ instruments during SAMUM 2006: Shape-independent particle properties

    NASA Astrophysics Data System (ADS)

    Müller, D.; Weinzierl, B.; Petzold, A.; Kandler, K.; Ansmann, A.; Müller, T.; Tesche, M.; Freudenthaler, V.; Esselborn, M.; Heese, B.; Althausen, D.; Schladitz, A.; Otto, S.; Knippertz, P.

    2010-04-01

    Aerosol Robotic Network (AERONET) Sun photometer observations were carried out at Ouarzazate, Morocco, during the Saharan Mineral Dust Experiment (SAMUM) 2006. Data from one measurement day, 19 May 2006, are used to derive particle optical and microphysical parameters with AERONET's latest version of light-scattering model for non-spherical particle geometry. In our analysis we also make use of a novel measurement channel at 1638 nm wavelength. We compare the results to data products obtained by airborne high-spectral-resolution lidar, several ground-based Raman lidar, and airborne and ground-based in situ measurement platforms. We chose that specific measurement day because the dust plume was vertically well mixed. Extinction coefficients from AERONET Sun photometer and lidar observations and in situ measurements agree well. Ångström exponents from Sun photometer and lidar are in close agreement, too. Airborne in situ measurements of dust particle size distributions show larger effective radii than inferred from the AERONET data. Complex refractive indices that are derived with the AERONET algorithm differ from the values obtained with different independent techniques employed in our study. The single-scattering albedo was derived from the airborne observations of particle size distributions and complex refractive indices. Single-scattering albedo differs to the value inferred from the AERONET data. The differences may be attributed to the different effective radii that we obtained from the various techniques. The differences between the data products from the various measurement platforms, however, cannot be generalized, as we could only test data for one measurement day. An analysis of additional measurements is under way.

  18. Solution of multifrequency lidar inverse problem for a pre-set marine aerosol size-distribution formula

    SciTech Connect

    Piskozub, J.

    1994-12-31

    The multifrequency lidar inverse problem discussed consists of calculating the size distribution of sol particles from backscattered lidar data. Sea-water (marine) aerosol is particularly well suited for this kind of study as its scattering characteristics can be accurately represented by Mie theory as its particles are almost spherical and their complex index of refraction is well known. Here, a solution of the inverse problem concerning finding aerosol size distribution for a multifrequency lidar system working on a small number of wavelengths is proposed. The solution involves a best-fit method of finding parameters in a pre-set formula of particle size distribution. A comparison of results calculated with the algorithm from experimental lidar profiles with PMS data collected in Baltic Sea coastal zone is given.

  19. LABVIEW graphical user interface for precision multichannel alignment of Raman lidar at Jet Propulsion Laboratory, Table Mountain Facility.

    PubMed

    Aspey, R A; McDermid, I S; Leblanc, T; Howe, J W; Walsh, T D

    2008-09-01

    The Jet Propulsion Laboratory operates lidar systems at Table Mountain Facility (TMF), California (34.4 degrees N, 117.7 degrees W) and Mauna Loa Observatory, Hawaii (19.5 degrees N, 155.6 degrees W) under the framework of the Network for the Detection of Atmospheric Composition Change. To complement these systems a new Raman lidar has been developed at TMF with particular attention given to optimizing water vapor profile measurements up to the tropopause and lower stratosphere. The lidar has been designed for accuracies of 5% up to 12 km in the free troposphere and a detection capability of <5 ppmv. One important feature of the lidar is a precision alignment system using range resolved data from eight Licel transient recorders, allowing fully configurable alignment via a LABVIEW/C++ graphical user interface (GUI). This allows the lidar to be aligned on any channel while simultaneously displaying signals from other channels at configurable altitude/bin combinations. The general lidar instrumental setup and the details of the alignment control system, data acquisition, and GUI alignment software are described. Preliminary validation results using radiosonde and lidar intercomparisons are briefly presented. PMID:19044439

  20. LABVIEW graphical user interface for precision multichannel alignment of Raman lidar at Jet Propulsion Laboratory, Table Mountain Facility

    NASA Astrophysics Data System (ADS)

    Aspey, R. A.; McDermid, I. S.; Leblanc, T.; Howe, J. W.; Walsh, T. D.

    2008-09-01

    The Jet Propulsion Laboratory operates lidar systems at Table Mountain Facility (TMF), California (34.4°N, 117.7°W) and Mauna Loa Observatory, Hawaii (19.5°N, 155.6°W) under the framework of the Network for the Detection of Atmospheric Composition Change. To complement these systems a new Raman lidar has been developed at TMF with particular attention given to optimizing water vapor profile measurements up to the tropopause and lower stratosphere. The lidar has been designed for accuracies of 5% up to 12 km in the free troposphere and a detection capability of <5 ppmv. One important feature of the lidar is a precision alignment system using range resolved data from eight Licel transient recorders, allowing fully configurable alignment via a LABVIEW/C++ graphical user interface (GUI). This allows the lidar to be aligned on any channel while simultaneously displaying signals from other channels at configurable altitude/bin combinations. The general lidar instrumental setup and the details of the alignment control system, data acquisition, and GUI alignment software are described. Preliminary validation results using radiosonde and lidar intercomparisons are briefly presented.

  1. Upper tropospheric water vapor: A field campaign of two Raman lidars, Airborne hygrometers, and Radiosondes

    NASA Technical Reports Server (NTRS)

    Melfi, S. Harvey; Turner, Dave; Evans, Keith; Whiteman, Dave; Schwemmer, Geary; Ferrare, Richard

    1998-01-01

    Water vapor in the atmosphere plays an important role in radiative transfer and the process of radiative balance so critical for understanding global change. It is the principal ingredient in cloud formation, one of the most difficult atmospheric processes to model, and the most variable component of the Earth-atmosphere albedo. And as a free molecule, it is the most active infrared absorber and emitter, thus, the most important greenhouse gas. The radiative impact of water vapor is important at all levels of the atmosphere. Even though moisture decreases by several orders-of-magnitude from the Earth's surface to the tropopause, recent research has shown that, from a radiative standpoint, a small percentage change in water vapor at any level is nearly equivalent. Therefore accurate and precise measurements of this important atmospheric constituent are needed at all levels to evaluate the full radiative impact. The need for improved measurements in the upper troposphere is particularly important because of the generally hostile (very dry and cold) conditions encountered. Because of the importance of water vapor to the understanding of radiative transfer, the Department of Energy's Atmospheric Radiation Measurements (ARM) program initiated a series of measurement campaigns at the Cloud And Radiation Testbed (CART) site in Oklahoma, especially focused on atmospheric water vapor. Three water vapor intensive observation period (water vapor IOP) campaigns were planned. Two of the water vapor IOP campaigns have been completed: the first IOP was held during the fall of 1996 with a focus on boundary layer water vapor measurements, and the second was conducted during the fall of 1997 with a focus on both boundary layer moisture e and moisture in the upper troposphere. This paper presents a review of the intercomparisons of water vapor measurements in the upper troposphere aquired during the second water vapor IOP. Data to be presented include water vapor measurements ements from: two Raman Lidars, the NASA Goddard Scanning Raman Lidar (SRL) and the CART Raman Lidar (CARL), a number of Vaisala radiosondes launched during the IOP campaign, and a dew point hygrometer flown on the University of North Dakota Cessna Citation Aircraft.

  2. Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds

    SciTech Connect

    Turner, David, D.; Ferrare, Richard, A.

    2011-07-06

    The 'Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds' project focused extensively on the analysis and utilization of water vapor and aerosol profiles derived from the ARM Raman lidar at the Southern Great Plains ARM site. A wide range of different tasks were performed during this project, all of which improved quality of the data products derived from the lidar or advanced the understanding of atmospheric processes over the site. These activities included: upgrading the Raman lidar to improve its sensitivity; participating in field experiments to validate the lidar aerosol and water vapor retrievals; using the lidar aerosol profiles to evaluate the accuracy of the vertical distribution of aerosols in global aerosol model simulations; examining the correlation between relative humidity and aerosol extinction, and how these change, due to horizontal distance away from cumulus clouds; inferring boundary layer turbulence structure in convective boundary layers from the high-time-resolution lidar water vapor measurements; retrieving cumulus entrainment rates in boundary layer cumulus clouds; and participating in a field experiment that provided data to help validate both the entrainment rate retrievals and the turbulent profiles derived from lidar observations.

  3. Closure study on optical and microphysical properties of a mixed urban and Arctic haze air mass observed with Raman lidar and Sun photometer

    NASA Astrophysics Data System (ADS)

    Müller, Detlef; Mattis, Ina; Ansmann, Albert; Wehner, Birgit; Althausen, Dietrich; Wandinger, Ulla; Dubovik, Oleg

    2004-07-01

    We present a comprehensive optical and microphysical characterization of an intense haze event observed over Leipzig (51.3°N, 12.4°E), Germany, in April 2002. This event was characterized by unusually high optical depths. The haze consisted of a mixture of urban and Arctic haze aerosols which were advected from the Arctic regions across eastern Europe and Scandinavia. For the first time a closure study on such an event could be carried out on the basis of combined observations with Raman lidar and Sun photometer. This study also served as a performance test of the inversion algorithms that are used for retrieving microphysical particle properties from the optical data sets. A comparison of parameters derived in this study to respective quantities determined in the Arctic regions showed that Arctic-haze-like material dominated the optical and microphysical particle properties, although a significant amount of this haze must have consisted of urban aerosols. The urban aerosols from eastern Europe had properties rather similar to those characteristic for the well-aged particles of Arctic haze. The major part of the haze was confined to heights below 3 km. Optical depth was 0.4-0.5 at 532 nm on 8 April 2002. The particle backscatter-to-extinction (lidar) ratio varied between 35 and 75 sr at 355 and 532 nm. The Ångström exponent of particle extinction in the wavelength range from 355 to 532 nm was 1.8-2.8. The inversion of the lidar optical data resulted in particle effective radii around 0.19 ± 0.04 ?m, volume concentrations of 16-33 ?m3 cm-3, surface area concentrations of 270-510 ?m2 cm-3, and a single-scattering albedo around 0.97 ± 0.06 at 532 nm. Particle size distributions showed a rather pronounced monomodal structure in the accumulation mode, which is characteristic for well-aged particles. The particle properties derived from the two instruments agreed well for intensive parameters, i.e., Ångström exponents, lidar ratio, effective radius, and single-scattering albedo. Extensive parameters, i.e., total particle surface area and particle volume concentration, showed similar values.

  4. Offshore Wind Measurements Using Doppler Aerosol Wind Lidar (DAWN) at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Beyon, Jeffrey Y.; Koch, Grady J.; Kavaya, Michael J.

    2014-01-01

    The latest flight demonstration of Doppler Aerosol Wind Lidar (DAWN) at NASA Langley Research Center (LaRC) is presented. The goal of the campaign was to demonstrate the improvement of DAWN system since the previous flight campaign in 2012 and the capabilities of DAWN and the latest airborne wind profiling algorithm APOLO (Airborne Wind Profiling Algorithm for Doppler Wind Lidar) developed at LaRC. The comparisons of APOLO and another algorithm are discussed utilizing two and five line-of-sights (LOSs), respectively. Wind parameters from DAWN were compared with ground-based radar measurements for validation purposes. The campaign period was June - July in 2013 and the flight altitude was 8 km in inland toward Charlotte, NC, and offshores in Virginia Beach, VA and Ocean City, MD. The DAWN system was integrated into a UC12B with two operators onboard during the campaign.

  5. Lidar Investigation of Tropical Nocturnal Boundary Layer Aerosols and Cloud Macrophysics

    SciTech Connect

    Manoj, M. G.; Devara, PC S.; Taraphdar, Sourav

    2013-10-01

    Observational evidence of two-way association between nocturnal boundary layer aerosols and cloud macrophysical properties under different meteorological conditions is reported in this paper. The study has been conducted during 2008-09 employing a high space-time resolution polarimetric micro-pulse lidar over a tropical urban station in India. Firstly, the study highlights the crucial role of boundary layer aerosols and background meteorology on the formation and structure of low-level stratiform clouds in the backdrop of different atmospheric stability conditions. Turbulent mixing induced by the wind shear at the station, which is associated with a complex terrain, is found to play a pivotal role in the formation and structural evolution of nocturnal boundary layer clouds. Secondly, it is shown that the trapping of energy in the form of outgoing terrestrial radiation by the overlying low-level clouds can enhance the aerosol mixing height associated with the nocturnal boundary layer. To substantiate this, the long-wave heating associated with cloud capping has been quantitatively estimated in an indirect way by employing an Advanced Research Weather Research and Forecasting (WRF-ARW) model version 2.2 developed by National Center for Atmospheric Research (NCAR), Colorado, USA, and supplementary data sets; and differentiated against other heating mechanisms. The present investigation as well establishes the potential of lidar remote-sensing technique in exploring some of the intriguing aspects of the cloud-environment relationship.

  6. Femtosecond Coherent Anti-Stokes Raman Spectroscopy (CARS) As Next Generation Nonlinear LIDAR Spectroscopy and Microscopy

    NASA Astrophysics Data System (ADS)

    Ooi, C. H. Raymond

    2009-07-01

    Nonlinear spectroscopy using coherent anti-Stokes Raman scattering and femtosecond laser pulses has been successfully developed as powerful tools for chemical analysis and biological imaging. Recent developments show promising possibilities of incorporating CARS into LIDAR system for remote detection of molecular species in airborne particles. The corresponding theory is being developed to describe nonlinear scattering of a mesoscopic particle composed of complex molecules by laser pulses with arbitrary shape and spectral content. Microscopic many-body transform theory is used to compute the third order susceptibility for CARS in molecules with known absorption spectrum and vibrational modes. The theory is combined with an integral scattering formula and Mie-Lorentz formulae, giving a rigorous formalism which provides powerful numerical experimentation of CARS spectra, particularly on the variations with the laser parameters and the direction of detection.

  7. Femtosecond Coherent Anti-Stokes Raman Spectroscopy (CARS) As Next Generation Nonlinear LIDAR Spectroscopy and Microscopy

    SciTech Connect

    Ooi, C. H. Raymond

    2009-07-10

    Nonlinear spectroscopy using coherent anti-Stokes Raman scattering and femtosecond laser pulses has been successfully developed as powerful tools for chemical analysis and biological imaging. Recent developments show promising possibilities of incorporating CARS into LIDAR system for remote detection of molecular species in airborne particles. The corresponding theory is being developed to describe nonlinear scattering of a mesoscopic particle composed of complex molecules by laser pulses with arbitrary shape and spectral content. Microscopic many-body transform theory is used to compute the third order susceptibility for CARS in molecules with known absorption spectrum and vibrational modes. The theory is combined with an integral scattering formula and Mie-Lorentz formulae, giving a rigorous formalism which provides powerful numerical experimentation of CARS spectra, particularly on the variations with the laser parameters and the direction of detection.

  8. Temperature Variability in the Stratosphere Obtained from 7 years of Vibrational-Raman- lidar Measurements

    NASA Astrophysics Data System (ADS)

    Iserhienrhien, B.; Sica, R. J.; Argall, P. S.

    2009-05-01

    The Purple Crow Lidar (PCL) is a large power-aperture product monostatic laser radar located at the Delaware Observatory (42° 52' N, 81° 23' W, 225 m elevation above sea level) near the campus of The University of Western Ontario. It is capable of measuring temperature and wave parameters from 10 to 110 km altitude, as well as water vapor in the troposphere and stratosphere. We use upper tropospheric and stratospheric vibrational Raman N2 backscatter-derived temperatures to form a climatology for the years 1999 to 2007 from 10 to 30 km altitude. The lidar temperatures are validated using coincident radiosondes measurements from Detroit and Buffalo. The measured temperatures show good agreement with the radiosonde soundings. An agreement of ±1 K is found during summer months and ±2.5 K during the winter months, validating the calibration of the lidar to within the geophysical variability of the measurements. Comparison between the PCL measurements and atmospheric models shows the PCL measurements are 5 K or less colder than CIRA-86 below 25 km and 2.5 K warmer above during the summer months. Below 16 km the PCL measurements are 5 K or less colder than the MSIS-90 model, while above this region, the PCL agrees to about ±3.5 K or less. The temperature differences between the PCL measurements and the models are consistent with the differences between the atmospheric models and the Detroit and Buffalo radiosonde measurements. The temperature differences compared to the models are consistent with previous comparisons between other radiosondes and satellite data sets, confirming that these differences with the models are real. We will highlight nights which show significant variations from the long-term averages, and when possible, the evolution of the variations.

  9. Raman Lidar Measurements of Water Vapor and Cirrus Clouds During The Passage of Hurricane Bonnie

    NASA Technical Reports Server (NTRS)

    Whiteman, D. N.; Evans, K. D.; Demoz, B.; Starr, D OC.; Eloranta, E. W.; Tobin, D.; Feltz, W.; Jedlovec, G. J.; Gutman, S. I.; Schwemmer, G. K.; Smith, David E. (Technical Monitor)

    2000-01-01

    The NASA/GSFC Scanning Raman Lidar (SRL) was stationed on Andros Island in the Bahamas during August - September, 1998 as a part of the third Convection and Moisture Experiment (CAMEX-3) which focussed on hurricane development and tracking. During the period August 21 - 24, hurricane Bonnie passed near Andros Island and influenced the water vapor and cirrus cloud measurements acquired by the SRL. Two drying signatures related to the hurricane were recorded by the SRL and other sensors. Cirrus cloud optical depths (at 351 nm) were also measured during this period. Optical depth values ranged from less than 0.01 to 1.5. The influence of multiple scattering on these optical depth measurements was studied. A correction technique is presented which minimizes the influences of multiple scattering and derives information about cirrus cloud optical and physical properties. The UV/IR cirrus cloud optical depth ratio was estimated based on a comparison of lidar and GOES measurements. Simple radiative transfer model calculations compared with GOES satellite brightness temperatures indicate that satellite radiances are significantly affected by the presence of cirrus clouds if IR optical depths are approximately 0.005 or greater. Using the ISCCP detection threshold for cirrus clouds on the GOES data presented here, a high bias of up to 40% in the GOES precipitable water retrieval was found.

  10. Raman Lidar Measurements During the International H2O Project. 2; Instrument Comparisons and Case Studies

    NASA Technical Reports Server (NTRS)

    Whiteman, D. N.; Demoz, B.; DiGirolamo, P.; Corner, J.; Veselovskii, I.; Evans, K.; Wang, Z.; Sabatino, D.; Schwemmer, G.; Gentry, B.

    2005-01-01

    The NASA/GSFC Scanning Raman Lidar (SRL) participated in the International H2O Project (IHOP) that occurred in May and June, 2002 in the midwestern part of the U. S. The SRL system configuration and methods of data analysis were described in part I of this paper. In this second part, comparisons of SRL water vapor measurements and those of chilled mirror radiosonde and LASE airborne water vapor lidar are performed. Two case studies are presented; one for daytime and one for nighttime. The daytime case study is of a convectively driven boundary layer event and is used to characterize the SRL water vapor random error characteristics. The nighttime case study is of a thunderstorm-generated cirrus cloud case that is studied in it s meteorological context. Upper tropospheric humidification due to precipitation from the cirrus cloud is quantified as is the cirrus cloud ice water content and particle depolarization ratio. These detailed cirrus cloud measurements are being used in a cirrus cloud modeling study.

  11. Raman Lidar Measurements of Water Vapor and Cirrus Clouds During the Passage of Hurricane Bonnie

    NASA Technical Reports Server (NTRS)

    Whiteman, D. N.; Evans, K. D.; Demoz, B.; Starr, O C.; Tobin, D.; Feltz, W.; Jedlovec, G. J.; Gutman, S. I.; Schwemmer, G. K.; Cadirola, M.; Melfi, S. H.; Schmidlin, F.

    2000-01-01

    The NASA/GSFC Scanning Raman Lidar (SRL) was stationed on Andros Island in the Bahamas during August - September, 1998 as a part of the third Convection and Moisture Experiment (CAMEX-3) which focussed on hurricane development and tracking. During the period August 21 - 24, hurricane Bonnie passed near Andros Island and influenced the water vapor and cirrus cloud measurements acquired by the SRL. Two drying signatures related to the hurricane were recorded by the SRL and other sensors. Cirrus cloud optical depths (at 351 nm) were also measured during this period. Optical depth values ranged from approximately 0.01 to 1.4. The influence of multiple scattering on these optical depth measurements was studied with the conclusion that the measured values of optical depth are less than the actual value by up to 20%. The UV/lR cirrus cloud optical depth ratio was estimated based on a comparison of lidar and GOES measurements. Simple radiative transfer model calculations compared with GOES satellite brightness temperatures indicate that satellite radiances are significantly affected by the presence of cirrus clouds if IR optical depths are approximately 0.02 or greater. This has implications for satellite cirrus detection requirements.

  12. Visibility and aerosol measurement by diode-laser random-modulation CW lidar

    NASA Technical Reports Server (NTRS)

    Takeuchi, N.; Baba, H.; Sakurai, K.; Ueno, T.; Ishikawa, N.

    1986-01-01

    Examples of diode laser (DL) random-modulation continuous wave (RM-CW) lidar measurements are reported. The ability of the measurement of the visibility, vertical aerosol profile, and the cloud ceiling height is demonstrated. Although the data shown here were all measured at night time, the daytime measurement is, of course, possible. For that purpose, accurate control of the laser frequency to the center frequency of a narrow band filter is required. Now a new system with a frequency control is under construction.

  13. Cloud-Aerosol LIDAR and Infrared Pathfinder Satellite Observation (CALIPSO) Spacecraft: Independent Technical Assessment

    NASA Technical Reports Server (NTRS)

    Gilbrech, Richard J.; McManamen, John P.; Wilson, Timmy R.; Robinson, Frank; Schoren, William R.

    2005-01-01

    CALIPSO is a joint science mission between the CNES, LaRC and GSFC. It was selected as an Earth System Science Pathfinder satellite mission in December 1998 to address the role of clouds and aerosols in the Earth's radiation budget. The spacecraft includes a NASA light detecting and ranging (LIDAR) instrument, a NASA wide-field camera and a CNES imaging infrared radiometer. The scope of this effort was a review of the Proteus propulsion bus design and an assessment of the potential for personnel exposure to hydrazine propellant.

  14. Cloud-Aerosol LIDAR and Infrared Pathfinder Satellite Observation (CALIPSO) Spacecraft: Independent Technical Assessment

    NASA Technical Reports Server (NTRS)

    Gilbrech, Richard J.; McManamen, John P.; Wilson, Timmy R.; Robinson, Frank; Schoren, William R.

    2004-01-01

    CALIPSO is a joint science mission between the CNES, LaRC and GSFC. It was selected as an Earth System Science Pathfinder satellite mission in December 1998 to address the role of clouds and aerosols in the Earth's radiation budget. The spacecraft includes a NASA light detecting and ranging (LIDAR) instrument, a NASA wide-field camera and a CNES imaging infrared radiometer. The scope of this effort was a review of the Proteus propulsion bus design and an assessment of the potential for personnel exposure to hydrazine propellant.

  15. Vertical profiling of marine aerosol, dust and their mixtures utilizing the synergy of sunphotometer and lidar measurements

    NASA Astrophysics Data System (ADS)

    Tsekeri, Alexandra; Amiridis, Vassilis; Lopatin, Anton; Marinou, Eleni; Engelman, Ronny; Baars, Holger; Wandinger, Ulla; Ansmann, Albert; Solomos, Stavros; Dubovik, Oleg; Schüttemeyer, Dirk

    2015-04-01

    Current and future lidar products from space missions (CALIPSO, ADM-Aeolus, EarthCARE) aim to improve our understanding of atmospheric dynamics and aerosol/cloud interactions on global scale. However, the lidar instruments onboard these three missions (CALIOP, ALADIN, ATLID) are different systems, operating at different wavelengths and providing different sets of measured parameters. In order to spectrally homogenize the datasets, aerosol/cloud-type-dependent spectral conversion factors are needed to be applied to all lidar-related properties (extinction, backscatter and depolarization), based on the aerosol/cloud classification of the space-borne observations. The well-established European Aerosol Research Lidar Network (EARLINET) offers the unique opportunity to support such an effort. However, EARLINET database suffers from lack of information for specific aerosol types such as marine and mixed dust/marine cases. Unfortunately, these types are not observed in EARLINET's core stations, since the stations are mostly located at continental sites and are influenced by urban pollution. Moreover, the lidar systems near the coastlines suffer from the inability to measure at the first few hundred meters (500-1000 m) due to their technical design, which results in an incomplete laser/telescope overlap region. Towards the study of marine and marine-dust aerosol mixtures we organized the experimental campaign of "Characterization of Aerosol mixtures of Dust And Marine origin" (CHARADMexp), on June 20 to July 10, at Finokalia, Grete, Greece. Our aim was to derive optical, microphysical and chemical properties of the marine component and its mixtures with dust, employing sophisticated instrumentation installed on the site of Finokalia ACTRIS station, where only marine and dust particles are present 95% of the time. Specifically, aerosol characterization was established by the "Generalized Aerosol Retrieval from Radiometer and Lidar Combined data" (GARRLiC), a technique that combines ground-based lidar and sunphotometer measurements, developed in the frame of ACTRIS. Our results for cases of marine-only, dust-only and mixtures of marine and dust retrievals provide an evaluation of the algorithm capabilities for marine environments, producing vertical profiles of physical and optical properties of marine and dust particles.

  16. Orbiting lidar simulations. 2: Density, temperature, aerosol, and cloud measurements by a wavelength-combining technique.

    PubMed

    Russell, P B; Morley, B M

    1982-05-01

    A technique is described for combining several wavelength backscatter measurements to yield profiles of molecular density and temperature plus aerosol and cloud backscatter with associated error-bar profiles. Error sources include signal, transmission, calibration, conventional density, lidar density normalization, temperature or pressure estimation at a reference height, and backscatter wavelength-dependence estimation. Strong particulate contamination limits the technique to the cloud-free upper troposphere and above. Error bars automatically returned as part of the measurement show when such contamination occurs. Relative density (temperature) profiles have rms errors of 0.5-2% (1.2-2.5 K) in the nonvolcanic stratosphere and upper troposphere. The density profiles significantly improve aerosol retrievals. The fine vertical resolution of the temperature profiles would permit defining the tropopause to approximately 0.5 km and higher wave structures to 1 or 2 km. PMID:20389896

  17. Parameterization of Stratospheric Aerosol Physical Properties on the Basis of Nd:YAG Lidar Observations.

    PubMed

    Gobbi, G P

    1998-07-20

    An extension to the 355- and 1064-nm wavelengths of a numerical optical model originally developed at 532 nm is presented. The resulting parameterization allows estimates of stratospheric aerosol surface area, volume, and extinction-to-backscatter ratio from lidar measurements obtained at one of the two Nd:YAG laser wavelengths. Functional relationships that link single-wavelength backscatter to each of the physical variables are provided for sulfate aerosol types ranging from background to heavy volcanic under environmental conditions representative of the global lower stratosphere. The behavior of the functional relationships at the three Nd:YAG wavelengths is compared. Relative errors of model estimates range between 10% and 50%, depending on wavelength and backscatter cross sections. These values are comparable with the ones that characterize in situ particle counters. The inference of particle effective radius and the application of the method to the interpretation of supercooled polar stratospheric cloud observations are discussed. PMID:18285928

  18. Influence of biogenic pollen on optical properties of atmospheric aerosols observed by lidar over Gwangju, South Korea

    NASA Astrophysics Data System (ADS)

    Noh, Young Min; Müller, Detlef; Lee, Hanlim; Choi, Tae Jin

    2013-04-01

    For the first time, optical properties of biogenic pollen, i.e., backscatter coefficients and depolarization ratios at 532 nm were retrieved by lidar observations. The extinction coefficient was derived with the assumption of possible values of the extinction-to-backscatter (lidar) ratio. We investigate the effect of the pollen on the optical properties of the observed atmospheric aerosols by comparing lidar and sun/sky radiometer measurements carried out at the lidar site. The observations were made with a depolarization lidar at the Gwangju Institute of Science & Technology (GIST) in Gwangju, Korea (35.13°N, 126.50°E) during an intensive observational period that lasted from 5 to 7 May 2009. The pollen concentration was measured with a Burkard trap sampler at the roof top of the Gwangju Bohoon hospital which is located 1 km away from the lidar site. During the observation period, high pollen concentrations of 1360, 2696, and 1952 m-3 day-1 were measured on 5, 6, and 7 May, respectively. A high lidar depolarization ratio caused by biogenic pollen was only detected during daytime within the planetary boundary layer which was at 1.5-2.0 km height above ground during the observational period. The contribution of biogenic pollen to the total backscatter coefficient was estimated from the particle depolarization ratio. Average hourly values of pollen optical depth were retrieved by integrating the pollen extinction coefficients. We find average values of 0.062 ± 0.037, 0.041 ± 0.028 and 0.067 ± 0.036 at 532 nm on 5, 6, and 7 May, respectively. The contribution of pollen optical depth to total aerosol optical depth was 2-34%. The sun/sky radiometer data show that biogenic pollen can affect optical properties of atmospheric aerosol by increasing aerosol optical depth and decreasing the Ångström exponent during daytime during the season of high pollen emission.

  19. Retrieval of high-spectral-resolution lidar for atmospheric aerosol optical properties profiling

    NASA Astrophysics Data System (ADS)

    Liu, Dong; Luo, Jing; Yang, Yongying; Cheng, Zhongtao; Zhang, Yupeng; Zhou, Yudi; Duan, Lulin; Su, Lin

    2015-10-01

    High-spectral-resolution lidars (HSRLs) are increasingly being developed for atmospheric aerosol remote sensing applications due to the straightforward and independent retrieval of aerosol optical properties without reliance on assumptions about lidar ratio. In HSRL technique, spectral discrimination between scattering from molecules and aerosol particles is one of the most critical processes, which needs to be accomplished by means of a narrowband spectroscopic filter. To ensure a high retrieval accuracy of an HSRL system, the high-quality design of its spectral discrimination filter should be made. This paper reviews the available algorithms that were proposed for HSRLs and makes a general accuracy analysis of the HSRL technique focused on the spectral discrimination, in order to provide heuristic guidelines for the reasonable design of the spectral discrimination filter. We introduce a theoretical model for retrieval error evaluation of an HSRL instrument with general three-channel configuration. Monte Carlo (MC) simulations are performed to validate the correctness of the theoretical model. Results from both the model and MC simulations agree very well, and they illustrate one important, although not well realized fact: a large molecular transmittance and a large spectral discrimination ratio (SDR, i.e., ratio of the molecular transmittance to the aerosol transmittance) are beneficial t o promote the retrieval accuracy. The application of the conclusions obtained in this paper in the designing of a new type of spectroscopic filter, that is, the field-widened Michelson interferometer, is illustrated in detail. These works are with certain universality and expected to be useful guidelines for HSRL community, especially when choosing or designing the spectral discrimination filter.

  20. Selection of UV double grating monochromator parameters of a rotational Raman lidar detection atmospheric temperature

    NASA Astrophysics Data System (ADS)

    Liu, Yuli; Cao, Kaifa; Hu, Shunxing; Sun, Yuesheng; Chen, Leilei

    2015-10-01

    The atmospheric temperature is an important meteorological parameter. The rotational Raman lidar temperature measurement system is usually used for retrieval of atmospheric temperature according to the echo signal intensity ratio. UV double grating monochromator (DGM) is a kind of spectroscopical equipment for extracting the rotational Raman's spectra. The UV DGM consists of optical fibers , focal plates , lenses and gratings. Correct parameters of the gratings, lenses, fibers are essential to the successful development of DGM. First, a suitable grating is selected according to the grating diffraction theory. Second, the diameter and focal length of lens are chosen according to ruled area and blaze angle of grating, the numerical aperture of fiber and how difficult machining is . Finally, the range of fiber core diameter is chosen according to the distance between the sixth and the twelfth spectral line on the focal plane. In order to compare the different fiber core diameter's statistical temperature error, and suppression ratio of elastic scattering light, some numerical calculations are conducted. The simulation results show that the measurement accuracy increases in the evening and approximately decreases during daytime with the increase of input fiber core diameter .As the input fiber core diameter increases, the rejection ratio is decreasing ,but they are all more than 7 orders of magnitude. It is preferable to choose input fiber with core diameter of 300um during the daytime and 600um at night. The correct parameters of grating, lens and fiber provide theoretical basis for the development of the UV DGM.

  1. Investigation of wintertime cold-air pools and aerosol layers in the Salt Lake Valley using a lidar ceilometer

    NASA Astrophysics Data System (ADS)

    Young, Joseph Swyler

    This thesis investigates the utility of lidar ceilometers, a type of aerosol lidar, in improving the understanding of meteorology and air quality in persistent wintertime stable boundary layers, or cold-air pools, that form in urbanized valley and basin topography. This thesis reviews the scientific literature to survey the present knowledge of persistent cold-air pools, the operating principles of lidar ceilometers, and their demonstrated utility in meteorological investigations. Lidar ceilometer data from the Persistent Cold-Air Pool Study (PCAPS) are then used with meteorological and air quality data from other in situ and remote sensing equipment to investigate cold-air pools that formed in Utah's Salt Lake Valley during the winter of 2010-2011. The lidar ceilometer is shown to accurately measure aerosol layer depth and aerosol loading, when compared to visual observations. A linear relationship is found between low-level lidar backscatter and surface particulate measurements. Convective boundary layer lidar analysis techniques applied to cold-air pool ceilometer profiles can detect useful layer characteristics. Fine-scale waves are observed and analyzed within the aerosol layer, with emphasis on Kelvin-Helmholz waves. Ceilometer aerosol backscatter profiles are analyzed to quantify and describe mixing processes in persistent cold-air pools. Overlays of other remote and in-situ observations are combined with ceilometer particle backscatter to describe specific events during PCAPS. This analysis describes the relationship between the aerosol layer and the valley inversion as well as interactions with large-scale meteorology. The ceilometer observations of hydrometers are used to quantify cloudiness and precipitation during the project, observing that 50% of hours when a PCAP was present had clouds or precipitation below 5 km above ground level (AGL). Then, combining an objective technique for determining hourly aerosol layer depths and correcting this subjectively during periods with low clouds or precipitation, a time series of aerosol depths was obtained. The mean depth of the surface-based aerosol layer during PCAP events was 1861 m MSL with a standard deviation of 135 m. The aerosol layer depth, given the approximate 1300 m altitude of the valley floor, is thus about 550 m, about 46% of the basin depth. The aerosol layer is present during much of the winter and is removed only during strong or prolonged precipitation periods or when surface winds are strong. Nocturnal fogs that formed near the end of high-stability PCAP episodes had a limited effect on aerosol layer depth. Aerosol layer depth was relatively invariant during the winter and during the persistent cold-air pools, while PM10 concentrations at the valley floor varied with bulk atmospheric stability associated primarily with passage of large-scale high- and low-pressure weather systems. PM10 concentrations also increased with cold-air pool duration. Mean aerosol loading in the surface-based aerosol layer, as determined from ceilometer backscatter coefficients, showed weaker variations than those of surface PM10 concentrations, suggesting that ineffective vertical mixing and aerosol layering are present in the cold-air pools. This is supported by higher time-resolution backscatter data, and it distinguishes the persistent cold-air pools from well-mixed convective boundary layers where ground-based air pollution concentrations are closely related to time-dependent convective boundary layer/aerosol depths. These results are discussed along with recommendations for future explorations of the ceilometer and cold-air pool topics.

  2. Micro pulse Lidar Observations of aerosol profiles over urban region of Hyderabad - Influence of Agricultural Crop Residue Burning

    NASA Astrophysics Data System (ADS)

    Kharol, Shailesh Kumar; Badarinath, Kvs; Sharma, Anu Rani; Mahalakshmi, D. V.; K., Sujatha; Yellapragada, Bhavani Kumar

    Aerosols from biomass burning modify cloud microphysical properties and cloud lifetime through the so-called "indirect effect." In the absence of wet scavenging processes, aerosols stay suspended for days to weeks and can be transported to considerable distances. Biomass burning from forest regions and agriculture crop residues can emit substantial amounts of particulate matter and other pollutants into the atmosphere. Results from the Southern African Regional Science Initiative (SAFARI) 2000 dry season field campaign often revealed the presence of an elevated biomass-burning aerosol layer above a semi-permanent stratiform cloud deck off the southern African coasts. An inventory of forest, grassland and agricultural burning is important for studies related to global change. This study provides an account of the agriculture crop residue burning over Indian region and its influence on the columnar aerosol loading over urban region of Hyderabad. Boundary Layer Lidar System fabricated by NARL was used to study the variations in vertical profiles of aerosols during October, 2007 at Hyderabad. The variations in aerosol vertical profiles from Lidar data correlated with sunphotometer observations on aerosol optical depth, black carbon mass concentrations and single scattering albedo estimated from PREDE skyradiomter. The analysis of satellite data sets suggested agricultural crop residue burning towards north of the observations site. The LIDAR profiles revealed the existence of important quantities of aerosols at altitudes between 1200 and 1800m over the city. Three dimensional 120-hours air mass back-trajectory analysis showed that the aerosols detected at the higher altitudes might have originated from agriculture crop residue burning activities taking place at the northern regions. Conjunctive analysis of satellite data together with ground observations provides a means for understanding source regions of aerosols. The results are discussed in the paper.

  3. Global Lidar Measurements of Clouds and Aerosols from Space Using the Geoscience Laser Altimeter System (GLAS)

    NASA Technical Reports Server (NTRS)

    Hlavka, Dennis L.; Palm, S. P.; Welton, E. J.; Hart, W. D.; Spinhirne, J. D.; McGill, M.; Mahesh, A.; Starr, David OC. (Technical Monitor)

    2001-01-01

    The Geoscience Laser Altimeter System (GLAS) is scheduled for launch on the ICESat satellite as part of the NASA EOS mission in 2002. GLAS will be used to perform high resolution surface altimetry and will also provide a continuously operating atmospheric lidar to profile clouds, aerosols, and the planetary boundary layer with horizontal and vertical resolution of 175 and 76.8 m, respectively. GLAS is the first active satellite atmospheric profiler to provide global coverage. Data products include direct measurements of the heights of aerosol and cloud layers, and the optical depth of transmissive layers. In this poster we provide an overview of the GLAS atmospheric data products, present a simulated GLAS data set, and show results from the simulated data set using the GLAS data processing algorithm. Optical results from the ER-2 Cloud Physics Lidar (CPL), which uses many of the same processing algorithms as GLAS, show algorithm performance with real atmospheric conditions during the Southern African Regional Science Initiative (SAFARI 2000).

  4. The observations of aerosol optical and microphysical properties by using a multi-wavelength lidar

    NASA Astrophysics Data System (ADS)

    Shao, Jiangfeng; Mao, Jiandong

    2015-10-01

    In order to detect the atmospheric aerosol optical, micro-physical characteristics and the mixed layer height, an all time multi-wavelength lidar was developed at Beifang University of Nationalities and some observations were carried out over Yinchuan area. The geometric overlap factors are corrected. The data processing and inversion algorithms of multi-wavelength lidar were discussed. Also the Angstrom indexes and the mixed layer height under different weather were analyzed. In sunny weather the mixed layer height is significantly higher. However in fog weather the mixed layer height is lower than that of sunny weather. The Angstrom index is used to analyze the particle size distribution in different weather. In the lower troposphere the Angstrom index A1064/355 is biggest, the A1064/532 is middle and the A532/355 is smallest in sunny day. However in fog day, the A532/355 is biggest, the middle is A1064/532 and the smallest is A1064/355. Therefore compared with the sunny day the situation is contrast in the fog day. The results show that in sunny day the fine particles are dominant in the atmosphere and in fog day the coarse particles are the main in the atmosphere. The observation results are beneficial to analyze the spatial and temporal evolution of aerosol particles in Yinchuan area.

  5. The Earth Clouds and Radiation Explorer (EarthCARE) Mission: Cloud and Aerosol Lidar and Imager algorithms.

    NASA Astrophysics Data System (ADS)

    Donovan, David; van Zadelhoff, Gerd-Jan; Wandinger, Ulla; Hünerbein, Anjah; Fischer, Jurgen; von Bismarck, Jonas; Eisinger, Michael; Lajas, Dulce; Wehr, Tobias

    2015-04-01

    The value of multi-sensor remote sensing applied to clouds and aerosol has become clear in recent years. For example, combinations of instruments including passive radiometers, lidars and cloud radars have proved invaluable for their ability to retrieve profiles of cloud macrophysical and microphysical properties. This is amply illustrated by various results from the US-DoE ARM (and similar) surface sites as well as results from data collected by sensors aboard the A-train satellites CloudSat, CALIPSO, and Terra. The Earth Clouds Aerosol and Radiation Explorer (EarthCARE) mission is a combined ESA/JAXA mission to be launched in 2018 which has been designed with sensor-synergy playing a key role. The mission consists of a cloud-profiling radar (CPR), a high-spectral resolution cloud/aerosol lidar (ATLID), a cloud/aerosol multi-spectral imager (MSI), and a three-view broad-band radiometer (BBR). The mission will deliver cloud, aerosol and radiation products focusing on horizontal scales ranging from 1 km to 10 km. EarthCARE data will be used in multiple ways ranging from model evaluation studies, to GCM-orientated cloud microphysical property parameterization development, to data assimilation activities. Recently a number of activities, funded by ESA, have kicked-off which will ultimately deliver operational algorithms for EarthCARE. One of these activities is the "Atmospheric Products from Imager and Lidar" (APRIL) project which focuses on the development of lidar, imager and combined lidar-imager cloud and aerosol algorithms. In this presentation an overview of the APRIL algorithms within the wider context of the planned EarthCARE processing chain will be given.

  6. Evaluation of model-simulated water vapor profiles as a tool for aerosol hygroscopicity studies: based upon lidar and microwave radiometer measurements from the HygrA-CD campaign

    NASA Astrophysics Data System (ADS)

    Labzovskii, Lev; Binietoglou, Ioannis; Papayannis, Alexandros; Banks, Robert; Baldasano, José Maria

    2015-04-01

    Atmospheric water vapor content information is needed as input for various studies devoted to hygroscopic growth of aerosols. Due to the limited amount of experimental datasets of water vapor content, numerical weather prediction is frequently used for these studies. The capability of model-simulated water vapor is evaluated using experimental data from measurements. This work is devoted to the comparison between experimental water vapor retrieval based on Raman lidar, microwave radiometer and radiosounding measurements, and numerical modeling of water vapor. A Raman multi-wavelength lidar is used as a core instrument for high-spatial resolution water vapor retrievals for this study. It has a capability to detect water vapor based on the Raman signals obtained at 387 and 408 nm. A second main instrument is the microwave radiometer which provides relative and absolute humidity profiles based on the detection of atmospheric water vapor emission continuously. Radiosoundings are also used in this work for lidar-derived water vapor mixing ratio calibration and validation. The experimental data presented here is acquired during the HygrA-CD campaign held in Athens from May to June 2014. During the HygrA-CD 198 hourly profiles of water vapor mixing ratio were retrieved from lidar measurements, while the microwave radiometer performed 25 days of continuous measurements, while more than 20 radiosondes were launched. The WRF (Weather and Forecasting Model) model was used during the campaign to simulate water vapor mixing ratio profiles. A comparison between the retrieved profiles is presented, assessing the uncertainties associated to both instruments and simulations. Keywords: Lidar, Microwave Radiometer, Water vapor retrieval, Water Vapor Mixing Ratio Acknowledgments: This work has been supported by the program of FP-7-PEOPLE-2011-ITN under grant no. 289923 - ITaRS

  7. Intercomparisons of high-resolution solar blind Raman lidar atmospheric profiles of water vapor with radiosondes and kytoon

    NASA Technical Reports Server (NTRS)

    Petri, K.; Salik, A.; Cooney, J.

    1986-01-01

    A report is given of measurements of atmospheric profiles of water vapor in the boundary layer by use of solar blind Raman lidar. These measurement episodes, occuring twice a day over a two week period, were accompanied by a dense net of supporting measurements. The support included two radiosonde launches per measurement episodes as well as a kytoon support measurement of water vapor using a wet bulb-dry bulb instrument. The kytoon strategy included ten minute stops at strategic altitudes. Additional kytoon measurements included ozone profiles and nephelometric extinction profiles in the visible. Typically, six or seven 1000 shot lidar profile averages were collected during a measurement episode. Overall performance comparisons are provided and intercomparisons between auxiliary measurement devices are presented. Data on the accuracy of the lidar water vapor profiles are presented.

  8. Upper Troposphere and Lower Stratosphere Water Vapor Measurements Using Optimized Raman Lidar and Balloon-borne Sensors

    NASA Astrophysics Data System (ADS)

    Whiteman, D.; Venable, D.; Demoz, B.; Joseph, E.; Miloshevich, L.; Voemel, H.; Leblanc, T.; McDermid, S.

    2008-12-01

    Upper tropospheric and lower stratospheric water vapor concentrations are important for reasons of atmospheric radiation and composition but the measurement challenge of quantifying concentrations at these altitudes is significant. Recent advances in Raman lidar technology now permit measurements of water vapor with high precision to well beyond the tropopause. Measurements demonstrating significant sensitivity to water vapor at altitudes of 20-24 km were acquired by the NASA/GSFC ALVICE Raman lidar both at the Table Mountain Facility of the Jet Propulsion Laboratories, Wrightwood, CA and at the Howard University Beltsville Campus in Beltsville, MD during 2007 and 2008. We show comparisons of these measurements with Crygenic Frostpoint Hygrometer. We also show the results of an empirical correction to Vaisala RS-92 radiosonde that permits useful measurements in the upper troposphere and lower stratosphere.

  9. Oceanic Lidar

    NASA Technical Reports Server (NTRS)

    Carder, K. L. (editor)

    1981-01-01

    Instrument concepts which measure ocean temperature, chlorophyll, sediment and Gelbstoffe concentrations in three dimensions on a quantitative, quasi-synoptic basis were considered. Coastal zone color scanner chlorophyll imagery, laser stimulated Raman temperaure and fluorescence spectroscopy, existing airborne Lidar and laser fluorosensing instruments, and their accuracies in quantifying concentrations of chlorophyll, suspended sediments and Gelbstoffe are presented. Lidar applications to phytoplankton dynamics and photochemistry, Lidar radiative transfer and signal interpretation, and Lidar technology are discussed.

  10. High Spectral Resolution Lidar and MPLNET Micro Pulse Lidar aerosol optical property retrieval intercomparison during the 2012 7-SEAS field campaign at Singapore

    NASA Astrophysics Data System (ADS)

    Lolli, Simone; Welton, Ellsworth J.; Campbell, James R.; Eloranta, Edwin; Holben, Brent N.; Chew, Boom Ning; Salinas, Santo V.

    2014-10-01

    From August 2012 to February 2013 a High Resolution Spectral Lidar (HSRL; 532 nm) was deployed at that National University of Singapore near a NASA Micro Pulse Lidar NETwork (MPLNET; 527 nm) site. A primary objective of the MPLNET lidar project is the production and dissemination of reliable Level 1 measurements and Level 2 retrieval products. This paper characterizes and quantifies error in Level 2 aerosol optical property retrievals conducted through inversion techniques that derive backscattering and extinction coefficients from MPLNET elastic single-wavelength datasets. MPLNET Level 2 retrievals for aerosol optical depth and extinction/backscatter coefficient profiles are compared with corresponding HSRL datasets, for which the instrument collects direct measurements of each using a unique optical configuration that segregates aerosol and cloud backscattered signal from molecular signal. The intercomparison is performed, and error matrices reported, for lower (0-5km) and the upper (>5km) troposphere, respectively, to distinguish uncertainties observed within and above the MPLNET instrument optical overlap regime.

  11. Characterizing the Vertical Distribution of Aerosols Over the ARM SGP Site

    SciTech Connect

    Richard Ferrare, Connor Flynn, David Turner

    2009-05-05

    This project focused on: 1) evaluating the performance of the DOE ARM SGP Raman lidar system in measuring profiles of water vapor and aerosols, and 2) the use of the Raman lidar measurements of aerosol and water vapor profiles for assessing the vertical distribution of aerosols and water vapor simulated by global transport models and examining diurnal variability of aerosols and water vapor. The highest aerosol extinction was generally observed close to the surface during the nighttime just prior to sunrise. The high values of aerosol extinction are most likely associated with increased scattering by hygroscopic aerosols, since the corresponding average relative humidity values were above 70%. After sunrise, relative humidity and aerosol extinction below 500 m decreased with the growth in the daytime convective boundary layer. The largest aerosol extinction for altitudes above 1 km occurred during the early afternoon most likely as a result of the increase in relative humidity. The water vapor mixing ratio profiles generally showed smaller variations with altitude between day and night. We also compared simultaneous measurements of relative humidity, aerosol extinction, and aerosol optical thickness derived from the ARM SGP Raman lidar and in situ instruments on board a small aircraft flown routinely over the ARM SGP site. In contrast, the differences between the CARL and IAP aerosol extinction measurements are considerably larger. Aerosol extinction derived from the IAP measurements is, on average, about 30-40% less than values derived from the Raman lidar. The reasons for this difference are not clear, but may be related to the corrections for supermicron scattering and relative humidity that were applied to the IAP data. The investigators on this project helped to set up a major field mission (2003 Aerosol IOP) over the DOE ARM SGP site. One of the goals of the mission was to further evaluate the aerosol and water vapor retrievals from this lidar system. Analysis of the aerosol and water vapor data collected by the Raman lidar during the 2003 Aerosol IOP indicated that the sensitivity of the lidar was significantly lower than when the lidar was initially deployed. A detailed analysis after the IOP of the long-term dataset demonstrated that the lidar began degrading in early 2002, and that it lost approximately a factor of 4 in sensitivity between 2002 and 2004. We participated in the development of the remediation plan for the system to restore its initial performance. We conducted this refurbishment and upgrade from May- September 2004. This remediation lead to an increase in the signal-to-noise ratio of 10 and 30 for the Raman lidar's water vapor mixing ratio and aerosol backscatter coefficient data, respectively as compared to the signal strengths when the system was first deployed. The DOE ARM Aerosol Lidar Validation Experiment (ALIVE), which was conducted during September 2005, evaluated the impact of these modifications and upgrades on the SGP Raman lidar measurements of aerosol extinction and optical thickness. The CARL modifications significantly improved the accuracy and temporal resolution of the aerosol measurements. Aerosol extinction profiles measured by the Raman lidar were also used to evaluate aerosol extinction profiles and aerosol optical thickness (AOT) simulated by aerosol models as part of the Aerosol module inter-Comparison in global models (AEROCOM) (http://nansen.ipsl.jussieu.fr/AEROCOM/aerocomhome.html) project. There was a wide range in how the models represent the aerosol extinction profiles over the ARM SGP site, even though the average annual AOT represented by the various models and measured by CARL and the Sun photometer were in general agreement, at least within the standard deviations of the averages. There were considerable differences in the average vertical distributions among the models, even among models that had similar average aerosol optical thickness. Deviations between mean aerosol extinction profiles were generally small (~20-30%) for altitudes above 2 km, and grew consider

  12. Lidar observations of tropical high-altitude cirrus clouds: results from dual-wavelength Raman lidar measurements during the ALBATROSS campaign 1996

    NASA Astrophysics Data System (ADS)

    Beyerle, Georg; Schaefer, H. J.; Schrems, Otto; Neuber, R.; Rairoux, P.; McDermid, I. S.

    1997-05-01

    Results from dual wavelength Raman lidar observations of tropical high-altitude cirrus clouds are reported. Based on 107 hours of night-time measurements cirrus clouds were present in more than 50% of the observations at latitudes between 23.5 degrees south and 23.5 degrees north and altitudes between 11 and 16 km. Volume depolarization is found to be a sensitive parameter for the detection of subvisible cloud layers. Using Mie scattering calculations estimates of the ice water content are derived.

  13. Characterization of fine mode atmospheric aerosols by Raman microscopy and diffuse reflectance FTIR.

    PubMed

    Gaffney, Jeffrey S; Marley, Nancy A; Smith, Kenneth J

    2015-05-14

    A combination of Raman microscopy and diffuse reflectance Fourier transform infrared spectroscopy (FTIR) has been used for the characterization of fine mode (<1 ?m) tropospheric aerosols. Peak fitting was used to identify five overlapping bands in the Raman spectra. These bands have been identified as due to combustion generated carbon soot as well as large molecular organic carbon species. The fwhm of the D band at 1400 cm(-1) as well as the ratio of intensities of the D3 band at 1550 cm(-1) to the G band at 1580 cm(-1) can serve as a measure of the aerosol organic carbon content. Raman microscopy combined with spectral mapping capabilities was used to investigate the composition of the fine mode aerosols at the particle level, allowing for the direct determination of aerosol mixing state. Results showed that the fine aerosols were predominately internally mixed particles composed of carbon soot coated with molecular organic carbon species. Characterization of the aerosols by diffuse reflectance FTIR showed that the major organic carbon species were polycarboxylates and polysaccharide-like species typical of humic-like substances (HULIS). PMID:25614927

  14. Lidar

    NASA Technical Reports Server (NTRS)

    Collis, R. T. H.

    1969-01-01

    Lidar is an optical radar technique employing laser energy. Variations in signal intensity as a function of range provide information on atmospheric constituents, even when these are too tenuous to be normally visible. The theoretical and technical basis of the technique is described and typical values of the atmospheric optical parameters given. The significance of these parameters to atmospheric and meteorological problems is discussed. While the basic technique can provide valuable information about clouds and other material in the atmosphere, it is not possible to determine particle size and number concentrations precisely. There are also inherent difficulties in evaluating lidar observations. Nevertheless, lidar can provide much useful information as is shown by illustrations. These include lidar observations of: cirrus cloud, showing mountain wave motions; stratification in clear air due to the thermal profile near the ground; determinations of low cloud and visibility along an air-field approach path; and finally the motion and internal structure of clouds of tracer materials (insecticide spray and explosion-caused dust) which demonstrate the use of lidar for studying transport and diffusion processes.

  15. Measurements of the Vertical Structure of Aerosols and Clouds Over the Ocean Using Micro-Pulse LIDAR Systems

    NASA Technical Reports Server (NTRS)

    Welton, Ellsworth J.; Spinhirne, James D.; Campbell, James R.; Berkoff, Timothy A.; Bates, David; Starr, David OC. (Technical Monitor)

    2001-01-01

    The determination of the vertical distribution of aerosols and clouds over the ocean is needed for accurate retrievals of ocean color from satellites observations. The presence of absorbing aerosol layers, especially at altitudes above the boundary layer, has been shown to influence the calculation of ocean color. Also, satellite data must be correctly screened for the presence of clouds, particularly cirrus, in order to measure ocean color. One instrument capable of providing this information is a lidar, which uses pulses of laser light to profile the vertical distribution of aerosol and cloud layers in the atmosphere. However, lidar systems prior to the 1990s were large, expensive, and not eye-safe which made them unsuitable for cruise deployments. During the 1990s the first small, autonomous, and eye-safe lidar system became available: the micro-pulse lidar, or MPL. The MPL is a compact and eye-safe lidar system capable of determining the range of aerosols and clouds by firing a short pulse of laser light (523 nm) and measuring the time-of-flight from pulse transmission to reception of a returned signal. The returned signal is a function of time, converted into range using the speed of light, and is proportional to the amount of light backscattered by atmospheric molecules (Rayleigh scattering), aerosols, and clouds. The MPL achieves ANSI eye-safe standards by sending laser pulses at low energy (micro-J) and expanding the beam to 20.32 cm in diameter. A fast pulse-repetition-frequency (2500 Hz) is used to achieve a good signal-to-noise, despite the low output energy. The MPL has a small field-of-view (< 100 micro-rad) and signals received with the instrument do not contain multiple scattering effects. The MPL has been used successfully at a number of long-term sites and also in several field experiments around the world.

  16. Studies of the spatial correlation between urban aerosols and local traffic congestion using a slant angle scanning Mie lidar system

    NASA Astrophysics Data System (ADS)

    Cheng, Andrew Y. S.; Tsang, Wesley S. W.; Zhu, Jianhua

    2001-02-01

    A mobile volume scanning Mie Lidar has been integrated to take slant angle scan of aerosol distribution over 120 degree within 10 minutes. The Lidar system is a bi-axial design with operating wavelength of 532nm. The receiver is a compact Schmidt-Cassegrain telescope. Since the system is designed to be compact and lightweight, it could be readily fitted into a small van for field observations. This system has been deployed to study the correlation between the spatial distribution of aerosols over the urban area in Hong Kong and the conditions of local traffic congestion. The scans covered approximately a range from 1 to 4 km. From the data obtained, spatial variations were clearly observed, and the location of enhanced aerosol density correlated with areas of high traffic congestion very well. From the data, a vertical dispersion model can be verified. With the time series analysis of the distributions, one would be able to compute the time scale of the dispersion. With routine observations, the cause of aerosol variations can be better understood in the future. Thus it would lead to good suggestions in improvement of the air pollution problem in an urban city with dense population. Other potential studies that can be carried from this Lidar include the aerosol variations over a sea-land system and the internal boundary height over a complex terrain.

  17. Retrieval of aerosol extinction coefficients from ground-based 532nm lidar during APEC conference in Beijing

    NASA Astrophysics Data System (ADS)

    Liu, Zhao; Li, Zhengqiang; Lv, Yang; Hou, Weizhen; Chen, Xingfeng

    2015-10-01

    As an active remote sensing technique, ground-based lidar can detect the backscattered signals of atmospheric cloud and aerosol layers. The measured signals can be used to obtain the vertical profile information of aerosol extinction coefficients. The atmospheric aerosol is measured in Beijing during Asia-Pacific Economic Cooperation (APEC) conference in early November 2014. Fernald method is chosen as the inversion method, and a comparison is made by using Klett's method. Using the aerosol optical depth(AOD) measured by sunphotometer as a constraint data. The results are used for the analysis of the vertical distribution of aerosol extinction coefficients, three periods are considered, which including several days before, during and after the APEC conference. From the retrieved results of lidar measurement, it was found that the maximum value of extinction coefficients at vertical height in the beginning period reached beyond 2, but it decreased to the range of 0.05 during the conference. Then it gradually increased to more than 2 after the APEC conference. The results show that vertical distribution range of aerosol extinction coefficients decreased to 1km with increasing of AOD. The retrieved AOD results illustrate the extinction characteristics of aerosol and it relates with the concentration distribution of atmospheric particles. According to the relationship between extinction coefficients and atmospheric visibility, the weather condition can be analyzed.

  18. Evidence of seasonally dependent stratosphere-troposphere exchange and purging of lower stratospheric aerosol from a multiyear lidar data set

    NASA Technical Reports Server (NTRS)

    Menzies, Robert T.; Tratt, David M.

    1995-01-01

    Tropospheric and lower stratospheric aerosol backscatter data obtained from a calibrated backscatter lidar at Pasadena, California (34 deg N latitude) over the 1984-1993 period clearly indicate tightly coupled aerosol optical properties in the upper troposphere and lower stratosphere in the winter and early spring, due to the active midlatitude stratospheric-tropospheric (ST) exchange processes occurring at this time of year. Lidar data indicate that during pre-Pinaturbo background conditions, the subsequent purging of the aerosol in the upper troposphere caused a significant reduction in the aerosol content throughout the 8 - 18 km altitude region in the early spring period. The post-Pinatubo evidence of intense exchange in the winter and early spring is a significant increase in the upper tropospheric aerosol content, such that the backscatter levels reach values nearly equivalent to the enhanced backscatter levels existing in the lower stratosphere. The calculated stratospheric mass extrusion rate is consistent with a 45-day lifetime of lower stratospheric aerosol during this part of the year, which implies that midlatitude ST exchange is a significant sink for stratospheric aerosol.

  19. Evidence of seasonally dependent stratosphere-troposphere exchange and purging of lower stratospheric aerosol from a multiyear lidar data set

    SciTech Connect

    Menzies, R.T.; Tratt, D.M.

    1995-02-01

    Tropospheric and lower stratospheric aerosol backscatter data obtained from a calibrated backscatter lidar at Pasadena, California (34 deg N latitude) over the 1984-1993 period clearly indicate tightly coupled aerosol optical properties in the upper troposphere and lower stratosphere in the winter and early spring, due to the active midlatitude stratospheric-tropospheric (ST) exchange processes occurring at this time of year. Lidar data indicate that during pre-Pinaturbo background conditions, the subsequent purging of the aerosol in the upper troposphere caused a significant reduction in the aerosol content throughout the 8 - 18 km altitude region in the early spring period. The post-Pinatubo evidence of intense exchange in the winter and early spring is a significant increase in the upper tropospheric aerosol content, such that the backscatter levels reach values nearly equivalent to the enhanced backscatter levels existing in the lower stratosphere. The calculated stratospheric mass extrusion rate is consistent with a 45-day lifetime of lower stratospheric aerosol during this part of the year, which implies that midlatitude ST exchange is a significant sink for stratospheric aerosol.

  20. Looking through the haze: evaluating the CALIPSO level 2 aerosol optical depth using airborne high spectral resolution lidar data

    NASA Astrophysics Data System (ADS)

    Rogers, R. R.; Vaughan, M. A.; Hostetler, C. A.; Burton, S. P.; Ferrare, R. A.; Young, S. A.; Hair, J. W.; Obland, M. D.; Harper, D. B.; Cook, A. L.; Winker, D. M.

    2014-12-01

    The Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument onboard the Cloud-Aerosol Lidar and Pathfinder Satellite Observations (CALIPSO) spacecraft has provided over 8 yr of nearly continuous vertical profiling of Earth's atmosphere. In this paper we investigate the V3.01 and V3.02 CALIOP 532 nm aerosol layer optical depth (AOD) product (i.e the AOD of individual layers) and the column AOD product (i.e., the sum AOD of the complete column) using an extensive database of coincident measurements. The CALIOP AOD measurements and AOD uncertainty estimates are compared with collocated AOD measurements collected with the NASA High Spectral Resolution Lidar (HSRL) in the North American and Caribbean regions. In addition, the CALIOP aerosol lidar ratios are investigated using the HSRL measurements. In general, compared with the HSRL values, the CALIOP layer AOD are biased high by less than 50% for AOD < 0.3 with higher errors for higher AOD. Less than 60% of the HSRL AOD measurements are encompassed within the CALIOP layer 1 SD uncertainty range (around the CALIOP layer AOD), so an error estimate is created to encompass 68% of the HSRL data. Using this new metric, the CALIOP layer AOD error is estimated using the HSRL layer AOD as ±0.035 ± 0.05 · (HSRL layer AOD) at night and ±0.05 ± 0.05 · (HSRL layer AOD) during the daytime. Furthermore, the CALIOP layer AOD error is found to correlate with aerosol loading as well as aerosol subtype, with the AODs in marine and dust layers agreeing most closely with the HSRL values. The lidar ratios used by CALIOP for polluted dust, polluted continental, and biomass burning layers are larger than the values measured by the HSRL in the CALIOP layers, and therefore the AODs for these types retrieved by CALIOP were generally too large. We estimated the CALIOP column AOD error can be expressed as ±0.05 ± 0.07 · (HSRL column AOD) at night and ±0.08 ± 0.1 · (HSRL column AOD) during the daytime. Multiple sources of error contribute to both positive and negative errors in the CALIOP column AOD, including multiple layers in the column of different aerosol types, lidar ratio errors, cloud misclassification, and undetected aerosol layers. The undetected layers were further investigated and we found that the layer detection algorithm works well at night, although undetected aerosols in the free troposphere introduce a mean underestimate of 0.02 in the column AOD in the data set examined. The decreased signal-to-noise ratio (SNR) during the daytime led to poorer performance of the layer detection. This caused the daytime CALIOP column AOD to be less accurate than during the nighttime, because CALIOP frequently does not detect optically thin aerosol layers with AOD < 0.1. Given that the median vertical extent of aerosol detected within any column was 1.6 km during the nighttime and 1.5 km during the daytime, we can estimate the minimum extinction detection threshold to be 0.012 km-1 at night and 0.067 km-1 during the daytime in a layer median sense. This extensive validation of level 2 CALIOP AOD products extends previous validation studies to nighttime lighting conditions and provides independent measurements of the lidar ratio; thus, allowing the assessment of the effect on the CALIOP AOD of using inappropriate lidar ratio values in the extinction retrieval.

  1. Remote Sensing of Aerosol Backscatter and Earth Surface Targets By Use of An Airborne Focused Continuous Wave CO2 Doppler Lidar Over Western North America

    NASA Technical Reports Server (NTRS)

    Jarzembski, Maurice A.; Srivastava, Vandana; Goodman, H. Michael (Technical Monitor)

    2000-01-01

    Airborne lidar systems are used to determine wind velocity and to measure aerosol or cloud backscatter variability. Atmospheric aerosols, being affected by local and regional sources, show tremendous variability. Continuous wave (cw) lidar can obtain detailed aerosol loading with unprecedented high resolution (3 sec) and sensitivity (1 mg/cubic meter) as was done during the 1995 NASA Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS) mission over western North America and the Pacific Ocean. Backscatter variability was measured at a 9.1 micron wavelength cw focused CO2 Doppler lidar for approximately 52 flight hours, covering an equivalent horizontal distance of approximately 30,000 km in the troposphere. Some quasi-vertical backscatter profiles were also obtained during various ascents and descents at altitudes that ranged from approximately 0.1 to 12 km. Similarities and differences for aerosol loading over land and ocean were observed. Mid-tropospheric aerosol backscatter background mode was approximately 6 x 10(exp -11)/ms/r, consistent with previous lidar datasets. While these atmospheric measurements were made, the lidar also retrieved a distinct backscatter signal from the Earth's surface from the unfocused part of the focused cw lidar beam during aircraft rolls. Atmospheric backscatter can be highly variable both spatially and temporally, whereas, Earth-surface backscatter is relatively much less variant and can be quite predictable. Therefore, routine atmospheric backscatter measurements by an airborne lidar also give Earth surface backscatter which can allow for investigating the Earth terrain. In the case where the Earth's surface backscatter is coming from a well-known and fairly uniform region, then it can potentially offer lidar calibration opportunities during flight. These Earth surface measurements over varying Californian terrain during the mission were compared with laboratory backscatter measurements using the same lidar of various Earth surfaces giving good agreement, suggesting that the lidar efficiency, and thus a lidar calibration factor for detection, can be estimated fairly well using Earth's surface signal.

  2. Progress on the Use of Combined Analog and Photon Counting Detection for Raman Lidar

    NASA Technical Reports Server (NTRS)

    Newsom, Rob; Turner, Dave; Clayton, Marian; Ferrare, Richard

    2008-01-01

    The Atmospheric Radiation Measurement (ARM) program Raman Lidar (CARL) was upgraded in 2004 with a new data system that provides simultaneous measurements of both the photomultiplier analog output voltage and photon counts. The so-called merge value added procedure (VAP) was developed to combine the analog and count-rate signals into a single signal with improved dynamic range. Earlier versions of this VAP tended to cause unacceptably large biases in the water vapor mixing ratio during the daytime as a result of improper matching between the analog and count-rate signals in the presence of elevated solar background levels. We recently identified several problems and tested a modified version of the merge VAP by comparing profiles of water vapor mixing ratio derived from CARL with simultaneous sonde data over a six month period. We show that the modified merge VAP significantly reduces the daytime bias, and results in mean differences that are within approximately 1% for both nighttime and daytime measurements.

  3. Analysis of the performance of a coherent pulsed fiber lidar for aerosol backscatter applications

    NASA Astrophysics Data System (ADS)

    Pearson, Guy N.; Roberts, P. John; Eacock, Justin R.; Harris, Michael

    2002-10-01

    The antenna and the Doppler estimation characteristics of a coherent pulsed lidar intended for short-range aerosol backscatter applications have been analyzed. The system used fiber-optic interconnects and operated at a wavelength of 1.548 mum. The range dependence of the signal for various bistatic and monostatic antenna configurations has been determined. The system operated in a low-pulse-energy, high-pulse-repetition-rate mode, and the Doppler estimates from the return signal were achieved with a multipulse accumulation procedure. The expected performance of the accumulation in this low-photocount regime was compared with the data obtained from the system, and a reasonable level of agreement was demonstrated.

  4. The evaluation of a shuttle borne lidar experiment to measure the global distribution of aerosols and their effect on the atmospheric heat budget

    NASA Technical Reports Server (NTRS)

    Shipley, S. T.; Joseph, J. H.; Trauger, J. T.; Guetter, P. J.; Eloranta, E. W.; Lawler, J. E.; Wiscombe, W. J.; Odell, A. P.; Roesler, F. L.; Weinman, J. A.

    1975-01-01

    A shuttle-borne lidar system is described, which will provide basic data about aerosol distributions for developing climatological models. Topics discussed include: (1) present knowledge of the physical characteristics of desert aerosols and the absorption characteristics of atmospheric gas, (2) radiative heating computations, and (3) general circulation models. The characteristics of a shuttle-borne radar are presented along with some laboratory studies which identify schemes that permit the implementation of a high spectral resolution lidar system.

  5. AGLITE Lidar: Calibration and Retrievals of Well Characterized Aerosols from Agricultural Operations using a Three-wavelength Elastic Lidar

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lidar (Light Detection And Ranging) provides the means to quantitatively evaluate the spatial and temporal variability of particulate emissions from agricultural activities. AGLITE is a three-wavelength portable scanning lidar system developed at the Space Dynamic Laboratory (SDL) to measure the spa...

  6. Aglite lidar: Calibration and retrievals of well characterized aerosols from agricultural operations using a three-wavelength elastic lidar

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lidar (LIght Detection And Ranging) provides the means to quantitatively evaluate the spatial and temporal variability of particulate emissions from agricultural activities. AGLITE is a three-wavelength portable scanning lidar system built at the Space Dynamic Laboratory (SDL) to measure the spatial...

  7. Analysis of Raman Lidar and Radiosonde Measurements from the AWEX-G Field Campaign and Its Relation to Aqua Validation

    NASA Technical Reports Server (NTRS)

    Whiteman, D. N.; Russo, F.; Demoz, B.; Miloshevich, L. M.; Veselovskii, I.; Hannon, S.; Wang, Z.; Vomel, H.; Schmidlin, F.; Lesht, B.; Moore, P. J.; Beebe, A. S.; Gambacorta, A.; Barnet, C.

    2006-01-01

    Early work within the Aqua validation activity revealed there to be large differences in water vapor measurement accuracy among the various technologies in use for providing validation data. The validation measurements were made at globally distributed sites making it difficult to isolate the sources of the apparent measurement differences among the various sensors, which included both Raman lidar and radiosonde. Because of this, the AIRS Water Vapor Experiment-Ground (AWEX-G) was held in October-November 2003 with the goal of bringing validation technologies to a common site for intercomparison and resolving the measurement discrepancies. Using the University of Colorado Cryogenic Frostpoint Hygrometer (CFH) as the water vapor reference, the AWEX-G field campaign permitted correction techniques to be validated for Raman lidar, Vaisala RS80-H and RS90/92 that significantly improve the absolute accuracy of water vapor measurements from these systems particularly in the upper troposphere. Mean comparisons of radiosondes and lidar are performed demonstrating agreement between corrected sensors and the CFH to generally within 5% thereby providing data of sufficient accuracy for Aqua validation purposes. Examples of the use of the correction techniques in radiance and retrieval comparisons are provided and discussed.

  8. Self-Raman Nd:YVO4 laser and electro-optic technology for space-based sodium lidar instrument

    NASA Astrophysics Data System (ADS)

    Krainak, Michael A.; Yu, Anthony W.; Janches, Diego; Jones, Sarah L.; Blagojevic, Branimir; Chen, Jeffrey

    2014-02-01

    We are developing a laser and electro-optic technology to remotely measure Sodium (Na) by adapting existing lidar technology with space flight heritage. The developed instrumentation will serve as the core for the planning of an Heliophysics mission targeted to study the composition and dynamics of Earth's mesosphere based on a spaceborne lidar that will measure the mesospheric Na layer. We present performance results from our diode-pumped tunable Q-switched self-Raman c-cut Nd:YVO4 laser with intra-cavity frequency doubling that produces multi-watt 589 nm wavelength output. The c-cut Nd:YVO4 laser has a fundamental wavelength that is tunable from 1063-1067 nm. A CW External Cavity diode laser is used as a injection seeder to provide single-frequency grating tunable output around 1066 nm. The injection-seeded self-Raman shifted Nd:VO4 laser is tuned across the sodium vapor D2 line at 589 nm. We will review technologies that provide strong leverage for the sodium lidar laser system with strong heritage from the Ice Cloud and Land Elevation Satellite-2 (ICESat-2) Advanced Topographic Laser Altimeter System (ATLAS). These include a space-qualified frequency-doubled 9W @ 532 nm wavelength Nd:YVO4 laser, a tandem interference filter temperature-stabilized fused-silica-etalon receiver and high-bandwidth photon-counting detectors.

  9. Analysis of Raman Lidar and radiosonde measurements from the AWEX-G field campaign and its relation to Aqua validation

    NASA Technical Reports Server (NTRS)

    Whiteman, D. N.; Russo, F.; Demoz, B.; Miloshevich, L. M.; Veselovskii, I.; Hannon, S.; Wang, Z.; Vomel, H.; Schmidlin, F.; Lesht, B.

    2005-01-01

    Early work within the Aqua validation activity revealed there to be large differences in water vapor measurement accuracy among the various technologies in use for providing validation data. The validation measurements were made at globally distributed sites making it difficult to isolate the sources of the apparent measurement differences among the various sensors, which included both Raman lidar and radiosonde. Because of this, the AIRS Water Vapor Experiment-Ground (AWEX-G) was held in October - November, 2003 with the goal of bringing validation technologies to a common site for intercomparison and resolution of the measurement discrepancies. Using the University of Colorado Cryogenic Frostpoint Hygrometer (CFH) as the water vapor reference, the AWEX-G field campaign resulted in new correction techniques for both Raman lidar, Vaisala RS80-H and RS90/92 measurements that significantly improve the absolute accuracy of those measurement systems particularly in the upper troposphere. Mean comparisons of radiosondes and lidar are performed demonstrating agreement between corrected sensors and the CFH to generally within 5% thereby providing data of sufficient accuracy for Aqua validation purposes. Examples of the use of the correction techniques in radiance and retrieval comparisons are provided and discussed.

  10. New approach for aerosol profiling with a lidar onboard an ultralight aircraft: application to the African Monsoon Multidisciplinary Analysis.

    PubMed

    Chazette, Patrick; Sanak, Joseph; Dulac, François

    2007-12-15

    A new airborne instrumental payload has been designed for an ultralight aircraft to determine the vertical profile of aerosol optical properties. It is based on Lidar Aérosols UltraViolet Aéroporté (LAUVA), a compact backscattering lidar system emitting at the wavelength of 355 nm. We operated this airborne configuration in the Sahel from the city of Niamey (Niger) during the first campaign of the African Monsoon Multidisciplinary Analysis (AMMA) in January-February 2006, when aerosols from both soil dust and savannah fires cause large visibility reductions. We take advantage of the lidar capability of pointing in different directions for retrieving the vertical profile of the aerosol backscatter to extinction ratio (BER). A synergy with a scatterometer (880 nm) and a ground-based sunphotometer allows us to further determine the vertical profile of Angström exponent (a). We identify three types of aerosol layers up to about 5 km below the free troposphere, dominated by biomass burning (BB) particles, mineral dust (D) particles, and a mixing between BB and D particles, respectively, associated with BER (a) values close to 0.008 sr(-1) (1.5), 0.025 sr(-1) (0), and 0.015 sr(-1) (0.4-1). PMID:18200860

  11. Retrieval of aerosol complex refractive index from a synergy between lidar, sunphotometer and in situ measurements during LISAIR experiment

    NASA Astrophysics Data System (ADS)

    Raut, J.-C.; Chazette, P.

    2007-06-01

    Particulate pollutant exchanges between the streets and the Planetary Boundary Layer (PBL), and their daily evolution linked to human activity were studied in the framework of the LIdar pour la Surveillance de l'AIR (LISAIR) experiment. This program lasted from 10 to 30 May 2005. A synergetic approach combining dedicated active (lidar) and passive (sunphotometer) remote sensors as well as ground based in situ instrumentation (nephelometer, aethalometer and particle sizers) was used to investigate urban aerosol optical properties within Paris. Aerosol complex refractive indices were assessed to be 1.56-0.034 i at 355 nm and 1.59-0.040 i at 532 nm, thus leading to single-scattering albedo values between 0.80 and 0.88. These retrievals are consistent with soot components in the aerosol arising from traffic exhausts indicating that these pollutants have a radiative impact on climate. We also discussed the influence of relative humidity on aerosol properties. A good agreement was found between vertical extinction profile derived from lidar backscattering signal and retrieved from the coupling between radiosounding and ground in situ measurements.

  12. Retrieval of aerosol complex refractive index from a synergy between lidar, sunphotometer and in situ measurements during LISAIR experiment

    NASA Astrophysics Data System (ADS)

    Raut, J.-C.; Chazette, P.

    2007-01-01

    Particulate pollutant exchanges between the streets and the Planetary Boundary Layer (PBL), and their daily evolution linked to human activity were studied in the framework of the LIdar pour la Surveillance de l'AIR (LISAIR) experiment. This program lasted from 10 to 30 May 2005. A synergetic approach combining dedicated active (lidar) and passive (sunphotometer) remote sensors as well as ground based in situ instrumentation (nephelometer, aethalometer and particle sizers) was used to investigate urban aerosol optical properties within Paris. Aerosol complex refractive indices were assessed to be 1.56-0.034i at 355 nm and 1.59-0.040i at 532 nm, thus leading to single-scattering albedo values between 0.80 and 0.88. These retrievals are consistent with soot components in the aerosol arising from traffic exhausts indicating that these pollutants have a radiative impact on climate. We also discussed the influence of relative humidity on aerosol properties. A good agreement was found between vertical extinction profile derived from lidar backscattering signal and retrieved from the coupling between radiosounding and ground in situ measurements.

  13. Night-time water vapor profiles retrieved with a mobile Raman lidar and radiosondes during the AIRS calibration field campaign

    NASA Astrophysics Data System (ADS)

    Tarniewicz, J.; Bock, O.; Morille, Y.; Pelon, J.; Thom, Ch; Dabas, A.

    2003-04-01

    Since 1999 Institut Géographique National (IGN) and Service d'Aéronomie (SA) from CNRS are jointly involved in the development of a mobile Raman lidar for tropospheric water vapor profiling. This lidar aims at providing absolute water vapor density profiles for the external path delay correction of GPS data. At term, a 3D scanning capability (no yet implemented for the moment) will allow for the measurement of water vapor profiles in the directions of the GPS satellites. The lidar has been deployed during October 2002 for the AIRS validation campaign, in Toulouse, France. More than 50 hours of water vapor measurement spanning over 11 nights were acquired during this campaign. The lidar was pointed towards zenith, and raw data profiles were acquired during nighttime. We will describe the system and data processing algorithms. Water vapor mixing ratio profiles (integrated over 20 minutes) are compared to high resolution collocated radiosonde data. They show a good agreement up to 6-8 km, depending on the atmospheric conditions. We also present time-height plots of mixing ratio (integrated over a 5 minutes), showing the continuous evolution of the water vapor distribution, in some cases over nearly 10 hours.

  14. Lidar observations and characterization of biomass burning aerosols over Sofia: Long-range transport of forest wildfire smoke

    NASA Astrophysics Data System (ADS)

    Peshev, Zahary Y.; Dreischuh, Tanja N.; Toncheva, Eleonora N.; Stoyanov, Dimitar V.

    2013-03-01

    Results of remote measurements and characterization of biomass burning aerosols observed in the low troposphere over Sofia, Bulgaria, are presented and discussed. Measurements are accomplished by using two-wavelength elastic-scatter lidar, operating at 1064 nm and 532 nm. The aerosols are identified as to be consisted mainly of aged smoke of wildfires raging in the USA in the last third of July 2012. The long-range transport of the smoke aerosols, taking place from 24 July to 6 August 2012, is determined to be driven by the Northern hemisphere Polar jet stream. Spatial distribution of the observed aerosols is displayed by retrieving averaged vertical profiles of the aerosol backscatter coefficients. The temporal evolution of the aerosol layers during the period of measurement is shown by height-time coordinate colormaps of range-corrected lidar data. In order to characterize qualitatively the size range of the aerosol particles, the vertical profile of the backscatter-related Ångström exponent (BAE) is also retrieved. As an accent of the work, distributions of BAE corresponding to distinguished aerosol layers, as well as the overall one, are obtained and analyzed, representing qualitative counterparts of the real particle size distributions. In the case of the fire smoke layer, BAE values vary in the range 1.0-1.3, indicating processes of considerable aggregation of the finest particle size mods during the aging period. The reliability of the results and conclusions concerning the fire smoke BAE distributions and their evolution are indirectly validated by the obtained typical distribution ranges of the observed urban- and water aerosols.

  15. Water vapor observations up to the lower stratosphere through the Raman lidar during the Maïdo Lidar Calibration Campaign

    NASA Astrophysics Data System (ADS)

    Dionisi, D.; Keckhut, P.; Courcoux, Y.; Hauchecorne, A.; Porteneuve, J.; Baray, J. L.; Leclair de Bellevue, J.; Vérèmes, H.; Gabarrot, F.; Payen, G.; Decoupes, R.; Cammas, J. P.

    2015-03-01

    A new lidar system devoted to tropospheric and lower stratospheric water vapor measurements has been installed at the Maïdo altitude station facility of Réunion island, in the southern subtropics. To evaluate the performances and the capabilities of the new system with a particular focus on UTLS (Upper Troposphere Lower Stratosphere) measurements, the Maïdo Lidar Calibration Campaign (MALICCA) was performed in April 2013. Varying the characteristics of the transmitter and the receiver components, different system configuration scenarios were tested and possible parasite signals (fluorescent contamination, rejection) were investigated. A hybrid calibration methodology has been set up and validated to insure optimal lidar calibration stability with time. In particular, the receiver transmittance is monitored through the calibration lamp method that, at the moment, can detect transmittance variations greater than 10-15%. Calibration coefficients are then calculated through the hourly values of IWV (Integrated Water Vapor) provided by the co-located GPS. The comparison between the constants derived by GPS and Vaisala RS92 radiosondes launched at Maïdo during MALICCA, points out an acceptable agreement in terms of accuracy of the mean calibration value (with a difference of approximately 2-3%), but a significant difference in terms of variability (14% vs. 7-9%, for GPS and RS92 calibration procedures, respectively). We obtained a relatively good agreement between the lidar measurements and 15 co-located and simultaneous RS92 radiosondes. A relative difference below 10% is measured in the low and middle troposphere (2-10 km). The upper troposphere (up to 15 km) is characterized by a larger spread (approximately 20%), because of the increasing distance between the two sensors. To measure water vapor in the UTLS region, nighttime and monthly water vapor profiles are presented and compared. The good agreement between the lidar monthly profile and the mean WVMR profile measured by satellite MLS (Microwave Limb Sounder) has been used as a quality control procedure of the lidar product, attesting the absence of significant wet biases and validating the calibration procedure. Due to its performance and location, the MAIDO H2O lidar will become a reference instrument in the southern subtropics, insuring the long-term survey of the vertical distribution of water vapor. Furthermore, this system allows the investigation of several scientific themes, such as stratosphere-troposphere exchange, tropospheric dynamics in the subtropics, and links between cirrus clouds and water vapor.

  16. Water vapor observations up to the lower stratosphere through the Raman lidar during the MAïdo LIdar Calibration Campaign

    NASA Astrophysics Data System (ADS)

    Dionisi, D.; Keckhut, P.; Courcoux, Y.; Hauchecorne, A.; Porteneuve, J.; Baray, J. L.; Leclair de Bellevue, J.; Vérèmes, H.; Gabarrot, F.; Payen, G.; Decoupes, R.; Cammas, J. P.

    2014-10-01

    A new lidar system devoted to tropospheric and lower stratospheric water vapor measurements has been installed at the Maïdo altitude station facility of La Reunion Island, in the southern subtropics. The main objectives of the MAïdo LIdar Calibration Campaign (MALICCA), performed in April 2013, were to validate the system, to set up a calibration methodology, to compare the acquired water profiles with radiosonde measurements and to evaluate its performances and capabilities with a particular focus on the UTLS measurements. Varying the characteristics of the transmitter and the receiver components, different system configuration scenarios were tested and possible parasite signals (fluorescent contamination, rejection) were investigated. A hybrid calibration methodology has been set up and validated to insure optimal lidar calibration stability with time. In particular, the receiver transmittance is monitored through the calibration lamp method that, at the moment, can detect transmittance variations greater than 10-15%. Calibration coefficients are then calculated through the hourly values of IWV provided by the co-located GPS. The comparison between the constants derived by GPS and Vaisala RS92 radiosondes launched at Maïdo during MALICCA, points out an acceptable agreement in terms of accuracy of the mean calibration value (with a difference of approximately 2-3%), but a significant difference in terms of variability (14 vs. 7-9%, for GPS and RS92 calibration procedures, respectively). We obtained a relatively good agreement between the lidar measurements and 15 co-located and simultaneous RS92 radiosondes. A relative difference below 10% is measured in low and middle troposphere (2-10 km). The upper troposphere (up to 15 km) is characterized by a larger spread (approximately 20%), because of the increasing distance between the two sensors. To measure water vapor in the UTLS region, nighttime and monthly water vapor profiles are presented and compared. The good agreement between the lidar monthly profile and the mean WVMR profile measured by satellite MLS has been used as a quality control procedure of the lidar product, attesting the absence of significant wet biases and validating the calibration procedure. Thanks to its performance and location, the MAIDO H2O lidar is devoted to become a reference instrument in the southern subtropics, allowing to insure the long-term survey of the vertical distribution of water vapor, and to document scientific themes such as stratosphere-troposphere exchange, tropospheric dynamics in the subtropics, links between cirrus clouds and water vapor.

  17. Active Raman sounding of the earth's water vapor field

    NASA Technical Reports Server (NTRS)

    Tratt, David M.; Whiteman, David N.; Demoz, Belay B.; Farley, Robert W.; Wessel, John E.

    2005-01-01

    The typically weak cross-sections characteristic of Raman processes has historically limited their use in atmospheric remote sensing to nighttime application. However, with advances in instrumentation and techniques, it is now possible to apply Raman lidar to the monitoring of atmospheric water vapor, aerosols and clouds throughout the diurnal cycle. Upper tropospheric and lower stratospheric measurements of water vapor using Raman lidar are also possible but are limited to nighttime and require long integration times. However, boundary layer studies of water vapor variability can now be performed with high temporal and spatial resolution. This paper will review the current state-of-the-art of Raman lidar for high-resolution measurements of the atmospheric water vapor, aerosol and cloud fields. In particular, we describe the use of Raman lidar for mapping the vertical distribution and variability of atmospheric water vapor, aerosols and clouds throughout the evolution of dynamic meteorological events. The ability of Raman lidar to detect and characterize water in the region of the tropopause and the importance of high-altitude water vapor for climate-related studies and meteorological satellite performance are discussed.

  18. Active Raman sounding of the earth's water vapor field.

    PubMed

    Tratt, David M; Whiteman, David N; Demoz, Belay B; Farley, Robert W; Wessel, John E

    2005-08-01

    The typically weak cross-sections characteristic of Raman processes has historically limited their use in atmospheric remote sensing to nighttime application. However, with advances in instrumentation and techniques, it is now possible to apply Raman lidar to the monitoring of atmospheric water vapor, aerosols and clouds throughout the diurnal cycle. Upper tropospheric and lower stratospheric measurements of water vapor using Raman lidar are also possible but are limited to nighttime and require long integration times. However, boundary layer studies of water vapor variability can now be performed with high temporal and spatial resolution. This paper will review the current state-of-the-art of Raman lidar for high-resolution measurements of the atmospheric water vapor, aerosol and cloud fields. In particular, we describe the use of Raman lidar for mapping the vertical distribution and variability of atmospheric water vapor, aerosols and clouds throughout the evolution of dynamic meteorological events. The ability of Raman lidar to detect and characterize water in the region of the tropopause and the importance of high-altitude water vapor for climate-related studies and meteorological satellite performance are discussed. PMID:16029854

  19. Ground-based lidar measurements of ozone, water vapor and aerosols in the lower stratosphere and troposphere

    NASA Technical Reports Server (NTRS)

    Flamant, P. H.; Pelon, J.; Lefrere, J.; Megie, G.; Cahen, C.

    1982-01-01

    Lidar measurements of ozone and water vapor concentrations were performed during several field experiments in 1980-1981 by means of the differential absorption laser technique. Profiles up to 26 km for ozone and up to 9 km for water vapor are presented. Also, a lidar survey of aerosol layers ranging from 12 to 23 km were performed following the Mt. St. Helens major eruption (May 1980). Experiments were conducted at the CNRS lidar facility of the Haute Provence Observatory which is located in southern France (44 deg N, 5 deg E). For ozone a vertical profile is recorded in three sequences, each requiring 15 min of acquisition time. The relative accuracy is better than 5 percent at the lower altitude and falls to 20 percent at 25 km. For water vapor the time sequences are 4 min or 8 min long and the accuracy is better than 10 percent in the lower troposphere.

  20. Combining data from lidar and in situ instruments to characterize the vertical structure of aerosol optical properties

    NASA Technical Reports Server (NTRS)

    Redemann, J.; Turco, R. P.; Pueschel, R. F.; Browell, E. V.; Grant, W. B.

    1998-01-01

    Over the last decade, the quantification of tropospheric aerosol abundance, composition and radiative impacts has become an important research endeavor. For the most part, the interest in tropospheric aerosols is derived from questions related to the global and local (instantaneous) radiative forcing of climate due to these aerosols. One approach is to study local forcing under well-defined conditions, and to extrapolate such results to global scales. To estimate local aerosol forcing, appropriate radiative transfer models can be employed (e.g., the Fu-Liou radiative transfer code, [Fu and Liou, 1993]). In general, such models require information on derived aerosol properties [Toon, 1994]; namely the aerosol optical depth, single-scattering albedo, and asymmetry factor (phase function), all of which appear in the equations of radiative transfer. In this paper, we report on a method that utilizes lidar data and in situ aerosol size distribution measurements to deduce the vertical structure of the aerosol complex index of refraction in the near IR, thus identifying the aerosol type. Together with aerosol size distributions obtained in situ, the aerosol refractive index can be used to calculate the necessary derived aerosol properties. The data analyzed here were collected during NASA's PEM West-B (Pacific Exploratory Mission) experiment, which took place in February/March 1994. The platform for the measurements was the NASA DC-8 aircraft. The primary goal of the PEM West missions [Browell et al., 1996] was the assessment of potential anthropogenic perturbations of the chemistry in the Pacific Basin troposphere. For this purpose the timing of PEM West-B corresponded to the seasonal peak in transport from the Asian continent into the Pacific basin [Merrill et al., in press]. This period normally occurs during Northern Hemisphere spring, when the Japan jet is well developed.

  1. Vertical distribution of near-ground aerosol backscattering coefficient measured by a CCD side-scattering lidar

    NASA Astrophysics Data System (ADS)

    Tao, Zongming; Liu, Dong; Ma, Xiaomin; Shi, Bo; Shan, Huihui; Zhao, Ming; Xie, Chenbo; Wang, Yingjian

    2015-09-01

    The near-ground aerosols have the most impact on the human beings. Its fine spatial and temporal distribution, with which the environmental and meteorological departments concern themselves most, has not been elaborated very well due to the unavailable measurement tools. We present the continuous observations of the vertical profile of near-ground aerosol backscattering coefficients by employing our self-developed side-scattering lidar system based on charge-coupled device camera. During the experimental period from April 2013 to August 2014, four catalogs of aerosol backscattering coefficient profiles are found in the near ground. The continuous measurement is revealed by the contour plots measured during the whole night. These experimental results indicate that the aerosol backscattering coefficients in near ground are inhomogeneous and vary with altitude and time, which are very useful for the model researchers to study the regional air pollution and its climate impact.

  2. Comparing Simultaneous Stratospheric Aerosol and Ozone Lidar Measurements with SAGE 2 Data after the Mount Pinatubo Eruption

    NASA Technical Reports Server (NTRS)

    Yue, G. K.; Poole, L. R.; McCormick, M. P.; Veiga, R. E.; Wang, P.-H.; Rizi, V.; Masci, F.; DAltorio, A.; Visconti, G.

    1995-01-01

    Stratospheric aerosol and ozone profiles obtained simultaneously from the lidar station at the University of L'Aquila (42.35 deg N, 13.33 deg E, 683 m above sea level) during the first 6 months following the eruption of Mount Pinatubo are compared with corresponding nearby Stratospheric Aerosol and Gas Experiment (SAGE) 2 profiles. The agreement between the two data sets is found to be reasonably good. The temporal change of aerosol profiles obtained by both techniques showed the intrusion and growth of Pinatubo aerosols. In addition, ozone concentration profiles derived from an empirical time-series model based on SAGE 2 ozone data obtained before the Pinatubo eruption are compared with measured profiles. Good agreement is shown in the 1991 profiles, but ozone concentrations measured in January 1992 were reduced relative to time-series model estimates. Possible reasons for the differences between measured and model-based ozone profiles are discussed.

  3. Lidar Ratios for Dust Aerosols Derived From Retrievals of CALIPSO Visible Extinction Profiles Constrained by Optical Depths from MODIS-Aqua and CALIPSO/CloudSat Ocean Surface Reflectance Measurements

    NASA Technical Reports Server (NTRS)

    Young, Stuart A.; Josset, Damien B.; Vaughan, Mark A.

    2010-01-01

    CALIPSO's (Cloud Aerosol Lidar Infrared Pathfinder Satellite Observations) analysis algorithms generally require the use of tabulated values of the lidar ratio in order to retrieve aerosol extinction and optical depth from measured profiles of attenuated backscatter. However, for any given time or location, the lidar ratio for a given aerosol type can differ from the tabulated value. To gain some insight as to the extent of the variability, we here calculate the lidar ratio for dust aerosols using aerosol optical depth constraints from two sources. Daytime measurements are constrained using Level 2, Collection 5, 550-nm aerosol optical depth measurements made over the ocean by the MODIS (Moderate Resolution Imaging Spectroradiometer) on board the Aqua satellite, which flies in formation with CALIPSO. We also retrieve lidar ratios from night-time profiles constrained by aerosol column optical depths obtained by analysis of CALIPSO and CloudSat backscatter signals from the ocean surface.

  4. Stratification and Size Distribution of Aerosols Retrieved from Simultaneous Measurements with Lidar, a SunPhotometer, and an Aureolemeter.

    PubMed

    Hayasaka, T; Meguro, Y; Sasano, Y; Takamura, T

    1998-02-20

    Vertical profiles of backscattering coefficients, optical thicknesses, and columnar size distributions of aerosols were obtained by simultaneous measurements with lidar, a sunphotometer, and an aureolemeter in Tsukuba, Japan, from November 1991 to December 1992. Several conspicuous characteristics were found in the relationship between aerosol size distribution and stratification. In summer an accumulation mode is dominant, and aerosols were heavily loaded in the planetary boundary layer. Turbid atmospheres with an abundance of large particles are observed in the middle troposphere in the spring. In autumn and winter the troposphere is clear so that columnar aerosol size distributions reflect stratospheric aerosols. During the observation period, volcanic aerosols that are due to the Mt. Pinatubo eruption were being loaded in the stratosphere. The mode radius in the volume size distribution of the stratospheric aerosol was observed to increase from 0.45 mum in November 1991 to 0.6 mum in October 1992, and decreased after October 1992. Total aerosol loading in the stratosphere was estimated to be maximum in the spring of 1992, minimum in the autumn of 1992, and increased again after the autumn of 1992. PMID:18268672

  5. Height Distribution Between Cloud and Aerosol Layers from the GLAS Spaceborne Lidar in the Indian Ocean Region

    NASA Technical Reports Server (NTRS)

    Hart, William D.; Spinhirne, James D.; Palm, Steven P.; Hlavka, Dennis L.

    2005-01-01

    The Geoscience Laser Altimeter System (GLAS), a nadir pointing lidar on the Ice Cloud and land Elevation Satellite (ICESat) launched in 2003, now provides important new global measurements of the relationship between the height distribution of cloud and aerosol layers. GLAS data have the capability to detect, locate, and distinguish between cloud and aerosol layers in the atmosphere up to 40 km altitude. The data product algorithm tests the product of the maximum attenuated backscatter coefficient b'(r) and the vertical gradient of b'(r) within a layer against a predetermined threshold. An initial case result for the critical Indian Ocean region is presented. From the results the relative height distribution between collocated aerosol and cloud shows extensive regions where cloud formation is well within dense aerosol scattering layers at the surface. Citation: Hart, W. D., J. D. Spinhime, S. P. Palm, and D. L. Hlavka (2005), Height distribution between cloud and aerosol layers from the GLAS spaceborne lidar in the Indian Ocean region,

  6. Calibration method for the lidar-observed stratospheric depolarization ratio in the presence of liquid aerosol particles.

    PubMed

    Adachi, H; Shibata, T; Iwasaka, Y; Fujiwara, M

    2001-12-20

    A fine calibration of the depolarization ratio is required for a detailed interpretation of lidar-observed polar stratospheric clouds. We propose a procedure for analyzing data by using atmospheric depolarization lidar. The method is based on a plot of deltaT versus (1 - RT(-1)), where deltaT is the total depolarization ratio and RT is the total backscattering ratio. Assuming that there are only spherical particles in some altitude ranges of the lidar data, the characteristics of the plot of deltaT versus (1 - RT(-1)) lead to a simple but effective calibration method for deltaT. Additionally, the depolarization of air molecules deltam can be determined in the process of deltaT calibration. We compared determined values with theoretically calculated values for the depolarization of air to test the proposed method. The deltam value was calculated from the lidar data acquired at Ny-Alesund (79 degrees N, 12 degrees E), Svalbard in winter 1994-1995. When only sulfate aerosols were present on 24 December 1994, deltam was 0.46 +/- 0.35%. When the particles consisted of sulfate aerosols and spherical particles of polar stratospheric clouds on 4 January 1995, deltam was 0.45 +/- 0.07%. Both deltam values were in good agreement with the theoretically calculated value, 0.50 +/- 0.03%. PMID:18364966

  7. New approach using lidar measurements to characterize spatiotemporal aerosol mass distribution in an underground railway station in Paris

    NASA Astrophysics Data System (ADS)

    Raut, J.-C.; Chazette, P.; Fortain, A.

    For the first time eye safe lidar measurements were performed at 355 nm simultaneously to in situ measurements in an underground station so as to test the potential interest of active remote sensing measurements to follow the spatiotemporal evolution of aerosol content inside such a confined microenvironment. The purpose of this paper is to describe different methods enabling the conversion of lidar-derived aerosol extinction coefficient into aerosol mass concentrations (PM 2.5 and PM 10). A theoretical method based on a well marked linear regression between mass concentrations simulated from the size distribution and extinction coefficients retrieved from Mie calculations provides averaged mass to optics' relations over the campaign for traffic (6.47 × 10 5 ?g m -2) or no traffic conditions (3.73 × 10 5 ?g m -2). Two empirical methods enable to significantly reduce CPU time. The first one is based upon the knowledge of size distribution measurements and scattering coefficients from nephelometer and allows retrieving mass to optics' relations for well determined periods or particular traffic conditions, like week-ends, with a good accuracy. The second method, that is more direct, is simply based on the ratio between TEOM concentrations and extinction coefficients obtained from nephelometer. This method is easy to set up but is not suitable for nocturnal measurements where PM stabilization time is short. Lidar signals thus converted into PM concentrations from those approaches with a fine accuracy (30%) provide a spatiotemporal distribution of concentrations in the station. This highlights aerosol accumulation in one side of the station, which can be explained by air displacement from the tunnel entrance. Those results allow expecting a more general use of lidar measurement to survey indoor air quality.

  8. Mid-latitude cirrus classification at Rome Tor Vergata through a multi-channel Raman-Mie-Rayleigh lidar

    NASA Astrophysics Data System (ADS)

    Dionisi, D.; Keckhut, P.; Liberti, G. L.; Cardillo, F.; Congeduti, F.

    2013-04-01

    A methodology to identify and characterize cirrus clouds has been developed and applied to the multichannel-multiwavelength Rayleigh-Mie-Raman (RMR) lidar in Rome-Tor Vergata (RTV). A set of 167 cirrus cases, defined on the basis of quasi-stationary temporal period conditions, has been selected in a dataset consisting of about 500 h of nighttime lidar sessions acquired between February 2007 and April 2010. The derived lidar parameters (effective height, geometrical and optical thickness and mean back-scattering ratio) and the cirrus mid-height temperature (estimated from the radiosoundings of Pratica di Mare, WMO site #16245) of this sample have been analyzed by the means of a clustering multivariate analysis. This approach identified four cirrus classes above the RTV site: two thin cirrus clusters in mid and upper troposphere and two thick cirrus clusters in mid-upper troposphere. These results, which are very similar to those derived through the same approach in the lidar site of the Observatoire of Haute Provence (OHP), allows characterizing cirrus clouds over RTV site and attests the robustness of such classification. To have some indications about the cirrus generation methods for the different classes, the analyses of the extinction-to-backscatter ratio (lidar ratio, LReff), in terms of the frequency distribution functions and depending on the mid-height cirrus temperature have been performed. This study suggests that smaller (larger) ice crystals compose thin (thick) cirrus classes. This information, together with the value of relative humidity over ice (110 ± 30%), calculated through the simultaneous WV Raman measurements for the mid-tropospheric thin class, indicates that this class could be formed by an heterogeneous nucleation mechanism. The RTV cirrus results, re-computed through the cirrus classification by Sassen and Cho (1992), shows good agreement to other mid-latitude lidar cirrus observation for the relative occurrence of subvisible (SVC), thin and opaque cirrus classes (10%, 49% and 41%, respectively). The overall mean value of cirrus optical depth is 0.37 ± 0.18 , while most retrieved LReff values ranges between 10-60 sr and the estimated mean value is 31 ± 15 sr, similar to LR values of lower latitude cirrus measurements. The obtained results are consistent with previous studies conducted with different systems and confirm that cirrus classification based on a statistical approach seems to be a good tool both to validate the height-resolved cirrus fields, calculated by models, and to investigate the key processes governing cirrus formation and evolution. These are fundamental elements to improve the characterization of the cirrus optical properties and, thus, the determination of their radiative impact.

  9. Characterization of convection-related parameters by Raman lidar: Analysis of selected case studies from the Convective and Orographically-induced Precipitation Study

    NASA Astrophysics Data System (ADS)

    Di Girolamo, P.; Summa, D.; Stelitano, D.

    2012-04-01

    This paper illustrates an approach to determine the convective available potential energy (CAPE) and the convective inhibition (CIN) based on the use of data from a Raman lidar system. The use of Raman lidar data allows to provide high temporal resolution (5 min) measurements of CAPE and CIN and follow their evolution over extended time period covering the full cycle of convective activity. Lidar-based measurements of CAPE and CIN are obtained from Raman lidar measurements of the temperature profile and the surface measurements of temperature, pressure and dew point temperature provided from a surface weather station. The approach is tested and applied to the data collected by the Raman lidar system BASIL, which was operational in Achern (Black Forest, Lat: 48.64 ° N, Long: 8.06 ° E, Elev.: 140 m) in the period 01 June - 31 August 2007 in the frame of the Convective and Orographically-induced Precipitation Study (COPS), held in Southern Germany and Eastern France. Reported measurements are found to be in good agreement with simultaneous measurements obtained from the radiosondes launched in Achern and with estimates from different mesoscale models. An estimate of the different random error sources affecting the measurements of CAPE and CIN has also been performed, together with a detail sensitivity study to quantify the different systematic error sources. Preliminary results from this study will be illustrated and discussed at the Conference.

  10. The Vertical Distribution of Aerosols Over the Atmospheric Radiation Measurement Southern Great Plains Site Measured versus Modeled

    SciTech Connect

    Ferrare, R.; Turner, D.D.; Clayton, M.; Guibert, S.; Schulz, M.; Chin, M.

    2005-03-18

    Aerosol extinction profiles measured by the Department of Energy Atmospheric Radiation Measurement (ARM) Climate Research Facility Raman lidar are used to evaluate aerosol extinction profiles and aerosol optical thickness (AOT) simulated by aerosol models as part of the Aerosol module inter- Comparison in global models (AEROCOM) project. This project seeks to diagnose aerosol modules of global models and subsequently identify and eliminate weak components in aerosol modules used for global modeling; AEROCOM activities also include assembling data sets to be used in the evaluations. The AEROCOM average aerosol extinction profiles typically show good agreement with the Raman lidar profiles for altitudes above about 2 km; below 2 km the average model profiles are significantly (30-50%) lower than the Raman lidar profiles. The vertical variability in the average aerosol extinction profiles simulated by these models is less than the variability in the corresponding Raman lidar pro files. The measurements also show a much larger diurnal variability than the Interaction with Chemistry and Aerosols (INCA) model, particularly near the surface where there is a high correlation between aerosol extinction and relative humidity.

  11. The use of 1572 nm Mie LiDAR for observation of the optical properties of aerosols over Wuhan, China

    NASA Astrophysics Data System (ADS)

    Gong, Wei; Ma, Xin; Dong, Yanni; Lin, Hong; Li, Jun

    2014-03-01

    CO2 is a major component of greenhouse gases. When CO2 concentration is measured by satellites, calibration of the lower atmosphere becomes an essential procedure. Since the 1572 nm infrared region is widely used in remote sensing of CO2, we constructed a Mie LiDAR system, designed to work at 1572 nm, for measuring the optical properties of aerosols in the lower troposphere. Based on the particle size distribution measured by the heliograph, the LiDAR ratio is independently determined for Wuhan, China. The LiDAR echo signal is then processed by the Fernald method to calculate the extinction coefficient on both clear and cloudy days. The maximum detection height is restricted by the low laser energy and quantum efficiency of the Photomultiplier Tube (PMT) used. Moreover, a simplified method for detecting the position of clouds is presented and this method is verified using a variety of passive radiation instruments that offer partial support for calibrating and verifying LiDAR data. The observed results indicate that this LiDAR system could be a reliable source of data support for the spaceborne remote sensing of CO2.

  12. Airborne and Ground-Based Measurements Using a High-Performance Raman Lidar. Part 2; Ground Based

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.; Cadirola, Martin; Venable, Demetrius; Connell, Rasheen; Rush, Kurt; Leblanc, Thierry; McDermid, Stuart

    2009-01-01

    The same RASL hardware as described in part I was installed in a ground-based mobile trailer and used in a water vapor lidar intercomparison campaign, hosted at Table Mountain, CA, under the auspices of the Network for the Detection of Atmospheric Composition Change (NDACC). The converted RASL hardware demonstrated high sensitivity to lower stratospheric water vapor indicating that profiling water vapor at those altitudes with sufficient accuracy to monitor climate change is possible. The measurements from Table Mountain also were used to explain the reason, and correct , for sub-optimal airborne aerosol extinction performance during the flight campaign.

  13. Correction Technique for Raman Water Vapor Lidar Signal-Dependent Bias and Suitability for Water Wapor Trend Monitoring in the Upper Troposphere

    NASA Technical Reports Server (NTRS)

    Whiteman, D. N.; Cadirola, M.; Venable, D.; Calhoun, M.; Miloshevich, L; Vermeesch, K.; Twigg, L.; Dirisu, A.; Hurst, D.; Hall, E.; Jordan, A.; Voemel, H.

    2012-01-01

    The MOHAVE-2009 campaign brought together diverse instrumentation for measuring atmospheric water vapor. We report on the participation of the ALVICE (Atmospheric Laboratory for Validation, Interagency Collaboration and Education) mobile laboratory in the MOHAVE-2009 campaign. In appendices we also report on the performance of the corrected Vaisala RS92 radiosonde measurements during the campaign, on a new radiosonde based calibration algorithm that reduces the influence of atmospheric variability on the derived calibration constant, and on other results of the ALVICE deployment. The MOHAVE-2009 campaign permitted the Raman lidar systems participating to discover and address measurement biases in the upper troposphere and lower stratosphere. The ALVICE lidar system was found to possess a wet bias which was attributed to fluorescence of insect material that was deposited on the telescope early in the mission. Other sources of wet biases are discussed and data from other Raman lidar systems are investigated, revealing that wet biases in upper tropospheric (UT) and lower stratospheric (LS) water vapor measurements appear to be quite common in Raman lidar systems. Lower stratospheric climatology of water vapor is investigated both as a means to check for the existence of these wet biases in Raman lidar data and as a source of correction for the bias. A correction technique is derived and applied to the ALVICE lidar water vapor profiles. Good agreement is found between corrected ALVICE lidar measurments and those of RS92, frost point hygrometer and total column water. The correction is offered as a general method to both quality control Raman water vapor lidar data and to correct those data that have signal-dependent bias. The influence of the correction is shown to be small at regions in the upper troposphere where recent work indicates detection of trends in atmospheric water vapor may be most robust. The correction shown here holds promise for permitting useful upper tropospheric water vapor profiles to be consistently measured by Raman lidar within NDACC (Network for the Detection of Atmospheric Composition Change) and elsewhere, despite the prevalence of instrumental and atmospheric effects that can contaminate the very low signal to noise measurements in the UT.

  14. Micropulse lidar-derived aerosol optical depth climatology at ARM sites worldwide

    NASA Astrophysics Data System (ADS)

    Kafle, D. N.; Coulter, R. L.

    2013-07-01

    This paper focuses on climatology of the vertical distribution of aerosol optical depth (AOD (z)) from micropulse lidar (MPL) observations for climatically different locations worldwide. For this, a large data set obtained by MPL systems operating at 532 nm during the 4 year period 2007-2010 was used to derive vertical profiles of AOD (z) by combining the corresponding AOD data as an input from an independent measurement using nearly colocated multifilter rotating shadowband radiometer (MFRSR) systems at five different U.S. Department of Energy Atmospheric Radiation Measurement (ARM) Program sites—three permanent sites (SGP in north-central Oklahoma, at 36.6°N, 97.5°W, 320 m; TWP-Darwin in the tropical western Pacific, at 12.4°S, 130.9°E, 30 m; and NSA at Barrow on the North Slope of Alaska, at 71.3°N, 156.6°W, 8 m) and two mobile facility sites (GRW at Graciosa Island in the Azores, at 39°N, 28°W, 15 m; and FKB in the Black Forest of Germany, at 48.5°N, 8.4°E, 511 m). Therefore, amount of data used in this study is constrained by the availability of the MFRSR data. The MPL raw data were averaged for 30 s in time and 30 m in altitude. The diurnally averaged AOD (z) profiles from 4 years were combined to obtain a multiyear vertical profile of AOD (z) climatology at various ARM sites, including diurnal, day-to-day, and seasonal variabilities. Most aerosols were found to be confined to 0-2 km (approximately the planetary boundary layer region) at all sites; however, all sites exhibited measurable aerosols well above the mixed layer, with different height maxima. The entire data set demonstrates large day-to-day variability at all sites. However, there is no significant diurnal variation in AOD (z) at all sites. Significant interannual variability was observed at the SGP site. Clear seasonal variations in AOD (z) profiles exist for all five sites, but seasonal behavior was distinct. Moreover, the different seasonal variability for the lower level (0 to ~2 km) versus the level above indicates a contribution of different types of air masses from different sources. The lower annual mean AOD (z) values (0.093 ± 0.033 for daytime and 0.093 ± 0.05 for nighttime) observed near the surface at GRW are not unexpected for maritime aerosols (mostly sea salt), and the corresponding higher values at SGP (0.118 ± 0.038 for daytime and 0.11 ± 0.05 for nighttime), FKB (0.124 ± 0.042 for daytime and 0.127 ± 0.047 for nighttime), and TWP (0.13 ± 0.078 for daytime and 0.14 ± 0.073 for nighttime) are usual for continental aerosols. The annual mean AOD (z) values observed near the surface during daytime and nighttime for NSA were 0.1 ± 0.042 and 0.09 ± 0.037, respectively. These results will aid the scientific community in understanding aerosol properties and boundary layer dynamics and in improving the incorporation of aerosol radiative effects into global climate models.

  15. Chemical characterization of aerosol particles by laser Raman spectroscopy. Revision

    SciTech Connect

    Fung, K.H.

    1999-12-01

    The importance of aerosol particles in many branches of science, such as atmospheric chemistry, combustion, interfacial science, and material processing, has been steadily growing during the past decades. One of the unique properties of these particles is the very high surface-to-volume ratios, thus making them readily serve as centers for gas-phase condensation and heterogeneous reactions. These particles must be characterized by size, shape, physical state, and chemical composition. Traditionally, optical elastic scattering has been applied to obtain the physical properties of these particle (e.g., particle size, size distribution, and particle density). These physical properties are particularly important in atmospheric science as they govern the distribution and transport of atmospheric aerosols.

  16. Theory of CW lidar aerosol backscatter measurements and development of a 2.1 microns solid-state pulsed laser radar for aerosol backscatter profiling

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J.; Henderson, Sammy W.; Frehlich, R. G.

    1991-01-01

    The performance and calibration of a focused, continuous wave, coherent detection CO2 lidar operated for the measurement of atmospheric backscatter coefficient, B(m), was examined. This instrument functions by transmitting infrared (10 micron) light into the atmosphere and collecting the light which is scattered in the rearward direction. Two distinct modes of operation were considered. In volume mode, the scattered light energy from many aerosols is detected simultaneously, whereas in the single particle mode (SPM), the scattered light energy from a single aerosol is detected. The analysis considered possible sources of error for each of these two cases, and also considered the conditions where each technique would have superior performance. The analysis showed that, within reasonable assumptions, the value of B(m) could be accurately measured by either the VM or the SPM method. The understanding of the theory developed during the analysis was also applied to a pulsed CO2 lidar. Preliminary results of field testing of a solid state 2 micron lidar using a CW oscillator is included.

  17. Assessment of CALIPSO attenuated backscatter and aerosol retrievals with a combined ground-based multi-wavelength lidar and sunphotometer measurement

    NASA Astrophysics Data System (ADS)

    Wu, Yonghua; Cordero, Lina; Gross, Barry; Moshary, Fred; Ahmed, Sam

    2014-02-01

    CALIPSO Level-1 attenuated backscatter and Level-2 aerosol products (Version-3.01) are evaluated with a combined ground-based lidar and AERONET-sunphotometer measurements in the daytime over the New York metropolitan area. To assess the CALIPSO Level-1 product, we combine the co-located ground-lidar and sunphotometer to derive aerosol extinction and backscatter profiles, and then simulate the CALIPSO equivalent attenuated backscatter coefficients. Direct statistical comparisons show a strong correlation (R = 0.92) and modest relative errors. Both dust and smoke plume events are focused to evaluate CALIPSO Level-2 aerosol layer products. The CALIPSO algorithms for cloud-aerosol discrimination and aerosol type classification are shown for the most part to work well, with a few exceptions in cases of aloft plumes with high aerosol loading. Small partitions of dense smoke are misclassified as the clouds or polluted dusts in the CALIPSO product. The aerosol extinction and backscatter coefficients are generally consistent between the CALIPSO and ground-based retrievals, but both geometric thickness and column optical depths of aerosol layers from CALIPSO products are underestimated. In addition, we find that some weakly scattering aerosol layers are clearly displayed by the ground-based lidar, but not identified by the current CALIPSO algorithm due to the detection sensitivity issue.

  18. Aerosol properties computed from aircraft-based observations during the ACE-Asia campaign: 2. A case study of lidar ratio closure

    SciTech Connect

    Kuzmanoski, Maja; Box, M. A.; Schmid, Beat; Box, G. P.; Wang, Jian; Russel, P. R.; Bates, D.; Jonsson, Haf; Welton, E. J.; Seinfeld, J. H.

    2007-04-03

    For a vertical profile with three distinct layers (marine boundary, pollution and dust layers), observed during the ACE-Asia campaign, we carried out a comparison between the modeled lidar ratio vertical profile and that obtained from co-located airborne NASA AATS-14 sunphotometer and shipborne Micro-Pulse Lidar (MPL) measurements. The vertically resolved lidar ratio was calculated from two size distribution vertical profiles – one obtained by inversion of sunphotometer-derived extinction spectra, and one measured in-situ – combined with the same refractive index model based on aerosol chemical composition. The aerosol model implies single scattering albedos of 0.78 – 0.81 and 0.93 – 0.96 at 0.523 ?m (the wavelength of the lidar measurements), in the pollution and dust layers, respectively. The lidar ratios calculated from the two size distribution profiles agree closely in the dust layer; they are however, significantly lower than the lidar ratios derived from combined lidar and sunphotometer measurements. Uncertainties in aerosol size distributions and refractive index only partly explain these differences, suggesting that particle nonsphericity in this layer is an additional explanation. In the pollution layer, the two size distribution profiles yield lidar ratios that agree within the estimated uncertainties. The retrieved size distributions result in a lidar ratio which is in closer agreement with that derived from lidar/sunphotometer measurements in this layer, with still large differences at certain altitudes (the largest relative difference was 46%). We explain these differences by non-uniqueness of the result of the size distribution retrieval, by a lack of information on the mixing state of particles, and the vertical variability of the particle refractive index.

  19. Airborne differential absorption lidar system for measurements of atmospheric water vapor and aerosols.

    PubMed

    Higdon, N S; Browell, E V; Ponsardin, P; Grossmann, B E; Butler, C F; Chyba, T H; Mayo, M N; Allen, R J; Heuser, A W; Grant, W B; Ismail, S; Mayor, S D; Carter, A F

    1994-09-20

    An airborne differential absorption lidar (DIAL) system has been developed at the NASA Langley Research Center for remote measurements of atmospheric water vapor (H(2)O) and aerosols. A solid-state alexandrite laser with a 1-pm linewidth and > 99.85% spectral purity was used as the on-line transmitter. Solid-state avalanche photodiode detector technology has replaced photomultiplier tubes in the receiver system, providing an average increase by a factor of 1.5-2.5 in the signal-to-noise ratio of the H(2)O measurement. By incorporating advanced diagnostic and data-acquisition instrumentation into other subsystems, we achieved additional improvements in system operational reliability and measurement accuracy. Laboratory spectroscopic measurements of H(2)O absorption-line parameters were perfo med to reduce the uncertainties in our knowledge of the absorption cross sections. Line-center H(2)O absorption cross sections were determined, with errors of 3-6%, for more than 120 lines in the 720-nm region. Flight tests of the system were conducted during 1989-1991 on the NASA Wallops Flight Facility Electra aircraft, and extensive intercomparison measurements were performed with dew-point hygrometers and H(2)O radiosondes. The H(2)O distributions measured with the DIAL system differed by ? 10% from the profiles determined with the in situ probes in a variety of atmospheric conditions. PMID:20941181

  20. Airborne differential absorption lidar system for measurements of atmospheric water vapor and aerosols

    NASA Technical Reports Server (NTRS)

    Carter, Arlen F.; Allen, Robert J.; Mayo, M. Neale; Butler, Carolyn F.; Grossman, Benoist E.; Ismail, Syed; Grant, William B.; Browell, Edward V.; Higdon, Noah S.; Mayor, Shane D.; Ponsardin, Patrick; Hueser, Alene W.

    1994-01-01

    An airborne differential absorption lidar (DIAL) system has been developed at the NASA Langley Research Center for remote measurements of atmospheric water vapor (H2O) and aerosols. A solid-state alexandrite laser with a 1-pm linewidth and greater than 99.85% spectral purity was used as the on-line transmitter. Solid-state avalanche photodiode detector technology has replaced photomultiplier tubes in the receiver system, providing an average increase by a factor of 1.5-2.5 in the signal-to-noise ratio of the H2O measurement. By incorporating advanced diagnostic and data-acquisition instrumentation into other subsystems, we achieved additional improvements in system operational reliability and measurement accuracy. Laboratory spectroscopic measurements of H2O absorption-line parameters were performed to reduce the uncertainties in our knowledge of the absorption cross sections. Line-center H2O absorption cross sections were determined, with errors of 3-6%, for more than 120 lines in the 720-nm region. Flight tests of the system were conducted during 1989-1991 on the NASA Wallops Flight Facility Electra aircraft, and extensive intercomparison measurements were performed with dew-point hygrometers and H2O radiosondes. The H2O distributions measured with the DIAL system differed by less than 10% from the profiles determined with the in situ probes in a variety of atmospheric conditions.

  1. Evaluation of MAX-DOAS aerosol retrievals by coincident observations using CRDS, lidar, and sky radiometer inTsukuba, Japan

    NASA Astrophysics Data System (ADS)

    Irie, H.; Nakayama, T.; Shimizu, A.; Yamazaki, A.; Nagai, T.; Uchiyama, A.; Zaizen, Y.; Kagamitani, S.; Matsumi, Y.

    2015-07-01

    Coincident aerosol observations of multi-axis differential optical absorption spectroscopy (MAX-DOAS), cavity ring-down spectroscopy (CRDS), lidar, and sky radiometer were conducted in Tsukuba, Japan, on 5-18 October 2010. MAX-DOAS aerosol retrieval (for aerosol extinction coefficient and aerosol optical depth at 476 nm) was evaluated from the viewpoint of the need for a correction factor for oxygen collision complexes (O4 or O2-O2) absorption. The present study strongly supports this need, as systematic residuals at relatively high elevation angles (20 and 30°) were evident in MAX-DOAS profile retrievals conducted without the correction. However, adopting a single number for the correction factor (fO4 = 1.25) for all of the elevation angles led to systematic overestimation of near-surface aerosol extinction coefficients, as reported in the literature. To achieve agreement with all three observations, we limited the set of elevation angles to ?10° and adopted an elevation-angle-dependent correction factor for practical profile retrievals with scattered light observations by a ground-based MAX-DOAS. With these modifications, we expect to minimize the possible effects of temperature-dependent O4 absorption cross section and uncertainty in DOAS fit on an aerosol profile retrieval, although more efforts are encouraged to quantitatively identify a physical explanation for the need of a correction factor.

  2. Increase in background stratospheric aerosol observed with lidar at Mauna Loa Observatory and Boulder, Colorado - article no. L15808

    SciTech Connect

    Hofmann, D.; Barnes, J.; O'Neill, M.; Trudeau, M.; Neely, R.

    2009-08-15

    The stratospheric aerosol layer has been monitored with lidars at Mauna Loa Observatory in Hawaii and Boulder in Colorado since 1975 and 2000, respectively. Following the Pinatubo volcanic eruption in June 1991, the global stratosphere has not been perturbed by a major volcanic eruption providing an unprecedented opportunity to study the background aerosol. Since about 2000, an increase of 4-7% per year in the aerosol backscatter in the altitude range 20-30 km has been detected at both Mauna Loa and Boulder. This increase is superimposed on a seasonal cycle with a winter maximum that is modulated by the quasi-biennial oscillation (QBO) in tropical winds. Of the three major causes for a stratospheric aerosol increase: volcanic emissions to the stratosphere, increased tropical upwelling, and an increase in anthropogenic sulfur gas emissions in the troposphere, it appears that a large increase in coal burning since 2002, mainly in China, is the likely source of sulfur dioxide that ultimately ends up as the sulfate aerosol responsible for the increased backscatter from the stratospheric aerosol layer. The results are consistent with 0.6-0.8% of tropospheric sulfur entering the stratosphere.

  3. Lidar Observations of Tropospheric Aerosols Over Northeastern South Africa During the ARREX and SAFARI-2000 Dry Season Experiments

    NASA Technical Reports Server (NTRS)

    Campbell, James R.; Welton, Ellsworth J.; Spinhirne, James D.; Ji, Qiang; Tsay, Si-Chee; Piketh, Stuart J.; Barenbrug, Marguerite; Holben, Brent; Starr, David OC. (Technical Monitor)

    2002-01-01

    During the ARREX-1999 and SAFARI-2000 Dry Season experiments a micropulse lidar (523 nm) instrument was operated at the Skukuza Airport in northeastern South Africa. The Mar was collocated with a diverse array of passive radiometric equipment. For SAFARI-2000 the processed Mar data yields a daytime time-series of layer mean/derived aerosol optical properties, including extinction-to-backscatter ratios and vertical extinction cross-section profile. Combined with 523 run aerosol optical depth and spectral Angstrom exponent calculations from available CIMEL sun-photometer data and normalized broadband flux measurements the temporal evolution of the near surface aerosol layer optical properties is analyzed for climatological trends. For the densest smoke/haze events the extinction-to-backscatter ratio is found to be between 60-80/sr, and corresponding Angstrom exponent calculations near and above 1.75. The optical characteristics of an evolving smoke event from SAFARI-2000 are extensively detailed. The advecting smoke was embedded within two distinct stratified thermodynamic layers, causing the particulate mass to advect over the instrument array in an incoherent manner on the afternoon of its occurrence. Surface broadband flux forcing due to the smoke is calculated, as is the evolution in the vertical aerosol extinction profile as measured by the Han Finally, observations of persistent elevated aerosol during ARREX-1999 are presented and discussed. The lack of corroborating observations the following year makes these observation; both unique and noteworthy in the scope of regional aerosol transport over southern Africa.

  4. Tunable 2.1-micron Ho lidar for simultaneous range-resolved measurements of atmospheric water vapor and aerosol backscatter profiles

    NASA Technical Reports Server (NTRS)

    Cha, Sungdo; Chan, Kin P.; Killinger, Dennis K.

    1991-01-01

    An eye-safe tunable differential-absorption lidar system has been developed for the range-resolved measurement of aerosol backscatter and water vapor in the atmosphere. The lidar uses a flash-lamp-pumped, Q-switched, 10-mJ solid-state Ho:YSGG laser that is continuously tunable over a 20/cm wavelength range near 2.084 microns. Both path-averaged and range-resolved measurements were performed with the Ho differential-absorption lidar system. Preliminary measurements have been made of the temporal variation of atmospheric aerosol backscatter and water-vapor profiles at ranges out to 1 km. These results indicate that the Ho lidar has the potential for the eye-safe remote sensing of atmospheric water vapor and backscatter profiles at longer ranges if suitably enhanced in laser power and laser linewidth.

  5. Lidar Observation of Aerosol and Temperature Stratification over Urban Area During the Formation of a Stable Atmospheric PBL

    NASA Technical Reports Server (NTRS)

    Kolev, I.; Parvanov, O.; Kaprielov, B.; Mitev, V.; Simeonov, V.; Grigorov, I.

    1992-01-01

    In recent years, the processes in the atmospheric planetary boundary layer (PBL) over urban areas were intensely investigated, due to ecological problems related to the air, soil, and water pollution. New pollution sources in new residential districts, when in contradiction to the microclimate and topography requirements of that region, create a number of considerable hazards and problems. The present study is a continuation of our preceding investigations and aims at revealing the aerosol structure and stratification during the transition after sunset as measured by two lidars. Such observation of the nocturnal, stable PBL formation over an urban area in Bulgaria has not been reported before. The lidars' high time and spatial resolutions allow the changes of the internal structure of the PBL's part located above the surface layer to be observed.

  6. Lidar Inter-Comparison Exercise Final Campaign Report

    SciTech Connect

    Protat, Alain; Young, S.

    2015-02-01

    The objective of this IOP was to evaluate the performances of the new Leosphere R-MAN 510 lidar procured by the Australian Bureau of Meteorology, by testing it against the MPL and Raman lidars at the Darwin ARM site. This lidar is an eye-safe (355 nm), turn-key mini Raman lidar, which allows for the detection of aerosols and cloud properties, and the retrieval of particulate extinction profiles. To do so, the R-MAN 510 lidar has been operated at the Darwin ARM site, next to the MPL, Raman lidar, and Vaisala ceilometer for three months (from 20 January 2013 to 20 April 2013) in order to collect a good sample for statistical comparisons. The comparisons with the Raman lidar were not performed, since the Raman lidar attenuated backscatter and depolarization ratio product was not available. A new product has just been delivered to the ARM archive as a value-added product, hence this study will continue. Nevertheless we have developed software to match the different space and time resolutions of the other lidars and project the data onto a common grid to permit detailed comparison of the instruments’ performance and an enhanced analysis of clouds and aerosols through the use of composite data products, like the ratios of attenuated backscatters, attenuated scattering ratios and depolarization ratios. Comparisons between the MPL and R-MAN510 lidar data exhibit large differences in total attenuated backscatter at 355 and 532 nm, attenuated scattering ratios, and aerosol volume depolarization ratios. Differences in attenuated backscatter result mainly from the different relative contributions of scattering from molecules and particles at the different wavelengths, but there are some intriguing differences that will require further investigations. The differences in volume depolarization ratios are due to the much larger contribution of molecular returns to the volume depolarization ratio (5 times larger at 355 nm than at 532 nm). The R-MAN510 lidar is also found to be much less sensitive to daylight solar background illumination, which is greater at the visible wavelength than in the UV.

  7. Airborne LIDAR Measurements of Water Vapor, Ozone, Clouds, and Aerosols in the Tropics Near Central America During the TC4 Experiment

    NASA Technical Reports Server (NTRS)

    Kooi, Susan; Fenn, Marta; Ismail, Syed; Ferrare, Richard; Hair, John; Browell, Edward; Notari, Anthony; Butler, Carolyn; Burton, Sharon; Simpson, Steven

    2008-01-01

    Large scale distributions of ozone, water vapor, aerosols, and clouds were measured throughout the troposphere by two NASA Langley lidar systems on board the NASA DC-8 aircraft as part of the Tropical Composition, Cloud, and Climate Coupling Experiment (TC4) over Central and South America and adjacent oceans in the summer of 2007. Special emphasis was placed on the sampling of convective outflow and transport, sub-visible cirrus clouds, boundary layer aerosols, Saharan dust, volcanic emissions, and urban and biomass burning plumes. This paper presents preliminary results from this campaign, and demonstrates the value of coordinated measurements by the two lidar systems.

  8. Sun photometer and lidar measurements of the plume from the Hawaii Kilauea Volcano Pu'u O'o vent: Aerosol flux and SO2 lifetime

    USGS Publications Warehouse

    Porter, J.N.; Horton, K.A.; Mouginis-Mark, P. J.; Lienert, B.; Sharma, S.K.; Lau, E.; Sutton, A.J.; Elias, T.; Oppenheimer, C.

    2002-01-01

    Aerosol optical depths and lidar measurements were obtained under the plume of Hawaii Kilauea Volcano on August 17, 2001, ???9 km downwind from the erupting Pu'u O'o vent. Measured aerosol optical depths (at 500 nm) were between 0.2-0.4. Aerosol size distributions inverted from the spectral sun photometer measurements suggest the volcanic aerosol is present in the accumulation mode (0.1-0.5 micron diameter), which is consistent with past in situ optical counter measurements. The aerosol dry mass flux rate was calculated to be 53 Mg d-1. The estimated SO2 emission rate during the aerosol measurements was ???1450 Mg d-1. Assuming the sulfur emissions at Pu'u O'o vent are mainly SO2 (not aerosol), this corresponds to a SO2 half-life of 6.0 hours in the atmosphere.

  9. Observations of Asian dust and air-pollution aerosols using a network of ground-based Mie-scattering lidars (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Sugimoto, Nobuo; Shimizu, Atsushi; Matsui, Ichiro; Dong, Xuhui; Zhao, Shuli; Zhou, Jun; Lee, Choo-Hie; Uno, Itsushi

    2005-05-01

    We conduct network observations using ground-based Mie-scattering lidars in Asian region in cooperation with various research organizations and Universities. Primary purpose of the network is for studying generation and transport of Asian dust, observing air pollution and biomass burning aerosols for atmospheric environment studies, observing aerosol vertical distribution and temporal variation for atmospheric radiation studies and climatology, and for validation of chemical transport models and satellite remote sensors. At present, lidars are operated continuously at twelve locations in Japan, China, Korea, and Thailand. The lidars used in the network are two-wavelength (532 nm and 1064 nm) Mie-scattering lidars having depolarization measurement function at 532nm. Flashlamp-pumped compact Nd:YAG lasers are used as the light source. We developed a method for estimating the extinction coefficient of non-spherical air-pollution aerosols separately using the depolarization ratio. This method is based on a simple assumption that observed aerosols are external mixture of two types of aerosols, but it is practically very useful especially for inter-comparison with chemical transport models. We also studied a method for characterizing aerosols using the depolarization ratio and the wavelength dependence of the backscatter coefficient. Asian dust phenomena were observed with the network since spring of 2001. The frequency of the occurrence of dust events and the vertical distribution characteristics were analyzed. Also, seasonal and year-to-year variations were analyzed. At the same time, transport of dust and air-pollution aerosols were studied by comparing the temporal variation of lidar profiles with chemical transport model results.

  10. Raman Lidar Observations of a MCS in the frame of the Convective and Orographically-induced Precipitation Study

    NASA Astrophysics Data System (ADS)

    Di Girolamo, Paolo; Bhawar, Rohini; Summa, Donato; Di Iorio, Tatiana; Demoz, Belay B.

    2009-03-01

    The Raman lidar system BASIL was deployed in Achern (Supersite R, Lat: 48.64° N, Long: 8.06° E, Elev.: 140 m) in the frame of the Convective and Orographically-induced Precipitation Study. On 20 July 2007 a frontal zone passed over the COPS region, with a Mesoscale Convective System (MCS) imbedded in it. BASIL was operated continuously during this day, providing measurements of temperature, water vapour, particle backscattering coefficient at 355, 532 and 1064 nm, particle extinction coefficient at 355 and 532 nm and particle depolarization at 355 and 532 nm. The thunderstorm approaching determined the lowering of the anvil clouds, which is clearly visible in the lidar data. A cloud deck is present at 2 km, which represents a mid-level outflow from the thunderstorm/MCS. The mid-level outflow spits out hydrometeor-debris (mostly virga) and it is recycled back into it. The MCS modified the environment at 1.6-2.5 km levels directly (outflow) and the lower levels through the virga/precipitation. Wave structures were observed in the particle backscatter data. The wave activity seems to be a reflection of the shear that is produced by the MCS and the inflow environmental wind. Measurements in terms of particle backscatter and water vapour mixing ratio are discussed to illustrate the above phenomena.

  11. Estimation of spatially distributed latent energy flux over complex terrain using a scanning water-vapor Raman lidar

    SciTech Connect

    Cooper, D.I.; Eichinger, W.; Archuleta, J.; Cottingame, W.; Osborne, M.; Tellier, L.

    1995-09-01

    Evapotranspiration is one of the critical variables in both water and energy balance models of the hydrological system. The hydrologic system is driven by the soil-plant-atmosphere continuum, and as such is a spatially distributed process. Traditional techniques rely on point sensors to collect information that is then averaged over a region. The assumptions involved in spatially average point data is of limited value (1) because of limited sensors in the arrays, (2) the inability to extend and interpret the Measured scalars and estimated fluxes at a point over large areas in complex terrain, and (3) the limited understanding of the relationship between point measurements of spatial processes. Remote sensing technology offers the ability to collect detailed spatially distributed data. However, the Los Alamos National Laboratory`s volume-imaging, scanning water-vapor Raman lidar has been shown to be able to estimate the latent energy flux at a point. The extension of this capability to larger scales over complex terrain represents a step forward. This abstract Outlines the techniques used to estimate the spatially resolved latent energy flux. The following sections describe the site, model, data acquired, and lidar estimated latent energy ``map``.

  12. Raman lidar observations of a Saharan dust outbreak event: Characterization of the dust optical properties and determination of particle size and microphysical parameters

    NASA Astrophysics Data System (ADS)

    Di Girolamo, Paolo; Summa, Donato; Bhawar, Rohini; Di Iorio, Tatiana; Cacciani, Marco; Veselovskii, Igor; Dubovik, Oleg; Kolgotin, Alexey

    2012-04-01

    The Raman lidar system BASIL was operational in Achern (Black Forest) between 25 May and 30 August 2007 in the framework of the Convective and Orographically-induced Precipitation Study (COPS). The system performed continuous measurements over a period of approx. 36 h from 06:22 UTC on 1 August to 18:28 UTC on 2 August 2007, capturing the signature of a severe Saharan dust outbreak episode. The data clearly reveal the presence of two almost separate aerosol layers: a lower layer located between 1.5 and 3.5 km above ground level (a.g.l.) and an upper layer extending between 3.0 and 6.0 km a.g.l. The time evolution of the dust cloud is illustrated and discussed in the paper in terms of several optical parameters (particle backscatter ratio at 532 and 1064 nm, the colour ratio and the backscatter Angström parameter). An inversion algorithm was used to retrieve particle size and microphysical parameters, i.e., mean and effective radius, number, surface area, volume concentration, and complex refractive index, as well as the parameters of a bimodal particle size distribution (PSD), from the multi-wavelength lidar data of particle backscattering, extinction and depolarization. The retrieval scheme employs Tikhonov's inversion with regularization and makes use of kernel functions for randomly oriented spheroids. Size and microphysical parameters of dust particles are estimated as a function of altitude at different times during the dust outbreak event. Retrieval results reveal the presence of a fine mode with radii of 0.1-0.2 ?m and a coarse mode with radii of 3-5 ?m both in the lower and upper dust layers, and the dominance in the upper dust layer of a coarse mode with radii of 4-5 ?m. Effective radius varies with altitude in the range 0.1-1.5 ?m, while volume concentration is found to not exceed 92 ?m3 cm-3. The real and imaginary part of the complex refractive index vary in the range 1.4-1.6 and 0.004-0.008, respectively.

  13. Influence of Humidified Aerosol on Lidar Depolarization Measurements below Ice-Precipitating Arctic Stratus

    E-print Network

    - cients, radar reflectivity, and Doppler velocity, but lidar depolarization serves as a critical parameter distributions of lidar backscatter, radar reflectivity, and radar Doppler velocity, in addi- tion cloud that was lightly precipitating ice show a range of surprisingly low de- polarization ratios (4

  14. Comparison between lidar and nephelometer measurements of aerosol hygroscopicity at the

    E-print Network

    -mixed atmospheric boundary layers, is employed to determine the hygroscopic growth factor f(RH) under unperturbed a lidar-derived growth factor (measured over the range 85% RH to 96% RH) with a nephelometer- derived growth factor measured over the RH range 40% to 85%. For these RH ranges, the slope of the lidar

  15. Development of an optimal estimation retrieval scheme for a Raman lidar system

    E-print Network

    Oxford, University of

    r counts () Instrument detection efficiency at -- () Scattering cross-section at m2 Solid angle() The Halld´orsson S function m4 B Lidar ratio sr k °Angstrom coefficient -- w(r) Half-width of the laser beam at range r m Dead time of the PMT s t Laser pulse duration s µ Radial distance from the optical axis

  16. Lidar measurements of boundary layers, aerosol scattering and clouds during project FIFE

    NASA Technical Reports Server (NTRS)

    Eloranta, Edwin W. (Principal Investigator)

    1995-01-01

    A detailed account of progress achieved under this grant funding is contained in five journal papers. The titles of these papers are: The calculation of area-averaged vertical profiles of the horizontal wind velocity using volume imaging lidar data; Volume imaging lidar observation of the convective structure surrounding the flight path of an instrumented aircraft; Convective boundary layer mean depths, cloud base altitudes, cloud top altitudes, cloud coverages, and cloud shadows obtained from Volume Imaging Lidar data; An accuracy analysis of the wind profiles calculated from Volume Imaging Lidar data; and Calculation of divergence and vertical motion from volume-imaging lidar data. Copies of these papers form the body of this report.

  17. Purple Crow Lidar Vibrational Raman water vapor mixing ratio and temperature measurements in the Upper Troposphere and Lower Stratosphere

    NASA Astrophysics Data System (ADS)

    Sica, R. J.; Argall, P. S.

    2006-12-01

    Purple Crow Lidar (PCL) measurements of the vibrational Raman-shifted backscatter from water vapor and nitrogen molecules allows height profiles of water vapor mixing ratio to be measured from 500 m to up into the lower stratosphere from the Delaware Observatory near London, Canada. In addition, the Raman nitrogen measurements allow the determination of temperature profiles from about 10 km to 40 km altitude. External calibration of these measurements is necessary to compensate for instrumental effects, uncertainties in our knowledge of the relevant molecular cross sections, and atmospheric transmission. A comparison of the PCL derived water vapor concentration and temperature profiles with routine radiosonde measurements from Detroit and Buffalo on 37 and 141 nights respectively, was undertaken to provide this calibration, which showed mean temperature differences over all flights for altitudes above 9 km of about 0.5 K, with agreement for water vapor below 7 km to within ±12%. Comparisons of the cold point temperature with the coincident water vapor measurements will be presented to investigate the transport of air from the tropics to midlatitudes.

  18. High-spectral-resolution lidar with iodine-vapor filters: measurement of atmospheric-state and aerosol profiles.

    PubMed

    Hair, J W; Caldwell, L M; Krueger, D A; She, C Y

    2001-10-20

    A high-spectral-resolution lidar can measure vertical profiles of atmospheric temperature, pressure, the aerosol backscatter ratio, and the aerosol extinction coefficient simultaneously. We describe a system with these characteristics. The transmitter is a narrow-band (FWHM of the order of 74 MHz), injection-seeded, pulsed, double YAG laser at 532 nm. Iodine-vapor filters in the detection system spectrally separate the molecular and aerosol scattering and greatly reduce the latter (-41 dB). Operating at a selected frequency to take advantage of two neighboring lines in vapor filters, one can obtain a sensitivity of the measured signal-to-air temperature ratio equal to 0.42%/K. Using a relatively modest size transmitter and receiver system (laser power times telescope aperture equals 0.19 Wm(2)), our measured temperature profiles (0.5-15 km) over 11 nights are in agreement with balloon soundings to within 2.0 K over an altitude range of 2-5 km. There is good agreement in the lapse rates, tropopause altitudes, and inversions. In principle, to invert the signal requires a known density at one altitude, but in practice it is convenient to also use a known temperature at that altitude. This is a scalable system for high spatial resolution of vertical temperature profiles in the troposphere and lower stratosphere, even in the presence of aerosols. PMID:18364809

  19. Long range transport and mixing of aerosol sources during the 2013 North American biomass burning episode: analysis of multiple lidar observations in the Western Mediterranean basin

    NASA Astrophysics Data System (ADS)

    Ancellet, G.; Pelon, J.; Totems, J.; Chazette, P.; Bazureau, A.; Sicard, M.; Di Iorio, T.; Dulac, F.; Mallet, M.

    2015-11-01

    Long range transport of biomass burning (BB) aerosols between North America and the Mediterranean region took place in June 2013. A large number of ground based and airborne lidar measurements were deployed in the Western Mediterranean during the Chemistry-AeRosol Mediterranean EXperiment (ChArMEx) intensive observation period. A detailed analysis of the potential North American aerosol sources is conducted including the assessment of their transport to Europe using forward simulations of the FLEXPART Lagrangian particle dispersion model initialized using satellite observations by MODIS and CALIOP. The three dimensional structure of the aerosol distribution in the ChArMEx domain observed by the ground-based lidars (Menorca, Barcelona and Lampedusa), a Falcon-20 aircraft flight and three CALIOP tracks, agree very well with the model simulation of the three major sources considered in this work: Canadian and Colorado fires, a dust storm from Western US and the contribution of Saharan dust streamers advected from the North Atlantic trade wind region into the Westerlies region. Four aerosol types were identified using the optical properties of the observed aerosol layers (aerosol depolarization ratio, lidar ratio) and the transport model analysis of the contribution of each aerosol source: (I) pure BB layer, (II) weakly dusty BB, (III) significant mixture of BB and dust transported from the trade wind region (IV) the outflow of Saharan dust by the subtropical jet and not mixed with BB aerosol. The contribution of the Canadian fires is the major aerosol source during this episode while mixing of dust and BB is only significant at altitude above 5 km. The mixing corresponds to a 20-30 % dust contribution in the total aerosol backscatter. The comparison with the MODIS AOD horizontal distribution during this episode over the Western Mediterranean sea shows that the Canadian fires contribution were as large as the direct northward dust outflow from Sahara.

  20. Studying Clouds and Aerosols with Lidar Depolarization Ratio and Backscatter Relationships 

    E-print Network

    Cho, Hyoun-Myoung

    2012-02-14

    properties of clouds and aerosols. The relationships between depolarization ratio and backscatter allow us to retrieve particle thermodynamic phase and shape and/or orientation of aerosols and clouds. The first part is devoted to the investigation...

  1. Comparison of IASI water vapor retrieval with H2O-Raman lidar in the frame of the Mediterranean HyMeX and ChArMEx programs

    NASA Astrophysics Data System (ADS)

    Chazette, P.; Marnas, F.; Totems, J.

    2014-06-01

    The Infrared Atmospheric Sounding Interferometer (IASI) is a spaceborne passive sensor of new generation mainly dedicated to meteorological applications. Operational Level-2 products are available via the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) since several years. In particular, vertical profiles of water vapor measurements are retrieved from infrared radiances at the global scale. Nevertheless, the robustness of such products has to be checked because only few validations have been reported. For this purpose, the field experiments that were held during the HyMeX and ChArMEx international programs are a very good opportunity. A H2O-Raman lidar was deployed on the Balearic Island of Menorca and operated continuously during ~6 and ~3 weeks during fall 2012 (Hydrological cycle in the Mediterranean eXperiment -HyMeX-) and summer 2013 (Chemistry-Aerosol Mediterranean Experiment -ChArMEx-), respectively. It measured simultaneously the water vapor mixing ratio and aerosol optical properties. This article does not aim to describe the IASI operational H2O inversion algorithm, but to compare the vertical profiles derived from IASI onboard MetOp-A and the ground-based lidar measurements to assess the reliability of the IASI operational product for the water vapor retrieval in both the lower and middle troposphere. The links between water vapor contents and both the aerosol vertical profiles and the air mass origins are also studied. About 30 simultaneous observations, performed during nighttime in cloud free conditions, have been considered. For altitudes ranging from 2 to 7 km, root mean square errors (correlation) of ˜ 0.5 g kg-1 (~0.77) and ~1.1 g kg-1 (~0.72) are derived between the operational IASI product and the available lidar profiles during HyMeX and ChArMEx, respectively. The values of both root mean square error and correlation are meaningful and show that the operational Level-2 product of the IASI-derived vertical water vapor mixing ratio can be considered for meteorological and climatic applications, at least in the frame of field campaigns.

  2. Comparison of IASI water vapor retrieval with H2O-Raman lidar in the framework of the Mediterranean HyMeX and ChArMEx programs

    NASA Astrophysics Data System (ADS)

    Chazette, P.; Marnas, F.; Totems, J.; Shang, X.

    2014-09-01

    The Infrared Atmospheric Sounding Interferometer (IASI) is a new generation spaceborne passive sensor mainly dedicated to meteorological applications. Operational Level-2 products have been available via the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) for several years. In particular, vertical profiles of water vapor measurements are retrieved from infrared radiances at the global scale. Nevertheless, the robustness of such products has to be checked because only a few validations have been reported. For this purpose, the field experiments that were held during the HyMeX and ChArMEx international programs are a very good opportunity. A H2O-Raman lidar was deployed on the Balearic island of Menorca and operated continuously for ~ 6 and ~ 3 weeks during fall 2012 (Hydrological cycle in the Mediterranean eXperiment - HyMeX) and summer 2013 (Chemistry-Aerosol Mediterranean Experiment - ChArMEx), respectively. It measured simultaneously the water vapor mixing ratio and aerosol optical properties. This article does not aim to describe the IASI operational H2O inversion algorithm, but to compare the vertical profiles derived from IASI onboard (meteorological operational) MetOp-A and the ground-based lidar measurements to assess the reliability of the IASI operational product for the water vapor retrieval in both the lower and middle troposphere. The links between water vapor contents and both the aerosol vertical profiles and the air mass origins are also studied. About 30 simultaneous observations, performed during nighttime in cloud free conditions, have been considered. For altitudes ranging from 2 to 7 km, root mean square errors (correlation) of ~ 0.5 g kg-1 (~ 0.77) and ~ 1.1 g kg-1 (~ 0.72) are derived between the operational IASI product and the available lidar profiles during HyMeX and ChArMEx, respectively. The values of both root mean square error and correlation are meaningful and show that the operational Level-2 product of the IASI-derived vertical water vapor mixing ratio can be considered for meteorological and climatic applications, at least in the framework of field campaigns.

  3. Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds

    SciTech Connect

    Richard A. Ferrare; David D. Turner

    2011-09-01

    Project goals: (1) Use the routine surface and airborne measurements at the ARM SGP site, and the routine surface measurements at the NSA site, to continue our evaluations of model aerosol simulations; (2) Determine the degree to which the Raman lidar measurements of water vapor and aerosol scattering and extinction can be used to remotely characterize the aerosol humidification factor; (3) Use the high temporal resolution CARL data to examine how aerosol properties vary near clouds; and (4) Use the high temporal resolution CARL and Atmospheric Emitted Radiance Interferometer (AERI) data to quantify entrainment in optically thin continental cumulus clouds.

  4. Retrieval of type-dependent integral aerosol properties from

    E-print Network

    Graaf, Martin de

    Retrieval of type-dependent integral aerosol properties from Raman lidar data using Principle: eigenvalues M = wt (v + ) Orthogonal part (error) weights Covariance Matrix Bulk microphysical properties M model volume kernels m @ 550 nm #12;15 mixtures 11110000000000Sea SaltSea Salt 11001111000000Water

  5. Stand-off detection of plant-produced volatile organic compounds using short-range Raman LIDAR

    NASA Astrophysics Data System (ADS)

    Johnson, Lewis; Barnett, Cleon; Brown, Christopher; Crawford, Devron; Tumlinson, James

    2004-03-01

    Several plant species release volatile organic compounds (VOCs) when under stresses such as herbivore feeding attack. The release of these plant-produced VOCs (i.e. terpenes) triggers the release of active biochemical defenses, which target the attacker. In some cases, the VOCs send cues to nearby carnivorous predators to attract them to the feeding herbivore. Volatile compounds are released both locally by damaged leaves and systemically by the rest of the plant. These compounds are released in large quantities, which facilitate detection of pests in the field by parasitoids. Detecting the plant"s VOC emissions as a function of various parameters (e.g. ambient temperature, atmospheric nitrogen levels, etc.) is essential to designing effective biological control systems. In addition these VOC releases may serve as early warning indicator of chemo-bio attacks. By combining Raman spectroscopy techniques with Laser Remote Sensing (LIDAR) systems, we are developing a Standoff detection system. Initial results indicate that is it possible to detect and differentiate between various terpenes, plant species, and other chemical compounds at distances greater than 12 meters. Currently, the system uses the 2nd harmonic of a Nd:YAG; however plans are underway to improve the Raman signal by moving the illumination wavelength into the solar-blind UV region. We report on our initial efforts of designing and characterizing this in a laboratory proof of concept system. We envision that this effort will lead to the design of a portable field-deployable system to rapidly characterize, with a high spatial resolution, large crops and other fields.

  6. Ozone and aerosol distributions measured by airborne lidar during the 1988 Arctic Boundary Layer Experiment

    NASA Technical Reports Server (NTRS)

    Browell, Edward V.; Butler, Carolyn F.; Kooi, Susan A.

    1991-01-01

    Consideration is given to O3 and aerosol distributions measured from an aircraft using a DIAL system in order to study the sources and sinks of gases and aerosols over the tundra regions of Alaska during summer 1988. The tropospheric O3 budget over the Arctic was found to be strongly influenced by stratospheric intrusions. Regions of low aerosol scattering and enhanced O3 mixing ratios were usually correlated with descending air from the upper troposphere or lower stratosphere.

  7. Development of a High Spectral Resolution Lidar (HSRL) Based on a Confocal Optical Filter for Aerosol Studies

    NASA Astrophysics Data System (ADS)

    Repasky, K. S.; Hoffman, D. S.; Reagan, J. A.; Carlsten, J.

    2010-12-01

    Aerosols are an important constituent in atmospheric composition affecting climate, weather, and air quality. Active remote sensing instruments provide tools for in-situ studies of atmospheric aerosols that can help understand the role of aerosols on the radiative forcing of the climate system. In this paper, the design and initial performance of a high spectral resolution lidar (HSRL) based on a unique confocal cavity for optically filtering the aerosol and molecular returns is presented. An injection seeded pulsed Nd:YAG laser with a fundamental and frequency doubled output is used as the laser transmitter for the HSRL. A small portion of fiber coupled injection seeded signal at 1064 nm is split before the laser oscillator and, after modulation using an acousto-optic modulator, is used to produce a discriminating signal for locking a confocal cavity that is resonant at the 1064 and 532 nm wavelengths to the injection seeded source. Light scattered in the atmosphere is collected using a commercial telescope. After the telescope, the 1064 nm light is split from the 532 nm light using a dielectric mirror with the 1064 nm light monitored using a PMT. The 532 nm light is launched into a multimode fiber. The output from the fiber is next incident on a beamsplitter with part of the light sent to a PMT to monitor the total return for the 532 nm channel. The light that passes through the beamsplitter is mode matched into a confocal optical cavity that allows the light scattered by the atmospheric aerosols to be transmitted while the light scattered from the atmospheric molecules is reflected. The transmitted light from the aerosol scattering is incident on a PMT while the reflected molecular signal is incident on a PMT. The transmission of the confocal cavity is monitored before and after the data collection using a continuous wave frequency doubled Nd:YAG laser that is fiber coupled. Data is collected and processed in the following manner. Each of the four voltage signals from the PMT’s are monitored using a high speed A/D card. The inversion of the 1064 nm return signal is completed using the Fernald inversion technique with the additional constraint of the aerosol optical depth. The HSRL 532 nm signal is inverted using a Rayleigh backscatter model along with the inversion techniques described by Shipley et al. (Applied Optics, V22, N23, 3716-3724, 1983) and Sroga et al. (Applied Optics, V22, N23, 3725-3732, 1983). This presentation will focus on the design of the confocal optical filter, the locking of the confocal optical filter to the laser transmitter, and the performance of the high spectral resolution channel at 532 nm. Data will be presented showing the molecular returns, the aerosol returns and the range resolved lidar ratio.

  8. Airborne Lidar measurements of aerosols, mixed layer heights, and ozone during the 1980 PEPE/NEROS summer field experiment

    NASA Technical Reports Server (NTRS)

    Browell, E. V.; Shipley, S. T.; Butler, C. F.; Ismail, S.

    1985-01-01

    A detailed summary of the NASA Ultraviolet Differential Absorption Lidar (UV DIAL) data archive obtained during the EPA Persistent Elevated Pollution Episode/Northeast Regional Oxidant Study (PEPE/NEROS) Summer Field Experiment Program (July through August 1980) is presented. The UV dial data set consists of remote measurements of mixed layer heights, aerosol backscatter cross sections, and sequential ozone profiles taken during 14 long-range flights onboard the NASA Wallops Flight Center Electra aircraft. These data are presented in graphic and tabular form, and they have been submitted to the PEPE/NEROS data archive on digital magnetic tape. The derivation of mixing heights and ozone profiles from UV Dial signals is discussed, and detailed intercomparisons with measurements obtained by in situ sensors are presented.

  9. Observations of the spectral dependence of particle depolarization ratio of aerosols using NASA Langley airborne High Spectral Resolution Lidar

    NASA Astrophysics Data System (ADS)

    Burton, S. P.; Hair, J. W.; Kahnert, M.; Ferrare, R. A.; Hostetler, C. A.; Cook, A. L.; Harper, D. B.; Berkoff, T. A.; Seaman, S. T.; Collins, J. E.; Fenn, M. A.; Rogers, R. R.

    2015-09-01

    Particle depolarization ratio is presented for three case studies from the NASA Langley airborne High Spectral Resolution Lidar-2 (HSRL-2). Particle depolarization ratio from lidar is an indicator of non-spherical particles and is sensitive to the fraction of non-spherical particles and their size. The HSRL-2 instrument measures depolarization at three wavelengths: 355, 532, and 1064 nm. The three measurement cases presented here include two cases of dust aerosol and one case of smoke aerosol. These cases have partial analogs in earlier HSRL-1 depolarization measurements at 532 and 1064 nm and in literature, but the availability of three wavelengths gives additional insight into different scenarios for non-spherical particles in the atmosphere. A case of transported Saharan dust has a spectral dependence with a peak of 0.30 at 532 nm with smaller particle depolarization ratios of 0.27 and 0.25 at 1064 and 355 nm, respectively. A case of locally generated wind-blown North American dust has a maximum of 0.38 at 1064 nm, decreasing to 0.37 and 0.24 at 532 and 355 nm, respectively. The cause of the maximum at 1064 nm is inferred to be very large particles that have not settled out of the dust layer. The smoke layer has the opposite spectral dependence, with the peak of 0.24 at 355 nm, decreasing to 0.09 and 0.02 at 532 and 1064 nm. The depolarization in the smoke case is inferred to be due to the presence of coated soot aggregates. We also point out implications for the upcoming EarthCARE satellite, which will measure particle depolarization ratio only at 355 nm. At 355 nm, the particle depolarization ratios for all three of our case studies are very similar, indicating that smoke and dust may be more difficult to separate with EarthCARE measurements than heretofore supposed.

  10. Application of randomly oriented spheroids for retrieval of dust particle parameters from multiwavelength lidar measurements

    NASA Astrophysics Data System (ADS)

    Veselovskii, I.; Dubovik, O.; Kolgotin, A.; Lapyonok, T.; di Girolamo, P.; Summa, D.; Whiteman, D. N.; Mishchenko, M.; Tanré, D.

    2010-11-01

    Multiwavelength (MW) Raman lidars have demonstrated their potential to profile particle parameters; however, until now, the physical models used in retrieval algorithms for processing MW lidar data have been predominantly based on the Mie theory. This approach is applicable to the modeling of light scattering by spherically symmetric particles only and does not adequately reproduce the scattering by generally nonspherical desert dust particles. Here we present an algorithm based on a model of randomly oriented spheroids for the inversion of multiwavelength lidar data. The aerosols are modeled as a mixture of two aerosol components: one composed only of spherical and the second composed of nonspherical particles. The nonspherical component is an ensemble of randomly oriented spheroids with size-independent shape distribution. This approach has been integrated into an algorithm retrieving aerosol properties from the observations with a Raman lidar based on a tripled Nd:YAG laser. Such a lidar provides three backscattering coefficients, two extinction coefficients, and the particle depolarization ratio at a single or multiple wavelengths. Simulations were performed for a bimodal particle size distribution typical of desert dust particles. The uncertainty of the retrieved particle surface, volume concentration, and effective radius for 10% measurement errors is estimated to be below 30%. We show that if the effect of particle nonsphericity is not accounted for, the errors in the retrieved aerosol parameters increase notably. The algorithm was tested with experimental data from a Saharan dust outbreak episode, measured with the BASIL multiwavelength Raman lidar in August 2007. The vertical profiles of particle parameters as well as the particle size distributions at different heights were retrieved. It was shown that the algorithm developed provided substantially reasonable results consistent with the available independent information about the observed aerosol event.

  11. Twenty-Four-Hour Raman Lidar Water Vapor Measurements During the Atmospheric Radiation Measurement Program's 1996 and 1997 Water Vapor Intensive Observation Periods

    SciTech Connect

    Turner, David D.; Goldsmith, JE M.

    1999-08-01

    Prior to the Atmospheric Radiation Measurement program's first water vapor intensive observation period (WVIOP) at the Cloud and Radiation Testbed site near Lamont, Oklahoma, an automated 24-h Raman lidar was delivered to the site. This instrument, which makes high-resolution measurements of water vapor both spatially and temporally, is capable of making these measurements with no operator interaction (other than initial startup) for days at a time. Water vapor measurements collected during the 1996 and 1997 WVIOPs are discussed here, illustrating both the nighttime and daytime capabilities of this system. System characteristics, calibration issues, and techniques are presented. Finally, detailed intercomparisons of the lidar's data with those from a microwave radiometer, radiosondes, an instrumented tower, a chilled mirror flown on both a tethersonde and a kite, and measurements from aircraft are shown and discussed, highlighting the accuracy and stability of this system for both nighttime and daytime measurements.

  12. High Spectral Resolution LIDAR Receivers to measure Aerosol to Molecular Scattering Ratio in Bistatic mode for use in Atmospheric Monitoring for EAS Detectors

    NASA Astrophysics Data System (ADS)

    Fokitis, E.; Maltezos, S.; Papayannis, A.; Fetfatzis, P.; Georgakopoulou, A.; Aravantinos, A.

    2009-12-01

    We present the design of a bistatic High Spectral Resolution Lidar (HSRL) aiming at measuring the aerosol phase function for applications in Ultra High Energy Cosmic Ray experiments. The expectation is to give accurate data for the aerosol phase function, needed to correct the Extended Air Shower (EAS) signal of air-fluorescence detectors for the air Cherenkov contamination, caused mainly by the aerosols. In this work we mainly focus on the design principles of the HSRL receiver for recording the aerosol to molecular scattering ratio as a function of height. We present results from testing an SLM CW diode laser of 120 mW at 532 nm, to be used as a LIDAR emitter in the transmitting telescope, and verify the design coherence length according to the manufacturer. As receiver we consider a system two different Fabry-Perot etalons having free spectral ranges 0.1cm and 1cm respectively, corresponding to the molecular and aerosol channels. The fringe patterns are analyzed over 2 ? polar angle range using appropriate algorithms.

  13. Laboratory investigation of perchlorate deliquescence at the surface of Mars with a Raman scattering lidar

    NASA Astrophysics Data System (ADS)

    Nikolakakos, George; Whiteway, James A.

    2015-10-01

    A sample of magnesium perchlorate hexahydrate was subjected to the water vapor pressure and temperatures found at the landing site of the Phoenix Mars mission. Laser Raman scattering was applied to detect the onset of deliquescence and provide a relative estimate of the quantity of water taken up and subsequently released by the sample. As the temperature of the sample decreased at the same rate as measured on Mars during the evening, significant uptake of water from the atmosphere was observed to occur prior to the frost point temperature being reached. As the temperature was lowered further, the relative humidity over ice increased to 100% and frost formed on the surface surrounding the perchlorate sample. Freezing of the brine film was observed at the eutectic temperature of -67°C, and thawing occurred at a temperature of -62°C.

  14. Comparative lidar study of the optical, geometrical, and dynamical properties of stratospheric post-volcanic aerosols, following the eruptions of El Chichon and Mount Pinatubo

    NASA Astrophysics Data System (ADS)

    Chazette, P.; David, C.; LefrèRe, J.; Godin, S.; Pelon, J.; MéGie, G.

    1995-11-01

    The spatiotemporal evolution of aerosols formed from precursors injected into the stratosphere by major volcanic eruptions, such as those of El Chichon in 1982 and Mount Pinatubo in 1991, has been studied using a ground-based lidar system located at the Observatoire de Haute-Provence (OHP) in southern France (44°N, 5°E). From the inversion of the lidar signals the optical, geometrical and dynamical properties of the particles have been determined as a function of time after the eruption. In immediate post-volcanic conditions, when the optical thickness of particles in the stratosphere is largely enhanced, an estimate of the aerosols backscatter phase function has been evaluated directly from the lidar measurements, using a size-distribution model adjusted to in situ balloon measurements. The precision of this determination lies in the ±15% range. Values of the mean radius of the particles, of their integrated content, surface areas, and sedimentation velocities are then derived from the systematic lidar measurements performed at OHP. These values are compared for the two major volcanic eruptions which have occurred over the last decade. Although the injection of sulphur dioxide was twice as large for the Mount Pinatubo eruption as compared to the El Chichon case, the diffusion of the cloud in the two hemispheres due to the interaction of the particular phase of the quasi-biennal oscillation with several other dynamical processes at the time of the eruption, led to the observation of similar values for the aerosol content over the Observatoire de Haute-Provence in the months just following the two events. However, the residence time of the particles in atmospheric layers below 20 km are 4 months longer after the Mount Pinatubo eruption, caused by the observed difference in the initial vertical distribution of the aerosol cloud.

  15. Vertical variations of aerosols and the effects responded to the emission control: application of lidar ceilometer in Beijing during APEC, 2014

    NASA Astrophysics Data System (ADS)

    Tang, G.; Zhu, X.; Hu, B.; Xin, J.; Wang, L.; Münkel, C.; Mao, G.; Wang, Y.

    2015-05-01

    During the 2014 Asia-Pacific Economic Cooperation (APEC) summit, a reduction of air pollution sources was coordinated to ensure good air quality in Beijing and the surrounding provinces and cities. By investigating variations in air pollution during this period, the effects of local emissions and regional transport can be better understood and the information can be used to evaluate the effectiveness of emission reduction strategies and provide a theoretical basis to guide future emission reduction strategies. From 15 October to 30 November 2014, the height of the atmospheric mixing layer and the aerosol attenuated backscattering coefficient profile were observed online using a lidar ceilometer. By investigating the correlation between fine particulate matter (PM2.5) data near the surface and attenuated backscattering coefficients measured by the lidar ceilometer as well as the correlation between aerosol optical depth (AOD) and attenuated backscattering coefficients of the 0 to 4500 m column, we found that the attenuated backscattering coefficient measured by the lidar ceilometer is highly correlated with the PM2.5 concentration and AOD (correlation coefficients of 0.89 and 0.86, respectively). This result demonstrates the reliability of the vertical profile of aerosols measured by the lidar ceilometer. By analyzing the atmospheric backscattering profile, we found that during the initial stage of pollution accumulation, which is affected by transport of southerly jet flows at low altitude, the attenuated backscattering coefficient of atmospheric aerosols from 0 to 1500 m was greatly enhanced by approximately 1.4 Mm-1 sr-1 (140%). At the peak pollution stage, the height of the mixing layer gradually decreased, the ratio of CO/SO2 gradually increased and emissions were dominated by local emissions. The attenuated backscattering coefficient of aerosols from 0 to 300 m suddenly increased, and the aerosols near surface had the highest value (approximately 14 Mm-1 sr-1); however, the attenuated backscattering coefficient of aerosols from 300 to 900 m gradually decreased, and the average value from 0 to 1500 m decreased by 0.5 Mm-1 sr-1 (20%). By comparing the PM2.5 concentrations before, during and after APEC (BAPEC, DAPEC and AAPEC, respectively), we found that the concentration of fine particles decreased by 60% and visibility improved by 60% during APEC. In addition, compared with the BAPEC and AAPEC periods, the contribution of regional transport in the DAPEC period decreased by approximately 36 and 25%, respectively, and the local contribution decreased by approximately 48 and 54%, respectively. Thus, the most effective method of controlling air pollution in the Beijing area is to reduce regional emissions during the initial stage of air pollution and reduce local emissions during the peak pollution stage.

  16. Raman and electron microscopy of aerosol particles released above Australian salt lakes

    NASA Astrophysics Data System (ADS)

    Ofner, Johannes; Kamilli, Katharina; Held, Andreas; Eitenberger, Elisabeth; Friedbacher, Gernot; Lohninger, Johann; Lendl, Bernhard

    2014-05-01

    New particle formation above Western Australian salt lakes with pH levels from 2.5 to 7.1 was observed during several field campaigns between 2006 and 2013. Besides their high concentration of dissolved salts and the remarkable pH values, many of these salt lakes also exhibit a large organic content, originating from former eucalyptus forests and plant remains. The surrounding land, used for wheat farming and livestock gets drier by missing rain periods. One possible reason can be seen in the formation of ultrafine particles from salt lakes, which increase the cloud condensation nuclei and prevent therefore rainfall. To identify the origin and nature of the formed particles directly with the chemistry of and above the salt