Sample records for aerosol size range

  1. Impact of aerosol size representation on modeling aerosol-cloud interactions

    DOE PAGES

    Zhang, Y.; Easter, R. C.; Ghan, S. J.; ...

    2002-11-07

    In this study, we use a 1-D version of a climate-aerosol-chemistry model with both modal and sectional aerosol size representations to evaluate the impact of aerosol size representation on modeling aerosol-cloud interactions in shallow stratiform clouds observed during the 2nd Aerosol Characterization Experiment. Both the modal (with prognostic aerosol number and mass or prognostic aerosol number, surface area and mass, referred to as the Modal-NM and Modal-NSM) and the sectional approaches (with 12 and 36 sections) predict total number and mass for interstitial and activated particles that are generally within several percent of references from a high resolution 108-section approach.more » The modal approach with prognostic aerosol mass but diagnostic number (referred to as the Modal-M) cannot accurately predict the total particle number and surface areas, with deviations from the references ranging from 7-161%. The particle size distributions are sensitive to size representations, with normalized absolute differences of up to 12% and 37% for the 36- and 12-section approaches, and 30%, 39%, and 179% for the Modal-NSM, Modal-NM, and Modal-M, respectively. For the Modal-NSM and Modal-NM, differences from the references are primarily due to the inherent assumptions and limitations of the modal approach. In particular, they cannot resolve the abrupt size transition between the interstitial and activated aerosol fractions. For the 12- and 36-section approaches, differences are largely due to limitations of the parameterized activation for non-log-normal size distributions, plus the coarse resolution for the 12-section case. Differences are larger both with higher aerosol (i.e., less complete activation) and higher SO2 concentrations (i.e., greater modification of the initial aerosol distribution).« less

  2. Size distribution of ions in atmospheric aerosols

    NASA Astrophysics Data System (ADS)

    Krivácsy, Z.; Molnár, Á.

    The aim of this paper is to present data about the concentration and size distribution of ions in atmospheric aerosol under slightly polluted urban conditions in Hungary. Concentration of inorganic cations (ammonium, sodium, potassium, calcium, magnesium), inorganic anions (sulfate, nitrate, chloride, carbonate) and organic acids (oxalic, malonic, succinic, formic and acetic acid) for 8 particle size range between 0.0625 and 16 μm were determined. As was the case for ammonium, sulfate and nitrate, the organic acids were mostly found in the fine particle size range. Potassium and chloride were rather uniformly distributed between fine and coarse particles. Sodium, calcium, magnesium and carbonate were practically observed in the coarse mode. The results obtained for the summer and the winter half-year were also compared. The mass concentrations were recalculated in equivalents, and the ion balance was found to be reasonable in most cases. Measurement of the pH of the aerosol extracts indicates that the aerosol is acidic in the fine mode, but alkaline in the coarse particle size range.

  3. Aerosol mobility size spectrometer

    DOEpatents

    Wang, Jian; Kulkarni, Pramod

    2007-11-20

    A device for measuring aerosol size distribution within a sample containing aerosol particles. The device generally includes a spectrometer housing defining an interior chamber and a camera for recording aerosol size streams exiting the chamber. The housing includes an inlet for introducing a flow medium into the chamber in a flow direction, an aerosol injection port adjacent the inlet for introducing a charged aerosol sample into the chamber, a separation section for applying an electric field to the aerosol sample across the flow direction and an outlet opposite the inlet. In the separation section, the aerosol sample becomes entrained in the flow medium and the aerosol particles within the aerosol sample are separated by size into a plurality of aerosol flow streams under the influence of the electric field. The camera is disposed adjacent the housing outlet for optically detecting a relative position of at least one aerosol flow stream exiting the outlet and for optically detecting the number of aerosol particles within the at least one aerosol flow stream.

  4. A scattering methodology for droplet sizing of e-cigarette aerosols.

    PubMed

    Pratte, Pascal; Cosandey, Stéphane; Goujon-Ginglinger, Catherine

    2016-10-01

    Knowledge of the droplet size distribution of inhalable aerosols is important to predict aerosol deposition yield at various respiratory tract locations in human. Optical methodologies are usually preferred over the multi-stage cascade impactor for high-throughput measurements of aerosol particle/droplet size distributions. Evaluate the Laser Aerosol Spectrometer technology based on Polystyrene Sphere Latex (PSL) calibration curve applied for the experimental determination of droplet size distributions in the diameter range typical of commercial e-cigarette aerosols (147-1361 nm). This calibration procedure was tested for a TSI Laser Aerosol Spectrometer (LAS) operating at a wavelength of 633 nm and assessed against model di-ethyl-hexyl-sebacat (DEHS) droplets and e-cigarette aerosols. The PSL size response was measured, and intra- and between-day standard deviations calculated. DEHS droplet sizes were underestimated by 15-20% by the LAS when the PSL calibration curve was used; however, the intra- and between-day relative standard deviations were < 3%. This bias is attributed to the fact that the index of refraction of PSL calibrated particles is different in comparison to test aerosols. This 15-20% does not include the droplet evaporation component, which may reduce droplet size prior a measurement is performed. Aerosol concentration was measured accurately with a maximum uncertainty of 20%. Count median diameters and mass median aerodynamic diameters of selected e-cigarette aerosols ranged from 130-191 nm to 225-293 nm, respectively, similar to published values. The LAS instrument can be used to measure e-cigarette aerosol droplet size distributions with a bias underestimating the expected value by 15-20% when using a precise PSL calibration curve. Controlled variability of DEHS size measurements can be achieved with the LAS system; however, this method can only be applied to test aerosols having a refractive index close to that of PSL particles used

  5. Rapid measurement of sub-micrometer aerosol size distribution using a fast integrated mobility spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yang; Pinterich, Tamara; Wang, Jian

    We present rapid measurement of submicron particle size distributions enables the characterization of aerosols with fast changing properties, and is often necessary for measurements onboard mobile platforms (e.g., research aircraft). Aerosol mobility size distribution is commonly measured by a scanning mobility particle sizer (SMPS), which relies on voltage scanning or stepping to classify particles of different sizes, and may take up to several minutes to obtain a complete size spectrum of aerosol particles. The recently developed fast integrated mobility spectrometer (FIMS) with enhanced dynamic size range classifies and detects particles from 10 to ~600 nm simultaneously, allowing submicron aerosol mobilitymore » size distributions to be captured at a time resolution of 1 second. In this study, we present a detailed data inversion routine for deriving aerosol size distribution from FIMS measurements. The inversion routine takes into consideration the FIMS transfer function, particle penetration efficiency in the FIMS, and multiple charging of aerosols. The accuracy of the FIMS measurement is demonstrated by comparing parallel FIMS and SMPS measurements of stable aerosols with a wide range of size spectrum shapes, including ambient aerosols and aerosols classified by a differential mobility analyzer (DMA). The FIMS and SMPS-derived size distributions show excellent agreements for all aerosols tested. In addition, total number concentrations of ambient aerosols were integrated from 1 Hz FIMS size distributions, and compared with those directly measured by a condensation particle counter (CPC) operated in parallel. Finally, the integrated and measured total particle concentrations agree well within 5%.« less

  6. Rapid measurement of sub-micrometer aerosol size distribution using a fast integrated mobility spectrometer

    DOE PAGES

    Wang, Yang; Pinterich, Tamara; Wang, Jian

    2018-03-30

    We present rapid measurement of submicron particle size distributions enables the characterization of aerosols with fast changing properties, and is often necessary for measurements onboard mobile platforms (e.g., research aircraft). Aerosol mobility size distribution is commonly measured by a scanning mobility particle sizer (SMPS), which relies on voltage scanning or stepping to classify particles of different sizes, and may take up to several minutes to obtain a complete size spectrum of aerosol particles. The recently developed fast integrated mobility spectrometer (FIMS) with enhanced dynamic size range classifies and detects particles from 10 to ~600 nm simultaneously, allowing submicron aerosol mobilitymore » size distributions to be captured at a time resolution of 1 second. In this study, we present a detailed data inversion routine for deriving aerosol size distribution from FIMS measurements. The inversion routine takes into consideration the FIMS transfer function, particle penetration efficiency in the FIMS, and multiple charging of aerosols. The accuracy of the FIMS measurement is demonstrated by comparing parallel FIMS and SMPS measurements of stable aerosols with a wide range of size spectrum shapes, including ambient aerosols and aerosols classified by a differential mobility analyzer (DMA). The FIMS and SMPS-derived size distributions show excellent agreements for all aerosols tested. In addition, total number concentrations of ambient aerosols were integrated from 1 Hz FIMS size distributions, and compared with those directly measured by a condensation particle counter (CPC) operated in parallel. Finally, the integrated and measured total particle concentrations agree well within 5%.« less

  7. Inhalation chamber with size discriminator for liquid aerosols.

    PubMed

    Tsuda, S; Iwasaki, M; Yoshida, M; Shirasu, Y

    1984-06-01

    To minimize data variation in inhalation toxicity testing and to evaluate human and animal hazards of inhaled chemicals, a practical inhalation chamber with a size discriminator for mists was developed to provide high concentration liquid aerosols of defined particle sizes. Liquid aerosols generated with an atomizer were separated by an impinging separator which was composed of aerosol jets directed upward against a flat plate. The principle of the separator eliminates particles larger than a calculated cutoff size in micrometer and submicrometer ranges by changing the orifice diameter of the jet nozzle under constant air flow. The mists thus separated are introduced into the space between two concentric cylinders just above the impaction plate. Ten rats can be positioned around the periphery of the chamber wall equidistant from the impaction plate, with their snouts thrust into the inhalation space. Preliminary testing with olive oil and water aerosols using particle cutoff sizes of 1, 3, and 3.3 micron showed that the obtained separation of particles was very clear, although the cutoff point seemed to shift somewhat to smaller values than calculated; the shift was especially evident with water aerosols. The concentrations obtained were more than 1 mg/liter when the cutoff point was selected at 1 micron. The mist at the inhalation space attained a steady concentration and particle size distribution within 2 min of the onset of mist injection, remained over a 4-hr period, and was cleared within 2 min of the cessation of mist generation.

  8. Experimental determination of the steady-state charging probabilities and particle size conservation in non-radioactive and radioactive bipolar aerosol chargers in the size range of 5-40 nm

    NASA Astrophysics Data System (ADS)

    Kallinger, Peter; Szymanski, Wladyslaw W.

    2015-04-01

    Three bipolar aerosol chargers, an AC-corona (Electrical Ionizer 1090, MSP Corp.), a soft X-ray (Advanced Aerosol Neutralizer 3087, TSI Inc.), and an α-radiation-based 241Am charger (tapcon & analysesysteme), were investigated on their charging performance of airborne nanoparticles. The charging probabilities for negatively and positively charged particles and the particle size conservation were measured in the diameter range of 5-40 nm using sucrose nanoparticles. Chargers were operated under various flow conditions in the range of 0.6-5.0 liters per minute. For particular experimental conditions, some deviations from the chosen theoretical model were found for all chargers. For very small particle sizes, the AC-corona charger showed particle losses at low flow rates and did not reach steady-state charge equilibrium at high flow rates. However, for all chargers, operating conditions were identified where the bipolar charge equilibrium was achieved. Practically, excellent particle size conservation was found for all three chargers.

  9. Physicochemical Characterization of Capstone Depleted Uranium Aerosols I: Uranium Concentration in Aerosols as a Function of Time and Particle Size

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parkhurst, MaryAnn; Cheng, Yung-Sung; Kenoyer, Judson L.

    2009-03-01

    During the Capstone Depleted Uranium (DU) Aerosol Study, aerosols containing depleted uranium were produced inside unventilated armored vehicles (i.e., Abrams tanks and Bradley Fighting Vehicles) by perforation with large-caliber DU penetrators. These aerosols were collected and characterized, and the data were subsequently used to assess human health risks to personnel exposed to DU aerosols. The DU content of each aerosol sample was first quantified by radioanalytical methods, and selected samples, primarily those from the cyclone separator grit chambers, were analyzed radiochemically. Deposition occurred inside the vehicles as particles settled on interior surfaces. Settling rates of uranium from the aerosols weremore » evaluated using filter cassette samples that collected aerosol as total mass over eight sequential time intervals. A moving filter was used to collect aerosol samples over time particularly within the first minute after the shot. The results demonstrate that the peak uranium concentration in the aerosol occurred in the first 10 s, and the concentration decreased in the Abrams tank shots to about 50% within 1 min and to less than 2% 30 min after perforation. In the Bradley vehicle, the initial (and maximum) uranium concentration was lower than those observed in the Abrams tank and decreased more slowly. Uranium mass concentrations in the aerosols as a function of particle size were evaluated using samples collected in the cyclone samplers, which collected aerosol continuously for 2 h post perforation. The percentages of uranium mass in the cyclone separator stages from the Abrams tank tests ranged from 38% to 72% and, in most cases, varied with particle size, typically with less uranium associated with the smaller particle sizes. Results with the Bradley vehicle ranged from 18% to 29% and were not specifically correlated with particle size.« less

  10. Aged boreal biomass-burning aerosol size distributions from BORTAS 2011

    NASA Astrophysics Data System (ADS)

    Sakamoto, K. M.; Allan, J. D.; Coe, H.; Taylor, J. W.; Duck, T. J.; Pierce, J. R.

    2015-02-01

    Biomass-burning aerosols contribute to aerosol radiative forcing on the climate system. The magnitude of this effect is partially determined by aerosol size distributions, which are functions of source fire characteristics (e.g. fuel type, MCE) and in-plume microphysical processing. The uncertainties in biomass-burning emission number-size distributions in climate model inventories lead to uncertainties in the CCN (cloud condensation nuclei) concentrations and forcing estimates derived from these models. The BORTAS-B (Quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellite) measurement campaign was designed to sample boreal biomass-burning outflow over eastern Canada in the summer of 2011. Using these BORTAS-B data, we implement plume criteria to isolate the characteristic size distribution of aged biomass-burning emissions (aged ~ 1-2 days) from boreal wildfires in northwestern Ontario. The composite median size distribution yields a single dominant accumulation mode with Dpm = 230 nm (number-median diameter) and σ = 1.5, which are comparable to literature values of other aged plumes of a similar type. The organic aerosol enhancement ratios (ΔOA / ΔCO) along the path of Flight b622 show values of 0.09-0.17 μg m-3 ppbv-1 (parts per billion by volume) with no significant trend with distance from the source. This lack of enhancement ratio increase/decrease with distance suggests no detectable net OA (organic aerosol) production/evaporation within the aged plume over the sampling period (plume age: 1-2 days), though it does not preclude OA production/loss at earlier stages. A Lagrangian microphysical model was used to determine an estimate of the freshly emitted size distribution corresponding to the BORTAS-B aged size distributions. The model was restricted to coagulation and dilution processes based on the insignificant net OA production/evaporation derived from the ΔOA / ΔCO enhancement ratios. We

  11. The generation of diesel exhaust particle aerosols from a bulk source in an aerodynamic size range similar to atmospheric particles

    PubMed Central

    Cooney, Daniel J; Hickey, Anthony J

    2008-01-01

    The influence of diesel exhaust particles (DEP) on the lungs and heart is currently a topic of great interest in inhalation toxicology. Epidemiological data and animal studies have implicated airborne particulate matter and DEP in increased morbidity and mortality due to a number of cardiopulmonary diseases including asthma, chronic obstructive pulmonary disorder, and lung cancer. The pathogeneses of these diseases are being studied using animal models and cell culture techniques. Real-time exposures to freshly combusted diesel fuel are complex and require significant infrastructure including engine operations, dilution air, and monitoring and control of gases. A method of generating DEP aerosols from a bulk source in an aerodynamic size range similar to atmospheric DEP would be a desirable and useful alternative. Metered dose inhaler technology was adopted to generate aerosols from suspensions of DEP in the propellant hydrofluoroalkane 134a. Inertial impaction data indicated that the particle size distributions of the generated aerosols were trimodal, with count median aerodynamic diameters less than 100 nm. Scanning electron microscopy of deposited particles showed tightly aggregated particles, as would be expected from an evaporative process. Chemical analysis indicated that there were no major changes in the mass proportion of 2 specific aromatic hydrocarbons (benzo[a]pyrene and benzo[k]fluoranthene) in the particles resulting from the aerosolization process. PMID:19337412

  12. Connecting Aerosol Size Distributions at Three Arctic Stations

    NASA Astrophysics Data System (ADS)

    Freud, E.; Krejci, R.; Tunved, P.; Barrie, L. A.

    2015-12-01

    Aerosols play an important role in Earth's energy balance mainly through interactions with solar radiation and cloud processes. There is a distinct annual cycle of arctic aerosols, with greatest mass concentrations in the spring and lowest in summer due to effective wet removal processes - allowing for new particles formation events to take place. Little is known about the spatial extent of these events as no previous studies have directly compared and linked aerosol measurements from different arctic stations during the same times. Although the arctic stations are hardly affected by local pollution, it is normally assumed that their aerosol measurements are indicative of a rather large area. It is, however, not clear if that assumption holds all the time, and how large may that area be. In this study, three different datasets of aerosol size distributions from Mt. Zeppelin in Svalbard, Station Nord in northern Greenland and Alert in the Canadian arctic, are analyzed for the measurement period of 2012-2013. All stations are 500 to 1000 km from each other, and the travel time from one station to the other is typically between 2 to 5 days. The meteorological parameters along the calculated trajectories are analyzed in order to estimate their role in the modification of the aerosol size distribution while the air is traveling from one field station to another. In addition, the exposure of the sampled air to open waters vs. frozen sea is assessed, due to the different fluxes of heat, moisture, gases and particles, that are expected to affect the aerosol size distribution. The results show that the general characteristics of the aerosol size distributions and their annual variation are not very different in all three stations, with Alert and Station Nord being more similar. This is more pronounced when looking into the cases for which the trajectory calculations indicated that the air traveled from one of the latter stations to the other. The probable causes for the

  13. Atmospheric aerosols size distribution properties in winter and pre-monsoon over western Indian Thar Desert location

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panwar, Chhagan, E-mail: chhaganpanwar@gmail.com; Vyas, B. M.

    The first ever experimental results over Indian Thar Desert region concerning to height integrated aerosols size distribution function in particles size ranging between 0.09 to 2 µm such as, aerosols columnar size distribution (CSD), effective radius (R{sub eff}), integrated content of total aerosols (N{sub t}), columnar content of accumulation and coarse size aerosols particles concentration (N{sub a}) (size < 0.5 µm) and (N{sub c}) (size between 0.5 to 2 µm) have been described specifically during winter (a stable weather condition and intense anthropogenic pollution activity period) and pre-monsoon (intense dust storms of natural mineral aerosols as well as unstable atmospheric weather condition period)more » at Jaisalmer (26.90°N, 69.90°E, 220 m above surface level (asl)) located in central Thar desert vicinity of western Indian site. The CSD and various derived other aerosols size parameters are retrieved from their average spectral characteristics of Aerosol Optical Thickness (AOT) from UV to Infrared wavelength spectrum measured from Multi-Wavelength solar Radiometer (MWR). The natures of CSD are, in general, bio-modal character, instead of uniformly distributed character and power law distributions. The observed primary peaks in CSD plots are seen around about 10{sup 13} m{sup 2} μm{sup −1} at radius range 0.09-0.20 µm during both the seasons. But, in winter months, secondary peaks of relatively lower CSD values of 10{sup 10} to 10{sup 11} m{sup 2}/μm{sup −1} occur within a lower radius size range 0.4 to 0.6 µm. In contrast to this, while in dust dominated and hot season, the dominated secondary maxima of the higher CSD of about 10{sup 12} m{sup 2}μm{sup −3} is found of bigger aerosols size particles in a rage of 0.6 to 1.0 µm which is clearly demonstrating the characteristics of higher aerosols laden of bigger size aerosols in summer months relative to their prevailed lower aerosols loading of smaller size aerosols

  14. Particle size distribution of the stratospheric aerosol from SCIAMACHY limb measurements

    NASA Astrophysics Data System (ADS)

    Rozanov, Alexei; Malinina, Elizaveta; Bovensmann, Heinrich; Burrows, John

    2017-04-01

    A crucial role of the stratospheric aerosols for the radiative budget of the Earth's atmosphere and the consequences for the climate change are widely recognized. A reliable knowledge on physical and optical properties of the stratospheric aerosols as well as on their vertical and spatial distributing is a key issue to assure a proper initialization and running conditions for climate models. On a global scale this information can only be gained from space borne measurements. While a series of past, present and future instruments provide extensive date sets of such aerosol characteristics as extinction coefficient or backscattering ratio, information on a size distribution of the stratospheric aerosols is sparse. One of the important sources on vertically and spatially resolved information on the particle size distribution of stratospheric aerosols is provided by space borne measurements of the scattered solar light in limb viewing geometry performed in visible, near-infrared and short-wave infrared spectral ranges. SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY) instrument operated on the European satellite Envisat from 2002 to 2102 was capable of providing spectral information needed to retrieve parameters of aerosol particle size distributions. In this presentation we discuss the retrieval method, present first validation results with SAGE II data and analyze first data sets of stratospheric aerosol particle size distribution parameters obtained from SCIAMACHY limb measurements. The research work was performed in the framework of ROMIC (Role of the middle atmosphere in climate) project.

  15. Physicochemical characterization of Capstone depleted uranium aerosols I: uranium concentration in aerosols as a function of time and particle size.

    PubMed

    Parkhurst, Mary Ann; Cheng, Yung Sung; Kenoyer, Judson L; Traub, Richard J

    2009-03-01

    During the Capstone Depleted Uranium (DU) Aerosol Study, aerosols containing DU were produced inside unventilated armored vehicles (i.e., Abrams tanks and Bradley Fighting Vehicles) by perforation with large-caliber DU penetrators. These aerosols were collected and characterized, and the data were subsequently used to assess human health risks to personnel exposed to DU aerosols. The DU content of each aerosol sample was first quantified by radioanalytical methods, and selected samples, primarily those from the cyclone separator grit chambers, were analyzed radiochemically. Deposition occurred inside the vehicles as particles settled on interior surfaces. Settling rates of uranium from the aerosols were evaluated using filter cassette samples that collected aerosol as total mass over eight sequential time intervals. A moving filter was used to collect aerosol samples over time, particularly within the first minute after a shot. The results demonstrate that the peak uranium concentration in the aerosol occurred in the first 10 s after perforation, and the concentration decreased in the Abrams tank shots to about 50% within 1 min and to less than 2% after 30 min. The initial and maximum uranium concentrations were lower in the Bradley vehicle than those observed in the Abrams tank, and the concentration levels decreased more slowly. Uranium mass concentrations in the aerosols as a function of particle size were evaluated using samples collected in a cyclone sampler, which collected aerosol continuously for 2 h after perforation. The percentages of uranium mass in the cyclone separator stages ranged from 38 to 72% for the Abrams tank with conventional armor. In most cases, it varied with particle size, typically with less uranium associated with the smaller particle sizes. Neither the Abrams tank with DU armor nor the Bradley vehicle results were specifically correlated with particle size and can best be represented by their average uranium mass concentrations of 65

  16. Approach for measuring the chemistry of individual particles in the size range critical for cloud formation.

    PubMed

    Zauscher, Melanie D; Moore, Meagan J K; Lewis, Gregory S; Hering, Susanne V; Prather, Kimberly A

    2011-03-15

    Aerosol particles, especially those ranging from 50 to 200 nm, strongly impact climate by serving as nuclei upon which water condenses and cloud droplets form. However, the small number of analytical methods capable of measuring the composition of particles in this size range, particularly at the individual particle level, has limited our knowledge of cloud condensation nuclei (CCN) composition and hence our understanding of aerosols effect on climate. To obtain more insight into particles in this size range, we developed a method which couples a growth tube (GT) to an ultrafine aerosol time-of-flight mass spectrometer (UF-ATOFMS), a combination that allows in situ measurements of the composition of individual particles as small as 38 nm. The growth tube uses water to grow particles to larger sizes so they can be optically detected by the UF-ATOFMS, extending the size range to below 100 nm with no discernible changes in particle composition. To gain further insight into the temporal variability of aerosol chemistry and sources, the GT-UF-ATOFMS was used for online continuous measurements over a period of 3 days.

  17. Aerosol Size and Chemical Composition in the Canadian High Arctic

    NASA Astrophysics Data System (ADS)

    Chang, R. Y. W.; Hayes, P. L.; Leaitch, W. R.; Croft, B.; O'Neill, N. T.; Fogal, P.; Drummond, J. R.; Sloan, J. J.

    2015-12-01

    Arctic aerosol have a strong annual cycle, with winter months dominated by long range transport from lower latitudes resulting in high mass loadings. Conversely, local emissions are more prominent in the summer months because of the decreased influence of transported aerosol, allowing us to regularly observe both transported and local aerosol. This study will present observations of aerosol chemical composition and particle number size distribution collected at the Polar Environment Artic Research Laboratory and the Alert Global Atmospheric Watch Observatory at Eureka (80N, 86W) and Alert (82N, 62W), Nunavut, respectively. Summer time observations of the number size distribution reveal a persistent mode of particles centered between 30-50 nm, with occasional bursts of smaller particles. The non-refractory aerosol chemical composition, measured by the Canadian Network for the Detection of Atmospheric Change quadrupole aerosol mass spectrometer, is primarily organic, with contributions from both aged and fresher organic aerosol. Factor analysis will be conducted to better understand these sources. The site at Eureka is more susceptible to long range transport since it is at the top of a mountain ridge (610 m above sea level) and will be compared to the site at Alert on an elevated plain (200 m above sea level). This will allow us to determine the relative contributions from processes and sources at the sites at different elevations. Comparisons with aerosol optical depth and GEOS-Chem model output will also be presented to put these surface measurements into context with the overlying and regional atmosphere. Results from this study contribute to our knowledge of aerosol in the high Arctic.

  18. Micron-sized and submicron-sized aerosol deposition in a new ex vivo preclinical model.

    PubMed

    Perinel, Sophie; Leclerc, Lara; Prévôt, Nathalie; Deville, Agathe; Cottier, Michèle; Durand, Marc; Vergnon, Jean-Michel; Pourchez, Jérémie

    2016-07-07

    The knowledge of where particles deposit in the respiratory tract is crucial for understanding the health effects associated with inhaled drug particles. An ex vivo study was conducted to assess regional deposition patterns (thoracic vs. extrathoracic) of radioactive polydisperse aerosols with different size ranges [0.15 μm-0.5 μm], [0.25 μm-1 μm] and [1 μm-9 μm]. SPECT/CT analyses were performed complementary in order to assess more precisely the regional deposition of aerosols within the pulmonary tract. Experiments were set using an original respiratory tract model composed of a human plastinated head connected to an ex vivo porcine pulmonary tract. The model was ventilated by passive expansion, simulating pleural depressions. Aerosol was administered during nasal breathing. Planar scintigraphies allowed to calculate the deposited aerosol fractions for particles in the three size ranges from sub-micron to micron The deposited fractions obtained, for thoracic vs. extra-thoracic regions respectively, were 89 ± 4 % vs. 11 ± 4 % for [0.15 μm-0.5 μm], 78 ± 5 % vs. 22 ± 5 % for [0.25 μm-1 μm] and 35 ± 11 % vs.65 ± 11 % for [1 μm-9 μm]. Results obtained with this new ex vivo respiratory tract model are in good agreement with the in vivo data obtained in studies with baboons and humans.

  19. On the validity of the Poisson assumption in sampling nanometer-sized aerosols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Damit, Brian E; Wu, Dr. Chang-Yu; Cheng, Mengdawn

    2014-01-01

    A Poisson process is traditionally believed to apply to the sampling of aerosols. For a constant aerosol concentration, it is assumed that a Poisson process describes the fluctuation in the measured concentration because aerosols are stochastically distributed in space. Recent studies, however, have shown that sampling of micrometer-sized aerosols has non-Poissonian behavior with positive correlations. The validity of the Poisson assumption for nanometer-sized aerosols has not been examined and thus was tested in this study. Its validity was tested for four particle sizes - 10 nm, 25 nm, 50 nm and 100 nm - by sampling from indoor air withmore » a DMA- CPC setup to obtain a time series of particle counts. Five metrics were calculated from the data: pair-correlation function (PCF), time-averaged PCF, coefficient of variation, probability of measuring a concentration at least 25% greater than average, and posterior distributions from Bayesian inference. To identify departures from Poissonian behavior, these metrics were also calculated for 1,000 computer-generated Poisson time series with the same mean as the experimental data. For nearly all comparisons, the experimental data fell within the range of 80% of the Poisson-simulation values. Essentially, the metrics for the experimental data were indistinguishable from a simulated Poisson process. The greater influence of Brownian motion for nanometer-sized aerosols may explain the Poissonian behavior observed for smaller aerosols. Although the Poisson assumption was found to be valid in this study, it must be carefully applied as the results here do not definitively prove applicability in all sampling situations.« less

  20. Particle Size Distribution of Serratia marcescens Aerosols Created During Common Laboratory Procedures and Simulated Laboratory Accidents

    PubMed Central

    Kenny, Michael T.; Sabel, Fred L.

    1968-01-01

    Andersen air samplers were used to determine the particle size distribution of Serratia marcescens aerosols created during several common laboratory procedures and simulated laboratory accidents. Over 1,600 viable particles per cubic foot of air sampled were aerosolized during blending operations. More than 98% of these particles were less than 5 μ in size. In contrast, 80% of the viable particles aerosolized by handling lyophilized cultures were larger than 5 μ. Harvesting infected eggs, sonic treatment, centrifugation, mixing cultures, and dropping infectious material produced aerosols composed primarily of particles in the 1.0- to 7.5-μ size range. Images Fig. 1 PMID:4877498

  1. MATRIX-ASSISTED LASER DESORPTION IONIZATION OF SIZE AND COMPOSITION SELECTED AEROSOL PARTICLES. (R823980)

    EPA Science Inventory

    Matrix-assisted laser desorption/ionization (MALDI) was performed on individual,
    size-selected aerosol particles in the 2-8 mu m diameter range, Monodisperse aerosol droplets
    containing matrix, analyte, and solvent were generated and entrained in a dry stream of air, The dr...

  2. Influence of the operating parameters of the needle-plate electrostatic precipitator on the size distribution of aerosol particles

    NASA Astrophysics Data System (ADS)

    Arsenov, P. V.; Efimov, A. A.; Protas, N. V.; Ivanov, V. V.

    2018-03-01

    The influence of the operating parameters (voltage and aerosol flow rate) of the needle-plate electrostatic precipitator (NP-ESP) on the size distribution of aerosol particles has been studied. The NP-ESP consists of a needle and a plate located in the plastic tube used as aerosol transport duct. Alumina (Al2O3) particles were synthesized by a spark discharge and used as a test aerosol with a size range from 25 to 500 nm. It was found that the average particle size decreases with increasing voltage and aerosol flow rate through the NP-ESP. It was also found that the average particle size can be reduced more than in 2 times in comparison with the initial size distribution at a voltage and aerosol flow rate through the NP-ESP are equal to 16 kV and 250 l/min, respectively.

  3. Monthly and diurnal variations in aerosol size distributions, downwind of the Seoul metropolitan area

    NASA Astrophysics Data System (ADS)

    Kim, B. S.; Choi, Y.; Ghim, Y. S.

    2014-12-01

    The size distribution of aerosols is a physical property. However, since major aerosol types such as mineral dust, secondary inorganic ions, and carbonaceous aerosols are typically in specific size ranges, we can estimate the chemical composition of aerosols from the size distribution. We measured the mass size distribution of aerosols using an optical particle counter (Grimm Model 1.109) for a year from February 2013 to February 2014 at intervals of 10 minutes. The optical particle counter measures number concentrations between 0.25 and 32 μm in 31 bins and converts them into mass concentrations assuming a sphere and densities of aerosols in urban environment which originate from traffic and other combustion sources and are secondarily formed from photochemical reactions. The measurement site is at the rooftop of the five-story building on the hill (37.34 °N, 127.27 °E, 167 m above sea level), about 35 km southeast of downtown Seoul, the downwind area of which is affected by prevailing northwesterlies. There are no major emission sources nearby except a 4-lane road running about 1.4 km to the west. We tried to characterize the bimodal property of the mass size distribution, consisting of fine and coarse modes, in terms of mass concentration and mean diameter. Monthly and diurnal variations in mass concentration and mean diameter of each mode were investigated to estimate major aerosol types as well as major factors causing those variations.

  4. Measurements of Hygroscopicity- and Size-Resolved Sea Spray Aerosol

    NASA Astrophysics Data System (ADS)

    Phillips, B.; Dawson, K. W.; Royalty, T. M.; Reed, R. E.; Petters, M.; Meskhidze, N.

    2015-12-01

    Atmospheric aerosols play a central role in many environmental processes by influencing the Earth's radiative balance, tropospheric chemistry, clouds, biogeochemical cycles, and visibility as well as adversely impacting human health. Based on their origin, atmospheric aerosols can be defined as anthropogenic or natural. Recent studies have shown that a large fraction of uncertainty in the radiative effects of anthropogenic aerosols is related to uncertainty in natural—background—aerosols. Marine aerosols are of particular interest due to the abundance of oceans covering the Earth's surface. Despite their importance, limited information is currently available for size- and composition-resolved marine aerosol emission fluxes. Our group has designed and built an instrument for measuring the size- and hygroscopicity-resolved sea spray aerosol fluxes. The instrument was first deployed during spring 2015 at the end of the 560 m pier of the US Army Corps of Engineers' Field Research Facility in Duck, NC. Measurements include 200 nm-sized diameter growth factor (hygroscopicity) distributions, sea spray particle flux measurements, and total sub-micron sized aerosol concentration. Ancillary ocean data includes salinity, pH, sea surface temperature, dissolved oxygen content, and relative fluorescence (proxy for [Chl-a]). Hygroscopicity distribution measurements show two broad peaks, one indicative of organics and sulfates and another suggestive of sea salt. The fraction of 200 nm-sized salt particles having hygroscopicity similar to that of sea-spray aerosol contributes up to ~24% of the distribution on days with high-speed onshore winds and up to ~3% on calm days with winds blowing from the continent. However, the total concentration of sea-spray-like particles originating from offshore versus onshore winds was relatively similar. Changes in the relative contribution of sea-salt to number concentration were caused by a concomitant changes in total aerosol concentration

  5. Spatial heterogeneities in aerosol size distribution over Bay of Bengal during Winter-ICARB Experiment

    NASA Astrophysics Data System (ADS)

    Sinha, P. R.; Manchanda, R. K.; Kaskaoutis, D. G.; Sreenivasan, S.; Krishna Moorthy, K.; Suresh Babu, S.

    2011-09-01

    This work examines the aerosol physical properties and size distribution measured in the Marine Atmospheric Boundary Layer (MABL) over entire Bay of Bengal (BoB) and Northern Indian Ocean (NIO) during the Winter Integrated Campaign on Aerosols, Gases and Radiation Budget (W-ICARB). The measurements were taken using the GRIMM optical particle counter from 27th December 2008 to 30th January 2009. The results show large spatial heterogeneities regarding both the total aerosol number concentrations ( N T) and the size distributions over BoB, which in turn indicates the variations in the source strength or advection from different regions. The aerosol number size distribution seems to be bi-modal in the 72% of the cases and can also be parameterized by uni-modal or by a combination of power-law and uni-modal distributions for the rest of the cases. The mode radius for accumulation and coarse-mode particles ranges from ˜0.1-0.2 μm and ˜0.6-0.8 μm, respectively. In the northern BoB and along the Indian coast, the aerosols are mainly of sub-micron size with effective radius ( Reff) ranging between 0.25 and 0.3 μm highlighting the strong anthropogenic influence, while in the open oceanic areas they are much higher (0.4-0.6 μm). It was also found that the sea-surface wind plays a considerable role in the super-micron number concentration, Reff and mode radius for coarse-mode aerosols. Using the relation between N T and columnar AOD from Terra and Aqua-MODIS we found that the majority of the aerosols are within the lower MABL, while in some areas vertical heterogeneities also exist.

  6. Aerosol ionic components at Mt. Heng in central southern China: abundances, size distribution, and impacts of long-range transport.

    PubMed

    Gao, Xiaomei; Xue, Likun; Wang, Xinfeng; Wang, Tao; Yuan, Chao; Gao, Rui; Zhou, Yang; Nie, Wei; Zhang, Qingzhu; Wang, Wenxing

    2012-09-01

    Water-soluble ions in PM(2.5) were continuously measured, along with the measurements of many other species and collection of size-resolved aerosol samples, at the summit of Mt. Heng in the spring of 2009, to understand the sources of aerosols in rural central southern China. The mean concentrations of SO(4)(2-), NH(4)(+) and NO(3)(-) in PM(2.5) were 8.02, 2.94 and 1.47 μg/m(3), indicating a moderate aerosol pollution level at Mt. Heng. Water-soluble ions composed approximately 40% of the PM(2.5) mass on average. PM(2.5) was weakly acidic with about 66% of the samples being acidic. SO(4)(2-), NO(3)(-) and NH(4)(+) exhibited similar diurnal patterns with a broad afternoon maximum. SO(4)(2-) and NH(4)(+) were mainly present in the fine aerosols with a peak in the droplet mode of 0.56-1 μm, suggesting the important role of cloud processing in the formation of aerosol sulfate. NO(3)(-) was largely distributed in the coarse particles with a predominant peak in the size-bin of 3.2-5.6 μm. Long-distance transport of processed air masses, dust aerosols, and cloud/fog processes were the major factors determining the variations of fine aerosol at Mt. Heng. The results at Mt. Heng were compared with those obtained from our previous study at Mt. Tai in north China. The comparison revealed large differences in the aerosol characteristics and processes between southern and northern China. Backward trajectories indicated extensive transport of anthropogenic pollution from the coastal regions of eastern/northern China and the Pearl River Delta (PRD) to Mt. Heng in spring, highlighting the need for regionally coordinated control measures for the secondary pollutants. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Global measurements of coarse-mode aerosol size distributions - first results from the Atmospheric Tomography Mission (ATom)

    NASA Astrophysics Data System (ADS)

    Weinzierl, B.; Dollner, M.; Schuh, H.; Brock, C. A.; Bui, T. V.; Gasteiger, J.; Froyd, K. D.; Schwarz, J. P.; Spanu, A.; Murphy, D. M.; Katich, J. M.; Kupc, A.; Williamson, C.

    2016-12-01

    Although coarse-mode aerosol (>1 µm diameter), composed mainly of mineral dust and sea-salt, is highly abundant over large regions of the world, these particles form a particularly poorly understood and characterized subset of atmospheric aerosol constituents. The NASA-sponsored Atmospheric Tomography Mission (ATom) is an unprecedented field program that investigates how human emissions affect air quality and climate change. ATom provides a singular opportunity to characterize the global coarse-mode size distribution by continuously profiling between 0.2 and 13 km with the NASA DC-8 research aircraft while traveling from the high Arctic down south the middle of the Pacific Ocean, to the Southern Ocean and back north over the Atlantic Ocean basin in four seasons. For ATom, the DC-8 aircraft has been equipped with multiple instruments to observe the composition of the air. The coarse mode and cloud particle size distribution is measured in-situ with a Cloud, Aerosol, and Precipitation Spectrometer (CAPS) mounted under the wing of the DC-8 research aircraft. The CAPS consists of an optical spectrometer providing size distributions in the size range between 0.5 and 50 µm and an imager detecting number concentration, size and shape of particles between 15 and 930 µm diameter. Early ATom flights indicated complicated vertical layering: over the sea, we regularly observed sea salt aerosol which extended from the ground up to 0.6-1 km altitude. In addition - depending on the location of the measurements - we frequently found layers with coarse mode aerosol originating from deserts and biomass burning aerosol aloft. In this study, we will present first results of coarse mode aerosol observations from the entire first ATom deployment in summer 2016. We will show vertical profiles of coarse mode aerosol number concentration, discuss their interhemispheric differences, and look into the question how frequently coarse-mode aerosol is externally mixed with submicron black

  8. Hygroscopicity- and Size-Resolved Measurements of Submicron Aerosol on the East Coast of the United States

    NASA Astrophysics Data System (ADS)

    Phillips, B. N.; Royalty, T. M.; Dawson, K. W.; Reed, R.; Petters, M. D.; Meskhidze, N.

    2018-02-01

    Atmospheric measurements of aerosol size-resolved hygroscopicity at submicron sizes are carried out at the United States Army Corps of Engineers Field Research Facility in Duck, North Carolina. The scientific aim of the field deployment is to gain improved understanding of the springtime advection of aerosols from the East Coast of the United States over the Atlantic and help to constrain assessments of anthropogenic particle contributions to the marine boundary layer aerosol budget. Air mass back trajectories show that the aerosol sampled at the coast is largely of continental origin that either gets transported directly from the land or spends some time over the Atlantic Ocean. Aerosol size-resolved hygroscopicity measurements are consistent with air masses of both continental and marine background that are heavily influenced by the continental outflow. Aitken and accumulation mode mean diameters range from 49.1 ± 1.7 nm to 66.9 ± 0.8 nm and 142.8 ± 1.1 nm to 155.0 ± 2.8 nm, respectively. Hygroscopicity distributions for 96 nm, 188 nm, and 284 nm dry-sized particles show the mode hygroscopicity parameter range from 0.20 ± 0.01 to 0.54 ± 0.03, suggesting the presence of anthropogenic aerosols. We have used the method described by Royalty et al. (2017) to decompose the hygroscopicity distributions into three distinct classes based on the ambient aerosol hygroscopic properties relative to the hygroscopic properties of a reference compound. The method shows that continental outflow heavily influences aerosol chemical and physical properties at the East Coast, with hygroscopicities of submicron aerosols consistent with sulfate-containing species (62% to 83%), with small contributions from sodium- and carbon-containing particles (up to 9% and 37%, respectively).

  9. The Angstrom Exponent and Bimodal Aerosol Size Distributions

    NASA Technical Reports Server (NTRS)

    Schuster, Gregory L.; Dubovik, Oleg; Holben, Brent H.

    2005-01-01

    Powerlaws have long been used to describe the spectral dependence of aerosol extinction, and the wavelength exponent of the aerosol extinction powerlaw is commonly referred to as the Angstrom exponent. The Angstrom exponent is often used as a qualitative indicator of aerosol particle size, with values greater than two indicating small particles associated with combustion byproducts, and values less than one indicating large particles like sea salt and dust. In this study, we investigate the relationship between the Angstrom exponent and the mode parameters of bimodal aerosol size distributions using Mie theory calculations and Aerosol Robotic Network (AERONET) retrievals. We find that Angstrom exponents based upon seven wavelengths (0.34, 0.38, 0.44, 0.5, 0.67, 0.87, and 1.02 micrometers) are sensitive to the volume fraction of aerosols with radii less then 0.6 micrometers, but not to the fine mode effective radius. The Angstrom exponent is also known to vary with wavelength, which is commonly referred to as curvature; we show how the spectral curvature can provide additional information about aerosol size distributions for intermediate values of the Angstrom exponent. Curvature also has a significant effect on the conclusions that can be drawn about two-wavelength Angstrom exponents; long wavelengths (0.67, 0.87 micrometers) are sensitive to fine mode volume fraction of aerosols but not fine mode effective radius, while short wavelengths (0.38, 0.44 micrometers) are sensitive to the fine mode effective radius but not the fine mode volume fraction.

  10. Size distribution and scattering phase function of aerosol particles retrieved from sky brightness measurements

    NASA Technical Reports Server (NTRS)

    Kaufman, Y. J.; Gitelson, A.; Karnieli, A.; Ganor, E. (Editor); Fraser, R. S.; Nakajima, T.; Mattoo, S.; Holben, B. N.

    1994-01-01

    particles with r(sub m) less than 0.2 microns and coarse paritcles with r(sub m) greater than 0.7 microns. The 'window' in the tropospheric aerosol in this radius range was used to observe a stable stratospheric aerosol in 1992, with r(sub m) approximately 0.5 microns. A combination of such optical thickness and sky measurements can be used to assess the direct forcing and the climatic impact of aerosol. Systematic inversion for the key aerosol types (sulfates, smoke, dust, and maritime aerosol) of the size distribution and phase function can give the relationship between the aerosol physical and optical properties that can be used to compute the radiative forcing. This forcing can be validated in dedicated field experiments.

  11. A Nanometer Aerosol Size Analyzer (nASA) for Rapid Measurement of High-concentration Size Distributions

    NASA Astrophysics Data System (ADS)

    Han, Hee-Siew; Chen, Da-Ren; Pui, David Y. H.; Anderson, Bruce E.

    2000-03-01

    We have developed a fast-response nanometer aerosol size analyzer (nASA) that is capable of scanning 30 size channels between 3 and 100 nm in a total time of 3 s. The analyzer includes a bipolar charger (Po210), an extended-length nanometer differential mobility analyzer (Nano-DMA), and an electrometer (TSI 3068). This combination of components provides particle size spectra at a scan rate of 0.1 s per channel free of uncertainties caused by response-time-induced smearing. The nASA thus offers a fast response for aerosol size distribution measurements in high-concentration conditions and also eliminates the need for applying a de-smearing algorithm to resulting data. In addition, because of its thermodynamically stable means of particle detection, the nASA is useful for applications requiring measurements over a broad range of sample pressures and temperatures. Indeed, experimental transfer functions determined for the extended-length Nano-DMA using the tandem differential mobility analyzer (TDMA) technique indicate the nASA provides good size resolution at pressures as low as 200 Torr. Also, as was demonstrated in tests to characterize the soot emissions from the J85-GE engine of a T-38 aircraft, the broad dynamic concentration range of the nASA makes it particularly suitable for studies of combustion or particle formation processes. Further details of the nASA performance as well as results from calibrations, laboratory tests and field applications are presented below.

  12. A Nanometer Aerosol Size Analyzer (nASA) for Rapid Measurement of High-Concentration Size Distributions

    NASA Technical Reports Server (NTRS)

    Han, Hee-Siew; Chen, Da-Ren; Pui, David Y. H.; Anderson, Bruce E.

    2001-01-01

    We have developed a fast-response Nanometer Aerosol Size Analyzer (nASA) that is capable of scanning 30 size channels between 3 and 100 nm in a total time of 3 seconds. The analyzer includes a bipolar charger (P0210), an extended-length Nanometer Differential Mobility Analyzer (Nano-DMA), and an electrometer (TSI 3068). This combination of components provides particle size spectra at a scan rate of 0.1 second per channel free of uncertainties caused by response-time-induced smearing. The nASA thus offers a fast response for aerosol size distribution measurements in high-concentration conditions and also eliminates the need for applying a de-smearing algorithm to resulting data. In addition, because of its thermodynamically stable means of particle detection, the nASA is useful for applications requiring measurements over a broad range of sample pressures and temperatures. Indeed, experimental transfer functions determined for the extended-length Nano-DMA using the Tandem Differential Mobility Analyzer (TDMA) technique indicate the nASA provides good size resolution at pressures as low as 200 Torr. Also, as was demonstrated in tests to characterize the soot emissions from the J85-GE engine of a T38 aircraft, the broad dynamic concentration range of the nASA makes it particularly suitable for studies of combustion or particle formation processes. Further details of the nASA performance as well as results from calibrations, laboratory tests and field applications are presented.

  13. Measuring Aerosol Size Distributions from the NASA DC-8 in SOLVE II

    NASA Technical Reports Server (NTRS)

    Reeves, Michael

    2003-01-01

    The University of Denver Focused Cavity Aerosol Spectrometer (FCAS 11) and Nucleation-Mode Aerosol Size Spectrometer (N-MASS) were successfully integrated and flown aboard NASA s DC-8 for the second SAGE I11 Ozone Loss and Validation Experiment (SOLVE 11). Both instruments performed well during SOLVE, with virtually complete data coverage for all mission and test flights. The few exceptions to this were the occasional simultaneous zero-check for the instruments, and some data loss for channel 4 of the N-MASS. The only consequence of the latter is reduced resolution in the 15 to 60 nm range for the affected size distributions.

  14. Size distributions and chemical characterization of water-soluble organic aerosols over the western North Pacific in summer

    NASA Astrophysics Data System (ADS)

    Miyazaki, Yuzo; Kawamura, Kimitaka; Sawano, Maki

    2010-12-01

    Size-segregated aerosol samples were collected over the western North Pacific in summer 2008 to investigate marine biological contribution to organic aerosols. The samples were analyzed for organic carbon (OC), water-soluble organic carbon (WSOC), and water-soluble organic compounds including diacids (C2-C9), ω-oxocarboxylic acids, and α-dicarbonyls as well as methanesulfonic acid (MSA). The average concentrations of OC and oxalic acid (C2) were approximately two to three times larger in marine biologically more influenced aerosols, defined by the concentrations of MSA and azelaic acid (C9), than in less influenced aerosols. WSOC, which showed a statistically significant correlation with MSA, accounted for 15-21% of total mass of the components determined in the submicrometer range of biologically more influenced aerosols. These values are comparable to those of water-insoluble organic carbon (WIOC) (˜14-23%), suggesting that organic aerosols in this region are enriched in secondary organic aerosols (SOA) linked to oceanic biological activity. In these aerosols, substantial fractions of C2-C4 diacids were found in the submicrometer size range. Positive correlations of oxalic acid with C3-C5 diacids and glyoxylic acid suggest that secondary production of oxalic acid occurs possibly in the aqueous aerosol phase via the oxidation of longer-chain diacids and glyoxylic acid in the oceanic region with higher biological productivity. We found similar concentration levels and size distributions of methylglyoxal between the two types of aerosols, suggesting that formation of oxalic acid via the oxidation of methylglyoxal from marine isoprene is insignificant in the study region.

  15. A new stochastic algorithm for inversion of dust aerosol size distribution

    NASA Astrophysics Data System (ADS)

    Wang, Li; Li, Feng; Yang, Ma-ying

    2015-08-01

    Dust aerosol size distribution is an important source of information about atmospheric aerosols, and it can be determined from multiwavelength extinction measurements. This paper describes a stochastic inverse technique based on artificial bee colony (ABC) algorithm to invert the dust aerosol size distribution by light extinction method. The direct problems for the size distribution of water drop and dust particle, which are the main elements of atmospheric aerosols, are solved by the Mie theory and the Lambert-Beer Law in multispectral region. And then, the parameters of three widely used functions, i.e. the log normal distribution (L-N), the Junge distribution (J-J), and the normal distribution (N-N), which can provide the most useful representation of aerosol size distributions, are inversed by the ABC algorithm in the dependent model. Numerical results show that the ABC algorithm can be successfully applied to recover the aerosol size distribution with high feasibility and reliability even in the presence of random noise.

  16. In Situ Aerosol Size Distributions and Clear Column Radiative Closure During ACE-2

    NASA Technical Reports Server (NTRS)

    Collins, D. R.; Johnson, H. H.; Seinfeld, J. H.; Flagan, R. C.; Gasso, S.; Hegg, D. A.; Russell, P. B.; Schmid, B.; Livingston, J. M.; Oestroem, E.; hide

    2000-01-01

    As part of the second Aerosol Characterization Experiment (ACE-2) during June and July of 1997, aerosol size distributions were measured on board the CIRPAS Pelican aircraft through the use of a DMA and two OPCS. During the campaign, the boundary layer aerosol typically possessed characteristics representative of a background marine aerosol or a continentally influenced aerosol, while the free tropospheric aerosol was characterized by the presence or absence of a Saharan dust layer. A range of radiative closure comparisons were made using the data obtained during vertical profiles flown on four missions. Of particular interest here are the comparisons made between the optical properties as determined through the use of measured aerosol size distributions and those measured directly by an airborne 14-wavelength sunphotometer and three nephelometers. Variations in the relative humidity associated with each of the direct measurements required consideration of the hygroscopic properties of the aerosol for size distribution based calculations. Simultaneous comparison with such a wide range of directly measured optical parameters not only offers evidence of the validity of the physicochemical description of the aerosol when closure is achieved, but also provides insight into potential sources of error when some or all of the comparisons result in disagreement. Agreement between the derived and directly measured optical properties varied for different measurements and for different cases. Averaged over the four case studies, the derived extinction coefficient at 525 nm exceeded that measured by the sunphotomoter by 2.5% in the clean boundary later, but underestimated measurements by 13% during pollution events. For measurements within the free troposphere, the mean derived extinction coefficient was 3.3% and 17% less than that measured by the sunphotometer during dusty and nondusty conditions, respectively. Likewise, averaged discrepancies between the derived and measured

  17. Physicochemical Characterization of Capstone Depleted Uranium Aerosols II: Particle Size Distributions as a Function of Time

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Yung-Sung; Kenoyer, Judson L.; Guilmette, Raymond A.

    2009-03-01

    The Capstone Depleted Uranium (DU) Aerosol Study, which generated and characterized aerosols containing depleted uranium from perforation of armored vehicles with large-caliber DU penetrators, incorporated a sampling protocol to evaluated particle size distributions. Aerosol particle size distribution is an important parameter that influences aerosol transport and deposition processes as well as the dosimetry of the inhaled particles. These aerosols were collected on cascade impactor substrates using a pre-established time sequence following the firing event to analyze the uranium concentration and particle size of the aerosols as a function of time. The impactor substrates were analyzed using beta spectrometry, and themore » derived uranium content of each served as input to the evaluation of particle size distributions. Activity median aerodynamic diameters (AMADs) of the particle size distributions were evaluated using unimodal and bimodal models. The particle size data from the impactor measurements was quite variable. Most size distributions measured in the test based on activity had bimodal size distributions with a small particle size mode in the range of between 0.2 and 1.2 um and a large size mode between 2 and 15 um. In general, the evolution of particle size over time showed an overall decrease of average particle size from AMADs of 5 to 10 um shortly after perforation to around 1 um at the end of the 2-hr sampling period. The AMADs generally decreased over time because of settling. Additionally, the median diameter of the larger size mode decreased with time. These results were used to estimate the dosimetry of inhaled DU particles.« less

  18. A statistical analysis of North East Atlantic (submicron) aerosol size distributions

    NASA Astrophysics Data System (ADS)

    Dall'Osto, M.; Monahan, C.; Greaney, R.; Beddows, D. C. S.; Harrison, R. M.; Ceburnis, D.; O'Dowd, C. D.

    2011-12-01

    The Global Atmospheric Watch research station at Mace Head (Ireland) offers the possibility to sample some of the cleanest air masses being imported into Europe as well as some of the most polluted being exported out of Europe. We present a statistical cluster analysis of the physical characteristics of aerosol size distributions in air ranging from the cleanest to the most polluted for the year 2008. Data coverage achieved was 75% throughout the year. By applying the Hartigan-Wong k-Means method, 12 clusters were identified as systematically occurring. These 12 clusters could be further combined into 4 categories with similar characteristics, namely: coastal nucleation category (occurring 21.3 % of the time), open ocean nucleation category (occurring 32.6% of the time), background clean marine category (occurring 26.1% of the time) and anthropogenic category (occurring 20% of the time) aerosol size distributions. The coastal nucleation category is characterised by a clear and dominant nucleation mode at sizes less than 10 nm while the open ocean nucleation category is characterised by a dominant Aitken mode between 15 nm and 50 nm. The background clean marine aerosol exhibited a clear bimodality in the sub-micron size distribution, with although it should be noted that either the Aitken mode or the accumulation mode may dominate the number concentration. However, peculiar background clean marine size distributions with coarser accumulation modes are also observed during winter months. By contrast, the continentally-influenced size distributions are generally more monomodal (accumulation), albeit with traces of bimodality. The open ocean category occurs more often during May, June and July, corresponding with the North East (NE) Atlantic high biological period. Combined with the relatively high percentage frequency of occurrence (32.6%), this suggests that the marine biota is an important source of new nano aerosol particles in NE Atlantic Air.

  19. Phase Partitioning of Soluble Trace Gases with Size-Resolved Aerosols during the Nitrogen, Aerosol Composition, and Halogens on a Tall Tower (NACHTT) Campaign

    NASA Astrophysics Data System (ADS)

    Young, A.; Keene, W. C.; Pszenny, A.; Sander, R.; Maben, J. R.; Warrick-Wriston, C.; Bearekman, R.

    2011-12-01

    During February and March 2011, size-resolved and bulk aerosol were sampled at 22 m above the surface over nominal 12-hour (daytime and nighttime) intervals from the Boulder Atmospheric Observatory tower (40.05 N, 105.01 W, 1584-m elevation). Samples were analyzed for major organic and inorganic ionic constituents by high performance ion chromatography (IC). Soluble trace gases (HCl, HNO3, NH3, HCOOH, and CH3COOH) were sampled in parallel over 2-hour intervals with tandem mist chambers and analyzed on site by IC. NH4+, NO3-, and SO42- were the major ionic components of aerosols (median values of 57.7, 34.5, and 7.3 nmol m-3 at STP, respectively, N = 45) with 86%, 82%, and 82%, respectively, associated with sub-μm size fractions. Cl- and Na+ were present at significant concentrations (median values of 6.8 and 6.6 nmol m-3, respectively) but were associated primarily with super-μm size fractions (75% and 78%, respectively). Median values (and ranges) for HCl, HNO3, and NH3 were 21 (<20-1257), 120 (<45-1638), and 5259 (<1432-48,583) pptv, respectively. Liquid water contents of size-resolved aerosols and activity coefficients for major ionic constituents were calculated with the Extended Aerosol Inorganic Model II and IV (E-AIM) based on the measured aerosol composition, RH, temperature, and pressure. Size-resolved aerosol pHs were inferred from the measured phase partitioning of HCl, HNO3, and NH3. Major controls of phase partitioning and associated chemical dynamics will be presented.

  20. Pan-Arctic aerosol number size distributions: seasonality and transport patterns

    NASA Astrophysics Data System (ADS)

    Freud, Eyal; Krejci, Radovan; Tunved, Peter; Leaitch, Richard; Nguyen, Quynh T.; Massling, Andreas; Skov, Henrik; Barrie, Leonard

    2017-07-01

    The Arctic environment has an amplified response to global climatic change. It is sensitive to human activities that mostly take place elsewhere. For this study, a multi-year set of observed aerosol number size distributions in the diameter range of 10 to 500 nm from five sites around the Arctic Ocean (Alert, Villum Research Station - Station Nord, Zeppelin, Tiksi and Barrow) was assembled and analysed.A cluster analysis of the aerosol number size distributions revealed four distinct distributions. Together with Lagrangian air parcel back-trajectories, they were used to link the observed aerosol number size distributions with a variety of transport regimes. This analysis yields insight into aerosol dynamics, transport and removal processes, on both an intra- and an inter-monthly scale. For instance, the relative occurrence of aerosol number size distributions that indicate new particle formation (NPF) event is near zero during the dark months, increases gradually to ˜ 40 % from spring to summer, and then collapses in autumn. Also, the likelihood of Arctic haze aerosols is minimal in summer and peaks in April at all sites.The residence time of accumulation-mode particles in the Arctic troposphere is typically long enough to allow tracking them back to their source regions. Air flow that passes at low altitude over central Siberia and western Russia is associated with relatively high concentrations of accumulation-mode particles (Nacc) at all five sites - often above 150 cm-3. There are also indications of air descending into the Arctic boundary layer after transport from lower latitudes.

    The analysis of the back-trajectories together with the meteorological fields along them indicates that the main driver of the Arctic annual cycle of Nacc, on the larger scale, is when atmospheric transport covers the source regions for these particles in the 10-day period preceding the observations in the Arctic. The scavenging of these particles by precipitation is

  1. Volume and surface area size distribution, water mass and model fitting of GCE/CASE/WATOX marine aerosols

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Sievering, H.; Boatman, J.

    1990-06-01

    As a part of the Global Change Expedition/Coordinated Air-Sea Experiment/Western Atlantic Ocean Experiment (GCE/CASE/WATOX), size distributions of marine aerosols were measured at two altitudes of about 2750 and 150 m above sea level (asl) over the size range 0.1 ˜ 32 μm. Lognormal fitting was applied to the corrected aerosol size spectra to determine the volume and surface area size distributions of the CASE-WATOX marine aerosols. Each aerosol size distribution was fitted with three lognormal distributions representing fine-, large-, and giant-particle modes. Water volume fraction and dry particle size of each aerosol size distribution were also calculated using empirical formulas for particle size as a function of relative humidity and particle type. Because of the increased influence from anthropogenic sources in the continental United States, higher aerosol volume concentrations were observed in the fine-particle mode near-shore off the east coast; 2.11 and 3.63 μm3 cm-3 for free troposphere (FT) and marine boundary layer (MBL), compared with the open-sea Bermuda area values; 0.13 and 0.74 μm3 cm-3 for FT and MBL. The large-particle mode exhibits the least variations in volume distributions between the east coast and open-sea Bermuda area, having a volume geometric median diameter (VGMD) between 1.4 and 1.6 μm and a geometric standard deviation between 1.57 and 1.68. For the giant-particle mode, larger VGMD and volume concentrations were observed for marine aerosols nearshore off the east coast than in the open-sea Bermuda area because of higher relative humidity and higher surface wind speed conditions. Wet VGMD and aerosol water volume concentrations at 15 m asl ship level were determined by extrapolating from those obtained by analysis of the CASE-WATOX aircraft aerosol data. Abundance of aerosol water in the MBL serves as an important pathway for heterogeneous conversion of SO2 in sea salt aerosol particles.

  2. Black carbon aerosol size in snow.

    PubMed

    Schwarz, J P; Gao, R S; Perring, A E; Spackman, J R; Fahey, D W

    2013-01-01

    The effect of anthropogenic black carbon (BC) aerosol on snow is of enduring interest due to its consequences for climate forcing. Until now, too little attention has been focused on BC's size in snow, an important parameter affecting BC light absorption in snow. Here we present first observations of this parameter, revealing that BC can be shifted to larger sizes in snow than are typically seen in the atmosphere, in part due to the processes associated with BC removal from the atmosphere. Mie theory analysis indicates a corresponding reduction in BC absorption in snow of 40%, making BC size in snow the dominant source of uncertainty in BC's absorption properties for calculations of BC's snow albedo climate forcing. The shift reduces estimated BC global mean snow forcing by 30%, and has scientific implications for our understanding of snow albedo and the processing of atmospheric BC aerosol in snowfall.

  3. Endotoxin in Size-Separated Metal Working Fluid Aerosol Particles.

    PubMed

    Dahlman-Höglund, Anna; Lindgren, Åsa; Mattsby-Baltzer, Inger

    2016-08-01

    Patients with airway symptoms working in metal working industries are increasing, despite efforts to improve the environmental air surrounding the machines. Our aim was to analyse the amount of endotoxin in size-separated airborne particles of metal working fluid (MWF) aerosol, by using the personal sampler Sioutas cascade impactor, to compare filter types, and to compare the concentration of airborne endotoxin to that of the corresponding MWFs. In a pilot field study, aerosols were collected in two separate machine halls on totally 10 occasions, using glass fibre and polytetrafluoroethylene (PTFE) filters in parallel at each station. Airborne endotoxin was distributed over all size fractions. While a major part was found in the largest size fraction (72%, 2.5-10 µm), up to 8% of the airborne endotoxin was detected in the smallest size fraction (<0.25 µm). Comparing the efficiency of the filter types, a significantly higher median endotoxin level was found with glass fibres filters collecting the largest particle-size fraction (1.2-fold) and with PTFE filters collecting the smallest ones (5-fold). The levels of endotoxin in the size-separated airborne particle fractions correlated to those of the MWFs supporting the aerosol-generating machines. Our study indicates that a significant part of inhalable aerosols of MWFs consists of endotoxin-containing particles below the size of intact bacteria, and thus small enough to readily reach the deepest part of the lung. Combined with other chemical irritants of the MWF, exposure to MWF aerosols containing endotoxin pose a risk to respiratory health problems. © The Author 2016. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  4. Development of Portable Aerosol Mobility Spectrometer for Personal and Mobile Aerosol Measurement

    PubMed Central

    Kulkarni, Pramod; Qi, Chaolong; Fukushima, Nobuhiko

    2017-01-01

    We describe development of a Portable Aerosol Mobility Spectrometer (PAMS) for size distribution measurement of submicrometer aerosol. The spectrometer is designed for use in personal or mobile aerosol characterization studies and measures approximately 22.5 × 22.5 × 15 cm and weighs about 4.5 kg including the battery. PAMS uses electrical mobility technique to measure number-weighted particle size distribution of aerosol in the 10–855 nm range. Aerosol particles are electrically charged using a dual-corona bipolar corona charger, followed by classification in a cylindrical miniature differential mobility analyzer. A condensation particle counter is used to detect and count particles. The mobility classifier was operated at an aerosol flow rate of 0.05 L/min, and at two different user-selectable sheath flows of 0.2 L/min (for wider size range 15–855 nm) and 0.4 L/min (for higher size resolution over the size range of 10.6–436 nm). The instrument was operated in voltage stepping mode to retrieve the size distribution, which took approximately 1–2 minutes, depending on the configuration. Sizing accuracy and resolution were probed and found to be within the 25% limit of NIOSH criterion for direct-reading instruments (NIOSH 2012). Comparison of size distribution measurements from PAMS and other commercial mobility spectrometers showed good agreement. The instrument offers unique measurement capability for on-person or mobile size distribution measurements of ultrafine and nanoparticle aerosol. PMID:28413241

  5. Aerosol indirect effect from turbulence-induced broadening of cloud-droplet size distributions.

    PubMed

    Chandrakar, Kamal Kant; Cantrell, Will; Chang, Kelken; Ciochetto, David; Niedermeier, Dennis; Ovchinnikov, Mikhail; Shaw, Raymond A; Yang, Fan

    2016-12-13

    The influence of aerosol concentration on the cloud-droplet size distribution is investigated in a laboratory chamber that enables turbulent cloud formation through moist convection. The experiments allow steady-state microphysics to be achieved, with aerosol input balanced by cloud-droplet growth and fallout. As aerosol concentration is increased, the cloud-droplet mean diameter decreases, as expected, but the width of the size distribution also decreases sharply. The aerosol input allows for cloud generation in the limiting regimes of fast microphysics ([Formula: see text]) for high aerosol concentration, and slow microphysics ([Formula: see text]) for low aerosol concentration; here, [Formula: see text] is the phase-relaxation time and [Formula: see text] is the turbulence-correlation time. The increase in the width of the droplet size distribution for the low aerosol limit is consistent with larger variability of supersaturation due to the slow microphysical response. A stochastic differential equation for supersaturation predicts that the standard deviation of the squared droplet radius should increase linearly with a system time scale defined as [Formula: see text], and the measurements are in excellent agreement with this finding. The result underscores the importance of droplet size dispersion for aerosol indirect effects: increasing aerosol concentration changes the albedo and suppresses precipitation formation not only through reduction of the mean droplet diameter but also by narrowing of the droplet size distribution due to reduced supersaturation fluctuations. Supersaturation fluctuations in the low aerosol/slow microphysics limit are likely of leading importance for precipitation formation.

  6. Aircraft-based Aerosol Size and Composition Measurements during ACE-Asia and CRYSTAL-FACE using an Aerodyne Aerosol Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Bahreini, R.; Jimenez, J.; Delia, A.; Flagan, R. C.; Seinfeld, J. H.; Jayne, J. T.; Worsnop, D. R.

    2002-12-01

    An Aerodyne Aerosol Mass Spectrometer (AMS) was deployed in an aircraft for the first time during the ACE-Asia field campaign. The AMS was operated on board the CIRPAS Twin Otter aircraft to measure the size-resolved chemical composition of the submicron aerosols in the outflow from Eastern Asia. Research flights were carried out from March 31 to May 1, 2001 in an area that covered 127 E-135 E and 32 N-38 N on longitude and latitude, respectively. The submicron aerosol was typically distributed in distinct layers (from the boundary layer to ~ 3700 m). This is consistent with other on-board measurements. The aerosol in the pollution layers was mainly composed of sulfate, ammonium, and organics separated by cleaner layers. Sub-micron nitrate aerosols were also detected in some layers. Since the molar ratio of positive to negative ions did not exceed one on most of the constant altitude legs of the flights, the particles were not completely neutralized. Sulfate and organics concentrations of up to 10 and 5 ug m-3 (STP), respectively, were measured on some pollution layers. AMS measurements of sulfate concentration and NH4/SO4 mass ratio (~0.16 on average) are consistent with previously reported measurements at Cheju Island, South Korea [Charmichael et al., 1997; Chen et al., 1997] and Sapporo, Japan [Kaneyasu et al., 1995]. The mass-weighed size distribution of the sub-micron sulfate was relatively constant from day to day and layer to layer, with an aerodynamic mode at 350-500 nm (vacuum aerodynamic diameter) and FWHM ~ 400 nm on most of the layers. Furthermore, the ratios between SO4/ NH4/ NO3/ Organics were approximately independent of size in the sub-micron size range. Comparisons of AMS data to other on-board aerosol measurements will be presented. In particular, the AMS mass concentration correlates well with the aerosol volume determined by the on-board Differential Automated Classifying Aerosol Detector (DCAD). In addition, preliminary results of airborne size

  7. Size-resolved trace metal characterization of aerosols emitted by four important source types in Switzerland

    NASA Astrophysics Data System (ADS)

    Buerki, Peter R.; Gaelli, Brigitte C.; Nyffeler, Urs P.

    In central Switzerland five types of emission sources are mainly responsible for airborne trace metals: traffic, industrial plants burning heavy oil, resuspension of soil particles, residential heatings and refuse incineration plants. The particulate emissions of each of these source types except refuse incineration were sampled using Berner impactors and the mass and elemental size distributions of Cd, Cu, Mn, Pb, Zn, As and Na determined. Cd, Na and Zn are not characteristic for any of these source types. As and Cu, occurring in the fine particle fractions are characteristic for heavy oil combustion, Mn for soil dust and sometimes for heavy and fuel oil combustion and Pb for traffic aerosols. The mass size distributions of aerosols originating from erosion and abrasion processes show a maximum mass fraction in the coarse particle range larger than about 1 μm aerodynamic equivalent diameters (A.E.D.). Aerosols originating from combustion processes show a second maximum mass fraction in the fine particle range below about 0.5μm A.E.D. Scanning electron microscopy combined with an EDS analyzer was used for the morphological characterization of emission and ambient aerosols.

  8. Annual cycle of size-resolved organic aerosol characterization in an urbanized desert environment

    NASA Astrophysics Data System (ADS)

    Cahill, Thomas M.

    2013-06-01

    Studies of size-resolved organic speciation of aerosols are still relatively rare and are generally only conducted over short durations. However, size-resolved organic data can both suggest possible sources of the aerosols and identify the human exposure to the chemicals since different aerosol sizes have different lung capture efficiencies. The objective of this study was to conduct size-resolved organic aerosol speciation for a calendar year in Phoenix, Arizona to determine the seasonal variations in both chemical concentrations and size profiles. The results showed large seasonal differences in combustion pollutants where the highest concentrations were observed in winter. Summertime aerosols have a greater proportion of biological compounds (e.g. sugars and fatty acids) and the biological compounds represent the largest fraction of the organic compounds detected. These results suggest that standard organic carbon (OC) measurements might be heavily influenced by primary biological compounds particularly if the samples are PM10 and TSP samples. Several large dust storms did not significantly alter the organic aerosol profile since Phoenix resides in a dusty desert environment, so the soil and plant tracer of trehalose was almost always present. The aerosol size profiles showed that PAHs were generally most abundant in the smallest aerosol size fractions, which are most likely to be captured by the lung, while the biological compounds were almost exclusively found in the coarse size fraction.

  9. Comparison of aerosol volume size distributions between column and surface measurements downwind of Seoul, Korea

    NASA Astrophysics Data System (ADS)

    Park, J. S.; Choi, Y.; Ghim, Y. S.

    2015-12-01

    The aerosol volume size distribution is one of the most important parameters in retrieving aerosol optical properties and studying radiative forcing. The column-integrated aerosol volume size distribution for AERONET was obtained from inversion product level 1.5 (22 bins between 0.1 and 30 μm in diameter) from the measurements of CIMEL sunphotometer (CE-318); that for SKYNET was obtained using skyrad.pack V5 (20 bins, 0.02-33 μm) from the measurements of PREDE skyradiometer (POM-02). The aerosol volume size distribution at the surface was measured using a wide range aerosol spectrometer system consisting of a scanning mobility particle scanner (Grimm, Model 5.419; 89 bins, 0.005-0.35 μm) and an optical particle counter (Grimm, Model 1.109; 31 bins, 0.27-34 μm). The measurement was conducted in Yongin, downwind of Seoul, Korea, from April 30 to June 27, 2015. The measurement site is located on the rooftop of a five-story building on the hill (37.34°N, 127.27°E, 167 m above sea level) in the global campus of Hankuk University of Foreign Studies. To investigate the discrepancy in effective diameter and fine mode volume fraction, we compared the volume size distributions when the measurement time coincided within 5 minutes because the measurement intervals were different between instruments.

  10. Aerosol indirect effect from turbulence-induced broadening of cloud-droplet size distributions

    PubMed Central

    Chandrakar, Kamal Kant; Cantrell, Will; Chang, Kelken; Ciochetto, David; Niedermeier, Dennis; Ovchinnikov, Mikhail; Shaw, Raymond A.; Yang, Fan

    2016-01-01

    The influence of aerosol concentration on the cloud-droplet size distribution is investigated in a laboratory chamber that enables turbulent cloud formation through moist convection. The experiments allow steady-state microphysics to be achieved, with aerosol input balanced by cloud-droplet growth and fallout. As aerosol concentration is increased, the cloud-droplet mean diameter decreases, as expected, but the width of the size distribution also decreases sharply. The aerosol input allows for cloud generation in the limiting regimes of fast microphysics (τc<τt) for high aerosol concentration, and slow microphysics (τc>τt) for low aerosol concentration; here, τc is the phase-relaxation time and τt is the turbulence-correlation time. The increase in the width of the droplet size distribution for the low aerosol limit is consistent with larger variability of supersaturation due to the slow microphysical response. A stochastic differential equation for supersaturation predicts that the standard deviation of the squared droplet radius should increase linearly with a system time scale defined as τs−1=τc−1+τt−1, and the measurements are in excellent agreement with this finding. The result underscores the importance of droplet size dispersion for aerosol indirect effects: increasing aerosol concentration changes the albedo and suppresses precipitation formation not only through reduction of the mean droplet diameter but also by narrowing of the droplet size distribution due to reduced supersaturation fluctuations. Supersaturation fluctuations in the low aerosol/slow microphysics limit are likely of leading importance for precipitation formation. PMID:27911802

  11. Aerosol indirect effect from turbulence-induced broadening of cloud-droplet size distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chandrakar, Kamal Kant; Cantrell, Will; Chang, Kelken

    2016-11-28

    The influence of aerosol concentration on cloud droplet size distribution is investigated in a laboratory chamber that enables turbulent cloud formation through moist convection. The experiments allow steady-state microphysics to be achieved, with aerosol input balanced by cloud droplet growth and fallout. As aerosol concentration is increased the cloud droplet mean diameter decreases as expected, but the width of the size distribution also decreases sharply. The aerosol input allows for cloud generation in the limiting regimes of fast microphysics (τ c < τ t) for high aerosol concentration, and slow microphysics (τ c > τ t) for low aerosol concentration;more » here, τ c is the phase relaxation time and τ t is the turbulence correlation time. The increase in the width of the droplet size distribution for the low aerosol limit is consistent with larger variability of supersaturation due to the slow microphysical response. A stochastic differential equation for supersaturation predicts that the standard deviation of the squared droplet radius should increase linearly with a system time scale defined as τ s -1 =τ c -1 + τ t -1, and the measurements are in excellent agreement with this finding. This finding underscores the importance of droplet size dispersion for the aerosol indirect effect: increasing aerosol concentration not only suppresses precipitation formation through reduction of the mean droplet diameter, but perhaps more importantly, through narrowing of the droplet size distribution due to reduced supersaturation fluctuations. Supersaturation fluctuations in the low aerosol / slow microphysics limit are likely of leading importance for precipitation formation.« less

  12. Inversion of multiwavelength Raman lidar data for retrieval of bimodal aerosol size distribution

    NASA Astrophysics Data System (ADS)

    Veselovskii, Igor; Kolgotin, Alexei; Griaznov, Vadim; Müller, Detlef; Franke, Kathleen; Whiteman, David N.

    2004-02-01

    We report on the feasibility of deriving microphysical parameters of bimodal particle size distributions from Mie-Raman lidar based on a triple Nd:YAG laser. Such an instrument provides backscatter coefficients at 355, 532, and 1064 nm and extinction coefficients at 355 and 532 nm. The inversion method employed is Tikhonov's inversion with regularization. Special attention has been paid to extend the particle size range for which this inversion scheme works to ~10 μm, which makes this algorithm applicable to large particles, e.g., investigations concerning the hygroscopic growth of aerosols. Simulations showed that surface area, volume concentration, and effective radius are derived to an accuracy of ~50% for a variety of bimodal particle size distributions. For particle size distributions with an effective radius of <1 μm the real part of the complex refractive index was retrieved to an accuracy of +/-0.05, the imaginary part was retrieved to 50% uncertainty. Simulations dealing with a mode-dependent complex refractive index showed that an average complex refractive index is derived that lies between the values for the two individual modes. Thus it becomes possible to investigate external mixtures of particle size distributions, which, for example, might be present along continental rims along which anthropogenic pollution mixes with marine aerosols. Measurement cases obtained from the Institute for Tropospheric Research six-wavelength aerosol lidar observations during the Indian Ocean Experiment were used to test the capabilities of the algorithm for experimental data sets. A benchmark test was attempted for the case representing anthropogenic aerosols between a broken cloud deck. A strong contribution of particle volume in the coarse mode of the particle size distribution was found.

  13. Inversion of multiwavelength Raman lidar data for retrieval of bimodal aerosol size distribution.

    PubMed

    Veselovskii, Igor; Kolgotin, Alexei; Griaznov, Vadim; Müller, Detlef; Franke, Kathleen; Whiteman, David N

    2004-02-10

    We report on the feasibility of deriving microphysical parameters of bimodal particle size distributions from Mie-Raman lidar based on a triple Nd:YAG laser. Such an instrument provides backscatter coefficients at 355, 532, and 1064 nm and extinction coefficients at 355 and 532 nm. The inversion method employed is Tikhonov's inversion with regularization. Special attention has been paid to extend the particle size range for which this inversion scheme works to approximately 10 microm, which makes this algorithm applicable to large particles, e.g., investigations concerning the hygroscopic growth of aerosols. Simulations showed that surface area, volume concentration, and effective radius are derived to an accuracy of approximately 50% for a variety of bimodal particle size distributions. For particle size distributions with an effective radius of < 1 microm the real part of the complex refractive index was retrieved to an accuracy of +/- 0.05, the imaginary part was retrieved to 50% uncertainty. Simulations dealing with a mode-dependent complex refractive index showed that an average complex refractive index is derived that lies between the values for the two individual modes. Thus it becomes possible to investigate external mixtures of particle size distributions, which, for example, might be present along continental rims along which anthropogenic pollution mixes with marine aerosols. Measurement cases obtained from the Institute for Tropospheric Research six-wavelength aerosol lidar observations during the Indian Ocean Experiment were used to test the capabilities of the algorithm for experimental data sets. A benchmark test was attempted for the case representing anthropogenic aerosols between a broken cloud deck. A strong contribution of particle volume in the coarse mode of the particle size distribution was found.

  14. Aerosol indirect effect from turbulence-induced broadening of cloud-droplet size distributions

    DOE PAGES

    Chandrakar, Kamal Kant; Cantrell, Will; Chang, Kelken; ...

    2016-11-28

    Here, the influence of aerosol concentration on cloud droplet size distribution is investigated in a laboratory chamber that enables turbulent cloud formation through moist convection. The experiments allow steady-state microphysics to be achieved, with aerosol input balanced by cloud droplet growth and fallout. As aerosol concentration is increased the cloud droplet mean diameter decreases as expected, but the width of the size distribution also decreases sharply. The aerosol input allows for cloud generation in the limiting regimes of fast microphysics (τ c < τ t) for high aerosol concentration, and slow microphysics (τ c > τ t) for low aerosolmore » concentration; here, τ c is the phase relaxation time and τ t is the turbulence correlation time. The increase in the width of the droplet size distribution for the low aerosol limit is consistent with larger variability of supersaturation due to the slow microphysical response. A stochastic differential equation for supersaturation predicts that the standard deviation of the squared droplet radius should increase linearly with a system time scale defined as τ s -1 =τ c -1 + τ t -1, and the measurements are in excellent agreement with this finding. This finding underscores the importance of droplet size dispersion for the aerosol indirect effect: increasing aerosol concentration not only suppresses precipitation formation through reduction of the mean droplet diameter, but perhaps more importantly, through narrowing of the droplet size distribution due to reduced supersaturation fluctuations. Supersaturation fluctuations in the low aerosol / slow microphysics limit are likely of leading importance for precipitation formation.« less

  15. Aerosol indirect effect from turbulence-induced broadening of cloud-droplet size distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chandrakar, Kamal Kant; Cantrell, Will; Chang, Kelken

    Here, the influence of aerosol concentration on cloud droplet size distribution is investigated in a laboratory chamber that enables turbulent cloud formation through moist convection. The experiments allow steady-state microphysics to be achieved, with aerosol input balanced by cloud droplet growth and fallout. As aerosol concentration is increased the cloud droplet mean diameter decreases as expected, but the width of the size distribution also decreases sharply. The aerosol input allows for cloud generation in the limiting regimes of fast microphysics (τ c < τ t) for high aerosol concentration, and slow microphysics (τ c > τ t) for low aerosolmore » concentration; here, τ c is the phase relaxation time and τ t is the turbulence correlation time. The increase in the width of the droplet size distribution for the low aerosol limit is consistent with larger variability of supersaturation due to the slow microphysical response. A stochastic differential equation for supersaturation predicts that the standard deviation of the squared droplet radius should increase linearly with a system time scale defined as τ s -1 =τ c -1 + τ t -1, and the measurements are in excellent agreement with this finding. This finding underscores the importance of droplet size dispersion for the aerosol indirect effect: increasing aerosol concentration not only suppresses precipitation formation through reduction of the mean droplet diameter, but perhaps more importantly, through narrowing of the droplet size distribution due to reduced supersaturation fluctuations. Supersaturation fluctuations in the low aerosol / slow microphysics limit are likely of leading importance for precipitation formation.« less

  16. Aerosol effect on cloud droplet size as monitored from surface-based remote sensing over East China Sea region

    NASA Astrophysics Data System (ADS)

    Pandithurai, G.; Takamura, T.; Yamaguchi, J.; Miyagi, K.; Takano, T.; Ishizaka, Y.; Dipu, S.; Shimizu, A.

    2009-07-01

    The effect of increased aerosol concentrations on the low-level, non-precipitating, ice-free stratus clouds is examined using a suite of surface-based remote sensing systems. Cloud droplet effective radius and liquid water path are retrieved using cloud radar and microwave radiometer. Collocated measurements of aerosol scattering coefficient, size distribution and cloud condensation nuclei (CCN) concentrations were used to examine the response of cloud droplet size and optical thickness to increased CCN proxies. During the episodic events of increase in aerosol accumulation-mode volume distribution, the decrease in droplet size and increase in cloud optical thickness is observed. The indirect effect estimates are made for both droplet effective radius and cloud optical thickness for different liquid water path ranges and they range 0.02-0.18 and 0.005-0.154, respectively. Data are also categorized into thin and thick clouds based on cloud geometric thickness (Δz) and estimates show IE values are relatively higher for thicker clouds.

  17. Aerosol Size Distributions During ACE-Asia: Retrievals From Optical Thickness and Comparisons With In-situ Measurements

    NASA Astrophysics Data System (ADS)

    Kuzmanoski, M.; Box, M.; Box, G. P.; Schmidt, B.; Russell, P. B.; Redemann, J.; Livingston, J. M.; Wang, J.; Flagan, R. C.; Seinfeld, J. H.

    2002-12-01

    As part of the ACE-Asia experiment, conducted off the coast of China, Korea and Japan in spring 2001, measurements of aerosol physical, chemical and radiative characteristics were performed aboard the Twin Otter aircraft. Of particular importance for this paper were spectral measurements of aerosol optical thickness obtained at 13 discrete wavelengths, within 354-1558 nm wavelength range, using the AATS-14 sunphotometer. Spectral aerosol optical thickness can be used to obtain information about particle size distribution. In this paper, we use sunphotometer measurements to retrieve size distribution of aerosols during ACE-Asia. We focus on four cases in which layers influenced by different air masses were identified. Aerosol optical thickness of each layer was inverted using two different techniques - constrained linear inversion and multimodal. In the constrained linear inversion algorithm no assumption about the mathematical form of the distribution to be retrieved is made. Conversely, the multimodal technique assumes that aerosol size distribution is represented as a linear combination of few lognormal modes with predefined values of mode radii and geometric standard deviations. Amplitudes of modes are varied to obtain best fit of sum of optical thicknesses due to individual modes to sunphotometer measurements. In this paper we compare the results of these two retrieval methods. In addition, we present comparisons of retrieved size distributions with in situ measurements taken using an aerodynamic particle sizer and differential mobility analyzer system aboard the Twin Otter aircraft.

  18. Reallocation in modal aerosol models: impacts on predicting aerosol radiative effects

    NASA Astrophysics Data System (ADS)

    Korhola, T.; Kokkola, H.; Korhonen, H.; Partanen, A.-I.; Laaksonen, A.; Lehtinen, K. E. J.; Romakkaniemi, S.

    2013-08-01

    In atmospheric modelling applications the aerosol particle size distribution is commonly represented by modal approach, in which particles in different size ranges are described with log-normal modes within predetermined size ranges. Such method includes numerical reallocation of particles from a mode to another for example during particle growth, leading to potentially artificial changes in the aerosol size distribution. In this study we analysed how this reallocation affects climatologically relevant parameters: cloud droplet number concentration, aerosol-cloud interaction coefficient and light extinction coefficient. We compared these parameters between a modal model with and without reallocation routines, and a high resolution sectional model that was considered as a reference model. We analysed the relative differences of the parameters in different experiments that were designed to cover a wide range of dynamic aerosol processes occurring in the atmosphere. According to our results, limiting the allowed size ranges of the modes and the following numerical remapping of the distribution by reallocation, leads on average to underestimation of cloud droplet number concentration (up to 100%) and overestimation of light extinction (up to 20%). The analysis of aerosol first indirect effect is more complicated as the ACI parameter can be either over- or underestimated by the reallocating model, depending on the conditions. However, for example in the case of atmospheric new particle formation events followed by rapid particle growth, the reallocation can cause around average 10% overestimation of the ACI parameter. Thus it is shown that the reallocation affects the ability of a model to estimate aerosol climate effects accurately, and this should be taken into account when using and developing aerosol models.

  19. Processes Controlling the Seasonal Cycle of Arctic Aerosol Number and Size Distributions

    NASA Astrophysics Data System (ADS)

    Wentworth, G.; Croft, B.; Martin, R.; Leaitch, W. R.; Tunved, P.; Breider, T. J.; D'Andrea, S.; Pierce, J. R.; Murphy, J. G.; Kodros, J.; Abbatt, J.

    2015-12-01

    Measurements at high-Arctic sites show a strong seasonal cycle in aerosol number and size. The number of aerosols with diameters larger than 20 nm exhibits a maximum in late spring associated with a dominant accumulation mode, and a second maximum in the summer associated with a dominant Aitken mode. Seasonal-mean aerosol effective diameter ranges from about 160 nm in summer to 250 nm in winter. This study interprets these seasonal cycles with the GEOS-Chem-TOMAS global aerosol microphysics model. We find improved agreement with in situ measurements (SMPS) of aerosol size at both Alert, Nunavut, and Mt. Zeppelin, Svalbard following model developments: 1) increase the efficiency of wet scavenging in the Arctic summer and 2) represent coagulation between interstitial aerosols and aerosols activated to form cloud droplets. Our simulations indicate that the dominant summer-time Aitken mode is associated with increased efficiency of wet removal, which limits the number of larger aerosols and promotes local new-aerosol formation. We also find an important role of interstitial coagulation in clouds in the Arctic, which limits the number of Aitken-mode aerosols in the non-summer seasons when direct wet removal of these aerosols is inefficient. The summertime Arctic atmosphere is particularly pristine and strongly influenced by natural regional emissions which have poorly understood climate impacts. Especially influenced are the climatic roles of atmospheric particles and clouds. Here we present evidence that ammonia (NH3) emissions from migratory-seabird guano (dung) are the primary contributor to summertime free ammonia levels recently measured in the Canadian Arctic atmosphere. These findings suggest that ammonia from seabird guano is a key factor contributing to bursts of new-particle formation, which are observed every summer in the near-surface atmosphere at Alert, Canada. Chemical transport model simulations show that these newly formed particles can grow by vapour

  20. Size-resolved chemical composition of aerosol emitted by Erebus volcano, Antarctica

    NASA Astrophysics Data System (ADS)

    Ilyinskaya, E.; Oppenheimer, C.; Mather, T. A.; Martin, R. S.; Kyle, P. R.

    2010-03-01

    Persistent, open-vent degassing of Erebus volcano, Antarctica, is a significant point source of gases and aerosol to the austral polar troposphere. We report here on the chemical composition and size distribution of the Erebus aerosol, focusing on the water-soluble fraction. The aerosol was sampled at the rim of the active crater using a cascade impactor, which collected and sized particles in 14 size bins from >10 to 0.01 μm. The soluble fraction of the Erebus aerosol is distinct from other volcanic sources in several respects. It is dominated by chloride-bearing particles (over 30% of total mass) and has an unusually high Cl-/SO42- molar ratio of 3.5. Coarse particles contribute little to the total mass of the soluble fraction. Elevated concentrations of F-, Cl-, Br-, and SO42- are found in a narrow particle size fraction of 0.1-0.25 μm. The detection of particulate Br- reinforces our understanding of the potential for quiescent volcanic emissions to deplete tropospheric ozone. The small aerosol size reflects the low atmospheric temperature and humidity, which inhibit particle growth. Halide-alkali metal salts (Na, K)(Cl, F) appear to be the most abundant species in the aerosol. The concentration of Pb is high compared to other volcanoes; its exsolution may be promoted by the high abundance of halogens in Erebus magma. Despite the previously reported high NOx content in the plume, we did not detect significant quantities of nitrate in the near-vent aerosol. Our findings emphasize the potential regional significance of emissions from Erebus for understanding the Antarctic atmospheric composition and glaciochemical records.

  1. Impact of long-range transport pollution on aerosol properties over West Africa: observations during the DACCIWA airborne campaign

    NASA Astrophysics Data System (ADS)

    Denjean, Cyrielle; Bourrianne, Thierry; Burnet, Frederic; Deroubaix, Adrien; Brito, Joel; Dupuy, Régis; Colomb, Aurélie; Schwarzenboeck, Alfons; Sellegri, Karine; Chazette, Patrick; Duplissy, Jonathan; Flamant, Cyrille

    2017-04-01

    Southern West Africa (SWA) is a region highly vulnerable to climate change. Emissions of anthropogenic pollution have increased substantially over the past decades in the region and are projected to keep increasing. The region is also strongly impacted by important natural pollution from distant locations. Biomass burning mainly from vegetation fires in Central Africa and mineral dust from the Saharan and Sahel-Sudan regions are advected by winds to the SWA region especially in summer. Both biomass burning and mineral dust aerosols scatter and absorb solar radiation and are able to significantly modify the regional radiative budget. Presently, the potential radiative impact of dust and biomass burning particles on SWA is unclear due to inadequate data information on the aerosols properties and vertical distribution. In the framework of the Dynamics-Aerosol-Chemistry-Cloud Interactions in West Africa (DACCIWA) project, an unprecedented field campaign took place in summer 2016 in West Africa. The ATR-42 research aircraft operated by SAFIRE performed twenty flights to sample the local air pollution from maritime traffic and coastal megacities, as well as regional pollution from biomass burning and desert dust. The aircraft was equipped with state of the art in situ instrumentation to measure the aerosol optical properties (CAPS, nephelometer, PSAP), the aerosol size distribution (SMPS, GRIMM, USHAS, PCASP, FSSP) and the aerosol chemical composition (SP2, AMS). A mini backscattered lidar system provided additional measurements of the aerosol vertical structure and the aerosol optical properties such as the particulate depolarization ratio. The CHIMERE chemistry and transport model has been used to characterize the source area and the long-range transport of dust and biomass burning plumes. Here, we investigate the aerosol microphysical, chemical and optical properties of biomass burning and dust aerosols transported in SWA. In particular the following questions will be

  2. Aerosol size distribution at Nansen Ice Sheet Antarctica

    NASA Astrophysics Data System (ADS)

    Belosi, F.; Contini, D.; Donateo, A.; Santachiara, G.; Prodi, F.

    2012-04-01

    During austral summer 2006, in the framework of the XXII Italian Antarctic expedition of PNRA (Italian National Program for Research in Antarctica), aerosol particle number size distribution measurements were performed in the 10-500 range nm over the Nansen Ice Sheet glacier (NIS, 74°30' S, 163°27' E; 85 m a.s.l), a permanently iced branch of the Ross Sea. Observed total particle number concentrations varied between 169 and 1385 cm- 3. A monomodal number size distribution, peaking at about 70 nm with no variation during the day, was observed for continental air mass, high wind speed and low relative humidity. Trimodal number size distributions were also observed, in agreement with measurements performed at Aboa station, which is located on the opposite side of the Antarctic continent to the NIS. In this case new particle formation, with subsequent particle growth up to about 30 nm, was observed even if not associated with maritime air masses.

  3. Size-dependent chemical ageing of oleic acid aerosol under dry and humidified conditions

    NASA Astrophysics Data System (ADS)

    Al-Kindi, Suad S.; Pope, Francis D.; Beddows, David C.; Bloss, William J.; Harrison, Roy M.

    2016-12-01

    A chemical reaction chamber system has been developed for the processing of oleic acid aerosol particles with ozone under two relative humidity conditions: dry and humidified to 65 %. The apparatus consists of an aerosol flow tube, in which the ozonolysis occurs, coupled to a scanning mobility particle sizer (SMPS) and an aerosol time-of-flight mass spectrometer (ATOFMS) which measure the evolving particle size and composition. Under both relative humidity conditions, ozonolysis results in a significant decrease in particle size and mass which is consistent with the formation of volatile products that partition from the particle to the gas phase. Mass spectra derived from the ATOFMS reveal the presence of the typically observed reaction products: azelaic acid, nonanal, oxononanoic acid and nonanoic acid, as well as a range of higher molecular weight products deriving from the reactions of reaction intermediates with oleic acid and its oxidation products. These include octanoic acid and 9- and 10-oxooctadecanoic acid, as well as products of considerably higher molecular weight. Quantitative evaluation of product yields with the ATOFMS shows a marked dependence upon both particle size association (from 0.3 to 2.1 µm diameter) and relative humidity. Under both relative humidity conditions, the percentage residual of oleic acid increases with increasing particle size and the main lower molecular weight products are nonanal and oxononanoic acid. Under dry conditions, the percentage of higher molecular weight products increases with increasing particle size due to the poorer internal mixing of the larger particles. Under humidified conditions, the percentage of unreacted oleic acid is greater, except in the smallest particle fraction, with little formation of high molecular weight products relative to the dry particles. It is postulated that water reacts with reactive intermediates, competing with the processes which produce high molecular weight products. Whilst the

  4. Three optical methods for remotely measuring aerosol size distributions.

    NASA Technical Reports Server (NTRS)

    Reagan, J. A.; Herman, B. M.

    1971-01-01

    Three optical probing methods for remotely measuring atmospheric aerosol size distributions are discussed and contrasted. The particular detection methods which are considered make use of monostatic lidar (laser radar), bistatic lidar, and solar radiometer sensing techniques. The theory of each of these measurement techniques is discussed briefly, and the necessary constraints which must be applied to obtain aerosol size distribution information from such measurements are pointed out. Theoretical and/or experimental results are also presented which demonstrate the utility of the three proposed probing methods.

  5. A statistical analysis of North East Atlantic (submicron) aerosol size distributions

    NASA Astrophysics Data System (ADS)

    Dall'Osto, M.; Monahan, C.; Greaney, R.; Beddows, D. C. S.; Harrison, R. M.; Ceburnis, D.; O'Dowd, C. D.

    2011-08-01

    The Global Atmospheric Watch research station at Mace Head (Ireland) offers the possibility to sample some of the cleanest air masses being imported into Europe as well as some of the most polluted being exported out of Europe. We present a statistical Cluster~analysis of the physical characteristics of aerosol size distributions in air ranging from the cleanest to the most polluted for the year 2008. Data coverage achieved was 75 % throughout the year. By applying the Hartigan-Wong k-Means method, 12 Clusters were identified as systematically occurring and these 12 Clusters could be further combined into 4 categories with similar characteristics, namely: coastal nucleation category (occurring 21.3 % of the time), open ocean nucleation category (occurring 32.6 % of the time), background clean marine category (occurring 26.1 % of the time) and anthropogenic category (occurring 20 % of the time) aerosol size distributions. The coastal nucleation category is characterised by a clear and dominant nucleation mode at sizes less that 10 nm while the open ocean nucleation category is characterised by a dominant Aitken mode between 15 nm and 50 nm. The background clean marine characteristic is a clear bimodality in the size distribution, although it should be noted that either the Aitken mode or the Accumulation mode may dominate the number concentration. By contrast, the continentally-influenced size distributions are generally more mono-modal, albeit with traces of bi-modality. The open ocean category occurs more often during May, June and July, corresponding with the N. E. Atlantic high biological period. Combined with the relatively high percentage frequency of occurrence (32.6 %), this suggests that the marine biota is an important source of new aerosol particles in N. E. Atlantic Air.

  6. Analytic modeling of aerosol size distributions

    NASA Technical Reports Server (NTRS)

    Deepack, A.; Box, G. P.

    1979-01-01

    Mathematical functions commonly used for representing aerosol size distributions are studied parametrically. Methods for obtaining best fit estimates of the parameters are described. A catalog of graphical plots depicting the parametric behavior of the functions is presented along with procedures for obtaining analytical representations of size distribution data by visual matching of the data with one of the plots. Examples of fitting the same data with equal accuracy by more than one analytic model are also given.

  7. Spatial Variability of CCN Sized Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Asmi, A.; Väänänen, R.

    2014-12-01

    The computational limitations restrict the grid size used in GCM models, and for many cloud types they are too large when compared to the scale of the cloud formation processes. Several parameterizations for e.g. convective cloud formation exist, but information on spatial subgrid variation of the cloud condensation nuclei (CCNs) sized aerosol concentration is not known. We quantify this variation as a function of the spatial scale by using datasets from airborne aerosol measurement campaigns around the world including EUCAARI LONGREX, ATAR, INCA, INDOEX, CLAIRE, PEGASOS and several regional airborne campaigns in Finland. The typical shapes of the distributions are analyzed. When possible, we use information obtained by CCN counters. In some other cases, we use particle size distribution measured by for example SMPS to get approximated CCN concentration. Other instruments used include optical particle counters or condensational particle counters. When using the GCM models, the CCN concentration used for each the grid-box is often considered to be either flat, or as an arithmetic mean of the concentration inside the grid-box. However, the aircraft data shows that the concentration values are often lognormal distributed. This, combined with the subgrid variations in the land use and atmospheric properties, might cause that the aerosol-cloud interactions calculated by using mean values to vary significantly from the true effects both temporary and spatially. This, in turn, can cause non-linear bias into the GCMs. We calculate the CCN aerosol concentration distribution as a function of different spatial scales. The measurements allow us to study the variation of these distributions within from hundreds of meters up to hundreds of kilometers. This is used to quantify the potential error when mean values are used in GCMs.

  8. Instrumental neutron activation analysis for studying size-fractionated aerosols

    NASA Astrophysics Data System (ADS)

    Salma, Imre; Zemplén-Papp, Éva

    1999-10-01

    Instrumental neutron activation analysis (INAA) was utilized for studying aerosol samples collected into a coarse and a fine size fraction on Nuclepore polycarbonate membrane filters. As a result of the panoramic INAA, 49 elements were determined in an amount of about 200-400 μg of particulate matter by two irradiations and four γ-spectrometric measurements. The analytical calculations were performed by the absolute ( k0) standardization method. The calibration procedures, application protocol and the data evaluation process are described and discussed. They make it possible now to analyse a considerable number of samples, with assuring the quality of the results. As a means of demonstrating the system's analytical capabilities, the concentration ranges, median or mean atmospheric concentrations and detection limits are presented for an extensive series of aerosol samples collected within the framework of an urban air pollution study in Budapest. For most elements, the precision of the analysis was found to be beyond the uncertainty represented by the sampling techniques and sample variability.

  9. Detailed mass size distributions of atmospheric aerosol species in the Negev desert, Israel, during ARACHNE-96

    NASA Astrophysics Data System (ADS)

    Maenhaut, Willy; Ptasinski, Jacek; Cafmeyer, Jan

    1999-04-01

    As part of the 1996 summer intensive of the Aerosol, RAdiation and CHemistry Experiment (ARACHNE-96), the mass size distribution of various airborne particulate elements was studied at a remote site in the Negev Desert, Israel. Aerosol collections were made with 8-stage PIXE International cascade impactors (PCIs) and 12-stage small deposit area low pressure impactors (SDIs) and the samples were analyzed by PIXE for about 20 elements. The mineral elements (Al, Si, Ca, Ti, Fe) exhibited a unimodal size distribution which peaked at about 6 μm, but the contribution of particles larger than 10 μm was clearly more pronounced during the day than during night. Sulphur and Br had a tendency to exhibit two modes in the submicrometer size range, with diameters at about 0.3 and 0.6 μm, respectively. The elements V and Ni, which are indicators of residual fuel burning, showed essentially one fine mode (at 0.3 μm) in addition to a coarse mode which represented the mineral dust contribution. Overall, good agreement was observed between the mass size distributions from the PCI and SDI devices. The PCI was superior to the SDI for studying the size distribution in the coarse size range, but the SDI was clearly superior for unravelling the various modes in the submicrometer size range.

  10. Aerosol particle size distribution in the stratosphere retrieved from SCIAMACHY limb measurements

    NASA Astrophysics Data System (ADS)

    Malinina, Elizaveta; Rozanov, Alexei; Rozanov, Vladimir; Liebing, Patricia; Bovensmann, Heinrich; Burrows, John P.

    2018-04-01

    aerosols in the Earth's atmosphere is of a great importance in the scientific community. While tropospheric aerosol influences the radiative balance of the troposphere and affects human health, stratospheric aerosol plays an important role in atmospheric chemistry and climate change. In particular, information about the amount and distribution of stratospheric aerosols is required to initialize climate models, as well as validate aerosol microphysics models and investigate geoengineering. In addition, good knowledge of stratospheric aerosol loading is needed to increase the retrieval accuracy of key trace gases (e.g. ozone or water vapour) when interpreting remote sensing measurements of the scattered solar light. The most commonly used characteristics to describe stratospheric aerosols are the aerosol extinction coefficient and Ångström coefficient. However, the use of particle size distribution parameters along with the aerosol number density is a more optimal approach. In this paper we present a new retrieval algorithm to obtain the particle size distribution of stratospheric aerosol from space-borne observations of the scattered solar light in the limb-viewing geometry. While the mode radius and width of the aerosol particle size distribution are retrieved, the aerosol particle number density profile remains unchanged. The latter is justified by a lower sensitivity of the limb-scattering measurements to changes in this parameter. To our knowledge this is the first data set providing two parameters of the particle size distribution of stratospheric aerosol from space-borne measurements of scattered solar light. Typically, the mode radius and w can be retrieved with an uncertainty of less than 20 %. The algorithm was successfully applied to the tropical region (20° N-20° S) for 10 years (2002-2012) of SCIAMACHY observations in limb-viewing geometry, establishing a unique data set. Analysis of this new climatology for the particle size

  11. Systematic Relationships Between Lidar Observables and Sizes And Mineral Composition Of Dust Aerosols

    NASA Technical Reports Server (NTRS)

    Van Diedenhoven, Bastiaan; Stangl, Alexander; Perlwitz, Jan; Fridlind, Ann M.; Chowdhary, Jacek; Cairns, Brian

    2015-01-01

    The physical and chemical properties of soil dust aerosol particles fundamentally affect their interaction with climate, including shortwave absorption and radiative forcing, nucleation of cloud droplets and ice crystals, heterogeneous formation of sulfates and nitrates on the surface of dust particles, and atmospheric processing of iron into bioavailable forms that increase the productivity of marine phytoplankton. Lidar measurements, such as extinction-to-backscatter, color and depolarization ratios, are frequently used to distinguish between aerosol types with different physical and chemical properties. The chemical composition of aerosol particles determines their complex refractive index, hence affecting their backscattering properties. Here we present a study on how dust aerosol backscattering and depolarization properties at wavelengths of 355, 532 and 1064 nm are related to size and complex refractive index, which varies with the mineral composition of the dust. Dust aerosols are represented by collections of spheroids with a range of prolate and oblate aspect ratios and their optical properties are obtained using T-matrix calculations. We find simple, systematic relationships between lidar observables and the dust size and complex refractive index that may aid the use of space-based or airborne lidars for direct retrieval of dust properties or for the evaluation of chemical transport models using forward simulated lidar variables. In addition, we present first results on the spatial variation of forward-simulated lidar variables based on a dust model that accounts for the atmospheric cycle of eight different mineral types plus internal mixtures of seven mineral types with iron oxides, which was recently implemented in the NASA GISS Earth System ModelE2.

  12. The Compositions, Particle Sizes, and Distributions of Ice Aerosols in the Mars Mesosphere from 2009-2016 CRISM Visible-NearIR Limb Spectra

    NASA Astrophysics Data System (ADS)

    Clancy, R. T.; Smith, M. D.; Wolff, M. J.; Toigo, A. D.; Seelos, K. D.; Murchie, S. L.

    2016-12-01

    Since 2009, the CRISM visible-nearIR imaging spectrometer onboard the Mars Reconnaissance Orbiter (MRO) has returned over 70 orbits of Mars limb image scans over the 0-130 km altitude range. Pole-to-pole latitudinal coverage is obtained from the near-polar, sun-synchronous (LT 3pm) MRO orbit for a limited set of surface longitudes centered on Tharsis, Valles Mariners, Meridioni, and Hellas regions. Seasonal coverage extends over the full seasonal range (Ls=0-360°), as accumulated over 2009-2016 (MY 29-33), supporting a range of aerosol and airglow studies (Smith et al., 2013; Clancy et al., 2012, 2013). The 0.4-4.0 μm wavelength range of these CRISM limb observations proves particularly suitable to characterizing aerosol composition and particle sizes, particularly for the Mars mesosphere (z=50-100 km), which has only recently been observed with any dedication by MCS (Sefton-Nash et al, 2013) and CRISM limb measurements. Dust and H2O, CO2 ice aerosols are clearly distinguished by their distinct scattering and absorption behaviors over the key 2-4 μm wavelength region, and their particle sizes are well determined by the 0.4-3 μm wavelength region. Several key attributes are determined for Mars mesospheric aerosols. Dust aerosols are largely undetected, and are apparently injected to such heights only during global dust storms (Clancy et al, 2010). Ice clouds are generally common at 55-75 km altitudes, although in separate halves of the Mars year. CO2 and H2O ice clouds are most prominent during the aphelion and perihelion portions of the Mars orbit, respectively. CO2 ice clouds, which occur at low latitudes over specific surface longitudes, present distinct particle size populations ranging from 0.5 to 1.5 μm (Reff). Mesospheric H2O ice clouds exhibit somewhat smaller particle sizes (Reff=0.3-1 μm) and extend over low to mid latitudes. This orbital dependence for mesospheric ice aerosol composition indicates extreme annual (orbital) variation in mesospheric

  13. Chemical characteristics of size-resolved aerosols in winter in Beijing.

    PubMed

    Sun, Kang; Qu, Yu; Wu, Qiong; Han, Tingting; Gu, Jianwei; Zhao, Jingjing; Sun, Yele; Jiang, Qi; Gao, Ziqi; Hu, Min; Zhang, Yuanhang; Lu, Keding; Nordmann, Stephan; Cheng, Yafang; Hou, Li; Ge, Hui; Furuuchi, Masami; Hata, Mitsuhiko; Liu, Xingang

    2014-08-01

    Size-resolved aerosols were continuously collected by a Nano Sampler for 13 days at an urban site in Beijing during winter 2012 to measure the chemical composition of ambient aerosol particles. Data collected by the Nano Sampler and an ACSM (Aerodyne Aerosol Chemical Speciation Monitor) were compared. Between the data sets, similar trends and strong correlations were observed, demonstrating the validity of the Nano Sampler. PM₁₀ and PM₂.₅ concentrations during the measurement were 150.5 ± 96.0 μg/m³ (mean ± standard variation) and 106.9 ± 71.6 μg/m³, respectively. The PM₂.₅/PM₁₀ ratio was 0.70 ± 0.10, indicating that PM₂.₅ dominated PM₁₀. The aerosol size distributions showed that three size bins of 0.5-1, 1-2.5 and 2.5-10 μm contributed 21.8%, 23.3% and 26.0% to the total mass concentration (TMC), respectively. OM (organic matter) and SIA (secondary ionic aerosol, mainly SO₄(2-), NO₃(-) and NH₄(+)) were major components of PM₂.₅. Secondary compounds (SIA and secondary organic carbon) accounted for half of TMC (about 49.8%) in PM₂.₅, and suggested that secondary aerosols significantly contributed to the serious particulate matter pollution observed in winter. Coal burning, biomass combustion, vehicle emissions and SIA were found to be the main sources of PM₂.₅. Mass concentrations of water-soluble ions and undetected materials, as well as their fractions in TMC, strikingly increased with deteriorating particle pollution conditions, while OM and EC (elemental carbon) exhibited different variations, with mass concentrations slightly increasing but fractions in TMC decreasing. Copyright © 2014. Published by Elsevier B.V.

  14. Control of particle size by coagulation of novel condensation aerosols in reservoir chambers.

    PubMed

    Hong, John N; Hindle, Michael; Byron, Peter R

    2002-01-01

    The coagulation growth behavior of capillary aerosol generator (CAG) condensation aerosols was investigated in a series of reservoir chambers. Aerosols consisted of a condensed system of 0.7% w/w benzil (model drug) in propylene glycol (vehicle). These were generated into 250-, 500-, 1,000-, and 2,000-mL reservoirs in both flowing air-stream and static air experiments. Changes in drug and total aerosol particle size were measured by a MOUDI cascade impactor. In both series of experiments the CAG aerosols grew in size. Growth in flowing air-stream experiments was attributed to the amount of accumulation aerosols experienced in reservoirs during sampling and increased with increasing reservoir volume. Mean (SD) MMAD's for the total mass distribution measured for the 250- and 2,000-mL reservoirs were 0.70 (0.02) and 0.87 (0.03) microm, respectively. For the benzil mass distribution, they were 0.64 (0.02) and 0.87 (0.06) microm, respectively. Growth in static air experiments was dependent on the volume aerosol boluses were restricted to and increased with decreasing reservoir volume. Mean (SD) initial MMAD's for the benzil mass distribution for the 250- and 2,000-mL reservoirs were 1.44 (0.03) and 1.24 (0.08) microm, respectively. Holding aerosols for up to 60 sec further increased their size. Mean (SD) MMAD's for benzil after holding for 60 sec in these reservoirs were 2.28 (0.04) and 1.67 (0.09) microm, respectively. The coagulation behavior and therefore particle size of CAG aerosols may be modified and controlled by reservoir chambers for drug targeting within the respiratory tract.

  15. Confinement of surface waves at the air-water interface to control aerosol size and dispersity

    NASA Astrophysics Data System (ADS)

    Nazarzadeh, Elijah; Wilson, Rab; King, Xi; Reboud, Julien; Tassieri, Manlio; Cooper, Jonathan M.

    2017-11-01

    The precise control over the size and dispersity of droplets, produced within aerosols, is of great interest across many manufacturing, food, cosmetic, and medical industries. Amongst these applications, the delivery of new classes of high value drugs to the lungs has recently attracted significant attention from pharmaceutical companies. This is commonly achieved through the mechanical excitation of surface waves at the air liquid interface of a parent liquid volume. Previous studies have established a correlation between the wavelength on the surface of liquid and the final aerosol size. In this work, we show that the droplet size distribution of aerosols can be controlled by constraining the liquid inside micron-sized cavities and coupling surface acoustic waves into different volumes of liquid inside micro-grids. In particular, we show that by reducing the characteristic physical confinement size (i.e., either the initial liquid volume or the cavities' diameters), higher harmonics of capillary waves are revealed with a consequent reduction of both aerosol mean size and dispersity. In doing so, we provide a new method for the generation and fine control of aerosols' sizes distribution.

  16. Raman Lidar Measurements of Aerosol Extinction and Backscattering. Report 2; Derivation of Aerosol Real Refractive Index, Single-Scattering Albedo, and Humidification Factor using Raman Lidar and Aircraft Size Distribution

    NASA Technical Reports Server (NTRS)

    Ferrare, R. A.; Melfi, S. H.; Whiteman, D. N.; Evans, K. D.; Poellot, M.; Kaufman, Y. J.

    1998-01-01

    Aerosol backscattering and extinction profiles measured by the NASA Goddard Space Flight Center Scanning Raman Lidar (SRL) during the remote cloud sensing (RCS) intensive operations period (IOP) at the Department of Energy Atmospheric Radiation Measurement (ARM) southern Great Plains (SGP) site during two nights in April 1994 are discussed. These profiles are shown to be consistent with the simultaneous aerosol size distribution measurements made by a PCASP (Passive Cavity Aerosol Spectrometer Probe) optical particle counter flown on the University of North Dakota Citation aircraft. We describe a technique which uses both lidar and PCASP measurements to derive the dependence of particle size on relative humidity, the aerosol real refractive index n, and estimate the effective single-scattering albedo Omega(sub 0). Values of n ranged between 1.4-1.5 (dry) and 1.37-1.47 (wet); Omega(sub 0) varied between 0.7 and 1.0. The single-scattering albedo derived from this technique is sensitive to the manner in which absorbing particles are represented in the aerosol mixture; representing the absorbing particles as an internal mixture rather than the external mixture assumed here results in generally higher values of Omega(sub 0). The lidar measurements indicate that the change in particle size with relative humidity as measured by the PCASP can be represented in the form discussed by Hattel with the exponent gamma = 0.3 + or - 0.05. The variations in aerosol optical and physical characteristics captured in the lidar and aircraft size distribution measurements are discussed in the context of the meteorological conditions observed during the experiment.

  17. Raman lidar measurements of aerosol extinction and backscattering: 2. Derivation of aerosol real refractive index, single-scattering albedo, and humidification factor using Raman lidar and aircraft size distribution measurements

    NASA Astrophysics Data System (ADS)

    Ferrare, R. A.; Melfi, S. H.; Whiteman, D. N.; Evans, K. D.; Poellot, M.; Kaufman, Y. J.

    1998-08-01

    Aerosol backscattering and extinction profiles measured by the NASA Goddard Space Flight Center Scanning Raman Lidar (SRL) during the remote cloud sensing (RCS) intensive operations period (IOP) at the Department of Energy Atmospheric Radiation Measurement (ARM) southern Great Plains (SGP) site during two nights in April 1994 are discussed. These profiles are shown to be consistent with the simultaneous aerosol size distribution measurements made by a PCASP (Passive Cavity Aerosol Spectrometer Probe) optical particle counter flown on the University of North Dakota Citation aircraft. We describe a technique which uses both lidar and PCASP measurements to derive the dependence of particle size on relative humidity, the aerosol real refractive index n, and estimate the effective single-scattering albedo ω0. Values of n ranged between 1.4-1.5 (dry) and 1.37-1.47 (wet); ω0 varied between 0.7 and 1.0. The single-scattering albedo derived from this technique is sensitive to the manner in which absorbing particles are represented in the aerosol mixture; representing the absorbing particles as an internal mixture rather than the external mixture assumed here results in generally higher values of ω0. The lidar measurements indicate that the change in particle size with relative humidity as measured by the PCASP can be represented in the form discussed by Hanel [1976] with the exponent γ = 0.3 ± 0.05. The variations in aerosol optical and physical characteristics captured in the lidar and aircraft size distribution measurements are discussed in the context of the meteorological conditions observed during the experiment.

  18. Measurement of an electronic cigarette aerosol size distribution during a puff

    NASA Astrophysics Data System (ADS)

    Belka, Miloslav; Lizal, Frantisek; Jedelsky, Jan; Jicha, Miroslav; Pospisil, Jiri

    Electronic cigarettes (e-cigarettes) have become very popular recently because they are marketed as a healthier alternative to tobacco smoking and as a useful tool to smoking cessation. E-cigarettes use a heating element to create an aerosol from a solution usually consisting of propylene glycol, glycerol, and nicotine. Despite the wide spread of e-cigarettes, information about aerosol size distributions is rather sparse. This can be caused by the relative newness of e-cigarettes and by the difficulty of the measurements, in which one has to deal with high concentration aerosol containing volatile compounds. Therefore, we assembled an experimental setup for size measurements of e-cigarette aerosol in conjunction with a piston based machine in order to simulate a typical puff. A TSI scanning mobility particle sizer 3936 was employed to provide information about particle concentrations and sizes. An e-cigarette commercially available on the Czech Republic market was tested and the results were compared with a conventional tobacco cigarette. The particles emitted from the e-cigarette were smaller than those of the conventional cigarette having a CMD of 150 and 200 nm. However, the total concentration of particles from e-cigarette was higher.

  19. Sampling stratospheric aerosols with impactors

    NASA Technical Reports Server (NTRS)

    Oberbeck, Verne R.

    1989-01-01

    Derivation of statistically significant size distributions from impactor samples of rarefield stratospheric aerosols imposes difficult sampling constraints on collector design. It is shown that it is necessary to design impactors of different size for each range of aerosol size collected so as to obtain acceptable levels of uncertainty with a reasonable amount of data reduction.

  20. A reference aerosol for a radon reference chamber

    NASA Astrophysics Data System (ADS)

    Paul, Annette; Keyser, Uwe

    1996-02-01

    The measurement of radon and radon progenies and the calibration of their detection systems require the production and measurement of aerosols well-defined in size and concentration. In the German radon reference chamber, because of its unique chemical and physical properties, carnauba wax is used to produce standard aerosols. The aerosol size spectra are measured on-line by an aerosol measurement system in the range of 10 nm to 1 μm aerodynamic diameter. The experimental set-ups for the study of adsorption of radioactive ions on aerosols as function of their size and concentration will be described, the results presented and further adaptations for an aerosol jet introduced (for example, for the measurement of short-lived neutron-rich isotopes). Data on the dependence of aerosol radius, ion concentration and element selectivity is collected by using a 252Cf-sf source. The fission products of this source range widely in elements, isotopes and charges. Adsorption and the transport of radioactive ions on aerosols have therefore been studied for various ions for the first time, simultaneously with the aerosol size on-line spectrometry.

  1. A fast integrated mobility spectrometer for rapid measurement of sub-micrometer aerosol size distribution, Part I: Design and model evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jian; Pikridas, Michael; Spielman, Steven R.

    This study discusses, a fast integrated mobility spectrometer (FIMS) was previously developed to characterize submicron aerosol size distributions at a frequency of 1 Hz and with high size resolution and counting statistics. However, the dynamic size range of the FIMS was limited to one decade in particle electrical mobility. It was proposed that the FIMS dynamic size range can be greatly increased by using a spatially varying electric field. This electric field creates regions with drastically different field strengths in the separator, such that particles of a wide diameter range can be simultaneously classified and subsequently measured. A FIMS incorporatingmore » this spatially varying electric field is developed. This paper describes the theoretical frame work and numerical simulations of the FIMS with extended dynamic size range, including the spatially varying electric field, particle trajectories, activation of separated particles in the condenser, and the transfer function, transmission efficiency, and mobility resolution. The influences of the particle Brownian motion on FIMS transfer function and mobility resolution are examined. The simulation results indicate that the FIMS incorporating the spatially varying electric field is capable of measuring aerosol size distribution from 8 to 600 nm with high time resolution. As a result, the experimental characterization of the FIMS is presented in an accompanying paper.« less

  2. A fast integrated mobility spectrometer for rapid measurement of sub-micrometer aerosol size distribution, Part I: Design and model evaluation

    DOE PAGES

    Wang, Jian; Pikridas, Michael; Spielman, Steven R.; ...

    2017-06-01

    This study discusses, a fast integrated mobility spectrometer (FIMS) was previously developed to characterize submicron aerosol size distributions at a frequency of 1 Hz and with high size resolution and counting statistics. However, the dynamic size range of the FIMS was limited to one decade in particle electrical mobility. It was proposed that the FIMS dynamic size range can be greatly increased by using a spatially varying electric field. This electric field creates regions with drastically different field strengths in the separator, such that particles of a wide diameter range can be simultaneously classified and subsequently measured. A FIMS incorporatingmore » this spatially varying electric field is developed. This paper describes the theoretical frame work and numerical simulations of the FIMS with extended dynamic size range, including the spatially varying electric field, particle trajectories, activation of separated particles in the condenser, and the transfer function, transmission efficiency, and mobility resolution. The influences of the particle Brownian motion on FIMS transfer function and mobility resolution are examined. The simulation results indicate that the FIMS incorporating the spatially varying electric field is capable of measuring aerosol size distribution from 8 to 600 nm with high time resolution. As a result, the experimental characterization of the FIMS is presented in an accompanying paper.« less

  3. The Saharan Aerosol Long-range Transport and Aerosol-Cloud-Interaction Experiment SALTRACE 2013 - Overview and Early Results (Invited)

    NASA Astrophysics Data System (ADS)

    Weinzierl, B.; Ansmann, A.; Reitebuch, O.; Freudenthaler, V.; Müller, T.; Kandler, K.; Althausen, D.; Busen, R.; Dollner, M.; Dörnbrack, A.; Farrell, D. A.; Gross, S.; Heimerl, K.; Klepel, A.; Kristensen, T. B.; Mayol-Bracero, O. L.; Minikin, A.; Prescod, D.; Prospero, J. M.; Rahm, S.; Rapp, M.; Sauer, D. N.; Schaefler, A.; Toledano, C.; Vaughan, M.; Wiegner, M.

    2013-12-01

    Mineral dust is an important player in the global climate system. In spite of substantial progress in the past decade, many questions in our understanding of the atmospheric and climate effects of mineral dust remain open such as the change of the dust size distribution during transport across the Atlantic Ocean and the associated impact on the radiation budget, the role of wet and dry dust removal mechanisms during transport, and the complex interaction between mineral dust and clouds. To close gaps in our understanding of mineral dust in the climate system, the Saharan Aerosol Long-range Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE: http://www.pa.op.dlr.de/saltrace) was conducted in June/July 2013. SALTRACE is a German initiative combining ground-based and airborne in-situ and lidar measurements with meteorological data, long-term measurements, satellite remote sensing and modeling. During SALTRACE, the DLR research aircraft Falcon was based on Sal, Cape Verde, between 11 and 17 June, and on Barbados between 18 June and 11 July 2013. The Falcon was equipped with a suite of in-situ instruments for the measurement of microphysical and optical aerosol properties and with a nadir-looking 2-μm wind lidar. Ground-based lidar and in-situ instruments were deployed in Barbados and Puerto Rico. Mineral dust from several dust outbreaks was measured by the Falcon between Senegal and Florida. On the eastern side of the Atlantic, dust plumes extended up to 6 km altitude, while the dust layers in the Caribbean were mainly below 4.5 km. The aerosol optical thickness of the dust outbreaks studied ranged from 0.2 to 0.6 at 500 nm in Barbados. Highlights during SALTRACE included the sampling of a dust plume in the Cape Verde area on 17 June which was again measured with the same instrumentation on 21 and 22 June near Barbados. The event was also captured by the ground-based lidar and in-situ instrumentation. Another highlight was the formation of tropical storm

  4. Use of stable carbon and nitrogen isotope ratios in size segregated aerosol particles for the O/I penetration evaluation

    NASA Astrophysics Data System (ADS)

    Garbaras, Andrius; Garbariene, Inga; Masalaite, Agne; Ceburnis, Darius; Krugly, Edvinas; Kvietkus, Kestutis; Remeikis, Vidmantas; Martuzevicius, Dainius

    2015-04-01

    Stable carbon and nitrogen isotope ratio are successfully used in the atmospheric aerosol particle source identification [1, 2], transformation, pollution [3] research. The main purpose of this study was to evaluate the penetration of atmospheric aerosol particles from outdoor to indoor using stable carbon and nitrogen isotope ratios. Six houses in Kaunas (Lithuania) were investigated during February and March 2013. Electrical low pressure impactor was used to measure in real time concentration and size distribution of outdoor aerosol particles. ELPI+ includes 15 channels covering the size range from 0.017 to 10.0 µm. The 25 mm diameter aluminium foils were used to collect aerosol particles. Gravimetric analysis of samples was made using microbalance. In parallel, indoor aerosol samples were collected with a micro-orifice uniform deposition impactor (MOUDI model 110), where the aerosol particles were separated with the nominal D50 cut-off sizes of 0.056, 0.1, 0.18,0.32,0.56, 1.0, 1.8, 3.2, 5.6, 10, 18 μm for impactor stages 1-11, respectively. The impactor was run at a flow rate of 30 L/min. Air quality meters were used to record meteorological conditions (temperature, relative humidity) during the investigated period. All aerosol samples were analyzed for total carbon (TC) and total nitrogen (TN) contents and their isotopic compositions using elemental analyzer (EA) connected to the stable isotope ratio mass spectrometer (IRMS). TC concentration in indoors ranged from 1.5 to 247.5 µg/m3. During the sampling period outdoors TN levels ranged from 0.1 to 10.9 µg/m3. The obtained outdoor δ13C(PM2.5) values varied from -24.21 to -26.3‰, while the δ15N values varied from 2.4 to 11.1 ‰ (average 7.2±2.5 ‰). Indoors carbonaceous aerosol particles were depleted in 13C compared to outdoors in all sampling sites. This depletion in δ13C varied from 0.1 to 3.2 ‰. We think that this depletion occurs due ongoing chemical reactions (oxidation) when aerosol

  5. Biology of the Coarse Aerosol Mode: Insights Into Urban Aerosol Ecology

    NASA Astrophysics Data System (ADS)

    Dueker, E.; O'Mullan, G. D.; Montero, A.

    2015-12-01

    Microbial aerosols have been understudied, despite implications for climate studies, public health, and biogeochemical cycling. Because viable bacterial aerosols are often associated with coarse aerosol particles, our limited understanding of the coarse aerosol mode further impedes our ability to develop models of viable bacterial aerosol production, transport, and fate in the outdoor environment, particularly in crowded urban centers. To address this knowledge gap, we studied aerosol particle biology and size distributions in a broad range of urban and rural settings. Our previously published findings suggest a link between microbial viability and local production of coarse aerosols from waterways, waste treatment facilities, and terrestrial systems in urban and rural environments. Both in coastal Maine and in New York Harbor, coarse aerosols and viable bacterial aerosols increased with increasing wind speeds above 4 m s-1, a dynamic that was observed over time scales ranging from minutes to hours. At a New York City superfund-designated waterway regularly contaminated with raw sewage, aeration remediation efforts resulted in significant increases of coarse aerosols and bacterial aerosols above that waterway. Our current research indicates that bacterial communities in aerosols at this superfund site have a greater similarity to bacterial communities in the contaminated waterway with wind speeds above 4 m s-1. Size-fractionated sampling of viable microbial aerosols along the urban waterfront has also revealed significant shifts in bacterial aerosols, and specifically bacteria associated with coarse aerosols, when wind direction changes from onshore to offshore. This research highlights the key connections between bacterial aerosol viability and the coarse aerosol fraction, which is important in assessments of production, transport, and fate of bacterial contamination in the urban environment.

  6. Real-Time Measurement of Electronic Cigarette Aerosol Size Distribution and Metals Content Analysis

    PubMed Central

    Brinkman, Marielle C.; Granville, Courtney A.; Gordon, Sydney M.; Clark, Pamela I.

    2016-01-01

    Introduction: Electronic cigarette (e-cigarette) use is increasing worldwide and is highest among both daily and nondaily smokers. E-cigarettes are perceived as a healthier alternative to combustible tobacco products, but their health risk factors have not yet been established, and one of them is lack of data on aerosol size generated by e-cigarettes. Methods: We applied a real-time, high-resolution aerosol differential mobility spectrometer to monitor the evolution of aerosol size and concentration during puff development. Particles generated by e-cigarettes were immediately delivered for analysis with minimal dilution and therefore with minimal sample distortion, which is critically important given the highly dynamic aerosol/vapor mixture inherent to e-cigarette emissions. Results: E-cigarette aerosols normally exhibit a bimodal particle size distribution: nanoparticles (11–25nm count median diameter) and submicron particles (96–175nm count median diameter). Each mode has comparable number concentrations (107–108 particles/cm3). “Dry puff” tests conducted with no e-cigarette liquid (e-liquid) present in the e-cigarette tank demonstrated that under these conditions only nanoparticles were generated. Analysis of the bulk aerosol collected on the filter showed that e-cigarette emissions contained a variety of metals. Conclusions: E-cigarette aerosol size distribution is different from that of combustible tobacco smoke. E-cigarettes generate high concentrations of nanoparticles and their chemical content requires further investigation. Despite the small mass of nanoparticles, their toxicological impact could be significant. Toxic chemicals that are attached to the small nanoparticles may have greater adverse health effects than when attached to larger submicron particles. Implications: The e-cigarette aerosol size distribution is different from that of combustible tobacco smoke and typically exhibits a bimodal behavior with comparable number concentrations

  7. Rapid Measurements of Aerosol Size Distribution and Hygroscopic Growth via Image Processing with a Fast Integrated Mobility Spectrometer (FIMS)

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Pinterich, T.; Spielman, S. R.; Hering, S. V.; Wang, J.

    2017-12-01

    Aerosol size distribution and hygroscopicity are among key parameters in determining the impact of atmospheric aerosols on global radiation and climate change. In situ submicron aerosol size distribution measurements commonly involve a scanning mobility particle sizer (SMPS). The SMPS scanning time is in the scale of minutes, which is often too slow to capture the variation of aerosol size distribution, such as for aerosols formed via nucleation processes or measurements onboard research aircraft. To solve this problem, a Fast Integrated Mobility Spectrometer (FIMS) based on image processing was developed for rapid measurements of aerosol size distributions from 10 to 500 nm. The FIMS consists of a parallel plate classifier, a condenser, and a CCD detector array. Inside the classifier an electric field separates charged aerosols based on electrical mobilities. Upon exiting the classifier, the aerosols pass through a three stage growth channel (Pinterich et al. 2017; Spielman et al. 2017), where aerosols as small as 7 nm are enlarged to above 1 μm through water or heptanol condensation. Finally, the grown aerosols are illuminated by a laser sheet and imaged onto a CCD array. The images provide both aerosol concentration and position, which directly relate to the aerosol size distribution. By this simultaneous measurement of aerosols with different sizes, the FIMS provides aerosol size spectra nearly 100 times faster than the SMPS. Recent deployment onboard research aircraft demonstrated that the FIMS is capable of measuring aerosol size distributions in 1s (Figure), thereby offering a great advantage in applications requiring high time resolution (Wang et al. 2016). In addition, the coupling of the FIMS with other conventional aerosol instruments provides orders of magnitude more rapid characterization of aerosol optical and microphysical properties. For example, the combination of a differential mobility analyzer, a relative humidity control unit, and a FIMS was

  8. Broadband Measurement of Aerosol Extinction in the Visible Range

    NASA Astrophysics Data System (ADS)

    He, Quanfu; Bluvshtein, Nir; Segev, Lior; Flores, Michel; Rudich, Yinon; Washenfelder, Rebecca; Brown, Steven

    2017-04-01

    Atmospheric aerosols influence the Earth's radiative budget directly by scattering and absorbing incoming solar radiation. Aerosol direct forcing remains one of the largest uncertainties in quantifying the role that aerosols play in the Earth's radiative budget. The optical properties of aerosols vary as a function of wavelength, but few measurements reported the wavelength dependence of aerosol extinction cross section and complex refractive indices, particularly in the blue and visible spectral range. There is also currently a large gap in our knowledge of how the optical properties evolve as a function of atmospheric aging in the visible spectrum. In this study, we constructed a new and novel laboratory instrument to measure aerosol extinction as a function of wavelength, using cavity enhanced spectroscopy with a white light source. This broadband cavity enhanced spectroscopy (BBCES) covers the 395-700 nm spectral region using a broadband light source and a grating spectrometer with charge-coupled device detector (CCD). We evaluated this BBCES by measuring extinction cross section for aerosols that are pure scattering, slightly absorbing and strongly absorbing atomized from standard materials. We also retrieved the refractive indices from the measured extinction cross sections. Secondary organic aerosols from biogenic and anthropogenic precursors were "aged" to differential time scales (1 to 10 days) in an Oxidation Flow Reactor (OFR) under the combined influence of OH, O3 and UV light. The new BBCES was used to online measure the extinction cross sections of the SOA. This talk will provide a comprehensive understanding of aerosol optical properties alerting during aging process in the 395 - 700 nm spectrum.

  9. Fast Airborne Aerosol Size and Chemistry Measurements with the High Resolution Aerosol Mass Spectrometer during the MILAGRO Campaign

    NASA Technical Reports Server (NTRS)

    DeCarlo, P. F.; Dunlea, E. J.; Kimmel, J. R.; Aiken, A. C.; Sueper, D.; Crounse, J.; Wennberg, P. O.; Emmons, L.; Shinozuka, Y.; Clarke, A.; hide

    2007-01-01

    The concentration, size, and composition of non-refractory submicron aerosol (NR-PM(sub l)) was measured over Mexico City and central Mexico with a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) onboard the NSF/NCAR C-130 aircraft as part of the MILAGRO field campaign. This was the first aircraft deployment of the HR-ToF-AMS. During the campaign the instrument performed very well, and provided 12 s data. The aerosol mass from the AMS correlates strongly with other aerosol measurements on board the aircraft. Organic aerosol (OA) species dominate the NR-PM(sub l) mass. OA correlates strongly with CO and HCN indicating that pollution (mostly secondary OA, SOA) and biomass burning (BB) are the main OA sources. The OA to CO ratio indicates a typical value for aged air of around 80 microg/cubic m (STP) ppm(exp -1). This is within the range observed in outflow from the Northeastern US, which could be due to a compensating effect between higher BB but lower biogenic VOC emissions during this study. The O/C atomic ratio for OA is calculated from the HR mass spectra and shows a clear increase with photochemical age, as SOA forms rapidly and quickly overwhelms primary urban OA, consistent with Volkamer et al. (2006) and Kleinman et al. (2008). The stability of the OA/CO while O/C increases with photochemical age implies a net loss of carbon from the OA. BB OA is marked by signals at m/z 60 and 73, and also by a signal enhancement at large m/z indicative of larger molecules or more resistance to fragmentation. The main inorganic components show different spatial patterns and size distributions. Sulfate is regional in nature with clear volcanic and petrochemical/power plant sources, while the urban area is not a major regional source for this species. Nitrate is enhanced significantly in the urban area and immediate outflow, and is strongly correlated with CO indicating a strong urban source. The importance of nitrate decreases with distance from the city

  10. Size-specific composition of aerosols in the El Chichon volcanic cloud

    NASA Technical Reports Server (NTRS)

    Woods, D. C.; Chuan, R. L.

    1983-01-01

    A NASA U-2 research aircraft flew sampling missions in April, May, July, November, and December 1982 aimed at obtaining in situ data in the stratospheric cloud produced from the March-April 1982 El Chichon eruptions. Post flight analyses provided information on the aerosol composition and morphology. The particles ranged in size from smaller than 0.05 m to larger than 20 m diameter and were quite complex in composition. In the April, May, and July samples the aerosol mass was dominated by magmatic and lithic particles larger than about 3 m. The submicron particles consisted largely of sulfuric acid. Halite particles, believed to be related to a salt dome beneath El Chichon, were collected in the stratosphere in April and May. On the July 23 flight, copper-zinc oxide particles were collected. In July, November, and December, in addition to the volcanic ash and acid particles, carbon-rich particles smaller than about 0.1 m aerodynamic diameter were abundant.

  11. Chemical characteristics of size-resolved atmospheric aerosols in Iasi, north-eastern Romania: nitrogen-containing inorganic compounds control aerosol chemistry in the area

    NASA Astrophysics Data System (ADS)

    Giorgiana Galon-Negru, Alina; Iulian Olariu, Romeo; Arsene, Cecilia

    2018-04-01

    This study assesses the effects of particle size and season on the content of the major inorganic and organic aerosol ionic components in the Iasi urban area, north-eastern Romania. Continuous measurements were carried out over 2016 using a cascade Dekati low-pressure impactor (DLPI) performing aerosol size classification in 13 specific fractions over the 0.0276-9.94 µm size range. Fine-particulate Cl-, NO3-, NH4+, and K+ exhibited clear minima during the warm season and clear maxima over the cold season, mainly due to trends in emission sources, changes in the mixing layer depth and specific meteorological conditions. Fine-particulate SO42- did not show much variation with respect to seasons. Particulate NH4+ and NO3- ions were identified as critical parameters controlling aerosol chemistry in the area, and their measured concentrations in fine-mode (PM2.5) aerosols were found to be in reasonable good agreement with modelled values for winter but not for summer. The likely reason is that NH4NO3 aerosols are lost due to volatility over the warm season. We found that NH4+ in PM2.5 is primarily associated with SO42- and NO3- but not with Cl-. Actually, indirect ISORROPIA-II estimations showed that the atmosphere in the Iasi area might be ammonia rich during both the cold and warm seasons, enabling enough NH3 to be present to neutralize H2SO4, HNO3, and HCl acidic components and to generate fine-particulate ammonium salts, in the form of (NH4)2SO4, NH4NO3, and NH4Cl. ISORROPIA-II runs allowed us to estimate that over the warm season ˜ 35 % of the total analysed samples had very strongly acidic pH (0-3), a fraction that rose to ˜ 43 % over the cold season. Moreover, while in the cold season the acidity is mainly accounted for by inorganic acids, in the warm ones there is an important contribution by other compounds, possibly organic. Indeed, changes in aerosol acidity would most likely impact the gas-particle partitioning of semi-volatile organic acids. Overall, we

  12. Dust Aerosol Particle Size at the Mars Science Laboratory Landing Site

    NASA Astrophysics Data System (ADS)

    Vicente-Retortillo, Alvaro; Martínez, Germán; Renno, Nilton; Lemmon, Mark; de la Torre-Juárez, Manuel

    2017-04-01

    We have developed a new methodology to retrieve dust aerosol particle size from Mars Science Laboratory (MSL) observations [1]. We use photodiode output currents measured by the Rover Environmental Monitoring Station (REMS) UV sensor (UVS), ancillary data records (ADR) containing the geometry of the rover and the Sun, and values of the atmospheric opacity retrieved from Mastcam measurements. In particular, we analyze REMS UVS measurements when the Sun is blocked by the masthead and the mast of the rover since the behavior of the output currents during these shadow events depends on the dust phase function, which depends on particle size. The retrieved dust effective radii show a significant seasonal variability, ranging from 0.6 μm during the low opacity season (Ls = 60° - 140°) to 2 μm during the high opacity season (Ls = 180° - 360°). The relationship between atmospheric opacity and dust particle size indicates that dust-lifting events originate at various distances from Gale Crater. The external origin of high dust content events is consistent with the strong and persistent northerly and northwesterly winds at Gale Crater during the perihelion season centered around Ls = 270° [2]. From an interannual perspective, the general behavior of the particle size evolution in MY 31-32 is similar to that in MY 32-33, although some differences are noted. During the low opacity season (Ls = 60° - 140°), the retrieved dust effective radii in MY 33 are significantly lower than in MY 32. A larger contribution of water ice clouds to the total atmospheric opacity during the aphelion season of MY 33 can partially explain such a departure. Differences during the perihelion season are caused by interannual variability of enhanced opacity events. The determination of dust aerosol particle size is important to improve the accuracy of models in simulating the UV environment at the surface [3] and in predicting heating rates, which affect the atmospheric thermal and dynamical

  13. Season-dependent size distribution of aerosols over the tropical coastal environment of south-west India

    NASA Astrophysics Data System (ADS)

    Aryasree, S.; Nair, Prabha R.

    2018-01-01

    This paper presents the results of a detailed study on the size characteristics of aerosols at the tropical coastal site Thiruvananthapuram based on the in-situ measurements of size resolved aerosol number density using an aerosol spectrometer, covering a period of 28 months from September 2011 to December 2013. The diurnal pattern of aerosol number density is characterized by day time low and a two-fold increase during nighttime and these changes are closely associated with the strong mesoscale features namely the sea breeze and land breeze prevailing at the site. Aerosol Number Size Distribution (NSD) depicts a multi-modal nature with two prominent modes, one ≤0.1 μm and other ∼1 μm. Two other less pronounced modes are also observed in the NSD, one ∼0.3-0.5 μm and other ∼5-8 μm. The NSDs also exhibited strong seasonal changes linked with the synoptic meteorological feature of this region namely the South Asian monsoon. The seasonal NSDs were parameterized and analyzed. In addition to this, the effects of meteorological parameters temperature, relative humidity, and wind speed and airflow patterns on aerosol number density as revealed by partial correlation analysis were found to be aerosol size dependent.

  14. The Saharan Aerosol Long-range Transport and Aerosol-Cloud Interaction Experiment (SALTRACE 2013) - An overview

    NASA Astrophysics Data System (ADS)

    Weinzierl, Bernadett; Ansmann, Albert; Reitebuch, Oliver; Freudenthaler, Volker; Müller, Thomas; Kandler, Konrad; Althausen, Dietrich; Chouza, Fernando; Dollner, Maximilian; Farrell, David; Groß, Silke; Heinold, Bernd; Kristensen, Thomas B.; Mayol-Bracero, Olga L.; Omar, Ali; Prospero, Joseph; Sauer, Daniel; Schäfler, Andreas; Toledano, Carlos; Tegen, Ina

    2015-04-01

    Saharan mineral dust is regularly transported over long distances impacting air quality, health, weather and climate thousands of kilometers downwind of the Sahara. During transport, the properties of mineral dust may be modified thereby changing the associated impact on the radiation budget. Although mineral dust is of key importance for the climate system many questions such as the change of the dust size distribution during long-range transport, the role of wet and dry removal mechanisms, and the complex interaction between mineral dust and clouds remain open. To investigate the aging and modification of Saharan mineral dust during long-range transport across the Atlantic Ocean, the Saharan Aerosol Long-range Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE: http://www.pa.op.dlr.de/saltrace) was conducted in June/July 2013. SALTRACE was designed as a closure experiment combining ground-based lidar, in-situ and sun photometer instruments deployed on Cape Verde, Barbados and Puerto Rico, with airborne measurements of the DLR research aircraft Falcon, satellite observations and model simulations. During SALTRACE, mineral dust from five dust outbreaks was studied under different atmospheric conditions and a unique data set on the chemical, microphysical and optical properties of aged mineral dust was gathered. For the first time, Lagrangian sampling of a dust plume in the Cape Verde area on 17 June 2013 which was again measured with the same instrumentation on 21 and 22 June 2013 near Barbados was realized. Further highlights of SALTRACE include the formation and evolution of tropical storm Chantal in a dusty environment and the interaction of dust with mixed-phase clouds. In our presentation, we give an overview of the SALTRACE study, discuss the meteorological situation and the dust transport during SALTRACE and highlight selected results from SALTRACE.

  15. Aerosol Size, CCN, and Black Carbon Properties at a Coastal Site in the Eastern U.S.

    NASA Astrophysics Data System (ADS)

    Royalty, T. M.; Petters, M. D.; Grieshop, A. P.; Meskhidze, N.; Reed, R. E.; Phillips, B.; Dawson, K. W.

    2015-12-01

    Atmospheric aerosols play an important role in regulating the global radiative budget through direct and indirect effects. To date, the role of sea spray aerosols in modulating climate remains poorly understood. Here we present results from measurements performed at the United States Army Corps of Engineers' Field Research Facility in Duck, North Carolina, USA. Aerosol mobility size distributions (10-600 nm), refractory black carbon (rBC) and scattering particle size distributions (200-620 nm), and size resolved cloud condensation nuclei distributions (.07% - .6% supersaturation) were collected at the end of a 560m pier. Aerosol characteristics associated with northerly, high wind speed (15+ m s-1) flow originating from an oceanic trajectory are contrasted with aerosol properties observed during a weak to moderate westerly flow originating from a continental trajectory. Both marine and continental air masses had aerosol with bi-modal number size distributions with modes centered at 30nm and 140nm. In the marine air-mass, the CCN concentration at supersaturation of 0.4%, total aerosol number, surface, and volume concentration were low. rBC number concentration (D > 200 nm) associated with the marine air-mass was an order of magnitude less than continental number concentration and indicative of relatively unpolluted air. These measurements are consistent with measurements from other coastal sites under marine influence. The relative proportion of Aitken mode size particles increased from 1:2 to 2:1 while aerosol surface area was < 25 μm2 cm-3, suggesting that conditions upwind were potentially conducive to new particle formation. Overall, these results will contribute a better understanding to composition and size variation of marine aerosols.

  16. Decomposition of Atmospheric Aerosol Phase Function by Particle Size and Morphology via Single Particle Scattering Measurements

    NASA Astrophysics Data System (ADS)

    Aptowicz, K. B.; Pan, Y.; Martin, S.; Fernandez, E.; Chang, R.; Pinnick, R. G.

    2013-12-01

    We report upon an experimental approach that provides insight into how particle size and shape affect the scattering phase function of atmospheric aerosol particles. Central to our approach is the design of an apparatus that measures the forward and backward scattering hemispheres (scattering patterns) of individual atmospheric aerosol particles in the coarse mode range. The size and shape of each particle is discerned from the corresponding scattering pattern. In particular, autocorrelation analysis is used to differentiate between spherical and non-spherical particles, the calculated asphericity factor is used to characterize the morphology of non-spherical particles, and the integrated irradiance is used for particle sizing. We found the fraction of spherical particles decays exponentially with particle size, decreasing from 11% for particles on the order of 1 micrometer to less than 1% for particles over 5 micrometer. The average phase functions of subpopulations of particles, grouped by size and morphology, are determined by averaging their corresponding scattering patterns. The phase functions of spherical and non-spherical atmospheric particles are shown to diverge with increasing size. In addition, the phase function of non-spherical particles is found to vary little as a function of the asphericity factor.

  17. Evolution of size-segregated aerosol mass concentration during the Antarctic summer at Northern Foothills, Victoria Land

    NASA Astrophysics Data System (ADS)

    Illuminati, Silvia; Bau, Sébastien; Annibaldi, Anna; Mantini, Caterina; Libani, Giulia; Truzzi, Cristina; Scarponi, Giuseppe

    2016-01-01

    Within the framework of the Italian National Programm for Antarctic Research (PNRA), the first direct gravimetric measurements of size-segregated aerosol fractions were carried out at Faraglione Camp, ˜3-km far from the Italian station "M. Zucchelli" (Terra Nova Bay, Ross Sea), during the 2014-2015 austral summer. A six-stage high-volume cascade impactor with size classes between 10 μm and 0.49 μm, and, in parallel, for comparison purposes, a PM10 high-volume sampler (50% cut-off aerodynamic diameter of 10 μm) were used. A 10-day sampling strategy was adopted. Aerosol mass measurements were carried out before and after exposure by using a microbalance specifically designed for the filter weight and placed inside a glove bag in order to maintain stable temperature and humidity conditions during weighing sessions. Measured atmospheric concentrations (referred to the "actual air conditions" of mean temperature of 268 K and mean pressure of 975 hPa) of size-segregated aerosol fractions showed the following values, given as size range, means (interquartile range): Dp < 0.49 μm, 0.33 (0.26-0.34) μg m-3; 0.49-0.95 μm, 0.20 (0.19-0.24) μg m-3; 0.95-1.5 μm, 0.16 (0.13-0.21) μg m-3; 1.5-3.0 μm 0.075 (0.05-0.11) μg m-3; 3.0-7.2 μm 0.12 (0.02-0.19) μg m-3; 7.2-10 μm 0.06 (0.01-0.03) μg m-3. The average mass concentration of the total PM10 at Faraglione Camp for the entire sampling period was 0.92 (0.67-1.1) μg m-3. Although a great variability, the aerosol mass concentration showed a tri-modal distribution, with an accumulation mode (in the range 0.1-1.0 μm) and two coarse modes (CM1 in the range 1.0-3.0 μm, and CM2 in the range 3.0-10 μm). From 50% to 90% of the PM10 mass comes from particles of a size smaller than 1.0 μm. The two coarse modes represented from ˜5% to ˜35% of the PM10, showing opposite seasonal trends (CM1 decreased while CM2 increased). During summer, PM10 mass concentration increased to a maximum of ˜1.6 μg m-3 at mid-December, while

  18. Generating monodisperse pharmacological aerosols using the spinning-top aerosol generator.

    PubMed

    Biddiscombe, Martyn F; Barnes, Peter J; Usmani, Omar S

    2006-01-01

    Pharmacological aerosols of precisely controlled particle size and narrow dispersity can be generated using the spinning-top aerosol generator (STAG). The ability of the STAG to generate monodisperse aerosols from solutions of raw drug compounds makes it a valuable research instrument. In this paper, the versatility of this instrument has been further demonstrated by aerosolizing a range of commercially available nebulized pulmonary therapy preparations. Nebules of Flixotide (fluticasone propionate), Pulmicort (budesonide), Combivent (salbutamol sulphate and ipratropium bromide), Bricanyl (terbutaline sulphate), Atrovent(ipratropium bromide), and Salamol (salbutamol sulphate) were each mixed with ethanol and delivered to the STAG. Monodisperse drug aerosol distributions were generated with MMADs of 0.95-6.7 microm. To achieve larger particle sizes from the nebulizer drug suspensions, the STAG formed compound particle agglomerates derived from the smaller insoluble drug particles. These compound agglomerates behaved aerodynamically as a single particle, and this was verified using an aerodynamic particle sizer and an Andersen Cascade Impactor. Scanning electron microscope images demonstrated their physical structure. On the other hand using the nebulizer drug solutions, spherical particles proportional to the original droplet diameter were generated. The aerosols generated by the STAG can allow investigators to study the scientific principles of inhaled drug deposition and lung physiology for a range of therapeutic agents.

  19. Growth Kinetics and Size Distribution Dynamics of Viscous Secondary Organic Aerosol

    DOE PAGES

    Zaveri, Rahul A.; Shilling, John E.; Zelenyuk, Alla; ...

    2017-12-15

    Low bulk diffusivity inside viscous semisolid atmospheric secondary organic aerosol (SOA) can prolong equilibration time scale, but its broader impacts on aerosol growth and size distribution dynamics are poorly understood. In this article, we present quantitative insights into the effects of bulk diffusivity on the growth and evaporation kinetics of SOA formed under dry conditions from photooxidation of isoprene in the presence of a bimodal aerosol consisting of Aitken (ammonium sulfate) and accumulation (isoprene or α-pinene SOA) mode particles. Aerosol composition measurements and evaporation kinetics indicate that isoprene SOA is composed of several semivolatile organic compounds (SVOCs), with some reversiblymore » reacting to form oligomers. Model analysis shows that liquid-like bulk diffusivities can be used to fit the observed evaporation kinetics of accumulation mode particles but fail to explain the growth kinetics of bimodal aerosol by significantly under-predicting the evolution of the Aitken mode. In contrast, the semisolid scenario successfully reproduces both evaporation and growth kinetics, with the interpretation that hindered partitioning of SVOCs into large viscous particles effectively promotes the growth of smaller particles that have shorter diffusion time scales. This effect has important implications for the growth of atmospheric ultrafine particles to climatically active sizes.« less

  20. Growth Kinetics and Size Distribution Dynamics of Viscous Secondary Organic Aerosol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaveri, Rahul A.; Shilling, John E.; Zelenyuk, Alla

    Low bulk diffusivity inside viscous semisolid atmospheric secondary organic aerosol (SOA) can prolong equilibration time scale, but its broader impacts on aerosol growth and size distribution dynamics are poorly understood. In this article, we present quantitative insights into the effects of bulk diffusivity on the growth and evaporation kinetics of SOA formed under dry conditions from photooxidation of isoprene in the presence of a bimodal aerosol consisting of Aitken (ammonium sulfate) and accumulation (isoprene or α-pinene SOA) mode particles. Aerosol composition measurements and evaporation kinetics indicate that isoprene SOA is composed of several semivolatile organic compounds (SVOCs), with some reversiblymore » reacting to form oligomers. Model analysis shows that liquid-like bulk diffusivities can be used to fit the observed evaporation kinetics of accumulation mode particles but fail to explain the growth kinetics of bimodal aerosol by significantly under-predicting the evolution of the Aitken mode. In contrast, the semisolid scenario successfully reproduces both evaporation and growth kinetics, with the interpretation that hindered partitioning of SVOCs into large viscous particles effectively promotes the growth of smaller particles that have shorter diffusion time scales. This effect has important implications for the growth of atmospheric ultrafine particles to climatically active sizes.« less

  1. Real-Time Measurement of Electronic Cigarette Aerosol Size Distribution and Metals Content Analysis.

    PubMed

    Mikheev, Vladimir B; Brinkman, Marielle C; Granville, Courtney A; Gordon, Sydney M; Clark, Pamela I

    2016-09-01

    Electronic cigarette (e-cigarette) use is increasing worldwide and is highest among both daily and nondaily smokers. E-cigarettes are perceived as a healthier alternative to combustible tobacco products, but their health risk factors have not yet been established, and one of them is lack of data on aerosol size generated by e-cigarettes. We applied a real-time, high-resolution aerosol differential mobility spectrometer to monitor the evolution of aerosol size and concentration during puff development. Particles generated by e-cigarettes were immediately delivered for analysis with minimal dilution and therefore with minimal sample distortion, which is critically important given the highly dynamic aerosol/vapor mixture inherent to e-cigarette emissions. E-cigarette aerosols normally exhibit a bimodal particle size distribution: nanoparticles (11-25nm count median diameter) and submicron particles (96-175nm count median diameter). Each mode has comparable number concentrations (10(7)-10(8) particles/cm(3)). "Dry puff" tests conducted with no e-cigarette liquid (e-liquid) present in the e-cigarette tank demonstrated that under these conditions only nanoparticles were generated. Analysis of the bulk aerosol collected on the filter showed that e-cigarette emissions contained a variety of metals. E-cigarette aerosol size distribution is different from that of combustible tobacco smoke. E-cigarettes generate high concentrations of nanoparticles and their chemical content requires further investigation. Despite the small mass of nanoparticles, their toxicological impact could be significant. Toxic chemicals that are attached to the small nanoparticles may have greater adverse health effects than when attached to larger submicron particles. The e-cigarette aerosol size distribution is different from that of combustible tobacco smoke and typically exhibits a bimodal behavior with comparable number concentrations of nanoparticles and submicron particles. While vaping the e

  2. Size distribution dynamics reveal particle-phase chemistry in organic aerosol formation

    PubMed Central

    Shiraiwa, Manabu; Yee, Lindsay D.; Schilling, Katherine A.; Loza, Christine L.; Craven, Jill S.; Zuend, Andreas; Ziemann, Paul J.; Seinfeld, John H.

    2013-01-01

    Organic aerosols are ubiquitous in the atmosphere and play a central role in climate, air quality, and public health. The aerosol size distribution is key in determining its optical properties and cloud condensation nucleus activity. The dominant portion of organic aerosol is formed through gas-phase oxidation of volatile organic compounds, so-called secondary organic aerosols (SOAs). Typical experimental measurements of SOA formation include total SOA mass and atomic oxygen-to-carbon ratio. These measurements, alone, are generally insufficient to reveal the extent to which condensed-phase reactions occur in conjunction with the multigeneration gas-phase photooxidation. Combining laboratory chamber experiments and kinetic gas-particle modeling for the dodecane SOA system, here we show that the presence of particle-phase chemistry is reflected in the evolution of the SOA size distribution as well as its mass concentration. Particle-phase reactions are predicted to occur mainly at the particle surface, and the reaction products contribute more than half of the SOA mass. Chamber photooxidation with a midexperiment aldehyde injection confirms that heterogeneous reaction of aldehydes with organic hydroperoxides forming peroxyhemiacetals can lead to a large increase in SOA mass. Although experiments need to be conducted with other SOA precursor hydrocarbons, current results demonstrate coupling between particle-phase chemistry and size distribution dynamics in the formation of SOAs, thereby opening up an avenue for analysis of the SOA formation process. PMID:23818634

  3. Size distribution dynamics reveal particle-phase chemistry in organic aerosol formation.

    PubMed

    Shiraiwa, Manabu; Yee, Lindsay D; Schilling, Katherine A; Loza, Christine L; Craven, Jill S; Zuend, Andreas; Ziemann, Paul J; Seinfeld, John H

    2013-07-16

    Organic aerosols are ubiquitous in the atmosphere and play a central role in climate, air quality, and public health. The aerosol size distribution is key in determining its optical properties and cloud condensation nucleus activity. The dominant portion of organic aerosol is formed through gas-phase oxidation of volatile organic compounds, so-called secondary organic aerosols (SOAs). Typical experimental measurements of SOA formation include total SOA mass and atomic oxygen-to-carbon ratio. These measurements, alone, are generally insufficient to reveal the extent to which condensed-phase reactions occur in conjunction with the multigeneration gas-phase photooxidation. Combining laboratory chamber experiments and kinetic gas-particle modeling for the dodecane SOA system, here we show that the presence of particle-phase chemistry is reflected in the evolution of the SOA size distribution as well as its mass concentration. Particle-phase reactions are predicted to occur mainly at the particle surface, and the reaction products contribute more than half of the SOA mass. Chamber photooxidation with a midexperiment aldehyde injection confirms that heterogeneous reaction of aldehydes with organic hydroperoxides forming peroxyhemiacetals can lead to a large increase in SOA mass. Although experiments need to be conducted with other SOA precursor hydrocarbons, current results demonstrate coupling between particle-phase chemistry and size distribution dynamics in the formation of SOAs, thereby opening up an avenue for analysis of the SOA formation process.

  4. Aerosol in the Pacific troposphere

    NASA Technical Reports Server (NTRS)

    Clarke, Antony D.

    1989-01-01

    The use of near real-time optical techniques is emphasized for the measurement of mid-tropospheric aerosol over the Central Pacific. The primary focus is on measurement of the aerosol size distribution over the range of particle diameters from 0.15 to 5.0 microns that are essential for modeling CO2 backscatter values in support of the laser atmospheric wind sounder (LAWS) program. The measurement system employs a LAS-X (Laser Aerosol Spectrometer-PMS, Boulder, CO) with a custom 256 channel pulse height analyzer and software for detailed measurement and analysis of aerosol size distributions. A thermal preheater system (Thermo Optic Aerosol Descriminator (TOAD) conditions the aerosol in a manner that allows the discrimination of the size distribution of individual aerosol components such as sulfuric acid, sulfates and refractory species. This allows assessment of the relative contribution of each component to the BCO2 signal. This is necessary since the different components have different sources, exhibit independent variability and provide different BCO2 signals for a given mass and particle size. Field activities involve experiments designed to examine both temporal and spatial variability of these aerosol components from ground based and aircraft platforms.

  5. Size-segregated aerosol in a hot-spot pollution urban area: Chemical composition and three-way source apportionment.

    PubMed

    Bernardoni, V; Elser, M; Valli, G; Valentini, S; Bigi, A; Fermo, P; Piazzalunga, A; Vecchi, R

    2017-12-01

    In this work, a comprehensive characterisation and source apportionment of size-segregated aerosol collected using a multistage cascade impactor was performed. The samples were collected during wintertime in Milan (Italy), which is located in the Po Valley, one of the main pollution hot-spot areas in Europe. For every sampling, size-segregated mass concentration, elemental and ionic composition, and levoglucosan concentration were determined. Size-segregated data were inverted using the program MICRON to identify and quantify modal contributions of all the measured components. The detailed chemical characterisation allowed the application of a three-way (3-D) receptor model (implemented using Multilinear Engine) for size-segregated source apportionment and chemical profiles identification. It is noteworthy that - as far as we know - this is the first time that three-way source apportionment is attempted using data of aerosol collected by traditional cascade impactors. Seven factors were identified: wood burning, industry, resuspended dust, regional aerosol, construction works, traffic 1, and traffic 2. Further insights into size-segregated factor profiles suggested that the traffic 1 factor can be associated to diesel vehicles and traffic 2 to gasoline vehicles. The regional aerosol factor resulted to be the main contributor (nearly 50%) to the droplet mode (accumulation sub-mode with modal diameter in the range 0.5-1 μm), whereas the overall contribution from the two factors related to traffic was the most important one in the other size modes (34-41%). The results showed that applying a 3-D receptor model to size-segregated samples allows identifying factors of local and regional origin while receptor modelling on integrated PM fractions usually singles out factors characterised by primary (e.g. industry, traffic, soil dust) and secondary (e.g. ammonium sulphate and nitrate) origin. Furthermore, the results suggested that the information on size

  6. Size Resolved Measurements of Springtime Aerosol Particles over the Northern South China Sea

    NASA Technical Reports Server (NTRS)

    Atwood, Samuel A.; Reid, Jeffrey S.; Kreidenweis, Sonia M.; Cliff, Stephen S.; Zhao, Yongjing; Lin, Neng-Huei; Tsay, Si-Chee; Chu, Yu-Chi; Westphal, Douglas L.

    2012-01-01

    Large sources of aerosol particles and their precursors are ubiquitous in East Asia. Such sources are known to impact the South China Sea (henceforth SCS), a sometimes heavily polluted region that has been suggested as particularly vulnerable to climate change. To help elucidate springtime aerosol transport into the SCS, an intensive study was performed on the remote Dongsha (aka Pratas) Islands Atoll in spring 2010. As part of this deployment, a Davis Rotating-drum Uniform size-cut Monitor (DRUM) cascade impactor was deployed to collect size-resolved aerosol samples at the surface that were analyzed by X-ray fluorescence for concentrations of selected elements. HYSPLIT backtrajectories indicated that the transport of aerosol observed at the surface at Dongsha was occurring primarily from regions generally to the north and east. This observation was consistent with the apparent persistence of pollution and dust aerosol, along with sea salt, in the ground-based dataset. In contrast to the sea-level observations, modeled aerosol transport suggested that the westerly flow aloft (w700 hPa) transported smoke-laden air toward the site from regions from the south and west. Measured aerosol optical depth at the site was highest during time periods of modeled heavy smoke loadings aloft. These periods did not coincide with elevated aerosol concentrations at the surface, although the model suggested sporadic mixing of this free-tropospheric aerosol to the surface over the SCS. A biomass burning signature was not clearly identified in the surface aerosol composition data, consistent with this aerosol type remaining primarily aloft and not mixing strongly to the surface during the study. Significant vertical wind shear in the region also supports the idea that different source regions lead to varying aerosol impacts in different vertical layers, and suggests the potential for considerable vertical inhomogeneity in the SCS aerosol environment.

  7. Aerosol concentration and size distribution measured below, in, and above cloud from the DOE G-1 during VOCALS-REx

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kleinman, L.I.; Daum, P. H.; Lee, Y.-N.

    2011-06-21

    During the VOCALS Regional Experiment, the DOE G-1 aircraft was used to sample a varying aerosol environment pertinent to properties of stratocumulus clouds over a longitude band extending 800 km west from the Chilean coast at Arica. Trace gas and aerosol measurements are presented as a function of longitude, altitude, and dew point in this study. Spatial distributions are consistent with an upper atmospheric source for O{sub 3} and South American coastal sources for marine boundary layer (MBL) CO and aerosol, most of which is acidic sulfate in agreement with the dominant pollution source being SO{sub 2} from Cu smeltersmore » and power plants. Pollutant layers in the free troposphere (FT) can be a result of emissions to the north in Peru or long range transport from the west. At a given altitude in the FT (up to 3 km), dew point varies by 40 C with dry air descending from the upper atmospheric and moist air having a BL contribution. Ascent of BL air to a cold high altitude results in the condensation and precipitation removal of all but a few percent of BL water along with aerosol that served as CCN. Thus, aerosol volume decreases with dew point in the FT. Aerosol size spectra have a bimodal structure in the MBL and an intermediate diameter unimodal distribution in the FT. Comparing cloud droplet number concentration (CDNC) and pre-cloud aerosol (Dp > 100 nm) gives a linear relation up to a number concentration of {approx}150 cm{sup -3}, followed by a less than proportional increase in CDNC at higher aerosol number concentration. A number balance between below cloud aerosol and cloud droplets indicates that {approx}25% of aerosol in the PCASP size range are interstitial (not activated). One hundred and two constant altitude cloud transects were identified and used to determine properties of interstitial aerosol. One transect is examined in detail as a case study. Approximately 25 to 50% of aerosol with D{sub p} > 110 nm were not activated, the difference between

  8. Direct on-strip analysis of size- and time-resolved aerosol impactor samples using laser induced fluorescence spectra excited at 263 and 351 nm.

    PubMed

    Wang, Chuji; Pan, Yong-Le; James, Deryck; Wetmore, Alan E; Redding, Brandon

    2014-04-11

    We report a novel atmospheric aerosol characterization technique, in which dual wavelength UV laser induced fluorescence (LIF) spectrometry marries an eight-stage rotating drum impactor (RDI), namely UV-LIF-RDI, to achieve size- and time-resolved analysis of aerosol particles on-strip. The UV-LIF-RDI technique measured LIF spectra via direct laser beam illumination onto the particles that were impacted on a RDI strip with a spatial resolution of 1.2mm, equivalent to an averaged time resolution in the aerosol sampling of 3.6 h. Excited by a 263 nm or 351 nm laser, more than 2000 LIF spectra within a 3-week aerosol collection time period were obtained from the eight individual RDI strips that collected particles in eight different sizes ranging from 0.09 to 10 μm in Djibouti. Based on the known fluorescence database from atmospheric aerosols in the US, the LIF spectra obtained from the Djibouti aerosol samples were found to be dominated by fluorescence clusters 2, 5, and 8 (peaked at 330, 370, and 475 nm) when excited at 263 nm and by fluorescence clusters 1, 2, 5, and 6 (peaked at 390 and 460 nm) when excited at 351 nm. Size- and time-dependent variations of the fluorescence spectra revealed some size and time evolution behavior of organic and biological aerosols from the atmosphere in Djibouti. Moreover, this analytical technique could locate the possible sources and chemical compositions contributing to these fluorescence clusters. Advantages, limitations, and future developments of this new aerosol analysis technique are also discussed. Published by Elsevier B.V.

  9. Size distributions of dicarboxylic acids, ketoacids, α-dicarbonyls, sugars, WSOC, OC, EC and inorganic ions in atmospheric particles over Northern Japan: implication for long-range transport of Siberian biomass burning and East Asian polluted aerosols

    NASA Astrophysics Data System (ADS)

    Agarwal, S.; Aggarwal, S. G.; Okuzawa, K.; Kawamura, K.

    2010-07-01

    To better understand the size-segregated chemical composition of aged organic aerosols in the western North Pacific rim, day- and night-time aerosol samples were collected in Sapporo, Japan during summer 2005 using an Andersen impactor sampler with 5 size bins: Dp<1.1, 1.1-2.0, 2.0-3.3, 3.3-7.0, >7.0 μm. Samples were analyzed for the molecular composition of dicarboxylic acids, ketoacids, α-dicarbonyls, and sugars, together with water-soluble organic carbon (WSOC), organic carbon (OC), elemental carbon (EC) and inorganic ions. Based on the analyses of backward trajectories and chemical tracers, we found that during the campaign, air masses arrived from Siberia (a biomass burning source region) on 8-9 August, from China (an anthropogenic source region) on 9-10 August, and from the East China Sea/Sea of Japan (a mixed source receptor region) on 10-11 August. Most of the diacids, ketoacids, dicarbonyls, levoglucosan, WSOC, and inorganic ions (i.e., SO42-, NH4+ and K+) were enriched in fine particles (PM1.1) whereas Ca2+, Mg2+ and Cl- peaked in coarse sizes (>1.1 μm). Interestingly, OC, most sugar compounds and NO3- showed bimodal distributions in fine and coarse modes. In PM1.1, diacids in biomass burning-influenced aerosols transported from Siberia (mean: 252 ng m-3) were more abundant than those in the aerosols originating from China (209 ng m-3) and ocean (142 ng m-3), whereas SO42- concentrations were highest in the aerosols from China (mean: 3970 ng m-3) followed by marine- (2950 ng m-3) and biomass burning-influenced (1980 ng m-3) aerosols. Higher loadings of WSOC (2430 ng m-3) and OC (4360 ng m-3) were found in the fine mode, where biomass-burning products such as levoglucosan are abundant. This paper presents a case study of long-range transported aerosols illustrating that biomass burning episodes in the Siberian region have a significant influence on the chemical composition of carbonaceous aerosols in the western North Pacific rim.

  10. FILTER PACK TECHNIQUE FOR CLASSIFYING RADIOACTIVE AEROSOLS BY PARTICLE SIZE. PART 1 PRELIMINARY EVALUATION.

    DTIC Science & Technology

    radon daughters is associated have greater ability to penetrate the variousfilter media than has the fission product debris in the atmosphere; therefore the former is associated with aerosols of smaller size. A preliminary evaluation of the techniques of employing packs of filters of different retentivity characteristics to determine the particle size and/or particle size distribution of radioactive aerosols has been made which indicates the feasibility of the method. It is recommended that a series of measurements be undertaken to determine the relative particle size

  11. Intercomparison and Evaluation of Global Aerosol Microphysical Properties Among Aerocom Models of a Range of Complexity

    NASA Technical Reports Server (NTRS)

    Mann, G. W.; Carslaw, K. S.; Reddington, C. L.; Pringle, K. J.; Schulz, M.; Asmi, A.; Spracklen, D. V.; Ridley, D. A.; Woodhouse, M. T.; Lee, L. A.; hide

    2014-01-01

    Many of the next generation of global climate models will include aerosol schemes which explicitly simulate the microphysical processes that determine the particle size distribution. These models enable aerosol optical properties and cloud condensation nuclei (CCN) concentrations to be determined by fundamental aerosol processes, which should lead to a more physically based simulation of aerosol direct and indirect radiative forcings. This study examines the global variation in particle size distribution simulated by 12 global aerosol microphysics models to quantify model diversity and to identify any common biases against observations. Evaluation against size distribution measurements from a new European network of aerosol supersites shows that the mean model agrees quite well with the observations at many sites on the annual mean, but there are some seasonal biases common to many sites. In particular, at many of these European sites, the accumulation mode number concentration is biased low during winter and Aitken mode concentrations tend to be overestimated in winter and underestimated in summer. At high northern latitudes, the models strongly underpredict Aitken and accumulation particle concentrations compared to the measurements, consistent with previous studies that have highlighted the poor performance of global aerosol models in the Arctic. In the marine boundary layer, the models capture the observed meridional variation in the size distribution, which is dominated by the Aitken mode at high latitudes, with an increasing concentration of accumulation particles with decreasing latitude. Considering vertical profiles, the models reproduce the observed peak in total particle concentrations in the upper troposphere due to new particle formation, although modelled peak concentrations tend to be biased high over Europe. Overall, the multimodel- mean data set simulates the global variation of the particle size distribution with a good degree of skill, suggesting

  12. Size matters in the water uptake and hygroscopic growth of atmospherically relevant multicomponent aerosol particles.

    PubMed

    Laskina, Olga; Morris, Holly S; Grandquist, Joshua R; Qin, Zhen; Stone, Elizabeth A; Tivanski, Alexei V; Grassian, Vicki H

    2015-05-14

    Understanding the interactions of water with atmospheric aerosols is crucial for determining the size, physical state, reactivity, and climate impacts of this important component of the Earth's atmosphere. Here we show that water uptake and hygroscopic growth of multicomponent, atmospherically relevant particles can be size dependent when comparing 100 nm versus ca. 6 μm sized particles. It was determined that particles composed of ammonium sulfate with succinic acid and of a mixture of chlorides typical of the marine environment show size-dependent hygroscopic behavior. Microscopic analysis of the distribution of components within the aerosol particles show that the size dependence is due to differences in the mixing state, that is, whether particles are homogeneously mixed or phase separated, for different sized particles. This morphology-dependent hygroscopicity has consequences for heterogeneous atmospheric chemistry as well as aerosol interactions with electromagnetic radiation and clouds.

  13. Size distributions of secondary and primary aerosols in Asia: A 3-D modeling

    NASA Astrophysics Data System (ADS)

    Yu, F.; Luo, G.; Wang, Z.

    2009-12-01

    Asian aerosols have received increasing attention because of their potential health and climate effects and the rapid increasing of Asian emissions associated with accelerating economic expansion. Aerosol particles appear in the atmosphere due to either in-situ nucleation (i.e, secondary particles) or direct emissions (i.e., primary particles), and their environmental impacts depend strongly on their concentrations, sizes, compositions, and mixing states. A size-resolved (sectional) particle microphysics model with a number of computationally efficient schemes has been incorporated into a global chemistry transport model (GEOS-Chem) to simulate the number size distributions of secondary and primary particles in the troposphere (Yu and Luo, Atmos. Chem. Phys. Discuss., 9, 10597-10645, 2009). The growth of nucleated particles through the condensation of sulfuric acid vapor and equilibrium uptake of nitrate, ammonium, and secondary organic aerosol is explicitly simulated, along with the coating of primary particles (dust, black carbon, organic carbon, and sea salt) by volatile components via condensation and coagulation with secondary particles. Here we look into the spatiotemporal variations of the size distributions of secondary and primary aerosols in Asia. The annual mean number concentration of the accumulation mode particles (dry diameter > ~ 100 nm) in the lower troposphere over Asia (especially China) is very high and is dominated (~70-90%) by carbonaceous primary particles (with coated condensable species). Coagulation and condensation turn the primary particles into mixed particles and on average increase the dry sizes of primary particles by a factor of ~ 2-2.5. Despite of high condensation sink, sulfuric acid vapor concentration in many parts of Asian low troposphere is very high (annual mean values above 1E7/cm3) and significant new particle formation still occurs. Secondary particles generally dominate the particles small than 100 nm and the equilibrium

  14. Long-term observations of cloud condensation nuclei in the Amazon rain forest – Part 1: Aerosol size distribution, hygroscopicity, and new model parametrizations for CCN prediction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pöhlker, Mira L.; Pöhlker, Christopher; Ditas, Florian

    Size-resolved long-term measurements of atmospheric aerosol and cloud condensation nuclei (CCN) concentrations and hygroscopicity were conducted at the remote Amazon Tall Tower Observatory (ATTO) in the central Amazon Basin over a 1-year period and full seasonal cycle (March 2014–February 2015). Our measurements provide a climatology of CCN properties characteristic of a remote central Amazonian rain forest site.The CCN measurements were continuously cycled through 10 levels of supersaturation ( S=0.11 to 1.10 %) and span the aerosol particle size range from 20 to 245 nm. The mean critical diameters of CCN activation range from 43 nm at S = 1.10 % to 172more » nm at S = 0.11 %. Furthermore, the particle hygroscopicity exhibits a pronounced size dependence with lower values for the Aitken mode ( κ Ait = 0.14 ± 0.03), higher values for the accumulation mode ( κ Acc = 0.22 ± 0.05), and an overall mean value of κ mean = 0.17 ± 0.06, consistent with high fractions of organic aerosol.The hygroscopicity parameter, κ, exhibits remarkably little temporal variability: no pronounced diurnal cycles, only weak seasonal trends, and few short-term variations during long-range transport events. In contrast, the CCN number concentrations exhibit a pronounced seasonal cycle, tracking the pollution-related seasonality in total aerosol concentration. Here, we find that the variability in the CCN concentrations in the central Amazon is mostly driven by aerosol particle number concentration and size distribution, while variations in aerosol hygroscopicity and chemical composition matter only during a few episodes.For modeling purposes, we compare different approaches of predicting CCN number concentration and present a novel parametrization, which allows accurate CCN predictions based on a small set of input data.« less

  15. Long-term observations of cloud condensation nuclei in the Amazon rain forest – Part 1: Aerosol size distribution, hygroscopicity, and new model parametrizations for CCN prediction

    DOE PAGES

    Pöhlker, Mira L.; Pöhlker, Christopher; Ditas, Florian; ...

    2016-12-20

    Size-resolved long-term measurements of atmospheric aerosol and cloud condensation nuclei (CCN) concentrations and hygroscopicity were conducted at the remote Amazon Tall Tower Observatory (ATTO) in the central Amazon Basin over a 1-year period and full seasonal cycle (March 2014–February 2015). Our measurements provide a climatology of CCN properties characteristic of a remote central Amazonian rain forest site.The CCN measurements were continuously cycled through 10 levels of supersaturation ( S=0.11 to 1.10 %) and span the aerosol particle size range from 20 to 245 nm. The mean critical diameters of CCN activation range from 43 nm at S = 1.10 % to 172more » nm at S = 0.11 %. Furthermore, the particle hygroscopicity exhibits a pronounced size dependence with lower values for the Aitken mode ( κ Ait = 0.14 ± 0.03), higher values for the accumulation mode ( κ Acc = 0.22 ± 0.05), and an overall mean value of κ mean = 0.17 ± 0.06, consistent with high fractions of organic aerosol.The hygroscopicity parameter, κ, exhibits remarkably little temporal variability: no pronounced diurnal cycles, only weak seasonal trends, and few short-term variations during long-range transport events. In contrast, the CCN number concentrations exhibit a pronounced seasonal cycle, tracking the pollution-related seasonality in total aerosol concentration. Here, we find that the variability in the CCN concentrations in the central Amazon is mostly driven by aerosol particle number concentration and size distribution, while variations in aerosol hygroscopicity and chemical composition matter only during a few episodes.For modeling purposes, we compare different approaches of predicting CCN number concentration and present a novel parametrization, which allows accurate CCN predictions based on a small set of input data.« less

  16. The Characteristics of Long-range Transboundary Inorganic Secondary Aerosols in Northeast Asia

    NASA Astrophysics Data System (ADS)

    Kim, Y. J.; Carmichael, G. R.; Woo, J. H.; Qiang, Z.

    2014-12-01

    Recurrent particle matter episodes greatly influence air quality in Northeast Asia. According to many studies, a major reason is long-range transport of air pollutant. Large amount of emission of chemical compounds aggravate air pollution in the region. Emitted air pollutants mainly come from industrialized regions along the East China coast. It can be transported over downwind region by the prevailing westerlies. The long-rang transported fine particle certainly attributes to air quality in downwind region, but there are many unknowns on the quantity, transport pattern, and secondary aerosol production mechanism despite the fact with many studies have been performed. Major contributors of PM2.5 are inorganic secondary aerosols, sulfate, nitrate and ammonium, in Korea. Especially high relative contributions of inorganic secondary aerosols appear for westerly wind cases. The main pathway of production of inorganic secondary aerosols is produced by converting from SO2 and NOx during the long-range transport but the contribution varies dramatically depending on season and wind pattern. Sulfate is consistently the primary contributor of PM2.5 still now but we should more concern nitrate because that NOx emissions of China is increasing steeply since 2000 by leading powerplant, industry, and transport, despite downward trend of SO2. In order to better understand regional air quality modeling of the long-range transport, international study, MICS-Asia phase III, has been initiated with many researchers. We will present chemical characteristics of PM2.5 long-range transport during westerly wind cases focused on secondary aerosol, tracking their transport pattern, and production pathway. Results using CMAQ with the modeling domain covering Northeast and Southeast China, Korea, and Japan with 15km resolution will be discussed.

  17. Impacts of Venturi Turbulent Mixing on the Size Distributions of Sodium Chloride and Dioctyl-Phthalate Aerosols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, M-D.

    2000-08-23

    Internal combustion engines are a major source of airborne particulate matter (PM). The size of the engine PM is in the sub-micrometer range. The number of engine particles per unit volume is high, normally in the range of 10{sup 12} to 10{sup 14}. To measure the size distribution of the engine particles dilution of an aerosol sample is required. A diluter utilizing a venturi ejector mixing technique is commercially available and tested. The purpose of this investigation was to determine if turbulence created by the ejector in the mini-dilutor changes the size of particles passing through it. The results ofmore » the NaCl aerosol experiments show no discernible difference in the geometric mean diameter and geometric standard deviation of particles passing through the ejector. Similar results were found for the DOP particles. The ratio of the total number concentrations before and after the ejector indicates that a dilution ratio of approximately 20 applies equally for DOP and NaCl particles. This indicates the dilution capability of the ejector is not affected by the particle composition. The statistical analysis results of the first and second moments of a distribution indicate that the ejector may not change the major parameters (e.g., the geometric mean diameter and geometric standard deviation) characterizing the size distributions of NaCl and DOP particles. However, when the skewness was examined, it indicates that the ejector modifies the particle size distribution significantly. The ejector could change the skewness of the distribution in an unpredictable and inconsistent manner. Furthermore, when the variability of particle counts in individual size ranges as a result of the ejector is examined, one finds that the variability is greater for DOP particles in the size range of 40-150 nm than for NaCl particles in the size range of 30 to 350 nm. The numbers or particle counts in this size region are high enough that the Poisson counting errors are small (<10

  18. The effect of formaldehyde and nitrogen-containing compounds on the size and volume of aerosol particles

    NASA Astrophysics Data System (ADS)

    Millage, K.; Galloway, M. M.; De Haan, D. O.

    2012-12-01

    Atmospheric aerosol can interact with clouds in many ways, often resulting in the redistribution or absorption of solar energy or changes in precipitation efficiency. Secondary organic aerosol (SOA) in particular has been linked to climate change and a reduction in the number and size of cloud particles. The reactions of nitrogen containing compounds (primary amines, amino acids and ammonium sulfate) with carbonyl compounds (such as formaldehyde and glycolaldehyde) are potential sources of SOA. Aerosol containing formaldehyde and nitrogen-containing compounds (glycine, methylamine, arginine, or ammonium sulfate) was generated from buffered solutions (pH 5.4) using a nebulizer. The aerosol was then equilibrated into a chamber containing humid air (82-84% RH), and particle sizes were measured using a SMPS system over a period of 1 hour in order to examine how the size and volume of the aerosol particles changed. Formaldehyde concentrations were varied over multiple experiments. Arginine displayed a trend of increasing relative particle size with increasing formaldehyde concentration. Ammonium sulfate and formaldehyde displayed a decrease in relative particle sizes from 0:1 to 2:1 ratios of formaldehyde to ammonium sulfate, but then an increase in relative particle sizes with increasing amounts of formaldehyde. Similarly, glycine and methylamine initially displayed decreasing relative particle sizes, until reaching a 1:1 ratio of each to formaldehyde at which point the relative particle sizes steadily increased. These effects were likely caused by the evaporation of first-generation imine products.

  19. Global Aerosol Optical Models and Lookup Tables for the New MODIS Aerosol Retrieval over Land

    NASA Technical Reports Server (NTRS)

    Levy, Robert C.; Remer, Loraine A.; Dubovik, Oleg

    2007-01-01

    Since 2000, MODIS has been deriving aerosol properties over land from MODIS observed spectral reflectance, by matching the observed reflectance with that simulated for selected aerosol optical models, aerosol loadings, wavelengths and geometrical conditions (that are contained in a lookup table or 'LUT'). Validation exercises have showed that MODIS tends to under-predict aerosol optical depth (tau) in cases of large tau (tau greater than 1.0), signaling errors in the assumed aerosol optical properties. Using the climatology of almucantur retrievals from the hundreds of global AERONET sunphotometer sites, we found that three spherical-derived models (describing fine-sized dominated aerosol), and one spheroid-derived model (describing coarse-sized dominated aerosol, presumably dust) generally described the range of observed global aerosol properties. The fine dominated models were separated mainly by their single scattering albedo (omega(sub 0)), ranging from non-absorbing aerosol (omega(sub 0) approx. 0.95) in developed urban/industrial regions, to neutrally absorbing aerosol (omega(sub 0) approx.90) in forest fire burning and developing industrial regions, to absorbing aerosol (omega(sub 0) approx. 0.85) in regions of savanna/grassland burning. We determined the dominant model type in each region and season, to create a 1 deg. x 1 deg. grid of assumed aerosol type. We used vector radiative transfer code to create a new LUT, simulating the four aerosol models, in four MODIS channels. Independent AERONET observations of spectral tau agree with the new models, indicating that the new models are suitable for use by the MODIS aerosol retrieval.

  20. Aerosol transport from Chiang Mai, Thailand to Mt. Lulin, Taiwan - Implication of aerosol aging during long-range transport

    NASA Astrophysics Data System (ADS)

    Chuang, Ming-Tung; Lee, Chung-Te; Chou, Charles C.-K.; Engling, Guenter; Chang, Shih-Yu; Chang, Shuenn-Chin; Sheu, Guey-Rong; Lin, Neng-Huei; Sopajaree, Khajornsak; Chang, You-Jia; Hong, Guo-Jun

    2016-07-01

    The transport of biomass burning (BB) aerosol from Indochina may cause a potential effect on climate change in Southeast Asia, East Asia, and the Western Pacific. Up to now, the understanding of BB aerosol composition modification during long-range transport (LRT) is still very limited due to the lack of observational data. In this study, atmospheric aerosols were collected at the Suthep/Doi Ang Khang (DAK) mountain sites in Chiang Mai, Thailand and the Lulin Atmospheric Background Station (Mt. Lulin) in central Taiwan from March to April 2010 and from February to April 2013, respectively. During the study period, an upwind and downwind relationship between the Suthep/DAK and Lulin sites (2400 km apart) was validated by backward trajectories. Comprehensive aerosol properties were resolved for PM2.5 water-soluble inorganic ions, carbonaceous content, water-soluble/insoluble organic carbon (WSOC/WIOC), dicarboxylic acids and their salts (DCAS), and anhydrosugars. A Modification Factor (MF) is proposed by employing non-sea-salt potassium ion (nss-K+) or fractionalized elemental carbon evolved at 580 °C after pyrolized OC correction (EC1-OP) as a BB aerosol tracer to evaluate the mass fraction changes of aerosol components from source to receptor regions during LRT. The MF values of nss-SO42-, NH4+, NO3-, OC1 (fractionalized organic carbon evolved from room temperature to 140 °C), OP (pyrolized OC fraction), DCAS, and WSOC were above unity, which indicated that these aerosol components were enhanced during LRT as compared with those in the near-source region. In contrast, the MF values of anhydrosugars ranged from 0.1 to 0.3, indicating anhydrosugars have degraded during LRT.

  1. A Monte-Carlo Analysis of Organic Aerosol Volatility with Aerosol Microphysics

    NASA Astrophysics Data System (ADS)

    Gao, C. Y.; Tsigaridis, K.; Bauer, S. E.

    2016-12-01

    A newly developed box model scheme, MATRIX-VBS, includes the volatility-basis set (VBS) framework in an aerosol microphysical scheme MATRIX (Multiconfiguration Aerosol TRacker of mIXing state), which resolves aerosol mass and number concentrations and aerosol mixing state. The new scheme advanced the representation of organic aerosols in Earth system models by improving the traditional and simplistic treatment of organic aerosols as non-volatile and with a fixed size distribution. Further development includes adding the condensation of organics on coarse mode aerosols - dust and sea salt, thus making all organics in the system semi-volatile. To test and simplify the model, a Monte-Carlo analysis is performed to pin point which processes affect organics the most under which chemical and meteorological conditions. Since the model's parameterizations have the ability to capture a very wide range of conditions, from very clean to very polluted and for a wide range of meteorological conditions, all possible scenarios on Earth across the whole parameter space, including temperature, location, emissions and oxidant levels, are examined. The Monte-Carlo simulations provide quantitative information on the sensitivity of the newly developed model and help us understand how organics are affecting the size distribution, mixing state and volatility distribution at varying levels of meteorological conditions and pollution levels. In addition, these simulations give information on which parameters play a critical role in the aerosol distribution and evolution in the atmosphere and which do not, that will facilitate the simplification of the box model, an important step in its implementation in the global model.

  2. [Size distributions of aerosol during the Spring Festival in Nanjing].

    PubMed

    Wang, Hong-Lei; Zhu, Bin; Shen, Li-Juan; Liu, Xiao-Hui; Zhang, Ze-Feng; Yang, Yang

    2014-02-01

    In order to investigate the firework burning impacts on spectrum distribution of atmospheric aerosol during the Spring Festival in Nanjing, number concentration and mass concentration of aerosol as well as mass concentration of gas pollutants were measured during January 19-31, 2012. The results indicated that the concentration of aerosol between 10-20 nm decreased, aerosol concentration in the range of 50-100 nm, 100-200 nm and 200-500 nm increased during the firework burning period comparing to those during the non-burning period. However, there was no obvious variation for aerosol between 20-50 nm and 0.5-10 microm. The spectrum distribution of number concentration was bimodal during the non-burning period and unimodal during the burning period, with the peak value shifting to large diameter section. The mass concentration presented a bimodal distribution, the value of PM2.5/PM10 and PM10/PM10 increased by 10% during the burning period. The firework burning events had big influence on the density of aerosol between 1.0-2.1 microm.

  3. Stratospheric aerosol particle size distribution based on multi-color polarization measurements of the twilight sky

    NASA Astrophysics Data System (ADS)

    Ugolnikov, Oleg S.; Maslov, Igor A.

    2018-03-01

    Polarization measurements of the twilight background with Wide-Angle Polarization Camera (WAPC) are used to detect the depolarization effect caused by stratospheric aerosol near the altitude of 20 km. Based on a number of observations in central Russia in spring and summer 2016, we found the parameters of lognormal size distribution of aerosol particles. This confirmed the previously published results of the colorimetric method as applied to the same twilights. The mean particle radius (about 0.1 micrometers) and size distribution are also in agreement with the recent data of in situ and space-based remote sensing of stratospheric aerosol. Methods considered here provide two independent techniques of the stratospheric aerosol study based on the twilight sky analysis.

  4. Particle size distribution of aerosols sprayed from household hand-pump sprays containing fluorine-based and silicone-based compounds.

    PubMed

    Kawakami, Tsuyoshi; Isama, Kazuo; Ikarashi, Yoshiaki

    2015-01-01

    Japan has published safety guideline on waterproof aerosol sprays. Furthermore, the Aerosol Industry Association of Japan has adopted voluntary regulations on waterproof aerosol sprays. Aerosol particles of diameter less than 10 µm are considered as "fine particles". In order to avoid acute lung injury, this size fraction should account for less than 0.6% of the sprayed aerosol particles. In contrast, the particle size distribution of aerosols released by hand-pump sprays containing fluorine-based or silicone-based compounds have not been investigated in Japan. Thus, the present study investigated the aerosol particle size distribution of 16 household hand-pump sprays. In 4 samples, the ratio of fine particles in aerosols exceeded 0.6%. This study confirmed that several hand-pump sprays available in the Japanese market can spray fine particles. Since the hand-pump sprays use water as a solvent and their ingredients may be more hydrophilic than those of aerosol sprays, the concepts related to the safety of aerosol-sprays do not apply to the hand pump sprays. Therefore, it may be required for the hand-pump spray to develop a suitable method for evaluating the toxicity and to establish the safety guideline.

  5. Observations and regional modeling of aerosol optical properties, speciation and size distribution over Northern Africa and western Europe

    NASA Astrophysics Data System (ADS)

    Menut, Laurent; Siour, Guillaume; Mailler, Sylvain; Couvidat, Florian; Bessagnet, Bertrand

    2016-10-01

    The aerosol speciation and size distribution is modeled during the summer 2013 and over a large area encompassing Africa, Mediterranean and western Europe. The modeled aerosol is compared to available measurements such as the AERONET aerosol optical depth (AOD) and aerosol size distribution (ASD) and the EMEP network for surface concentrations of particulate matter PM2.5, PM10 and inorganic species (nitrate, sulfate and ammonium). The main goal of this study is to quantify the model ability to realistically model the speciation and size distribution of the aerosol. Results first showed that the long-range transport pathways are well reproduced and mainly constituted by mineral dust: spatial correlation is ≈ 0.9 for AOD and Ångström exponent, when temporal correlations show that the day-to-day variability is more difficult to reproduce. Over Europe, PM2.5 and PM10 have a mean temporal correlation of ≈ 0.4 but the lowest spatial correlation ( ≈ 0.25 and 0.62, respectively), showing that the fine particles are not well localized or transported. Being short-lived species, the uncertainties on meteorology and emissions induce these lowest scores. However, time series of PM2.5 with the speciation show a good agreement between model and measurements and are useful for discriminating the aerosol composition. Using a classification from the south (Africa) to the north (northern Europe), it is shown that mineral dust relative mass contribution decreases from 50 to 10 % when nitrate increases from 0 to 20 % and all other species, sulfate, sea salt, ammonium, elemental carbon, primary organic matter, are constant. The secondary organic aerosol contribution is between 10 and 20 % with a maximum at the latitude of the Mediterranean Sea (Spanish stations). For inorganic species, it is shown that nitrate, sulfate and ammonium have a mean temporal correlation of 0.25, 0.37 and 0.17, respectively. The spatial correlation is better (0.25, 0.5 and 0.87), showing that the mean

  6. Long-range-transported Saharan dust in the Caribbean - an electron microscopy perspective of aerosol composition and modification

    NASA Astrophysics Data System (ADS)

    Kandler, Konrad; Hartmann, Markus; Ebert, Martin; Weinbruch, Stephan; Weinzierl, Bernadett; Walser, Adrian; Sauer, Daniel; Wadinga Fomba, Khanneh

    2015-04-01

    From June to July in 2013, the Saharan Aerosol Long-range Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE) was performed in the Caribbean. Airborne aerosol sampling was performed onboard the DLR Falcon aircraft in altitudes between 300 m and 5500 m. Ground-based samples were collected at Ragged Point (Barbados, 13.165 °N, 59.432 °W) and at the Cape Verde Atmospheric Observatory (Sao Vicente, 16.864 °N, 24.868 °W). Different types of impactors and sedimentation samplers were used to collect particles between 0.1 µm and 4 µm (airborne) and between 0.1 µm and 100 µm (ground-based). Particles were analyzed by scanning electron microscopy with attached energy-dispersive X-ray analysis, yielding information on particle size, particle shape and chemical composition for elements heavier than nitrogen. A particle size correction was applied to the chemical data to yield better quantification. A total of approximately 100,000 particles were analyzed. For particles larger than 0.7 µm, the aerosol in the Caribbean during the campaign was a mixture of mineral dust, sea-salt at different aging states, and sulfate. Inside the Saharan dust plume - outside the marine boundary layer (MBL) - the aerosol is absolutely dominated by mineral dust. Inside the upper MBL, sea-salt exists as minor component in the aerosol for particles smaller than 2 µm in diameter, larger ones are practically dust only. When crossing the Soufriere Hills volcano plume with the aircraft, an extremely high abundance of small sulfate particles could be observed. At Ragged Point, in contrast to the airborne measurements, aerosol is frequently dominated by sea-salt particles. Dust relative abundance at Ragged Point has a maximum between 5 µm and 10 µm particles diameter; at larger sizes, sea-salt again prevails due to the sea-spray influence. A significant number of dust particles larger than 20 µm was encountered. The dust component in the Caribbean - airborne as well as ground

  7. On the competition among aerosol number, size and composition in predicting CCN variability: a multi-annual field study in an urbanized desert.

    PubMed

    Crosbie, E; Youn, J-S; Balch, B; Wonaschütz, A; Shingler, T; Wang, Z; Conant, W C; Betterton, E A; Sorooshian, A

    2015-02-10

    A 2-year data set of measured CCN (cloud condensation nuclei) concentrations at 0.2 % supersaturation is combined with aerosol size distribution and aerosol composition data to probe the effects of aerosol number concentrations, size distribution and composition on CCN patterns. Data were collected over a period of 2 years (2012-2014) in central Tucson, Arizona: a significant urban area surrounded by a sparsely populated desert. Average CCN concentrations are typically lowest in spring (233 cm -3 ), highest in winter (430 cm -3 ) and have a secondary peak during the North American monsoon season (July to September; 372 cm -3 ). There is significant variability outside of seasonal patterns, with extreme concentrations (1 and 99 % levels) ranging from 56 to 1945 cm -3 as measured during the winter, the season with highest variability. Modeled CCN concentrations based on fixed chemical composition achieve better closure in winter, with size and number alone able to predict 82% of the variance in CCN concentration. Changes in aerosol chemical composition are typically aligned with changes in size and aerosol number, such that hygroscopicity can be parameterized even though it is still variable. In summer, models based on fixed chemical composition explain at best only 41% (pre-monsoon) and 36% (monsoon) of the variance. This is attributed to the effects of secondary organic aerosol (SOA) production, the competition between new particle formation and condensational growth, the complex interaction of meteorology, regional and local emissions and multi-phase chemistry during the North American monsoon. Chemical composition is found to be an important factor for improving predictability in spring and on longer timescales in winter. Parameterized models typically exhibit improved predictive skill when there are strong relationships between CCN concentrations and the prevailing meteorology and dominant aerosol physicochemical processes, suggesting that similar findings could

  8. From nanoparticles to large aerosols: Ultrafast measurement methods for size and concentration

    NASA Astrophysics Data System (ADS)

    Keck, Lothar; Spielvogel, Jürgen; Grimm, Hans

    2009-05-01

    A major challenge in aerosol technology is the fast measurement of number size distributions with good accuracy and size resolution. The dedicated instruments are frequently based on particle charging and electric detection. Established fast systems, however, still feature a number of shortcomings. We have developed a new instrument that constitutes of a high flow Differential Mobility Analyser (high flow DMA) and a high sensitivity Faraday Cup Electrometer (FCE). The system enables variable flow rates of up to 150 lpm, and the scan time for size distribution can be shortened considerably due to the short residence time of the particles in the DMA. Three different electrodes can be employed in order to cover a large size range. First test results demonstrate that the scan time can be reduced to less than 1 s for small particles, and that the results from the fast scans feature no significant difference to the results from established slow method. The fields of application for the new instrument comprise the precise monitoring of fast processes with nanoparticles, including monitoring of engine exhaust in automotive research.

  9. Raman microscopy of size-segregated aerosol particles, collected at the Sonnblick Observatory in Austria

    NASA Astrophysics Data System (ADS)

    Ofner, Johannes; Kasper-Giebl, Anneliese; Kistler, Magdalena; Matzl, Julia; Schauer, Gerhard; Hitzenberger, Regina; Lohninger, Johann; Lendl, Bernhard

    2014-05-01

    Size classified aerosol samples were collected using low pressure impactors in July 2013 at the high alpine background site Sonnnblick. The Sonnblick Observatory is located in the Austrian Alps, at the summit of Sonnblick 3100 m asl. Sampling was performed in parallel on the platform of the Observatory and after the aerosol inlet. The inlet is constructed as a whole air inlet and is operated at an overall sampling flow of 137 lpm and heated to 30 °C. Size cuts of the eight stage low pressure impactors were from 0.1 to 12.8 µm a.d.. Alumina foils were used as sample substrates for the impactor stages. In addition to the size classified aerosol sampling overall aerosol mass (Sharp Monitor 5030, Thermo Scientific) and number concentrations (TSI, CPC 3022a; TCC-3, Klotz) were determined. A Horiba LabRam 800HR Raman microscope was used for vibrational mapping of an area of about 100 µm x 100 µm of the alumina foils at a resolution of about 0.5 µm. The Raman microscope is equipped with a laser with an excitation wavelength of 532 nm and a grating with 300 gr/mm. Both optical images and the related chemical images were combined and a chemometric investigation of the combined images was done using the software package Imagelab (Epina Software Labs). Based on the well-known environment, a basic assignment of Raman signals of single particles is possible at a sufficient certainty. Main aerosol constituents e.g. like sulfates, black carbon and mineral particles could be identified. First results of the chemical imaging of size-segregated aerosol, collected at the Sonnblick Observatory, will be discussed with respect to standardized long-term measurements at the sampling station. Further, advantages and disadvantages of chemical imaging with subsequent chemometric investigation of the single images will be discussed and compared to the established methods of aerosol analysis. The chemometric analysis of the dataset is focused on mixing and variation of single compounds at

  10. Maritime Infrared Propagation: Particle Size Distribution Measurements Using a Helicopter-Borne Aerosol Counter.

    DTIC Science & Technology

    1981-09-01

    COUNTER by R. R. Allan S. Craig SUMMARY -Particle size distribution measurements were made on nine successive days in late August 1980 using a PMS FSSP-100...aerosol counter flown on a Wessex Mk 5 helicopter. In all, 14 flights were made giving data at two heights, 30 and 100 ft above the sea surface...aerosol content over deep water. It was a specific recommendation of TTCP-JAG9 that airborne aerosol measurements should be made in conjunction with al

  11. Aerosol size and chemical composition measurements at the Polar Environment Atmospheric Research Lab (PEARL) in Eureka, Nunavut

    NASA Astrophysics Data System (ADS)

    Hayes, P. L.; Tremblay, S.; Chang, R. Y. W.; Leaitch, R.; Kolonjari, F.; O'Neill, N. T.; Chaubey, J. P.; AboEl Fetouh, Y.; Fogal, P.; Drummond, J. R.

    2016-12-01

    This study presents observations of aerosol chemical composition and particle number size distribution at the Polar Environment Atmospheric Research Laboratory (PEARL) in the Canadian High Arctic (80N, 86W). The current aerosol measurement program at PEARL has been ongoing for more than a year providing long-term observations of Arctic aerosol size distributions for both coarse and fine modes. Particle nucleation events were frequently observed during the summers of 2015 and 2016. The size distribution data are also compared against similar measurements taken at the Alert Global Atmospheric Watch Observatory (82N, 62W) for July and August 2015. The nucleation events are correlated at the two sites, despite a distance of approximately 500 km, suggesting regional conditions favorable for particle nucleation and growth during this period. Size resolved chemical composition measurements were also carried out using an aerosol mass spectrometer. The smallest measured particles between 40 and 60 nm are almost entirely organic aerosol (OA) indicating that the condensation of organic vapors is responsible for particle growth events and possibly particle nucleation. This conclusion is further supported by the relatively high oxygen content of the OA, which is consistent with secondary formation of OA via atmospheric oxidation.Lastly, surface measurements of the aerosol scattering coefficient are compared against the coefficient values calculated using Mie theory and the measured aerosol size distribution. Both the actual and the calculated scattering coefficients are then compared to sun photometer measurements to understand the relationship between surface and columnar aerosol optical properties. The measurements at PEARL provide a unique combination of surface and columnar data sets on aerosols in the High Arctic, a region where such measurements are scarce despite the important impact of aerosols on Arctic climate.PEARL research is supported by the Natural Sciences and

  12. Isotope source apportionment of carbonaceous aerosol as a function of particle size and thermal refractiveness

    NASA Astrophysics Data System (ADS)

    Masalaite, Agne; Holzinger, Rupert; Remeikis, Vidmantas; Röckmann, Thomas; Dusek, Ulrike

    2016-04-01

    The stable carbon isotopes can be used to get information about sources and processing of carbonaceous aerosol. We will present results from source apportionment of carbonaceous aerosol as a function of particle size thermal refractiveness. Separate source apportionment for particles smaller than 200 nm and for different carbon volatility classes are rarely reported and give new insights into aerosol sources in the urban environment. Stable carbon isotope ratios were measured for the organic carbon (OC) fraction and total carbon (TC) of MOUDI impactor samples that were collected on a coastal site (Lithuania) during the winter 2012 and in the city of Vilnius (Lithuania) during the winter of 2009. The 11 impactor stages spanned a size range from 0.056 to 18 μm, but only the 6 stages in the submicron range were analysed. The δ13C values of bulk total carbon (δ13CTC) were determined with an elemental analyser (Flash EA 1112) coupled with an isotope ratio mass spectrometer (Thermo Finnigan Delta Plus Advantage) (EA - IRMS). Meanwhile δ13COC was measured using thermal-desorption isotope ratio mass spectrometry (IRMS) system. This allows a rough separation of the more volatile OC fraction (desorbed in the oven of IRMS up to 250 0C) from the more refractory fraction (desorbed up to 400 0C). In this study we investigated the composition of organic aerosol desorbed from filter samples at different temperatures using the thermal-desorption proton-transfer-reaction mass spectrometry (TD-PTR-MS) technique. During winter-time in Lithuania we expect photochemistry and biogenic emissions to be of minor importance. The main sources of aerosol carbon should be fossil fuel and biomass combustion. In both sites, the coastal and the urban site, δ13C measurements give a clear indication that the source contributions differ for small and large particles. Small particles < 200 nm are depleted in 13C with respect to larger particles by 1 - 2 ‰Ṫhis shows that OC in small particle

  13. Role of nucleation mechanism on the size dependent morphology of organic aerosol.

    PubMed

    Altaf, Muhammad Bilal; Zuend, Andreas; Freedman, Miriam Arak

    2016-07-28

    The origins of the size dependent morphology of organic aerosol are explored by probing the morphology of poly(ethylene glycol)-400/ammonium sulfate mixtures using cryogenic-transmission electron microscopy. Surprisingly, we observe a size dependence at some compositions, but not at others. Our results suggest that size dependence occurs due to an activated process.

  14. Long-range transport biomass burning emissions to the Himalayas: insights from high-resolution aerosol mass spectrometer

    NASA Astrophysics Data System (ADS)

    Xu, J.; Zhang, X.; Liu, Y.; Shichang, K.; Ma, Y.

    2017-12-01

    An intensive measurement was conducted at a remote, background, and high-altitude site (Qomolangma station, QOMS, 4276 m a.s.l.) in the northern Himalayas, using an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) along with other collocated instruments. The field measurement was performed from April 12 to May 12, 2016 to chemically characterize high time-resolved submicron particulate matter (PM1) and obtain the influence of biomass burning emissions to the Himalayas, frequently transported from south Asia during pre-monsoon season. Two high aerosol loading periods were observed during the study. Overall, the average (± 1σ) PM1 mass concentration was 4.44 (± 4.54) µg m-3 for the entire study, comparable with those observed at other remote sites worldwide. Organic aerosols (OA) was the dominant PM1 species (accounting for 54.3% of total PM1 mass on average) and its contribution increased with the increase of total PM1 mass loading. The average size distributions of PM1 species all peaked at an overlapping accumulation mode ( 500 nm), suggesting that aerosol particles were internally well-mixed and aged during long-range transportations. Positive matrix factorization (PMF) analysis on the high-resolution organic mass spectra identified three distinct OA factors, including a biomass burning related OA (BBOA, 43.7%) and two oxygenated OA (Local-OOA and LRT-OOA; 13.9% and 42.4%) represented sources from local emissions and long-range transportations, respectively. Two polluted air mass origins (generally from the west and southwest of QOMS) and two polluted episodes with enhanced PM1 mass loadings and elevated BBOA contributions were observed, respectively, suggesting the important sources of wildfires from south Asia. One of polluted aerosol plumes was investigated in detail to illustrate the evolution of aerosol characteristics at QOMS driving by different impacts of wildfires, air mass origins, meteorological conditions and

  15. Simulating Aerosol Size Distribution and Mass Concentration with Simultaneous Nucleation, Condensation/Coagulation, and Deposition with the GRAPES-CUACE

    NASA Astrophysics Data System (ADS)

    Zhou, Chunhong; Shen, Xiaojing; Liu, Zirui; Zhang, Yangmei; Xin, Jinyuan

    2018-04-01

    A coupled aerosol-cloud model is essential for investigating the formation of haze and fog and the interaction of aerosols with clouds and precipitation. One of the key tasks of such a model is to produce correct mass and number size distributions of aerosols. In this paper, a parameterization scheme for aerosol size distribution in initial emission, which took into account the measured mass and number size distributions of aerosols, was developed in the GRAPES-CUACE [Global/Regional Assimilation and PrEdiction System-China Meteorological Administration (CMA) Unified Atmospheric Chemistry Environment model]—an online chemical weather forecast system that contains microphysical processes and emission, transport, and chemical conversion of sectional multi-component aerosols. In addition, the competitive mechanism between nucleation and condensation for secondary aerosol formation was improved, and the dry deposition was also modified to be in consistent with the real depositing length. Based on the above improvements, the GRAPES-CUACE simulations were verified against observational data during 1-31 January 2013, when a series of heavy regional haze-fog events occurred in eastern China. The results show that the aerosol number size distribution from the improved experiment was much closer to the observation, whereas in the old experiment the number concentration was higher in the nucleation mode and lower in the accumulation mode. Meanwhile, the errors in aerosol number size distribution as diagnosed by its sectional mass size distribution were also reduced. Moreover, simulations of organic carbon, sulfate, and other aerosol components were improved and the overestimation as well as underestimation of PM2.5 concentration in eastern China was significantly reduced, leading to increased correlation coefficient between simulated and observed PM2.5 by more than 70%. In the remote areas where bad simulation results were produced previously, the correlation coefficient

  16. Explicit Cloud Nucleation from Arbitrary Mixtures of Aerosol Types and Sizes Using an Ultra-Efficient In-Line Aerosol Bin Model in High-Resolution Simulations of Hurricanes

    NASA Astrophysics Data System (ADS)

    Walko, R. L.; Ashby, T.; Cotton, W. R.

    2017-12-01

    The fundamental role of atmospheric aerosols in the process of cloud droplet nucleation is well known, and there is ample evidence that the concentration, size, and chemistry of aerosols can strongly influence microphysical, thermodynamic, and ultimately dynamic properties and evolution of clouds and convective systems. With the increasing availability of observation- and model-based environmental representations of different types of anthropogenic and natural aerosols, there is increasing need for models to be able to represent which aerosols nucleate and which do not in supersaturated conditions. However, this is a very complex process that involves competition for water vapor between multiple aerosol species (chemistries) and different aerosol sizes within each species. Attempts have been made to parameterize the nucleation properties of mixtures of different aerosol species, but it is very difficult or impossible to represent all possible mixtures that may occur in practice. As part of a modeling study of the impact of anthropogenic and natural aerosols on hurricanes, we developed an ultra-efficient aerosol bin model to represent nucleation in a high-resolution atmospheric model that explicitly represents cloud- and subcloud-scale vertical motion. The bin model is activated at any time and location in a simulation where supersaturation occurs and is potentially capable of activating new cloud droplets. The bins are populated from the aerosol species that are present at the given time and location and by multiple sizes from each aerosol species according to a characteristic size distribution, and the chemistry of each species is represented by its absorption or adsorption characteristics. The bin model is integrated in time increments that are smaller than that of the atmospheric model in order to temporally resolve the peak supersaturation, which determines the total nucleated number. Even though on the order of 100 bins are typically utilized, this leads only

  17. A re-assessment of aerosol size distributions from Masaya volcano (Nicaragua)

    NASA Astrophysics Data System (ADS)

    Martin, R. S.; Ilyinskaya, E.; Sawyer, G. M.; Tsanev, V. I.; Oppenheimer, C.

    2011-01-01

    Cascade impactors were used to sample volcanic aerosol from Masaya (Nicaragua) in 2007, 2009 and 2010. Differences were found in the size distributions of volcanic aerosol between these recent campaigns and with a campaign in 2001: (1) SO 42- showed modes in both the fine (<1 μm; with low Na +/K +) and coarse (>1 μm; with high Na +/K +) fractions in all of the recent campaigns despite being unimodal in 2001 (<1 μm); (2) The modal diameters for SO 42- roughly doubled in 2009, compared to 2007 or 2010; (3) total Cl - was depleted in volcanic aerosol compared to background aerosol in all the more recent campaigns but was enriched in 2001. Other aspects of the volcanic aerosol appear to be persistent, such as a fine SO 42--H +-Na +-K + mode, which was the most abundant mode in all campaigns, and a coarse Cl --F --Mg 2+-Ca 2+ mode of lower abundance. Water uptake and speciation in the aerosol were investigated using the equilibrium model, ISORROPIA II. Results show that the coarse SO 42--rich mode deliquesces at lower relative humidity (40% RH) than the fine SO 42--rich mode (50% RH) due to increased Na +/K + in the former. The aerosol was predicted to be dry at ambient relative humidity in 2009 and dominated by NaHSO 4, KHSO 4, CaSO 4 and MgSO 4. In contrast, model results predict a liquid aerosol at ambient relative humidity in 2010. These results indicate that aerosol emissions from a volcano can vary in ionic composition and even more so in physical speciation (i.e., salts or solutions). These observations are set against a near-constant magmatic gas composition at Masaya, which highlights the significance of atmospheric and dynamic factors in the formation of volcanic aerosols.

  18. Cloud condensation nuclei in pristine tropical rainforest air of Amazonia: size-resolved measurements and modeling of atmospheric aerosol composition and CCN activity

    NASA Astrophysics Data System (ADS)

    Gunthe, S. S.; King, S. M.; Rose, D.; Chen, Q.; Roldin, P.; Farmer, D. K.; Jimenez, J. L.; Artaxo, P.; Andreae, M. O.; Martin, S. T.; Pöschl, U.

    2009-10-01

    Atmospheric aerosol particles serving as cloud condensation nuclei (CCN) are key elements of the hydrological cycle and climate. We have measured and characterized CCN at water vapor supersaturations in the range of S=0.10-0.82% in pristine tropical rainforest air during the AMAZE-08 campaign in central Amazonia. The effective hygroscopicity parameters describing the influence of chemical composition on the CCN activity of aerosol particles varied in the range of κ≍0.1-0.4 (0.16±0.06 arithmetic mean and standard deviation). The overall median value of κ≍0.15 was by a factor of two lower than the values typically observed for continental aerosols in other regions of the world. Aitken mode particles were less hygroscopic than accumulation mode particles (κ≍0.1 at D≍50 nm; κ≍0.2 at D≍200 nm), which is in agreement with earlier hygroscopicity tandem differential mobility analyzer (H-TDMA) studies. The CCN measurement results are consistent with aerosol mass spectrometry (AMS) data, showing that the organic mass fraction (forg) was on average as high as ~90% in the Aitken mode (D≤100 nm) and decreased with increasing particle diameter in the accumulation mode (~80% at D≍200 nm). The κ values exhibited a negative linear correlation with forg (R2=0.81), and extrapolation yielded the following effective hygroscopicity parameters for organic and inorganic particle components: κorg≍0.1 which can be regarded as the effective hygroscopicity of biogenic secondary organic aerosol (SOA) and κinorg≍0.6 which is characteristic for ammonium sulfate and related salts. Both the size dependence and the temporal variability of effective particle hygroscopicity could be parameterized as a function of AMS-based organic and inorganic mass fractions (κp=κorg×forg +κinorg×finorg). The CCN number concentrations predicted with κp were in fair agreement with the measurement results (~20% average deviation). The median CCN number concentrations at S=0

  19. Long-range transport of stratospheric aerosols in the Southern Hemisphere following the 2015 Calbuco eruption

    NASA Astrophysics Data System (ADS)

    Bègue, Nelson; Vignelles, Damien; Berthet, Gwenaël; Portafaix, Thierry; Payen, Guillaume; Jégou, Fabrice; Benchérif, Hassan; Jumelet, Julien; Vernier, Jean-Paul; Lurton, Thibaut; Renard, Jean-Baptiste; Clarisse, Lieven; Duverger, Vincent; Posny, Françoise; Metzger, Jean-Marc; Godin-Beekmann, Sophie

    2017-12-01

    After 43 years of inactivity, the Calbuco volcano, which is located in the southern part of Chile, erupted on 22 April 2015. The space-time evolutions (distribution and transport) of its aerosol plume are investigated by combining satellite (CALIOP, IASI, OMPS), in situ aerosol counting (LOAC OPC) and lidar observations, and the MIMOSA advection model. The Calbuco aerosol plume reached the Indian Ocean 1 week after the eruption. Over the Reunion Island site (21° S, 55.5° E), the aerosol signal was unambiguously enhanced in comparison with background conditions, with a volcanic aerosol layer extending from 18 to 21 km during the May-July period. All the data reveal an increase by a factor of ˜ 2 in the SAOD (stratospheric aerosol optical depth) with respect to values observed before the eruption. The aerosol mass e-folding time is approximately 90 days, which is rather close to the value ( ˜ 80 days) reported for the Sarychev eruption. Microphysical measurements obtained before, during, and after the eruption reflecting the impact of the Calbuco eruption on the lower stratospheric aerosol content have been analyzed over the Reunion Island site. During the passage of the plume, the volcanic aerosol was characterized by an effective radius of 0.16 ± 0.02 µm with a unimodal size distribution for particles above 0.2 µm in diameter. Particle concentrations for sizes larger than 1 µm are too low to be properly detected by the LOAC OPC. The aerosol number concentration was ˜ 20 times higher that observed before and 1 year after the eruption. According to OMPS and lidar observations, a tendency toward conditions before the eruption was observed by April 2016. The volcanic aerosol plume is advected eastward in the Southern Hemisphere and its latitudinal extent is clearly bounded by the subtropical barrier and the polar vortex. The transient behavior of the aerosol layers observed above Reunion Island between May and July 2015 reflects an inhomogeneous spatio

  20. Airborne Aerosol Closure Studies During PRIDE

    NASA Technical Reports Server (NTRS)

    Redemann, Jens; Livingston, John M.; Russell, Philip B.; Schmid, Beat; Reid, Jeff

    2000-01-01

    The Puerto Rico Dust Experiment (PRIDE) was conducted during June/July of 2000 to study the properties of Saharan dust aerosols transported across the Atlantic Ocean to the Caribbean Islands. During PRIDE, the NASA Ames Research Center six-channel (380 - 1020 nm) airborne autotracking sunphotometer (AATS-6) was operated aboard a Piper Navajo airplane alongside a suite of in situ aerosol instruments. The in situ aerosol instrumentation relevant to this paper included a Forward Scattering Spectrometer Probe (FSSP-100) and a Passive Cavity Aerosol Spectrometer Probe (PCASP), covering the radius range of approx. 0.05 to 10 microns. The simultaneous and collocated measurement of multi-spectral aerosol optical depth and in situ particle size distribution data permits a variety of closure studies. For example, vertical profiles of aerosol optical depth obtained during local aircraft ascents and descents can be differentiated with respect to altitude and compared to extinction profiles calculated using the in situ particle size distribution data (and reasonable estimates of the aerosol index of refraction). Additionally, aerosol extinction (optical depth) spectra can be inverted to retrieve estimates of the particle size distributions, which can be compared directly to the in situ size distributions. In this paper we will report on such closure studies using data from a select number of vertical profiles at Cabras Island, Puerto Rico, including measurements in distinct Saharan Dust Layers. Preliminary results show good agreement to within 30% between mid-visible aerosol extinction derived from the AATS-6 optical depth profiles and extinction profiles forward calculated using 60s-average in situ particle size distributions and standard Saharan dust aerosol refractive indices published in the literature. In agreement with tendencies observed in previous studies, our initial results show an underestimate of aerosol extinction calculated based on the in situ size distributions

  1. Boundary Layer Aerosol Composition over Sierra Nevada Mountains using 9.11- and 10.59-micron CW Lidars and Modeled Backscatter from Size Distribution Data

    NASA Technical Reports Server (NTRS)

    Cutten, D. R.; Jarzembski, M. A.; Srivastava, V.; Pueschel, R. F.; Howard, S. D.; McCaul, E. W., Jr.

    2003-01-01

    An inversion technique has been developed to determine volume fractions of an atmospheric aerosol composed primarily of ammonium sulfate and ammonium nitrate and water combined with fixed concentration of elemental and organic carbon. It is based on measured aerosol backscatter obtained with 9.11 - and 10.59-micron wavelength continuous wave CO2 lidars and modeled backscatter from aerosol size distribution data. The technique is demonstrated during a flight of the NASA DC-8 aircraft over the Sierra Nevada Mountain Range, California on 19 September, 1995. Volume fraction of each component and effective complex refractive index of the composite particle were determined assuming an internally mixed composite aerosol model. The volume fractions were also used to re-compute aerosol backscatter, providing good agreement with the lidar-measured data. The robustness of the technique for determining volume fractions was extended with a comparison of calculated 2.1,-micron backscatter from size distribution data with the measured lidar data converted to 2.1,-micron backscatter using an earlier derived algorithm, verifying the algorithm as well as the backscatter calculations.

  2. Characteristics of Aerosols over the Garhwal Himalayas: India

    NASA Astrophysics Data System (ADS)

    Soni, A.; Panwar, P.; Sundriyal, S.; Prabhu, V.; Shridhar, V.

    2017-12-01

    Aerosols and Black Carbon (BC) is very important pollutants in context of global warming study. Due to high spatio-temporal variation in aerosols, there is a large uncertainty in climate change study. This study was conducted to understand the particulate pollution level in different altitude ranging from 300 m AMSL to 2600 m AMSL (see fig.). In this study eight different sizes of aerosols (10 µm to 0.43 µm) concentration along with BC measured during summer season (MJJ) of 2014-2016 over 5 different locations of Garhwal Himalayas using Anderson Cascade Impactor (ACI) and Aethalometer AE-33. Sampling was performed continuously for 15-20 days at each site. It is the preliminary study to understand the sources of aerosols. Further chemical analysis of different sizes of aerosols helps to identify sources accurately. It will also help in future policies implications. High altitude site i.e. at 2600 m was very close to the Gangotri Glacier where river Ganga originates. The Ganga is one of the most important river in India, millions people rely on the water of this river. Since last decade many catastrophic events happened in this region because of melting of glacier fastly. Previously, no one studies BC and aerosols over this important fragile landscape. BC concentration was ranging from 4.72 ± 5.64 µg m-3 to 15.06 ± 7.69 µg m-3 at 2600 m to 300 m AMSL. At high altitude site highest aerosol concentration was observed to be 56.43 µg m-3 on the size range of PM3.3-4.7. During April-May there was a big fire event (around 3500 hector forest burnt) and the sampling period at 2600 m was on May. So that, to understand transportation of aerosols from forest fire region backward trajectories were calculated using HYSPLIT model. It gives evidence that during summer months aerosols transported from neighbouring forest fire area. While the concentration at lowest altitude was observed to be 248.95 µg m-3 in the size range of PM9-10 which is much higher than the permissible

  3. Combustion Aerosol over Marine Stratus: Long Range Transport, Subsidence and Aerosol-Cloud Interactions over the South East Pacific

    NASA Astrophysics Data System (ADS)

    Clarke, A. D.; Snider, J.; Freitag, S.; Feingold, G.; Campos, T. L.; Breckhovskikh, V.; Kazil, J.

    2011-12-01

    The worlds largest stratus deck over the South East Pacific (SEP) was a study target for the VOCALS (http://www.eol.ucar.edu/projects/vocals/) experiment in October 2008. Aerosol-cloud interactions were one major goal of several ship and aircraft studies including results from 14 flights of the NCAR C-130 aircraft reported here. Each flight covered about a 1000 km range with multiple profiles and legs below, in and above the Sc deck. Strong aerosol sources along the coast of Chile were expected and found to influence cloud condensation nuclei (CCN) in coastal clouds. However; "rivers" of elevated CO, black carbon (BC) associated with combustion aerosol effective as CCN at <0.3%S were also common in subsiding FT air overlying the extensive Sc deck for over 1000km offshore. This subsidence, linked to the Hadley circulation, brought in aerosol from sources over the western Pacific as well as South America. Observed entrainment of this aerosol appeared linked to cloud related turbulence. When present, this combustion aerosol increased available CCN and decreased effective radius compared to clouds in "clean" MBL air advected from the South Pacific. We hypothesize that this entrainment can help buffer MBL clouds over the SEP against depletion of CCN by drizzle. This may delay transition of closed cell to open cell convection, potentially leading to increased lifetimes of Sc clouds that entrain such aerosol.

  4. Ice nucleation onto Arizona test dust at cirrus temperatures: effect of temperature and aerosol size on onset relative humidity.

    PubMed

    Kanji, Z A; Abbatt, J P D

    2010-01-21

    The University of Toronto Continuous Flow Diffusion Chamber (UT-CFDC) was used to study ice formation onto monodisperse Arizona Test Dust (ATD) particles. The onset relative humidity with respect to ice (RH(i)) was measured as a function of temperature in the range 251-223 K for 100 nm ATD particles. It was found that for 0.1% of the particles to freeze, water saturation was required at all temperatures except 223 K where particles activated at RH(i) below water saturation. At this temperature, where deposition mode freezing is occurring, we find that the larger the particle size, the lower the onset RH(i). We also demonstrate that the total number of particles present may influence the onset RH(i) observed. The surface area for ice activation, aerosol size, and temperature must all be considered when reporting onset values of ice formation onto ATD mineral dust particles. In addition, we calculate nucleation rates and contact angles of ice germs with ATD aerosols which indicate that there exists a range of active sites on the surface with different efficiencies for activating ice formation.

  5. Aerosol detection efficiency in inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Hubbard, Joshua A.; Zigmond, Joseph A.

    2016-05-01

    An electrostatic size classification technique was used to segregate particles of known composition prior to being injected into an inductively coupled plasma mass spectrometer (ICP-MS). Size-segregated particles were counted with a condensation nuclei counter as well as sampled with an ICP-MS. By injecting particles of known size, composition, and aerosol concentration into the ICP-MS, efficiencies of the order of magnitude aerosol detection were calculated, and the particle size dependencies for volatile and refractory species were quantified. Similar to laser ablation ICP-MS, aerosol detection efficiency was defined as the rate at which atoms were detected in the ICP-MS normalized by the rate at which atoms were injected in the form of particles. This method adds valuable insight into the development of technologies like laser ablation ICP-MS where aerosol particles (of relatively unknown size and gas concentration) are generated during ablation and then transported into the plasma of an ICP-MS. In this study, we characterized aerosol detection efficiencies of volatile species gold and silver along with refractory species aluminum oxide, cerium oxide, and yttrium oxide. Aerosols were generated with electrical mobility diameters ranging from 100 to 1000 nm. In general, it was observed that refractory species had lower aerosol detection efficiencies than volatile species, and there were strong dependencies on particle size and plasma torch residence time. Volatile species showed a distinct transition point at which aerosol detection efficiency began decreasing with increasing particle size. This critical diameter indicated the largest particle size for which complete particle detection should be expected and agreed with theories published in other works. Aerosol detection efficiencies also displayed power law dependencies on particle size. Aerosol detection efficiencies ranged from 10- 5 to 10- 11. Free molecular heat and mass transfer theory was applied, but

  6. Aerosol detection efficiency in inductively coupled plasma mass spectrometry

    DOE PAGES

    Hubbard, Joshua A.; Zigmond, Joseph A.

    2016-03-02

    We used an electrostatic size classification technique to segregate particles of known composition prior to being injected into an inductively coupled plasma mass spectrometer (ICP-MS). Moreover, we counted size-segregated particles with a condensation nuclei counter as well as sampled with an ICP-MS. By injecting particles of known size, composition, and aerosol concentration into the ICP-MS, efficiencies of the order of magnitude aerosol detection were calculated, and the particle size dependencies for volatile and refractory species were quantified. Similar to laser ablation ICP-MS, aerosol detection efficiency was defined as the rate at which atoms were detected in the ICP-MS normalized bymore » the rate at which atoms were injected in the form of particles. This method adds valuable insight into the development of technologies like laser ablation ICP-MS where aerosol particles (of relatively unknown size and gas concentration) are generated during ablation and then transported into the plasma of an ICP-MS. In this study, we characterized aerosol detection efficiencies of volatile species gold and silver along with refractory species aluminum oxide, cerium oxide, and yttrium oxide. Aerosols were generated with electrical mobility diameters ranging from 100 to 1000 nm. In general, it was observed that refractory species had lower aerosol detection efficiencies than volatile species, and there were strong dependencies on particle size and plasma torch residence time. Volatile species showed a distinct transition point at which aerosol detection efficiency began decreasing with increasing particle size. This critical diameter indicated the largest particle size for which complete particle detection should be expected and agreed with theories published in other works. Aerosol detection efficiencies also displayed power law dependencies on particle size. Aerosol detection efficiencies ranged from 10 -5 to 10 -11. Free molecular heat and mass transfer theory was

  7. Diurnal and seasonal variations of concentration and size distribution of nano aerosols (10-1100 nm) enclosing radon decay products in the Postojna Cave, Slovenia.

    PubMed

    Bezek, M; Gregoric, A; Kávási, N; Vaupotic, J

    2012-11-01

    At the lowest point along the tourist route in the Postojna Cave, the activity concentration of radon ((222)Rn) short-lived decay products and number concentration and size distribution of background aerosol particles in the size range of 10-1100 nm were measured. In the warm yearly season, aerosol concentration was low (52 cm(-3)) with 21 % particles smaller than 50 nm, while in the cold season, it was higher (1238 cm(-3)) with 8 % of <50 nm particles. Radon activity concentrations were 4489 and 1108 Bq m(-3), and fractions of unattached radon decay products were 0.62 and 0.13, respectively.

  8. Fog and Cloud Induced Aerosol Modification Observed by AERONET

    NASA Technical Reports Server (NTRS)

    Eck, T. F.; Holben, B. N.; Reid, J. S.; Giles, D. M.; Rivas, M. A.; Singh, R. P.; Tripathi, S. N.; Bruegge, C. J.; Platnick, S. E.; Arnold, G. T.; hide

    2011-01-01

    Large fine mode (sub-micron radius) dominated aerosols in size distributions retrieved from AERONET have been observed after fog or low-altitude cloud dissipation events. These column-integrated size distributions have been obtained at several sites in many regions of the world, typically after evaporation of low altitude cloud such as stratocumulus or fog. Retrievals with cloud processed aerosol are sometimes bimodal in the accumulation mode with the larger size mode often approx.0.4 - 0.5 microns radius (volume distribution); the smaller mode typically approx.0.12 to aprrox.0.20 microns may be interstitial aerosol that were not modified by incorporation in droplets and/or aerosol that are less hygroscopic in nature. Bimodal accumulation mode size distributions have often been observed from in situ measurements of aerosols that have interacted with clouds, and AERONET size distribution retrievals made after dissipation of cloud or fog are in good agreement with particle sizes measured by in situ techniques for cloud-processed aerosols. Aerosols of this type and large size range (in lower concentrations) may also be formed by cloud processing in partly cloudy conditions and may contribute to the shoulder of larger size particles in the accumulation mode retrievals, especially in regions where sulfate and other soluble aerosol are a significant component of the total aerosol composition. Observed trends of increasing aerosol optical depth (AOD) as fine mode radius increased suggests higher AOD in the near cloud environment and therefore greater aerosol direct radiative forcing than typically obtained from remote sensing, due to bias towards sampling at low cloud fraction.

  9. IS THE SIZE DISTRIBUTION OF URBAN AEROSOLS DETERMINED BY THERMODYNAMIC EQUILIBRIUM? (R826371C005)

    EPA Science Inventory

    A size-resolved equilibrium model, SELIQUID, is presented and used to simulate the size–composition distribution of semi-volatile inorganic aerosol in an urban environment. The model uses the efflorescence branch of aerosol behavior to predict the equilibrium partitioni...

  10. A Miniature Aerosol Sensor for Detecting Polydisperse Airborne Ultrafine Particles.

    PubMed

    Zhang, Chao; Wang, Dingqu; Zhu, Rong; Yang, Wenming; Jiang, Peng

    2017-04-22

    Counting and sizing of polydisperse airborne nanoparticles have attracted most attentions owing to increasing widespread presence of airborne engineered nanoparticles or ultrafine particles. Here we report a miniature aerosol sensor to detect particle size distribution of polydisperse ultrafine particles based on ion diffusion charging and electrical detection. The aerosol sensor comprises a couple of planar electrodes printed on two circuit boards assembled in parallel, where charging, precipitation and measurement sections are integrated into one chip, which can detect aerosol particle size in of 30-500 nm, number concentration in range of 5 × 10²-10⁷ /cm³. The average relative errors of the measured aerosol number concentration and the particle size are estimated to be 12.2% and 13.5% respectively. A novel measurement scheme is proposed to actualize a real-time detection of polydisperse particles by successively modulating the measurement voltage and deducing the particle size distribution through a smart data fusion algorithm. The effectiveness of the aerosol sensor is experimentally demonstrated via measurements of polystyrene latex (PSL) aerosol and nucleic acid aerosol, as well as sodium chloride aerosol particles.

  11. Source attribution of aerosol size distributions and model evaluation using Whistler Mountain measurements and GEOS-Chem-TOMAS simulations

    NASA Astrophysics Data System (ADS)

    D'Andrea, S. D.; Ng, J. Y.; Kodros, J. K.; Atwood, S. A.; Wheeler, M. J.; Macdonald, A. M.; Leaitch, W. R.; Pierce, J. R.

    2015-09-01

    Remote and free tropospheric aerosols represent a large fraction of the climatic influence of aerosols; however, aerosol in these regions is less characterized than those polluted boundary layers. We evaluate aerosol size distributions predicted by the GEOS-Chem-TOMAS global chemical transport model with online aerosol microphysics using measurements from the peak of Whistler Mountain, BC, Canada (2182 m a.s.l.). We evaluate the model for predictions of aerosol number, size and composition during periods of free tropospheric (FT) and boundary-layer (BL) influence at "coarse" 4° × 5° and "nested" 0.5° × 0.667° resolutions by developing simple FT/BL filtering techniques. We find that using temperature as a proxy for upslope flow (BL influence) improved the model measurement comparisons. The best threshold temperature was around 2 °C for the coarse simulations and around 6 °C for the nested simulations, with temperatures warmer than the threshold indicating boundary-layer air. Additionally, the site was increasingly likely to be in-cloud when the measured RH was above 90 %, so we do not compare the modeled and measured size distributions during these periods. With the inclusion of these temperature and RH filtering techniques, the model-measurement comparisons improved significantly. The slope of the regression for N80 (the total number of particles with particle diameter, Dp > 80 nm) in the nested simulations increased from 0.09 to 0.65, R2 increased from 0.04 to 0.46, and log-mean bias improved from 0.95 to 0.07. We also perform simulations at the nested resolution without Asian anthropogenic (AA) emissions and without biomass-burning (BB) emissions to quantify the contribution of these sources to aerosols at Whistler Peak (through comparison with simulations with these emissions on). The long-range transport of AA aerosol was found to be significant throughout all particle number concentrations, and increased the number of particles larger than 80 nm (N80

  12. Coagulation algorithms with size binning

    NASA Technical Reports Server (NTRS)

    Statton, David M.; Gans, Jason; Williams, Eric

    1994-01-01

    The Smoluchowski equation describes the time evolution of an aerosol particle size distribution due to aggregation or coagulation. Any algorithm for computerized solution of this equation requires a scheme for describing the continuum of aerosol particle sizes as a discrete set. One standard form of the Smoluchowski equation accomplishes this by restricting the particle sizes to integer multiples of a basic unit particle size (the monomer size). This can be inefficient when particle concentrations over a large range of particle sizes must be calculated. Two algorithms employing a geometric size binning convention are examined: the first assumes that the aerosol particle concentration as a function of size can be considered constant within each size bin; the second approximates the concentration as a linear function of particle size within each size bin. The output of each algorithm is compared to an analytical solution in a special case of the Smoluchowski equation for which an exact solution is known . The range of parameters more appropriate for each algorithm is examined.

  13. Classifying aerosol type using in situ surface spectral aerosol optical properties

    NASA Astrophysics Data System (ADS)

    Schmeisser, Lauren; Andrews, Elisabeth; Ogren, John A.; Sheridan, Patrick; Jefferson, Anne; Sharma, Sangeeta; Kim, Jeong Eun; Sherman, James P.; Sorribas, Mar; Kalapov, Ivo; Arsov, Todor; Angelov, Christo; Mayol-Bracero, Olga L.; Labuschagne, Casper; Kim, Sang-Woo; Hoffer, András; Lin, Neng-Huei; Chia, Hao-Ping; Bergin, Michael; Sun, Junying; Liu, Peng; Wu, Hao

    2017-10-01

    Knowledge of aerosol size and composition is important for determining radiative forcing effects of aerosols, identifying aerosol sources and improving aerosol satellite retrieval algorithms. The ability to extrapolate aerosol size and composition, or type, from intensive aerosol optical properties can help expand the current knowledge of spatiotemporal variability in aerosol type globally, particularly where chemical composition measurements do not exist concurrently with optical property measurements. This study uses medians of the scattering Ångström exponent (SAE), absorption Ångström exponent (AAE) and single scattering albedo (SSA) from 24 stations within the NOAA/ESRL Federated Aerosol Monitoring Network to infer aerosol type using previously published aerosol classification schemes.Three methods are implemented to obtain a best estimate of dominant aerosol type at each station using aerosol optical properties. The first method plots station medians into an AAE vs. SAE plot space, so that a unique combination of intensive properties corresponds with an aerosol type. The second typing method expands on the first by introducing a multivariate cluster analysis, which aims to group stations with similar optical characteristics and thus similar dominant aerosol type. The third and final classification method pairs 3-day backward air mass trajectories with median aerosol optical properties to explore the relationship between trajectory origin (proxy for likely aerosol type) and aerosol intensive parameters, while allowing for multiple dominant aerosol types at each station.The three aerosol classification methods have some common, and thus robust, results. In general, estimating dominant aerosol type using optical properties is best suited for site locations with a stable and homogenous aerosol population, particularly continental polluted (carbonaceous aerosol), marine polluted (carbonaceous aerosol mixed with sea salt) and continental dust/biomass sites

  14. Aerosol Retrieval from Multiangle Multispectral Photopolarimetric Measurements: Importance of Spectral Range and Angular Resolution

    NASA Technical Reports Server (NTRS)

    Wu, L.; Hasekamp, O.; Van Diedenhoven, B.; Cairns, B.

    2015-01-01

    We investigated the importance of spectral range and angular resolution for aerosol retrieval from multiangle photopolarimetric measurements over land. For this purpose, we use an extensive set of simulated measurements for different spectral ranges and angular resolutions and subsets of real measurements of the airborne Research Scanning Polarimeter (RSP) carried out during the PODEX and SEAC4RS campaigns over the continental USA. Aerosol retrievals performed from RSP measurements show good agreement with ground-based AERONET measurements for aerosol optical depth (AOD), single scattering albedo (SSA) and refractive index. Furthermore, we found that inclusion of shortwave infrared bands (1590 and/or 2250 nm) significantly improves the retrieval of AOD, SSA and coarse mode microphysical properties. However, accuracies of the retrieved aerosol properties do not improve significantly when more than five viewing angles are used in the retrieval.

  15. Size-resolved characterization of the polysaccharidic and proteinaceous components of sea spray aerosol

    NASA Astrophysics Data System (ADS)

    Aller, Josephine Y.; Radway, JoAnn C.; Kilthau, Wendy P.; Bothe, Dylan W.; Wilson, Theodore W.; Vaillancourt, Robert D.; Quinn, Patricia K.; Coffman, Derek J.; Murray, Benjamin J.; Knopf, Daniel A.

    2017-04-01

    Dissolved organic polymers released by phytoplankton and bacteria abiologically self-assemble in surface ocean waters into nano-to micro-sized gels containing polysaccharides, proteins, lipids and other components. These gels concentrate in the sea surface microlayer (SML), where they can potentially contribute to sea spray aerosol (SSA). Sea spray is a major source of atmospheric aerosol mass over much of the earth's surface, and knowledge of its properties (including the amount and nature of the organic content), size distributions and fluxes are fundamental for determining its role in atmospheric chemistry and climate. Using a cascade impactor, we collected size-fractionated aerosol particles from ambient air and from freshly generated Sea Sweep SSA in the western North Atlantic Ocean together with biological and chemical characterization of subsurface and SML waters. Spectrophotometric methods were applied to quantify the polysaccharide-containing transparent exopolymer (TEP) and protein-containing Coomassie stainable material (CSM) in these particles and waters. This study demonstrates that both TEP and CSM in surface ocean waters are aerosolized with sea spray with the greatest total TEP associated with particles <180 nm in diameter and >5 000 nm. The higher concentrations of TEP and CSM in particles >5 000 nm most likely reflects collection of microorganism cells and/or fragments. The greater concentration of CSM in larger size particles may also reflect greater stability of proteinaceous gels compared to polysaccharide-rich gels in surface waters and the SML. Both TEP and CSM were measured in the ambient marine air sample with concentrations of 2.1 ± 0.16 μg xanthan gum equivalents (XG eq.) m-3 and 14 ± 1.0 μg bovine serum albumin equivalents (BSA eq.) m-3. TEP in Sea Sweep SSA averaged 4.7 ± 3.1 μg XG eq. m-3 and CSM 8.6 ± 7.3 μg BSA eq. m-3. This work shows the transport of marine biogenic material across the air-sea interface through primary

  16. Aerosol physical properties from satellite horizon inversion

    NASA Technical Reports Server (NTRS)

    Gray, C. R.; Malchow, H. L.; Merritt, D. C.; Var, R. E.; Whitney, C. K.

    1973-01-01

    The feasibility is investigated of determining the physical properties of aerosols globally in the altitude region of 10 to 100 km from a satellite horizon scanning experiment. The investigation utilizes a horizon inversion technique previously developed and extended. Aerosol physical properties such as number density, size distribution, and the real and imaginary components of the index of refraction are demonstrated to be invertible in the aerosol size ranges (0.01-0.1 microns), (0.1-1.0 microns), (1.0-10 microns). Extensions of previously developed radiative transfer models and recursive inversion algorithms are displayed.

  17. FRACTIONAL AEROSOL FILTRATION EFFICIENCY OF IN-DUCT VENTILATION AIR CLEANERS

    EPA Science Inventory

    The filtration efficiency of ventilation air cleaners is highly particle-size dependent over the 0.01 to 3 μm diameter size range. Current standardized test methods, which determine only overall efficiencies for ambient aerosol or other test aerosols, provide data of limited util...

  18. Aerosol optical properties at a coastal site in Hong Kong, South China: temporal features, size dependencies and source analysis

    NASA Astrophysics Data System (ADS)

    Wang, Jiaping; Ding, Aijun; Virkkula, Aki; Lee, Shuncheng; Shen, Yicheng; Chi, Xuguang; Xu, Zheng

    2016-04-01

    Hong Kong is a typical coastal city adjacent to the Pearl River Delta (PRD) region in southern China, which is one of the regions suffering from severe air pollution. Atmospheric aerosols can affect the earth's radiative balance by scattering and absorbing incoming solar radiation. Black Carbon (BC) aerosol is a particularly emphasized component due to its strong light absorption. Aerosol transported from different source areas consists of distinct size distributions, leading to different optical properties. As the byproducts of the incomplete oxidation, BC and CO both have relatively long life time, their relationship is a good indicator for distinguishing different pollutant sources. In this study, temporal variations of aerosol optical properties and concentrations of BC and CO at a coastal background station in Hong Kong were investigated. Transport characteristics and origins of aerosol were elucidated by analyzing backward Lagrangian particle dispersion modeling (LPDM) results, together with related parameters including the relationships between optical properties and particle size, BC-CO correlations, ship location data and meteorological variables. From February 2012 to September 2013 and March 2014 to February 2015, continuous in-situ measurements of light scattering and absorption coefficients, particle size distribution and concentrations of BC and CO were conducted at Hok Tsui (HT), a coastal background station on the southeast tip of Hong Kong Island (22.22°N, 114.25°E, 60 m above the sea level) with few local anthropogenic activities. Affected by the Asian monsoon, this region is dominated by continental outflow in winter and by marine inflow from the South China Sea in summer, which is an ideal station for identifying the transport characteristics of aerosol and their effects on optical properties from different anthropogenic emission sources. 7-day backward Lagrangian particle dispersion modeling was performed for source identification. Three

  19. Perspective: Aerosol microphysics: From molecules to the chemical physics of aerosols

    NASA Astrophysics Data System (ADS)

    Bzdek, Bryan R.; Reid, Jonathan P.

    2017-12-01

    Aerosols are found in a wide diversity of contexts and applications, including the atmosphere, pharmaceutics, and industry. Aerosols are dispersions of particles in a gas, and the coupling of the two phases results in highly dynamic systems where chemical and physical properties like size, composition, phase, and refractive index change rapidly in response to environmental perturbations. Aerosol particles span a wide range of sizes from 1 nm to tens of micrometres or from small molecular clusters that may more closely resemble gas phase molecules to large particles that can have similar qualities to bulk materials. However, even large particles with finite volumes exhibit distinct properties from the bulk condensed phase, due in part to their higher surface-to-volume ratio and their ability to easily access supersaturated solute states inaccessible in the bulk. Aerosols represent a major challenge for study because of the facile coupling between the particle and gas, the small amounts of sample available for analysis, and the sheer breadth of operative processes. Time scales of aerosol processes can be as short as nanoseconds or as long as years. Despite their very different impacts and applications, fundamental chemical physics processes serve as a common theme that underpins our understanding of aerosols. This perspective article discusses challenges in the study of aerosols and highlights recent chemical physics advancements that have enabled improved understanding of these complex systems.

  20. Organic Aerosols from SÃO Paulo and its Relationship with Aerosol Absorption and Scattering Properties

    NASA Astrophysics Data System (ADS)

    Artaxo, P.; Brito, J. F.; Rizzo, L. V.

    2012-12-01

    The megacity of São Paulo with its 19 million people and 7 million cars is a challenge from the point of view of air pollution. High levels of organic aerosols, PM10, black carbon and ozone and the peculiar situation of the large scale use of ethanol fuel makes it a special case. Little is known about the impact of ethanol on air quality and human health and the increase of ethanol as vehicle fuel is rising worldwide An experiment was designed to physico-chemical properties of aerosols in São Paulo, as well as their optical properties. Aerosol size distribution in the size range of 1nm to 10 micrometers is being measured with a Helsinki University SMPS (Scanning Mobility Particle Sizer), an NAIS (Neutral ion Spectrometer) and a GRIMM OPC (Optical Particle Counter). Optical properties are being measured with a TSI Nephelometer and a Thermo MAAP (Multi Angle Absorption Photometer). A CIMEL sunphotometer from the AERONET network measure the aerosol optical depth. Furthermore, a Proton-Transfer-Reaction Mass Spectrometer (PTR-MS) and an Aerosol Chemical Speciation Monitor (ACSM) are used to real-time VOC analysis and aerosol composition, respectively. The ACSM was operated for 3 months continuosly during teh wintertime of 2012. The measured total particle concentration typically varies between 10,000 and 30,000 cm-3 being the lowest late in the night and highest around noon and frequently exceeding 50,000 cm-3. Clear diurnal patterns in aerosol optical properties were observed. Scattering and absorption coefficients typically range between 20 and 100 Mm-1 at 450 nm, and between 10 to 40 Mm-1 at 637 nm, respectively, both of them peaking at 7:00 local time, the morning rush hour. The corresponding single scattering albedo varies between 0.50 and 0.85, indicating a significant contribution of primary absorbing particles to the aerosol population. During the first month a total of seven new particle formation events were observed with growth rates ranging from 9 to 25

  1. An instrument for the simultaneous acquisition of size, shape, and spectral fluorescence data from single aerosol particles

    NASA Astrophysics Data System (ADS)

    Hirst, Edwin; Kaye, Paul H.; Foot, Virginia E.; Clark, James M.; Withers, Philip B.

    2004-12-01

    We describe the construction of a bio-aerosol monitor designed to capture and record intrinsic fluorescence spectra from individual aerosol particles carried in a sample airflow and to simultaneously capture data relating to the spatial distribution of elastically scattered light from each particle. The spectral fluorescence data recorded by this PFAS (Particle Fluorescence and Shape) monitor contains information relating to the particle material content and specifically to possible biological fluorophores. The spatial scattering data from PFAS yields information relating to particle size and shape. The combination of these data can provide a means of aiding the discrimination of bio-aerosols from background or interferent aerosol particles which may have similar fluorescence properties but exhibit shapes and/or sizes not normally associated with biological particles. The radiation used both to excite particle fluorescence and generate the necessary spatially scattered light flux is provided by a novel compact UV fiber laser operating at 266nm wavelength. Particles drawn from the ambient environment traverse the laser beam in single file. Intrinsic particle fluorescence in the range 300-570nm is collected via an ellipsoidal concentrator into a concave grating spectrometer, the spectral data being recorded using a 16-anode linear array photomultiplier detector. Simultaneously, the spatial radiation pattern scattered by the particle over 5°-30° scattering angle and 360° of azimuth is recorded using a custom designed 31-pixel radial hybrid photodiode array. Data from up to ~5,000 particles per second may be acquired for analysis, usually performed by artificial neural network classification.

  2. Size-Resolved Composition of Organic Aerosol on the California Central Coast

    NASA Astrophysics Data System (ADS)

    Babila, J. E.; Depew, C. J.; Heinrich, S. E.; Zoerb, M.

    2016-12-01

    Organic compounds represent a significant mass fraction of submicrometer aerosol and can influence properties such as radiative forcing and cloud formation. Despite their broad importance, a complete description of particle sources and composition is lacking. Here we present measurements of solvent-extracted organic compounds in ambient aerosol in San Luis Obispo, CA. Ambient particles were sampled and size segregated with a micro-orifice uniform deposit impactor (MOUDI). Water and methanol soluble organic carbon was characterized with electrospray ionization mass spectrometry (ESI-MS) and UV/Vis spectroscopy. Particle composition and influences from local and regional sources on the organic fraction will be discussed.

  3. The evolution of biomass-burning aerosol size distributions due to coagulation: dependence on fire and meteorological details and parameterization

    NASA Astrophysics Data System (ADS)

    Sakamoto, Kimiko M.; Laing, James R.; Stevens, Robin G.; Jaffe, Daniel A.; Pierce, Jeffrey R.

    2016-06-01

    Biomass-burning aerosols have a significant effect on global and regional aerosol climate forcings. To model the magnitude of these effects accurately requires knowledge of the size distribution of the emitted and evolving aerosol particles. Current biomass-burning inventories do not include size distributions, and global and regional models generally assume a fixed size distribution from all biomass-burning emissions. However, biomass-burning size distributions evolve in the plume due to coagulation and net organic aerosol (OA) evaporation or formation, and the plume processes occur on spacial scales smaller than global/regional-model grid boxes. The extent of this size-distribution evolution is dependent on a variety of factors relating to the emission source and atmospheric conditions. Therefore, accurately accounting for biomass-burning aerosol size in global models requires an effective aerosol size distribution that accounts for this sub-grid evolution and can be derived from available emission-inventory and meteorological parameters. In this paper, we perform a detailed investigation of the effects of coagulation on the aerosol size distribution in biomass-burning plumes. We compare the effect of coagulation to that of OA evaporation and formation. We develop coagulation-only parameterizations for effective biomass-burning size distributions using the SAM-TOMAS large-eddy simulation plume model. For the most-sophisticated parameterization, we use the Gaussian Emulation Machine for Sensitivity Analysis (GEM-SA) to build a parameterization of the aged size distribution based on the SAM-TOMAS output and seven inputs: emission median dry diameter, emission distribution modal width, mass emissions flux, fire area, mean boundary-layer wind speed, plume mixing depth, and time/distance since emission. This parameterization was tested against an independent set of SAM-TOMAS simulations and yields R2 values of 0.83 and 0.89 for Dpm and modal width, respectively. The

  4. Evaluation of Sulfate and Organic Aerosol in the Global UTLS: Budget and Size Distribution

    NASA Astrophysics Data System (ADS)

    Yu, P.; Froyd, K. D.; Murphy, D. M.; Jimenez, J. L.; Campuzano Jost, P.; Williamson, C.; Kupc, A.; Brock, C. A.; Liu, S.; Gao, R. S.; Thornberry, T. D.; Portmann, R. W.; Jensen, E. J.; Toon, O. B.; Rosenlof, K. H.

    2017-12-01

    Stratospheric sulfate and organic aerosols account for 20% of the total direct aerosol radiative forcing since 1850 [Yu et al., 2016]. Limited in-situ measurements on aerosol composition have been made in the upper troposphere and lower stratosphere (UTLS), mostly in the Northern Hemispheric mid-latitudes and tropics [Froyd et al., 2009; Murphy et al., 2014; Liao et al., 2015]. Based on those measurements and recent modeling studies [Yu et al., 2015a, 2015b, 2016], organic material commonly contributes half of the aerosol mass in the UTLS in the North Hemisphere. We summarize the global UTLS aerosol mass, size distribution and composition using in-situ measurements over the past 15 years including NASA SEAC4RS in 2013 [Liao et al., 2015; Yu et al., 2015a; Toon et al., 2016], NASA ATom in 2016 and 2017, NASA AVE in 2004 and 2006 [Froyd et al., 2009] and a balloon-borne campaign from Kunming in 2015 [Yu et al., 2017]. The most recent aerosol measurements on sulfate, organics, and their size distributions from the NASA ATom deployments provide a global view of upper tropospheric aerosol composition over remote regions (i.e. the Pacific and Atlantic oceans) in both hemispheres. These in-situ measurements are compared with a sectional aerosol model coupled with the NCAR Community Earth System Model (CESM-CARMA). The comparisons and simulations demonstrate the importance of UTLS aerosols on aerosol-radiation-climate interactions, and highlight the need for a better understanding on the UTLS aerosols' budget, sources, seasonal cycle, transport pathways and linkage to climate change. References:Froyd et al. (2009), Atmospheric Chemistry and Physics, 9(13), 4363-4385. Liao et al. (2016), J. Geophys. Res. Atmos., 120, 2990-3005. Murphy et al. (2014), Q.J.R. Meteorol. Soc., 140: 1269-1278 Toon, O. B. et al. (2016) , J. Geophys. Res. Atmos., 121, 4967-5009 Yu, P. et al. (2015a), J. Adv. Model. Earth Syst., 7, 865-914 Yu, P. et al. (2015b), Geophys. Res. Lett., 42, 2540-2546 Yu

  5. Metallic-nanoparticles-enhanced fluorescence from individual micron-sized aerosol particles on-the-fly.

    PubMed

    Sivaprakasam, Vasanthi; Hart, Matthew B; Jain, Vaibhav; Eversole, Jay D

    2014-08-11

    Fluorescence spectra from individual aerosol particles that were either coated or embedded with metallic nanoparticles (MNPs) was acquired on-the-fly using 266 nm and 355 nm excitation. Using aqueous suspensions of MNPs with either polystyrene latex (PSL) spheres or dissolved proteins (tryptophan or ovalbumin), we generated PSL spheres coated with MNPs, or protein clusters embedded with MNPs as aerosols. Both enhanced and quenched fluorescence intensities were observed as a function of MNP concentration. Optimizing MNP material, size and spacing should yield enhanced sensitivity for specific aerosol materials that could be exploited to improve detection limits of single-particle, on-the-fly fluorescence or Raman based spectroscopic sensors.

  6. A Miniature Aerosol Sensor for Detecting Polydisperse Airborne Ultrafine Particles

    PubMed Central

    Zhang, Chao; Wang, Dingqu; Zhu, Rong; Yang, Wenming; Jiang, Peng

    2017-01-01

    Counting and sizing of polydisperse airborne nanoparticles have attracted most attentions owing to increasing widespread presence of airborne engineered nanoparticles or ultrafine particles. Here we report a miniature aerosol sensor to detect particle size distribution of polydisperse ultrafine particles based on ion diffusion charging and electrical detection. The aerosol sensor comprises a couple of planar electrodes printed on two circuit boards assembled in parallel, where charging, precipitation and measurement sections are integrated into one chip, which can detect aerosol particle size in of 30–500 nm, number concentration in range of 5 × 102–5 × 107 /cm3. The average relative errors of the measured aerosol number concentration and the particle size are estimated to be 12.2% and 13.5% respectively. A novel measurement scheme is proposed to actualize a real-time detection of polydisperse particles by successively modulating the measurement voltage and deducing the particle size distribution through a smart data fusion algorithm. The effectiveness of the aerosol sensor is experimentally demonstrated via measurements of polystyrene latex (PSL) aerosol and nucleic acid aerosol, as well as sodium chloride aerosol particles. PMID:28441740

  7. Sensitivity of Homogeneous Ice Nucleation to Aerosol Perturbations and Its Implications for Aerosol Indirect Effects Through Cirrus Clouds

    NASA Astrophysics Data System (ADS)

    Liu, X.; Shi, X.

    2018-02-01

    The magnitude and sign of anthropogenic aerosol impacts on cirrus clouds through ice nucleation are still very uncertain. In this study, aerosol sensitivity (ηα), defined as the sensitivity of the number concentration (Ni) of ice crystals formed from homogeneous ice nucleation to aerosol number concentration (Na), is examined based on simulations from a cloud parcel model. The model represents the fundamental process of ice crystal formation that results from homogeneous nucleation. We find that the geometric dispersion (σ) of the aerosol size distribution used in the model is a key factor for ηα. For a monodisperse size distribution, ηα is close to zero in vertical updrafts (V < 50 cm s-1) typical of cirrus clouds. However, ηα increases to 0.1-0.3 (i.e., Ni increases by a factor of 1.3-2.0 for a tenfold increase in Na) if aerosol particles follow lognormal size distributions with a σ of 1.6-2.3 in the upper troposphere. By varying the input aerosol and environmental parameters, our model reproduces a large range of ηα values derived from homogeneous ice nucleation parameterizations widely used in global climate models (GCMs). The differences in ηα from these parameterizations can translate into a range of anthropogenic aerosol longwave indirect forcings through cirrus clouds from 0.05 to 0.36 W m-2 with a GCM. Our study suggests that a larger ηα (0.1-0.3) is more plausible and the homogeneous nucleation parameterizations should include a realistic aerosol size distribution to accurately quantify anthropogenic aerosol indirect effects.

  8. VARIATION OF ELEMENT SPECIATION IN COAL COMBUSTION AEROSOLS WITH PARTICLE SIZE

    EPA Science Inventory

    The speciation of sulfur, iron and key trace elements (Cr, As, Se, Zn) in combustion ash aerosols has been examined as a function of size from experimental combustion units burning Utah and Illinois bituminous coals. Although predominantly present as sulfate, sulfur was also pre...

  9. Comparison of Aerosol Volume Size Distributions between Surface and Ground-based Remote Sensing Measurements Downwind of Seoul, Korea during MAPS-Seoul

    NASA Astrophysics Data System (ADS)

    Kim, P.; Choi, Y.; Ghim, Y. S.

    2016-12-01

    Both sunphotometer (Cimel, CE-318) and skyradiometer (Prede, POM-02) were operated in May, 2015 as a part of the Megacity Air Pollution Studies-Seoul (MAPS-Seoul) campaign. These instruments were collocated at the Hankuk University of Foreign Studies (Hankuk_UFS) site of AErosol RObotic NETwork (AERONET) and the Yongin (YGN) site of SKYradiometer NETwork (SKYNET). The aerosol volume size distribution at the surface was measured using a wide range aerosol spectrometer (WRAS) system consisting of a scanning mobility particle sizer (Grimm, Model 5.416; 45 bins, 0.01-1.09 μm) and an optical particle counter (Grimm, Model 1.109; 31 bins, 0.27-34 μm). The measurement site (37.34oN, 127.27oE, 167 m above sea level) is located about 35 km southeast of downtown Seoul. To investigate the discrepancies in volume concentrations, effective diameters and fine mode volume fractions, we compared the volume size distributions from sunphotometer, skyradiometer, and WRAS system when the measurement time coincided within 5 minutes considering that the measurement intervals were different between instruments.

  10. Source attribution of aerosol size distributions and model evaluation using Whistler Mountain measurements and GEOS-Chem-TOMAS simulations

    NASA Astrophysics Data System (ADS)

    D'Andrea, S. D.; Ng, J. Y.; Kodros, J. K.; Atwood, S. A.; Wheeler, M. J.; Macdonald, A. M.; Leaitch, W. R.; Pierce, J. R.

    2016-01-01

    Remote and free-tropospheric aerosols represent a large fraction of the climatic influence of aerosols; however, aerosol in these regions is less characterized than those polluted boundary layers. We evaluate aerosol size distributions predicted by the GEOS-Chem-TOMAS global chemical transport model with online aerosol microphysics using measurements from the peak of Whistler Mountain, British Columbia, Canada (2182 m a.s.l., hereafter referred to as Whistler Peak). We evaluate the model for predictions of aerosol number, size, and composition during periods of free-tropospheric (FT) and boundary-layer (BL) influence at "coarse" 4° × 5° and "nested" 0.5° × 0.667° resolutions by developing simple FT/BL filtering techniques. We find that using temperature as a proxy for upslope flow (BL influence) improved the model-measurement comparisons. The best threshold temperature was around 2 °C for the coarse simulations and around 6 °C for the nested simulations, with temperatures warmer than the threshold indicating boundary-layer air. Additionally, the site was increasingly likely to be in cloud when the measured relative humidity (RH) was above 90 %, so we do not compare the modeled and measured size distributions during these periods. With the inclusion of these temperature and RH filtering techniques, the model-measurement comparisons improved significantly. The slope of the regression for N80 (the total number of particles with particle diameter, Dp, > 80 nm) in the nested simulations increased from 0.09 to 0.65, R2 increased from 0.04 to 0.46, and log-mean bias improved from 0.95 to 0.07. We also perform simulations at the nested resolution without Asian anthropogenic emissions and without biomass-burning emissions to quantify the contribution of these sources to aerosols at Whistler Peak (through comparison with simulations with these emissions on). The long-range transport of Asian anthropogenic aerosol was found to be significant throughout all particle

  11. Stable Carbon Fractionation In Size Segregated Aerosol Particles Produced By Controlled Biomass Burning

    NASA Astrophysics Data System (ADS)

    Masalaite, Agne; Garbaras, Andrius; Garbariene, Inga; Ceburnis, Darius; Martuzevicius, Dainius; Puida, Egidijus; Kvietkus, Kestutis; Remeikis, Vidmantas

    2014-05-01

    Biomass burning is the largest source of primary fine fraction carbonaceous particles and the second largest source of trace gases in the global atmosphere with a strong effect not only on the regional scale but also in areas distant from the source . Many studies have often assumed no significant carbon isotope fractionation occurring between black carbon and the original vegetation during combustion. However, other studies suggested that stable carbon isotope ratios of char or BC may not reliably reflect carbon isotopic signatures of the source vegetation. Overall, the apparently conflicting results throughout the literature regarding the observed fractionation suggest that combustion conditions may be responsible for the observed effects. The purpose of the present study was to gather more quantitative information on carbonaceous aerosols produced in controlled biomass burning, thereby having a potential impact on interpreting ambient atmospheric observations. Seven different biomass fuel types were burned under controlled conditions to determine the effect of the biomass type on the emitted particulate matter mass and stable carbon isotope composition of bulk and size segregated particles. Size segregated aerosol particles were collected using the total suspended particle (TSP) sampler and a micro-orifice uniform deposit impactor (MOUDI). The results demonstrated that particle emissions were dominated by the submicron particles in all biomass types. However, significant differences in emissions of submicron particles and their dominant sizes were found between different biomass fuels. The largest negative fractionation was obtained for the wood pellet fuel type while the largest positive isotopic fractionation was observed during the buckwheat shells combustion. The carbon isotope composition of MOUDI samples compared very well with isotope composition of TSP samples indicating consistency of the results. The measurements of the stable carbon isotope ratio in

  12. Characterization of Florida red tide aerosol and the temporal profile of aerosol concentration.

    PubMed

    Cheng, Yung Sung; Zhou, Yue; Pierce, Richard H; Henry, Mike; Baden, Daniel G

    2010-05-01

    Red tide aerosols containing aerosolized brevetoxins are produced during the red tide bloom and transported by wind to coastal areas of Florida. This study reports the characterization of Florida red tide aerosols in human volunteer studies, in which an asthma cohort spent 1h on Siesta Beach (Sarasota, Florida) during aerosolized red tide events and non-exposure periods. Aerosol concentrations, brevetoxin levels, and particle size distribution were measured. Hourly filter samples were taken and analyzed for brevetoxin and NaCl concentrations. In addition, the aerosol mass concentration was monitored in real time. The results indicated that during a non-exposure period in October 2004, no brevetoxin was detected in the water, resulting in non-detectable levels of brevetoxin in the aerosol. In March 2005, the time-averaged concentrations of brevetoxins in water samples were moderate, in the range of 5-10 microg/L, and the corresponding brevetoxin level of Florida red tide aerosol ranged between 21 and 39 ng/m(3). The temporal profiles of red tide aerosol concentration in terms of mass, NaCl, and brevetoxin were in good agreement, indicating that NaCl and brevetoxins are components of the red tide aerosol. By continuously monitoring the marine aerosol and wind direction at Siesta Beach, we observed that the marine aerosol concentration varied as the wind direction changed. The temporal profile of the Florida red tide aerosol during a sampling period could be explained generally with the variation of wind direction. Copyright 2009 Elsevier Ltd. All rights reserved.

  13. Impact of aerosols on ice crystal size

    NASA Astrophysics Data System (ADS)

    Zhao, Bin; Liou, Kuo-Nan; Gu, Yu; Jiang, Jonathan H.; Li, Qinbin; Fu, Rong; Huang, Lei; Liu, Xiaohong; Shi, Xiangjun; Su, Hui; He, Cenlin

    2018-01-01

    The interactions between aerosols and ice clouds represent one of the largest uncertainties in global radiative forcing from pre-industrial time to the present. In particular, the impact of aerosols on ice crystal effective radius (Rei), which is a key parameter determining ice clouds' net radiative effect, is highly uncertain due to limited and conflicting observational evidence. Here we investigate the effects of aerosols on Rei under different meteorological conditions using 9-year satellite observations. We find that the responses of Rei to aerosol loadings are modulated by water vapor amount in conjunction with several other meteorological parameters. While there is a significant negative correlation between Rei and aerosol loading in moist conditions, consistent with the "Twomey effect" for liquid clouds, a strong positive correlation between the two occurs in dry conditions. Simulations based on a cloud parcel model suggest that water vapor modulates the relative importance of different ice nucleation modes, leading to the opposite aerosol impacts between moist and dry conditions. When ice clouds are decomposed into those generated from deep convection and formed in situ, the water vapor modulation remains in effect for both ice cloud types, although the sensitivities of Rei to aerosols differ noticeably between them due to distinct formation mechanisms. The water vapor modulation can largely explain the difference in the responses of Rei to aerosol loadings in various seasons. A proper representation of the water vapor modulation is essential for an accurate estimate of aerosol-cloud radiative forcing produced by ice clouds.

  14. Pulmonary Deposition of Aerosols in Microgravity

    NASA Technical Reports Server (NTRS)

    Prisk, G. Kim

    1997-01-01

    The intrapulmonary deposition of airborne particles (aerosol) in the size range of 0.5 to 5 microns is primarily due to gravitational sedimentation. In the microgravity (muG) environment, sedimentation is no longer active, and thus there should be marked changes in the amount and site of the deposition of these aerosol. We propose to study the total intrapulmonary deposition of aerosol spanning the range 0.5 to 5 microns in the KC-135 at both muG and at 1.8-G. This will be followed by using boli of 1.0 micron aerosol, inhaled at different points in a breath to study aerosol dispersion and deposition as a function of inspired depth. The results of these studies will have application in better understanding of pulmonary diseases related to inhaled particles (pneumoconioses), in studying drugs delivered by inhalation, and in understanding the consequence of long-term exposure to respirable aerosols in long-duration space flight.

  15. A fast integrated mobility spectrometer for rapid measurement of sub-micrometer aerosol size distribution, Part II: Experimental characterization

    DOE PAGES

    Wang, Jian; Pikridas, Michael; Pinterich, Tamara; ...

    2017-06-08

    A Fast Integrated Mobility Spectrometer (FIMS) with a wide dynamic size range has been developed for rapid aerosol size distribution measurements. The design and model evaluation of the FIMS are presented in the preceding paper (Paper I), and this paper focuses on the experimental characterization of the FIMS. Monodisperse aerosol with diameter ranging from 8 to 600 nm was generated using Differential Mobility Analyzer (DMA), and was measured by the FIMS in parallel with a Condensation Particle Counter (CPC). The mean particle diameter measured by the FIMS is in good agreement with the DMA centroid diameter. Comparison of the particlemore » concentrations measured by the FIMS and CPC indicates the FIMS detection efficiency is essentially 100% for particles with diameters of 8 nm or larger. For particles smaller than 20 nm or larger than 200 nm, FIMS transfer function and resolution can be well represented by the calculated ones based on simulated particle trajectories in the FIMS. For particles between 20 and 200 nm, the FIMS transfer function is boarder than the calculated, likely due to non-ideality of the electric field, including edge effects near the end of the electrode, which are not represented by the 2-D electric field used to simulate particle trajectories.« less

  16. A fast integrated mobility spectrometer for rapid measurement of sub-micrometer aerosol size distribution, Part II: Experimental characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jian; Pikridas, Michael; Pinterich, Tamara

    A Fast Integrated Mobility Spectrometer (FIMS) with a wide dynamic size range has been developed for rapid aerosol size distribution measurements. The design and model evaluation of the FIMS are presented in the preceding paper (Paper I), and this paper focuses on the experimental characterization of the FIMS. Monodisperse aerosol with diameter ranging from 8 to 600 nm was generated using Differential Mobility Analyzer (DMA), and was measured by the FIMS in parallel with a Condensation Particle Counter (CPC). The mean particle diameter measured by the FIMS is in good agreement with the DMA centroid diameter. Comparison of the particlemore » concentrations measured by the FIMS and CPC indicates the FIMS detection efficiency is essentially 100% for particles with diameters of 8 nm or larger. For particles smaller than 20 nm or larger than 200 nm, FIMS transfer function and resolution can be well represented by the calculated ones based on simulated particle trajectories in the FIMS. For particles between 20 and 200 nm, the FIMS transfer function is boarder than the calculated, likely due to non-ideality of the electric field, including edge effects near the end of the electrode, which are not represented by the 2-D electric field used to simulate particle trajectories.« less

  17. Uncertainties in global aerosols and climate effects due to biofuel emissions

    NASA Astrophysics Data System (ADS)

    Kodros, J. K.; Scott, C. E.; Farina, S. C.; Lee, Y. H.; L'Orange, C.; Volckens, J.; Pierce, J. R.

    2015-04-01

    Aerosol emissions from biofuel combustion impact both health and climate; however, while reducing emissions through improvements to combustion technologies will improve health, the net effect on climate is largely unconstrained. In this study, we examine sensitivities in global aerosol concentration, direct radiative climate effect, and cloud-albedo aerosol indirect climate effect to uncertainties in biofuel emission factors, optical mixing-state, and model nucleation and background SOA. We use the Goddard Earth Observing System global chemical-transport model (GEOS-Chem) with TwO Moment Aerosol Sectional (TOMAS) microphysics. The emission factors include: amount, composition, size and hygroscopicity, as well as optical mixing-state properties. We also evaluate emissions from domestic coal use, which is not biofuel but is also frequently emitted from homes. We estimate the direct radiative effect assuming different mixing states (internal, core-shell, and external) with and without absorptive organic aerosol (brown carbon). We find the global-mean direct radiative effect of biofuel emissions ranges from -0.02 to +0.06 W m-2 across all simulation/mixing state combinations with regional effects in source regions ranging from -0.2 to +1.2 W m-2. The global-mean cloud-albedo aerosol indirect effect ranges from +0.01 to -0.02 W m-2 with regional effects in source regions ranging from -1.0 to -0.05 W m-2. The direct radiative effect is strongly dependent on uncertainties in emissions mass, composition, emissions aerosol size distributions and assumed optical mixing state, while the indirect effect is dependent on the emissions mass, emissions aerosol size distribution and the choice of model nucleation and secondary organic aerosol schemes. The sign and magnitude of these effects have a strong regional dependence. We conclude that the climate effects of biofuel aerosols are largely unconstrained, and the overall sign of the aerosol effects is unclear due to uncertainties

  18. Wide-range particle characterization and elemental concentration in Beijing aerosol during the 2013 Spring Festival.

    PubMed

    Jing, Hui; Li, Yu-Feng; Zhao, Jiating; Li, Bai; Sun, Jialong; Chen, Rui; Gao, Yuxi; Chen, Chunying

    2014-09-01

    The number and mass concentration, size distribution, and the concentration of 16 elements were studied in aerosol samples during the Spring Festival celebrations in 2013 in Beijing, China. Both the number and mass concentration increased sharply in a wide range from 10 nm to 10 μm during the firecrackers and fireworks activities. The prominent increase of the number concentration was in 50 nm-500 nm with a peak of 1.7 × 10(5)/cm(3) at 150 nm, which is 8 times higher than that after 1.5 h. The highest mass concentration was in 320-560 nm, which is 4 times higher than the control. K, Mg, Sr, Ba and Pb increased sharply during the firework activities in PM10. Although the aerosol emission from firework activities is a short-term air quality degradation event, there may be a substantial hazard arising from the chemical composition of the emitted particles. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Aerosol chemistry during the wet season in central Amazonia - The influence of long-range transport

    NASA Technical Reports Server (NTRS)

    Talbot, R. W.; Andreae, M. O.; Berresheim, H.; Artaxo, P.; Garstang, M.

    1990-01-01

    The temporal variation in the concentration and chemistry of the atmospheric aerosol over central Amazonia, Brazil, during the 1987 wet season is discussed based on ground and aircraft collected data obtained during the NASA GTE ABLE 2B expedition conducted in April/May 1987. It is found that wet-season aerosol concentrations and composition are variable in contrast to the more uniform biogenic aerosol observed during the 1985 dry season; four distinct intervals of enhanced aerosol concentration coincided with short periods (3 to 5 d) of extensive rainfall. It is hypothesized that aerosol chemistry in Amazonia during the wet season is strongly influenced by long-range transport of soil dust, marine aerosol, and possibly biomass combustion products advected into the central Basin by large-scale tropospheric circulation, producing periodic pulses of material input to local boundary layer air. The resultant wet-season aerosol regime is dynamic, in contrast to the uniformity of natural biogenic aerosols during the dry season.

  20. Aerosol Inlet Characterization Experiment Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bullard, Robert L.; Kuang, Chongai; Uin, Janek

    2017-05-01

    The U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility Aerosol Observation System inlet stack was characterized for particle penetration efficiency from 10 nm to 20 μm in diameter using duplicate scanning mobility particle sizers (10 nm-450 nm), ultra-high-sensitivity aerosol spectrometers (60 nm-μm), and aerodynamic particle sizers (0.5 μm-20 μm). Results show good model-measurement agreement and unit transmission efficiency of aerosols from 10 nm to 4 μm in diameter. Large uncertainties in the measured transmission efficiency exist above 4 μm due to low ambient aerosol signal in that size range.

  1. Size distribution and ionic composition of marine summer aerosol at the continental Antarctic site Kohnen

    NASA Astrophysics Data System (ADS)

    Weller, Rolf; Legrand, Michel; Preunkert, Susanne

    2018-02-01

    We measured aerosol size distributions and conducted bulk and size-segregated aerosol sampling during two summer campaigns in January 2015 and January 2016 at the continental Antarctic station Kohnen (Dronning Maud Land). Physical and chemical aerosol properties differ conspicuously during the episodic impact of a distinctive low-pressure system in 2015 (LPS15) compared to the prevailing clear sky conditions. The approximately 3-day LPS15 located in the eastern Weddell Sea was associated with the following: marine boundary layer air mass intrusion; enhanced condensation particle concentrations (1400 ± 700 cm-3 compared to 250 ± 120 cm-3 under clear sky conditions; mean ± SD); the occurrence of a new particle formation event exhibiting a continuous growth of particle diameters (Dp) from 12 to 43 nm over 44 h (growth rate 0.6 nm h-1); peaking methane sulfonate (MS-), non-sea-salt sulfate (nss-SO42-), and Na+ concentrations (190 ng m-3 MS-, 137 ng m-3 nss-SO42-, and 53 ng m-3 Na+ compared to 24 ± 15, 107 ± 20, and 4.1 ± 2.2 ng m-3, respectively, during clear sky conditions); and finally an increased MS- / nss-SO42- mass ratio βMS of 0.4 up to 2.3 (0.21 ± 0.1 under clear sky conditions) comparable to typical values found at coastal Antarctic sites. Throughout the observation period a larger part of MS- could be found in super-micron aerosol compared to nss-SO42-, i.e., (10 ± 2) % by mass compared to (3.2 ± 2) %, respectively. On the whole, under clear sky conditions aged aerosol characterized by usually mono-modal size distributions around Dp = 60 nm was observed. Although our observations indicate that the sporadic impacts of coastal cyclones were associated with enhanced marine aerosol entry, aerosol deposition on-site during austral summer should be largely dominated by typical steady clear sky conditions.

  2. Particle size distribution of the radon progeny and ambient aerosols in the Underground Tourist Route "Liczyrzepa" Mine in Kowary Adit

    NASA Astrophysics Data System (ADS)

    Wołoszczuk, Katarzyna; Skubacz, Krystian

    2018-01-01

    Central Laboratory for Radiological Protection, in cooperation with Central Mining Institute performed measurements of radon concentration in air, potential alpha energy concentration (PAEC), particle size distribution of the radon progeny and ambient aerosols in the Underground Tourist-Educational Route "Liczyrzepa" Mine in Kowary Adit. A research study was developed to investigate the appropriate dose conversion factors for short-lived radon progeny. The particle size distribution of radon progeny was determined using Radon Progeny Particle Size Spectrometer (RPPSS). The device allows to receive the distribution of PAEC in the particle size range from 0.6 nm to 2494 nm, based on their activity measured on 8 stages composed of impaction plates or diffusion screens. The measurements of the ambient airborne particle size distribution were performed in the range from a few nanometres to about 20 micrometres using Aerodynamic Particle Sizer (APS) spectrometer and the Scanning Mobility Particle Sizer Spectrometer (SMPS).

  3. Shear Flow Instabilities and Droplet Size Effects on Aerosol Jet Printing Resolution

    NASA Astrophysics Data System (ADS)

    Chen, Guang; Gu, Yuan; Hines, Daniel; Das, Siddhartha; LaboratoryPhysical Science Collaboration; Soft Matter, Interfaces, Energy Laboratory Collaboration

    2017-11-01

    Aerosol Jet printing (AJP) is an additive technology utilizing aerodynamic focusing to produce fine feature down to 10 micrometers that can be used in the manufacture of wearable electronics and biosensors. The main concern of the current technology is related to unstable printing resolution, which is usually assessed by effective line width, edge smoothness, overspray and connectivity. In this work, we perform a 3D CFD model to study the aerodynamic instabilities induced by the annular shear flow (sheath gas flow or ShGF) trapped with the aerosol jet (carried gas flow or CGF) with ink droplets. Extensive experiments on line morphology have shown that by increasing ShGF, one can first obtain thinner line width, and then massive overspray is witnessed at very large ShGF/ CGF ratio. Besides the fact that shear-layer instabilities usually trigger eddy currents at comparatively low Reynolds number 600, the tolerance of deposition components assembling will also propagate large offsets of the deposited feather. We also carried out detailed analysis on droplet size and deposition range on the printing resolution. This study is intended to come up with a solution on controlling the operating parameters for finer printed features, and offer an improvement strategy on next generation.

  4. Aerosols in polluted versus nonpolluted air masses Long-range transport and effects on clouds

    NASA Technical Reports Server (NTRS)

    Pueschel, R. F.; Van Valin, C. C.; Castillo, R. C.; Kadlecek, J. A.; Ganor, E.

    1986-01-01

    To assess the influence of anthropogenic aerosols on the physics and chemistry of clouds in the northeastern United States, aerosol and cloud-drop size distributions, elemental composition of aerosols as a function of size, and ionic content of cloud water were measured on Whiteface Mountain, NY, during the summers of 1981 and 1982. In several case studies, the data were cross-correlated with different air mass types - background continental, polluted continental, and maritime - that were advected to the sampling site. The results are the following: (1) Anthropogenic sources hundreds of kilometers upwind cause the small-particle (accumulation) mode number to increase from hundreds of thousands per cubic centimeter and the mass loading to increase from a few to several tens of micrograms per cubic meter, mostly in the form of sulfur aerosols. (2) A significant fraction of anthropogenic sulfur appears to act as cloud condensation nuclei (CCN) to affect the cloud drop concentration. (3) Clouds in Atlantic maritime air masses have cloud drop spectra that are markedly different from those measured in continental clouds. The drop concentration is significantly lower, and the drop size spectra are heavily skewed toward large drops. (4) Effects of anthropogenic pollutants on cloud water ionic composition are an increase of nitrate by a factor of 50, an increase of sulfate by more than one order of magnitude, and an increase of ammonium ion by a factor of 7. The net effect of the changes in ionic concentrations is an increase in cloud water acidity. An anion deficit even in maritime clouds suggests an unknown, possibly biogenic, source that could be responsible for a pH below neutral, which is frequently observed in nonpolluted clouds.

  5. Evidence for Natural Variability in Marine Stratocumulus Cloud Properties Due to Cloud-Aerosol

    NASA Technical Reports Server (NTRS)

    Albrecht, Bruce; Sharon, Tarah; Jonsson, Haf; Minnis, Patrick; Minnis, Patrick; Ayers, J. Kirk; Khaiyer, Mandana M.

    2004-01-01

    In this study, aircraft observations from the Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter are used to characterize the variability in drizzle, cloud, and aerosol properties associated with cloud rifts and the surrounding solid clouds observed off the coast of California. A flight made on 16 July 1999 provided measurements directly across an interface between solid and rift cloud conditions. Aircraft instrumentation allowed for measurements of aerosol, cloud droplet, and drizzle spectra. CCN concentrations were measured in addition to standard thermodynamic variables and the winds. A Forward Scatter Spectrometer Probe (FSSP) measured size distribution of cloud-sized droplets. A Cloud Imaging Probe (CIP) was used to measure distributions of drizzle-sized droplets. Aerosol distributions were obtained from a Cloud Aerosol Scatterprobe (CAS). The CAS probe measured aerosols, cloud droplets and drizzle-sized drops; for this study. The CAS probe was used to measure aerosols in the size range of 0.5 micron - 1 micron. Smaller aerosols were characterized using an Ultrafine Condensation Particle Counter (CPC) sensor. The CPC was used to measure particles with diameters greater than 0.003 micron. By subtracting different count concentrations measured with the CPC, this probe was capable of identifying ultrafine particles those falling in the size range of 3 nanometers - 7 nanometers that are believed to be associated with new particle production.

  6. Hygroscopic growth of size-resolved, emission-source classified, aerosol particles sampled across the United States

    NASA Astrophysics Data System (ADS)

    Shingler, T.; Crosbie, E. C.; Ziemba, L. D.; Anderson, B. E.; Campuzano Jost, P.; Jimenez, J. L.; Mikoviny, T.; Wisthaler, A.; Sorooshian, A.

    2014-12-01

    The hygroscopic growth of atmospheric aerosol particles is a key air quality parameter, impacting the radiation budget, visibility, and cloud formation. During the DC3 and SEAC4RS field campaigns (>300 total flight hours), measurements were made over 32 US states, Canada, the Pacific Ocean, and the Gulf of Mexico, between the surface and 41,000 feet ASL. The aircraft research payloads included a suite of in-situ aerosol and gas phase instruments. The Differential Aerosol Sizing and Hygroscopicity Spectrometer Probe (DASH-SP) and the Langley Aerosol Research Group Experiment (LARGE) humidified nephelometer instrument applied different techniques to measure water uptake by aerosol particles at prescribed relative humidity values. Size-resolved growth factor (GF ≡ Dp,wet/Dp,dry) measurements by the DASH-SP are compared to bulk scattering measurements (f(RH) ≡ σscat,wet/σscat,dry) by the LARGE instrument. Spatial location and volatile organic compound tracers such as isoprene and acetonitrile are used to classify the origin of distinct air masses, including: forest fires, biogenic-emitting forests, agricultural use lands, marine boundary layer, urban, and rural background. Analyses of GF results by air mass origin are reported and results are compared with f(RH) measurements. A parameterization between the f(RH) and GF measurements and its potential uses are discussed.

  7. A strategy for characterized aerosol-sampling transport efficiency.

    NASA Astrophysics Data System (ADS)

    Schwarz, J. P.

    2017-12-01

    A fundamental concern when sampling aerosol in the laboratory or in situ, on the ground or (especially) from aircraft, is characterizing transport losses due to particles contacting the walls of tubing used for transport. Depending on the size range of the aerosol, different mechanisms dominate these losses: diffusion for the ultra-fine, and inertial and gravitational settling losses for the coarse mode. In the coarse mode, losses become intractable very quickly with increasing particle size above 5 µm diameter. Here we present these issues, with a concept approach to reducing aerosol losses via strategic dilution with porous tubing including results of laboratory testing of a prototype. We infer the potential value of this approach to atmospheric aerosol sampling.

  8. The optical properties of absorbing aerosols with fractal soot aggregates: Implications for aerosol remote sensing

    NASA Astrophysics Data System (ADS)

    Cheng, Tianhai; Gu, Xingfa; Wu, Yu; Chen, Hao; Yu, Tao

    2013-08-01

    Applying sphere aerosol models to replace the absorbing fine-sized dominated aerosols can potentially result in significant errors in the climate models and aerosol remote sensing retrieval. In this paper, the optical properties of absorbing fine-sized dominated aerosol were modeled, which are taking into account the fresh emitted soot particles (agglomerates of primary spherules), aged soot particles (semi-externally mixed with other weakly absorbing aerosols), and coarse aerosol particles (dust particles). The optical properties of the individual fresh and aged soot aggregates are calculated using the superposition T-matrix method. In order to quantify the morphology effect of absorbing aerosol models on the aerosol remote sensing retrieval, the ensemble averaged optical properties of absorbing fine-sized dominated aerosols are calculated based on the size distribution of fine aerosols (fresh and aged soot) and coarse aerosols. The corresponding optical properties of sphere absorbing aerosol models using Lorenz-Mie solutions were presented for comparison. The comparison study demonstrates that the sphere absorbing aerosol models underestimate the absorption ability of the fine-sized dominated aerosol particles. The morphology effect of absorbing fine-sized dominated aerosols on the TOA radiances and polarized radiances is also investigated. It is found that the sphere aerosol models overestimate the TOA reflectance and polarized reflectance by approximately a factor of 3 at wavelength of 0.865 μm. In other words, the fine-sized dominated aerosol models can cause large errors in the retrieved aerosol properties if satellite reflectance measurements are analyzed using the conventional Mie theory for spherical particles.

  9. Sensitivity of Stratospheric Geoengineering with Black Carbon to Aerosol Size and Altitude of Injection

    NASA Technical Reports Server (NTRS)

    Kravitz, Ben; Robock, Alan; Shindell, Drew T.; Miller, Mark A.

    2012-01-01

    Simulations of stratospheric geoengineering with black carbon (BC) aerosols using a general circulation model with fixed sea surface temperatures show that the climate effects strongly depend on aerosol size and altitude of injection. 1 Tg BC/a injected into the lower stratosphere would cause little surface cooling for large radii but a large amount of surface cooling for small radii and stratospheric warming of over 60 C. With the exception of small particles, increasing the altitude of injection increases surface cooling and stratospheric warming. Stratospheric warming causes global ozone loss by up to 50% in the small radius case. The Antarctic shows less ozone loss due to reduction of polar stratospheric clouds, but strong circumpolar winds would enhance the Arctic ozone hole. Using diesel fuel to produce the aerosols is likely prohibitively expensive and infeasible. Although studying an absorbing aerosol is a useful counterpart to previous studies involving sulfate aerosols, black carbon geoengineering likely carries too many risks to make it a viable option for deployment.

  10. Aerosol processing of materials: Aerosol dynamics and microstructure evolution

    NASA Astrophysics Data System (ADS)

    Gurav, Abhijit Shankar

    Spray pyrolysis is an aerosol process commonly used to synthesize a wide variety of materials in powder or film forms including metals, metal oxides and non-oxide ceramics. It is capable of producing high purity, unagglomerated, and micrometer to submicron-size powders, and scale-up has been demonstrated. This dissertation deals with the study of aerosol dynamics during spray pyrolysis of multicomponent systems involving volatile phases/components, and aspects involved with using fuel additives during spray processes to break apart droplets and particles in order to produce powders with smaller sizes. The gas-phase aerosol dynamics and composition size distributions were measured during spray pyrolysis of (Bi, Pb)-Sr-Ca-Cu-O, and Sr-Ru-O and Bi-Ru-O at different temperatures. A differential mobility analyzer (DMA) was used in conjunction with a condensation particle counter (CPC) to monitor the gas-phase particle size distributions, and a Berner-type low-pressure impactor was used to obtain mass size distributions and size-classified samples for chemical analysis. (Bi, Pb)-Sr-Ca-Cu-O powders made at temperatures up to 700sp°C maintained their initial stoichiometry over the whole range of particle sizes monitored, however, those made at 800sp°C and above were heavily depleted in lead in the size range 0.5-5.0 mum. When the reactor temperature was raised from 700 and 800sp°C to 900sp°C, a large number ({˜}10sp7\\ #/cmsp3) of new ultrafine particles were formed from PbO vapor released from the particles and the reactor walls at the beginning of high temperature runs (at 900sp°C). The metal ruthenate systems showed generation of ultrafine particles (<40-50 nm) at the beginning of runs at 800-900sp°C and also as a steady state process at a reactor temperature of 1000sp°C. The methods of aerosol dynamics measurements were also used to monitor the gas-phase particle size distributions during the generation of fullerene (Csb{60}) nano-particles (30 to 50 nm size

  11. Possible indicators of long-range transport for aerosol emitted from various source regions in Northeast Asia

    NASA Astrophysics Data System (ADS)

    Park, S.; Kim, C.

    2013-12-01

    Air pollutant is affected by both long-range transboundary processes and local air pollution emission. Therefore it is important to identify the origin of air pollutant, for example, by classifying air pollutants into long-range transport (LRT) dominant process and local emission dominant (LED) cases. This study proposed several chemical and physical indicators of LRT process of aerosol concentrations observed at Korean peninsula. In order to identify the source regions and to estimate the contributions of both LRT and LED, we performed Lagrangian particle dispersion model(FLEXPART) and selected high pollution days over the three source regions in China inland and one Korea peninsula defined in this study; LRT-I to III and LED case. Next, we investigated the chemical and physical characteristics of LRT process of aerosol, and contrasted to those in the LED case over the Northeast Asia. We examined the difference of both modeled features simulated by CMAQ and as well measured aerosol optical properties of satellite-based sensor MODIS and AERONET data. Modeling study showed that the most effective indicator is the sulfur conversion ratios such as SO42-/(SO2+ SO42-) and SO42-/ SO2 for high sulfate condition. The ratio of N-containing species such as NOx (or NOy) to CO were the next best alternative indicators. In the meteorological fields, the results showed that pressure pattern and streamline flow are similar on a case by case basis. For observational physical features, we obtained the spatial distributions of the mean AOD, fine mode fraction (FMF), angstrom exponent (AE) by taking the average of MODIS aerosol products for the each analysis period. The highest AOD was found over the industrialized coastal region regardless of cases. AERONET data showed that aerosol size distribution showed significantly higher concentration of fine-mode particle in LED cases in comparison with that of LRT groups, suggesting that the amplitude fine modes of LRT relative to LED could

  12. Unique DNA-barcoded aerosol test particles for studying aerosol transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harding, Ruth N.; Hara, Christine A.; Hall, Sara B.

    Data are presented for the first use of novel DNA-barcoded aerosol test particles that have been developed to track the fate of airborne contaminants in populated environments. Until DNATrax (DNA Tagged Reagents for Aerosol eXperiments) particles were developed, there was no way to rapidly validate air transport models with realistic particles in the respirable range of 1–10 μm in diameter. The DNATrax particles, developed at Lawrence Livermore National Laboratory (LLNL) and tested with the assistance of the Pentagon Force Protection Agency, are the first safe and effective materials for aerosol transport studies that are identified by DNA molecules. The usemore » of unique synthetic DNA barcodes overcomes the challenges of discerning the test material from pre-existing environmental or background contaminants (either naturally occurring or previously released). The DNATrax particle properties are demonstrated to have appropriate size range (approximately 1–4.5 μm in diameter) to accurately simulate bacterial spore transport. As a result, we describe details of the first field test of the DNATrax aerosol test particles in a large indoor facility.« less

  13. Unique DNA-barcoded aerosol test particles for studying aerosol transport

    DOE PAGES

    Harding, Ruth N.; Hara, Christine A.; Hall, Sara B.; ...

    2016-03-22

    Data are presented for the first use of novel DNA-barcoded aerosol test particles that have been developed to track the fate of airborne contaminants in populated environments. Until DNATrax (DNA Tagged Reagents for Aerosol eXperiments) particles were developed, there was no way to rapidly validate air transport models with realistic particles in the respirable range of 1–10 μm in diameter. The DNATrax particles, developed at Lawrence Livermore National Laboratory (LLNL) and tested with the assistance of the Pentagon Force Protection Agency, are the first safe and effective materials for aerosol transport studies that are identified by DNA molecules. The usemore » of unique synthetic DNA barcodes overcomes the challenges of discerning the test material from pre-existing environmental or background contaminants (either naturally occurring or previously released). The DNATrax particle properties are demonstrated to have appropriate size range (approximately 1–4.5 μm in diameter) to accurately simulate bacterial spore transport. As a result, we describe details of the first field test of the DNATrax aerosol test particles in a large indoor facility.« less

  14. Uncertainties in global aerosols and climate effects due to biofuel emissions

    NASA Astrophysics Data System (ADS)

    Kodros, J. K.; Scott, C. E.; Farina, S. C.; Lee, Y. H.; L'Orange, C.; Volckens, J.; Pierce, J. R.

    2015-08-01

    Aerosol emissions from biofuel combustion impact both health and climate; however, while reducing emissions through improvements to combustion technologies will improve health, the net effect on climate is largely unconstrained. In this study, we examine sensitivities in global aerosol concentration, direct radiative climate effect, and cloud-albedo aerosol indirect climate effect to uncertainties in biofuel emission factors, optical mixing state, and model nucleation and background secondary organic aerosol (SOA). We use the Goddard Earth Observing System global chemical-transport model (GEOS-Chem) with TwO Moment Aerosol Sectional (TOMAS) microphysics. The emission factors include amount, composition, size, and hygroscopicity, as well as optical mixing-state properties. We also evaluate emissions from domestic coal use, which is not biofuel but is also frequently emitted from homes. We estimate the direct radiative effect assuming different mixing states (homogeneous, core-shell, and external) with and without absorptive organic aerosol (brown carbon). We find the global-mean direct radiative effect of biofuel emissions ranges from -0.02 to +0.06 W m-2 across all simulation/mixing-state combinations with regional effects in source regions ranging from -0.2 to +0.8 W m-2. The global-mean cloud-albedo aerosol indirect effect (AIE) ranges from +0.01 to -0.02 W m-2 with regional effects in source regions ranging from -1.0 to -0.05 W m-2. The direct radiative effect is strongly dependent on uncertainties in emissions mass, composition, emissions aerosol size distributions, and assumed optical mixing state, while the indirect effect is dependent on the emissions mass, emissions aerosol size distribution, and the choice of model nucleation and secondary organic aerosol schemes. The sign and magnitude of these effects have a strong regional dependence. We conclude that the climate effects of biofuel aerosols are largely unconstrained, and the overall sign of the aerosol

  15. Geochemical, Sulfur Isotopic Characteristics and Source Contributions of Size-Aggregated Aerosols Collected in Baring Head, New Zealand.

    NASA Astrophysics Data System (ADS)

    Li, J.; Michalski, G. M.; Davy, P.; Harvey, M.; Wilkins, B. P.; Katzman, T. L.

    2017-12-01

    Sulfate aerosols are critical to the climate, human health, and the hydrological cycle in the atmosphere, yet the sources of sulfate in aerosols are not completely understood. In this work, we evaluated the sources of sulfate in size-aggregated aerosols from the Southern Pacific Ocean and the land of New Zealand using geochemical and isotopic analyses. Aerosols were collected at Baring Head, New Zealand between 6/30/15 to 8/4/16 using two collectors, one only collects Southern Pacific Ocean derived aerosols (open-ocean collector), the other collects aerosols from both the ocean and the land (all-direction collector). Each collector is equipped with two filters to sample size-aggregated aerosols (fine aerosols: <0.5 um and coarse aerosols: 0.5-10 um). Our results show that fine and coarse aerosols show distinctive sulfate sources: sulfate in fine aerosols is a mixture of sea-salt sulfate ( 30%) and Non-Sea-Salt sulfate (NSS-SO42-, 70%), while coarse aerosols are dominated by sea-salt sulfate. However, some NSS-SO42- was also observed in coarse aerosols collected in summer, suggesting the presence of accumulation mode NSS-SO42- aerosols, which is possibly due to high summer biogenic DMS flux. The sources of sulfur in NSS-SO42- could be further determined by their d34S values. DMS emission is likely the sole sulfur source in the open-ocean collector as it shows constant DMS-like d34S signatures (15-18‰) throughout the year. Meanwhile, the d34S of NSS-SO42- in the all-direction collector display a seasonal trend: summer time d34S values are higher and DMS-like (15-18‰), indicating DMS emission is the dominant sulfur source; winter time d34S values are lower ( 6-12‰), therefore the sulfur is likely sourced from both DMS emission and terrestrial S input with low d34S values, such as volcanic activities, fossil fuel and wood burning.

  16. Chemical composition, mass size distribution and source analysis of long-range transported wildfire smokes in Helsinki.

    PubMed

    Sillanpää, Markus; Saarikoski, Sanna; Hillamo, Risto; Pennanen, Arto; Makkonen, Ulla; Spolnik, Zoya; Van Grieken, René; Koskentalo, Tarja; Salonen, Raimo O

    2005-11-01

    Special episodes of long-range transported particulate (PM) air pollution were investigated in a one-month field campaign at an urban background site in Helsinki, Finland. A total of nine size-segregated PM samplings of 3- or 4-day duration were made between August 23 and September 23, 2002. During this warm and unusually dry period there were two (labelled P2 and P5) sampling periods when the PM2.5 mass concentration increased remarkably. According to the hourly-measured PM data and backward air mass trajectories, P2 (Aug 23-26) represented a single, 64-h episode of long-range transported aerosol, whereas P5 (Sept 5-9) was a mixture of two 16- and 14-h episodes and usual seasonal air quality. The large chemical data set, based on analyses made by ion chromatography, inductively coupled plasma mass spectrometry, X-ray fluorescence analysis and smoke stain reflectometry, demonstrated that the PM2.5 mass concentrations of biomass signatures (i.e. levoglucosan, oxalate and potassium) and of some other compounds associated with biomass combustion (succinate and malonate) increased remarkably in P2. Crustal elements (Fe, Al, Ca and Si) and unidentified matter, presumably consisting to a large extent of organic material, were also increased in P2. The PM2.5 composition in P5 was different from that in P2, as the inorganic secondary aerosols (NO3-, SO4(2-), NH4+) and many metals reached their highest concentration in this period. The water-soluble fraction of potassium, lead and manganese increased in both P2 and P5. Mass size distributions (0.035-10 microm) showed that a large accumulation mode mainly caused the episodically increased PM2.5 concentrations. An interesting observation was that the episodes had no obvious impact on the Aitken mode. Finally, the strongly increased concentrations of biomass signatures in accumulation mode proved that the episode in P2 was due to long-range transported biomass combustion aerosol.

  17. Identification of long-range transport of aerosols over Austria using EARLINET lidar measurements

    NASA Astrophysics Data System (ADS)

    Camelia, Talianu

    2018-04-01

    The aims of the study is to identify the paths of the long-range transported aerosols over Austria and their potential origin, and to estimate their properties, using lidar measurements from EARLINET stations closest to Austria from Germany and Romania and aerosol transport models. As of now, there is no lidar station in Austria. The study is part of a project to estimate the usefulness of a lidar station located in Vienna, Austria.

  18. Dependence of Aerosol Light Absorption and Single-Scattering Albedo On Ambient Relative Humidity for Sulfate Aerosols with Black Carbon Cores

    NASA Technical Reports Server (NTRS)

    Redemann, Jens; Russell, Philip B.; Hamill, Patrick

    2001-01-01

    Atmospheric aerosols frequently contain hygroscopic sulfate species and black carbon (soot) inclusions. In this paper we report results of a modeling study to determine the change in aerosol absorption due to increases in ambient relative humidity (RH), for three common sulfate species, assuming that the soot mass fraction is present as a single concentric core within each particle. Because of the lack of detailed knowledge about various input parameters to models describing internally mixed aerosol particle optics, we focus on results that were aimed at determining the maximum effect that particle humidification may have on aerosol light absorption. In the wavelength range from 450 to 750 nm, maximum absorption humidification factors (ratio of wet to 'dry=30% RH' absorption) for single aerosol particles are found to be as large as 1.75 when the RH changes from 30 to 99.5%. Upon lesser humidification from 30 to 80% RH, absorption humidification for single particles is only as much as 1.2, even for the most favorable combination of initial ('dry') soot mass fraction and particle size. Integrated over monomodal lognormal particle size distributions, maximum absorption humidification factors range between 1.07 and 1.15 for humidification from 30 to 80% and between 1.1 and 1.35 for humidification from 30 to 95% RH for all species considered. The largest humidification factors at a wavelength of 450 nm are obtained for 'dry' particle size distributions that peak at a radius of 0.05 microns, while the absorption humidification factors at 700 nm are largest for 'dry' size distributions that are dominated by particles in the radius range of 0.06 to 0.08 microns. Single-scattering albedo estimates at ambient conditions are often based on absorption measurements at low RH (approx. 30%) and the assumption that aerosol absorption does not change upon humidification (i.e., absorption humidification equal to unity). Our modeling study suggests that this assumption alone can

  19. Evaluation of exposure to airborne heavy metals at gun shooting ranges.

    PubMed

    Lach, Karel; Steer, Brian; Gorbunov, Boris; Mička, Vladimír; Muir, Robert B

    2015-04-01

    Aerosols formed during shooting events were studied with various techniques including the wide range size resolving sampling system Nano-ID(®) Select, followed by inductively coupled plasma mass spectrometry chemical analysis, scanning electron microscopy, and fast mobility particle sizing. The total lead mass aerosol concentration ranged from 2.2 to 72 µg m(-3). It was shown that the mass concentration of the most toxic compound lead is much lower than the total mass concentration. The deposition fraction in various compartments of the respiratory system was calculated using the ICRP lung deposition model. It was found that the deposition fraction in the alveolar range varies by a factor >3 for the various aerosols collected, depending on the aerosol size distribution and total aerosol concentration, demonstrating the importance of size resolved sampling in health risk evaluation. The proportion of the total mass of airborne particles deposited in the respiratory tract varies from 34 to 70%, with a median of 55.9%, suggesting the health risk based upon total mass significantly overestimates the accumulated dose and therefore the health risk. A comparison between conventional and so called 'green' ammunition confirmed significant lowering of concentrations of lead and other toxic metals like antimony in the atmosphere of indoor shooting ranges using 'green' ammunition, although higher concentrations of manganese and boron were measured. These metals are likely to be the constituents of new types of primers. They occur predominantly in the size fraction <250 nm of aerosols. © The Author 2014. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  20. The Impact of Aerosol Microphysical Representation in Models on the Direct Radiative Effect

    NASA Astrophysics Data System (ADS)

    Ridley, D. A.; Heald, C. L.

    2017-12-01

    Aerosol impacts the radiative balance of the atmosphere both directly and indirectly. There is considerable uncertainty remaining in the aerosol direct radiative effect (DRE), hampering understanding of the present magnitude of anthropogenic aerosol forcing and how future changes in aerosol loading will influence climate. Computationally expensive explicit aerosol microphysics are usually reserved for modelling of the aerosol indirect radiative effects that depend upon aerosol particle number. However, the direct radiative effects of aerosol are also strongly dependent upon the aerosol size distribution, especially particles between 0.2µm - 2µm diameter. In this work, we use a consistent model framework and consistent emissions to explore the impact of prescribed size distributions (bulk scheme) relative to explicit microphysics (sectional scheme) on the aerosol radiative properties. We consider the difference in aerosol burden, water uptake, and extinction efficiency resulting from the two representations, highlighting when and where the bulk and sectional schemes diverge significantly in their estimates of the DRE. Finally, we evaluate the modelled size distributions using in-situ measurements over a range of regimes to provide constraints on both the accumulation and coarse aerosol sizes.

  1. Measurement of the atmospheric aerosol particle size distribution in a highly polluted mega-city in Southeast Asia (Dhaka-Bangladesh)

    NASA Astrophysics Data System (ADS)

    Salam, Abdus; Mamoon, Hassan Al; Ullah, Md. Basir; Ullah, Shah M.

    2012-11-01

    Aerosol particle size distribution was measured with an aerodynamic particle sizer (APS) spectrometer continuously from January 21 to April 24, 2006 in Dhaka, Bangladesh. Particles number, surface and mass distributions data were stored automatically with Aerosol Instrument Manager (AIM) software on average every half an hour in a computer attached to the APS. The grand total average of number, surface and mass concentrations were 8.2 × 103 ± 7.8 × 103 particles cm-3, 13.3 × 103 ± 11.8 × 103 μm2 cm-3 and 3.04 ± 2.10 mg m-3, respectively. Fine particles with diameter smaller than 1.0 μm aerodynamic diameter (AD) dominated the number concentration, accounted for 91.7% of the total particles indicating vehicular emissions were dominating in Dhaka air either from fossil fuel burning or compressed natural gas (CNGs). The surface and mass concentrations between 0.5 and 1.0 μm AD were about 56.0% and 26.4% of the total particles, respectively. Remarkable seasonal differences were observed between winter and pre-monsoon seasons with the highest monthly average in January and the lowest in April. Aerosol particles in winter were 3.79 times higher for number, 3.15 times for surface and 2.18 times for mass distributions than during the pre-monsoon season. Weekends had lower concentrations than weekdays due to less vehicular traffic in the streets. Aerosol particles concentrations were about 15.0% (ranging from 9.4% to 17.3%) higher during traffic peak hours (6:00am-8:00pm) than off hours (8:00pm-6:00am). These are the first aerosol size distribution measurements with respect to number, surface and mass concentrations in real time at Dhaka, Bangladesh.

  2. Size Distributions and Formation Pathways of Organic and Inorganic Constituents in Spring Aerosols from Okinawa Island in the Western North Pacific Rim: An Outflow Region of Asian Dusts

    NASA Astrophysics Data System (ADS)

    Deshmukh, D. K.; Lazaar, M.; Kawamura, K.; Kunwar, B.; Tachibana, E.; Boreddy, S. K. R.

    2015-12-01

    Size-segregated aerosols (9-stages) were collected at Okinawa Island in the western North Pacific Rim in spring 2008. The samples were analyzed for diacids (C2-C12), ω-oxoacids (ωC2-ωC9), a-dicarbonyls (C2-C3), organic carbon (OC), water-soluble OC (WSOC) and major ions to understand the sources and atmospheric processes in the outflow region of Asian pollutants. The molecular distribution of diacids showed the predominance of oxalic acid (C2) followed by malonic and succinic acids in all the size-segregated aerosols. ω-Oxoacids showed the predominance of glyoxylic acid (ωC2) whereas glyoxal (Gly) was more abundant than methylglyoxal in all the sizes. The abundant presence of sulfate as well as phthalic and adipic acids in Okinawa aerosols suggested a significant contribution of anthropogenic sources in East Asia via long-range atmospheric transport. Diacids (C2-C5), ωC2 and Gly as well as WSOC and OC peaked at 0.65-1.1 µm in fine mode whereas azelaic (C9) and 9-oxononanoic (ωC9) acids peaked at 3.3-4.7 µm in coarse mode. Sulfate and ammonium are enriched in fine mode whereas sodium and chloride are in coarse mode. An important mechanism for the formation of these organic species in Okinawa aerosols is probably gas phase oxidation of VOCs and subsequent in-cloud processing during long-range transport. Their characteristics size distribution implies that fine particles enriched with these organic and inorganic species could act as CCN to develop the cloud cover over the western North Pacific. The major peak of C9 and ωC9 on coarse mode suggest that they are produced by photooxidation of unsaturated fatty acids mainly derived from phytoplankton via heterogeneous reactions on sea spray particles. This study demonstrates that anthropogenic aerosols emitted from East Asia have significant influence on the compositions of organic and inorganic aerosols in the western North Pacific Rim.

  3. A study of the sea-salt chemistry using size-segregated aerosol measurements at coastal Antarctic station Neumayer

    NASA Astrophysics Data System (ADS)

    Teinilä, K.; Frey, A.; Hillamo, R.; Tülp, H. C.; Weller, R.

    2014-10-01

    Aerosol chemical and physical properties were measured in 2010 at Neumayer research station, Antarctica. Samples for chemical analysis (ion chromatography) were collected using a Teflon/Nylon filter combination (TNy) sampler, and with a multi stage low pressure impactor (SDI). Particle number concentration was measured continuously with a Grimm OPC optical particle counter. Total particle number concentration varied largely throughout the year, and the highest number concentrations for particles larger than 0.3 μm were observed simultaneously with the highest sea salt concentrations. About 50% of the sea salt aerosol mass was found in the submicron size range. Below 0.2 μm of particle aerodynamic diameter the contribution of sea salt aerosols was negligible. Further analysis showed that sea salt aerosols had undergone physico-chemical processes, either during the transportation, or during their formation. High degree of chloride depletion was observed during austral summer, when the presence of acidic gases exhibit their characteristic seasonal maximum. Apart from chloride depletion, excess chloride relating to sodium was also detected in one SDI sample, indicating actually a sodium depletion by mirabilite formation on freshly formed sea ice areas. Analysis of selected episodes showed that the concentration of sea salt particles, their modal structure, and their chemical composition is connected with their source areas, their formation mechanisms, and local transport history.

  4. A size-composition resolved aerosol model for simulating the dynamics of externally mixed particles: SCRAM (v 1.0)

    NASA Astrophysics Data System (ADS)

    Zhu, S.; Sartelet, K. N.; Seigneur, C.

    2015-06-01

    The Size-Composition Resolved Aerosol Model (SCRAM) for simulating the dynamics of externally mixed atmospheric particles is presented. This new model classifies aerosols by both composition and size, based on a comprehensive combination of all chemical species and their mass-fraction sections. All three main processes involved in aerosol dynamics (coagulation, condensation/evaporation and nucleation) are included. The model is first validated by comparison with a reference solution and with results of simulations using internally mixed particles. The degree of mixing of particles is investigated in a box model simulation using data representative of air pollution in Greater Paris. The relative influence on the mixing state of the different aerosol processes (condensation/evaporation, coagulation) and of the algorithm used to model condensation/evaporation (bulk equilibrium, dynamic) is studied.

  5. Modification, calibration, and performance of the Ultra-High Sensitivity Aerosol Spectrometer for particle size distribution and volatility measurements during the Atmospheric Tomography Mission (ATom) airborne campaign

    NASA Astrophysics Data System (ADS)

    Kupc, Agnieszka; Williamson, Christina; Wagner, Nicholas L.; Richardson, Mathews; Brock, Charles A.

    2018-01-01

    Atmospheric aerosol is a key component of the chemistry and climate of the Earth's atmosphere. Accurate measurement of the concentration of atmospheric particles as a function of their size is fundamental to investigations of particle microphysics, optical characteristics, and chemical processes. We describe the modification, calibration, and performance of two commercially available, Ultra-High Sensitivity Aerosol Spectrometers (UHSASs) as used on the NASA DC-8 aircraft during the Atmospheric Tomography Mission (ATom). To avoid sample flow issues related to pressure variations during aircraft altitude changes, we installed a laminar flow meter on each instrument to measure sample flow directly at the inlet as well as flow controllers to maintain constant volumetric sheath flows. In addition, we added a compact thermodenuder operating at 300 °C to the inlet line of one of the instruments. With these modifications, the instruments are capable of making accurate (ranging from 7 % for Dp < 0.07 µm to 1 % for Dp > 0.13 µm), precise (< ±1.2 %), and continuous (1 Hz) measurements of size-resolved particle number concentration over the diameter range of 0.063-1.0 µm at ambient pressures of > 1000 to 225 hPa, while simultaneously providing information on particle volatility.We assessed the effect of uncertainty in the refractive index (n) of ambient particles that are sized by the UHSAS assuming the refractive index of ammonium sulfate (n = 1.52). For calibration particles with n between 1.44 and 1.58, the UHSAS diameter varies by +4/-10 % relative to ammonium sulfate. This diameter uncertainty associated with the range of refractive indices (i.e., particle composition) translates to aerosol surface area and volume uncertainties of +8.4/-17.8 and +12.4/-27.5 %, respectively. In addition to sizing uncertainty, low counting statistics can lead to uncertainties of < 20 % for aerosol surface area and < 30 % for volume with 10 s time resolution. The UHSAS reduction in

  6. Aerosol optical properties in ultraviolet ranges and respiratory diseases in Thailand

    NASA Astrophysics Data System (ADS)

    Kumharn, Wilawan; Hanprasert, Kasarin

    2016-10-01

    This study investigated the values of Angstrom parameters (α,β) in ultraviolet (UV) ranges by using AERONET Aerosol Optical Depth (AOD) data. A second-order polynomial was applied to the AERONET data in order to extrapolate to 320 nm from 2003 to 2013 at seven sites in Thailand. The α,β were derived by applying the Volz Method (VM) and Linear Method (LM) at 320-380 nm at seven monitoring sites in Thailand. Aerosol particles were categorized in both coarse and fine modes, depending on regions. Aerosol loadings were related to dry weather, forest fires, sea salt and most importantly, biomass burning in the North, and South of Thailand. Aerosol particles in the Central region contain coarse and fine modes, mainly emitted from vehicles. The β values obtained were associated with turbid and very turbid skies in Northern and Central regions except Bangkok, while β results are associated with clean skies in South. Higher values of the β at all sites were found in the winter and summer compared with the rainy season, in contrast to South where the highest AOD was observed in June. The β values were likely to increase during 2003-2013. These values correlate with worsening health situations as evident from increasing respiratory diseases reported.

  7. Size distributions of aerosol and water-soluble ions in Nanjing during a crop residual burning event.

    PubMed

    Wang, Honglei; Zhu, Bin; Shen, Lijuan; Kang, Hanqing

    2012-01-01

    To investigate the impact on urban air pollution by crop residual burning outside Nanjing, aerosol concentration, pollution gas concentration, mass concentration, and water-soluble ion size distribution were observed during one event of November 4-9, 2010. Results show that the size distribution of aerosol concentration is bimodal on pollution days and normal days, with peak values at 60-70 and 200-300 nm, respectively. Aerosol concentration is 10(4) cm(-3) x nm(-1) on pollution days. The peak value of spectrum distribution of aerosol concentration on pollution days is 1.5-3.3 times higher than that on a normal day. Crop residual burning has a great impact on the concentration of fine particles. Diurnal variation of aerosol concentration is trimodal on pollution days and normal days, with peak values at 03:00, 09:00 and 19:00 local standard time. The first peak is impacted by meteorological elements, while the second and third peaks are due to human activities, such as rush hour traffic. Crop residual burning has the greatest impact on SO2 concentration, followed by NO2, O3 is hardly affected. The impact of crop residual burning on fine particles (< 2.1 microm) is larger than on coarse particles (> 2.1 microm), thus ion concentration in fine particles is higher than that in coarse particles. Crop residual burning leads to similar increase in all ion components, thus it has a small impact on the water-soluble ions order. Crop residual burning has a strong impact on the size distribution of K+, Cl-, Na+, and F- and has a weak impact on the size distributions of NH4+, Ca2+, NO3- and SO4(2-).

  8. Aerosol concentration and size distribution measured below, in, and above cloud from the DOE G-1 during VOCALS-REx

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kleinman L. I.; Daum, P. H.; Lee, Y.-N.

    2012-01-04

    During the VOCALS Regional Experiment, the DOE G-1 aircraft was used to sample a varying aerosol environment pertinent to properties of stratocumulus clouds over a longitude band extending 800 km west from the Chilean coast at Arica. Trace gas and aerosol measurements are presented as a function of longitude, altitude, and dew point in this study. Spatial distributions are consistent with an upper atmospheric source for O{sub 3} and South American coastal sources for marine boundary layer (MBL) CO and aerosol, most of which is acidic sulfate. Pollutant layers in the free troposphere (FT) can be a result of emissionsmore » to the north in Peru or long range transport from the west. At a given altitude in the FT (up to 3 km), dew point varies by 40 C with dry air descending from the upper atmospheric and moist air having a boundary layer (BL) contribution. Ascent of BL air to a cold high altitude results in the condensation and precipitation removal of all but a few percent of BL water along with aerosol that served as CCN. Thus, aerosol volume decreases with dew point in the FT. Aerosol size spectra have a bimodal structure in the MBL and an intermediate diameter unimodal distribution in the FT. Comparing cloud droplet number concentration (CDNC) and pre-cloud aerosol (D{sub p} > 100 nm) gives a linear relation up to a number concentration of {approx}150 cm{sup -3}, followed by a less than proportional increase in CDNC at higher aerosol number concentration. A number balance between below cloud aerosol and cloud droplets indicates that {approx}25 % of aerosol with D{sub p} > 100 nm are interstitial (not activated). A direct comparison of pre-cloud and in-cloud aerosol yields a higher estimate. Artifacts in the measurement of interstitial aerosol due to droplet shatter and evaporation are discussed. Within each of 102 constant altitude cloud transects, CDNC and interstitial aerosol were anti-correlated. An examination of one cloud as a case study shows that the

  9. Size-resolved measurements of mixing state and cloud-nucleating ability of aerosols in Nanjing, China

    NASA Astrophysics Data System (ADS)

    Ma, Yan; Li, Shizheng; Zheng, Jun; Khalizov, Alexei; Wang, Xing; Wang, Zhen; Zhou, Yaoyao

    2017-09-01

    An integrated aerosol analytical system was deployed in Nanjing, a megacity in the Yangtze River Delta, to measure size-resolved aerosol mixing states, effective densities, cloud condensation nucleus (CCN) activities, and chemical composition in August 2013. It was found that aerosols were predominantly internally mixed. The average effective densities were 1.38 ± 0.09, 1.48 ± 0.08, and 1.53 ± 0.07 g cm-3 for 50, 80, and 120 nm particles, respectively. Although black carbon (BC) represented only 0.3%, 1.6%, and 3.3% of the particle mass, on average, it was present in 7%, 38%, and 47% of the total particle number concentration at 50, 80, and 120 nm, respectively, indicating that BC particles may contribute significantly to the total atmospheric aerosol population. Externally mixed BC was only occasionally observed with an effective density of 0.67-0.97 g cm-3. Aerosols sampled generally exhibited a relatively high CCN activity and hygroscopicity (κ = 0.35 ± 0.13). Both newly formed particles and freshly emitted BC particles were observed to age rapidly from photochemical processes, with a significant enhancement in the particle CCN activity and an increase in the effective density. Aerosols influenced by four different air masses presented similar CCN activation, indicating that CCN activation would be primarily dependent on the particle size rather than the particle origin (and hence original composition). Our results suggest that under highly active photochemical conditions as encountered in this study, particles from both local sources and regional transport can be rapidly converted into efficient CCN by photochemical aging, thereby making important contributions to the atmospheric CCN budget and exerting profound implications on aerosol indirect climate forcing.

  10. Sizing aerosolized fractal nanoparticle aggregates through Bayesian analysis of wide-angle light scattering (WALS) data

    NASA Astrophysics Data System (ADS)

    Huber, Franz J. T.; Will, Stefan; Daun, Kyle J.

    2016-11-01

    Inferring the size distribution of aerosolized fractal aggregates from the angular distribution of elastically scattered light is a mathematically ill-posed problem. This paper presents a procedure for analyzing Wide-Angle Light Scattering (WALS) data using Bayesian inference. The outcome is probability densities for the recovered size distribution and aggregate morphology parameters. This technique is applied to both synthetic data and experimental data collected on soot-laden aerosols, using a measurement equation derived from Rayleigh-Debye-Gans fractal aggregate (RDG-FA) theory. In the case of experimental data, the recovered aggregate size distribution parameters are generally consistent with TEM-derived values, but the accuracy is impaired by the well-known limited accuracy of RDG-FA theory. Finally, we show how this bias could potentially be avoided using the approximation error technique.

  11. Measurements of Aerosol Size Distributions in the Lower Troposphere over Northern Europe.

    DTIC Science & Technology

    1981-06-01

    ADAG 7 SCRIPPS INSTITUTION OF OCEANOGRAPHY LA JOLLA CA VISA--ETC F/6 4/ 1 MEASUREMENTS OF AEROSOL SIZE DISTRIBUTIONS IN THE LOWER TROPOSP--ETC(U) JUN... 1 I"’Zt J~ 9 PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK University of California, San Diego ARA 62101F 7...AIR FORCE HANSCOM AFB, MASSACHUSETTS 0 1731 k i J 1 Summary Airborne measurements of particle size distributions were made at several altitudes within

  12. Particle Morphology and Size Results from the Smoke Aerosol Measurement Experiment-2

    NASA Technical Reports Server (NTRS)

    Urban, David L.; Ruff, Gary A.; Greenberg, Paul S.; Fischer, David; Meyer, Marit; Mulholland, George; Yuan, Zeng-Guang; Bryg, Victoria; Cleary, Thomas; Yang, Jiann

    2012-01-01

    Results are presented from the Reflight of the Smoke Aerosol Measurement Experiment (SAME-2) which was conducted during Expedition 24 (July-September 2010). The reflight experiment built upon the results of the original flight during Expedition 15 by adding diagnostic measurements and expanding the test matrix. Five different materials representative of those found in spacecraft (Teflon, Kapton, cotton, silicone rubber and Pyrell) were heated to temperatures below the ignition point with conditions controlled to provide repeatable sample surface temperatures and air flow. The air flow past the sample during the heating period ranged from quiescent to 8 cm/s. The smoke was initially collected in an aging chamber to simulate the transport time from the smoke source to the detector. This effective transport time was varied by holding the smoke in the aging chamber for times ranging from 11 to 1800 s. Smoke particle samples were collected on Transmission Electron Microscope (TEM) grids for post-flight analysis. The TEM grids were analyzed to observe the particle morphology and size parameters. The diagnostics included a prototype two-moment smoke detector and three different measures of moments of the particle size distribution. These moment diagnostics were used to determine the particle number concentration (zeroth moment), the diameter concentration (first moment), and the mass concentration (third moment). These statistics were combined to determine the diameter of average mass and the count mean diameter and, by assuming a log-normal distribution, the geometric mean diameter and the geometric standard deviations can also be calculated. Overall the majority of the average smoke particle sizes were found to be in the 200 nm to 400 nm range with the quiescent cases producing some cases with substantially larger particles.

  13. Near-Range Receiver Unit of Next Generation PollyXT Used with Koldeway Aerosol Raman Lidar in Arctic

    NASA Astrophysics Data System (ADS)

    Stachlewska, Iwona S.; Markowicz, Krzysztof M.; Ritter, Christoph; Neuber, Roland; Heese, Birgit; Engelmann, Ronny; Linne, Holger

    2016-06-01

    The Near-range Aerosol Raman lidar (NARLa) receiver unit, that was designed to enhance the detection range of the NeXT generation PollyXT Aerosol-Depolarization-Raman (ADR) lidar of the University of Warsaw, was employed next the Koldeway Aerosol Raman Lidar (KARL) at the AWI-IPEV German-French station in Arctic during Spring 2015. Here we introduce shortly design of both lidars, the scheme of their installation next to each other, and preliminary results of observations aiming at arctic haze investigation by the lidars and the iCAP a set of particle counter and aethalometer installed under a tethered balloon.

  14. Aerosol Complexity and Implications for Predictability and Short-Term Forecasting

    NASA Technical Reports Server (NTRS)

    Colarco, Peter

    2016-01-01

    There are clear NWP and climate impacts from including aerosol radiative and cloud interactions. Changes in dynamics and cloud fields affect aerosol lifecycle, plume height, long-range transport, overall forcing of the climate system, etc. Inclusion of aerosols in NWP systems has benefit to surface field biases (e.g., T2m, U10m). Including aerosol affects has impact on analysis increments and can have statistically significant impacts on, e.g., tropical cyclogenesis. Above points are made especially with respect to aerosol radiative interactions, but aerosol-cloud interaction is a bigger signal on the global system. Many of these impacts are realized even in models with relatively simple (bulk) aerosol schemes (approx.10 -20 tracers). Simple schemes though imply simple representation of aerosol absorption and importantly for aerosol-cloud interaction particle-size distribution. Even so, more complex schemes exhibit a lot of diversity between different models, with issues such as size selection both for emitted particles and for modes. Prospects for complex sectional schemes to tune modal (and even bulk) schemes toward better selection of size representation. I think this is a ripe topic for more research -Systematic documentation of benefits of no vs. climatological vs. interactive (direct and then direct+indirect) aerosols. Document aerosol impact on analysis increments, inclusion in NWP data assimilation operator -Further refinement of baseline assumptions in model design (e.g., absorption, particle size distribution). Did not get into model resolution and interplay of other physical processes with aerosols (e.g., moist physics, obviously important), chemistry

  15. ANALYSIS OF RESPIRATORY DESPOSITION DOSE OF INHALED AMBIENT AEROSOLS FOR DIFFERENT SIZE FRACTIONS

    EPA Science Inventory

    ANALYSIS OF RESPIRATORY DEPOSITION DOSE OF INHALED AMBIENT AEROSOLS FOR DIFFERENT SIZE FRACTIONS. Chong S. Kim, SC. Hu**, PA Jaques*, US EPA, National Health and Environmental Effects Research Laboratory, Research Triangle Park, NC 27711; **IIT Research Institute, Chicago, IL; *S...

  16. Concentrations and size distributions of fine aerosol particles measured at roof level in urban zone

    NASA Astrophysics Data System (ADS)

    Despiau, S.; Croci, D.

    2007-05-01

    During the experimental Field Experiments to Constrain Models of Atmospheric Pollution and Transport of Emissions (ESCOMPTE) campaign in June-July 2001, concentrations and size distributions of fine particles (14-722 nm) were measured at roof level in downtown Marseille (France). Part of the campaign was dedicated to the study of aerosol behavior in relation to strong photochemical events (which were identified as "IOP" days) and their regional modeling. The analysis of the concentration variations and the evolution of average diurnal size distribution showed that an "IOP day" is not characterized by a specific concentration or its variation, nor by a specific evolution of the average size distribution. The morning traffic rush is detected at roof level by a net increase in particle concentration over the whole size range measured, indicating a production of ultrafine particles by the traffic but also the raising to roof level of particles of the accumulation mode. The increase is observed about 1 hour after the traffic peak at street level, which is characterized by strong increases in NOx and CO concentrations. The corresponding flux of particles at roof level has been estimated around 3 × 104 cm-2 s-1. A specific signature characterized by a strong and rapid burst of concentration (factor 2 to 4 in 15 min) of particles between 25 and 50 nm, independent of the traffic source, has been detected on six occasions during the campaign. These events occur systematically around noon, in cases of strong radiation, low relative humidity, and common wind direction. Despite the high-diameter value of these particles, it is suggested that they could result from a specific "secondary aerosol process" event involving ozone, biogenic, and/or anthropogenic gas precursors like iodine and VOCs.

  17. A recirculation aerosol wind tunnel for evaluating aerosol samplers and measuring particle penetration through protective clothing materials.

    PubMed

    Jaques, Peter A; Hsiao, Ta-Chih; Gao, Pengfei

    2011-08-01

    A recirculation aerosol wind tunnel was designed to maintain a uniform airflow and stable aerosol size distribution for evaluating aerosol sampler performance and determining particle penetration through protective clothing materials. The oval-shaped wind tunnel was designed to be small enough to fit onto a lab bench, have optimized dimensions for uniformity in wind speed and particle size distributions, sufficient mixing for even distribution of particles, and minimum particle losses. Performance evaluation demonstrates a relatively high level of spatial uniformity, with a coefficient of variation of 1.5-6.2% for wind velocities between 0.4 and 2.8 m s(-1) and, in this range, 0.8-8.5% for particles between 50 and 450 nm. Aerosol concentration stabilized within the first 5-20 min with, approximately, a count median diameter of 135 nm and geometric standard deviation of 2.20. Negligible agglomerate growth and particle loss are suggested. The recirculation design appears to result in unique features as needed for our research.

  18. Size distributions of dicarboxylic acids, ketoacids, α-dicarbonyls, sugars, WSOC, OC, EC and inorganic ions in atmospheric particles over Northern Japan: implication for long-range transport of Siberian biomass burning and East Asian polluted aerosols

    NASA Astrophysics Data System (ADS)

    Agarwal, S.; Aggarwal, S. G.; Okuzawa, K.; Kawamura, K.

    2010-03-01

    To better understand the size-segregated chemical composition of aged organic aerosols in the western Pacific rim, day- and night-time aerosol samples were collected in Sapporo, Japan during summer 2005 using Andersen impactor sampler with 5 size bins: <1.1, 1.1-2.0, 2.0-3.3, 3.3-7.0, >7.0 μm. Samples were analyzed for the molecular compositions of dicarboxylic acids, ketoacids, α-dicarbonyls, and sugars, together with water-soluble organic carbon (WSOC), organic carbon (OC), elemental carbon (EC) and inorganic ions. Based on the analyses of backward trajectory and chemical tracers, we found that during campaign, the air masses were arrived from Siberia (biomass burning source region) on 8-9 August, China (anthropogenic source region) on 9-10 August and from the East China Sea/Sea of Japan (a mixed source receptor region) on 10-11 August. Most of the diacids, ketoacids, dicarbonyls, levoglucosan, WSOC, and inorganic ions, i.e., SO42-, NH42+ and K+ were enriched in fine particles (PM1.1) whereas Ca2+, Mg2+ and Cl- peaked in coarse sizes (>1.1 μm). Interestingly, OC, most sugar compounds and NO4aerosols from Siberia (mean: 252 ng m-3) were more abundant than those in the aerosols from China (209 ng m-3) and ocean (142 ng m-3) whereas SO42- concentrations maximized in the aerosols from China (mean: 3970 ng m-3) followed by marine- (2946 ng m-3) and biomass burning-influenced (1978 ng m-3) aerosols. Higher loadings of WSOC (2428 ng m-3) and OC (4358 ng m-3) were found on the fine mode, where biomass-burning products such as levoglucosan is abundant. This paper presents a case study that biomass burning episodes in Siberian region have a significant influence on the chemical composition of carbonaceous aerosols in the western North Pacific rim.

  19. Optical modeling of stratopheric aerosols - Present status

    NASA Technical Reports Server (NTRS)

    Rosen, J. M.; Hofmann, D. J.

    1986-01-01

    A stratospheric aerosol optical model is developed which is based on a size distribution conforming to direct measurements. Additional constraints are consistent with large data sets of independently measured macroscopic aerosol properties such as mass and backscatter. The period under study covers background as well as highly disturbed volcanic conditions and an altitude interval ranging from the tropopause to about 30 km. The predictions of the model are used to form a basis for interpreting and intercomparing several diverse types of stratospheric aerosol measurement.

  20. Measurements of Gas-phase H2so4, Oh, So2 and Aerosol Size Distribution On Mount Zugspitze At The Schneefernerhaus: Estimation of Sources and Sinks of Sulfuric Acid

    NASA Astrophysics Data System (ADS)

    Uecker, J.; Hanke, M.; Kamm, S.; Umann, B.; Arnold, F.; Poeschl, U.; Niessner, R.

    Gas-phase sulfuric acid and OH have been measured by the novel MPI-K ULTRA- CIMS (ultra-trace gas detection by CIMS technique) at the Schneefernerhaus( 2750 m asl; below the summit of Mount Zugspitze, Germany) in October 2001. These mea- surements were accompanied by measurements of SO2 with another MPI-K CIMS instrument and aerosol size distribution measurements by DMPS (differential mobil- ity particle sizer) operated by the Institut fuer Wasserchemie (Technische Universitaet Muenchen). In that way a data set was obtained which allows investigating major sources and sinks of sulfuric acid under relative clean conditions. H2SO4 and espe- cially OH concentrations are relatively well correlated to solar flux. Noon maximum concentrations of OH and H2SO4 of 6.5·106 and 2·106 cm-3, respectively, were ob- served. The average SO2 concentrations were below 20 ppt. The aerosol size distribu- tion was obtained in 39 size ranges from 10 to 1056 nm. Typical aerosol concentrations are in the range of 400 to 1800 cm-3 during the discussed period of time. An estima- tion of the production rate of H2SO4 was inferred building on the reaction of SO2 and OH, while the loss rate was calculated by considering the condensation of H2SO4 on aerosol particles (Fuchs and Sutugin approach). Results of the measurements and calculations will be discussed.

  1. A stratospheric aerosol increase

    NASA Technical Reports Server (NTRS)

    Rosen, J. M.; Hofmann, D. J.

    1980-01-01

    Large disturbances were noted in the stratospheric aerosol content in the midlatitude Northern Hemisphere commencing about 7 months after the eruption of La Soufriere and less than 1 month after the eruption of Sierra Negra. The aerosol was characterized by a very steep size distribution in the 0.15 to 0.25 micron radius range and contained a volatile component. Measurements near the equator and at the South Pole indicate that the disturbance was widespread. These observations were made before the May 18 eruption of Mt. St. Helens.

  2. One-year observations of size distribution characteristics of major aerosol constituents at a coastal receptor site in Hong Kong - Part 1: Inorganic ions and oxalate

    NASA Astrophysics Data System (ADS)

    Bian, Q.; Huang, X. H. H.; Yu, J. Z.

    2014-09-01

    Size distribution data of major aerosol constituents are essential in source apportioning of visibility degradation, testing and verification of air quality models incorporating aerosols. We report here 1-year observations of mass size distributions of major inorganic ions (sulfate, nitrate, chloride, ammonium, sodium, potassium, magnesium and calcium) and oxalate at a coastal suburban receptor site in Hong Kong, China. A total of 43 sets of size-segregated samples in the size range of 0.056-18 μm were collected from March 2011 to February 2012. The size distributions of sulfate, ammonium, potassium and oxalate were characterized by a dominant droplet mode with a mass mean aerodynamic diameter (MMAD) in the range of ~ 0.7-0.9 μm. Oxalate had a slightly larger MMAD than sulfate on days with temperatures above 22 °C as a result of the process of volatilization and repartitioning. Nitrate was mostly dominated by the coarse mode but enhanced presence in fine mode was detected on winter days with lower temperature and lower concentrations of sea salt and soil particles. This data set reveals an inversely proportional relationship between the fraction of nitrate in the fine mode and product of the sum of sodium and calcium in equivalent concentrations and the dissociation constant of ammonium nitrate (i.e., (1/([Na+] + 2[Ca2+]) × (1/Ke')) when Pn_fine is significant (> 10%). The seasonal variation observed for sea salt aerosol abundance, with lower values in summer and winter, is possibly linked with the lower marine salinities in these two seasons. Positive matrix factorization was applied to estimate the relative contributions of local formation and transport to the observed ambient sulfate level through the use of the combined data sets of size-segregated sulfate and select gaseous air pollutants. On average, the regional/super-regional transport of air pollutants was the dominant source at this receptor site, especially on high-sulfate days while local formation

  3. One-year observations of size distribution characteristics of major aerosol constituents at a coastal receptor site in Hong Kong - Part 1: Inorganic ions and oxalate

    NASA Astrophysics Data System (ADS)

    Bian, Q.; Huang, X. H. H.; Yu, J. Z.

    2014-01-01

    Size distribution data of major aerosol constituents are essential in source apportioning of visibility degradation, testing and verification of air quality models incorporating aerosols. We report here one-year observations of mass size distributions of major inorganic ions (sulfate, nitrate, chloride, ammonium, sodium, potassium, magnesium and calcium) and oxalate at a coastal suburban receptor site in Hong Kong, China. A total of 43 sets of size segregated samples in the size range of 0.056-18 μm were collected from March 2011 to February 2012. The size distributions of sulfate, ammonium, potassium and oxalate were characterized by a dominant droplet mode with a mass mean aerodynamic diameter (MMAD) in the range of ~0.7-0.9 μm. Oxalate had a slightly larger MMAD than sulfate on days with temperatures above 22 °C as a result of the process of volatilization and repartitioning. Nitrate was mostly dominated by the coarse mode but enhanced presence in fine mode was detected on winter days with lower temperature and lower concentrations of sea salt and soil particles. This data set reveals an inversely proportional relationship between the fraction of nitrate in the fine mode and product of the sum of sodium and calcium in equivalent concentrations and the dissociation constant of ammonium nitrate (i.e., (1/[Na+] + 2[Ca2+]) × (1/Ke')). The seasonal variation observed for sea salt aerosol abundance, with lower values in summer and winter, is possibly linked with the lower marine salinities in these two seasons. Positive matrix factorization was applied to estimate the relative contributions of local formation and transport to the observed ambient sulfate level through the use of the combined datasets of size-segregated sulfate and select gaseous air pollutants. On average, the regional/super-regional transport of air pollutants was the dominant source at this receptor site, especially on high sulfate days, while local formation processes contributed approximately

  4. Characterization of aerosols produced by surgical procedures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yeh, H.C.; Muggenburg, B.A.; Lundgren, D.L.

    1994-07-01

    In many surgeries, especially orthopedic procedures, power tools such as saws and drills are used. These tools may produce aerosolized blood and other biological material from bone and soft tissues. Surgical lasers and electrocautery tools can also produce aerosols when tissues are vaporized and condensed. Studies have been reported in the literature concerning production of aerosols during surgery, and some of these aerosols may contain infectious material. Garden et al. (1988) reported the presence of papilloma virus DNA in the fumes produced from laser surgery, but the infectivity of the aerosol was not assessed. Moon and Nininger (1989) measured themore » size distribution and production rate of emissions from laser surgery and found that particles were generally less than 0.5 {mu}m diameter. More recently there has been concern expressed over the production of aerosolized blood during surgical procedures that require power tools. In an in vitro study, the production of an aerosol containing the human immunodeficiency virus (HIV) was reported when power tools were used to cut tissues with blood infected with HIV. Another study measured the size distribution of blood aerosols produced by surgical power tools and found blood-containing particles in a number of size ranges. Health care workers are anxious and concerned about whether surgically produced aerosols are inspirable and can contain viable pathogens such as HIV. Other pathogens such as hepatitis B virus (HBV) are also of concern. The Occupational Safety and Health funded a project at the National Institute for Inhalation Toxicology Research Institute to assess the extent of aerosolization of blood and other tissues during surgical procedures. This document reports details of the experimental and sampling approach, methods, analyses, and results on potential production of blood-associated aerosols from surgical procedures in the laboratory and in the hospital surgical suite.« less

  5. Shipborne measurements of aerosol number size distribution and hygroscopicity over the North Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Royalty, T. M.; Phillips, B.; Dawson, K. W.; Reed, R. E.; Meskhidze, N.

    2016-12-01

    We report aerosol number size distribution and hygroscopicity data collected over the Pacific Ocean near the Hawaii Ocean Timeseries (HOT) Station ALOHA (centered near 22°N, 158°W). From June 25 to July 3, 2016 our hygroscopicity tandem differential mobility analyzer (HTDMA)/scanning mobility particle sizer (SMPS) system was deployed onboard of NOAA Ship Hi'ialakai that participated in mooring operations associated with the Woods Hole Oceanographic Institution WHOTS project. The ambient aerosol data was collected during the ship's planned operations. The inlet was located at the bow of the ship and the air samples were drawn (using 3/8 inch stainless steel tubing) inside a dry, air-conditioned lab. The region north of Oahu was very clean, with total particle number approximately 200 cm-3, occasionally dropping below 100 cm-3. We compare our particle number size distribution and hygroscopicity data with previously reported estimates. Our measurements contribute to process-level understanding of the role of sea spray aerosol in marine boundary layer cloud condensation nuclei (CCN) budget and provide crucial information to the community interested in studying and projecting climate change using Earth System Models.

  6. Determination of the refractive index of insoluble organic extracts from atmospheric aerosol over the visible wavelength range using optical tweezers

    NASA Astrophysics Data System (ADS)

    Shepherd, Rosalie H.; King, Martin D.; Marks, Amelia A.; Brough, Neil; Ward, Andrew D.

    2018-04-01

    Optical trapping combined with Mie spectroscopy is a new technique used to record the refractive index of insoluble organic material extracted from atmospheric aerosol samples over a wide wavelength range. The refractive index of the insoluble organic extracts was shown to follow a Cauchy equation between 460 and 700 nm for organic aerosol extracts collected from urban (London) and remote (Antarctica) locations. Cauchy coefficients for the remote sample were for the Austral summer and gave the Cauchy coefficients of A = 1.467 and B = 1000 nm2 with a real refractive index of 1.489 at a wavelength of 589 nm. Cauchy coefficients for the urban samples varied with season, with extracts collected during summer having Cauchy coefficients of A = 1.465 ± 0.005 and B = 4625 ± 1200 nm2 with a representative real refractive index of 1.478 at a wavelength of 589 nm, whilst samples extracted during autumn had larger Cauchy coefficients of A = 1.505 and B = 600 nm2 with a representative real refractive index of 1.522 at a wavelength of 589 nm. The refractive index of absorbing aerosol was also recorded. The absorption Ångström exponent was determined for woodsmoke and humic acid aerosol extract. Typical values of the Cauchy coefficient for the woodsmoke aerosol extract were A = 1.541 ± 0.03 and B = 14 800 ± 2900 nm2, resulting in a real refractive index of 1.584 ± 0.007 at a wavelength of 589 nm and an absorption Ångström exponent of 8.0. The measured values of refractive index compare well with previous monochromatic or very small wavelength range measurements of refractive index. In general, the real component of the refractive index increases from remote to urban to woodsmoke. A one-dimensional radiative-transfer calculation of the top-of-the-atmosphere albedo was applied to model an atmosphere containing a 3 km thick layer of aerosol comprising pure water, pure insoluble organic aerosol, or an aerosol consisting of an aqueous core with an insoluble organic shell. The

  7. Indetermination of particle sizing by laser diffraction in the anomalous size ranges

    NASA Astrophysics Data System (ADS)

    Pan, Linchao; Ge, Baozhen; Zhang, Fugen

    2017-09-01

    The laser diffraction method is widely used to measure particle size distributions. It is generally accepted that the scattering angle becomes smaller and the angles to the location of the main peak of scattered energy distributions in laser diffraction instruments shift to smaller values with increasing particle size. This specific principle forms the foundation of the laser diffraction method. However, this principle is not entirely correct for non-absorbing particles in certain size ranges and these particle size ranges are called anomalous size ranges. Here, we derive the analytical formulae for the bounds of the anomalous size ranges and discuss the influence of the width of the size segments on the signature of the Mie scattering kernel. This anomalous signature of the Mie scattering kernel will result in an indetermination of the particle size distribution when measured by laser diffraction instruments in the anomalous size ranges. By using the singular-value decomposition method we interpret the mechanism of occurrence of this indetermination in detail and then validate its existence by using inversion simulations.

  8. Spectral Aerosol Extinction (SpEx): A New Instrument for In situ Ambient Aerosol Extinction Measurements Across the UV/Visible Wavelength Range

    NASA Technical Reports Server (NTRS)

    Jordan, C. E.; Anderson, B. E.; Beyersdorf, A. J.; Corr, C. A.; Dibb, J. E.; Greenslade, M. E.; Martin, R. F.; Moore, R. H.; Scheuer, E.; Shook, M. A.; hide

    2015-01-01

    We introduce a new instrument for the measurement of in situ ambient aerosol extinction over the 300-700 nm wavelength range, the Spectral Aerosol Extinction (SpEx) instrument. This measurement capability is envisioned to complement existing in situ instrumentation, allowing for simultaneous measurement of the evolution of aerosol optical, chemical, and physical characteristics in the ambient environment. In this work, a detailed description of the instrument is provided along with characterization tests performed in the laboratory. Measured spectra of NO2 and polystyrene latex spheres agreed well with theoretical calculations. Good agreement was also found with simultaneous aerosol extinction measurements at 450, 530, and 630 nm using CAPS PMex instruments in a series of 22 tests including non-absorbing compounds, dusts, soot, and black and brown carbon analogs. SpEx can more accurately distinguish the presence of brown carbon from other absorbing aerosol due to its 300 nm lower wavelength limit compared to measurements limited to visible wavelengths. In addition, the spectra obtained by SpEx carry more information than can be conveyed by a simple power law fit that is typically defined by the use of Angstrom Exponents. Future improvements aim at lowering detection limits and ruggedizing the instrument for mobile operation.

  9. Infrared spectroscopy and Mie scattering of acetylene aerosols formed in a low temperature diffusion cell

    NASA Technical Reports Server (NTRS)

    Dunder, T.; Miller, R. E.

    1990-01-01

    A method is described for forming and spectroscopically characterizing cryogenic aerosols formed in a low temperature gas cell. By adjusting the cell pressure, gas composition and flow rate, the size distribution of aerosol particles can be varied over a wide range. The combination of pressure and flow rate determine the residence time of the aerosols in the cell and hence the time available for the particles to grow. FTIR spectroscopy, over the range from 600/cm to 6000/cm, is used to characterize the aerosols. The particle size distribution can be varied so that, at one extreme, the spectra show only absorption features associated with the infrared active vibrational bands and, at the other, they display both absorption and Mie scattering. In the latter case, Mie scattering theory is used to obtain semiquantitative aerosol size distributions, which can be understood in terms of the interplay between nucleation and condensation. In the case of acetylene aerosols, the infrared spectra suggest that the particles exist in the high temperature cubic phase of the solid.

  10. Characteristics of size-resolved atmospheric inorganic and carbonaceous aerosols in urban Shanghai

    NASA Astrophysics Data System (ADS)

    Ding, X. X.; Kong, L. D.; Du, C. T.; Zhanzakova, A.; Fu, H. B.; Tang, X. F.; Wang, L.; Yang, X.; Chen, J. M.; Cheng, T. T.

    2017-10-01

    Size-segregated aerosol particles were collected with a 10-stage Micro-Orifice Uniform Deposit Impactor (MOUDI) at an urban site in Shanghai, China for four non-consecutive months representing four seasons from 2015 to 2016. Chemical composition, including water-soluble ions as well as organic carbon (OC), elemental carbon (EC) and secondary organic carbon (SOC) of size-resolved (0.056-18 μm) atmospheric aerosols in four seasons and in different polluted cases were studied. The size distributions of sulfate, nitrate and ammonium (SNA) and carbonaceous aerosol (OC, EC and SOC) were discussed and the potential sources of PM1.8-associated secondary species (SO42-, NO3-, SNA and SOC) in different seasons were identified by potential source contribution function (PSCF) model. Results showed that atmospheric ultrafine and fine particle pollution in Shanghai were very serious during the study period. Most of the water-soluble ions tended to be enriched in fine particles, especially being abundant in the droplet mode in polluted cases. Compared with sulfate, size distributions of nitrate and ammonium presented more significant seasonal variations and showed distinctive characteristics in polluted days. Abundant nitrate was concentrated in fine particles in cold seasons (spring and winter), whereas it was enriched in coarse mode during summer and autumn. The droplet mode sulfate with high concentration did not result in the aggravation of air pollution, while the nucleation mode sulfate may have made a great contribution to the air pollution in urban Shanghai. It was also found that the formation of air pollution in urban Shanghai had a significant link with nitrate and ammonium, especially with nitrate and ammonium in condensation mode and droplet mode, and the contribution of sulfate to the pollution formation in Shanghai would somehow be surpassed by the increasing nitrate and ammonium. OC and EC concentrations from spring to winter were found to be 11.10, 7.10, 12

  11. Size distributions of organic nitrogen and carbon in remote marine aerosols: Evidence of marine biological origin based on their isotopic ratios

    NASA Astrophysics Data System (ADS)

    Miyazaki, Yuzo; Kawamura, Kimitaka; Sawano, Maki

    2010-03-01

    Size-segregated aerosol samples were collected over the western North Pacific in summer 2008 for the measurements of organic nitrogen (ON) and organic carbon (OC). ON and OC showed bimodal size distributions. Their concentrations showed positive correlation with those of biogenic tracers, methanesulfonic acid (MSA) and azelaic acid (C9). We found that average ON and OC concentrations were twice greater in aerosols collected in the oceanic region with higher biological productivity than in the regions with lower productivity. The average ON/OC ratios are higher (0.49 ± 0.11) in more biologically influenced aerosols than those (0.35 ± 0.10) in less influenced aerosols. Stable carbon isotopic analysis indicates that marine-derived carbon accounted for ˜46-72% of total carbon in more biologically influenced aerosols. These results provide evidence that organic aerosols in this region are enriched in ON that is linked to oceanic biological activity and the subsequent emissions to the atmosphere.

  12. Cloud condensation nuclei in pristine tropical rainforest air of Amazonia: size-resolved measurements and modeling of atmospheric aerosol composition and CCN activity

    NASA Astrophysics Data System (ADS)

    Gunthe, S. S.; King, S. M.; Rose, D.; Chen, Q.; Roldin, P.; Farmer, D. K.; Jimenez, J. L.; Artaxo, P.; Andreae, M. O.; Martin, S. T.; Pöschl, U.

    2009-02-01

    Atmospheric aerosol particles serving as cloud condensation nuclei (CCN) are key elements of the hydrological cycle and climate. We have measured and characterized CCN at water vapor supersaturations in the range of S=0.10-0.82% in pristine tropical rainforest air during the AMAZE-08 campaign in central Amazonia. The effective hygroscopicity parameters describing the influence of chemical composition on the CCN activity of aerosol particles varied in the range of κ=0.05-0.45. The overall median value of κ≍0.15 was only half of the value typically observed for continental aerosols in other regions of the world. Aitken mode particles were less hygroscopic than accumulation mode particles (κ≍0.1 at D≍50 nm; κ≍0.2 at D≍200 nm). The CCN measurement results were fully consistent with aerosol mass spectrometry (AMS) data, which showed that the organic mass fraction (Xm,org) was on average as high as ~90% in the Aitken mode (D≤100 nm) and decreased with increasing particle diameter in the accumulation mode (~80% at D≍200 nm). The κ values exhibited a close linear correlation with Xm,org and extrapolation yielded the following effective hygroscopicity parameters for organic and inorganic particle components: κorg≍0.1 which is consistent with laboratory measurements of secondary organic aerosols and κinorg≍0.6 which is characteristic for ammonium sulfate and related salts. Both the size-dependence and the temporal variability of effective particle hygroscopicity could be parameterized as a function of AMS-based organic and inorganic mass fractions (κp=0.1 Xm,org+0.6 Xm,inorg), and the CCN number concentrations predicted with κp were in fair agreement with the measurement results. The median CCN number concentrations at S=0.1-0.82% ranged from NCCN,0.10≍30 cm-3 to NCCN,0.82≍150 cm-3, the median concentration of aerosol particles larger than 30 nm was NCN,30≍180 cm-3, and the corresponding integral CCN efficiencies were in the range of NCCN,0

  13. Combining Airborne and Lidar Measurements for Attribution of Aerosol Layers

    NASA Astrophysics Data System (ADS)

    Nikandrova, A.; Väänänen, R.; Tabakova, K.; Kerminen, V. M.; O'Connor, E.

    2016-12-01

    The aim of this work was to identify discrete aerosol layers and diagnose their origin, investigate the strength of mixing within the free-troposphere and with the boundary layer (BL), and understand the impact that mixing has on local and long-range transport of aerosol. For these purposes we combined airborne in-situ aerosol measurements with data obtained by a High Spectral Resolution Lidar (HSRL). The HSRL was deployed in Hyytiälä, Southern Finland, from January to September 2014 as a part of the US DoE ARM (Atmospheric Radiation Measurement) Mobile Facility during the BAECC (Biogenic Aerosols - Effects on Cloud and Climate) Campaign. Two airborne campaigns took place in April and August 2014 during the BAECC campaign. The vertical profile of backscatter coefficient from the HSRL was used to diagnose the location and depth of significant aerosol layers in the atmosphere. Frequently, in addition to the BL, one or two tropospheric layers were identified. In-situ measurements of the aerosol size distribution in these layers were obtained from a Scanning Mobility Particle Sizer (SMPS) and Optical Particle Sizer (OPS), that were installed on board the aircraft; these measurements were combined to cover sizes ranging from 10 nm to 10 µm. As expected, the highest number concentration of aerosol particles at all size ranges was found predominantly in the BL. Many upper layers had size distributions with a similar shape to that in the BL but with overall lower concentrations attributed to dilution of particles into a large volume of air. Hence, these layers were likely of very similar origin to the air in the BL and presumably were the result of lofted residual layers. Intervening layers however, could contain markedly different distribution shapes, which could be attributed to both different air mass origins, and different ambient relative humidity. Potential for mixing between two discreet elevated layers was often seen as a thin interface layer, which exhibited a

  14. The Size Distribution of Atmospheric Aerosols at Kosan, Korea during ACE-Asia: Changes due to Dust Input and Scavenging by Precipitation

    NASA Astrophysics Data System (ADS)

    Jung, C.; Kim, J.; Choi, B.; Brechtel, F. J.; Buzorius, G.; Oh, S.

    2001-12-01

    Measurements of size-resolved aerosol number concentrations were made at the Kosan supersite in Korea during the ACE-Asia intensive observation period. An optical particle counter (OPC) was used for measurements in the 0.3-25.0 micrometer diameter size range every ten minutes while a scanning electrical mobility spectrometer (SEMS) was used for smaller particles. A comparison of size distributions between dust and non-dust input periods and times with and without precipitation has been performed. During dust events, the number and volume concentrations of large particles (>1.35 micrometer) increased by factors of 10 and 1000, respectively. Also, a dominant number mode diameter between 2.23-3.67 micrometer was observed during dust events. The number concentrations of smaller particles observed by the OPC (0.3-1 micrometer) and SEMS (0.005-0.6 micrometer) were relatively smaller during dust events, consistent with previous studies and the effect of coagulation processes (Zaizen et al., 1995; Chun et al., 2001). During precipitation events, coarse mode particles (>1 micrometer) were scavenged more efficiently than smaller particles. This result suggests that large particles are efficiently scavenged by impaction with raindrops. In contrast, relatively minor reductions in the number concentrations of small particles (0.3-1 micrometer) were observed during precipitation events. SEMS results during one precipitation event indicate factor of three reductions in total number and area concentrations for particle sizes below the detection limit of the OPC. Results from theoretical analyses of scavenging rates as a function of particle size during precipitation events will be presented and compared to values derived from observed size distributions. References Chun, Y., Kim, J., Choi, J. C., Boo, K. O., Oh, S. N., and Lee, M. (2001). Characteristic number size distribution of aerosol during Asian dust period in Korea, Atmospheric Environment, 35, 2715-2721. Zaizen, Y

  15. Characterization of free amino acids, bacteria and fungi in size-segregated atmospheric aerosols in boreal forest: seasonal patterns, abundances and size distributions

    NASA Astrophysics Data System (ADS)

    Helin, Aku; Sietiö, Outi-Maaria; Heinonsalo, Jussi; Bäck, Jaana; Riekkola, Marja-Liisa; Parshintsev, Jevgeni

    2017-11-01

    Primary biological aerosol particles (PBAPs) are ubiquitous in the atmosphere and constitute ˜ 30 % of atmospheric aerosol particle mass in sizes > 1 µm. PBAP components, such as bacteria, fungi and pollen, may affect the climate by acting as cloud-active particles, thus having an effect on cloud and precipitation formation processes. In this study, size-segregated aerosol samples (< 1.0, 1-2.5, 2.5-10 and > 10 µm) were collected in boreal forest (Hyytiälä, Finland) during a 9-month period covering all seasons and analysed for free amino acids (FAAs), DNA concentration and microorganism (bacteria, Pseudomonas and fungi). Measurements were performed using tandem mass spectrometry, spectrophotometry and qPCR, respectively. Meteorological parameters and statistical analysis were used to study their atmospheric implication for results. Distinct annual patterns of PBAP components were observed, late spring and autumn being seasons of dominant occurrence. Elevated abundances of FAAs and bacteria were observed during the local pollen season, whereas fungi were observed at the highest level during autumn. Meteorological parameters such as air and soil temperature, radiation and rainfall were observed to possess a close relationship with PBAP abundances on an annual scale.

  16. Temporal change in the size distribution of airborne Radiocesium derived from the Fukushima accident

    NASA Astrophysics Data System (ADS)

    Kaneyasu, Naoki; Ohashi, Hideo; Suzuki, Fumie; Okuda, Tomoaki; Ikemori, Fumikazu; Akata, Naofumi

    2013-04-01

    The accident of Fukushima Dai-ichi nuclear power plant discharged a large amount of radioactive materials into the environment. After 40 days of the accident, we started to collect the size-segregated aerosol at Tsukuba City, Japan, located 170 km south of the plant, by use of a low-pressure cascade impactor. The sampling continued from April 28, through October 26, 2011. The number of sample sets collected in total was 8. The radioactivity of 134Cs and 137Cs in aerosols collected at each stage were determined by gamma-ray with a high sensitivity Germanic detector. After the gamma-ray spectrometry analysis, the chemical species in the aerosols were analyzed. The analyses of first (April 28-May 12) and second (May 12-26) samples showed that the activity size distributions of 134Cs and 137Cs in aerosols reside mostly in the accumulation mode size range. These activity size distributions almost overlapped with the mass size distribution of non-sea-salt sulfate aerosol. From the results, we regarded that sulfate is the main transport medium of these radionuclides, and re-suspended soil particles that attached radionuclides were not the major airborne radioactive substances by the end of May, 2011 (Kaneyasu et al., 2012). We further conducted the successive extraction experiment of radiocesium from the aerosol deposits on the aluminum sheet substrate (8th stage of the first aerosol sample, 0.5-0.7 μm in aerodynamic diameter) with water and 0.1M HCl. In contrast to the relatively insoluble property of Chernobyl radionuclides, those in aerosols collected at Tsukuba in fine mode are completely water-soluble (100%). From the third aerosol sample, the activity size distributions started to change, i.e., the major peak in the accumulation mode size range seen in the first and second aerosol samples became smaller and an additional peak appeared in the coarse mode size range. The comparison of the activity size distributions of radiocesium and the mass size distributions of

  17. Chemical composition of size-segregated aerosols in Lhasa city, Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Wan, Xin; Kang, Shichang; Xin, Jinyuan; Liu, Bin; Wen, Tianxue; Wang, Pengling; Wang, Yuesi; Cong, Zhiyuan

    2016-06-01

    To reveal the chemical characteristics of size-segregated aerosols in the high-altitude city of Tibetan Plateau, eight-size aerosol samples were collected in Lhasa from March 2013 to February 2014. The annual mean of online PM2.5 was 25.0 ± 16.0 μg m- 3, which was much lower than Asian cities but similar with some European cities. The annual mean concentrations of organic carbon (OC, 7.92 μg m- 3 in PM2.1 and 12.66 μg m- 3 in PM9.0) and elemental carbon (EC, 1.00 μg m- 3 in PM2.1 and 1.21 μg m- 3 in PM9.0) in Lhasa aerosols were considerably lower than those heavily polluted cities such as Beijing and Xi'an, China and Kathmandu, Nepal. Sulfate, NO3-, NH4+ and Ca2 + were 0.75 ± 0.31, 0.82 ± 0.35, 0.38 ± 0.34 and 0.57 ± 0.29 μg m- 3 in fine particles while in coarse particles they were 0.57 ± 0.37, 0.73 ± 0.23, 0.07 ± 0.03 and 2.52 ± 1.37 μg m- 3, respectively. Secondary water-soluble ions composed 35.8% of the total ionic components in fine particles according to the established electroneutrality, while in coarse particles they took up only 9.3%. Ca2 + (40.6%) was the major component of the coarse particles. For seasonality, the concentrations of OC, EC, SO42 -, NH4+, K+, Ca2 +, Mg2 +, Cl- and Na+ presented higher values during late autumn and winter but were relatively lower in spring and summer. Nevertheless, NO3- was considerably higher in summer and autumn, presumably due to increased tourist-vehicle emissions. During winter and spring, [Ca2 +]/[NO3-+ SO42 -] ratios in coarse particles showed higher values of 7.31 and 6.17, respectively, emphasizing the dust influence. [NO3-]/[SO42 -] ratios in fine particles during spring, summer and autumn exceeding 1 indicated that the currently predominant vehicle exhaust makes a greater contribution to the aerosols. While more stationary sources such as coal and biomass burning existed in winter since the [NO3-]/[SO42 -] ratio was less than 1. Different sources and formation processes lead to a bimodal size

  18. Analyses of scattering characteristics of chosen anthropogenic aerosols

    NASA Astrophysics Data System (ADS)

    Kaszczuk, Miroslawa; Mierczyk, Zygmunt; Muzal, Michal

    2008-10-01

    In the work, analyses of scattering profile of chosen anthropogenic aerosols for two wavelengths (λ1 = 1064 nm and λ2 = 532 nm) were made. As an example of anthropogenic aerosol three different pyrotechnic mixtures (DM11, M2, M16) were taken. Main parameters of smoke particles were firstly analyzed and well described, taking particle shape and size into special consideration. Shape of particles was analyzed on the basis of SEM pictures, and particle size was measured. Participation of particles in each fixed fraction characterized by range of sizes was analyzed and parameters of smoke particles of characteristic sizes and function describing aerosol size distribution (ASD) were determinated. Analyses of scattering profiles were carried out on the basis of both model of scattering on spherical and nonspherical particles. In the case of spherical particles Rayleigh-Mie model was used and for nonspherical particles analyses firstly model of spheroids was used, and then Rayleigh-Mie one. For each characteristic particle one calculated value of four parameters (effective scattering cross section σSCA, effective backscattering cross section σBSCA, scattering efficiency QSCA, backscattering efficiency QBSCA) and value of backscattering coefficient β for whole particles population. Obtained results were compared with the same parameters calculated for natural aerosol (cirrus cloud).

  19. NASA's Aerosol Sampling Experiment Summary

    NASA Technical Reports Server (NTRS)

    Meyer, Marit E.

    2016-01-01

    In a spacecraft cabin environment, the size range of indoor aerosols is much larger and they persist longer than on Earth because they are not removed by gravitational settling. A previous aerosol experiment in 1991 documented that over 90 of the mass concentration of particles in the NASA Space Shuttle air were between 10 m and 100 m based on measurements with a multi-stage virtual impactor and a nephelometer (Liu et al. 1991). While the now-retired Space Shuttle had short duration missions (less than two weeks), the International Space Station (ISS) has been continually inhabited by astronauts for over a decade. High concentrations of inhalable particles on ISS are potentially responsible for crew complaints of respiratory and eye irritation and comments about 'dusty' air. Air filtration is the current control strategy for airborne particles on the ISS, and filtration modeling, performed for engineering and design validation of the air revitalization system in ISS, predicted that PM requirements would be met. However, aerosol monitoring has never been performed on the ISS to verify PM levels. A flight experiment is in preparation which will provide data on particulate matter in ISS ambient air. Particles will be collected with a thermophoretic sampler as well as with passive samplers which will extend the particle size range of sampling. Samples will be returned to Earth for chemical and microscopic analyses, providing the first aerosol data for ISS ambient air.

  20. Sampling and physical characterization of diesel exhaust aerosols. SAE Paper 770720

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verrant, J.A.; Kittelson, D.A.

    Diesel exhaust aerosols are highly dynamic and therefore, difficult to sample without introducing falsification. This paper describes a study of these aerosols using a rapid dilution sampling system and an electrical aerosol analyzer. An Onan single cylinder indirect injection engine was used as an exhaust source. The sampler diluted the exhaust with clean air in ratios of 400:1 to 600:1 in order to prevent sample falsification by condensation and coagulation. The electrical aerosol analyzer was used to determine particle size and concentration. Volume concentration in the exhaust ranged from 2000 to 50,000 ..mu.. m/sup 3/ cm/sup -3/ which correspond tomore » mass loadings of 2.0 to 50 mg m/sup -3/ (assuming a density of 1 gm cm/sup -3/). Volume geometric mean diameters ranged from 0.12 to 0.19 ..mu..m. Evaporation and coagulation effects on diesel aerosols were observed by aging in a Teflon holding bag. A simple evaporation model was fit to the decrease of aerosol volume concentration with time. The fit revealed that the aerosols evaporated as if they were composed of normal paraffins in the 350 to 500 molecular weight range. Although the sample dilution system used in this study may alter the sample somewhat, it is probably analogous to what happens at the tailpipe of a vehicle. Measurements taken on a test track in the exhaust plume of a Peugeot 504 diesel showed aerosol size distributions very similar to those measured in our laboratory studies.« less

  1. Skylight and aerosol in Thailand during the dry winter season.

    PubMed

    Volz, F; Sheehan, L

    1971-02-01

    Solar and skylight measurements were made in southern Thailand from late February to early April of 1969. The aerosol optical density (basis 10) was rather large, ranging from 0.07 to 0.28 at lambda0.5 microm and varied with about lambda(-2) in the range 0.5 < lambda < 1.6 microm. The skylight scattering phase function was relatively flat and showed little spectral dependence. The log aerosol size distribution seems close to r(-4). The origin of the turbid low level air from the South China Sea and Philippine Sea poses the question of the nature of the aerosol.

  2. Molecular-Size-Separated Brown Carbon Absorption for Biomass-Burning Aerosol at Multiple Field Sites.

    PubMed

    Di Lorenzo, Robert A; Washenfelder, Rebecca A; Attwood, Alexis R; Guo, Hongyu; Xu, Lu; Ng, Nga L; Weber, Rodney J; Baumann, Karsten; Edgerton, Eric; Young, Cora J

    2017-03-21

    Biomass burning is a known source of brown carbon aerosol in the atmosphere. We collected filter samples of biomass-burning emissions at three locations in Canada and the United States with transport times of 10 h to >3 days. We analyzed the samples with size-exclusion chromatography coupled to molecular absorbance spectroscopy to determine absorbance as a function of molecular size. The majority of absorption was due to molecules >500 Da, and these contributed an increasing fraction of absorption as the biomass-burning aerosol aged. This suggests that the smallest molecular weight fraction is more susceptible to processes that lead to reduced light absorption, while larger-molecular-weight species may represent recalcitrant brown carbon. We calculate that these large-molecular-weight species are composed of more than 20 carbons with as few as two oxygens and would be classified as extremely low volatility organic compounds (ELVOCs).

  3. The MODIS Aerosol Algorithm, Products and Validation

    NASA Technical Reports Server (NTRS)

    Remer, L. A.; Kaufman, Y. J.; Tanre, D.; Mattoo, S.; Chu, D. A.; Martins, J. V.; Li, R.-R.; Ichoku, C.; Levy, R. C.; Kleidman, R. G.

    2003-01-01

    The MODerate resolution Imaging Spectroradiometer (MODIS) aboard both NASA's Terra and Aqua satellites is making near global daily observations of the earth in a wide spectral range. These measurements are used to derive spectral aerosol optical thickness and aerosol size parameters over both land and ocean. The aerosol products available over land include aerosol optical thickness at three visible wavelengths, a measure of the fraction of aerosol optical thickness attributed to the fine mode and several derived parameters including reflected spectral solar flux at top of atmosphere. Over ocean, the aerosol optical thickness is provided in seven wavelengths from 0.47 microns to 2.13 microns. In addition, quantitative aerosol size information includes effective radius of the aerosol and quantitative fraction of optical thickness attributed to the fine mode. Spectral aerosol flux, mass concentration and number of cloud condensation nuclei round out the list of available aerosol products over the ocean. The spectral optical thickness and effective radius of the aerosol over the ocean are validated by comparison with two years of AERONET data gleaned from 133 AERONET stations. 8000 MODIS aerosol retrievals colocated with AERONET measurements confirm that one-standard deviation of MODIS optical thickness retrievals fall within the predicted uncertainty of delta tauapproximately equal to plus or minus 0.03 plus or minus 0.05 tau over ocean and delta tay equal to plus or minus 0.05 plus or minus 0.15 tau over land. 271 MODIS aerosol retrievals co-located with AERONET inversions at island and coastal sites suggest that one-standard deviation of MODIS effective radius retrievals falls within delta r_eff approximately equal to 0.11 microns. The accuracy of the MODIS retrievals suggests that the product can be used to help narrow the uncertainties associated with aerosol radiative forcing of global climate.

  4. Future Arctic temperature change resulting from a range of aerosol emissions scenarios

    DOE PAGES

    Wobus, Cameron; Flanner, Mark; Sarofim, Marcus C.; ...

    2016-05-17

    The Arctic temperature response to emissions of aerosols – specifically black carbon (BC), organic carbon (OC), and sulfate – depends on both the sector and the region where these emissions originate. Thus, the net Arctic temperature response to global aerosol emissions reductions will depend strongly on the blend of emissions sources being targeted. We use recently published equilibrium Arctic temperature response factors for BC, OC, and sulfate to estimate the range of present-day and future Arctic temperature changes from seven different aerosol emissions scenarios. Globally, Arctic temperature changes calculated from all of these emissions scenarios indicate that present-day emissions frommore » the domestic and transportation sectors generate the majority of present-day Arctic warming from BC. However, in all of these scenarios, this warming is more than offset by cooling resulting from SO 2 emissions from the energy sector. Thus, long-term climate mitigation strategies that are focused on reducing carbon dioxide (CO 2) emissions from the energy sector could generate short-term, aerosol-induced Arctic warming. As a result, a properly phased approach that targets BC-rich emissions from the transportation sector as well as the domestic sectors in key regions – while simultaneously working toward longer-term goals of CO 2 mitigation – could potentially avoid some amount of short-term Arctic warming.« less

  5. Seasonal variations in size distribution, water-soluble ions, and carbon content of size-segregated aerosols over New Delhi.

    PubMed

    Kumar, Pawan; Kumar, Sushil; Yadav, Sudesh

    2018-02-01

    Size distribution, water-soluble inorganic ions (WSII), and organic carbon (OC) and elemental carbon (EC) in size-segregated aerosols were investigated during a year-long sampling in 2010 over New Delhi. Among different size fractions of PM 10 , PM 0.95 was the dominant fraction (45%) followed by PM 3-7.2 (20%), PM 7.2-10 (15%), PM 0.95-1.5 (10%), and PM 1.5-3 (10%). All size fractions exceeded the ambient air quality standards of India for PM 2.5 . Annual average mass size distributions of ions were specific to size and ion(s); Ca 2+ , Mg 2+ , K + , NO 3 - , and Cl - followed bimodal distribution while SO 4 2- and NH 4 + ions showed one mode in PM 0.95 . The concentrations of secondary WSII (NO 3 - , SO 4 2- , and NH 4 + ) increased in winters due to closed and moist atmosphere whereas open atmospheric conditions in summers lead to dispersal of pollutants. NH 4 + and Ca 2+ were dominant neutralization ions but in different size fractions. The summer-time dust transport from upwind region by S SW winds resulted in significantly high concentrations of PM 0.95 and PM 3-7.2 and PM 7.2-10 . This indicted influence of dust generation in Thar Desert and its transport is size selective in nature in downwind direction. The mixing of different sources (geogenic, coal combustions, biomass burning, plastic burning, incinerators, and vehicular emissions sources) for soluble ions in different size fractions was noticed in principle component analysis. Total carbon (TC = EC + OC) constituted 8-31% of the total PM 0.95 mass, and OC dominated over EC. Among EC, char (EC1) dominated over soot (EC2 + EC3). High SOC contribution (82%) to OC and OC/EC ratio of 2.7 suggested possible role of mineral dust and high photochemical activity in SOC production. Mass concentrations of aerosols and WSII and their contributions to each size fraction of PM 10 are governed by nature of sources, emission strength of source(s), and seasonality in meteorological parameters.

  6. Retrieving the Vertical Structure of the Effective Aerosol Complex Index of Refraction from a Combination of Aerosol in Situ and Remote Sensing Measurements During TARFOX

    NASA Technical Reports Server (NTRS)

    Redemann, J.; Turco, R. P.; Liou, K. N.; Russell, P. B.; Bergstrom, R. W.; Schmid, B.; Livingston, J. M.; Hobbs, P. V.; Hartley, W. S.; Ismail, S.; hide

    2000-01-01

    The largest uncertainty in estimates of the effects of atmospheric aerosols on climate stems from uncertainties in the determination of their microphysical properties, including the aerosol complex index of refraction, which in turn determines their optical properties. A novel technique is used to estimate the aerosol complex index of refraction in distinct vertical layers from a combination of aerosol in situ size distribution and remote sensing measurements during the Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX). In particular, aerosol backscatter measurements using the NASA Langley LASE (Lidar Atmospheric Sensing Experiment) instrument and in situ aerosol size distribution data are utilized to derive vertical profiles of the "effective" aerosol complex index of refraction at 815 nm (i.e., the refractive index that would provide the same backscatter signal in a forward calculation on the basis of the measured in situ particle size distributions for homogeneous, spherical aerosols). A sensitivity study shows that this method yields small errors in the retrieved aerosol refractive indices, provided the errors in the lidar-derived aerosol backscatter are less than 30% and random in nature. Absolute errors in the estimated aerosol refractive indices are generally less than 0.04 for the real part and can be as much as 0.042 for the imaginary part in the case of a 30% error in the lidar-derived aerosol backscatter. The measurements of aerosol optical depth from the NASA Ames Airborne Tracking Sunphotometer (AATS-6) are successfully incorporated into the new technique and help constrain the retrieved aerosol refractive indices. An application of the technique to two TARFOX case studies yields the occurrence of vertical layers of distinct aerosol refractive indices. Values of the estimated complex aerosol refractive index range from 1.33 to 1.45 for the real part and 0.001 to 0.008 for the imaginary part. The methodology devised in this study

  7. MATRIX-VBS (v1.0): Implementing an Evolving Organic Aerosol Volatility in an Aerosol Microphysics Model

    NASA Technical Reports Server (NTRS)

    Gao, Chloe Y.; Tsigaridis, Kostas; Bauer, Susanne E.

    2017-01-01

    The gas-particle partitioning and chemical aging of semi-volatile organic aerosol are presented in a newly developed box model scheme, where its effect on the growth, composition, and mixing state of particles is examined. The volatility-basis set (VBS) framework is implemented into the aerosol microphysical scheme MATRIX (Multiconfiguration Aerosol TRacker of mIXing state), which resolves mass and number aerosol concentrations and in multiple mixing-state classes. The new scheme, MATRIX-VBS, has the potential to significantly advance the representation of organic aerosols in Earth system models by improving upon the conventional representation as non-volatile particulate organic matter, often also with an assumed fixed size distribution. We present results from idealized cases representing Beijing, Mexico City, a Finnish forest, and a southeastern US forest, and investigate the evolution of mass concentrations and volatility distributions for organic species across the gas and particle phases, as well as assessing their mixing state among aerosol populations. Emitted semi-volatile primary organic aerosols evaporate almost completely in the intermediate-volatility range, while they remain in the particle phase in the low-volatility range. Their volatility distribution at any point in time depends on the applied emission factors, oxidation by OH radicals, and temperature. We also compare against parallel simulations with the original scheme, which represented only the particulate and non-volatile component of the organic aerosol, examining how differently the condensed-phase organic matter is distributed across the mixing states in the model. The results demonstrate the importance of representing organic aerosol as a semi-volatile aerosol, and explicitly calculating the partitioning of organic species between the gas and particulate phases.

  8. Measurements of Size Resolved Organic Particulate Mass Using An On-line Aerosol Mass Spectrometer (ams) Laboratory Validation; Analysis Tool Development; and Interpretation of Field Data

    NASA Astrophysics Data System (ADS)

    Alfarra, M. R.; Coe, H.; Allan, J. D.; Bower, K. N.; Garforth, A. A.; Canagaratna, M.; Worsnop, D.

    The aerosol mass spectrometer (AMS) is a quantitative instrument designed to deliver real-time size resolved chemical composition of the volatile and semi volatile aerosol fractions. The AMS response to a wide range of organic compounds has been exper- imentally characterized, and has been shown to compare well with standard libraries of 70 eV electron impact ionization mass spectra. These results will be presented. Due to the scanning nature of the quadrupole mass spectrometer, the AMS provides averaged composition of ensemble of particles rather than single particle composi- tion. However, the mass spectra measured by AMS are reproducible and similar to those of standard libraries so analysis tools can be developed on large mass spectral libraries that can provide chemical composition information about the type of organic compounds in the aerosol. One such tool is presented and compared with laboratory measurements of single species and mixed component organic particles by the AMS. We will then discuss the applicability of these tools to interpreting field AMS data ob- tained in a range of experiments at different sites in the UK and Canada. The data will be combined with other measurements to show the behaviour of the organic aerosol fraction in urban and sub-urban environments.

  9. Fluorescence lifetime imaging of optically levitated aerosol: a technique to quantitatively map the viscosity of suspended aerosol particles.

    PubMed

    Fitzgerald, C; Hosny, N A; Tong, H; Seville, P C; Gallimore, P J; Davidson, N M; Athanasiadis, A; Botchway, S W; Ward, A D; Kalberer, M; Kuimova, M K; Pope, F D

    2016-08-21

    We describe a technique to measure the viscosity of stably levitated single micron-sized aerosol particles. Particle levitation allows the aerosol phase to be probed in the absence of potentially artefact-causing surfaces. To achieve this feat, we combined two laser based techniques: optical trapping for aerosol particle levitation, using a counter-propagating laser beam configuration, and fluorescent lifetime imaging microscopy (FLIM) of molecular rotors for the measurement of viscosity within the particle. Unlike other techniques used to measure aerosol particle viscosity, this allows for the non-destructive probing of viscosity of aerosol particles without interference from surfaces. The well-described viscosity of sucrose aerosol, under a range of relative humidity conditions, is used to validate the technique. Furthermore we investigate a pharmaceutically-relevant mixture of sodium chloride and salbutamol sulphate under humidities representative of in vivo drug inhalation. Finally, we provide a methodology for incorporating molecular rotors into already levitated particles, thereby making the FLIM/optical trapping technique applicable to real world aerosol systems, such as atmospheric aerosols and those generated by pharmaceutical inhalers.

  10. North Atlantic Aerosol Radiative Impacts Based on Satellite Measurements and Aerosol Intensive Properties from TARFOX and ACE-2

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Bergstrom, Robert W.; Schmid, B.; Livingston, J. M.

    2000-01-01

    We estimate the impact of North Atlantic aerosols on the net short-wave flux at the tropopause by combining satellite-derived aerosol optical depth (AOD) maps with model aerosol properties determined via closure analyses in TARFOX and ACE 2. We exclude African dust, primarily by restricting latitudes to 25-60 N. The analyses use in situ aerosol composition measurements and air- and ship-borne sun-photometer measurements of AOD spectra. The aerosol model yields computed flux sensitivities (dFlux/dAOD) that agree with measurements by airborne flux radiometers in TARFOX. Its midvisible single-scattering albedo is 0.9. which is in the range obtained from in situ measurements of scattering and absorption in both TARFOX and ACE 2. Combining satellite-derived AOD maps with the aerosol model yields maps of 24-hour average net radiative flux changes. For simultaneous AVHRR, radiance measurements exceeded the sunphotometer AODs by about 0.04. However. shipboard sunphotometer and AVHRR AODs agreed Within 0.02 for data acquired during satellite overflights on two other days. We discuss attempts to demonstrate column closure within the MBL by comparing shipboard sunphotometer AODs and values calculated from simultaneous shipboard in-situ aerosol size distribution measurements. These comparisons were mostly unsuccessful, but they illustrate the difficulties inherent in this type of closure analysis. Specifically, AODs derived from near-surface in-situ size distribution measurements are extremely sensitive to the assumed hygroscopic growth model that itself requires an assumption of particle composition as a function of height and size, to the radiosonde-measured relative humidity, and to the vertical profile of particle number. We investigate further the effects of hygroscopic particle growth within the MBL by using shipboard lidar aerosol backscatter profiles together with the sunphotometer AOD.

  11. Characterization of marine aerosol for assessment of human exposure to brevetoxins.

    PubMed

    Cheng, Yung Sung; Zhou, Yue; Irvin, Clinton M; Pierce, Richard H; Naar, Jerome; Backer, Lorraine C; Fleming, Lora E; Kirkpatrick, Barbara; Baden, Dan G

    2005-05-01

    Red tides in the Gulf of Mexico are commonly formed by the fish-killing dinoflagellate Karenia brevis, which produces nine potent polyether brevetoxins (PbTxs). Brevetoxins can be transferred from water to air in wind-powered white-capped waves. Inhalation exposure to marine aerosol containing brevetoxins causes respiratory symptoms. We describe detailed characterization of aerosols during an epidemiologic study of occupational exposure to Florida red tide aerosol in terms of its concentration, toxin profile, and particle size distribution. This information is essential in understanding its source, assessing exposure to people, and estimating dose of inhaled aerosols. Environmental sampling confirmed the presence of brevetoxins in water and air during a red tide exposure period (September 2001) and lack of significant toxin levels in the water and air during an unexposed period (May 2002). Water samples collected during a red tide bloom in 2001 showed moderate-to-high concentrations of K. brevis cells and PbTxs. The daily mean PbTx concentration in water samples ranged from 8 to 28 microg/L from 7 to 11 September 2001; the daily mean PbTx concentration in air samples ranged from 1.3 to 27 ng/m(3). The daily aerosol concentration on the beach can be related to PbTx concentration in water, wind speed, and wind direction. Personal samples confirmed human exposure to red tide aerosols. The particle size distribution showed a mean aerodynamic diameter in the size range of 6-12 microm, with deposits mainly in the upper airways. The deposition pattern correlated with the observed increase of upper airway symptoms in healthy lifeguards during the exposure periods.

  12. Aerosol number size distributions in the lower troposphere over a background region and megalopolis (Novosibirsk) on result of airborne sounding in 2011-2013

    NASA Astrophysics Data System (ADS)

    Belan, Boris D.; Kozlov, Artem V.; Simonenkov, Denis V.; Tolmachev, Gennadii N.; Tsaruk, Victoria V.

    2014-11-01

    In this paper we present a comparison of the data on aerosol number size distribution measured with GRIMM 1.109 aerosol spectrometer in the lower troposphere over Novosibirsk and background area 150 km south-west of it during research flights of Optik TU-134 aircraft laboratory carried out along the route Novosibirsk - Ordynskoye - Novosibirsk in 2011-2013. Aerosol number size distributions averaged over 3 years as together so for warm and cold seasons separately are considered here. It is shown that the accumulation of anthropogenic aerosol within the BL over the city is typical for the cold period, which is most likely caused by inversions those are rapidly destroyed by vertical mixing during warm season and anthropogenic aerosols from the city are transported into the free troposphere.

  13. Information Content of Aerosol Retrievals in the Sunglint Region

    NASA Technical Reports Server (NTRS)

    Ottaviani, M.; Knobelspiesse, K.; Cairns, B.; Mishchenko, M.

    2013-01-01

    We exploit quantitative metrics to investigate the information content in retrievals of atmospheric aerosol parameters (with a focus on single-scattering albedo), contained in multi-angle and multi-spectral measurements with sufficient dynamical range in the sunglint region. The simulations are performed for two classes of maritime aerosols with optical and microphysical properties compiled from measurements of the Aerosol Robotic Network. The information content is assessed using the inverse formalism and is compared to that deriving from observations not affected by sunglint. We find that there indeed is additional information in measurements containing sunglint, not just for single-scattering albedo, but also for aerosol optical thickness and the complex refractive index of the fine aerosol size mode, although the amount of additional information varies with aerosol type.

  14. Retrieving the Vertical Structure of the Effective Aerosol Complex Index of Refraction from a Combination of Aerosol in Situ and Remote Sensing Measurements During TARFOX

    NASA Technical Reports Server (NTRS)

    Redemann, J.; Turco, R. P.; Liou, K. N.; Russell, P. B.; Bergstrom, R. W.; Schmid, B.; Livingston, J. M.; Hobbs, P. V.; Hartley, W. S.; Ismail, S.

    2000-01-01

    The largest uncertainty in estimates of the effects of atmospheric aerosols on climate stems from uncertainties in the determination of their microphysical properties, including the aerosol complex index of refraction, which in turn determines their optical properties. A novel technique is used to estimate the aerosol complex index of refraction in distinct vertical layers from a combination of aerosol in situ size distribution and remote sensing measurements during the Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX). In particular, aerosol backscatter measurements using the NASA Langley LASE (Lidar Atmospheric Sensing Experiment) instrument and in situ aerosol size distribution data are utilized to derive vertical profiles of the 'effective' aerosol complex index of refraction at 815 nm (i.e., the refractive index that would provide the same backscatter signal in a forward calculation on the basis of the measured in situ particle size distributions for homogeneous, spherical aerosols). A sensitivity study shows that this method yields small errors in the retrieved aerosol refractive indices, provided the errors in the lidar derived aerosol backscatter are less than 30% and random in nature. Absolute errors in the estimated aerosol refractive indices are generally less than 0.04 for the real part and can be as much as 0.042 for the imaginary part in the case of a 30% error in the lidar-derived aerosol backscatter. The measurements of aerosol optical depth from the NASA Ames Airborne Tracking Sunphotometer (AATS-6) are successfully incorporated into the new technique and help constrain the retrieved aerosol refractive indices. An application of the technique to two TARFOX case studies yields the occurrence of vertical layers of distinct aerosol refractive indices. Values of the estimated complex aerosol refractive index range from 1.33 to 1.45 for the real part and 0.001 to 0.008 for the imaginary part. The methodology devised in this study

  15. Validation of MODIS Aerosol Retrieval Over Ocean

    NASA Technical Reports Server (NTRS)

    Remer, Lorraine A.; Tanre, Didier; Kaufman, Yoram J.; Ichoku, Charles; Mattoo, Shana; Levy, Robert; Chu, D. Allen; Holben, Brent N.; Dubovik, Oleg; Ahmad, Ziauddin; hide

    2001-01-01

    The MODerate resolution Imaging Spectroradiometer (MODIS) algorithm for determining aerosol characteristics over ocean is performing with remarkable accuracy. A two-month data set of MODIS retrievals co-located with observations from the AErosol RObotic NETwork (AERONET) ground-based sunphotometer network provides the necessary validation. Spectral radiation measured by MODIS (in the range 550 - 2100 nm) is used to retrieve the aerosol optical thickness, effective particle radius and ratio between the submicron and micron size particles. MODIS-retrieved aerosol optical thickness at 660 nm and 870 nm fall within the expected uncertainty, with the ensemble average at 660 nm differing by only 2% from the AERONET observations and having virtually no offset. MODIS retrievals of aerosol effective radius agree with AERONET retrievals to within +/- 0.10 micrometers, while MODIS-derived ratios between large and small mode aerosol show definite correlation with ratios derived from AERONET data.

  16. Characterization of aerosols containing Legionella generated upon nebulization

    NASA Astrophysics Data System (ADS)

    Allegra, Séverine; Leclerc, Lara; Massard, Pierre André; Girardot, Françoise; Riffard, Serge; Pourchez, Jérémie

    2016-09-01

    Legionella pneumophila is, by far, the species most frequently associated with Legionnaires’ disease (LD). Human infection occurs almost exclusively by aerosol inhalation which places the bacteria in juxtaposition with alveolar macrophages. LD risk management is based on controlling water quality by applying standardized procedures. However, to gain a better understanding of the real risk of exposure, there is a need (i) to investigate under which conditions Legionella may be aerosolized and (ii) to quantify bacterial deposition into the respiratory tract upon nebulization. In this study, we used an original experimental set-up that enables the generation of aerosol particles containing L. pneumophila under various conditions. Using flow cytometry in combination with qPCR and culture, we determined (i) the size of the aerosols and (ii) the concentration of viable Legionella forms that may reach the thoracic region. We determined that the 0.26-2.5 μm aerosol size range represents 7% of initial bacterial suspension. Among the viable forms, 0.7% of initial viable bacterial suspension may reach the pulmonary alveoli. In conclusion, these deposition profiles can be used to standardize the size of inoculum injected in any type of respiratory tract model to obtain new insights into the dose response for LD.

  17. On-the-Fly Cross Flow Laser Guided Separation of Aerosol Particles Based on Size, Refractive Index and Density-Theoretical Analysis

    DTIC Science & Technology

    2010-12-20

    Optical chromatography Size determination by eluting particles ,” Talanta 48(3), 551–557 (1999). 15. A. Ashkin, and J. M. Dziedzic, “Optical levitation ...the use of optical force in the gas phase, for example, levitation of airborne particles [15,16], and more recent studies on aerosol optical guiding...On-the-fly cross flow laser guided separation of aerosol particles based on size, refractive index and density–theoretical analysis A. A. Lall

  18. Aerosol carbon isotope composition over Baltic Sea

    NASA Astrophysics Data System (ADS)

    Garbaras, Andrius; Pabedinskas, Algirdas; Masalaite, Agne; Petelski, Tomasz; Gorokhova, Elena; Sapolaite, Justina; Ezerinskis, Zilvinas; Remeikis, Vidmantas

    2017-04-01

    Particulate carbonaceous matter is significant contributor to ambient particulate matter originating from intervening sources which contribution is difficult to quantify due to source diversity, chemical complexity and processes during atmospheric transport. Carbon isotope analysis can be extremely useful in source apportionment of organic matter due to the unique isotopic signatures associated with anthropocentric (fossil fuel), continental (terrestrial plants) and marine sources, and is particularly effective when these sources are mixed (Ceburnis et al., 2011;Ceburnis et al., 2016). We will present the isotope ratio measurement results of aerosol collected during the cruise in the Baltic Sea. Sampling campaign of PM10 and size segregated aerosol particles was performed on the R/V "Oceania" in October 2015. Air mass back trajectories were prevailing both from the continental and marine areas during the sampling period. The total carbon concentration varied from 1 µg/m3 to 8 µg/m3. Two end members (δ13C = -25‰ and δ13C = -28 ‰ ) were established from the total stable carbon isotope analysis in PM10 fraction. δ13C analysis in size segregated aerosol particles revealed δ13C values being highest in the 1 - 2.5 µm range (δ13C = -24.9 ‰ ) during continental transport, while lowest TC δ13C values (δ13C ≈ -27 ‰ ) were detected in the size range D50 <1 µm during stormy weather when air mass trajectory prevailed from the western direction. These measurements revealed that simplified isotope mixing model can not be applied for the aerosol source apportionment (Masalaite et al., 2015) in the perturbed marine environment. Additionally, concentration of bacteria and fungi were measured in size segregated and PM10 aerosol fraction. We were able to relate aerosol source δ13C end members with the abundance of bacteria and fungi over Baltic Sea combining air mass trajectories, stable isotope data, fungi and bacteria concentrations. Ceburnis, D., Garbaras, A

  19. Size selective isocyanate aerosols personal air sampling using porous plastic foams

    NASA Astrophysics Data System (ADS)

    Khanh Huynh, Cong; Duc, Trinh Vu

    2009-02-01

    As part of a European project (SMT4-CT96-2137), various European institutions specialized in occupational hygiene (BGIA, HSL, IOM, INRS, IST, Ambiente e Lavoro) have established a program of scientific collaboration to develop one or more prototypes of European personal samplers for the collection of simultaneous three dust fractions: inhalable, thoracic and respirable. These samplers based on existing sampling heads (IOM, GSP and cassettes) use Polyurethane Plastic Foam (PUF) according to their porosity to support sampling and separator size of the particles. In this study, the authors present an original application of size selective personal air sampling using chemical impregnated PUF to perform isocyanate aerosols capturing and derivatizing in industrial spray-painting shops.

  20. Tropospheric Aerosols

    NASA Astrophysics Data System (ADS)

    Buseck, P. R.; Schwartz, S. E.

    2003-12-01

    uncertainties by "the I-beams". Only an uncertainty range rather than a best estimate is presented for direct aerosol forcing by mineral dust and for indirect aerosol forcing. An assessment of the present level of scientific understanding is indicated at the bottom of the figure (reproduced by permission of Intergovernmental Panel on Climate Change). The importance of atmospheric aerosols to issues of societal concern has motivated much research intended to describe their loading, distribution, and properties and to develop understanding of the controlling processes to address such issues as air pollution, acid deposition, and climate influences of aerosols. However, description based wholly on measurements will inevitably be limited in its spatial and temporal coverage and in the limited characterization of aerosol properties. These limitations are even more serious for predictions of future emissions and provide motivation for concurrent theoretical studies and development of model-based description of atmospheric aerosols.An important long-range goal, which has already been partly realized, is to develop quantitative understanding of the processes that control aerosol loading, composition, and microphysical properties as well as the resultant optical and cloud-nucleating properties. An objective is to incorporate these results into chemical transport models that can be used for predictions. Such models are required, for example, to design approaches to achieve air quality standards and to assess and predict aerosol influences on climate change. Much current research is directed toward enhancing this understanding and to evaluating it by comparison of model results and observations. However, compared to gases, models involving particles are far more complex because of the need to specify additional parameters such as particle sizes and size distributions, compositions as a function of size, particle shapes, and temporal and spatial variations, including reactions that occur

  1. In vitro inflammatory and cytotoxic effects of size-segregated particulate samples collected during long-range transport of wildfire smoke to Helsinki.

    PubMed

    Jalava, Pasi I; Salonen, Raimo O; Hälinen, Arja I; Penttinen, Piia; Pennanen, Arto S; Sillanpää, Markus; Sandell, Erik; Hillamo, Risto; Hirvonen, Maija-Riitta

    2006-09-15

    The impact of long-range transport (LRT) episodes of wildfire smoke on the inflammogenic and cytotoxic activity of urban air particles was investigated in the mouse RAW 264.7 macrophages. The particles were sampled in four size ranges using a modified Harvard high-volume cascade impactor, and the samples were chemically characterized for identification of different emission sources. The particulate mass concentration in the accumulation size range (PM(1-0.2)) was highly increased during two LRT episodes, but the contents of total and genotoxic polycyclic aromatic hydrocarbons (PAH) in collected particulate samples were only 10-25% of those in the seasonal average sample. The ability of coarse (PM(10-2.5)), intermodal size range (PM(2.5-1)), PM(1-0.2) and ultrafine (PM(0.2)) particles to cause cytokine production (TNFalpha, IL-6, MIP-2) reduced along with smaller particle size, but the size range had a much smaller impact on induced nitric oxide (NO) production and cytotoxicity or apoptosis. The aerosol particles collected during LRT episodes had a substantially lower activity in cytokine production than the corresponding particles of the seasonal average period, which is suggested to be due to chemical transformation of the organic fraction during aging. However, the episode events were associated with enhanced inflammogenic and cytotoxic activities per inhaled cubic meter of air due to the greatly increased particulate mass concentration in the accumulation size range, which may have public health implications.

  2. Sugars in Antarctic aerosol

    NASA Astrophysics Data System (ADS)

    Barbaro, Elena; Kirchgeorg, Torben; Zangrando, Roberta; Vecchiato, Marco; Piazza, Rossano; Barbante, Carlo; Gambaro, Andrea

    2015-10-01

    The processes and transformations occurring in the Antarctic aerosol during atmospheric transport were described using selected sugars as source tracers. Monosaccharides (arabinose, fructose, galactose, glucose, mannose, ribose, xylose), disaccharides (sucrose, lactose, maltose, lactulose), alcohol-sugars (erythritol, mannitol, ribitol, sorbitol, xylitol, maltitol, galactitol) and anhydrosugars (levoglucosan, mannosan and galactosan) were measured in the Antarctic aerosol collected during four different sampling campaigns. For quantification, a sensitive high-pressure anion exchange chromatography was coupled with a single quadrupole mass spectrometer. The method was validated, showing good accuracy and low method quantification limits. This study describes the first determination of sugars in the Antarctic aerosol. The total mean concentration of sugars in the aerosol collected at the ;Mario Zucchelli; coastal station was 140 pg m-3; as for the aerosol collected over the Antarctic plateau during two consecutive sampling campaigns, the concentration amounted to 440 and 438 pg m-3. The study of particle-size distribution allowed us to identify the natural emission from spores or from sea-spray as the main sources of sugars in the coastal area. The enrichment of sugars in the fine fraction of the aerosol collected on the Antarctic plateau is due to the degradation of particles during long-range atmospheric transport. The composition of sugars in the coarse fraction was also investigated in the aerosol collected during the oceanographic cruise.

  3. Characterization of water-soluble organic aerosol in coastal New England: Implications of variations in size distribution

    NASA Astrophysics Data System (ADS)

    Ziemba, L. D.; Griffin, R. J.; Whitlow, S.; Talbot, R. W.

    2011-12-01

    Size distributions up to 10-micron aerosol diameter ( DP) of organic carbon (OC) and water-soluble organic carbon (WSOC) were measured at two sites in coastal New England, slightly inland at Thompson Farm (TF) and offshore at Isles of Shoals (IOS). Significant OC concentrations were measured across the full size distribution at TF and IOS, respectively. The WSOC fraction (WSOC/OC) was largest in the accumulation mode with values of 0.86 and 0.93 and smallest in the coarse mode with values of 0.61 and 0.79 at TF and IOS, respectively. Dicarboxylic acids containing up to five carbon atoms (C 5) were concentrated in droplet and accumulation mode aerosol with only minor contributions in the coarse mode. C 1-C 3 monocarboxylic acids were generally near or below detection limits. Results from proton nuclear magnetic resonance (H +-NMR) spectroscopy analyses showed that the organic functional group characterized by protons in the alpha position to an unsaturated carbon atoms ([H-C-C dbnd ]) was the dominant WSOC functionality at both TF and IOS, constituting 34 and 43% of carbon-weighted H +-NMR signal, respectively. Size distributions of each H +-NMR-resolved organic functionality are presented. Source apportionment using H +-NMR fingerprints is also presented, and results indicate that nearly all of the WSOC at TF and IOS spectroscopically resembled secondary organic aerosol, regardless of DP.

  4. Assessment of air sampling methods and size distribution of virus-laden aerosols in outbreaks in swine and poultry farms.

    PubMed

    Alonso, Carmen; Raynor, Peter C; Goyal, Sagar; Olson, Bernard A; Alba, Anna; Davies, Peter R; Torremorell, Montserrat

    2017-05-01

    Swine and poultry viruses, such as porcine reproductive and respiratory syndrome virus (PRRSV), porcine epidemic diarrhea virus (PEDV), and highly pathogenic avian influenza virus (HPAIV), are economically important pathogens that can spread via aerosols. The reliability of methods for quantifying particle-associated viruses as well as the size distribution of aerosolized particles bearing these viruses under field conditions are not well documented. We compared the performance of 2 size-differentiating air samplers in disease outbreaks that occurred in swine and poultry facilities. Both air samplers allowed quantification of particles by size, and measured concentrations of PRRSV, PEDV, and HPAIV stratified by particle size both within and outside swine and poultry facilities. All 3 viruses were detectable in association with aerosolized particles. Proportions of positive sampling events were 69% for PEDV, 61% for HPAIV, and 8% for PRRSV. The highest virus concentrations were found with PEDV, followed by HPAIV and PRRSV. Both air collectors performed equally for the detection of total virus concentration. For all 3 viruses, higher numbers of RNA copies were associated with larger particles; however, a bimodal distribution of particles was observed in the case of PEDV and HPAIV.

  5. Synthesis of nanoparticles in a flame aerosol reactor with independent and strict control of their size, crystal phase and morphology

    NASA Astrophysics Data System (ADS)

    Jiang, Jingkun; Chen, Da-Ren; Biswas, Pratim

    2007-07-01

    A flame aerosol reactor (FLAR) was developed to synthesize nanoparticles with desired properties (crystal phase and size) that could be independently controlled. The methodology was demonstrated for TiO2 nanoparticles, and this is the first time that large sets of samples with the same size but different crystal phases (six different ratios of anatase to rutile in this work) were synthesized. The degree of TiO2 nanoparticle agglomeration was determined by comparing the primary particle size distribution measured by scanning electron microscopy (SEM) to the mobility-based particle size distribution measured by online scanning mobility particle spectrometry (SMPS). By controlling the flame aerosol reactor conditions, both spherical unagglomerated particles and highly agglomerated particles were produced. To produce monodisperse nanoparticles, a high throughput multi-stage differential mobility analyser (MDMA) was used in series with the flame aerosol reactor. Nearly monodisperse nanoparticles (geometric standard deviation less than 1.05) could be collected in sufficient mass quantities (of the order of 10 mg) in reasonable time (1 h) that could be used in other studies such as determination of functionality or biological effects as a function of size.

  6. Aerosol Drug Delivery During Noninvasive Positive Pressure Ventilation: Effects of Intersubject Variability and Excipient Enhanced Growth

    PubMed Central

    Walenga, Ross L.; Kaviratna, Anubhav; Hindle, Michael

    2017-01-01

    Abstract Background: Nebulized aerosol drug delivery during the administration of noninvasive positive pressure ventilation (NPPV) is commonly implemented. While studies have shown improved patient outcomes for this therapeutic approach, aerosol delivery efficiency is reported to be low with high variability in lung-deposited dose. Excipient enhanced growth (EEG) aerosol delivery is a newly proposed technique that may improve drug delivery efficiency and reduce intersubject aerosol delivery variability when coupled with NPPV. Materials and Methods: A combined approach using in vitro experiments and computational fluid dynamics (CFD) was used to characterize aerosol delivery efficiency during NPPV in two new nasal cavity models that include face mask interfaces. Mesh nebulizer and in-line dry powder inhaler (DPI) sources of conventional and EEG aerosols were both considered. Results: Based on validated steady-state CFD predictions, EEG aerosol delivery improved lung penetration fraction (PF) values by factors ranging from 1.3 to 6.4 compared with conventional-sized aerosols. Furthermore, intersubject variability in lung PF was very high for conventional aerosol sizes (relative differences between subjects in the range of 54.5%–134.3%) and was reduced by an order of magnitude with the EEG approach (relative differences between subjects in the range of 5.5%–17.4%). Realistic in vitro experiments of cyclic NPPV demonstrated similar trends in lung delivery to those observed with the steady-state simulations, but with lower lung delivery efficiencies. Reaching the lung delivery efficiencies reported with the steady-state simulations of 80%–90% will require synchronization of aerosol administration during inspiration and reducing the size of the EEG aerosol delivery unit. Conclusions: The EEG approach enabled high-efficiency lung delivery of aerosols administered during NPPV and reduced intersubject aerosol delivery variability by an order of magnitude. Use of an in

  7. An effective inversion algorithm for retrieving bimodal aerosol particle size distribution from spectral extinction data

    NASA Astrophysics Data System (ADS)

    He, Zhenzong; Qi, Hong; Yao, Yuchen; Ruan, Liming

    2014-12-01

    The Ant Colony Optimization algorithm based on the probability density function (PDF-ACO) is applied to estimate the bimodal aerosol particle size distribution (PSD). The direct problem is solved by the modified Anomalous Diffraction Approximation (ADA, as an approximation for optically large and soft spheres, i.e., χ⪢1 and |m-1|⪡1) and the Beer-Lambert law. First, a popular bimodal aerosol PSD and three other bimodal PSDs are retrieved in the dependent model by the multi-wavelength extinction technique. All the results reveal that the PDF-ACO algorithm can be used as an effective technique to investigate the bimodal PSD. Then, the Johnson's SB (J-SB) function and the modified beta (M-β) function are employed as the general distribution function to retrieve the bimodal PSDs under the independent model. Finally, the J-SB and M-β functions are applied to recover actual measurement aerosol PSDs over Beijing and Shanghai obtained from the aerosol robotic network (AERONET). The numerical simulation and experimental results demonstrate that these two general functions, especially the J-SB function, can be used as a versatile distribution function to retrieve the bimodal aerosol PSD when no priori information about the PSD is available.

  8. Disentangling the major source areas for an intense aerosol advection in the Central Mediterranean on the basis of Potential Source Contribution Function modeling of chemical and size distribution measurements

    NASA Astrophysics Data System (ADS)

    Petroselli, Chiara; Crocchianti, Stefano; Moroni, Beatrice; Castellini, Silvia; Selvaggi, Roberta; Nava, Silvia; Calzolai, Giulia; Lucarelli, Franco; Cappelletti, David

    2018-05-01

    In this paper, we combined a Potential Source Contribution Function (PSCF) analysis of daily chemical aerosol composition data with hourly aerosol size distributions with the aim to disentangle the major source areas during a complex and fast modulating advection event impacting on Central Italy in 2013. Chemical data include an ample set of metals obtained by Proton Induced X-ray Emission (PIXE), main soluble ions from ionic chromatography and elemental and organic carbon (EC, OC) obtained by thermo-optical measurements. Size distributions have been recorded with an optical particle counter for eight calibrated size classes in the 0.27-10 μm range. We demonstrated the usefulness of the approach by the positive identification of two very different source areas impacting during the transport event. In particular, biomass burning from Eastern Europe and desert dust from Sahara sources have been discriminated based on both chemistry and size distribution time evolution. Hourly BT provided the best results in comparison to 6 h or 24 h based calculations.

  9. The Messy Aerosol Submodel MADE3 (v2.0b): Description and a Box Model Test

    NASA Technical Reports Server (NTRS)

    Kaiser, J. C.; Hendricks, J.; Righi, M.; Riemer, N.; Zaveri, R. A.; Metzger, S.; Aquila, Valentina

    2014-01-01

    We introduce MADE3 (Modal Aerosol Dynamics model for Europe, adapted for global applications, 3rd generation), an aerosol dynamics submodel for application within the MESSy framework (Modular Earth Submodel System). MADE3 builds on the predecessor aerosol submodels MADE and MADE-in. Its main new features are the explicit representation of coarse particle interactions both with other particles and with condensable gases, and the inclusion of hydrochloric acid (HCl)chloride (Cl) partitioning between the gas and condensed phases. The aerosol size distribution is represented in the new submodel as a superposition of nine lognormal modes: one for fully soluble particles, one for insoluble particles, and one for mixed particles in each of three size ranges (Aitken, accumulation, and coarse mode size ranges). In order to assess the performance of MADE3 we compare it to its predecessor MADE and to the much more detailed particle-resolved aerosol model PartMC-MOSAIC in a box model simulation of an idealized marine boundary layer test case. MADE3 and MADE results are very similar, except in the coarse mode, where the aerosol is dominated by sea spray particles. Cl is reduced in MADE3 with respect to MADE due to the HClCl partitioning that leads to Cl removal from the sea spray aerosol in our test case. Additionally, aerosol nitrate concentration is higher in MADE3 due to the condensation of nitric acid on coarse particles. MADE3 and PartMC- MOSAIC show substantial differences in the fine particle size distributions (sizes about 2 micrometers) that could be relevant when simulating climate effects on a global scale. Nevertheless, the agreement between MADE3 and PartMC-MOSAIC is very good when it comes to coarse particle size distribution, and also in terms of aerosol composition. Considering these results and the well-established ability of MADE in reproducing observed aerosol loadings and composition, MADE3 seems suitable for application within a global model.

  10. LASER DESORPTION IONIZATION OF ULTRAFINE AEROSOL PARTICLES. (R823980)

    EPA Science Inventory

    On-line analysis of ultrafine aerosol particle in the 12 to 150 nm size range is performed by
    laser desorption/ionization. Particles are size selected with a differential mobility analyzer and then
    sent into a linear time-of-flight mass spectrometer where they are ablated w...

  11. Evaluation and modelling of the size fractionated aerosol particle number concentration measurements nearby a major road in Helsinki - Part I: Modelling results within the LIPIKA project

    NASA Astrophysics Data System (ADS)

    Pohjola, M. A.; Pirjola, L.; Karppinen, A.; Härkönen, J.; Korhonen, H.; Hussein, T.; Ketzel, M.; Kukkonen, J.

    2007-08-01

    A field measurement campaign was conducted near a major road "Itäväylä" in an urban area in Helsinki in 17-20 February 2003. Aerosol measurements were conducted using a mobile laboratory "Sniffer" at various distances from the road, and at an urban background location. Measurements included particle size distribution in the size range of 7 nm-10 μm (aerodynamic diameter) by the Electrical Low Pressure Impactor (ELPI) and in the size range of 3-50 nm (mobility diameter) by Scanning Mobility Particle Sizer (SMPS), total number concentration of particles larger than 3 nm detected by an ultrafine condensation particle counter (UCPC), temperature, relative humidity, wind speed and direction, driving route of the mobile laboratory, and traffic density on the studied road. In this study, we have compared measured concentration data with the predictions of the road network dispersion model CAR-FMI used in combination with an aerosol process model MONO32. For model comparison purposes, one of the cases was additionally computed using the aerosol process model UHMA, combined with the CAR-FMI model. The vehicular exhaust emissions, and atmospheric dispersion and transformation of fine and ultrafine particles was evaluated within the distance scale of 200 m (corresponding to a time scale of a couple of minutes). We computed the temporal evolution of the number concentrations, size distributions and chemical compositions of various particle size classes. The atmospheric dilution rate of particles is obtained from the roadside dispersion model CAR-FMI. Considering the evolution of total number concentration, dilution was shown to be the most important process. The influence of coagulation and condensation on the number concentrations of particle size modes was found to be negligible on this distance scale. Condensation was found to affect the evolution of particle diameter in the two smallest particle modes. The assumed value of the concentration of condensable organic

  12. Apparatus for sampling and characterizing aerosols

    DOEpatents

    Dunn, Patrick F.; Herceg, Joseph E.; Klocksieben, Robert H.

    1986-01-01

    Apparatus for sampling and characterizing aerosols having a wide particle size range at relatively low velocities may comprise a chamber having an inlet and an outlet, the chamber including: a plurality of vertically stacked, successive particle collection stages; each collection stage includes a separator plate and a channel guide mounted transverse to the separator plate, defining a labyrinthine flow path across the collection stage. An opening in each separator plate provides a path for the aerosols from one collection stage to the next. Mounted within each collection stage are one or more particle collection frames.

  13. Retrieval of the aerosol size distribution in the complex anomalous diffraction approximation

    NASA Astrophysics Data System (ADS)

    Franssens, Ghislain R.

    This contribution reports some recently achieved results in aerosol size distribution retrieval in the complex anomalous diffraction approximation (ADA) to MIE scattering theory. This approximation is valid for spherical particles that are large compared to the wavelength and have a refractive index close to 1. The ADA kernel is compared with the exact MIE kernel. Despite being a simple approximation, the ADA seems to have some practical value for the retrieval of the larger modes of tropospheric and lower stratospheric aerosols. The ADA has the advantage over MIE theory that an analytic inversion of the associated Fredholm integral equation becomes possible. In addition, spectral inversion in the ADA can be formulated as a well-posed problem. In this way, a new inverse formula was obtained, which allows the direct computation of the size distribution as an integral over the spectral extinction function. This formula is valid for particles that both scatter and absorb light and it also takes the spectral dispersion of the refractive index into account. Some details of the numerical implementation of the inverse formula are illustrated using a modified gamma test distribution. Special attention is given to the integration of spectrally truncated discrete extinction data with errors.

  14. Influenza Virus Aerosols in Human Exhaled Breath: Particle Size, Culturability, and Effect of Surgical Masks

    PubMed Central

    Milton, Donald K.; Cowling, Benjamin J.; Grantham, Michael L.

    2013-01-01

    The CDC recommends that healthcare settings provide influenza patients with facemasks as a means of reducing transmission to staff and other patients, and a recent report suggested that surgical masks can capture influenza virus in large droplet spray. However, there is minimal data on influenza virus aerosol shedding, the infectiousness of exhaled aerosols, and none on the impact of facemasks on viral aerosol shedding from patients with seasonal influenza. We collected samples of exhaled particles (one with and one without a facemask) in two size fractions (“coarse”>5 µm, “fine”≤5 µm) from 37 volunteers within 5 days of seasonal influenza onset, measured viral copy number using quantitative RT-PCR, and tested the fine-particle fraction for culturable virus. Fine particles contained 8.8 (95% CI 4.1 to 19) fold more viral copies than did coarse particles. Surgical masks reduced viral copy numbers in the fine fraction by 2.8 fold (95% CI 1.5 to 5.2) and in the coarse fraction by 25 fold (95% CI 3.5 to 180). Overall, masks produced a 3.4 fold (95% CI 1.8 to 6.3) reduction in viral aerosol shedding. Correlations between nasopharyngeal swab and the aerosol fraction copy numbers were weak (r = 0.17, coarse; r = 0.29, fine fraction). Copy numbers in exhaled breath declined rapidly with day after onset of illness. Two subjects with the highest copy numbers gave culture positive fine particle samples. Surgical masks worn by patients reduce aerosols shedding of virus. The abundance of viral copies in fine particle aerosols and evidence for their infectiousness suggests an important role in seasonal influenza transmission. Monitoring exhaled virus aerosols will be important for validation of experimental transmission studies in humans. PMID:23505369

  15. Aerosol Number Size Distribution and Type Classification from 4-Year Polarization Optical Particle Counter (POPC) Measurements at Urban-Mountain Site in Seoul

    NASA Astrophysics Data System (ADS)

    Park, H. J.; Kim, S. W.; Kobayashi, H.; Nishizawa, T.

    2017-12-01

    The Polarization Optical Particle Counter (POPC), unlike general OPCs, has the advantage capable of classifying the aerosol types (e.g., dust, anthropogenic pollution), because it measures particle number, size and depolarization ratio (DPR; the sphericity information of single particle) for 4 size bins with diameter (0.5-1, 1-3, 3-5, 5-10 μm). In this study, we investigate the temporal variations of particle number and volume size distributions with DPR values and classify aerosol types such as dust, anthropogenic pollution, from 4-year (2013-2016) POPC data at Seoul National University campus in Seoul, Korea. Coarse mode particles from 5-10 μm with relatively high DPR values (0.25-0.3) were distinctly appeared in in both spring (March-May) and winter (December-February) due to frequent transport of Asian dust particles. In summer (June -August), however, both aerosol number concentration and DPR value were decreased in all size bins due to the influences of relatively clean maritime airmass and frequent precipitations. In autumn (September - November), the particle number concentration in all size bins was the lowest. To classify the aerosol types, we investigate particle number and volume size distributions and DPR value for clean, dust-dominant and anthropogenic pollution-dominant cases, which were selected by PM10, PM2.5 mass concentrations and its ratio, because those parameters are clearly different among aerosol types (Kobayashi et al., 2014, Pan et al., 2016). Non-spherical coarse mode particles (Dp > 2.5 μm, 0.1 < DPR < 0.6) were dominantly observed during the dust-dominant period, while both spherical fine mode and coarse mode particles (Dp < 1 μm and Dp = 2-4 μm, DPR < 0.1) were dominantly appeared during the pollution event. The aerosol type classifications with these criteria values were successfully applied to the extreme Asian dust event from February 22 to 24, 2015. The results showed that pollution-dominant airmass preceded by the appearance

  16. Time Resolved Measurements of Primary Biogenic Aerosol Particles in Amazonia

    NASA Astrophysics Data System (ADS)

    Wollny, A. G.; Garland, R.; Pöschl, U.

    2009-04-01

    Biogenic aerosols are ubiquitous in the Earth's atmosphere and they influence atmospheric chemistry and physics, the biosphere, climate, and public health. They play an important role in the spread of biological organisms and reproductive materials, and they can cause or enhance human, animal, and plant diseases. Moreover, they influence the Earth's energy budget by scattering and absorbing radiation, and they can initiate the formation of clouds and precipitation as cloud condensation and ice nuclei. The composition, abundance, and origin of biogenic aerosol particles and components are, however, still not well understood and poorly quantified. Prominent examples of primary biogenic aerosol particles, which are directly emitted from the biosphere to the atmosphere, are pollen, bacteria, fungal spores, viruses, and fragments of animals and plants. During the Amazonian Aerosol Characterization Experiment (AMAZE-08) a large number of aerosol and gas-phase measurements were taken on a remote site close to Manaus, Brazil, during a period of five weeks in February and March 2008. This presented study is focused on data from an ultraviolet aerodynamic particle sizer (UVAPS, TSI inc.) that has been deployed for the first time in Amazonia. In this instrument, particle counting and aerodynamic sizing over the range of 0.5-20 µm are complemented by the measurement of UV fluorescence at 355 nm (excitation) and 420-575 nm (emission), respectively. Fluorescence at these wavelengths is characteristic for reduced pyridine nucleotides (e.g., NAD(P)H) and for riboflavin, which are specific for living cells. Thus particles exhibiting fluorescence signals can be regarded as "viable aerosols" or "fluorescent bioparticles" (FBAP), and their concentration can be considered as lower limit for the actual abundance of primary biogenic aerosol particles. Data from the UVAPS were averaged over 5 minute time intervals. The presence of bioparticles in the observed size range has been

  17. Aerosol mixingstate, hygroscopic growth and cloud activation efficiency during MIRAGE 2006

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lance, Sara; Raatikainen, T.; Onasch, Timothy B.

    2013-05-15

    by the AMS. Measured k* typically ranges from 0.2 to 0.35, and organics typically make up 60-85% of the aerosol mass in the size range studied. Despite some disagreement between kAMS and kCCNc, we show that kAMS is able to describe CCN concentrations reasonably well, especially at the highest CCN concentrations. This is consistent with other CCN studies carried out in urban environments, and is partly due to the fact that the highest CCN concentrations occur during the daytime when the aerosol is internally-mixed and the organic fraction is relatively low. During the early morning rush hour, however, failing to account for the aerosol mixing state results in systematic overestimation of CCN concentrations by 50-100%.« less

  18. Aerosol size distribution characteristics of organosulfates in the Pearl River Delta region, China

    NASA Astrophysics Data System (ADS)

    Kuang, Bin Yu; Lin, Peng; Hu, Min; Yu, Jian Zhen

    2016-04-01

    Organosulfates (OSs) have been detected in various atmospheric environments, but their particle size distribution characteristics are unknown. In this work, we examined their size distributions in ambient aerosols to gain insights into the formation processes. Size-segregated aerosol samples in the range of 0.056-18 μm were collected using a ten-stage impactor at a receptor site in Hong Kong in both summer and winter and in Nansha in the Pearl River Delta in winter. The humic-like substances fraction in the size-segregated samples was isolated and analyzed using electrospray ionization coupled with an Orbitrap Ultra High Resolution Mass Spectrometer. Through accurate mass measurements, ∼190 CHOS and ∼90 CHONS formulas were tentatively identified to be OS compounds. Among them, OS compounds derived from isoprene, α-/β-pinene, and limonene and alkyl OSs having low double bond equivalents (DBE = 0,1) and 0-2 extra O beyond those in -OSO3 were found with high intensity. The biogenic volatile organic compounds-derived OS formulas share a common characteristic with sulfate in that the droplet mode dominated, peaking in either 0.56-1.0 or 1.0-1.8 μm size bin, reflecting sulfate as their common precursor. Most of these OSs have a minor coarse mode, accounting for 0-45%. The presence of OSs on the coarse particles is hypothesized to be a result of OSs on small particle (<0.32 μm) coagulating with coarse particles, as the abundance ratios of OS to non-sea-salt sulfate present on the coarse particles were similar to those on particles <0.32 μm. Among a few pairs of CHONS and CHOS that could be linked up through hydrolysis of a nitrooxy group in the CHONS form (e.g., m/z 294: C10H16O7NS- vs. m/z 249 C10H17O5S- from α/β-pinene, differing by (+H2O-HNO3)), the CHONS compounds had an enhanced coarse mode presence. This could be interpreted as a result of slower hydrolysis of the CHONS compounds on the alkali coarse particles. The low DBE alkyl OS compounds have a

  19. Coagulation effect on the activity size distributions of long lived radon progeny aerosols and its application to atmospheric residence time estimation techniques.

    PubMed

    Anand, S; Mayya, Y S

    2015-03-01

    The long lived naturally occurring radon progeny species in the atmosphere, namely (210)Pb, (210)Bi and (210)Po, have been used as important tracers for understanding the atmospheric mixing processes and estimating aerosol residence times. Several observations in the past have shown that the activity size distribution of these species peaks at larger particle sizes as compared to the short lived radon progeny species - an effect that has been attributed to the process of coagulation of the background aerosols to which they are attached. To address this issue, a mathematical equation is derived for the activity-size distribution of tracer species by formulating a generalized distribution function for the number of tracer atoms present in coagulating background particles in the presence of radioactive decay and removal. A set of these equations is numerically solved for the progeny chain using Fuchs coagulation kernel combined with a realistic steady-state aerosol size spectrum that includes nucleation, accumulation and coarse mode components. The important findings are: (i) larger shifts in the modal sizes of (210)Pb and (210)Po at higher aerosol concentrations such as that found in certain Asian urban regions (ii) enrichment of tracer specific activity on particles as compared to that predicted by pure attachment laws (iii) sharp decline of daughter-to-parent activity ratios for decreasing particle sizes. The implication of the results to size-fractionated residence time estimation techniques is highlighted. A coagulation corrected graphical approach is presented for estimating the residence times from the size-segregated activity ratios of (210)Bi and (210)Po with respect to (210)Pb. The discrepancy between the residence times predicted by conventional formula and the coagulation corrected approach for specified activity ratios increases at higher atmospheric aerosol number concentrations (>10(10) #/m(3)) for smaller sizes (<1 μm). The results are further

  20. Aeronet-based Microphysical and Optical Properties of Smoke-dominated Aerosol near Source Regions and Transported over Oceans, and Implications for Satellite Retrievals of Aerosol Optical Depth

    NASA Technical Reports Server (NTRS)

    Sayer, A. M.; Hsu, N. C.; Eck, T. F.; Smirnov, A.; Holben, B. N.

    2013-01-01

    Smoke aerosols from biomass burning are an important component of the global aerosol cycle. Analysis of Aerosol Robotic Network (AERONET) retrievals of size distribution and refractive index reveals variety between biomass burning aerosols in different global source regions, in terms of aerosol particle size and single scatter albedo (SSA). Case studies of smoke transported to coastal/island AERONET sites also mostly lie within the range of variability at near-source sites. Two broad families of aerosol properties are found, corresponding to sites dominated by boreal forest burning (larger, broader fine mode, with midvisible SSA 0.95), and those influenced by grass, shrub, or crop burning with additional forest contributions (smaller, narrower particles with SSA 0.88-0.9 in the midvisible). The strongest absorption is seen in southern African savanna at Mongu (Zambia), with average SSA 0.85 in the midvisible. These can serve as candidate sets of aerosol microphysicaloptical properties for use in satellite aerosol optical depth (AOD) retrieval algorithms. The models presently adopted by these algorithms over ocean are often insufficiently absorbing to represent these biomass burning aerosols. A corollary of this is an underestimate of AOD in smoke outflow regions, which has important consequences for applications of these satellite datasets.

  1. A thermal desorption mass spectrometer for freshly nucleated secondary aerosol particles

    NASA Astrophysics Data System (ADS)

    Held, A.; Gonser, S. G.

    2012-04-01

    Secondary aerosol formation in the atmosphere is observed in a large variety of locations worldwide, introducing new particles to the atmosphere which can grow to sizes relevant for health and climate effects of aerosols. The chemical reactions leading to atmospheric secondary aerosol formation are not yet fully understood. At the same time, analyzing the chemical composition of freshly nucleated particles is still a challenging task. We are currently finishing the development of a field portable aerosol mass spectrometer for nucleation particles with diameters smaller than 30 nm. This instrument consists of a custom-built aerosol sizing and collection unit coupled to a time-of-flight mass spectrometer (TOF-MS). The aerosol sizing and collection unit is composed of three major parts: (1) a unipolar corona aerosol charger, (2) a radial differential mobility analyzer (rDMA) for aerosol size separation, and (3) an electrostatic precipitator for aerosol collection. After collection, the aerosol sample is thermally desorbed, and the resulting gas sample is transferred to the TOF-MS for chemical analysis. The unipolar charger is based on corona discharge from carbon fibres (e.g. Han et al., 2008). This design allows efficient charging at voltages below 2 kV, thus eliminating the potential for ozone production which would interfere with the collected aerosol. With the current configuration the extrinsic charging efficiency for 20 nm particles is 32 %. The compact radial DMA similar to the design of Zhang et al. (1995) is optimized for a diameter range from 1 nm to 100 nm. Preliminary tests show that monodisperse aerosol samples (geometric standard deviation of 1.09) at 10 nm, 20 nm, and 30 nm can easily be separated from the ambient polydisperse aerosol population. Finally, the size-segregated aerosol sample is collected on a high-voltage biased metal filament. The collected sample is protected from contamination using a He sheath counterflow. Resistive heating of the

  2. On-line analysis of ambient air aerosols using laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Carranza, J. E.; Fisher, B. T.; Yoder, G. D.; Hahn, D. W.

    2001-06-01

    Laser-induced breakdown spectroscopy is developed for the detection of aerosols in ambient air, including quantitative mass concentration measurements and size/composition measurements of individual aerosol particles. Data are reported for ambient air aerosols containing aluminum, calcium, magnesium and sodium for a 6-week sampling period spanning the Fourth of July holiday period. Measured mass concentrations for these four elements ranged from 1.7 parts per trillion (by mass) to 1.7 parts per billion. Ambient air concentrations of magnesium and aluminum revealed significant increases during the holiday period, which are concluded to arise from the discharge of fireworks in the lower atmosphere. Real-time conditional data analysis yielded increases in analyte spectral intensity approaching 3 orders of magnitude. Analysis of single particles yielded composition-based aerosol size distributions, with measured aerosol diameters ranging from 100 nm to 2 μm. The absolute mass detection limits for single particle analysis exceeded sub-femtogram values for calcium-containing particles, and was on the order of 2-3 femtograms for magnesium and sodium-based particles. Overall, LIBS-based analysis of ambient air aerosols is a promising technique for the challenging issues associated with the real-time collection and analysis of ambient air particulate matter data.

  3. Colorado air quality impacted by long-range-transported aerosol: a set of case studies during the 2015 Pacific Northwest fires

    NASA Astrophysics Data System (ADS)

    Creamean, Jessie M.; Neiman, Paul J.; Coleman, Timothy; Senff, Christoph J.; Kirgis, Guillaume; Alvarez, Raul J.; Yamamoto, Atsushi

    2016-09-01

    Biomass burning plumes containing aerosols from forest fires can be transported long distances, which can ultimately impact climate and air quality in regions far from the source. Interestingly, these fires can inject aerosols other than smoke into the atmosphere, which very few studies have evidenced. Here, we demonstrate a set of case studies of long-range transport of mineral dust aerosols in addition to smoke from numerous fires (including predominantly forest fires and a few grass/shrub fires) in the Pacific Northwest to Colorado, US. These aerosols were detected in Boulder, Colorado, along the Front Range using beta-ray attenuation and energy-dispersive X-ray fluorescence spectroscopy, and corroborated with satellite-borne lidar observations of smoke and dust. Further, we examined the transport pathways of these aerosols using air mass trajectory analysis and regional- and synoptic-scale meteorological dynamics. Three separate events with poor air quality and increased mass concentrations of metals from biomass burning (S and K) and minerals (Al, Si, Ca, Fe, and Ti) occurred due to the introduction of smoke and dust from regional- and synoptic-scale winds. Cleaner time periods with good air quality and lesser concentrations of biomass burning and mineral metals between the haze events were due to the advection of smoke and dust away from the region. Dust and smoke present in biomass burning haze can have diverse impacts on visibility, health, cloud formation, and surface radiation. Thus, it is important to understand how aerosol populations can be influenced by long-range-transported aerosols, particularly those emitted from large source contributors such as wildfires.

  4. Spectral- and size-resolved mass absorption efficiency of mineral dust aerosols in the shortwave spectrum: a simulation chamber study

    NASA Astrophysics Data System (ADS)

    Caponi, Lorenzo; Formenti, Paola; Massabó, Dario; Di Biagio, Claudia; Cazaunau, Mathieu; Pangui, Edouard; Chevaillier, Servanne; Landrot, Gautier; Andreae, Meinrat O.; Kandler, Konrad; Piketh, Stuart; Saeed, Thuraya; Seibert, Dave; Williams, Earle; Balkanski, Yves; Prati, Paolo; Doussin, Jean-François

    2017-06-01

    This paper presents new laboratory measurements of the mass absorption efficiency (MAE) between 375 and 850 nm for 12 individual samples of mineral dust from different source areas worldwide and in two size classes: PM10. 6 (mass fraction of particles of aerodynamic diameter lower than 10.6 µm) and PM2. 5 (mass fraction of particles of aerodynamic diameter lower than 2.5 µm). The experiments were performed in the CESAM simulation chamber using mineral dust generated from natural parent soils and included optical and gravimetric analyses. The results show that the MAE values are lower for the PM10. 6 mass fraction (range 37-135 × 10-3 m2 g-1 at 375 nm) than for the PM2. 5 (range 95-711 × 10-3 m2 g-1 at 375 nm) and decrease with increasing wavelength as λ-AAE, where the Ångström absorption exponent (AAE) averages between 3.3 and 3.5, regardless of size. The size independence of AAE suggests that, for a given size distribution, the dust composition did not vary with size for this set of samples. Because of its high atmospheric concentration, light absorption by mineral dust can be competitive with black and brown carbon even during atmospheric transport over heavy polluted regions, when dust concentrations are significantly lower than at emission. The AAE values of mineral dust are higher than for black carbon (˜ 1) but in the same range as light-absorbing organic (brown) carbon. As a result, depending on the environment, there can be some ambiguity in apportioning the aerosol absorption optical depth (AAOD) based on spectral dependence, which is relevant to the development of remote sensing of light-absorbing aerosols and their assimilation in climate models. We suggest that the sample-to-sample variability in our dataset of MAE values is related to regional differences in the mineralogical composition of the parent soils. Particularly in the PM2. 5 fraction, we found a strong linear correlation between the dust light-absorption properties and

  5. Steps Toward an EOS-Era Aerosol Type Climatology

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph A.

    2012-01-01

    We still have a way to go to develop a global climatology of aerosol type from the EOS-era satellite data record that currently spans more than 12 years of observations. We have demonstrated the ability to retrieve aerosol type regionally, providing a classification based on the combined constraints on particle size, shape, and single-scattering albedo (SSA) from the MISR instrument. Under good but not necessarily ideal conditions, the MISR data can distinguish three-to-five size bins, two-to-four bins in SSA, and spherical vs. non-spherical particles. However, retrieval sensitivity varies enormously with scene conditions. So, for example, there is less information about aerosol type when the mid-visible aerosol optical depth (AOD) is less that about 0.15 or 0.2, or when the range of scattering angles observed is reduced by solar geometry, even though the quality of the AOD retrieval itself is much less sensitive to these factors. This presentation will review a series of studies aimed at assessing the capabilities, as well as the limitations, of MISR aerosol type retrievals involving wildfire smoke, desert dust, volcanic ash, and urban pollution, in specific cases where suborbital validation data are available. A synthesis of results, planned upgrades to the MISR Standard aerosol algorithm to improve aerosol type retrievals, and steps toward the development of an aerosol type quality flag for the Standard product, will also be covered.

  6. Results of a comprehensive atmospheric aerosol-radiation experiment in the southwestern United States. I - Size distribution, extinction optical depth and vertical profiles of aerosols suspended in the atmosphere. II - Radiation flux measurements and

    NASA Technical Reports Server (NTRS)

    Deluisi, J. J.; Furukawa, F. M.; Gillette, D. A.; Schuster, B. G.; Charlson, R. J.; Porch, W. M.; Fegley, R. W.; Herman, B. M.; Rabinoff, R. A.; Twitty, J. T.

    1976-01-01

    Results are reported for a field test that was aimed at acquiring a sufficient set of measurements of aerosol properties required as input for radiative-transfer calculations relevant to the earth's radiation balance. These measurements include aerosol extinction and size distributions, vertical profiles of aerosols, and radiation fluxes. Physically consistent, vertically inhomogeneous models of the aerosol characteristics of a turbid atmosphere over a desert and an agricultural region are constructed by using direct and indirect sampling techniques. These results are applied for a theoretical interpretation of airborne radiation-flux measurements. The absorption term of the complex refractive index of aerosols is estimated, a regional variation in the refractive index is noted, and the magnitude of solar-radiation absorption by aerosols and atmospheric molecules is determined.

  7. Overview of the aerosol measurements in the UTLS during the POSIDON campaign

    NASA Astrophysics Data System (ADS)

    Gao, R. S.; Liu, S.; Thornberry, T. D.; Rollins, A. W.; Yu, P.; Woods, S.; Bui, T. V.

    2017-12-01

    The tropical tropopause layer (TTL) is the main gateway for transport of aerosols from the troposphere to the stratosphere. Studies of aerosol properties in the TTL, however, are very limited. During the NASA Pacific Oxidants, Sulfur, Ice, Dehydration, and cONvection (POSIDON) Experiment in Guam in October 2016, we measured aerosol size distributions onboard the NASA WB-57F high altitude research aircraft up to 19 km. Multiple aerosol vertical profiles showed a robust enhancement of aerosols as a function of altitude between 15 and 19 km, with the aerosol number and mass concentrations of 10 cm-3 and 0.1 µg m-3, respectively, for particles in the size range of 140-3000 nm at 17 km altitude. Simulation using a global sectional aerosol model coupled with the Community Earth System Model generally agreed with aerosol observations, suggesting that the aerosol enhancement was likely due to in-situ particle formation and growth. Concurrent SO2 measurement showed that conversion of SO2 to sulfuric acid alone cannot explain the enhanced aerosol layer at TTL, indicating that other precursors or formation pathways exist for efficient aerosol formation. Using the measured mass concentration and an average vertical air velocity, the aerosol mass flux at the tropopause has been estimated. In addition, we investigated the potential aerosol removal processes and found no evidence for aerosol scavenging by ice.

  8. Biogenic influence on the composition and growth of summertime Arctic aerosol

    NASA Astrophysics Data System (ADS)

    Willis, M. D.; Burkart, J.; Thomas, J. L.; Koellner, F.; Schneider, J.; Bozem, H.; Hoor, P. M.; Aliabadi, A. A.; Schulz, H.; Herber, A. B.; Leaitch, R.; Abbatt, J.

    2016-12-01

    The summertime Arctic lower troposphere is a relatively pristine background aerosol environment dominated by nucleation and Aitken mode particles. Understanding the mechanisms that control the formation and growth of aerosol is crucial for our ability to predict cloud properties and therefore radiative balance and climate. We present aircraft-based observations of submicron aerosol composition from an aerosol mass spectrometer made during the NETCARE 2014 summertime arctic campaign, based in the Canadian High Arctic, at Resolute Bay, NU (74°N). Under stable and regionally influenced atmospheric conditions with low carbon monoxide and black carbon concentrations (< 100 ppbv and < 50 ng/m3, respectively), we observed organic aerosol (OA)-to-sulfate ratios ranging from 0.5 to > 6 with evidence for enhancement within the lower boundary layer. Methanesulfonic acid (MSA), a marker for the contribution of ocean-derived biogenic sulphur, was also observed in submicron aerosol. MSA-to-sulfate ratios ranged from near zero to 0.3 and tended to increase within the lower boundary layer, suggesting a contribution to aerosol loading from the ocean. In one notable case while flying in the lower boundary layer above open water in Lancaster Sound, we observed growth of small particles, <20 nm in diameter, into sizes above 50 nm. Aerosol growth was correlated with the presence of organic species, trimethylamine, and MSA in particles 80 nm and larger, where the organics were similar to those previously observed in marine settings. The organic-rich aerosol contributed significantly to particles active as cloud condensation nuclei (CCN, supersaturation = 0.6%). Our results highlight the potential importance of secondary organic aerosol formation and its role in growing nucleation mode aerosol into CCN-active sizes in this remote marine environment.

  9. Comparison of MADE3-simulated and observed aerosol distributions with a focus on aerosol vertical profiles

    NASA Astrophysics Data System (ADS)

    Kaiser, Christopher; Hendricks, Johannes; Righi, Mattia; Jöckel, Patrick

    2016-04-01

    The reliability of aerosol radiative forcing estimates from climate models depends on the accuracy of simulated global aerosol distribution and composition, as well as on the models' representation of the aerosol-cloud and aerosol-radiation interactions. To help improve on previous modeling studies, we recently developed the new aerosol microphysics submodel MADE3 that explicitly tracks particle mixing state in the Aitken, accumulation, and coarse mode size ranges. We implemented MADE3 into the global atmospheric chemistry general circulation model EMAC and evaluated it by comparison of simulated aerosol properties to observations. Compared properties include continental near-surface aerosol component concentrations and size distributions, continental and marine aerosol vertical profiles, and nearly global aerosol optical depth. Recent studies have shown the specific importance of aerosol vertical profiles for determination of the aerosol radiative forcing. Therefore, our focus here is on the evaluation of simulated vertical profiles. The observational data is taken from campaigns between 1990 and 2011 over the Pacific Ocean, over North and South America, and over Europe. The datasets include black carbon and total aerosol mass mixing ratios, as well as aerosol particle number concentrations. Compared to other models, EMAC with MADE3 yields good agreement with the observations - despite a general high bias of the simulated mass mixing ratio profiles. However, BC concentrations are generally overestimated by many models in the upper troposphere. With MADE3 in EMAC, we find better agreement of the simulated BC profiles with HIPPO data than the multi-model average of the models that took part in the AeroCom project. There is an interesting difference between the profiles from individual campaigns and more "climatological" datasets. For instance, compared to spatially and temporally localized campaigns, the model simulates a more continuous decline in both total

  10. Airship measurements of aerosol size distributions, cloud droplet spectra, and trace gas concentrations in the marine boundary layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frick, G.M.; Hoppel, W.A.

    1993-11-01

    The use of an airship as a platform to conduct atmospheric chemistry, aerosol, and cloud microphysical research is described, and results from demonstration flights made off the Oregon coast are presented. The slow speed of the airship makes it an ideal platform to do high-spatial resolution profiling both vertically and horizontally, and to measure large aerosol and cloud droplet distributions without the difficulties caused by high-speed aircraft sampling. A unique set of data obtained during the demonstration flights show the effect that processing marine boundary layer aerosol through stratus clouds has on the aerosol size distribution. Evidence of new particlemore » formation (nucleation of particles) was also observed on about half the days on which flights were made. 11 refs., 9 figs., 1 tab.« less

  11. Size distributions of low molecular weight dicarboxylic acids, ketocarboxylic acids, glyoxal and methylglyoxal in the marine aerosols from Okinawa Island, Japan

    NASA Astrophysics Data System (ADS)

    Kawamura, K.; Lazaar, M.

    2008-12-01

    Size-segregated marine aerosol samples (5 sets) were collected in 2008 spring at Cape Hedo Station of National Institute of Environmental Studies, Okinawa (128.25° E, 26.87° N), an outflow region of Chinese aerosols and their precursors, using an Andersen middle volume impactor at a flow rate of 100 lpm and pre-combusted quartz fiber filters. The samples were analyzed for low molecular weight diacids and related compounds, using a capillary gas chromatography and GC/MS after BF3/n-butanol derivatization. Particle size cuts (8 stages + BUF) are 0.43, 0.65, 1.1, 2.1, 3.3, 4.7, 7 and 11.3 µm in diameter. Homologous series of aliphatic (C2-C12) and aromatic (phthalic, iso- and tere-phthalic) diacids were detected as well as w-oxoacids (C2-C9), glyoxal and methylglyoxal. Oxalic acid (C2) was found as the dominant diacid in all the size ranges, followed by malonic (C3) and succinic (C4) acids. Glyoxylic (wC2) acid was the most abundant ketoacid followed by wC4 acid. Most of the organic species maximized in fine mode of 0.65-1.1 or 1.1-2.1µm. Oxalic acid (C2, 4.4-70.6 ngm-3, av. 23.9 ngm-3) comprised 54-80% (av. 67%) of total diacid concentrations. The small diacids showed concentration peaks on fine mode, suggesting that they are produced by photochemical oxidation of volatile organic precursors during long-range atmospheric transport from Asian Continent. They may also be produced by heterogeneous reactions in the atmospheric particles (dusts and cloud droplets).

  12. In vitro inflammatory and cytotoxic effects of size-segregated particulate samples collected during long-range transport of wildfire smoke to Helsinki

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jalava, Pasi I.; Salonen, Raimo O.; Haelinen, Arja I.

    2006-09-15

    The impact of long-range transport (LRT) episodes of wildfire smoke on the inflammogenic and cytotoxic activity of urban air particles was investigated in the mouse RAW 264.7 macrophages. The particles were sampled in four size ranges using a modified Harvard high-volume cascade impactor, and the samples were chemically characterized for identification of different emission sources. The particulate mass concentration in the accumulation size range (PM{sub 1-0.2}) was highly increased during two LRT episodes, but the contents of total and genotoxic polycyclic aromatic hydrocarbons (PAH) in collected particulate samples were only 10-25% of those in the seasonal average sample. The abilitymore » of coarse (PM{sub 10-2.5}), intermodal size range (PM{sub 2.5-1}), PM{sub 1-0.2} and ultrafine (PM{sub 0.2}) particles to cause cytokine production (TNF{alpha}, IL-6, MIP-2) reduced along with smaller particle size, but the size range had a much smaller impact on induced nitric oxide (NO) production and cytotoxicity or apoptosis. The aerosol particles collected during LRT episodes had a substantially lower activity in cytokine production than the corresponding particles of the seasonal average period, which is suggested to be due to chemical transformation of the organic fraction during aging. However, the episode events were associated with enhanced inflammogenic and cytotoxic activities per inhaled cubic meter of air due to the greatly increased particulate mass concentration in the accumulation size range, which may have public health implications.« less

  13. Cough aerosol in healthy participants: fundamental knowledge to optimize droplet-spread infectious respiratory disease management

    PubMed Central

    2012-01-01

    Background The Influenza A H1N1 virus can be transmitted via direct, indirect, and airborne route to non-infected subjects when an infected patient coughs, which expels a number of different sized droplets to the surrounding environment as an aerosol. The objective of the current study was to characterize the human cough aerosol pattern with the aim of developing a standard human cough bioaerosol model for Influenza Pandemic control. Method 45 healthy non-smokers participated in the open bench study by giving their best effort cough. A laser diffraction system was used to obtain accurate, time-dependent, quantitative measurements of the size and number of droplets expelled by the cough aerosol. Results Voluntary coughs generated droplets ranging from 0.1 - 900 microns in size. Droplets of less than one-micron size represent 97% of the total number of measured droplets contained in the cough aerosol. Age, sex, weight, height and corporal mass have no statistically significant effect on the aerosol composition in terms of size and number of droplets. Conclusions We have developed a standard human cough aerosol model. We have quantitatively characterized the pattern, size, and number of droplets present in the most important mode of person-to-person transmission of IRD: the cough bioaerosol. Small size droplets (< 1 μm) predominated the total number of droplets expelled when coughing. The cough aerosol is the single source of direct, indirect and/or airborne transmission of respiratory infections like the Influenza A H1N1 virus. Study design Open bench, Observational, Cough, Aerosol study PMID:22436202

  14. Cough aerosol in healthy participants: fundamental knowledge to optimize droplet-spread infectious respiratory disease management.

    PubMed

    Zayas, Gustavo; Chiang, Ming C; Wong, Eric; MacDonald, Fred; Lange, Carlos F; Senthilselvan, Ambikaipakan; King, Malcolm

    2012-03-21

    The Influenza A H1N1 virus can be transmitted via direct, indirect, and airborne route to non-infected subjects when an infected patient coughs, which expels a number of different sized droplets to the surrounding environment as an aerosol. The objective of the current study was to characterize the human cough aerosol pattern with the aim of developing a standard human cough bioaerosol model for Influenza Pandemic control. 45 healthy non-smokers participated in the open bench study by giving their best effort cough. A laser diffraction system was used to obtain accurate, time-dependent, quantitative measurements of the size and number of droplets expelled by the cough aerosol. Voluntary coughs generated droplets ranging from 0.1 - 900 microns in size. Droplets of less than one-micron size represent 97% of the total number of measured droplets contained in the cough aerosol. Age, sex, weight, height and corporal mass have no statistically significant effect on the aerosol composition in terms of size and number of droplets. We have developed a standard human cough aerosol model. We have quantitatively characterized the pattern, size, and number of droplets present in the most important mode of person-to-person transmission of IRD: the cough bioaerosol. Small size droplets (< 1 μm) predominated the total number of droplets expelled when coughing. The cough aerosol is the single source of direct, indirect and/or airborne transmission of respiratory infections like the Influenza A H1N1 virus. Open bench, Observational, Cough, Aerosol study. © 2012 Zayas et al; licensee BioMed Central Ltd.

  15. In situ acidity and pH of size-fractionated aerosols during a recent smoke-haze episode in Southeast Asia.

    PubMed

    Behera, Sailesh N; Cheng, Jinping; Balasubramanian, Rajasekhar

    2015-10-01

    The characterization of aerosol acidity has received increased attention in recent years due to its influence on atmospheric visibility, climate change and human health. Distribution of water soluble inorganic (WSI) ions in 12 different size fractions of aerosols was investigated under two different atmospheric conditions (smoke-haze and non-haze periods) in 2012 using the Micro-Orifice Uniform Deposit Impactor (MOUDI) and nano-MOUDI for the first time in Singapore. To estimate the in situ acidity ([H(+)]Ins) and in situ aerosol pH (pHIS), the Aerosol Inorganic Model version-IV under deliquescent mode of airborne particles was used at prevailing ambient temperature and relative humidity. The study revealed an increase in the levels of airborne particulate matter (PM) mass and concentrations of WSI ions for all size fractions during the smoke-haze period, which was caused by the trans-boundary transport of biomass burning-impacted air masses from Indonesia. A bimodal distribution was observed for concentrations of SO4(2-), NO3(-), Cl(-), K(+) and Na(+), whereas concentrations of NH4(+), Ca(2+) and Mg(2+) showed a single mode distribution. The concentration of WSI ions in PM1.8 during the smoke-haze period increased by 3.8 (for SO4(2-)) to 10.5 (for K(+)) times more than those observed during the non-haze period. The pHIS were observed to be lower during the smoke-haze period than that during the non-haze period for all size fractions of PM, indicating that atmospheric aerosols were more acidic due to the influence of biomass burning emissions. The particles in the accumulation mode were more acidic than those in the coarse mode.

  16. Ambient measurement of fluorescent aerosol particles with a WIBS in the Yangtze River Delta of China: potential impacts of combustion-related aerosol particles

    NASA Astrophysics Data System (ADS)

    Yu, Xiawei; Wang, Zhibin; Zhang, Minghui; Kuhn, Uwe; Xie, Zhouqing; Cheng, Yafang; Pöschl, Ulrich; Su, Hang

    2016-09-01

    Fluorescence characteristics of aerosol particles in a polluted atmosphere were studied using a wideband integrated bioaerosol spectrometer (WIBS-4A) in Nanjing, Yangtze River Delta area of China. We observed strong diurnal and day-to-day variations of fluorescent aerosol particles (FAPs). The average number concentrations of FAPs (1-15 µm) detected in the three WIBS measurement channels (FL1: 0.6 cm-3, FL2: 3.4 cm-3, FL3: 2.1 cm-3) were much higher than those observed in forests and rural areas, suggesting that FAPs other than bioaerosols were detected. We found that the number fractions of FAPs were positively correlated with the black carbon mass fraction, especially for the FL1 channel, indicating a large contribution of combustion-related aerosols. To distinguish bioaerosols from combustion-related FAPs, we investigated two classification schemes for use with WIBS data. Our analysis suggests a strong size dependence for the fractional contributions of different types of FAPs. In the FL3 channel, combustion-related particles seem to dominate the 1-2 µm size range while bioaerosols dominate the 2-5 µm range. The number fractions of combustion-related particles and non-combustion-related particles to total aerosol particles were ˜ 11 and ˜ 5 %, respectively.

  17. Specific Features in Measuring Particle Size Distributions in Highly Disperse Aerosol Systems

    NASA Astrophysics Data System (ADS)

    Zagaynov, V. A.; Vasyanovich, M. E.; Maksimenko, V. V.; Lushnikov, A. A.; Biryukov, Yu. G.; Agranovskii, I. E.

    2018-06-01

    The distribution of highly dispersed aerosols is studied. Particular attention is given to the diffusion dynamic approach, as it is the best way to determine particle size distribution. It shown that the problem can be divided into two steps: directly measuring particle penetration through diffusion batteries and solving the inverse problem (obtaining a size distribution from the measured penetrations). No reliable way of solving the so-called inverse problem is found, but it can be done by introducing a parametrized size distribution (i.e., a gamma distribution). The integral equation is therefore reduced to a system of nonlinear equations that can be solved by elementary mathematical means. Further development of the method requires an increase in sensitivity (i.e., measuring the dimensions of molecular clusters with radioactive sources, along with the activity of diffusion battery screens).

  18. Increased absorption by coarse aerosol particles over the Gangetic–Himalayan region

    DOE PAGES

    Manoharan, Vani Starry; Kotamarthi, R.; Feng, Yan; ...

    2014-02-03

    Each atmospheric aerosol type has distinctive light-absorption characteristics related to its physical/chemical properties. Climate models treat black carbon as the main light-absorbing component of carbonaceous atmospheric aerosols, while absorption by some organic aerosols is also considered, particularly at ultraviolet wavelengths. Most absorbing aerosols are assumed to be < 1 μm in diameter (sub-micron). Here we present results from a recent field study in India, primarily during the post-monsoon season (October–November), suggesting the presence of absorbing aerosols sized 1–10 μm. Absorption due to super-micron-sized particles was nearly 30% greater than that due to smaller particles. Periods of increased absorption by largermore » particles ranged from a week to a month. Radiative forcing calculations under clear-sky conditions show that super-micron particles account for nearly 44% of the total aerosol forcing. The origin of the large aerosols is unknown, but meteorological conditions indicate that they are of local origin. Such economic and habitation conditions exist throughout much of the developing world. Furthermore, large absorbing particles could be an important component of the regional-scale atmospheric energy balance.« less

  19. Time Dependence of Aerosol Light Scattering Downwind of Forest Fires

    NASA Astrophysics Data System (ADS)

    Kleinman, L. I.; Sedlacek, A. J., III; Wang, J.; Lewis, E. R.; Springston, S. R.; Chand, D.; Shilling, J.; Arnott, W. P.; Freedman, A.; Onasch, T. B.; Fortner, E.; Zhang, Q.; Yokelson, R. J.; Adachi, K.; Buseck, P. R.

    2017-12-01

    In the first phase of BBOP (Biomass Burn Observation Project), a Department of Energy (DOE) sponsored study, wildland fires in the Pacific Northwest were sampled from the G-1 aircraft via sequences of transects that encountered emission whose age (time since emission) ranged from approximately 15 minutes to four hours. Comparisons between transects allowed us to determine the near-field time evolution of trace gases, aerosol particles, and optical properties. The fractional increase in aerosol concentration with plume age was typically less than a third of the fractional increase in light scattering. In some fires the increase in light scattering exceeded a factor of two. Two possible causes for the discrepancy between scattering and aerosol mass are i) the downwind formation of refractory tar balls that are not detected by the AMS and therefore contribute to scattering but not to aerosol mass and ii) changes to the aerosol size distribution. Both possibilities are considered. Our information on tar balls comes from an analysis of TEM grids. A direct determination of size changes is complicated by extremely high aerosol number concentrations that caused coincidence problems for the PCASP and UHSAS probes. We instead construct a set of plausible log normal size distributions and for each member of the set do Mie calculations to determine mass scattering efficiency (MSE), angstrom exponents, and backscatter ratios. Best fit size distributions are selected by comparison with observed data derived from multi-wavelength scattering measurements, an extrapolated FIMS size distribution, and mass measurements from an SP-AMS. MSE at 550 nm varies from a typical near source value of 2-3 to about 4 in aged air.

  20. A simplified guide for charged aerosol detection of non-chromophoric compounds-Analytical method development and validation for the HPLC assay of aerosol particle size distribution for amikacin.

    PubMed

    Soliven, Arianne; Haidar Ahmad, Imad A; Tam, James; Kadrichu, Nani; Challoner, Pete; Markovich, Robert; Blasko, Andrei

    2017-09-05

    Amikacin, an aminoglycoside antibiotic lacking a UV chromophore, was developed into a drug product for delivery by inhalation. A robust method for amikacin assay analysis and aerosol particle size distribution (aPSD) determination, with comparable performance to the conventional UV detector was developed using a charged aerosol detector (CAD). The CAD approach involved more parameters for optimization than UV detection due to its sensitivity to trace impurities, non-linear response and narrow dynamic range of signal versus concentration. Through careful selection of the power transformation function value and evaporation temperature, a wider linear dynamic range, improved signal-to-noise ratio and high repeatability were obtained. The influences of mobile phase grade and glassware binding of amikacin during sample preparation were addressed. A weighed (1/X 2 ) least square regression was used for the calibration curve. The limit of quantitation (LOQ) and limit of detection (LOD) for this method were determined to be 5μg/mL and 2μg/mL, respectively. The method was validated over a concentration range of 0.05-2mg/mL. The correlation coefficient for the peak area versus concentration was 1.00 and the y-intercept was 0.2%. The recovery accuracies of triplicate preparations at 0.05, 1.0, and 2.0mg/mL were in the range of 100-101%. The relative standard deviation (S rel ) of six replicates at 1.0mg/mL was 1%, and S rel of five injections at the limit of quantitation was 4%. A robust HPLC-CAD method was developed and validated for the determination of the aPSD for amikacin. The CAD method development produced a simplified procedure with minimal variability in results during: routine operation, transfer from one instrument to another, and between different analysts. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Long- and/or short-range transportation of local Asian aerosols in DRAGON-Osaka Experiment

    NASA Astrophysics Data System (ADS)

    Nakata, M.; Sano, I.; Mukai, S.; Holben, B. N.

    2013-12-01

    This work intends to demonstrate the spatial and temporal variation of atmospheric particles in East Asia, especially around AERONET (Aerosol Robotics Network) -Osaka site during Dragon Asia period in the spring of 2012, named Dragon-Osaka. It is known that the air pollution in East Asia becomes to be severe due to both the increasing emissions of the anthropogenic aerosols associated with economic growth and the complicated behavior of natural aerosols. Thus the precise observations of atmospheric particles in East Asia are desired. Osaka is the second big city in Japan and a typical Asian urban area. The population of the region is around 20 millions including neighbor prefectures. Therefore, air quality in the region is slightly bad compared to remote area due to industries and auto mobiles. In recent years, Asian dusts and anthropogenic small particles transported from China and cover those cities throughout year. AERONET Osaka site was established in 2002 on the campus of Kinki University. Nowadays, LIDAR (Light Detection and Ranging), an SPM sampler (SPM-613D, Kimoto Electric, Japan) and others are available on the roof of a building. The site data are useful for algorithm development of aerosol retrieval over busy city. On the other hand, human activities in this region also emit the huge amount of pollutions, thus it is needed to investigate the local distribution of aerosols in this region. In order to investigate change of aerosol properties, PM-individual analysis is made with scanning electron microscope (SEM) coupled with energy dispersive X-ray analyzer (EDX). SEM/EDX is an effective instrument to observe the surface microstructure and analyze the chemical composition of such materials as metals, powders, biological specimens, etc. We used sampling data from the SPM sampler at AERONET Osaka site. During a period of DRAGON-Asia, high concentrations of air pollutant were observed on the morning of March 11 in Fukue Island in the East China Sea. On the

  2. Cloud Condensation Nuclei Prediction Error from Application of Kohler Theory: Importance for the Aerosol Indirect Effect

    NASA Technical Reports Server (NTRS)

    Sotiropoulou, Rafaella-Eleni P.; Nenes, Athanasios; Adams, Peter J.; Seinfeld, John H.

    2007-01-01

    In situ observations of aerosol and cloud condensation nuclei (CCN) and the GISS GCM Model II' with an online aerosol simulation and explicit aerosol-cloud interactions are used to quantify the uncertainty in radiative forcing and autoconversion rate from application of Kohler theory. Simulations suggest that application of Koehler theory introduces a 10-20% uncertainty in global average indirect forcing and 2-11% uncertainty in autoconversion. Regionally, the uncertainty in indirect forcing ranges between 10-20%, and 5-50% for autoconversion. These results are insensitive to the range of updraft velocity and water vapor uptake coefficient considered. This study suggests that Koehler theory (as implemented in climate models) is not a significant source of uncertainty for aerosol indirect forcing but can be substantial for assessments of aerosol effects on the hydrological cycle in climatically sensitive regions of the globe. This implies that improvements in the representation of GCM subgrid processes and aerosol size distribution will mostly benefit indirect forcing assessments. Predictions of autoconversion, by nature, will be subject to considerable uncertainty; its reduction may require explicit representation of size-resolved aerosol composition and mixing state.

  3. Fossil Fuel Combustion-Related Emissions Dominate Atmospheric Ammonia Sources during Severe Haze Episodes: Evidence from (15)N-Stable Isotope in Size-Resolved Aerosol Ammonium.

    PubMed

    Pan, Yuepeng; Tian, Shili; Liu, Dongwei; Fang, Yunting; Zhu, Xiaying; Zhang, Qiang; Zheng, Bo; Michalski, Greg; Wang, Yuesi

    2016-08-02

    The reduction of ammonia (NH3) emissions is urgently needed due to its role in aerosol nucleation and growth causing haze formation during its conversion into ammonium (NH4(+)). However, the relative contributions of individual NH3 sources are unclear, and debate remains over whether agricultural emissions dominate atmospheric NH3 in urban areas. Based on the chemical and isotopic measurements of size-resolved aerosols in urban Beijing, China, we find that the natural abundance of (15)N (expressed using δ(15)N values) of NH4(+) in fine particles varies with the development of haze episodes, ranging from -37.1‰ to -21.7‰ during clean/dusty days (relative humidity: ∼ 40%), to -13.1‰ to +5.8‰ during hazy days (relative humidity: 70-90%). After accounting for the isotope exchange between NH3 gas and aerosol NH4(+), the δ(15)N value of the initial NH3 during hazy days is found to be -14.5‰ to -1.6‰, which indicates fossil fuel-based emissions. These emissions contribute 90% of the total NH3 during hazy days in urban Beijing. This work demonstrates the analysis of δ(15)N values of aerosol NH4(+) to be a promising new tool for partitioning atmospheric NH3 sources, providing policy makers with insights into NH3 emissions and secondary aerosols for regulation in urban environments.

  4. An Investigation of Aerosol Measurements from the Halogen Occultation Experiment: Validation, Size Distributions, Composition, and Relation to Other Chemical Species

    NASA Technical Reports Server (NTRS)

    Deshler, Terry; Hervig, Mark E.

    1998-01-01

    The efforts envisioned within the original proposal (accepted February 1994) and the extension of this proposal (accepted February 1997) included measurement validations, the retrieval of aerosol size distributions and distribution moments, aerosol correction studies, and investigations of polar stratospheric clouds. A majority of the results from this grant have been published. The principal results from this grant are discussed.

  5. Sensitivity of nephelometric method for the investigation of condensation processes in submicron aerosol

    NASA Astrophysics Data System (ADS)

    Panchenko, Mikhail V.; Sviridenkov, Mikhail A.; Terpugova, Svetlana A.

    2004-02-01

    The possiblities to study the aerosol transformation with the artificial change fo the relative humidity, using the data of polarization and nephelometer measurements are discussed. It is shown that the set of parameters, measured by FAN nephelometer enable to retrieve the aerosol size distribution at different stages of humidification in the size range from 0.07 to 0.6-0.8 μm. The uncertainty in the estimation of the refractive index is within 0.02.

  6. Nitrogen, Aerosol Composition, and Halogens on a Tall Tower (NACHTT): Overview of a wintertime air chemistry field study in the front range urban corridor of Colorado

    NASA Astrophysics Data System (ADS)

    Brown, Steven S.; Thornton, Joel A.; Keene, William C.; Pszenny, Alexander A. P.; Sive, Barkley C.; Dubé, William P.; Wagner, Nicholas L.; Young, Cora J.; Riedel, Theran P.; Roberts, James M.; VandenBoer, Trevor C.; Bahreini, Roya; Öztürk, Fatma; Middlebrook, Ann M.; Kim, Saewung; Hübler, Gerhard; Wolfe, Daniel E.

    2013-07-01

    The Nitrogen, Aerosol Composition, and Halogens on a Tall Tower (NACHTT) field experiment took place during late winter, 2011, at a site 33 km north of Denver, Colorado. The study included fixed-height measurements of aerosols, soluble trace gases, and volatile organic compounds near surface level, as well as vertically resolved measurements of nitrogen oxides, aerosol composition, soluble gas-phase acids, and halogen species from 3 to 270 m above ground level. There were 1928 individual profiles during the three-week campaign to characterize trace gas and aerosol distributions in the lower levels of the boundary layer. Nitrate and ammonium dominated the ionic composition of aerosols and originated primarily from local or regional sources. Sulfate and organic matter were also significant and were associated primarily with longer-range transport to the region. Aerosol chloride was associated primarily with supermicron size fractions and was always present in excess of gas-phase chlorine compounds. The nighttime radical reservoirs, nitryl chloride, ClNO2, and nitrous acid, HONO, were both consistently present in nighttime urban air. Nitryl chloride was especially pronounced in plumes from large point sources sampled aloft at night. Nitrous acid was typically most concentrated near the ground surface and was the dominant contributor (80%) to diurnally averaged primary OH radical production in near-surface air. Large observed mixing ratios of light alkanes, both in near-surface air and aloft, were attributable to local emissions from oil and gas activities.

  7. Relationship Between Aerosol Number Size Distribution and Atmospheric Electric Potential Gradient in an Urban Area

    NASA Astrophysics Data System (ADS)

    Wright, Matthew; Matthews, James; Bacak, Asan; Silva, Hugo; Priestley, Michael; Percival, Carl; Shallcross, Dudley

    2016-04-01

    Small ions are created in the atmosphere by ground based radioactive decay and solar and cosmic radiation ionising the air. The ionosphere is maintained at a high potential relative to the Earth due to global thunderstorm activity, a current from the ionosphere transfers charge back to the ground through the weakly ionised atmosphere. A potential gradient (PG) exists between the ionosphere and the ground that can be measured in fair weather using devices such as an electric field mill. PG is inversely-proportional to the conductivity of the air and therefore to the number of ions of a given electrical mobility; a reduction of air ions will cause an increase of PG. Aerosols in the atmosphere act as a sink of air ions with an attachment rate dependent on aerosol size distribution and ion mobility. These relationships have been used to infer high particulate, and hence pollution, levels in historic datasets of atmospheric PG. A measurement campaign was undertaken in Manchester, UK for three weeks in July and August where atmospheric PG was measured with an electric field mill (JCI131, JCI Chilworth) on a second floor balcony, aerosol size distribution measured with a scanning mobility particle sizer (SMPS, TSI3936), aerosol concentration measured with a condensation particle counter (CPC, Grimm 5.403) and local meteorological measurements taken on a rooftop measurement site ~200 m away. Field mill and CPC data were taken at 1 s intervals and SMPS data in 2.5 minute cycles. Data were excluded for one hour either side of rainfall as rainclouds and droplets can carry significant charge which would affect PG. A quantity relating to the attachment of ions to aerosol (Ion Sink) was derived from the effective attachment coefficient of the aerosols. Further measurements with the field mill and CPC were taken at the same location in November 2015 when bonfire events would be expected to increase aerosol concentrations. During the summer measurements, particle number count (PNC

  8. Water-soluble organic compounds in PM2.5 and size-segregated aerosols over Mount Tai in North China Plain

    NASA Astrophysics Data System (ADS)

    Wang, Gehui; Kawamura, Kimitaka; Umemoto, Nobuhiko; Xie, Mingjie; Hu, Shuyuan; Wang, Zifa

    2009-10-01

    Daytime and nighttime PM2.5 samples were collected at the summit of Mount Tai (1534 m) located in North China Plain during a week in 2006 summer. Size-segregated aerosol particles were also collected using an eight-stage impactor during the same period. Samples were analyzed for various water-soluble organic compounds using GC/FID and GC/MS techniques. Among the species identified in PM2.5 samples, dicarboxylic acids (C2-C11) were found as the most abundant compound class, followed by ketocarboxylic acids, saccharides, polyols and polyacids, and dicarbonyls. Daytime concentrations of most compounds were found to be 2-3 times higher than in nighttime. Such a diurnal variation was first interpreted by the depressed transport of pollutants in nighttime from the lowlands to the mountaintop owing to the decreased heights of planetary boundary layer, and second by the photochemical production in daytime. The diurnal variation trends of secondary organic aerosols (SOA) such as diacids at the mountain site are the same as those on lowlands, but the diurnal patterns of primary organic aerosols (POA) on the mountaintop are in contrast to those on lowlands, where POA such as saccharides and polyols are usually higher in nighttime owing to the accumulation within inversion layer developed. The eight-stage impactor samples showed bimodal distributions of diacids and related compounds peaking at size ranges of 0.70-1.1 μm and 5.8-9.0 μm. In the present study, water-soluble organics in the fine mode are largely originated from biomass burning and/or photooxidation of gaseous precursors and the subsequent adsorption on the preexisting particles, whereas those in the coarse mode are mainly derived from suspended soil particles and pollens and in part via the hygroscopic growth of fine particles and formation of cloud/fog droplets.

  9. Solid aerosol generator

    DOEpatents

    Prescott, Donald S.; Schober, Robert K.; Beller, John

    1992-01-01

    An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates.

  10. Rapid Analysis of the Size Distribution of Metal-Containing Aerosol

    PubMed Central

    Park, Jae Hong; Mudunkotuwa, Imali A.; Crawford, Kathryn J.; Anthony, T. Renée; Grassian, Vicki H.; Peters, Thomas M.

    2017-01-01

    Conventional methods to measure the metallic content of particles by size are time consuming and expensive, requiring collection of particles with a cascade impactor and subsequent metals analysis by inductively coupled plasma mass spectrometry (ICP-MS). In this work, we describe a rapid way to measure the size distribution of metal-containing particles from 10 nm to 20 μm, using a nano micro-orifice uniform-deposit impactor (nano-MOUDI) to size-selective and collect particles that are then analyzed with a field portable X-ray fluorescence (FP-XRF) to determine metal composition and concentration. The nano-MOUDI was used to sample a stainless-steel aerosol produced by a spark discharge system. The particle-laden substrates were then analyzed directly with FP-XRF and then with ICP-MS. Results from FP-XRF were linearly correlated with results from ICP-MS (R2 = 0.91 for Fe and R2 = 0.84 for Cr). Although the FP-XRF was unable to detect Fe particles at mass per substrate loadings less than 2.5 μg effectively, it produced results similar to those using the ICP-MS at a mass per substrate loading greater than 2.5 μg. PMID:28871214

  11. Functional characterization of the water-soluble organic carbon of size fractionated aerosol in the Southern Mississippi Valley

    NASA Astrophysics Data System (ADS)

    Chalbot, M.-C. G.; Brown, J.; Chitranshi, P.; Gamboa da Costa, G.; Pollock, E. D.; Kavouras, I. G.

    2014-02-01

    The chemical content of the water soluble organic carbon (WSOC) as a function of particle size was characterized in Little Rock, Arkansas in winter and spring 2013. The objectives of this study were to: (i) compare the functional characteristics of coarse, fine and ultrafine WSOC and (ii) reconcile the sources of WSOC for the period when carbonaceous aerosol was the most abundant particulate component. The WSOC accounted for 5% of particle mass for particles with dp > 0.96 μm and 10% of particle mass for particles with dp < 0.96 μm. Non-exchangeable aliphatic (H-C), unsaturated aliphatic (H-C-C=), oxygenated saturated aliphatic (H-C-O), acetalic (O-CH-O) and aromatic (Ar-H) protons were determined by proton nuclear magnetic resonance. The total non-exchangeable organic hydrogen concentrations varied from 4.1 ± 0.1 nmol m-3 for particles with 0.96 < dp < 1.5 μm to 73.9 ± 12.3 nmol m-3 for particles with dp < 0.49 μm, resulting in molar H / C ratios of 0.48 ± 0.05 to 0.92 ± 0.09 observed in combustion-related organic aerosol. The R-H was the most abundant group representing about 45% of measured total non-exchangeable organic hydrogen concentration followed by H-C-O (27%) and H-C-C= (26%). Levoglucosan, amines, ammonium and methanosulfonate were tentatively identified in NMR fingerprints of fine particles. Sucrose, fructose, glucose, formate and acetate were associated with coarse particles. These qualitative differences of 1H-NMR profiles for different particle sizes indicated the possible contribution of biological aerosol and a mixture of aliphatic and oxygenated compounds from biomass burning and traffic exhausts. The concurrent presence of ammonium and amines also suggested the presence of ammonium/aminium nitrate and sulfate secondary aerosol. The size-dependent origin of WSOC was further corroborated by the increasing δ13C abundance from -26.81 ± 0.18‰ for the smallest particles to -25.93 ± 0.31‰ for the largest particles and the relative

  12. Functional characterization of the water-soluble organic carbon of size-fractionated aerosol in the southern Mississippi Valley

    NASA Astrophysics Data System (ADS)

    Chalbot, M.-C. G.; Brown, J.; Chitranshi, P.; Gamboa da Costa, G.; Pollock, E. D.; Kavouras, I. G.

    2014-06-01

    The chemical content of water-soluble organic carbon (WSOC) as a function of particle size was characterized in Little Rock, Arkansas in winter and spring 2013. The objectives of this study were to (i) compare the functional characteristics of coarse, fine and ultrafine WSOC and (ii) reconcile the sources of WSOC for periods when carbonaceous aerosol was the most abundant particulate component. The WSOC accounted for 5% of particle mass for particles with dp > 0.96 μm and 10% of particle mass for particles with dp < 0.96 μm. Non-exchangeable aliphatic (H-C), unsaturated aliphatic (H-C-C=), oxygenated saturated aliphatic (H-C-O), acetalic (O-CH-O) and aromatic (Ar-H) protons were determined by proton nuclear magnetic resonance (1H-NMR). The total non-exchangeable organic hydrogen concentrations varied from 4.1 ± 0.1 nmol m-3 for particles with 1.5 < dp < 3.0 μm to 73.9 ± 12.3 nmol m-3 for particles with dp < 0.49 μm. The molar H / C ratios varied from 0.48 ± 0.05 to 0.92 ± 0.09, which were comparable to those observed for combustion-related organic aerosol. The R-H was the most abundant group, representing about 45% of measured total non-exchangeable organic hydrogen concentrations, followed by H-C-O (27%) and H-C-C= (26%). Levoglucosan, amines, ammonium and methanesulfonate were identified in NMR fingerprints of fine particles. Sucrose, fructose, glucose, formate and acetate were associated with coarse particles. These qualitative differences of 1H-NMR profiles for different particle sizes indicated the possible contribution of biological aerosols and a mixture of aliphatic and oxygenated compounds from biomass burning and traffic exhausts. The concurrent presence of ammonium and amines also suggested the presence of ammonium/aminium nitrate and sulfate secondary aerosol. The size-dependent origin of WSOC was further corroborated by the increasing δ13C abundance from -26.81 ± 0.18‰ for the smallest particles to -25.93 ± 0.31‰ for the largest

  13. Determination of permeability of ultra-fine cupric oxide aerosol through military filters and protective filters

    NASA Astrophysics Data System (ADS)

    Kellnerová, E.; Večeřa, Z.; Kellner, J.; Zeman, T.; Navrátil, J.

    2018-03-01

    The paper evaluates the filtration and sorption efficiency of selected types of military combined filters and protective filters. The testing was carried out with the use of ultra-fine aerosol containing cupric oxide nanoparticles ranging in size from 7.6 nm to 299.6 nm. The measurements of nanoparticles were carried out using a scanning mobility particle sizer before and after the passage through the filter and a developed sampling device at the level of particle number concentration approximately 750000 particles·cm-3. The basic parameters of permeability of ultra-fine aerosol passing through the tested material were evaluated, in particular particle size, efficiency of nanoparticle capture by filter, permeability coefficient and overall filtration efficiency. Results indicate that the military filter and particle filters exhibited the highest aerosol permeability especially in the nanoparticle size range between 100–200 nm, while the MOF filters had the highest permeability in the range of 200 to 300 nm. The Filter Nuclear and the Health and Safety filter had 100% nanoparticle capture efficiency and were therefore the most effective. The obtained measurement results have shown that the filtration efficiency over the entire measured range of nanoparticles was sufficient; however, it was different for particular particle sizes.

  14. Wintertime aerosol characteristics over the Indo-Gangetic Plain (IGP): Impacts of local boundary layer processes and long-range transport

    NASA Astrophysics Data System (ADS)

    Nair, Vijayakumar S.; Moorthy, K. Krishna; Alappattu, Denny P.; Kunhikrishnan, P. K.; George, Susan; Nair, Prabha R.; Babu, S. Suresh; Abish, B.; Satheesh, S. K.; Tripathi, Sachchida Nand; Niranjan, K.; Madhavan, B. L.; Srikant, V.; Dutt, C. B. S.; Badarinath, K. V. S.; Reddy, R. Ramakrishna

    2007-07-01

    The Indo-Gangetic Plain (IGP) encompasses a vast area, (accounting for ˜21% of the land area of India), which is densely populated (accommodating ˜40% of the Indian population). Highly growing economy and population over this region results in a wide range of anthropogenic activities. A large number of thermal power plants (most of them coal fed) are clustered along this region. Despite its importance, detailed investigation of aerosols over this region is sparse. During an intense field campaign of winter 2004, extensive aerosol and atmospheric boundary layer measurements were made from three locations: Kharagpur (KGP), Allahabad (ALB), and Kanpur (KNP), within the IGP. These data are used (1) to understand the regional features of aerosols and BC over the IGP and their interdependencies, (2) to compare it with features at locations lying at far away from the IGP where the conditions are totally different, (3) to delineate the effects of mesoscale processes associated with changes in the local atmospheric boundary layer (ABL), (4) to investigate the effects of long-range transport or moving weather phenomena in modulating the aerosol properties as well as the ABL characteristics, and (5) to examine the changes as the season changes over to spring and summer. Our investigations have revealed very high concentrations of aerosols along the IGP, the average mass concentrations (MT) of total aerosols being in the range 260 to 300 μg m-3 and BC mass concentrations (MB) in the range 20 to 30 μg m-3 (both ˜5 to 8 times higher than the values observed at off-IGP stations) during December 2004. Despite, BC constituted about 10% to the total aerosol mass concentration, a value quite comparable to those observed elsewhere over India for this season. The dynamics of the local atmospheric boundary layer (ABL) as well as changes in local emissions strongly influence the diurnal variations of MT and MB, both being inversely correlated with the mixed layer height (Zi) and the

  15. Aerosol analysis and forecast in the European Centre for Medium-Range Weather Forecasts Integrated Forecast System: 2. Data assimilation

    NASA Astrophysics Data System (ADS)

    Benedetti, A.; Morcrette, J.-J.; Boucher, O.; Dethof, A.; Engelen, R. J.; Fisher, M.; Flentje, H.; Huneeus, N.; Jones, L.; Kaiser, J. W.; Kinne, S.; Mangold, A.; Razinger, M.; Simmons, A. J.; Suttie, M.

    2009-07-01

    This study presents the new aerosol assimilation system, developed at the European Centre for Medium-Range Weather Forecasts, for the Global and regional Earth-system Monitoring using Satellite and in-situ data (GEMS) project. The aerosol modeling and analysis system is fully integrated in the operational four-dimensional assimilation apparatus. Its purpose is to produce aerosol forecasts and reanalyses of aerosol fields using optical depth data from satellite sensors. This paper is the second of a series which describes the GEMS aerosol effort. It focuses on the theoretical architecture and practical implementation of the aerosol assimilation system. It also provides a discussion of the background errors and observations errors for the aerosol fields, and presents a subset of results from the 2-year reanalysis which has been run for 2003 and 2004 using data from the Moderate Resolution Imaging Spectroradiometer on the Aqua and Terra satellites. Independent data sets are used to show that despite some compromises that have been made for feasibility reasons in regards to the choice of control variable and error characteristics, the analysis is very skillful in drawing to the observations and in improving the forecasts of aerosol optical depth.

  16. Chemical characterization of long-range transport biomass burning emissions to the Himalayas: insights from high-resolution aerosol mass spectrometry

    NASA Astrophysics Data System (ADS)

    Zhang, Xinghua; Xu, Jianzhong; Kang, Shichang; Liu, Yanmei; Zhang, Qi

    2018-04-01

    An intensive field measurement was conducted at a remote, background, high-altitude site (Qomolangma Station, QOMS, 4276 m a.s.l.) in the northern Himalayas, using an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) along with other collocated instruments. The field measurement was performed from 12 April to 12 May 2016 to chemically characterize the high time-resolved submicron particulate matter (PM1) and obtain the dynamic processes (emissions, transport, and chemical evolution) of biomass burning (BB), frequently transported from South Asia to the Himalayas during pre-monsoon season. Overall, the average (±1σ) PM1 mass concentration was 4.44 (±4.54) µg m-3 for the entire study, which is comparable with those observed at other remote sites worldwide. Organic aerosol (OA) was the dominant PM1 species (accounting for 54.3 % of total PM1 on average) followed by black carbon (BC) (25.0 %), sulfate (9.3 %), ammonium (5.8 %), nitrate (5.1 %), and chloride (0.4 %). The average size distributions of PM1 species all peaked at an overlapping accumulation mode (˜ 500 nm), suggesting that aerosol particles were internally well-mixed and aged during long-range transport. Positive matrix factorization (PMF) analysis on the high-resolution organic mass spectra identified three distinct OA factors, including a BB-related OA (BBOA, 43.7 %), a nitrogen-containing OA (NOA, 13.9 %) and a more-oxidized oxygenated OA (MO-OOA, 42.4 %). Two polluted episodes with enhanced PM1 mass loadings and elevated BBOA contributions from the west and southwest of QOMS during the study were observed. A typical BB plume was investigated in detail to illustrate the chemical evolution of aerosol characteristics under distinct air mass origins, meteorological conditions, and atmospheric oxidation processes.

  17. Climate and topography explain range sizes of terrestrial vertebrates

    NASA Astrophysics Data System (ADS)

    Li, Yiming; Li, Xianping; Sandel, Brody; Blank, David; Liu, Zetian; Liu, Xuan; Yan, Shaofei

    2016-05-01

    Identifying the factors that influence range sizes of species provides important insight into the distribution of biodiversity, and is crucial for predicting shifts in species ranges in response to climate change. Current climate (for example, climate variability and climate extremes), long-term climate change, evolutionary age, topographic heterogeneity, land area and species traits such as physiological thermal limits, dispersal ability, annual fecundity and body size have been shown to influence range size. Yet, few studies have examined the generality of each of these factors among different taxa, or have simultaneously evaluated the strength of relationships between range size and these factors at a global scale. We quantify contributions of these factors to range sizes of terrestrial vertebrates (mammals, birds and reptiles) at a global scale. We found that large-ranged species experience greater monthly extremes of maximum or minimum temperature within their ranges, or occur in areas with higher long-term climate velocity and lower topographic heterogeneity or lower precipitation seasonality. Flight ability, body mass and continent width are important only for particular taxa. Our results highlight the importance of climate and topographic context in driving range size variation. The results suggest that small-range species may be vulnerable to climate change and should be the focus of conservation efforts.

  18. The effects of deep convection on the concentration and size distribution of aerosol particles within the upper troposphere: A case study

    NASA Astrophysics Data System (ADS)

    Yin, Yan; Chen, Qian; Jin, Lianji; Chen, Baojun; Zhu, Shichao; Zhang, Xiaopei

    2012-11-01

    A cloud resolving model coupled with a spectral bin microphysical scheme was used to investigate the effects of deep convection on the concentration and size distribution of aerosol particles within the upper troposphere. A deep convective storm that occurred on 1 December, 2005 in Darwin, Australia was simulated, and was compared with available radar observations. The results showed that the radar echo of the storm in the developing stage was well reproduced by the model. Sensitivity tests for aerosol layers at different altitudes were conducted in order to understand how the concentration and size distribution of aerosol particles within the upper troposphere can be influenced by the vertical transport of aerosols as a result of deep convection. The results indicated that aerosols originating from the boundary layer can be more efficiently transported upward, as compared to those from the mid-troposphere, due to significantly increased vertical velocity through the reinforced homogeneous freezing of droplets. Precipitation increased when aerosol layers were lofted at different altitudes, except for the case where an aerosol layer appeared at 5.4-8.0 km, in which relatively more efficient heterogeneous ice nucleation and subsequent Wegener-Bergeron-Findeisen process resulted in more pronounced production of ice crystals, and prohibited the formation of graupel particles via accretion. Sensitivity tests revealed, at least for the cases considered, that the concentration of aerosol particles within the upper troposphere increased by a factor of 7.71, 5.36, and 5.16, respectively, when enhanced aerosol layers existed at 0-2.2 km, 2.2-5.4 km, and 5.4-8.0 km, with Aitken mode and a portion of accumulation mode (0.1-0.2μm) particles being the most susceptible to upward transport.

  19. GCM Simulations of the Aerosol Indirect Effect: Sensitivity to Cloud Parameterization and Aerosol Burden

    NASA Technical Reports Server (NTRS)

    Menon, Surabi; DelGenio, Anthony D.; Koch, Dorothy; Tselioudis, George; Hansen, James E. (Technical Monitor)

    2001-01-01

    We describe the coupling of the Goddard Institute for Space Studies (GISS) general circulation model (GCM) to an online sulfur chemistry model and source models for organic matter and sea-salt that is used to estimate the aerosol indirect effect. The cloud droplet number concentration is diagnosed empirically from field experiment datasets over land and ocean that observe droplet number and all three aerosol types simultaneously; corrections are made for implied variations in cloud turbulence levels. The resulting cloud droplet number is used to calculate variations in droplet effective radius, which in turn allows us to predict aerosol effects on cloud optical thickness and microphysical process rates. We calculate the aerosol indirect effect by differencing the top-of-the-atmosphere net cloud radiative forcing for simulations with present-day vs. pre-industrial emissions. Both the first (radiative) and second (microphysical) indirect effects are explored. We test the sensitivity of our results to cloud parameterization assumptions that control the vertical distribution of cloud occurrence, the autoconversion rate, and the aerosol scavenging rate, each of which feeds back significantly on the model aerosol burden. The global mean aerosol indirect effect for all three aerosol types ranges from -1.55 to -4.36 W m(exp -2) in our simulations. The results are quite sensitive to the pre-industrial background aerosol burden, with low pre-industrial burdens giving strong indirect effects, and to a lesser extent to the anthropogenic aerosol burden, with large burdens giving somewhat larger indirect effects. Because of this dependence on the background aerosol, model diagnostics such as albedo-particle size correlations and column cloud susceptibility, for which satellite validation products are available, are not good predictors of the resulting indirect effect.

  20. GCM Simulations of the Aerosol Indirect Effect: Sensitivity to Cloud Parameterization and Aerosol Burden

    NASA Technical Reports Server (NTRS)

    Menon, Surabi; DelGenio, Anthony D.; Koch, Dorothy; Tselioudis, George; Hansen, James E. (Technical Monitor)

    2001-01-01

    We describe the coupling of the Goddard Institute for Space Studies (GISS) general circulation model (GCM) to an online sulfur chemistry model and source models for organic matter and sea-salt that is used to estimate the aerosol indirect effect. The cloud droplet number concentration is diagnosed empirically from field experiment datasets over land and ocean that observe droplet number and all three aerosol types simultaneously; corrections are made for implied variations in cloud turbulence levels. The resulting cloud droplet number is used to calculate variations in droplet effective radius, which in turn allows us to predict aerosol effects on cloud optical thickness and microphysical process rates. We calculate the aerosol indirect effect by differencing the top-of-the-atmosphere net cloud radiative forcing for simulations with present-day vs. pre-industrial emissions. Both the first (radiative) and second (microphysical) indirect effects are explored. We test the sensitivity of our results to cloud parameterization assumptions that control the vertical distribution of cloud occurrence, the autoconversion rate, and the aerosol scavenging rate, each of which feeds back significantly on the model aerosol burden. The global mean aerosol indirect effect for all three aerosol types ranges from -1.55 to -4.36 W/sq m in our simulations. The results are quite sensitive to the pre-industrial background aerosol burden, with low pre-industrial burdens giving strong indirect effects, and to a lesser extent to the anthropogenic aerosol burden, with large burdens giving somewhat larger indirect effects. Because of this dependence on the background aerosol, model diagnostics such as albedo-particle size correlations and column cloud susceptibility, for which satellite validation products are available, are not good predictors of the resulting indirect effect.

  1. High-efficiency particulate air filter test stand and aerosol generator for particle loading studies

    NASA Astrophysics Data System (ADS)

    Arunkumar, R.; Hogancamp, Kristina U.; Parsons, Michael S.; Rogers, Donna M.; Norton, Olin P.; Nagel, Brian A.; Alderman, Steven L.; Waggoner, Charles A.

    2007-08-01

    This manuscript describes the design, characterization, and operational range of a test stand and high-output aerosol generator developed to evaluate the performance of 30×30×29cm3 nuclear grade high-efficiency particulate air (HEPA) filters under variable, highly controlled conditions. The test stand system is operable at volumetric flow rates ranging from 1.5to12standardm3/min. Relative humidity levels are controllable from 5%-90% and the temperature of the aerosol stream is variable from ambient to 150°C. Test aerosols are produced through spray drying source material solutions that are introduced into a heated stainless steel evaporation chamber through an air-atomizing nozzle. Regulation of the particle size distribution of the aerosol challenge is achieved by varying source solution concentrations and through the use of a postgeneration cyclone. The aerosol generation system is unique in that it facilitates the testing of standard HEPA filters at and beyond rated media velocities by consistently providing, into a nominal flow of 7standardm3/min, high mass concentrations (˜25mg/m3) of dry aerosol streams having count mean diameters centered near the most penetrating particle size for HEPA filters (120-160nm). Aerosol streams that have been generated and characterized include those derived from various concentrations of KCl, NaCl, and sucrose solutions. Additionally, a water insoluble aerosol stream in which the solid component is predominantly iron (III) has been produced. Multiple ports are available on the test stand for making simultaneous aerosol measurements upstream and downstream of the test filter. Types of filter performance related studies that can be performed using this test stand system include filter lifetime studies, filtering efficiency testing, media velocity testing, evaluations under high mass loading and high humidity conditions, and determination of the downstream particle size distributions.

  2. High-efficiency particulate air filter test stand and aerosol generator for particle loading studies.

    PubMed

    Arunkumar, R; Hogancamp, Kristina U; Parsons, Michael S; Rogers, Donna M; Norton, Olin P; Nagel, Brian A; Alderman, Steven L; Waggoner, Charles A

    2007-08-01

    This manuscript describes the design, characterization, and operational range of a test stand and high-output aerosol generator developed to evaluate the performance of 30 x 30 x 29 cm(3) nuclear grade high-efficiency particulate air (HEPA) filters under variable, highly controlled conditions. The test stand system is operable at volumetric flow rates ranging from 1.5 to 12 standard m(3)/min. Relative humidity levels are controllable from 5%-90% and the temperature of the aerosol stream is variable from ambient to 150 degrees C. Test aerosols are produced through spray drying source material solutions that are introduced into a heated stainless steel evaporation chamber through an air-atomizing nozzle. Regulation of the particle size distribution of the aerosol challenge is achieved by varying source solution concentrations and through the use of a postgeneration cyclone. The aerosol generation system is unique in that it facilitates the testing of standard HEPA filters at and beyond rated media velocities by consistently providing, into a nominal flow of 7 standard m(3)/min, high mass concentrations (approximately 25 mg/m(3)) of dry aerosol streams having count mean diameters centered near the most penetrating particle size for HEPA filters (120-160 nm). Aerosol streams that have been generated and characterized include those derived from various concentrations of KCl, NaCl, and sucrose solutions. Additionally, a water insoluble aerosol stream in which the solid component is predominantly iron (III) has been produced. Multiple ports are available on the test stand for making simultaneous aerosol measurements upstream and downstream of the test filter. Types of filter performance related studies that can be performed using this test stand system include filter lifetime studies, filtering efficiency testing, media velocity testing, evaluations under high mass loading and high humidity conditions, and determination of the downstream particle size distributions.

  3. Thermal barriers constrain microbial elevational range size via climate variability.

    PubMed

    Wang, Jianjun; Soininen, Janne

    2017-08-01

    Range size is invariably limited and understanding range size variation is an important objective in ecology. However, microbial range size across geographical gradients remains understudied, especially on mountainsides. Here, the patterns of range size of stream microbes (i.e., bacteria and diatoms) and macroorganisms (i.e., macroinvertebrates) along elevational gradients in Asia and Europe were examined. In bacteria, elevational range size showed non-significant phylogenetic signals. In all taxa, there was a positive relationship between niche breadth and species elevational range size, driven by local environmental and climatic variables. No taxa followed the elevational Rapoport's rule. Climate variability explained the most variation in microbial mean elevational range size, whereas local environmental variables were more important for macroinvertebrates. Seasonal and annual climate variation showed negative effects, while daily climate variation had positive effects on community mean elevational range size for all taxa. The negative correlation between range size and species richness suggests that understanding the drivers of range is key for revealing the processes underlying diversity. The results advance the understanding of microbial species thermal barriers by revealing the importance of seasonal and diurnal climate variation, and highlight that aquatic and terrestrial biota may differ in their response to short- and long-term climate variability. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  4. Ultrafine particles are not major carriers of carcinogenic PAHs and their genotoxicity in size-segregated aerosols.

    PubMed

    Topinka, Jan; Milcova, Alena; Schmuczerova, Jana; Krouzek, Jiri; Hovorka, Jan

    2013-06-14

    Some studies suggest that genotoxic effects of combustion-related aerosols are induced by carcinogenic polycyclic aromatic hydrocarbons (c-PAHs) and their derivatives, which are part of the organic fraction of the particulate matter (PM) in ambient air. The proportion of the organic fraction in PM is known to vary with particle size. The ultrafine fraction is hypothesized to be the most important carrier of c-PAHs, since it possesses the highest specific surface area of PM. To test this hypothesis, the distribution of c-PAHs in organic extracts (EOMs) was compared for four size fractions of ambient-air aerosols: coarse (1aerosol particles and ultrafine particles (dae<0.17). High-volume aerosol samples were collected consecutively in four localities that differed in the level of environmental pollution. The genotoxicity of EOMs was measured by analysis of DNA adducts induced in an a cellular assay consisting of calf thymus DNA with/without rat liver microsomal S9 fraction coupled with (32)P-postlabelling. The upper accumulation fraction was the major size fraction in all four localities, forming 37-46% of the total PM mass. Per m(3) of sampled air, this fraction also bound the largest amount of c-PAHs. Correspondingly, the upper accumulation fraction induced the highest DNA-adduct levels. Per PM mass itself, the lower accumulation fraction is seen to be the most efficient in binding DNA-reactive organic compounds. Interestingly, the results suggest that the fraction of ultrafine particles of various ambient-air samples is neither a major carrier of c-PAHs, nor a major inducer of their genotoxicity, which is an important finding that is relevant to the toxicity and health effects of ultrafine particles, which are so extensively discussed these days. Copyright © 2013. Published by Elsevier B.V.

  5. Aerosol optical extinction during the Front Range Air Pollution and Photochemistry Éxperiment (FRAPPÉ) 2014 summertime field campaign, Colorado, USA

    NASA Astrophysics Data System (ADS)

    Dingle, Justin H.; Vu, Kennedy; Bahreini, Roya; Apel, Eric C.; Campos, Teresa L.; Flocke, Frank; Fried, Alan; Herndon, Scott; Hills, Alan J.; Hornbrook, Rebecca S.; Huey, Greg; Kaser, Lisa; Montzka, Denise D.; Nowak, John B.; Reeves, Mike; Richter, Dirk; Roscioli, Joseph R.; Shertz, Stephen; Stell, Meghan; Tanner, David; Tyndall, Geoff; Walega, James; Weibring, Petter; Weinheimer, Andrew

    2016-09-01

    Summertime aerosol optical extinction (βext) was measured in the Colorado Front Range and Denver metropolitan area as part of the Front Range Air Pollution and Photochemistry Éxperiment (FRAPPÉ) campaign during July-August 2014. An Aerodyne cavity attenuated phase shift particle light extinction monitor (CAPS-PMex) was deployed to measure βext (at average relative humidity of 20 ± 7 %) of submicron aerosols at λ = 632 nm at 1 Hz. Data from a suite of gas-phase instrumentation were used to interpret βext behavior in various categories of air masses and sources. Extinction enhancement ratios relative to CO (Δβext / ΔCO) were higher in aged urban air masses compared to fresh air masses by ˜ 50 %. The resulting increase in Δβext / ΔCO for highly aged air masses was accompanied by formation of secondary organic aerosols (SOAs). In addition, the impacts of aerosol composition on βext in air masses under the influence of urban, natural oil and gas operations (O&G), and agriculture and livestock operations were evaluated. Estimated non-refractory mass extinction efficiency (MEE) values for different air mass types ranged from 1.51 to 2.27 m2 g-1, with the minimum and maximum values observed in urban and agriculture-influenced air masses, respectively. The mass distribution for organic, nitrate, and sulfate aerosols presented distinct profiles in different air mass types. During 11-12 August, regional influence of a biomass burning event was observed, increasing the background βext and estimated MEE values in the Front Range.

  6. Case study of modeled aerosol optical properties during the SAFARI 2000 campaign

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuzmanoski, Maja; Box, Michael A.; Schmid, Beat

    2007-08-01

    We present modeled aerosol optical properties (single scattering albedo, asymmetry parameter, and lidar ratio) in two layers with different aerosol loadings and particle sizes, observed during the Southern African Regional Science Initiative 2000 (SAFARI 2000) campaign. The optical properties were calculated from aerosol size distributions retrieved from aerosol layer optical thickness spectra, measured using the NASA Ames airborne tracking 14-channel sunphotometer (AATS-14) and the refractive index based on the available information on aerosol chemical composition. The study focuses on sensitivity of modeled optical properties in the 0.3–1.5 μm wavelength range to assumptions regarding the mixing scenario. We considered two modelsmore » for the mixture of absorbing and nonabsorbing aerosol components commonly used to model optical properties of biomass burning aerosol: a layered sphere with absorbing core and nonabsorbing shell and the Maxwell–Garnett effective medium model. In addition, comparisons of modeled optical properties with the measurements are discussed. We also estimated the radiative effect of the difference in aerosol absorption implied by the large difference between the single scattering albedo values (~0.1 at midvisible wavelengths) obtained from different measurement methods for the case with a high amount of biomass burning particles. For that purpose, the volume fraction of black carbon was varied to obtain a range of single scattering albedo values (0.81–0.91 at λ=0.50 μm). Finally, the difference in absorption resulted in a significant difference in the instantaneous radiative forcing at the surface and the top of the atmosphere (TOA) and can result in a change of the sign of the aerosol forcing at TOA from negative to positive.« less

  7. Retrieving the complex refractive index of atmospheric aerosols from ratios of solar spectral extinction measurements

    NASA Technical Reports Server (NTRS)

    Fymat, A. L.; Mease, K. D.

    1978-01-01

    The technique proposed by Fymat (1976) for retrieving the complex refractive index of atmospheric aerosols using narrowband spectral transmission ratios, taken within an overall narrow spectral interval, is investigated in the case of modelled polydispersions of rural, maritime-continental, maritime-sea spray and meteoric dust aerosols. It is confirmed that for not too broad size distributions most of the information comes from a narrow size range of 'active' aerosols so that, under these circumstances, the refractive index components can indeed be retrieved essentially independently of the size distribution. For 0.1% accurate data in three colors, the technique can provide the real and imaginary components of the index respectively within 0.07% and 0.3% accuracy.

  8. Experimental investigation of aerosol composition and growth rates

    NASA Astrophysics Data System (ADS)

    Wimmer, Daniela; Winkler, Paul; Kulmala, Markku; Petäjä, Tuukka

    2017-04-01

    Atmospheric aerosol particles have relevant influence on human lives. Human health is affected, as by breathing in the aerosol particles, they deposit in the lungs causing various health problems. Also they interfere indirectly and directly with sunlight, which affects the climate on Earth. Primary aerosol particles originate for example from anthropogenic sources, such as Diesel cars or natural sources such as dessert dust. Secondary aerosol particles are formed via condensation of low volatile gas phase compounds. First, small clusters consisting of a few gas molecules only are formed, which can then grow to bigger aerosol particles. These then form seeds for cloud droplets. The chemical composition of the cloud particles determines whether the cloud absorbs or scatters sunlight more. Intensive experimental and theoretical work has been put into understanding the details of the initial processes leading to the natural formation of these secondary aerosol particles. According to modelling studies, aerosol particles formed via the nucleation process are responsible for about 50% of the global cloud condensation nuclei concentration. With currently used methods, the chemical composition of small molecular clusters (up to 2nm in diameter) can be resolved. Also standard methods to determine aerosol particle composition at sizes >10 nm are available. Within this project, the aerosol particle composition in the 2-4 nm size range will be investigated experimentally. The setup will consist of a combination of an electrical method that allows determine the electrical mobility of the particles which then can be converted to a diameter. By letting the charged particles travel through a changing electrical field, they travel at different speeds according to their mobility. That allows to particles with certain mobilities, which then can be converted to a diameter. After the size selection, the particles are counted by means of optical detection. Condensation particle counters

  9. Solid aerosol generator

    DOEpatents

    Prescott, D.S.; Schober, R.K.; Beller, J.

    1992-03-17

    An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration is disclosed. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates. 2 figs.

  10. Size-resolved aerosol and cloud condensation nuclei (CCN) properties in the remote marine South China Sea - Part 1: Observations and source classification

    NASA Astrophysics Data System (ADS)

    Atwood, Samuel A.; Reid, Jeffrey S.; Kreidenweis, Sonia M.; Blake, Donald R.; Jonsson, Haflidi H.; Lagrosas, Nofel D.; Xian, Peng; Reid, Elizabeth A.; Sessions, Walter R.; Simpas, James B.

    2017-01-01

    Ship-based measurements of aerosol and cloud condensation nuclei (CCN) properties are presented for 2 weeks of observations in remote marine regions of the South China Sea/East Sea during the southwestern monsoon (SWM) season. Smoke from extensive biomass burning throughout the Maritime Continent advected into this region during the SWM, where it was mixed with anthropogenic continental pollution and emissions from heavy shipping activities. Eight aerosol types were identified using a k-means cluster analysis with data from a size-resolved CCN characterization system. Interpretation of the clusters was supplemented by additional onboard aerosol and meteorological measurements, satellite, and model products for the region. A typical bimodal marine boundary layer background aerosol population was identified and observed mixing with accumulation mode aerosol from other sources, primarily smoke from fires in Borneo and Sumatra. Hygroscopicity was assessed using the κ parameter and was found to average 0.40 for samples dominated by aged accumulation mode smoke; 0.65 for accumulation mode marine aerosol; 0.60 in an anthropogenic aerosol plume; and 0.22 during a short period that was characterized by elevated levels of volatile organic compounds not associated with biomass burning impacts. As a special subset of the background marine aerosol, clean air masses substantially scrubbed of particles were observed following heavy precipitation or the passage of squall lines, with changes in observed aerosol properties occurring on the order of minutes. Average CN number concentrations, size distributions, and κ values are reported for each population type, along with CCN number concentrations for particles that activated at supersaturations between 0.14 and 0.85 %.

  11. Recent advances in delivery mechanisms for aerosol therapy during pediatric respiratory diseases.

    PubMed

    Wu, Yue'E; Zhang, Chonglin; Zhen, Qing

    2018-04-01

    The treatment of pediatric surgery diseases via utilization of aerosol delivery mechanisms is in progress for the betterment of pediatric care. Over the years, aerosol therapy has come to play an integral role in the treatment of pediatric respiratory diseases. Inhaled aerosol agents such as bronchodilators, corticosteroids, antibiotics, and mucolytics are commonly delivered to spontaneously breathing pediatric patients with a tracheostomy. Administering therapeutic inhaled aerosols to pediatric patients is challenging. The pediatric population ranges in age, which means patients with different airway sizes, breathing patterns, and cooperation levels. These patient-related factors impact the deposition of aerosol drugs in the lungs. The present review article will discuss the recent advancements in the delivery mechanisms for aerosol therapy in pediatric patients with respiratory diseases.

  12. Chemical characterization of size-resolved aerosols in four seasons and hazy days in the megacity Beijing of China.

    PubMed

    Sun, Kang; Liu, Xingang; Gu, Jianwei; Li, Yunpeng; Qu, Yu; An, Junling; Wang, Jingli; Zhang, Yuanhang; Hu, Min; Zhang, Fang

    2015-06-01

    Size-resolved aerosol samples were collected by MOUDI in four seasons in 2007 in Beijing. The PM10 and PM1.8 mass concentrations were 166.0±120.5 and 91.6±69.7 μg/m3, respectively, throughout the measurement, with seasonal variation: nearly two times higher in autumn than in summer and spring. Serious fine particle pollution occurred in winter with the PM1.8/PM10 ratio of 0.63, which was higher than other seasons. The size distribution of PM showed obvious seasonal and diurnal variation, with a smaller fine mode peak in spring and in the daytime. OM (organic matter=1.6×OC (organic carbon)) and SIA (secondary inorganic aerosol) were major components of fine particles, while OM, SIA and Ca2+ were major components in coarse particles. Moreover, secondary components, mainly SOA (secondary organic aerosol) and SIA, accounted for 46%-96% of each size bin in fine particles, which meant that secondary pollution existed all year. Sulfates and nitrates, primarily in the form of (NH4)2SO4, NH4NO3, CaSO4, Na2SO4 and K2SO4, calculated by the model ISORROPIA II, were major components of the solid phase in fine particles. The PM concentration and size distribution were similar in the four seasons on non-haze days, while large differences occurred on haze days, which indicated seasonal variation of PM concentration and size distribution were dominated by haze days. The SIA concentrations and fractions of nearly all size bins were higher on haze days than on non-haze days, which was attributed to heterogeneous aqueous reactions on haze days in the four seasons. Copyright © 2015. Published by Elsevier B.V.

  13. Stratospheric aerosols and climatic change

    NASA Technical Reports Server (NTRS)

    Toon, O. B.; Pollack, J. B.

    1978-01-01

    Stratospht1ic sulfuric acid particles scatter and absorb sunlight and they scatter, absorb and emit terrestrial thermal radiation. These interactions play a role in the earth's radiation balance and therefore affect climate. The stratospheric aerosols are perturbed by volcanic injection of SO2 and ash, by aircraft injection of SO2, by rocket exhaust of Al2O3 and by tropospheric mixing of particles and pollutant SO2 and COS. In order to assess the effects of these perturbations on climate, the effects of the aerosols on the radiation balance must be understood and in order to understand the radiation effects the properties of the aerosols must be known. The discussion covers the aerosols' effect on the radiation balance. It is shown that the aerosol size distribution controls whether the aerosols will tend to warm or cool the earth's surface. Calculations of aerosol properties, including size distribution, for various perturbation sources are carried out on the basis of an aerosol model. Calculations are also presented of the climatic impact of perturbed aerosols due to volcanic eruptions and Space Shuttle flights.

  14. Estimation of the contributions of long range transported aerosol in East Asia to carbonaceous aerosol and PM concentrations in Seoul, Korea using highly time resolved measurements: a PSCF model approach.

    PubMed

    Jeong, Ukkyo; Kim, Jhoon; Lee, Hanlim; Jung, Jinsang; Kim, Young J; Song, Chul H; Koo, Ja-Ho

    2011-07-01

    The contributions of long range transported aerosol in East Asia to carbonaceous aerosol and particulate matter (PM) concentrations in Seoul, Korea were estimated with potential source contribution function (PSCF) calculations. Carbonaceous aerosol (organic carbon (OC) and elemental carbon (EC)), PM(2.5), and PM(10) concentrations were measured from April 2007 to March 2008 in Seoul, Korea. The PSCF and concentration weighted trajectory (CWT) receptor models were used to identify the spatial source distributions of OC, EC, PM(2.5), and coarse particles. Heavily industrialized areas in Northeast China such as Harbin and Changchun and East China including the Pearl River Delta region, the Yangtze River Delta region, and the Beijing-Tianjin region were identified as high OC, EC and PM(2.5) source areas. The conditional PSCF analysis was introduced so as to distinguish the influence of aerosol transported from heavily polluted source areas on a receptor site from that transported from relatively clean areas. The source contributions estimated using the conditional PSCF analysis account for not only the aerosol concentrations of long range transported aerosols but also the number of transport days effective on the measurement site. Based on the proposed algorithm, the condition of airmass pathways was classified into two types: one condition where airmass passed over the source region (PS) and another condition where airmass did not pass over the source region (NPS). For most of the seasons during the measurement period, 249.5-366.2% higher OC, EC, PM(2.5), and coarse particle concentrations were observed at the measurement site under PS conditions than under NPS conditions. Seasonal variations in the concentrations of OC, EC, PM(2.5), and coarse particles under PS, NPS, and background aerosol conditions were quantified. The contributions of long range transported aerosols on the OC, EC, PM(2.5), and coarse particle concentrations during several Asian dust events were

  15. Vertical distribution of aerosol number concentration in the troposphere over Siberia derived from airborne in-situ measurements

    NASA Astrophysics Data System (ADS)

    Arshinov, Mikhail Yu.; Belan, Boris D.; Paris, Jean-Daniel; Machida, Toshinobu; Kozlov, Alexandr; Malyskin, Sergei; Simonenkov, Denis; Davydov, Denis; Fofonov, Alexandr

    2016-04-01

    Knowledge of the vertical distribution of aerosols particles is very important when estimating aerosol radiative effects. To date there are a lot of research programs aimed to study aerosol vertical distribution, but only a few ones exist in such insufficiently explored region as Siberia. Monthly research flights and several extensive airborne campaigns carried out in recent years in Siberian troposphere allowed the vertical distribution of aerosol number concentration to be summarized. In-situ aerosol measurements were performed in a wide range of particle sizes by means of improved version of the Novosibirsk-type diffusional particle sizer and GRIMM aerosol spectrometer Model 1.109. The data on aerosol vertical distribution enabled input parameters for the empirical equation of Jaenicke (1993) to be derived for Siberian troposphere up to 7 km. Vertical distributions of aerosol number concentration in different size ranges averaged for the main seasons of the year will be presented. This work was supported by Interdisciplinary integration projects of the Siberian Branch of the Russian Academy of Science No. 35, No. 70 and No. 131; the Branch of Geology, Geophysics and Mining Sciences of RAS (Program No. 5); and Russian Foundation for Basic Research (grant No. 14-05-00526). Jaenicke R. Tropospheric aerosols, in Aerosol-Cloud-Climate Interactions, edited by P.V. Hobs. -Academic Press, San Diego, CA, 1993.- P. 1-31.

  16. Photoacoustics of single laser-trapped nanodroplets for the direct observation of nanofocusing in aerosol photokinetics

    NASA Astrophysics Data System (ADS)

    Cremer, Johannes W.; Thaler, Klemens M.; Haisch, Christoph; Signorell, Ruth

    2016-03-01

    Photochemistry taking place in atmospheric aerosol droplets has a significant impact on the Earth's climate. Nanofocusing of electromagnetic radiation inside aerosols plays a crucial role in their absorption behaviour, since the radiation flux inside the droplet strongly affects the activation rate of photochemically active species. However, size-dependent nanofocusing effects in the photokinetics of small aerosols have escaped direct observation due to the inability to measure absorption signatures from single droplets. Here we show that photoacoustic measurements on optically trapped single nanodroplets provide a direct, broadly applicable method to measure absorption with attolitre sensitivity. We demonstrate for a model aerosol that the photolysis is accelerated by an order of magnitude in the sub-micron to micron size range, compared with larger droplets. The versatility of our technique promises broad applicability to absorption studies of aerosol particles, such as atmospheric aerosols where quantitative photokinetic data are critical for climate predictions.

  17. Photoacoustics of single laser-trapped nanodroplets for the direct observation of nanofocusing in aerosol photokinetics

    PubMed Central

    Cremer, Johannes W.; Thaler, Klemens M.; Haisch, Christoph; Signorell, Ruth

    2016-01-01

    Photochemistry taking place in atmospheric aerosol droplets has a significant impact on the Earth's climate. Nanofocusing of electromagnetic radiation inside aerosols plays a crucial role in their absorption behaviour, since the radiation flux inside the droplet strongly affects the activation rate of photochemically active species. However, size-dependent nanofocusing effects in the photokinetics of small aerosols have escaped direct observation due to the inability to measure absorption signatures from single droplets. Here we show that photoacoustic measurements on optically trapped single nanodroplets provide a direct, broadly applicable method to measure absorption with attolitre sensitivity. We demonstrate for a model aerosol that the photolysis is accelerated by an order of magnitude in the sub-micron to micron size range, compared with larger droplets. The versatility of our technique promises broad applicability to absorption studies of aerosol particles, such as atmospheric aerosols where quantitative photokinetic data are critical for climate predictions. PMID:26979973

  18. Laboratory evaluation of particle size, food contamination, and residual efficacy of pyrethrin + methoprene aerosol

    USDA-ARS?s Scientific Manuscript database

    A series of tests were conducted to determine residual efficacy of pyrethrin+methoprene aerosol to manage larvae of selected stored product insects. Efficacy was assessed through emergence of morphologically-normal adults and through a quantitative developmental index with values ranging from 1, for...

  19. Negative Aerosol-Cloud re Relationship From Aircraft Observations Over Hebei, China

    NASA Astrophysics Data System (ADS)

    Zhao, Chuanfeng; Qiu, Yanmei; Dong, Xiaobo; Wang, Zhien; Peng, Yiran; Li, Baodong; Wu, Zhihui; Wang, Yang

    2018-01-01

    Using six flights observations in September 2015 over Hebei, China, this study shows a robust negative aerosol-cloud droplet effective radius (re) relationship for liquid clouds, which is different from previous studies that found positive aerosol-cloud re relationship over East China using satellite observations. A total of 27 cloud samples was analyzed with the classification of clean and polluted conditions using lower and upper 1/3 aerosol concentration at 200 m below the cloud bases. By normalizing the profiles of cloud droplet re, we found significant smaller values under polluted than under clean condition at most heights. Moreover, the averaged profiles of cloud liquid water content (LWC) show larger values under polluted than clean conditions, indicating even stronger negative aerosol-cloud re relationship if LWC is kept constant. The droplet size distributions further demonstrate that more droplets concentrate within smaller size ranges under polluted conditions. Quantitatively, the aerosol-cloud interaction is found around 0.10-0.19 for the study region.

  20. Interspecific geographic range size-body size relationship and the diversification dynamics of Neotropical furnariid birds.

    PubMed

    Inostroza-Michael, Oscar; Hernández, Cristián E; Rodríguez-Serrano, Enrique; Avaria-Llautureo, Jorge; Rivadeneira, Marcelo M

    2018-05-01

    Among the earliest macroecological patterns documented, is the range and body size relationship, characterized by a minimum geographic range size imposed by the species' body size. This boundary for the geographic range size increases linearly with body size and has been proposed to have implications in lineages evolution and conservation. Nevertheless, the macroevolutionary processes involved in the origin of this boundary and its consequences on lineage diversification have been poorly explored. We evaluate the macroevolutionary consequences of the difference (hereafter the distance) between the observed and the minimum range sizes required by the species' body size, to untangle its role on the diversification of a Neotropical species-rich bird clade using trait-dependent diversification models. We show that speciation rate is a positive hump-shaped function of the distance to the lower boundary. The species with highest and lowest distances to minimum range size had lower speciation rates, while species close to medium distances values had the highest speciation rates. Further, our results suggest that the distance to the minimum range size is a macroevolutionary constraint that affects the diversification process responsible for the origin of this macroecological pattern in a more complex way than previously envisioned. © 2018 The Author(s). Evolution © 2018 The Society for the Study of Evolution.

  1. Submicron aerosol distributions and CCN activity measured in and around the Korean Peninsula during KORUS-AQ

    NASA Astrophysics Data System (ADS)

    Park, M.; Kim, N.; Yum, S. S.; Thornhill, K. L., II; Anderson, B. E.; Kim, D. S.; Kim, H. J.; Jeon, H. E.; Park, Y. S.; Lee, S. B.

    2017-12-01

    KORUS-AQ is a field campaign aimed at investigating formation of ozone and aerosol and interactions between chemistry, transport and various sources in the Korean Peninsula which is the region affected both by long-range transport and local emission. Aerosol number concentration and size distribution, and CCN number concentration were measured on board the NASA DC-8 research aircraft and at a ground site at Olympic Park in Seoul, capital city of Korea during the KORUS-AQ campaign (May 2nd to June 10th, 2017). There were 20 flights during the KORUS-AQ campaign and total flight time was about 150 hours. CCN counter (CCNC) on the airborne platform was operated at the fixed internal supersaturation of 0.6% and CCNC at the ground site was operated at five different supersaturations (0.2%, 0.4%, 0.6%, 0.8%, and 1.0%). Aerosol hygroscopic parameter κ was also estimated from CCN number concentration and aerosol size distribution. Airborne measurements showed a large spatio-temporal variation of aerosol number concentration and CCN activity in and around the Korean peninsula, and the ground measurements also showed a large temporal variation. The campaign period can be classified into long-range transport dominant cases, local emission dominant cases due to stagnant air mass, and others. Aerosol number concentration in the Korean Peninsula measured in stagnant air mass period was higher than those in long-range transport period, but CCN number concentration showed an opposite tendency. Both aerosol and CCN number concentrations over the Yellow Sea in local emission period were slightly higher than those in long-range transport period. Since CCN activity is different depending on time and space, our focus is on understanding how CCN activity and aerosol hygroscopicity vary with the source of aerosol. Comprehensive analysis results will be shown at the conference.

  2. Size-segregated compositional analysis of aerosol particles collected in the European Arctic during the ACCACIA campaign

    NASA Astrophysics Data System (ADS)

    Young, G.; Jones, H. M.; Darbyshire, E.; Baustian, K. J.; McQuaid, J. B.; Bower, K. N.; Connolly, P. J.; Gallagher, M. W.; Choularton, T. W.

    2016-03-01

    Single-particle compositional analysis of filter samples collected on board the Facility for Airborne Atmospheric Measurements (FAAM) BAe-146 aircraft is presented for six flights during the springtime Aerosol-Cloud Coupling and Climate Interactions in the Arctic (ACCACIA) campaign (March-April 2013). Scanning electron microscopy was utilised to derive size-segregated particle compositions and size distributions, and these were compared to corresponding data from wing-mounted optical particle counters. Reasonable agreement between the calculated number size distributions was found. Significant variability in composition was observed, with differing external and internal mixing identified, between air mass trajectory cases based on HYbrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) analyses. Dominant particle classes were silicate-based dusts and sea salts, with particles notably rich in K and Ca detected in one case. Source regions varied from the Arctic Ocean and Greenland through to northern Russia and the European continent. Good agreement between the back trajectories was mirrored by comparable compositional trends between samples. Silicate dusts were identified in all cases, and the elemental composition of the dust was consistent for all samples except one. It is hypothesised that long-range, high-altitude transport was primarily responsible for this dust, with likely sources including the Asian arid regions.

  3. Radiative Importance of Aerosol-Cloud Interaction

    NASA Technical Reports Server (NTRS)

    Tsay, Si-Chee

    1999-01-01

    Aerosol particles are input into the troposphere by biomass burning, among other sources. These aerosol palls cover large expanses of the earth's surface. Aerosols may directly scatter solar radiation back to space, thus increasing the earth's albedo and act to cool the earth's surface and atmosphere. Aerosols also contribute to the earth's energy balance indirectly. Hygroscopic aerosol act as cloud condensation nuclei (CCN) and thus affects cloud properties. In 1977, Twomey theorized that additional available CCN would create smaller but more numerous cloud droplets in a cloud with a given amount of liquid water. This in turn would increase the cloud albedo which would scatter additional radiation back to space and create a similar cooling pattern as the direct aerosol effect. Estimates of the magnitude of the aerosol indirect effect on a global scale range from 0.0 to -4.8 W/sq m. Thus the indirect effect can be of comparable magnitude and opposite in sign to the estimates of global greenhouse gas forcing Aerosol-cloud interaction is not a one-way process. Just as aerosols have an influence on clouds through the cloud microphysics, clouds have an influence on aerosols. Cloud droplets are solutions of liquid water and CCN, now dissolved. When the cloud droplet evaporates it leaves behind an aerosol particle. This new particle does not have to have the same properties as the original CCN. In fact, studies show that aerosol particles that result from cloud processing are larger in size than the original CCN. Optical properties of aerosol particles are dependent on the size of the particles. Larger particles have a smaller backscattering fraction, and thus less incoming solar radiation will be backscattered to space if the aerosol particles are larger. Therefore, we see that aerosols and clouds modify each other to influence the radiative balance of the earth. Understanding and quantifying the spatial and seasonal patterns of the aerosol indirect forcing may have

  4. Aerosol algorithm evaluation within aerosol-CCI

    NASA Astrophysics Data System (ADS)

    Kinne, Stefan; Schulz, Michael; Griesfeller, Jan

    Properties of aerosol retrievals from space are difficult. Even data from dedicated satellite sensors face contaminations which limit the accuracy of aerosol retrieval products. Issues are the identification of complete cloud-free scenes, the need to assume aerosol compositional features in an underdetermined solution space and the requirement to characterize the background at high accuracy. Usually the development of aerosol is a slow process, requiring continuous feedback from evaluations. To demonstrate maturity, these evaluations need to cover different regions and seasons and many different aerosol properties, because aerosol composition is quite diverse and highly variable in space and time, as atmospheric aerosol lifetimes are only a few days. Three years ago the ESA Climate Change Initiative started to support aerosol retrieval efforts in order to develop aerosol retrieval products for the climate community from underutilized ESA satellite sensors. The initial focus was on retrievals of AOD (a measure for the atmospheric column amount) and of Angstrom (a proxy for aerosol size) from the ATSR and MERIS sensors on ENVISAT. The goal was to offer retrieval products that are comparable or better in accuracy than commonly used NASA products of MODIS or MISR. Fortunately, accurate reference data of ground based sun-/sky-photometry networks exist. Thus, retrieval assessments could and were conducted independently by different evaluation groups. Here, results of these evaluations for the year 2008 are summarized. The capability of these newly developed retrievals is analyzed and quantified in scores. These scores allowed a ranking of competing efforts and also allow skill comparisons of these new retrievals against existing and commonly used retrievals.

  5. Sampling Indoor Aerosols on the International Space Station

    NASA Technical Reports Server (NTRS)

    Meyer, Marit E.

    2016-01-01

    In a spacecraft cabin environment, the size range of indoor aerosols is much larger and they persist longer than on Earth because they are not removed by gravitational settling. A previous aerosol experiment in 1991 documented that over 90 of the mass concentration of particles in the NASA Space Shuttle air were between 10 m and 100 m based on measurements with a multi-stage virtual impactor and a nephelometer (Liu et al. 1991). While the now-retired Space Shuttle had short duration missions (less than two weeks), the International Space Station (ISS) has been continually inhabited by astronauts for over a decade. High concentrations of inhalable particles on ISS are potentially responsible for crew complaints of respiratory and eye irritation and comments about 'dusty' air. Air filtration is the current control strategy for airborne particles on the ISS, and filtration modeling, performed for engineering and design validation of the air revitalization system in ISS, predicted that PM requirements would be met. However, aerosol monitoring has never been performed on the ISS to verify PM levels. A flight experiment is in preparation which will provide data on particulate matter in ISS ambient air. Particles will be collected with a thermophoretic sampler as well as with passive samplers which will extend the particle size range of sampling. Samples will be returned to Earth for chemical and microscopic analyses, providing the first aerosol data for ISS ambient air.

  6. Performance of personal inhalable aerosol samplers in very slowly moving air when facing the aerosol source.

    PubMed

    Witschger, O; Grinshpun, S A; Fauvel, S; Basso, G

    2004-06-01

    While personal aerosol samplers have been characterized primarily based on wind tunnel tests conducted at relatively high wind speeds, modern indoor occupational environments are usually represented by very slow moving air. Recent surveys suggest that elevated levels of occupational exposure to inhalable airborne particles are typically observed when the worker, operating in the vicinity of the dust source, faces the source. Thus, the first objective of this study was to design and test a new, low cost experimental protocol for measuring the sampling efficiency of personal inhalable aerosol samplers in the vicinity of the aerosol source when the samplers operate in very slowly moving air. In this system, an aerosol generator, which is located in the centre of a room-sized non-ventilated chamber, continuously rotates and omnidirectionally disperses test particles of a specific size. The test and reference samplers are equally distributed around the source at the same distance from the centre and operate in parallel (in most of our experiments, the total number of simultaneously operating samplers was 15). Radial aerosol transport is driven by turbulent diffusion and some natural convection. For each specific particle size and the sampler, the aerosol mass concentration is measured by weighing the collection filter. The second objective was to utilize the new protocol to evaluate three widely used aerosol samplers: the IOM Personal Inhalable Sampler, the Button Personal Inhalable Aerosol Sampler and the 25 mm Millipore filter holder (closed-face C25 cassette). The sampling efficiencies of each instrument were measured with six particle fractions, ranging from 6.9 to 76.9 micro m in their mass median aerodynamic diameter. The Button Sampler efficiency data demonstrated a good agreement with the standard inhalable convention and especially with the low air movement inhalabilty curve. The 25 mm filter holder was found to considerably under-sample the particles larger

  7. Properties of Arctic Aerosol Particles and Residuals of Warm Clouds: Cloud Activation Efficiency and the Aerosol Indirect Effect

    NASA Astrophysics Data System (ADS)

    Zelenyuk, A.; Imre, D. G.; Leaitch, R.; Ovchinnikov, M.; Liu, P.; Macdonald, A.; Strapp, W.; Ghan, S. J.; Earle, M. E.

    2012-12-01

    activation, limiting maximum droplet concentrations Nd = 525 ± 50 cm-3, which is lower than the 750 cm-3 limit found by Leaitch et al. (1986) for mid-latitude continental cloud that had generally larger updraft speeds than the clouds interrogated in Arctic. These findings are important for the aerosol indirect effect, in which increase in aerosol particle number concentrations is expected to result in increase in Nd and decrease in droplet size, leading to increased cloud albedo and potentially lifetimes. Our conclusions point to limited susceptibility to changes in ambient aerosol concentrations, providing simple explanation for the finding of weaker than expected indirect effect. In summary, the data presented here show that Nd increases as the cloud base particle number concentration increases; however, they also show a limit on Nd that is in the range of 500-600 cm-3.

  8. Inhalability for aerosols at ultra-low windspeeds

    NASA Astrophysics Data System (ADS)

    Sleeth, Darrah K.; Vincent, James H.

    2009-02-01

    Most previous experimental studies of aerosol inhalability were conducted in wind tunnels for windspeeds greater than 0.5 ms-1. While that body of work was used to establish a convention for the inhalable fraction, results from studies in calm air chambers (for essentially zero windspeed) are being discussed as the basis of a modified criterion. However, information is lacking for windspeeds in the intermediate range, which - it so happens - pertain to most actual workplaces. With this in mind, we have developed a new experimental system to assess inhalability - and, ultimately, personal sampler performance - for aerosols with particle aerodynamic diameter within the range from about 9 to 90 μm for ultra-low windspeed environments from about 0.1 to 0.5 ms1. This new system contains an aerosol test facility, fully described elsewhere, that combines the physical attributes and performance characteristics of moving air wind tunnels and calm air chambers, both of which have featured individually in previous research. It also contains a specially-designed breathing, heated, life-sized mannequin that allows for accurate recovery of test particulate material that has been inhaled. Procedures have been developed that employ test aerosols of well-defined particle size distribution generated mechanically from narrowly-graded powders of fused alumina. Using this new system, we have conducted an extensive set of new experiments to measure the inhalability of a human subject (as represented by the mannequin), aimed at filling the current knowledge gap for conditions that are more realistic than those embodied in most previous research. These data reveal that inhalability throughout the range of interest is significantly different based on windspeed, indicating a rise in aspiration efficiency as windspeed decreases. Breathing flowrate and mode of breathing (i.e. nose versus mouth breathing) did not show significant differences for the inhalability of aerosols. On the whole

  9. Physico-chemical properties of aerosols in Sao Paulo, Brazil and mechanisms of secondary organic aerosol formation.

    NASA Astrophysics Data System (ADS)

    Artaxo, Paulo; Ferreira de Brito, Joel; Varanda Rizzo, Luciana; Luiza Godoy, Maria; Godoy, Jose Marcus

    2013-04-01

    Megacities emissions are increasingly becoming a global issue, where emissions from the transportation sector play an increasingly important role. Sao Paulo is a megacity with a population of about 18 million people, 7 million cars and large-scale industrial emissions. As a result of the vehicular and industrial emissions, the air quality in Sao Paulo is bellow WMO standards for aerosol particles and ozone. Many uncertainties are found on gas- and particulate matter vehicular emission factors and their following atmospheric processes, e.g. secondary organic aerosol formation. Due to the uniqueness of the vehicular fuel in Brazil, largely based on ethanol use, such characterization currently holds further uncertainties. To improve the understanding of the role of this unique emission characteristics, we are running a source apportionment study in Sao Paulo focused on the mechanisms of organic aerosol formation. One of the goals of this study is a quantitative aerosol source apportionment focused on vehicular emissions, including ethanol and gasohol (both fuels used by light-duty vehicles). This study comprises four sampling sites with continuous measurements for one year, where trace elements and organic aerosol are being measured for PM2.5 and PM10 along with real-time NOx, O3, PM10 and CO measurements. Aerosol optical properties and size distribution are being measured on a rotation basis between sampling stations. Furthermore, a Proton-Transfer-Reaction Mass Spectrometer (PTR-MS) and an Aerosol Chemical Speciation Monitor (ACSM) are used to measure in real time VOCs and aerosol composition, respectively. Trace elements were measured using XRF and OC/EC analysis was determined with a Sunset OC/EC instrument. A TSI Nephelometer with 3 wavelengths measure light scattering and a MAAP measure black carbon. Results show aerosol number concentrations ranging between 10,000 and 35,000 cm-3, mostly concentrated in the nucleation and Aitken modes, with a peak in size at 80

  10. Toxicity of Paraquat and Diquat Aerosols Generated by a Size-selective Cyclone: Effect of Particle Size Distribution

    PubMed Central

    Gage, J. C.

    1968-01-01

    The toxicity of paraquat and diquat aerosols to several species has been investigated. In order to obtain an atmosphere of `respirable' particles, an atomizer has been constructed with an upper cut-off of size by a cyclone separator, and with a calibrated reservoir to enable the concentration output to be estimated by inspection. Paraquat has an irritant action on the lungs, and at lethal concentrations death is delayed and is associated with pulmonary haemorrhage and oedema. After single exposures the LC50 appears to be a function of the duration and of the concentration; in the rat the lethal concentration-time product (CT) is about 6 μg./l.hr. Guinea-pigs and male mice are about as sensitive as rats. Female mice and rabbits are less sensitive. The dog can tolerate a CT product of 25 μg./l. hr without ill-effects. The toxicity is a complex function of particle size. In the rat it appears that the most effective size is in the region of 3 μ, as larger particles do not reach the alveolar regions and finer particles are probably not retained there. Repeated daily 6-hr exposures of rats to paraquat aerosols over a three-week period produce signs of lung irritation but no deaths at 0·4 μg./l., and the no-effect level is about 0·1 μg./litre. Paraquat appears to be poorly absorbed from the lungs. After single exposures death is associated with a paraquat content of about 6 μg. in the lungs. Paraquat is subsequently cleared from the lung with a half-life of about 36 hr. Diquat is much less irritant to the lungs than is paraquat; the no-effect levels on single and repeated exposure are at least five times larger. It is concluded that paraquat and diquat do not present an inhalation hazard under normal conditions of application, but with paraquat under abnormal conditions it may be desirable to provide respiratory protection. Images PMID:5723352

  11. A Monte-Carlo Analysis of Organic Volatility with Aerosol Microphysics

    NASA Astrophysics Data System (ADS)

    Gao, Chloe; Tsigaridis, Kostas; Bauer, Susanne E.

    2017-04-01

    A newly developed box model, MATRIX-VBS, includes the volatility-basis set (VBS) framework in an aerosol microphysical scheme MATRIX (Multiconfiguration Aerosol TRacker of mIXing state), which resolves aerosol mass and number concentrations and aerosol mixing state. The new scheme advanced the representation of organic aerosols in models by improving the traditional and simplistic treatment of organic aerosols as non-volatile and with a fixed size distribution. Further development includes adding the condensation of organics on coarse mode aerosols - dust and sea salt, thus making all organics in the system semi-volatile. To test and simplify the model, a Monte-Carlo analysis is performed to pin point which processes affect organics the most under varied chemical and meteorological conditions. Since the model's parameterizations have the ability to capture a very wide range of conditions, all possible scenarios on Earth across the whole parameter space, including temperature, humidity, location, emissions and oxidant levels, are examined. The Monte-Carlo simulations provide quantitative information on the sensitivity of the newly developed model and help us understand how organics are affecting the size distribution, mixing state and volatility distribution at varying levels of meteorological conditions and pollution levels. In addition, these simulations give information on which parameters play a critical role in the aerosol distribution and evolution in the atmosphere and which do not, that will facilitate the simplification of the box model, an important step in its implementation in the global model GISS ModelE as a module.

  12. Water-soluble ions species of size-resolved aerosols: Implications for the atmospheric acidity in São Paulo megacity, Brazil

    NASA Astrophysics Data System (ADS)

    Vieira-Filho, Marcelo; Pedrotti, Jairo J.; Fornaro, Adalgiza

    2016-11-01

    Over the last decade, an increase of ammonium salts in atmospheric deposition has been reported worldwide, especially in megacities. The present study aims to give a better comprehension analysis about particulate matter acidity in São Paulo megacity (MASP), Brazil. Size-resolved aerosols were sampled in MASP, during 2012 winter, showing a bimodal mass concentration distribution, with sulfate concentration exceeding 3.40 μg m- 3, which accounted for over 25% of PM0.56 mass. Regarding the relative distribution of ionic species, 90% of NH4+ levels, were restricted to smaller than 1 μm diameter range. The average neutralization index for PM < 1 μm was 0.62, which indicated an ammonia-limiting atmosphere due to partial neutralization of atmospheric acids. Particles of the accumulation mode presented more acid behavior than other aerosol fractions, with pH value as low as 4.15 in PM0.56. The total neutralization index registered the lowest value for PM0.56, but it did not respond promptly to aerosol variations as the E-AIM model predictions. The highest discrepancies between the acidity proxies occurred in the smaller fractions of particulate matter, especially in the after-filter (AF) stage (diameter < 0.020 μm). In addition, AF stage had the highest contribution to PM total mass, about 14% for all the stages analyzed. Such contribution indicates that acidity in ultrafine particles are still mixed for the MASP and need further investigation.

  13. Aerosol studies during the ESCOMPTE experiment: an overview

    NASA Astrophysics Data System (ADS)

    Cachier, Hélène; Aulagnier, Fabien; Sarda, Roland; Gautier, François; Masclet, Pierre; Besombes, Jean-Luc; Marchand, Nicolas; Despiau, Serge; Croci, Delphine; Mallet, Marc; Laj, Paolo; Marinoni, Angela; Deveau, Pierre-Alexandre; Roger, Jean-Claude; Putaud, Jean-Philippe; Van Dingenen, Rita; Dell'Acqua, Alessandro; Viidanoja, Jyrkki; Martins-Dos Santos, Sebastiao; Liousse, Cathy; Cousin, Frédéric; Rosset, Robert; Gardrat, Eric; Galy-Lacaux, Corinne

    2005-03-01

    The "Expérience sur Site pour COntraindre les Modèles de Pollution atmosphérique et de Transport d'Emissions" (ESCOMPTE) experiment took place in the Southern part of France in the Marseilles/Fos-Berre region during 6 weeks in June and July 2001. One task was to document the regional sources of atmospheric particles and to gain some insight into the aerosol transformations in the atmosphere. For this purpose, seven sites were chosen and equipped with the same basic instrumentation to obtain the chemical closure of the bulk aerosol phase and size-segregated samples. Some specific additional experiments were conducted for the speciation of the organic matter and the aerosol size distribution in number. Finally, four multiwavelength sun-photometers were also deployed during the experiment. Interestingly, in this region, three intense aerosol sources (urban, industrial and biogenic) are very active, and data show consistent results, enlightening an important background of particles over the whole ESCOMPTE domain. Notable is the overwhelming importance of the carbonaceous fraction (comprising primary and secondary particles), which is always more abundant than sulphates. Particle size studies show that, on average, more than 90% of the mean regional aerosol number is found on a size range smaller than 300 nm in diameter. The most original result is the evidence of the rapid formation of secondary aerosols occurring in the whole ESCOMPTE domain. This formation is much more important than that usually observed at these latitudes since two thirds of the particulate mass collected off source zones is estimated to be generated during atmospheric transport. On the other hand, the marine source has poor influence in the region, especially during the overlapping pollution events of Intensive Observation Periods (IOP). Preliminary results from the 0D and 3D versions of the MesoNH-aerosol model show that, with optimised gas and particle sources, the model accounts

  14. Effects of diesel exhaust aftertreatment devices on concentrations and size distribution of aerosols in underground mine air.

    PubMed

    Bugarski, Aleksandar D; Schnakenberg, George H; Hummer, Ion A; Cauda, Emanuele; Janisko, Samuel I; Patts, Larry D

    2009-09-01

    Three types of uncatalyzed diesel particulate filter (DPF) systems, three types of high-temperature disposable filter elements (DFEs), and one diesel oxidation catalytic converter (DOC) were evaluated in underground mine conditions for their effects on the concentrations and size distributions of diesel aerosols. Those effects were compared with the effects of a standard muffler. The experimental work was conducted directly in an underground environment using a unique diesel laboratory developed in an underground experimental mine. The DPF systems reduced total mass of aerosols in the mine air approximately 10-fold for light-load and 20-fold or more for high-load test conditions. The DFEs offered similar reductions in aerosol mass concentrations. The efficiency of the new DFEs significantly increased with accumulation of operating time and buildup of diesel particulate matter in the porous structure of the filter elements. A single laundering process did not exhibit substantial effects on performance of the filter element The effectiveness of DPFs and DFEs in removing aerosols by number was strongly influenced by engine operating mode. The concentrations of nucleation mode aerosols in the mine air were found to be substantially higher for both DPFs and DFEs when the engine was operated at high-load modes than at low-load modes. The effects of the DOC on mass and number concentrations of aerosols in mine air were relatively minor when compared to those of the DPF and DFE systems.

  15. Sensitivity of Multiangle Imaging to the Optical and Microphysical Properties of Biomass Burning Aerosols

    NASA Technical Reports Server (NTRS)

    Chen, Wei-Ting; Kahn, Ralph A.; Nelson, David; Yau, Kevin; Seinfeld, John H.

    2008-01-01

    The treatment of biomass burning (BB) carbonaceous particles in the Multiangle Imaging SpectroRadiometer (MISR) Standard Aerosol Retrieval Algorithm is assessed, and algorithm refinements are suggested, based on a theoretical sensitivity analysis and comparisons with near-coincident AERONET measurements at representative BB sites. Over the natural ranges of BB aerosol microphysical and optical properties observed in past field campaigns, patterns of retrieved Aerosol Optical Depth (AOD), particle size, and single scattering albedo (SSA) are evaluated. On the basis of the theoretical analysis, assuming total column AOD of 0.2, over a dark, uniform surface, MISR can distinguish two to three groups in each of size and SSA, except when the assumed atmospheric particles are significantly absorbing (mid-visible SSA approx.0.84), or of medium sizes (mean radius approx.0.13 pin); sensitivity to absorbing, medium-large size particles increases considerably when the assumed column AOD is raised to 0.5. MISR Research Aerosol Retrievals confirm the theoretical results, based on coincident AERONET inversions under BB-dominated conditions. When BB is externally mixed with dust in the atmosphere, dust optical model and surface reflection uncertainties, along with spatial variability, contribute to differences between the Research Retrievals and AERONET. These results suggest specific refinements to the MISR Standard Aerosol Algorithm complement of component particles and mixtures. They also highlight the importance for satellite aerosol retrievals of surface reflectance characterization, with accuracies that can be difficult to achieve with coupled surface-aerosol algorithms in some higher AOD situations.

  16. Aerosol sampling for the August 7th, and 9th, 1985 SAGE II validation experiment

    NASA Technical Reports Server (NTRS)

    Oberbeck, V. R.; Pueschel, R.; Ferry, G.; Livingston, J.; Fong, W.

    1986-01-01

    Comparisons are made between aerosol size distributions measured by instrumented aircraft and the SAGE II sensor on the ERB satellite performing limb scans of the same atmospheric region. Particle radii ranging from 0.0001-200 microns were detected, with good agreement being obtained between the size distributions detected by impactors and probes at radii over 0.15 micron. The distributions were used to calculate aerosol extinction values which were compared with values from SAGE II scans.

  17. RACORO aerosol data processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elisabeth Andrews

    2011-10-31

    The RACORO aerosol data (cloud condensation nuclei (CCN), condensation nuclei (CN) and aerosol size distributions) need further processing to be useful for model evaluation (e.g., GCM droplet nucleation parameterizations) and other investigations. These tasks include: (1) Identification and flagging of 'splash' contaminated Twin Otter aerosol data. (2) Calculation of actual supersaturation (SS) values in the two CCN columns flown on the Twin Otter. (3) Interpolation of CCN spectra from SGP and Twin Otter to 0.2% SS. (4) Process data for spatial variability studies. (5) Provide calculated light scattering from measured aerosol size distributions. Below we first briefly describe the measurementsmore » and then describe the results of several data processing tasks that which have been completed, paving the way for the scientific analyses for which the campaign was designed. The end result of this research will be several aerosol data sets which can be used to achieve some of the goals of the RACORO mission including the enhanced understanding of cloud-aerosol interactions and improved cloud simulations in climate models.« less

  18. Simultaneous Retrieval of Effective Refractive Index and Density from Size Distribution and Light Scattering Data: Weakly-Absorbing Aerosol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kassianov, Evgueni I.; Barnard, James C.; Pekour, Mikhail S.

    2014-10-01

    We propose here a novel approach for retrieving in parallel the effective density and real refractive index of weakly absorbing aerosol from optical and size distribution measurements. Here we define “weakly absorbing” as aerosol single-scattering albedos that exceed 0.95 at 0.5 um.The required optical measurements are the scattering coefficient and the hemispheric backscatter fraction, obtained in this work from an integrating nephelometer. The required size spectra come from a Scanning Mobility Particle Sizer and an Aerodynamic Particle Sizer. The performance of this approach is first evaluated using a sensitivity study with synthetically generated but measurement-related inputs. The sensitivity study revealsmore » that the proposed approach is robust to random noise; additionally the uncertainties of the retrieval are almost linearly proportional to the measurement errors, and these uncertainties are smaller for the real refractive index than for the effective density. Next, actual measurements are used to evaluate our approach. These measurements include the optical, microphysical, and chemical properties of weakly absorbing aerosol which are representative of a variety of coastal summertime conditions observed during the Two-Column Aerosol Project (TCAP; http://campaign.arm.gov/tcap/). The evaluation includes calculating the root mean square error (RMSE) between the aerosol characteristics retrieved by our approach, and the same quantities calculated using the conventional volume mixing rule for chemical constituents. For dry conditions (defined in this work as relative humidity less than 55%) and sub-micron particles, a very good (RMSE~3%) and reasonable (RMSE~28%) agreement is obtained for the retrieved real refractive index (1.49±0.02) and effective density (1.68±0.21), respectively. Our approach permits discrimination between the retrieved aerosol characteristics of sub-micron and sub-10micron particles. The evaluation results also reveal that the

  19. Pollutants identification of ambient aerosols by two types of aerosol mass spectrometers over southeast coastal area, China.

    PubMed

    Yan, Jinpei; Chen, Liqi; Lin, Qi; Zhao, Shuhui; Li, Lei

    2018-02-01

    Two different aerosol mass spectrometers, Aerodyne Aerosol Mass Spectrometer (AMS) and Single Particle Aerosol Mass Spectrometer (SPAMS) were deployed to identify the aerosol pollutants over Xiamen, representing the coastal urban area. Five obvious processes were classified during the whole observation period. Organics and sulfate were the dominant components in ambient aerosols over Xiamen. Most of the particles were in the size range of 0.2-1.0μm, accounting for over 97% of the total particles measured by both instruments. Organics, as well as sulfate, measured by AMS were in good correlation with measured by SPAMS. However, high concentration of NH 4 + was obtained by AMS, while extremely low value of NH 4 + was detected by SPAMS. Contrarily, high particle number counts of NO 3 - and Cl - were given by SPAMS while low concentrations of NO 3 - and Cl - were measured by AMS. The variations of POA and SOA obtained from SPAMS during event 1 and event 2 were in accordance with the analysis of HOA and OOA given by AMS, suggesting that both of AMS and SPAMS can well identify the organic clusters of aerosol particles. Overestimate or underestimate of the aerosol sources and acidity would be present in some circumstances when the measurement results were used to analyze the aerosol properties, because of the detection loss of some species for both instruments. Copyright © 2017. Published by Elsevier B.V.

  20. Aerosol-Cloud Interactions during Tropical Deep Convection: Evidence for the Importance of Free Tropospheric Aerosols

    NASA Technical Reports Server (NTRS)

    Ackerman, A.; Jensen, E.; Stevens, D.; Wang, D.; Heymsfield, A.; Miloshevich, L.; Twohy, C.; Poellot, M.; VanReken, T.; Fridland, Ann

    2003-01-01

    NASA's 2002 CRYSTAL-FACE field experiment focused on the formation and evolution of tropical cirrus cloud systems in southern Florida. Multiple aircraft extensively sampled cumulonimbus dynamical and microphysical properties, as well as characterizing ambient aerosol populations both inside and outside the full depth of the convective column. On July 18, unique measurements were taken when a powerful updraft was traversed directly by aircraft, providing a window into the primary source region of cumulonimbus anvil crystals. Observations of the updraft, entered at approximately l0 km altitude and -34 C, indicated more than 200 cloud particles per mL at vertical velocities exceeding 20 m/s and the presence of significant condensation nuclei and liquid water within the core. In this work, aerosol and cloud phase observations are integrated by simulating the updraft conditions using a large-eddy resolving model with 3 explicit multiphase microphysics, including treatment of size-resolved aerosol fields, aerosol activation and freezing, and evaporation of cloud particles back to the aerosol phase. Simulations were initialized with observed thermodynamic and aerosol size distributions profiles and convection was driven by surface fluxes assimilated from the ARPS forecast model. Model results are consistent with the conclusions that most crystals are homogeneously frozen droplets and that entrained free tropospheric aerosols may contribute a significant fraction of the crystals. Thus most anvil crystals appear to be formed aloft in updraft cores, well above cloud base. These conclusions are supported by observations of hydrometeor size distribution made while traversing the dore, as well as aerosol and cloud particle size distributions generally observed by aircraft below 4km and crystal properties generally observed by aircraft above 12km.

  1. Radiative Effects of Aerosol in the Marine Environment: Tales from the Two-Column Aerosol Project

    NASA Astrophysics Data System (ADS)

    Berg, L. K.; Fast, J. D.; Barnard, J.; Chand, D.; Chapman, E. G.; Comstock, J. M.; Ferrare, R. A.; Flynn, C. J.; Hair, J. W.; Hostetler, C. A.; Hubbe, J.; Johnson, R.; Kassianov, E.; Kluzek, C.; Laskin, A.; Lee, Y.; Mei, F.; Michalsky, J. J.; Redemann, J.; Rogers, R. R.; Russell, P. B.; Sedlacek, A. J.; Schmid, B.; Shilling, J. E.; Shinozuka, Y.; Springston, S. R.; Tomlinson, J. M.; Wilson, J. M.; Zelenyuk, A.; Berkowitz, C. M.

    2013-12-01

    There is still uncertainty associated with the direct radiative forcing by atmospheric aerosol and its representation in atmospheric models. This is particularly true in marine environments near the coast where the aerosol loading is a function of both naturally occurring and anthropogenic aerosol. These regions are also subject to variable synoptic and thermally driven flows (land-sea breezes) that transport aerosol between the continental and marine environments. The situation is made more complicated due to seasonal changes in aerosol emissions. Given these differences in emissions, we expect significant differences in the aerosol intensive and extensive properties between summer and winter and data is needed to evaluate models over the wide range of conditions. To address this issue, the recently completed Two Column Aerosol Project (TCAP) was designed to measure the key aerosol parameters in two atmospheric columns, one located over Cape Cod, Massachusetts and another approximately 200 km from the coast over the Atlantic Ocean. Measurements included aerosol size distribution, chemical composition, optical properties and vertical distribution. Several aspects make TCAP unique, including the year-long deployment of a suite of surface-based instruments by the US Department of Energy's Atmospheric Radiation Measurement (ARM) Climate Research Facility and two aircraft intensive operations periods supported by the ARM Airborne Facility, one conducted in July 2012 and a second in February 2013. The presentation will include a discussion of the impact of the aerosol optical properties and their uncertainty on simulations of the radiation budget within the TCAP domain in the context of both single column and regional scale models. Data from TCAP will be used to highlight a number of important factors, including diurnal variation in aerosol optical depth measured at the surface site, systematic changes in aerosol optical properties (including scattering, absorption, and

  2. The effect of different spectral shape parameterizations of cloud droplet size distribution on first and second aerosol indirect effects in NACR CAM5 and evaluation with satellite data

    NASA Astrophysics Data System (ADS)

    Wang, M.; Peng, Y.; Xie, X.; Liu, Y.

    2017-12-01

    Aerosol cloud interaction continues to constitute one of the most significant uncertainties for anthropogenic climate perturbations. The parameterization of cloud droplet size distribution and autoconversion process from large scale cloud to rain can influence the estimation of first and second aerosol indirect effects in global climate models. We design a series of experiments focusing on the microphysical cloud scheme of NCAR CAM5 (Community Atmospheric Model Version 5) in transient historical run with realistic sea surface temperature and sea ice. We investigate the effect of three empirical, two semi-empirical and one analytical expressions for droplet size distribution on cloud properties and explore the statistical relationships between aerosol optical thickness (AOT) and simulated cloud variables, including cloud top droplet effective radius (CDER), cloud optical depth (COD), cloud water path (CWP). We also introduce the droplet spectral shape parameter into the autoconversion process to incorporate the effect of droplet size distribution on second aerosol indirect effect. Three satellite datasets (MODIS Terra/ MODIS Aqua/ AVHRR) are used to evaluate the simulated aerosol indirect effect from the model. Evident CDER decreasing with significant AOT increasing is found in the east coast of China to the North Pacific Ocean and the east coast of USA to the North Atlantic Ocean. Analytical and semi-empirical expressions for spectral shape parameterization show stronger first aerosol indirect effect but weaker second aerosol indirect effect than empirical expressions because of the narrower droplet size distribution.

  3. The Relationship between Aerosol Composition and Concentration and Visual Range on Barbados, West Indies: The Impact of African Dust

    NASA Astrophysics Data System (ADS)

    Huang, J.; Prospero, J.; Zhang, C.; Arimoto, R.

    2006-12-01

    Visual Range (VR) measured at Grantley Adams Airport on Barbados shows a very strong annual cycle with the minimum VR values occurring in June or July. This cycle closely matches the annual cycle of African dust concentrations measured in the trade winds at Barbados (13°15'N, 59°30'W) where observations first began in 1965. In winter, monthly mean VR was typically around 30 km or greater while in summer it frequently dipped below 20 km. This same clear signal is observed in the VR records from near-by islands where the same seasonal cycle of dust would be expected: St. Lucia, Martinique and Trinidad and Tobago. We examined the relationship between VR on Barbados and the concentrations of the three major aerosol constituents that we would expect to have the strongest influence on VR: mineral dust, sea salt, and non-sea- salt sulfate (nss-SO4^{=}). We used VR data for the period from 1973, when measurements first began, up to 2006. We found a large discrepancy between the observed VR at the airport and the VR derived from the Koschmieder equation using literature values for the optical properties of the aerosol components; this simple approach would require a much smaller constant than the commonly-used value, 3.912. We further explored the effects of particle size distribution and relative humidity. During boreal summer when VR is lowest, dust is the dominant supramicron aerosol component and it clearly is the major factor in controlling VR. Nonetheless the submicron fraction also has a comparable impact due to its significantly higher light scattering efficiency. During winter, when there is little or no dust, sea salt aerosol and sulfate are dominant. In this report we focus on the various factors that affect visibility on Barbados especially the role of aerosols dominated by supramicrometer particles. We also consider the effects of other factors such as wind speed and precipitation. Finally, we note that the close relationship between summertime VR and dust

  4. Photoacoustic and filter measurements related to aerosol light absorption during the Northern Front Range Air Quality Study (Colorado 1996/1997)

    NASA Astrophysics Data System (ADS)

    Moosmüller, H.; Arnott, W. P.; Rogers, C. F.; Chow, J. C.; Frazier, C. A.; Sherman, L. E.; Dietrich, D. L.

    1998-11-01

    A new photoacoustic instrument for the measurement of aerosol light absorption was collocated with conventional aerosol instrumentation during the 1996-1997 winter intensive monitoring period of the Northern Front Range Air Quality Study. Measurements of the light absorption efficiency for black carbon were 5 m2/g at 685 nm and 10 m2/g at 532 nm, and for elemental carbon, they were 3.6 m2/g at 685 nm. We show that these values together with previous photoacoustic measurements of aerosol light absorption shed some light on the wavelength dependence of absorption efficiency for carbonaceous aerosol in the visible and near-visible region. Integrating plate type filter measurements of aerosol light absorption result in far larger values than those measured with the photoacoustic instrument. We demonstrate that a recently published correction technique [Horvath, 1997] can yield improved agreement.

  5. MODIS Retrieval of Dust Aerosol

    NASA Technical Reports Server (NTRS)

    Remer, Lorraine A.; Kaufman, Yoram J.; Tanre, Didier

    2003-01-01

    The MODerate resolution Imaging Spectroradiometer (MODIS) currently aboard both the Terra and Aqua satellites produces a suite of products designed to characterize global aerosol distribution, optical thickness and particle size. Never before has a space-borne instrument been able to provide such detailed information, operationally, on a nearly global basis every day. The three years of Terra-MODIS data have been validated by comparing with co-located AERONET observations of aerosol optical thickness and derivations of aerosol size parameters. Some 8000 comparison points located at 133 AERONET sites around the globe show that the MODIS aerosol optical thickness retrievals are accurate to within the pre-launch expectations. However, the validation in regions dominated by desert dust is less accurate than in regions dominated by fine mode aerosol or background marine sea salt. The discrepancy is most apparent in retrievals of aerosol size parameters over ocean. In dust situations, the MODIS algorithm tends to under predict particle size because the reflectances at top of atmosphere measured by MODIS exhibit the stronger spectral signature expected by smaller particles. This pattern is consistent with the angular and spectral signature of non-spherical particles. All possible aerosol models in the MODIS Look-Up Tables were constructed from Mie theory, assuming a spherical shape. Using a combination of MODIS and AERONET observations, in regimes dominated by desert dust, we construct phase functions, empirically, with no assumption of particle shape. These new phase functions are introduced into the MODIS algorithm, in lieu of the original options for large dust-like particles. The results will be analyzed and examined.

  6. Volcanic Signatures in Estimates of Stratospheric Aerosol Size, Distribution Width, Surface Area, and Volume Deduced from Global Satellite-Based Observations

    NASA Technical Reports Server (NTRS)

    Bauman, J. J.; Russell, P. B.

    2000-01-01

    Volcanic signatures in the stratospheric aerosol layer are revealed by two independent techniques which retrieve aerosol information from global satellite-based observations of particulate extinction. Both techniques combine the 4-wavelength Stratospheric Aerosol and Gas Experiment (SAGE) II extinction measurements (0.385 <= lambda <= 1.02 microns) with the 7.96 micron and 12.82 micron extinction measurements from the Cryogenic Limb Array Etalon Spectrometer (CLAES) instrument. The algorithms use the SAGE II/CLAES composite extinction spectra in month-latitude-altitude bins to retrieve values and uncertainties of particle effective radius R(sub eff), surface area S, volume V and size distribution width sigma(sub R). The first technique is a multi-wavelength Look-Up-Table (LUT) algorithm which retrieves values and uncertainties of R(sub eff) by comparing ratios of extinctions from SAGE II and CLAES (e.g., E(sub lambda)/E(sub 1.02) to pre-computed extinction ratios which are based on a range of unimodal lognormal size distributions. The pre-computed ratios are presented as a function of R(sub eff) for a given sigma(sub g); thus the comparisons establish the range of R(sub eff) consistent with the measured spectra for that sigma(sub g). The fact that no solutions are found for certain sigma(sub g) values provides information on the acceptable range of sigma(sub g), which is found to evolve in response to volcanic injections and removal periods. Analogous comparisons using absolute extinction spectra and error bars establish the range of S and V. The second technique is a Parameter Search Technique (PST) which estimates R(sub eff) and sigma(sub g) within a month-latitude-altitude bin by minimizing the chi-squared values obtained by comparing the SAGE II/CLAES extinction spectra and error bars with spectra calculated by varying the lognormal fitting parameters: R(sub eff), sigma(sub g), and the total number of particles N(sub 0). For both techniques, possible biases in

  7. New Satellite Project Aerosol-UA: Remote Sensing of Aerosols in the Terrestrial Atmosphere

    NASA Technical Reports Server (NTRS)

    Milinevsky, G.; Yatskiv, Ya.; Degtyaryov, O.; Syniavskyi, I.; Mishchenko, Michael I.; Rosenbush, V.; Ivanov, Yu.; Makarov, A.; Bovchaliuk, A.; Danylevsky, V.; hide

    2016-01-01

    We discuss the development of the Ukrainian space project Aerosol-UA which has the following three main objectives: (1) to monitor the spatial distribution of key characteristics of terrestrial tropospheric and stratospheric aerosols; (2) to provide a comprehensive observational database enabling accurate quantitative estimates of the aerosol contribution to the energy budget of the climate system; and (3) quantify the contribution of anthropogenic aerosols to climate and ecological processes. The remote sensing concept of the project is based on precise orbital measurements of the intensity and polarization of sunlight scattered by the atmosphere and the surface with a scanning polarimeter accompanied by a wide-angle multispectral imager-polarimeter. Preparations have already been made for the development of the instrument suite for the Aerosol-UA project, in particular, of the multi-channel scanning polarimeter (ScanPol) designed for remote sensing studies of the global distribution of aerosol and cloud properties (such as particle size, morphology, and composition) in the terrestrial atmosphere by polarimetric and spectrophotometric measurements of the scattered sunlight in a wide range of wavelengths and viewing directions from which a scene location is observed. ScanPol is accompanied by multispectral wide-angle imager-polarimeter (MSIP) that serves to collect information on cloud conditions and Earths surface image. Various components of the polarimeter ScanPol have been prototyped, including the opto-mechanical and electronic assemblies and the scanning mirror controller. Preliminary synthetic data simulations for the retrieval of aerosol parameters over land surfaces have been performed using the Generalized Retrieval of Aerosol and Surface Properties (GRASP) algorithm. Methods for the validation of satellite data using ground-based observations of aerosol properties are also discussed. We assume that designing, building, and launching into orbit a multi

  8. Single-particle characterization of the High Arctic summertime aerosol

    NASA Astrophysics Data System (ADS)

    Sierau, B.; Chang, R. Y.-W.; Leck, C.; Paatero, J.; Lohmann, U.

    2014-01-01

    Single-particle mass spectrometric measurements were carried out in the High Arctic north of 80° during summer 2008. The campaign took place onboard the icebreaker Oden and was part of the Arctic Summer Cloud Ocean Study (ASCOS). The instrument deployed was an Aerosol Time-of-Flight Mass Spectrometer (ATOFMS) that provides information on the chemical composition of individual particles and their mixing state in real-time. Aerosols were sampled in the marine boundary layer at stations in the open ocean, in the marginal ice zone, and in the pack ice region. The largest fraction of particles detected for subsequent analysis in the size range of the ATOFMS between approximately 200 nm to 3000 nm in diameter showed mass spectrometric patterns indicating an internal mixing state and a biomass burning and/or biofuel source. The majority of these particles were connected to an air mass layer of elevated particle concentration mixed into the surface mixed layer from the upper part of the marine boundary layer. The second largest fraction was represented by sea salt particles. The chemical analysis of the over-ice sea salt aerosol revealed tracer compounds that reflect chemical aging of the particles during their long-range advection from the marginal ice zone, or open waters south thereof prior to detection at the ship. From our findings we conclude that long-range transport of particles is one source of aerosols in the High Arctic. To assess the importance of long-range particle sources for aerosol-cloud interactions over the inner Arctic in comparison to local and regional biogenic primary aerosol sources, the chemical composition of the detected particles was analyzed for indicators of marine biological origin. Only a~minor fraction showed chemical signatures of potentially ocean-derived primary particles of that kind. However, a chemical bias in the ATOFMS's detection capabilities observed during ASCOS might suggest a presence of a particle type of unknown composition

  9. Single-particle characterization of the high-Arctic summertime aerosol

    NASA Astrophysics Data System (ADS)

    Sierau, B.; Chang, R. Y.-W.; Leck, C.; Paatero, J.; Lohmann, U.

    2014-07-01

    Single-particle mass-spectrometric measurements were carried out in the high Arctic north of 80° during summer 2008. The campaign took place onboard the icebreaker Oden and was part of the Arctic Summer Cloud Ocean Study (ASCOS). The instrument deployed was an aerosol time-of-flight mass spectrometer (ATOFMS) that provides information on the chemical composition of individual particles and their mixing state in real time. Aerosols were sampled in the marine boundary layer at stations in the open ocean, in the marginal ice zone, and in the pack ice region. The largest fraction of particles detected for subsequent analysis in the size range of the ATOFMS between approximately 200 and 3000 nm in diameter showed mass-spectrometric patterns, indicating an internal mixing state and a biomass burning and/or biofuel source. The majority of these particles were connected to an air mass layer of elevated particle concentration mixed into the surface mixed layer from the upper part of the marine boundary layer. The second largest fraction was represented by sea salt particles. The chemical analysis of the over-ice sea salt aerosol revealed tracer compounds that reflect chemical aging of the particles during their long-range advection from the marginal ice zone, or open waters south thereof prior to detection at the ship. From our findings we conclude that long-range transport of particles is one source of aerosols in the high Arctic. To assess the importance of long-range particle sources for aerosol-cloud interactions over the inner Arctic in comparison to local and regional biogenic primary aerosol sources, the chemical composition of the detected particles was analyzed for indicators of marine biological origin. Only a minor fraction showed chemical signatures of potentially ocean-derived primary particles of that kind. However, a chemical bias in the ATOFMS's detection capabilities observed during ASCOS might suggest the presence of a particle type of unknown composition

  10. Photochemical aging of aerosol particles in different air masses arriving at Baengnyeong Island, Korea

    NASA Astrophysics Data System (ADS)

    Kang, Eunha; Lee, Meehye; Brune, William H.; Lee, Taehyoung; Park, Taehyun; Ahn, Joonyoung; Shang, Xiaona

    2018-05-01

    Atmospheric aerosol particles are a serious health risk, especially in regions like East Asia. We investigated the photochemical aging of ambient aerosols using a potential aerosol mass (PAM) reactor at Baengnyeong Island in the Yellow Sea during 4-12 August 2011. The size distributions and chemical compositions of aerosol particles were measured alternately every 6 min from the ambient air or through the highly oxidizing environment of a potential aerosol mass (PAM) reactor. Particle size and chemical composition were measured by using the combination of a scanning mobility particle sizer (SMPS) and a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). Inside the PAM reactor, O3 and OH levels were equivalent to 4.6 days of integrated OH exposure at typical atmospheric conditions. Two types of air masses were distinguished on the basis of the chemical composition and the degree of aging: air transported from China, which was more aged with a higher sulfate concentration and O : C ratio, and the air transported across the Korean Peninsula, which was less aged with more organics than sulfate and a lower O : C ratio. For both episodes, the particulate sulfate mass concentration increased in the 200-400 nm size range when sampled through the PAM reactor. A decrease in organics was responsible for the loss of mass concentration in 100-200 nm particles when sampled through the PAM reactor for the organics-dominated episode. This loss was especially evident for the m/z 43 component, which represents less oxidized organics. The m/z 44 component, which represents further oxidized organics, increased with a shift toward larger sizes for both episodes. It is not possible to quantify the maximum possible organic mass concentration for either episode because only one OH exposure of 4.6 days was used, but it is clear that SO2 was a primary precursor of secondary aerosol in northeast Asia, especially during long-range transport from China. In addition

  11. Modeling of submicrometer aerosol penetration through sintered granular membrane filters.

    PubMed

    Marre, Sonia; Palmeri, John; Larbot, André; Bertrand, Marielle

    2004-06-01

    We present a deep-bed aerosol filtration model that can be used to estimate the efficiency of sintered granular membrane filters in the region of the most penetrating particle size. In this region the capture of submicrometer aerosols, much smaller than the filter pore size, takes place mainly via Brownian diffusion and direct interception acting in synergy. By modeling the disordered sintered grain packing of such filters as a simple cubic lattice, and mapping the corresponding 3D connected pore volume onto a discrete cylindrical pore network, the efficiency of a granular filter can be estimated, using new analytical results for the efficiency of cylindrical pores. This model for aerosol penetration in sintered granular filters includes flow slip and the kinetics of particle capture by the pore surface. With a unique choice for two parameters, namely the structural tortuosity and effective kinetic coefficient of particle adsorption, this semiempirical model can account for the experimental efficiency of a new class of "high-efficiency particulate air" ceramic membrane filters as a function of particle size over a wide range of filter thickness and texture (pore size and porosity) and operating conditions (face velocity).

  12. Aerosol feed direct methanol fuel cell

    NASA Technical Reports Server (NTRS)

    Kindler, Andrew (Inventor); Narayanan, Sekharipuram R. (Inventor); Valdez, Thomas I. (Inventor)

    2002-01-01

    Improvements to fuel cells include introduction of the fuel as an aerosol of liquid fuel droplets suspended in a gas. The particle size of the liquid fuel droplets may be controlled for optimal fuel cell performance by selection of different aerosol generators or by separating droplets based upon size using a particle size conditioner.

  13. Chemical Characterization and Source Apportionment of Size Fractionated Atmospheric Aerosols, and, Evaluating Student Attitudes and Learning in Large Lecture General Chemistry Classes

    NASA Astrophysics Data System (ADS)

    Allen, Gregory Harold

    Chemical speciation and source apportionment of size fractionated atmospheric aerosols were investigated using laser desorption time-of-flight mass spectrometry (LD TOF-MS) and source apportionment was carried out using carbon-14 accelerator mass spectrometry (14C AMS). Sample collection was carried out using the Davis Rotating-drum Unit for Monitoring impact analyzer in Davis, Colfax, and Yosemite, CA. Ambient atmospheric aerosols collected during the winter of 2010/11 and 2011/12 showed a significant difference in the types of compounds found in the small and large sized particles. The difference was due to the increase number of oxidized carbon species that were found in the small particles size ranges, but not in the large particles size ranges. Overall, the ambient atmospheric aerosols collected during the winter in Davis, CA had and average fraction modern of F14C = 0.753 +/- 0.006, indicating that the majority of the size fractionated particles originated from biogenic sources. Samples collected during the King Fire in Colfax, CA were used to determine the contribution of biomass burning (wildfire) aerosols. Factor analysis was used to reduce the ions found in the LD TOF-MS analysis of the King Fire samples. The final factor analysis generated a total of four factors that explained an overall 83% of the variance in the data set. Two of the factors correlated heavily with increased smoke events during the sample period. The increased smoke events produced a large number of highly oxidized organic aerosols (OOA2) and aromatic compounds that are indicative of biomass burning organic aerosols (WBOA). The signal intensities of the factors generated in the King Fire data were investigated in samples collected in Yosemite and Davis, CA to look at the impact of biomass burning on ambient atmospheric aerosols. In both comparison sample collections the OOA2 and WBOA factors both increased during biomass burning events located near the sampling sites. The correlation

  14. Aerosol nucleation and growth in the TTL, due to tropical convection, during the ACTIVE campaign

    NASA Astrophysics Data System (ADS)

    Waddicor, D.; Vaughan, G.; Choularton, T.

    2009-04-01

    The Aerosol and Chemical Transport In tropical convection (ACTIVE) campaign took place between October 2005 and February 2006. This investigation involved the sampling of deep convective storms that occur in the Tropics; the campaign was based in Darwin, Northern Territory, Australia - the latter half of the campaign coincided with the monsoon season. A range of scientific equipment was used to sample the inflow and outflow air from these storms; of particular importance were the NERC Dornier (low-level) and ARA Egrett (high-level outflow) aircraft. The Dornier held a range of aerosol, particle and chemical detectors for the purpose of analysing the planetary boundary layer (PBL), in the vicinity of tropical convection. The Egrett contained detection instrumentation for a range of sizes of aerosol and cloud particles (2 Condensation Particle Counters (CPC), CAPS, CIP, CPI) in the storm outflow. This allowed a quantifiable measurement to be made of the effect of deep tropical convection on the aerosol population in the Tropical Tropopause Layer (TTL). The ACTIVE campaign found that there were large numbers of aerosol particles in the 10 - 100 nm (up to 25,000 /cm3 STP) and 100 - 1000 nm (up to 600 /cm3) size ranges. These values, in many instances, surpassed those found in the PBL. The higher levels of aerosol found in the TTL compared to the PBL could indicate that aerosol nucleation was occurring in the TTL as a direct result of convective activity. Furthermore, the Egrett aircraft found distinct boundaries between the high levels of aerosol, which were found in cloud free regions, and very low numbers of aerosol, which were found in the cloudy regions (storm anvil). The air masses were determined, from back trajectories, to have been through convective uplift and were formerly part of the anvil cloud. The cloudy regions would have contained high levels of entrapped precursor gases. Reduced nucleation and cloud particle scavenging of aerosol and gases would give a

  15. Lidar characterizations of atmospheric aerosols and clouds

    NASA Astrophysics Data System (ADS)

    Ferrare, R. A.; Hostetler, C. A.; Hair, J. W.; Burton, S. P.

    2017-12-01

    Knowledge of the vertical profile, composition, concentration, and size distribution of aerosols is required to quantify the impacts of aerosols on human health, global and regional climate, clouds and precipitation. In particular, radiative forcing due to anthropogenic aerosols is the most uncertain part of anthropogenic radiative forcing, with aerosol-cloud interactions (ACI) as the largest source of uncertainty in current estimates of global radiative forcing. Improving aerosol transport model predictions of the vertical profile of aerosol optical and microphysical characteristics is crucial for improving assessments of aerosol radiative forcing. Understanding how aerosols and clouds interact is essential for investigating the aerosol indirect effect and ACI. Through its ability to provide vertical profiles of aerosol and cloud distributions as well as important information regarding the optical and physical properties of aerosols and clouds, lidar is a crucial tool for addressing these science questions. This presentation describes how surface, airborne, and satellite lidar measurements have been used to address these questions, and in particular how High Spectral Resolution Lidar (HSRL) measurements provide profiles of aerosol properties (backscatter, extinction, depolarization, concentration, size) important for characterizing radiative forcing. By providing a direct measurement of aerosol extinction, HSRL provides more accurate aerosol measurement profiles and more accurate constraints for models than standard retrievals from elastic backscatter lidar, which loses accuracy and precision at lower altitudes due to attenuation from overlying layers. Information regarding particle size and abundance from advanced lidar retrievals provides better proxies for cloud-condensation-nuclei (CCN), which are required for assessing aerosol-cloud interactions. When combined with data from other sensors, advanced lidar measurements can provide information on aerosol and

  16. The MAC aerosol climatology

    NASA Astrophysics Data System (ADS)

    Kinne, S.

    2015-12-01

    Aerosol is highly diverse in space and time. And many different aerosol optical properties are needed (consistent to each other) for the determination of radiative effects. To sidestep a complex (and uncertain) aerosol treatment (emission to mass to optics) a monthly gridded climatology for aerosol properties has been developed. This MPI Aerosol Climatology (MAC) is strongly tied to observational statistics for aerosol column optical properties by AERONET (over land) and by MAN (over oceans). To fill spatial gaps, to address decadal change and to address vertical variability, these sparsely distributed local data are extended with central data of an ensemble of output from global models with complex aerosol modules. This data merging in performed for aerosol column amount (AOD), for aerosol size (AOD,fine) and for aerosol absorption (AAOD). The resulting MAC aerosol climatology is an example for the combination of high quality local observations with spatial, temporal and vertical context from model simulations.

  17. Aerosol concentration measurements and correlations with air mass trajectories at the Pierre Auger Observatory

    NASA Astrophysics Data System (ADS)

    Micheletti, M. I.; Louedec, K.; Freire, M.; Vitale, P.; Piacentini, R. D.

    2017-06-01

    Aerosols play an important role in radiative transfer processes involved in different fields of study. In particular, their influence is crucial in the attenuation of light at astronomical and astrophysical observatories, and has to be taken into account in light transfer models employed to reconstruct the signals. The Andean Argentinean region is increasingly being considered as a good candidate to host such facilities, as well as the ones for solar-energy resources, and an adequate knowledge of aerosols characteristics there is needed, but it is not always possible due to the vast area involved and the scarce atmospheric data at ground. The aim of this work is to find correlations between aerosol data and particle trajectories that can give an insight into the origin and behaviour of aerosols in this zone and can be employed in situations in which one does not have local aerosol measurements. For this purpose, an aerosol spectrometer and dust monitor (Grimm 1.109) was installed at the Pierre Auger Observatory of ultra-high-energy cosmic rays, to record aerosol concentrations in different size intervals, at surface level. These measurements are analysed and correlated with air mass trajectories obtained from HYSPLIT (NOAA) model calculations. High aerosol concentrations are registered predominantly when air masses have travelled mostly over continental areas, mainly from the NE direction, while low aerosol concentrations are found in correspondence with air masses coming from the Pacific Ocean, from the NW direction. Different size distribution patterns were found for the aerosols depending on their origin: marine or continental. This work shows for the first time the size distribution of aerosols registered at the Pierre Auger Observatory. The correlations found between mass and particle concentrations (total and for different size ranges) and HYSPLIT air mass trajectories, confirm that the latter can be employed as a useful tool to infer the sources, evolution

  18. Characterization of aerosol particles at the forested site in Lithuania

    NASA Astrophysics Data System (ADS)

    Rimselyte, I.; Garbaras, A.; Kvietkus, K.; Remeikis, V.

    2009-04-01

    Atmospheric particulate matter (PM), especially fine particles (particles with aerodynamic diameter less than 1 m, PM1), has been found to play an important role in global climate change, air quality, and human health. The continuous study of aerosol parameters is therefore imperative for better understanding the environmental effects of the atmospheric particles, as well as their sources, formation and transformation processes. The particle size distribution is particularly important, since this physical parameter determines the mass and number density, lifetime and atmospheric transport, or optical scattering behavior of the particles in the atmosphere (Jaenicke, 1998). Over the years several efforts have been made to improve the knowledge about the chemical composition of atmospheric particles as a function of size (Samara and Voutsa, 2005) and to characterize the relative contribution of different components to the fine particulate matter. It is well established that organic materials constitute a highly variable fraction of the atmospheric aerosol. This fraction is predominantly found in the fine size mode in concentrations ranging from 10 to 70% of the total dry fine particle mass (Middlebrook et al., 1998). Although organic compounds are major components of the fine particles, the composition, formation mechanism of organic aerosols are not well understood. This is because particulate organic matter is part of a complex atmospheric system with hundreds of different compounds, both natural and anthropogenic, covering a wide range of chemical properties. The aim of this study was to characterize the forest PM1, and investigate effects of air mass transport on the aerosol size distribution and chemical composition, estimate and provide insights into the sources and characteristics of carbonaceous aerosols through analysis ^13C/12C isotopic ratio as a function of the aerosol particles size. The measurements were performed at the Rugšteliškis integrated

  19. Improved solid aerosol generator

    DOEpatents

    Prescott, D.S.; Schober, R.K.; Beller, J.

    1988-07-19

    An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates. 2 figs.

  20. Uncertainty in Predicting CCN Activity of Aged and Primary Aerosols

    NASA Astrophysics Data System (ADS)

    Zhang, Fang; Wang, Yuying; Peng, Jianfei; Ren, Jingye; Collins, Don; Zhang, Renyi; Sun, Yele; Yang, Xin; Li, Zhanqing

    2017-11-01

    Understanding particle CCN activity in diverse atmospheres is crucial when evaluating aerosol indirect effects. Here aerosols measured at three sites in China were categorized as different types for attributing uncertainties in CCN prediction in terms of a comprehensive data set including size-resolved CCN activity, size-resolved hygroscopic growth factor, and chemical composition. We show that CCN activity for aged aerosols is unexpectedly underestimated 22% at a supersaturation (S) of 0.2% when using κ-Kohler theory with an assumption of an internal mixture with measured bulk composition that has typically resulted in an overestimate of the CCN activity in previous studies. We conclude that the underestimation stems from neglect of the effect of aging/coating on particle hygroscopicity, which is not considered properly in most current models. This effect enhanced the hygroscopicity parameter (κ) by between 11% (polluted conditions) and 30% (clean days), as indicated in diurnal cycles of κ based on measurements by different instruments. In the urban Beijing atmosphere heavily influenced by fresh emissions, the CCN activity was overestimated by 45% at S = 0.2%, likely because of inaccurate assumptions of particle mixing state and because of variability of chemical composition over the particle size range. For both fresh and aged aerosols, CCN prediction exhibits very limited sensitivity to κSOA, implying a critical role of other factors like mixing of aerosol components within and between particles in regulating CCN activity. Our findings could help improving CCN parameterization in climate models.

  1. A study on the relationship between mass concentrations, chemistry and number size distribution of urban fine aerosols in Milan, Barcelona and London

    NASA Astrophysics Data System (ADS)

    Rodríguez, S.; van Dingenen, R.; Putaud, J.-P.; Dell'Acqua, A.; Pey, J.; Querol, X.; Alastuey, A.; Chenery, S.; Ho, K.-F.; Harrison, R.; Tardivo, R.; Scarnato, B.; Gemelli, V.

    2007-05-01

    A physicochemical characterization, including aerosol number size distribution, chemical composition and mass concentrations, of the urban fine aerosol captured in MILAN, BARCELONA and LONDON is presented in this article. The objective is to obtain a comprehensive picture of the microphysical processes involved in aerosol dynamics during the: 1) regular evolution of the urban aerosol (daily, weekly and seasonal basis) and in the day-to-day variations (from clean-air to pollution-events), and 2) the link between "aerosol chemistry and mass concentrations" with the "number size distribution". The mass concentrations of the fine PM2.5 aerosol exhibit a high correlation with the number concentration of >100 nm particles N>100 (nm) ("accumulation mode particles") which only account for <20% of the total number concentration N of fine aerosols; but do not correlate with the number of <100 nm particles ("ultrafine particles"), which accounts for >80% of fine particles number concentration. Organic matter and black-carbon are the only aerosol components showing a significant correlation with the ultrafine particles, attributed to vehicles exhausts emissions; whereas ammonium-nitrate, ammonium-sulphate and also organic matter and black-carbon correlate with N>100 (nm) and attributed to condensation mechanisms, other particle growth processes and some primary emissions. Time series of the aerosol DpN diameter (dN/dlogD mode), mass PM2.5 concentrations and number N>100 (nm) concentrations exhibit correlated day-to-day variations, which point to a significant involvement of condensation of semi-volatile compounds during urban pollution events. This agrees with the observation that ammonium-nitrate is the component exhibiting the highest increases from mid-to-high pollution episodes, when the highest DpN increases are observed. The results indicates that "fine PM2.5 particles urban pollution events" tend to occur when condensation processes have made particles grow large enough

  2. Current Status of Aerosol Retrievals from TOMS

    NASA Technical Reports Server (NTRS)

    Torres, O.; Herman, J. R.; Bhartia, P. K.; Ginoux, P.

    1999-01-01

    Properties of atmospheric aerosols over all land and water surfaces are retrieved from TOMS measurements of backscattered radiances. The TOMS technique, uses observations at two wavelengths. In the near ultraviolet (330-380 nm) range, where the effects of gaseous absorption are negligible. The retrieved properties are optical depth and a measure of aerosol absorptivity, generally expressed as single scattering albedo. The main sources of error of the TOMS aerosol products are sub-pixel cloud contamination and uncertainty on the height above the surface of UV-absorbing aerosol layers. The first error source is related to the large footprint (50 x 50 km at nadir) of the sensor, and the lack of detection capability of sub-pixel size clouds. The uncertainty associated with the height of the absorbing aerosol layers, on the other hand, is related to the pressure dependence of the molecular scattering process, which is the basis of the near-UV method of absorbing aerosol detection. The detection of non-absorbing aerosols is not sensitive to aerosol layer height. We will report on the ongoing work to overcome both of these difficulties. Coincident measurements of high spatial resolution thermal infrared radiances are used to address the cloud contamination issue. Mostly clear scenes for aerosol retrieval are selected by examining the spatial homogeneity of the IR radiance measurements within a TOMS pixel. The approach to reduce the uncertainty associated with the height of the aerosol layer by making use of a chemical transport model will also be discussed.

  3. Selected water-soluble organic compounds found in size-resolved aerosols collected from urban, mountain and marine atmospheres over East Asia

    NASA Astrophysics Data System (ADS)

    Wang, Gehui; Kawamura, Kimitaka; Xie, Mingjie; Hu, Shuyuan; Li, Jianjun; Zhou, Bianhong; Cao, Junji; An, Zhisheng

    2011-07-01

    Primary (i.e. sugars and sugar-alcohols) and secondary (i.e. carboxylic acids) water-soluble organic compounds (WSOCs) in size-segregated aerosols from the urban and mountain atmosphere of China and from the marine atmosphere in the outflow region of East Asia were characterized on a molecular level. Levoglucosan is the most abundant compound among the quantified WSOCs in the urban and mountain atmosphere, whose concentration at the urban site was 1-2 orders of magnitude higher than that at the mountain and marine sites. In contrast, malic, succinic and phthalic acids were dominant among the measured WSOCs at the marine site. In the urban air, sugars except levoglucosan gave a bimodal size distribution with a large peak in fine range (<2.1 μm) and a small peak in coarse range (≥2.1 μm) during winter, being opposite to those in spring. In contrast, these WSOCs at the mountain and marine sites dominated in the coarse range but diminished and even disappeared in the fine range. Geometric mean diameters (GMDs) of the measured WSOCs in the fine mode at the urban site were larger in winter than in spring. Levoglucosan and carboxylic acids except for azelaic and benzoic acids showed a larger GMD in the coarse mode at the marine site probably due to an increased hygroscopic growth.

  4. Dicarboxylic acids, oxoacids, benzoic acid, α-dicarbonyls, WSOC, OC, and ions in spring aerosols from Okinawa Island in the western North Pacific Rim: size distributions and formation processes

    NASA Astrophysics Data System (ADS)

    Deshmukh, D. K.; Kawamura, K.; Lazaar, M.; Kunwar, B.; Boreddy, S. K. R.

    2015-09-01

    Size-segregated aerosols (9-stages from < 0.43 to > 11.3 μm in diameter) were collected at Cape Hedo, Okinawa in spring 2008 and analyzed for water-soluble diacids (C2-C12), ω-oxoacids (ωC2-ωC9), pyruvic acid, benzoic acid and α-dicarbonyls (C2-C3) as well as water-soluble organic carbon (WSOC), organic carbon (OC) and major ions. In all the size-segregated aerosols, oxalic acid (C2) was found as the most abundant species followed by malonic and succinic acids whereas glyoxylic acid (ωC2) was the dominant oxoacid and glyoxal (Gly) was more abundant than methylglyoxal. Diacids (C2-C5), ωC2 and Gly as well as WSOC and OC peaked at 0.65-1.1 μm in fine mode whereas azelaic (C9) and 9-oxononanoic (ωC9) acids peaked at 3.3-4.7 μm in coarse mode. Sulfate and ammonium are enriched in fine mode whereas sodium and chloride are in coarse mode. These results imply that water-soluble species in the marine aerosols could act as cloud condensation nuclei (CCN) to develop the cloud cover over the western North Pacific Rim. The organic species are likely produced by a combination of gas-phase photooxidation, and aerosol-phase or in-cloud processing during long-range transport. The coarse mode peaks of malonic and succinic acids were obtained in the samples with marine air masses, suggesting that they may be associated with the reaction on sea salt particles. Bimodal size distributions of longer-chain diacid (C9) and oxoacid (ωC9) with a major peak in the coarse mode suggest their production by photooxidation of biogenic unsaturated fatty acids via heterogeneous reactions on sea salt particles.

  5. Light extinction by aerosols during summer air pollution

    NASA Technical Reports Server (NTRS)

    Kaufman, Y. J.; Fraser, R. S.

    1983-01-01

    In order to utilize satellite measurements of optical thickness over land for estimating aerosol properties during air pollution episodes, the optical thickness was measured from the surface and investigated. Aerosol optical thicknesses have been derived from solar transmission measurements in eight spectral bands within the band lambda 440-870 nm during the summers of 1980 and 1981 near Washington, DC. The optical thicknesses for the eight bands are strongly correlated. It was found that first eigenvalue of the covariance matrix of all observations accounts for 99 percent of the trace of the matrix. Since the measured aerosol optical thickness was closely proportional to the wavelength raised to a power, the aerosol size distribution derived from it is proportional to the diameter (d) raised to a power for the range of diameters between 0.1 to 1.0 micron. This power is insensitive to the total optical thickness. Changes in the aerosol optical thickness depend on several aerosol parameters, but it is difficult to identify the dominant one. The effects of relative humidity and accumulation mode concentration on the optical thickness are analyzed theoretically, and compared with the measurements.

  6. Water-soluble part of the aerosol in the dust storm season—evidence of the mixing between mineral and pollution aerosols

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Zhuang, Guoshun; Sun, Yele; An, Zhisheng

    Six dust episodes were observed in Beijing in 2002. Both TSP (Total Suspended Particulate, particle size smaller than 100 μm) and PM 2.5 (particle size smaller than 2.5 μm) aerosol samples in these episodes were collected and their characteristics of water-soluble part were elaborated in demonstrating the mixing of mineral aerosol with pollution aerosol in the long-range transport of Asia aerosols with various sources and different paths. The dust storm peaked on 20 March, in which the highest concentrations of TSP and PM 2.5 were 10.9 and 1.4 mg m -3, respectively. The mass fraction of water-soluble part generally decreased with the increase of dust intensity. SO 42- contributed 38-70% to the total anions and Ca 2+ contributed 37-80% to the total cations, indicating that SO 42- and Ca 2+ were the most abundant anion and cation, respectively. The major ions of the water-soluble parts could be classified into three groups, i.e., the crust ions (Ca 2+, Na +, and Mg 2+), the pollution-crust ions (SO 42-, Cl -, and K +), and the pollution ions (NO 3-, NH 4+, NO 2-, and F -). Crust ions and pollution ions were the main ion fractions in super dust and non-dust days, respectively, whereas the pollution-crust ions were the main ion fractions in both dust days of various dust intensity and non-dust days, which demonstrated clearly that the mixing between mineral and pollution aerosols was ubiquitous during the dust seasons (even in the super dust storm days) although it was more obvious in those normal and weak dust episodes. The main chemical species of the water-soluble part of the aerosols were CaCO 3 in the super dust storm, CaSO 4 in the normal and the weak dust events, and NH 4NO 3 in the non-dust event days. The secondary transformation of sulfate and nitrate occurred on dust particles both during and after dust days provided the strong evidence of the mixing between mineral and pollution aerosols during the long-range transport of dust.

  7. IN SITU MEASUREMENTS OF THE SIZE AND DENSITY OF TITAN AEROSOL ANALOGS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoerst, S. M.; Tolbert, M. A, E-mail: sarah.horst@colorado.edu

    2013-06-10

    The organic haze produced from complex CH{sub 4}/N{sub 2} chemistry in the atmosphere of Titan plays an important role in processes that occur in the atmosphere and on its surface. The haze particles act as condensation nuclei and are therefore involved in Titan's methane hydrological cycle. They also may behave like sediment on Titan's surface and participate in both fluvial and aeolian processes. Models that seek to understand these processes require information about the physical properties of the particles including their size and density. Although measurements obtained by Cassini-Huygens have placed constraints on the size of the haze particles, theirmore » densities remain unknown. We have conducted a series of Titan atmosphere simulation experiments and measured the size, number density, and particle density of Titan aerosol analogs, or tholins, for CH{sub 4} concentrations from 0.01% to 10% using two different energy sources, spark discharge and UV. We find that the densities currently in use by many Titan models are higher than the measured densities of our tholins.« less

  8. Aerosol measurements during COPE: composition, size, and sources of CCN and INPs at the interface between marine and terrestrial influences

    NASA Astrophysics Data System (ADS)

    Taylor, Jonathan W.; Choularton, Thomas W.; Blyth, Alan M.; Flynn, Michael J.; Williams, Paul I.; Young, Gillian; Bower, Keith N.; Crosier, Jonathan; Gallagher, Martin W.; Dorsey, James R.; Liu, Zixia; Rosenberg, Philip D.

    2016-09-01

    Heavy rainfall from convective clouds can lead to devastating flash flooding, and observations of aerosols and clouds are required to improve cloud parameterisations used in precipitation forecasts. We present measurements of boundary layer aerosol concentration, size, and composition from a series of research flights performed over the southwest peninsula of the UK during the COnvective Precipitation Experiment (COPE) of summer 2013. We place emphasis on periods of southwesterly winds, which locally are most conducive to convective cloud formation, when marine air from the Atlantic reached the peninsula. Accumulation-mode aerosol mass loadings were typically 2-3 µg m-3 (corrected to standard cubic metres at 1013.25 hPa and 273.15 K), the majority of which was sulfuric acid over the sea, or ammonium sulfate inland, as terrestrial ammonia sources neutralised the aerosol. The cloud condensation nuclei (CCN) concentrations in these conditions were ˜ 150-280 cm-3 at 0.1 % and 400-500 cm-3 at 0.9 % supersaturation (SST), which are in good agreement with previous Atlantic measurements, and the cloud drop concentrations at cloud base ranged from 100 to 500 cm-3. The concentration of CCN at 0.1 % SST was well correlated with non-sea-salt sulfate, meaning marine sulfate formation was likely the main source of CCN. Marine organic aerosol (OA) had a similar mass spectrum to previous measurements of sea spray OA and was poorly correlated with CCN. In one case study that was significantly different to the rest, polluted anthropogenic emissions from the southern and central UK advected to the peninsula, with significant enhancements of OA, ammonium nitrate and sulfate, and black carbon. The CCN concentrations here were around 6 times higher than in the clean cases, and the cloud drop number concentrations were 3-4 times higher. Sources of ice-nucleating particles (INPs) were assessed by comparing different parameterisations used to predict INP concentrations, using measured

  9. In Situ Aerosol Detector

    NASA Technical Reports Server (NTRS)

    Vakhtin, Andrei; Krasnoperov, Lev

    2011-01-01

    An affordable technology designed to facilitate extensive global atmospheric aerosol measurements has been developed. This lightweight instrument is compatible with newly developed platforms such as tethered balloons, blimps, kites, and even disposable instruments such as dropsondes. This technology is based on detection of light scattered by aerosol particles where an optical layout is used to enhance the performance of the laboratory prototype instrument, which allows detection of smaller aerosol particles and improves the accuracy of aerosol particle size measurement. It has been determined that using focused illumination geometry without any apertures is advantageous over using the originally proposed collimated beam/slit geometry (that is supposed to produce uniform illumination over the beam cross-section). The illumination source is used more efficiently, which allows detection of smaller aerosol particles. Second, the obtained integral scattered light intensity measured for the particle can be corrected for the beam intensity profile inhomogeneity based on the measured beam intensity profile and measured particle location. The particle location (coordinates) in the illuminated sample volume is determined based on the information contained in the image frame. The procedure considerably improves the accuracy of determination of the aerosol particle size.

  10. Size distributions of n-alkanes, fatty acids and fatty alcohols in springtime aerosols from New Delhi, India.

    PubMed

    Kang, Mingjie; Fu, Pingqing; Aggarwal, Shankar G; Kumar, Sudhanshu; Zhao, Ye; Sun, Yele; Wang, Zifa

    2016-12-01

    Size-segregated aerosol samples were collected in New Delhi, India from March 6 to April 6, 2012. Homologous series of n-alkanes (C 19 C 33 ), n-fatty acids (C 12 C 30 ) and n-alcohols (C 16 C 32 ) were measured using gas chromatography/mass spectrometry. Results showed a high-variation in the concentrations and size distributions of these chemicals during non-haze, haze, and dust storm days. In general, n-alkanes, n-fatty acids and n-alcohols presented a bimodal distribution, peaking at 0.7-1.1 μm and 4.7-5.8 μm for fine modes and coarse modes, respectively. Overall, the particulate matter mainly existed in the coarse mode (≥2.1 μm), accounting for 64.8-68.5% of total aerosol mass. During the haze period, large-scale biomass burning emitted substantial fine hydrophilic smoke particles into the atmosphere, which leads to relatively larger GMDs (geometric mean diameter) of n-alkanes in the fine mode than those during the dust storms and non-haze periods. Additionally, the springtime dust storms transported a large quantity of coarse particles from surrounding or local areas into the atmosphere, enhancing organic aerosol concentration and inducing a remarkable size shift towards the coarse mode, which are consistent with the larger GMDs of most organic compounds especially in total and coarse modes. Our results suggest that fossil fuel combustion (e.g., vehicular and industrial exhaust), biomass burning, residential cooking, and microbial activities could be the major sources of lipid compounds in the urban atmosphere in New Delhi. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Range size and extinction risk in forest birds.

    PubMed

    Harris, Grant; Pimm, Stuart L

    2008-02-01

    Small geographical range size is the single best predictor of threat of extinction in terrestrial species. Knowing how small a species' range has to be before authorities consider it threatened with extinction would allow prediction of a species' risk from continued deforestation and warming climates and provide a baseline for conservation and management strategies aspiring to mitigate these threats. To determine the threshold at which forest-dependent bird species become threatened with extinction, we compared the range sizes of threatened and nonthreatened species. In doing so, we present a simple, repeatable, and practical protocol to quantify range size. We started with species' ranges published in field guides or comparable sources. We then trimmed these ranges, that is, we included only those parts of the ranges that met the species' requirements of elevation and types of forest preferred. Finally, we further trimmed the ranges to the amount of forest cover that remains. This protocol generated an estimate of the remaining suitable range for each species. We compared these range estimates with those from the World Conservation Union Red List. We used the smaller of the two estimates to determine the threshold, 11,000 km2, below which birds should be considered threatened. Species considered threatened that have larger ranges than this qualified under other (nonspatial) red list criteria. We identified a suite of species (18) that have not yet qualified as threatened but that have perilously small ranges--about 11% of the nonthreatened birds we analyzed. These birds are likely at risk of extinction and reevaluation of their status is urgently needed.

  12. Year-round records of bulk and size-segregated aerosol composition in central Antarctica (Concordia site) - Part 1: Fractionation of sea-salt particles

    NASA Astrophysics Data System (ADS)

    Legrand, Michel; Preunkert, Susanne; Wolff, Eric; Weller, Rolf; Jourdain, Bruno; Wagenbach, Dietmar

    2017-11-01

    Multiple year-round records of bulk and size-segregated composition of aerosol were obtained at the inland site of Concordia located at Dome C in East Antarctica. In parallel, sampling of acidic gases on denuder tubes was carried out to quantify the concentrations of HCl and HNO3 present in the gas phase. These time series are used to examine aerosol present over central Antarctica in terms of chloride depletion relative to sodium with respect to freshly emitted sea-salt aerosol as well as depletion of sulfate relative to sodium with respect to the composition of seawater. A depletion of chloride relative to sodium is observed over most of the year, reaching a maximum of ˜ 20 ng m-3 in spring when there are still large sea-salt amounts and acidic components start to recover. The role of acidic sulfur aerosol and nitric acid in replacing chloride from sea-salt particles is here discussed. HCl is found to be around twice more abundant than the amount of chloride lost by sea-salt aerosol, suggesting that either HCl is more efficiently transported to Concordia than sea-salt aerosol or re-emission from the snow pack over the Antarctic plateau represents an additional significant HCl source. The size-segregated composition of aerosol collected in winter (from 2006 to 2011) indicates a mean sulfate to sodium ratio of sea-salt aerosol present over central Antarctica of 0.16 ± 0.05, suggesting that, on average, the sea-ice and open-ocean emissions equally contribute to sea-salt aerosol load of the inland Antarctic atmosphere. The temporal variability of the sulfate depletion relative to sodium was examined at the light of air mass backward trajectories, showing an overall decreasing trend of the ratio (i.e., a stronger sulfate depletion relative to sodium) when air masses arriving at Dome C had traveled a longer time over sea ice than over open ocean. The findings are shown to be useful to discuss sea-salt ice records extracted at deep drilling sites located inland

  13. Particle size distribution of radioactive aerosols after the Fukushima and the Chernobyl accidents.

    PubMed

    Malá, Helena; Rulík, Petr; Bečková, Vera; Mihalík, Ján; Slezáková, Miriam

    2013-12-01

    Following the Fukushima accident, a series of aerosol samples were taken between 24th March and 13th April 2011 by cascade impactors in the Czech Republic to obtain the size distribution of (131)I, (134)Cs, (137)Cs, and (7)Be aerosols. All distributions could be considered monomodal. The arithmetic means of the activity median aerodynamic diameters (AMADs) for artificial radionuclides and for (7)Be were 0.43 and 0.41 μm with GDSs 3.6 and 3.0, respectively. The time course of the AMADs of (134)Cs, (137)Cs and (7)Be in the sampled period showed a slight decrease at a significance level of 0.05, whereas the AMAD pertaining to (131)I increased at a significance level of 0.1. Results obtained after the Fukushima accident were compared with results obtained after the Chernobyl accident. The radionuclides released during the Chernobyl accident for which we determined the AMAD fell into two categories: refractory radionuclides ((140)Ba, (140)La (141)Ce, (144)Ce, (95)Zr and (95)Nb) and volatile radionuclides ((134)Cs, (137)Cs, (103)Ru, (106)Ru, (131)I, and (132)Te). The AMAD of the refractory radionuclides was approximately 3 times higher than the AMAD of the volatile radionuclides; nevertheless, the size distributions for volatile radionuclides having a mean AMAD value of 0.51 μm were very close to the distributions after the Fukushima accident. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. The impact of changing surface ocean conditions on the dissolution of aerosol iron

    NASA Astrophysics Data System (ADS)

    Fishwick, Matthew P.; Sedwick, Peter N.; Lohan, Maeve C.; Worsfold, Paul J.; Buck, Kristen N.; Church, Thomas M.; Ussher, Simon J.

    2014-11-01

    The proportion of aerosol iron (Fe) that dissolves in seawater varies greatly and is dependent on aerosol composition and the physicochemical conditions of seawater, which may change depending on location or be altered by global environmental change. Aerosol and surface seawater samples were collected in the Sargasso Sea and used to investigate the impact of these changing conditions on aerosol Fe dissolution in seawater. Our data show that seawater temperature, pH, and oxygen concentration, within the range of current and projected future values, had no significant effect on the dissolution of aerosol Fe. However, the source and composition of aerosols had the most significant effect on the aerosol Fe solubility, with the most anthropogenically influenced samples having the highest fractional solubility (up to 3.2%). The impact of ocean warming and acidification on aerosol Fe dissolution is therefore unlikely to be as important as changes in land usage and fossil fuel combustion. Our experimental results also reveal important changes in the size distribution of soluble aerosol Fe in solution, depending on the chemical conditions of seawater. Under typical conditions, the majority (77-100%) of Fe released from aerosols into ambient seawater existed in the colloidal (0.02-0.4 µm) size fraction. However, in the presence of a sufficient concentration of strong Fe-binding organic ligands (10 nM) most of the aerosol-derived colloidal Fe was converted to soluble Fe (<0.02 µm). This finding highlights the potential importance of organic ligands in retaining aerosol Fe in a biologically available form in the surface ocean.

  15. FTIR studies of low temperature sulfuric acid aerosols

    NASA Technical Reports Server (NTRS)

    Anthony, S. E.; Tisdale, R. T.; Disselkamp, R. S.; Tolbert, M. A.; Wilson, J. C.

    1995-01-01

    Sub-micrometer sized sulfuric acid H2SO4 particles were generated using a constant output atomizer source. The particles were then exposed to water vapor before being injected into a low temperature cell. Multipass transmission Fourier Transformation Infrared (FTIR) spectroscopy was used to determine the phase and composition of the aerosols as a function of time for periods of up to five hours. Binary H2SO4H2O aerosols with compositions from 35 to 95 wt % H2SO4 remained liquid for over 3 hours at room temperatures ranging from 189-240 K. These results suggest that it is very difficut to freeze SSAs via homogeneous nucleation. Attempts to form aerosols more dilute than 35 wt % H2SO4 resulted in ice formation.

  16. Characterization of Ambient Black Carbon Aerosols

    NASA Astrophysics Data System (ADS)

    Zhang, R.; Levy, M. E.; Zheng, J.; Molina, L. T.

    2013-12-01

    Because of the strong absorption over a broad range of the electromagnetic spectra, black carbon (BC) is a key short-lived climate forcer, which contributes significantly to climate change by direct radiative forcing and is the second most important component causing global warming after carbon dioxide. The impact of BC on the radiative forcing of the Earth-Atmosphere system is highly dependent of the particle properties. In this presentation, emphasis will be placed on characterizing BC containing aerosols in at the California-Mexico border to obtain a greater understanding of the atmospheric aging and properties of ambient BC aerosols. A comprehensive set of directly measured aerosol properties, including the particle size distribution, effective density, hygroscopicity, volatility, and several optical properties, will be discussed to quantify the mixing state and composition of ambient particles. In Tijuana, Mexico, submicron aerosols are strongly influenced by vehicle emissions; subsequently, the BC concentration in Tijuana is considerably higher than most US cities with an average BC concentration of 2.71 × 2.65 g cm-3. BC accounts for 24.75 % × 9.44 of the total submicron concentration on average, but periodically accounts for over 50%. This high concentration of BC strongly influences many observed aerosol properties such as single scattering albedo, hygroscopicity, effective density, and volatility.

  17. Properties of aerosols and formation mechanisms over southern China during the monsoon season

    NASA Astrophysics Data System (ADS)

    Chen, Weihua; Wang, Xuemei; Blake Cohen, Jason; Zhou, Shengzhen; Zhang, Zhisheng; Chang, Ming; Chan, Chuen-Yu

    2016-10-01

    Measurements of size-resolved aerosols from 0.25 to 18 µm were conducted at three sites (urban, suburban and background sites) and used in tandem with an atmospheric transport model to study the size distribution and formation of atmospheric aerosols in southern China during the monsoon season (May-June) in 2010. The mass distribution showed the majority of chemical components were found in the smaller size bins (< 2.5 µm). Sulfate was found to be strongly correlated with aerosol water and anticorrelated with atmospheric SO2, hinting at aqueous-phase reactions being the main formation pathway. Nitrate was the only major species that showed a bimodal distribution at the urban site and was dominated by the coarse mode in the other two sites, suggesting that an important component of nitrate formation is chloride depletion of sea salt transported from the South China Sea. In addition to these aqueous-phase reactions and interactions with sea salt aerosols, new particle formation, chemical aging, and long-range transport from upwind urban or biomass burning regions was also found to be important in at least some of the sites on some of the days. This work therefore summarizes the different mechanisms that significantly impact the aerosol chemical composition during the monsoon over southern China.

  18. Chemistry and Composition of Atmospheric Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Kolb, Charles E.; Worsnop, Douglas R.

    2012-05-01

    For more than two decades a cadre of physical chemists has focused on understanding the formation processes, chemical composition, and chemical kinetics of atmospheric aerosol particles and droplets with diameters ranging from a few nanometers to ˜10,000 nm. They have adapted or invented a range of fundamental experimental and theoretical tools to investigate the thermochemistry, mass transport, and chemical kinetics of processes occurring at nanoscale gas-liquid and gas-solid interfaces for a wide range of nonideal, real-world substances. State-of-the-art laboratory methods devised to study molecular spectroscopy, chemical kinetics, and molecular dynamics also have been incorporated into field measurement instruments that are deployed routinely on research aircraft, ships, and mobile laboratories as well as at field sites from megacities to the most remote jungle, desert, and polar locations. These instruments can now provide real-time, size-resolved aerosol particle physical property and chemical composition data anywhere in Earth's troposphere and lower stratosphere.

  19. Size-resolved airborne particulate oxalic and related secondary organic aerosol species in the urban atmosphere of Chengdu, China

    NASA Astrophysics Data System (ADS)

    Cheng, Chunlei; Wang, Gehui; Meng, Jingjing; Wang, Qiyuan; Cao, Junji; Li, Jianjun; Wang, Jiayuan

    2015-07-01

    Size-segregated (9-stages) airborne particles during winter in Chengdu city of China were collected on a day/night basis and determined for dicarboxylic acids (diacids), ketocarboxylic acids (ketoacids), α-dicarbonyls, inorganic ions, and water-soluble organic carbon and nitrogen (WSOC and WSON). Diacid concentration was higher in nighttime (1831 ± 607 ng m- 3) than in daytime (1532 ± 196 ng m- 3), whereas ketoacids and dicarbonyls showed little diurnal difference. Most of the organic compounds were enriched in the fine mode (< 2.1 μm) with a peak at the size range of 0.7-2.1 μm. In contrast, phthalic acid (Ph) and glyoxal (Gly) presented two equivalent peaks in the fine and coarse modes, which is at least in part due to the gas-phase oxidation of precursors and a subsequent partitioning into pre-existing particles. Liquid water content (LWC) of the fine mode particles was three times higher in nighttime than in daytime. The calculated in-situ pH (pHis) indicated that all the fine mode aerosols were acidic during the sampling period and more acidic in daytime than in nighttime. Robust correlations of the ratios of glyoxal/oxalic acid (Gly/C2) and glyoxylic acid/oxalic acid (ωC2/C2) with LWC in the samples suggest that the enhancement of LWC is favorable for oxidation of Gly and ωC2 to produce C2. Abundant K+ and Cl- in the fine mode particles and the strong correlations of K+ with WSOC, WSON and C2 indicate that secondary organic aerosols in the city are significantly affected by biomass burning emission.

  20. Mobility particle size spectrometers: harmonization of technical standards and data structure to facilitate high quality long-term observations of atmospheric particle number size distributions

    NASA Astrophysics Data System (ADS)

    Wiedensohler, A.; Birmili, W.; Nowak, A.; Sonntag, A.; Weinhold, K.; Merkel, M.; Wehner, B.; Tuch, T.; Pfeifer, S.; Fiebig, M.; Fjäraa, A. M.; Asmi, E.; Sellegri, K.; Depuy, R.; Venzac, H.; Villani, P.; Laj, P.; Aalto, P.; Ogren, J. A.; Swietlicki, E.; Williams, P.; Roldin, P.; Quincey, P.; Hüglin, C.; Fierz-Schmidhauser, R.; Gysel, M.; Weingartner, E.; Riccobono, F.; Santos, S.; Grüning, C.; Faloon, K.; Beddows, D.; Harrison, R.; Monahan, C.; Jennings, S. G.; O'Dowd, C. D.; Marinoni, A.; Horn, H.-G.; Keck, L.; Jiang, J.; Scheckman, J.; McMurry, P. H.; Deng, Z.; Zhao, C. S.; Moerman, M.; Henzing, B.; de Leeuw, G.; Löschau, G.; Bastian, S.

    2012-03-01

    Mobility particle size spectrometers often referred to as DMPS (Differential Mobility Particle Sizers) or SMPS (Scanning Mobility Particle Sizers) have found a wide range of applications in atmospheric aerosol research. However, comparability of measurements conducted world-wide is hampered by lack of generally accepted technical standards and guidelines with respect to the instrumental set-up, measurement mode, data evaluation as well as quality control. Technical standards were developed for a minimum requirement of mobility size spectrometry to perform long-term atmospheric aerosol measurements. Technical recommendations include continuous monitoring of flow rates, temperature, pressure, and relative humidity for the sheath and sample air in the differential mobility analyzer. We compared commercial and custom-made inversion routines to calculate the particle number size distributions from the measured electrical mobility distribution. All inversion routines are comparable within few per cent uncertainty for a given set of raw data. Furthermore, this work summarizes the results from several instrument intercomparison workshops conducted within the European infrastructure project EUSAAR (European Supersites for Atmospheric Aerosol Research) and ACTRIS (Aerosols, Clouds, and Trace gases Research InfraStructure Network) to determine present uncertainties especially of custom-built mobility particle size spectrometers. Under controlled laboratory conditions, the particle number size distributions from 20 to 200 nm determined by mobility particle size spectrometers of different design are within an uncertainty range of around ±10% after correcting internal particle losses, while below and above this size range the discrepancies increased. For particles larger than 200 nm, the uncertainty range increased to 30%, which could not be explained. The network reference mobility spectrometers with identical design agreed within ±4% in the peak particle number concentration

  1. Homogeneous Bacterial Aerosols Produced with a Spinning-Disc Generator

    PubMed Central

    Harstad, J. Bruce; Filler, Melvin E.; Hushen, William T.; Decker, Herbert M.

    1970-01-01

    Aerosols composed of viable particles of a uniform size were produced with a commercial spinning-disc generator from aqueous suspensions of Bacillus subtilis var. niger spores containing various amounts of an inert material, dextran, to regulate aerosol particle size. Aerosols composed of single naked spores having an equivalent spherical diameter of 0.87 μm were produced from spore suspensions without dextran, whereas aerosols produced from suspensions containing 0.001, 0.01, 0.1, and 1% dextran had median diameters of 0.90, 1.04, 1.80, and 3.62 μm, respectively. Such aerosols, both homogeneous and viable, would be useful for calibrating air sampling devices, evaluating air filter systems, or for employment wherever aerosol behavior may be size-dependent. Images PMID:4989672

  2. Aerosol Radiative Forcing in Asian Continental Outflow

    NASA Technical Reports Server (NTRS)

    Pueschel, R.; Kinne, S.; Redemann, J.; Gore, Warren J. (Technical Monitor)

    2000-01-01

    Aerosols in elevated layers were sampled with FSSP-probes and wire impactors over the Pacific ocean aboard the NASA DC-8 aircraft. Analyses of particle size and morphology identifies two distinctly different aerosol types for cases when the mid-visible extinctions exceed 0.2/km. Smaller sizes (effective radii of 0.2 um) and moderate absorption (mid-visible single scattering albedo of.935) are typical for urban-industrial pollution. Larger sizes (effective radii of 0.7 um) and weak absorption (mid-visible single scattering albedo of 0.985) identify dust. This aerosol classification is in agreement with its origin as determined by airmass back trajectory analysis. Based on lidar vertical profiling, aerosol dominated by dust and urban-industrial pollution above 3km were assigned mid-visible optical depths of 0.50 and 0.27, respectively. Radiative transfer simulations, considering a 50% cloud-cover below the aerosol layers, suggest (on a daily tP C)C> basis) small reductions (-4W/m2) to the energy budget at the top of the atmosphere for both aerosol types. For c' 0 dust, more backscattering of sunlight (weaker solar absorption) is compensated by a stronger greenhouse effect due to larger sizes. Forced reductions to the energy budget at the surface are 12W/m2 for both aerosol types. In contrast, impacts on heating rates within the aerosol layers are quite different: While urban-industrial aerosol warms the layer (at +0.6K/day as solar heating dominates), dust cools (at -0.5K/day as infrared cooling dominates). Sensitivity tests show the dependence of the aerosol climatic impact on the optical depth, particle size, absorptivity, and altitude of the layers, as well as clouds and surface properties. Climatic cooling can be eliminated (1) for the urban-industrial aerosol if absorption is increased to yield a mid-visible single scattering albedo of 0.89, or if the ocean is replaced by a land surface; (2) for the dust aerosol if the effective radius is increased from 0.7 to 1

  3. Atmospheric aerosols: Their Optical Properties and Effects (supplement)

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A digest of technical papers is presented. Topics include aerosol size distribution from spectral attenuation with scattering measurements; comparison of extinction and backscattering coefficients for measured and analytic stratospheric aerosol size distributions; using hybrid methods to solve problems in radiative transfer and in multiple scattering; blue moon phenomena; absorption refractive index of aerosols in the Denver pollution cloud; a two dimensional stratospheric model of the dispersion of aerosols from the Fuego volcanic eruption; the variation of the aerosol volume to light scattering coefficient; spectrophone in situ measurements of the absorption of visible light by aerosols; a reassessment of the Krakatoa volcanic turbidity, and multiple scattering in the sky radiance.

  4. The impact of particle size, relative humidity, and sulfur dioxide on iron solubility in simulated atmospheric marine aerosols.

    PubMed

    Cartledge, Benton T; Marcotte, Aurelie R; Herckes, Pierre; Anbar, Ariel D; Majestic, Brian J

    2015-06-16

    Iron is a limiting nutrient in about half of the world's oceans, and its most significant source is atmospheric deposition. To understand the pathways of iron solubilization during atmospheric transport, we exposed size segregated simulated marine aerosols to 5 ppm sulfur dioxide at arid (23 ± 1% relative humidity, RH) and marine (98 ± 1% RH) conditions. Relative iron solubility increased as the particle size decreased for goethite and hematite, while for magnetite, the relative solubility was similar for all of the fine size fractions (2.5-0.25 μm) investigated but higher than the coarse size fraction (10-2.5 μm). Goethite and hematite showed increased solubility at arid RH, but no difference (p > 0.05) was observed between the two humidity levels for magnetite. There was no correlation between iron solubility and exposure to SO2 in any mineral for any size fraction. X-ray absorption near edge structure (XANES) measurements showed no change in iron speciation [Fe(II) and Fe(III)] in any minerals following SO2 exposure. SEM-EDS measurements of SO2-exposed goethite revealed small amounts of sulfur uptake on the samples; however, the incorporated sulfur did not affect iron solubility. Our results show that although sulfur is incorporated into particles via gas-phase processes, changes in iron solubility also depend on other species in the aerosol.

  5. Mixing state of ambient aerosols during different fog-haze pollution episodes in the Yangtze River Delta, China

    NASA Astrophysics Data System (ADS)

    Hu, Rui; Wang, Honglei; Yin, Yan; Chen, Kui; Zhu, Bin; Zhang, Zefeng; Kang, Hui; Shen, Lijuan

    2018-04-01

    The mixing state of aerosol particles were investigated using a single particle aerosol mass spectrometer (SPAMS) during a regional fog-haze episode in the Yangtze River Delta (YRD) on 16-28 Dec., 2015. The aerosols were analyzed and clustered into 12 classes: aged elemental carbon (Aged-EC), internally mixed organics and elemental carbon (ECOC), organic carbon (OC), Biomass, Amine, Ammonium, Na-K, V-rich, Pb-rich, Cu-rich, Fe-rich and Dust. Results showed that particles in short-term rainfalls mixed with more nitrate and oxidized organics, while they mixed with more ammonium and sulfate in long-term rainfall. Due to anthropogenic activities, stronger winds and solar radiation, the particle counts increased and the size ranges of particles broadened in haze. Carbonaceous particles and Na-K mixed with enhanced secondary species during haze, and obviously were more acidic, especially for the ones with a size range of 0.6-1.2 μm. For local and long-range transported pollution, OC had distinct size distributions while the changes of ECOC were uniform. The secondary formation of ECOC contributed significantly in local pollution and affected much smaller particles (as small as 0.5 μm) in long-range transported pollution. And long-range transported pollution was more helpful for the growth of OC. Particles mixed with more chloride and nitrate/sulfate in local/long-range transported pollution.

  6. Preliminary Results from an Assimilation of TOMS Aerosol Observations Into the GOCART Model

    NASA Technical Reports Server (NTRS)

    daSilva, Arlindo; Weaver, Clark J.; Ginoux, Paul; Torres, Omar; Einaudi, Franco (Technical Monitor)

    2000-01-01

    At NASA Goddard we are developing a global aerosol data assimilation system that combines advances in remote sensing and modeling of atmospheric aerosols. The goal is to provide high resolution, 3-D aerosol distributions to the research community. Our first step is to develop a simple assimilation system for Saharan mineral aerosol. The Goddard Chemistry and Aerosol Radiation model (GOCART) provides accurate 3-D mineral aerosol size distributions that compare well with TOMS satellite observations. Surface, mobilization, wet and dry deposition, convective and long-range transport are all driven by assimilated fields from the Goddard Earth Observing System Data Assimilation System, GEOS-DAS. Our version of GOCART transports sizes from.08-10 microns and only simulates Saharan dust. TOMS radiance observations in the ultra violet provide information on the mineral and carbonaceous aerosol fields. We use two main observables in this study: the TOMS aerosol index (AI) which is directly related to the ratio of the 340 and 380 radiances and the 380 radiance. These are sensitive to the aerosol optical thickness, the single scattering albedo and the height of the aerosol layer. The Goddard Aerosol Assimilation System (GAAS) uses the Data Assimilation Office's Physical-space Statistical Analysis System (PSAS) to combine TOMS observations and GOCART model first guess fields. At this initial phase we only assimilate observations into the the GOCART model over regions of Africa and the Atlantic where mineral aerosols dominant and carbonaceous aerosols are minimal, Our preliminary results during summer show that the assimilation with TOMS data modifies both the aerosol mass loading and the single scattering albedo. Assimilated aerosol fields will be compared with assimilated aerosol fields from GOCART and AERONET observations over Cape Verde.

  7. Study of the chemical composition of atmospheric aerosol particles in Hungary: a review

    NASA Astrophysics Data System (ADS)

    Mészáros, E.

    The methods used in Hungarian laboratories to study the chemical composition of atmospheric aerosol particles over the last 30 years are reviewed. Individual particles were identified by topochemical techniques and morphological identification with an electron microscope. Bulk analyses were also carried out by applying wet chemical methods, and more recently by the PIXE procedure. The results gained are summarized in connection with the general development of atmospheric aerosol science during the last decades. These studies demonstrated that cloud condensation nuclei are water soluble Aitken sized particles which are composed of sulfates. Neutralized and acidic sulfate particles constitute the main class of fine aerosol particles under continental and oceanic background conditions. Coarse particles contain mostly sodium, silicon and aluminium. The formation and origin of particles in different size ranges are also discussed.

  8. Aerosols and lightning activity: The effect of vertical profile and aerosol type

    NASA Astrophysics Data System (ADS)

    Proestakis, E.; Kazadzis, S.; Lagouvardos, K.; Kotroni, V.; Amiridis, V.; Marinou, E.; Price, C.; Kazantzidis, A.

    2016-12-01

    The Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument on board the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite has been utilized for the first time in a study regarding lightning activity modulation due to aerosols. Lightning activity observations, obtained by the ZEUS long range Lightning Detection Network, European Centre for Medium range Weather Forecasts (ECMWF) Convective Available Potential Energy (CAPE) data and Cloud Fraction (CF) retrieved by MODIS on board Aqua satellite have been combined with CALIPSO CALIOP data over the Mediterranean basin and for the period March to November, from 2007 to 2014. The results indicate that lightning activity is enhanced during days characterized by higher Aerosol Optical Depth (AOD) values, compared to days with no lightning. This study contributes to existing studies on the link between lightning activity and aerosols, which have been based just on columnar AOD satellite retrievals, by performing a deeper analysis into the effect of aerosol profiles and aerosol types. Correlation coefficients of R = 0.73 between the CALIPSO AOD and the number of lightning strikes detected by ZEUS and of R = 0.93 between ECMWF CAPE and lightning activity are obtained. The analysis of extinction coefficient values at 532 nm indicates that at an altitudinal range exists, between 1.1 km and 2.9 km, where the values for extinction coefficient of lightning-active and non-lightning-active cases are statistically significantly different. Finally, based on the CALIPSO aerosol subtype classification, we have investigated the aerosol conditions of lightning-active and non-lightning-active cases. According to the results polluted dust aerosols are more frequently observed during non-lightning-active days, while dust and smoke aerosols are more abundant in the atmosphere during the lightning-active days.

  9. Aerosol optical hygroscopicity measurements during the 2010 CARES campaign

    NASA Astrophysics Data System (ADS)

    Atkinson, D. B.; Radney, J. G.; Lum, J.; Kolesar, K. R.; Cziczo, D. J.; Pekour, M. S.; Zhang, Q.; Setyan, A.; Zelenyuk, A.; Cappa, C. D.

    2015-04-01

    Measurements of the effect of water uptake on particulate light extinction or scattering made at two locations during the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES) study around Sacramento, CA are reported. The observed influence of water uptake, characterized through the dimensionless optical hygroscopicity parameter γ, is compared with calculations constrained by observed particle size distributions and size-dependent particle composition. A closure assessment has been carried out that allowed for determination of the average hygroscopic growth factors (GFs) at 85% relative humidity and the dimensionless hygroscopicity parameter κ for oxygenated organic aerosol (OA) and for supermicron particles (defined here as particles with aerodynamic diameters between 1 and 2.5 microns), yielding κ = 0.1-0.15 and 0.9-1.0, respectively. The derived range of oxygenated OA κ values are in line with previous observations. The relatively large values for supermicron particles is consistent with substantial contributions of sea-salt-containing particles in this size range. Analysis of time-dependent variations in the supermicron particle hygroscopicity suggest that atmospheric processing, specifically chloride displacement by nitrate and the accumulation of secondary organics on supermicron particles, can lead to substantial depression of the observed GF.

  10. Application of Aerosol Hygroscopicity Measured at the Atmospheric Radiation Measurement Program's Southern Great Plains Site to Examine Composition and Evolution

    NASA Technical Reports Server (NTRS)

    Gasparini, Roberto; Runjun, Li; Collins, Don R.; Ferrare, Richard A.; Brackett, Vincent G.

    2006-01-01

    A Differential Mobility Analyzer/Tandem Differential Mobility Analyzer (DMA/TDMA) was used to measure submicron aerosol size distributions, hygroscopicity, and occasionally volatility during the May 2003 Aerosol Intensive Operational Period (IOP) at the Central Facility of the Atmospheric Radiation Measurement Program's Southern Great Plains (ARM SGP) site. Hygroscopic growth factor distributions for particles at eight dry diameters ranging from 0.012 micrometers to 0.600 micrometers were measured throughout the study. For a subset of particle sizes, more detailed measurements were occasionally made in which the relative humidity or temperature to which the aerosol was exposed was varied over a wide range. These measurements, in conjunction with backtrajectory clustering, were used to infer aerosol composition and to gain insight into the processes responsible for evolution. The hygroscopic growth of both the smallest and largest particles analyzed was typically less than that of particles with dry diameters of about 0.100 micrometers. It is speculated that condensation of secondary organic aerosol on nucleation mode particles is largely responsible for the minimal hygroscopic growth observed at the smallest sizes considered. Growth factor distributions of the largest particles characterized typically contained a nonhygroscopic mode believed to be composed primarily of dust. A model was developed to characterize the hygroscopic properties of particles within a size distribution mode through analysis of the fixed size hygroscopic growth measurements. The performance of this model was quantified through comparison of the measured fixed size hygroscopic growth factor distributions with those simulated through convolution of the size-resolved concentration contributed by each of the size modes and the mode-resolved hygroscopicity. This transformation from sizeresolved hygroscopicity to mode-resolved hygroscopicity facilitated examination of changes in the hygroscopic

  11. Sensitivity metric approach for retrieval of aerosol properties from multiangular and multispectral polarized radiances

    NASA Astrophysics Data System (ADS)

    Miecznik, Grzegorz; Illing, Rainer; Petroy, Shelley; Sokolik, Irina N.

    2005-07-01

    Linearly polarized radiation is sensitive to the microphysical properties of aerosols, namely, to the particle- size distribution and refractive index. The discriminating power of polarized radiation increases strongly with the increasing range of scattering angles and the addition of multiple wavelengths. The polarization and directionality of the Earth's reflectances (POLDER) missions demonstrate that some aerosol properties can be successfully derived from spaceborne polarimetric, multiangular measurements at two visible wavelengths. We extend the concept to analyze the retrieval capabilities of a spaceborne instrument with six polarimetric channels at 412, 445, 555, 865, 1250, and 2250 nm, measuring approximately 100 scattering angles covering a range between 50 and 150 deg. Our focus is development of an analysis methodology that can help quantify the benefits of such multiangular and multispectral polarimetric measurements. To that goal we employ a sensitivity metric approach in a framework of the principal-component analysis. The radiances and noise used to construct the sensitivity metric are calculated with the realistic solar flux for representative orbital viewing geometries, accounting for surface reflection from the ground, and statistical and calibration errors of a notional instrument. Spherical aerosol particles covering a range of representative microphysical properties (effective radius, effective variance, real and imaginary parts of the refractive index, single-scattering albedo) are considered in the calculations. We find that there is a limiting threshold for the effective size (approximately 0.7 μm), below which the weak scattering intensity results in a decreased signal-to-noise ratio and minimal polarization sensitivity, precluding reliable aerosol retrievals. For such small particles, close to the Rayleigh scattering limit, the total intensity provides a much stronger aerosol signature than the linear polarization, inspiring retrieval

  12. Science Overview Document Indirect and Semi-Direct Aerosol Campaign (ISDAC) April 2008

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SJ Ghan; B Schmid; JM Hubbe

    2007-11-01

    The ARM Climate Research Facility’s (ACRF) Aerial Vehicle Program (AVP) will deploy an intensive cloud and aerosol observing system to the ARM North Slope of Alaska (NSA) locale for a five week Indirect and Semi-Direct Aerosol Campaign (ISDAC) during period 29 March through 30 April 2008. The deployment period is within the International Polar Year, thus contributing to and benefiting from the many ancillary observing systems collecting data synergistically. We will deploy the Canadian National Research Council Convair 580 aircraft to measure temperature, humidity, total particle number, aerosol size distribution, single particle composition, concentrations of cloud condensation nuclei and icemore » nuclei, optical scattering and absorption, updraft velocity, cloud liquid water and ice contents, cloud droplet and crystal size distributions, cloud particle shape, and cloud extinction. In addition to these aircraft measurements, ISDAC will deploy two instruments at the ARM site in Barrow: a spectroradiometer to retrieve cloud optical depth and effective radius, and a tandem differential mobility analyzer to measure the aerosol size distribution and hygroscopicity. By using many of the same instruments used during Mixed-Phase Arctic Cloud Experiment (M-PACE), conducted in October 2004, we will be able to contrast the arctic aerosol and cloud properties during the fall and spring transitions. The aerosol measurements can be used in cloud models driven by objectively analyzed boundary conditions to test whether the cloud models can simulate the aerosol influence on the clouds. The influence of aerosol and boundary conditions on the simulated clouds can be separated by running the cloud models with all four combinations of M-PACE and ISDAC aerosol and boundary conditions: M-PACE aerosol and boundary conditions, M-PACE aerosol and ISDAC boundary conditions, ISDAC aerosol and M-PACE boundary conditions, and ISDAC aerosol and boundary conditions. ISDAC and M

  13. MATRIX-VBS Condensing Organic Aerosols in an Aerosol Microphysics Model

    NASA Technical Reports Server (NTRS)

    Gao, Chloe Y.; Tsigaridis, Konstas; Bauer, Susanne E.

    2015-01-01

    The condensation of organic aerosols is represented in a newly developed box-model scheme, where its effect on the growth and composition of particles are examined. We implemented the volatility-basis set (VBS) framework into the aerosol mixing state resolving microphysical scheme Multiconfiguration Aerosol TRacker of mIXing state (MATRIX). This new scheme is unique and advances the representation of organic aerosols in models in that, contrary to the traditional treatment of organic aerosols as non-volatile in most climate models and in the original version of MATRIX, this new scheme treats them as semi-volatile. Such treatment is important because low-volatility organics contribute significantly to the growth of particles. The new scheme includes several classes of semi-volatile organic compounds from the VBS framework that can partition among aerosol populations in MATRIX, thus representing the growth of particles via condensation of low volatility organic vapors. Results from test cases representing Mexico City and a Finish forrest condistions show good representation of the time evolutions of concentration for VBS species in the gas phase and in the condensed particulate phase. Emitted semi-volatile primary organic aerosols evaporate almost completely in the high volatile range, and they condense more efficiently in the low volatility range.

  14. Single-Particle Measurements of Midlatitude Black Carbon and Light-Scattering Aerosols from the Boundary Layer to the Lower Stratosphere

    NASA Technical Reports Server (NTRS)

    Schwartz, J. P.; Gao, R. S.; Fahey, D. W.; Thomson, D. S.; Watts, L. A.; Wilson, J. C.; Reeves, J. M.; Darbeheshti, M.; Baumgardner, D. G.; Kok, G. L.; hide

    2006-01-01

    A single-particle soot photometer (SP2) was flown on a NASA WB-57F high-altitude research aircraft in November 2004 from Houston, Texas. The SP2 uses laser-induced incandescence to detect individual black carbon (BC) particles in an air sample in the mass range of approx.3-300 fg (approx.0.15-0.7 microns volume equivalent diameter). Scattered light is used to size the remaining non-BC aerosols in the range of approx.0.17-0.7 microns diameter. We present profiles of both aerosol types from the boundary layer to the lower stratosphere from two midlatitude flights. Results for total aerosol amounts in the size range detected by the SP2 are in good agreement with typical particle spectrometer measurements in the same region. All ambient incandescing particles were identified as BC because their incandescence properties matched those of laboratory-generated BC aerosol. Approximately 40% of these BC particles showed evidence of internal mixing (e.g., coating). Throughout profiles between 5 and 18.7 km, BC particles were less than a few percent of total aerosol number, and black carbon aerosol (BCA) mass mixing ratio showed a constant gradient with altitude above 5 km. SP2 data was compared to results from the ECHAM4/MADE and LmDzT-INCA global aerosol models. The comparison will help resolve the important systematic differences in model aerosol processes that determine BCA loadings. Further intercomparisons of models and measurements as presented here will improve the accuracy of the radiative forcing contribution from BCA.

  15. Fossil Fuel Combustion-Related Emissions Dominate Atmospheric Ammonia Sources during Severe Haze Episodes: Evidence from 15N-Stable Isotope in Size-Resolved Aerosol Ammonium

    NASA Astrophysics Data System (ADS)

    Pan, Y.; Tian, S.; Liu, D.; Fang, Y.; Zhu, X.; Zhang, Q.; Zheng, B.; Michalski, G. M.; Wang, Y.

    2016-12-01

    The reduction of ammonia (NH3) emissions is urgently needed due to its major contributions to nitrogen deposition and particle pollution. However, the relative contributions of individual NH3 sources are unclear, and debate remains over whether agricultural emissions dominate atmospheric NH3 in urban areas. Based on the chemical and isotopic measurements of size-resolved aerosols in urban Beijing, China, we find that the natural abundance of 15N (expressed using δ15N values) of ammonium (NH4+) in fine particles varies with the development of haze episodes, ranging from -37.1‰ to -21.7‰ during clean/dusty days (relative humidity: ˜ 40%), to -13.1‰ to +5.8‰ during hazy days (relative humidity: 70-90%). After factoring the isotope exchange between NH3 gas and aerosol NH4+, the δ15N value of the initial NH3 during hazy days is found to be -14.5‰ to -1.6‰, which indicates fossil fuel-based emissions. These emissions contribute 90% of the total NH3 during hazy days in urban Beijing. This work demonstrates the analysis of δ15N values of aerosol NH4+ to be a promising new tool for partitioning atmospheric NH3 sources, providing policy makers with insights into NH3 emissions and secondary aerosols for regulation in urban environments. This work also shed lights on the sources of nitrogen deposition in downwind ecosystems.

  16. Size-resolved chemistry of aerosols produced by Halema'uma'u eruption 2008-2009, Kilauea Volcano, Hawai'i

    NASA Astrophysics Data System (ADS)

    Ilyinskaya, E.; Martin, R.; Edmonds, M.; Sutton, A. J.; Elias, T.; Werner, C. A.

    2009-12-01

    A dense quiescent plume has been emitted continuously from the 2008 eruptive vent in Halema'uma'u crater since March 2008. Aerosol particles were sampled near-source in the young plume (<30 s old) in May 2008 and April 2009, and at 10 km downwind (April 2009 only). We also sampled the plume from Pu'u O'o vent both near-source and 8-10 km downwind (2007 to 2009). Sampling was performed using filter packs and a cascade impactor that collects and segregates PM10 (particle matter <10 μm) into 14 size fractions. The collected PM was analysed for SO42-, F-, Cl-, Na+, K+, Ca2+ and Mg2+. Our results show a distinctive peak of sulphate abundance at ~0.3-0.5 μm in the 2008 and 2009 summit samples. The total SO42- mass concentration collected in each sampling run correlates well with that of metals but poorly with Cl- and F-. Downwind measurements of PM from Halema'uma'u and Pu'u O'o show SO42- in the same narrow size bin (0.3-0.5 μm) with concentrations similar to, or higher than at source. It is noteworthy that the particles appear not to have grown when the plume has drifted 5-10 km downwind. However, a 1 μm size mode of SO42- seen at Pu'u O'o crater rim (not seen at Halema'uma'u) is absent from the downwind plume. This result leads us to believe that the particles grow rapidly after emission but get scavenged efficiently once they reach a certain size (>0.5 μm). The formation of aerosol measured downwind is dominated by oxidation of SO2 to SO42- in the plume. The ratio of Cl-/SO42- is higher downwind than at the source in both Halema'uma'u and Pu'u O'o plumes, and increases further during rainfall; we propose that the Cl--bearing aerosol is formed by dissolution of HCl gas into water droplets in the plume.

  17. Traffic is a major source of atmospheric nanocluster aerosol

    PubMed Central

    Kuuluvainen, Heino; Karjalainen, Panu; Keskinen, Jorma; Hillamo, Risto; Niemi, Jarkko V.; Pirjola, Liisa; Timonen, Hilkka J.; Saarikoski, Sanna; Saukko, Erkka; Järvinen, Anssi; Silvennoinen, Henna; Rostedt, Antti; Olin, Miska; Yli-Ojanperä, Jaakko; Nousiainen, Pekka; Kousa, Anu; Dal Maso, Miikka

    2017-01-01

    In densely populated areas, traffic is a significant source of atmospheric aerosol particles. Owing to their small size and complicated chemical and physical characteristics, atmospheric particles resulting from traffic emissions pose a significant risk to human health and also contribute to anthropogenic forcing of climate. Previous research has established that vehicles directly emit primary aerosol particles and also contribute to secondary aerosol particle formation by emitting aerosol precursors. Here, we extend the urban atmospheric aerosol characterization to cover nanocluster aerosol (NCA) particles and show that a major fraction of particles emitted by road transportation are in a previously unmeasured size range of 1.3–3.0 nm. For instance, in a semiurban roadside environment, the NCA represented 20–54% of the total particle concentration in ambient air. The observed NCA concentrations varied significantly depending on the traffic rate and wind direction. The emission factors of NCA for traffic were 2.4·1015 (kgfuel)−1 in a roadside environment, 2.6·1015 (kgfuel)−1 in a street canyon, and 2.9·1015 (kgfuel)−1 in an on-road study throughout Europe. Interestingly, these emissions were not associated with all vehicles. In engine laboratory experiments, the emission factor of exhaust NCA varied from a relatively low value of 1.6·1012 (kgfuel)−1 to a high value of 4.3·1015 (kgfuel)−1. These NCA emissions directly affect particle concentrations and human exposure to nanosized aerosol in urban areas, and potentially may act as nanosized condensation nuclei for the condensation of atmospheric low-volatile organic compounds. PMID:28674021

  18. Traffic is a major source of atmospheric nanocluster aerosol.

    PubMed

    Rönkkö, Topi; Kuuluvainen, Heino; Karjalainen, Panu; Keskinen, Jorma; Hillamo, Risto; Niemi, Jarkko V; Pirjola, Liisa; Timonen, Hilkka J; Saarikoski, Sanna; Saukko, Erkka; Järvinen, Anssi; Silvennoinen, Henna; Rostedt, Antti; Olin, Miska; Yli-Ojanperä, Jaakko; Nousiainen, Pekka; Kousa, Anu; Dal Maso, Miikka

    2017-07-18

    In densely populated areas, traffic is a significant source of atmospheric aerosol particles. Owing to their small size and complicated chemical and physical characteristics, atmospheric particles resulting from traffic emissions pose a significant risk to human health and also contribute to anthropogenic forcing of climate. Previous research has established that vehicles directly emit primary aerosol particles and also contribute to secondary aerosol particle formation by emitting aerosol precursors. Here, we extend the urban atmospheric aerosol characterization to cover nanocluster aerosol (NCA) particles and show that a major fraction of particles emitted by road transportation are in a previously unmeasured size range of 1.3-3.0 nm. For instance, in a semiurban roadside environment, the NCA represented 20-54% of the total particle concentration in ambient air. The observed NCA concentrations varied significantly depending on the traffic rate and wind direction. The emission factors of NCA for traffic were 2.4·10 15 (kg fuel ) -1 in a roadside environment, 2.6·10 15 (kg fuel ) -1 in a street canyon, and 2.9·10 15 (kg fuel ) -1 in an on-road study throughout Europe. Interestingly, these emissions were not associated with all vehicles. In engine laboratory experiments, the emission factor of exhaust NCA varied from a relatively low value of 1.6·10 12 (kg fuel ) -1 to a high value of 4.3·10 15 (kg fuel ) -1 These NCA emissions directly affect particle concentrations and human exposure to nanosized aerosol in urban areas, and potentially may act as nanosized condensation nuclei for the condensation of atmospheric low-volatile organic compounds.

  19. Ubiquitous influence of wildfire emissions and secondary organic aerosol on summertime atmospheric aerosol in the forested Great Lakes region

    NASA Astrophysics Data System (ADS)

    Gunsch, Matthew J.; May, Nathaniel W.; Wen, Miao; Bottenus, Courtney L. H.; Gardner, Daniel J.; VanReken, Timothy M.; Bertman, Steven B.; Hopke, Philip K.; Ault, Andrew P.; Pratt, Kerri A.

    2018-03-01

    Long-range aerosol transport affects locations hundreds of kilometers from the point of emission, leading to distant particle sources influencing rural environments that have few major local sources. Source apportionment was conducted using real-time aerosol chemistry measurements made in July 2014 at the forested University of Michigan Biological Station near Pellston, Michigan, a site representative of the remote forested Great Lakes region. Size-resolved chemical composition of individual 0.5-2.0 µm particles was measured using an aerosol time-of-flight mass spectrometer (ATOFMS), and non-refractory aerosol mass less than 1 µm (PM1) was measured with a high-resolution aerosol mass spectrometer (HR-AMS). The field site was influenced by air masses transporting Canadian wildfire emissions and urban pollution from Milwaukee and Chicago. During wildfire-influenced periods, 0.5-2.0 µm particles were primarily aged biomass burning particles (88 % by number). These particles were heavily coated with secondary organic aerosol (SOA) formed during transport, with organics (average O/C ratio of 0.8) contributing 89 % of the PM1 mass. During urban-influenced periods, organic carbon, elemental carbon-organic carbon, and aged biomass burning particles were identified, with inorganic secondary species (ammonium, sulfate, and nitrate) contributing 41 % of the PM1 mass, indicative of atmospheric processing. With current models underpredicting organic carbon in this region and biomass burning being the largest combustion contributor to SOA by mass, these results highlight the importance for regional chemical transport models to accurately predict the impact of long-range transported particles on air quality in the upper Midwest, United States, particularly considering increasing intensity and frequency of Canadian wildfires.

  20. Effects of sample size on KERNEL home range estimates

    USGS Publications Warehouse

    Seaman, D.E.; Millspaugh, J.J.; Kernohan, Brian J.; Brundige, Gary C.; Raedeke, Kenneth J.; Gitzen, Robert A.

    1999-01-01

    Kernel methods for estimating home range are being used increasingly in wildlife research, but the effect of sample size on their accuracy is not known. We used computer simulations of 10-200 points/home range and compared accuracy of home range estimates produced by fixed and adaptive kernels with the reference (REF) and least-squares cross-validation (LSCV) methods for determining the amount of smoothing. Simulated home ranges varied from simple to complex shapes created by mixing bivariate normal distributions. We used the size of the 95% home range area and the relative mean squared error of the surface fit to assess the accuracy of the kernel home range estimates. For both measures, the bias and variance approached an asymptote at about 50 observations/home range. The fixed kernel with smoothing selected by LSCV provided the least-biased estimates of the 95% home range area. All kernel methods produced similar surface fit for most simulations, but the fixed kernel with LSCV had the lowest frequency and magnitude of very poor estimates. We reviewed 101 papers published in The Journal of Wildlife Management (JWM) between 1980 and 1997 that estimated animal home ranges. A minority of these papers used nonparametric utilization distribution (UD) estimators, and most did not adequately report sample sizes. We recommend that home range studies using kernel estimates use LSCV to determine the amount of smoothing, obtain a minimum of 30 observations per animal (but preferably a?Y50), and report sample sizes in published results.

  1. An Investigation of Size-Dependent Concentration of Trace Elements in Aerosols Emitted from the Oil-Fired Heating Plants

    NASA Technical Reports Server (NTRS)

    Singh, J. J.; Sentell, R. J.; Khandelwal, G. S.

    1976-01-01

    Aerosols emitted from two oil-fired heating plants were aerodynamically separated into eight size groups and were analyzed using the photon-induced X-ray emission (PIXE) technique. It was found that Zn, Mo, Ag, and Pb, and (to a lesser extent) Cd, have a tendency to concentrate preferentially on the smaller aerosols. All of these elements, in certain chemical forms, are known to be toxic. Zinc and molybdenum, although present in low concentrations in the parent fuels, show the strongest tendencies to be concentrated in finer aerosols. Selenium, previously reported to show a very strong tendency to concentration in finer fly ash from coal-fired power plants shows little preference for surface residence. Vanadium, which occurs in significant concentration in the oil fuels for both plants, also shows little preference for surface concentration. Even though the absolute concentrations of the toxic elements involved are well below the safety levels established by the National Institute for Occupational Safety and Health (NIOSH), it would be advisable to raise the heights of the heating-plant exhaust chimneys well above the neighborhood buildings to insure more efficient aerosol dispersal.

  2. Cloud condensation nuclei closure study on summer arctic aerosol

    NASA Astrophysics Data System (ADS)

    Martin, M.; Chang, R. Y.-W.; Sierau, B.; Sjogren, S.; Swietlicki, E.; Abbatt, J. P. D.; Leck, C.; Lohmann, U.

    2011-11-01

    We present an aerosol - cloud condensation nuclei (CCN) closure study on summer high Arctic aerosol based on measurements that were carried out in 2008 during the Arctic Summer Cloud Ocean Study (ASCOS) on board the Swedish ice breaker Oden. The data presented here were collected during a three-week time period in the pack ice (>85° N) when the icebreaker Oden was moored to an ice floe and drifted passively during the most biological active period into autumn freeze up conditions. CCN number concentrations were obtained using two CCN counters measuring at different supersaturations. The directly measured CCN number concentration was then compared with a CCN number concentration calculated using both bulk aerosol mass composition data from an aerosol mass spectrometer (AMS) and aerosol number size distributions obtained from a differential mobility particle sizer, assuming κ-Köhler theory, surface tension of water and an internally mixed aerosol. The last assumption was supported by measurements made with a hygroscopic tandem differential mobility analyzer (HTDMA) for particles >70 nm. For the two highest measured supersaturations, 0.73 and 0.41%, closure could not be achieved with the investigated settings concerning hygroscopicity and density. The calculated CCN number concentration was always higher than the measured one for those two supersaturations. This might be caused by a relative larger insoluble organic mass fraction of the smaller particles that activate at these supersaturations, which are thus less good CCN than the larger particles. On average, 36% of the mass measured with the AMS was organic mass. At 0.20, 0.15 and 0.10% supersaturation, closure could be achieved with different combinations of hygroscopic parameters and densities within the uncertainty range of the fit. The best agreement of the calculated CCN number concentration with the observed one was achieved when the organic fraction of the aerosol was treated as nearly water insoluble

  3. A study on the relationship between mass concentrations, chemistry and number size distribution of urban fine aerosols in Milan, Barcelona and London

    NASA Astrophysics Data System (ADS)

    Rodríguez, S.; van Dingenen, R.; Putaud, J.-P.; Dell'Acqua, A.; Pey, J.; Querol, X.; Alastuey, A.; Chenery, S.; Ho, K.-F.; Harrison, R. M.; Tardivo, R.; Scarnato, B.; Gianelle, V.

    2007-01-01

    A physicochemical characterization of the urban fine aerosol (aerosol number size distribution, chemical composition and mass concentrations) in Milan, Barcelona and London is presented in this article. The objective is to obtain a comprehensive picture on the involvement of the microphysical processes of the aerosol dynamic in the: 1) regular evolution of the urban aerosol (daily, weekly and seasonal basis) and in the day-to-day variations (from clean-air to pollution-events), and 2) link between "aerosol chemistry and mass concentrations" with the "number size distribution". The mass concentrations of the fine PM2.5 aerosol exhibit a high correlation with the number concentration of particles >100 nm (which only accounts for <20% of the total number concentration N of fine aerosols) and do not correlate with the number of particles <100 nm ("ultrafine particles", which accounts for >80% of fine particles). Organic matter (OM) and black-carbon (BC) are the only aerosol components showing a significant correlation with ultrafine particles (attributed to vehicles emissions), whereas ammonium-nitrate, ammonium-sulphate and also OM and BC correlate with N>100(nm) (attributed to gas-to-particle transformation mechanisms and some primary emissions). Time series of the aerosol DpN diameter (dN/dlogD mode), mass PM2.5 concentrations and number N>100(nm) concentrations, exhibit correlated day-to-day variations which point to a significant involvement of condensation of semi-volatile compounds during urban pollution events. This agrees with the fact that ammonium-nitrate is the component exhibiting the highest increases from mid-to-high pollution episodes, when the highest DpN increases are observed. The results indicates that "fine PM2.5 particles urban pollution events" tend to occur when condensation processes have made particles grow enough to produce significant concentrations of N>100(nm). In contrast, because the low contribution of ultrafine particles to the fine

  4. The Impact of Aerosol Sources and Aging on CCN Formation in the Houston-Galveston-Gulf of Mexico Region

    NASA Astrophysics Data System (ADS)

    Quinn, P.; Bates, T.; Coffman, D.; Covert, D.

    2007-12-01

    The impact of anthropogenic aerosol on cloud properties, cloud lifetime, and precipitation processes is one of the largest uncertainties in our current understanding of climate change. Aerosols affect cloud properties by serving as cloud condensation nuclei (CCN) thereby leading to the formation of cloud droplets. The process of cloud drop activation is a function of both the size and chemistry of the aerosol particles which, in turn, depend on the source of the aerosol and transformations that occur downwind. In situ field measurements that can lead to an improved understanding of the process of cloud drop formation and simplifying parameterizations for improving the accuracy of climate models are highly desirable. During the Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS), the NOAA RV Ronald H. Brown encountered a wide variety of aerosol types ranging from marine near the Florida panhandle to urban and industrial in the Houston-Galveston area. These varied sources provided an opportunity to investigate the role of aerosol sources, aging, chemistry, and size in the activation of particles to form cloud droplets. Here, we use the correlation between variability in critical diameter for activation (determined empirically from measured CCN concentrations and the number size distribution) and aerosol composition to quantify the impact of composition on particle activation. Variability in aerosol composition is parameterized by the mass fraction of Hydrocarbon-like Organic Aerosol (HOA) for particle diameters less than 200 nm (vacuum aerodynamic). The HOA mass fraction in this size range is lowest for marine aerosol and higher for aerosol impacted by anthropogenic emissions. Combining all data collected at 0.44 percent supersaturation (SS) reveals that composition (defined in this way) explains 40 percent of the variance in the critical diameter. As expected, the dependence of activation on composition is strongest at lower SS. At the same time

  5. Ground-based observation of aerosol optical properties in Lanzhou, China.

    PubMed

    Yu, Xingna; Zhu, Bin; Fan, Shuxian; Yin, Yan; Bu, Xiaoli

    2009-01-01

    Aerosol optical properties from August 2006 to July 2007 were obtained from ground-based and sky radiance measurements in Semi-Arid Climate and Environment Observatory of Lanzhou University (SACOL), China. High aerosol optical thickness (AOT) associated with low Angström exponent (alpha) was mainly observed in spring, which was consistent with the seasonal dust production from Hexi Corridor. The maximum monthly average value of AOT 0.56 occurred in March of 2007, which was two times larger than the minimum value of 0.28 in October of 2006. Approximately 60% of the AOT ranged between 0.3 and 0.5, and nearly 93% of alpha value varied from 0.1 to 0.8, which occurred in spring. The significant correlation between aerosol properties and water vapor content was not observed. The aerosol volume size distribution can be characterized by the bimodal logarithm normal structure: fine mode (r < 0.6 microm) and coarse mode (r > 0.6 microm). Aerosols in spring of SACOL were dominated by large particles with the volume concentration ratio of coarse to fine modes being 7.85. The average values of asymmetry factor (g) in the wavelength range 440-1020 nm were found to be 0.71, 0.67, 0.67 and 0.69 in spring, summer, autumn and winter, respectively.

  6. Numerical Comparison of Nasal Aerosol Administration Systems for Efficient Nose-to-Brain Drug Delivery.

    PubMed

    Dong, Jingliang; Shang, Yidan; Inthavong, Kiao; Chan, Hak-Kim; Tu, Jiyuan

    2017-12-29

    Nose-to-brain drug administration along the olfactory and trigeminal nerve pathways offers an alternative route for the treatment of central nervous system (CNS) disorders. The characterization of particle deposition remains difficult to achieve in experiments. Alternative numerical approach is applied to identify suitable aerosol particle size with maximized inhaled doses. This study numerically compared the drug delivery efficiency in a realistic human nasal cavity between two aerosol drug administration systems targeting the olfactory region: the aerosol mask system and the breath-powered bi-directional system. Steady inhalation and exhalation flow rates were applied to both delivery systems. The discrete phase particle tracking method was employed to capture the aerosol drug transport and deposition behaviours in the nasal cavity. Both overall and regional deposition characteristics were analysed in detail. The results demonstrated the breath-powered drug delivery approach can produce superior olfactory deposition with peaking olfactory deposition fractions for diffusive 1 nm particles and inertial 10 μm. While for particles in the range of 10 nm to 2 μm, no significant olfactory deposition can be found, indicating the therapeutic agents should avoid this size range when targeting the olfactory deposition. The breath-powered bi-directional aerosol delivery approach shows better drug delivery performance globally and locally, and improved drug administration doses can be achieved in targeted olfactory region.

  7. Water-soluble ions and carbon content of size-segregated aerosols in New Delhi, India: direct and indirect influences of firework displays.

    PubMed

    Kumar, Pawan; Kumar, Rakesh; Yadav, Sudesh

    2016-10-01

    The particle size distribution and water-soluble inorganic ion (WSII) and carbonaceous species in size-segregated aerosols, Dp < 0.95, 0.95 < Dp < 1.5, 1.5 < Dp < 3.0, 3.0 < Dp < 7.2, and 7.2 < Dp < 10 μm, were investigated during Diwali firework displays in New Delhi, India. The firework activity had the maximum contribution to the mass loading of PM 0.95 (786 μg/m 3 ) followed by PM 0.95-1.5 (216 μg/m 3 ) with all other three fractions accounting to a total of 214 μg/m 3 . The percentage contributions of WSII to the total mass of aerosols were highest in first two size fractions (39 and 40 %, respectively), compared to other fractions. The firework marker ion (Mg 2+ , Cl - , and K + ) mass concentration shows higher values in PM 0.95 during Diwali compared to before Diwali period. The mass size distribution of particles, NH 4 + , K + , Cl - , SO 4 2- , Mg 2+ , and NO 3 - , also showed changes on the Diwali night compared to previous and after days. The high Cl - /Na + (5.6) and OC/EC (3.4) ratio of PM 0.95 can be used as the indicators of firework displays. The lowering of mixing height on Diwali night to 50 m compared to before (277 mts) and after (269 mts) Diwali period further concentrated the aerosols in ambient atmosphere. Therefore, the firework display not only released the gaseous or elemental constituent but also influenced the temperature profile and both put together result in high aerosol concentrations, WSII, OC, and BC contents in ambient atmosphere. The alveolar, respirable, and inhalable fractions accounted for 64.6, 90.8, and 97.8 %, respectively, of the total PM 10 mass. People stay exposed to such high pollution level in short span of 6-8 h and experience adverse health impacts due to high mass concentrations and the chemical components of fine aerosols.

  8. Size-segregated sugar composition of transported dust aerosols from Middle-East over Delhi during March 2012

    NASA Astrophysics Data System (ADS)

    Kumar, S.; Aggarwal, S. G.; Fu, P. Q.; Kang, M.; Sarangi, B.; Sinha, D.; Kotnala, R. K.

    2017-06-01

    During March 20-22, 2012 Delhi experienced a massive dust-storm which originated in Middle-East. Size segregated sampling of these dust aerosols was performed using a nine staged Andersen sampler (5 sets of samples were collected including before dust-storm (BDS)), dust-storm day 1 to 3 (DS1 to DS3) and after dust storm (ADS). Sugars (mono and disaccharides, sugar-alcohols and anhydro-sugars) were determined using GC-MS technique. It was observed that on the onset of dust-storm, total suspended particulate matter (TSPM, sum of all stages) concentration in DS1 sample increased by > 2.5 folds compared to that of BDS samples. Interestingly, fine particulate matter (sum of stages with cutoff size < 2.1 μm) loading in DS1 also increased by > 2.5 folds as compared to that of BDS samples. Sugars analyzed in DS1 coarse mode (sum of stages with cutoff size > 2.1 μm) samples showed a considerable increase ( 1.7-2.8 folds) compared to that of other samples. It was further observed that mono-saccharides, disaccharides and sugar-alcohols concentrations were enhanced in giant (> 9.0 μm) particles in DS1 samples as compared to other samples. On the other hand, anhydro-sugars comprised 13-27% of sugars in coarse mode particles and were mostly found in fine mode constituting 66-85% of sugars in all the sample types. Trehalose showed an enhanced ( 2-4 folds) concentration in DS1 aerosol samples in both coarse (62.80 ng/m3) and fine (8.57 ng/m3) mode. This increase in Trehalose content in both coarse and fine mode suggests their origin to the transported desert dust and supports their candidature as an organic tracer for desert dust entrainments. Further, levoglucosan to mannosan (L/M) ratios which have been used to predict the type of biomass burning influences on aerosols are found to be size dependent in these samples. These ratios are higher for fine mode particles, hence should be used with caution while interpreting the sources using this tool.

  9. Wavelet and adaptive methods for time dependent problems and applications in aerosol dynamics

    NASA Astrophysics Data System (ADS)

    Guo, Qiang

    Time dependent partial differential equations (PDEs) are widely used as mathematical models of environmental problems. Aerosols are now clearly identified as an important factor in many environmental aspects of climate and radiative forcing processes, as well as in the health effects of air quality. The mathematical models for the aerosol dynamics with respect to size distribution are nonlinear partial differential and integral equations, which describe processes of condensation, coagulation and deposition. Simulating the general aerosol dynamic equations on time, particle size and space exhibits serious difficulties because the size dimension ranges from a few nanometer to several micrometer while the spatial dimension is usually described with kilometers. Therefore, it is an important and challenging task to develop efficient techniques for solving time dependent dynamic equations. In this thesis, we develop and analyze efficient wavelet and adaptive methods for the time dependent dynamic equations on particle size and further apply them to the spatial aerosol dynamic systems. Wavelet Galerkin method is proposed to solve the aerosol dynamic equations on time and particle size due to the fact that aerosol distribution changes strongly along size direction and the wavelet technique can solve it very efficiently. Daubechies' wavelets are considered in the study due to the fact that they possess useful properties like orthogonality, compact support, exact representation of polynomials to a certain degree. Another problem encountered in the solution of the aerosol dynamic equations results from the hyperbolic form due to the condensation growth term. We propose a new characteristic-based fully adaptive multiresolution numerical scheme for solving the aerosol dynamic equation, which combines the attractive advantages of adaptive multiresolution technique and the characteristics method. On the aspect of theoretical analysis, the global existence and uniqueness of

  10. Atmospheric aerosols: Their Optical Properties and Effects

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Measured properties of atmospheric aerosol particles are presented. These include aerosol size frequency distribution and complex retractive index. The optical properties of aerosols are computed based on the presuppositions of thermodynamic equilibrium and of Mie-theory.

  11. The primary volcanic aerosol emission from Mt Etna: Size-resolved particles with SO2 and role in plume reactive halogen chemistry

    NASA Astrophysics Data System (ADS)

    Roberts, T. J.; Vignelles, D.; Liuzzo, M.; Giudice, G.; Aiuppa, A.; Coltelli, M.; Salerno, G.; Chartier, M.; Couté, B.; Berthet, G.; Lurton, T.; Dulac, F.; Renard, J.-B.

    2018-02-01

    Volcanoes are an important source of aerosols to the troposphere. Within minutes after emission, volcanic plume aerosol catalyses conversion of co-emitted HBr, HCl into highly reactive halogens (e.g. BrO, OClO) through chemical cycles that cause substantial ozone depletion in the dispersing downwind plume. This study quantifies the sub-to-supramicron primary volcanic aerosol emission (0.2-5 μm diameter) and its role in this process. An in-situ ground-based study at Mt Etna (Italy) during passive degassing co-deployed an optical particle counter and Multi-Gas SO2 sensors at high time resolution (0.1 Hz) enabling to characterise the aerosol number, size-distribution and emission flux. A tri-modal volcanic aerosol size distribution was found, to which lognormal distributions are fitted. Total particle volume correlates to SO2 (as a plume tracer). The measured particle volume:SO2 ratio equates to a sulfate:SO2 ratio of 1-2% at the observed meteorological conditions (40% Relative Humidity). A particle mass flux of 0.7 kg s-1 is calculated for the measured Mt Etna SO2 flux of 1950 tonnes/day. A numerical plume atmospheric chemistry model is used to simulate the role of the hygroscopic primary aerosol surface area and its humidity dependence on volcanic plume BrO and OClO chemistry. As well as predicting volcanic BrO formation and O3 depletion, the model achieves OClO/SO2 in broad quantitative agreement with recently reported Mt Etna observations, with a predicted maximum a few minutes downwind. In addition to humidity - that enhances aerosols surface area for halogen cycling - background ozone is predicted to be an important control on OClO/SO2. Dependence of BrO/SO2 on ambient humidity is rather low near-to-source but increases further downwind. The model plume chemistry also exhibits strong across-plume spatial variations between plume edge and centre.

  12. Characteristics of size-segregated carbonaceous aerosols in the Beijing-Tianjin-Hebei region.

    PubMed

    Guo, Yuhong

    2016-07-01

    Mass concentrations of organic carbon (OC) and elemental carbon (EC) in size-resolved aerosols were investigated at four sites (three cities and one country) in the Beijing-Tianjin-Hebei region from September 2009 to August 2011. The size distributions of OC and EC presented large evolutions among rural and urban sites, and among four seasons, with highest peaks of OC and EC in fine mode in urban areas during winter. Geometric mean diameters (GMDs) of OC and EC in fine particles at urban sites during winter were lower than those at rural site mainly due to effects of fine particle coagulation and organic compound repartitioning. Fossil fuel emissions were a dominant source of OC and EC in urban areas, while biomass burning was a major source of OC and EC at rural site. Trajectory clustering and CWT analysis showed that regional transport was an important contributor to OC and EC in Beijing.

  13. The Effect of Aerosol Hygroscopicity and Volatility on Aerosol Optical Properties During Southern Oxidant and Aerosol Study

    NASA Astrophysics Data System (ADS)

    Khlystov, A.; Grieshop, A. P.; Saha, P.; Subramanian, R.

    2014-12-01

    Secondary organic aerosol (SOA) from biogenic sources can influence optical properties of ambient aerosol by altering its hygroscopicity and contributing to light absorption directly via formation of brown carbon and indirectly by enhancing light absorption by black carbon ("lensing effect"). The magnitude of these effects remains highly uncertain. A set of state-of-the-art instruments was deployed at the SEARCH site near Centerville, AL during the Southern Oxidant and Aerosol Study (SOAS) campaign in summer 2013 to measure the effect of relative humidity and temperature on aerosol size distribution, composition and optical properties. Light scattering and absorption by temperature- and humidity-conditioned aerosols was measured using three photo-acoustic extinctiometers (PAX) at three wavelengths (405 nm, 532 nm, and 870 nm). The sample-conditioning system provided measurements at ambient RH, 10%RH ("dry"), 85%RH ("wet"), and 200 C ("TD"). In parallel to these measurements, a long residence time temperature-stepping thermodenuder (TD) and a variable residence time constant temperature TD in combination with three SMPS systems and an Aerosol Chemical Speciation Monitor (ACSM) were used to assess aerosol volatility and kinetics of aerosol evaporation. We will present results of the on-going analysis of the collected data set. We will show that both temperature and relative humidity have a strong effect on aerosol optical properties. SOA appears to increase aerosol light absorption by about 10%. TD measurements suggest that aerosol equilibrated fairly quickly, within 2 s. Evaporation varied substantially with ambient aerosol loading and composition and meteorology.

  14. Mixed-phase aerosol particles

    NASA Astrophysics Data System (ADS)

    Corti, T.; Krieger, U. K.; Koop, T.; Peter, T.

    2003-04-01

    Within a liquid aerosol particle a solid phase may coexist with the liquid over a wide range of ambient conditions. The optical properties of such particles are of interest for a number of reasons. They will affect the scattering albedo of atmospheric aerosols, may cause depolarisation in lidar measurements, and potentially open a window for studying the internal morphology and physical properties (e.g. wetting properties, diffusion constants) of composite particles in laboratory experiments. In this contribution, we will present results of experimental and theoretical work on mixed-phase aerosol particles. The optical properties of mixed-phase particles depend on the location of the inclusion in the liquid phase, which is determined by the surface tensions of the involved interfaces. In the case of complete wetting, the energetically favoured position of the inclusion is in the volume of the liquid phase. For partial wetting, a position at the surface of the liquid phase is favoured, with the contact angle between the solid, liquid and air being described by Young's equation. For systems with small contact angles, the difference in energy between an inclusion situated at the droplets surface and in its volume may be so small that the thermal energy kT is sufficient to displace the inclusion from the droplet surface into its volume. The critical contact angle depends on the size of the inclusion and the droplet and ranges from 0.1 to 10 degrees. Examples of mixed-phase aerosol particles are aged soot particles and sea salt particles at low relative humidity. For aged soot, contact angles on sulphuric acid clearly above 10 degrees have been reported, so that soot inclusions are expected to be located at the surface of aerosol particles. For mixed-phase sea salt particles, consisting of a solid NaCl inclusion and an aqueous solution of mainly NaCl and MgCl2, our measurements on macroscopic NaCl crystals show a contact angle clearly below 10 degrees and possibly as

  15. Modeling Atmospheric Aerosols in WRF/Chem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yang; Hu, X.-M.; Howell, G.

    2005-06-01

    In this study, three aerosol modules are tested and compared. The first module is the Modal Aerosol Dynamics Model for Europe (MADE) with the secondary organic aerosol model (SORGAM) (referred to as MADE/SORGAM). The second module is the Model for Simulating Aerosol Interactions and Chemistry (MOSAIC). The third module is the Model of Aerosol Dynamics, Reaction, Ionization and Dissolution (MADRID). The three modules differ in terms of size representation used, chemical species treated, assumptions and numerical algorithms used. Table 1 compares the major processes among the three aerosol modules.

  16. Measurements of Semi-volatile Aerosol and Its Effect on Aerosol Optical Properties During Southern Oxidant and Aerosol Study

    NASA Astrophysics Data System (ADS)

    Khlystov, A.; Grieshop, A. P.; Saha, P.; Subramanian, R.

    2013-12-01

    Semi-volatile compounds, including particle-bound water, comprise a large part of aerosol mass and have a significant influence on aerosol lifecycle and its optical properties. Understanding the properties of semi-volatile compounds, especially those pertaining to gas/aerosol partitioning, is of critical importance for our ability to predict concentrations and properties of ambient aerosol. A set of state-of-the-art instruments was deployed at the SEARCH site near Centerville, AL during the Southern Oxidant and Aerosol Study (SOAS) campaign in summer 2013 to measure the effect of temperature and relative humidity on aerosol size distribution, composition and optical properties. Light scattering and absorption by temperature- and humidity-conditioned aerosols was measured using three photo-acoustic extinctiometers (PAX) at three wavelengths (405 nm, 532 nm, and 870 nm). In parallel to these measurements, a long residence time temperature-stepping thermodenuder and a variable residence time constant temperature thermodenuder in combination with three SMPS systems and an Aerosol Chemical Speciation Monitor (ACSM) were used to assess aerosol volatility and kinetics of aerosol evaporation. It was found that both temperature and relative humidity have a strong effect on aerosol optical properties. The variable residence time thermodenuder data suggest that aerosol equilibrated fairly quickly, within 2 s, in contrast to other ambient observations. Preliminary analysis show that approximately 50% and 90% of total aerosol mass evaporated at temperatures of 100 C and 180C, respectively. Evaporation varied substantially with ambient aerosol loading and composition and meteorology. During course of this study, T50 (temperatures at which 50% aerosol mass evaporates) varied from 60 C to more than 120 C.

  17. Characterization of aerosol composition, concentrations, and sources at Baengnyeong Island, Korea using an aerosol mass spectrometer

    NASA Astrophysics Data System (ADS)

    Lee, Taehyoung; Choi, Jinsoo; Lee, Gangwoong; Ahn, Junyoung; Park, Jin Soo; Atwood, Samuel A.; Schurman, Misha; Choi, Yongjoo; Chung, Yoomi; Collett, Jeffrey L.

    2015-11-01

    To improve understanding of the sources and chemical properties of particulate pollutants on the western side of the Korean Peninsula, an Aerodyne High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS) measured non-refractory fine (PM1) particles from May to November, 2011 at Baengnyeong Island, South Korea. Organic matter and sulfate were generally the most abundant species and exhibited maximum concentrations of 36 μg/m3 and 39 μg/m3, respectively. Nitrate concentrations peaked at 32 μg/m3 but were typically much lower than sulfate and organic matter concentrations. May, September, October, and November featured the highest monthly average concentrations, with lower concentrations typically observed from June through August. Potential source contribution function (PSCF) analysis and individual case studies revealed that transport from eastern China, an area with high SO2 emissions, was associated with high particulate sulfate concentrations at the measurement site. Observed sulfate aerosol sometimes was fully neutralized by ammonium but often was acidic; the average ammonium to sulfate molar ratio was 1.49. Measured species size distributions revealed a range of sulfate particle size distributions with modes between 100 and 600 nm. Organic aerosol source regions were widespread, including contributions from eastern China and South Korea. Positive matrix factorization (PMF) analysis indicated three "factors," or types of organic aerosol, comprising one primary, hydrocarbon-like organic aerosol (HOA) and two oxidized organic aerosol (OOA) components, including a more oxidized (MO-OOA) and a less oxidized (LO-OOA) oxidized organic aerosol. On average, HOA and OOA contributed 21% and 79% of the organic mass (OM), respectively, with the MO-OOA fraction nearly three times as abundant as the LO-OOA fraction. Biomass burning contributions to observed OM were low during the late spring/early summer agricultural burning season in eastern China, since

  18. Aerosol Remote Sensing From Space

    NASA Astrophysics Data System (ADS)

    Kokhanovsky, A.; Kinne, S.

    2010-01-01

    Determination of Atmospheric Aerosol Properties Using Satellite Measurements;Bad Honnef, Germany, 16-19 August 2009; Aerosol optical depth (AOD), a measure of how much light is attenuated by aerosol particles, provides scientists information about the amount and type of aerosols in the atmosphere. Recent developments in aerosol remote sensing was the theme of a workshop held in Germany. The workshop was sponsored by the Wilhelm and Else Heraeus Foundation and attracted 67 participants from 12 countries. The workshop focused on the determination (retrieval) of AOD and its spectral dependence using measurements of changes to the solar radiation back-scattered to space. The midvisible AOD is usually applied to define aerosol amount, while the size of aerosol particles is indicated by the AOD spectral dependence and is commonly expressed by the Angstrom parameter. Identical properties retrieved by different sensors, however, display significant diversity, especially over continents. A major reason for this is that the derivation of AOD requires more accurate determination of nonaerosol contributions to the sensed satellite signal than is usually available. In particular, surface reflectance data as a function of the viewing geometry and robust cloud-clearing methods are essential retrieval elements. In addition, the often needed assumptions about aerosol properties in terms of absorption and size are more reasons for the discrepancy between different AOD measurements.

  19. Aerosol Enhancements in the Upper Troposphere Over The Amazon Forest: Do Amazonian Clouds Produce Aerosols?

    NASA Astrophysics Data System (ADS)

    Andreae, M. O.; Afchine, A.; Albrecht, R. I.; Artaxo, P.; Borrmann, S.; Cecchini, M. A.; Costa, A.; Dollner, M.; Fütterer, D.; Järvinen, E.; Klimach, T.; Konemann, T.; Kraemer, M.; Krüger, M. L.; Machado, L.; Mertes, S.; Pöhlker, C.; Poeschl, U.; Sauer, D. N.; Schnaiter, M.; Schneider, J.; Schulz, C.; Spanu, A.; Walser, A.; Weinzierl, B.; Wendisch, M.

    2015-12-01

    The German-Brazilian cooperative aircraft campaign ACRIDICON-CHUVA (Aerosol, Cloud, Precipitation, and Radiation Interactions and Dynamics of Convective Cloud Systems) on the German research aircraft HALO took place over the Amazon Basin in September/October 2014, with the objective of studying tropical deep convective clouds over the Amazon rainforest and their interactions with trace gases, aerosol particles, and atmospheric radiation. The aircraft was equipped with about 30 remote sensing and in-situ instruments for meteorological, trace gas, aerosol, cloud, precipitation, and solar radiation measurements. Fourteen research flights were conducted during this campaign. Observations during ACRIDICON-CHUVA showed high aerosol concentrations in the upper troposphere (UT) over the Amazon Basin, with concentrations after normalization to standard conditions often exceeding those in the boundary layer (BL). This behavior was consistent between several aerosol metrics, including condensation nuclei (CN), cloud condensation nuclei (CCN), and chemical species mass concentrations. These UT aerosols were different in their composition and size distribution from the aerosol in the BL, making convective transport of particles unlikely as a source. The regions in the immediate outflow of deep convective clouds were found to be depleted in aerosol particles, whereas enhanced aerosol number and mass concentrations were found in UT regions that had experienced outflow from deep convection in the preceding 24-48 hours. This suggests that aerosol production takes place in the UT based on volatile and condensable material brought up by deep convection. Subsequently, downward mixing and transport of upper tropospheric aerosol may be a source of particles to the BL, where they increase in size by the condensation of biogenic volatile organic carbon (BVOC) oxidation products. This may be an important source of aerosol particles in the Amazonian BL, where aerosol nucleation and new

  20. Photoacoustic measurements of photokinetics in single optically trapped aerosol droplets

    NASA Astrophysics Data System (ADS)

    Covert, Paul; Cremer, Johannes; Signorell, Ruth; Thaler, Klemens; Haisch, Christoph

    2017-04-01

    It is well established that interaction of light with atmospheric aerosols has a large impact on the Earth's climate. However, uncertainties in the magnitude of this impact remain large, due in part to broad distributions of aerosol size, composition, and chemical reactivity. In this context, photoacoustic spectroscopy is commonly used to measure light absorption by aerosols. Here, we present photoacoustic measurements of single, optically-trapped nanodroplets to reveal droplet size-depencies of photochemical and physical processes. Theoretical considerations have pointed to a size-dependence in the magnitude and phase of the photoacoustic response from aerosol droplets. This dependence is thought to originate from heat transfer processes that are slow compared to the acoustic excitation frequency. In the case of a model aerosol, our measurements of single particle absorption cross-section versus droplet size confirm these theoretical predictions. In a related study, using the same model aerosol, we also demonstrate a droplet size-dependence of photochemical reaction rates [1]. Within sub-micron sized particles, photolysis rates were observed to be an order of magnitude greater than those observed in larger droplets. [1] J. W. Cremer, K. M. Thaler, C. Haisch, and R. Signorell. Photoacoustics of single laser-trapped nanodroplets for the direct observation of nanofocusing in aerosol photokinetics. Nat. Commun., 7:10941, 2016.

  1. How the Assumed Size Distribution of Dust Minerals Affects the Predicted Ice Forming Nuclei

    NASA Technical Reports Server (NTRS)

    Perlwitz, Jan P.; Fridlind, Ann M.; Garcia-Pando, Carlos Perez; Miller, Ron L.; Knopf, Daniel A.

    2015-01-01

    The formation of ice in clouds depends on the availability of ice forming nuclei (IFN). Dust aerosol particles are considered the most important source of IFN at a global scale. Recent laboratory studies have demonstrated that the mineral feldspar provides the most efficient dust IFN for immersion freezing and together with kaolinite for deposition ice nucleation, and that the phyllosilicates illite and montmorillonite (a member of the smectite group) are of secondary importance.A few studies have applied global models that simulate mineral specific dust to predict the number and geographical distribution of IFN. These studies have been based on the simple assumption that the mineral composition of soil as provided in data sets from the literature translates directly into the mineral composition of the dust aerosols. However, these tables are based on measurements of wet-sieved soil where dust aggregates are destroyed to a large degree. In consequence, the size distribution of dust is shifted to smaller sizes, and phyllosilicates like illite, kaolinite, and smectite are only found in the size range 2 m. In contrast, in measurements of the mineral composition of dust aerosols, the largest mass fraction of these phyllosilicates is found in the size range 2 m as part of dust aggregates. Conversely, the mass fraction of feldspar is smaller in this size range, varying with the geographical location. This may have a significant effect on the predicted IFN number and its geographical distribution.An improved mineral specific dust aerosol module has been recently implemented in the NASA GISS Earth System ModelE2. The dust module takes into consideration the disaggregated state of wet-sieved soil, on which the tables of soil mineral fractions are based. To simulate the atmospheric cycle of the minerals, the mass size distribution of each mineral in aggregates that are emitted from undispersed parent soil is reconstructed. In the current study, we test the null

  2. Molecular characterization of free tropospheric aerosol collected at the Pico Mountain Observatory: a case study with a long-range transported biomass burning plume

    NASA Astrophysics Data System (ADS)

    Dzepina, K.; Mazzoleni, C.; Fialho, P.; China, S.; Zhang, B.; Owen, R. C.; Helmig, D.; Hueber, J.; Kumar, S.; Perlinger, J. A.; Kramer, L. J.; Dziobak, M. P.; Ampadu, M. T.; Olsen, S.; Wuebbles, D. J.; Mazzoleni, L. R.

    2015-05-01

    Free tropospheric aerosol was sampled at the Pico Mountain Observatory located at 2225 m above mean sea level on Pico Island of the Azores archipelago in the North Atlantic. The observatory is located ~ 3900 km east and downwind of North America, which enables studies of free tropospheric air transported over long distances. Aerosol samples collected on filters from June to October 2012 were analyzed to characterize organic carbon, elemental carbon, and inorganic ions. The average ambient concentration of aerosol was 0.9 ± 0.7 μg m-3. On average, organic aerosol components represent the largest mass fraction of the total measured aerosol (60 ± 51%), followed by sulfate (23 ± 28%), nitrate (13 ± 10%), chloride (2 ± 3%), and elemental carbon (2 ± 2%). Water-soluble organic matter (WSOM) extracted from two aerosol samples (9/24 and 9/25) collected consecutively during a pollution event were analyzed using ultrahigh-resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Approximately 4000 molecular formulas were assigned to each of the mass spectra in the range of m/z 100-1000. The majority of the assigned molecular formulas had unsaturated structures with CHO and CHNO elemental compositions. FLEXPART retroplume analyses showed the sampled air masses were very aged (average plume age > 12 days). These aged aerosol WSOM compounds had an average O/C ratio of ~ 0.45, which is relatively low compared to O/C ratios of other aged aerosol. The increase in aerosol loading during the measurement period of 9/24 was linked to biomass burning emissions from North America by FLEXPART retroplume analysis and Moderate Resolution Imaging Spectroradiometer (MODIS) fire counts. This was confirmed with biomass burning markers detected in the WSOM and with the morphology and mixing state of particles as determined by scanning electron microscopy. The presence of markers characteristic of aqueous-phase reactions of phenolic species suggests

  3. Aerosol and CCN in southwest Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Collins, Don; Li, Runjun; Axisa, Duncan; Kucera, Paul; Burger, Roelof

    2010-05-01

    As part of an ongoing study of the microphysical and dynamical controls on precipitation in southwest Saudi Arabia, a number of surface and aircraft-based instruments were used in summer / fall 2009 to measure the size distribution, hygroscopic properties, and cloud droplet nucleation efficiency of the local aerosol. Submicron size distributions were measured using differential mobility analyzers both on the ground and on board the aircraft, while an aerodynamic particle sizer and a forward scattering spectrometer probe were used to measure the supermicron size distributions on the ground and from on board the aircraft, respectively. Identical continuous flow cloud condensation nuclei counters were used to measure CCN spectra at the surface and aloft and a humidified tandem differential mobility analyzer was operated on the ground to measure size-resolved hygroscopicity. The aerosol in this arid environment is characterized by a persistent accumulation mode having hygroscopic and CCN efficiency properties consistent with a sulfate-rich aged aerosol. The particles in that background aerosol are generally sufficiently large and hygroscopic to activate at those supersaturations expected in the convective clouds responsible for most of the regional precipitation, which consequently acts as a lower bound on the resulting cloud droplet concentrations. Though the concentration, size distribution, and properties of the submicron aerosol generally changed very slowly over periods of several hours, abrupt ~doubling in concentration almost always accompanied the arrival of the sea breeze front that began along the Red Sea. Interestingly, the hygroscopicity and the shape of the size distribution differed little in the pre- and post-sea breeze air masses. The dust-dominated coarse mode typically contributed significantly more to the aerosol mass concentration than did the submicron mode and likely controlled the ice nuclei concentration, though no direct measurements were made

  4. Atmosphere aerosol satellite project Aerosol-UA

    NASA Astrophysics Data System (ADS)

    Milinevsky, Gennadi; Yatskiv, Yaroslav; Syniavskyi, Ivan; Bovchaliuk, Andrii; Degtyaryov, Oleksandr; Sosonkin, Mikhail; Mishchenko, Michael; Danylevsky, Vassyl; Ivanov, Yury; Oberemok, Yevgeny; Masley, Volodymyr; Rosenbush, Vera; Moskalev, Sergii

    2017-04-01

    The experiment Aerosol-UA is Ukrainian space mission aimed to the terrestrial atmospheric aerosol spatial distribution and microphysics investigations. The experiment concept is based on idea of Glory/APS mission of precise orbital measurements of polarization and intensity of the sunlight scattered by the atmosphere, aerosol and the surface the multichannel Scanning Polarimeter (ScanPol) with narrow field-of-view. ScanPol measurements will be accompanied by the wide-angle MultiSpectral Imager-Polarimeter (MSIP). The ScanPol is designed to measure Stokes parameters I, Q, U within the spectral range from the UV to the SWIR in a wide range of phase angles along satellite ground path. Expected ScanPol polarimetric accuracy is 0.15%. A high accuracy measurement of the degree of linear polarization is provided by on-board calibration of the ScanPol polarimeter. On-board calibration is performed for each scan of the mirror scanning system. A set of calibrators is viewed during the part of the scan range when the ScanPol polarimeter looks in the direction opposite to the Earth's surface. These reference assemblies provide calibration of the zero of the polarimetric scale (unpolarized reference assembly) and the scale factor for the polarimetric scale (polarized reference assembly). The zero of the radiometric scale is provided by the dark reference assembly.The spectral channels of the ScanPol are used to estimate the tropospheric aerosol absorption, the aerosol over the ocean and the land surface, the signals from cirrus clouds, stratospheric aerosols caused by major volcanic eruptions, and the contribution of the Earth's surface. The imager-polarimeter MSIP will collect 60°x60° field-of-view images on the state of the atmosphere and surface in the area, where the ScanPol polarimeter will measure, to retrieve aerosol optical depth and polarization properties of aerosol by registration of three Stokes parameters simultaneously in three spectral channels. The two more

  5. Aerosol Optical Properties in Southeast Asia From AERONET Observations

    NASA Astrophysics Data System (ADS)

    Eck, T. F.; Holben, B. N.; Boonjawat, J.; Le, H. V.; Schafer, J. S.; Reid, J. S.; Dubovik, O.; Smirnov, A.

    2003-12-01

    There is little published data available on measured optical properties of aerosols in the Southeast Asian region. The AERONET project and collaborators commenced monitoring of aerosol optical properties in February 2003 at four sites in Thailand and two sites in Viet Nam to measure the primarily anthropogenic aerosols generated by biomass burning and fossil fuel combustion/ industrial emissions. Automatic sun/sky radiometers at each site measured spectral aerosol optical depth in 7 wavelengths from 340 to 1020 nm and combined with directional radiances in the almucantar, retrievals were made of spectral single scattering albedo and aerosol size distributions. Angstrom exponents, size distributions and spectral single scattering albedo of primarily biomass burning aerosols at rural sites are compared to measurements made at AERONET sites in other major biomass burning regions in tropical southern Africa, South America, and in boreal forest regions. Additionally, the aerosol single scattering albedo and size distributions measured in Bangkok, Thailand are compared with those measured at other urban sites globally. The influences of aerosols originating from other regions outside of Southeast Asia are analyzed using trajectory analyses. Specifically, cases of aerosol transport and mixing from Southern China and from India are presented.

  6. Aerosol properties from spectral extinction and backscatter estimated by an inverse Monte Carlo method.

    PubMed

    Ligon, D A; Gillespie, J B; Pellegrino, P

    2000-08-20

    The feasibility of using a generalized stochastic inversion methodology to estimate aerosol size distributions accurately by use of spectral extinction, backscatter data, or both is examined. The stochastic method used, inverse Monte Carlo (IMC), is verified with both simulated and experimental data from aerosols composed of spherical dielectrics with a known refractive index. Various levels of noise are superimposed on the data such that the effect of noise on the stability and results of inversion can be determined. Computational results show that the application of the IMC technique to inversion of spectral extinction or backscatter data or both can produce good estimates of aerosol size distributions. Specifically, for inversions for which both spectral extinction and backscatter data are used, the IMC technique was extremely accurate in determining particle size distributions well outside the wavelength range. Also, the IMC inversion results proved to be stable and accurate even when the data had significant noise, with a signal-to-noise ratio of 3.

  7. Aerosols, clouds, and precipitation in the North Atlantic trades observed during the Barbados aerosol cloud experiment - Part 1: Distributions and variability

    NASA Astrophysics Data System (ADS)

    Jung, Eunsil; Albrecht, Bruce A.; Feingold, Graham; Jonsson, Haflidi H.; Chuang, Patrick; Donaher, Shaunna L.

    2016-07-01

    Shallow marine cumulus clouds are by far the most frequently observed cloud type over the Earth's oceans; but they are poorly understood and have not been investigated as extensively as stratocumulus clouds. This study describes and discusses the properties and variations of aerosol, cloud, and precipitation associated with shallow marine cumulus clouds observed in the North Atlantic trades during a field campaign (Barbados Aerosol Cloud Experiment- BACEX, March-April 2010), which took place off Barbados where African dust periodically affects the region. The principal observing platform was the Center for Interdisciplinary Remotely Piloted Aircraft Studies (CIRPAS) Twin Otter (TO) research aircraft, which was equipped with standard meteorological instruments, a zenith pointing cloud radar and probes that measured aerosol, cloud, and precipitation characteristics.The temporal variation and vertical distribution of aerosols observed from the 15 flights, which included the most intense African dust event during all of 2010 in Barbados, showed a wide range of aerosol conditions. During dusty periods, aerosol concentrations increased substantially in the size range between 0.5 and 10 µm (diameter), particles that are large enough to be effective giant cloud condensation nuclei (CCN). The 10-day back trajectories showed three distinct air masses with distinct vertical structures associated with air masses originating in the Atlantic (typical maritime air mass with relatively low aerosol concentrations in the marine boundary layer), Africa (Saharan air layer), and mid-latitudes (continental pollution plumes). Despite the large differences in the total mass loading and the origin of the aerosols, the overall shapes of the aerosol particle size distributions were consistent, with the exception of the transition period.The TO was able to sample many clouds at various phases of growth. Maximum cloud depth observed was less than ˜ 3 km, while most clouds were less than 1 km

  8. Selection of quasi-monodisperse super-micron aerosol particles

    NASA Astrophysics Data System (ADS)

    Rösch, Michael; Pfeifer, Sascha; Wiedensohler, Alfred; Stratmann, Frank

    2014-05-01

    Size-segregated quasi monodisperse particles are essential for e.g. fundamental research concerning cloud microphysical processes. Commonly a DMA (Differential Mobility Analyzer) is used to produce quasi-monodisperse submicron particles. Thereto first, polydisperse aerosol particles are bipolarly charged by a neutralizer, and then selected according to their electrical mobility with the DMA [Knutson et al. 1975]. Selecting a certain electrical mobility with a DMA results in a particle size distribution, which contains singly charged particles as well as undesired multiply charged larger particles. Often these larger particles need to either be removed from the generated aerosol or their signals have to be corrected for in the data inversion and interpretation process. This problem becomes even more serious when considering super-micron particles. Here we will present two different techniques for generating quasi-monodisperse super-micron aerosol particles with no or only an insignificant number of larger sized particles being present. First, we use a combination of a cyclone with adjustable aerodynamic cut-off diameter and our custom-built Maxi-DMA [Raddatz et al. 2013]. The cyclone removes particles larger than the desired ones prior to mobility selection with the DMA. This results in a reduction of the number of multiply charged particles of up to 99.8%. Second, we utilize a new combination of cyclone and PCVI (Pumped Counterflow Virtual Impactor), which is based on purely inertial separation and avoids particle charging. The PCVI instrument was previously described by Boulter et al. (2006) and Kulkarni et al. (2011). With our two setups we are able to produce quasi-monodisperse aerosol particles in the diameter range from 0.5 to 4.4 µm without a significant number of larger undesired particles being present. Acknowledgements: This work was done within the framework of the DFG funded Ice Nucleation research UnIT (INUIT, FOR 1525) under WE 4722/1-1. References

  9. A case study of the radiative effect of aerosols over Europe: EUCAARI-LONGREX

    NASA Astrophysics Data System (ADS)

    Esteve, Anna R.; Highwood, Eleanor J.; Ryder, Claire L.

    2016-06-01

    The radiative effect of anthropogenic aerosols over Europe during the 2008 European Integrated Project on Aerosol Cloud Climate and Air Quality Interactions Long Range Experiment (EUCAARI-LONGREX) campaign has been calculated using measurements collected by the Facility for Airborne Atmospheric Measurements (FAAM) BAe-146 aircraft and radiative transfer modelling. The aircraft sampled anthropogenically perturbed air masses across north-western Europe under anticyclonic conditions with aerosol optical depths ranging from 0.047 to 0.357. For one specially designed "radiative closure" flight, simulated irradiances have been compared to radiation measurements for a case of aged European aerosol in order to explore the validity of model assumptions and the degree of radiative closure that can be attained given the spatial and temporal variability of the observations and their measurement uncertainties. Secondly, the diurnally averaged aerosol radiative effect throughout EUCAARI-LONGREX has been calculated. The surface radiative effect ranged between -3.9 and -22.8 W m-2 (mean -11 ± 5 W m-2), whilst top-of-the-atmosphere (TOA) values were between -2.1 and -12.0 W m-2 (mean -5 ± 3 W m-2). We have quantified the uncertainties in our calculations due to the way in which aerosols and other parameters are represented in a radiative transfer model. The largest uncertainty in the aerosol radiative effect at both the surface and the TOA comes from the spectral resolution of the information used in the radiative transfer model (˜ 17 %) and the aerosol description (composition and size distribution) used in the Mie calculations of the aerosol optical properties included in the radiative transfer model (˜ 7 %). The aerosol radiative effect at the TOA is also highly sensitive to the surface albedo (˜ 12 %).

  10. Investigation of multiple scattering effects in aerosols

    NASA Technical Reports Server (NTRS)

    Deepak, A.

    1980-01-01

    The results are presented of investigations on the various aspects of multiple scattering effects on visible and infrared laser beams transversing dense fog oil aerosols contained in a chamber (4' x 4' x 9'). The report briefly describes: (1) the experimental details and measurements; (2) analytical representation of the aerosol size distribution data by two analytical models (the regularized power law distribution and the inverse modified gamma distribution); (3) retrieval of aerosol size distributions from multispectral optical depth measurements by two methods (the two and three parameter fast table search methods and the nonlinear least squares method); (4) modeling of the effects of aerosol microphysical (coagulation and evaporation) and dynamical processes (gravitational settling) on the temporal behavior of aerosol size distribution, and hence on the extinction of four laser beams with wavelengths 0.44, 0.6328, 1.15, and 3.39 micrometers; and (5) the exact and approximate formulations for four methods for computing the effects of multiple scattering on the transmittance of laser beams in dense aerosols, all of which are based on the solution of the radiative transfer equation under the small angle approximation.

  11. Investigation of multiple scattering effects in aerosols

    NASA Astrophysics Data System (ADS)

    Deepak, A.

    1980-05-01

    The results are presented of investigations on the various aspects of multiple scattering effects on visible and infrared laser beams transversing dense fog oil aerosols contained in a chamber (4' x 4' x 9'). The report briefly describes: (1) the experimental details and measurements; (2) analytical representation of the aerosol size distribution data by two analytical models (the regularized power law distribution and the inverse modified gamma distribution); (3) retrieval of aerosol size distributions from multispectral optical depth measurements by two methods (the two and three parameter fast table search methods and the nonlinear least squares method); (4) modeling of the effects of aerosol microphysical (coagulation and evaporation) and dynamical processes (gravitational settling) on the temporal behavior of aerosol size distribution, and hence on the extinction of four laser beams with wavelengths 0.44, 0.6328, 1.15, and 3.39 micrometers; and (5) the exact and approximate formulations for four methods for computing the effects of multiple scattering on the transmittance of laser beams in dense aerosols, all of which are based on the solution of the radiative transfer equation under the small angle approximation.

  12. Aerosol Deposition in Health and Disease

    PubMed Central

    2012-01-01

    Abstract The success of inhalation therapy is not only dependent upon the pharmacology of the drugs being inhaled but also upon the site and extent of deposition in the respiratory tract. This article reviews the main mechanisms affecting the transport and deposition of inhaled aerosol in the human lung. Aerosol deposition in both the healthy and diseased lung is described mainly based on the results of human studies using nonimaging techniques. This is followed by a discussion of the effect of flow regime on aerosol deposition. Finally, the link between therapeutic effects of inhaled drugs and their deposition pattern is briefly addressed. Data show that total lung deposition is a poor predictor of clinical outcome, and that regional deposition needs to be assessed to predict therapeutic effectiveness. Indeed, spatial distribution of deposited particles and, as a consequence, drug efficiency is strongly affected by particle size. Large particles (>6 μm) tend to mainly deposit in the upper airway, limiting the amount of drugs that can be delivered to the lung. Small particles (<2 μm) deposit mainly in the alveolar region and are probably the most apt to act systemically, whereas the particle in the size range 2–6 μm are be best suited to treat the central and small airways. PMID:22686623

  13. Aerosol volatility in a boreal forest environment

    NASA Astrophysics Data System (ADS)

    Häkkinen, S. A. K.; ńijälä, M.; Lehtipalo, K.; Junninen, H.; Virkkula, A.; Worsnop, D. R.; Kulmala, M.; Petäjä, T.; Riipinen, I.

    2012-04-01

    Climate and health effects of atmospheric aerosols are determined by their properties such as their chemical composition. Aerosol chemical composition can be studied indirectly by measuring volatility of aerosol particles. The volatility of submicron aerosol particles (20-500 nm) was studied in a boreal forest site at SMEAR II (Station for Measuring Ecosystem-Atmosphere Relations II) station (Vesala et al., 1998) in Hyytiälä, Finland, during 01/2008-05/2010. The instrument used for the measurements was VDMPS (Volatility Differential Mobility Particle Sizer), which consists of two separate instruments: DMPS (Differential Mobility Particle Sizer, Aalto et al., 2001) and TD (Thermodenuder, Wehner et al., 2002). Aerosol evaporation was examined by heating the aerosol and comparing the total aerosol mass before and after heating. In the VDMPS system ambient aerosol sample was heated up to temperatures ranging from 80 °C to 280 °C. The higher the heating temperature was the more aerosol material was evaporated. There was a non-volatile residual present in aerosol particles when heated up to 280 °C. This residual explained (20±8)% of the total aerosol mass. Aerosol non-volatile mass fraction was highest during winter and smallest during summer months. The role of black carbon in the observed non-volatile residual was determined. Black carbon explained 40 to 90% of the non-volatile mass. Especially during colder seasons noticeable amount of non-volatile material, something else than black carbon, was observed. According to Kalberer et al. (2004) some atmospheric organic species can form polymers that have high evaporation temperatures. Also low-volatile organic salts may contribute to the non-volatile aerosol (Smith et al., 2010). Aerosol mass composition measured directly with AMS (Aerosol Mass Spectrometer, Jayne et al., 2000) was analyzed in order to examine the properties of the non-volatile material (other than black carbon). The AMS measurements were performed

  14. Methodology for the passive detection and discrimination of chemical and biological aerosols

    NASA Astrophysics Data System (ADS)

    Marinelli, William J.; Shokhirev, Kirill N.; Konno, Daisei; Rossi, David C.; Richardson, Martin

    2013-05-01

    The standoff detection and discrimination of aerosolized biological and chemical agents has traditionally been addressed through LIDAR approaches, but sensor systems using these methods have yet to be deployed. We discuss the development and testing of an approach to detect these aerosols using the deployed base of passive infrared hyperspectral sensors used for chemical vapor detection. The detection of aerosols requires the inclusion of down welling sky and up welling ground radiation in the description of the radiative transfer process. The wavelength and size dependent ratio of absorption to scattering provides much of the discrimination capability. The approach to the detection of aerosols utilizes much of the same phenomenology employed in vapor detection; however, the sensor system must acquire information on non-line-of-sight sources of radiation contributing to the scattering process. We describe the general methodology developed to detect chemical or biological aerosols, including justifications for the simplifying assumptions that enable the development of a real-time sensor system. Mie scattering calculations, aerosol size distribution dependence, and the angular dependence of the scattering on the aerosol signature will be discussed. This methodology will then be applied to two test cases: the ground level release of a biological aerosol (BG) and a nonbiological confuser (kaolin clay) as well as the debris field resulting from the intercept of a cruise missile carrying a thickened VX warhead. A field measurement, conducted at the Utah Test and Training Range will be used to illustrate the issues associated with the use of the method.

  15. The Remote Sensing of Mineral Aerosols and their Impact on Phytoplankton Productivity

    NASA Technical Reports Server (NTRS)

    Tindale, Neil W.

    1997-01-01

    The overall objective of this experiment was to test the iron hypothesis does the addition of iron to nutrient rich surface waters enhance productivity? Our specific objectives in this experiment included sampling and studying the marine aerosol size and type (which are related to chemical reactivity) during the PlumEx cruise to determine the importance of local (Galapagos Islands) versus long-range sources of atmospheric material. Detailed results of single particle analysis of our samples are being prepared for publication in two papers. We collect aerosol samples and they have been analyzed for trace metals and other elements. We are mapped aerosol distribution and the desert source areas around the Arabian Sea region. We did record a clear relationship between the aerosol radiance and synoptic weather patterns with distinct signals over the ocean northwest and southwest of Australia. While the interpretation was limited an aerosol climatology pattern was presented.

  16. Inspiratory and expiratory aerosol deposition in the upper airway.

    PubMed

    Verbanck, S; Kalsi, H S; Biddiscombe, M F; Agnihotri, V; Belkassem, B; Lacor, C; Usmani, O S

    2011-02-01

    Aerosol deposition efficiency (DE) in the extrathoracic airways during mouth breathing is currently documented only for the inspiratory phase of respiration, and there is a need for quantification of expiratory DE. Our aim was to study both inspiratory and expiratory DE in a realistic upper airway geometry. This was done experimentally on a physical upper airway cast by scintigraphy, and numerically by computational fluid dynamic simulations using a Reynolds Averaged Navier?Stokes (RANS) method with a k-? SST turbulence model coupled with a stochastic Lagrangian approach. Experiments and simulations were carried out for particle sizes (3 and 6 μm) and flow rates (30 and 60 L/min) spanning the ranges of Stokes (Stk) and Reynolds (Re) number pertinent to therapeutic and environmental aerosols. We showed that inspiratory total deposition data obtained by scintigraphy fell onto a previously published deposition curve representative of a range of upper airway geometries. We also found that expiratory and inspiratory DE curves were almost identical. Finally, DE in different compartments of the upper airway model showed a very different distribution pattern of aerosol deposition during inspiration and expiration, with preferential deposition in oral and pharyngeal compartments, respectively. These compartmental deposition patterns were very consistent and only slightly dependent on particle size or flow rate. Total deposition for inspiration and expiration was reasonably well-mimicked by the RANS simulation method we employed, and more convincingly so in the upper range of the Stk and Re number. However, compartmental deposition patterns showed discrepancies between experiments and RANS simulations, particularly during expiration.

  17. Climatology of Aerosol Optical Properties in Southern Africa

    NASA Technical Reports Server (NTRS)

    Queface, Antonio J.; Piketh, Stuart J.; Eck, Thomas F.; Tsay, Si-Chee

    2011-01-01

    A thorough regionally dependent understanding of optical properties of aerosols and their spatial and temporal distribution is required before we can accurately evaluate aerosol effects in the climate system. Long term measurements of aerosol optical depth, Angstrom exponent and retrieved single scattering albedo and size distribution, were analyzed and compiled into an aerosol optical properties climatology for southern Africa. Monitoring of aerosol parameters have been made by the AERONET program since the middle of the last decade in southern Africa. This valuable information provided an opportunity for understanding how aerosols of different types influence the regional radiation budget. Two long term sites, Mongu in Zambia and Skukuza in South Africa formed the core sources of data in this study. Results show that seasonal variation of aerosol optical thicknesses at 500 nm in southern Africa are characterized by low seasonal multi-month mean values (0.11 to 0.17) from December to May, medium values (0.20 to 0.27) between June and August, and high to very high values (0.30 to 0.46) during September to November. The spatial distribution of aerosol loadings shows that the north has high magnitudes than the south in the biomass burning season and the opposite in none biomass burning season. From the present aerosol data, no long term discernable trends are observable in aerosol concentrations in this region. This study also reveals that biomass burning aerosols contribute the bulk of the aerosol loading in August-October. Therefore if biomass burning could be controlled, southern Africa will experience a significant reduction in total atmospheric aerosol loading. In addition to that, aerosol volume size distribution is characterized by low concentrations in the non biomass burning period and well balanced particle size contributions of both coarse and fine modes. In contrast high concentrations are characteristic of biomass burning period, combined with

  18. Miniature Dual-Corona Ionizer for Bipolar Charging of Aerosol

    PubMed Central

    Qi, Chaolong; Kulkarni, Pramod

    2015-01-01

    A corona-based bipolar charger has been developed for use in compact, field-portable mobility size spectrometers. The charger employs an aerosol flow cavity exposed to two corona ionizers producing ions of opposite polarity. Each corona ionizer houses two electrodes in parallel needle-mesh configuration and is operated at the same magnitude of corona current. Experimental measurement of detailed charge distribution of near-monodisperse particles of different diameter in the submicrometer size range showed that the charger is capable of producing well-defined, consistent bipolar charge distributions for flow rates up to 1.5 L/min and aerosol concentration up to 107 per cm3. For particles with preexisting charge of +1, 0, and −1, the measured charge distributions agreed well with the theoretical distributions within the range of experimental and theoretical uncertainties. The transmission efficiency of the charger was measured to be 80% for 10 nm particles (at 0.3 L/min and 5 μA corona current) and increased with increasing diameter beyond this size. Measurement of uncharged fractions at various combinations of positive and negative corona currents showed the charger performance to be insensitive to fluctuations in corona current. Ion concentrations under positive and negative unipolar operation were estimated to be 8.2 × 107 and 3.37 × 108 cm−3 for positive and negative ions; the n·t product value under positive corona operation was independently estimated to be 8.5 × 105 s/cm3. The ion concentration estimates indicate the charger to be capable of “neutralizing” typical atmospheric and industrial aerosols in most measurement applications. The miniature size, simple and robust operation makes the charger suitable for portable mobility spectrometers. PMID:26512158

  19. Miniature Dual-Corona Ionizer for Bipolar Charging of Aerosol.

    PubMed

    Qi, Chaolong; Kulkarni, Pramod

    2013-01-01

    A corona-based bipolar charger has been developed for use in compact, field-portable mobility size spectrometers. The charger employs an aerosol flow cavity exposed to two corona ionizers producing ions of opposite polarity. Each corona ionizer houses two electrodes in parallel needle-mesh configuration and is operated at the same magnitude of corona current. Experimental measurement of detailed charge distribution of near-monodisperse particles of different diameter in the submicrometer size range showed that the charger is capable of producing well-defined, consistent bipolar charge distributions for flow rates up to 1.5 L/min and aerosol concentration up to 10 7 per cm 3 . For particles with preexisting charge of +1, 0, and -1, the measured charge distributions agreed well with the theoretical distributions within the range of experimental and theoretical uncertainties. The transmission efficiency of the charger was measured to be 80% for 10 nm particles (at 0.3 L/min and 5 μ A corona current) and increased with increasing diameter beyond this size. Measurement of uncharged fractions at various combinations of positive and negative corona currents showed the charger performance to be insensitive to fluctuations in corona current. Ion concentrations under positive and negative unipolar operation were estimated to be 8.2 × 10 7 and 3.37 × 10 8 cm -3 for positive and negative ions; the n · t product value under positive corona operation was independently estimated to be 8.5 × 10 5 s/cm 3 . The ion concentration estimates indicate the charger to be capable of "neutralizing" typical atmospheric and industrial aerosols in most measurement applications. The miniature size, simple and robust operation makes the charger suitable for portable mobility spectrometers.

  20. The Global Atmosphere Watch Aerosol Programme

    NASA Astrophysics Data System (ADS)

    Baltensperger, U.

    2003-04-01

    The Global Atmosphere Watch (GAW) programme is a WMO sponsored activity and currently supported by about 80 WMO member countries. It is the goal of GAW to develop and maintain long-term measurements of atmospheric constituents in order to detect trends, develop aerosol predictive capabilities and understand proc- esses. With respect to aerosols, the objective of GAW is to support a global network determining the spatio-temporal distribution of aerosol properties related to climate forcing and air quality up to multi-decadal time scales. The GAW network consists of 22 Global stations and some 300 Regional stations. The Scientific Advisory Group (SAG) for Aerosols will soon publish their recommendations for aerosol measurements. Each site should have an acceptable aerosol sampling inlet. Regional stations measure aerosol optical depth, as well as the aerosol light scattering and absorption coefficient. If possible these should be complemented by routine mass concentration and composition measurements in two aerosol size fractions. At Global stations, a larger number of measurements are desirable. These include the Regional parameters list above as well as the light scattering, hemispheric backscat- tering, and absorption coefficients at various wavelengths, aerosol number concen- tration, cloud condensation nuclei (CCN) concentration at 0.5% supersaturation, and diffuse, global and direct solar radiation. Additional parameters such as the aerosol size distribution, detailed size fractionated chemical composition, dependence of aerosol properties on relative humidity, CCN concentration at various supersatura- tions, and the vertical distribution of aerosol properties should be measured intermit- tently at Global stations. Examples from the Jungfraujoch (Swiss Alps, 3580 m asl) will be given, where many of the parameters listed above are measured. Data are delivered to and made available by the World Data Centre for Aerosols (WDCA, located in Ispra, Italy http

  1. The NASA-AMES Research Center Stratospheric Aerosol Model. 1. Physical Processes and Computational Analogs

    NASA Technical Reports Server (NTRS)

    Turco, R. P.; Hamill, P.; Toon, O. B.; Whitten, R. C.; Kiang, C. S.

    1979-01-01

    A time-dependent one-dimensional model of the stratospheric sulfate aerosol layer is presented. In constructing the model, a wide range of basic physical and chemical processes are incorporated in order to avoid predetermining or biasing the model predictions. The simulation, which extends from the surface to an altitude of 58 km, includes the troposphere as a source of gases and condensation nuclei and as a sink for aerosol droplets. The size distribution of aerosol particles is resolved into 25 categories with particle radii increasing geometrically from 0.01 to 2.56 microns such that particle volume doubles between categories.

  2. Aerosol optical properties and direct radiative forcing based on measurements from the China Aerosol Remote Sensing Network (CARSNET) in eastern China

    NASA Astrophysics Data System (ADS)

    Che, Huizheng; Qi, Bing; Zhao, Hujia; Xia, Xiangao; Eck, Thomas F.; Goloub, Philippe; Dubovik, Oleg; Estelles, Victor; Cuevas-Agulló, Emilio; Blarel, Luc; Wu, Yunfei; Zhu, Jun; Du, Rongguang; Wang, Yaqiang; Wang, Hong; Gui, Ke; Yu, Jie; Zheng, Yu; Sun, Tianze; Chen, Quanliang; Shi, Guangyu; Zhang, Xiaoye

    2018-01-01

    Aerosol pollution in eastern China is an unfortunate consequence of the region's rapid economic and industrial growth. Here, sun photometer measurements from seven sites in the Yangtze River Delta (YRD) from 2011 to 2015 were used to characterize the climatology of aerosol microphysical and optical properties, calculate direct aerosol radiative forcing (DARF) and classify the aerosols based on size and absorption. Bimodal size distributions were found throughout the year, but larger volumes and effective radii of fine-mode particles occurred in June and September due to hygroscopic growth and/or cloud processing. Increases in the fine-mode particles in June and September caused AOD440 nm > 1.00 at most sites, and annual mean AOD440 nm values of 0.71-0.76 were found at the urban sites and 0.68 at the rural site. Unlike northern China, the AOD440 nm was lower in July and August (˜ 0.40-0.60) than in January and February (0.71-0.89) due to particle dispersion associated with subtropical anticyclones in summer. Low volumes and large bandwidths of both fine-mode and coarse-mode aerosol size distributions occurred in July and August because of biomass burning. Single-scattering albedos at 440 nm (SSA440 nm) from 0.91 to 0.94 indicated particles with relatively strong to moderate absorption. Strongly absorbing particles from biomass burning with a significant SSA wavelength dependence were found in July and August at most sites, while coarse particles in March to May were mineral dust. Absorbing aerosols were distributed more or less homogeneously throughout the region with absorption aerosol optical depths at 440 nm ˜ 0.04-0.06, but inter-site differences in the absorption Angström exponent indicate a degree of spatial heterogeneity in particle composition. The annual mean DARF was -93 ± 44 to -79 ± 39 W m-2 at the Earth's surface and ˜ -40 W m-2 at the top of the atmosphere (for the solar zenith angle range of 50 to 80°) under cloud-free conditions. The fine mode

  3. North American and Asian aerosols over the eastern Pacific Ocean and their role in regulating cloud condensation nuclei

    NASA Astrophysics Data System (ADS)

    Roberts, G.; Mauger, G.; Hadley, O.; Ramanathan, V.

    2006-07-01

    Measurements of aerosol and cloud properties in the Eastern Pacific Ocean were taken during an airborne experiment on the University of Wyoming's King Air during April 2004 as part of the Cloud Indirect Forcing Experiment (CIFEX). We observed a wide variety of aerosols, including those of long-range transport from Asia, clean marine boundary layer, and North American emissions. These aerosols, classified by their size distribution and history, were found in stratified layers between 500 to 7500 m above sea level and thicknesses from 100 to 3000 m. A comparison of the aerosol size distributions to measurements of cloud condensation nuclei (CCN) provides insight to the CCN activity of the different aerosol types. The overall ratio of measured to predicted CCN concentration (NCCN) is 0.56 ± 0.41 with a relationship of NCCN,measured = NCCN,predicted0.846±0.002 for 23 research flights and 1884 comparisons. Such a relationship does not accurately describe a CCN closure; however, it is consistent with our measurements that high CCN concentrations are more influenced by anthropogenic sources, which are less CCN active. While other CCN closures have obtained results closer to the expected 1:1 relationship, the different aerosol types (and presumably differences in aerosol chemistry) are responsible for the discrepancy. The measured NCCN at 0.3% supersaturation (Sc) ranged from 20 cm-3 (pristine) to 350 cm-3 (anthropogenic) with an average of 106 ± 54 cm-3 over the experiment. The inferred supersaturation in the clouds sampled during this experiment is ˜0.3%. CCN concentrations of cloud-processed aerosol were well predicted using an ammonium sulfate approximation for Sc ≤ 0.4%. Predicted NCCN for other aerosol types (i.e., Asian and North American aerosols) were high compared to measured values indicating a less CCN active aerosol. This study highlights the importance of chemical effects on CCN measurements and introduces a CCN activation index as a method of

  4. Effect of the eruption of El Chichon stratospheric aerosol size and composition

    NASA Technical Reports Server (NTRS)

    Oberbeck, V. R.; Danielsen, E. F.; Snetsinger, K. G.; Ferry, G. V.; Fong, W.; Hayes, D. M.

    1983-01-01

    Dominant effects of the El Chichon eruption on stratospheric aerosols at 19.8 to 20.7 km are: (1) vapor depositional growth of the small-aerosol (background) mode; (2) development of a large-particle mode by sedimentation from the highest altitudes in the cloud; (3) a change in the large-particle mode from sulfate-coated silicates to sulfate aerosols, some with silicate cores; (4) a 100-fold increase in sulfate mass in the large particle mode. Terminal velocities of large silicate particles, maximum r = 2.3 micron, sampled 1 month after eruption, and calibrated with the aid of lidar data, indicate initial injection to 26 to 27 km. Smaller velocities of sulfate aerosols, median r = 0.5 micron, are compatible with major growth in 2 to 3 months at 27 to 28 km. Aerosol settling accounts for the descent of the main lidar return to 26.5 km in August and to 20 to 21 km in December.

  5. Theoretical analysis of the influence of aerosol size distribution and physical activity on particle deposition pattern in human lungs.

    PubMed

    Voutilainen, Arto; Kaipio, Jari P; Pekkanen, Juha; Timonen, Kirsi L; Ruuskanen, Juhani

    2004-01-01

    A theoretical comparison of modeled particle depositions in the human respiratory tract was performed by taking into account different particle number and mass size distributions and physical activity in an urban environment. Urban-air data on particulate concentrations in the size range 10 nm-10 microm were used to estimate the hourly average particle number and mass size distribution functions. The functions were then combined with the deposition probability functions obtained from a computerized ICRP 66 deposition model of the International Commission on Radiological Protection to calculate the numbers and masses of particles deposited in five regions of the respiratory tract of a male adult. The man's physical activity and minute ventilation during the day were taken into account in the calculations. Two different mass and number size distributions of aerosol particles with equal (computed) <10 microm particle mass concentrations gave clearly different deposition patterns in the central and peripheral regions of the human respiratory tract. The deposited particle numbers and masses were much higher during the day (0700-1900) than during the night (1900-0700) because an increase in physical activity and ventilation were temporally associated with highly increased traffic-derived particles in urban outdoor air. In future analyses of the short-term associations between particulate air pollution and health, it would not only be important to take into account the outdoor-to-indoor penetration of different particle sizes and human time-activity patterns, but also actual lung deposition patterns and physical activity in significant microenvironments.

  6. Geographic range size and extinction risk assessment in nomadic species.

    PubMed

    Runge, Claire A; Tulloch, Ayesha; Hammill, Edd; Possingham, Hugh P; Fuller, Richard A

    2015-06-01

    Geographic range size is often conceptualized as a fixed attribute of a species and treated as such for the purposes of quantification of extinction risk; species occupying smaller geographic ranges are assumed to have a higher risk of extinction, all else being equal. However many species are mobile, and their movements range from relatively predictable to-and-fro migrations to complex irregular movements shown by nomadic species. These movements can lead to substantial temporary expansion and contraction of geographic ranges, potentially to levels which may pose an extinction risk. By linking occurrence data with environmental conditions at the time of observations of nomadic species, we modeled the dynamic distributions of 43 arid-zone nomadic bird species across the Australian continent for each month over 11 years and calculated minimum range size and extent of fluctuation in geographic range size from these models. There was enormous variability in predicted spatial distribution over time; 10 species varied in estimated geographic range size by more than an order of magnitude, and 2 species varied by >2 orders of magnitude. During times of poor environmental conditions, several species not currently classified as globally threatened contracted their ranges to very small areas, despite their normally large geographic range size. This finding raises questions about the adequacy of conventional assessments of extinction risk based on static geographic range size (e.g., IUCN Red Listing). Climate change is predicted to affect the pattern of resource fluctuations across much of the southern hemisphere, where nomadism is the dominant form of animal movement, so it is critical we begin to understand the consequences of this for accurate threat assessment of nomadic species. Our approach provides a tool for discovering spatial dynamics in highly mobile species and can be used to unlock valuable information for improved extinction risk assessment and conservation

  7. An Analysis of AERONET Aerosol Absorption Properties and Classifications Representative of Aerosol Source Regions

    NASA Technical Reports Server (NTRS)

    Giles, David M.; Holben, Brent N.; Eck, Thomas F.; Sinyuk, Aliaksandr; Smirnov, Alexander; Slutsker, Ilya; Dickerson, R. R.; Thompson, A. M.; Schafer, J. S.

    2012-01-01

    Partitioning of mineral dust, pollution, smoke, and mixtures using remote sensing techniques can help improve accuracy of satellite retrievals and assessments of the aerosol radiative impact on climate. Spectral aerosol optical depth (tau) and single scattering albedo (omega (sub 0) ) from Aerosol Robotic Network (AERONET) measurements are used to form absorption [i.e., omega (sub 0) and absorption Angstrom exponent (alpha(sub abs))] and size [i.e., extinction Angstrom exponent (alpha(sub ext)) and fine mode fraction of tau] relationships to infer dominant aerosol types. Using the long-term AERONET data set (1999-2010), 19 sites are grouped by aerosol type based on known source regions to: (1) determine the average omega (sub 0) and alpha(sub abs) at each site (expanding upon previous work); (2) perform a sensitivity study on alpha(sub abs) by varying the spectral omega (sub 0); and (3) test the ability of each absorption and size relationship to distinguish aerosol types. The spectral omega (sub 0) averages indicate slightly more aerosol absorption (i.e., a 0.0 < delta omega (sub 0) <= 0.02 decrease) than in previous work and optical mixtures of pollution and smoke with dust show stronger absorption than dust alone. Frequency distributions of alpha(sub abs) show significant overlap among aerosol type categories and at least 10% of the alpha(sub abs) retrievals in each category are below 1.0. Perturbing the spectral omega (sub 0) by +/- 0.03 induces significant alpha(sub abs) changes from the unperturbed value by at least approx. +/- 0.6 for Dust, approx. +/-0.2 for Mixed, and approx. +/-0.1 for Urban/Industrial and Biomass Burning. The omega (sub 0)440nm and alpha(sub ext) 440-870nm relationship shows the best separation among aerosol type clusters, providing a simple technique for determining aerosol type from surface- and future space-based instrumentation.

  8. Aerosol optical hygroscopicity measurements during the 2010 CARES campaign

    DOE PAGES

    Atkinson, D. B.; Radney, J. G.; Lum, J.; ...

    2015-04-17

    Measurements of the effect of water uptake on particulate light extinction or scattering made at two locations during the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES) study around Sacramento, CA are reported. The observed influence of water uptake, characterized through the dimensionless optical hygroscopicity parameter γ, is compared with calculations constrained by observed particle size distributions and size-dependent particle composition. A closure assessment has been carried out that allowed for determination of the average hygroscopic growth factors (GFs) at 85% relative humidity and the dimensionless hygroscopicity parameter κ for oxygenated organic aerosol (OA) and for supermicron particles (defined heremore » as particles with aerodynamic diameters between 1 and 2.5 microns), yielding κ = 0.1–0.15 and 0.9–1.0, respectively. The derived range of oxygenated OA κ values are in line with previous observations. The relatively large values for supermicron particles is consistent with substantial contributions of sea-salt-containing particles in this size range. Furthermore, analysis of time-dependent variations in the supermicron particle hygroscopicity suggest that atmospheric processing, specifically chloride displacement by nitrate and the accumulation of secondary organics on supermicron particles, can lead to substantial depression of the observed GF.« less

  9. Aerosol optical hygroscopicity measurements during the 2010 CARES campaign

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atkinson, D. B.; Radney, J. G.; Lum, J.

    Measurements of the effect of water uptake on particulate light extinction or scattering made at two locations during the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES) study around Sacramento, CA are reported. The observed influence of water uptake, characterized through the dimensionless optical hygroscopicity parameter γ, is compared with calculations constrained by observed particle size distributions and size-dependent particle composition. A closure assessment has been carried out that allowed for determination of the average hygroscopic growth factors (GFs) at 85% relative humidity and the dimensionless hygroscopicity parameter κ for oxygenated organic aerosol (OA) and for supermicron particles (defined heremore » as particles with aerodynamic diameters between 1 and 2.5 microns), yielding κ = 0.1–0.15 and 0.9–1.0, respectively. The derived range of oxygenated OA κ values are in line with previous observations. The relatively large values for supermicron particles is consistent with substantial contributions of sea-salt-containing particles in this size range. Furthermore, analysis of time-dependent variations in the supermicron particle hygroscopicity suggest that atmospheric processing, specifically chloride displacement by nitrate and the accumulation of secondary organics on supermicron particles, can lead to substantial depression of the observed GF.« less

  10. Light Absorption of Biogenic Aerosol Particles in Amazonia

    NASA Astrophysics Data System (ADS)

    Holanda, B. A.; Artaxo, P.; Ferreira De Brito, J.; Barbosa, H. M.; Andreae, M. O.; Saturno, J.; Pöhlker, C.; Holben, B. N.; Schafer, J.

    2014-12-01

    Aerosol absorption is a key issue in proper calculation of aerosol radiative forcing. Especially in the tropics with the dominance of natural biogenic aerosol and brown carbon, the so called anomalous absorption is of particular interest. A special experiment was designed to study the wavelength dependence of aerosol absorption for PM2.5 as well as for PM10 particles in the wet season in Central Amazonia. Aerosol analysis occurred from May to August 2014, in the ZF2 ecological reservation, situated at about 55 km North of Manaus in very pristine conditions Two 7 wavelengths AE33 Aethalometers were deployed measuring in parallel, but with a PM2.5 and PM10 inlets. Two MAAP (Multiangle Aerosol Absorption Photometer) were operated in parallel with the AE33 exactly at the same PM2.5 and PM10 inlets. Organic and elemental carbon was analyzed using collection with quartz filters and analysis using a Sunset OC/EC analyzer. Aerosol light scattering for 3 wavelengths was measured using Air Photon and TSI Nephelometers. Aerosol size distribution was measured with one TSI SMPS and a GRIMM OPC to have the size range from 10 nm to 10 micrometers. Particles were measured under dry conditions using diffusion dryers. Aerosol optical depth and absorption was also measured with an AERONET sunphotometer operated close to the site. As the experiment was run in the wet season, very low equivalent black carbon (EBC) were measured, with average concentrations around 50 ng/m³ during May, increasing to 130 ng/m³ in June and July. The measurements adjusted for similar wavelengths shows excellent agreement between the MAAP and AE33 for both inlets (PM2.5 and PM10). It was not possible statistically infer absorption from the coarse mode biogenic particles, since the absorption was completely dominated by fine mode particles. AERONET measurements shows very low values of AOD, at 0.17 at 500 nm and 0.13 at 870 nm, with very low absorption AOD values at 0.00086 at 676 nm and 0.0068 at 872 nm

  11. Molecular characterization of free tropospheric aerosol collected at the Pico Mountain Observatory: a case study with a long-range transported biomass burning plume

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dzepina, K.; Mazzoleni, C.; Fialho, P.

    Free tropospheric aerosol was sampled at the Pico Mountain Observatory located at 2225 m above mean sea level on Pico Island of the Azores archipelago in the North Atlantic. The observatory is located ~ 3900 km east and downwind of North America, which enables studies of free tropospheric air transported over long distances. Aerosol samples collected on filters from June to October 2012 were analyzed to characterize organic carbon, elemental carbon, and inorganic ions. The average ambient concentration of aerosol was 0.9 ± 0.7 μg m -3. On average, organic aerosol components represent the largest mass fraction of the totalmore » measured aerosol (60 ± 51%), followed by sulfate (23 ± 28%), nitrate (13 ± 10%), chloride (2 ± 3%), and elemental carbon (2 ± 2%). Water-soluble organic matter (WSOM) extracted from two aerosol samples (9/24 and 9/25) collected consecutively during a pollution event were analyzed using ultrahigh-resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Approximately 4000 molecular formulas were assigned to each of the mass spectra in the range of m/z 100–1000. The majority of the assigned molecular formulas had unsaturated structures with CHO and CHNO elemental compositions. FLEXPART retroplume analyses showed the sampled air masses were very aged (average plume age > 12 days). These aged aerosol WSOM compounds had an average O/C ratio of ~ 0.45, which is relatively low compared to O/C ratios of other aged aerosol. The increase in aerosol loading during the measurement period of 9/24 was linked to biomass burning emissions from North America by FLEXPART retroplume analysis and Moderate Resolution Imaging Spectroradiometer (MODIS) fire counts. This was confirmed with biomass burning markers detected in the WSOM and with the morphology and mixing state of particles as determined by scanning electron microscopy. The presence of markers characteristic of aqueous-phase reactions of phenolic species

  12. Molecular characterization of free tropospheric aerosol collected at the Pico Mountain Observatory: a case study with a long-range transported biomass burning plume

    DOE PAGES

    Dzepina, K.; Mazzoleni, C.; Fialho, P.; ...

    2015-05-05

    Free tropospheric aerosol was sampled at the Pico Mountain Observatory located at 2225 m above mean sea level on Pico Island of the Azores archipelago in the North Atlantic. The observatory is located ~ 3900 km east and downwind of North America, which enables studies of free tropospheric air transported over long distances. Aerosol samples collected on filters from June to October 2012 were analyzed to characterize organic carbon, elemental carbon, and inorganic ions. The average ambient concentration of aerosol was 0.9 ± 0.7 μg m -3. On average, organic aerosol components represent the largest mass fraction of the totalmore » measured aerosol (60 ± 51%), followed by sulfate (23 ± 28%), nitrate (13 ± 10%), chloride (2 ± 3%), and elemental carbon (2 ± 2%). Water-soluble organic matter (WSOM) extracted from two aerosol samples (9/24 and 9/25) collected consecutively during a pollution event were analyzed using ultrahigh-resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Approximately 4000 molecular formulas were assigned to each of the mass spectra in the range of m/z 100–1000. The majority of the assigned molecular formulas had unsaturated structures with CHO and CHNO elemental compositions. FLEXPART retroplume analyses showed the sampled air masses were very aged (average plume age > 12 days). These aged aerosol WSOM compounds had an average O/C ratio of ~ 0.45, which is relatively low compared to O/C ratios of other aged aerosol. The increase in aerosol loading during the measurement period of 9/24 was linked to biomass burning emissions from North America by FLEXPART retroplume analysis and Moderate Resolution Imaging Spectroradiometer (MODIS) fire counts. This was confirmed with biomass burning markers detected in the WSOM and with the morphology and mixing state of particles as determined by scanning electron microscopy. The presence of markers characteristic of aqueous-phase reactions of phenolic species

  13. A Fast and Efficient Version of the TwO-Moment Aerosol Sectional (TOMAS) Global Aerosol Microphysics Model

    NASA Technical Reports Server (NTRS)

    Lee, Yunha; Adams, P. J.

    2012-01-01

    This study develops more computationally efficient versions of the TwO-Moment Aerosol Sectional (TOMAS) microphysics algorithms, collectively called Fast TOMAS. Several methods for speeding up the algorithm were attempted, but only reducing the number of size sections was adopted. Fast TOMAS models, coupled to the GISS GCM II-prime, require a new coagulation algorithm with less restrictive size resolution assumptions but only minor changes in other processes. Fast TOMAS models have been evaluated in a box model against analytical solutions of coagulation and condensation and in a 3-D model against the original TOMAS (TOMAS-30) model. Condensation and coagulation in the Fast TOMAS models agree well with the analytical solution but show slightly more bias than the TOMAS-30 box model. In the 3-D model, errors resulting from decreased size resolution in each process (i.e., emissions, cloud processing wet deposition, microphysics) are quantified in a series of model sensitivity simulations. Errors resulting from lower size resolution in condensation and coagulation, defined as the microphysics error, affect number and mass concentrations by only a few percent. The microphysics error in CN70CN100 (number concentrations of particles larger than 70100 nm diameter), proxies for cloud condensation nuclei, range from 5 to 5 in most regions. The largest errors are associated with decreasing the size resolution in the cloud processing wet deposition calculations, defined as cloud-processing error, and range from 20 to 15 in most regions for CN70CN100 concentrations. Overall, the Fast TOMAS models increase the computational speed by 2 to 3 times with only small numerical errors stemming from condensation and coagulation calculations when compared to TOMAS-30. The faster versions of the TOMAS model allow for the longer, multi-year simulations required to assess aerosol effects on cloud lifetime and precipitation.

  14. Characterization of aerosol particles from grass mowing by joint deployment of ToF-AMS and ATOFMS instruments

    NASA Astrophysics Data System (ADS)

    Drewnick, Frank; Dall'Osto, Manuel; Harrison, Roy

    During a measurement campaign at a semi-urban/industrial site a grass-cutting event was observed, when the lawn in the immediate surrounding of the measurement site was mowed. Using a wide variety of state-of-the-art aerosol measurement technology allowed a broad characterization of the aerosol generated by the lawn mowing. The instrumentation included two on-line aerosol mass spectrometers: an Aerodyne Time-of-Flight Aerosol Mass Spectrometer (ToF-AMS) and a TSI Aerosol Time-of-Flight Mass Spectrometer (ATOFMS); in addition, a selection of on-line aerosol concentration and size distribution instruments (OPC, APS, SMPS, CPC, FDMS-TEOM, MAAP) was deployed. From comparison of background aerosol measurements during most of the day with the aerosol measured during the lawn mowing, the grass cutting was found to generate mainly two different types of aerosol particles: an intense ultrafine particle mode (1 h average: 4 μg m -3) of almost pure hydrocarbon-like organics and a distinct particle mode in the upper sub-micrometer size range containing particles with potassium and nitrogen-organic compounds. The ultrafine particles are probably lubricating oil particles from the lawn mower exhaust; the larger particles are swirled-up plant debris particles from the mowing process. While these particle types were identified in the data from the two mass spectrometers, the on-line aerosol concentration and size distribution data support these findings. The results presented here show that the combination of quantitative aerosol particle ensemble mass spectrometry (ToF-AMS) and single particle mass spectrometry (ATOFMS) provides much deeper insights into the nature of the aerosol properties than each of the instruments could do alone. Therefore a combined deployment of both types of instruments is strongly recommended.

  15. Characterization of urban aerosol using aerosol mass spectrometry and proton nuclear magnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Cleveland, M. J.; Ziemba, L. D.; Griffin, R. J.; Dibb, J. E.; Anderson, C. H.; Lefer, B.; Rappenglück, B.

    2012-07-01

    Particulate matter was measured during August and September of 2006 in Houston as part of the Texas Air Quality Study II Radical and Aerosol Measurement Project. Aerosol size and composition were determined using an Aerodyne quadrupole aerosol mass spectrometer. Aerosol was dominated by sulfate (4.1 ± 2.6 μg m-3) and organic material (5.5 ± 4.0 μg m-3), with contributions of organic material from both primary (˜32%) and secondary (˜68%) sources. Secondary organic aerosol appears to be formed locally. In addition, 29 aerosol filter samples were analyzed using proton nuclear magnetic resonance (1H NMR) spectroscopy to determine relative concentrations of organic functional groups. Houston aerosols are less oxidized than those observed elsewhere, with smaller relative contributions of carbon-oxygen double bonds. These particles do not fit 1H NMR source apportionment fingerprints for identification of secondary, marine, and biomass burning organic aerosol, suggesting that a new fingerprint for highly urbanized and industrially influenced locations be established.

  16. Nicotine delivery from the refill liquid to the aerosol via high-power e-cigarette device.

    PubMed

    Prévôt, Nathalie; de Oliveira, Fabien; Perinel-Ragey, Sophie; Basset, Thierry; Vergnon, Jean-Michel; Pourchez, Jérémie

    2017-06-01

    To offer an enhanced and well-controlled nicotine delivery from the refill liquid to the aerosol is a key point to adequately satisfy nicotine cravings using electronic nicotine delivery systems (ENDS). A recent high-power ENDS, exhibiting higher aerosol nicotine delivery than older technologies, was used. The particle size distribution was measured using a cascade impactor. The effects of the refill liquid composition on the nicotine content of each size-fraction in the submicron range were investigated. Nicotine was quantified by liquid chromatography coupled with tandem mass spectrometry. Particle size distribution of the airborne refill liquid and the aerosol nicotine demonstrated that the nicotine is equally distributed in droplets regardless of their size. Results also proved that the nicotine concentration in aerosol was significantly lower compared to un-puffed refill liquid. A part of the nicotine may be left in the ENDS upon depletion, and consequently a portion of the nicotine may not be transferred to the user. Thus, new generation high-power ENDS associated with propylene glycol/vegetable glycerin (PG/VG) based solvent were very efficient to generate carrier-droplets containing nicotine molecules with a constant concentration. Findings highlighted that a portion of the nicotine in the refill liquid may not be transferred to the user.

  17. Temporal Variation of Aerosol Properties at a Rural Continental Site and Study of Aerosol Evolution through Growth Law Analysis

    NASA Technical Reports Server (NTRS)

    Wang, Jian; Collins, Don; Covert, David; Elleman, Robert; Ferrare, Richard A.; Gasparini, Roberto; Jonsson, Haflidi; Ogren, John; Sheridan, Patrick; Tsay, Si-Chee

    2006-01-01

    Aerosol size distributions were measured by a Scanning Mobility Particle Sizer (SMPS) onboard the CIRPAS Twin Otter aircraft during 16 flights at the Southern Great Plains (SGP) site in northern central Oklahoma as part of the Aerosol Intensive Operation period in May, 2003. During the same period a second SMPS was deployed at a surface station and provided continuous measurements. Combined with trace gas measurements at the SGP site and back-trajectory analysis, the aerosol size distributions provided insights into the sources of aerosols observed at the SGP site. High particle concentrations, observed mostly during daytime, were well correlated with the sulfur dioxide (SO2) mixing ratios, suggesting nucleation involving sulfuric acid is likely the main source of newly formed particles at the SGP. Aerosols within plumes originating from wildfires in Central America were measured at the surface site. Vertically compact aerosol layers, which can be traced back to forest fires in East Asia, were intercepted at altitudes over 3000 meters. Analyses of size dependent particle growth rates for four periods during which high cloud coverage was observed indicate growth dominated by volume controlled reactions. Sulfate accounts for 50% to 72% of the increase in aerosol volume concentration; the rest of the volume concentration increase was likely due to secondary organic species. The growth law analyses and meteorological conditions indicate that the sulfate was produced mainly through aqueous oxidation of SO2 in clouds droplets and hydrated aerosol particles.

  18. Aerosol Lidar and MODIS Satellite Comparisons for Future Aerosol Loading Forecast

    NASA Technical Reports Server (NTRS)

    DeYoung, Russell; Szykman, James; Severance, Kurt; Chu, D. Allen; Rosen, Rebecca; Al-Saadi, Jassim

    2006-01-01

    Knowledge of the concentration and distribution of atmospheric aerosols using both airborne lidar and satellite instruments is a field of active research. An aircraft based aerosol lidar has been used to study the distribution of atmospheric aerosols in the California Central Valley and eastern US coast. Concurrently, satellite aerosol retrievals, from the MODIS (Moderate Resolution Imaging Spectroradiometer) instrument aboard the Terra and Aqua satellites, were take over the Central Valley. The MODIS Level 2 aerosol data product provides retrieved ambient aerosol optical properties (e.g., optical depth (AOD) and size distribution) globally over ocean and land at a spatial resolution of 10 km. The Central Valley topography was overlaid with MODIS AOD (5x5 sq km resolution) and the aerosol scattering vertical profiles from a lidar flight. Backward air parcel trajectories for the lidar data show that air from the Pacific and northern part of the Central Valley converge confining the aerosols to the lower valley region and below the mixed layer. Below an altitude of 1 km, the lidar aerosol and MODIS AOD exhibit good agreement. Both data sets indicate a high presence of aerosols near Bakersfield and the Tehachapi Mountains. These and other results to be presented indicate that the majority of the aerosols are below the mixed layer such that the MODIS AOD should correspond well with surface measurements. Lidar measurements will help interpret satellite AOD retrievals so that one day they can be used on a routine basis for prediction of boundary layer aerosol pollution events.

  19. Role of clouds, aerosols, and aerosol-cloud interaction in 20th century simulations with GISS ModelE2

    NASA Astrophysics Data System (ADS)

    Nazarenko, L.; Rind, D. H.; Bauer, S.; Del Genio, A. D.

    2015-12-01

    Simulations of aerosols, clouds and their interaction contribute to the major source of uncertainty in predicting the changing Earth's energy and in estimating future climate. Anthropogenic contribution of aerosols affects the properties of clouds through aerosol indirect effects. Three different versions of NASA GISS global climate model are presented for simulation of the twentieth century climate change. All versions have fully interactive tracers of aerosols and chemistry in both the troposphere and stratosphere. All chemical species are simulated prognostically consistent with atmospheric physics in the model and the emissions of short-lived precursors [Shindell et al., 2006]. One version does not include the aerosol indirect effect on clouds. The other two versions include a parameterization of the interactive first indirect aerosol effect on clouds following Menon et al. [2010]. One of these two models has the Multiconfiguration Aerosol Tracker of Mixing state (MATRIX) that permits detailed treatment of aerosol mixing state, size, and aerosol-cloud activation. The main purpose of this study is evaluation of aerosol-clouds interactions and feedbacks, as well as cloud and aerosol radiative forcings, for the twentieth century climate under different assumptions and parameterizations for aerosol, clouds and their interactions in the climate models. The change of global surface air temperature based on linear trend ranges from +0.8°C to +1.2°C between 1850 and 2012. Water cloud optical thickness increases with increasing temperature in all versions with the largest increase in models with interactive indirect effect of aerosols on clouds, which leads to the total (shortwave and longwave) cloud radiative cooling trend at the top of the atmosphere. Menon, S., D. Koch, G. Beig, S. Sahu, J. Fasullo, and D. Orlikowski (2010), Black carbon aerosols and the third polar ice cap, Atmos. Chem. Phys., 10,4559-4571, doi:10.5194/acp-10-4559-2010. Shindell, D., G. Faluvegi

  20. Modeling Gas-Aerosol Processes during MILAGRO 2006

    NASA Astrophysics Data System (ADS)

    Zaveri, R. A.; Chapman, E. G.; Easter, R. C.; Fast, J. D.; Flocke, F.; Kleinman, L. I.; Madronich, S.; Springston, S. R.; Voss, P. B.; Weinheimer, A.

    2007-12-01

    Significant gas-aerosol interactions are expected in the Mexico City outflow due to formation of various semi- volatile secondary inorganic and organic gases that can partition into the particulate phase and due to various heterogeneous chemical processes. A number of T0-T1-T2 Lagrangian transport episodes during the MILAGRO campaign provide focused modeling opportunities to elucidate the roles of various chemical and physical processes in the evolution of the primary trace gases and aerosol particles emitted in Mexico City over a period of 4-8 hours. Additionally, one long-range Lagrangian transport episode on March 18-19, 2006, as characterized by the Controlled Meteorological (CMET) balloon trajectories, presents an excellent opportunity to model evolution of Mexico City pollutants over 26 hours. The key tools in our analysis of these Lagrangian episodes include a comprehensive Lagrangian box-model and the WRF-chem model based on the new Model for Simulating Aerosol Interactions and Chemistry (MOSAIC), which simulates gas-phase photochemistry, heterogeneous reactions, equilibrium particulate phase-state and water content, and dynamic gas-particle partitioning for size- resolved aerosols. Extensive gas, aerosol, and meteorological measurements onboard the G1 and C130 aircraft and T0, T1, and T2 ground sites will be used to initialize, constrain, and evaluate the models. For the long-range transport event, in-situ vertical profiles of wind vectors from repeated CMET balloon soundings in the Mexico City outflow will be used to nudge the winds in the WRF-chem simulation. Preliminary model results will be presented with the intention to explore further collaborative opportunities to use additional gas and particulate measurements to better constrain and evaluate the models.

  1. Evaluation of SAGE II and Balloon-Borne Stratospheric Aerosol Measurements: Evaluation of Aerosol Measurements from SAGE II, HALOE, and Balloonborne Optical Particle Counters

    NASA Technical Reports Server (NTRS)

    Hervig, Mark; Deshler, Terry; Moddrea, G. (Technical Monitor)

    2002-01-01

    Stratospheric aerosol measurements from the University of Wyoming balloonborne optical particle counters (OPCs), the Stratospheric Aerosol and Gas Experiment (SAGE) II, and the Halogen Occultation Experiment (HALOE) were compared in the period 1982-2000, when measurements were available. The OPCs measure aerosol size distributions, and HALOE multiwavelength (2.45-5.26 micrometers) extinction measurements can be used to retrieve aerosol size distributions. Aerosol extinctions at the SAGE II wavelengths (0.386-1.02 micrometers) were computed from these size distributions and compared to SAGE II measurements. In addition, surface areas derived from all three experiments were compared. While the overall impression from these results is encouraging, the agreement can change with latitude, altitude, time, and parameter. In the broadest sense, these comparisons fall into two categories: high aerosol loading (volcanic periods) and low aerosol loading (background periods and altitudes above 25 km). When the aerosol amount was low, SAGE II and HALOE extinctions were higher than the OPC estimates, while the SAGE II surface areas were lower than HALOE and the OPCS. Under high loading conditions all three instruments mutually agree to within 50%.

  2. Aerosol Abundances and Optical Characteristics in the Pacific Basin Free Troposphere

    NASA Technical Reports Server (NTRS)

    Pueschel, R. F.; Livingston, J. M.; Ferry, G. V.; deFelice, T. E.

    1994-01-01

    During NASA's Global Backscatter Experiment (GLOBE) mission flights in November 1989 and May 1990, a DC-8 research aircraft probed the Pacific Basin free troposphere for about 90 flight hours in each month between +72 and -62 degrees latitude, +130 and -120 degrees longitude, and up to 39,000 feet pressure altitudes. Aerosols were sampled continuously in situ by optical particle counters to measure concentration and particle size, and during 48 10-min intervals during each mission by wire impactors for concentration, size, composition, phase and shape analyses. The optical particle counters cover a particle diameter range between 0.3 and 20 microns; wire impactors extend the range down to 0.03 microns. Results of particle number, size, shape, together with the assumption of a refractive index corresponding to (NH4)2SO4 to account for the prevalence of aerosol sulfur, were utilized in a Mie algorithm to calculate aerosol extinction and backscatter for a range of wavelengths (0.385 less than lambda less than 10.64 microns). Computations for 22 randomly selected size distributions yield coefficients of extinction E(0.525) = (2.03 +/- 1.20) x 10(exp -4) km(exp -1) and backscatter beta(0.525) = (6.45 +/- 3.49) x 10(exp -6) km(exp -1) sr(exp -1) in the visible, and E(10.64) = (8.13 +/- 6.47) x 10(exp -6) km(exp -1) and beta(10.64) = (9.98 +/- 10.69) x 10(exp -8) km(exp -1) sr(exp -1) in the infrared, respectively. Large particles (D greater than 0.3 microns) contribute two-thirds to the total extinction in the visible (lambda = 0.525 microns), and almost 100% in the infrared (lambda = 10.64 microns). These results have been used to define an IR optical aerosol climatology of the Pacific Basin free troposphere, from which it follows that the infrared backscatter coefficient at lambda = 9.25 microns wavelength fluctuates between 5.0 x 10(exp -10) and 2.0 x 10(exp -7) km(exp -1) sr(exp -1) with a modal value 2.0 x 10(exp -8) km(exp -1) sr(exp -1).

  3. Marine Aerosols and Clouds.

    PubMed

    Brooks, Sarah D; Thornton, Daniel C O

    2018-01-03

    The role of marine bioaerosols in cloud formation and climate is currently so uncertain that even the sign of the climate forcing is unclear. Marine aerosols form through direct emissions and through the conversion of gas-phase emissions to aerosols in the atmosphere. The composition and size of aerosols determine how effective they are in catalyzing the formation of water droplets and ice crystals in clouds by acting as cloud condensation nuclei and ice nucleating particles, respectively. Marine organic aerosols may be sourced both from recent regional phytoplankton blooms that add labile organic matter to the surface ocean and from long-term global processes, such as the upwelling of old refractory dissolved organic matter from the deep ocean. Understanding the formation of marine aerosols and their propensity to catalyze cloud formation processes are challenges that must be addressed given the major uncertainties associated with aerosols in climate models.

  4. Simultaneous Measurements of Nanoaerosols and Radioactive Aerosols Containing the Short-lived Radon Isotopes.

    PubMed

    Otahal, P P S; Burian, I; Ondracek, J; Zdimal, V; Holub, R F

    2017-11-01

    The activity size distribution of the Equilibrium-Equivalent Concentration (EER) of 222Rn is one of the most important parameters for the estimation of radiation dose by inhalation of radon decay products. A series of measurements of the EER activity size distribution were performed by the screen diffusion battery in Radon-Aerosol chamber (10 m3) at the National Institute for Nuclear, Chemical, and Biological Protection (SUJCHBO). These measurements were performed at different levels of radon concentration. For this study, the Graded Screen Array Diffusion Battery (GSA DB), developed by the SUJCHBO (based on Earl Knutson and Robert F Holub design), consists of 10 screens and backup filter used to collect all particles that penetrated the screens. The measuring range of this GSA DB allows measuring the radioactive nanoaerosols in the size range from 0.5 to 100 nm. The Earl Knutson algorithm was used for EER activity size distribution evaluation. The results of EER activity size distribution were subsequently compared with the aerosol particle size distribution measured by Scanning Mobility Particle Sizer Spectrometer (SMPS 3936 N, TSI Inc., MN, USA). © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Whole-body nanoparticle aerosol inhalation exposures.

    PubMed

    Yi, Jinghai; Chen, Bean T; Schwegler-Berry, Diane; Frazer, Dave; Castranova, Vince; McBride, Carroll; Knuckles, Travis L; Stapleton, Phoebe A; Minarchick, Valerie C; Nurkiewicz, Timothy R

    2013-05-07

    Inhalation is the most likely exposure route for individuals working with aerosolizable engineered nano-materials (ENM). To properly perform nanoparticle inhalation toxicology studies, the aerosols in a chamber housing the experimental animals must have: 1) a steady concentration maintained at a desired level for the entire exposure period; 2) a homogenous composition free of contaminants; and 3) a stable size distribution with a geometric mean diameter < 200 nm and a geometric standard deviation σg < 2.5 (5). The generation of aerosols containing nanoparticles is quite challenging because nanoparticles easily agglomerate. This is largely due to very strong inter-particle forces and the formation of large fractal structures in tens or hundreds of microns in size (6), which are difficult to be broken up. Several common aerosol generators, including nebulizers, fluidized beds, Venturi aspirators and the Wright dust feed, were tested; however, none were able to produce nanoparticle aerosols which satisfy all criteria (5). A whole-body nanoparticle aerosol inhalation exposure system was fabricated, validated and utilized for nano-TiO2 inhalation toxicology studies. Critical components: 1) novel nano-TiO2 aerosol generator; 2) 0.5 m(3) whole-body inhalation exposure chamber; and 3) monitor and control system. Nano-TiO2 aerosols generated from bulk dry nano-TiO2 powders (primary diameter of 21 nm, bulk density of 3.8 g/cm(3)) were delivered into the exposure chamber at a flow rate of 90 LPM (10.8 air changes/hr). Particle size distribution and mass concentration profiles were measured continuously with a scanning mobility particle sizer (SMPS), and an electric low pressure impactor (ELPI). The aerosol mass concentration (C) was verified gravimetrically (mg/m(3)). The mass (M) of the collected particles was determined as M = (Mpost-Mpre), where Mpre and Mpost are masses of the filter before and after sampling (mg). The mass concentration was calculated as C = M

  6. Whole-Body Nanoparticle Aerosol Inhalation Exposures

    PubMed Central

    Yi, Jinghai; Chen, Bean T.; Schwegler-Berry, Diane; Frazer, Dave; Castranova, Vince; McBride, Carroll; Knuckles, Travis L.; Stapleton, Phoebe A.; Minarchick, Valerie C.; Nurkiewicz, Timothy R.

    2013-01-01

    Inhalation is the most likely exposure route for individuals working with aerosolizable engineered nano-materials (ENM). To properly perform nanoparticle inhalation toxicology studies, the aerosols in a chamber housing the experimental animals must have: 1) a steady concentration maintained at a desired level for the entire exposure period; 2) a homogenous composition free of contaminants; and 3) a stable size distribution with a geometric mean diameter < 200 nm and a geometric standard deviation σg < 2.5 5. The generation of aerosols containing nanoparticles is quite challenging because nanoparticles easily agglomerate. This is largely due to very strong inter-particle forces and the formation of large fractal structures in tens or hundreds of microns in size 6, which are difficult to be broken up. Several common aerosol generators, including nebulizers, fluidized beds, Venturi aspirators and the Wright dust feed, were tested; however, none were able to produce nanoparticle aerosols which satisfy all criteria 5. A whole-body nanoparticle aerosol inhalation exposure system was fabricated, validated and utilized for nano-TiO2 inhalation toxicology studies. Critical components: 1) novel nano-TiO2 aerosol generator; 2) 0.5 m3 whole-body inhalation exposure chamber; and 3) monitor and control system. Nano-TiO2 aerosols generated from bulk dry nano-TiO2 powders (primary diameter of 21 nm, bulk density of 3.8 g/cm3) were delivered into the exposure chamber at a flow rate of 90 LPM (10.8 air changes/hr). Particle size distribution and mass concentration profiles were measured continuously with a scanning mobility particle sizer (SMPS), and an electric low pressure impactor (ELPI). The aerosol mass concentration (C) was verified gravimetrically (mg/m3). The mass (M) of the collected particles was determined as M = (Mpost-Mpre), where Mpreand Mpost are masses of the filter before and after sampling (mg). The mass concentration was calculated as C = M/(Q*t), where Q is

  7. Estimating home-range size: when to include a third dimension?

    PubMed Central

    Monterroso, Pedro; Sillero, Neftalí; Rosalino, Luís Miguel; Loureiro, Filipa; Alves, Paulo Célio

    2013-01-01

    Most studies dealing with home ranges consider the study areas as if they were totally flat, working only in two dimensions, when in reality they are irregular surfaces displayed in three dimensions. By disregarding the third dimension (i.e., topography), the size of home ranges underestimates the surface actually occupied by the animal, potentially leading to misinterpretations of the animals' ecological needs. We explored the influence of considering the third dimension in the estimation of home-range size by modeling the variation between the planimetric and topographic estimates at several spatial scales. Our results revealed that planimetric approaches underestimate home-range size estimations, which range from nearly zero up to 22%. The difference between planimetric and topographic estimates of home-ranges sizes produced highly robust models using the average slope as the sole independent factor. Moreover, our models suggest that planimetric estimates in areas with an average slope of 16.3° (±0.4) or more will incur in errors ≥5%. Alternatively, the altitudinal range can be used as an indicator of the need to include topography in home-range estimates. Our results confirmed that home-range estimates could be significantly biased when topography is disregarded. We suggest that study areas where home-range studies will be performed should firstly be scoped for its altitudinal range, which can serve as an indicator for the need for posterior use of average slope values to model the surface area used and/or available for the studied animals. PMID:23919170

  8. Photophoretic velocimetry for the characterization of aerosols.

    PubMed

    Haisch, Christoph; Kykal, Carsten; Niessner, Reinhard

    2008-03-01

    Aerosols are particles in a size range from some nanometers to some micrometers suspended in air or other gases. Their relevance varies as wide as their origin and composition. In the earth's atmosphere they influence the global radiation balance and human health. Artificially produced aerosols are applied, e.g., for drug administration, as paint and print pigments, or in rubber tire production. In all these fields, an exact characterization of single particles as well as of the particle ensemble is essential. Beyond characterization, continuous separation is often required. State-of-the-art separation techniques are based on electrical, thermal, or flow fields. In this work we present an approach to apply light in the form of photophoretic (PP) forces for characterization and separation of aerosol particles according to their optical properties. Such separation technique would allow, e.g., the separation of organic from inorganic particles of the same aerodynamic size. We present a system which automatically records velocities induced by PP forces and does a statistical evaluation in order to characterize the particle ensemble properties. The experimental system essentially consists of a flow cell with rectangular cross section (1 cm(2), length 7 cm), where the aerosol stream is pumped through in the vertical direction at ambient pressure. In the cell, a laser beam is directed orthogonally to the particle flow direction, which results in a lateral displacement of the particles. In an alternative configuration, the beam is directed in the opposite direction to the aerosol flow; hence, the particles are slowed down by the PP force. In any case, the photophoretically induced variations of speed and position are visualized by a second laser illumination and a camera system, feeding a mathematical particle tracking algorithm. The light source inducing the PP force is a diode laser (lambda = 806 nm, P = 0.5 W).

  9. Physical and optical properties of aged biomass burning aerosol from wildfires in Siberia and the Western USA at the Mt. Bachelor Observatory

    NASA Astrophysics Data System (ADS)

    Laing, James R.; Jaffe, Daniel A.; Hee, Jonathan R.

    2016-12-01

    The summer of 2015 was an extreme forest fire year in the Pacific Northwest. Our sample site at the Mt. Bachelor Observatory (MBO, 2.7 km a.s.l.) in central Oregon observed biomass burning (BB) events more than 50 % of the time during August. In this paper we characterize the aerosol physical and optical properties of 19 aged BB events during August 2015. Six of the 19 events were influenced by Siberian fires originating near Lake Baikal that were transported to MBO over 4-10 days. The remainder of the events resulted from wildfires in Northern California and Southwestern Oregon with transport times to MBO ranging from 3 to 35 h. Fine particulate matter (PM1), carbon monoxide (CO), aerosol light scattering coefficients (σscat), aerosol light absorption coefficients (σabs), and aerosol number size distributions were measured throughout the campaign. We found that the Siberian events had a significantly higher Δσabs/ΔCO enhancement ratio, higher mass absorption efficiency (MAE; Δσabs/ΔPM1), lower single scattering albedo (ω), and lower absorption Ångström exponent (AAE) when compared with the regional events. We suggest that the observed Siberian events represent that portion of the plume that has hotter flaming fire conditions and thus enabled strong pyroconvective lofting and long-range transport to MBO. The Siberian events observed at MBO therefore represent a selected portion of the original plume that would then have preferentially higher black carbon emissions and thus an enhancement in absorption. The lower AAE values in the Siberian events compared to regional events indicate a lack of brown carbon (BrC) production by the Siberian fires or a loss of BrC during transport. We found that mass scattering efficiencies (MSE) for the BB events ranged from 2.50 to 4.76 m2 g-1. We measured aerosol size distributions with a scanning mobility particle sizer (SMPS). Number size distributions ranged from unimodal to bimodal and had geometric mean diameters (Dpm

  10. Monodisperse aerosol generator

    DOEpatents

    Ortiz, Lawrence W.; Soderholm, Sidney C.

    1990-01-01

    An aerosol generator is described which is capable of producing a monodisperse aerosol within narrow limits utilizing an aqueous solution capable of providing a high population of seed nuclei and an organic solution having a low vapor pressure. The two solutions are cold nebulized, mixed, vaporized, and cooled. During cooling, particles of the organic vapor condense onto the excess seed nuclei, and grow to a uniform particle size.

  11. Aerosols, light, and water: Measurements of aerosol optical properties at different relative humidities

    NASA Astrophysics Data System (ADS)

    Orozco, Daniel

    (RH) at a certain RH divided by sp at a dry value, was used to evaluate the aerosol hygroscopicity. Different empirical fits were evaluated using the f(RH) data. The widely used gamma model was found inappropriate, as it overestimates f(RH) for RH<75%. Abetter empirical fit with two power-law curve-fitting parameters c and k was found to replicate f(RH) accurately from the three sites. The relationship between the organic carbon mass (OMC) and the species that are affected by RH and f(RH) was also studied and categorized between the sites. A second experiment is reported where the first two elements of the scattering matrix of laboratory generated particles were studied under different humidity conditions. The non-spherical particles generated were ammonium sulfate, sodium chloride, and ammonium nitrate. The optical measurements were performed with a polarized imaging nephelometer (PI-Neph) installed in series with the humidifier dryer apparatus. The inorganic salts experienced low (80%) RH levels so that the observations could contrast the differences when the salts were crystallized (low RH) and when the particles turned to aqueous solutions after deliquesence (high RH). The measurements with the PI-Neph produce the aerosol phase function and the polarized phase function in a range of angles that go from 3 to 177. The results showed significant changes in the phase function and polarized phase function due to the hygroscopic growth. Although the inorganic salts used inthe experiments were non-spherical, the dry measurements were successfully reproduced with the Mie theory using literature values for the dry index of refraction. Moreover, the changes in the particle size distribution and index of refraction were evaluated through classic thermodynamic equilibrium theory producing comparable results with the simulations performed with Mie formalism. The final experiment consisted in the measurements of phase function and degree of linear polarization of ambient aerosols

  12. Contribution of bioaerosols to the global organic aerosol budget

    NASA Astrophysics Data System (ADS)

    Janssen, R.; Heald, C. L.

    2017-12-01

    Bioaerosols are ubiquitous in the atmosphere and may contribute significantly to cloud condensation and ice nuclei populations, and consequently to formation of clouds and precipitation. However, quantifying the contribution of bioaerosols to the global organic aerosol budget is a challenge, since bioaerosol sources are poorly constrained on the global scale. Previous global estimates of global primary biological aerosol particle (PBAP) emissions, including bacteria, fungal spores and pollen, range from 78-296 Tg/year. Over the past several years, size-resolved measurements of fluorescent biological aerosol particles have been made in tropical, temperate and boreal ecosystems. Besides, single particle mass spectroscopy has been used to quantify bioaerosol concentrations at various locations in the US. We use these observations to develop and evaluate a bioaerosol emission scheme that describes both the biological production of bioaerosols and the meteorological drivers of the emission of these particles into the atmosphere. Then, we implement this scheme in the GEOS-Chem global chemical transport model to estimate the emission, burden and lifetime of bioaerosols. Finally, we evaluate the contribution of bioaerosols to the total organic aerosol budget, which further consists of primary and secondary organic aerosol.

  13. Survival and home-range size of Northern Spotted Owls in southwestern Oregon

    USGS Publications Warehouse

    Schilling, Jason W.; Dugger, Katie M.; Anthony, Robert G.

    2013-01-01

    In the Klamath province of southwestern Oregon, Northern Spotted Owls (Strix occidentalis caurina) occur in complex, productive forests that historically supported frequent fires of variable severity. However, little is known about the relationships between Spotted Owl survival and home-range size and the characteristics of fire-prone, mixed-conifer forests of the Klamath province. Thus, the objectives of this study were to estimate monthly survival rates and home-range size in relation to habitat characteristics for Northern Spotted Owls in southwestern Oregon. Home-range size and survival of 15 Northern Spotted Owls was monitored using radiotelemetry in the Ashland Ranger District of the Rogue River–Siskiyou National Forest from September 2006 to October 2008. Habitat classes within Spotted Owl home ranges were characterized using a remote-sensed vegetation map of the study area. Estimates of monthly survival ranged from 0.89 to 1.0 and were positively correlated with the number of late-seral habitat patches and the amount of edge, and negatively correlated with the mean nearest neighbor distance between late-seral habitats. Annual home-range size varied from to 189 to 894 ha ( x =  576; SE  =  75), with little difference between breeding and nonbreeding home ranges. Breeding-season home-range size increased with the amount of hard edge, and the amount of old and mature forest combined. Core area, annual and nonbreeding season home-range sizes all increased with increased amounts of hard edge, suggesting that increased fragmentation is associated with larger core and home-range sizes. Although no effect of the amount of late-seral stage forest on either survival or home-range size was detected, these results are the first to concurrently demonstrate increased forest fragmentation with decreased survival and increased home-range size of Northern Spotted Owls.

  14. Optimal Delivery of Aerosols to Infants During Mechanical Ventilation

    PubMed Central

    Azimi, Mandana; Hindle, Michael

    2014-01-01

    Abstract Purpose: The objective of this study was to determine optimal aerosol delivery conditions for a full-term (3.6 kg) infant receiving invasive mechanical ventilation by evaluating the effects of aerosol particle size, a new wye connector, and timing of aerosol delivery. Methods: In vitro experiments used a vibrating mesh nebulizer and evaluated drug deposition fraction and emitted dose through ventilation circuits containing either a commercial (CM) or new streamlined (SL) wye connector and 3-mm endotracheal tube (ETT) for aerosols with mass median aerodynamic diameters of 880 nm, 1.78 μm, and 4.9 μm. The aerosol was released into the circuit either over the full inhalation cycle (T1 delivery) or over the first half of inhalation (T2 delivery). Validated computational fluid dynamics (CFD) simulations and whole-lung model predictions were used to assess lung deposition and exhaled dose during cyclic ventilation. Results: In vitro experiments at a steady-state tracheal flow rate of 5 L/min resulted in 80–90% transmission of the 880-nm and 1.78-μm aerosols from the ETT. Based on CFD simulations with cyclic ventilation, the SL wye design reduced depositional losses in the wye by a factor of approximately 2–4 and improved lung delivery efficiencies by a factor of approximately 2 compared with the CM device. Delivery of the aerosol over the first half of the inspiratory cycle (T2) reduced exhaled dose from the ventilation circuit by a factor of 4 compared with T1 delivery. Optimal lung deposition was achieved with the SL wye connector and T2 delivery, resulting in 45% and 60% lung deposition for optimal polydisperse (∼1.78 μm) and monodisperse (∼2.5 μm) particle sizes, respectively. Conclusions: Optimization of selected factors and use of a new SL wye connector can substantially increase the lung delivery efficiency of medical aerosols to infants from current values of <1–10% to a range of 45–60%. PMID:24299500

  15. Airborne Sunphotometry of African Dust and Marine Boundary Layer Aerosols in PRIDE

    NASA Technical Reports Server (NTRS)

    Livingston, John M.; Redemann, Jens; Russell, Philip; Schmid, Beat; Reid, Jeff; Pilewskie, Peter; Hipskind, R. Stephen (Technical Monitor)

    2000-01-01

    The Puerto Rico Dust Experiment (PRIDE) was conducted during summer 2000 to study the radiative, microphysical and transport properties of Saharan dust in the Caribbean region. During PRIDE, NASA Ames Research Center's six-channel airborne autotracking sunphotometer (AATS-6) was operated aboard a Piper Navajo airplane based at Roosevelt Roads Naval Station on the northeast coast of Puerto Rico. AATS-6 measurements were taken during 21 science flights off the coast of Puerto Rico in the western Caribbean. Data were acquired within and above the Marine Boundary Layer (MBL) and the Saharan Aerosol Layer (SAL) up to 5.5 km altitude tinder a wide range of dust loadings. Aerosol optical depth (AOD) spectra and columnar water vapor (CWV) values have been calculated from the AATS-6 measurements by using sunphotometer calibration data obtained at Mauna Loa Observatory (3A kin ASL) before (May) and after (October) PRIDE. Mid-visible AOD values measured near the surface during PRIDE ranged from 0.07 on the cleanest day to 0.55 on the most turbid day. Values measured above the MBL were as high as 0.35; values above the SAL were as low as 0.01. The fraction of total column AOD due to Saharan dust cannot be determined precisely from AATS-6 AOD data alone due to the uncertainty in the extent of vertical mixing of the dust down through the MBL. However, analyses of ground-based and airborne in-situ aerosol sampling measurements and ground-based aerosol lidar backscatter data should yield accurate characterization of the vertical mixing that will enable calculation of the Saharan dust AOD component from the sunphotometer data. Examples will be presented showing measured AATS-6 AOD spectra, calculated aerosol extinction and water vapor density vertical profiles, and aerosol size distributions retrieved by inversion of the AOD spectra. Near sea-surface AOD spectra acquired by AATS-6 during horizontal flight legs at 30 m ASL are available for validation of AOD derived from coincident

  16. CURRENT AND EMERGING TECHNIQUES FOR CHARACTERIZING TROPOSPHERIC AEROSOLS

    EPA Science Inventory

    Particulate matter generally includes dust, smoke, soot, or aerosol particles. Environmental research addresses the origin, size, chemical composition, and the formation mechanics of aerosols. In the troposphere, fine aerosols (e.g. with diameters < 2.5 um) remain suspended until...

  17. Impact of wildfires on size-resolved aerosol composition at a coastal California site

    NASA Astrophysics Data System (ADS)

    Maudlin, L. C.; Wang, Z.; Jonsson, H. H.; Sorooshian, A.

    2015-10-01

    Size-resolved aerosol composition measurements were conducted at a coastal site in central California during the Nucleation in California Experiment (NiCE) between July and August of 2013. The site is just east of ship and marine emission sources and is also influenced by continental pollution and wildfires, such as those near the California-Oregon border which occurred near the end of NiCE. Two micro-orifice uniform deposit impactors (MOUDIs) were used, and water-soluble and elemental compositions were measured. The five most abundant water-soluble species (in decreasing order) were chloride, sodium, non-sea salt (nss) sulfate, ammonium, and nitrate. During wildfire periods, nss K mass concentrations were not enhanced as strongly as other species in the sub-micrometer stages and even decreased in the super-micrometer stages; species other than nss K are more reliable tracers for biomass burning in this region. Chloride levels were reduced in the fire sets likely due to chloride depletion by inorganic and organic acids that exhibited elevated levels in transported plumes. During wildfire periods, the mass size distribution of most dicarboxylic acids changed from unimodal to bimodal with peaks in the 0.32 μm and 1.0-1.8 μm stages. Furthermore, sulfate's peak concentration shifted from the 0.32 μm to 0.56 μm stage, and nitrate also shifted to larger sizes (1.0 μm to 1.8-3.2 μm stages). Mass concentrations of numerous soil tracer species (e.g., Si, Fe) were strongly enhanced in samples influenced by wildfires, especially in the sub-micrometer range. Airborne cloud water data confirm that soil species were associated with fire plumes transported south along the coast. In the absence of biomass burning, cloud condensation nuclei (CCN) composition is dominated by nss sulfate and ammonium, and the water-soluble organic fraction is dominated by methanesulfonate, whereas for the samples influenced by wildfires, ammonium becomes the dominant overall species, and

  18. Size distribution of salbutamol/ipratropium aerosols produced by different nebulizers in the absence and presence of heat and humidification.

    PubMed

    Yang, Ssu-Han; Yang, Tsung-Ming; Lin, Hui-Ling; Tsai, Ying-Huang; Fang, Tien-Pei; Wan, Gwo-Hwa

    2018-02-01

    Few studies have evaluated the size distribution of inhaled and exhaled aerosolized drugs, or the effect of heated humidification on particle size and lung deposition. The present study evaluated these aspects of bronchodilator (salbutamol/ipratropium) delivery using a lung model in the absence and presence of heat and humidification. We positioned filters to collect and measure the initial drug, inhaled drug, and exhaled drug. Particle size distribution was evaluated using an 8-stage Marple personal cascade impactor with 0.2-μm polycarbonate filters. A greater inhaled drug mass was delivered using a vibrating mesh nebulizer (VMN) than by using a small volume nebulizer (SVN), when heated humidifiers were not employed. When heated and humidified medical gas was used, there was no significant difference between the inhaled drug mass delivered by the VMN and that delivered by the SVN. A significantly greater mass of inhaled 1.55-μm drug particles was produced by the VMN than with the SVN, under heated and humidified conditions. However, the mass median aerodynamic diameters (MMADs) of the aerosolized drug produced by the SVN and VMN did not differ significantly under the same conditions. The VMN produced more fine particles of salbutamol/ipratropium, and the drug particle size clearly increased in the presence of heat and humidification. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. A one-dimensional sectional model to simulate multicomponent aerosol dynamics in the marine boundary layer 2. Model application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fitzgerald, James W.; Hoppel, William A.; Frick, Glendon M.

    1998-07-01

    The dynamics of aerosols in the marine boundary layer (MBL) are simulated with the marine boundary layer aerosol model (MARBLES), a one-dimensional, multicomponent sectional aerosol model [{ital Fitzgerald} {ital et al.}, this issue; {ital Gelbard} {ital et al.}, this issue]. First, to illustrate how the various aerosol processes influence the particle size distribution, the model was run with one or two processes operating on the same initial size distribution. Because of current interest in the effects of cloud processing of aerosols and exchange of aerosols with the free troposphere (FT) on marine aerosol size distributions, these two processes are examinedmore » in considerable detail. The simulations show that the effect of cloud processing (characteristic double-peaked size distribution) in the upper part of the MBL is manifested at the surface on a timescale that is much faster than changes due to exchange with the FT, assuming a typical exchange velocity of 0.6 cmthinsps{sup {minus}1}. The model predicts that the FT can be a significant source of particles for the MBL in the size range of the cloud-processing minimum, between the unactivated interstitial particles and the cloud condensation nuclei (CCN) which have grown as a result of conversion of dissolved SO{sub 2} to sulfate in cloud droplets. The model was also used to simulate the evolution of the aerosol size distribution in an air mass advecting from the east coast of the United States out over the ocean for up to 10 days. The modification of a continental aerosol size distribution to one that is remote marine in character occurs on a timescale of 6{endash}8 days. Nucleation was not observed in the base case 10-day advection simulation which assumed rather typical meteorological conditions. However, significant nucleation was predicted under a more favorable (albeit, atypical) combination of conditions which included significant precipitation scavenging (5 mmthinsph{sup {minus}1} of rain for 12

  20. SIZE DISTRIBUTIONS OF ELEMENTAL CARBON IN ATMOSPHERIC AEROSOLS

    EPA Science Inventory

    Environmental problems caused by atmospheric aerosols are well documented in the specialized literature. Studies reporting on the role of dense clouds of soil particles in past mass extinctions of life on Earth and, more recently (Turco et al., 1983), on calculations of potential...