Science.gov

Sample records for aerosol source apportionment

  1. Synthesizing Scientific Progress: Outcomes from US EPA’s Carbonaceous Aerosols and Source Apportionment STAR Grants

    EPA Science Inventory

    ABSTRACTA number of studies in the past decade have transformed the way we think about atmospheric aerosols. The advances include, but are not limited to, source apportionment of organics using aerosol mass spectrometer data, the volatility basis set approach, quantifying isopre...

  2. Characterization and source apportionment of organic aerosol using offline aerosol mass spectrometry

    NASA Astrophysics Data System (ADS)

    Daellenbach, K. R.; Bozzetti, C.; Křepelová, A.; Canonaco, F.; Wolf, R.; Zotter, P.; Fermo, P.; Crippa, M.; Slowik, J. G.; Sosedova, Y.; Zhang, Y.; Huang, R.-J.; Poulain, L.; Szidat, S.; Baltensperger, U.; Prévôt, A. S. H.; El Haddad, I.

    2015-08-01

    Field deployments of the Aerodyne Aerosol Mass Spectrometer (AMS) have significantly advanced real-time measurements and source apportionment of non-refractory particulate matter. However, the cost and complex maintenance requirements of the AMS make impractical its deployment at sufficient sites to determine regional characteristics. Furthermore, the negligible transmission efficiency of the AMS inlet for supermicron particles significantly limits the characterization of their chemical nature and contributing sources. In this study, we utilize the AMS to characterize the water-soluble organic fingerprint of ambient particles collected onto conventional quartz filters, which are routinely sampled at many air quality sites. The method was applied to 256 particulate matter (PM) filter samples (PM1, PM2.5, PM10) collected at 16 urban and rural sites during summer and winter. We show that the results obtained by the present technique compare well with those from co-located online measurements, e.g. AMS or Aerosol Chemical Speciation Monitor (ACSM). The bulk recoveries of organic aerosol (60-91 %) achieved using this technique, together with low detection limits (0.8 μg of organic aerosol on the analyzed filter fraction) allow its application to environmental samples. We will discuss the recovery variability of individual hydrocarbon, oxygen containing and other ions. The performance of such data in source apportionment is assessed in comparison to ACSM data. Recoveries of organic components related to different sources as traffic, wood burning and secondary organic aerosol are presented. This technique, while subjected to the limitations inherent to filter-based measurements (e.g. filter artifacts and limited time resolution) may be used to enhance the AMS capabilities in measuring size-fractionated, spatially-resolved long-term datasets.

  3. Characterization and source apportionment of organic aerosol using offline aerosol mass spectrometry

    NASA Astrophysics Data System (ADS)

    Daellenbach, K. R.; Bozzetti, C.; Křepelová, A.; Canonaco, F.; Wolf, R.; Zotter, P.; Fermo, P.; Crippa, M.; Slowik, J. G.; Sosedova, Y.; Zhang, Y.; Huang, R.-J.; Poulain, L.; Szidat, S.; Baltensperger, U.; El Haddad, I.; Prévôt, A. S. H.

    2016-01-01

    Field deployments of the Aerodyne Aerosol Mass Spectrometer (AMS) have significantly advanced real-time measurements and source apportionment of non-refractory particulate matter. However, the cost and complex maintenance requirements of the AMS make its deployment at sufficient sites to determine regional characteristics impractical. Furthermore, the negligible transmission efficiency of the AMS inlet for supermicron particles significantly limits the characterization of their chemical nature and contributing sources. In this study, we utilize the AMS to characterize the water-soluble organic fingerprint of ambient particles collected onto conventional quartz filters, which are routinely sampled at many air quality sites. The method was applied to 256 particulate matter (PM) filter samples (PM1, PM2.5, and PM10, i.e., PM with aerodynamic diameters smaller than 1, 2.5, and 10 µm, respectively), collected at 16 urban and rural sites during summer and winter. We show that the results obtained by the present technique compare well with those from co-located online measurements, e.g., AMS or Aerosol Chemical Speciation Monitor (ACSM). The bulk recoveries of organic aerosol (60-91 %) achieved using this technique, together with low detection limits (0.8 µg of organic aerosol on the analyzed filter fraction) allow its application to environmental samples. We will discuss the recovery variability of individual hydrocarbon ions, ions containing oxygen, and other ions. The performance of such data in source apportionment is assessed in comparison to ACSM data. Recoveries of organic components related to different sources as traffic, wood burning, and secondary organic aerosol are presented. This technique, while subjected to the limitations inherent to filter-based measurements (e.g., filter artifacts and limited time resolution) may be used to enhance the AMS capabilities in measuring size-fractionated, spatially resolved long-term data sets.

  4. Carbon isotope based aerosol source apportionment in Eastern European city Vilnius

    NASA Astrophysics Data System (ADS)

    Garbaras, Andrius; Sapolaite, Justina; Garbariene, Inga; Ezerinskis, Zilvinas; Pocevicius, Matas; Krikscikas, Laurynas; Jacevicius, Sarunas; Plukis, Arturas; Remeikis, Vidmantas

    2016-04-01

    We present carbonaceous aerosol source apportionment results in Eastern European city Vilnius (capital of Lithuania) using stable carbon isotope ratio (δ13C) and radiocarbon (14C) methods. The aerosol sampling campaigns were performed in 2014-2016 winter seasons in Vilnius. PM1 particles were collected on quartz fiber filters using high volume sampler, while PM10 and size segregated aerosol particles were collected using low volume and MOUDI 128 cascade impactor respectively. δ13C values were measured with EA-IRMS system while radiocarbon analysis was performed using Single Stage Accelerator Mass Spectrometer (SSAMS). For the AMS analysis, filters (or aluminium foils from cascade impactor) were graphitized using Automated Graphitization Equipment. It was estimated that dominant carbonaceous aerosol source in Vilnius was of biogenic/biomass origin (60-90 %). Fossil fuel sources accounted for up to 23 % of total carbon fraction. Combining stable carbon and radiocarbon isotope analysis we were able to quantify the amount of coal derived aerosol particles. The contribution of coal burning emissions were up to 14 %. We will present the applicability of dual carbon (13C and 14C) isotope ratio method for the aerosol source apportionment in different regions of Europe, also the perspectives of using MOUDI cascade impactors to make source apportionment in size segregated aerosol particles.

  5. Single particle characterization, source apportionment, and aging effects of ambient aerosols in Southern California

    NASA Astrophysics Data System (ADS)

    Shields, Laura Grace

    Composed of a mixture of chemical species and phases and existing in a variety of shapes and sizes, atmospheric aerosols are complex and can have serious influence on human health, the environment, and climate. In order to better understand the impact of aerosols on local to global scales, detailed measurements on the physical and chemical properties of ambient particles are essential. In addition, knowing the origin or the source of the aerosols is important for policymakers to implement targeted regulations and effective control strategies to reduce air pollution in their region. One of the most ground breaking techniques in aerosol instrumentation is single particle mass spectrometry (SPMS), which can provide online chemical composition and size information on the individual particle level. The primary focus of this work is to further improve the ability of one specific SPMS technique, aerosol time-of-flight mass spectrometry (ATOFMS), for the use of identifying the specific origin of ambient aerosols, which is known as source apportionment. The ATOFMS source apportionment method utilizes a library of distinct source mass spectral signatures to match the chemical information of the single ambient particles. The unique signatures are obtained in controlled source characterization studies, such as with the exhaust emissions of heavy duty diesel vehicles (HDDV) operating on a dynamometer. The apportionment of ambient aerosols is complicated by the chemical and physical processes an individual particle can undergo as it spends time in the atmosphere, which is referred to as "aging" of the aerosol. Therefore, the performance of the source signature library technique was investigated on the ambient dataset of the highly aged environment of Riverside, California. Additionally, two specific subsets of the Riverside dataset (ultrafine particles and particles containing trace metals), which are known to cause adverse health effects, were probed in greater detail. Finally

  6. Source apportionment of the summer time carbonaceous aerosol at Nordic rural background sites

    NASA Astrophysics Data System (ADS)

    Yttri, K. E.; Simpson, D.; Nøjgaard, J. K.; Kristensen, K.; Genberg, J.; Stenström, K.; Swietlicki, E.; Hillamo, R.; Aurela, M.; Bauer, H.; Offenberg, J. H.; Jaoui, M.; Dye, C.; Eckhardt, S.; Burkhart, J. F.; Stohl, A.; Glasius, M.

    2011-06-01

    In the present study, natural and anthropogenic sources of particulate organic carbon (OCp) and elemental carbon (EC) have been quantified based on weekly filter samples of PM10 collected at four Nordic rural background sites (Birkenes (Norway), Hyytiälä (Finland) Vavihill (Sweden), Lille Valby (Denmark)) during late summer (5 August-2 September 2009). Levels of source specific tracers, i.e. cellulose, levoglucosan, mannitol and the 14C/12C ratio of total carbon (TC), have been used as input for source apportionment of the carbonaceous aerosol, whereas Latin Hypercube Sampling (LHS) was used to statistically treat the multitude of possible combinations resulting from this approach. The carbonaceous aerosol (here: TCp; i.e. particulate TC) was totally dominated by natural sources (69-86 %), with biogenic secondary organic aerosol (BSOA) being the single most important source (48-57 %). Interestingly, primary biological aerosol particles (PBAP) were the second most important source (20-32 %). The anthropogenic contribution was mainly attributed to fossil fuel sources (OCff and ECff (10-24 %), whereas no more than 3-7 % was explained by combustion of biomass (OCbb and ECbb in this late summer campaign i.e. emissions from residential wood burning and/or wild/agricultural fires. Fossil fuel sources totally dominated the ambient EC loading, accounting for 4-12 % of TCp, whereas <1.5 % was attributed to combustion of biomass. The carbonaceous aerosol source apportionment showed only minor variation between the four selected sites. However, Hyytiälä and Birkenes showed greater resemblance to each other, as did Lille Valby and Vavihill, the two latter being somewhat more influenced by anthropogenic sources. Ambient levels of organosulphates and nitrooxy-organosulphates in the Nordic rural background environment are reported for the first time in the present study. The most abundant organosulphate compounds were an organosulphate of isoprene and nitrooxy

  7. Quantification and radiocarbon source apportionment of black carbon in atmospheric aerosols using the CTO-375 method

    NASA Astrophysics Data System (ADS)

    Zencak, Zdenek; Elmquist, Marie; Gustafsson, Örjan

    To make progress towards linking the atmosphere and biogeosphere parts of the black carbon (BC) cycle, a chemothermal oxidation method (CTO-375), commonly applied for isolating BC from complex geomatrices such as soils, sediments and aquatic particles, was applied to investigate the BC also in atmospheric particles. Concentrations and 14C-based source apportionment of CTO-375 based BC was established for a reference aerosol (NIST RM-8785) and for wintertime aerosols collected in Stockholm and in a Swedish background area. The results were compared with thermal-optical (OC/EC) measurements. For NIST RM-8785, a good agreement was found between the BC CTO-375 concentration and the reported elemental carbon (EC) concentration measured by the "Speciation Trends Network—National Institute of Occupational Safety and Health" method (EC NIOSH) with BC CTO-375 of 0.054±0.002 g g -1 and EC NIOSH of 0.067±0.008 g g -1. In contrast, there was an average factor of ca. 20 difference between BC CTO-375 and EC NIOSH for the ambient Scandinavian wintertime aerosols, presumably reflecting a combination of BC CTO-375 isolating only the recalcitrant soot-BC portion of the BC continuum and the EC NIOSH metric inadvertently including some intrinsically non-pyrogenic organic matter. Isolation of BC CTO-375 with subsequent off-line radiocarbon analysis yielded fraction modern values (fM) for total organic carbon (TOC) of 0.93 (aerosols from a Swedish background area), and 0.58 (aerosols collected in Stockholm); whereas the fM for BC CTO-375 isolates were 1.08 (aerosols from a Swedish background area), and 0.87 (aerosols collected in Stockholm). This radiocarbon-based source apportionment suggests that contribution from biomass combustion to cold-season atmospheric BC CTO-375 in Stockholm was 70% and in the background area 88%.

  8. Source apportionment of the summer time carbonaceous aerosol at Nordic rural background sites

    NASA Astrophysics Data System (ADS)

    Yttri, K. E.; Simpson, D.; Nøjgaard, J. K.; Kristensen, K.; Genberg, J.; Stenström, K.; Swietlicki, E.; Hillamo, R.; Aurela, M.; Bauer, H.; Offenberg, J. H.; Jaoui, M.; Dye, C.; Eckhardt, S.; Burkhart, J. F.; Stohl, A.; Glasius, M.

    2011-12-01

    In the present study, natural and anthropogenic sources of particulate organic carbon (OCp) and elemental carbon (EC) have been quantified based on weekly filter samples of PM10 (particles with aerodynamic diameter <10 μm) collected at four Nordic rural background sites [Birkenes (Norway), Hyytiälä (Finland), Vavihill (Sweden), Lille Valby, (Denmark)] during late summer (5 August-2 September 2009). Levels of source specific tracers, i.e. cellulose, levoglucosan, mannitol and the 14C/12C ratio of total carbon (TC), have been used as input for source apportionment of the carbonaceous aerosol, whereas Latin Hypercube Sampling (LHS) was used to statistically treat the multitude of possible combinations resulting from this approach. The carbonaceous aerosol (here: TCp; i.e. particulate TC) was totally dominated by natural sources (69-86%), with biogenic secondary organic aerosol (BSOA) being the single most important source (48-57%). Interestingly, primary biological aerosol particles (PBAP) were the second most important source (20-32%). The anthropogenic contribution was mainly attributed to fossil fuel sources (OCff and ECff) (10-24%), whereas no more than 3-7% was explained by combustion of biomass (OCbb and ECbb) in this late summer campaign i.e. emissions from residential wood burning and/or wild/agricultural fires. Fossil fuel sources totally dominated the ambient EC loading, which accounted for 4-12% of TCp, whereas <1.5% of EC was attributed to combustion of biomass. The carbonaceous aerosol source apportionment showed only minor variation between the four selected sites. However, Hyytiälä and Birkenes showed greater resemblance to each other, as did Lille Valby and Vavihill, the two latter being somewhat more influenced by anthropogenic sources. Ambient levels of organosulphates and nitrooxy-organosulphates in the Nordic rural background environment are reported for the first time in the present study. The most abundant organosulphate compounds were an

  9. Isotope source apportionment of carbonaceous aerosol as a function of particle size and thermal refractiveness

    NASA Astrophysics Data System (ADS)

    Masalaite, Agne; Holzinger, Rupert; Remeikis, Vidmantas; Röckmann, Thomas; Dusek, Ulrike

    2016-04-01

    The stable carbon isotopes can be used to get information about sources and processing of carbonaceous aerosol. We will present results from source apportionment of carbonaceous aerosol as a function of particle size thermal refractiveness. Separate source apportionment for particles smaller than 200 nm and for different carbon volatility classes are rarely reported and give new insights into aerosol sources in the urban environment. Stable carbon isotope ratios were measured for the organic carbon (OC) fraction and total carbon (TC) of MOUDI impactor samples that were collected on a coastal site (Lithuania) during the winter 2012 and in the city of Vilnius (Lithuania) during the winter of 2009. The 11 impactor stages spanned a size range from 0.056 to 18 μm, but only the 6 stages in the submicron range were analysed. The δ13C values of bulk total carbon (δ13CTC) were determined with an elemental analyser (Flash EA 1112) coupled with an isotope ratio mass spectrometer (Thermo Finnigan Delta Plus Advantage) (EA - IRMS). Meanwhile δ13COC was measured using thermal-desorption isotope ratio mass spectrometry (IRMS) system. This allows a rough separation of the more volatile OC fraction (desorbed in the oven of IRMS up to 250 0C) from the more refractory fraction (desorbed up to 400 0C). In this study we investigated the composition of organic aerosol desorbed from filter samples at different temperatures using the thermal-desorption proton-transfer-reaction mass spectrometry (TD-PTR-MS) technique. During winter-time in Lithuania we expect photochemistry and biogenic emissions to be of minor importance. The main sources of aerosol carbon should be fossil fuel and biomass combustion. In both sites, the coastal and the urban site, δ13C measurements give a clear indication that the source contributions differ for small and large particles. Small particles < 200 nm are depleted in 13C with respect to larger particles by 1 - 2 ‰Ṫhis shows that OC in small particle

  10. Aerosol source apportionment from 1 year measurements at the CESAR tower at Cabauw, NL

    NASA Astrophysics Data System (ADS)

    Schlag, P.; Kiendler-Scharr, A.; Blom, M. J.; Canonaco, F.; Henzing, J. S.; Moerman, M. M.; Prévôt, A. S. H.; Holzinger, R.

    2015-12-01

    Intensive measurements of submicron aerosol particles and their chemical composition were performed with an Aerosol Chemical Speciation Monitor (ACSM) at the Cabauw Experimental Site for Atmospheric Research (CESAR) in Cabauw, NL. The campaign lasted nearly one year from July 2012 to June 2013 as part of the ACTRIS project. Including black carbon data an average particulate mass concentration of 9.50 μg m-3 was obtained during the whole campaign with dominant contributions from ammonium nitrate (45 %), organic aerosol (OA, 29 %), and ammonium sulfate (19 %). 12 exceedances of the World Health Organization (WHO) PM2.5 daily mean limit (25 μg m-3) were observed at this rural site using PM1 instrumentation only. Ammonium nitrate and OA represented the largest contributors to total particulate matter during periods of exceedance. Source apportionment of OA was performed season-wise by Positive Matrix Factorization (PMF) using the Multilinear Engine 2 (ME-2) controlled via the source finder (SoFi). Primary organic aerosols were attributed mainly to traffic (8-16 % contribution to total OA, averaged season-wise) and biomass burning (0-23 %). Secondary organic aerosols (SOA, 61-84 %) dominated the organic fraction during the whole campaign, particularly on days with high mass loadings. A SOA factor which is attributed to humic-like substances (HULIS) was identified as a highly oxidized background aerosol in Cabauw. This shows the importance of atmospheric ageing processes for aerosol concentration at this rural site. Due to the large secondary fraction, the reduction of particulate mass at this rural site is challenging on a local scale.

  11. Aerosol source apportionment from 1-year measurements at the CESAR tower in Cabauw, the Netherlands

    NASA Astrophysics Data System (ADS)

    Schlag, Patrick; Kiendler-Scharr, Astrid; Blom, Marcus Johannes; Canonaco, Francesco; Sebastiaan Henzing, Jeroen; Moerman, Marcel; Prévôt, André Stephan Henry; Holzinger, Rupert

    2016-07-01

    Intensive measurements of submicron aerosol particles and their chemical composition were performed with an Aerosol Chemical Speciation Monitor (ACSM) at the Cabauw Experimental Site for Atmospheric Research (CESAR) in Cabauw, the Netherlands, sampling at 5 m height above ground. The campaign lasted nearly 1 year from July 2012 to June 2013 as part of the EU-FP7-ACTRIS project (Q-ACSM Network). Including equivalent black carbon an average particulate mass concentration of 9.50 µg m-3 was obtained during the whole campaign with dominant contributions from ammonium nitrate (45 %), organic aerosol (OA, 29 %), and ammonium sulfate (19 %). There were 12 exceedances of the World Health Organization (WHO) PM2.5 daily mean limit (25 µg m-3) observed at this rural site using PM1 instrumentation only. Ammonium nitrate and OA represented the largest contributors to total particulate matter during periods of exceedance. Source apportionment of OA was performed season-wise by positive matrix factorization (PMF) using the multilinear engine 2 (ME-2) controlled via the source finder (SoFi). Primary organic aerosols were attributed mainly to traffic (8-16 % contribution to total OA, averaged season-wise) and biomass burning (0-23 %). Secondary organic aerosols (SOAs, 61-84 %) dominated the organic fraction during the whole campaign, particularly on days with high mass loadings. A SOA factor which is attributed to humic-like substances (HULIS) was identified as a highly oxidized background aerosol in Cabauw. This shows the importance of atmospheric aging processes for aerosol concentration at this rural site. Due to the large secondary fraction, the reduction of particulate mass at this rural site is challenging on a local scale.

  12. Source apportionment of carbonaceous aerosols over South and East Asia using dual carbon isotopes

    NASA Astrophysics Data System (ADS)

    Gustafsson, O.; Kirillova, E. N.; Andersson, A.-; Kruså, M.; Sheesley, R. J.; Tiwari, S.-; Lee, M.; Chen, B.; Du, K.

    2012-12-01

    Emissions of black carbon (BC) and other components of carbonaceous aerosols affect both climate and health in South and East Asia, yet substantial uncertainties exist regarding their sources. The relative contribution to atmospheric BC from fossil fuel versus biomass combustion is important to constrain both to direct mitigation and as their different properties make their effects on climate forcing and respiratory health different. This study approached the sourcing challenge by applying microscale radiocarbon measurements to aerosol particles collected in both source regions and at regional receptor observatories of both S Asia (New Delhi and the Maldives Climate Observatory) and of E Asia (Beijing, Shanghai, South China Coastal Observatory and the Korea Climate Observatory - Gosan, KCO-G, Jeju Island). The radiocarbon approach is ideally suited to this task as fossil sources are void of 14C whereas biomass combustion products hold a contemporary 14C signal. For S Asia, the 14C-based observations suggest that biomass combustion contributes half to two-thirds of the BC loading. In contrast, for E Asia, fossil fuel combustion account for four-fifths of the BC emitted from China. This source-diagnostic radiocarbon signal in the ambient aerosol over East Asia establishes a much larger role for fossil fuel combustion than suggested by all fifteen BC emission inventory models. There are also poor constraints on the sources of water-soluble organic carbon (WSOC), a large hydrophilic component of carbonaceous aerosols that enhances the propensity of aerosols to form clouds. In a 15-mo continuous campaign in S Asia, radiocarbon-based source apportionment of WSOC shows the dominance of biogenic/biomass combustion sources but also a substantial anthropogenic fossil-fuel contribution (about 20%). WSOC in E Asia reaching KCO-G were 50% from fossil sources. Aerosols reaching the Maldives after long-range over-ocean transport were enriched by 3-4‰ in δ13C-WSOC. This is

  13. Biomass burning in the Amazon region: Aerosol source apportionment and associated health risk assessment

    NASA Astrophysics Data System (ADS)

    de Oliveira Alves, Nilmara; Brito, Joel; Caumo, Sofia; Arana, Andrea; de Souza Hacon, Sandra; Artaxo, Paulo; Hillamo, Risto; Teinilä, Kimmo; Batistuzzo de Medeiros, Silvia Regina; de Castro Vasconcellos, Pérola

    2015-11-01

    The Brazilian Amazon represents about 40% of the world's remaining tropical rainforest. However, human activities have become important drivers of disturbance in that region. The majority of forest fire hotspots in the Amazon arc due to deforestation are impacting the health of the local population of over 10 million inhabitants. In this study we characterize western Amazonia biomass burning emissions through the quantification of 14 Polycyclic Aromatic Hydrocarbons (PAHs), Organic Carbon, Elemental Carbon and unique tracers of biomass burning such as levoglucosan. From the PAHs dataset a toxic equivalence factor is calculated estimating the carcinogenic and mutagenic potential of biomass burning emissions during the studied period. Peak concentration of PM10 during the dry seasons was observed to reach 60 μg m-3 on the 24 h average. Conversely, PM10 was relatively constant throughout the wet season indicating an overall stable balance between aerosol sources and sinks within the filter sampling resolution. Similar behavior is identified for OC and EC components. Levoglucosan was found in significant concentrations (up to 4 μg m-3) during the dry season. Correspondingly, the estimated lung cancer risk calculated during the dry seasons largely exceeded the WHO health-based guideline. A source apportionment study was carried out through the use of Absolute Principal Factor Analysis (APFA), identifying a three-factor solution. The biomass burning factor is found to be the dominating aerosol source, having 75.4% of PM10 loading. The second factor depicts an important contribution of several PAHs without a single source class and therefore was considered as mixed sources factor, contributing to 6.3% of PM10. The third factor was mainly associated with fossil fuel combustion emissions, contributing to 18.4% of PM10. This work enhances the knowledge of aerosol sources and its impact on climate variability and local population, on a site representative of the

  14. Source apportionment of PM2.5 carbonaceous aerosol in Baghdad, Iraq

    NASA Astrophysics Data System (ADS)

    Hamad, Samera Hussein; Schauer, James Jay; Heo, Jongbae; Kadhim, Ahmed K. H.

    2015-04-01

    Baghdad is the second largest city in the Middle East and suffers from severe air quality degradation due to the high levels of the atmospheric particulate matter (PM). Limited information exists regarding the sources of PM in Baghdad, and the lack of information on sources inhibits the development of control strategies to reduce air pollution. To better understand the nature of fine particulate matter (PM2.5) in Baghdad and the Middle East, a one year sampling campaign to collect PM2.5 was conducted from September 2012 through September 2013, missing August 2013 samples due to the security situation. 24-hour integrated samples collected on a 1-in-6 day schedule were analyzed for the major components, and monthly average samples were analyzed by gas chromatography mass spectrometry (GCMS) methods to measure particle-phase organic molecular markers. The results of organic molecular markers were used in a chemical mass balance (CMB) model to quantify the sources of PM2.5 organic carbon (OC) and PM2.5 mass. Primary sources accounted for 44% of the measured PM2.5, and secondary sources were estimated to make up 28% of the measured PM2.5. Picene, a tracer of coal combustion detected in Baghdad where there is no evidence for coal combustion, can be attributed to burning crude oil and other low quality fuels in Baghdad. Source apportionment results showed that the dominant sources of the carbonaceous aerosols in Baghdad are gasoline (37 ± 6%) and diesel engines (17 ± 3%) which can be attributed to the extensive use of gasoline and diesel powered generators in Baghdad. Wood burning and residual oil combustion contributed to 5 ± 0.4 and 1 ± 0.2% respectively of OC. The unresolved sources contributed to 42 ± 19% of the OC which represented the secondary organic aerosol (SOA) and the unidentified sources.

  15. Organic aerosol components derived from 25 AMS data sets across Europe using a consistent ME-2 based source apportionment approach

    NASA Astrophysics Data System (ADS)

    Crippa, M.; Canonaco, F.; Lanz, V. A.; Äijälä, M.; Allan, J. D.; Carbone, S.; Capes, G.; Ceburnis, D.; Dall'Osto, M.; Day, D. A.; DeCarlo, P. F.; Ehn, M.; Eriksson, A.; Freney, E.; Hildebrandt Ruiz, L.; Hillamo, R.; Jimenez, J. L.; Junninen, H.; Kiendler-Scharr, A.; Kortelainen, A.-M.; Kulmala, M.; Laaksonen, A.; Mensah, A. A.; Mohr, C.; Nemitz, E.; O'Dowd, C.; Ovadnevaite, J.; Pandis, S. N.; Petäjä, T.; Poulain, L.; Saarikoski, S.; Sellegri, K.; Swietlicki, E.; Tiitta, P.; Worsnop, D. R.; Baltensperger, U.; Prévôt, A. S. H.

    2014-06-01

    Organic aerosols (OA) represent one of the major constituents of submicron particulate matter (PM1) and comprise a huge variety of compounds emitted by different sources. Three intensive measurement field campaigns to investigate the aerosol chemical composition all over Europe were carried out within the framework of the European Integrated Project on Aerosol Cloud Climate and Air Quality Interactions (EUCAARI) and the intensive campaigns of European Monitoring and Evaluation Programme (EMEP) during 2008 (May-June and September-October) and 2009 (February-March). In this paper we focus on the identification of the main organic aerosol sources and we define a standardized methodology to perform source apportionment using positive matrix factorization (PMF) with the multilinear engine (ME-2) on Aerodyne aerosol mass spectrometer (AMS) data. Our source apportionment procedure is tested and applied on 25 data sets accounting for two urban, several rural and remote and two high altitude sites; therefore it is likely suitable for the treatment of AMS-related ambient data sets. For most of the sites, four organic components are retrieved, improving significantly previous source apportionment results where only a separation in primary and secondary OA sources was possible. Generally, our solutions include two primary OA sources, i.e. hydrocarbon-like OA (HOA) and biomass burning OA (BBOA) and two secondary OA components, i.e. semi-volatile oxygenated OA (SV-OOA) and low-volatility oxygenated OA (LV-OOA). For specific sites cooking-related (COA) and marine-related sources (MSA) are also separated. Finally, our work provides a large overview of organic aerosol sources in Europe and an interesting set of highly time resolved data for modeling purposes.

  16. Source apportionment of carbonaceous aerosol in Sao Paulo using 13C and 14C measurements

    NASA Astrophysics Data System (ADS)

    Oyama, Beatriz; Andrade, Maria de Fatima; Holzinger, Rupert; Röckmann, Thomas; Meijer, Harro A. J.; Dusek, Ulrike

    2016-04-01

    The Metropolitan Area of Sao Paulo is affected by high aerosol concentrations, which contain a large fraction of organic material. Up to date, not much is known about the composition and origin of the organic aerosol in this city. We present the first source apportionment of the carbonaceous aerosol fraction in Sao Paulo, using stable (13C) and radioactive carbon isotopes (14C). 14C provides a clear-cut distinction between fossil sources, which contain no 14C, and contemporary sources such as biofuels, biomass burning, or biogenic sources, which contain a typical contemporary 14C/12C ratio. 13C can be used to distinguish C3 plants, such as maize and sugarcane, from C4 plants. This can help to identify a possible impact of sugarcane field burning in the rural areas of Sao Paulo State on the aerosol carbon in the city. In the first part of the study, we compare two tunnel studies: Tunnel 1 is frequented only by light duty vehicles, which run mainly on mixtures of gasoline with ethanol (gasohol, 25% ethanol and 85% gasoline) or hydrated ethanol (5% water and 95% ethanol). Tunnel 2 contains a significant fraction of heavy-duty diesel vehicles, and therefore the fraction of biofuels in the average fleet is lower. Comparison of 14C in organic and elemental carbon (OC and EC) shows that in both tunnels there is no significant contribution of biofuels to EC. Combusting ethanol-gasoline fuels in a vehicle engine does apparently not result in significant EC formation from ethanol. Biofuels contribute around 45% to OC in Tunnel 1 an only 20% in Tunnel 2, reflecting a strong impact of diesel vehicles in Tunnel 2. In the second part of the study we conduct a source apportionment of ambient aerosol carbon collected in a field study during winter (July-August) 2012. Ambient EC has two main sources, vehicular emissions and biomass burning. We estimate a contribution of vehicular sources to EC of roughly 90% during weekdays and 80% during weekends, using the 14C values measured in

  17. Source apportionment of aerosol particles near a steel plant by electron microscopy.

    PubMed

    Ebert, Martin; Müller-Ebert, Dörthe; Benker, Nathalie; Weinbruch, Stephan

    2012-12-01

    The size, morphology and chemical composition of 37,715 individual particles collected over 22 sampling days in the vicinity of a large integrated steel production were studied by scanning and transmission electron microscopy. Based on the morphology, chemistry and beam stability the particles were classified into the following fourteen groups: silicates, sea salt, calcium sulfates, calcium carbonates, carbonate-silicate mixtures, sulfate-silicate mixtures, iron oxides, iron mixtures, metal oxide-metals, complex secondary particles, soot, Cl-rich particles, P-rich particles, and other particles. The majority of iron oxide (≈85%) and metal oxide-metal (≈70%) particles as well as ≈20% of the silicate particles are fly ashes from high temperature processes. The emissions from the steel work are dominated by iron oxide particles. For source apportionment, seven source categories and two sectors of local wind direction (industrial and urban background) were distinguished. In both sectors PM₁₀ consists of four major source categories: 35% secondary, 20% industrial, 17% soil and 16% soot in the urban background sector compared to 45% industrial, 20% secondary, 13% soil, and 9% soot in the industrial sector. As the secondary and the soot components are higher in the urban background sector than in the industrial sector, it is concluded that both components predominantly originate from urban background sources (traffic, coal burning, and domestic heating). Abatement measures should not only focus on the steel work but should also include the urban background aerosol. PMID:23149950

  18. Organic aerosol components derived from 25 AMS datasets across Europe using a newly developed ME-2 based source apportionment strategy

    NASA Astrophysics Data System (ADS)

    Crippa, M.; Canonaco, F.; Lanz, V. A.; Äijälä, M.; Allan, J. D.; Carbone, S.; Capes, G.; Dall'Osto, M.; Day, D. A.; DeCarlo, P. F.; Di Marco, C. F.; Ehn, M.; Eriksson, A.; Freney, E.; Hildebrandt Ruiz, L.; Hillamo, R.; Jimenez, J.-L.; Junninen, H.; Kiendler-Scharr, A.; Kortelainen, A.-M.; Kulmala, M.; Mensah, A. A.; Mohr, C.; Nemitz, E.; O'Dowd, C.; Ovadnevaite, J.; Pandis, S. N.; Petäjä, T.; Poulain, L.; Saarikoski, S.; Sellegri, K.; Swietlicki, E.; Tiitta, P.; Worsnop, D. R.; Baltensperger, U.; Prévôt, A. S. H.

    2013-09-01

    Organic aerosols (OA) represent one of the major constituents of submicron particulate matter (PM1) and comprise a huge variety of compounds emitted by different sources. Three intensive measurement field campaigns to investigate the aerosol chemical composition all over Europe were carried out within the framework of EUCAARI and the intensive campaigns of EMEP during 2008 (May-June and September-October) and 2009 (February-March). In this paper we focus on the identification of the main organic aerosol sources and we propose a standardized methodology to perform source apportionment using positive matrix factorization (PMF) with the multilinear engine (ME-2) on Aerodyne aerosol mass spectrometer (AMS) data. Our source apportionment procedure is tested and applied on 25 datasets accounting for urban, rural, remote and high altitude sites and therefore it is likely suitable for the treatment of AMS-related ambient datasets. For most of the sites, four organic components are retrieved, improving significantly previous source apportionment results where only a separation in primary and secondary OA sources was possible. Our solutions include two primary OA sources, i.e. hydrocarbon-like OA (HOA) and biomass burning OA (BBOA) and two secondary OA components, i.e. semi-volatile oxygenated OA (SV-OOA) and low-volatility oxygenated OA (LV-OOA). For specific sites cooking-related (COA) and marine-related sources (MSA) are also separated. Finally, our work provides a large overview of organic aerosol sources in Europe and an interesting set of highly time resolved data for modeling evaluation purposes.

  19. Assessment of source apportionment by Positive Matrix Factorization analysis on fine and coarse urban aerosol size fractions

    NASA Astrophysics Data System (ADS)

    Karanasiou, A. A.; Siskos, P. A.; Eleftheriadis, K.

    This study was conducted in order to investigate the differences observed in source profiles in the urban environment, when chemical composition parameters from different aerosol size fractions are subjected to factor analysis. Source apportionment was performed in an urban area where representative types of emission sources are present. PM 10 and PM 2 samples were collected within the Athens Metropolitan area and analysed for trace elements, inorganic ions and black carbon. Analysis by two-way and three-way Positive Matrix Factorization was performed, in order to resolve sources from data obtained for the fine and coarse aerosol fractions. A difference was observed: seven factors describe the best solution in PMF3 while six factors in PMF2. Six factors derived from PMF3 analysis correspond to those described by the PMF2 solution for the fine and coarse particles separately. These sources were attributed to road dust, marine aerosol, soil, motor vehicles, biomass burning, and oil combustion. The additional source resolved by PMF3 was attributed to a different type of road dust. Combustion sources (oil combustion and biomass burning) were correctly attributed by PMF3 solely to the fine fraction and the soil source to the coarse fraction. However, a motor vehicle's contribution to the coarse fraction was found only by three-way PMF. When PMF2 was employed in PM 10 concentrations the optimum solution included six factors. Four source profiles corresponded to the previously identified as vehicles, road dust, biomass burning and marine aerosol, while two could not be clearly identified. Source apportionment by PMF2 analysis based solely on PM 10 aerosol composition data, yielded unclear results, compared to results from PMF2 and PMF3 analyses on fine and coarse aerosol composition data.

  20. Source apportionment of organic aerosol across Houston, TX during DISCOVER-AQ

    NASA Astrophysics Data System (ADS)

    Yoon, S.; Clark, A. E.; Ortiz, S. M.; Usenko, S.; Sheesley, R. J.

    2015-12-01

    As part of the ground-based sampling efforts during DISCOVER-AQ's Houston month-long campaign in September 2013, atmospheric particulate matter (PM) samples were collected at four sites: Moody Tower (urban), Manvel Croix (southern suburb), Conroe (northern suburb), and La Porte (urban industrial). The Houston metropolitan area, especially the Houston Ship Channel, is a densely industrialized urban city with large concentrations of petroleum refining, petrochemical manufacturing, and heavy traffic during peak hours. Due to these and other emission sources, the area is heavily impacted by ambient PM. This study will be looking at fine PM (diameter less than 2.5µm, PM2.5) from all four sites. PM2.5fraction is relevant for understanding fate and transport of organic contaminants and is widely known to negatively impact human health. Chemical analysis including radiocarbon (14C) and organic tracer measurements (polycyclic aromatic hydrocarbons, alkanes, hopanes, steranes, and levoglucosan) were used for source apportionment. The 14C measurements constrained CMB results to estimate both primary and secondary contributions to total organic carbon (TOC). Results indicate that Moody Tower had consistent primary motor vehicle exhaust contribution (18-27%) and a fossil secondary organic aerosol (SOA) contribution from 5-33% depending on atmospheric conditions. Conroe had a lower contribution of motor vehicle exhaust (5-10%) and similarly variable fraction of fossil SOA (4-25%). Manvel Croix had an interim motor vehicle contribution (9-15%) with a variable fossil SOA (5-30%). For contemporary OC, there was minimal contribution of wood smoke during examined weeks (0-9%) but larger contributor of biogenic SOA ranging from 40-75% at Moody Tower, 56-81% at Manvel Croix and 60-79% at Conroe. Overall, the motor vehicle contribution was consistent at each site during the analysis week, biogenic SOA was consistently high, while fossil SOA showed the most variability.

  1. Lead Isotopic Composition and Trace Metals in Aerosols for Source Apportionment

    NASA Astrophysics Data System (ADS)

    Chien, C. T.; Paytan, A.

    2014-12-01

    Transported thousands of miles away from their source, aerosols can be dispersed and deposition throughout the Earth's surface. Aerosols from natural and industrial sources have different characteristics and health impacts thus it is important to identify their sources. The lead isotopic composition and trace metals in aerosol samples collected in different regions and periods around the world can help us better understand spatial and seasonal variation of aerosol sources. Aerosol samples collected in California, Bermuda, China and the Red Sea have been analyzed. The trace metal and Pb isotopes in these samples provide information regarding the various sources of aerosols to these sites.

  2. Organic composition and source apportionment of fine aerosol at Monterrey, Mexico, based on organic markers

    NASA Astrophysics Data System (ADS)

    Mancilla, Y.; Mendoza, A.; Fraser, M. P.; Herckes, P.

    2016-01-01

    attribution results obtained using the CMB (chemical mass balance) model indicate that emissions from motor vehicle exhausts are the most important, accounting for the 64 % of the PM2.5, followed by meat-cooking operations with 31 % The vegetative detritus and biomass burning had the smallest contribution (2.2 % of the PM2.5). To our knowledge, this is only the second study to explore the organic composition and source apportionment of fine organic aerosol based on molecular markers in Mexico and the first for the MMA. Particularly molecular marker were quantified by solvent extraction with dichloromethane, derivatization, and gas chromatography with mass spectrometry (GC/MS).

  3. Characterization of emissions from South Asian biofuels and application to source apportionment of carbonaceous aerosol in the Himalayas

    NASA Astrophysics Data System (ADS)

    Stone, Elizabeth A.; Schauer, James J.; Pradhan, Bidya Banmali; Dangol, Pradeep Man; Habib, Gazala; Venkataraman, Chandra; Ramanathan, V.

    2010-03-01

    This study focuses on improving source apportionment of carbonaceous aerosol in South Asia and consists of three parts: (1) development of novel molecular marker-based profiles for real-world biofuel combustion, (2) application of these profiles to a year-long data set, and (3) evaluation of profiles by an in-depth sensitivity analysis. Emissions profiles for biomass fuels were developed through source testing of a residential stove commonly used in South Asia. Wood fuels were combusted at high and low rates, which corresponded to source profiles high in organic carbon (OC) or high in elemental carbon (EC), respectively. Crop wastes common to the region, including rice straw, mustard stalk, jute stalk, soybean stalk, and animal residue burnings, were also characterized. Biofuel profiles were used in a source apportionment study of OC and EC in Godavari, Nepal. This site is located in the foothills of the Himalayas and was selected for its well-mixed and regionally impacted air masses. At Godavari, daily samples of fine particulate matter (PM2.5) were collected throughout the year of 2006, and the annual trends in particulate mass, OC, and EC followed the occurrence of a regional haze in South Asia. Maximum concentrations occurred during the dry winter season and minimum concentrations occurred during the summer monsoon season. Specific organic compounds unique to aerosol sources, molecular markers, were measured in monthly composite samples. These markers implicated motor vehicles, coal combustion, biomass burning, cow dung burning, vegetative detritus, and secondary organic aerosol as sources of carbonaceous aerosol. A molecular marker-based chemical mass balance (CMB) model provided a quantitative assessment of primary source contributions to carbonaceous aerosol. The new profiles were compared to widely used biomass burning profiles from the literature in a sensitivity analysis. This analysis indicated a high degree of stability in estimates of source

  4. Studying organic aerosols during bonfire night in Manchester: ME-2 source apportionment

    NASA Astrophysics Data System (ADS)

    Reyes Villegas, Ernesto; Allan, James

    2016-04-01

    Over the past decade, there has been an increasing interest in short-term events that negatively affect air quality (Zhao et al. 2014) such as bonfires and fireworks. In general, during these episodes, high particulate matter concentrations drop within 24 hrs; however, it is the fine fraction that dominates the emissions, known to have a potentially negative impact on air quality, thus the impact of bonfires/fireworks on air quality must be considered. Aerosols and gases were measured using a variety of instruments at The University of Manchester, sampling atmospheric emissions on Bonfire night, 5 November, one week before and one week later, in 2013 and 2014. The Multilinear Engine (ME-2) factorization tool was used through the recently developed source finder interface (SoFi, Canonaco et al. 2013) to identify sources of organic aerosols (OA) sampled with an Aerosol Mass Spectrometer (AMS). ME-2 identified five sources: solid fuel OA (SFOA), hydrocarbon like OA (HOA), cooking OA (COA), semi-volatile (SVOOA) and low volatility (LVOOA) during both years. In 2014, air pollutant concentrations were particularly high, with the highest SFOA concentrations being 20 μgm-3 at 20:30 hrs. when fireworks from different parks in Manchester were launched. Black carbon (BC) concentrations started increasing before the fireworks, around 18:00 hrs; these concentrations are representative of bonfire emissions. However, traffic emissions may be contributing to BC here; further work will be done to differentiate traffic emissions from solid fuel emissions. By analysing daily aerosol concentrations according to DEFRA's Daily Air Quality Index, it is possible to observe that in 2014, PM2.5 concentrations were considered to be high (65 μgm-3) while in 2013, PM2.5 concentrations were considered low (12 μgm-3); in the case of BBOA, concentrations ranged from 2.9 μgm-3 in 2014 to 0.65 μgm-3 in 2013. The discrepancy between these studies is mainly a result of different meteorological

  5. Composition and source apportionment of surfactants in atmospheric aerosols of urban and semi-urban areas in Malaysia.

    PubMed

    Wahid, Nurul Bahiyah Abd; Latif, Mohd Talib; Suratman, Suhaimi

    2013-06-01

    This study was conducted to determine the composition and source apportionment of surfactant in atmospheric aerosols around urban and semi-urban areas in Malaysia based on ionic compositions. Colorimetric analysis was undertaken to determine the concentrations of anionic surfactants as Methylene Blue Active Substances (MBAS) and cationic surfactants as Disulphine Blue Active Substances (DBAS) using a UV spectrophotometer. Ionic compositions were determined using ion chromatography for cations (Na(+), NH4(+), K(+), Mg(2+), Ca(2+)) and anions (F(-), Cl(-), NO3(-), SO4(2-)). Principle component analysis (PCA) combined with multiple linear regression (MLR) were used to identify the source apportionment of MBAS and DBAS. Results indicated that the concentrations of surfactants at both sampling sites were dominated by MBAS rather than DBAS especially in fine mode aerosols during the southwest monsoon. Three main sources of surfactants were identified from PCA-MLR analysis for MBAS in fine mode samples particularly in Kuala Lumpur, dominated by motor vehicles, followed by soil/road dust and sea spray. Besides, for MBAS in coarse mode, biomass burning/sea spray were the dominant source followed by motor vehicles/road dust and building material. PMID:23336924

  6. Source apportionment of absorbing aerosols in the central Indo-Gangetic Plain

    NASA Astrophysics Data System (ADS)

    Vaishya, Aditya; Singh, Prayagraj; Rastogi, Shantanu; Babu, S. Suresh

    2016-05-01

    Atmospheric aerosols in the Indo-Gangetic Plain (IGP) depicts high spatial and temporal heterogeneity in their radiative properties. Despite the fact that significant advancement in terms of characterizing aerosols radiative and physiochemical properties in the IGP have been made, information regarding the organic content towards total absorbing aerosol budget is lacking. In the present study we have analyzed two years of aerosol spectral light absorption measurements from the central-IGP, Gorakhpur (26.75°N, 83.38°E, 85m amsl), in order to study their seasonal behavior and to quantify their magnitude in terms of absorbing aerosols loading and source speciation. Remote sensing data in the form of 'Cloud corrected Fire Count' from MODIS Terra and 'Absorption Aerosol Index' from OMI satellites platform have been used to identify absorbing aerosol source regions. Spectral absorption analysis reveals a four-fold enhancement in absorption in the winter (W) and the post-monsoon (PoM) seasons at UV wavelengths as compared to 880 nm on account of increased biomass aerosol contribution to total absorbing aerosol load. Despite having higher fire events and absorption aerosol index, both indicating high biomass burning activities, in the pre-monsoon (PM) season, aerosols from the biomass sources contribute ~ 27% during the W and the PoM seasons as against ~17% in the PM season to the total absorbing aerosol content. This is due to near stagnant wind conditions and shallow height of air masses travelling to the central IGP in the W and the PoM seasons.

  7. Apportionment of urban aerosol sources in Cork (Ireland) by synergistic measurement techniques.

    PubMed

    Dall'Osto, Manuel; Hellebust, Stig; Healy, Robert M; O'Connor, Ian P; Kourtchev, Ivan; Sodeau, John R; Ovadnevaite, Jurgita; Ceburnis, Darius; O'Dowd, Colin D; Wenger, John C

    2014-09-15

    The sources of ambient fine particulate matter (PM2.5) during wintertime at a background urban location in Cork city (Ireland) have been determined. Aerosol chemical analyses were performed by multiple techniques including on-line high resolution aerosol time-of-flight mass spectrometry (Aerodyne HR-ToF-AMS), on-line single particle aerosol time-of-flight mass spectrometry (TSI ATOFMS), on-line elemental carbon-organic carbon analysis (Sunset_EC-OC), and off-line gas chromatography/mass spectrometry and ion chromatography analysis of filter samples collected at 6-h resolution. Positive matrix factorization (PMF) has been carried out to better elucidate aerosol sources not clearly identified when analyzing results from individual aerosol techniques on their own. Two datasets have been considered: on-line measurements averaged over 2-h periods, and both on-line and off-line measurements averaged over 6-h periods. Five aerosol sources were identified by PMF in both datasets, with excellent agreement between the two solutions: (1) regional domestic solid fuel burning--"DSF_Regional," 24-27%; (2) local urban domestic solid fuel burning--"DSF_Urban," 22-23%; (3) road vehicle emissions--"Traffic," 15-20%; (4) secondary aerosols from regional anthropogenic sources--"SA_Regional" 9-13%; and (5) secondary aged/processed aerosols related to urban anthropogenic sources--"SA_Urban," 21-26%. The results indicate that, despite regulations for restricting the use of smoky fuels, solid fuel burning is the major source (46-50%) of PM2.5 in wintertime in Cork, and also likely other areas of Ireland. Whilst wood combustion is strongly associated with OC and EC, it was found that peat and coal combustion is linked mainly with OC and the aerosol from these latter sources appears to be more volatile than that produced by wood combustion. Ship emissions from the nearby port were found to be mixed with the SA_Regional factor. The PMF analysis allowed us to link the AMS cooking organic

  8. Apportionment of urban aerosol sources in Chongqing (China) using synergistic on-line techniques

    NASA Astrophysics Data System (ADS)

    Chen, Yang; Yang, Fumo

    2016-04-01

    The sources of ambient fine particulate matter (PM2.5) during wintertime at a background urban location in Chongqing (southwestern China) have been determined. Aerosol chemical composition analyses were performed using multiple on-line techniques, such as single particle aerosol mass spectrometer (SPAMS) for single particle chemical composition, on-line elemental carbon-organic carbon analyzer (on-line OC-EC), on-line X-ray fluorescence (XRF) for elements, and in-situ Gas and Aerosol Compositions monitor (IGAC) for water-soluble ions in PM2.5. All the datasets from these techniques have been adjusted to a 1-h time resolution for receptor model input. Positive matrix factorization (PMF) has been used for resolving aerosol sources. At least six sources, including domestic coal burning, biomass burning, dust, traffic, industrial and secondary/aged factors have been resolved and interpreted. The synergistic on-line techniques were helpful for identifying aerosol sources more clearly than when only employing the results from the individual techniques. This results are useful for better understanding of aerosol sources and atmospheric processes.

  9. SOURCE APPORTIONMENT OF PHOENIX PM2.5 AEROSOL WITH THE UNMIX RECEPTOR MODEL

    EPA Science Inventory

    The multivariate receptor model Unmix has been used to analyze a 3-yr PM2.5 ambient aerosol data set collected in Phoenix, AZ, beginning in 1995. The analysis generated source profiles and overall percentage source contribution estimates (SCE) for five source categories: ga...

  10. A long term source apportionment study of wood burning and traffic aerosols for three measurement sites in Switzerland

    NASA Astrophysics Data System (ADS)

    Herich, Hanna; Hüglin, Christoph; Buchmann, Brigitte

    2010-05-01

    Besides their effects on radiative forcing soot aerosols have been found to cause health effects as they are carcinogenic. Diesel engines and incomplete biomass burning are the major emission sources of soot particles. Especially during winter, the wood burning (WB) emissions from residential heating have been found to contribute significantly to the total carbonaceous material (CM). To investigate the contribution of fossil fuel (FF) and WB emissions seven-wavelength aethalometers have been deployed in previous studies (Sandradewi et al. 2008, Favez et al. 2009). In these studies, the stronger light absorption of WB aerosols in the blue and ultraviolet compared to the light absorption of aerosols from FF combustion was used. Linear regression modelling of CM against the light absorption coefficient of FF combustion aerosols in the infrared (950 nm) and the light absorption coefficient of WB aerosols in the blue (470 nm) was proposed for source apportionment. In this study we present long term aethalometer measurements at two rural and one urban background measurement stations in Switzerland from 2008 - 2010. At these stations organic (OC) and elemental carbon (EC) were also measured by thermochemical analysis providing estimates for total CM. Above described linear regession modelling was applied for determination of the contribution of FF and WB emissions to total CM. Sensitivity tests for different regression models and for varying light absorption exponents were performed. It was found that the regression modelling approach is only limited suitable for long term datasets because of significant fractions of CM resulting from sources and processes other than FF and WB. Thus in a different approach we focused on black carbon (BC). The contribution of WB and FF to BC was directly determined from the absorption coefficients of FF and WB aerosols which were calculated with the use of absorption exponents taken from literature. First results show that in winter the

  11. CARBON CONTAINING COMPONENT OF THE LOS ANGELES AEROSOL: SOURCE APPORTIONMENT AND CONTRIBUTIONS TO THE VISIBILITY BUDGET

    EPA Science Inventory

    Source resolution of the organic component of the fine fraction of the ambient aerosol (d(sub p) < 3.5 micrometers) has been carried out by combining source information from the organic component with thermal analysis and local emission inventories. The primary and secondary carb...

  12. The AIRPARIF-AEROSOL project: A comprehensive source apportionment study of fine aerosols (PM2.5) in the region of Paris (France)

    NASA Astrophysics Data System (ADS)

    Sciare, Jean; Ghersi, Veronique; Bressi, Michael; Lameloise, Philippe; Bonnaire, Nicolas; Rosso, Amandine; Nicolas, Jose; Moukhtar, Sophie; Ferron, Anais; Baumier, Dominique

    2010-05-01

    With a population of about 12 millions inhabitants (20% of the French population), Greater Paris (France) is one of the most populated megacity in Europe and among the few located in developed countries. Due to its favorable geographical situation (far from other big European cities and influenced very often by clean oceanic air masses), it may be considered as a good candidate for investigating the build-up of urban air pollution from temperate industrialized countries. Particulate mass of fine aerosols with aerodynamic diameter below 2.5μm (PM2.5) is continuously monitored at several stations from great Paris for almost 8 years by the local air quality network (AIRPARIF), using a conventional on-line automatic system (R&P TEOM; see Patashnik and Rupprecht, 1991). During the period 2000-2006, levels of PM2.5 in the region of Paris have shown rather stable yearly mean values ranging 13 to 16?g/m3 whereas most of the other pollutants monitored by AIRPARIF have shown a net decrease during this period (http:\\www.airparif.asso.fr). Since the year 2007, this situation has becoming worse for particulate pollution with a net increase of the yearly mean concentration of PM2.5 (up to 21?g/m3), which increase is partly due to the use of a new PM2.5 measurement technique (R&P TEOM-FDMS instrument) enabling a proper determination of the semi-volatile fraction of fine aerosols. Although this new method greatly improves the determination of PM2.5, it has also brought PM2.5 levels in the region of Paris closer to the 25?g/m3 yearly mean targeted value recommended by Europe for 2010 (limit value for 2015). Efficient abatement policies aiming at reducing levels of PM2.5 in the region of Paris will have to be fed by preliminary PM2.5 source apportionment studies and exhaustive aerosol chemistry studies (chemical mass balance) allowing a better separation between regional to continental aerosol sources. The objective of the AIRPARIF-AEROSOL project aims to perform a spatially- and

  13. Nuclear microprobe analysis and source apportionment of individual atmospheric aerosol particles

    NASA Astrophysics Data System (ADS)

    Artaxo, Paulo; Rabello, Marta L. C.; Watt, Frank; Grime, Geoff; Swietlicki, Erik

    1993-04-01

    In atmospheric aerosol research, one key issue is to determine the sources of the airborne particles. Bulk PIXE analysis coupled with receptor modeling provides a useful, but limited view of the aerosol sources influencing one particular site or sample. The scanning nuclear microprobe (SNM) technique is a microanalytical technique that gives unique information on individual aerosol particles. In the SNM analyses a 1.0 μm size 2.4 MeV proton beam from the Oxford SNM was used. The trace elements with Z > 11 were measured by the particle induced X-ray emission (PIXE) method with detection limits in the 1-10 ppm range. Carbon, nitrogen and oxygen are measured simultaneously using Rutherford backscattering spectrometry (RBS). Atmospheric aerosol particles were collected at the Brazilian Antarctic Station and at biomass burning sites in the Amazon basin tropical rain forest in Brazil. In the Antarctic samples, the sea-salt aerosol particles were clearly predominating, with NaCl and CaSO 4 as major compounds with several trace elements as Al, Si, P, K, Mn, Fe, Ni, Cu, Zn, Br, Sr, and Pb. Factor analysis of the elemental data showed the presence of four components: 1) soil dust particles; 2) NaCl particles; 3) CaSO 4 with Sr; and 4) Br and Mg. Strontium, observed at 20-100 ppm levels, was always present in the CaSO 4 particles. The hierarchical cluster procedure gave results similar to the ones obtained through factor analysis. For the tropical rain forest biomass burning aerosol emissions, biogenic particles with a high organic content dominate the particle population, while K, P, Ca, Mg, Zn, and Si are the dominant elements. Zinc at 10-200 ppm is present in biogenic particles rich in P and K. The quantitative aspects and excellent detection limits make SNM analysis of individual aerosol particles a very powerful analytical tool.

  14. Isotope-Based Source Apportionment of EC Aerosol Particles during Winter High-Pollution Events at the Zeppelin Observatory, Svalbard.

    PubMed

    Winiger, Patrik; Andersson, August; Yttri, Karl E; Tunved, Peter; Gustafsson, Örjan

    2015-10-01

    Black carbon (BC) aerosol particles contribute to climate warming of the Arctic, yet both the sources and the source-related effects are currently poorly constrained. Bottom-up emission inventory (EI) approaches are challenged for BC in general and the Arctic in particular. For example, estimates from three different EI models on the fractional contribution to BC from biomass burning (north of 60° N) vary between 11% and 68%, each acknowledging large uncertainties. Here we present the first dual-carbon isotope-based (Δ(14)C and δ(13)C) source apportionment of elemental carbon (EC), the mass-based correspondent to optically defined BC, in the Arctic atmosphere. It targeted 14 high-loading and high-pollution events during January through March of 2009 at the Zeppelin Observatory (79° N; Svalbard, Norway), with these representing one-third of the total sampling period that was yet responsible for three-quarters of the total EC loading. The top-down source-diagnostic (14)C fingerprint constrained that 52 ± 15% (n = 12) of the EC stemmed from biomass burning. Including also two samples with 95% and 98% biomass contribution yield 57 ± 21% of EC from biomass burning. Significant variability in the stable carbon isotope signature indicated temporally shifting emissions between different fossil sources, likely including liquid fossil and gas flaring. Improved source constraints of Arctic BC both aids better understanding of effects and guides policy actions to mitigate emissions. PMID:26332725

  15. Online coupling of pure O2 thermo-optical methods - 14C AMS for source apportionment of carbonaceous aerosols

    NASA Astrophysics Data System (ADS)

    Agrios, Konstantinos; Salazar, Gary; Zhang, Yan-Lin; Uglietti, Chiara; Battaglia, Michael; Luginbühl, Marc; Ciobanu, Viorela Gabriela; Vonwiller, Matthias; Szidat, Sönke

    2015-10-01

    This paper reports on novel separation methods developed for the direct determination of 14C in organic carbon (OC) and elemental carbon (EC), two sub-fractions of total carbon (TC) of atmospheric air particulate matter. Until recently, separation of OC and EC has been performed off-line by manual and time-consuming techniques that relied on the collection of massive CO2 fractions. We present here two on-line hyphenated techniques between a Sunset OC/EC analyzer and a MICADAS (MIni radioCArbon DAting System) accelerator mass spectrometer (AMS) equipped with a gas ion source. The first implementation facilitates the direct measurement in the low sample size range (<10 μg C) with high throughput on a routine basis, while the second explores the potential for a continuous-flow real-time CO2 gas feed into the ion source. The performance achieved with reference materials and real atmospheric samples will be discussed to draw conclusions on the improvement offered in the field of 14C aerosol source apportionment.

  16. Source apportionment of elevated BaP concentrations in PM10 aerosols in an alpine valley in Austria

    NASA Astrophysics Data System (ADS)

    Bauer, Heidi; Puxbaum, Hans; Jankowski, Nicole; Sampaio Cordeiro Wagner, Lylian

    2010-05-01

    INTRODUCTION: In a village situated at 1215 m a.s.l. in a natural preserve in an Austrian alpine valley elevated BaP concentrations have been measured in the last years. A highly frequented highway leading from Italy to Germany passes near the village. Monthly means of particulate BaP concentrations show a clear seasonal trend with values below 1 ng/m³ during the warmer months and with concentrations up to 9 ng/m³ in the cold season. Annual averages in the years 2000 - 2005 ranged between 1.4 and 2.8 ng/m³ - much higher than the EU target value of 1 ng/m³. We used a macrotracer model developed at the Vienna University of Technology to determine the contributions of the sources for BaP emissions, which were mainly space heating with wood and traffic from the highway. EXPERIMENTAL: The macrotracer concept is a nine component model to derive source contribution and explains 80-100% of PM10 aerosols in Austria. The amount of traffic exhaust is derived by using EC as tracer, whereas EC produced by wood burning is subtracted, the amount of wood smoke is derived by the anhydro-sugar levoglucosan and the ratio between the anhydro-sugars levoglucosan and mannosan. For the source apportionment of BaP the applied factors reflect on the one hand the composition of the automotive fleet in Austria and on the other hand the composition of the fire wood in the region. Filter samples collected with a high volume sampler in winter were analyzed for PM10 aerosol mass, total, organic, elemental and carbonate carbon, HULIS, anhydro-sugars, polyols and ions (major ions and organic acids) and PAHs. In the same way emission samples taken at a motor test stand and at a test stand for wood combustion were analyzed (Schmidl et al. 2008). The saccharides were determined using high pH anion exchange and pulsed amperometry (HPAE-PAD). Details of the analytical method are given in Iinuma et al., 2009. Elemental and organic carbon were determined with a thermal-optical instrument (Sunset lab

  17. Characterization and source apportionment of submicron aerosol with aerosol mass spectrometer during the PRIDE-PRD 2006 campaign

    NASA Astrophysics Data System (ADS)

    Xiao, R.; Takegawa, N.; Zheng, M.; Kondo, Y.; Miyazaki, Y.; Miyakawa, T.; Hu, M.; Shao, M.; Zeng, L.; Gong, Y.; Lu, K.; Deng, Z.; Zhao, Y.; Zhang, Y. H.

    2011-01-01

    Size-resolved chemical compositions of non-refractory submicron aerosol were measured using an Aerodyne quadrupole aerosol mass spectrometer (Q-AMS) at the rural site Back Garden (BG), located ~50 km northwest of Guangzhou in July 2006. This paper characterized the submicron aerosol particles of regional air pollution in Pearl River Delta (PRD) in the Southern China. Organics and sulfate dominated the submicron aerosol compositions, with average mass concentrations of 11.8±8.4 μg m-3 and 13.5±8.7 μg m-3, respectively. Unlike other air masses, the air masses originated from Southeast-South and passing through the PRD urban areas exhibited distinct bimodal size distribution characteristics for both organics and sulfate: the first mode peaked at vacuum aerodynamic diameters (Dva)~200 nm and the second mode occurred at Dva from 300-700 nm. With the information from AMS, it was found from this study that the first mode of organics in PRD regional air masses was contributed by both secondary organic aerosol formation and combustion-related emissions, which is different from most findings in other urban areas (first mode of organics primarily from combustion-related emissions). The analysis of AMS mass spectra data by positive matrix factorization (PMF) model identified three sources of submicron organic aerosol including hydrocarbon-like organic aerosol (HOA), low volatility oxygenated organic aerosol (LV-OOA) and semi-volatile oxygenated organic aerosol (SV-OOA). The strong correlation between HOA and EC indicated primary combustion emissions as the major source of HOA while a close correlation between SV-OOA and semi-volatile secondary species nitrate as well as between LV-OOA and nonvolatile secondary species sulfate suggested secondary aerosol formation as the major source of SV-OOA and LV-OOA at the BG site. However, LV-OOA was more aged than SV-OOA as its spectra was highly correlated with the reference spectra of fulvic acid, an indicator of aged and

  18. Characterization and source apportionment of submicron aerosol with aerosol mass spectrometer during the PRIDE-PRD 2006 campaign

    NASA Astrophysics Data System (ADS)

    Xiao, R.; Takegawa, N.; Zheng, M.; Kondo, Y.; Miyazaki, Y.; Miyakawa, T.; Hu, M.; Shao, M.; Zeng, L.; Gong, Y.; Lu, K.; Deng, Z.; Zhao, Y.; Zhang, Y. H.

    2011-07-01

    Size-resolved chemical compositions of non-refractory submicron aerosol were measured using an Aerodyne quadrupole aerosol mass spectrometer (Q-AMS) at the rural site Back Garden (BG), located ~50 km northwest of Guangzhou in July 2006. This paper characterized the submicron aerosol particles of regional air pollution in Pearl River Delta (PRD) in the southern China. Organics and sulfate dominated the submicron aerosol compositions, with average mass concentrations of 11.8 ± 8.4 μg m-3 and 13.5 ± 8.7 μg m-3, respectively. Unlike other air masses, the air masses originated from Southeast-South and passing through the PRD urban areas exhibited distinct bimodal size distribution characteristics for both organics and sulfate: the first mode peaked at vacuum aerodynamic diameters (Dva) ∼200 nm and the second mode occurred at Dva from 300-700 nm. With the information from AMS, it was found from this study that the first mode of organics in PRD regional air masses was contributed by both secondary organic aerosol formation and combustion-related emissions, which is different from most findings in other urban areas (first mode of organics primarily from combustion-related emissions). The analysis of AMS mass spectra data by positive matrix factorization (PMF) model identified three sources of submicron organic aerosol including hydrocarbon-like organic aerosol (HOA), low volatility oxygenated organic aerosol (LV-OOA) and semi-volatile oxygenated organic aerosol (SV-OOA). The strong correlation between HOA and EC indicated primary combustion emissions as the major source of HOA while a close correlation between SV-OOA and semi-volatile secondary species nitrate as well as between LV-OOA and nonvolatile secondary species sulfate suggested secondary aerosol formation as the major source of SV-OOA and LV-OOA at the BG site. However, LV-OOA was more aged than SV-OOA as its spectra was highly correlated with the reference spectra of fulvic acid, an indicator of aged and

  19. Source apportionment of molecular markers and organic aerosol--1. Polycyclic aromatic hydrocarbons and methodology for data visualization.

    PubMed

    Robinson, Allen L; Subramanian, R; Donahue, Neil M; Bernardo-Bricker, Anna; Rogge, Wolfgang F

    2006-12-15

    Individual organic compounds often referred to as molecular markers are used in conjunction with the chemical mass balance (CMB) model to apportion sources of primary organic aerosol. This paper presents a methodology to visualize molecular marker data; it allows comparison of ambient data and source profiles and allows assessment of chemical stability and aging. The method is intended to complement traditional quantitative source apportionment analysis. The core of the technique involves construction of plots of ratios of species concentrations (ratio-ratio plots) in which source profiles appear as points connected by linear mixing lines. The approach is illustrated using data collected over a 1-year period in Pittsburgh, Pennsylvania. The analysis considers for elemental carbon and a number of high molecular weight polycyclic aromatic hydrocarbons (PAHs) commonly used as molecular markers in CMB: benzo(b+j+k)fluoranthene, benzo(e)pyrene, benzo[g,h,i]perylene, coronene, and indeno(1,2,3-cd)pyrene. In Pittsburgh, the ambient concentrations of these PAHs are higher than in other cities in the United States; they are also strongly correlated consistent with a single, dominant source. Both ratio-ratio plots and CMB analysis indicate that this source is metallurgical coke production. Although emissions from coke production dominate ambient PAH concentrations, on most study days they contributed little fine particle mass. Ratio-ratio plots are then used to investigate the feasibility of using PAHs to help differentiate between gasoline and diesel vehicle emissions. Ambient concentrations of these large PAHs provide little information on the gasoline-diesel split because of the strong influence of local emissions from coke production combined with evidence of photochemical decay of PAHs in the regional air mass. Decay of PAHs will bias estimates of the gasoline-diesel split toward diesel emissions. PMID:17256531

  20. Carbonaceous aerosols and pollutants over Delhi urban environment: Temporal evolution, source apportionment and radiative forcing.

    PubMed

    Bisht, D S; Dumka, U C; Kaskaoutis, D G; Pipal, A S; Srivastava, A K; Soni, V K; Attri, S D; Sateesh, M; Tiwari, S

    2015-07-15

    Particulate matter (PM2.5) samples were collected over Delhi, India during January to December 2012 and analysed for carbonaceous aerosols and inorganic ions (SO4(2-) and NO3(-)) in order to examine variations in atmospheric chemistry, combustion sources and influence of long-range transport. The PM2.5 samples are measured (offline) via medium volume air samplers and analysed gravimetrically for carbonaceous (organic carbon, OC; elemental carbon, EC) aerosols and inorganic ions (SO4(2-) and NO3(-)). Furthermore, continuous (online) measurements of PM2.5 (via Beta-attenuation analyser), black carbon (BC) mass concentration (via Magee scientific Aethalometer) and carbon monoxide (via CO-analyser) are carried out. PM2.5 (online) range from 18.2 to 500.6μgm(-3) (annual mean of 124.6±87.9μgm(-3)) exhibiting higher night-time (129.4μgm(-3)) than daytime (103.8μgm(-3)) concentrations. The online concentrations are 38% and 28% lower than the offline during night and day, respectively. In general, larger night-time concentrations are found for the BC, OC, NO3(-)and SO4(2-), which are seasonally dependent with larger differences during late post-monsoon and winter. The high correlation (R(2)=0.74) between OC and EC along with the OC/EC of 7.09 (day time) and 4.55 (night-time), suggest significant influence of biomass-burning emissions (burning of wood and agricultural waste) as well as secondary organic aerosol formation during daytime. Concentrated weighted trajectory (CWT) analysis reveals that the potential sources for the carbonaceous aerosols and pollutants are local emissions within the urban environment and transported smoke from agricultural burning in northwest India during post-monsoon. BC radiative forcing estimates result in very high atmospheric heating rates (~1.8-2.0Kday(-1)) due to agricultural burning effects during the 2012 post-monsoon season. PMID:25864155

  1. Size distribution, mixing state and source apportionments of black carbon aerosols in London during winter time

    NASA Astrophysics Data System (ADS)

    Liu, D.; Allan, J. D.; Young, D. E.; Coe, H.; Beddows, D.; Fleming, Z. L.; Flynn, M. J.; Gallagher, M. W.; Harrison, R. M.; Lee, J.; Prevot, A. S. H.; Taylor, J. W.; Yin, J.; Williams, P. I.; Zotter, P.

    2014-06-01

    Black carbon aerosols (BC) at a London urban site were characterized in both winter and summer time 2012 during the Clean Air for London (ClearfLo) project. Positive matrix factorization (PMF) factors of organic aerosol mass spectra measured by a high resolution aerosol mass spectrometer (HR-AMS) showed traffic-dominant sources in summer but in winter the influence of additional non-traffic sources became more important, mainly from solid fuel sources (SF). Measurements using a single particle soot photometer (SP2, DMT), showed the traffic-dominant BC exhibited an almost uniform BC core size (Dc) distribution with very thin coating thickness throughout the detectable range of Dc. However the size distribution of Dc (project average mass median Dc = 149 ± 22 nm in winter, and 120 ± 6 nm in summer) and BC coating thickness varied significantly in winter. A novel methodology was developed to attribute the BC number concentrations and mass abundances from traffic (BCtr) and from SF (BCsf), by using a 2-D histogram of the particle optical properties as a function of BC core size, as measured by the SP2. The BCtr and BCsf showed distinctly different Dc distributions and coating thicknesses, with BCsf displaying larger Dc and larger coating thickness compared to BCtr. BC particles from different sources were also apportioned by applying a multiple linear regression between the total BC mass and each AMS-PMF factor (BC-AMS-PMF method), and also attributed by applying the absorption spectral dependence of carbonaceous aerosols to 7-wavelength Aethalometer measurements (Aethalometer method). Air masses that originated from westerly (W), southeasterly (SE), or easterly (E) sectors showed BCsf fractions that ranged from low to high, and whose mass median Dc values were 137 ± 10 nm, 143 ± 11 nm, and 169 ± 29 nm respectively. The corresponding bulk relative coating thickness of BC (coated particle size / BC core - Dp / Dc) for these same sectors was 1.28 ± 0.07, 1.45 ± 0

  2. Size distribution, mixing state and source apportionment of black carbon aerosol in London during wintertime

    NASA Astrophysics Data System (ADS)

    Liu, D.; Allan, J. D.; Young, D. E.; Coe, H.; Beddows, D.; Fleming, Z. L.; Flynn, M. J.; Gallagher, M. W.; Harrison, R. M.; Lee, J.; Prevot, A. S. H.; Taylor, J. W.; Yin, J.; Williams, P. I.; Zotter, P.

    2014-09-01

    Black carbon aerosols (BC) at a London urban site were characterised in both winter- and summertime 2012 during the Clean Air for London (ClearfLo) project. Positive matrix factorisation (PMF) factors of organic aerosol mass spectra measured by a high-resolution aerosol mass spectrometer (HR-AMS) showed traffic-dominant sources in summer but in winter the influence of additional non-traffic sources became more important, mainly from solid fuel sources (SF). Measurements using a single particle soot photometer (SP2, DMT), showed the traffic-dominant BC exhibited an almost uniform BC core size (Dc) distribution with very thin coating thickness throughout the detectable range of Dc. However, the size distribution of sf (project average mass median Dc = 149 ± 22 nm in winter, and 120 ± 6 nm in summer) and BC coating thickness varied significantly in winter. A novel methodology was developed to attribute the BC number concentrations and mass abundances from traffic (BCtr) and from SF (BCsf), by using a 2-D histogram of the particle optical properties as a function of BC core size, as measured by the SP2. The BCtr and BCsf showed distinctly different sf distributions and coating thicknesses, with BCsf displaying larger Dc and larger coating thickness compared to BCtr. BC particles from different sources were also apportioned by applying a multiple linear regression between the total BC mass and each AMS-PMF factor (BC-AMS-PMF method), and also attributed by applying the absorption spectral dependence of carbonaceous aerosols to 7-wavelength Aethalometer measurements (Aethalometer method). Air masses that originated from westerly (W), southeasterly (SE), and easterly (E) sectors showed BCsf fractions that ranged from low to high, and whose mass median Dc values were 137 ± 10 nm, 143 ± 11 nm and 169 ± 29 nm, respectively. The corresponding bulk relative coating thickness of BC (coated particle size/BC core - Dp/Dc) for these same sectors was 1.28 ± 0.07, 1.45 ± 0

  3. Radiocarbon-based source apportionment of elemental carbon aerosols at two South Asian receptor observatories over a full annual cycle

    NASA Astrophysics Data System (ADS)

    Budhavant, Krishnakant; Andersson, August; Bosch, Carme; Kruså, Martin; Kirillova, E. N.; Sheesley, R. J.; Safai, P. D.; Rao, P. S. P.; Gustafsson, Örjan

    2015-06-01

    Black carbon (BC) aerosols impact climate and air quality. Since BC from fossil versus biomass combustion have different optical properties and different abilities to penetrate the lungs, it is important to better understand their relative contributions in strongly affected regions such as South Asia. This study reports the first year-round 14C-based source apportionment of elemental carbon (EC), the mass-based correspondent to BC, using as regional receptor sites the international Maldives Climate Observatory in Hanimaadhoo (MCOH) and the mountaintop observatory of the Indian Institute of Tropical Meteorology in Sinhagad, India (SINH). For the highly-polluted winter season (December-March), the fractional contribution to EC from biomass burning (fbio) was 53 ± 5% (n = 6) at MCOH and 56 ± 3% at SINH (n = 5). The fbio for the non-winter remainder was 53 ± 11% (n = 6) at MCOH and 48 ± 8% (n = 7) at SINH. This observation-based constraint on near-equal contributions from biomass burning and fossil fuel combustion at both sites compare with predictions from eight technology-based emission inventory (EI) models for India of (fbio)EI spanning 55-88%, suggesting that most current EI for Indian BC systematically under predict the relative contribution of fossil fuel combustion. A continued iterative testing of bottom-up EI with top-down observational source constraints has the potential to lead to reduced uncertainties regarding EC sources and emissions to the benefit of both models of climate and air quality as well as guide efficient policies to mitigate emissions.

  4. Inter-comparison of source apportionment models for the estimation of wood burning aerosols during wintertime in an Alpine city (Grenoble, France)

    NASA Astrophysics Data System (ADS)

    Favez, O.; El Haddad, I.; Piot, C.; Boréave, A.; Abidi, E.; Marchand, N.; Jaffrezo, J.-L.; Besombes, J.-L.; Personnaz, M.-B.; Sciare, J.; Wortham, H.; George, C.; D'Anna, B.

    2010-06-01

    The emission of organic aerosols (OA) in the ambient air by residential wood burning is nowadays a subject of great scientific concern and a growing number of studies aim at apportioning the influence of such emissions on urban air quality. In the present study, results obtained using two commonly-used source apportionment models, i.e., Chemical Mass Balance (CMB, performed with off-line filter measurements) and Positive Matrix Factorization (PMF, applied to Aerosol Mass Spectrometer measurements), as well as using the recently-proposed Aethalometer model (based on the measurement of the aerosol light absorption at different wavelengths) are inter-compared. This work is performed using field data obtained during the winter season (14 to 29 January 2009) at an urban background site of a French Alpine city (Grenoble). Converging results from the different models indicate a major contribution of wood burning organic aerosols (OMwb) to the ambient aerosol organic fraction, with mean OMwb contributions to total OA of 68%, 61% and 37% for the CMB, the Aethalometer and the AMS-PMF models respectively, during the period when the three modelling studies overlapped (12 days). Quantitative discrepancies might notably be due to the overestimation of OMwb calculated by the CMB due to the loss of semi-volatile compounds from sources to receptor site, as well as to the accounting of oxidized primary wood burning organic (OPOAwb) aerosols within the Oxygenated Organic Aerosol (OOA) PMF-factor. This OOA factor accounts on average for about 50% of total OM, while non-combustion sources contribute to about 25% and 28% of total OM according to the CMB and Aethalometer models respectively. Each model suggests a mean contribution of fossil fuel emissions to total OM of about 10%. A good agreement is also obtained for the source apportionment of elemental carbon (EC) by both the CMB and the Aethalometer models, with fossil fuel emissions representing on average more than 80% of total EC.

  5. Source apportionment of submicron organic aerosol at an urban background and a road site in Barcelona (Spain) during SAPUSS

    NASA Astrophysics Data System (ADS)

    Alier, M.; van Drooge, B. L.; Dall'Osto, M.; Querol, X.; Grimalt, J. O.; Tauler, R.

    2013-10-01

    This study investigates the contribution of potential sources to the submicron (PM1) organic aerosol (OA) simultaneously detected at an urban background (UB) and a road site (RS) in Barcelona during the 30 days of the intensive field campaign of SAPUSS (Solving Aerosol Problems by Using Synergistic Strategies, September-October 2010). A total of 103 filters at 12 h sampling time resolution were collected at both sites. Thirty-six neutral and polar organic compounds of known emission sources and photo-chemical transformation processes were analyzed by gas chromatography-mass spectrometry (GC-MS). The concentrations of the trace chemical compounds analyzed are herein presented and discussed. Additionally, OA source apportionment was performed by multivariate curve resolution-alternating least squares (MCR-ALS) and six OA components were identified at both sites: two were of primary anthropogenic OA origin and three of secondary OA origin, while a sixth one was not clearly defined. Primary organics from emissions of local anthropogenic activities (urban primary organic aerosol, or POA Urban), mainly traffic emissions but also cigarette smoke, contributed 43% (1.5 μg OC m-3) and 18% (0.4 μg OC m-3) to OA at RS and UB, respectively. A secondary primary source - biomass burning (BBOA) - was found in all the samples (average values 7% RS; 12% UB; 0.3 μg OC m-3), but this component was substantially contributing to OA only when the sampling sites were under influence of regional air mass circulation (REG.). Three secondary organic aerosol (SOA) components (describing overall 60% of the variance) were observed in the urban ambient PM1. Products of isoprene oxidation (SOA ISO) - i.e. 2-methylglyceric acid, C5 alkene triols and 2-methyltetrols - showed the highest abundance at both sites when the city was under influence of inland air masses. The overall concentrations of SOA ISO were similar at both sites (0.4 and 0.3 μg m-3, or 16% and 7%, at UB and RS, respectively

  6. Chemical characterization of fine organic aerosol for source apportionment at Monterrey, Mexico

    NASA Astrophysics Data System (ADS)

    Mancilla, Y.; Mendoza, A.; Fraser, M. P.; Herckes, P.

    2015-07-01

    , source attribution results obtained using the CMB model indicate that emissions from motor vehicle exhausts are the most important, accounting for the 64 % of the PM2.5. The vegetative detritus and biomass burning had the smallest contribution (2.2 % of the PM2.5). To our knowledge, this is the second study to explore the broad chemical characterization of fine organic aerosol in Mexico and the first for the MMA.

  7. ACTRIS ACSM intercomparison - Part 2: Intercomparison of ME-2 organic source apportionment results from 15 individual, co-located aerosol mass spectrometers

    NASA Astrophysics Data System (ADS)

    Fröhlich, R.; Crenn, V.; Setyan, A.; Belis, C. A.; Canonaco, F.; Favez, O.; Riffault, V.; Slowik, J. G.; Aas, W.; Aijälä, M.; Alastuey, A.; Artiñano, B.; Bonnaire, N.; Bozzetti, C.; Bressi, M.; Carbone, C.; Coz, E.; Croteau, P. L.; Cubison, M. J.; Esser-Gietl, J. K.; Green, D. C.; Gros, V.; Heikkinen, L.; Herrmann, H.; Jayne, J. T.; Lunder, C. R.; Minguillón, M. C.; Močnik, G.; O'Dowd, C. D.; Ovadnevaite, J.; Petralia, E.; Poulain, L.; Priestman, M.; Ripoll, A.; Sarda-Estève, R.; Wiedensohler, A.; Baltensperger, U.; Sciare, J.; Prévôt, A. S. H.

    2015-06-01

    Chemically resolved atmospheric aerosol data sets from the largest intercomparison of the Aerodyne aerosol chemical speciation monitors (ACSMs) performed to date were collected at the French atmospheric supersite SIRTA. In total 13 quadrupole ACSMs (Q-ACSM) from the European ACTRIS ACSM network, one time-of-flight ACSM (ToF-ACSM), and one high-resolution ToF aerosol mass spectrometer (AMS) were operated in parallel for about 3 weeks in November and December~2013. Part 1 of this study reports on the accuracy and precision of the instruments for all the measured species. In this work we report on the intercomparison of organic components and the results from factor analysis source apportionment by positive matrix factorisation (PMF) utilising the multilinear engine 2 (ME-2). Except for the organic contribution of mass-to-charge ratio m/z 44 to the total organics (f44), which varied by factors between 0.6 and 1.3 compared to the mean, the peaks in the organic mass spectra were similar among instruments. The m/z 44 differences in the spectra resulted in a variable f44 in the source profiles extracted by ME-2, but had only a minor influence on the extracted mass contributions of the sources. The presented source apportionment yielded four factors for all 15 instruments: hydrocarbon-like organic aerosol (HOA), cooking-related organic aerosol (COA), biomass burning-related organic aerosol (BBOA) and secondary oxygenated organic aerosol (OOA). ME-2 boundary conditions (profile constraints) were optimised individually by means of correlation to external data in order to achieve equivalent / comparable solutions for all ACSM instruments and the results are discussed together with the investigation of the influence of alternative anchors (reference profiles). A comparison of the ME-2 source apportionment output of all 15 instruments resulted in relative standard deviations (SD) from the mean between 13.7 and 22.7 % of the source's average mass contribution depending on the

  8. Inter-comparison of source apportionment models for the estimation of wood burning aerosols during wintertime in an Alpine city (Grenoble, France)

    NASA Astrophysics Data System (ADS)

    Favez, O.; El Haddad, I.; Piot, C.; Boréave, A.; Abidi, E.; Marchand, N.; Jaffrezo, J.-L.; Besombes, J.-L.; Personnaz, M.-B.; Sciare, J.; Wortham, H.; George, C.; D'Anna, B.

    2010-01-01

    The emission of organic aerosols (OA) in the ambient air by residential wood burning is nowadays a subject of great scientific concern and a growing number of studies aim at apportioning the influence of such emissions on urban air quality. In the present study, results obtained using two commonly-used source apportionment models, i.e., Chemical Mass Balance (CMB, performed with off-line filter measurements) and Positive Matrix Factorization (PMF, applied to aerosol mass spectrometer measurements), as well as using the recently-proposed aethalometer model (based on the measurement of the aerosol light absorption at different wavelengths) are inter-compared. This work is performed using field data obtained during the winter season (14 to 30 January 2009) at an urban background site of a French Alpine city (Grenoble). Converging results from the different models indicate a major contribution of wood burning organic aerosols (OMwb) to the organic fraction, with mean OMwb contributions to total OA of about 67%, 60% and 38% for the CMB, the aethalometer and the AMS-PMF models, respectively. Quantitative discrepancies might notably be due to the overestimation of OMwb calculated by the CMB due to the loss of semi-volatile compounds from sources to receptor site, as well as to the accounting of oxidized primary wood burning organic (OPOAwb) aerosols within the Oxygenated Organic Aerosol (OOA) PMF-factor. This OOA factor accounts on average for about 50% of total OM, while non-combustion sources contribute to about 25% and 28% of total OM according to the CMB and aethalometer models, respectively. Each model suggests a mean contribution of fossil fuel emissions to total OM of about 10%. A good agreement is also obtained for the source apportionment of elemental carbon (EC) by both the CMB and aethalometer models, with fossil fuel emissions representing on average more than 80% of total EC.

  9. SOURCE APPORTIONMENT OF PRIMARY AND SECONDARY CARBONACEOUS AEROSOL IN THE UNITED STATES USING MODELS AND MEASUREMENTS

    EPA Science Inventory

    In this presentation, three diagnostic evaluation methods of model performance for carbonaceous aerosol are reviewed. The EC-tracer method is used to distinguish primary and secondary carbon, radiocarbon data are used to distinguish fossil-fuel and contemporary carbon, and organ...

  10. Aerosol species concentrations and source apportionment of ammonia at Rocky Mountain National Park.

    PubMed

    Malm, William C; Schichtel, Bret A; Barna, Michael G; Gebhart, Kristi A; Rodriguez, Marco A; Collett, Jeffrey L; Carrico, Christian M; Benedict, Katherine B; Prenni, Anthony J; Kreidenweis, Sonia M

    2013-11-01

    Changes in ecosystem function at Rocky Mountain National Park (RMNP) are occurring because of emissions of nitrogen and sulfate species along the Front Range of the Colorado Rocky Mountains, as well as sources farther east and west. The nitrogen compounds include both oxidized and reduced nitrogen. A year-long monitoring program of various oxidized and reduced nitrogen species was initiated to better understand their origins as well as the complex chemistry occurring during transport from source to receptor. Specifically the goals of the study were to characterize the atmospheric concentrations of nitrogen species in gaseous, particulate, and aqueous phases (precipitation and clouds) along the east and west sides of the Continental Divide; identify the relative contributions to atmospheric nitrogen species in RMNP from within and outside of the state of Colorado; identify the relative contributions to atmospheric nitrogen species in RMNP from emission sources along the Colorado Front Range versus other areas within Colorado; and identify the relative contributions to atmospheric nitrogen species from mobile sources, agricultural activities, and large and small point sources within the state of Colorado. Measured ammonia concentrations are combined with modeled releases of conservative tracers from ammonia source regions around the United States to apportion ammonia to its respective sources, using receptor modeling tools. PMID:24344569

  11. Source Apportionment of the Summer Time Carbonaceous Aerosol at Nordic Rural Background Sites

    EPA Science Inventory

    In the present study, natural and anthropogenic sources of particulate organic carbon (OCp) and elemental carbon (EC) have been quantified based on weekly filter samples of PM10 (particles with aerodynamic diameter <10µ collected at four Nordic rural backgro...

  12. Source apportionment of size and time resolved trace elements and organic aerosols from an urban courtyard site in Switzerland

    NASA Astrophysics Data System (ADS)

    Richard, A.; Gianini, M. F. D.; Mohr, C.; Furger, M.; Bukowiecki, N.; Minguillón, M. C.; Lienemann, P.; Flechsig, U.; Appel, K.; Decarlo, P. F.; Heringa, M. F.; Chirico, R.; Baltensperger, U.; Prévôt, A. S. H.

    2011-02-01

    Time and size resolved data of trace elements were obtained from measurements with a rotating drum impactor (RDI) and subsequent X-ray fluorescence spectrometry. Trace elements can act as indicators for the identification of sources of particulate matter <10 μm (PM10) in ambient air. Receptor modeling was performed with positive matrix factorization (PMF) for trace element data from an urban background site in Zürich, Switzerland. Eight different sources were identified for the three examined size ranges (PM1-0.1, PM2.5-1 and PM10-2.5): secondary sulfate, wood combustion, fire works, road traffic, mineral dust, de-icing salt, industrial and local anthropogenic activities. The major component was secondary sulfate for the smallest size range; the road traffic factor was found in all three size ranges. This trace element analysis is complemented with data from an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (AMS), assessing the PM1 fraction of organic aerosols. A separate PMF analysis revealed three factors related to three of the sources found with the RDI: oxygenated organic aerosol (OOA, related to inorganic secondary sulfate), hydrocarbon like organic aerosol (HOA, related to road traffic) and biomass burning organic aerosol (BBOA), explaining 60%, 22% and 17% of total measured organics, respectively. Since different compounds are used for the source classification, a higher percentage of the ambient PM10 mass concentration can be apportioned to sources by the combination of both methods.

  13. Source apportionment of size and time resolved trace elements and organic aerosols from an urban courtyard site in Switzerland

    NASA Astrophysics Data System (ADS)

    Richard, A.; Gianini, M. F. D.; Mohr, C.; Furger, M.; Bukowiecki, N.; Minguillón, M. C.; Lienemann, P.; Flechsig, U.; Appel, K.; Decarlo, P. F.; Heringa, M. F.; Chirico, R.; Baltensperger, U.; Prévôt, A. S. H.

    2011-09-01

    Time and size resolved data of trace elements were obtained from measurements with a rotating drum impactor (RDI) and subsequent X-ray fluorescence spectrometry. Trace elements can act as indicators for the identification of sources of particulate matter <10 μm (PM10) in ambient air. Receptor modeling was performed with positive matrix factorization (PMF) for trace element data from an urban background site in Zürich, Switzerland. Eight different sources were identified for the three examined size ranges (PM1-0.1, PM2.5-1 and PM10-2.5): secondary sulfate, wood combustion, fire works, road traffic, mineral dust, de-icing salt, industrial and local anthropogenic activities. The major component was secondary sulfate for the smallest size range; the road traffic factor was found in all three size ranges. This trace element analysis is complemented with data from an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (AMS), assessing the PM1 fraction of organic aerosols. A separate PMF analysis revealed three factors related to three of the sources found with the RDI: oxygenated organic aerosol (OOA, related to inorganic secondary sulfate), hydrocarbon-like organic aerosol (HOA, related to road traffic) and biomass burning organic aerosol (BBOA), explaining 60 %, 22 % and 17 % of total measured organics, respectively. Since different compounds are used for the source classification, a higher percentage of the ambient PM10 mass concentration can be apportioned to sources by the combination of both methods.

  14. CHARACTERIZATION AND SOURCE APPORTIONMENT

    EPA Science Inventory

    The results from this core's studies will be essential to interpret the results of the other cores. These measurements will permit development of a delivery system to provide exposures of specific radical species on model particles for toxicological studies. Source apportion...

  15. Source apportionment and dynamic changes of carbonaceous aerosols during the haze bloom-decay process in China based on radiocarbon and organic molecular tracers

    NASA Astrophysics Data System (ADS)

    Liu, Junwen; Li, Jun; Liu, Di; Ding, Ping; Shen, Chengde; Mo, Yangzhi; Wang, Xinming; Luo, Chunling; Cheng, Zhineng; Szidat, Sönke; Zhang, Yanlin; Chen, Yingjun; Zhang, Gan

    2016-03-01

    Fine carbonaceous aerosols (CAs) is the key factor influencing the currently filthy air in megacities in China, yet few studies simultaneously focus on the origins of different CAs species using specific and powerful source tracers. Here, we present a detailed source apportionment for various CAs fractions, including organic carbon (OC), water-soluble OC (WSOC), water-insoluble OC (WIOC), elemental carbon (EC) and secondary OC (SOC) in the largest cities of North (Beijing, BJ) and South China (Guangzhou, GZ), using the measurements of radiocarbon and anhydrosugars. Results show that non-fossil fuel sources such as biomass burning and biogenic emission make a significant contribution to the total CAs in Chinese megacities: 56 ± 4 in BJ and 46 ± 5 % in GZ, respectively. The relative contributions of primary fossil carbon from coal and liquid petroleum combustions, primary non-fossil carbon and secondary organic carbon (SOC) to total carbon are 19, 28 and 54 % in BJ, and 40, 15 and 46 % in GZ, respectively. Non-fossil fuel sources account for 52 in BJ and 71 % in GZ of SOC, respectively. These results suggest that biomass burning has a greater influence on regional particulate air pollution in North China than in South China. We observed an unabridged haze bloom-decay process in South China, which illustrates that both primary and secondary matter from fossil sources played a key role in the blooming phase of the pollution episode, while haze phase is predominantly driven by fossil-derived secondary organic matter and nitrate.

  16. Source apportionment and dynamic changes of carbonaceous aerosols during the haze bloom-decay process in China based on radiocarbon and organic molecular tracers

    NASA Astrophysics Data System (ADS)

    Liu, J.; Li, J.; Liu, D.; Ding, P.; Shen, C.; Mo, Y.; Wang, X.; Luo, C.; Cheng, Z.; Szidat, S.; Zhang, Y.; Chen, Y.; Zhang, G.

    2015-12-01

    Fine carbonaceous aerosols (CAs) is the key factor influencing the currently filthy air in megacities of China, yet seldom study simultaneously focuses on the origins of different CAs species using specific and powerful source tracers. Here, we present a detailed source apportionment for various CAs fractions, including organic carbon (OC), water-soluble OC (WSOC), water-insoluble OC (WIOC), elemental carbon (EC) and secondary OC (SOC) in the largest cities of North (Beijing, BJ) and South China (Guangzhou, GZ), respectively, using the measurements of radiocarbon and anhydrosugars. Results show that non-fossil fuel sources such as biomass burning and biogenic emission make a significant contribution to the total CAs in Chinese megacities: 56 ± 4 % in BJ and 46 ± 5 % in GZ, respectively. The relative contributions of primary fossil carbon from coal and liquid petroleum combustions, primary non-fossil carbon and secondary organic carbon (SOC) to total carbon are 19, 28 and 54 % in BJ, and 40, 15 and 46 % in GZ, respectively. Non-fossil fuel sources account for 52 % in BJ and 71 % in GZ of SOC, respectively. These results suggest that biomass burning has a greater influence on regional particulate air pollution in North China than in South China. We observed an unabridged haze bloom-decay process in South China, which illustrates that both primary and secondary matter from fossil sources played a key role in the blooming phase of the pollution episode, while haze phase is predominantly driven by fossil-derived secondary organic matter and nitrate.

  17. PM SOURCE APPORTIONMENT/RECEPTOR MODELING

    EPA Science Inventory

    Source apportionment (receptor) models are mathematical procedures for identifying and quantifying the sources of ambient air pollutants and their effects at a site (the receptor), primarily on the basis of species concentration measurements at the receptor, and generally without...

  18. Source apportionment methods applied to the determination of the origin of ambient aerosols that affect visibility in forested areas

    NASA Astrophysics Data System (ADS)

    Stevens, Robert K.; Dzubay, Thomas G.; Lewis, Charles W.; Shaw, Robert W.

    An aerosol characterization, visibility, and receptor modeling study was conducted in the Shenandoah Valley, VA between 14 July and 15 August 1980. The objectives of this study were to: (1) determine the origin of the ambient particles, (2) determine the major chemical species contributing to the light extinction coefficient, (3) evaluate analytical methods to characterize aerosols and (4) provide data for comparison with chemical composition of aerosols collected in the Great Smoky Mountains and in the Abastumani Mountains of Georgian Soviet Socialist Republic. The average sulfate concentrations measured in fine particles (<2.5μm) at these three locations were: 12.0μgm -3 at Great Smoky Mountains; 13.6 μg m -3 at Shenandoah Valley, and 4.6 μg m -3 at Abastumani Mountains; the fractions of sulfate in the fine particle mass concentrations at each site were 0.50,0.50 and 0.38, respectively. For the two studies in the United States, the fine particle sulfate during sulfate maxima was mostly in the form of ammonium acid sulfate. Factor analysis of the fine aerosol composition measured in the Shenandoah Valley yielded a persistent factor containing large loadings on mass, SO 2-4, S, NH +4, H +, Se and total nitrate (sum of particulate nitrate and nitric acid), which is characteristic of coal-fired sources. This factor analysis grouping along with additional emissions information suggests that coal-fired power plants are the principal source of sulfate and nitrate.

  19. Source apportionment using radiocarbon and organic tracers for PM2.5 carbonaceous aerosols in Guangzhou, South China: contrasting local- and regional-scale haze events.

    PubMed

    Liu, Junwen; Li, Jun; Zhang, Yanlin; Liu, Di; Ding, Ping; Shen, Chengde; Shen, Kaijun; He, Quanfu; Ding, Xiang; Wang, Xinming; Chen, Duohong; Szidat, Sönke; Zhang, Gan

    2014-10-21

    We conducted a source apportionment and investigated the atmospheric behavior of carbonaceous aerosols during hazy and normal days using radiocarbon ((14)C) and biomass burning/secondary organic aerosol (SOA) tracers during winter in Guangzhou, China. Haze episodes were formed either abruptly by local emissions or through the accumulation of particles transported from other areas. The average contributions of fossil carbon to elemental carbon (EC), water-insoluble organic carbon, and water-soluble organic carbon were 71 ± 10%, 40 ± 6% and 33 ± 3%, respectively. High contributions of fossil carbon to EC (80-90%) were observed for haze samples that were substantially impacted by local emissions, as were the highest (lowest) ratios for NO3(-)/SO4(2-) (OC/EC), which indicates that these particles mainly came from local vehicle exhaust. Low contributions of fossil carbon to EC (60-70%) were found for haze particles impacted by regional transport. Secondary organic carbon (SOC) calculated using SOA tracers accounts for only ∼ 20% of the SOC estimated by (14)C, which is probably because some important volatile organic carbons are not taken into account in the SOA tracer calculation method and because of the large discrepancy in ambient conditions between the atmosphere and smog chambers. A total of 33 ± 11% of the SOC was of fossil origin, a portion of which could be influenced by humidity. PMID:25264588

  20. Radiocarbon-Based Source Apportionment of the Water-Soluble Organic Carbon (wsoc) of Atmospheric Aerosols in South and East Asia

    NASA Astrophysics Data System (ADS)

    Kirillova, E. N.; Sheesley, R. J.; Andersson, A.; Gustafsson, O.; Safai, P. D.; Budhavant, K.; Rao, P. S.; Kang, E.; Han, J.; Lee, M.

    2011-12-01

    The air quality and regional climate in South and East Asia are considerably affected by atmospheric aerosols produced by anthropogenic activities. Recent studies have investigated the sources of the black carbon aerosol component in these regions. This study seeks to make progress in apportioning the sources of the water soluble organic carbon (WSOC) component, which makes up 20-65% of the carbonaceous aerosol mass in these areas. WSOC is important as it enhances the ability of particles to serve as cloud condensation nuclei (CCN) and, therefore, has an impact on regional climate and radiative forcing. Atmospheric particulate matter was collected during fifteen-month continuous sampling campaigns Jan 2008 - March 2009 at both the Maldives Climate Observatory at Hannimaadho (MCOH) and at the Sinhagad hilltop sampling site of the Indian Institute of Tropical Meteorology (SIN) in central-western India. The radiocarbon method is an ideal approach to identify fossil sources (14C "dead") compared to biogenic and biomass combustion products (with a contemporary 14C signal). WSOC is a large fraction of organic aerosols and its annual average contribution to TOC during 2008 is 26% at MCOH and 40% at SIN. There is a distinct seasonal variability in WSOC concentrations at both sites with high concentrations during the winter season (0.92±0.49μg m-3 at MCOH and 3.5±2.0μg m-3 at SIN) and very low concentrations during the summer monsoon season (0.08±0.04μg m-3 at MCOH and 0.27±0.20μg m-3 at SIN). The radiocarbon source apportionment of WSOC in winter dry season was similar at MCOH and SIN with 80-85% from biogenic/biomass combustion and the rest from fossil fuel precursors. For the rest of the year, the biogenic/biomass contribution to WSOC is higher at the Indian Ocean site (86-93%) compared to the Indian site (74-83%). In March 2011 the GoPoEx2011 intensive sampling campaign at the Gosan ABC Superstation, Jeju Island, South Korea was dedicated to study atmospheric

  1. Reconciliation and interpretation of Big Bend National Park particulate sulfur source apportionment: results from the Big Bend Regional Aerosol and Visibility Observational Study--part I.

    PubMed

    Schichtel, Bret A; Gebhart, Kristi A; Malm, William C; Barna, Michael G; Pitchford, Marc L; Knipping, Eladio M; Tombach, Ivar H

    2005-11-01

    The Big Bend Regional Aerosol and Visibility Observational (BRAVO) study was an intensive monitoring study from July through October 1999 followed by extensive assessments to determine the causes and sources of haze in Big Bend National Park, located in Southwestern Texas. Particulate sulfate compounds are the largest contributor of haze at Big Bend, and chemical transport models (CTMs) and receptor models were used to apportion the sulfate concentrations at Big Bend to North American source regions and the Carbón power plants, located 225 km southeast of Big Bend in Mexico. Initial source attribution methods had contributions that varied by a factor of > or =2. The evaluation and comparison of methods identified opposing biases between the CTMs and receptor models, indicating that the ensemble of results bounds the true source attribution results. The reconciliation of these differences led to the development of a hybrid receptor model merging the CTM results and air quality data, which allowed a nearly daily source apportionment of the sulfate at Big Bend during the BRAVO study. The best estimates from the reconciliation process resulted in sulfur dioxide (SO2) emissions from U.S. and Mexican sources contributing approximately 55% and 38%, respectively, of sulfate at Big Bend. The distribution among U.S. source regions was Texas, 16%; the Eastern United States, 30%; and the Western United States, 9%. The Carbón facilities contributed 19%, making them the largest single contributing facility. Sources in Mexico contributed to the sulfate at Big Bend on most days, whereas contributions from Texas and Eastern U.S. sources were episodic, with their largest contributions during Big Bend sulfate episodes. On the 20% of the days with the highest sulfate concentrations, U.S. and Mexican sources contributed approximately 71% and 26% of the sulfate, respectively. However, on the 20% of days with the lowest sulfate concentrations, Mexico contributed 48% compared with 40

  2. Aerosol Composition and Source Apportionment in the Mexico City Metropolitan Area with PIXE/PESA/STIM and Multivariate Analysis

    SciTech Connect

    Johnson, Kirsten S.; de Foy, B.; Zuberi, Bilal M.; Molina, Luisa; Molina, Mario J.; Xie, YuLong; Laskin, Alexander; Shutthanandan, V.

    2006-10-12

    Aerosols play an important role in the atmosphere but are poorly characterized, particularly in urban areas like the Mexico City Metropolitan Area (MCMA). The chemical composition of urban particles must be known to assess their effects on the environment, and specific particulate emissions sources should be identified to establish ef- 5 fective pollution control standards. For these reasons, samples of particulate matter _2.5 µm (PM2.5) were collected during the MCMA-2003 Field Campaign for elemental and multivariate analyses. Proton-Induced X-ray Emission (PIXE), Proton-Elastic Scattering Analysis (PESA) and Scanning Transmission Ion Microscopy (STIM) techniques were done to determine concentrations of 19 elements from Na to Pb, hydrogen, and 10 total mass, respectively. The most abundant elements from PIXE analysis were S, Si, K, Fe, Ca, and Al, while the major emissions sources associated with these elements were industry, wind-blown soil, and biomass burning. Wind trajectories suggest that metals associated with industrial emissions came from northern areas of the city whereas soil aerosols came from the southwest and increased in concentration during 15 dry conditions. Elemental markers for fuel oil combustion V and Ni correlated with a large SO2 plume to suggest an anthropogenic, rather than volcanic, emissions source. By subtracting major components of soil and sulfates determined by PIXE analysis from STIM total mass measurements, we estimate that approximately 50% of PM2.5 consisted of carbonaceous material.

  3. ORGANIC MOLECULAR MARKER ANALYSIS OF LOW VOLUME RESIDENTIAL SAMPLES FOR SOURCE APPORTIONMENT IN THE DETROIT EXPOSURE AND AEROSOL RESEARCH STUDY

    EPA Science Inventory

    This abstract describes a poster on results for organic speciation analysis for Detroit Exposure and Aerosol Research Study (DEARS) to be presented at the 2006 International Aerosol Conference sponsored by the American Association for Aerosol Research in St. Paul, Minnesota on Se...

  4. Regional air quality in Leipzig, Germany: detailed source apportionment of size-resolved aerosol particles and comparison with the year 2000.

    PubMed

    van Pinxteren, D; Fomba, K W; Spindler, G; Müller, K; Poulain, L; Iinuma, Y; Löschau, G; Hausmann, A; Herrmann, H

    2016-07-18

    A detailed source apportionment of size-resolved aerosol particles in the area of Leipzig, Germany, was performed. Sampling took place at four sites (traffic, traffic/residential, urban background, regional background) in parallel during summer 2013 and the winters 2013/14/15. Twenty-one samples were taken per season with a 5-stage Berner impactor and analysed for particulate mass, inorganic ions, organic and elemental carbon, water-soluble organic carbon, trace metals, and a wide range of organic species. The compositional data were used to estimate source contributions to particulate matter (PM) in quasi-ultrafine (up to 140 nm), accumulation mode, and coarse size ranges using Positive Matrix Factorisation (PMF) receptor modelling. Traffic (exhaust and general traffic emissions), coal combustion, biomass combustion, photochemistry, general secondary formation, cooking, fungal spores, urban dust, fresh sea/road salt, and aged sea salt were all found to contribute to different extents to observed PM concentrations. PMF derived estimates agreed reasonably with estimates from established macrotracer approaches. Quasi-ultrafine PM originated mainly from traffic (20-50%) and photochemistry (30-50%) in summer, while it was dominated by solid fuel (mainly biomass) combustion in winter (50-70%). Tentatively identified cooking aerosol contributed up to 36% on average at the residential site. For accumulation mode particles, two secondary sources typically contributed 40-90% to particle mass. In winter, biomass and coal combustion contributions were up to ca. 25% and 45%, respectively. Main sources of coarse particles were diverse and included nearly all PMF-resolved ones depending on season and air mass origin. For PM10, traffic (typically 20-40% at kerbside sites), secondary formation (30-60%), biomass combustion (10-15% in winter), and coal combustion (30-40% in winter with eastern air mass inflow) were the main quantified sources. At the residential site, contributions

  5. Source apportionment of organic compounds in Berlin using positive matrix factorization - assessing the impact of biogenic aerosol and biomass burning on urban particulate matter.

    PubMed

    Wagener, Sandra; Langner, Marcel; Hansen, Ute; Moriske, Heinz-Jörn; Endlicher, Wilfried R

    2012-10-01

    Source apportionment of 13 organic compounds, elemental carbon and organic carbon of ambient PM(10) and PM(1) was performed with positive matrix factorization (PMF). Samples were collected at three sites characterized by different vegetation influences in Berlin, Germany in 2010. The aim was to determine organic, mainly biogenic sources and their impact on urban aerosol collected in a densely populated region. A 6-factor solution provided the best data fit for both PM-fractions, allowing the sources isoprene- and α-pinene-derived secondary organic aerosol (SOA), bio primary, primarily attributable to fungal spores, bio/urban primary including plant fragments in PM(10) and cooking and traffic emissions in PM(1), biomass burning and combustion fossil to be identified. With mean concentrations up to 2.6 μg Cm(-3), biomass burning dominated the organic fraction in cooler months. Concentrations for α-pinene-derived SOA exceeded isoprene-derived concentrations. Estimated secondary organic carbon contributions to total organic carbon (OC) were between 7% and 42% in PM(10) and between 11% and 60% in PM(1), which is slightly lower than observed for US- or Asian cities. Primary biogenic emissions reached up to 33% of OC in the PM(10)-fraction in the late summer and autumn months. Temperature-dependence was found for both SOA-factors, correlations with ozone and mix depth only for the α-pinene-derived SOA-factor. Latter indicated input of α-pinene from the borders, highlighting differences in the origin of the precursors of both factors. Most factors were regionally distributed. High regional distribution was found to be associated with stronger influence of ambient parameters and higher concentrations at the background station. A significant contribution of biogenic emissions and biomass burning to urban organic aerosol could be stated. This indicates a considerable impact on PM concentrations also in cities in a densely populated area, and should draw the attention

  6. Radiocarbon-based source apportionment of black carbon (BC) in PM 10 aerosols from residential area of suburban Tokyo

    NASA Astrophysics Data System (ADS)

    Uchida, Masao; Kumata, Hidetoshi; Koike, Yasuyo; Tsuzuki, Mikio; Uchida, Tatsuya; Fujiwara, Kitao; Shibata, Yasuyuki

    2010-04-01

    The AMS technique was applied to analyse black carbon (BC), total organic carbon (TOC), and previously reported polycyclic aromatic hydrocarbons (PAHs) in PM 10 aerosols from a residential area, suburban Tokyo, to determine natural abundance of radiocarbon ( 14C), an ideal tracer to distinguish fossil fuel ( 14C-free) from modern biomass combustion sources of pyrolytic products. The 14C concentrations in BC, isolated using the CTO-375 method, were 42% and 30% pMC (in terms of percent Modern Carbon: pMC) in summer and winter, respectively. The 14C concentrations in BC were also compared with those of compound-class specific 14C content of PAHs previously reported for the same samples: they were 45% and 33% pMC in summer and winter, respectively. The 14C signals of BC were identical to those of high molecular weight (MW ⩾ 226, 5-6 rings) PAHs. The resemblance between 14C signals of BC and PAHs can be referred as a 'certificate' for the validity of the BC isolation method employed in this study. Also, it suggests that 14C-BC approach can be a surrogate for PAHs specific 14C analyses to monitor seasonal source variation of combustion-derived pyrolytic products. On the other hand, 14C contents of total organic carbon in 2004 were 61% and 42% pMC in summer and winter, respectively. This is likely attributed to higher contribution of plant activity in summer.

  7. Spatial and Temporal Variations of Aerosols Around Beijing in the Summer 2006: Model Evaluation and Source Apportionment

    SciTech Connect

    Matsui, Hitoshi; Koike, Makoto; Kondo, Yutaka; Takegawa, Nobuyuki; Kita, K.; Miyazaki, Y.; Hu, M.; Chang, S-Y; Blake, D. R.; Fast, Jerome D.; Zaveri, Rahul A.; Streets, D. G.; Zhang, Q.; Zhou, T.

    2009-08-15

    Regional aerosol model calculations were made using the WRF-CMAQ and WRF-chem models to study spatial and temporal variations of aerosols around Beijing, China, in August and September 2006 when the CAREBEIJING-2006 campaign was conducted. Model calculations were compared with in-situ observations made at the urban site in Beijing and suburb site in Yufa, which is 50 km to the south of Beijing. In general, the two model calculations reproduced features of temporal variations of meteorological parameters and concentrations of elemental carbon (EC) and inorganic aerosols (sulfate, ammonium, and nitrate). Spatial distributions of aerosol optical depth (AOD) obtained by the MODIS satellite sensor are also generally well reproduced. Model calculations show that enhancements in inorganic aerosol concentrations simultaneously observed at the two sites 4 to 5 times during the one-month observation period were resulted by accumulation of pollutants under stagnated air condition. Because Beijing is located at the north border the high anthropogenic emission area (the Great North China Plain), northward motion of air under the influence of anti-cyclone system caused enhancements in fine aerosol concentrations at Beijing. Concentrations of primary aerosols, such as EC, are found to be generally controlled by emissions within 100 km around Beijing within previous 24 hours. On the other hand, emissions as far as 500 km within previous 3 days were found to affect concentrations of secondary aerosols, such as sulfate. Because of significant contributions of secondary aerosols in Beijing, regional emission controls are found to be necessary for improvement of air quality in Beijing.

  8. IMPROVING SOURCE PROFILES AND APPORTIONMENT OF COMBUSTION SOURCES USING THERMAL CARBON FRACTIONS IN MULTIVARIATE RECEPTOR MODELS

    EPA Science Inventory

    The purpose of this study was to improve combustion source profiles and apportionment of a PM2.5 urban aerosol by using 7 individual organic and elemental carbon thermal fractions in place of total organic and elemental carbon. This study used 3 years (96-99) of speciated data...

  9. Source apportionment of airborne particulates through receptor modeling: Indian scenario

    NASA Astrophysics Data System (ADS)

    Banerjee, Tirthankar; Murari, Vishnu; Kumar, Manish; Raju, M. P.

    2015-10-01

    Airborne particulate chemistry mostly governed by associated sources and apportionment of specific sources is extremely essential to delineate explicit control strategies. The present submission initially deals with the publications (1980s-2010s) of Indian origin which report regional heterogeneities of particulate concentrations with reference to associated species. Such meta-analyses clearly indicate the presence of reservoir of both primary and secondary aerosols in different geographical regions. Further, identification of specific signatory molecules for individual source category was also evaluated in terms of their scientific merit and repeatability. Source signatures mostly resemble international profile while, in selected cases lack appropriateness. In India, source apportionment (SA) of airborne particulates was initiated way back in 1985 through factor analysis, however, principal component analysis (PCA) shares a major proportion of applications (34%) followed by enrichment factor (EF, 27%), chemical mass balance (CMB, 15%) and positive matrix factorization (PMF, 9%). Mainstream SA analyses identify earth crust and road dust resuspensions (traced by Al, Ca, Fe, Na and Mg) as a principal source (6-73%) followed by vehicular emissions (traced by Fe, Cu, Pb, Cr, Ni, Mn, Ba and Zn; 5-65%), industrial emissions (traced by Co, Cr, Zn, V, Ni, Mn, Cd; 0-60%), fuel combustion (traced by K, NH4+, SO4-, As, Te, S, Mn; 4-42%), marine aerosols (traced by Na, Mg, K; 0-15%) and biomass/refuse burning (traced by Cd, V, K, Cr, As, TC, Na, K, NH4+, NO3-, OC; 1-42%). In most of the cases, temporal variations of individual source contribution for a specific geographic region exhibit radical heterogeneity possibly due to unscientific orientation of individual tracers for specific source and well exaggerated by methodological weakness, inappropriate sample size, implications of secondary aerosols and inadequate emission inventories. Conclusively, a number of challenging

  10. Accuracy and precision of 14C-based source apportionment of organic and elemental carbon in aerosols using the Swiss_4S protocol

    NASA Astrophysics Data System (ADS)

    Mouteva, G. O.; Fahrni, S. M.; Santos, G. M.; Randerson, J. T.; Zhang, Y.-L.; Szidat, S.; Czimczik, C. I.

    2015-09-01

    Aerosol source apportionment remains a critical challenge for understanding the transport and aging of aerosols, as well as for developing successful air pollution mitigation strategies. The contributions of fossil and non-fossil sources to organic carbon (OC) and elemental carbon (EC) in carbonaceous aerosols can be quantified by measuring the radiocarbon (14C) content of each carbon fraction. However, the use of 14C in studying OC and EC has been limited by technical challenges related to the physical separation of the two fractions and small sample sizes. There is no common procedure for OC/EC 14C analysis, and uncertainty studies have largely focused on the precision of yields. Here, we quantified the uncertainty in 14C measurement of aerosols associated with the isolation and analysis of each carbon fraction with the Swiss_4S thermal-optical analysis (TOA) protocol. We used an OC/EC analyzer (Sunset Laboratory Inc., OR, USA) coupled to a vacuum line to separate the two components. Each fraction was thermally desorbed and converted to carbon dioxide (CO2) in pure oxygen (O2). On average, 91 % of the evolving CO2 was then cryogenically trapped on the vacuum line, reduced to filamentous graphite, and measured for its 14C content via accelerator mass spectrometry (AMS). To test the accuracy of our setup, we quantified the total amount of extraneous carbon introduced during the TOA sample processing and graphitization as the sum of modern and fossil (14C-depleted) carbon introduced during the analysis of fossil reference materials (adipic acid for OC and coal for EC) and contemporary standards (oxalic acid for OC and rice char for EC) as a function of sample size. We further tested our methodology by analyzing five ambient airborne particulate matter (PM2.5) samples with a range of OC and EC concentrations and 14C contents in an interlaboratory comparison. The total modern and fossil carbon blanks of our setup were 0.8 ± 0.4 and 0.67 ± 0.34 μg C, respectively

  11. Accuracy and precision of 14C-based source apportionment of organic and elemental carbon in aerosols using the Swiss_4S protocol

    NASA Astrophysics Data System (ADS)

    Mouteva, G. O.; Fahrni, S. M.; Santos, G. M.; Randerson, J. T.; Zhang, Y. L.; Szidat, S.; Czimczik, C. I.

    2015-04-01

    Aerosol source apportionment remains a critical challenge for understanding the transport and aging of aerosols, as well as for developing successful air pollution mitigation strategies. The contributions of fossil and non-fossil sources to organic carbon (OC) and elemental carbon (EC) in carbonaceous aerosols can be quantified by measuring the radiocarbon (14C) content of each carbon fraction. However, the use of 14C in studying OC and EC has been limited by technical challenges related to the physical separation of the two fractions and small sample sizes. There is no common procedure for OC/EC 14C analysis, and uncertainty studies have largely focused on the precision of yields. Here, we quantified the uncertainty in 14C measurement of aerosols associated with the isolation and analysis of each carbon fraction with the Swiss_4S thermal-optical analysis (TOA) protocol. We used an OC/EC analyzer (Sunset Laboratory Inc., OR, USA) coupled to vacuum line to separate the two components. Each fraction was thermally desorbed and converted to carbon dioxide (CO2) in pure oxygen (O2). On average 91% of the evolving CO2 was then cryogenically trapped on the vacuum line, reduced to filamentous graphite, and measured for its 14C content via accelerator mass spectrometry (AMS). To test the accuracy of our set-up, we quantified the total amount of extraneous carbon introduced during the TOA sample processing and graphitization as the sum of modern and fossil (14C-depleted) carbon introduced during the analysis of fossil reference materials (adipic acid for OC and coal for EC) and contemporary standards (oxalic acid for OC and rice char for EC) as a function of sample size. We further tested our methodology by analyzing five ambient airborne particulate matter (PM2.5) samples with a range of OC and EC concentrations and 14C contents in an interlaboratory comparison. The total modern and fossil carbon blanks of our set-up were 0.8 ± 0.4 and 0.67 ± 0.34 μg C, respectively

  12. SoFi, an IGOR-based interface for the efficient use of the generalized multilinear engine (ME-2) for the source apportionment: ME-2 application to aerosol mass spectrometer data

    NASA Astrophysics Data System (ADS)

    Canonaco, F.; Crippa, M.; Slowik, J. G.; Baltensperger, U.; Prévôt, A. S. H.

    2013-12-01

    Source apportionment using the bilinear model through a multilinear engine (ME-2) was successfully applied to non-refractory organic aerosol (OA) mass spectra collected during the winter of 2011 and 2012 in Zurich, Switzerland using the aerosol chemical speciation monitor (ACSM). Five factors were identified: low-volatility oxygenated OA (LV-OOA), semivolatile oxygenated OA (SV-OOA), hydrocarbon-like OA (HOA), cooking OA (COA) and biomass burning OA (BBOA). A graphical user interface SoFi (Source Finder) was developed at PSI in order to facilitate the testing of different rotational techniques available within the ME-2 engine by providing a priori factor profiles for some or all of the expected factors. ME-2 was used to test the positive matrix factorization (PMF) model, the fully constrained chemical mass balance (CMB) model, and partially constrained models utilizing a values and pulling equations. Within the set of model solutions determined to be environmentally reasonable, BBOA and SV-OOA factor mass spectra and time series showed the greatest variability. This variability represents the uncertainty in the model solution and indicates that analysis of model rotations provides a useful approach for assessing the uncertainty of bilinear source apportionment models.

  13. CMB source apportionment during REVEAL

    SciTech Connect

    Lowenthal, D.H.; Gertler, A.W.; Wittorff, D.; Sakiyama, S.

    1997-01-01

    Source contributions to PM{sub 2.5} aerosol measured at Chilliwack and Pitt Meadows in the Lower Fraser Valley, B.C., Canada, during the REVEAL study, were estimated using chemical mass balance (CMB) receptor modeling. ON average, motor vehicles accounted for 34 and 43% of PM{sub 2.5} at Chilliwack and Pitt Meadows, respectively. Secondary sulfate and secondary nitrate were the next most significant PM{sub 2.5} components, accounting for 25 and 27%, respectively, at Chilliwack, and 27 and 12%, respectively, at Pitt Meadows. Geological material accounted for 3 and 5% of PM{sub 2.5} at Chilliwack and Pitt Meadows, respectively. A significant contribution of wood smoke was estimated for both sites: 8% at Chilliwack and 9% at Pitt Meadows.

  14. Submicron aerosol analysis and organic source apportionment in an urban atmosphere in Pearl River Delta of China using high-resolution aerosol mass spectrometry

    NASA Astrophysics Data System (ADS)

    He, Ling-Yan; Huang, Xiao-Feng; Xue, Lian; Hu, Min; Lin, Yun; Zheng, Jun; Zhang, Renyi; Zhang, Yuan-Hang

    2011-06-01

    The Pearl River Delta (PRD) region in South China is one of the most economically developed regions in China while also noted for its severe air pollution, especially in the urban environments. In order to understand in depth the aerosol chemistry and the emission sources in PRD, an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) was deployed at an urban site in the Hong Kong-Shenzhen metropolitan area between 25 October and 2 December 2009. Ten minute-resolved measurement data were analyzed, and an average mass concentration of 44.5 ± 34.0 μg m-3 was calculated for the entire campaign. On average, organic matter was the most abundant PM1 component accounting for 39.7% of the total mass, followed by sulfate (24.5%), black carbon (measured by aethalometer, 14.0%), ammonium (10.2%), nitrate (10.0%), and chloride (1.6%). Moreover, organic matter comprised an increasing fraction of the PM1 loading as the PM1 loading increased, denoting its key role in particulate pollution in this region. Calculations of organic elemental composition based on the high-resolution organic mass spectra obtained indicated that C, H, O, and N on average contributed 33.8%, 55.1%, 10.2%, and 0.9%, respectively, to the total atomic numbers of organic aerosol (OA), which corresponded to an OM/OC ratio (the ratio of organic matter mass/organic carbon mass) of 1.57 ± 0.08. Positive matrix factorization analysis was then conducted on the high-resolution organic mass spectral data set. Four OA components were identified, including a hydrocarbon-like (HOA), a biomass burning (BBOA), and two oxygenated (LV-OOA and SV-OOA) components, which on average accounted for 29.5%, 24.1%, 18.8%, and 27.6%, respectively, of the total organic mass. The HOA was found to have contributions from both fossil fuel combustion and cooking emissions, while the BBOA was well correlated with acetonitrile, a known biomass burning marker. The LV-OOA and SV-OOA corresponded to more aged and

  15. Characterization and source apportionment of aerosol light extinction with a coupled model of CMB-IMPROVE in Hangzhou, Yangtze River Delta of China

    NASA Astrophysics Data System (ADS)

    Wang, Jiao; Zhang, Yu-fen; Feng, Yin-chang; Zheng, Xian-jue; Jiao, Li; Hong, Sheng-mao; Shen, Jian-dong; Zhu, Tan; Ding, Jing; Zhang, Qi

    2016-09-01

    To investigate the characteristics and sources of aerosol light extinction in the Yangtze River Delta of China, a campaign was carried out in Hangzhou from December 2013 to November 2014. Hourly data for air pollutants including PM2.5, SO2, NO2, O3 and CO, and aerosol optical properties including aerosol scattering coefficient and aerosol absorbing coefficient was obtained in the environmental air quality automatic monitoring station. Meteorological parameters were measured synchronously in the automated meteorology monitoring station. Additionally, around seven sets of ambient PM2.5 samples per month were collected and analyzed during the campaign. The annual mean aerosol scattering coefficient, aerosol absorbing coefficient and aerosol single scattering albedo measured in this study was 514 ± 284 Mm- 1, 35 ± 20 Mm- 1 and 94% respectively. The aerosol extinction coefficient reconstructed using the modified IMPROVE (Interagency Monitoring of Protected Visual Environment) formula was compared to the measured extinction coefficient. Better correlations could be found between the measured and reconstructed extinction coefficient when RH was under 90%. A coupled model of CMB (chemical mass balance) and modified IMPROVE was used to apportion the sources of aerosol light extinction in Hangzhou. Vehicle exhaust, secondary nitrate and secondary sulfate were identified as the most significant sources for aerosol light extinction, accounted for 30.2%, 24.1% and 15.8% respectively.

  16. Mexico City Aerosol Analysis during MILAGRO using High Resolution Aerosol Mass Spectrometry at the Urban Supersite (T0). Part 1: Fine Particle Composition and Organic Source Apportionment

    SciTech Connect

    Aiken, Allison; Salcedo, D.; Cubison, Michael J.; Huffman, J.; DeCarlo, Peter; Ulbrich, Ingrid M.; Docherty, Kenneth S.; Sueper, D. T.; Kimmel, Joel; Worsnop, Douglas R.; Trimborn, Achim; Northway, Megan; Stone, Elizabeth A.; Schauer, James J.; Volkamer, Rainer M.; Fortner, Edward; de Foy, B.; Wang, Jian; Laskin, Alexander; Shutthanandan, V.; Zheng, Junsheng; Zhang, Renyi; Gaffney, Jeffrey S.; Marley, Nancy A.; Paredes-Miranda, Guadalupe L.; Arnott, W. P.; Molina, Luisa T.; Sosa, G.; Jimenez, Jose L.

    2009-09-11

    Submicron aerosol was analyzed during the MILAGRO field campaign in March 2006 at the T0 urban supersite in Mexico City with a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and complementary instrumentation. Mass concentrations, diurnal cycles, and size distributions of inorganic and organic species are similar to results from the CENICA supersite in April 2003 with organic aerosol (OA) comprising about half of the fine PM mass. Positive Matrix Factorization (PMF) analysis of the high resolution OA spectra identifies three major components: chemically-reduced urban primary emissions (hydrocarbon-like OA, HOA), oxygenated OA (OOA, mostly secondary OA or SOA), and biomass burning OA (BBOA) that correlates with levoglucosan and acetonitrile. BBOA includes several very large plumes from regional fires and likely also some refuse burning.

  17. "OZONE SOURCE APPORTIONMENT IN CMAQ'

    EPA Science Inventory

    Ozone source attribution has been used to support various policy purposes including interstate transport (Cross State Air Pollution Rule) by U.S. EPA and ozone nonattainment area designations by State agencies. Common scientific applications include tracking intercontinental tran...

  18. 03 SOURCE APPORTIONMENT/RECEPTOR MODELING:OBM FOCUS

    EPA Science Inventory

    Source apportionment (receptor) models are mathematical procedures for identifying and quantifying the sources of ambient air pollutants and their effects at a site (the receptor), primarily on the basis of species concentration measurements at the receptor, and generally without...

  19. Source apportionment of atmospheric particles in the UK and Pakistan

    SciTech Connect

    Smith, D.J.T.; Harrison, R.M.; Luhana, L.

    1995-12-31

    Intensive seasonal sampling was undertaken at urban and rural locations throughout Birmingham (UK). Dichotomous Stacked Filter Units (DSFUS) were run simultaneously with hi-vol samplers. DSFU filters were analyzed for nineteen metal species, ammonium and various anions. Hi-vol samplers were modified in order to collect particulate and vapor phase PAHs by means of filter papers and polyurethane foam plugs. Eighteen PAH species were determined by reversed-phase HPLC. Filter portions were forwarded to the University of Aveiro for analysis of elemental and organic carbon. Hi-vol air sampling equipment was run at three sites in Lahore (Pakistan) for over a year. Selected metals, anions and ammonium were quantified, along with eighteen species of particle-associated PAH. Chemical source apportionment of both the Birmingham and Lahore aerosol loads was completed using multivariate analysis. Metals and anionic data were utilized, along with organic concentrations and meteorological data. This technique typically enabled six major air pollution source categories to be identified, along with the quantitative contributions of pollutant species to each source group. The combination of measurements of PAH and inorganic pollutants proved to be a far more powerful tracer of emission sources than PAH data alone. The largest contribution to aerosol mass in the coarse sized fraction in Birmingham was observed to be soil. Whereas in the fine sized fraction major contributors are vehicular/road dust followed by secondary aerosol formation plus oil combustion. Multivariate analysis of the Lahore data revealed similar source categories to those found in Birmingham. The largest contribution to aerosol mass at all three Punjabi sites was soil. This source is followed by metallurgical processes, vehicular emissions and refuse burning.

  20. Calibration method for a photoacoustic system for real time source apportionment of light absorbing carbonaceous aerosol based on size distribution measurements

    NASA Astrophysics Data System (ADS)

    Utry, Noemi; Ajtai, Tibor; Pinter, Mate; Orvos, Peter I.; Szabo, Gabor; Bozoki, Zoltan

    2016-04-01

    In this study, we introduce a calibration method with which sources of light absorbing carbonaceous particulate matter (LAC) can be apportioned in real time based on multi wavelength optical absorption measurements with a photoacoustic system. The method is primary applicable in wintry urban conditions when LAC is dominated by traffic and biomass burning. The proposed method was successfully tested in a field campaign in the city center of Szeged, Hungary during winter time where the dominance of traffic and wood burning aerosol has been experimentally demonstrated earlier. With the help of the proposed calibration method a relationship between the measured Aerosol Angström Exponent (AAE) and the number size distribution can be deduced. Once the calibration curve is determined, the relative strength of the two pollution sources can be deduced in real time as long as the light absorbing fraction of PM is exclusively related to traffic and wood burning. This assumption is indirectly confirmed in the presented measurement campaign by the fact that the measured size distribution is composed of two unimodal size distributions identified to correspond to traffic and wood burning aerosols. The proposed method offers the possibility of replacing laborious chemical analysis with simple in-situ measurement of aerosol size distribution data.

  1. Radiocarbon based source apportionment of black carbon in the form of PM10 elemental carbon aerosol particles at the Zeppelin Observatory, Svalbard

    NASA Astrophysics Data System (ADS)

    Winiger, Patrik; Andersson, August; Espen Yttri, Karl; Tunved, Peter; Gustafsson, Örjan

    2015-04-01

    Black carbon (BC) aerosol particles are formed from incomplete combustion of fossil fuel and biomass. Transported into the Arctic, they potentially contributes to climate warming. However, there are still large uncertainties related to the climate effects of BC, including aspects of radiative properties, mixing state of the particles, transport, atmospheric lifetime and sources. The current study aims to reduce source uncertainties by applying a top-down (observational) source-diagnostic isotope approach and comparing these to bottom-up (modeling) emission inventories to better constrain the source types and source regions. The use of natural abundance radiocarbon (Δ14C) is a powerful tool to distinguish between fossil (void of 14C) and biomass (contemporary 14C) combustion sources. Due to the well-defined end-members, 14C-measurements (alone) provide high precision (

  2. Source Apportionment of Particulate Matter Sampled in Cape Verde

    NASA Astrophysics Data System (ADS)

    Marta Almeida, Susana; Almeida-Silva, Marina; Pio, Casimiro; Nunes, Teresa; Cardoso, João; Cerqueira, Mário; Reis, Miguel; Chaves, Paula Cristina; Taborda, Ana

    2013-04-01

    Due to its geographical position, Cape Verde is highly affected by the transport of dust from the Sahara desert. Consequently, very high concentrations of particles are registered in this archipelago, being essential to elucidate the role that Saharan dust may play in the degradation of Cape Verde air quality, human health, wellbeing, visibility, tourism and economy. The objective of this study was to identify the main sources and origins of particles sampled in Cape Verde. PM10 was sampled during 2011 and chemical characterization of particles was performed by Neutron Activation Analysis and Particle Induced X-ray Emission for elemental measurements, by Ion Chromatography for the determination of water soluble ions and by a Thermal-optical system for the measurement of carbonaceous aerosol. Source apportionment was performed by integrating Positive Matrix Factorization and Backward Trajectory Analysis. Results showed that in average 68% of the PM10 mass in Cape Verde had a natural origin, being 48% associated with the soil and 20% associated with the sea. During the transport of dust from the Sahara desert the contribution of mineral aerosol increased significantly (69% during periods affected by trajectories provided from Sahara desert versus 13% during periods affected by local sources).

  3. Source Apportionment of Atmospheric Mercury Using Positive Matrix Factorization

    NASA Astrophysics Data System (ADS)

    Richards, L. M.; Perry, K. D.; Abbott, M. L.

    2008-12-01

    A growing problem in the western United States is the widespread contamination of remote lakes by the atmospheric transport and deposition of mercury. Because methylmercury is known to bioaccumulate within the food chain, even small amounts of mercury introduced into an aquatic ecosystem can result in fish that are unsuitable for human consumption. The problem is complex because many natural and anthropogenic sources of mercury exist within the western United States (e.g., coal combustion, cement production, wildfires, mining activities, and emissions from naturally enriched soils and geothermal areas). Mercury can also be transported intercontinental distances (e.g., Asian coal combustion) under appropriate meteorological conditions. Thus, any mercury source apportionment study must be able to distinguish between these disparate source types. In this study, we measured gaseous elemental mercury (GEM), reactive gaseous mercury (RGM), and particulate mercury (HgP) with a Tekran system near Salmon Falls Creek Reservoir in south-central Idaho. These measurements were made during a series of one-month-long, intensive operation periods (IOPs) in the winter, spring, and summer of 2008. In each IOP, we also made coincident size- and time-resolved aerosol elemental composition measurements using an 8-stage rotating drum impactor and synchrotron X-ray fluorescence (SXRF) analysis. The SXRF analysis provided aerosol elemental concentration measurements with 3-hour time resolution. The Positive Matrix Factorization (PMF) receptor model was applied to the high-resolution, aerosol elemental composition data from each IOP to determine the temporal variability of the contributing source types based on the calculated source profiles. A multiple linear regression (MLR) technique was then used to apportion the measured mercury concentrations to the source types identified by the PMF analysis.

  4. Source apportionment of 1 h semi-continuous data during the 2005 Study of Organic Aerosols in Riverside (SOAR) using positive matrix factorization

    NASA Astrophysics Data System (ADS)

    Eatough, Delbert J.; Grover, Brett D.; Woolwine, Woods R.; Eatough, Norman L.; Long, Russell; Farber, Robert

    Positive matrix factorization (PMF2) was used to elucidate sources of fine particulate material (PM 2.5) for a study conducted during July and August 2005, in Riverside, CA. One-hour averaged semi-continuous measurements were made with a suite of instruments to provide PM 2.5 mass and chemical composition data. Total PM 2.5 mass concentrations (non-volatile plus semi-volatile) were measured with an R&P filter dynamic measurement system (FDMS TEOM) and a conventional TEOM monitor was used to measure non-volatile mass concentrations. PM 2.5 chemical species monitors included a dual-oven Sunset monitor to measure both non-volatile and semi-volatile carbonaceous material, an ion chromatographic-based monitor to measure sulfate and nitrate and an Anderson Aethalometer to measure black carbon (BC). Gas phase data including CO, NO 2, NO x and O 3 were also collected during the sampling period. In addition, single-particle measurements were made using aerosol time-of-flight mass spectrometry (ATOFMS). Twenty different single-particle types consistent with those observed in previous ATOFMS studies in Riverside were identified for the PMF2 analysis. Finally, time-of-flight aerosol mass spectrometry (ToF-AMS) provided data on markers of primary and secondary organic aerosol. Two distinct PMF2 analyses were performed. In analysis 1, all the data except for the ATOFMS and ToF-AMS data were used in an initial evaluation of sources at Riverside during the study. PMF2 was able to identify six factors from the data set corresponding to both primary and secondary sources, primarily from automobile emissions, diesel emissions, secondary nitrate formation, a secondary photochemical associated source, organic emissions and Basin transported pollutants. In analysis 2, the ATOFMS and ToF-AMS data were included in the analysis. In the second analysis, PMF2 was able to identify 16 factors with a variety of both primary and secondary factors being identified, corresponding to both primary

  5. Source apportionment using reconstructed mass calculations.

    PubMed

    Siddique, Naila; Waheed, Shahida

    2014-01-01

    A long-term study was undertaken to investigate the air quality of the Islamabad/Rawalpindi area. In this regard fine and coarse particulate matter were collected from 4 sites in the Islamabad/Rawalpindi region from 1998 to 2010 using Gent samplers and polycarbonate filters and analyzed for their elemental composition using the techniques of Neutron Activation Analysis (NAA), Proton Induced X-ray Emission/Proton Induced Gamma-ray Emission (PIXE/PIGE) and X-ray Fluorescence (XRF) Spectroscopy. The elemental data along with the gravimetric measurements and black carbon (BC) results obtained by reflectance measurement were used to approximate or reconstruct the particulate mass (RCM) by estimation of pseudo sources such as soil, smoke, sea salt, sulfate and black carbon or soot. This simple analysis shows that if the analytical technique used does not measure important major elements then the data will not be representative of the sample composition and cannot be further utilized for source apportionment studies or to perform transboundary analysis. In this regard PIXE/PIGE and XRF techniques that can provide elemental compositional data for most of the major environmentally important elements appear to be more useful as compared to NAA. Therefore %RCM calculations for such datasets can be used as a quality assurance (QA) measure to treat data prior to application of chemometrical tools such as factor analysis (FA) or cluster analysis (CA). PMID:24345244

  6. Source apportionment of particulate matter in a large city of southeastern Po Valley (Bologna, Italy).

    PubMed

    Tositti, L; Brattich, E; Masiol, M; Baldacci, D; Ceccato, D; Parmeggiani, S; Stracquadanio, M; Zappoli, S

    2014-01-01

    This study reports the results of an experimental research project carried out in Bologna, a midsize town in central Po valley, with the aim at characterizing local aerosol chemistry and tracking the main source emissions of airborne particulate matter. Chemical speciation based upon ions, trace elements, and carbonaceous matter is discussed on the basis of seasonal variation and enrichment factors. For the first time, source apportionment was achieved at this location using two widely used receptor models (principal component analysis/multi-linear regression analysis (PCA/MLRA) and positive matrix factorization (PMF)). Four main aerosol sources were identified by PCA/MLRA and interpreted as: resuspended particulate and a pseudo-marine factor (winter street management), both related to the coarse fraction, plus mixed combustions and secondary aerosol largely associated to traffic and long-lived species typical of the fine fraction. The PMF model resolved six main aerosol sources, interpreted as: mineral dust, road dust, traffic, secondary aerosol, biomass burning and again a pseudo-marine factor. Source apportionment results from both models are in good agreement providing a 30 and a 33% by weight respectively for PCA-MLRA and PMF for the coarse fraction and 70% (PCA-MLRA) and 67% (PMF) for the fine fraction. The episodic influence of Saharan dust transport on PM10 exceedances in Bologna was identified and discussed in term of meteorological framework, composition, and quantitative contribution. PMID:23828727

  7. Source apportionment in oil spill remediation.

    PubMed

    Muñoz, Jorge; Mudge, Stephen M; Loyola-Sepulveda, Rodrigo; Muñoz, Gonzalo; Bravo-Linares, Claudio

    2012-05-01

    A pipe rupture during unloading led to a spillage of 350-700 tonnes of Caño Limon, a light sweet crude oil, into San Vicente Bay in 2007. Initial clean-up methods removed the majority of the oil from the sandy beaches although some oil remained on the rocky shores. It was necessary for the responsible party to clean the spilled oil even though at this location there were already crude oil hydrocarbons from previous industrial activity. A biosolvent based on vegetable oil derivatives was used to solubilise the remaining oil and a statistical approach to source apportionment was used to determine the efficacy of the cleaning. Sediment and contaminated rock samples were taken prior to cleaning and again at the same locations two days after application of the biosolvent. The oil was extracted using a modified USEPA Method 3550B. The alkanes were quantified together with oil biomarkers on a GC-MS. The contribution that Caño Limon made to the total oil hydrocarbons was calculated from a Partial Least Squares (PLS) analysis using Caño Limon crude oil as the source. By the time the biosolvent was applied, there had already been some attenuation of the oil with all alkanes source of the oil in this case and the contribution that Caño Limon made to the total oil ranged from 0% to 74%. The total hydrocarbon concentrations were lower after cleaning indicating an efficacy of 90% although the reduction in Caño Limon oil was smaller. This was sufficient to make further remediation unnecessary. PMID:22588176

  8. PM10 source apportionment in California's San Joaquin valley

    NASA Astrophysics Data System (ADS)

    Chow, Judith C.; Watson, John G.; Lowenthal, Douglas H.; Solomon, Paul A.; Magliano, Karen L.; Ziman, Steven D.; Willard Richards, L.

    A PM10 (particulate matter with aerodynamic diameter equal to or less than 10 μm) aerosol study was carried out at six sites in California's San Joaquin Valley (SJV) from 14 June 1988 to 9 June 1989, as part of the 1988-1989 Valley Air Quality Study (VAQS). Concentrations of PM10 and PM2.5 (particles with aerodynamic diameters equal to or less than 2.5 μm) mass, organic and elemental carbon, nitrate, sulfate, ammonium and elements were determined in 24-h aerosol samples collected at three urban (Stockton, Fresno, Bakersfield) and three non-urban (Crows Landing, Fellows, Kern Wildlife Refuge) locations during this period. The sources which contributed to ambient concentrations of PM10 were determined by applying the Chemical Mass Balance (CMB) receptor model using the source profiles determined specifically for that study area. The VAQS data indicates the federal 24-h PM10 standard of 150 μg m -3 was exceeded at four out of the six sites and for reasons which differ by season and by spatial region of influence. The annual average source contributions to the PM10 at Bakersfield, the site with the highest annual average, were 54% from primary geological material, 15% from secondary ammonium nitrate, 10% from primary motor vehicle exhaust, 8% from primary construction; the remaining 4% was unexplained. The results of the source apportionment at all sites show that geological contributions (fugitive dust from tilling, roadways and construction) are largest in summer and fall months, while secondary ammonium nitrate contributions (deriving from direct emissions of ammonia and oxides of nitrogen from agricultural activities and engine exhaust) are largest during winter months.

  9. Source apportionment of size resolved particulate matter at a European air pollution hot spot.

    PubMed

    Pokorná, P; Hovorka, J; Klán, M; Hopke, P K

    2015-01-01

    Positive Matrix Factorization-PMF was applied to hourly resolved elemental composition of fine (PM0.15-1.15) and coarse (PM1.15-10) aerosol particles to apportion their sources in the airshed of residential district, Ostrava-Radvanice and Bartovice in winter 2012. Multiple-site measurement by PM2.5 monitors complements the source apportionment. As there were no statistical significant differences amongst the monitors, the source apportionment derived for the central site data is expected to apply to whole residential district. The apportioned sources of the fine aerosol particles were coal combustion (58.6%), sinter production-hot phase (22.9%), traffic (15%), raw iron production (3.5%), and desulfurization slag processing (<0.5%) whilst road dust (47.3%), sinter production-cold phase (27.7%), coal combustion (16.8%), and raw iron production (8.2%) were resolved being sources of the coarse aerosol particles. The shape and elemental composition of size-segregated aerosol airborne-sampled by an airship aloft presumed air pollution sources helped to interpret the PMF solution. PMID:25260163

  10. Source apportionment of particulate matter in Denmark

    NASA Astrophysics Data System (ADS)

    Moenster, J.; Glasius, M.; Nielsen, O. J.; Bilde, M.; Jensen, F. P.

    2005-12-01

    Atmospheric particulate matter (PM) has received considerable attention over the last decade as an important component of air pollution, particularly due to its health effects on the exposed population. Typically the mass of particles with diameters smaller that 10 μm (PM10) has been used in large cohort studies to estimate health effects such as increase in hospitalization rate, asthma attacks and premature deaths. Particles smaller than 2.5 μm (PM2.5) and ultra fine particles have been used in various epidemiological studies and correlations between exposure to fine and ultra fine particles and health effects have been found. Limits of acceptable concentrations of PM10, PM2.5 and some carcinogenic species have been made, and it is important to find the origin of the particulate matter to prevent exceeds of these limits. This can be done by measuring particle mass, organic/inorganic fractions of particles, the chemical components and other relevant factors, and then use receptor modeling for source apportionment of the particulate matter. We have done measurements at street level and urban background in Copenhagen, Denmark, to determine the origin of different sizes of particulate matter and the toxic organic compounds connected to these particles. We also did measurements in a small village with less traffic and more residential wood combustion for a comparison between traffic and wood combustion generated pollution. Our results show a significant amount of particulate matter coming from non local sources and are dominated by long-range transported inorganic salts. The amount of these is highly depended on the wind direction and thus on the origin of the wind plume. The origin of the carcinogenic organic compound benzo(a)pyrene was found to be local combustion sources. To prevent events of high particulate matter concentration in Copenhagen, Denmark, a reduction of emission from the local traffic will only lead to a minor effect, since the majority of the

  11. Source apportionment of light absorbing WSOC in South Asian outflow

    NASA Astrophysics Data System (ADS)

    Bosch, Carme; Kirillova, Elena; Andersson, August; Kruså, Martin; Budhavant, Krishnakant; Tiwari, Suresh; Gustafsson, Örjan

    2013-04-01

    was 0.38±0.09 m2g-1. MAE increased sharply from long to short wavelengths. This evidences that WSOC is constituted of compounds that are light absorbing near ultraviolet wavelengths. WSOC in Maldives would contribute 19% of the total absorption at wavelengths below 400 nm. Since a substantially absorbing effect by WSOC has been shown here and in other studies, knowledge about WSOC sources is needed. The sources of WSOC in atmospheric aerosols, which may be both of primary and secondary origins, are in general poorly constrained. Biomass burning is a significant primary source of WSOC whereas secondary organic aerosol formation also takes place. Isotopic measurements (stable (δ13C) and radiocarbon (Δ14C)) were applied to inform on the origin of WSOC for both sites. Δ14C allows quantitative apportionment between fossil fuel versus biogenic and biomass combustion sources. δ13C is informative of the atmospheric processing of WSOC during long-range transport of aerosols.

  12. Source apportionment of fine atmospheric particles in Marseille: a one year study

    NASA Astrophysics Data System (ADS)

    Marchand, Nicolas; Salameh, Dalia; Detournay, Anais; Wortham, Henri; Jaffrezo, Jean-Luc; Piot, Christine; Armengaud, Alexandre; Piga, Damien; Parra, Michael; Deveze, Magali

    2013-04-01

    Marseille is the second most populated city in France with more than one million inhabitants. With traffic of about 88 million tons (Mt) in 2011, Marseille is also the most important port of the Mediterranean Sea, and also in the vicinity of the large petrochemical and industrial area of Fos-Berre, located 40 km northwest of the metropolitan area. For these reasons, Marseille area represents a challenging case study for source apportionment exercises, combining an active photochemistry and multiple emission sources, including fugitive emissions from industrial sources and shipping. In order to develop strategies for controlling and reducing air pollution, there is a need of source apportionment studies in order to better understand the influence of the different sources of aerosol particles. Within the framework of the EU-MED APICE project (Common Mediterranean strategy and local practical Actions for the mitigation of Port, Industries and Cities Emissions ; www.apice-project.eu), sources of atmospheric particles in Marseille were evaluated for a one-year period by a long monitoring campaign conducted at two sampling sites. PM2.5 were collected continuously on a 24h-basis in an urban background site from July 2011 to July 2012 and on a 48h-basis for the Eastern dock from November 2011 to July 2012 using high volume samplers (DA80) operating at a flow rate of 30m3 h-1. In this work, two different source apportionment models were used to explain the chemical observations, and to investigate the sources of organic aerosol in Marseille. Two sources apportionment models were used and combined to quantify the contribution of the main aerosol particles sources: CMB (Chemical Mass Balance) and PMF (Positive Matrix Factorization). Both models were used with organic molecular markers and metals/trace elements. Both approaches are able to identify major sources, the combination of these two commonly used receptor models offer interesting perspective, especially when the

  13. Optimized variable source-profile approach for source apportionment

    NASA Astrophysics Data System (ADS)

    Marmur, Amit; Mulholland, James A.; Russell, Armistead G.

    An expanded chemical mass balance (CMB) approach for PM 2.5 source apportionment is presented in which both the local source compositions and corresponding contributions are determined from ambient measurements and initial estimates of source compositions using a global-optimization mechanism. Such an approach can serve as an alternative to using predetermined (measured) source profiles, as traditionally used in CMB applications, which are not always representative of the region and/or time period of interest. Constraints based on ranges of typical source profiles are used to ensure that the compositions identified are representative of sources and are less ambiguous than the factors/sources identified by typical factor analysis (FA) techniques. Gas-phase data (SO 2, CO and NO y) are also used, as these data can assist in identifying sources. Impacts of identified sources are then quantified by minimizing the weighted-error between apportioned and measured levels of the fitting species. This technique was applied to a dataset of PM 2.5 measurements at the former Atlanta Supersite (Jefferson Street site), to apportion PM 2.5 mass into nine source categories. Good agreement is found when these source impacts are compared with those derived based on measured source profiles as well as those derived using a current FA technique, Positive Matrix Factorization. The proposed method can be used to assess the representativeness of measured source-profiles and to help identify those profiles that may be in significant error, as well as to quantify uncertainties in source-impact estimates, due in part to uncertainties in source compositions.

  14. Rocky Mountain National Park reduced nitrogen source apportionment

    NASA Astrophysics Data System (ADS)

    Thompson, Tammy M.; Rodriguez, Marco A.; Barna, Michael G.; Gebhart, Kristi A.; Hand, Jennifer L.; Day, Derek E.; Malm, William C.; Benedict, Katherine B.; Collett, Jeffrey L., Jr.; Schichtel, Bret A.

    2015-05-01

    Excess wet and dry deposition of nitrogen-containing compounds are a concern at a number of national parks. The Rocky Mountain Atmospheric Nitrogen and Sulfur Study Part II (RoMANS II) campaign was conducted from November 2008 to November 2009 to characterize the composition of reactive nitrogen and sulfur deposited in Rocky Mountain National Park (RMNP). RoMANS II identified reduced nitrogen as the major contributor to reactive nitrogen deposition in RMNP, making up over 50% of the total. Motivated by this finding, the particulate source apportionment technology within the Comprehensive Air Quality Model with extensions was used here to estimate source apportionment of reduced nitrogen concentrations at RMNP. Source apportionment results suggest that approximately 40% of reduced nitrogen deposition to RMNP comes from ammonia sources within Colorado. However, the model evaluation also suggests that this number could be underrepresenting ammonia sources in eastern Colorado due to the difficulty of capturing upslope airflow on the eastern side of the Continental Divide with meteorological models. Emissions from California, the western model boundary, and the Snake River Valley in Idaho, the next three most influential sources, contribute approximately 15%, 8%, and 7%, respectively, to total reduced nitrogen measured in RMNP. Within Colorado, about 61%, 26%, and 13% of the total Colorado contribution comes from sources to the east of the Continental Divide, sources to the west of the Continental Divide, and from the park itself.

  15. Sensitivity of fine sediment source apportionment to mixing model assumptions

    NASA Astrophysics Data System (ADS)

    Cooper, Richard; Krueger, Tobias; Hiscock, Kevin; Rawlins, Barry

    2015-04-01

    Mixing models have become increasingly common tools for quantifying fine sediment redistribution in river catchments. The associated uncertainties may be modelled coherently and flexibly within a Bayesian statistical framework (Cooper et al., 2015). However, there is more than one way to represent these uncertainties because the modeller has considerable leeway in making error assumptions and model structural choices. In this presentation, we demonstrate how different mixing model setups can impact upon fine sediment source apportionment estimates via a one-factor-at-a-time (OFAT) sensitivity analysis. We formulate 13 versions of a mixing model, each with different error assumptions and model structural choices, and apply them to sediment geochemistry data from the River Blackwater, Norfolk, UK, to apportion suspended particulate matter (SPM) contributions from three sources (arable topsoils, road verges and subsurface material) under base flow conditions between August 2012 and August 2013 (Cooper et al., 2014). Whilst all 13 models estimate subsurface sources to be the largest contributor of SPM (median ~76%), comparison of apportionment estimates reveals varying degrees of sensitivity to changing prior parameter distributions, inclusion of covariance terms, incorporation of time-variant distributions and methods of proportion characterisation. We also demonstrate differences in apportionment results between a full and an empirical Bayesian setup and between a Bayesian and a popular Least Squares optimisation approach. Our OFAT sensitivity analysis reveals that mixing model structural choices and error assumptions can significantly impact upon fine sediment source apportionment results, with estimated median contributions in this study varying by up to 21% between model versions. Users of mixing models are therefore strongly advised to carefully consider and justify their choice of model setup prior to conducting fine sediment source apportionment investigations

  16. Review: Particle number size distributions from seven major sources and implications for source apportionment studies

    NASA Astrophysics Data System (ADS)

    Vu, Tuan V.; Delgado-Saborit, Juana Maria; Harrison, Roy M.

    2015-12-01

    The particle number size distribution (PNSD) of airborne particles not only provides us with information about sources and atmospheric processing of particles, but also plays an important role in determining regional lung dose. As a result, urban particles and their size distributions have received much attention with a rapid increase of publications in recent years. The object of this review is to synthesise and analyse existing knowledge on particles in urban environments with a focus on their number concentration and size distribution. This study briefly reviews the characterization of PNSD from seven major sources of urban particles including traffic emissions, industrial emissions, biomass burning, cooking, transported aerosol, marine aerosol and nucleation. It then discusses atmospheric physical processes such as coagulation or condensation which have a strong influence on PNSD. Finally, the implications of PNSD datasets for source modelling are briefly discussed. Based on this review, it is concluded that the concentrations, modal structures and temporal patterns of urban particles are strongly influenced by traffic emissions, which are identified as the main source of particle number in urban environments. Information derived from particle number size distributions is beginning to play an important role in source apportionment studies.

  17. Source Contributions to Wintertime Elemental and Organic Carbon in the Western Arctic Based on Radiocarbon and Tracer Apportionment.

    PubMed

    Barrett, T E; Robinson, E M; Usenko, S; Sheesley, R J

    2015-10-01

    To quantify the contributions of fossil and biomass sources to the wintertime Arctic aerosol burden source apportionment is reported for elemental (EC) and organic carbon (OC) fractions of six PM10 samples collected during a wintertime (2012-2013) campaign in Barrow, AK. Radiocarbon apportionment of EC indicates that fossil sources contribute an average of 68 ± 9% (0.01-0.07 μg m(-3)) in midwinter decreasing to 49 ± 6% (0.02 μg m(-3)) in late winter. The mean contribution of fossil sources to OC for the campaign was stable at 38 ± 8% (0.04-0.32 μg m(-3)). Samples were also analyzed for organic tracers, including levoglucosan, for use in a chemical mass balance (CMB) source apportionment model. The CMB model was able to apportion 24-53% and 99% of the OC and EC burdens, respectively, during the campaign, with fossil OC contributions ranging from 25 to 74% (0.02-0.09 μg m(-3)) and fossil EC contributions ranging from 73 to 94% (0.03-0.07 μg m(-3)). Back trajectories identified two major wintertime source regions to Barrow: the Russian and North American Arctic. Atmospheric lifetimes of levoglucosan, ranging from 50 to 320 h, revealed variability in wintertime atmospheric processing of this biomass burning tracer. This study allows for unambiguous apportionment of EC to fossil fuel and biomass combustion sources and intercomparison with CMB modeling. PMID:26325404

  18. Enterococcus and Escherichia coli fecal source apportionment with microbial source tracking genetic markers - is it feasible?

    EPA Science Inventory

    Fecal pollution is measured in surface waters using culture-based measurements of enterococci and Escherichia coli bacteria. Source apportionment of these two fecal indicator bacteria is an urgent need for prioritizing remediation efforts and quantifying health risks associated...

  19. Radiocarbon-derived source apportionment of fine carbonaceous aerosols before, during, and after the 2014 Asia-Pacific Economic Cooperation (APEC) summit in Beijing, China

    NASA Astrophysics Data System (ADS)

    Liu, Junwen; Mo, Yangzhi; Li, Jun; Liu, Di; Shen, Chengde; Ding, Ping; Jiang, Haoyu; Cheng, Zhineng; Zhang, Xiangyun; Tian, Chongguo; Chen, Yingjun; Zhang, Gan

    2016-04-01

    The Asia-Pacific Economic Cooperation (APEC) summit took place in Beijing, China, 5-11 November 2014, during which numerous measures were performed to control the air pollution, and consequently, the sky of Beijing was so clean that the public called it "APEC blue." The concentrations before, during, and after the APEC summit are 14.4 ± 6.81 µg C/m3, 6.66 ± 2.99 µg C/m3, and 32.3 ± 10.6 µg C/m3, respectively, for organic carbon (OC), and 2.27 ± 1.17 µg C/m3, 0.76 ± 0.52 µg C/m3, and 4.99 ± 1.74 µg C/m3, respectively, for elemental carbon (EC). We quantify the contributions of fossil and nonfossil sources to the OC and EC using radiocarbon. Results show that the contribution of nonfossil sources is 56 ± 1% (before APEC), 61 ± 1% (during APEC), and 48 ± 1% (after APEC), respectively, for OC, and 36 ± 4% (before APEC), 46 ± 1% (during APEC), and 33 ± 4% (after APEC), respectively, for EC. Comparing to the period before APEC, 70% and 60% of fossil EC and OC and 60% and 50% of nonfossil EC and OC are reduced, respectively, implying that the control on the nonfossil sources has considerable contribution to the good air quality in Beijing. Both EC and OC mass loadings during the APEC summit would have increased by 60% if the biomass-burning activities were not taken into account for control. In such a case, the atmospheric visibility would decrease 20% at least and the blue sky thereby would likely not have been visible during the summit.

  20. Indoor source apportionment in urban communities near industrial sites

    NASA Astrophysics Data System (ADS)

    Tunno, Brett J.; Dalton, Rebecca; Cambal, Leah; Holguin, Fernando; Lioy, Paul; Clougherty, Jane E.

    2016-08-01

    Because fine particulate matter (PM2.5) differs in chemical composition, source apportionment is frequently used for identification of relative contributions of multiple sources to outdoor concentrations. Indoor air pollution and source apportionment is often overlooked, though people in northern climates may spend up to 90% of their time inside. We selected 21 homes for a 1-week indoor sampling session during summer (July to September 2011), repeated in winter (January to March 2012). Elemental analysis was performed using inductively-coupled plasma mass spectrometry (ICP-MS), and factor analysis was used to determine constituent grouping. Multivariate modeling was run on factor scores to corroborate interpretations of source factors based on a literature review. For each season, a 5-factor solution explained 86-88% of variability in constituent concentrations. Indoor sources (i.e. cooking, smoking) explained greater variability than did outdoor sources in these industrial communities. A smoking factor was identified in each season, predicted by number of cigarettes smoked. Cooking factors were also identified in each season, explained by frequency of stove cooking and stovetop frying. Significant contributions from outdoor sources including coal and motor vehicles were also identified. Higher coal and secondary-related elemental concentrations were detected during summer than winter. Our findings suggest that source contributions to indoor concentrations can be identified and should be examined in relation to health effects.

  1. Source-apportionment and model evaluation: experiences with the EMEP SOA model

    NASA Astrophysics Data System (ADS)

    Simpson, D.; Yttri, K. E.

    2009-04-01

    The EMEP MSC-W chemical transport model (Simpson et al., 2003) has been successfully used for the prediction of photochemical oxidants and various inorganic aerosol components (sulphate, nitrate, ammonium) for many years. The model generally performs well for such species, as should be expected for compounds whose emission sources and chemistry are fairly well know. For carbonaceous particulate matter (PCM) however the model has been found to give very different results in different parts of Europe, with typically poor performance in southern Europe, but rather good results in Northern Europe (Simpson et al., 2007). Earlier comparison with the results of source-apportionment studies from the CARBOSOL project (Gelencser et al., 2007, Simpson et al., 2007) has shown that the poor performance in southern Europe can partly be ascribed to difficulties with emissions from residential wood-burning, and partly due to an underestimate of the secondary organic aerosol (SOA) component. Such difficulties are expected for organic aerosols, a subject where the basic science is only partially understood, and where new experimental results continually lead to revisions in existing ideas concerning sources and formation mechanisms (e.g. Hallquist et al., 2009). In such a situation, it is essential that model results are evaluated as thoroughly as possible, and that where possible the various components of organic aerosol can be evaluated separately. A number of source-apportionment (SA) studies have recently become available in Europe, in which data on elemental carbon (EC), organic carbon (OC), 14C, levoglucosan, and various markers of primary organic carbon (cellulose, sugars/sugar-alcohols) have allowed estimates of various sources of carbonaceous particulate matter (PCM). As well as CARBOSOL, these studies include various sites in Switzerland (e.g. Lanz et al., 2008, Szidat et al., 2006), data are available from Gothenburg in Sweden (Szidat et al., 2008) and from southern

  2. Source apportionment of volatile organic compounds in Tehran, Iran.

    PubMed

    Sarkhosh, Maryam; Mahvi, Amir Hossein; Yunesian, Masud; Nabizadeh, Ramin; Borji, Saeedeh Hemmati; Bajgirani, Ali Ghiami

    2013-04-01

    Identifying the sources of volatile organic compounds (VOCs) is key issue to reducing ground-level ozone and PAN. A multivariate receptor model (Unmix) was used for the determination of the contributions of VOCs sources in Tehran-Iran. Concentrations of ambient C2-C10 VOCs were measured continuously and online at the center of Tehran city during the winter of 2012. A high correlation coefficient existed between measured and predicted values (R (2) = 0.99), indicating that the data were well modeled. Five possible VOCs source categories were identified and mobile sources such as vehicle exhaust (61 %) and fuel evaporation (12 %) more than half of the total VOC concentration. City gas and CNG sources, biogenic source, and industrial solvent source categories accounted for 17 %, 8 % and 2 % of the total VOC, respectively. Result showed Unmix for VOCs source apportionment can be used to analyze and generate air pollution control strategies and policies. PMID:23283536

  3. An integrated PM2.5 source apportionment study: Positive Matrix Factorisation vs. the chemical transport model CAMx

    NASA Astrophysics Data System (ADS)

    Bove, M. C.; Brotto, P.; Cassola, F.; Cuccia, E.; Massabò, D.; Mazzino, A.; Piazzalunga, A.; Prati, P.

    2014-09-01

    Receptor and Chemical Transport Models are commonly used tools in source apportionment studies, even if different expertise is required. We describe an experiment using both approaches to apportion the PM2.5 (i.e., particulate matter with aerodynamic diameters below 2.5 μm) sources in the city of Genoa (Italy). A sampling campaign was carried out to collect PM2.5 samples daily for approximately six month during 2011 in three sites. The subsequent compositional analyses included the speciation of elements, major ions and both organic and elemental carbon; these data produced a large database for receptor modelling through Positive Matrix Factorisation (PMF). In the same period, a meteorological and air quality modelling system was implemented based on the mesoscale numerical weather prediction model WRF and the chemical transport model CAMx to obtain meteorological and pollutant concentrations up to a resolution of 1.1 km. The source apportionment was evaluated by CAMx over the same period that was used for the monitoring campaign using the Particulate Source Apportionment Technology tool. Even if the source categorisations were changed (i.e., groups of time-correlated compounds in PMF vs. activity categories in CAMx), the PM2.5 source apportionment by PMF and CAMx produced comparable results. The different information provided by the two approaches (e.g., real-world factor profile by PMF and apportionment of a secondary aerosol by CAMx) was used jointly to elucidate the composition and origin of PM2.5 and to develop a more general methodology. When studying the primary and secondary components of PM, the main anthropogenic sources in the area were road transportation, energy production/industry and maritime emissions, accounting for 40%-50%, 20%-30% and 10%-15%, of PM2.5, respectively.

  4. An inter-comparison of PM10 source apportionment using PCA and PMF receptor models in three European sites.

    PubMed

    Cesari, Daniela; Amato, F; Pandolfi, M; Alastuey, A; Querol, X; Contini, D

    2016-08-01

    Source apportionment of aerosol is an important approach to investigate aerosol formation and transformation processes as well as to assess appropriate mitigation strategies and to investigate causes of non-compliance with air quality standards (Directive 2008/50/CE). Receptor models (RMs) based on chemical composition of aerosol measured at specific sites are a useful, and widely used, tool to perform source apportionment. However, an analysis of available studies in the scientific literature reveals heterogeneities in the approaches used, in terms of "working variables" such as the number of samples in the dataset and the number of chemical species used as well as in the modeling tools used. In this work, an inter-comparison of PM10 source apportionment results obtained at three European measurement sites is presented, using two receptor models: principal component analysis coupled with multi-linear regression analysis (PCA-MLRA) and positive matrix factorization (PMF). The inter-comparison focuses on source identification, quantification of source contribution to PM10, robustness of the results, and how these are influenced by the number of chemical species available in the datasets. Results show very similar component/factor profiles identified by PCA and PMF, with some discrepancies in the number of factors. The PMF model appears to be more suitable to separate secondary sulfate and secondary nitrate with respect to PCA at least in the datasets analyzed. Further, some difficulties have been observed with PCA in separating industrial and heavy oil combustion contributions. Commonly at all sites, the crustal contributions found with PCA were larger than those found with PMF, and the secondary inorganic aerosol contributions found by PCA were lower than those found by PMF. Site-dependent differences were also observed for traffic and marine contributions. The inter-comparison of source apportionment performed on complete datasets (using the full range of

  5. Source Apportionment of Elemental Carbon in Beijing, China: Insights from Radiocarbon and Organic Marker Measurements.

    PubMed

    Zhang, Yan-Lin; Schnelle-Kreis, Jürgen; Abbaszade, Gülcin; Zimmermann, Ralf; Zotter, Peter; Shen, Rong-rong; Schäfer, Klaus; Shao, Longyi; Prévôt, André S H; Szidat, Sönke

    2015-07-21

    Elemental carbon (EC) or black carbon (BC) in the atmosphere has a strong influence on both climate and human health. In this study, radiocarbon ((14)C) based source apportionment is used to distinguish between fossil fuel and biomass burning sources of EC isolated from aerosol filter samples collected in Beijing from June 2010 to May 2011. The (14)C results demonstrate that EC is consistently dominated by fossil-fuel combustion throughout the whole year with a mean contribution of 79% ± 6% (ranging from 70% to 91%), though EC has a higher mean and peak concentrations in the cold season. The seasonal molecular pattern of hopanes (i.e., a class of organic markers mainly emitted during the combustion of different fossil fuels) indicates that traffic-related emissions are the most important fossil source in the warm period and coal combustion emissions are significantly increased in the cold season. By combining (14)C based source apportionment results and picene (i.e., an organic marker for coal emissions) concentrations, relative contributions from coal (mainly from residential bituminous coal) and vehicle to EC in the cold period were estimated as 25 ± 4% and 50 ± 7%, respectively, whereas the coal combustion contribution was negligible or very small in the warm period. PMID:26114602

  6. Urban PM source apportionment mapping using microscopic chemical imaging.

    PubMed

    Gertler, Alan W; Moshe, Danny; Rudich, Yinon

    2014-08-01

    To evaluate the health impacts of particulate matter and develop effective pollutant abatement strategies, one needs to know the source contributions to the observed concentrations. The most common approach involves the collection of ambient air samples on filters, laboratory analyses to quantify the chemical composition, and application of receptor modeling methods. This approach is expensive and time consuming and limits the ability to monitor the temporal and spatial impacts from different pollutant sources. An alternative method for apportioning the sources of ambient PM is the application of microscopic chemical imaging (MCI). The MCI method involves measuring individual particle's fluorescence and source attribution is based on the individual particle analysis coupled with identification from a source library. Using this approach, the apportionment of ambient PM can be performed in near real time, which allows for the generation of temporal and spatial maps of pollutant source impacts in an urban area. PMID:24225422

  7. Source apportionment of ambient VOCs in Delhi City.

    PubMed

    Srivastava, Anjali; Sengupta, B; Dutta, S A

    2005-05-01

    Source apportionment using chemical mass balance (CMB) model was carried using a data set of 360 four hourly samples collected at 15 locations of five categories namely residential, commercial, industrial, traffic intersections and petrol pumps during August 2001-July 2002 in Delhi. The results indicate that emissions from diesel internal combustion engines dominate in Delhi. Vehicular exhaust and evaporative emissions also contribute significantly to VOCs in ambient air. Emission of VOCs associated with sewage sludge was also found to contribute to VOCs in Delhi's air. This points to the fact that open defecation and leaking sewage manholes are a problem in all categories of locations. PMID:15862846

  8. Overview of the Lombardy Region (I) Source Apportionment Study

    NASA Astrophysics Data System (ADS)

    Larsen, B. R.

    2009-04-01

    The Lombardia Region (RL) is situated in the central part of the Po Plain (I) where the mesoscale climatological conditions are determined to a high degree by the orographical characteristics of this area. Encirclement from three sides (North, West and South) by the mountain chains contributes greatly to the climatological peculiarities that are related from the physical point of view to the dynamic of the air mass in this region. The adverse anemological regime and the persistence of atmospheric stability result in low wind speeds, inversion of the temperature, and shallow inversion layers. Due to these particular geographical and the meteorological conditions associated with a high population density (9 million inhabitants) and the connected anthropogenic activities, RL is one of Europe's most polluted regions with regard to PM and photochemical smog. The 24 hours EU air quality limit for PM10 of 50 ug/m3 is exceeded up to 180 days per year and the yearly limit of 40 ug/m3 is in breach for most urban/urban background areas. In order to efficiently plan abatement strategies, quantitative information is required on the pollution sources and available emission inventories need to be compared with source apportionment results derived by receptor modeling of the chemical composition of PM10 in ambient air and in source emissions. The European Commission Joint Research Centre (JRC) has embarked on a major integrated project in RL (2006-2010) in collaboration with the air quality authorities (ARPA) to support the design of appropriate air quality and emission reduction strategies in this area. The present paper presents the first results of this project, carried out during typical winter episodes in 2007 at ten measurement stations distributed over the entire RL. The source contributions to PM10 and the associated air toxics (benzo[a]pyrene, Pb, Ni, Cd and As) have been quantified by Chemical Mass Balance and Positive Matrix Factorization based upon the chemical

  9. Source Apportionment of PM2.5 in Delhi, India Using PMF Model.

    PubMed

    Sharma, S K; Mandal, T K; Jain, Srishti; Saraswati; Sharma, A; Saxena, Mohit

    2016-08-01

    Chemical characterization of PM2.5 [organic carbon, elemental carbon, water soluble inorganic ionic components, and major and trace elements] was carried out for a source apportionment study of PM2.5 at an urban site of Delhi, India from January, 2013, to December, 2014. The annual average mass concentration of PM2.5 was 122 ± 94.1 µg m(-3). Strong seasonal variation was observed in PM2.5 mass concentration and its chemical composition with maxima during winter and minima during monsoon. A receptor model, positive matrix factorization (PMF) was applied for source apportionment of PM2.5 mass concentration. The PMF model resolved the major sources of PM2.5 as secondary aerosols (21.3 %), followed by soil dust (20.5 %), vehicle emissions (19.7 %), biomass burning (14.3 %), fossil fuel combustion (13.7 %), industrial emissions (6.2 %) and sea salt (4.3 %). PMID:27209541

  10. Photochemical grid model implementation and application of VOC, NOx, and O3 source apportionment

    EPA Science Inventory

    For the purposes of developing optimal emissions control strategies, efficient approaches are needed to identify the major sources or groups of sources that contribute to elevated ozone (O3) concentrations. Source-based apportionment techniques implemented in photochemical grid m...

  11. SOURCE APPORTIONMENT RESULTS, UNCERTAINTIES, AND MODELING TOOLS

    EPA Science Inventory

    Advanced multivariate receptor modeling tools are available from the U.S. Environmental Protection Agency (EPA) that use only speciated sample data to identify and quantify sources of air pollution. EPA has developed both EPA Unmix and EPA Positive Matrix Factorization (PMF) and ...

  12. Iodine source apportionment in the Malawian diet.

    PubMed

    Watts, M J; Joy, E J M; Young, S D; Broadley, M R; Chilimba, A D C; Gibson, R S; Siyame, E W P; Kalimbira, A A; Chilima, B; Ander, E L

    2015-01-01

    The aim of this study was to characterise nutritional-I status in Malawi. Dietary-I intakes were assessed using new datasets of crop, fish, salt and water-I concentrations, while I status was assessed for 60 women living on each of calcareous and non-calcareous soils as defined by urinary iodine concentration (UIC). Iodine concentration in staple foods was low, with median concentrations of 0.01 mg kg(-1) in maize grain, 0.008 mg kg(-1) in roots and tubers, but 0.155 mg kg(-1) in leafy vegetables. Freshwater fish is a good source of dietary-I with a median concentration of 0.51 mg kg(-1). Mean Malawian dietary-Iodine intake from food, excluding salt, was just 7.8 μg d(-1) compared to an adult requirement of 150 μg d(-1). Despite low dietary-I intake from food, median UICs were 203 μg L(-1) with only 12% defined as I deficient whilst 21% exhibited excessive I intake. Iodised salt is likely to be the main source of dietary I intake in Malawi; thus, I nutrition mainly depends on the usage and concentration of I in iodised salt. Drinking water could be a significant source of I in some areas, providing up to 108 μg d(-1) based on consumption of 2 L d(-1). PMID:26503697

  13. Iodine source apportionment in the Malawian diet

    PubMed Central

    Watts, M. J.; Joy, E. J. M.; Young, S. D.; Broadley, M. R.; Chilimba, A. D. C.; Gibson, R. S.; Siyame, E. W. P.; Kalimbira, A. A.; Chilima, B.; Ander, E. L.

    2015-01-01

    The aim of this study was to characterise nutritional-I status in Malawi. Dietary-I intakes were assessed using new datasets of crop, fish, salt and water-I concentrations, while I status was assessed for 60 women living on each of calcareous and non-calcareous soils as defined by urinary iodine concentration (UIC). Iodine concentration in staple foods was low, with median concentrations of 0.01 mg kg−1 in maize grain, 0.008 mg kg−1 in roots and tubers, but 0.155 mg kg−1 in leafy vegetables. Freshwater fish is a good source of dietary-I with a median concentration of 0.51 mg kg−1. Mean Malawian dietary-Iodine intake from food, excluding salt, was just 7.8 μg d−1 compared to an adult requirement of 150 μg d−1. Despite low dietary-I intake from food, median UICs were 203 μg L−1 with only 12% defined as I deficient whilst 21% exhibited excessive I intake. Iodised salt is likely to be the main source of dietary I intake in Malawi; thus, I nutrition mainly depends on the usage and concentration of I in iodised salt. Drinking water could be a significant source of I in some areas, providing up to 108 μg d−1 based on consumption of 2 L d−1. PMID:26503697

  14. Iodine source apportionment in the Malawian diet

    NASA Astrophysics Data System (ADS)

    Watts, M. J.; Joy, E. J. M.; Young, S. D.; Broadley, M. R.; Chilimba, A. D. C.; Gibson, R. S.; Siyame, E. W. P.; Kalimbira, A. A.; Chilima, B.; Ander, E. L.

    2015-10-01

    The aim of this study was to characterise nutritional-I status in Malawi. Dietary-I intakes were assessed using new datasets of crop, fish, salt and water-I concentrations, while I status was assessed for 60 women living on each of calcareous and non-calcareous soils as defined by urinary iodine concentration (UIC). Iodine concentration in staple foods was low, with median concentrations of 0.01 mg kg-1 in maize grain, 0.008 mg kg-1 in roots and tubers, but 0.155 mg kg-1 in leafy vegetables. Freshwater fish is a good source of dietary-I with a median concentration of 0.51 mg kg-1. Mean Malawian dietary-Iodine intake from food, excluding salt, was just 7.8 μg d-1 compared to an adult requirement of 150 μg d-1. Despite low dietary-I intake from food, median UICs were 203 μg L-1 with only 12% defined as I deficient whilst 21% exhibited excessive I intake. Iodised salt is likely to be the main source of dietary I intake in Malawi; thus, I nutrition mainly depends on the usage and concentration of I in iodised salt. Drinking water could be a significant source of I in some areas, providing up to 108 μg d-1 based on consumption of 2 L d-1.

  15. Quantitative back-trajectory apportionment of sources of particulate sulfate at Big Bend National Park, TX

    NASA Astrophysics Data System (ADS)

    Gebhart, Kristi A.; Schichtel, Bret A.; Barna, Michael G.; Malm, William C.

    As part of the Big Bend Regional Aerosol and Visibility Observational (BRAVO) study, a quantitative back-trajectory-based receptor model, Trajectory Mass Balance (TrMB) was used to estimate source apportionment of particulate sulfur measured at Big Bend National Park, Texas, during July-October 1999. The model was exercised using a number of sets of trajectories generated by three different trajectory models, with three different sets of input gridded meteorology, and tracked for 5, 7, and 10 days back in time. The performance of the TrMB model with the different trajectory inputs was first evaluated against perfluorocarbon tracers and synthetically generated sulfate concentrations from a regional air quality model, both of which had known attributions. These tests were used to determine which trajectories were adequate for the TrMB modeling of measured sulfate concentrations, illustrated the magnitude of the daily uncertainties as compared to the uncertainties in the mean attributions, and demonstrated the value of a robust evaluation process. Depending on trajectories, mean sulfate source apportionment results were 39-50% from Mexico, 7-26% from the eastern US, 12-45% from Texas, and 3-25% from the western US. These ranges were inclusive of the best BRAVO attribution estimates for Mexico, Texas, and the western US, but TrMB underestimated the eastern US contribution as compared to the BRAVO best estimates.

  16. Chemical composition and source apportionment of PM2.5 particles in the Sihwa area, Korea.

    PubMed

    Park, S S; Bae, M S; Kim, Y J

    2001-03-01

    To investigate the chemical characteristics of fine particles in the Sihwa area, Korea, atmospheric aerosol samples were collected using a dichotomous PM10 sampler and two URG PM2.5 cyclone samplers during five intensive sampling periods between February 1998 and February 1999. The Inductively Coupled Plasma (ICP)-Atomic Emission Spectrometry (AES)/ICP-Mass Spectrometry (MS), ion chromatograph (IC), and thermal manganese dioxide oxidation (TMO) methods were used to analyze the trace elements, ionic species, and carbonaceous species, respectively. Backward trajectory analysis, factor analysis, and a chemical mass balance (CMB) model were used to estimate quantitatively source contributions to PM2.5 particles collected in the Sihwa area. The results of PM2.5 source apportionment using the CMB7 receptor model showed that (NH4)2SO4 was, on average, the major contributor to PM2.5 particles, followed by nontraffic organic carbon (OC) emission, NH4NO3, agricultural waste burning, motor vehicle emission, road dust, waste incineration, marine aerosol, and others. Here, the nontraffic OC sources include primary anthropogenic OC emitted from the industrial complex zone, secondary OC, and organic species from distant sources. The source impact of waste incineration emission became significant when the dominant wind directions were from southwest and west sectors during the sampling periods. It was found that PM2.5 particles in the Sihwa area were influenced mainly by both anthropogenic local sources and long-range transport and transformation of air pollutants. PMID:11266103

  17. Chemical characterization and source apportionment of PM2.5 in Beijing: seasonal perspective

    NASA Astrophysics Data System (ADS)

    Zhang, R.; Jing, J.; Tao, J.; Hsu, S.-C.; Wang, G.; Cao, J.; Lee, C. S. L.; Zhu, L.; Chen, Z.; Zhao, Y.; Shen, Z.

    2013-07-01

    that comprehensively explores the chemical characterizations and source apportionments of PM2.5 aerosol speciation in Beijing by applying multiple approaches based on a completely seasonal perspective.

  18. On the autarchic use of solely PIXE data in particulate matter source apportionment studies by receptor modeling

    NASA Astrophysics Data System (ADS)

    Lucarelli, F.; Nava, S.; Calzolai, G.; Chiari, M.; Giannoni, M.; Traversi, R.; Udisti, R.

    2015-11-01

    Particle Induced X-ray Emission (PIXE) analysis of aerosol samples allows simultaneous detection of several elements, including important tracers of many particulate matter sources. This capability, together with the possibility of analyzing a high number of samples in very short times, makes PIXE a very effective tool for source apportionment studies by receptor modeling. However, important aerosol components, like nitrates, OC and EC, cannot be assessed by PIXE: this limitation may strongly compromise the results of a source apportionment study if based on PIXE data alone. In this work, an experimental dataset characterised by an extended chemical speciation (elements, EC-OC, ions) is used to test the effect of reducing input species in the application of one of the most widely used receptor model, namely Positive Matrix Factorization (PMF). The main effect of using only PIXE data is that the secondary nitrate source is not identified and the contribution of biomass burning is overestimated, probably due to the similar seasonal pattern of these two sources.

  19. Source apportionment modeling of volatile organic compounds in streams

    USGS Publications Warehouse

    Pankow, J.F.; Asher, W.E.; Zogorski, J.S.

    2006-01-01

    It often is of interest to understand the relative importance of the different sources contributing to the concentration cw of a contaminant in a stream; the portions related to sources 1, 2, 3, etc. are denoted cw,1, cw,2, cw,3, etc. Like c w, 'he fractions ??1, = cw,1/c w, ??2 = cw,2/cw, ??3 = cw,3/cw, etc. depend on location and time. Volatile organic compounds (VOCs) can undergo absorption from the atmosphere into stream water or loss from stream water to the atmosphere, causing complexities affecting the source apportionment (SA) of VOCs in streams. Two SA rules are elaborated. Rule 1: VOC entering a stream across the air/water interface exclusively is assigned to the atmospheric portion of cw. Rule 2: VOC loss by volatilization, flow loss to groundwater, in-stream degradation, etc. is distributed over cw,1 cw,2, c w,3, etc. in proportion to their corresponding ?? values. How the two SA rules are applied, as well as the nature of the SA output for a given case, will depend on whether transport across the air/water interface is handled using the net flux F convention or using the individual fluxes J convention. Four hypothetical stream cases involving acetone, methyl-tert-butyl ether (MTBE), benzene, chloroform, and perchloroethylene (PCE) are considered. Acetone and MTBE are sufficiently water soluble from air for a domestic atmospheric source to be capable of yielding cw values approaching the common water quality guideline range of 1 to 10 ??g/L. For most other VOCs, such levels cause net outgassing (F > 0). When F > 0 in a given section of stream, in the net flux convention, all of the ??j, for the compound remain unchanged over that section while cw decreases. A characteristic time ??d can be calculated to predict when there will be differences between SA results obtained by the net flux convention versus the individual fluxes convention. Source apportionment modeling provides the framework necessary for comparing different strategies for mitigating

  20. New source and process apportionment method using a three-dimensional chemical transport model: Process, Age, and Source region Chasing ALgorithm (PASCAL)

    NASA Astrophysics Data System (ADS)

    Matsui, H.; Koike, M.

    2012-08-01

    We have developed a new source and process apportionment method, the Process, Age, and Source region Chasing ALgorithm (PASCAL), and implemented it in a three-dimensional chemical transport model, the Community Multiscale Air Quality (CMAQ) model. By adding new variables (tagged species), PASCAL traces 1) the source region of emissions (source apportionment), 2) the age of individual species (elapsed time from emissions), 3) net and gross production and loss amounts from individual physical and chemical processes during transport (Lagrangian way), and 4) local production and loss rates at individual grid cells (Eulerian way) for primary and secondary aerosols and their precursor gases. The main advantage of PASCAL is the third one, which can trace accumulated production and loss amounts of individual processes during transport from source regions to each grid cell (Lagrangian type of integration) for both gross (production and loss) and net (gross production - loss) concentrations. Currently the method is applied for mixing ratios of CO and SO2 and mass concentrations of black carbon and sulfate aerosols. This algorithm is not impacted by the non-linearity of chemical reactions and is computationally efficient. CMAQ/PASCAL model calculations were conducted over the East Asian region to test its performance. The overall validity of PASCAL calculations is confirmed for all species, periods, altitudes, and regions. This algorithm will be a useful tool in evaluating source regions as well as formation and loss processes of aerosols in the atmosphere in order to make effective strategies for emissions reduction.

  1. Photochemical grid model implementation and application of VOC, NOx, and O3 source apportionment

    NASA Astrophysics Data System (ADS)

    Kwok, R. H. F.; Baker, K. R.; Napelenok, S. L.; Tonnesen, G. S.

    2015-01-01

    For the purposes of developing optimal emissions control strategies, efficient approaches are needed to identify the major sources or groups of sources that contribute to elevated ozone (O3) concentrations. Source-based apportionment techniques implemented in photochemical grid models track sources through the physical and chemical processes important to the formation and transport of air pollutants. Photochemical model source apportionment has been used to track source impacts of specific sources, groups of sources (sectors), sources in specific geographic areas, and stratospheric and lateral boundary inflow on O3. The implementation and application of a source apportionment technique for O3 and its precursors, nitrogen oxides (NOx) and volatile organic compounds (VOCs), for the Community Multiscale Air Quality (CMAQ) model are described here. The Integrated Source Apportionment Method (ISAM) O3 approach is a hybrid of source apportionment and source sensitivity in that O3 production is attributed to precursor sources based on O3 formation regime (e.g., for a NOx-sensitive regime, O3 is apportioned to participating NOx emissions). This implementation is illustrated by tracking multiple emissions source sectors and lateral boundary inflow. NOx, VOC, and O3 attribution to tracked sectors in the application are consistent with spatial and temporal patterns of precursor emissions. The O3 ISAM implementation is further evaluated through comparisons of apportioned ambient concentrations and deposition amounts with those derived from brute force zero-out scenarios, with correlation coefficients ranging between 0.58 and 0.99 depending on specific combination of target species and tracked precursor emissions. Low correlation coefficients occur for chemical regimes that have strong nonlinearity in O3 sensitivity, which demonstrates different functionalities between source apportionment and zero-out approaches, where appropriate use depends on whether source attribution or

  2. Metals and metalloids in atmospheric dust: Use of lead isotopic analysis for source apportionment

    NASA Astrophysics Data System (ADS)

    Felix Villar, Omar I.

    Mining activities generate aerosol in a wide range of sizes. Smelting activities produce mainly fine particles (<1 microm). On the other hand, milling, crushing and refining processes, as well tailings management, are significant sources of coarse particles (> 1 microm). The adverse effects of aerosols on human health depend mainly on two key characteristics: size and chemical composition. One of the main objectives of this research is to analyze the size distribution of contaminants in aerosol produced by mining operations. For this purpose, a Micro-Orifice Uniform Deposit Impactor (MOUDI) was utilized. Results from the MOUDI samples show higher concentrations of the toxic elements like lead and arsenic in the fine fraction (<1 microm). Fine particles are more likely to be deposited in the deeper zones of the respiratory system; therefore, they are more dangerous than coarse particles that can be filtered out in the upper respiratory system. Unfortunately, knowing the total concentration of contaminants does not give us enough information to identify the source of contamination. For this reason, lead isotopes have been introduced as fingerprints for source apportionment. Each source of lead has specific isotopic ratios; by knowing these ratios sources can be identified. During this research, lead isotopic ratios were analyzed at different sites and for different aerosol sizes. From these analyses it can be concluded that lead isotopes are a powerful tool to identify sources of lead. Mitigation strategies could be developed if the source of contamination is well defined. Environmental conditions as wind speed, wind direction, relative humidity and precipitation have an important role in the concentration of atmospheric dust. Dry environments with low relative humidity are ideal for the transport of aerosols. Results obtained from this research show the relationship between dust concentrations and meteorological parameters. Dust concentrations are highly correlated

  3. A Source Apportionment of U.S. Fine Particulate Matter Air Pollution

    PubMed Central

    Thurston, George D.; Ito, Kazuhiko; Lall, Ramona

    2011-01-01

    .5 components agreed well with the U.S. PM2.5 observed during the study period (mean=14.3 ug/m3; R2= 0.91). Apportionment regression analyses using single-element tracers for each source category gave results consistent with the APCA estimates. Comparisons of nearby sites indicated that the PM2.5 mass and the secondary aerosols were most homogenous spatially, while traffic PM2.5 and its tracer, EC, were among the most spatially representative of the source-related components. Comparison of apportionment results to a previous analysis of the 1979–1982 IP Network revealed similar and correlated major U.S. source category factors, albeit at lower levels than in the earlier period, suggesting a consistency in the U.S. spatial patterns of these source-related exposures over time, as well. These results indicate that applying source apportionment methods to the nationwide CSN can be an informative avenue for identifying and quantifying source components for the subsequent estimation of source-specific health effects, potentially contributing to more efficient regulation of PM2.5. PMID:24634604

  4. Photochemical grid model implementation of VOC, NOx, and O3 source apportionment

    NASA Astrophysics Data System (ADS)

    Kwok, R. H. F.; Baker, K. R.; Napelenok, S. L.; Tonnesen, G. S.

    2014-09-01

    For the purposes of developing optimal emissions control strategies, efficient approaches are needed to identify the major sources or groups of sources that contribute to elevated ozone (O3) concentrations. Source based apportionment techniques implemented in photochemical grid models track sources through the physical and chemical processes important to the formation and transport of air pollutants. Photochemical model source apportionment has been used to estimate impacts of specific sources, groups of sources (sectors), sources in specific geographic areas, and stratospheric and lateral boundary inflow on O3. The implementation and application of a source apportionment technique for O3 and its precursors, nitrogen oxides (NOx) and volatile organic compounds (VOC), for the Community Multiscale Air Quality (CMAQ) model are described here. The Integrated Source Apportionment Method (ISAM) O3 approach is a hybrid of source apportionment and source sensitivity in that O3 production is attributed to precursor sources based on O3 formation regime (e.g., for a NOx-sensitive regime, O3 is apportioned to participating NOx emissions). This implementation is illustrated by tracking multiple emissions source sectors and lateral boundary inflow. NOx, VOC, and O3 attribution to tracked sectors in the application are consistent with spatial and temporal patterns of precursor emissions. The O3 ISAM implementation is further evaluated through comparisons of apportioned ambient concentrations and deposition amounts with those derived from brute force zero-out scenarios, with correlation coefficients ranging between 0.58 and 0.99 depending on specific combination of target species and tracked precursor emissions. Low correlation coefficients occur for chemical regimes that have strong non-linearity in O3 sensitivity, which demonstrates different functionalities between source apportionment and zero-out approaches, depending on whether sources of interest are either to be accounted

  5. Source Apportionment Using Positive Matrix Factorization on Daily Measurements of Inorganic and Organic Speciated PM2.5

    PubMed Central

    Dutton, Steven J.; Vedal, Sverre; Piedrahita, Ricardo; Milford, Jana B.; Miller, Shelly L.; Hannigan, Michael P.

    2012-01-01

    Particulate matter less than 2.5 microns in diameter (PM2.5) has been linked with a wide range of adverse health effects. Determination of the sources of PM2.5 most responsible for these health effects could lead to improved understanding of the mechanisms of such effects and more targeted regulation. This has provided the impetus for the Denver Aerosol Sources and Health (DASH) study, a multi-year source apportionment and health effects study relying on detailed inorganic and organic PM2.5 speciation measurements. In this study, PM2.5 source apportionment is performed by coupling positive matrix factorization (PMF) with daily speciated PM2.5 measurements including inorganic ions, elemental carbon (EC) and organic carbon (OC), and organic molecular markers. A qualitative comparison is made between two models, PMF2 and ME2, commonly used for solving the PMF problem. Many previous studies have incorporated chemical mass balance (CMB) for organic molecular marker source apportionment on limited data sets, but the DASH data set is large enough to use multivariate factor analysis techniques such as PMF. Sensitivity of the PMF2 and ME2 models to the selection of speciated PM2.5 components and model input parameters was investigated in depth. A combination of diagnostics was used to select an optimum, 7-factor model using one complete year of daily data with pointwise measurement uncertainties. The factors included 1) a wintertime/methoxyphenol factor, 2) an EC/sterane factor, 3) a nitrate/polycyclic aromatic hydrocarbon (PAH) factor, 4) a summertime/selective aliphatic factor, 5) an n-alkane factor, 6) a middle oxygenated PAH/alkanoic acid factor and 7) an inorganic ion factor. These seven factors were qualitatively linked with known PM2.5 emission sources with varying degrees of confidence. Mass apportionment using the 7-factor model revealed the contribution of each factor to the mass of OC, EC, nitrate and sulfate. On an annual basis, the majority of OC and EC mass

  6. Receptor modeling application framework for particle source apportionment.

    PubMed

    Watson, John G; Zhu, Tan; Chow, Judith C; Engelbrecht, Johann; Fujita, Eric M; Wilson, William E

    2002-12-01

    Receptor models infer contributions from particulate matter (PM) source types using multivariate measurements of particle chemical and physical properties. Receptor models complement source models that estimate concentrations from emissions inventories and transport meteorology. Enrichment factor, chemical mass balance, multiple linear regression, eigenvector. edge detection, neural network, aerosol evolution, and aerosol equilibrium models have all been used to solve particulate air quality problems, and more than 500 citations of their theory and application document these uses. While elements, ions, and carbons were often used to apportion TSP, PM10, and PM2.5 among many source types, many of these components have been reduced in source emissions such that more complex measurements of carbon fractions, specific organic compounds, single particle characteristics, and isotopic abundances now need to be measured in source and receptor samples. Compliance monitoring networks are not usually designed to obtain data for the observables, locations, and time periods that allow receptor models to be applied. Measurements from existing networks can be used to form conceptual models that allow the needed monitoring network to be optimized. The framework for using receptor models to solve air quality problems consists of: (1) formulating a conceptual model; (2) identifying potential sources; (3) characterizing source emissions; (4) obtaining and analyzing ambient PM samples for major components and source markers; (5) confirming source types with multivariate receptor models; (6) quantifying source contributions with the chemical mass balance; (7) estimating profile changes and the limiting precursor gases for secondary aerosols; and (8) reconciling receptor modeling results with source models, emissions inventories, and receptor data analyses. PMID:12492167

  7. Sources of Size Segregated Sulfate Aerosols in the Arctic Summer

    NASA Astrophysics Data System (ADS)

    Ghahremaninezhadgharelar, R.; Norman, A. L.; Abbatt, J.; Levasseur, M.

    2015-12-01

    Aerosols drive significant radiative forcing and affect Arctic climate. Despite the importance of these particles in Arctic climate change, there are some key uncertainties in the estimation of their effects and sources. Aerosols in six size fractions between <0.49 to 7.0 microns in diameter were collected on board the Canadian Coast Guard Ship (CCGS) Amundsen in the Arctic, during July 2014. A cascade impactor fitted to a high volume sampler was used for this study and was modified to permit collection of SO2 after aerosols were removed from the gas stream. The isotopic composition of sulfate aerosols and SO2 was measured and apportionment calculations have been performed to quantify the contribution of biogenic as well as anthropogenic sources to the growth of different aerosol size fractions in the atmosphere. The presence of sea salt sulfate aerosols was especially high in coarse mode aerosols as expected. The contribution of biogenic sulfate concentration in this study was higher than anthropogenic sulfate. Around 70% of fine aerosols (<0.49 μm) and 86% of SO2 were from biogenic sources. Concentrations of biogenic sulfate for fine aerosols, ranging from 18 to 625 ng/m3, were five times higher than total biogenic sulfate concentrations measured during Fall in the same region (Rempillo et al., 2011). A comparison of the isotope ratio for SO2 and fine aerosols offers a way to determine aerosol growth from local SO2 oxidation. For some samples, the values for SO2 and fine aerosols were close together suggesting the same source for SO2 and aerosol sulfur.Aerosols drive significant radiative forcing and affect Arctic climate. Despite the importance of these particles in Arctic climate change, there are some key uncertainties in the estimation of their effects and sources. Aerosols in six size fractions between <0.49 to 7.0 microns in diameter were collected on board the Canadian Coast Guard Ship (CCGS) Amundsen in the Arctic, during July 2014. A cascade impactor

  8. Source apportionment of airborne particulate matter using inorganic and organic species as tracers

    NASA Astrophysics Data System (ADS)

    Wang, Yungang; Hopke, Philip K.; Xia, Xiaoyan; Rattigan, Oliver V.; Chalupa, David C.; Utell, Mark J.

    2012-08-01

    Source apportionment is typically performed on chemical composition data derived from particulate matter (PM) samples. However, many common sources no longer emit significant amounts of characteristic trace elements requiring the use of more comprehensive chemical characterization in order to fully resolve the PM sources. Positive matrix factorization (EPA PMF, version 4.1) was used to analyze 24-hr integrated molecular marker (MM), secondary inorganic ions, trace elements, carbonaceous species and light absorption data to investigate sources of PM2.5 in Rochester, New York between October 2009 and October 2010 to explore the role of specific MMs. An eight-factor solution was found for which the factors were identified as isoprene secondary organic aerosol (SOA), airborne soil, other SOA, diesel emissions, secondary sulfate, wood combustion, gasoline vehicle, and secondary nitrate contributing 6.9%, 12.8%, 3.7%, 7.8%, 45.5%, 9.1%, 7.9%, and 6.3% to the average PM2.5 concentration, respectively Concentrations of pentacosane, hexacosane, heptacosane, and octacosane in the gasoline vehicles factor were larger compared to diesel emissions. Aethalometer Delta-C was strongly associated with wood combustion. The compounds, n-heptacosanoic acid and n-octacosanoic acid, occasionally used in the past as tracers for road dust, were found to largely associate with SOA in this study. In comparison with a standard PMF analyses without MM, inclusion of them was necessary to resolve SOA and wood combustion factors in urban areas.

  9. Sensitivity of fluvial sediment source apportionment to mixing model assumptions: A Bayesian model comparison

    NASA Astrophysics Data System (ADS)

    Cooper, Richard J.; Krueger, Tobias; Hiscock, Kevin M.; Rawlins, Barry G.

    2014-11-01

    Mixing models have become increasingly common tools for apportioning fluvial sediment load to various sediment sources across catchments using a wide variety of Bayesian and frequentist modeling approaches. In this study, we demonstrate how different model setups can impact upon resulting source apportionment estimates in a Bayesian framework via a one-factor-at-a-time (OFAT) sensitivity analysis. We formulate 13 versions of a mixing model, each with different error assumptions and model structural choices, and apply them to sediment geochemistry data from the River Blackwater, Norfolk, UK, to apportion suspended particulate matter (SPM) contributions from three sources (arable topsoils, road verges, and subsurface material) under base flow conditions between August 2012 and August 2013. Whilst all 13 models estimate subsurface sources to be the largest contributor of SPM (median ˜76%), comparison of apportionment estimates reveal varying degrees of sensitivity to changing priors, inclusion of covariance terms, incorporation of time-variant distributions, and methods of proportion characterization. We also demonstrate differences in apportionment results between a full and an empirical Bayesian setup, and between a Bayesian and a frequentist optimization approach. This OFAT sensitivity analysis reveals that mixing model structural choices and error assumptions can significantly impact upon sediment source apportionment results, with estimated median contributions in this study varying by up to 21% between model versions. Users of mixing models are therefore strongly advised to carefully consider and justify their choice of model structure prior to conducting sediment source apportionment investigations.

  10. Source apportionment of airborne particulate matter for the speciation trends network site in Cleveland, OH

    SciTech Connect

    Liming Zhou; Philip K. Hopke; Weixiang Zhao

    2009-03-15

    Aerosol composition data from the Speciation Trends Network (STN) site (East 14th Street) in Cleveland, OH, were analyzed by advanced receptor model methods for source apportionment as well as by the standard positive matrix factorization (PMF) using PMF2. These different models are used in combination to test model limitations. These data were 24-hr average mass concentrations and compositions obtained for samples taken every third day from 2001 to 2003. The Multilinear Engine (ME) was used to solve an expanded model to estimate the source profiles and source contributions and also to investigate the wind speed, wind direction, time-of-day, weekend/weekday, and seasonal effects. PMF2 was applied to the same dataset. Potential source contribution function (PSCF) and conditional probability function (CPF) analyses were used to locate the regional and local sources using the resolved source contributions and appropriate meteorological data. Very little difference was observed between the results of the expanded model and the PMF2 values for the profiles and source contribution time series. The identified sources were as ferrous smelter, secondary sulfate, secondary nitrate, soil/combustion mixture, steel mill, traffic, wood smoke, and coal burning. The CPF analysis was useful in helping to identify local sources, whereas the PSCF results were only useful for regional source areas. Both of these analyses were more useful than the wind directional factor derived from the expanded factor analysis. However, the expanded analysis provided direct information on seasonality and day-of-week behavior of the sources. 28 refs., 8 figs., 4 tabs.

  11. Source apportionment studies at different european sites with time and size resolved trace element data

    NASA Astrophysics Data System (ADS)

    Richard, Agnes; Furger, Markus; Bukowiecki, Nicolas; Lienemann, Peter; Flechsig, Uwe; Rickers-Appel, Karen; Minguillon, Mari-Cruz; Reche, Cristina; Prevot, Andre; Baltensperger, Urs

    2010-05-01

    Although trace elements do not contribute substantially to the total mass of air pollutants they can attribute significantly to source identifications. Apportionment studies performed with positive matrix factorization (PMF) took advantage of the gain in information obtained through a high time resolution (i.e. in the order of hours). Furthermore, aerosols sampled with the rotating drum impactor (RDI) are segregated into three size ranges (PM10-2.5, PM2.5-1 and PM0.1-1). This involves the possibility to identify different sources for a single element depending on its emitted particle size. An example is iron, which is attributed to mineral dust in the coarse mode and to mechanical abrasion in the fine mode. A broad range of elements (Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Se, Sr, Zr, Cd, Sn, Sb, Ba) was analyzed with synchrotron-radiation based x-ray fluorescence. Field measurements were carried out during 2008 and 2009 at different places in Europe in the context of EUCAARI (Zürich, CH), EMEP (Payerne, CH) and DAURE (Barcelona, ES) campaigns. Comparison of source profiles from different campaigns shows regional variability due to individual properties of rural and urban sites. As would be expected, urban areas exhibit stronger traffic factors, whereas mineral dust is enhanced at rural sites. Also geographical differences can be distinguished by PMF, as the Barcelona site clearly showed a marine factor and industrial influences, which are absent in Switzerland.

  12. Characterization of regional carbonaceous particulate matter in Central Texas using combined radiocarbon and organic tracer source apportionment

    NASA Astrophysics Data System (ADS)

    Sheesley, R. J.; Barrett, T.; Nallathamby, P. D.

    2012-12-01

    Atmospheric particulate matter (PM) in Texas can be transported readily among urban, rural and natural areas. Depending upon the season and transport conditions, major Texas cities can readily impact PM loadings in urban and rural areas across the state. To begin to assess the potential impacts of anthropogenic and biogenic sources on carbonaceous aerosol loading in Central Texas, source apportionment modeling is needed. For this study, two rigorous models have been combined to provide better constraints on potential emission sources; organic tracer chemical mass balance modeling and radiocarbon source apportionment have been combined to provide complementary information on primary emission contributions (motor vehicle exhaust and biomass burning) and total fossil vs modern (biogenic plus biomass burning) contributions to carbonaceous PM. Preliminary results indicate more than 50% of carbonaceous PM is from biogenic/biomass burning emissions during the summer study period. Organic tracer CMB will be added to increase specificity in the fossil and modern carbon emission sources (ie. motor vehicle exhaust and biomass burning). This detailed, top-down study can provide crucial constraints for future regional, bottom-up approaches which focus on emissions inventories.

  13. Source apportionment of fine particles in Tennessee using a source-oriented model.

    PubMed

    Doraiswamy, Prakash; Davis, Wayne T; Miller, Terry L; Fu, Joshua S

    2007-04-01

    Source apportionment of fine particles (PM2.5, particulate matter < 2 microm in aerodynamic diameter) is important to identify the source categories that are responsible for the concentrations observed at a particular receptor. Although receptor models have been used to do source apportionment, they do not fully take into account the chemical reactions (including photochemical reactions) involved in the formation of secondary fine particles. Secondary fine particles are formed from photochemical and other reactions involving precursor gases, such as sulfur dioxide, oxides of nitrogen, ammonia, and volatile organic compounds. This paper presents the results of modeling work aimed at developing a source apportionment of primary and secondary PM2.5. On-road mobile source and point source inventories for the state of Tennessee were estimated and compiled. The national emissions inventory for the year 1999 was used for the other states. U.S. Environmental Protection Agency Models3/Community Multi-Scale Air Quality modeling system was used for the photochemical/secondary particulate matter modeling. The modeling domain consisted of a nested 36-12-4-km domain. The 4-km domain covered the entire state of Tennessee. The episode chosen for the modeling runs was August 29 to September 9, 1999. This paper presents the approach used and the results from the modeling and attempts to quantify the contribution of major source categories, such as the on-road mobile sources (including the fugitive dust component) and coal-fired power plants, to observed PM2.5 concentrations in Tennessee. The results of this work will be helpful in policy issues targeted at designing control strategies to meet the PM2.5 National Ambient Air Quality Standards in Tennessee. PMID:17458460

  14. Source apportionment of size-segregated atmospheric particles based on the major water-soluble components in Lecce (Italy).

    PubMed

    Contini, D; Cesari, D; Genga, A; Siciliano, M; Ielpo, P; Guascito, M R; Conte, M

    2014-02-15

    Atmospheric aerosols have potential effects on human health, on the radiation balance, on climate, and on visibility. The understanding of these effects requires detailed knowledge of aerosol composition and size distributions and of how the different sources contribute to particles of different sizes. In this work, aerosol samples were collected using a 10-stage Micro-Orifice Uniform Deposit Impactor (MOUDI). Measurements were taken between February and October 2011 in an urban background site near Lecce (Apulia region, southeast of Italy). Samples were analysed to evaluate the concentrations of water-soluble ions (SO4(2-), NO3(-), NH4(+), Cl(-), Na(+), K(+), Mg(2+) and Ca(2+)) and of water-soluble organic and inorganic carbon. The aerosols were characterised by two modes, an accumulation mode having a mass median diameter (MMD) of 0.35 ± 0.02 μm, representing 51 ± 4% of the aerosols and a coarse mode (MMD=4.5 ± 0.4 μm), representing 49 ± 4% of the aerosols. The data were used to estimate the losses in the impactor by comparison with a low-volume sampler. The average loss in the MOUDI-collected aerosol was 19 ± 2%, and the largest loss was observed for NO3(-) (35 ± 10%). Significant losses were observed for Ca(2+) (16 ± 5%), SO4(2-) (19 ± 5%) and K(+) (10 ± 4%), whereas the losses for Na(+) and Mg(2+) were negligible. Size-segregated source apportionment was performed using Positive Matrix Factorization (PMF), which was applied separately to the coarse (size interval 1-18 μm) and accumulation (size interval 0.056-1 μm) modes. The PMF model was able to reasonably reconstruct the concentration in each size-range. The uncertainties in the source apportionment due to impactor losses were evaluated. In the accumulation mode, it was not possible to distinguish the traffic contribution from other combustion sources. In the coarse mode, it was not possible to efficiently separate nitrate from the contribution of crustal/resuspension origin. PMID:24295746

  15. Sensitivity of fluvial sediment source apportionment to mixing model assumptions: A Bayesian model comparison

    PubMed Central

    Cooper, Richard J; Krueger, Tobias; Hiscock, Kevin M; Rawlins, Barry G

    2014-01-01

    Mixing models have become increasingly common tools for apportioning fluvial sediment load to various sediment sources across catchments using a wide variety of Bayesian and frequentist modeling approaches. In this study, we demonstrate how different model setups can impact upon resulting source apportionment estimates in a Bayesian framework via a one-factor-at-a-time (OFAT) sensitivity analysis. We formulate 13 versions of a mixing model, each with different error assumptions and model structural choices, and apply them to sediment geochemistry data from the River Blackwater, Norfolk, UK, to apportion suspended particulate matter (SPM) contributions from three sources (arable topsoils, road verges, and subsurface material) under base flow conditions between August 2012 and August 2013. Whilst all 13 models estimate subsurface sources to be the largest contributor of SPM (median ∼76%), comparison of apportionment estimates reveal varying degrees of sensitivity to changing priors, inclusion of covariance terms, incorporation of time-variant distributions, and methods of proportion characterization. We also demonstrate differences in apportionment results between a full and an empirical Bayesian setup, and between a Bayesian and a frequentist optimization approach. This OFAT sensitivity analysis reveals that mixing model structural choices and error assumptions can significantly impact upon sediment source apportionment results, with estimated median contributions in this study varying by up to 21% between model versions. Users of mixing models are therefore strongly advised to carefully consider and justify their choice of model structure prior to conducting sediment source apportionment investigations. Key Points An OFAT sensitivity analysis of sediment fingerprinting mixing models is conducted Bayesian models display high sensitivity to error assumptions and structural choices Source apportionment results differ between Bayesian and frequentist approaches PMID

  16. A new methodology to assess the performance and uncertainty of source apportionment models in intercomparison exercises

    NASA Astrophysics Data System (ADS)

    Belis, C. A.; Pernigotti, D.; Karagulian, F.; Pirovano, G.; Larsen, B. R.; Gerboles, M.; Hopke, P. K.

    2015-10-01

    A new methodology to assess source apportionment model performance in intercomparison exercises, encompassing the preparation of real-world and synthetic datasets and the evaluation of the source apportionment results reported by participants, is described. The evaluation consists of three types of tests: complementary tests, preliminary tests, and performance tests. The complementary tests provide summary information about the source apportionment results as a whole. The preliminary tests check whether source/factors belong to a given source category. Three types of indicators: Pearson correlation (Pearson), standardized identity distance (SID), and weighted difference (WD) are used to test factor/source chemical profiles, while factor/source time series and contribution-to-species values are tested only using the Pearson. The performance tests, based on international standards for proficiency testing, are targeted at evaluating whether the reported biases in the quantification of the factor/source contribution estimates (SCEs) and uncertainties are consistent with previously established quality standards in a fitness-for-purpose approach. Moreover, the consistency of the SCE time series is evaluated using a variant of the RMSE normalised by the reference standard uncertainty. The described methodology facilitates a thorough evaluation of the source apportionment output. The new indicator to compare source or factor profiles presented in this study (SID) is more robust and provides additional information compared to the existing ones.

  17. MONITORING AND SOURCE APPORTIONMENT OF PARTICULATE MATTER NEAR A LARGE PHOSPHORUS PRODUCTION FACILITY

    EPA Science Inventory

    A source apportionment study was conducted to identify sources within a large elemental phosphorus plant that contribute to exceedances of the National Ambient Air Quality Standard for 24-h PM10. Ambient data were collected at three monitoring sites from October 1996 through Ju...

  18. DEVELOPMENT AND EVALUATION OF PM 2.5 SOURCE APPORTIONMENT METHODOLOGIES

    EPA Science Inventory

    The receptor model called Positive Matrix Factorization (PMF) has been extensively used to apportion sources of ambient fine particulate matter (PM2.5), but the accuracy of source apportionment results currently remains unknown. In addition, air quality forecast model...

  19. Chemical Characterization and Source Apportionment of Particulate Matter in Lahore, Pakistan

    NASA Astrophysics Data System (ADS)

    von Schneidemesser, Erika; Stone, Elizabeth; Quraishi, Tauseef; Schauer, James; Shafer, Martin; Mahmood, Abid

    2010-05-01

    Lahore, Pakistan is a rapidly growing megacity with a population approaching 10 million. A significant issue affecting many of the world's megacities is extremely high levels of air pollution associated with transportation, solid fuel combustion, and industrial sources. High ambient concentrations of particulate matter (PM), as well as high levels of toxic components of PM, have been linked to increased mortality and morbidity. Although much focus has been directed at particulate matter mass, in many developing and underdeveloped nations, the adverse health impacts of high levels of PM are further enhanced by the high concentrations of toxic components in PM. To address these issues is Lahore, a measurement campaign of fine (PM2.5) and coarse (PM10-2.5) particulate matter was conducted for the 2007 calendar year, which included measurements of particle mass, detailed chemical composition of PM and source apportionment calculations. Annual average PM2.5 and PM10 concentrations were measured to be 194 µg m-3 and 336 µg m-3, respectively, with daily 24-hour maximum concentrations of 410 µg m-3 and 650 µg m-3 for PM2.5 and PM10, respectively. PM2.5 and PM10 samples were analysed for organic and elemental carbon, organic species, ionic species, elemental composition, water soluble elements and biological activity using a macrophage ROS assay. The coarse mode was dominated by crustal dust components, while the fine fraction was dominated by carbonaceous aerosols. The PM10 elemental composition data, which included data for toxic metals, was processed using principle component analysis to determine likely source categories. Seven factors were identified explaining 91% of the variance of the measured components. The factors included a number of industrial sources, re-suspended soil, mobile sources, and regional secondary aerosol. Source contributions to the organic carbon (OC) component of the PM2.5 fraction were identified using organic tracer species and chemical

  20. Fine particulate matter in the tropical environment: monsoonal effects, source apportionment, and health risk assessment

    NASA Astrophysics Data System (ADS)

    Khan, M. F.; Latif, M. T.; Saw, W. H.; Amil, N.; Nadzir, M. S. M.; Sahani, M.; Tahir, N. M.; Chung, J. X.

    2016-01-01

    The health implications of PM2.5 in the tropical region of Southeast Asia (SEA) are significant as PM2.5 can pose serious health concerns. PM2.5 concentration and sources here are strongly influenced by changes in the monsoon regime from the south-west quadrant to the north-east quadrant in the region. In this work, PM2.5 samples were collected at a semi-urban area using a high-volume air sampler at different seasons on 24 h basis. Analysis of trace elements and water-soluble ions was performed using inductively coupled plasma mass spectroscopy (ICP-MS) and ion chromatography (IC), respectively. Apportionment analysis of PM2.5 was carried out using the United States Environmental Protection Agency (US EPA) positive matrix factorization (PMF) 5.0 and a mass closure model. We quantitatively characterized the health risks posed to human populations through the inhalation of selected heavy metals in PM2.5. 48 % of the samples collected exceeded the World Health Organization (WHO) 24 h PM2.5 guideline but only 19 % of the samples exceeded 24 h US EPA National Ambient Air Quality Standard (NAAQS). The PM2.5 concentration was slightly higher during the north-east monsoon compared to south-west monsoon. The main trace metals identified were As, Pb, Cd, Ni, Mn, V, and Cr while the main ions were SO42-, NO3-, NH4+, and Na. The mass closure model identified four major sources of PM2.5 that account for 55 % of total mass balance. The four sources are mineral matter (MIN) (35 %), secondary inorganic aerosol (SIA) (11 %), sea salt (SS) (7 %), and trace elements (TE) (2 %). PMF 5.0 elucidated five potential sources: motor vehicle emissions coupled with biomass burning (31 %) were the most dominant, followed by marine/sulfate aerosol (20 %), coal burning (19 %), nitrate aerosol (17 %), and mineral/road dust (13 %). The hazard quotient (HQ) for four selected metals (Pb, As, Cd, and Ni) in PM2.5 mass was highest in PM2.5 mass from the coal burning source and least in PM2.5 mass

  1. Source apportionment of particles at Station Nord, North East Greenland during 2008-2010 using COPREM and PMF analysis

    NASA Astrophysics Data System (ADS)

    Nguyen, Q. T.; Skov, H.; Sørensen, L. L.; Jensen, B. J.; Grube, A. G.; Massling, A.; Glasius, M.; Nøjgaard, J. K.

    2012-09-01

    In order to develop strategies for controlling and reducing Arctic air pollution, there is a need to understand the basic mechanisms for determining the fate of air pollution in the Arctic. Sources of atmospheric particles at Station Nord (81°36' N, 16°40' W) in North East Greenland were evaluated for a two-year period from March 2008 to February 2010. Source apportionment using Positive Matrix Factorization (PMF) and COnstrained Physical Receptor Model (COPREM) was based on measurements of black carbon, elements (Al, Si, S, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Ga, As, Se, Br, Rb, Sr, Zr, Pb) and inorganic ions (SO2, SO42-, Na+, NH4+, NO3-, Cl-). In general, source apportionment results by PMF and COPREM showed good agreement. Five sources adequately explained the measurements, which included a Marine and a Soil source of natural origin and three additional anthropogenic sources, which were all influenced by metal industries. One anthropogenic source was dominated by Zn of which air mass back trajectories using the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model suggested a Canadian Arctic origin, despite certain influences from southern and eastern origins. Another anthropogenic source was characterised by high concentrations of Pb and As, which has been historically referred to as a Combustion source at Station Nord. The impacts of large-scale industry in Siberia, Russia were evident through high Cu concentrations in both the Combustion source and an additional Cu/Ni source. Br correlated well with the anthropogenic species S and Pb though the elements are unlikely to have a common origin. More likely, sulphuric acid aerosols serve as transport containers for Br species of marine or local origin. Of particular relevance to climate, sources of black carbon were identified to be mainly anthropogenic and most probably of Siberian origin (80-98%).

  2. Source apportionment of particles at Station Nord, North East Greenland during 2008-2010 using COPREM and PMF analysis

    NASA Astrophysics Data System (ADS)

    Nguyen, Q. T.; Skov, H.; Sørensen, L. L.; Jensen, B. J.; Grube, A. G.; Massling, A.; Glasius, M.; Nøjgaard, J. K.

    2013-01-01

    In order to develop strategies for controlling and reducing Arctic air pollution, there is a need to understand the basic mechanisms for determining the fate of air pollution in the Arctic. Sources of atmospheric particles at Station Nord (81° 36' N, 16° 40' W) in North East Greenland were evaluated for a two-year period from March 2008 to February 2010. Source apportionment using Positive Matrix Factorization (PMF) and COnstrained Physical REceptor Model (COPREM) was based on measurements of black carbon, elements (Al, Si, S, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Ga, As, Se, Br, Rb, Sr, Zr, Pb) and inorganic ions (SO2, SO42-, Na+, NH4+, NO3-, Cl2-. In general, source apportionment results by PMF and COPREM showed good agreement. Five sources adequately explained the measurements, which included a Marine and a Soil source of natural origin and three additional anthropogenic sources, which were all influenced by metal industries. One anthropogenic source was dominated by Zn of which air mass back trajectories using the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model suggested a Canadian Arctic origin, despite certain influences from Southern and Eastern origins. Another anthropogenic source was characterised by high concentrations of Pb and As, which has been historically referred to as a Combustion source at Station Nord. The impacts of large-scale industry in Siberia, Russia were evident through high Cu concentrations in both the Combustion source and an additional Cu/Ni source. Br correlated well with the anthropogenic species S and Pb though the elements are unlikely to have a common origin. More likely, sulphuric acid aerosols serve as transport containers for Br species of marine origin. Of particular relevance to climate, sources of black carbon were identified to be mainly anthropogenic and most probably of Siberian origin (80-98%).

  3. Chemical speciation and source apportionment of fine particulate matter in Santiago, Chile, 2013.

    PubMed

    Villalobos, Ana M; Barraza, Francisco; Jorquera, Héctor; Schauer, James J

    2015-04-15

    Santiago is one of the largest cities in South America and has experienced high fine particulate matter (PM2.5) concentrations in fall and winter months for decades. To better understand the sources of fall and wintertime pollution in Santiago, PM2.5 samples were collected for 24 h every weekday from March to October 2013 for chemical analysis. Samples were analyzed for mass, elemental carbon (EC), organic carbon (OC), water soluble organic carbon (WSOC), water soluble nitrogen (WSTN), secondary inorganic ions, and particle-phase organic tracers for source apportionment. Selected samples were analyzed as monthly composites for organic tracers. PM2.5 concentrations were considerably higher in the coldest months (June-July), averaging (mean ± standard deviation) 62±15 μg/m(3) in these two months. Average fine particle mass concentration during the study period was 40±20 μg/m(3). Organic matter during the peak winter months was the major component of fine particles comprising around 70% of the particle mass. Source contributions to OC were calculated using organic molecular markers and a chemical mass balance (CMB) receptor model. The four combustion sources identified were wood smoke, diesel engine emission, gasoline vehicles, and natural gas. Wood smoke was the predominant source of OC, accounting for 58±42% of OC in fall and winter. Wood smoke and nitrate were the major contributors to PM2.5. In fall and winter, wood smoke accounted for 9.8±7.1 μg/m(3) (21±15%) and nitrate accounted for 9.1±4.8 μg/m(3) (20±10%) of fine PM. The sum of secondary inorganic ions (sulfate, nitrate, and ammonium) represented about 30% of PM2.5 mass. Secondary organic aerosols contributed only in warm months, accounting for about 30% of fine PM during this time. PMID:25617780

  4. Problems in the fingerprints based polycyclic aromatic hydrocarbons source apportionment analysis and a practical solution.

    PubMed

    Zou, Yonghong; Wang, Lixia; Christensen, Erik R

    2015-10-01

    This work intended to explain the challenges of the fingerprints based source apportionment method for polycyclic aromatic hydrocarbons (PAH) in the aquatic environment, and to illustrate a practical and robust solution. The PAH data detected in the sediment cores from the Illinois River provide the basis of this study. Principal component analysis (PCA) separates PAH compounds into two groups reflecting their possible airborne transport patterns; but it is not able to suggest specific sources. Not all positive matrix factorization (PMF) determined sources are distinguishable due to the variability of source fingerprints. However, they constitute useful suggestions for inputs for a Bayesian chemical mass balance (CMB) analysis. The Bayesian CMB analysis takes into account the measurement errors as well as the variations of source fingerprints, and provides a credible source apportionment. Major PAH sources for Illinois River sediments are traffic (35%), coke oven (24%), coal combustion (18%), and wood combustion (14%). PMID:26208321

  5. Source Apportionment of Primary and Secondary Fine Particulate Matter in China

    NASA Astrophysics Data System (ADS)

    Hu, J.; Zhang, H.; Ying, Q.

    2015-12-01

    In the past few decades, China have been facing extreme particulate matter (PM) pollution problems due to the combination of fast increase of population, industrialization, urbanization and associated energy consumption and lagging of sufficient emission control measures. Studies have identified the major components of fine PM (PM2.5) in China include primary PM (which is directly emitted into the atmosphere), sulfate and nitrate (which are mainly secondary PM, i.e., formed from gaseous precursors), and organic aerosols (which can be primary or secondary). Contributions of different source sectors to the different PM components are substantially different; therefore source apportionment of these components can provide critical information needed for policy makers to design effective emission control strategies. In the current study, a source-oriented version of the Community Multiscale Air Quality (CMAQ) model that directly tracks the contributions from multiple emission sources to primary and secondary PM2.5 is developed, and then applied to determine the regional contributions of power, industry, transportation and residential sectors to primary PM, nitrate and sulfate concentrations in China. Four months in 2012-2013 are simulated to predict the seasonal variations of source contributions. Model predictions are evaluated with ambient measured concentrations. The source-oriented CMAQ model is capable of reproducing most of the available PM10 and PM2.5 mass, and PM2.5 EC, POC, nitrate and sulfate observations. Predicted source contributions for EC also generally agree with to the source contributions estimated by receptor models reported in previous studies. Model predictions suggest residential is a major contributor to primary PM (30-70%) in the spring and winter, and industrial contributes 40-60% of primary PM in the summer and fall; Transportation is an important source for EC (20-30%); Power sector is the dominating source of nitrate and sulfate in both

  6. Weak acid extractable metals in Bramble Bay, Queensland, Australia: temporal behaviour, enrichment and source apportionment.

    PubMed

    Brady, James P; Ayoko, Godwin A; Martens, Wayde N; Goonetilleke, Ashantha

    2015-02-15

    Sediment samples were taken from six sampling sites in Bramble Bay, Queensland, Australia between February and November in 2012. They were analysed for a range of heavy metals including Al, Fe, Mn, Ti, Ce, Th, U, V, Cr, Co, Ni, Cu, Zn, As, Cd, Sb, Te, Hg, Tl and Pb. Fraction analysis, Enrichment Factors and Principal Component Analysis-Absolute Principal Component Scores (PCA-APCS) were carried out in order to assess metal pollution, potential bioavailability and source apportionment. Cr and Ni exceeded the Australian Interim Sediment Quality Guidelines at some sampling sites, while Hg was found to be the most enriched metal. Fraction analysis identified increased weak acid soluble Hg and Cd during the sampling period. Source apportionment via PCA-APCS found four sources of metals pollution, namely, marine sediments, shipping, antifouling coatings and a mixed source. These sources need to be considered in any metal pollution control measure within Bramble Bay. PMID:25537749

  7. Workgroup Report: Workshop on Source Apportionment of Particulate Matter Health Effects—Intercomparison of Results and Implications

    PubMed Central

    Thurston, George D.; Ito, Kazuhiko; Mar, Therese; Christensen, William F.; Eatough, Delbert J.; Henry, Ronald C.; Kim, Eugene; Laden, Francine; Lall, Ramona; Larson, Timothy V.; Liu, Hao; Neas, Lucas; Pinto, Joseph; Stölzel, Matthias; Suh, Helen; Hopke, Philip K.

    2005-01-01

    Although the association between exposure to ambient fine particulate matter with aerodynamic diameter < 2.5 μm (PM2.5) and human mortality is well established, the most responsible particle types/sources are not yet certain. In May 2003, the U.S. Environmental Protection Agency’s Particulate Matter Centers Program sponsored the Workshop on the Source Apportionment of PM Health Effects. The goal was to evaluate the consistency of the various source apportionment methods in assessing source contributions to daily PM2.5 mass–mortality associations. Seven research institutions, using varying methods, participated in the estimation of source apportionments of PM2.5 mass samples collected in Washington, DC, and Phoenix, Arizona, USA. Apportionments were evaluated for their respective associations with mortality using Poisson regressions, allowing a comparative assessment of the extent to which variations in the apportionments contributed to variability in the source-specific mortality results. The various research groups generally identified the same major source types, each with similar elemental makeups. Intergroup correlation analyses indicated that soil-, sulfate-, residual oil-, and salt-associated mass were most unambiguously identified by various methods, whereas vegetative burning and traffic were less consistent. Aggregate source-specific mortality relative risk (RR) estimate confidence intervals overlapped each other, but the sulfate-related PM2.5 component was most consistently significant across analyses in these cities. Analyses indicated that source types were a significant predictor of RR, whereas apportionment group differences were not. Variations in the source apportionments added only some 15% to the mortality regression uncertainties. These results provide supportive evidence that existing PM2.5 source apportionment methods can be used to derive reliable insights into the source components that contribute to PM2.5 health effects. PMID:16330361

  8. Concentrations and source apportionment of PM10 and associated major and trace elements in the Rhodes Island, Greece.

    PubMed

    Argyropoulos, Georgios; Manoli, Evangelia; Kouras, Athanasios; Samara, Constantini

    2012-08-15

    Ambient concentrations of PM(10) and associated major and trace elements were measured over the cold and the warm season of 2007 at two sites located in the Rhodes Island (Greece), in Eastern Mediterranean, aimed at source apportionment by Chemical Mass Balance (CMB) receptor modeling. Source chemical profiles, necessary in CMB modeling, were obtained for a variety of emission sources that could possibly affect the study area, including sea spray, geological material, soot emissions from the nearby oil-fuelled thermal power plant, and other anthropogenic activities, such as vehicular traffic, residential oil combustion, wood burning, and uncontrolled open-air burning of agricultural biomass and municipal waste. Source apportionment of PM(10) and elemental components was carried out by employing an advanced CMB version, the Robotic Chemical Mass Balance model (RCMB). Vehicular emissions were found to be major PM(10) contributor accounting, on average, for 36.8% and 31.7% during the cold period, and for 40.9% and 39.2% in the warm period at the two sites, respectively. The second largest source of ambient PM(10), with minor seasonal variation, was secondary sulfates (mainly ammonium and calcium sulfates), with total average contribution around 16.5% and 18% at the two sites. Soil dust was also a remarkable source contributing around 22% in the warm period, whereas only around 10% in the cold season. Soot emitted from the thermal power plant was found to be negligible contributor to ambient PM(10) (<1%), however it appeared to appreciably contribute to the ambient V and Ni (11.3% and 5.1%, respectively) at one of the sites during the warm period, when electricity production is intensified. Trajectory analysis did not indicate any transport of Sahara dust; on the contrary, long range transport of soil dust from arid continental regions of Minor Asia and of biomass burning aerosol from the countries surrounding the Black Sea was considered possible. PMID:22705902

  9. Source apportionment of black carbon in PM2.5 in China and its implications on estimation of direct radiative forcing

    NASA Astrophysics Data System (ADS)

    Du, K.; Deng, J.; Chen, B.; Gustafsson, O.; Andersson, A.-; Lee, M.; Kirillova, E. N.; Kruså, M.

    2012-12-01

    Chinese black carbon (BC) causes concerns for climate warming and air pollution, yet the emission sources of black carbon are in large uncertainty. Emission inventory models suggest that fossil fuel and biomass/biofuel burning are the primary contributors to atmospheric BC. In this study, top-down sourcing of Chinese BC was conducted to quantify the apportionment between bio- and fossil- based fuel burning using radiocarbon method. Results for black carbon aerosols collected at urban and regional receptor areas showed that 81±5% of Chinese BC were produced from fossil fuel combustion, contrasting with the results from emission inventories, which report 50-70% of BC were from fossil fuel combustion. Since fossil BC aerosols are perceived as stronger climate forcers than biomass BC aerosols, accurate understanding of BC apportionment would be essential to improve modeling of climate effect of BC. A simulation on BC's radiative forcing effect was carried out by differentiating the sources using the top-down approach. Preliminary modeling results are presented.

  10. IMPROVING PARTICULATE MATTER SOURCE APPORTIONMENT FOR HEALTH STUDIES: A TRAINED RECEPTOR MODELING APPROACH WITH SENSITIVITY, UNCERTAINTY AND SPATIAL ANALYSES

    EPA Science Inventory

    An approach for conducting PM source apportionment will be developed, tested, and applied that directly addresses limitations in current SA methods, in particular variability, biases, and intensive resource requirements. Uncertainties in SA results and sensitivities to SA inpu...

  11. Single source impacts estimated with photochemical model source sensitivity and apportionment approaches

    NASA Astrophysics Data System (ADS)

    Baker, Kirk R.; Kelly, James T.

    2014-10-01

    Some sources may need to estimate ozone and secondarily formed PM2.5 as part of the permit application process under the Clean Air Act New Source Review program. Photochemical grid models represent state-of-the-science gas- and particle-phase chemistry and provide a realistic chemical and physical environment for assessing changes in air quality resulting from changes in emissions. When using these tools for single source impact assessments, it is important to differentiate a single source impact from other emissions sources and to understand how well contemporary grid model applications capture near-source transport and chemistry. Here for the first time, both source apportionment and source sensitivity approaches (brute-force changes and high-order direct decoupled method) are used in a photochemical grid model to isolate impacts of a specific facility. These single source impacts are compared with in-plume measurements made as part of a well-characterized 1999 TVA Cumberland aircraft plume transect field study. The techniques were able to isolate the impacts of the TVA plume in a manner consistent with observations. The model predicted in-plume concentrations well when the observations were averaged to the grid scale, although peak concentrations of primary pollutants were generally underestimated near the source, possibly due to dilution in the 4-km grid cell.

  12. The qualitative and quantitative source apportionments of polycyclic aromatic hydrocarbons in size dependent road deposited sediment.

    PubMed

    Zhang, Jin; Wang, Jing; Hua, Pei; Krebs, Peter

    2015-02-01

    This study showcases the qualitative and quantitative source apportionments of size-dependent polycyclic aromatic hydrocarbons (PAHs) in road deposited sediment by means of molecular diagnostic ratio (MDR) and positive matrix factorisation (PMF) approaches. The MDR was initially used to narrow the PAH source candidates. PMF modelling was subsequently used to provide more precise source apportionment with the assistance of a multiple linear regression analysis. Through a combined qualitative and quantitative source apportionment, different potential source contributors were identified at different size fractions. Explicitly, three major contributors to sorption at the size fraction of 1000-400 μm were tentatively identified as incineration (26%), coal combustion (53%) and gasoline-powered vehicle (20%). Four major contributors to the size fraction of 400-100 μm were identified as gasoline-powered vehicle (25%), surface pavement (15%), diesel-powered vehicle (37%) and industrial boiler (24%). Four major contributors to the size fraction of 100-63 μm were identified as cogeneration emission (13%), diesel-powered vehicle (28%), tire debris (45%) and wood combustion (14%). The potential contributors in the size fraction 63-0.45 μm were identified as diesel-powered vehicle (21%), heterogeneous sources (41%) and biomass burning (38%). In addition, the highest ∑16PAH concentration was found in the smallest size fraction of 63-0.45 μm, which is also where the highest BaPE and TEF values for potential risk assessment occurred. PMID:25310884

  13. Do anthropogenic, continental or coastal aerosol sources impact on a marine aerosol signature at Mace Head?

    NASA Astrophysics Data System (ADS)

    O'Dowd, C.; Ceburnis, D.; Ovadnevaite, J.; Vaishya, A.; Rinaldi, M.; Facchini, M. C.

    2014-10-01

    Atmospheric aerosols have been sampled and characterised at the Mace Head north-east (NE) Atlantic atmospheric research station since 1958, with many interesting phenomena being discovered. However, with the range of new discoveries and scientific advances, there has been a range of concomitant criticisms challenging the representativeness of aerosol sampled at the station compared to that of aerosol over the pristine open-ocean. Two recurring criticisms relate to the lack of representativeness due to potentially enhanced coastal sources, possibly leading to artificially high values of aerosol concentrations, and to the influence of long-range transport of anthropogenic or continental aerosol and its potential dominance over, or perturbation of, a natural marine aerosol signal. Here, we review the results of previous experimental studies on marine aerosols over the NE Atlantic and at Mace Head with the aim of evaluating their representativeness relative to that of a pristine open-ocean aerosol, i.e. with negligible anthropogenic/continental influence. Particular focus is given to submicron organic matter (OM) aerosol. In summary, no correlation was found between OM and black carbon (BC) in marine air conforming to clean-air sampling criteria, either at BC levels of 0-15 or 15-50 ng m-3, suggesting that OM concentrations, up to observed peak values of 3.8 μg m-3, are predominantly natural in origin. Sophisticated carbon isotope analysis and aerosol mass spectral finger printing techniques corroborate the conclusion that there is a predominant natural source of OM, with 80% biogenic source apportionment being observed for general clean-air conditions, rising to ∼98% during specific primary marine organic plumes when peak OM mass concentrations > 3 μg m-3 are observed. Similarly, a maximum contribution of 20% OM mass coming from non-marine sources was established by dual carbon isotope analysis. Further, analysis of a series of experiments conducted at Mace Head

  14. Advanced source apportionment of size-resolved trace elements at multiple sites in London during winter

    NASA Astrophysics Data System (ADS)

    Visser, S.; Slowik, J. G.; Furger, M.; Zotter, P.; Bukowiecki, N.; Canonaco, F.; Flechsig, U.; Appel, K.; Green, D. C.; Tremper, A. H.; Young, D. E.; Williams, P. I.; Allan, J. D.; Coe, H.; Williams, L. R.; Mohr, C.; Xu, L.; Ng, N. L.; Nemitz, E.; Barlow, J. F.; Halios, C. H.; Fleming, Z. L.; Baltensperger, U.; Prévôt, A. S. H.

    2015-10-01

    Trace element measurements in PM10-2.5, PM2.5-1.0 and PM1.0-0.3 aerosol were performed with 2 h time resolution at kerbside, urban background and rural sites during the ClearfLo winter 2012 campaign in London. The environment-dependent variability of emissions was characterized using the Multilinear Engine implementation of the positive matrix factorization model, conducted on data sets comprising all three sites but segregated by size. Combining the sites enabled separation of sources with high temporal covariance but significant spatial variability. Separation of sizes improved source resolution by preventing sources occurring in only a single size fraction from having too small a contribution for the model to resolve. Anchor profiles were retrieved internally by analysing data subsets, and these profiles were used in the analyses of the complete data sets of all sites for enhanced source apportionment. A total of nine different factors were resolved (notable elements in brackets): in PM10-2.5, brake wear (Cu, Zr, Sb, Ba), other traffic-related (Fe), resuspended dust (Si, Ca), sea/road salt (Cl), aged sea salt (Na, Mg) and industrial (Cr, Ni); in PM2.5-1.0, brake wear, other traffic-related, resuspended dust, sea/road salt, aged sea salt and S-rich (S); and in PM1.0-0.3, traffic-related (Fe, Cu, Zr, Sb, Ba), resuspended dust, sea/road salt, aged sea salt, reacted Cl (Cl), S-rich and solid fuel (K, Pb). Human activities enhance the kerb-to-rural concentration gradients of coarse aged sea salt, typically considered to have a natural source, by 1.7-2.2. These site-dependent concentration differences reflect the effect of local resuspension processes in London. The anthropogenically influenced factors traffic (brake wear and other traffic-related processes), dust and sea/road salt provide further kerb-to-rural concentration enhancements by direct source emissions by a factor of 3.5-12.7. The traffic and dust factors are mainly emitted in PM10-2.5 and show strong

  15. Impact of gas/particle partitioning of semivolatile organic compounds on source apportionment with positive matrix factorization.

    PubMed

    Xie, Mingjie; Hannigan, Michael P; Barsanti, Kelley C

    2014-08-19

    To quantify and minimize the influence of gas/particle (G/P) partitioning on receptor-based source apportionment using particle-phase semivolatile organic compound (SVOC) data, positive matrix factorization (PMF) coupled with a bootstrap technique was applied to three data sets mainly composed of "measured-total" (measured particle- + gas-phase), "particle-only" (measured particle-phase) and "predicted-total" (measured particle-phase + predicted gas-phase) SVOCs to apportion carbonaceous aerosols. Particle- (PM2.5) and gas-phase SVOCs were collected using quartz fiber filters followed by PUF/XAD-4/PUF adsorbents and measured using gas chromatography-mass spectrometry (GC-MS). Concentrations of gas-phase SVOCs were also predicted from their particle-phase concentrations using absorptive partitioning theory. Five factors were resolved for each data set, and the factor profiles were generally consistent across the three PMF solutions. Using a previous source apportionment study at the same receptor site, those five factors were linked to summertime biogenic emissions (odd n-alkane factor), unburned fossil fuels (light SVOC factor), road dust and/or cooking (n-alkane factor), motor vehicle emissions (PAH factor), and lubricating oil combustion (sterane factor). The "measured-total" solution was least influenced by G/P partitioning and used as reference. Two out of the five factors (odd n-alkane and PAH factors) exhibited consistent contributions for "particle-only" vs "measured-total" and "predicted-total" vs "measured-total" solutions. Factor contributions of light SVOC and n-alkane factors were more consistent for "predicted-total" vs "measured-total" than "particle-only" vs "measured-total" solutions. The remaining factor (sterane factor) underestimated the contribution by around 50% from both "particle-only" and "predicted-total" solutions. The results of this study confirm that when measured gas-phase SVOCs are not available, "predicted-total" SVOCs should be used

  16. A hybrid source apportionment model integrating measured data and air quality model results - article no. D07301

    SciTech Connect

    Schichtel, B.A.; Malm, W.C.; Gebhart, K.A.; Barna, M.G.; Knipping, E.M.

    2006-04-04

    The Big Bend Regional Aerosol and Visibility (BRAVO) study was an intensive air quality study designed to understand the causes of haze in Big Bend National Park. Daily speciated fine aerosols were measured from July through October 1999 at 37 sites located mostly in Texas. In support of BRAVO, two chemical transport models (CTMs) were used to apportion particulate sulfate at Big Bend and other sites in Texas to sources in the eastern and western United States, Texas, Mexico, and the Carbon I and II coal-fired power plants, located 225 km southeast of Big Bend in Mexico. Analysis of the CTM source attribution results and comparison to results from receptor models revealed systematic biases. To reduce the multiplicative biases, a hybrid source apportionment model, based on inverse modeling, was developed that adjusted the initial CTM source contributions so the modeled sulfate concentrations optimally fit the measured data, resulting in refined daily source contributions. The method was tested using synthetic data and successfully reduced source attribution biases. The refined sulfate source attribution results reduced the initial eastern U.S. contribution to Big Bend, averaged over the BRAVO study period, from about 40% to about 30%, while Mexico's contribution increased from 24 - 32% about 40%. The contribution from the Carbon facility increased from similar to 14% to over 20%. The increase in Mexico's contribution is consistent with more recent SO{sub 2} emissions estimates that indicate that the BRAVO Mexican SO{sub 2} emissions were underestimated. Source attribution results for other monitoring sites in west Texas were similar to results at Big Bend.

  17. Source apportionment of fine particulate matter in the southeastern United States

    SciTech Connect

    Sangil Lee; Armistead G. Russell; Karsten Baumann

    2007-09-15

    Particulate matter (PM) less than 2.5 {mu}m in size (PM2.5) source apportionment by chemical mass balance receptor modeling was performed to enhance regional characterization of source impacts in the southeastern United States. Secondary particles, such as NH{sub 4}HSO{sub 4}, (NH{sub 4}){sub 2}SO{sub 4}, NH{sub 4}NO{sub 3}, and secondary organic carbon (OC) (SOC), formed by atmospheric photochemical reactions, contribute the majority ({gt} 50%) of ambient PM2.5 with strong seasonality. Source apportionment results indicate that motor vehicle and biomass burning are the two main primary sources in the southeast, showing relatively more motor vehicle source impacts rather than biomass burning source impacts in populated urban areas and vice versa in less urbanized areas. Spatial distributions of primary source impacts show that each primary source has distinctively different spatial source impacts. For coal combustion, higher concentrations occur in areas close to source and are highest at Jefferson (Birmingham), AL where industrial facilities use coal for fuel. Pulp and paper mills contribute high sources along the coast where oil combustion contribution is also high. Results also find impacts from shipping activities along the coast. Spatiotemporal correlations indicate that secondary particles are more regionally distributed, as are biomass burning and dust, whereas impacts of other primary sources are more local. 60 refs., 7 figs., 1 tab.

  18. Source apportionment of airborne fine particulate matter in an underground mine.

    PubMed

    McDonald, Jacob D; Zielinska, Barbara; Sagebiel, John C; McDaniel, Mark R; Mousset-Jones, Pierre

    2003-04-01

    The chemical mass balance source apportionment technique was applied to an underground gold mine to assess the contribution of diesel exhaust, rock dust, oil mists, and cigarette smoke to airborne fine (<2.5 microm) particulate matter (PM). Apportionments were conducted in two locations in the mine, one near the mining operations and one near the exit of the mine where the ventilated mine air was exhausted. Results showed that diesel exhaust contributed 78-98% of the fine particulate mass and greater than 90% of the fine particle carbon, with rock dust making up the remainder. Oil mists and cigarette smoke contributions were below detection limits for this study. The diesel exhaust fraction of the total fine PM was higher than the recently implemented mine air quality standards based on total carbon at both sample locations in the mine. PMID:12708502

  19. Spallation Neutron Source Availability Top-Down Apportionment Using Characteristic Factors and Expert Opinion

    SciTech Connect

    Haire, M.J.; Schryver, J.C.

    1999-10-01

    Apportionment is the assignment of top-level requirements to lower tier elements of the overall facility. A method for apportioning overall facility availability requirements among systems and subsystems is presented. Characteristics that influence equipment reliability and maintainability are discussed. Experts, using engineering judgment, scored each characteristic for each system whose availability design goal is to be established. The Analytic Hierarchy Process (AHP) method is used to produce a set of weighted rankings for each characteristic for each alternative system. A mathematical model is derived which incorporates these weighting factors. The method imposes higher availability requirements on those systems in which an incremental increase in availability is easier to achieve, and lower availability requirements where greater availability is more difficult and costly. An example is given of applying this top-down apportionment methodology to the Spallation Neutron Source (SNS) facility.

  20. Size-resolved source apportionment of carbonaceous particulate matter in urban and rural sites in central California

    NASA Astrophysics Data System (ADS)

    Ham, Walter A.; Kleeman, Michael J.

    2011-08-01

    Very little is currently known about the relationship between exposure to different sources of ambient ultrafine particles (PM 0.1) and human health effects. If human health effects are enhanced by PM 0.1's ability to cross cell membranes, then more information is needed describing the sources of ultrafine particles that are deposited in the human respiratory system. The current study presents results for the source apportionment of airborne particulate matter in six size fractions smaller than 1.8 μm particle diameter including ultrafine particles (PM 0.1) in one of the most polluted air basins in the United States. Size-resolved source apportionment results are presented at an urban site and rural site in central California's heavily polluted San Joaquin Valley during the winter and summer months using a molecular marker chemical mass balance (MM-CMB) method. Respiratory deposition calculations for the size-resolved source apportionment results are carried out with the Multiple Path Particle Dosimetry Model ( MPPD v 2.0), including calculations for ultrafine (PM 0.1) source deposition. Diesel engines accounted for the majority of PM 0.1 and PM 1.8 EC at both the urban and rural sampling locations during both summer and winter seasons. Meat cooking accounted for 33-67% and diesel engines accounted for 15-21% of the PM 0.1 OC at Fresno. Meat cooking accounted for 22-26% of the PM 0.1 OC at the rural Westside location, while diesel engines accounted for 8-9%. Wood burning contributions to PM 0.1 OC increased to as much as 12% of PM 0.1 OC during the wintertime. The modest contribution of wood smoke reflects the success of emissions control programs over the past decade. In contrast to PM 0.1, PM 1.8 OC had a higher fraction of unidentified source contributions (68-85%) suggesting that this material is composed of secondary organic aerosol (SOA) or primary organic aerosol (POA) that has been processed by atmospheric chemical reactions. Meat cooking was the largest

  1. Microbial water pollution: a screening tool for initial catchment-scale assessment and source apportionment.

    PubMed

    Kay, D; Anthony, S; Crowther, J; Chambers, B J; Nicholson, F A; Chadwick, D; Stapleton, C M; Wyer, M D

    2010-11-01

    The European Union Water Framework Directive requires that Management Plans are developed for individual River Basin Districts. From the point of view of faecal indicator organisms (FIOs), there is a critical need for screening tools that can provide a rapid assessment of the likely FIO concentrations and fluxes within catchments under base- and high-flow conditions, and of the balance ('source apportionment') between agriculture- and sewage-derived sources. Accordingly, the present paper reports on: (1) the development of preliminary generic models, using water quality and land cover data from previous UK catchment studies for assessing FIO concentrations, fluxes and source apportionment within catchments during the summer bathing season; (2) the calibration of national land use data, against data previously used in the models; and (3) provisional FIO concentration and source-apportionment assessments for England and Wales. The models clearly highlighted the crucial importance of high-flow conditions for the flux of FIOs within catchments. At high flow, improved grassland (and associated livestock) was the key FIO source; FIO loadings derived from catchments with high proportions of improved grassland were shown to be as high as from urbanized catchments; and in many rural catchments, especially in NW and SW England and Wales, which are important areas of lowland livestock (especially dairy) farming, ≥ 40% of FIOs was assessed to be derived from agricultural sources. In contrast, under base-flow conditions, when there was little or no runoff from agricultural land, urban (i.e. sewerage-related) sources were assessed to dominate, and even in rural areas the majority of FIOs were attributed to urban sources. The results of the study demonstrate the potential of this type of approach, particularly in light of climate change and the likelihood of more high-flow events, in underpinning informed policy development and prioritization of investment. PMID:19717181

  2. Application of a source apportionment model in consideration of volatile organic compounds in an urban stream

    USGS Publications Warehouse

    Asher, W.E.; Luo, W.; Campo, K.W.; Bender, D.A.; Robinson, K.W.; Zogorski, J.S.; Pankow, J.F.

    2007-01-01

    Position-dependent concentrations of trichloroethylene and methyl-tert-butyl ether are considered for a 2.81-km section of the Aberjona River in Massachusetts, USA. This river flows through Woburn and Winchester (Massachusetts, USA), an area that is highly urbanized, has a long history of industrial activities dating to the early 1800s, and has gained national attention because of contamination from chlorinated solvent compounds in Woburn wells G and H. The river study section is in Winchester and begins approximately five stream kilometers downstream from the Woburn wells superfund site. Approximately 300 toxic release sites are documented in the watershed upstream from the terminus of the study section. The inflow to the river study section is considered one source of contamination. Other sources are the atmosphere, a tributary flow, and groundwater flows entering the river; the latter are categorized according to stream zone (1, 2, 3, etc.). Loss processes considered include outflows to groundwater and water-to-atmosphere transfer of volatile compounds. For both trichloroethylene and methyl-rerf-butyl ether, degradation is neglected over the timescale of interest. Source apportionment fractions with assigned values ??inflow, ??1, ??2, ??3, etc. are tracked by a source apportionment model. The strengths of the groundwater and tributary sources serve as fitting parameters when minimizing a reduced least squares statistic between water concentrations measured during a synoptic study in July 2001 versus predictions from the model. The model fits provide strong evidence of substantial unknown groundwater sources of trichloroethylene and methyl-tert-butyl ether amounting to tens of grams per day of trichloroethylene and methyl-tert-butyl ether in the river along the study section. Modeling in a source apportionment manner can be useful to water quality managers allocating limited resources for remediation and source control. ?? 2007 SETAC.

  3. Application of a source apportionment model in consideration of volatile organic compounds in an urban stream.

    PubMed

    Asher, William E; Luo, Wentai; Campo, Kimberly W; Bender, David A; Robinson, Keith W; Zogorski, John S; Pankow, James F

    2007-08-01

    Position-dependent concentrations of trichloroethylene and methyl-tert-butyl ether are considered for a 2.81-km section of the Aberjona River in Massachusetts, USA. This river flows through Woburn and Winchester (Massachusetts, USA), an area that is highly urbanized, has a long history of industrial activities dating to the early 1800s, and has gained national attention because of contamination from chlorinated solvent compounds in Woburn wells G and H. The river study section is in Winchester and begins approximately five stream kilometers downstream from the Woburn wells superfund site. Approximately 300 toxic release sites are documented in the watershed upstream from the terminus of the study section. The inflow to the river study section is considered one source of contamination. Other sources are the atmosphere, a tributary flow, and groundwater flows entering the river; the latter are categorized according to stream zone (1, 2, 3, etc.). Loss processes considered include outflows to groundwater and water-to-atmosphere transfer of volatile compounds. For both trichloroethylene and methyl-tert-butyl ether, degradation is neglected over the timescale of interest. Source apportionment fractions with assigned values alphainflow, alpha2, alpha3, etc. are tracked by a source apportionment model. The strengths of the groundwater and tributary sources serve as fitting parameters when minimizing a reduced least squares statistic between water concentrations measured during a synoptic study in July 2001 versus predictions from the model. The model fits provide strong evidence of substantial unknown groundwater sources of trichloroethylene and methyl-tert-butyl ether amounting to tens of grams per day of trichloroethylene and methyl-tert-butyl ether in the river along the study section. Modeling in a source apportionment manner can be useful to water quality managers allocating limited resources for remediation and source control. PMID:17702332

  4. Two Model-Based Methods for Policy Analyses of Fine Particulate Matter Control in China: Source Apportionment and Source Sensitivity

    NASA Astrophysics Data System (ADS)

    Li, X.; Zhang, Y.; Zheng, B.; Zhang, Q.; He, K.

    2013-12-01

    Anthropogenic emissions have been controlled in recent years in China to mitigate fine particulate matter (PM2.5) pollution. Recent studies show that sulfate dioxide (SO2)-only control cannot reduce total PM2.5 levels efficiently. Other species such as nitrogen oxide, ammonia, black carbon, and organic carbon may be equally important during particular seasons. Furthermore, each species is emitted from several anthropogenic sectors (e.g., industry, power plant, transportation, residential and agriculture). On the other hand, contribution of one emission sector to PM2.5 represents contributions of all species in this sector. In this work, two model-based methods are used to identify the most influential emission sectors and areas to PM2.5. The first method is the source apportionment (SA) based on the Particulate Source Apportionment Technology (PSAT) available in the Comprehensive Air Quality Model with extensions (CAMx) driven by meteorological predictions of the Weather Research and Forecast (WRF) model. The second method is the source sensitivity (SS) based on an adjoint integration technique (AIT) available in the GEOS-Chem model. The SA method attributes simulated PM2.5 concentrations to each emission group, while the SS method calculates their sensitivity to each emission group, accounting for the non-linear relationship between PM2.5 and its precursors. Despite their differences, the complementary nature of the two methods enables a complete analysis of source-receptor relationships to support emission control policies. Our objectives are to quantify the contributions of each emission group/area to PM2.5 in the receptor areas and to intercompare results from the two methods to gain a comprehensive understanding of the role of emission sources in PM2.5 formation. The results will be compared in terms of the magnitudes and rankings of SS or SA of emitted species and emission groups/areas. GEOS-Chem with AIT is applied over East Asia at a horizontal grid

  5. Fine Particle Sources and Cardiorespiratory Morbidity: An Application of Chemical Mass Balance and Factor Analytical Source-Apportionment Methods

    PubMed Central

    Sarnat, Jeremy A.; Marmur, Amit; Klein, Mitchel; Kim, Eugene; Russell, Armistead G.; Sarnat, Stefanie E.; Mulholland, James A.; Hopke, Philip K.; Tolbert, Paige E.

    2008-01-01

    Background Interest in the health effects of particulate matter (PM) has focused on identifying sources of PM, including biomass burning, power plants, and gasoline and diesel emissions that may be associated with adverse health risks. Few epidemiologic studies, however, have included source-apportionment estimates in their examinations of PM health effects. We analyzed a time-series of chemically speciated PM measurements in Atlanta, Georgia, and conducted an epidemiologic analysis using data from three distinct source-apportionment methods. Objective The key objective of this analysis was to compare epidemiologic findings generated using both factor analysis and mass balance source-apportionment methods. Methods We analyzed data collected between November 1998 and December 2002 using positive-matrix factorization (PMF), modified chemical mass balance (CMB-LGO), and a tracer approach. Emergency department (ED) visits for a combined cardiovascular (CVD) and respiratory disease (RD) group were assessed as end points. We estimated the risk ratio (RR) associated with same day PM concentrations using Poisson generalized linear models. Results There were significant, positive associations between same-day PM2.5 (PM with aero-dynamic diameter ≤ 2.5 μm) concentrations attributed to mobile sources (RR range, 1.018–1.025) and biomass combustion, primarily prescribed forest burning and residential wood combustion, (RR range, 1.024–1.033) source categories and CVD-related ED visits. Associations between the source categories and RD visits were not significant for all models except sulfate-rich secondary PM2.5 (RR range, 1.012–1.020). Generally, the epidemiologic results were robust to the selection of source-apportionment method, with strong agreement between the RR estimates from the PMF and CMB-LGO models, as well as with results from models using single-species tracers as surrogates of the source-apportioned PM2.5 values. Conclusions Despite differences among the

  6. Do anthropogenic or coastal aerosol sources impact on a clean marine aerosol signature at Mace Head?

    NASA Astrophysics Data System (ADS)

    O'Dowd, C.; Ceburnis, D.; Ovadnevaite, J.; Rinaldi, M.; Facchini, M. C.

    2013-03-01

    Atmospheric aerosols have been sampled and characterised at the Mace Head North East (N.E.) Atlantic atmospheric research station since 1958, with many interesting phenomena being discovered. However, with the range of new discoveries and scientific advances, there has been a range of concomitant criticisms challenging the representativeness of aerosol sampled at the station to that of aerosol over the open ocean. Two recurring criticisms relate to the lack of representativeness due to enhanced coastal sources, thereby leading to artificially high values to aerosol parameters, and to the influence of long-range transport of anthropogenic aerosol and its potential dominance over, or drowning-out of, a natural marine aerosol signal. Here we review the results of previous experimental studies into marine aerosols over the N.E. Atlantic and at Mace Head with the aim of evaluating their representativeness relative to that of an open ocean aerosol with negligible anthropogenic influence. Particular focus is given to organic matter (OM) aerosol. In summary, no correlation was found between OM and black carbon (BC) either at BC levels of 0-15 or 15-50 ng m-3, suggesting that OM concentrations up to peak values of 3.8 μg m-3 are predominantly natural in origin. Sophisticated carbon isotope analysis and aerosol mass spectral finger printing corroborate the natural source of OM with 80% biogenic source apportionment being observed for general clean air conditions, rising to 98% during specific primary marine organic plumes when peak concentrations >3 μg m-3 are observed. A range of other experiments are discussed which corroborate the dominance of a marine signal under Mace Head clean air criteria along. Further, analysis of a series of experiments conducted at Mace Head conclude that negligible coastal, surf zone, or tidal effects are discernible in the submicron size range for sampling heights of 7 m and above. The Mace Head clean air criteria ensures anthropogenic and

  7. Contribution Assessment of Regional Air Pollution over Northeast Asia using CMAQ Source Apportionment Tools

    NASA Astrophysics Data System (ADS)

    Choi, K.; Woo, J.; Kim, H.; Lee, J.; Kim, C.

    2011-12-01

    East Asia is one of the largest emission source regions in the world because of the large population and fast economic growth for several decades. Recent observation from space also demonstrates that emissions in East Asia - especially China - have been increased impressively since 1995. A number of regional scale transport studies using comprehensive 3D modeling system such as CMAQ have been conducted to understand transboundary air pollution. The contribution assessment using such a comprehensive modeling system, however, was not extensively investigated in this region. Air pollution contributions from multiple source types and regions over East Asia were examined using CMAQ based source apportionment tool off-line coupled with a meteorological model (WRF). The simulation was conducted for the entire year of 2009. The CMAQ ozone & particle precursor tagging methodologies (OPTM) source apportionment tool were applied in our study. An anthropogenic emissions inventory and processing methodology have been developed in support of the source-receptor modeling study in East Asia region. Emissions from open biomass burning and biogenic source were also estimated to support air quality contributions assessment from various sources and source types. Remote sensing-based atmosphere information and ground based monitoring data has been included to evaluate the simulation results. The results of our analysis will be presented at the conference.

  8. Temporal trend and source apportionment of water pollution in different functional zones of Qiantang River, China.

    PubMed

    Su, Shiliang; Li, Dan; Zhang, Qi; Xiao, Rui; Huang, Fang; Wu, Jiaping

    2011-02-01

    The increasingly serious river water pollution in developing countries poses great threat to environmental health and human welfare. The assignment of river function to specific uses, known as zoning, is a useful tool to reveal variations of water environmental adaptability to human impact. Therefore, characterizing the temporal trend and identifying responsible pollution sources in different functional zones could greatly improve our knowledge about human impacts on the river water environment. The aim of this study is to obtain a deeper understanding of temporal trends and sources of water pollution in different functional zones with a case study of the Qiantang River, China. Measurement data were obtained and pretreated for 13 variables from 41 monitoring sites in four categories of functional zones during the period 1996-2004. An exploratory approach, which combines smoothing and non-parametric statistical tests, was applied to characterize trends of four significant parameters (permanganate index, ammonia nitrogen, total cadmium and fluoride) accounting for differences among different functional zones identified by discriminant analysis. Aided by GIS, yearly pollution index (PI) for each monitoring site was further mapped to compare the within-group variations in temporal dynamics for different functional zones. Rotated principal component analysis and receptor model (absolute principle component score-multiple linear regression, APCS-MLR) revealed that potential pollution sources and their corresponding contributions varied among the four functional zones. Variations of APCS values for each site of one functional zone as well as their annual average values highlighted the uncertainties associated with cross space-time effects in source apportionment. All these results reinforce the notion that the concept of zoning should be taken seriously in water pollution control. Being applicable to other rivers, the framework of management-oriented source apportionment

  9. An integrated approach to assess heavy metal source apportionment in peri-urban agricultural soils.

    PubMed

    Huang, Ying; Li, Tingqiang; Wu, Chengxian; He, Zhenli; Japenga, Jan; Deng, Meihua; Yang, Xiaoe

    2015-12-15

    Three techniques (Isotope Ratio Analysis, GIS mapping, and Multivariate Statistical Analysis) were integrated to assess heavy metal pollution and source apportionment in peri-urban agricultural soils. The soils in the study area were moderately polluted with cadmium (Cd) and mercury (Hg), lightly polluted with lead (Pb), and chromium (Cr). GIS Mapping suggested Cd pollution originates from point sources, whereas Hg, Pb, Cr could be traced back to both point and non-point sources. Principal component analysis (PCA) indicated aluminum (Al), manganese (Mn), nickel (Ni) were mainly inherited from natural sources, while Hg, Pb, and Cd were associated with two different kinds of anthropogenic sources. Cluster analysis (CA) further identified fertilizers, waste water, industrial solid wastes, road dust, and atmospheric deposition as potential sources. Based on isotope ratio analysis (IRA) organic fertilizers and road dusts accounted for 74-100% and 0-24% of the total Hg input, while road dusts and solid wastes contributed for 0-80% and 19-100% of the Pb input. This study provides a reliable approach for heavy metal source apportionment in this particular peri-urban area, with a clear potential for future application in other regions. PMID:26257294

  10. Application of 14C analyses to source apportionment of carbonaceous PM 2.5 in the UK

    NASA Astrophysics Data System (ADS)

    Heal, Mathew R.; Naysmith, Philip; Cook, Gordon T.; Xu, Sheng; Duran, Teresa Raventós; Harrison, Roy M.

    2011-05-01

    Determination of the radiocarbon ( 14C) content of airborne particulate matter yields insight into the proportion of the carbonaceous material derived from fossil and contemporary carbon sources. Daily samples of PM 2.5 were collected by high-volume sampler at an urban background site in Birmingham, UK, and the fraction of 14C in both the total carbon, and in the organic and elemental carbon fractions, determined by two-stage combustion to CO 2, graphitisation and quantification by accelerator mass spectrometry. OC and EC content was also determined by Sunset Analyzer. The mean fraction contemporary TC in the PM 2.5 samples was 0.50 (range 0.27-0.66, n = 26). There was no seasonality to the data, but there was a positive trend between fraction contemporary TC and magnitude of SOC/TC ratio and for the high values of these two parameters to be associated with air-mass back trajectories arriving in Birmingham from over land. Using a five-compartment mass balance model on fraction contemporary carbon in OC and EC, the following average source apportionment for the TC in these PM 2.5 samples was derived: 27% fossil EC; 20% fossil OC; 2% biomass EC; 10% biomass OC; and 41% biogenic OC. The latter category will comprise, in addition to BVOC-derived SOC, other non-combustion contemporary carbon sources such as biological particles, vegetative detritus, humic material and tyre wear. The proportion of total PM 2.5 at this location estimated to derive from BVOC-derived secondary organic aerosol was 9-29%. The findings from this work are consistent with those from elsewhere in Europe and support the conclusion of a significant and ubiquitous contribution from non-fossil biogenic sources to the carbon in terrestrial aerosol.

  11. SOURCE APPORTIONMENT OF EXPOSURES TO VOLATILE ORGANIC COMPOUNDS: I. EVALUATION OF RECEPTOR MODELS USING SIMULATED EXPOSURE DATA. (R826788)

    EPA Science Inventory

    Four receptor-oriented source apportionment models were evaluated by applying them to simulated personal exposure data for select volatile organic compounds (VOCs) that were generated by Monte Carlo sampling from known source contributions and profiles. The exposure sources mo...

  12. Source apportionment of PM2.5 in top polluted cities in Hebei, China using the CMAQ model

    NASA Astrophysics Data System (ADS)

    Wang, Litao; Wei, Zhe; Wei, Wei; Fu, Joshua S.; Meng, Chenchen; Ma, Simeng

    2015-12-01

    Hebei has been recognized as one of the most polluted provinces in China, characterized by extremely high concentrations of fine particulate matter (PM2.5) in many of its cities, especially those located in the southern area of the province and highly potentially northward transported to Beijing. Source apportionment of PM2.5 is the basis and prerequisite of an effective control strategy. In this study, the Mesoscale Modeling System Generation 5 (MM5) and the Models-3/Community Multiscale Air Quality (CMAQ) modeling system are applied to East Asia and North China at 36- and 12-km horizontal grid resolutions, and the source apportionment of PM2.5 in the three top polluted cities in Hebei, i.e., Shijiazhuang, Xingtai, and Handan, is performed using the Brute-Force method. It is concluded that the regional source contributions to PM2.5 are 27.9% in Shijiazhuang, 46.6% in Xingtai, and 40.4% in Handan. The major local contributors are industrial, domestic and agricultural sources in all the three cities with the contributions of 39.8%, 15.8%, and 10.6% in Shijiazhuang, 30.5%, 13.6%, and 6.9% in Xingtai, 35.9%, 13.5%, and 6.2% in Handan, respectively. As to the secondary aerosols of sulfate (SO42-), nitrate (NO3-), and ammonium (NH4+) in PM2.5, which are important chemical species in PM2.5 (about 30-40% in PM2.5) and cannot be further apportioned by receptor models, the regional source contributions to the total concentrations of SO42-, NO3-, and NH4+ are 40.9%, 62.0%, and 59.1% in Shijiazhuang, Xingtai, and Handan, respectively. The local industrial, domestic and agricultural contributions to those are 23.7%, 6.6%, and 29.8% in total in Shijiazhuang, 17.5%, 5.0%, and 17.7% in Xingtai, and 20.6%, 4.8%, and 17.8% in Handan, respectively. The regional joint controls of air pollution are more important in Xingtai and Handan than in Shijiazhuang, and the emission controls of agricultural sources need to be further considered in the future policy.

  13. PM2.5 source apportionment: reconciling receptor models for U.S. nonurban and urban long-term networks.

    PubMed

    Chen, L W Antony; Watson, John G; Chow, Judith C; DuBois, Dave W; Herschberger, Lisa

    2011-11-01

    Chemical mass balance (CMB) and trajectory receptor models were applied to speciated particulate matter with aerodynamic diameter < or =2.5 microm (PM2.5) measurements from Speciation Trends Network (STN; part of the Chemical Speciation Network [CSN]) and Interagency Monitoring of Protected Visual Environments (IMPROVE) monitoring network across the state of Minnesota as part of the Minnesota PM2.5 Source Apportionment Study (MPSAS). CMB equations were solved by the Unmix, positive matrix factorization (PMF), and effective variance (EV) methods, giving collective source contribution and uncertainty estimates. Geological source profiles developed from local dust materials were either incorporated into the EV-CMB model or used to verify factors derived from Unmix and PMF. Common sources include soil dust, calcium (Ca)-rich dust, diesel and gasoline vehicle exhausts, biomass burning, secondary sulfate, and secondary nitrate. Secondary sulfate and nitrate aerosols dominate PM2.5 mass (50-69%). Mobile sources outweigh area sources at urban sites, and vice versa at rural sites due to traffic emissions. Gasoline and diesel contributions can be separated using data from the STN, despite significant uncertainties. Major differences between MPSAS and earlier studies on similar environments appear to be the type and magnitude of stationary sources, but these sources are generally minor (<7%) in this and other studies. Ensemble back-trajectory analysis shows that the lower Midwestern states are the predominant source region for secondary ammoniated sulfate in Minnesota. It also suggests substantial contributions of biomass burning and soil dust from out-of-state on occasions, although a quantitative separation of local and regional contributions was not achieved in the current study. Supplemental materials are available for this article. Go to the publisher's online edition of the Journal of the Air & Waste Management Association for a summary of input data, Unmix and PMF

  14. Estimation of organic carbon blank values and error structures of the speciation trends network data for source apportionment

    SciTech Connect

    Eugene Kim; Philip K. Hopke; Youjun Qin

    2005-08-01

    Because the particulate organic carbon (OC) concentrations reported in U.S. Environment Protection Agency Speciation Trends Network (STN) data were not blank corrected, the OC blank concentrations were estimated using the intercept in particulate matter {lt} 2.5 {mu}m in aerodynamic diameter (PM2.5) regression against OC concentrations. The estimated OC blank concentrations ranged from 1 to 2.4 {mu}g/m{sup 3} showing higher values in urban areas for the 13 monitoring sites in the northeastern United States. In the STN data, several different samplers and analyzers are used, and various instruments show different method detection limit (MDL) values, as well as errors. A comprehensive set of error structures that would be used for numerous source apportionment studies of STN data was estimated by comparing a limited set of measured concentrations and their associated uncertainties. To examine the estimated error structures and investigate the appropriate MDL values, PM2.5 samples collected at a STN site in Burlington, VT, were analyzed through the application of the positive matrix factorization. A total of 323 samples that were collected between December 2000 and December 2003 and 49 species based on several variable selection criteria were used, and eight sources were successfully identified in this study with the estimated error structures and min values among different MDL values from the five instruments: secondary sulfate aerosol (41%) identified as the result of emissions from coal-fired power plants, secondary nitrate aerosol (20%), airborne soil (15%), gasoline vehicle emissions (7%), diesel emissions (7%), aged sea salt (4%), copper smelting (3%), and ferrous smelting (2%). Time series plots of contributions from airborne soil indicate that the highly elevated impacts from this source were likely caused primarily by dust storms.

  15. Source apportionment of ambient fine particulate matter in Dearborn, Michigan, using hourly resolved PM chemical composition data.

    PubMed

    Pancras, Joseph Patrick; Landis, Matthew S; Norris, Gary A; Vedantham, Ram; Dvonch, J Timothy

    2013-03-15

    High time-resolution aerosol sampling was conducted for one month during July-August 2007 in Dearborn, MI, a non-attainment area for fine particulate matter (PM2.5) National Ambient Air Quality Standards (NAAQS). Measurements of more than 30 PM2.5 species were made using a suite of semi-continuous sampling and monitoring instruments. Dynamic variations in the sub-hourly concentrations of source 'marker' elements were observed when discrete plumes from local sources impacted the sampling site. Hourly averaged PM2.5 composition data for 639 samples were used to identify and apportion PM2.5 emission sources using the multivariate receptor modeling techniques EPA Positive Matrix Factorization (PMF) v4.2 and EPA Unmix v6.0. Source contribution estimates from PMF and Unmix were then evaluated using the Sustained Wind Instance Method (SWIM), which identified plausible source origins. Ten sources were identified by both PMF and Unmix: (1) secondary sulfate, (2) secondary nitrate characterized by a significant diurnal trend, (3) iron and steel production, (4) a potassium-rich factor attributable to iron/steel slag waste processing, (5) a cadmium-rich factor attributable to incineration, (6) an oil refinery characterized by La/Ce>1 specific to south wind, (7) oil combustion, (8) coal combustion, (9) motor vehicles, and (10) road dust enriched with organic carbon. While both models apportioned secondary sulfate, oil refinery, and oil combustion PM2.5 masses closely, the mobile and industrial source apportionments differed. Analyses were also carried out to help infer time-of-day variations in the contributions of local sources. PMID:23302684

  16. RECENT APPLICATIONS OF SOURCE APPORTIONMENT METHODS AND RELATED NEEDS

    EPA Science Inventory

    Traditional receptor modeling studies have utilized factor analysis (like principal component analysis, PCA) and/or Chemical Mass Balance (CMB) to assess source influences. The limitations with these approaches is that PCA is qualitative and CMB requires the input of source pr...

  17. Source apportionment: findings from the US supersites program

    SciTech Connect

    John G. Watson; L.-W. Antony Chen; Judith C. Chow; Prakash Doraiswamy; Douglas H. Lowenthal

    2008-02-15

    Receptor models are used to identify and quantify source contributions to particulate matter and volatile organic compounds based on measurements of many chemical components at receptor sites. These components are selected based on their consistent appearance in some source types and their absence in others. UNMIX, positive matrix factorization (PMF), and effective variance are different solutions to the chemical mass balance (CMB) receptor model equations and are implemented on available software. In their more general form, the CMB equations allow spatial, temporal, transport, and particle size profiles to be combined with chemical source profiles for improved source resolution. Although UNMIX and PMF do not use source profiles explicitly as input data, they still require measured profiles to justify their derived source factors. The U.S. Supersites Program provided advanced datasets to apply these CMB solutions in different urban areas. Still lacking are better characterization of source emissions, new methods to estimate profile changes between source and receptor, and systematic sensitivity tests of deviations from receptor model assumptions. 154 refs.

  18. Source apportionment of PM2.5 in Seoul, Korea

    NASA Astrophysics Data System (ADS)

    Heo, J.-B.; Hopke, P. K.; Yi, S.-M.

    2008-12-01

    PM2.5 samples were collected at a centrally located urban monitoring site in Seoul, Korea, every third day from March 2003 to December 2006 and analyzed for their chemical constituents. Sources were identified using Positive Matrix Factorization (PMF). A total of 393 samples were obtained during the sampling period, and 20 chemical species were measured. Nine PM2.5 sources were identified providing physically realistic profiles and interesting insights into the source contributions to the ambient mass concentrations. The major sources of PM2.5 were secondary nitrate (20%), secondary sulfate (20%), gasoline-fueled vehicles (17%), and biomass burning (12%), with lesser contributions from diesel emissions (8%), soil (7%), industry (6%), road salt and two-stroke engine (5%), and aged sea salt (2%). PM2.5 levels in Seoul were influenced by both local urban activities and regional-scale transport. Conditional Probability Function (CPF) results identified possible source directions of local sources such as motor vehicles (gasoline and diesel), industry, and road salt. Potential Source Contribution Function (PSCF) results showed that possible source areas contributing to the elevated secondary particle concentrations (sulfate and nitrate) in Seoul to be the major industrial areas in China.

  19. Radon source apportionment in the home, dosimetry and risk modeling. Final report, 1993--1997

    SciTech Connect

    Harley, N.H.

    1998-08-04

    This research covered the following 3 topics in 4 years: (1) the source apportionment of {sup 222}Rn in the home; (2) the internal bronchial dosimetry of inhaled {sup 222}Rn decay products; and (3) the lung cancer risk from inhalation of the short lived decay products of {sup 222}Rn. A 4th year of support was appended to this grant with a switch in research effort to determine a method for long term measurement of the particle size distribution of the short lived decay products in homes.

  20. Mass closure and source apportionment of PM2.5 by Positive Matrix Factorization analysis in urban Mediterranean environment

    NASA Astrophysics Data System (ADS)

    Mantas, E.; Remoundaki, E.; Halari, I.; Kassomenos, P.; Theodosi, C.; Hatzikioseyian, A.; Mihalopoulos, N.

    2014-09-01

    A systematic monitoring of PM2.5 was carried out during a period of three years (from February 2010 to April 2013) at an urban site, at the National Technical University of Athens campus. Two types of 24-h PM2.5 samples have been collected: 271 samples on PTFE and 116 samples on quartz filters. Daily PM2.5 concentrations were determined for both types of samples. Total sulfur, crustal origin elements and elements of a major crustal component (Al, Si, Fe, Ca, K, Mg, Ti) trace elements (Zn, Pb, Cu, Ni, P, V, Cr, Mn) and water soluble ions (Cl-, NO3-, SO42-, Na+, K+, NH4+, Ca2+, Mg2+) were determined on the PTFE samples. Organic carbon (OC), elemental carbon (EC) and water soluble ions were determined on the quartz samples. For the mass closure six components were considered: Secondary Inorganic Aerosol (SIA), Organic Matter (OM), Elemental Carbon (EC), Dust, Mineral anthropogenic component (MIN) and Sea Salt (SS). SIA and OM contributed in the mass of PM2.5 almost equally: 30-36% and 30% respectively. EC, SS and MIN accounted for 5, 4 and 3% respectively of the total PM2.5 mass. Dust accounted for about 3-5% in absence of dust transport event and reached a much higher percentage in case of dust transport event. These contributions justify at least 80% of the PM2.5 mass. Source apportionment analysis has been performed by Positive Matrix Factorization. The combination of the PMF results obtained by both data sets lead to the definition of six factors: 1. SO42-, NH4+, OC (industrial/regional sources, secondary aerosol) 2. EC, OC, K and trace metals (traffic and heating by biomass burning, locally emitted aerosol). 3. Ca, EC, OC and trace metals (urban-resuspended road dust reflecting exhaust emissions), 4. Secondary nitrates 5. Na, Cl (marine source) 6. Si, Al, Ti, Ca, Fe (Dust transported from Sahara). These factors reflect not only main sources contributions but also underline the key role of atmospheric dynamics and aerosol ageing processes in this Mediterranean

  1. AIRUSE-LIFE+: a harmonized PM speciation and source apportionment in five southern European cities

    NASA Astrophysics Data System (ADS)

    Amato, Fulvio; Alastuey, Andrés; Karanasiou, Angeliki; Lucarelli, Franco; Nava, Silvia; Calzolai, Giulia; Severi, Mirko; Becagli, Silvia; Gianelle, Vorne L.; Colombi, Cristina; Alves, Celia; Custódio, Danilo; Nunes, Teresa; Cerqueira, Mario; Pio, Casimiro; Eleftheriadis, Konstantinos; Diapouli, Evangelia; Reche, Cristina; Cruz Minguillón, María; Manousakas, Manousos-Ioannis; Maggos, Thomas; Vratolis, Stergios; Harrison, Roy M.; Querol, Xavier

    2016-03-01

    The AIRUSE-LIFE+ project aims at characterizing similarities and heterogeneities in particulate matter (PM) sources and contributions in urban areas from southern Europe. Once the main PMx sources are identified, AIRUSE aims at developing and testing the efficiency of specific and non-specific measures to improve urban air quality. This article reports the results of the source apportionment of PM10 and PM2.5 conducted at three urban background sites (Barcelona, Florence and Milan, BCN-UB, FI-UB and MLN-UB), one suburban background site (Athens, ATH-SUB) and one traffic site (Porto, POR-TR). After collecting 1047 PM10 and 1116 PM2.5 24 h samples during 12 months (from January 2013 on) simultaneously at the five cities, these were analysed for the contents of OC, EC, anions, cations, major and trace elements and levoglucosan. The USEPA PMF5 receptor model was applied to these data sets in a harmonized way for each city. The sum of vehicle exhaust (VEX) and non-exhaust (NEX) contributes between 3.9 and 10.8 µg m-3 (16-32 %) to PM10 and 2.3 and 9.4 µg m-3 (15-36 %) to PM2.5, although a fraction of secondary nitrate is also traffic-related but could not be estimated. Important contributions arise from secondary particles (nitrate, sulfate and organics) in PM2.5 (37-82 %) but also in PM10 (40-71 %), mostly at background sites, revealing the importance of abating gaseous precursors in designing air quality plans. Biomass burning (BB) contributions vary widely, from 14-24 % of PM10 in POR-TR, MLN-UB and FI-UB, 7 % in ATH-SUB, to < 2 % in BCN-UB. In PM2.5, BB is the second most important source in MLN-UB (21 %) and in POR-TR (18 %), the third one in FI-UB (21 %) and ATH-SUB (11 %), but is again negligible (< 2 %) in BCN-UB. This large variability among cities is mostly due to the degree of penetration of biomass for residential heating. In Barcelona natural gas is very well supplied across the city and is used as fuel in 96 % of homes, while in other cities, PM levels

  2. Source apportionment of PM2.5 in Seoul, Korea

    NASA Astrophysics Data System (ADS)

    Heo, J.-B.; Hopke, P. K.; Yi, S.-M.

    2009-07-01

    PM2.5 samples were collected at a centrally located urban monitoring site in Seoul, Korea, every third day from March 2003 to December 2006 and analyzed for their chemical constituents. Sources were identified using positive matrix factorization (PMF). A total of 393 samples were obtained during the sampling period, and 20 chemical species were measured. Nine PM2.5 source categories were identified providing physically realistic profiles and interesting insights into the source contributions to the ambient mass concentrations. The major contributors of PM2.5 were secondary nitrate (20.9%), secondary sulfate (20.5%), gasoline-fueled vehicles (17.2%), and biomass burning (12.1%), with lesser contributions from diesel emissions (8.1%), soil (7.4%), industry (6.7%), road salt and two-stroke vehicles (5.1%), and aged sea salt (2.2%). PM2.5 levels in Seoul were influenced by both local urban activities and regional-scale transport. Conditional probability function (CPF) results identified possible source directions of local sources such as motor vehicles (gasoline and diesel), industry, and road salt. Potential source contribution function (PSCF) results showed that possible source areas contributing to the elevated secondary particle concentrations (sulfate and nitrate) in Seoul to be the major industrial areas in China.

  3. Source apportionment of ambient volatile organic compounds in Hong Kong.

    PubMed

    Lau, Alexis Kai Hon; Yuan, Zibing; Yu, Jian Zhen; Louie, Peter K K

    2010-09-01

    Volatile organic compounds (VOCs) were measured at four stations with different environments in Hong Kong (HK) during two sampling campaigns. Positive matrix factorization was applied to characterize major VOC sources in HK. Nine sources were identified, and the spatial and seasonal variations of their contributions were derived. The most significant local VOC sources are vehicle and marine vessel exhausts or liquefied petroleum gas (LPG) at different stations. Vehicle- and marine vessel-related sources accounted for 2.9-12.7ppbv in 2002-2003 and increased to 4.3-15.2ppbv in 2006-2007. Different from the emission inventory, solvent-related sources only contributed 11- 19% at both sampling campaigns. Therefore, emission control from transport sector should be prioritized to alleviate ambient local VOC levels. Additionally, the contribution of aged VOC, which roughly represents contributions from regional and super-regional transport, also showed moderate increase during the four years, indicating cooperation with environmental authorities in the Pearl River Delta and beyond should be strengthened. All the anthropogenic sources contribute most to Yuen Long and least to Tap Mun. However, Tap Mun exhibited different trends in comparison with the other three stations, especially for sources of vehicle and marine vessel exhausts, LPG and paint solvents. When the local source contributions were incorporated with wind data to derive the directional dependences of sources, we may conclude that the rapid development of Yantian Container Terminal, the associated emissions from marine vessels around the Terminal and the on-site activities were likely responsible for the distinct VOC features at Tap Mun. The current impact from the Terminal is mainly concentrated in the northeastern corner of HK; however, it has the potential threat to other locations if the Terminal continues to expand in such a rapid speed in the coming years. More stringent VOC control measures on activities

  4. Source apportionment of PM2.5 in Incheon, Korea

    NASA Astrophysics Data System (ADS)

    Choi, J.; Ban, S.; Lee, C.; Yi, S.; Zoh, K.

    2011-12-01

    PM2.5 samples were collected at a centrally located urban monitoring site in Incheon, Korea, every third day from Jun 2009 to may 2010 and analyzed their chemical species. In this study, we investigated the source of PM2.5 using Positive Matrix Factorization(PMF), the source area from Potential Source Contribution Function (PSCF) and Conditional Probability Function(CPF), and characterized source variation among episode, non-episode, yellow sand events. Incheon, study site, is located at the mid-western tip of the Korean Peninsula with a population of 2.6 million people and area of 1029.4 km2, respectively. As a transportation hub, the city also holds the importance of meteological/geological aspect affecting the air quality of capital region, in that is prevailing westerlies zone and a air passageway from China to Japan passing through seoul, korea. In the study, the Four channel based on Annular Denuder System(ADS) were used for sample collection(URG co, USA). The filter samples were analyzed with respect to species type such as ion group, metal, and OC/EC compound using ion chromatography, ICP/MS, and NIOSH TOT method, respectively. The PM2.5 concentration was 43ug/m3 that is almost three times higher than the US NAAQS annual PM2.5 standard of 15ug/m3. Nine PM2.5 sources were resolved from PMF analysis that provided reasonable source profiles and interesting insights into the source contributions to the ambient mass concentrations. The major sources of PM2.5 were secondary nitrate(26.4%), secondary sulfate(17.3%), gasoline(16.4%), and residual oil combustion(13.5%), with lesser contributions from biomass burning (7.5%), road dust(6.9%), soil (5.5%), coal fire powerplant (4.0%), and free sea salt(2.4%). CPF results identified possible local source directions such as motor vehicles, free sea salt. PSCF results indicated that likely pollution areas increased secondary particle concentrations(sulfate and nitrate) in Incheon to be the major industrial areas in China

  5. Chemical speciation and source apportionment of Non-Methane Volatile Organic Compounds (NMVOCs) in a Middle Eastern country

    NASA Astrophysics Data System (ADS)

    Salameh, Therese; Sauvage, Stéphane; Afif, Charbel; Borbon, Agnès; Locoge, Nadine

    2014-05-01

    NMVOCs, emitted from various sources, are of particular interest since they contribute to the formation of tropospheric ozone, PAN and secondary organic aerosols resulting in negative impacts on human health, climate and on the environment. To identify abatement measures, a profound knowledge of emission sources and their composition is a prerequisite. Air pollution in the Middle East region remains difficult to assess and understand because of a lack of ground-based measurements and the limited information on NMVOC chemical speciation and source apportionment. Based on a large database of NMVOC observations obtained in Beirut, the capital of Lebanon (a developing country in the Middle East region, located in Western Asia on the eastern shore of the Mediterranean Sea), the overall objective of this work is to apportion the sources of NMVOCs encountered in Lebanon. First, source profiles were determined with field measurements close to the main potential emitters namely the road transport, gasoline vapour, power generation and solvent uses. The results obtained are compared to other studies held in other regions and are used to assess the emission inventory developed for Lebanon. Secondly, two intensive field campaigns were held in a receptor site in Beirut during summer 2011 and winter 2012 in order to obtain a large time resolved dataset. The PMF analysis of this dataset was applied to apportion anthropogenic sources in this area. In both seasons, combustion (road transport and power generation) and gasoline evaporation, especially in winter, were the main sources contributing to the NMVOCs in Beirut. The results will support model implementation especially by completing the emission inventory established for the year 2010 by Waked et al. 2012 according to the EEA/EMEP guidelines because of the lack of Lebanon-specific emission factor.

  6. Atmospheric polycyclic aromatic hydrocarbons in the urban environment: Occurrence, toxicity and source apportionment.

    PubMed

    Mishra, Nitika; Ayoko, Godwin A; Morawska, Lidia

    2016-01-01

    Polycyclic Aromatic Hydrocarbons (PAHs) represent a major class of toxic pollutants because of their carcinogenic and mutagenic characteristics. People living in urban areas are regularly exposed to PAHs because of abundance of their emission sources. Within this context, this study aimed to: (i) identify and quantify the levels of ambient PAHs in an urban environment; (ii) evaluate their toxicity; and (iii) identify their sources as well as the contribution of specific sources to measured concentrations. Sixteen PAHs were identified and quantified in air samples collected from Brisbane. Principal Component Analysis - Absolute Principal Component Scores (PCA-APCS) was used in order to conduct source apportionment of the measured PAHs. Vehicular emissions, natural gas combustion, petrol emissions and evaporative/unburned fuel were the sources identified; contributing 56%, 21%, 15% and 8% of the total PAHs emissions, respectively, all of which need to be considered for any pollution control measures implemented in urban areas. PMID:26428471

  7. Source apportionment of trace contaminants in urban sewer catchments.

    PubMed

    Comber, Sean; Gardner, Mike; Jones, Vera; Ellor, Brian

    2015-01-01

    Sampling and analysis of Water Framework Directive priority chemicals were undertaken in nine urban catchments across the UK. Over 9000 samples were collected from a number of different catchment sources including tap water, domestic waste water, surface water runoff, trade discharges, town centre and light industrial estate wastewaters. Determinands included trace metals, polyaromatic hydrocarbons (PAHs), persistent organic pollutants and a number of common pharmaceuticals. Loads of the chemicals from each catchment entering the local wastewater treatment works (WwTW) were estimated and were shown to be relatively consistent between different catchments, after taking population into account. A Monte Carlo mixing model was used to combine the concentrations and flows from the different catchment sources and to predict concentrations and loads entering the WwTW. Based on the model output, the significance of the different sources could be evaluated. The study highlighted the importance of domestic wastewater as a source of contaminants, including metals and trace organic substances (such as ethylenediaminetetraacetic acid (EDTA), bisphenol A, nonylphenol and tributyl tin (TBT)). Concentrations in trade discharges were important in some locations in the case of nonylphenol, EDTA, TBT, as well as for some metals such as copper, zinc and nickel. Contributions to the total load from town centre and light industrial estate sources were generally less than 10% of the total. PMID:25209673

  8. An inter-comparison of PM2.5 at urban and urban background sites: Chemical characterization and source apportionment

    NASA Astrophysics Data System (ADS)

    Cesari, D.; Donateo, A.; Conte, M.; Merico, E.; Giangreco, A.; Giangreco, F.; Contini, D.

    2016-06-01

    A measurement campaign was performed between 04/03/2013 and 17/07/2013 for simultaneous collection of PM2.5 samples in two nearby sites in southeastern Italy: an urban site and an urban background site. PM2.5 at the two sites were similar; however, the chemical composition and the contributions of the main sources were significantly different. The coefficients of divergence (CODs) showed spatial heterogeneity of EC (higher at the urban site because of traffic emissions) and of all metals. Major ions (NH4+, Na+, and SO42 -) and OC had low CODs, suggesting a homogeneous distribution of sea spray, secondary sulfate, and secondary organic matter (SOM = 1.6*OCsec, where OCsec is the secondary OC). The strong correlations between Na+ and Cl-, and the low Cl-/Na+ ratios, suggested the presence of aged sea spray with chloride depletion (about 79% of Cl-) and formation of sodium nitrate at both sites. In both sites, the non-sea-salt sulfate was about 97% of sulfate, and the strong correlation between SO42 - and NH4+ indicated that ammonium was present as ammonium sulfate. However, during advection of Saharan Dust, calcium sulfate was present rather than ammonium sulfate. The source apportionment was performed using the Positive Matrix Factorization comparing outputs of model EPA PMF 3.0 and 5.0 version. Six aerosol sources were identified at both sites: traffic, biomass burning, crustal-resuspended dust, secondary nitrate, marine aerosol, and secondary sulfate. The PMF3.0 model was not completely able, in these sites, to separate marine contribution from secondary nitrate and secondary sulfate from OC, underestimating the marine contribution and overestimating the secondary sulfate with respect to stoichiometric calculations. The application of specific constraints on PMF5.0 provided cleaner profiles, improving the comparison with stoichiometric calculations. The seasonal trends revealed larger biomass burning contributions during the cold period at both sites due to

  9. Ultrafine particles: exposure and source apportionment in 56 Danish homes.

    PubMed

    Bekö, Gabriel; Weschler, Charles J; Wierzbicka, Aneta; Karottki, Dorina Gabriela; Toftum, Jørn; Loft, Steffen; Clausen, Geo

    2013-09-17

    Particle number (PN) concentrations (10-300 nm in size) were continuously measured over a period of ~45 h in 56 residences of nonsmokers in Copenhagen, Denmark. The highest concentrations were measured when occupants were present and awake (geometric mean, GM: 22.3 × 10(3) cm(-3)), the lowest when the homes were vacant (GM: 6.1 × 10(3) cm(-3)) or the occupants were asleep (GM: 5.1 × 10(3) cm(-3)). Diary entries regarding occupancy and particle related activities were used to identify source events and apportion the daily integrated exposure among sources. Source events clearly resulted in increased PN concentrations and decreased average particle diameter. For a given event, elevated particle concentrations persisted for several hours after the emission of fresh particles ceased. The residential daily integrated PN exposure in the 56 homes ranged between 37 × 10(3) and 6.0 × 10(6) particles per cm(3)·h/day (GM: 3.3 × 10(5) cm(-3)·h/day). On average, ~90% of this exposure occurred outside of the period from midnight to 6 a.m. Source events, especially candle burning, cooking, toasting, and unknown activities, were responsible on average for ~65% of the residential integrated exposure (51% without the unknown activities). Candle burning occurred in half of the homes where, on average, it was responsible for almost 60% of the integrated exposure. PMID:23957328

  10. Carbonaceous aerosols from different tropical biomass burning sources

    NASA Astrophysics Data System (ADS)

    Cachier, Hélène; Brémond, Marie-Pierre; Buat-Ménard, Patrick

    1989-08-01

    FOLLOWING a repetitive pattern, biomass burning affects the intertropical belt on a continental scale during the dry season1. The importance of these anthropogenic activities with regard to carbonaceous-component emissions into the global atmosphere is now well recognized2-4. It has been suggested that large injections of black carbon aerosols from the Tropics are of potential importance for the radiative and chemical balance of the troposphere5-10. Studies on carbonaceous aerosols have indicated that, on an annual basis, the intensity of the emissions from tropical biomass burning could compare with that of emissions from fossil-fuel burning in industrial countries7,8. Also, results from combustion chamber experiments have determined the important range of the emission factor for both the organic and the black carbon components of the aerosol1-16. Following on from our earlier studies on total atmospheric particulate carbon (Ct) and isotopic composition (δ13C) (ref. 2), we now present new data on the black carbon content (Cb) of atmospheric particles sampled during the biomass-burning season in the wooden savannah of the Ivory Coast. The Cb/Ct ratio is generally lower than expected and highly variable. This variability indicates that there are drastic changes in source apportionment, which from our isotope studies may be ascribed to the variety of vegetation fuel and also to the mode of combustion. Therefore the Cb/Ct ratio can potentially discriminate biomass-burning emissions from different tropical ecosystems.

  11. Source apportionment using LOTOS-EUROS: module description and evaluation

    NASA Astrophysics Data System (ADS)

    Kranenburg, R.; Segers, A. J.; Hendriks, C.; Schaap, M.

    2013-06-01

    To design effective mitigation strategies, the origin of emissions which produce air pollutants needs to be known. Contributors to air pollutants can be emission sources, like road traffic or industry, but also be more specified to emission from one location or from a specified time. Chemistry transport models can be used to assess the origin of air pollution across a large domain. However, in traditional simulations the information on origin is lost and brute force scenario studies are performed to assess the origin. Alternatively, one can trace the origin of air pollutants throughout a simulation using a labeling approach. In this paper we document and demonstrate a newly developed labeling module for the chemistry transport model LOTOS-EUROS which tracks the source allocation for all particulate matter components and precursor gases. Dedicated simulations confirmed that the new module functions correctly. The new module provides more accurate information about the source contributions than using a brute force approach with scenario runs as the chemical regime remains unchanged. An important advantage of the new module is the reduction of computation costs and analysis work associated with the calculations. The new module was applied to assess the origin of particulate nitrate across the Netherlands. Averaged across the Dutch territory, the main contributions to nitrate are derived from road and non-road transport as well as power plants. Overall, only one-fifth of the concentration derived from sources located inside the country. The new technology enables new research directions as improved information on pollution origin is desired for policy support as well as scientific applications.

  12. Source apportionment using LOTOS-EUROS: module description and evaluation

    NASA Astrophysics Data System (ADS)

    Kranenburg, R.; Hendriks, C.; Schaap, M.; Segers, A.

    2012-11-01

    To design effective mitigation strategies the origin of air pollutants needs to be known. Chemistry transport models can be used to assess the origin of air pollution across a large domain. However, in traditional simulations the information on origin is lost and brute force scenario studies are performed to assess the origin. Alternatively, one can trace the origin of air pollutants throughout a simulation using a labeling approach. In this paper we document and demonstrate a newly developed labeling module for the chemistry transport model LOTOS-EUROS which tracks the source allocation for all particulate matter components and precursor gases. Dedicated simulations confirmed that the new module functions correctly. The new module provides more accurate information about the source contributions than using a brute force approach with scenario runs as the chemical regime remains unchanged. An important advantage of the new module is the reduction of computation costs and analysis work associated with the calculations. The new module was applied to assess the origin of particulate nitrate across the Netherlands. Averaged across the Dutch territory the main contributions to nitrate derive from road and non-road transport as well as power plants. Overall, only one-fifth of the concentration derived from sources located inside the country. The new technology enables new research directions as improved information on pollution origin is desired for policy support as well as scientific applications.

  13. Source apportionment of indoor PM10 in Elderly Care Centre.

    PubMed

    Almeida-Silva, M; Faria, T; Saraga, D; Maggos, T; Wolterbeek, H T; Almeida, S M

    2016-04-01

    Source contribution to atmospheric particulate matter (PM) has been exhaustively modelled. However, people spend most of their time indoors where this approach is less explored. This evidence worsens considering elders living in Elderly Care Centres, since they are more susceptible. The present study aims to investigate the PM composition and sources influencing elderly exposure. Two 2-week sampling campaigns were conducted-one during early fall (warm phase) and another throughout the winter (cold phase). PM10 were collected with two TCR-Tecora(®) samplers that were located in an Elderly Care Centre living room and in the correspondent outdoor. Chemical analysis of the particles was performed by neutron activation analysis for element characterization, by ion chromatography for the determination of water soluble ions and by a thermal optical technique for the measurement of organic and elemental carbon. Statistical analysis showed that there were no statistical differences between seasons and environments. The sum of the indoor PM10 components measured in this work explained 57 and 53 % of the total PM10 mass measured by gravimetry in warm and cold campaigns, respectively. Outdoor PM10 concentrations were significantly higher during the day than night (p value < 0.05), as well as Ca(2+), Fe, Sb and Zn. The contribution of indoor and outdoor sources was assessed by principal component analysis and showed the importance of the highways and the airport located less than 500 m from the Elderly Care Centre for both indoor and outdoor air quality. PMID:26758302

  14. Source apportionment of wastewater pollutants using multivariate analyses.

    PubMed

    Kumari, Menka; Tripathi, B D

    2014-07-01

    A faster and cost-effective methodology has been developed to estimate the spatial and seasonal variations in wastewater quality and apportion the influencing sources through multivariate statistical techniques, cluster analysis and principal component analysis (PCA). Partially treated or untreated wastewater is released into the river from various industrial and domestic sources, which poses a serious threat to human health. Wastewater samples were collected from five stations along the river bank. PCA performed on overall wastewater samples revealed that in present study all the five sampling stations were influenced by sewage and industrial effluents mixed together. However, the pollutant levels were significantly different in the three groups of wastewater samples, which were confirmed by univariate analysis of principal component (PC) scores. Based on wastewater similarities, cluster analysis identified three groups (central, upstream and downstream) of sampling stations, which further confirmed univariate analysis of PCs scores. Spatial variations in wastewater quality reveled that the highest pollutant concentration was noted for group 1 and lowest for group 2. Seasonal variations in the wastewater quality revealed that highest values of pollutants were observed in low flow and lowest in high flow. Results of the present study obtained through multivariate analyses may be used to classify wastewater and identify the influencing sources of pollutants. The present study may be useful in reducing 11 % of the cost in future investigations. Thus, in future quality estimation of the representative wastewater samples would be faster as well as cost-effective approach. PMID:24599147

  15. Source apportionment studies on particulate matter in Beijing/China

    NASA Astrophysics Data System (ADS)

    Suppan, P.; Shen, R.; Shao, L.; Schrader, S.; Schäfer, K.; Norra, S.; Vogel, B.; Cen, K.; Wang, Y.

    2013-05-01

    More than 15 million people in the greater area of Beijing are still suffering from severe air pollution levels caused by sources within the city itself but also from external impacts like severe dust storms and long range advection from the southern and central part of China. Within this context particulate matter (PM) is the major air pollutant in the greater area of Beijing (Garland et al., 2009). PM did not serve only as lead substance for air quality levels and therefore for adverse health impact effects but also for a strong influence on the climate system by changing e.g. the radiative balance. Investigations on emission reductions during the Olympic Summer Games in 2008 have caused a strong reduction on coarser particles (PM10) but not on smaller particles (PM2.5). In order to discriminate the composition of the particulate matter levels, the different behavior of coarser and smaller particles investigations on source attribution, particle characteristics and external impacts on the PM levels of the city of Beijing by measurements and modeling are performed: a) Examples of long term measurements of PM2.5 filter sampling in 2010/2011 with the objectives of detailed chemical (source attribution, carbon fraction, organic speciation and inorganic composition) and isotopic analyses as well as toxicological assessment in cooperation with several institutions (Karlsruhe Institute of Technology (IfGG/IMG), Helmholtz Zentrum München (HMGU), University Rostock (UR), Chinese University of Mining and Technology Beijing, CUMTB) will be discussed. b) The impact of dust storm events on the overall pollution level of particulate matter in the greater area of Beijing is being assessed by the online coupled comprehensive model system COSMO-ART. First results of the dust storm modeling in northern China (2011, April 30th) demonstrates very well the general behavior of the meteorological parameters temperature and humidity as well as a good agreement between modeled and

  16. Volatility of organic molecular markers used for source apportionment analysis: measurements and implications for atmospheric lifetime.

    PubMed

    May, Andrew A; Saleh, Rawad; Hennigan, Christopher J; Donahue, Neil M; Robinson, Allen L

    2012-11-20

    Molecular markers are organic species used to define fingerprints for source apportionment of ambient fine particulate matter. Traditionally, these markers have been assumed to be stable in the atmosphere. This work investigates the gas-particle partitioning of eight organic species used as molecular markers in receptor models for biomass burning (levoglucosan), motor vehicles (5α-cholestane, n-hexacosane, n-triacontane, 1,2-benz[a]anthracene, coronene), and meat cooking (cholesterol, oleic acid). Experiments were conducted using a thermodenuder to measure the evaporation of single component particles. The data were analyzed using the integrated volume method to determine saturation concentrations and enthalpies of vaporization for each compound. The results indicate that appreciable quantities (>10%) of most of these markers exist in the gas phase under typical atmospheric conditions. Therefore, these species should be considered semivolatile. Predictions from a chemical kinetics model indicate that gas-particle partitioning has important effects on the atmospheric lifetime of these species. The atmospheric decay of semivolatile compounds proceeds much more rapidly than nonvolatile compounds because gas-phase oxidation induces evaporation of particle-phase material. Therefore, both gas-particle partitioning and chemical reactions need to be accounted for when semivolatile molecular markers are used for source apportionment studies. PMID:23013599

  17. Source apportionment of atmospheric PAHs in the Western Balkans by natural abundance radiocarbon analysis

    SciTech Connect

    Zdenek Zencak; Jana Klanova; Ivan Holoubek; Oerjan Gustafsson

    2007-06-01

    Progress in source apportionment of priority combustion-derived atmospheric pollutants can be made by an inverse approach to inventory emissions, namely, receptor-based compound class-specific radiocarbon analysis (CCSRA) of target pollutants. In the present study, CCSRA of the combustion-derived polycyclic aromatic hydrocarbons (PAHs) present in the atmosphere of the countries of the former republic of Yugoslavia was performed. The carbon stable isotope composition ({delta}{sup 13}C) of PAHs varied between -27.68 and -27.19{per_thousand}, whereas {Delta}{sup 14}C values ranged from -568{per_thousand} for PAHs sampled in Kosovo to -288{per_thousand} for PAHs sampled in the Sarajevo area. The application of an isotopic mass balance model to these {Delta}{sup 14}C data revealed a significant contribution (35-65%) from the combustion of non-fossil material to the atmospheric PAH pollution, even in urban and industrialized areas. Furthermore, consistency was observed between the isotopic composition of PAHs obtained by high-volume sampling and those collected by passive sampling. This encourages the use of passive samplers for CCSRA applications. This marks the first time that a CCSRA investigation could be executed on a geographically wide scale, providing a quantitative field-based source apportionment, which points out that also non-fossil combustion processes should be targeted for remedial action. 36 refs., 1 fig., 3 tabs.

  18. Contamination characteristics and source apportionment of trace metals in soils around Miyun Reservoir.

    PubMed

    Chen, Haiyang; Teng, Yanguo; Chen, Ruihui; Li, Jiao; Wang, Jinsheng

    2016-08-01

    Due to their toxicity and bioaccumulation, trace metals in soils can result in a wide range of toxic effects on animals, plants, microbes, and even humans. Recognizing the contamination characteristics of soil metals and especially apportioning their potential sources are the necessary preconditions for pollution prevention and control. Over the past decades, several receptor models have been developed for source apportionment. Among them, positive matrix factorization (PMF) has gained popularity and was recommended by the US Environmental Protection Agency as a general modeling tool. In this study, an extended chemometrics model, multivariate curve resolution-alternating least squares based on maximum likelihood principal component analysis (MCR-ALS/MLPCA), was proposed for source apportionment of soil metals and applied to identify the potential sources of trace metals in soils around Miyun Reservoir. Similar to PMF, the MCR-ALS/MLPCA model can incorporate measurement error information and non-negativity constraints in its calculation procedures. Model validation with synthetic dataset suggested that the MCR-ALS/MLPCA could extract acceptable recovered source profiles even considering relatively larger error levels. When applying to identify the sources of trace metals in soils around Miyun Reservoir, the MCR-ALS/MLPCA model obtained the highly similar profiles with PMF. On the other hand, the assessment results of contamination status showed that the soils around reservoir were polluted by trace metals in slightly moderate degree but potentially posed acceptable risks to the public. Mining activities, fertilizers and agrochemicals, and atmospheric deposition were identified as the potential anthropogenic sources with contributions of 24.8, 14.6, and 13.3 %, respectively. In order to protect the drinking water source of Beijing, special attention should be paid to the metal inputs to soils from mining and agricultural activities. PMID:27107989

  19. Application of disperion models for layered haze source apportionment

    SciTech Connect

    Latimer, D.A. )

    1988-01-01

    The phenomenon of layered haze, forms of visibility impairment, is of concern to the National Park Service, presumably because it may adversely affect the visual experience of visitors to national parks and wilderness areas.Because layered haze has been observed principally in the winter at locations such as Bryce Canyon and Mesa Verde national parks, which are adjacent to large , coal-fired power plants, it ahs been speculated that these plants may be large contributors to such haze. Although special studies have been carried out during the past two winters (1985-6 and 1986-87) specifically to study layered haze near Bryce Canyon, conclusive results as to the cause of and principal source contributors to wintertime layered haze have not yet been obtained. A critical question that remains to be answered regarding this wintertime layered haze is the relative contribution of the local power plant (Navajo) and other emissions from the populated areas (e.g. from coal- and wood-fired space heaters in the town of Page and on the Navajo and Hopi Indian Reservations) compared to other more distant sources located throughout the Southwest. The authors discuss two different models designed in an attempt to place bounds in the relative impact of the Navajo Generating Station, based on different assumptions, to address the relative impact of the Navajo plant on winter layered haze. These calculations can only be considered bounding calculations at this time because of the significant uncertainties in atmospheric flow and dispersion conditions and plume chemistry; however, they may be useful in interpreting the results of on-going studies if the layered haze phenomenon.

  20. Fine Particulate Pollution and Source Apportionment in the Urban Centers for Africa, Asia and Latin America

    NASA Astrophysics Data System (ADS)

    Guttikunda, S. K.; Johnson, T. M.; Procee, P.

    2004-12-01

    Fossil fuel combustion for domestic cooking and heating, power generation, industrial processes, and motor vehicles are the primary sources of air pollution in the developing country cities. Over the past twenty years, major advances have been made in understanding the social and economic consequences of air pollution. In both industrialized and developing countries, it has been shown that air pollution from energy combustion has detrimental impacts on human health and the environment. Lack of information on the sectoral contributions to air pollution - especially fine particulates, is one of the typical constraints for an effective integrated urban air quality management program. Without such information, it is difficult, if not impossible, for decision makers to provide policy advice and make informed investment decisions related to air quality improvements in developing countries. This also raises the need for low-cost ways of determining the principal sources of fine PM for a proper planning and decision making. The project objective is to develop and verify a methodology to assess and monitor the sources of PM, using a combination of ground-based monitoring and source apportionment techniques. This presentation will focus on four general tasks: (1) Review of the science and current activities in the combined use of monitoring data and modeling for better understanding of PM pollution. (2) Review of recent advances in atmospheric source apportionment techniques (e.g., principal component analysis, organic markers, source-receptor modeling techniques). (3) Develop a general methodology to use integrated top-down and bottom-up datasets. (4) Review of a series of current case studies from Africa, Asia and Latin America and the methodologies applied to assess the air pollution and its sources.

  1. A novel approach for apportionment between primary and secondary sources of airborne nitrated polycyclic aromatic hydrocarbons (NPAHs)

    NASA Astrophysics Data System (ADS)

    Lin, Yan; Qiu, Xinghua; Ma, Yiqiu; Wang, Junxia; Wu, Yusheng; Zeng, Limin; Hu, Min; Zhu, Tong; Zhu, Yifang

    2016-08-01

    Nitrated polycyclic aromatic hydrocarbons (NPAHs) are strong environmental mutagens and carcinogens originating from both primary emissions and secondary reactions in the atmosphere. The sources and the toxicity of different NPAH species could vary greatly; therefore a specie-specific source apportionment is essential to evaluate their health risks and to formulate controlling regulations. However, few studies have reported source apportionment of NPAHs species to date. In this study, we developed an easy-to-perform method for the apportionment of primary versus secondary sources of airborne NPAHs based on the relationship between NPAHs and NO2. After log-transformation of both NPAHs and NO2 concentrations, a slope of β between these two variables was obtained by the linear regression. When β is significantly smaller than 1, it indicates primary emissions while β significantly greater than 1 suggests secondary formation. We have validated this method with data previously collected in Beijing. A good correlation, with R value of 0.57, was observed between results produced by this new method and by Positive Matrix Factorization (PMF). The correlation could be further improved (R = 0.71) if the gas/particle partition of NPAHs is taken into consideration. This developed method enables the source apportionment for individual NPAHs species and could be used to validate the results of other receptor models.

  2. Source apportionment and source/sink relationships of PAHs in the coastal atmosphere of Chicago and Lake Michigan

    NASA Astrophysics Data System (ADS)

    Simcik, Matt F.; Eisenreich, Steven J.; Lioy, Paul J.

    Multivariate statistical techniques were used to investigate source apportionment and source/sink relationships for polycyclic aromatic hydrocarbons (PAHs) in the urban and adjacent coastal atmosphere of Chicago/Lake Michigan in 1994-1995. The PAH signatures for the atmospheric particle phase, surface water particle phase and sediments indicate that atmospheric deposition is the major source of PAHs to the sediments and water column particulate phase of Lake Michigan. The PAH signature for the atmospheric gas phase and water dissolved phase indicate an intimate linkage between the lake and its overlying atmosphere. A modified factor analysis-multiple regression model was successfully applied to the source apportionment of atmospheric PAHs (gas+particle). Coal combustion accounted for 48±5% of the ΣPAH concentration in both the urban and adjacent coastal atmosphere, natural gas combustion accounted for 26±2%, coke ovens accounted for 14±3%, and vehicle emissions (gas+diesel) accounted for 9±4%. Each is an identified source category for the region. These results are consistent with the mix of fossil fuel combustion sources and ratios of indicator PAHs.

  3. The Analysis of PM2.5 Source Apportionment Technique's Competitiveness in China

    NASA Astrophysics Data System (ADS)

    Qian, K.; Deng, L.; An, Y. B.; Liu, S. Y.; Hao, H. Z.

    Nowadays, people has paid more attention to PM2.5 in various countries of the world. PM2.5 is a kind of particulate matter whose diameter less than 2.5μm, with great damage to environment and public's health. The origin of source apportionment technique is studies of atmospheric particulate matter, it uses two mathematical models, one of them is diffusion model which study the source of pollution, and another one called receptor model which study the pollution of area. In my study, I will analyze the competitiveness of similar technology in various countries by using microscope to analyze shape characteristic, Enrichment Factor Method (EF), Factor Analyze Method (FA), EPA-CMB8.2 Model, combining with the consequence of Improved-source-analysis Technology and Orthogonal matrix decomposition Model.

  4. Source apportionment of ambient VOCS in Mumbai city

    NASA Astrophysics Data System (ADS)

    Srivastava, Anjali

    Air pollution kills almost half a million Asians every year. Most of this pollution is emitted from buses, trucks, motorcycles and other forms of transport. As Asia's cities continue to expand, the rising number of vehicles has resulted in even greater pollution. Amongst the measures available to control, vehicular emission was engine modification, catalytic converters and fuel modifications. Some of these have led to emissions of some hazardous air pollutants (HAP) like volatile organic compounds (VOCs). VOC emission is an area needing attention in air quality management. This paper discusses a study on VOC concentration at major sources like traffic junction, residential area, commercial areas, industrial areas and petrol pumps in Mumbai city. CMB8 Model has been used to apportion VOCs in Mumbai city. It was observed that evaporative emissions dominate in Mumbai. In order to control VOCs in air the management strategy should thus focus on cost effective vapor recovery systems at refueling stations and in vehicles. Effective inspection and maintenance programme can reduce evaporative and exhaust VOC emissions. Modifying certain fuel parameters, like reducing benzene content in petrol will as well reduce VOC content in air. The benzene content in petrol was 3% in the year 2001 in Mumbai. Adulteration also results in high levels of VOCs in air.

  5. Measurement, time series analysis and source apportionment of inorganic and organic speciated PM(2.5) air pollution in Denver

    NASA Astrophysics Data System (ADS)

    Dutton, Steven James

    Particulate air pollution has demonstrated significant health effects ranging from worsening of asthma to increased rates of respiratory and cardiopulmonary mortality. These results have prompted the US-EPA to include particulate matter (PM) as one of the six criteria air pollutants regulated under the Clean Air Act. The diverse chemical make-up and physical characteristics of PM make it a challenging pollutant to characterize and regulate. Particulate matter less than 2.5 microns in diameter (PM2.5) has the ability to travel deep into the lungs and therefore has been linked with some of the more significant health effects. The toxicity of any given particle is likely dependent on its chemical composition. The goal of this project has been to chemically characterize a long time series of PM 2.5 measurements collected at a receptor site in Denver to a level of detail that has not been done before on this size data set. This has involved characterization of inorganic ions using ion chromatography, total elemental and organic carbon using thermal optical transmission, and organic molecular marker species using gas chromatography-mass spectrometry. Methods have been developed to allow for daily measurement and speciation for these compounds over a six year period. Measurement methods, novel approaches to uncertainty estimation, time series analysis, spectral and pattern analyses and source apportionment using two multivariate factor analysis models are presented. Analysis results reveal several natural and anthropogenic sources contributing to PM2.5 in Denver. The most distinguishable sources are motor vehicles and biomass combustion. This information will be used in a health effect analysis as part of a larger study called the Denver Aerosol Sources and Health (DASH) study. Such results will inform regulatory decisions and may help create a better understanding of the underlying mechanisms for the observed adverse health effects associated with PM2.5.

  6. SOURCE APPORTIONMENT OF EXPOSURES TO VOLATILE ORGANIC COMPOUNDS: II. APPLICATION OF RECEPTOR MODELS TO TEAM STUDY DATA. (R826788)

    EPA Science Inventory

    Four receptor-oriented source apportionment models were applied to personal exposure measurements for toxic volatile organic compounds (VOCs). The measurements are from the total exposure assessment methodology studies conducted from 1980 to 1984 in New Jersey (NJ) and Califor...

  7. SOURCE APPORTIONMENT OF PM 2.5 AND CARBON IN SEATTLE USING CHEMICAL MASS BALANCE AND POSITIVE MATRIX FACTORIZATION

    EPA Science Inventory

    Three years of PM2.5 speciated data were collected and chemically analyzed using the IMPROVE protocol at the Beacon Hill site in Seattle. The data were analyzed by the Chemical Mass Balance Version 8 (CMB8) and Positive Matrix Factorization (PMF) source apportionment models. T...

  8. Source apportionment and health effect of NOx over the Pearl River Delta region in southern China.

    PubMed

    Lu, Xingcheng; Yao, Teng; Li, Ying; Fung, Jimmy C H; Lau, Alexis K H

    2016-05-01

    As one of the most notorious atmospheric pollutants, NOx not only promotes the formation of ozone but also has adverse health effects on humans. It is therefore of great importance to study the sources of NOx and its effects on human health. The Comprehensive Air Quality Model (CAMx) modeling system and ozone source apportionment technology (OSAT) were used to study the contribution of NOx from different emission sources over southern China. The results indicate that heavy duty diesel vehicles (HDDVs) and industrial point sources are the two major local NOx sources, accounting for 30.8% and 18.5% of local NOx sources, respectively. In Hong Kong, marine emissions contributed around 43.4% of local NOx in 2011. Regional transport is another important source of this pollutant, especially in February and November, and it can contribute over 30% of ambient NOx on average. Power plant point emission is an significant regional source in Zhuhai, Zhongshan and Foshan. The total emission sources are estimated to cause 2119 (0-4405) respiratory deaths and 991 (0-2281) lung cancer deaths due to long-term exposure to NOx in the Pearl River Delta region. Our results suggest that local governments should combine their efforts and vigorously promote further reduction of NOx emissions, especially for those sources that make a substantial contribution to NOx emissions and affect human health: HDDV, LDGV, industrial point sources and marine sources. PMID:26845361

  9. [Source apportionment of soil heavy metals in Jiapigou goldmine based on the UNMIX model].

    PubMed

    Ai, Jian-chao; Wang, Ning; Yang, Jing

    2014-09-01

    The paper determines 16 kinds of metal elements' concentration in soil samples which collected in Jipigou goldmine upper the Songhua River. The UNMIX Model which was recommended by US EPA to get the source apportionment results was applied in this study, Cd, Hg, Pb and Ag concentration contour maps were generated by using Kriging interpolation method to verify the results. The main conclusions of this study are: (1)the concentrations of Cd, Hg, Pb and Ag exceeded Jilin Province soil background values and enriched obviously in soil samples; (2)using the UNMIX Model resolved four pollution sources: source 1 represents human activities of transportation, ore mining and garbage, and the source 1's contribution is 39. 1% ; Source 2 represents the contribution of the weathering of rocks and biological effects, and the source 2's contribution is 13. 87% ; Source 3 is a comprehensive source of soil parent material and chemical fertilizer, and the source 3's contribution is 23. 93% ; Source 4 represents iron ore mining and transportation sources, and the source 4's contribution is 22. 89%. (3)the UNMIX Model results are in accordance with the survey of local land-use types, human activities and Cd, Hg and Pb content distributions. PMID:25518676

  10. Source apportionment of trace metals in river sediments: A comparison of three methods.

    PubMed

    Chen, Haiyang; Teng, Yanguo; Li, Jiao; Wu, Jin; Wang, Jinsheng

    2016-04-01

    Increasing trace metal pollution in river sediment poses a significant threat to watershed ecosystem health. Identifying potential sources of sediment metals and apportioning their contributions are of key importance for proposing prevention and control strategies of river pollution. In this study, three advanced multivariate receptor models, factor analysis with nonnegative constraints (FA-NNC), positive matrix factorization (PMF), and multivariate curve resolution weighted-alternating least-squares (MCR-WALS), were comparatively employed for source apportionment of trace metals in river sediments and applied to the Le'an River, a main tributary of Poyang Lake which is the largest freshwater lake in China. The pollution assessment with contamination factor and geoaccumulation index suggested that the river sediments in Le'an River were contaminated severely by trace metals due to human activities. With the three apportionment tools, similar source profiles of trace metals in sediments were extracted. Especially, the MCR-WALS and PMF models produced essentially the same results. Comparatively speaking, the weighted schemes might give better solutions than the unweighted FA-NNC because the uncertainty information of environmental data was considered by PMF and MCR-WALS. Anthropogenic sources were apportioned as the most important pollution sources influencing the sediment metals in Le'an River with contributions of about 90%. Among them, copper tailings occupied the largest contribution (38.4-42.2%), followed by mining wastewater (29.0-33.5%), and agricultural activities (18.2-18.7%). To protect the ecosystem of Le'an River and Poyang Lake, special attention should be paid to the discharges of mining wastewater and the leachates of copper tailing ponds in that region. PMID:26736053

  11. Characterization and source apportionment of fine particulate sources at Rijeka, Croatia from 2013 to 2015

    NASA Astrophysics Data System (ADS)

    Ivošević, Tatjana; Stelcer, Eduard; Orlić, Ivica; Bogdanović Radović, Iva; Cohen, David

    2016-03-01

    PM2.5 daily aerosol samples were collected in Rijeka, Croatia during period from 6th August 2013 to 29th January 2015. In total, 259 samples were collected on Teflon filters and analyzed by PIXE and PIGE techniques to give information on 21 elements from Na to Pb. Additionally, black carbon was determined with the Laser Integrated Plate Method. Results were statistically evaluated using Positive Matrix Factorization (PMF). Eight major pollution sources: auto, smoke, secondary sulfates, heavy oil combustion, sea spray, road dust, industry iron and soil dust were identified together with their relative contributions in total PM2.5 pollution.

  12. Source identification and apportionment of halogenated compounds observed at a remote site in East Asia.

    PubMed

    Li, Shanlan; Kim, Jooil; Park, Sunyoung; Kim, Seung-Kyu; Park, Mi-Kyung; Mühle, Jens; Lee, Gangwoong; Lee, Meehye; Jo, Chun Ok; Kim, Kyung-Ryul

    2014-01-01

    The sources of halogenated compounds in East Asia associated with stratospheric ozone depletion and climate change are relatively poorly understood. High-precision in situ measurements of 18 halogenated compounds and carbonyl sulfide (COS) made at Gosan, Jeju Island, Korea, from November 2007 to December 2011 were analyzed by a positive matrix factorization (PMF). Seven major industrial sources were identified from the enhanced concentrations of halogenated compounds observed at Gosan and corresponding concentration-based source contributions were also suggested: primary aluminum production explaining 37% of total concentration enhancements, solvent usage of which source apportionment is 25%, fugitive emissions from HCFC/HFC production with 11%, refrigerant replacements (9%), semiconductor/electronics industry (9%), foam blowing agents (6%), and fumigation (3%). Statistical trajectory analysis was applied to specify the potential emission regions for seven sources using back trajectories. Primary aluminum production, solvent usage and fugitive emission sources were mainly contributed by China. Semiconductor/electronics sources were dominantly located in Korea. Refrigerant replacement, fumigation and foam blowing agent sources were spread throughout East Asian countries. The specified potential source regions are consistent with country-based consumptions and emission patterns, verifying the PMF analysis results. The industry-based emission sources of halogenated compounds identified in this study help improve our understanding of the East Asian countries' industrial contributions to halogenated compound emissions. PMID:24298975

  13. Ensemble-Based Source Apportionment of Fine Particulate Matter and Emergency Department Visits for Pediatric Asthma

    PubMed Central

    Gass, Katherine; Balachandran, Sivaraman; Chang, Howard H.; Russell, Armistead G.; Strickland, Matthew J.

    2015-01-01

    Epidemiologic studies utilizing source apportionment (SA) of fine particulate matter have shown that particles from certain sources might be more detrimental to health than others; however, it is difficult to quantify the uncertainty associated with a given SA approach. In the present study, we examined associations between source contributions of fine particulate matter and emergency department visits for pediatric asthma in Atlanta, Georgia (2002–2010) using a novel ensemble-based SA technique. Six daily source contributions from 4 SA approaches were combined into an ensemble source contribution. To better account for exposure uncertainty, 10 source profiles were sampled from their posterior distributions, resulting in 10 time series with daily SA concentrations. For each of these time series, Poisson generalized linear models with varying lag structures were used to estimate the health associations for the 6 sources. The rate ratios for the source-specific health associations from the 10 imputed source contribution time series were combined, resulting in health associations with inflated confidence intervals to better account for exposure uncertainty. Adverse associations with pediatric asthma were observed for 8-day exposure to particles generated from diesel-fueled vehicles (rate ratio = 1.06, 95% confidence interval: 1.01, 1.10) and gasoline-fueled vehicles (rate ratio = 1.10, 95% confidence interval: 1.04, 1.17). PMID:25776011

  14. PM₁₀ and PM₂.₅ sources at an insular location in the western Mediterranean by using source apportionment techniques.

    PubMed

    Pey, Jorge; Alastuey, Andrés; Querol, Xavier

    2013-07-01

    PM₁₀ and PM₂.₅ chemical composition has been determined at a suburban insular site in the Balearic Islands (Spain) during almost one and a half year. As a result, 200 samples with more than 50 chemical parameters analyzed have been obtained. The whole database has been analyzed by two receptor modelling techniques (Principal Component Analysis and Positive Matrix Factorisation) in order to identify the main PM sources. After that, regression analyses with respect to the PM mass concentrations were conducted to quantify the daily contributions of each source. Four common sources were identified by both receptor models: secondary nitrate coupled with vehicular emissions, secondary sulphate influenced by fuel-oil combustion, aged marine aerosols and mineral dust. In addition, PCA isolated harbour emissions and a mixed anthropogenic factor containing industrial emissions; whereas PMF isolated an additional mineral factor interpreted as road dust+harbour emissions, and a vehicular abrasion products factor. The use of both methodologies appeared complementary. Nevertheless, PMF sources by themselves were better differentiated. Besides these receptor models, a specific methodology to quantify African dust was also applied. The combination of these three source apportionment tools allowed the identification of 8 sources, being 4 of them mineral (African, regional, urban and harbour dusts). As a summary, 29% of PM₁₀ was attributed to natural sources (African dust, regional dust and sea spray), whereas the proportion diminished to 11% in PM₂.₅. Furthermore, the secondary sulphate source, which accounted for about 22 and 32% of PM₁₀ and PM₂.₅, is strongly linked to the aged polluted air masses residing over the western Mediterranean in the warm period. PMID:23611951

  15. A stable isotope model for combined source apportionment and degradation quantification of environmental pollutants

    NASA Astrophysics Data System (ADS)

    Lutz, Stefanie; Van Breukelen, Boris

    2014-05-01

    Natural attenuation can represent a complementary or alternative approach to engineered remediation of polluted sites. In this context, compound specific stable isotope analysis (CSIA) has proven a useful tool, as it can provide evidence of natural attenuation and assess the extent of in-situ degradation based on changes in isotope ratios of pollutants. Moreover, CSIA can allow for source identification and apportionment, which might help to identify major emission sources in complex contamination scenarios. However, degradation and mixing processes in aquifers can lead to changes in isotopic compositions, such that their simultaneous occurrence might complicate combined source apportionment (SA) and assessment of the extent of degradation (ED). We developed a mathematical model (stable isotope sources and sinks model; SISS model) based on the linear stable isotope mixing model and the Rayleigh equation that allows for simultaneous SA and quantification of the ED in a scenario of two emission sources and degradation via one reaction pathway. It was shown that the SISS model with CSIA of at least two elements contained in the pollutant (e.g., C and H in benzene) allows for unequivocal SA even in the presence of degradation-induced isotope fractionation. In addition, the model enables precise quantification of the ED provided degradation follows instantaneous mixing of two sources. If mixing occurs after two sources have degraded separately, the model can still yield a conservative estimate of the overall extent of degradation. The SISS model was validated against virtual data from a two-dimensional reactive transport model. The model results for SA and ED were in good agreement with the simulation results. The application of the SISS model to field data of benzene contamination was, however, challenged by large uncertainties in measured isotope data. Nonetheless, the use of the SISS model provided a better insight into the interplay of mixing and degradation

  16. Investigating types and sources of organic aerosol in Rocky Mountain National Park using aerosol mass spectrometry

    NASA Astrophysics Data System (ADS)

    Schurman, M. I.; Lee, T.; Sun, Y.; Schichtel, B. A.; Kreidenweis, S. M.; Collett, J. L., Jr.

    2015-01-01

    The environmental impacts of atmospheric particles are highlighted in remote areas where visibility and ecosystem health can be degraded by even relatively low particle concentrations. Submicron particle size, composition, and source apportionment were explored at Rocky Mountain National Park using a High-Resolution Time-of-Flight Aerosol Mass Spectrometer. This summer campaign found low average, but variable, particulate mass (PM) concentrations (max = 93.1 μg m-3, avg. = 5.13 ± 2.72 μg m-3) of which 75.2 ± 11.1% is organic. Low-volatility oxidized organic aerosol (LV-OOA, 39.3% of PM1 on average) identified using Positive Matrix Factorization appears to be mixed with ammonium sulfate (3.9% and 16.6% of mass, respectively), while semi-volatile OOA (27.6%) is correlated with ammonium nitrate (nitrate: 4.3%); concentrations of these mixtures are enhanced with upslope (SE) surface winds from the densely populated Front Range area, indicating the importance of transport. A local biomass burning organic aerosol (BBOA, 8.4%) source is suggested by mass spectral cellulose combustion markers (m/z 60 and 73) limited to brief, high-concentration, polydisperse events (suggesting fresh combustion), a diurnal maximum at 22:00 local standard time when campfires were set at adjacent summer camps, and association with surface winds consistent with local campfire locations. The particle characteristics determined here represent typical summertime conditions at the Rocky Mountain site based on comparison to ~10 years of meteorological, particle composition, and fire data.

  17. Investigating types and sources of organic aerosol in Rocky Mountain National Park using aerosol mass spectrometry

    NASA Astrophysics Data System (ADS)

    Schurman, M. I.; Lee, T.; Sun, Y.; Schichtel, B. A.; Kreidenweis, S. M.; Collett, J. L., Jr.

    2014-07-01

    The environmental impacts of atmospheric particles are highlighted in remote areas where visibility and ecosystem health can be degraded by even relatively low particle concentrations. Submicron particle size, composition, and source apportionment were explored at Rocky Mountain National Park using a High-Resolution Time-of-Flight Aerosol Mass Spectrometer. This summer campaign found low average, but variable, particulate mass (PM) concentrations (max = 93.1 μg m-3, avg. = 5.13 ± 2.72 μg m-3) of which 75.2 ± 11.1% is organic. Low-volatility oxidized organic aerosol (LV-OOA, 39.3% of PM1 on average) identified using Positive Matrix Factorization appears to be mixed with ammonium sulfate (3.9 and 16.6% of mass, respectively), while semi-volatile OOA (27.6%) is correlated with ammonium nitrate (nitrate: 4.3%); concentrations of these mixtures are enhanced with upslope (SE) surface winds from the densely populated Front Range area, indicating the importance of transport. A local biomass burning organic aerosol (BBOA, 8.4%) source is suggested by mass spectral cellulose combustion markers (m/zs 60 and 73) limited to brief, high-concentration, polydisperse events (suggesting fresh combustion), a diurnal maximum at 22:00 local standard time (LST) when campfires were set at adjacent summer camps, and association with surface winds consistent with local campfire locations. The particle characteristics determined here represent typical summertime conditions at the Rocky Mountain site based on comparison to ∼10 years of meteorological, particle composition, and fire data.

  18. Monitoring and source apportionment of particulate matter near a large phosphorus production facility.

    PubMed

    Willis, R D; Ellenson, W D; Conner, T L

    2001-08-01

    A source apportionment study was conducted to identify sources within a large elemental phosphorus plant that contribute to exceedances of the National Ambient Air Quality Standards (NAAQS) for 24-hr PM10. Ambient data were collected at three monitoring sites from October 1996 through July 1999, and included the following: 24-hr PM10 mass, 24-hr PM2.5 and PM10-2.5 mass and chemistry, continuous PM10 and PM2.5 mass, continuous meteorological data, and wind-direction-resolved PM2.5 and PM10 mass and chemistry. Ambient-based receptor modeling and wind-directional analysis were employed to help identify major sources or source locations and source contributions. Fine-fraction phosphate was the dominant species observed during PM10 exceedances, though in general, resuspended coarse dusts from raw and processed materials at the plant were also needed to create an exceedance. Major sources that were identified included the calciners, the CO flares, process-related dust, and electric-arc furnace operations. PMID:11518289

  19. Quantitative identification and source apportionment of anthropogenic heavy metals in marine sediment of Hong Kong

    NASA Astrophysics Data System (ADS)

    Zhou, Feng; Guo, Huaicheng; Liu, Lei

    2007-10-01

    Based on ten heavy metals collected twice annually at 59 sites from 1998 to 2004, enrichment factors (EFs), principal component analysis (PCA) and multivariate linear regression of absolute principal component scores (MLR-APCS) were used in identification and source apportionment of the anthropogenic heavy metals in marine sediment. EFs with Fe as a normalizer and local background as reference values was properly tested and suitable in Hong Kong, and Zn, Ni, Pb, Cu, Cd, Hg and Cr mainly originated from anthropogenic sources, while Al, Mn and Fe were derived from rocks weathering. Rotated PCA and GIS mapping further identified two types of anthropogenic sources and their impacted regions: (1) electronic industrial pollution, riparian runoff and vehicle exhaust impacted the entire Victoria Harbour, inner Tolo Harbour, Eastern Buffer, inner Deep Bay and Cheung Chau; and (2) discharges from textile factories and paint, influenced Tsuen Wan Bay and Kwun Tong typhoon shelter and Rambler Channel. In addition, MLR-APCS was successfully introduced to quantitatively determine the source contributions with uncertainties almost less than 8%: the first anthropogenic sources were responsible for 50.0, 45.1, 86.6, 78.9 and 87.5% of the Zn, Pb, Cu, Cd and Hg, respectively, whereas 49.9% of the Ni and 58.4% of the Cr came from the second anthropogenic sources.

  20. Evaluation of organic markers for chemical mass balance source apportionment at the Fresno Supersite

    NASA Astrophysics Data System (ADS)

    Chow, J. C.; Watson, J. G.; Lowenthal, D. H.; Chen, L. W. A.; Zielinska, B.; Mazzoleni, L. R.; Magliano, K. L.

    2007-04-01

    Sources of PM2.5 at the Fresno Supersite during high PM2.5 episodes occurring from 15 December 2000-3 February 2001 were estimated with the Chemical Mass Balance (CMB) receptor model. The ability of source profiles with organic markers to distinguish motor vehicle, residential wood combustion (RWC), and cooking emissions was evaluated with simulated data. Organics improved the distinction between gasoline and diesel vehicle emissions and allowed a more precise estimate of the cooking source contribution. Sensitivity tests using average ambient concentrations showed that the gasoline vehicle contribution was not resolved without organics. Organics were not required to estimate hardwood contributions. The most important RWC marker was the water-soluble potassium ion. The estimated cooking contribution did not depend on cholesterol because its concentrations were below the detection limit in most samples. Winter time source contributions were estimated by applying the CMB model to individual and average sample concentrations. RWC was the largest source, contributing 29-31% of measured PM2.5. Hardwood and softwood combustion accounted for 16-17% and 12-15%, respectively. Secondary ammonium nitrate and motor vehicle emissions accounted for 31-33% and 9-15%, respectively. The gasoline vehicle contribution (3-10%) was comparable to the diesel vehicle contribution (5-6%). The cooking contribution was 5-19% of PM2.5. Fresno source apportionment results were consistent with those estimated in previous studies.

  1. Overview of receptor-based source apportionment studies for speciated atmospheric mercury

    NASA Astrophysics Data System (ADS)

    Cheng, I.; Xu, X.; Zhang, L.

    2015-02-01

    Receptor-based source apportionment studies of speciated atmospheric mercury are not only concerned with source contributions, but also the influence of transport, transformation, and deposition processes on speciated atmospheric mercury concentrations at receptor locations. Previous studies applied multivariate receptor models including Principal Components Analysis and Positive Matrix Factorization, and back trajectory receptor models including Potential Source Contribution Function, Gridded Frequency Distributions, and Concentration-back trajectory models. Anthropogenic combustion sources, crustal/soil dust, and chemical and physical processes, such as gaseous elemental mercury (GEM) oxidation reactions, boundary layer mixing, and GEM flux from surfaces, were inferred from the multivariate studies, which were predominantly conducted at receptor sites in Canada and the US. Back trajectory receptor models revealed potential impacts of large industrial areas such as the Ohio River Valley in the US and throughout China, metal smelters, mercury evasion from the ocean and Great Lakes, and free troposphere transport on receptor measurements. Input data and model parameters specific to atmospheric mercury receptor models are summarized and model strengths and weaknesses are also discussed. One area of improvement that applies to all receptor models is the greater focus on evaluating the accuracy of receptor models at identifying potential speciated atmospheric mercury sources, source locations, and chemical and physical processes in the atmosphere.

  2. Source apportionment of airborne particulate matter using organic compounds as tracers

    SciTech Connect

    Schauer, J.J.; Rogge, W.F.; Hildemann, L.M.

    1995-12-31

    A chemical mass balance receptor model based on organic compounds has been developed that relates source contributions to airborne fine particle mass concentrations. Source contributions to the concentrations of specific organic compounds are revealed as well. The model is applied to four air quality monitoring sites in Southern California using atmospheric organic compound concentration data and source test data collected specifically for the purpose of testing this model. The contributions of up to nine primary particle source types can be separately identified in ambient samples based on this method, and approximately 85% of the organic fine aerosol is assigned to primary sources on an annual average basis. The model provides information on source contributions to fine mass concentrations, fine organic aerosol concentrations and individual organic compound concentrations. The largest primary source contributors to fine particle mass concentrations in Los Angeles are found to include diesel engine exhaust, paved road dust, gasoline powered vehicle exhaust, plus emissions from food cooking and wood smoke with smaller contributions from tire dust, plant fragments, natural gas combustion aerosol, and cigarette smoke. Once these primary aerosol source contributions are added to the secondary sulfates and nitrates present, virtually all of the annual average fine particle mass at Los Angeles area monitoring sites can be assigned to its source origin.

  3. Development of a chemical source apportionment decision support framework for catchment management.

    PubMed

    Comber, Sean D W; Smith, Russell; Daldorph, Peter; Gardner, Michael J; Constantino, Carlos; Ellor, Brian

    2013-09-01

    EU legislation, including the Water Framework Directive, has led to the application of increasingly stringent quality standards for a wide range of chemical contaminants in surface waters. This has raised the question of how to determine and to quantify the sources of such substances so that measures can be taken to address breaches of these quality standards using the polluter pays principle. Contaminants enter surface waters via a number of diffuse and point sources. Decision support tools are required to assess the relative magnitudes of these sources and to estimate the impacts of any programmes of measures. This work describes the development and testing of a modeling framework, the Source Apportionment Geographical Information System (SAGIS). The model uses readily available national data sets to estimate contributions of a number of nutrients (nitrogen and phosphorus), metals (copper, zinc, cadmium, lead, mercury, and nickel) and organic chemicals (a phthalate and a number of polynuclear aromatic hydrocarbons) from multiple sector sources. Such a tool has not previously been available on a national scale for such a wide range of chemicals. It is intended to provide a common platform to assist stakeholders in future catchment management. PMID:23915347

  4. Characterization and source apportionment of water pollution in Jinjiang River, China.

    PubMed

    Chen, Haiyang; Teng, Yanguo; Yue, Weifeng; Song, Liuting

    2013-11-01

    Characterizing water quality and identifying potential pollution sources could greatly improve our knowledge about human impacts on the river ecosystem. In this study, fuzzy comprehensive assessment (FCA), pollution index (PI), principal component analysis (PCA), and absolute principal component score-multiple linear regression (APCS-MLR) were combined to obtain a deeper understanding of temporal-spatial characterization and sources of water pollution with a case study of the Jinjiang River, China. Measurement data were obtained with 17 water quality variables from 20 sampling sites in the December 2010 (withered water period) and June 2011 (high flow period). FCA and PI were used to comprehensively estimate the water quality variables and compare temporal-spatial variations, respectively. Rotated PCA and receptor model (APCS-MLR) revealed potential pollution sources and their corresponding contributions. Application results showed that comprehensive application of various multivariate methods were effective for water quality assessment and management. In the withered water period, most sampling sites were assessed as low or moderate pollution with characteristics pollutants of permanganate index and total nitrogen (TN), whereas 90% sites were classified as high pollution in the high flow period with higher TN and total phosphorus. Agricultural non-point sources, industrial wastewater discharge, and domestic sewage were identified as major pollution sources. Apportionment results revealed that most variables were complicatedly influenced by industrial wastewater discharge and agricultural activities in withered water period and primarily dominated by agricultural runoff in high flow period. PMID:23737126

  5. Chemical characterization and source apportionment of fine and coarse particulate matter in Lahore, Pakistan

    NASA Astrophysics Data System (ADS)

    Stone, Elizabeth; Schauer, James; Quraishi, Tauseef A.; Mahmood, Abid

    2010-03-01

    Lahore, Pakistan is an emerging megacity that is heavily polluted with high levels of particle air pollution. In this study, respirable particulate matter (PM 2.5 and PM 10) were collected every sixth day in Lahore from 12 January 2007 to 19 January 2008. Ambient aerosol was characterized using well-established chemical methods for mass, organic carbon (OC), elemental carbon (EC), ionic species (sulfate, nitrate, chloride, ammonium, sodium, calcium, and potassium), and organic species. The annual average concentration (±one standard deviation) of PM 2.5 was 194 ± 94 μg m -3 and PM 10 was 336 ± 135 μg m -3. Coarse aerosol (PM 10-2.5) was dominated by crustal sources like dust (74 ± 16%, annual average ± one standard deviation), whereas fine particles were dominated by carbonaceous aerosol (organic matter and elemental carbon, 61 ± 17%). Organic tracer species were used to identify sources of PM 2.5 OC and chemical mass balance (CMB) modeling was used to estimate relative source contributions. On an annual basis, non-catalyzed motor vehicles accounted for more than half of primary OC (53 ± 19%). Lesser sources included biomass burning (10 ± 5%) and the combined source of diesel engines and residual fuel oil combustion (6 ± 2%). Secondary organic aerosol (SOA) was an important contributor to ambient OC, particularly during the winter when secondary processing of aerosol species during fog episodes was expected. Coal combustion alone contributed a small percentage of organic aerosol (1.9 ± 0.3%), but showed strong linear correlation with unidentified sources of OC that contributed more significantly (27 ± 16%). Brick kilns, where coal and other low quality fuels are burned together, are suggested as the most probable origins of unapportioned OC. The chemical profiling of emissions from brick kilns and other sources unique to Lahore would contribute to a better understanding of OC sources in this megacity.

  6. Source apportionment of formaldehyde during TexAQS 2006 using a source-oriented chemical transport model

    NASA Astrophysics Data System (ADS)

    Zhang, Hongliang; Li, Jingyi; Ying, Qi; Guven, Birnur Buzcu; Olaguer, Eduardo P.

    2013-02-01

    In this study, a source-oriented version of the Community Multiscale Air Quality (CMAQ) model was developed and used to quantify the contributions of five major local emission source types in Southeast Texas (vehicles, industry, natural gas combustion, wildfires, biogenic sources), as well as upwind sources, to regional primary and secondary formaldehyde (HCHO) concentrations. Predicted HCHO concentrations agree well with observations at two urban sites (the Moody Tower [MT] site at the University of Houston and the Haden Road #3 [HRM-3] site operated by Texas Commission on Environmental Quality). However, the model underestimates concentrations at an industrial site (Lynchburg Ferry). Throughout most of Southeast Texas, primary HCHO accounts for approximately 20-30% of total HCHO, while the remaining portion is due to secondary HCHO (30-50%) and upwind sources (20-50%). Biogenic sources, natural gas combustion, and vehicles are important sources of primary HCHO in the urban Houston area, respectively, accounting for 10-20%, 10-30%, and 20-60% of total primary HCHO. Biogenic sources, industry, and vehicles are the top three sources of secondary HCHO, respectively, accounting for 30-50%, 10-30%, and 5-15% of overall secondary HCHO. It was also found that over 70% of PAN in the Houston area is due to upwind sources, and only 30% is formed locally. The model-predicted source contributions to HCHO at the MT generally agree with source apportionment results obtained from the Positive Matrix Factorization (PMF) technique.

  7. Size-resolved source apportionment of particulate matter in urban Beijing during haze and non-haze episodes

    NASA Astrophysics Data System (ADS)

    Tian, S. L.; Pan, Y. P.; Wang, Y. S.

    2016-01-01

    Additional size-resolved chemical information is needed before the physicochemical characteristics and sources of airborne particles can be understood; however, this information remains unavailable in most regions of China due to lacking measurement data. In this study, we report observations of various chemical species in size-segregated particle samples that were collected over 1 year in the urban area of Beijing, a megacity that experiences severe haze episodes. In addition to fine particles, high concentrations of coarse particles were measured during the periods of haze. The abundance and chemical compositions of the particles in this study were temporally and spatially variable, with major contributions from organic matter and secondary inorganic aerosols. The contributions of organic matter to the particle mass decreased from 37.9 to 31.2 %, and the total contribution of sulfate, nitrate and ammonium increased from 19.1 to 33.9 % between non-haze and haze days, respectively. Due to heterogeneous reactions and hygroscopic growth, the peak concentrations of the organic carbon, cadmium and sulfate, nitrate, ammonium, chloride and potassium shifted from 0.43 to 0.65 µm on non-haze days to 0.65-1.1 µm on haze days. Although the size distributions of lead and thallium were similar during the observation period, their concentrations increased by a factor of more than 1.5 on haze days compared with non-haze days. We observed that sulfate and ammonium, which have a size range of 0.43-0.65 µm, sulfate and nitrate, which have a size range of 0.65-1.1 µm, calcium, which has a size range of 5.8-9 µm, and the meteorological factors of relative humidity and wind speed were responsible for haze pollution when the visibility was less than 10 km. Source apportionment using Positive Matrix Factorization showed six PM2.1 sources and seven PM2.1-9 common sources: secondary inorganic aerosol (25.1 % for fine particles vs. 9.8 % for coarse particles), coal combustion (17

  8. Ensemble-trained source apportionment of fine particulate matter and method uncertainty analysis

    NASA Astrophysics Data System (ADS)

    Balachandran, Sivaraman; Pachon, Jorge E.; Hu, Yongtao; Lee, Dongho; Mulholland, James A.; Russell, Armistead G.

    2012-12-01

    An ensemble-based approach is applied to better estimate source impacts on fine particulate matter (PM2.5) and quantify uncertainties in various source apportionment (SA) methods. The approach combines source impacts from applications of four individual SA methods: three receptor-based models and one chemical transport model (CTM). Receptor models used are the chemical mass balance methods CMB-LGO (Chemical Mass Balance-Lipschitz global optimizer) and CMB-MM (molecular markers) as well as a factor analytic method, Positive Matrix Factorization (PMF). The CTM used is the Community Multiscale Air Quality (CMAQ) model. New source impact estimates and uncertainties in these estimates are calculated in a two-step process. First, an ensemble average is calculated for each source category using results from applying the four individual SA methods. The root mean square error (RMSE) between each method with respect to the average is calculated for each source category; the RMSE is then taken to be the updated uncertainty for each individual SA method. Second, these new uncertainties are used to re-estimate ensemble source impacts and uncertainties. The approach is applied to data from daily PM2.5 measurements at the Atlanta, GA, Jefferson Street (JST) site in July 2001 and January 2002. The procedure provides updated uncertainties for the individual SA methods that are calculated in a consistent way across methods. Overall, the ensemble has lower relative uncertainties as compared to the individual SA methods. Calculated CMB-LGO uncertainties tend to decrease from initial estimates, while PMF and CMB-MM uncertainties increase. Estimated CMAQ source impact uncertainties are comparable to other SA methods for gasoline vehicles and SOC but are larger than other methods for other sources. In addition to providing improved estimates of source impact uncertainties, the ensemble estimates do not have unrealistic extremes as compared to individual SA methods and avoids zero impact

  9. Source apportionment of traffic emissions of particulate matter using tunnel measurements

    NASA Astrophysics Data System (ADS)

    Lawrence, Samantha; Sokhi, Ranjeet; Ravindra, Khaiwal; Mao, Hongjun; Prain, Hunter Douglas; Bull, Ian D.

    2013-10-01

    This study aims to quantify exhaust/non-exhaust emissions and the uncertainties associated with them by combining innovative motorway tunnel sampling and source apportionment modelling. Analytical techniques ICP-AES and GC-MS were used to identify the metallic and organic composition of PM10, respectively. Good correlation was observed between Fe, Cu, Mn, Ni, Pb and Sb and change in traffic volume. The concentration of polycyclic aromatic hydrocarbons and other organics varies significantly at the entrance and exit site of the tunnel, with fluoranthene, pyrene, benzo[a]pyrene, chrysene and benzothiazole having the highest incremented concentrations. The application of Principal Component Analysis and Multiple Linear Regression Analysis helped to identify the emission sources for 82% of the total PM10 mass inside the tunnel. Identified sources include resuspension (27%), diesel exhaust emissions (21%), petrol exhaust emissions (12%), brake wear emissions (11%) and road surface wear (11%). This study shows that major health related chemical species of PM10 originate from non-exhaust sources, further signifying the need for legislation to reduce these emissions.

  10. Source apportionment of atmospheric PAHs and their toxicity using PMF: Impact of gas/particle partitioning

    NASA Astrophysics Data System (ADS)

    Gao, Bo; Wang, Xin-Ming; Zhao, Xiu-Ying; Ding, Xiang; Fu, Xiao-Xin; Zhang, Yan-Li; He, Quan-Fu; Zhang, Zhou; Liu, Teng-Yu; Huang, Zou-Zhao; Chen, Lai-Guo; Peng, Yan; Guo, Hai

    2015-02-01

    24-h PM2.5 samples were simultaneously collected at six sites in a subtropical city of South China during November-December, 2009. Particle-phase concentrations of polycyclic aromatic hydrocarbons (PAHs) and organic tracers such as hopanes for vehicular emissions (VE), levoglucosan for biomass burning (BB) and picene for coal combustion (CC) were determined. Meanwhile, their gas-phase concentrations were calculated from gas/particle (G/P) partitioning theory using the particle-phase concentrations. The 4 ring PAHs (fluoranthene to chrysene) had lower particle-phase fractions (10%-79%) than other species. Estimated BaPeq and lifetime cancer risk for particle-only (P-only) vs gas + particle (G + P) data sets showed similar values, indicating PAHs with 5-7 rings dominated the carcinogenicity of PAHs. Positive Matrix Factorization (PMF) was applied on both P-only and G + P data sets to estimate the source contributions to PAHs and their toxicity. Three common sources were identified: VE, BB and CC, with CC as the most significant source for both particulate (58%) and total (G + P, 40%) PAHs. While CC exhibited consistent contributions to BaPeq for P-only (66%) vs G + P (62%) solutions, VE and BB contributions were under- and overestimated by 68% and 47%, respectively by the P-only solution, as compared to the G + P solution. The results provide an insight on the impact of G/P partitioning on the source apportionment of PAHs and their toxicity.

  11. Source apportionment and organic compound characterization of ambient ultrafine particulate matter (PM) in the Los Angeles Basin

    NASA Astrophysics Data System (ADS)

    Hasheminassab, Sina; Daher, Nancy; Schauer, James J.; Sioutas, Constantinos

    2013-11-01

    In this study, quasi-UFP (PM0.25, dp < 0.25 μm) were collected for 24 h once per week from April 2008 to March 2009 at 10 different locations in the Los Angeles Basin. Samples were chemically analyzed and organic constituents of PM0.25 were grouped into polycyclic aromatic hydrocarbon (PAHs), hopanes and steranes, n-alkanes, and levoglucosan, with concentration levels ranging from 0.16 to 5.5, 0.09 to 2.2, 9.3 to 48, and 2.2 to 106.2 ng m-3 over all sites and seasons, respectively. A molecular marker-based chemical mass balance (MM-CMB) model was applied to estimate the relative contributions from the following primary sources: mobile sources (combined gasoline and diesel vehicles), wood smoke, natural gas combustion, vegetative detritus, and ship emissions. Secondary organic aerosol (SOA) tracers were not included in the model; however their contributions were estimated from non-biomass burning water soluble organic carbon (WSOCnb) and un-apportioned OC from MM-CMB model (“other OC”). High correlation (R2 = 0.8) between “other OC” and WSOCnb in summer suggests that “other OC” is highly impacted by SOA, however un-apportioned primary sources may contribute to “other OC” as well. Mobile sources were expectedly the major primary contributor to PM0.25, with seasonal average contributions of 31 ± 12% in summer and 57 ± 17% in winter. “Other organic matter” was the second largest contributor to PM0.25 in all seasons, across the basin, with substantially higher contribution during warmer spring and summer seasons (27%), while lowest during cold seasons (13%). Wood smoke was the third major contributor to PM0.25 in winter, whereas its contribution was lowest in summer. As expected, ship emissions displayed the highest contribution at the near-harbor HUD site, and their levels continually decreased as a function of distance from coast. Two other primary sources, vegetative detritus and natural gas combustion, collectively contributed to 1.3 ± 0

  12. Composition and source apportionment of dust fall around a natural lake.

    PubMed

    Latif, Mohd Talib; Ngah, Sofia Aida; Dominick, Doreena; Razak, Intan Suraya; Guo, Xinxin; Srithawirat, Thunwadee; Mushrifah, Idris

    2015-07-01

    The aim of this study was to determine the source apportionment of dust fall around Lake Chini, Malaysia. Samples were collected monthly between December 2012 and March 2013 at seven sampling stations located around Lake Chini. The samples were filtered to separate the dissolved and undissolved solids. The ionic compositions (NO3-, SO4(2-), Cl- and NH4+) were determined using ion chromatography (IC) while major elements (K, Na, Ca and Mg) and trace metals (Zn, Fe, Al, Ni, Mn, Cr, Pb and Cd) were determined using inductively coupled plasma mass spectrometry (ICP-MS). The results showed that the average concentration of total solids around Lake Chini was 93.49±16.16 mg/(m2·day). SO4(2-), Na and Zn dominated the dissolved portion of the dust fall. The enrichment factors (EF) revealed that the source of the trace metals and major elements in the rain water was anthropogenic, except for Fe. Hierarchical agglomerative cluster analysis (HACA) classified the seven monitoring stations and 16 variables into five groups and three groups respectively. A coupled receptor model, principal component analysis multiple linear regression (PCA-MLR), revealed that the sources of dust fall in Lake Chini were dominated by agricultural and biomass burning (42%), followed by the earth's crust (28%), sea spray (16%) and a mixture of soil dust and vehicle emissions (14%). PMID:26141887

  13. Quantification of the effects of molecular marker oxidation on source apportionment estimates for motor vehicles

    NASA Astrophysics Data System (ADS)

    Roy, Anirban A.; Wagstrom, Kristina M.; Adams, Peter J.; Pandis, Spyros N.; Robinson, Allen L.

    2011-06-01

    Molecular markers are individual organic compounds used in receptor models to apportion fine particulate matter to sources. These models currently assume that molecular markers are chemically stable; however, recent laboratory experiments suggest they may be significantly oxidized on atmospherically relevant time scales. To investigate the effects of photo-oxidation, we extended a 3-D chemical transport model (PMCAMx) to simulate norhopane concentrations over the eastern United States during July 2001. Norhopane is an important molecular marker for motor vehicle exhaust. We examined eight different simulation scenarios, using different combinations of reaction rates and source profiles. The simulations including norhopane oxidation better reproduced the observed spatial patterns of norhopane concentrations than the non-reactive cases. Chemical mass balance (CMB) analysis was performed using the PMCAMx-predicted motor vehicle norhopane and elemental carbon (EC) concentrations to quantify the bias caused by oxidation on source apportionment estimates. Norhopane oxidation caused CMB to underestimate total vehicle OC by 10-50%, with larger biases in rural areas. This underestimation was largely due to changes in the amount of OC apportioned to gasoline vehicles which was reduced by as much as 100%. The OC apportioned to diesel vehicle emissions was relatively insensitive to norhopane reaction. Therefore, oxidation can substantially alter CMB estimates regarding the relative importance of gasoline and diesel vehicle emissions.

  14. Source apportionment of VOCs in the Los Angeles area using positive matrix factorization

    NASA Astrophysics Data System (ADS)

    Brown, Steven G.; Frankel, Anna; Hafner, Hilary R.

    Eight 3-h speciated hydrocarbon measurements were collected daily by the South Coast Air Quality Management District (SCAQMD) as part of the Photochemical Assessment Monitoring Stations (PAMS) program during the summers of 2001-03 at two sites in the Los Angeles air basin, Azusa and Hawthorne. Over 30 hydrocarbons from over 500 samples at Azusa and 600 samples at Hawthorne were subsequently analyzed using the multivariate receptor model positive matrix factorization (PMF). At Azusa and Hawthorne, five and six factors were identified, respectively, with a good comparison between predicted and measured mass. At Azusa, evaporative emissions (a median of 31% of the total mass), motor vehicle exhaust (22%), liquid/unburned gasoline (27%), coatings (17%), and biogenic emissions (3%) factors were identified. Factors identified at Hawthorne were evaporative emissions (a median of 34% of the total mass), motor vehicle exhaust (24%), industrial process losses (15%), natural gas (13%), liquid/unburned gasoline (13%), and biogenic emissions (1%). Together, the median contribution from mobile source-related factors (exhaust, evaporative emissions, and liquid/unburned gasoline) was 80% and 71% at Azusa and Hawthorne, respectively, similar to previous source apportionment results using the chemical mass balance (CMB) model. There is a difference in the distribution among mobile source factors compared to the CMB work, with an increase in the contribution from evaporative emissions, though the cause (changes in emissions or differences between models) is unknown.

  15. Measurement of greenhouse gases (GHGs) and source apportionment in Bakersfield, CA during CALNEX 2010

    NASA Astrophysics Data System (ADS)

    Guha, A.; Gentner, D. R.; Goldstein, A.; Provencal, R. A.; Gardner, A.; Calnex Bakersfield Science Team

    2010-12-01

    The California Global Warming Solutions Act 2006 creates a need to validate and improve the GHG inventory of the State, which has been largely based on activity and emission factor based estimates. As part of CALNEX 2010, we conducted measurements at the Bakersfield supersite of CO2, CH4, and N2O using fast response laser analyzers (LGR Inc.) to document the ambient mixing ratios of GHGs and analyze their major sources in the region, with an emphasis on understanding emissions of methane (CH4) and nitrous oxide (N2O). The site was located downwind of the urban center during the day and usually experienced a reversal of wind direction at night. Bakersfield is an urban area with heavy industrialization including petroleum refineries, oilfields, manufacturing, and cogeneration plants, all of which can be sources of the abovementioned GHGs. The site was close to a highway and potentially subject to vehicular CH4 and N2O emissions. Hence, CO and a broad variety of VOCs, which can serve as tracers (particularly for vehicle emissions), were included in the measurements to help with source apportionment. In addition to typical urban and industrial sources, Kern County is a rich agricultural region and includes a large number of cattle feedlots, dairies, settling ponds and landfills which are assumed to be some of the largest anthropogenic sources of methane in the State. Additionally, the agricultural industry uses significant amounts of fertilizers, which can lead to production of N2O from the soils along with emissions from controlled biomass burning of agricultural waste. The three GHGs studied show a strong diurnal pattern with concentrations building up in the night-time as the planetary boundary layer (PBL) becomes smaller and reversal in wind direction causes the site to become downwind of some GHG sources like landfills and feedlots. The mean background concentrations at the site (CNO2= 323 ppb; CCO2 = 390 ppm) during the day were consistent with those from the

  16. Development of PM2.5 source impact spatial fields using a hybrid source apportionment air quality model

    NASA Astrophysics Data System (ADS)

    Ivey, C. E.; Holmes, H. A.; Hu, Y. T.; Mulholland, J. A.; Russell, A. G.

    2015-01-01

    An integral part of air quality management is knowledge of the impact of pollutant sources on ambient concentrations of particulate matter (PM). There is also a growing desire to directly use source impact estimates in health studies; however, source impacts cannot be directly measured. Several limitations are inherent in most source apportionment methods, which has led to the development of a novel hybrid approach that is used to estimate source impacts by combining the capabilities of receptor modeling (RM) and chemical transport modeling (CTM). The hybrid CTM-RM method calculates adjustment factors to refine the CTM-estimated impact of sources at monitoring sites using pollutant species observations and the results of CTM sensitivity analyses, though it does not directly generate spatial source impact fields. The CTM used here is the Community Multi-Scale Air Quality (CMAQ) model, and the RM approach is based on the Chemical Mass Balance model. This work presents a method that utilizes kriging to spatially interpolate source-specific impact adjustment factors to generate revised CTM source impact fields from the CTM-RM method results, and is applied to January 2004 over the continental United States. The kriging step is evaluated using data withholding and by comparing results to data from alternative networks. Directly applied and spatially interpolated hybrid adjustment factors at withheld monitors had a correlation coefficient of 0.89, a linear regression slope of 0.83 ± 0.02, and an intercept of 0.14 ± 0.02. Refined source contributions reflect current knowledge of PM emissions (e.g., significant differences in biomass burning impact fields). Concentrations of 19 species and total PM2.5 mass were reconstructed for withheld monitors using directly applied and spatially interpolated hybrid adjustment factors. The mean concentrations of total PM2.5 for withheld monitors were 11.7 (± 8.3), 16.3 (± 11), 8.59 (± 4.7), and 9.20 (± 5.7) μg m-3 for the

  17. Characteristics and source apportionment of PM1 emissions at a roadside station.

    PubMed

    Cheng, Y; Zou, S C; Lee, S C; Chow, J C; Ho, K F; Watson, J G; Han, Y M; Zhang, R J; Zhang, F; Yau, P S; Huang, Y; Bai, Y; Wu, W J

    2011-11-15

    The mass concentrations of PM(1) (particles less than 1.0 μm in aerodynamic diameter), organic carbon (OC), elemental carbon (EC), water-soluble ions, and up to 25 elements were reported for 24h aerosol samples collected every sixth day at a roadside sampling station in Hong Kong from October 2004 to September 2005. Annual average PM(1) mass concentration was 44.5 ± 19.5 μg m(-3). EC, OM (organic matter, OC × 1.2), and SO(4)(=) were the dominant components, accounting for ∼ 36%, ∼ 26%, and ∼ 24% of PM(1), respectively. Other components, i.e., NO(3)(-), NH(4)(+), geological material, trace elements and unidentified material, comprised the remaining ∼ 14%. Annual average OC/EC ratio (0.6 ± 0.3) was low, indicating that primary vehicle exhaust was the major source of carbonaceous aerosols. The seasonal variations of pollutants were due to gas-particle partitioning processes or a change in air mass rather than secondary aerosol produced locally. Vehicle exhaust, secondary aerosols, and waste incinerator/biomass burning were dominant air pollution sources, accounting for ∼ 38%, ∼ 22% and ∼ 16% of PM(1), respectively. Pollution episodes during summer (May-August) which were frequently accompanied by tropical storms or typhoons were dominated by vehicle emissions. During winter (November-February) pollution episodes coincided with northeasterly monsoons were characterized by secondary aerosols and incinerator/biomass burning emissions. PMID:21907488

  18. Source apportionment of fluorine pollution in regional shallow groundwater at You'xi County southeast China.

    PubMed

    Lü, Jian; Qiu, Haiyuan; Lin, Huangbin; Yuan, Yuan; Chen, Zhi; Zhao, Rurong

    2016-09-01

    Source apportionment of fluorine pollution in the regional shallow groundwater at You'xi County, southeast China, has been analyzed by means of monitoring F(-) ion change characteristics in this area. Meanwhile, pollution sources and influencing factors of the shallow groundwater have been uncovered by studying the correlation between F(-) and other related ions such as Na(+), Ca(2+), Cl(-), NO3(-), HCO3(-), as well as (K(+) + Na(+))/Ca(2+) ratio (R) and pH effect. The results show that F(-) ions in shallow groundwater at the study area come mainly from the dissolution of fluorinated minerals in a form of fluorite (CaF2), the so-called water-rock interaction, and there is a higher possibility for the occurrence of fluorine water where the ratio of (K(+) + Na(+))/Ca(2+) exceeds a value of 2.1. Moreover, the release and migration of F(-) ions have been favored by the alkaline environment in this study area. PMID:27239970

  19. Using Source Apportionment to Evaluate the Cross State Transport of Ozone in the Eastern United States

    NASA Astrophysics Data System (ADS)

    Goldberg, D. L.; Canty, T. P.; Hembeck, L.; Vinciguerra, T.; Carpenter, S. F.; Anderson, D. C.; Salawitch, R. J.; Dickerson, R. R.

    2014-12-01

    The amount of air pollution crossing state lines has great policy implications. Using the ozone source apportionment tool (OSAT) in the Comprehensive Air-Quality Model with Extensions (CAMx) version 6.10, we can quantify how much ozone is generated locally versus transported from upwind locations. Initial results show that up to 70% of the surface ozone in Maryland during poor air quality days in the summer of July 2011 can be attributed to pollution from outside of the state's borders. Modifications to the CB05 gas-phase chemistry mechanism, supported by literature recommendations and improve agreement with NASA's DISCOVER-AQ Maryland aircraft campaign, can further increase this percentage. Additionally, we show the role of upwind sources and background ozone has become increasingly important as local emissions of ozone precursors continue to drop, starting with the steep reductions imposed in 2002 in response to Maryland's State Implementation Plan submitted to EPA. This study suggests future efforts to control surface ozone must include a meaningful strategy for dealing with cross-state transport of ozone precursors.

  20. Application of hierarchical Bayesian unmixing models in river sediment source apportionment

    NASA Astrophysics Data System (ADS)

    Blake, Will; Smith, Hugh; Navas, Ana; Bodé, Samuel; Goddard, Rupert; Zou Kuzyk, Zou; Lennard, Amy; Lobb, David; Owens, Phil; Palazon, Leticia; Petticrew, Ellen; Gaspar, Leticia; Stock, Brian; Boeckx, Pacsal; Semmens, Brice

    2016-04-01

    Fingerprinting and unmixing concepts are used widely across environmental disciplines for forensic evaluation of pollutant sources. In aquatic and marine systems, this includes tracking the source of organic and inorganic pollutants in water and linking problem sediment to soil erosion and land use sources. It is, however, the particular complexity of ecological systems that has driven creation of the most sophisticated mixing models, primarily to (i) evaluate diet composition in complex ecological food webs, (ii) inform population structure and (iii) explore animal movement. In the context of the new hierarchical Bayesian unmixing model, MIXSIAR, developed to characterise intra-population niche variation in ecological systems, we evaluate the linkage between ecological 'prey' and 'consumer' concepts and river basin sediment 'source' and sediment 'mixtures' to exemplify the value of ecological modelling tools to river basin science. Recent studies have outlined advantages presented by Bayesian unmixing approaches in handling complex source and mixture datasets while dealing appropriately with uncertainty in parameter probability distributions. MixSIAR is unique in that it allows individual fixed and random effects associated with mixture hierarchy, i.e. factors that might exert an influence on model outcome for mixture groups, to be explored within the source-receptor framework. This offers new and powerful ways of interpreting river basin apportionment data. In this contribution, key components of the model are evaluated in the context of common experimental designs for sediment fingerprinting studies namely simple, nested and distributed catchment sampling programmes. Illustrative examples using geochemical and compound specific stable isotope datasets are presented and used to discuss best practice with specific attention to (1) the tracer selection process, (2) incorporation of fixed effects relating to sample timeframe and sediment type in the modelling

  1. AERONET - Aerosol Climatology From Megalopolis Aerosol Source Regions

    NASA Astrophysics Data System (ADS)

    Holben, B. N.; Eck, T. F.; Dubovik, O.; Smirnov, A.; Slutsker, I.; Artaxo, P.; Leyva, A.; Lu, D.; Sano, I.; Singh, R. P.; Quel, E.; Tanre, D.; Zibordi, G.

    2002-05-01

    AERONET is a globally distributed network of ~170 identical sun and sky scanning spectral radiometers expanded by federation with collaborating investigators that contribute to the AERONET public domain data-base. We will detail the current distribution and plans for expanded collaboration. Recent products available through the project database are important for assessment of human health as well as climate forcing issues. We will illustrate a summary of aerosol optical properties measured in Indian, East Asian, North American, South American and European megalopolis source regions. We will present monthly mean fine and coarse particle aerosol optical depth, particle size distributions and single scattering albedos. Each region represents a population in excess of 10 million inhabitants within a 200 km radius of the observation site that dictate the anthropogenic aerosol sources contributing to significantly diverse aerosol properties as a function of economic development and seasonally dependent meteorological processes. The diversity of the measured optical properties of urban aerosols illustrates the need for long-term regional monitoring that contribute to comparative assessments for health and climate change investigations.

  2. Functional group composition of ambient and source organic aerosols determined by tandem mass spectrometry

    NASA Astrophysics Data System (ADS)

    Dron, J.; El Haddad, I.; Temime-Roussel, B.; Jaffrezo, J.-L.; Wortham, H.; Marchand, N.

    2010-04-01

    The functional group composition of various organic aerosols (OA) is being investigated using a recently developed analytical approach based on atmospheric pressure chemical ionisation-tandem mass spectrometry (APCI-MS/MS). The determinations of the three functional groups' contents are performed quantitatively by neutral loss (carboxylic and carbonyl groups) and precursor ion (nitro groups) scanning modes of a tandem mass spectrometer. Major organic aerosol sources are studied: vehicular emission and wood combustion for primary aerosol sources; and a secondary organic aerosol (SOA) produced through photo-oxidation of o-xylene. The results reveal significant differences in the functional group contents of these source aerosols. The laboratory generated SOA is dominated by carbonyls while carboxylics are preponderate in the wood combustion particles. On the other hand, vehicular emissions are characterised by a strong nitro content. The total amount of the three functional groups accounted for 1.7% (vehicular) to 13.5% (o-xylene photo-oxidation) of the organic carbon. The diagnostic functional group ratios are then used to tentatively differentiate sources of particles collected in an urban background environment located in an Alpine valley (Chamonix, France) during a strong winter pollution event. The three functional groups under study account for a total functionalisation rate of 2.2 to 3.8% of the organic carbon in this ambient aerosol, which is also dominated by carboxylic moieties. In this particular case study of a deep alpine valley during winter, we show that the nitro- and carbonyl-to-carboxylic diagnostic ratios can be a useful tool to distinguish the sources. In these conditions, the total OA concentrations are highly dominated by wood combustion OA. This result is confirmed by an organic markers source apportionment approach which assesses a wood burning organic carbon contribution of about 60%. Finally, examples of functional group mass spectra of all

  3. Source apportionment of single particles sampled at the industrially polluted town of Port Talbot, United Kingdom by ATOFMS

    NASA Astrophysics Data System (ADS)

    Taiwo, Adewale M.; Harrison, Roy M.; Beddows, David C. S.; Shi, Zongbo

    2014-11-01

    Single particle analysis of an industrially polluted atmosphere in Port Talbot, South Wales, United Kingdom was conducted using Aerosol-Time-of-Flight Mass Spectrometry (ATOFMS). During the four week sampling campaign, a total of 5,162,018 particles were sized in the size range 0.2-1.9 μm aerodynamic diameter. Of these, 580,798 were successfully ionized generating mass spectra. K-means clustering employed for analysing ATOFMS data utilized 96% of the hit particles to generate 20 clusters. Similar clusters were merged together and 17 clusters were generated from which 7 main particle groups were identified. The particle classes include: K-rich particles (K-CN, K-NO3, K-EC, K-Cl-PO3 and K-HSO4), aged sea salt (Na-NO3), silicate dust (Na-HSiO2), sulphate rich particles (K-HSO4), nitrate rich particles (AlO-NO3), Ca particles (Ca-NO3), carbon-rich particles (Mn-OC, Metallic-EC, EC, EC-NO3 and OC-EC), and aromatic hydrocarbon particles (Arom-CN, Fe-PAH-NO3 and PAH-CN). With the aid of wind sector plots, the K-Cl-PO3 and Na-HSiO2 particle clusters were related to the steelworks blast furnace/sinter plant while Ca-rich particles arose from blast furnace emissions. K-CN, K-EC, Na-HSiO2, K-HSO4, Mn-OC, Arom-CN, Fe-PAH-NO3, and PAH-CN particles were closely linked with emissions from the cokemaking and mills (hot and cold) steelworks sections. The source factors identified by the ATOFMS were compared with those derived from multivariate analysis using Multilinear Engine (ME-2) applied to filter samples analysed off-line. Both methods of source apportionment identified common source factors including those within the steelworks (blast furnace, sinter, cokemaking), as well as marine, traffic and secondary particles, but quantitative attribution of mass is very different.

  4. Size-resolved source apportionment of particulate matter in urban Beijing during haze and non-haze episodes

    NASA Astrophysics Data System (ADS)

    Tian, S. L.; Pan, Y. P.; Wang, Y. S.

    2015-03-01

    More size-resolved chemical information is needed before the physicochemical characteristics and sources of airborne particles can be understood, but this information remains unavailable in most regions of China due to a paucity of measurement data. In this study, we report a one-year observation of various chemical species in size-segregated particle samples collected in urban Beijing, a mega city that experiences severe haze episodes. In addition to fine particles, the measured particle size distributions showed high concentrations of coarse particles during the haze periods. The abundance and chemical compositions of the particles in this study were temporally and spatially variable, with major contributions from organic matter and secondary inorganic aerosols. The contribution of the organic matter to the mass decreased from 37.9 to 33.1%, whereas the total contribution of SO42-, NO3- and NH4+ increased from 19.1 to 32.3% on non-haze and haze days, respectively. Due to heterogeneous reactions and hygroscopic growth, the peaks in the size distributions of organic carbon, SO42-, NO3-, NH4+, Cl-, K+ and Cu shifted from 0.43-0.65 μm on non-haze days to 0.65-1.1 μm on haze days. Although the size distributions are similar for the heavy metals Pb, Cd and Tl during the observation period, their concentrations increased by a factor of more than 1.5 on haze days compared with non-haze days. We found that NH4+ with a size range of 0.43-0.65 μm, SO42- and NO3- with a size range of 0.65-1.1 μm and Ca2+ with a size range of 5.8-9 μm as well as the meteorological factors of relative humidity and wind speed were responsible for the haze pollution when the visibility was less than 15 km. Source apportionment using positive matrix factorization identified six common sources: secondary inorganic aerosols (26.1% for fine particles vs. 9.5% for coarse particles), coal combustion (19 vs. 23.6%), primary emissions from vehicles (5.9 vs. 8.0%), biomass burning (8.5 vs. 2

  5. Source apportionment of arsenic in atmospheric dust fall out in an urban residential area, Raipur, Central India

    NASA Astrophysics Data System (ADS)

    Balakrishna, G.; Pervez, S.; Bisht, D. S.

    2011-06-01

    The components and quantities of atmospheric dust fallout have been reported to be the pollution indicator of large urban areas. The multiplicity and complexity of sources of atmospheric dusts in urban regions has put forward the need of source apportionment of these sources indicating their contribution to specific environmental receptor. The study presented here is focused on investigation of source contribution estimates of Arsenic in urban dust fallout in an urban-industrial area, Raipur, India. Source-receptor based representative sampling plan using longitudinal study design has been adopted. Six sampling sites have been identified on the basis of land use for development plan of anthropogenic activities and factors related to the transportation and dispersion pattern of atmospheric dusts. Source apportionment has been done using Chemical Mass Balance (CMB 8). Good fit parameters and relative source contribution has been analyzed and documented. Dominance of coal fired industries sources on arsenic levels measured at selected ambient residential receptors compared to line sources has been observed. Road-traffic has shown highest contribution of dust at indoor houses and out door-street automobile exhaust has shows highest contribution for arsenic. The results of CMB output and regression data of source-receptor dust matrices have shown comparable pattern.

  6. Connecting Organic Aerosol Climate-Relevant Properties to Chemical Mechanisms of Sources and Processing

    SciTech Connect

    Thornton, Joel

    2015-01-26

    The research conducted on this project aimed to improve our understanding of secondary organic aerosol (SOA) formation in the atmosphere, and how the properties of the SOA impact climate through its size, phase state, and optical properties. The goal of this project was to demonstrate that the use of molecular composition information to mechanistically connect source apportionment and climate properties can improve the physical basis for simulation of SOA formation and properties in climate models. The research involved developing and improving methods to provide online measurements of the molecular composition of SOA under atmospherically relevant conditions and to apply this technology to controlled simulation chamber experiments and field measurements. The science we have completed with the methodology will impact the simulation of aerosol particles in climate models.

  7. Apportionment of primary and secondary organic aerosols in southern California during the 2005 study of organic aerosols in riverside (SOAR-1).

    PubMed

    Docherty, Kenneth S; Stone, Elizabeth A; Ulbrich, Ingrid M; DeCarlo, Peter F; Snyder, David C; Schauer, James J; Peltier, Richard E; Weber, Rodney J; Murphy, Shane M; Seinfeld, John H; Grover, Brett D; Eatough, Delbert J; Jimenez, Jose L

    2008-10-15

    Ambient sampling was conducted in Riverside, California during the 2005 Study of Organic Aerosols in Riverside to characterize the composition and sources of organic aerosol using a variety of state-of-the-art instrumentation and source apportionmenttechniques. The secondary organic aerosol (SOA) mass is estimated by elemental carbon and carbon monoxide tracer methods, water soluble organic carbon content, chemical mass balance of organic molecular markers, and positive matrix factorization of high-resolution aerosol mass spectrometer data. Estimates obtained from each ofthese methods indicate that the organic fraction in ambient aerosol is overwhelmingly secondary in nature during a period of several weeks with moderate ozone concentrations and that SOA is the single largest component of PM1 aerosol in Riverside. Average SOA/OA contributions of 70-90% were observed during midday periods, whereas minimum SOA contributions of approximately 45% were observed during peak morning traffic periods. These results are contraryto previous estimates of SOAthroughout the Los Angeles Basin which reported that, other than during severe photochemical smog episodes, SOA was lower than primary OA. Possible reasons for these differences are discussed. PMID:18983089

  8. [Characteristics and sources apportionment of OC and EC in PM1.1 from Nanjing].

    PubMed

    Jiang, Wen-juan; Guo, Zhao-bing; Liu, Feng-ling; Rui, Mao-ling; Shi, Lei; Zeng, Gang; Guo, Zi-yan

    2015-03-01

    The concentrations of OC and EC in PM1.1 collected from Nanshi (NS) and Nanhua (NH) in 2011 were analyzed using DRI Model 2001A Thermal Optical Carbon Analyzer. In addition, source apportionment was simultaneously evaluated. The results showed that the annual average concentrations of OC and EC in PM1.1 were 10. 10 μg x m(-3) and 2.52 μg x m(-3) in NS area, and 11.22 μg x m(-3) and 3.12 μg x m(-3) in NH area, respectively. This result indicated that OC and EC pollution in NH was more serious than that in NS area. Meanwhile, the concentrations of OC and EC in winter and spring were obviously higher compared to those in summer in these two sampling sites, which was mainly ascribed to the increased coal combustion and the unfavorable emission condition of air pollutants in summer and spring. We noted that the SOC/TOC value was the highest in summer and the lowest in winter. In addition, the SOC concentration was observed to show a positive correlation with ozone concentrations, which indicated that the photochemical reaction was a main way of SOC formation in autumn. PMID:25929040

  9. Measurement and apportionment of radon source terms for modeling indoor environments

    SciTech Connect

    Harley, N.H.

    1992-01-01

    During the present 2 1/2 year contract period, we have made significant Progress in modeling the source apportionment of indoor [sup 222]Rn and in [sup 222]Rn decay product dosimetry. Two additional areas were worked on which we believe are useful for the DOE Radon research Program. One involved an analysis of the research house data, grouping the hourly house [sup 222]Rn measurements into 2 day, 7 day and 90 day intervals to simulate the response of passive monitors. Another area requiring some attention resulted in a publication of 3 years of our indoor/outdoor measurements in a high-rise apartment. Little interest has been evinced in apartment measurements yet 20% of the US population lives in multiple-family dwellings, not in contact with the ground. These data together with a summary of all other published data on apartments showed that apartments have only about 50% greater [sup 222]Rn concentration than the measured outdoor [sup 222]Rn. Apartment dwellers generally represent a low risk group regarding [sup 222]Rn exposure. The following sections describe the main projects in some detail.

  10. Source apportionment of particulate pollutants in the atmosphere over the Northern Yellow Sea

    NASA Astrophysics Data System (ADS)

    Wang, L.; Qi, J. H.; Shi, J. H.; Chen, X. J.; Gao, H. W.

    2013-05-01

    Atmospheric aerosol samples were collected over the Northern Yellow Sea of China during the years of 2006 and 2007, in which the Total Carbon (TC), Cu, Pb, Cd, V, Zn, Fe, Al, Na+, Ca2+, Mg2+, NH4+, NO3-, SO42-, Cl-, and K+ were measured. The principle components analysis (PCA) and positive matrix factorization (PMF) receptor models were used to identify the sources of particulate matter. The results indicated that seven factors contributed to the atmospheric particles over the Northern Yellow Sea, i.e., two secondary aerosols (sulfate and nitrate), soil dust, biomass burning, oil combustion, sea salt, and metal smelting. When the whole database was considered, secondary aerosol formation contributed the most to the atmospheric particle content, followed by soil dust. Secondary aerosols and soil dust consisted of 65.65% of the total mass of particulate matter. The results also suggested that the aerosols over the North Yellow Sea were heavily influenced by ship emission over the local sea area and by continental agricultural activities in the northern China, indicating by high loading of V in oil combustion and high loading of K+ in biomass burning. However, the contribution of each factor varied greatly over the different seasons. In spring and autumn, soil dust and biomass burning were the dominant factors. In summer, heavy oil combustion contributed the most among these factors. In winter, secondary aerosols were major sources. Backward trajectories analysis indicated the 66% of air mass in summer was from the ocean, while the air mass is mainly from the continent in other seasons.