Sample records for aerosol vertical structure

  1. Case Studies of the Vertical Structure of the Direct Shortwave Aerosol Radiative Forcing During TARFOX

    NASA Technical Reports Server (NTRS)

    Redemann, J.; Turco, R. P.; Liou, K. N.; Hobbs, P. V.; Hartley, W. S.; Bergstrom, R. W.; Browell, E. V.; Russell, P. B.

    2000-01-01

    The vertical structure of aerosol-induced radiative flux changes in the Earth's troposphere affects local heating rates and thereby convective processes, the formation and lifetime of clouds, and hence the distribution of chemical constituents. We present observationally based estimates of the vertical structure of direct shortwave aerosol radiative forcing for two case studies from the Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX) which took place on the U.S. east coast in July 1996. The aerosol radiative forcings are computed using the Fu-Liou broadband radiative transfer model. The aerosol optical properties used in the radiative transfer simulations are calculated from independent vertically resolved estimates of the complex aerosol indices of refraction in two to three distinct vertical layers, using profiles of in situ particle size distributions measured aboard the University of Washington research aircraft. Aerosol single-scattering albedos at 450 nm thus determined range from 0.9 to 0.985, while the asymmetry factor varies from 0.6 to 0.8. The instantaneous shortwave aerosol radiative forcings derived from the optical properties of the aerosols are of the order of -36 Wm(exp -2) at the top of the atmosphere and about -56 Wm(exp -2) at the surface for both case studies.

  2. Development of dual-wavelength Mie polarization Raman lidar for aerosol and cloud vertical structure probing

    NASA Astrophysics Data System (ADS)

    Wang, Zhenzhu; Liu, Dong; Wang, Yingjian; Wang, Bangxin; Zhong, Zhiqing; Xie, Chenbo; Wu, Decheng; Bo, Guangyu; Shao, Jie

    2014-11-01

    A Dual-wavelength Mie Polarization Raman Lidar has been developed for cloud and aerosol optical properties measurement. This idar system has built in Hefei and passed the performance assessment in 2012, and then moved to Jinhua city to carry out the long-term continuous measurements of vertical distribution of regional cloud and aerosol. A double wavelengths (532 and 1064 nm) Nd-YAG laser is employed as emitting source and four channels are used for detecting back-scattering signals from atmosphere aerosol and cloud including 1064 nm Mie, 607 nm N2 Raman, two 532 nm Orthogonal Polarization channels. The temporal and spatial resolutions for this system, which is operating with a continuing mode (24/7) automatically, are 30s and 7.5m, respectively. The measured data are used for investigating the aerosol and cloud vertical structure and cloud phase from combining of cloud signal intensity, polarization ratio and color ratio.

  3. Evolution of aerosol vertical distribution during particulate pollution events in Shanghai

    NASA Astrophysics Data System (ADS)

    Zhang, Yunwei; Zhang, Qun; Leng, Chunpeng; Zhang, Deqin; Cheng, Tiantao; Tao, Jun; Zhang, Renjian; He, Qianshan

    2015-06-01

    A set of micro pulse lidar (MPL) systems operating at 532 nm was used for ground-based observation of aerosols in Shanghai in 2011. Three typical particulate pollution events (e.g., haze) were examined to determine the evolution of aerosol vertical distribution and the planetary boundary layer (PBL) during these pollution episodes. The aerosol vertical extinction coefficient (VEC) at any given measured altitude was prominently larger during haze periods than that before or after the associated event. Aerosols originating from various source regions exerted forcing to some extent on aerosol loading and vertical layering, leading to different aerosol vertical distribution structures. Aerosol VECs were always maximized near the surface owing to the potential influence of local pollutant emissions. Several peaks in aerosol VECs were found at altitudes above 1 km during the dust- and bioburning-influenced haze events. Aerosol VECs decreased with increasing altitude during the local-polluted haze event, with a single maximum in the surface atmosphere. PM2.5 increased slowly while PBL and visibility decreased gradually in the early stages of haze events; subsequently, PM2.5 accumulated and was exacerbated until serious pollution bursts occurred in the middle and later stages. The results reveal that aerosols from different sources impact aerosol vertical distributions in the atmosphere and that the relationship between PBL and pollutant loadings may play an important role in the formation of pollution.

  4. Vertical Structure and Sources of Aerosols in the Mediterranean Region (VESSAER)

    NASA Astrophysics Data System (ADS)

    Roberts, G. C.; Junkermann, W.; Leon, J.; Pont, V.; Mallet, M.; Augustin, P.; Dulac, F.

    2012-12-01

    The Mediterranean region has been identified as one of the most prominent global "Hot-Spots" in future climate change projections [Giorgi and Lionello, 2008] and is particularly characterized by its vulnerability to changes in the water cycle. To this end, the VESSAER campaign (VErtical Structure and Sources of AERosols in the Mediterranean Region) was designed to characterize the different sources of aerosol in the Mediterranean Basin and assess their regional impact on cloud microphysical and radiative properties. VESSAER was conducted on the ENDURO-KIT ultra-light aircraft [W. Junkermann, 2001] in late June-early July 2012. Activities include ground observations as well as aerosol lidar and sunphotometer measurements in conjunction with the airborne measurements. The VESSAER campaign complements existing ChArMEx (http://charmex.lsce.ipsl.fr/ ; PI: F. Dulac) and HyMeX (http://www.hymex.org/ ; PI: V. Ducroc and P. Drobinski) activities, which are the target of many European research institutes in 2012 and 2013. The main scientific goals during VESSAER are to investigate local versus long-range sources of aerosol and cloud condensation nuclei (CCN) and their vertical stratification in the lower troposphere, use aerosol hygroscopicity to study their evolution due to atmospheric processes, and couple in-situ airborne measurements with ground-based remote sensing to determine aerosol direct radiative impacts over a larger spatial scale. The background aerosol concentrations within the boundary layer (BL) in Corsica are nearly 2000 cm-3 (Dp > 10 nm); 50 cm-3 (Dp > 300 nm). We were surprised to find that nearly all of these particles are CCN-active at 0.3% supersaturation and presume that ageing and/or cloud processing play a role in rendering the aerosol in the Mediterranean Basin more hygroscopic. The vertical profiles during VESSAER clearly show the long-range transport of dust from the Saharan Desert and pollution from the European continent -- which were the two

  5. Vertical Structure of Aerosols and Mineral Dust Over the Bay of Bengal From Multisatellite Observations

    NASA Astrophysics Data System (ADS)

    Lakshmi, N. B.; Nair, Vijayakumar S.; Suresh Babu, S.

    2017-12-01

    The vertical distribution of aerosol and dust extinction coefficient over the Bay of Bengal is examined using the satellite observations (Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP) and Moderate Resolution Imaging Spectroradiometer (MODIS)) for the period from 2006 to 2017. Distinct seasonal pattern is observed in the vertical structure of both aerosol and dust over the Bay of Bengal with an enhancement of 24% in the aerosol extinction above 1 km from winter (December, January and February) to premonsoon (March, April, and May). Significant contribution of dust is observed over the northern Bay of Bengal during premonsoon season where 22% of the total aerosol extinction is contributed by dust aerosols transported from the nearby continental regions. During winter, dust transport is found to be less significant with fractional contribution of 10%-13% to the total aerosol optical depth over the Bay of Bengal. MODIS-derived dust fraction (fine mode based) shows an overestimation up to twofold compared to CALIOP dust fraction (depolarization based), whereas the Goddard Chemistry Aerosol Radiation and Transport-simulated dust fraction underestimates the satellite-derived dust fractions over the Bay of Bengal. Though the long-term variation in dust aerosol showed a decreasing trend over the Bay of Bengal, the confidence level is insufficient in establishing the robustness of the observed trend. However, significant dust-induced heating is observed above the boundary layer during premonsoon season. This dust-induced elevated heating can affect the convection over the Bay of Bengal which will have implication on the monsoon dynamics over the Indian region.

  6. Aerosol and cloud vertical structure in New York City: micro-pulse lidar measurements and validation

    NASA Astrophysics Data System (ADS)

    Hassebo, Ahmed; Ahmed, Sameh; Hassebo, Yasser Y.

    2017-02-01

    We report on the measurements of aerosol and cloud vertical structure in New York City (NYC) using the first polarization Micro pulse Lidar (MPL) located at the City University of New York (CUNY). MPL operation, setup, data collection and correction will be introduced. Preliminary results and comparison analysis between 2015 and 2016 of cloud vertical structure and the Planetary Boundary Layer (PBL) above NYC will be discussed. An investigation analysis of the impact of NYC rush hour pollution on the level of PBL depth will be introduced using the MPL measurements (such as temporal and spatial trends in aerosol and cloud structure). Applications of the MPL tow-polarization channels will be investigated. Potential future studies and collaborations in protecting NYC against environmental disasters by employing more devices along with MPL real-time data will be emphasized. For pedagogical purposes, a lab module was developed to be implemented in the newly developed undergraduate track in Earth System Science and Environmental Engineering (ESE) at LaGuardia Community College of CUNY (LaGCC), more details will be presented.

  7. Investigation of shortcomings in simulated aerosol vertical profiles

    NASA Astrophysics Data System (ADS)

    Park, S.; Allen, R.

    2017-12-01

    The vertical distribution of aerosols is one important factor for aerosol radiative forcing. Previous studies show that climate models poorly reproduce the aerosol vertical profile, with too much aerosol aloft in the upper troposphere. This bias may be related to several factors, including excessive convective mass flux and wet removal. In this study, we evaluate the aerosol vertical profile from several Coupled Model Intercomparison Project 5 (CMIP5) models, as well as the Community Atmosphere Model 5 (CAM5), relative to the Cloud-Aerosol Lidar Infrared Pathfinder Satellite Observation (CALIPSO). The results show that all models significantly underestimate extinction coefficient in the lower troposphere, while overestimating extinction coefficient in the upper troposphere. In addition, the majority of models indicate a land-ocean dependence in the relationship between aerosol extinction coefficient in the upper troposphere and convective mass flux. Over the continents, more convective mass flux is related to more aerosol aloft; over the ocean, more convective mass flux is associated with less aerosol in upper troposphere. Sensitivity experiments are conducted to investigate the role that convection and wet deposition have in contributing to the deficient simulation of the vertical aerosol profile, including the land-ocean dependence.

  8. Dependence of atmospheric refractive index structure parameter (Cn2) on the residence time and vertical distribution of aerosols.

    PubMed

    Anand, N; Satheesh, S K; Krishna Moorthy, K

    2017-07-15

    Effects of absorbing atmospheric aerosols in modulating the tropospheric refractive index structure parameter (Cn2) are estimated using high resolution radiosonde and multi-satellite data along with a radiative transfer model. We report the influence of variations in residence time and vertical distribution of aerosols in modulating Cn2 and why the aerosol induced atmospheric heating needs to be considered while estimating a free space optical communication link budget. The results show that performance of the link is seriously affected if large concentrations of absorbing aerosols reside for a long time in the atmospheric path.

  9. Vertical Profile of Aerosol Properties at Pico Mountain, Azores

    NASA Astrophysics Data System (ADS)

    Wright, K.; Mazzoleni, C.; Mazzoleni, L. R.; Dzepina, K.; Hueber, J.; China, S.; Sharma, N.

    2013-12-01

    Pico Mountain (2325m asl) is a dormant volcano in the archipelago of the Azores1500 km west of Lisbon, Portugal in the North Atlantic. It differs from typical mountain ranges such as the Alps or the Rockies, which are large and present a complex orography. Pico Mountain has a simple cone-like structure with only one main peak and is thousands of kilometers away from any other significant mountain range. In summer months, it is typical for air masses to move around the mountain rather than traveling up its face. This implies that often the peak of the mountain lies above the marine boundary layer in the free troposphere, while the lower part of the mountain is affected by marine clouds and marine air-masses. An atmospheric monitoring station, the Pico Mountain Observatory was established in 2001 in the summit caldera of the volcano at 2225m above sea level. The observatory is far from large populations or pollution sources, which makes the station ideal to study atmospheric gases and aerosols transported over long-ranges in the free troposphere. The station is reachable only by foot following a steep and strenuous hiking trail. In the summer of 2013 we began to collect vertical profiles of aerosol by carrying an instrumented backpack up to the summit of the mountain, with the goal of studying the vertical structure of atmospheric aerosols from the marine boundary layer to the free troposphere. The backpack was carried from the base of trail at 1200m asl. The backpack was equipped with the following instruments: 1. Nephelometer to measure light scattering from aerosol 2. 2-size optical particle counter (300-500 nm) 3. Portable micro-aethalometer to measure absorbing aerosols 4. SEM/TEM sampler to collect particles for off-line electron microscopy analysis 5. Battery powered data logger to measure relative humidity, temperature and pressure 6. GPS tracking device We provide a preliminary analysis of data collected in 2013 to gain insight on the vertical distribution

  10. Vertical Distribution of Dust and Water Ice Aerosols from CRISM Limb-geometry Observations

    NASA Technical Reports Server (NTRS)

    Smith, Michael Doyle; Wolff, Michael J.; Clancy, Todd; Kleinbohl, Armin; Murchie, Scott L.

    2013-01-01

    [1] Near-infrared spectra taken in a limb-viewing geometry by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on board the Mars Reconnaissance Orbiter provide a useful tool for probing atmospheric structure. Specifically, the observed radiance as a function of wavelength and height above the limb enables the vertical distribution of both dust and water ice aerosols to be retrieved. More than a dozen sets of CRISM limb observations have been taken so far providing pole-to-pole cross sections, spanning more than a full Martian year. Radiative transfer modeling is used to model the observations taking into account multiple scattering from aerosols and the spherical geometry of the limb observations. Both dust and water ice vertical profiles often show a significant vertical structure for nearly all seasons and latitudes that is not consistent with the well-mixed or Conrath-v assumptions that have often been used in the past for describing aerosol vertical profiles for retrieval and modeling purposes. Significant variations are seen in the retrieved vertical profiles of dust and water ice aerosol as a function of season. Dust typically extends to higher altitudes (approx. 40-50km) during the perihelion season than during the aphelion season (<20km), and the Hellas region consistently shows more dust mixed to higher altitudes than other locations. Detached water ice clouds are common, and water ice aerosols are observed to cap the dust layer in all seasons.

  11. Retrieving the Vertical Structure of the Effective Aerosol Complex Index of Refraction from a Combination of Aerosol in Situ and Remote Sensing Measurements During TARFOX

    NASA Technical Reports Server (NTRS)

    Redemann, J.; Turco, R. P.; Liou, K. N.; Russell, P. B.; Bergstrom, R. W.; Schmid, B.; Livingston, J. M.; Hobbs, P. V.; Hartley, W. S.; Ismail, S.; hide

    2000-01-01

    The largest uncertainty in estimates of the effects of atmospheric aerosols on climate stems from uncertainties in the determination of their microphysical properties, including the aerosol complex index of refraction, which in turn determines their optical properties. A novel technique is used to estimate the aerosol complex index of refraction in distinct vertical layers from a combination of aerosol in situ size distribution and remote sensing measurements during the Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX). In particular, aerosol backscatter measurements using the NASA Langley LASE (Lidar Atmospheric Sensing Experiment) instrument and in situ aerosol size distribution data are utilized to derive vertical profiles of the "effective" aerosol complex index of refraction at 815 nm (i.e., the refractive index that would provide the same backscatter signal in a forward calculation on the basis of the measured in situ particle size distributions for homogeneous, spherical aerosols). A sensitivity study shows that this method yields small errors in the retrieved aerosol refractive indices, provided the errors in the lidar-derived aerosol backscatter are less than 30% and random in nature. Absolute errors in the estimated aerosol refractive indices are generally less than 0.04 for the real part and can be as much as 0.042 for the imaginary part in the case of a 30% error in the lidar-derived aerosol backscatter. The measurements of aerosol optical depth from the NASA Ames Airborne Tracking Sunphotometer (AATS-6) are successfully incorporated into the new technique and help constrain the retrieved aerosol refractive indices. An application of the technique to two TARFOX case studies yields the occurrence of vertical layers of distinct aerosol refractive indices. Values of the estimated complex aerosol refractive index range from 1.33 to 1.45 for the real part and 0.001 to 0.008 for the imaginary part. The methodology devised in this study

  12. Retrieving the Vertical Structure of the Effective Aerosol Complex Index of Refraction from a Combination of Aerosol in Situ and Remote Sensing Measurements During TARFOX

    NASA Technical Reports Server (NTRS)

    Redemann, J.; Turco, R. P.; Liou, K. N.; Russell, P. B.; Bergstrom, R. W.; Schmid, B.; Livingston, J. M.; Hobbs, P. V.; Hartley, W. S.; Ismail, S.

    2000-01-01

    The largest uncertainty in estimates of the effects of atmospheric aerosols on climate stems from uncertainties in the determination of their microphysical properties, including the aerosol complex index of refraction, which in turn determines their optical properties. A novel technique is used to estimate the aerosol complex index of refraction in distinct vertical layers from a combination of aerosol in situ size distribution and remote sensing measurements during the Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX). In particular, aerosol backscatter measurements using the NASA Langley LASE (Lidar Atmospheric Sensing Experiment) instrument and in situ aerosol size distribution data are utilized to derive vertical profiles of the 'effective' aerosol complex index of refraction at 815 nm (i.e., the refractive index that would provide the same backscatter signal in a forward calculation on the basis of the measured in situ particle size distributions for homogeneous, spherical aerosols). A sensitivity study shows that this method yields small errors in the retrieved aerosol refractive indices, provided the errors in the lidar derived aerosol backscatter are less than 30% and random in nature. Absolute errors in the estimated aerosol refractive indices are generally less than 0.04 for the real part and can be as much as 0.042 for the imaginary part in the case of a 30% error in the lidar-derived aerosol backscatter. The measurements of aerosol optical depth from the NASA Ames Airborne Tracking Sunphotometer (AATS-6) are successfully incorporated into the new technique and help constrain the retrieved aerosol refractive indices. An application of the technique to two TARFOX case studies yields the occurrence of vertical layers of distinct aerosol refractive indices. Values of the estimated complex aerosol refractive index range from 1.33 to 1.45 for the real part and 0.001 to 0.008 for the imaginary part. The methodology devised in this study

  13. New Measurements of Aerosol Vertical Structure from Space Using the NASA Geoscience Laser Altimeter System (GLAS): Applications for Aerosol Transport Models

    NASA Technical Reports Server (NTRS)

    Welton, Ellsworth J.; Ginoux, Paul; Colarco, Peter; Chin, Mian; Spinhirne, James D.; Palm, Steven P.; Hlavka, Dennis; Hart, William

    2003-01-01

    In the past, satellite measurements of aerosols have only been possible using passive sensors. Analysis of passive satellite data has lead to an improved understanding of aerosol properties, spatial distribution, and their effect on the earth s climate. However, direct measurement of aerosol vertical distribution has not been possible using only the passive data. Knowledge of aerosol vertical distribution is important to correctly assess the impact of aerosol absorption, for certain atmospheric correction procedures, and to help constrain height profiles in aerosol transport models. On January 12,2003 NASA launched the first satellite-based lidar, the Geoscience Laser Altimeter System (GLAS), onboard the ICESat spacecraft. GLAS is both an altimeter and an atmospheric lidar, and obtains direct measurements of aerosol and cloud heights. Here we show an overview of GLAS, provide an update of its current status, and discuss how GUS data will be useful for modeling efforts. In particular, a strategy of using GLAS to characterize the height profile of dust plumes over source regions will be presented, along with initial results. Such information can be used to validate and improve output from aerosol transport models. Aerosol height profile comparisons between GLAS and transport models will be shown for regions downwind of aerosol sources. We will also discuss the feasibility of assimilating GLAS profiles into the models in order to improve their output,

  14. New Measurements of Aerosol Vertical Structure from Space using the NASA Geoscience Laser Altimeter System (GLAS): Applications for Aerosol Transport Models

    NASA Technical Reports Server (NTRS)

    Welton, E. J.; Spinhime, J.; Palm, S.; Hlavka, D.; Hart, W.; Ginoux, P.; Chin, M.; Colarco, P.

    2004-01-01

    In the past, satellite measurements of aerosols have only been possible using passive sensors. Analysis of passive satellite data has lead to an improved understanding of aerosol properties, spatial distribution, and their effect on the earth,s climate. However, direct measurement of aerosol vertical distribution has not been possible using only the passive data. Knowledge of aerosol vertical distribution is important to correctly assess the impact of aerosol absorption, for certain atmospheric correction procedures, and to help constrain height profiles in aerosol transport models. On January 12,2003 NASA launched the first satellite-based lidar, the Geoscience Laser Altimeter System (GLAS), onboard the ICESat spacecraft. GLAS is both an altimeter and an atmospheric lidar, and obtains direct measurements of aerosol and cloud heights. Here we show an overview of GLAS, provide an update of its current status, and discuss how GLAS data will be useful for modeling efforts. In particular, a strategy of using GLAS to characterize the height profile of dust plumes over source regions will be presented, along with initial results. Such information can be used to validate and improve output from aerosol transport models. Aerosol height profile comparisons between GLAS and transport models will be shown for regions downwind of aerosol sources. We will also discuss the feasibility of assimilating GLAS profiles into the models in order to improve their output.

  15. Vertical Distribution of Aerosols and Water Vapor Using CRISM Limb Observations

    NASA Astrophysics Data System (ADS)

    Smith, M. D.; Wolff, M. J.; Clancy, R. T.; CRISM Science; Operations Teams

    2011-12-01

    Near-infrared spectra taken in a limb-viewing geometry by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on-board the Mars Reconnaissance Orbiter (MRO) provide a useful tool for probing atmospheric structure. Specifically, the observed radiance as a function of wavelength and height above the limb allows the vertical distribution of both dust and ice aerosols to be retrieved. These data serve as an important supplement to the aerosol profiling provided by the MRO/MCS instrument allowing independent validation and giving additional information on particle physical and scattering properties through multi-wavelength studies. A total of at least ten CRISM limb observations have been taken so far covering a full Martian year. Each set of limb observations nominally contains about four dozen scans across the limb giving pole-to-pole coverage for two orbits at roughly 100 and 290 W longitude over the Tharsis and Syrtis/Hellas regions, respectively. At each longitude, limb scans are spaced roughly 10 degrees apart in latitude, with a vertical spatial resolution on the limb of roughly 800 m. Radiative transfer modeling is used to model the observations. We compute synthetic CRISM limb spectra using a discrete-ordinates radiative transfer code that accounts for multiple scattering from aerosols and accounts for spherical geometry of the limb observations by integrating the source functions along curved paths in that coordinate system. Retrieved are 14-point vertical profiles for dust and water ice aerosols with resolution of 0.4 scale heights between one and six scale heights above the surface. After the aerosol retrieval is completed, the abundances of CO2 (or surface pressure) and H2O gas are retrieved by matching the depth of absorption bands at 2000 nm for carbon dioxide and at 2600 nm for water vapor. In addition to the column abundance of water vapor, limited information on its vertical structure can also be retrieved depending on the signal available

  16. Impact of aerosol vertical distribution on aerosol direct radiative effect and heating rate in the Mediterranean region

    NASA Astrophysics Data System (ADS)

    Pappas, Vasileios; Hatzianastassiou, Nikolaos; Matsoukas, Christos; Koras Carracca, Mario; Kinne, Stefan; Vardavas, Ilias

    2015-04-01

    It is now well-established that aerosols cause an overall cooling effect at the surface and a warming effect within the atmosphere. At the top of the atmosphere (TOA), both positive and negative forcing can be found, depending on a number of other factors, such as surface albedo and relative position of clouds and aerosols. Whilst aerosol surface cooling is important due to its relation with surface temperature and other bio-environmental reasons, atmospheric heating is of special interest as well having significant impacts on atmospheric dynamics, such as formation of clouds and subsequent precipitation. The actual position of aerosols and their altitude relative to clouds is of major importance as certain types of aerosol, such as black carbon (BC) above clouds can have a significant impact on planetary albedo. The vertical distribution of aerosols and clouds has recently drawn the attention of the aerosol community, because partially can account for the differences between simulated aerosol radiative forcing with various models, and therefore decrease the level of our uncertainty regarding aerosol forcing, which is one of our priorities set by IPCC. The vertical profiles of aerosol optical and physical properties have been studied by various research groups around the world, following different methodologies and using various indices in order to present the impact of aerosols on radiation on different altitudes above the surface. However, there is still variability between the published results as to the actual effect of aerosols on shortwave radiation and on heating rate within the atmosphere. This study uses vertical information on aerosols from the Max Planck Aerosol Climatology (MAC-v1) global dataset, which is a combination of model output with quality ground-based measurements, in order to provide useful insight into the vertical profile of atmospheric heating for the Mediterranean region. MAC-v1 and the science behind this aerosol dataset have already

  17. Vertical distribution of Martian aerosols from SPICAM/Mars-Express limb observations

    NASA Astrophysics Data System (ADS)

    Fedorova, A.; Korablev, O.; Bertaux, J.-L.; Rodin, A.; Perrier, S.; Moroz, V. I.

    Limb spectroscopic observations provide invaluable information about vertical distribution of main atmospheric components in the Martian atmosphere, in particular vertical distribution and structure of aerosols, which play an important role in the heat balance of the planet. Only limited set of successful limb spectroscopic observations have been carried out on Mars so far, including those by MGS/TES spectrometer and Thermoscan and Auguste experiments of Phobos mission. Currently SPICAM instrument onboard Mars-Express spacecraft has accomplished several sequences of limb observations. First analysis of limb sounding data received by SPICAM IR and UV channels, which imply the presence of fine, deep, optically thin aerosol fraction extended over broad range of altitudes, is presented.

  18. Verification of the naval oceanic vertical aerosol model during FIRE

    NASA Technical Reports Server (NTRS)

    Davidson, K. L.; Deleeuw, G.; Gathman, S. G.; Jensen, D. R.

    1990-01-01

    The value of Naval Oceanic Vertical Aerosol Model (NOVAM) is illustrated for estimating the non-uniform and non-logarithmic extinction profiles, based on a severe test involving conditions close to and beyond the limits of applicability of NOVAM. A more comprehensive evaluation of NOVAM from the FIRE data is presented, which includes a clear-air case. For further evaluation more data are required on the vertical structure of the extinction in the marine atmospheric boundary layer (MABL), preferably for different meteorological conditions and in different geographic areas (e.g., ASTEX).

  19. Comparison of MADE3-simulated and observed aerosol distributions with a focus on aerosol vertical profiles

    NASA Astrophysics Data System (ADS)

    Kaiser, Christopher; Hendricks, Johannes; Righi, Mattia; Jöckel, Patrick

    2016-04-01

    The reliability of aerosol radiative forcing estimates from climate models depends on the accuracy of simulated global aerosol distribution and composition, as well as on the models' representation of the aerosol-cloud and aerosol-radiation interactions. To help improve on previous modeling studies, we recently developed the new aerosol microphysics submodel MADE3 that explicitly tracks particle mixing state in the Aitken, accumulation, and coarse mode size ranges. We implemented MADE3 into the global atmospheric chemistry general circulation model EMAC and evaluated it by comparison of simulated aerosol properties to observations. Compared properties include continental near-surface aerosol component concentrations and size distributions, continental and marine aerosol vertical profiles, and nearly global aerosol optical depth. Recent studies have shown the specific importance of aerosol vertical profiles for determination of the aerosol radiative forcing. Therefore, our focus here is on the evaluation of simulated vertical profiles. The observational data is taken from campaigns between 1990 and 2011 over the Pacific Ocean, over North and South America, and over Europe. The datasets include black carbon and total aerosol mass mixing ratios, as well as aerosol particle number concentrations. Compared to other models, EMAC with MADE3 yields good agreement with the observations - despite a general high bias of the simulated mass mixing ratio profiles. However, BC concentrations are generally overestimated by many models in the upper troposphere. With MADE3 in EMAC, we find better agreement of the simulated BC profiles with HIPPO data than the multi-model average of the models that took part in the AeroCom project. There is an interesting difference between the profiles from individual campaigns and more "climatological" datasets. For instance, compared to spatially and temporally localized campaigns, the model simulates a more continuous decline in both total

  20. Vertical structure of aerosol distribution and radiative properties over Svalbard - observations and modelling

    NASA Astrophysics Data System (ADS)

    Kaminski, Jacek W.; Struzewska, Joanna; Markowicz, Krzysztof; Jefimow, Maciej

    2015-04-01

    In the scope of the iAREA projects (Impact of absorbing aerosols on radiative forcing in the European Arctic - http://www.igf.fuw.edu.pl/iAREA) a field campaign was undertaken in March and April 2014 on Spitzbergen. Analysis of measurements was supported by the GEM-AQ model simulations. The GEM-AQ model is a chemical weather model. The core of the model is based on a weather prediction model with environmental processes (chemistry and aerosols) implanted on-line and are interactive (i.e. providing feedback of chemistry on radiation and dynamics). Numerical experiments were performed with the computational grid resolution of ˜15 km. The emission inventory developed by NILU in the ECLIPSE project was used. Preliminary analysis revealed small but systematic overestimation of modelled AOD and background BC levels. We will present the analysis of the vertical distribution of different aerosol species and its contribution to AOD for two stations on Svalbard. Also, changes of modelled chemical composition of aerosols with altitude will be analyzed.

  1. Vertical distributions of aerosols under different weather conditions: Analysis of in-situ aircraft measurements in Beijing, China

    NASA Astrophysics Data System (ADS)

    Zhang, Qiang; Ma, XinCheng; Tie, Xuexi; Huang, Mengyu; Zhao, Chunsheng

    In this study, aerosol vertical distributions of 17 in-situ aircraft measurements during 2005 and 2006 springs are analyzed. The 17 flights are carefully selected to exclude dust events, and the analyses are focused on the vertical distributions of aerosol particles associated with anthropogenic activities. The results show that the vertical distributions of aerosol particles are strongly affected by weather and meteorological conditions, and 3 different types of aerosol vertical distributions corresponding to different weather systems are defined in this study. The measurement with a flat vertical gradient and low surface aerosol concentrations is defined as type-1; a gradual decrease of aerosols with altitudes and modest surface aerosol concentrations is defined as type-2; a sharp vertical gradient (aerosols being strongly depressed in the PBL) with high surface aerosol concentrations is defined as type-3. The weather conditions corresponding to the 3 different aerosol types are high pressure, between two high pressures, and low pressure systems (frontal inversions), respectively. The vertical mixing and horizontal transport for the 3 different vertical distributions are analyzed. Under the type-1 condition, the vertical mixing and horizontal transport were rapid, leading to strong dilution of aerosols in both vertical and horizontal directions. As a result, the aerosol concentrations in PBL (planetary boundary layer) were very low, and the vertical distribution was flat. Under the type-2 condition, the vertical mixing was strong and there was no strong barrier at the PBL height. The horizontal transport (wind flux) was modest. As a result, the aerosol concentrations were gradually reduced with altitude, with modest surface aerosol concentrations. Under the type-3 condition, there was a cold front near the region. As a result, a frontal inversion associated with weak vertical mixing appeared at the top of the inversion layer, forming a very strong barrier to

  2. Modeling of Aerosol Vertical Profiles Using GIS and Remote Sensing

    PubMed Central

    Wong, Man Sing; Nichol, Janet E.; Lee, Kwon Ho

    2009-01-01

    The use of Geographic Information Systems (GIS) and Remote Sensing (RS) by climatologists, environmentalists and urban planners for three dimensional modeling and visualization of the landscape is well established. However no previous study has implemented these techniques for 3D modeling of atmospheric aerosols because air quality data is traditionally measured at ground points, or from satellite images, with no vertical dimension. This study presents a prototype for modeling and visualizing aerosol vertical profiles over a 3D urban landscape in Hong Kong. The method uses a newly developed technique for the derivation of aerosol vertical profiles from AERONET sunphotometer measurements and surface visibility data, and links these to a 3D urban model. This permits automated modeling and visualization of aerosol concentrations at different atmospheric levels over the urban landscape in near-real time. Since the GIS platform permits presentation of the aerosol vertical distribution in 3D, it can be related to the built environment of the city. Examples are given of the applications of the model, including diagnosis of the relative contribution of vehicle emissions to pollution levels in the city, based on increased near-surface concentrations around weekday rush-hour times. The ability to model changes in air quality and visibility from ground level to the top of tall buildings is also demonstrated, and this has implications for energy use and environmental policies for the tall mega-cities of the future. PMID:22408531

  3. Modeling of Aerosol Vertical Profiles Using GIS and Remote Sensing.

    PubMed

    Wong, Man Sing; Nichol, Janet E; Lee, Kwon Ho

    2009-01-01

    The use of Geographic Information Systems (GIS) and Remote Sensing (RS) by climatologists, environmentalists and urban planners for three dimensional modeling and visualization of the landscape is well established. However no previous study has implemented these techniques for 3D modeling of atmospheric aerosols because air quality data is traditionally measured at ground points, or from satellite images, with no vertical dimension. This study presents a prototype for modeling and visualizing aerosol vertical profiles over a 3D urban landscape in Hong Kong. The method uses a newly developed technique for the derivation of aerosol vertical profiles from AERONET sunphotometer measurements and surface visibility data, and links these to a 3D urban model. This permits automated modeling and visualization of aerosol concentrations at different atmospheric levels over the urban landscape in near-real time. Since the GIS platform permits presentation of the aerosol vertical distribution in 3D, it can be related to the built environment of the city. Examples are given of the applications of the model, including diagnosis of the relative contribution of vehicle emissions to pollution levels in the city, based on increased near-surface concentrations around weekday rush-hour times. The ability to model changes in air quality and visibility from ground level to the top of tall buildings is also demonstrated, and this has implications for energy use and environmental policies for the tall mega-cities of the future.

  4. Decoration of vertical graphene with aerosol nanoparticles for gas sensing

    NASA Astrophysics Data System (ADS)

    Cui, Shumao; Guo, Xiaoru; Ren, Ren; Zhou, Guihua; Chen, Junhong

    2015-08-01

    A facile method was demonstrated to decorate aerosol Ag nanoparticles onto vertical graphene surfaces using a mini-arc plasma reactor. The vertical graphene was directly grown on a sensor electrode using a plasma-enhanced chemical vapor deposition (PECVD) method. The aerosol Ag nanoparticles were synthesized by a simple vapor condensation process using a mini-arc plasma source. Then, the nanoparticles were assembled on the surface of vertical graphene through the assistance of an electric field. Based on our observation, nonagglomerated Ag nanoparticles formed in the gas phase and were assembled onto vertical graphene sheets. Nanohybrids of Ag nanoparticle-decorated vertical graphene were characterized for ammonia gas detection at room temperature. The vertical graphene served as the conductance channel, and the conductance change upon exposure to ammonia was used as the sensing signal. The sensing results show that Ag nanoparticles significantly improve the sensitivity, response time, and recovery time of the sensor.

  5. Vertical Profiles of Aerosol Volume from High Spectral Resolution Infrared Transmission Measurements: Results

    NASA Technical Reports Server (NTRS)

    Eldering, Annmarie; Kahn, Brian H.; Mills, Franklin P.; Irion, Fredrick W.; Steele, Helen M.; Gunson, Michael R.

    2004-01-01

    The high-resolution infrared absorption spectra of the Atmospheric Trace Molecule Spectroscopy (ATMOS) experiment are utilized to derive vertical profiles of sulfate aerosol volume density and extinction coefficient. Following the eruption of Mt. Pinatubo in June 1991, the ATMOS spectra obtained on three Space Shuttle missions (1992, 1993, and 1994) provide a unique opportunity to study the global stratospheric sulfate aerosol layer shortly after a major volcanic eruption and periodically during the decay phase. Synthetic sulfate aerosol spectra are fit to the observed spectra, and a global fitting inversion routine is used to derive vertical profiles of sulfate aerosol volume density. Vertical profiles of sulfate aerosol volume density for the three missions over portions of the globe are presented, with the peak in aerosol volume density occurring from as low as 10 km (polar latitudes) to as high as 20 km (subtropical latitudes). Derived aerosol volume density is as high as 2-3.5 (mu)m(exp 3) per cubic centimeter +/-10% in 1992, decreasing to 0.2-0.5 (mu)m(exp 3) per cubic centimeter +/-20% in 1994, in agreement with other experiments. Vertical extinction profiles derived from ATMOS are compared with profiles from Improved Stratospheric And Mesospheric Sounder (ISAMS) and Cryogenic Limb Array Etalon Spectrometer (CLAES) that coincide in space and time and show good general agreement. The uncertainty of the ATMOS vertical profiles is similar to CLAES and consistently smaller than ISAMS at similar altitudes.

  6. The impact of aerosol vertical distribution on aerosol optical depth retrieval using CALIPSO and MODIS data: Case study over dust and smoke regions

    NASA Astrophysics Data System (ADS)

    Wu, Yerong; de Graaf, Martin; Menenti, Massimo

    2017-08-01

    Global quantitative aerosol information has been derived from MODerate Resolution Imaging SpectroRadiometer (MODIS) observations for decades since early 2000 and widely used for air quality and climate change research. However, the operational MODIS Aerosol Optical Depth (AOD) products Collection 6 (C6) can still be biased, because of uncertainty in assumed aerosol optical properties and aerosol vertical distribution. This study investigates the impact of aerosol vertical distribution on the AOD retrieval. We developed a new algorithm by considering dynamic vertical profiles, which is an adaptation of MODIS C6 Dark Target (C6_DT) algorithm over land. The new algorithm makes use of the aerosol vertical profile extracted from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) measurements to generate an accurate top of the atmosphere (TOA) reflectance for the AOD retrieval, where the profile is assumed to be a single layer and represented as a Gaussian function with the mean height as single variable. To test the impact, a comparison was made between MODIS DT and Aerosol Robotic Network (AERONET) AOD, over dust and smoke regions. The results show that the aerosol vertical distribution has a strong impact on the AOD retrieval. The assumed aerosol layers close to the ground can negatively bias the retrievals in C6_DT. Regarding the evaluated smoke and dust layers, the new algorithm can improve the retrieval by reducing the negative biases by 3-5%.

  7. Measurements of aerosol layer height and vertical profiles by lidar over Jinhua City

    NASA Astrophysics Data System (ADS)

    Yu, Siqi; Liu, Dong; Wang, Zhenzhu; Xu, Jiwei; Tian, Xiaomin; Wu, Decheng; Xie, Chenbo; Wang, Yingjian

    2018-03-01

    The vertical distribution of the aerosol layers is depicted by using the lidar data in Jinhua city from 2013 to 2014. The lidar installed in Jinhua is a dual-wavelength Mie polarization Raman lidar. Aerosol layers are searched through gradient method. At the same time, HYSPLIT model is used to tracing the aerosol trajectories. The results show that different heights of aerosol layers have different transportation route. By a case study, the lidar data on December 30, 2013 and May 1, 2014 reveal several vertical aerosol layers. According to the 24-hour backward trajectory of HYSPLIT model, different aerosol layers comes from different places, and this may relate to the winter monsoon in China.

  8. Near Real Time Vertical Profiles of Clouds and Aerosols from the Cloud-Aerosol Transport System (CATS) on the International Space Station

    NASA Astrophysics Data System (ADS)

    Yorks, J. E.; McGill, M. J.; Nowottnick, E. P.

    2015-12-01

    Plumes from hazardous events, such as ash from volcanic eruptions and smoke from wildfires, can have a profound impact on the climate system, human health and the economy. Global aerosol transport models are very useful for tracking hazardous plumes and predicting the transport of these plumes. However aerosol vertical distributions and optical properties are a major weakness of global aerosol transport models, yet a key component of tracking and forecasting smoke and ash. The Cloud-Aerosol Transport System (CATS) is an elastic backscatter lidar designed to provide vertical profiles of clouds and aerosols while also demonstrating new in-space technologies for future Earth Science missions. CATS has been operating on the Japanese Experiment Module - Exposed Facility (JEM-EF) of the International Space Station (ISS) since early February 2015. The ISS orbit provides more comprehensive coverage of the tropics and mid-latitudes than sun-synchronous orbiting sensors, with nearly a three-day repeat cycle. The ISS orbit also provides CATS with excellent coverage over the primary aerosol transport tracks, mid-latitude storm tracks, and tropical convection. Data from CATS is used to derive properties of clouds and aerosols including: layer height, layer thickness, backscatter, optical depth, extinction, and depolarization-based discrimination of particle type. The measurements of atmospheric clouds and aerosols provided by the CATS payload have demonstrated several science benefits. CATS provides near-real-time observations of cloud and aerosol vertical distributions that can be used as inputs to global models. The infrastructure of the ISS allows CATS data to be captured, transmitted, and received at the CATS ground station within several minutes of data collection. The CATS backscatter and vertical feature mask are part of a customized near real time (NRT) product that the CATS processing team produces within 6 hours of collection. The continuous near real time CATS data

  9. Vertical profiles of aerosol optical properties and the solar heating rate estimated by combining sky radiometer and lidar measurements

    NASA Astrophysics Data System (ADS)

    Kudo, Rei; Nishizawa, Tomoaki; Aoyagi, Toshinori

    2016-07-01

    The SKYLIDAR algorithm was developed to estimate vertical profiles of aerosol optical properties from sky radiometer (SKYNET) and lidar (AD-Net) measurements. The solar heating rate was also estimated from the SKYLIDAR retrievals. The algorithm consists of two retrieval steps: (1) columnar properties are retrieved from the sky radiometer measurements and the vertically mean depolarization ratio obtained from the lidar measurements and (2) vertical profiles are retrieved from the lidar measurements and the results of the first step. The derived parameters are the vertical profiles of the size distribution, refractive index (real and imaginary parts), extinction coefficient, single-scattering albedo, and asymmetry factor. Sensitivity tests were conducted by applying the SKYLIDAR algorithm to the simulated sky radiometer and lidar data for vertical profiles of three different aerosols, continental average, transported dust, and pollution aerosols. The vertical profiles of the size distribution, extinction coefficient, and asymmetry factor were well estimated in all cases. The vertical profiles of the refractive index and single-scattering albedo of transported dust, but not those of transported pollution aerosol, were well estimated. To demonstrate the performance and validity of the SKYLIDAR algorithm, we applied the SKYLIDAR algorithm to the actual measurements at Tsukuba, Japan. The detailed vertical structures of the aerosol optical properties and solar heating rate of transported dust and smoke were investigated. Examination of the relationship between the solar heating rate and the aerosol optical properties showed that the vertical profile of the asymmetry factor played an important role in creating vertical variation in the solar heating rate. We then compared the columnar optical properties retrieved with the SKYLIDAR algorithm to those produced with the more established scheme SKYRAD.PACK, and the surface solar irradiance calculated from the SKYLIDAR

  10. Vertical distribution of aerosol number concentration in the troposphere over Siberia derived from airborne in-situ measurements

    NASA Astrophysics Data System (ADS)

    Arshinov, Mikhail Yu.; Belan, Boris D.; Paris, Jean-Daniel; Machida, Toshinobu; Kozlov, Alexandr; Malyskin, Sergei; Simonenkov, Denis; Davydov, Denis; Fofonov, Alexandr

    2016-04-01

    Knowledge of the vertical distribution of aerosols particles is very important when estimating aerosol radiative effects. To date there are a lot of research programs aimed to study aerosol vertical distribution, but only a few ones exist in such insufficiently explored region as Siberia. Monthly research flights and several extensive airborne campaigns carried out in recent years in Siberian troposphere allowed the vertical distribution of aerosol number concentration to be summarized. In-situ aerosol measurements were performed in a wide range of particle sizes by means of improved version of the Novosibirsk-type diffusional particle sizer and GRIMM aerosol spectrometer Model 1.109. The data on aerosol vertical distribution enabled input parameters for the empirical equation of Jaenicke (1993) to be derived for Siberian troposphere up to 7 km. Vertical distributions of aerosol number concentration in different size ranges averaged for the main seasons of the year will be presented. This work was supported by Interdisciplinary integration projects of the Siberian Branch of the Russian Academy of Science No. 35, No. 70 and No. 131; the Branch of Geology, Geophysics and Mining Sciences of RAS (Program No. 5); and Russian Foundation for Basic Research (grant No. 14-05-00526). Jaenicke R. Tropospheric aerosols, in Aerosol-Cloud-Climate Interactions, edited by P.V. Hobs. -Academic Press, San Diego, CA, 1993.- P. 1-31.

  11. LIDAR Measurements of the Vertical Distribution of Aerosol Optical and Physical Properties over Central Asia

    EPA Science Inventory

    The vertical structure of aerosol optical and physical properties was measured by Lidar in Eastern Kyrgyzstan, Central Asia, from June 2008 to May 2009. Lidar measurements were supplemented with surface-based measurements of PM2.5 and PM10 mass and chemical ...

  12. Vertical profile of aerosols in the Himalayan region using an ultralight aircraft platform

    NASA Astrophysics Data System (ADS)

    Singh, A.; Mahata, K.; Rupakheti, M.; Lawrence, M. G.; Junkermann, W.

    2017-12-01

    Indo-gangetic plain (IGP) and Himalayan foothills have large spatial and temporal heterogeneity in aerosols characteristics. Regional meteorology around 850-500 mb plays an important role in the transformation and transportation of aerosols from west Asia to IGP, into Himalayan foothill, as well to high-altitude region of the Himalayas. In order to quantify the vertical and horizontal variation of aerosol properties in the Himalayan , an airborne campaign was carried out in the Pokhara Valley/Nepal (83°50'-84°10' E, 25°7'-28°15' N, 815 masl ) in two phases: test flights during May 2016 and an intensive airborne sampling flight in December-January 2017. This paper provides an overview of airborne measurement campaign from the first phase of measurements in May 2016. A two-seater microlight aircraft (IKARUS C 42) was used as the aerial platform. This was deemed the feasible option in Nepal for an aerial campaign; technical specification of the aircraft include an approximately 6 hrs of flying time, short-take off run, > 100 kgs of payload, suitable for spiral upward and downward profiling. The instrument package consist of GRIMM 1.108 for particle size distribution from 0.3 to 20 um at 6 seconds time resolution, and TSI CPC 3375 for total ultrafine particle (UFP) concentration at 1 s. The package also includes a Magee Scientific Aethalometer (AE42) for aerosol absorption at seven different wavelengths. Meteorological parameters include temperature and dew point at a sampling rate of 1 Hz or higher. The paper provides a snapshot of observed vertical profile (from 800 to 4500masl) of aerosols size, number and black carbon over one of populated mountain valley in Nepal during the pre-monsoon season. During the airborne measurement, local fires- mostly agriculture burn were observed, however no large scale forest fire was captured. Sharp morning and afternoon gradients were observed in the vertical profile for aerosol number and size, mostly dominated by <400 nm. The

  13. Measurements of the Vertical Structure of Aerosols and Clouds Over the Ocean Using Micro-Pulse LIDAR Systems

    NASA Technical Reports Server (NTRS)

    Welton, Ellsworth J.; Spinhirne, James D.; Campbell, James R.; Berkoff, Timothy A.; Bates, David; Starr, David OC. (Technical Monitor)

    2001-01-01

    The determination of the vertical distribution of aerosols and clouds over the ocean is needed for accurate retrievals of ocean color from satellites observations. The presence of absorbing aerosol layers, especially at altitudes above the boundary layer, has been shown to influence the calculation of ocean color. Also, satellite data must be correctly screened for the presence of clouds, particularly cirrus, in order to measure ocean color. One instrument capable of providing this information is a lidar, which uses pulses of laser light to profile the vertical distribution of aerosol and cloud layers in the atmosphere. However, lidar systems prior to the 1990s were large, expensive, and not eye-safe which made them unsuitable for cruise deployments. During the 1990s the first small, autonomous, and eye-safe lidar system became available: the micro-pulse lidar, or MPL. The MPL is a compact and eye-safe lidar system capable of determining the range of aerosols and clouds by firing a short pulse of laser light (523 nm) and measuring the time-of-flight from pulse transmission to reception of a returned signal. The returned signal is a function of time, converted into range using the speed of light, and is proportional to the amount of light backscattered by atmospheric molecules (Rayleigh scattering), aerosols, and clouds. The MPL achieves ANSI eye-safe standards by sending laser pulses at low energy (micro-J) and expanding the beam to 20.32 cm in diameter. A fast pulse-repetition-frequency (2500 Hz) is used to achieve a good signal-to-noise, despite the low output energy. The MPL has a small field-of-view (< 100 micro-rad) and signals received with the instrument do not contain multiple scattering effects. The MPL has been used successfully at a number of long-term sites and also in several field experiments around the world.

  14. Aromatic Structure in Simulates Titan Aerosol

    NASA Technical Reports Server (NTRS)

    Trainer, Melissa G.; Loeffler, M. J.; Anderson, C. M.; Hudson, R. L.; Samuelson, R. E.; Moore, M. A.

    2011-01-01

    Observations of Titan by the Cassini Composite Infrared Spectrometer (CIRS) between 560 and 20 per centimeter (approximately 18 to 500 micrometers) have been used to infer the vertical variations of Titan's ice abundances, as well as those of the aerosol from the surface to an altitude of 300 km [1]. The aerosol has a broad emission feature centered approximately at 140 per centimeter (71 micrometers). As seen in Figure 1, this feature cannot be reproduced using currently available optical constants from laboratory-generated Titan aerosol analogs [2]. The far-IR is uniquely qualified for investigating low-energy vibrational motions within the lattice structures of COITIDlex aerosol. The feature observed by CIRS is broad, and does not likely arise from individual molecules, but rather is representative of the skeletal movements of macromolecules. Since Cassini's arrival at Titan, benzene (C6H6) has been detected in the atmosphere at ppm levels as well as ions that may be polycyclic aromatic hydrocarbons (PAHs) [3]. We speculate that the feature may be a blended composite that can be identified with low-energy vibrations of two-dimensional lattice structures of large molecules, such as PAHs or nitrogenated aromatics. Such structures do not dominate the composition of analog materials generated from CH4 and N2 irradiation. We are performing studies forming aerosol analog via UV irradiation of aromatic precursors - specifically C6H6 - to understand how the unique chemical architecture of the products will influence the observable aerosol characteristics. The optical and chemical properties of the aromatic analog will be compared to those formed from CH4/N2 mixtures, with a focus on the as-yet unidentified far-IR absorbance feature. Preliminary results indicate that the photochemically-formed aromatic aerosol has distinct chemical composition, and may incorporate nitrogen either into the ring structure or adjoined chemical groups. These compositional differences are

  15. Variability of aerosol vertical distribution in the Sahel

    NASA Astrophysics Data System (ADS)

    Cavalieri, O.; Cairo, F.; Fierli, F.; di Donfrancesco, G.; Snels, M.; Viterbini, M.; Cardillo, F.; Chatenet, B.; Formenti, P.; Marticorena, B.; Rajot, J. L.

    2010-12-01

    In this work, we have studied the seasonal and inter-annual variability of the aerosol vertical distribution over Sahelian Africa for the years 2006, 2007 and 2008, characterizing the different kind of aerosols present in the atmosphere in terms of their optical properties observed by ground-based and satellite instruments, and their sources searched for by using trajectory analysis. This study combines data acquired by three ground-based micro lidar systems located in Banizoumbou (Niger), Cinzana (Mali) and M'Bour (Senegal) in the framework of the African Monsoon Multidisciplinary Analysis (AMMA), by the AEROsol RObotic NETwork (AERONET) sun-photometers and by the space-based Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) onboard the CALIPSO satellite (Cloud-Aerosol Lidar and Infrared Pathfinder Observations). During winter, the lower levels air masses arriving in the Sahelian region come mainly from North, North-West and from the Atlantic area, while in the upper troposphere air flow generally originates from West Africa, crossing a region characterized by the presence of large biomass burning sources. The sites of Cinzana, Banizoumbou and M'Bour, along a transect of aerosol transport from East to West, are in fact under the influence of tropical biomass burning aerosol emission during the dry season, as revealed by the seasonal pattern of the aerosol optical properties, and by back-trajectory studies. Aerosol produced by biomass burning are observed mainly during the dry season and are confined in the upper layers of the atmosphere. This is particularly evident for 2006, which was characterized by a large presence of biomass burning aerosols in all the three sites. Biomass burning aerosol is also observed during spring when air masses originating from North and East Africa pass over sparse biomass burning sources, and during summer when biomass burning aerosol is transported from the southern part of the continent by the monsoon flow. During summer

  16. Vertical distributions of fluorescent aerosol over the Eastern U.S.

    NASA Astrophysics Data System (ADS)

    Perring, A. E.; Robinson, E. S.; Schwarz, J. P.; Gao, R. S.

    2016-12-01

    The prevalence of bioaerosol in the atmosphere is relevant to atmospheric chemistry, microbial ecology and climate. These particles can act as effective cloud condensation nuclei (CCN) and ice nuclei (IN), representing a potential feedback between vegetation and precipitation. As bioaerosol frequently account for a substantial fraction of coarse mode aerosol in the boundary layer, they may have significant impacts on mixed-phase and/or cirrus cloud formation and climate. Very few measurements are available, however, to constrain loadings of bioaerosol in the free troposphere. Here we present vertical profiles of fluorescent aerosol concentration as a proxy for bioaerosol. The data were obtained over the eastern U.S. during the summer of 2016 using a Wide Band Integrated Bioaerosol Sensor (WIBS) installed aboard a NOAA Twin Otter research aircraft. The airspeed and inlet configuration were chosen to permit efficient sampling of aerosol with diameters of up to 10 μm. Vertical profiles extend from 1000 to 17,500 feet AGL, spanning a temperature range relevant to ice formation. 100 hours of data cover a latitude range from 30N to 46N and target a variety of potential bioaerosol source regions including forests, croplands, the Gulf of Mexico, and Lake Michigan. Observed vertical profiles are compared to expected loadings based on current model parameterizations and implications are discussed.

  17. Vertical profiles of urban aerosol complex refractive index in the frame of ESQUIF airborne measurements

    NASA Astrophysics Data System (ADS)

    Raut, J.-C.; Chazette, P.

    2007-07-01

    A synergy between lidar, sunphotometer and in situ measurements has been applied to airborne observations performed during the Etude et Simulation de la QUalité de l'air en Ile-de-France (ESQUIF), enabling the retrieval of vertical profiles for the aerosol complex refractive index (ACRI) and single-scattering albedo with a vertical resolution of 200 m over Paris area. The averaged value over the entire planetary boundary layer (PBL) for the ACRI is close to 1.51(±0.02)-i0.017(±0.003) at 532 nm. The single-scattering albedo of the corresponding aerosols is found to be ~0.9 at the same wavelength. A good agreement is found with previous studies for urban aerosols. A comparison of vertical profiles of ACRI with simulations combining in situ measurements and relative humidity (RH) profiles has highlighted a modification in aerosol optical properties linked to their history and the origin of the air mass. The determination of ACRI in the atmospheric column enabled to retrieve vertical profiles of extinction coefficient in accordance with lidar profiles measurements.

  18. Vertical profiles of urban aerosol complex refractive index in the frame of ESQUIF airborne measurements

    NASA Astrophysics Data System (ADS)

    Raut, J.-C.; Chazette, P.

    2008-02-01

    A synergy between lidar, sunphotometer and in situ measurements has been applied to airborne observations performed during the Etude et Simulation de la QUalité de l'air en Ile-de-France (ESQUIF), enabling the retrieval of vertical profiles for the aerosol complex refractive index (ACRI) and single-scattering albedo with a vertical resolution of 200 m over Paris area. The averaged value over the entire planetary boundary layer (PBL) for the ACRI is close to 1.51(±0.02)-i0.017(±0.003) at 532 nm. The single-scattering albedo of the corresponding aerosols is found to be ~0.9 at the same wavelength. A good agreement is found with previous studies for urban aerosols. A comparison of vertical profiles of ACRI with simulations combining in situ measurements and relative humidity (RH) profiles has highlighted a modification in aerosol optical properties linked to their history and the origin of the air mass. The determination of ACRI in the atmospheric column enabled to retrieve vertical profiles of extinction coefficient in accordance with lidar profiles measurements.

  19. Lidar Measurements of the Vertical Distribution of Aerosol Optical and Physical Properties over Central Asia

    DOE PAGES

    Chen, Boris B.; Sverdlik, Leonid G.; Imashev, Sanjar A.; ...

    2013-01-01

    The vertical structure of aerosol optical and physical properties was measured by Lidar in Eastern Kyrgyzstan, Central Asia, from June 2008 to May 2009. Lidar measurements were supplemented with surface-based measurements of PM 2.5 and PM 10 mass and chemical composition in both size fractions. Dust transported into the region is common, being detected 33% of the time. The maximum frequency occurred in the spring of 2009. Dust transported to Central Asia comes from regional sources, for example, Taklimakan desert and Aral Sea basin, and from long-range transport, for example, deserts of Arabia, Northeast Africa, Iran, and Pakistan. Regional sourcesmore » are characterized by pollution transport with maximum values of coarse particles within the planetary boundary layer, aerosol optical thickness, extinction coefficient, integral coefficient of aerosol backscatter, and minimum values of the Ångström exponent. Pollution associated with air masses transported over long distances has different characteristics during autumn, winter, and spring. During winter, dust emissions were low resulting in high values of the Ångström exponent (about 0.51) and the fine particle mass fraction (64%). Dust storms were more frequent during spring with an increase in coarse dust particles in comparison to winter. The aerosol vertical profiles can be used to lower uncertainty in estimating radiative forcing.« less

  20. Observations of Aerosol-Cloud Interactions with Varying Vertical Separation between Biomass-Burning Aerosols and Stratocumulus Clouds over the South East Atlantic

    NASA Astrophysics Data System (ADS)

    Gupta, S.; McFarquhar, G. M.; Poellot, M.; O'Brien, J.; Delene, D. J.; Thornhill, K. L., II

    2017-12-01

    The ObseRvations of Aerosols above Clouds and their intEractionS (ORACLES) 2016 project provided in-situ measurements and remotely sensed retrievals of aerosol and cloud properties over the South East Atlantic during September, 2016 with a second deployment scheduled for August, 2017. Biomass burning aerosol from Southern Africa is advected toward the South East Atlantic at elevated altitudes and overlies the ubiquitous stratocumulus cloud deck over the ocean. The aerosols subside farther from the coast so that the vertical displacement between the clouds and aerosols varies, and whose effect on aerosol-cloud interaction is poorly known. A NASA P-3 aircraft was equipped with a Cloud Droplet Probe CDP sizing particles between 2 and 50μm, a Cloud and Aerosol Spectrometer CAS sizing between 0.51 and 50 μm and a 2D-stereo probe 2DS, nominally sizing between 10 and 1280 μm a Cloud Imaging Probe CIP, from 25 to 1600μm, and a High Volume Precipitation Sampler HVPS-3, from 150μm to 1.92cm for measuring number distribution functions (n(D)) along with a King probe for measuring liquid water content, LWC. A Passive Cavity Aerosol Spectrometer Probe PCASP measured aerosol particles between 0.1 to 3μm. Cloud legs from three research flights are classified into different regimes based on the aerosol concentration measured in the accumulation mode by the PCASP (Na) and its location above clouds. These legs include vertical transects through clouds and sawtooths (ramped legs starting above or below the cloud layer, completing a vertical transect through the cloud and repeating this pattern for several legs). The regimes; clean, mixing and separated, correspond to conditions with Na less than 100 cm-3 above cloud top, Na greater than 100 cm-3 within 100 m above cloud top and Na greater than 100 cm-3 separated from the cloud top by more than 100 m. During the mixing regime, measurements from CAS and 2DS show that droplet concentrations and cloud optical depths increased and

  1. Relationship Between Aerosol Optical Depth and Particulate Matter Over Singapore: Effects of Aerosol Vertical Distributions

    NASA Technical Reports Server (NTRS)

    Chew, Boo Ning; Campbell, James; Hyer, Edward J.; Salinas, Santo V.; Reid, Jeffrey S.; Welton, Ellsworth J.; Holben, Brent N.; Liew, Soo Chin

    2016-01-01

    As part of the Seven Southeast Asian Studies (7SEAS) program, an Aerosol Robotic Network (AERONET) sun photometer and a Micro-Pulse Lidar Network (MPLNET) instrument have been deployed at Singapore to study the regional aerosol environment of the Maritime Continent (MC). In addition, the Navy Aerosol Analysis and Prediction System (NAAPS) is used to model aerosol transport over the region. From 24 September 2009 to 31 March 2011, the relationships between ground-, satellite- and model-based aerosol optical depth (AOD) and particulate matter with aerodynamic equivalent diameters less than 2.5 microns (PM2.5) for air quality applications are investigated. When MPLNET-derived aerosol scale heights are applied to normalize AOD for comparison with surface PM2.5 data, the empirical relationships are shown to improve with an increased 11%, 10% and 5% in explained variances, for AERONET, MODIS and NAAPS respectively. The ratios of root mean square errors to standard deviations for the relationships also show corresponding improvements of 8%, 6% and 2%. Aerosol scale heights are observed to be bimodal with a mode below and another above the strongly-capped/deep near-surface layer (SCD; 0-1.35 km). Aerosol extinctions within the SCD layer are well-correlated with surface PM2.5 concentrations, possibly due to strong vertical mixing in the region.

  2. How well can we Measure the Vertical Profile of Tropospheric Aerosol Extinction?

    NASA Technical Reports Server (NTRS)

    Schmid, Beat; Ferrare, R.; Flynn, C.; Elleman, R.; Covert, D.; Strawa, A.; Welton, E.; Turner, D.; Jonsson, H.; Redemann, J.

    2005-01-01

    The recent Department of Energy Atmospheric Radiation Measurement (ARM) Aerosol Intensive Operations Period (MOP, May 2003) yielded one of the best measurement sets obtained to-date to assess our ability to measure the vertical profile of ambient aerosol extinction sigma(sub ep)(lambda) in the lower troposphere. During one month, a heavily instrumented aircraft with well characterized aerosol sampling ability carrying well proven and new aerosol instrumentation, devoted most of the 60 available flight hours to flying vertical profiles over the heavily instrumented ARM Southern Great Plains (SGP) Climate Research Facility (CRF). This allowed us to compare vertical extinction profiles obtained from 6 different instuments: airborne Sun photometer (AATS-14), airborne nephelometer/absorption photometer, airborne cavity ring-down system, ground-based Raman lidar and 2 ground-based elastic backscatter lidars. We find the in-situ measured sigma(sub ep)(lambda) to be lower than the AATS-14 derived values. Bias differences are 0.002 - 0.004 K/m equivalent to 12-17% in the visible, or 45% in the near-infrared. On the other hand, we find that with respect to AATS-14, the lidar sigma(sub ep)(lambda) are higher. An unnoticed loss of sensitivity of the Raman lidar had occurred leading up to AIOP and we expect better agreement from the recently restored system looking at the collective results from 6 field campaigns conducted since 1996, airborne in situ measurements of sigma(sub ep)(lambda) tend to be biased slightly low (17% at visible wavelengths) when compared to airborne Sun photometer sigma(sub ep)(lambda). On the other hand, sigma(sub ep)(lambda) values derived from lidars tend to have no or positive biases. From the bias differences we conclude that the typical systematic error associated with measuring the tropospheric vertical profile of the ambient aerosol extinction with current state of-the art instrumentation is 15-20% at visible wavelengths and potentially larger in

  3. Quantifying the effect of aerosol on vertical velocity and effective terminal velocity in warm convective clouds

    NASA Astrophysics Data System (ADS)

    Dagan, Guy; Koren, Ilan; Altaratz, Orit

    2018-05-01

    Better representation of cloud-aerosol interactions is crucial for an improved understanding of natural and anthropogenic effects on climate. Recent studies have shown that the overall aerosol effect on warm convective clouds is non-monotonic. Here, we reduce the system's dimensions to its center of gravity (COG), enabling distillation and simplification of the overall trend and its temporal evolution. Within the COG framework, we show that the aerosol effects are nicely reflected by the interplay of the system's characteristic vertical velocities, namely the updraft (w) and the effective terminal velocity (η). The system's vertical velocities can be regarded as a sensitive measure for the evolution of the overall trends with time. Using a bin-microphysics cloud-scale model, we analyze and follow the trends of the aerosol effect on the magnitude and timing of w and η, and therefore the overall vertical COG velocity. Large eddy simulation (LES) model runs are used to upscale the analyzed trends to the cloud-field scale and study how the aerosol effects on the temporal evolution of the field's thermodynamic properties are reflected by the interplay between the two velocities. Our results suggest that aerosol effects on air vertical motion and droplet mobility imply an effect on the way in which water is distributed along the atmospheric column. Moreover, the interplay between w and η predicts the overall trend of the field's thermodynamic instability. These factors have an important effect on the local energy balance.

  4. Vertical distribution of aerosol optical properties based on aircraft measurements over the Loess Plateau in China.

    PubMed

    Li, Junxia; Liu, Xingang; Yuan, Liang; Yin, Yan; Li, Zhanqing; Li, Peiren; Ren, Gang; Jin, Lijun; Li, Runjun; Dong, Zipeng; Li, Yiyu; Yang, Junmei

    2015-08-01

    Vertical distributions of aerosol optical properties based on aircraft measurements over the Loess Plateau were measured for the first time during a summertime aircraft campaign, 2013 in Shanxi, China. Data from four flights were analyzed. The vertical distributions of aerosol optical properties including aerosol scattering coefficients (σsc), absorption coefficients (σab), Angström exponent (α), single scattering albedo (ω), backscattering ratio (βsc), aerosol mass scattering proficiency (Qsc) and aerosol surface scattering proficiency (Qsc(')) were obtained. The mean statistical values of σsc were 77.45 Mm(-1) (at 450 nm), 50.72 Mm(-1) (at 550n m), and 32.02 Mm(-1) (at 700 nm). The mean value of σab was 7.62 Mm(-1) (at 550 nm). The mean values of α, βsc and ω were 1.93, 0.15, and 0.91, respectively. Aerosol concentration decreased with altitude. Most effective diameters (ED) of aerosols were less than 0.8 μm. The vertical profiles of σsc,, α, βsc, Qsc and Qsc(') showed that the aerosol scattering properties at lower levels contributed the most to the total aerosol radiative forcing. Both α and βsc had relatively large values, suggesting that most aerosols in the observational region were small particles. The mean values of σsc, α, βsc, Qsc, Qsc('), σab and ω at different height ranges showed that most of the parameters decreased with altitude. The forty-eight hour backward trajectories of air masses during the observation days indicated that the majority of aerosols in the lower level contributed the most to the total aerosol loading, and most of these particles originated from local or regional pollution emissions. Copyright © 2015. Published by Elsevier B.V.

  5. ACTRIS aerosol vertical profile data and observations: potentiality and first examples of integrated studies with models

    NASA Astrophysics Data System (ADS)

    Mona, Lucia; Benedetti, Angela; D'Amico, Giuseppe; Myhre, Cathrine Lund; Schulz, Michael; Wandinger, Ulla; Laj, Paolo; Pappalardo, Gelsomina

    2016-04-01

    The ACTRIS-2 project, funded by Horizon 2020, addresses the scope of integrating state-of-the-art European ground-based stations for long term observations of aerosols, clouds and short lived gases, capitalizing on the work of FP7-ACTRIS. It aims at achieving the construction of a user-oriented RI, unique in the EU-RI landscape for providing 4-D integrated high-quality data from near-surface to high altitude (vertical profiles and total-column) which are relevant to climate and air-quality research. ACTRIS-2 develops and implements, in a large network of stations in Europe and beyond, observational protocols that permit the harmonization of collected data and their dissemination. ACTRIS secures provision and dissemination of a unique set of data and data-products that would not otherwise be available with the same level of quality and standardization. This results from a 10-year plus effort in constructing a research infrastructure capable of responding to community needs and requirements, and has been engaged since the start of the FP5 EU commission program. ACTRIS ensures compliance with reporting requirements (timing, format, traceability) defined by the major global observing networks. EARLINET (European Aerosol research Lidar NETwork), the aerosol vertical profiling component of ACTRIS, is providing since May 2000 vertical profiles of aerosol extinction and backscatter over Europe. A new structure of the EARLINET database has been designed in a more user oriented approach reporting new data products which are more effective for specific uses of different communities. In particular, a new era is starting with the Copernicus program during which the aerosol vertical profiling capability will be fundamental for assimilation and validation purposes. The new data products have been designed thanks to a strong link with EARLINET data users, first of all modeling and satellite communities, established since the beginning of EARLINET and re-enforced within ACTRIS2

  6. Scanning vertical distributions of typical aerosols along the Yangtze River using elastic lidar.

    PubMed

    Fan, Shidong; Liu, Cheng; Xie, Zhouqing; Dong, Yunsheng; Hu, Qihou; Fan, Guangqiang; Chen, Zhengyi; Zhang, Tianshu; Duan, Jingbo; Zhang, Pengfei; Liu, Jianguo

    2018-07-01

    In recent years, China has experienced heavy air pollution, especially haze caused by particulate matter (PM). The compositions, horizontal distributions, transport, and chemical formation mechanisms of PM and its precursors have been widely investigated in China based on near-ground measurements. However, the understanding of the distributions and physical and chemical processes of PM in the vertical direction remains limited. In this study, an elastic lidar was employed to investigate the vertical profiles of aerosols along the Yangtze River during the Yangtze River Campaign of winter 2015. Some typical aerosols were identified and some events were analyzed in three cases. Dust aerosols can be transported from the Gobi Desert to the Yangtze River basin across a long distance at both low and high altitudes in early December. The transport route was perpendicular to the ship track, suggesting that the dust aerosols may have affected a large area. Moreover, during transport, some dust was also affected by the areas below its transport route since some anthropogenic pollutants were mixed with the dust and changed some of its optical properties. Biomass-burning aerosols covering a distant range along the Yangtze River were identified. This result directly shows the impact areas of biomass-burning aerosols in some agricultural fields. Some directly emitted aerosol plumes were observed, and direct effects of such plumes were limited both temporally and spatially. In addition, an aerosol plume with very low linear depolarization ratios, probably formed through secondary processes, was also observed. These results can help us better understand aerosols in large spatial scales in China and can be useful to regional haze studies. Copyright © 2018. Published by Elsevier B.V.

  7. Measurements of Aerosol Vertical Profiles and Optical Properties during INDOEX 1999 Using Micro-Pulse Lidars

    NASA Technical Reports Server (NTRS)

    Welton, Ellsworth J.; Voss, Kenneth J.; Quinn, Patricia K.; Flatau, Piotr J.; Markowicz, Krzysztof; Campbell, James R.; Spinhirne, James D.; Gordon, Howard R.; Johnson, James E.; Starr, David OC. (Technical Monitor)

    2001-01-01

    lower troposphere) calculates extinction near the surface in agreement with the ship-level measurements only when the MBL aerosols are well mixed with aerosols above. Finally, a review of the MPL extinction profiles showed that the model of aerosol vertical extinction developed during an earlier INDOEX field campaign (at the Maldives) did not correctly describe the true vertical distribution over the greater Indian Ocean region. Using the average extinction profile and AOD obtained during marine conditions, a new model of aerosol vertical extinction was determined for marine atmospheres over the Indian Ocean. A new model of aerosol vertical extinction for polluted marine atmospheres was also developed using the average extinction profile and AOD obtained during marine conditions influenced by continental aerosols.

  8. Comparison of Aerosol Classification From Airborne High Spectral Resolution Lidar and the CALIPSO Vertical Feature Mask

    NASA Technical Reports Server (NTRS)

    Burton, Sharon P.; Ferrare, Rich A.; Omar, Ali H.; Vaughan, Mark A.; Rogers, Raymond R.; Hostetler, Chris a.; Hair, Johnathan W.; Obland, Michael D.; Butler, Carolyn F.; Cook, Anthony L.; hide

    2012-01-01

    Knowledge of aerosol composition and vertical distribution is crucial for assessing the impact of aerosols on climate. In addition, aerosol classification is a key input to CALIOP aerosol retrievals, since CALIOP requires an inference of the lidar ratio in order to estimate the effects of aerosol extinction and backscattering. In contrast, the NASA airborne HSRL-1 directly measures both aerosol extinction and backscatter, and therefore the lidar ratio (extinction-to-backscatter ratio). Four aerosol intensive properties from HSRL-1 are combined to infer aerosol type. Aerosol classification results from HSRL-1 are used here to validate the CALIOP aerosol type inferences.

  9. Optical and microphysical properties of aerosol vertical distribution over Vipava valley retrieved by ground-based elastic lidar and in-situ measurements

    NASA Astrophysics Data System (ADS)

    Wang, Longlong; Gregorič, Asta; Stanič, Samo; Mole, Maruška; Bergant, Klemen; Močnik, Griša; Drinovec, Luka; Vaupotič, Janja; Miler, Miloš; Gosar, Mateja

    2017-04-01

    Atmospheric aerosols influence Earth's radiation budget, visibility and air quality, as well as the cloud formation processes and precipitation. The structure of the vertical aerosol distribution, in particular that of black carbon, significantly influences the aerosol direct radiative effect, followed by feedbacks on cloud and planetary boundary layer dynamics. The knowledge on aerosol vertical distribution and properties therefore provides an important insight into many atmospheric processes. In order to retrieve the vertical distribution of aerosol properties in the Vipava valley (Slovenia) and the influence of planetary boundary layer height on the local air quality, in-situ and LIDAR measurements were performed. In-situ methods consisted of aerosol size distribution and number concentration and black carbon concentration measurements which were performed during a one-month extensive measurement campaign in spring 2016. Aerosol size distribution (10 nm to 30 µm) was measured at the valley floor using scanning mobility particle sizer (SMPS, Grimm Aerosol Technique, Germany) and optical particle counter (OPC, Grimm Aerosol Technique, Germany). Black carbon concentrations were measured by Aethalometer AE33 (Aerosol d.o.o., Slovenia) at the valley floor (125 m a.s.l.) and at the top of the adjacent mountain ridge (951 m a.s.l.), the later representing regional background conditions. The in-situ measurements were combined with LIDAR remote sensing, where the vertical profiles of aerosol backscattering coefficients were retrieved using the Klett method. In addition, aerosol samples were analyzed by SEM-EDX to obtain aerosol morphology and chemical composition. Two different cases with expected dominant presence of specific aerosol types were investigated in more detail. They show significantly different aerosol properties and distributions within the valley, which has an important implication for the direct radiative effect. In the first case, during a Saharan dust

  10. Vertical separation of the atmospheric aerosol components by using poliphon retrieval in polarized micro pulse lidar (P-MPL) measurements: case studies of specific climate-relevant aerosol types

    NASA Astrophysics Data System (ADS)

    Córdoba-Jabonero, Carmen; Sicard, Michaël; Ansmann, Albert; Águila, Ana del; Baars, Holger

    2018-04-01

    POLIPHON (POlarization-LIdar PHOtometer Networking) retrieval consists in the vertical separation of two/three particle components in aerosol mixtures, highlighting their relative contributions in terms of the optical properties and mass concentrations. This method is based on the specific particle linear depolarization ratio given for different types of aerosols, and is applied to the new polarized Micro-Pulse Lidar (P-MPL). Case studies of specific climate-relevant aerosols (dust particles, fire smoke, and pollen aerosols, including a clean case as reference) observed over Barcelona (Spain) are presented in order to evaluate firstly the potential of P-MPLs measurements in combination with POLIPHON for retrieving the vertical separation of those particle components forming aerosol mixtures and their properties.

  11. Comparison of Aerosol Classification Results from Airborne High Spectral Resolution Lidar (HSRL) Measurements and the Calipso Vertical Feature Mask

    NASA Technical Reports Server (NTRS)

    Burton, S. P.; Ferrare, R. A.; Hostetler, C. A.; Hair, J. W.; Rogers, R. R.; Obland, M. D.; Butler, C. F.; Cook, A. L.; Harper, D. B.; Froyd, K. D.; hide

    2012-01-01

    Knowledge of the vertical profile, composition, concentration, and size of aerosols is required for assessing the direct impact of aerosols on radiation, the indirect effects of aerosols on clouds and precipitation, and attributing these effects to natural and anthropogenic aerosols. Because anthropogenic aerosols are predominantly submicrometer, fine mode fraction (FMF) retrievals from satellite have been used as a tool for deriving anthropogenic aerosols. Although column and profile satellite retrievals of FMF have been performed over the ocean, such retrievals have not yet been been done over land. Consequently, uncertainty in satellite estimates of the anthropogenic component of the aerosol direct radiative forcing is greatest over land, due in large part to uncertainties in the FMF. Satellite measurements have been used to detect and evaluate aerosol impacts on clouds; however, such efforts have been hampered by the difficulty in retrieving vertically-resolved cloud condensation nuclei (CCN) concentration, which is the most direct parameter linking aerosol and clouds. Recent studies have shown correlations between average satellite derived column aerosol optical thickness (AOT) and in situ measured CCN. However, these same studies, as well as others that use detailed airborne in situ measurements have noted that vertical variability of the aerosol distribution, impacts of relative humidity, and the presence of coarse mode aerosols such as dust introduce large uncertainties in such relations.

  12. Seasonal variations of aerosol optical properties, vertical distribution and associated radiative effects in the Yangtze Delta Region of China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jianjun; Zheng, Youfei; Li, Zhanqing

    2012-02-09

    Four years of columnar aerosol particle optical properties (2006 to 2009) and one year database worth of aerosol particle vertical profile of 527 nm extinction coefficient (June 2008 to May 2009) are analyzed at Taihu in the central Yangtze Delta region in eastern China. Seasonal variations of aerosol optical properties, vertical distribution, and influence on shortwave radiation and heating rates were investigated. Multiyear variations of aerosol optical depths (AOD), Angstrom exponents, single scattering albedo (SSA) and asymmetry factor (ASY) are analyzed, together with the vertical profile of aerosol extinction. AOD is largest in summer and smallest in winter. SSAs exhibitmore » weak seasonal variation with the smallest values occurring during winter and the largest during summer. The vast majority of aerosol particles are below 2 km, and about 62%, 67%, 67% and 83% are confined to below 1 km in spring, summer, autumn and winter, respectively. Five-day back trajectory analyses show that the some aerosols aloft are traced back to northern/northwestern China, as far as Mongolia and Siberia, in spring, autumn and winter. The presence of dust aerosols were identified based on the linear depolarization measurements together with other information (i.e., back trajectory, precipitation, aerosol index). Dust strongly impacts the vertical particle distribution in spring and autumn, with much smaller effects in winter. The annual mean aerosol direct shortwave radiative forcing (efficiency) at the bottom, top and within the atmosphere are -34.8 {+-} 9.1 (-54.4 {+-} 5.3), -8.2 {+-} 4.8 (-13.1 {+-} 1.5) and 26.7 {+-} 9.4 (41.3 {+-} 4.6) W/m{sup 2} (Wm{sup -2} T{sup -1}), respectively. The mean reduction in direct and diffuse radiation reaching surface amount to 109.2 {+-} 49.4 and 66.8 {+-} 33.3 W/m{sup 2}, respectively. Aerosols significantly alter the vertical profile of solar heating, with great implications for atmospheric stability and dynamics within the lower

  13. Hemispheric aerosol vertical profiles: anthropogenic impacts on optical depth and cloud nuclei.

    PubMed

    Clarke, Antony; Kapustin, Vladimir

    2010-09-17

    Understanding the effect of anthropogenic combustion upon aerosol optical depth (AOD), clouds, and their radiative forcing requires regionally representative aerosol profiles. In this work, we examine more than 1000 vertical profiles from 11 major airborne campaigns in the Pacific hemisphere and confirm that regional enhancements in aerosol light scattering, mass, and number are associated with carbon monoxide from combustion and can exceed values in unperturbed regions by more than one order of magnitude. Related regional increases in a proxy for cloud condensation nuclei (CCN) and AOD imply that direct and indirect aerosol radiative effects are coupled issues linked globally to aged combustion. These profiles constrain the influence of combustion on regional AOD and CCN suitable for challenging climate model performance and informing satellite retrievals.

  14. The Vertical Distribution of Thin Features Over the Arctic Analysed from CALIPSO Observations. Part 2; Aerosols

    NASA Technical Reports Server (NTRS)

    Devasthale, Abhya; Tjernstrom, Michael; Omar, Ali H.

    2010-01-01

    Influx of aerosols from the mid-latitudes has a wide range of impacts on the Arctic atmosphere. In this study, the capability of the CALIPSO-CALIOP instrument to provide accurate observations of aerosol layers is exploited to characterize their vertical distribution, probability density functions (PDFs) of aerosol layer thickness, base and top heights, and optical depths over the Arctic for the 4-yr period from June 2006 to May 2010. It is shown that the bulk of aerosols, from about 65% in winter to 45% in summer, are confined below the lowermost kilometer of the troposphere. In the middle troposphere (3-5 km), spring and autumn seasons show slightly higher aerosol amounts compared to other two seasons. The relative vertical distribution of aerosols shows that clean continental aerosol is the largest contributor in all seasons except in summer, when layers of polluted continental aerosols are almost as large. In winter and spring, polluted continental aerosols are the second largest contributor to the total number of observed aerosol layers, whereas clean marine aerosol is the second largest contributor in summer and autumn. The PDFs of the geometrical thickness of the observed aerosol layers peak about 400-700 m. Polluted continental and smoke aerosols, which are associated with the intrusions from mid-latitudes, have much broader distributions of optical and geometrical thicknesses, suggesting that they appear more often optically thicker and higher up in the troposphere.

  15. Measurements of Vertical Profiles of Turbulence, Temperature, Ozone, Aerosols, and BrO over Sea Ice and Tundra Snowpack during BROMEX

    NASA Astrophysics Data System (ADS)

    Shepson, P.; Caulton, D.; Cambaliza, M. L.; Dhaniyala, S.; Fuentes, J. D.; General, S.; Halfacre, J. W.; Nghiem, S. V.; Perez Perez, L.; Peterson, P. K.; Platt, U.; Pohler, D.; Pratt, K. A.; Simpson, W. R.; Stirm, B.; Walsh, S. J.; Zielcke, J.

    2012-12-01

    During the BROMEX field campaign of March 2012, we conducted measurements of boundary layer structure, ozone, BrO and aerosol, from a light, twin-engine aircraft during eleven flights originating from Barrow, AK. Flights were conducted over the sea ice in the Beaufort and Chukchi Seas, and over the tundra from Barrow to the Brooks Range, with vertical profiles covering altitudes from the surface to 3.5km in the free troposphere. Flights over the course of one month allowed a variety of sea ice conditions, including open water, nilas, first year sea ice, and frost flowers, to be examined over the Chukchi Sea. Atmospheric turbulence was measured using a calibrated turbulence probe, which will enable characterization of both the structure and turbulence of the Arctic boundary layer. Ozone was measured using a 2B UV absorption instrument. A GRIMM optical particle counter was used to measure 0.25-4 μm sized aerosol particles. The MAX-DOAS instrument enabled measurements of BrO vertical profiles. The aircraft measurements can be used to connect the surface measurements of ozone and BrO from the "Icelander" buoys, and the surface sites at Barrow, with those measured on the aircraft. Here we will discuss the spatial variability/coherence in these data. A major question that will be addressed using these data is the extent to which bromine is activated through reactions at the snowpack/ice surface versus the surface of aerosols. Here we will present a preliminary analysis of the relationships between snow/ice surface types, aerosol size-resolved number concentrations, and the vertical profiles of ozone and BrO.

  16. Characterizing the Vertical Distribution of Aerosols Over the ARM SGP Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richard Ferrare, Connor Flynn, David Turner

    This project focused on: 1) evaluating the performance of the DOE ARM SGP Raman lidar system in measuring profiles of water vapor and aerosols, and 2) the use of the Raman lidar measurements of aerosol and water vapor profiles for assessing the vertical distribution of aerosols and water vapor simulated by global transport models and examining diurnal variability of aerosols and water vapor. The highest aerosol extinction was generally observed close to the surface during the nighttime just prior to sunrise. The high values of aerosol extinction are most likely associated with increased scattering by hygroscopic aerosols, since the correspondingmore » average relative humidity values were above 70%. After sunrise, relative humidity and aerosol extinction below 500 m decreased with the growth in the daytime convective boundary layer. The largest aerosol extinction for altitudes above 1 km occurred during the early afternoon most likely as a result of the increase in relative humidity. The water vapor mixing ratio profiles generally showed smaller variations with altitude between day and night. We also compared simultaneous measurements of relative humidity, aerosol extinction, and aerosol optical thickness derived from the ARM SGP Raman lidar and in situ instruments on board a small aircraft flown routinely over the ARM SGP site. In contrast, the differences between the CARL and IAP aerosol extinction measurements are considerably larger. Aerosol extinction derived from the IAP measurements is, on average, about 30-40% less than values derived from the Raman lidar. The reasons for this difference are not clear, but may be related to the corrections for supermicron scattering and relative humidity that were applied to the IAP data. The investigators on this project helped to set up a major field mission (2003 Aerosol IOP) over the DOE ARM SGP site. One of the goals of the mission was to further evaluate the aerosol and water vapor retrievals from this lidar system

  17. Vertically resolved aerosol properties by multi wavelengths lidar measurements

    NASA Astrophysics Data System (ADS)

    Perrone, M. R.; De Tomasi, F.; Gobbi, G. P.

    2013-07-01

    A new approach is introduced to characterize the dependence on altitude of the aerosol fine mode radius (Rf) and of the fine mode contribution (η) to the aerosol optical thickness (AOT) by three-wavelength lidar measurements. The introduced approach is based on the graphical method of Gobbi et al. (2007), which was applied to AERONET spectral extinction observations and relies on the combined analysis of the Ångstrom exponent (å) and its spectral curvature Δå. Lidar measurements at 355, 532 and 1064 nm were used in this study to retrieve the vertical profiles of å and Δå and to determine the dependence on altitude of Rf and η (532 nm) from the å-Δå combined analysis. Lidar measurements were performed at the Mathematics and Physics Department of Universita' del Salento, in south eastern Italy. Aerosol from continental Europe, the Atlantic, northern Africa, and the Mediterranean Sea are often advected over south eastern Italy and as a consequence, mixed advection patterns leading to aerosol properties varying with altitude are dominant. The proposed approach was applied to eleven measurement days to demonstrate its feasibility in different aerosol load conditions. The selected-days were characterized by AOTs spanning the 0.23-0.67, 0.15-0.41, and 0.04-0.25 range at 355, 532, and 1064 nm, respectively. Lidar ratios varied within the 28-80, 30-70, and 30-55 sr range at 355, 532, and 1064 nm, respectively, for the high variability of the aerosol optical and microphysical properties. å(355 nm, 1064 nm) values retrieved from lidar measurements ranged between 0.12 and 2.5 with mean value ±1 standard deviation equal to 1.4 ± 0.5. Δå varied within the -0.10-0.87 range with mean value equal to 0.1 ± 0.4. Rf and η (532 nm) values spanning the 0.02-0.30 μm and the 0.30-0.99 range, respectively were associated to the å-Δå data points. Rf and η values showed no dependence on the altitude. 72% of the data points were in the Δå-å space delimited by the

  18. Vertically resolved aerosol properties by multi-wavelength lidar measurements

    NASA Astrophysics Data System (ADS)

    Perrone, M. R.; De Tomasi, F.; Gobbi, G. P.

    2014-02-01

    An approach based on the graphical method of Gobbi and co-authors (2007) is introduced to estimate the dependence on altitude of the aerosol fine mode radius (Rf) and of the fine mode contribution (η) to the aerosol optical thickness (AOT) from three-wavelength lidar measurements. The graphical method of Gobbi and co-authors (2007) was applied to AERONET (AErosol RObotic NETwork) spectral extinction observations and relies on the combined analysis of the Ångstrom exponent (å) and its spectral curvature Δå. Lidar measurements at 355, 532 and 1064 nm were used in this study to retrieve the vertical profiles of å and Δå and to estimate the dependence on altitude of Rf and η(532 nm) from the å-Δå combined analysis. Lidar measurements were performed at the Department of Mathematics and Physics of the Universita' del Salento, in south-eastern Italy. Aerosol from continental Europe, the Atlantic, northern Africa, and the Mediterranean Sea are often advected over south-eastern Italy and as a consequence, mixed advection patterns leading to aerosol properties varying with altitude are dominant. The proposed approach was applied to ten measurement days to demonstrate its feasibility in different aerosol load conditions. The selected days were characterized by AOTs spanning the 0.26-0.67, 0.15-0.39, and 0.04-0.27 range at 355, 532, and 1064 nm, respectively. Mean lidar ratios varied within the 31-83, 32-84, and 11-47 sr range at 355, 532, and 1064 nm, respectively, for the high variability of the aerosol optical and microphysical properties. å values calculated from lidar extinction profiles at 355 and 1064 nm ranged between 0.1 and 2.5 with a mean value ± 1 standard deviation equal to 1.3 ± 0.7. Δå varied within the -0.1-1 range with mean value equal to 0.25 ± 0.43. Rf and η(532 nm) values spanning the 0.05-0.3 μm and the 0.3-0.99 range, respectively, were associated with the å-Δå data points. Rf and η values showed no dependence on the altitude. 60

  19. Amazon boundary layer aerosol concentration sustained by vertical transport during rainfall

    DOE PAGES

    Wang, Jian; Krejci, Radovan; Giangrande, Scott; ...

    2016-10-24

    The nucleation of atmospheric vapours is an important source of new aerosol particles that can subsequently grow to form cloud condensation nuclei in the atmosphere. Most field studies of atmospheric aerosols over continents are influenced by atmospheric vapours of anthropogenic origin and, in consequence, aerosol processes in pristine, terrestrial environments remain poorly understood. The Amazon rainforest is one of the few continental regions where aerosol particles and their precursors can be studied under near-natural conditions, but the origin of small aerosol particles that grow into cloud condensation nuclei in the Amazon boundary layer remains unclear. Here we present aircraft- andmore » ground-based measurements under clean conditions during the wet season in the central Amazon basin. We find that high concentrations of small aerosol particles (with diameters of less than 50 nanometres) in the lower free troposphere are transported from the free troposphere into the boundary layer during precipitation events by strong convective downdrafts and weaker downward motions in the trailing stratiform region. Lastly, this rapid vertical transport can help to maintain the population of particles in the pristine Amazon boundary layer, and may therefore influence cloud properties and climate under natural conditions.« less

  20. Amazon boundary layer aerosol concentration sustained by vertical transport during rainfall

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Krejci, Radovan; Giangrande, Scott; Kuang, Chongai; Barbosa, Henrique M. J.; Brito, Joel; Carbone, Samara; Chi, Xuguang; Comstock, Jennifer; Ditas, Florian; Lavric, Jost; Manninen, Hanna E.; Mei, Fan; Moran-Zuloaga, Daniel; Pöhlker, Christopher; Pöhlker, Mira L.; Saturno, Jorge; Schmid, Beat; Souza, Rodrigo A. F.; Springston, Stephen R.; Tomlinson, Jason M.; Toto, Tami; Walter, David; Wimmer, Daniela; Smith, James N.; Kulmala, Markku; Machado, Luiz A. T.; Artaxo, Paulo; Andreae, Meinrat O.; Petäjä, Tuukka; Martin, Scot T.

    2016-11-01

    The nucleation of atmospheric vapours is an important source of new aerosol particles that can subsequently grow to form cloud condensation nuclei in the atmosphere. Most field studies of atmospheric aerosols over continents are influenced by atmospheric vapours of anthropogenic origin (for example, ref. 2) and, in consequence, aerosol processes in pristine, terrestrial environments remain poorly understood. The Amazon rainforest is one of the few continental regions where aerosol particles and their precursors can be studied under near-natural conditions, but the origin of small aerosol particles that grow into cloud condensation nuclei in the Amazon boundary layer remains unclear. Here we present aircraft- and ground-based measurements under clean conditions during the wet season in the central Amazon basin. We find that high concentrations of small aerosol particles (with diameters of less than 50 nanometres) in the lower free troposphere are transported from the free troposphere into the boundary layer during precipitation events by strong convective downdrafts and weaker downward motions in the trailing stratiform region. This rapid vertical transport can help to maintain the population of particles in the pristine Amazon boundary layer, and may therefore influence cloud properties and climate under natural conditions.

  1. Amazon boundary layer aerosol concentration sustained by vertical transport during rainfall.

    PubMed

    Wang, Jian; Krejci, Radovan; Giangrande, Scott; Kuang, Chongai; Barbosa, Henrique M J; Brito, Joel; Carbone, Samara; Chi, Xuguang; Comstock, Jennifer; Ditas, Florian; Lavric, Jost; Manninen, Hanna E; Mei, Fan; Moran-Zuloaga, Daniel; Pöhlker, Christopher; Pöhlker, Mira L; Saturno, Jorge; Schmid, Beat; Souza, Rodrigo A F; Springston, Stephen R; Tomlinson, Jason M; Toto, Tami; Walter, David; Wimmer, Daniela; Smith, James N; Kulmala, Markku; Machado, Luiz A T; Artaxo, Paulo; Andreae, Meinrat O; Petäjä, Tuukka; Martin, Scot T

    2016-11-17

    The nucleation of atmospheric vapours is an important source of new aerosol particles that can subsequently grow to form cloud condensation nuclei in the atmosphere. Most field studies of atmospheric aerosols over continents are influenced by atmospheric vapours of anthropogenic origin (for example, ref. 2) and, in consequence, aerosol processes in pristine, terrestrial environments remain poorly understood. The Amazon rainforest is one of the few continental regions where aerosol particles and their precursors can be studied under near-natural conditions, but the origin of small aerosol particles that grow into cloud condensation nuclei in the Amazon boundary layer remains unclear. Here we present aircraft- and ground-based measurements under clean conditions during the wet season in the central Amazon basin. We find that high concentrations of small aerosol particles (with diameters of less than 50 nanometres) in the lower free troposphere are transported from the free troposphere into the boundary layer during precipitation events by strong convective downdrafts and weaker downward motions in the trailing stratiform region. This rapid vertical transport can help to maintain the population of particles in the pristine Amazon boundary layer, and may therefore influence cloud properties and climate under natural conditions.

  2. Small-scale Scheimpflug lidar for aerosol extinction coefficient and vertical atmospheric transmittance detection.

    PubMed

    Sun, Guodong; Qin, Laian; Hou, Zaihong; Jing, Xu; He, Feng; Tan, Fengfu; Zhang, Silong

    2018-03-19

    In this paper, a new prototypical Scheimpflug lidar capable of detecting the aerosol extinction coefficient and vertical atmospheric transmittance at 1 km above the ground is described. The lidar system operates at 532 nm and can be used to detect aerosol extinction coefficients throughout an entire day. Then, the vertical atmospheric transmittance can be determined from the extinction coefficients with the equation of numerical integration in this area. CCD flat fielding of the image data is used to mitigate the effects of pixel sensitivity variation. An efficient method of two-dimensional wavelet transform according to a local threshold value has been proposed to reduce the Gaussian white noise in the lidar signal. Furthermore, a new iteration method of backscattering ratio based on genetic algorithm is presented to calculate the aerosol extinction coefficient and vertical atmospheric transmittance. Some simulations are performed to reduce the different levels of noise in the simulated signal in order to test the precision of the de-noising method and inversion algorithm. The simulation result shows that the root-mean-square errors of extinction coefficients are all less than 0.02 km -1 , and that the relative errors of the atmospheric transmittance between the model and inversion data are below 0.56% for all cases. The feasibility of the instrument and the inversion algorithm have also been verified by an optical experiment. The average relative errors of aerosol extinction coefficients between the Scheimpflug lidar and the conventional backscattering elastic lidar are 3.54% and 2.79% in the full overlap heights of two time points, respectively. This work opens up new possibilities of using a small-scale Scheimpflug lidar system for the remote sensing of atmospheric aerosols.

  3. Vertical distribution of aerosols in the vicinity of Mexico City during MILAGRO-2006 Campaign

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewandowski, P.A.; Kleinman, L.; Eichinger, W. E.

    On 7 March 2006, a mobile, ground-based, vertical pointing, elastic lidar system made a North-South transect through the Mexico City basin. Column averaged, aerosol size distribution (ASD) measurements were made on the ground concurrently with the lidar measurements. The ASD ground measurements allowed calculation of the column averaged mass extinction efficiency (MEE) for the lidar system (1064 nm). The value of column averaged MEE was combined with spatially resolved lidar extinction coefficients to produce total aerosol mass concentration estimates with the resolution of the lidar (1.5 m vertical spatial and 1 s temporal). Airborne ASD measurements from DOE G-1 aircraftmore » made later in the day on 7 March 2006, allowed the evaluation of the assumptions of constant ASD with height and time used for estimating the column averaged MEE. The results showed that the aerosol loading within the basin is about twice what is observed outside of the basin. The total aerosol base concentrations observed in the basin are of the order of 200 {mu}g/m{sup 3} and the base levels outside are of the order of 100 {mu}g/m{sup 3}. The local heavy traffic events can introduce aerosol levels near the ground as high as 900 {mu}g/m{sup 3}. The article presents the methodology for estimating aerosol mass concentration from mobile, ground-based lidar measurements in combination with aerosol size distribution measurements. An uncertainty analysis of the methodology is also presented.« less

  4. What Controls the Vertical Distribution of Aerosol? Relationships Between Process Sensitivity in HadGEM3-UKCA and Inter-Model Variation from AeroCom Phase II

    NASA Technical Reports Server (NTRS)

    Kipling, Zak; Stier, Philip; Johnson, Colin E.; Mann, Graham W.; Bellouin, Nicolas; Bauer, Susanne E.; Bergman, Tommi; Chin, Mian; Diehl, Thomas; Ghan, Steven J.; hide

    2016-01-01

    The vertical profile of aerosol is important for its radiative effects, but weakly constrained by observations on the global scale, and highly variable among different models. To investigate the controlling factors in one particular model, we investigate the effects of individual processes in HadGEM3-UKCA and compare the resulting diversity of aerosol vertical profiles with the inter-model diversity from the AeroCom Phase II control experiment. In this way we show that (in this model at least) the vertical profile is controlled by a relatively small number of processes, although these vary among aerosol components and particle sizes. We also show that sufficiently coarse variations in these processes can produce a similar diversity to that among different models in terms of the global-mean profile and, to a lesser extent, the zonal-mean vertical position. However, there are features of certain models' profiles that cannot be reproduced, suggesting the influence of further structural differences between models. In HadGEM3-UKCA, convective transport is found to be very important in controlling the vertical profile of all aerosol components by mass. In-cloud scavenging is very important for all except mineral dust. Growth by condensation is important for sulfate and carbonaceous aerosol (along with aqueous oxidation for the former and ageing by soluble material for the latter). The vertical extent of biomass-burning emissions into the free troposphere is also important for the profile of carbonaceous aerosol. Boundary-layer mixing plays a dominant role for sea salt and mineral dust, which are emitted only from the surface. Dry deposition and below-cloud scavenging are important for the profile of mineral dust only. In this model, the microphysical processes of nucleation, condensation and coagulation dominate the vertical profile of the smallest particles by number (e.g. total CN >3 nm), while the profiles of larger particles (e.g. CN>100 nm) are controlled by the

  5. Vertical profiles of aerosol and black carbon in the Arctic: a seasonal phenomenology along 2 years (2011-2012) of field campaigns

    NASA Astrophysics Data System (ADS)

    Ferrero, Luca; Cappelletti, David; Busetto, Maurizio; Mazzola, Mauro; Lupi, Angelo; Lanconelli, Christian; Becagli, Silvia; Traversi, Rita; Caiazzo, Laura; Giardi, Fabio; Moroni, Beatrice; Crocchianti, Stefano; Fierz, Martin; Močnik, Griša; Sangiorgi, Giorgia; Perrone, Maria G.; Maturilli, Marion; Vitale, Vito; Udisti, Roberto; Bolzacchini, Ezio

    2016-10-01

    We present results from a systematic study of vertical profiles of aerosol number size distribution and black carbon (BC) concentrations conducted in the Arctic, over Ny-Ålesund (Svalbard). The campaign lasted 2 years (2011-2012) and resulted in 200 vertical profiles measured by means of a tethered balloon (up to 1200 m a.g.l.) during the spring and summer seasons. In addition, chemical analysis of filter samples, aerosol size distribution and a full set of meteorological parameters were determined at ground. The collected experimental data allowed a classification of the vertical profiles into different typologies, which allowed us to describe the seasonal phenomenology of vertical aerosol properties in the Arctic. During spring, four main types of profiles were found and their behavior was related to the main aerosol and atmospheric dynamics occurring at the measuring site. Background conditions generated homogenous profiles. Transport events caused an increase of aerosol concentration with altitude. High Arctic haze pollution trapped below thermal inversions promoted a decrease of aerosol concentration with altitude. Finally, ground-based plumes of locally formed secondary aerosol determined profiles with decreasing aerosol concentration located at different altitude as a function of size. During the summer season, the impact from shipping caused aerosol and BC pollution plumes to be constrained close to the ground, indicating that increasing shipping emissions in the Arctic could bring anthropogenic aerosol and BC in the Arctic summer, affecting the climate.

  6. Improving aerosol vertical retrieval for NWP application: Studying the impact of IR-sensed aerosol on data assimilation systems.

    NASA Astrophysics Data System (ADS)

    Oyola, Mayra; Marquis, Jared; Ruston, Benjamin; Campbell, James; Baker, Nancy; Westphal, Douglas; Zhang, Jianglong; Hyer, Edward

    2017-04-01

    Radiometric measurements from passive infrared (IR) sensors are important in numerical weather prediction (NWP) because they are sensitive to surface temperatures and atmospheric temperature profiles. However, these measurements are also sensitive to absorbing and scattering constituents in the atmosphere. Dust aerosols absorb in the IR and are found over many global regions with irregular spatial and temporal frequency. Retrievals of temperature using IR data are thus vulnerable to dust-IR radiance biases, most notably over tropical oceans where accurate surface and atmospheric temperatures are critical to accurate prediction of tropical cyclone development. Previous studies have shown that dust aerosols can bias retrieved brightness temperatures (BT) by up to 10K in some IR channels that are assimilated to constrain atmospheric temperature and water vapor profiles. Other BT-derived parameters such as sea surface temperatures (SSTs) are susceptible to negative biases of at least 1K or higher, which conflicts with the accuracy requirement for most research and operational applications (i.e., +/- 0.3 K). This problem is not limited to just satellite retrievals. BT bias also impacts the incorporation of background fields from NWP analyses in data assimilation (DA) systems. The effect of aerosols on IR fluxes at the ocean surface is a function of both aerosol loading and vertical profile. Therefore, knowledge of the aerosol vertical distribution, and understanding of how well this distribution is captured by NWP models, is necessary to ensuring proper treatment of aerosol-affected radiances in both retrieval and data assimilation. This understanding can be achieved by conducting modeling studies and by the exploitation of a robust observational dataset, such as satellite-based lidar profiling, which can be used to characterize aerosol type and distribution. In this talk, we describe such an application using the Navy Aerosol Analysis Prediction System (NAAPS) and

  7. Vertical Profiles of Aerosol Optical Properties Over Central Illinois and Comparison with Surface and Satellite Measurements

    NASA Technical Reports Server (NTRS)

    Sheridan P. J.; Andrews, E.; Ogren, J A.; Tackett, J. L.; Winker, D. M.

    2012-01-01

    Between June 2006 and September 2009, an instrumented light aircraft measured over 400 vertical profiles of aerosol and trace gas properties over eastern and central Illinois. The primary objectives of this program were to (1) measure the in situ aerosol properties and determine their vertical and temporal variability and (2) relate these aircraft measurements to concurrent surface and satellite measurements. Underflights of the CALIPSO satellite show reasonable agreement in a majority of retrieved profiles between aircraft-measured extinction at 532 nm (adjusted to ambient relative humidity) and CALIPSO-retrieved extinction, and suggest that routine aircraft profiling programs can be used to better understand and validate satellite retrieval algorithms. CALIPSO tended to overestimate the aerosol extinction at this location in some boundary layer flight segments when scattered or broken clouds were present, which could be related to problems with CALIPSO cloud screening methods. The in situ aircraft-collected aerosol data suggest extinction thresholds for the likelihood of aerosol layers being detected by the CALIOP lidar. These statistical data offer guidance as to the likelihood of CALIPSO's ability to retrieve aerosol extinction at various locations around the globe.

  8. Characterizing the Vertical Distribution of Aerosols using Ground-based Multiwavelength Lidar Data

    NASA Astrophysics Data System (ADS)

    Ferrare, R. A.; Thorsen, T. J.; Clayton, M.; Mueller, D.; Chemyakin, E.; Burton, S. P.; Goldsmith, J.; Holz, R.; Kuehn, R.; Eloranta, E. W.; Marais, W.; Newsom, R. K.; Liu, X.; Sawamura, P.; Holben, B. N.; Hostetler, C. A.

    2016-12-01

    Observations of aerosol optical and microphysical properties are critical for developing and evaluating aerosol transport model parameterizations and assessing global aerosol-radiation impacts on climate. During the Combined HSRL And Raman lidar Measurement Study (CHARMS), we investigated the synergistic use of ground-based Raman lidar and High Spectral Resolution Lidar (HSRL) measurements to retrieve aerosol properties aloft. Continuous (24/7) operation of these co-located lidars during the ten-week CHARMS mission (mid-July through September 2015) allowed the acquisition of a unique, multiwavelength ground-based lidar dataset for studying aerosol properties above the Southern Great Plains (SGP) site. The ARM Raman lidar measured profiles of aerosol backscatter, extinction and depolarization at 355 nm as well as profiles of water vapor mixing ratio and temperature. The University of Wisconsin HSRL simultaneously measured profiles of aerosol backscatter, extinction and depolarization at 532 nm and aerosol backscatter at 1064 nm. Recent advances in both lidar retrieval theory and algorithm development demonstrate that vertically-resolved retrievals using such multiwavelength lidar measurements of aerosol backscatter and extinction can help constrain both the aerosol optical (e.g. complex refractive index, scattering, etc.) and microphysical properties (e.g. effective radius, concentrations) as well as provide qualitative aerosol classification. Based on this work, the NASA Langley Research Center (LaRC) HSRL group developed automated algorithms for classifying and retrieving aerosol optical and microphysical properties, demonstrated these retrievals using data from the unique NASA/LaRC airborne multiwavelength HSRL-2 system, and validated the results using coincident airborne in situ data. We apply these algorithms to the CHARMS multiwavelength (Raman+HSRL) lidar dataset to retrieve aerosol properties above the SGP site. We present some profiles of aerosol effective

  9. Polarimetric method of estimation of vertical aerosol distribution in application to observations of ozone and NO2

    NASA Technical Reports Server (NTRS)

    Elansky, Nikolay F.; Kadyshevich, Elena A.; Savastyuk, Vladimir V.

    1994-01-01

    The degree of polarization of skylight at the zenith during twilight depends on the aerosol content in the atmosphere. The long-term observations at the high-mountain research station 'Kislovodsk' (North Caucasus) have shown that the variation of the degree of polarization after the eruption of the El Chichon volcano can serve as the effective parameter characterizing the vertical aerosol stratification in the atmosphere. The results of the measurements are confirmed by the numerical calculations. The algorithm of the retrieval of the vertical aerosol distribution on the base of the measurements of the degree of polarization is proposed. This method can be applied for the increasing of the precision of O3, NO2, and other gas content measurements.

  10. Vertical distribution of aerosol extinction cross section and inference of aerosol imaginary index in the troposphere by lidar technique

    NASA Technical Reports Server (NTRS)

    Spinhirne, J. D.; Reagan, J. A.; Herman, B. M.

    1980-01-01

    The paper reports on vertical profiles of aerosol extinction and backscatter in the troposphere which were obtained from multi zenith angle lidar measurements. It is reported that a direct slant path solution was found to be not possible due to horizontal inhomogeneity of the atmosphere. Attention is given to the use of a regression analysis with respect to zenith angle for a layer integration of the angle dependent lidar equation in order to determine the optical thickness and aerosol extinction-to-backscatter ratio for defined atmospheric layers and the subsequent evaluation of cross-section profiles.

  11. Wintertime characteristics of aerosols over middle Indo-Gangetic Plain: Vertical profile, transport and radiative forcing

    NASA Astrophysics Data System (ADS)

    Kumar, M.; Raju, M. P.; Singh, R. K.; Singh, A. K.; Singh, R. S.; Banerjee, T.

    2017-01-01

    Winter-specific characteristics of airborne particulates over middle Indo-Gangetic Plain (IGP) were evaluated in terms of aerosol chemical and micro-physical properties under three-dimensional domain. Emphases were made for the first time to identify intra-seasonal variations of aerosols sources, horizontal and vertical transport, effects of regional meteorology and estimating composite aerosol short-wave radiative forcing over an urban region (25°10‧-25°19‧N; 82°54‧-83°4‧E) at middle-IGP. Space-borne passive (Aqua and Terra MODIS, Aura OMI) and active sensor (CALIPSO-CALIOP) based observations were concurrently used with ground based aerosol mass measurement for entire winter and pre-summer months (December, 1, 2014 to March, 31, 2015). Exceptionally high aerosol mass loading was recorded for both PM10 (267.6 ± 107.0 μg m- 3) and PM2.5 (150.2 ± 89.4 μg m- 3) typically exceeding national standard. Aerosol type was mostly dominated by fine particulates (particulate ratio: 0.61) during pre to mid-winter episodes before being converted to mixed aerosol types (ratio: 0.41-0.53). Time series analysis of aerosols mass typically identified three dissimilar aerosol loading episodes with varying attributes, well resemble to that of previous year's observation representing its persisting nature. Black carbon (9.4 ± 3.7 μg m- 3) was found to constitute significant proportion of fine particulates (2-27%) with a strong diurnal profile. Secondary inorganic ions also accounted a fraction of particulates (PM2.5: 22.5%; PM10: 26.9%) having SO4- 2, NO3- and NH4+ constituting major proportion. Satellite retrieved MODIS-AOD (0.01-2.30) and fine mode fractions (FMF: 0.01-1.00) identified intra-seasonal variation with transport of aerosols from upper to middle-IGP through continental westerly. Varying statistical association of columnar and surface aerosol loading both in terms of fine (r; PM2.5: MODIS-AOD: 0.51) and coarse particulates (PM10: MODIS-AOD: 0.53) was

  12. Vertical dependence of black carbon, sulphate and biomass burning aerosol radiative forcing

    NASA Astrophysics Data System (ADS)

    Samset, Bjørn H.; Myhre, Gunnar

    2011-12-01

    A global radiative transfer model is used to calculate the vertical profile of shortwave radiative forcing from a prescribed amount of aerosols. We study black carbon (BC), sulphate (SO4) and a black and organic carbon mixture typical of biomass burning (BIO), by prescribing aerosol burdens in layers between 1000 hPa and 20 hPa and calculating the resulting direct radiative forcing divided by the burden (NDRF). We find a strong sensitivity in the NDRF for BC with altitude, with a tenfold increase between BC close to the surface and the lower part of the stratosphere. Clouds are a major contributor to this dependence with altitude, but other factors also contribute. We break down and explain the different physical contributors to this strong sensitivity. The results show a modest regional dependence of the altitudinal dependence of BC NDRF between industrial regions, while for regions with properties deviating from the global mean NDRF variability is significant. Variations due to seasons and interannual changes in cloud conditions are found to be small. We explore the effect that large altitudinal variation in NDRF may have on model estimates of BC radiative forcing when vertical aerosol distributions are insufficiently constrained, and discuss possible applications of the present results for reducing inter-model differences.

  13. Vertical profiles of aerosol absorption coefficient from micro-Aethalometer data and Mie calculation over Milan.

    PubMed

    Ferrero, L; Mocnik, G; Ferrini, B S; Perrone, M G; Sangiorgi, G; Bolzacchini, E

    2011-06-15

    Vertical profiles of aerosol number-size distribution and black carbon (BC) concentration were measured between ground-level and 500m AGL over Milan. A tethered balloon was fitted with an instrumentation package consisting of the newly-developed micro-Aethalometer (microAeth® Model AE51, Magee Scientific, USA), an optical particle counter, and a portable meteorological station. At the same time, PM(2.5) samples were collected both at ground-level and at a high altitude sampling site, enabling particle chemical composition to be determined. Vertical profiles and PM(2.5) data were collected both within and above the mixing layer. Absorption coefficient (b(abs)) profiles were calculated from the Aethalometer data: in order to do so, an optical enhancement factor (C), accounting for multiple light-scattering within the filter of the new microAeth® Model AE51, was determined for the first time. The value of this parameter C (2.05±0.03 at λ=880nm) was calculated by comparing the Aethalometer attenuation coefficient and aerosol optical properties determined from OPC data along vertical profiles. Mie calculations were applied to the OPC number-size distribution data, and the aerosol refractive index was calculated using the effective medium approximation applied to aerosol chemical composition. The results compare well with AERONET data. The BC and b(abs) profiles showed a sharp decrease at the mixing height (MH), and fairly constant values of b(abs) and BC were found above the MH, representing 17±2% of those values measured within the mixing layer. The BC fraction of aerosol volume was found to be lower above the MH: 48±8% of the corresponding ground-level values. A statistical mean profile was calculated, both for BC and b(abs), to better describe their behaviour; the model enabled us to compute their average behaviour as a function of height, thus laying the foundations for valid parametrizations of vertical profile data which can be useful in both remote sensing

  14. Seasonal variability of aerosol vertical profiles over east US and west Europe: GEOS-Chem/APM simulation and comparison with CALIPSO observations

    NASA Astrophysics Data System (ADS)

    Ma, Xiaoyan; Yu, Fangqun

    2014-04-01

    In this study, we employed 5 years (2007-2011) of the CALIPSO level-3 monthly aerosol extinction product to compare with the GEOS-Chem/APM simulations for the same time period over two major industrial regions (east US and west Europe). The objective is to understand which aerosol types or species significantly determine the vertical profiles by comparing the seasonal variability between the simulations and observations. Our study shows that the model successfully produces the magnitude of aerosol extinction, profile shape, and their seasonal variability observed by CALIPSO over both east US (EUS) and west Europe (WEU). The extinctions below 1 km make up 44-79% to the total, from either the model simulations or satellite retrievals, with larger percentages in winter seasons (62-79%) and smaller percentages in summer seasons (44-57%) associated with the strength of vertical transport. The shape of the vertical profiles has, therefore, a distinct seasonal variability, with a more like quasi-exponential shape in DJF (December, January, and February) and SON (September, October, and November) than in MAM (March, April, and May) and JJA (June, July, and August), which have been discerned from both measurements and simulations. Analysis of modeled aerosol species indicates that secondary particles (SP), containing sulfate, ammonia, nitrate, and secondary organic aerosols (SOAs), predominantly determine the total aerosol vertical profiles while black carbon (BC), primary organic carbon (OC), and sea salt (SS), only account for a small fraction and are also limited near the surface. Mineral dust (DS) contributes more to the total extinction over WEU than over EUS, particularly in MAM, a result of being adjacent to the North Africa desert. Secondary inorganic aerosol (SIA, i.e. sulfate, ammonia, and nitrate) contributes most of the total SP mass in DJF and SON while SOA is particularly important in MAM and JJA when the emissions from leafed plants are active. Our study also

  15. What controls the vertical distribution of aerosol? Relationships between process sensitivity in HadGEM3–UKCA and inter-model variation from AeroCom Phase II

    DOE PAGES

    Kipling, Zak; Stier, Philip; Johnson, Colin E.; ...

    2016-02-26

    The vertical profile of aerosol is important for its radiative effects, but weakly constrained by observations on the global scale, and highly variable among different models. To investigate the controlling factors in one particular model, we investigate the effects of individual processes in HadGEM3–UKCA and compare the resulting diversity of aerosol vertical profiles with the inter-model diversity from the AeroCom Phase II control experiment. In this way we show that (in this model at least) the vertical profile is controlled by a relatively small number of processes, although these vary among aerosol components and particle sizes. We also show that sufficientlymore » coarse variations in these processes can produce a similar diversity to that among different models in terms of the global-mean profile and, to a lesser extent, the zonal-mean vertical position. However, there are features of certain models' profiles that cannot be reproduced, suggesting the influence of further structural differences between models. In HadGEM3–UKCA, convective transport is found to be very important in controlling the vertical profile of all aerosol components by mass. In-cloud scavenging is very important for all except mineral dust. Growth by condensation is important for sulfate and carbonaceous aerosol (along with aqueous oxidation for the former and ageing by soluble material for the latter). The vertical extent of biomass-burning emissions into the free troposphere is also important for the profile of carbonaceous aerosol. Boundary-layer mixing plays a dominant role for sea salt and mineral dust, which are emitted only from the surface. Dry deposition and below-cloud scavenging are important for the profile of mineral dust only. In this model, the microphysical processes of nucleation, condensation and coagulation dominate the vertical profile of the smallest particles by number (e.g. total CN > 3 nm), while the profiles of larger particles (e.g. CN > 100 nm) are

  16. Climate Impacts of CALIPSO-Guided Corrections to Black Carbon Aerosol Vertical Distributions in a Global Climate Model

    NASA Astrophysics Data System (ADS)

    Kovilakam, Mahesh; Mahajan, Salil; Saravanan, R.; Chang, Ping

    2017-10-01

    We alleviate the bias in the tropospheric vertical distribution of black carbon aerosols (BC) in the Community Atmosphere Model (CAM4) using the Cloud-Aerosol and Infrared Pathfinder Satellite Observations (CALIPSO)-derived vertical profiles. A suite of sensitivity experiments are conducted with 1x, 5x, and 10x the present-day model estimated BC concentration climatology, with (corrected, CC) and without (uncorrected, UC) CALIPSO-corrected BC vertical distribution. The globally averaged top of the atmosphere radiative flux perturbation of CC experiments is ˜8-50% smaller compared to uncorrected (UC) BC experiments largely due to an increase in low-level clouds. The global average surface temperature increases, the global average precipitation decreases, and the ITCZ moves northward with the increase in BC radiative forcing, irrespective of the vertical distribution of BC. Further, tropical expansion metrics for the poleward extent of the Northern Hemisphere Hadley cell (HC) indicate that simulated HC expansion is not sensitive to existing model biases in BC vertical distribution.

  17. Characteristics of aerosol vertical profiles in Tsukuba, Japan, and their impacts on the evolution of the atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Kudo, Rei; Aoyagi, Toshinori; Nishizawa, Tomoaki

    2018-05-01

    Vertical profiles of the aerosol physical and optical properties, with a focus on seasonal means and on transport events, were investigated in Tsukuba, Japan, by a synergistic remote sensing method that uses lidar and sky radiometer data. The retrieved aerosol vertical profiles of the springtime mean and five transport events were input to our developed one-dimensional atmospheric model, and the impacts of the aerosol vertical profiles on the evolution of the atmospheric boundary layer (ABL) were studied by numerical sensitivity experiments. The characteristics of the aerosol vertical profiles in Tsukuba are as follows: (1) the retrieval results in the spring showed that aerosol optical thickness at 532 nm in the free atmosphere (FA) was 0.13, greater than 0.08 in the ABL owing to the frequent occurrence of transported aerosols in the FA. In other seasons, optical thickness in the FA was almost the same as that in the ABL. (2) The aerosol optical and physical properties in the ABL showed a dependency on the extinction coefficient. With an increase in the extinction coefficient from 0.00 to 0.24 km-1, the Ångström exponent increased from 0.0 to 2.0, the single-scattering albedo increased from 0.87 to 0.99, and the asymmetry factor decreased from 0.75 to 0.50. (3) The large variability in the physical and optical properties of aerosols in the FA were attributed to transport events, during which the transported aerosols consisted of varying amounts of dust and smoke particles depending on where they originated (China, Mongolia, or Russia). The results of the numerical sensitivity experiments using the aerosol vertical profiles of the springtime mean and five transport events in the FA are as follows: (1) numerical sensitivity experiments based on simulations conducted with and without aerosols showed that aerosols caused the net downward radiation and the sensible and latent heat fluxes at the surface to decrease. The decrease in temperature in the ABL (-0.2 to -0

  18. Results of a comprehensive atmospheric aerosol-radiation experiment in the southwestern United States. I - Size distribution, extinction optical depth and vertical profiles of aerosols suspended in the atmosphere. II - Radiation flux measurements and

    NASA Technical Reports Server (NTRS)

    Deluisi, J. J.; Furukawa, F. M.; Gillette, D. A.; Schuster, B. G.; Charlson, R. J.; Porch, W. M.; Fegley, R. W.; Herman, B. M.; Rabinoff, R. A.; Twitty, J. T.

    1976-01-01

    Results are reported for a field test that was aimed at acquiring a sufficient set of measurements of aerosol properties required as input for radiative-transfer calculations relevant to the earth's radiation balance. These measurements include aerosol extinction and size distributions, vertical profiles of aerosols, and radiation fluxes. Physically consistent, vertically inhomogeneous models of the aerosol characteristics of a turbid atmosphere over a desert and an agricultural region are constructed by using direct and indirect sampling techniques. These results are applied for a theoretical interpretation of airborne radiation-flux measurements. The absorption term of the complex refractive index of aerosols is estimated, a regional variation in the refractive index is noted, and the magnitude of solar-radiation absorption by aerosols and atmospheric molecules is determined.

  19. Climate Impacts of CALIPSO-Guided Corrections to Black Carbon Aerosol Vertical Distributions in a Global Climate Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kovilakam, Mahesh; Mahajan, Salil; Saravanan, R.

    Here, we alleviate the bias in the tropospheric vertical distribution of black carbon aerosols (BC) in the Community Atmosphere Model (CAM4) using the Cloud-Aerosol and Infrared Pathfinder Satellite Observations (CALIPSO)-derived vertical profiles. A suite of sensitivity experiments are conducted with 1x, 5x, and 10x the present-day model estimated BC concentration climatology, with (corrected, CC) and without (uncorrected, UC) CALIPSO-corrected BC vertical distribution. The globally averaged top of the atmosphere radiative flux perturbation of CC experiments is ~8–50% smaller compared to uncorrected (UC) BC experiments largely due to an increase in low-level clouds. The global average surface temperature increases, the globalmore » average precipitation decreases, and the ITCZ moves northward with the increase in BC radiative forcing, irrespective of the vertical distribution of BC. Further, tropical expansion metrics for the poleward extent of the Northern Hemisphere Hadley cell (HC) indicate that simulated HC expansion is not sensitive to existing model biases in BC vertical distribution.« less

  20. Climate Impacts of CALIPSO-Guided Corrections to Black Carbon Aerosol Vertical Distributions in a Global Climate Model

    DOE PAGES

    Kovilakam, Mahesh; Mahajan, Salil; Saravanan, R.; ...

    2017-09-13

    Here, we alleviate the bias in the tropospheric vertical distribution of black carbon aerosols (BC) in the Community Atmosphere Model (CAM4) using the Cloud-Aerosol and Infrared Pathfinder Satellite Observations (CALIPSO)-derived vertical profiles. A suite of sensitivity experiments are conducted with 1x, 5x, and 10x the present-day model estimated BC concentration climatology, with (corrected, CC) and without (uncorrected, UC) CALIPSO-corrected BC vertical distribution. The globally averaged top of the atmosphere radiative flux perturbation of CC experiments is ~8–50% smaller compared to uncorrected (UC) BC experiments largely due to an increase in low-level clouds. The global average surface temperature increases, the globalmore » average precipitation decreases, and the ITCZ moves northward with the increase in BC radiative forcing, irrespective of the vertical distribution of BC. Further, tropical expansion metrics for the poleward extent of the Northern Hemisphere Hadley cell (HC) indicate that simulated HC expansion is not sensitive to existing model biases in BC vertical distribution.« less

  1. Measurement of the Vertical Distribution of Aerosol by Globally Distributed MP Lidar Network Sites

    NASA Technical Reports Server (NTRS)

    Spinhirne, James; Welton, Judd; Campbell, James; Starr, David OC. (Technical Monitor)

    2001-01-01

    The global distribution of aerosol has an important influence on climate through the scattering and absorption of shortwave radiation and through modification of cloud optical properties. Current satellite and other data already provide a great amount of information on aerosol distribution. However there are critical parameters that can only be obtained by active optical profiling. For aerosol, no passive technique can adequately resolve the height profile of aerosol. The aerosol height distribution is required for any model for aerosol transport and the height resolved radiative heating/cooling effect of aerosol. The Geoscience Laser Altimeter System (GLAS) is an orbital lidar to be launched by 2002. GLAS will provide global measurements of the height distribution of aerosol. The sampling will be limited by nadir only coverage. There is a need for local sites to address sampling, and accuracy factors. Full time measurements of the vertical distribution of aerosol are now being acquired at a number of globally distributed MP (micro pulse) lidar sites. The MP lidar systems provide profiling of all significant cloud and aerosol to the limit of signal attenuation from compact, eye safe instruments. There are currently six sites in operation and over a dozen planned. At all sites there are a complement of passive aerosol and radiation measurements supporting the lidar data. Four of the installations are at Atmospheric Radiation Measurement program sites. The aerosol measurements, retrievals and data products from the network sites will be discussed. The current and planned application of data to supplement satellite aerosol measurements is covered.

  2. Vertical distribution of aerosols over the Maritime Continent during El Niño

    NASA Astrophysics Data System (ADS)

    Blake Cohen, Jason; Loong Ng, Daniel Hui; Lun Lim, Alan Wei; Chua, Xin Rong

    2018-05-01

    The vertical distribution of aerosols over Southeast Asia, a critical factor impacting aerosol lifetime, radiative forcing, and precipitation, is examined for the 2006 post El Niño fire burning season. Combining these measurements with remotely sensed land, fire, and meteorological measurements, and fire plume modeling, we have reconfirmed that fire radiative power (FRP) is underestimated over Southeast Asia by MODIS measurements. These results are derived using a significantly different approach from other previously attempted approaches found in the literature. The horizontally constrained Maritime Continent's fire plume median height, using the maximum variance of satellite observed aerosol optical depth as the spatial and temporal constraint, is found to be 2.04 ± 1.52 km during the entirety of the 2006 El Niño fire season, and 2.19±1.50 km for October 2006. This is 0.83 km (0.98 km) higher than random sampling and all other past studies. Additionally, it is determined that 61 (+6-10) % of the bottom of the smoke plume and 83 (+8-11) % of the median of the smoke plume is in the free troposphere during the October maximum; while 49 (+7-9) % and 75 (+12-12) % of the total aerosol plume and the median of the aerosol plume, are correspondingly found in the free troposphere during the entire fire season. This vastly different vertical distribution will have impacts on aerosol lifetime and dispersal. Application of a simple plume rise model using measurements of fire properties underestimates the median plume height by 0.26 km over the entire fire season and 0.34 km over the maximum fire period. It is noted that the model underestimation over the bottom portions of the plume are much larger. The center of the plume can be reproduced when fire radiative power is increased by 20 % (with other parts of the plume ranging from an increase of 0 to 60 % depending on the portion of the plume and the length of the fire season considered). However, to reduce the biases

  3. Estimation of surface-level PM concentration from satellite observation taking into account the aerosol vertical profiles and hygroscopicity.

    PubMed

    Kim, Kwanchul; Lee, Kwon H; Kim, Ji I; Noh, Youngmin; Shin, Dong H; Shin, Sung K; Lee, Dasom; Kim, Jhoon; Kim, Young J; Song, Chul H

    2016-01-01

    Surface-level PM10 distribution was estimated from the satellite aerosol optical depth (AOD) products, taking the account of vertical profiles and hygroscopicity of aerosols over Jeju, Korea during March 2008 and October 2009. In this study, MODIS AOD data from the Terra and Aqua satellites were corrected with aerosol extinction profiles and relative humidity data. PBLH (Planetary Boundary Layer Height) was determined from MPLNET lidar-derived aerosol extinction coefficient profiles. Through statistical analysis, better agreement in correlation (R = 0.82) between the hourly PM10 concentration and hourly average Sunphotometer AOD was the obtained when vertical fraction method (VFM) considering Haze Layer Height (HLH) and hygroscopic growth factor f(RH) was used. The validity of the derived relationship between satellite AOD and surface PM10 concentration clearly demonstrates that satellite AOD data can be utilized for remote sensing of spatial distribution of regional PM10 concentration. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Model of the vertical structure of the optical parameters of the Neptune atmosphere.

    NASA Astrophysics Data System (ADS)

    Morozhenko, A. V.

    Analyzes the wavelength dependence of the geometric albedo of Neptune's disk and estimates some parameters of the planet's atmosphere by the method based on the determination of deviations of the vertical structure of the cloud layer from the homogeneity condition. The ratio between the methane and gas scale heights is found to be about 0.4. For the upper atmosphere, components of methane, aerosol, the mean geometric radius of particles, the turbulent mixing coefficient are determined. Two solutions were found for deeper atmospheric layers. The first one suggests a rather dense cloud; in the second solution the lower cloud layer is an extension of the upper aerosol layer.

  5. Sensitivity of multiangle photo-polarimetry to absorbing aerosol vertical layering and properties: Quantifying measurement uncertainties for ACE requirements

    NASA Astrophysics Data System (ADS)

    Kalashnikova, O. V.; Garay, M. J.; Davis, A. B.; Natraj, V.; Diner, D. J.; Tanelli, S.; Martonchik, J. V.; JPl Team

    2011-12-01

    The impact of tropospheric aerosols on climate can vary greatly based upon relatively small variations in aerosol properties, such as composition, shape and size distributions, as well as vertical layering. Multi-angle polarimetric measurements have been advocated in recent years as an additional tool to better understand and retrieve the aerosol properties needed for improved predictions of aerosol radiative forcing on climate. The central concern of this work is the assessment of the effects of absorbing aerosol properties under measurement uncertainties achievable for future generation multi-angle, polarimetric imaging instruments under ACE mission requirements. As guidelines, the on-orbit performance of MISR for multi-angle intensity measurements and the reported polarization sensitivities of a MSPI prototype were adopted. In particular, we will focus on sensitivities to absorbing aerosol layering and observation-constrained refractive indices (resulting in various single scattering albedos (SSA)) of both spherical and non-spherical absorbing aerosol types. We conducted modeling experiments to determine how the measured Stokes vector elements are affected in UV-NIR range by the vertical distribution, mixing and layering of smoke and dust aerosols, and aerosol SSA under the assumption of a black and polarizing ocean surfaces. We use a vector successive-orders-of-scattering (SOS) and VLIDORT transfer codes that show excellent agreement. Based on our sensitivity studies we will demonstrate advantages and disadvantages of wavelength selection in UV-NIR range to access absorbing aerosol properties. Polarized UV channels do not show particular advantage for absorbing aerosol property characterization due to dominating molecular signal. Polarimetric SSA sensitivity is small, however needed to be considered in the future polarimetric retrievals under ACE-defined uncertainty.

  6. Vertical profiles of aerosol mass concentration derived by unmanned airborne in situ and remote sensing instruments during dust events

    NASA Astrophysics Data System (ADS)

    Mamali, Dimitra; Marinou, Eleni; Sciare, Jean; Pikridas, Michael; Kokkalis, Panagiotis; Kottas, Michael; Binietoglou, Ioannis; Tsekeri, Alexandra; Keleshis, Christos; Engelmann, Ronny; Baars, Holger; Ansmann, Albert; Amiridis, Vassilis; Russchenberg, Herman; Biskos, George

    2018-05-01

    In situ measurements using unmanned aerial vehicles (UAVs) and remote sensing observations can independently provide dense vertically resolved measurements of atmospheric aerosols, information which is strongly required in climate models. In both cases, inverting the recorded signals to useful information requires assumptions and constraints, and this can make the comparison of the results difficult. Here we compare, for the first time, vertical profiles of the aerosol mass concentration derived from light detection and ranging (lidar) observations and in situ measurements using an optical particle counter on board a UAV during moderate and weak Saharan dust episodes. Agreement between the two measurement methods was within experimental uncertainty for the coarse mode (i.e. particles having radii > 0.5 µm), where the properties of dust particles can be assumed with good accuracy. This result proves that the two techniques can be used interchangeably for determining the vertical profiles of aerosol concentrations, bringing them a step closer towards their systematic exploitation in climate models.

  7. Observations of Dust Using the NASA Geoscience Laser Altimeter System (GLAS): New New Measurements of Aerosol Vertical Distribution From Space

    NASA Technical Reports Server (NTRS)

    Welton, Ellsworth; Spinhirne, James D.; Palm, Steven P.; Hlavka, Dennis; Hart, William

    2003-01-01

    On January 12, 2003 NASA launched the first satellite-based lidar, the Geoscience Laser -Altimeter System (GLAS), onboard the ICESat spacecraft. The GLAS atmospheric measurements introduce a fundamentally new and important tool for understanding the atmosphere and climate. In the past, aerosols have only been studied from space using images gathered by passive sensors. Analysis of this passive data has lead to an improved understanding of aerosol properties, spatial distribution, and their effect on the earth's climate. However, these images do not show the aerosol's vertical distribution. As a result, a key piece of information has been missing. The measurements now obtained by GLAS will provide information on the vertical distribution of aerosols and clouds, and improve our ability to study their transport processes and aerosol-cloud interactions. Here we show an overview of GLAS, provide an update of its current status, and present initial observations of dust profiles. In particular, a strategy of characterizing the height profile of dust plumes over source regions will be presented.

  8. Vertical wind velocity measurements using a five-hole probe with remotely piloted aircraft to study aerosol-cloud interactions

    NASA Astrophysics Data System (ADS)

    Calmer, Radiance; Roberts, Gregory C.; Preissler, Jana; Sanchez, Kevin J.; Derrien, Solène; O'Dowd, Colin

    2018-05-01

    The importance of vertical wind velocities (in particular positive vertical wind velocities or updrafts) in atmospheric science has motivated the need to deploy multi-hole probes developed for manned aircraft in small remotely piloted aircraft (RPA). In atmospheric research, lightweight RPAs ( < 2.5 kg) are now able to accurately measure atmospheric wind vectors, even in a cloud, which provides essential observing tools for understanding aerosol-cloud interactions. The European project BACCHUS (impact of Biogenic versus Anthropogenic emissions on Clouds and Climate: towards a Holistic UnderStanding) focuses on these specific interactions. In particular, vertical wind velocity at cloud base is a key parameter for studying aerosol-cloud interactions. To measure the three components of wind, a RPA is equipped with a five-hole probe, pressure sensors, and an inertial navigation system (INS). The five-hole probe is calibrated on a multi-axis platform, and the probe-INS system is validated in a wind tunnel. Once mounted on a RPA, power spectral density (PSD) functions and turbulent kinetic energy (TKE) derived from the five-hole probe are compared with sonic anemometers on a meteorological mast. During a BACCHUS field campaign at Mace Head Atmospheric Research Station (Ireland), a fleet of RPAs was deployed to profile the atmosphere and complement ground-based and satellite observations of physical and chemical properties of aerosols, clouds, and meteorological state parameters. The five-hole probe was flown on straight-and-level legs to measure vertical wind velocities within clouds. The vertical velocity measurements from the RPA are validated with vertical velocities derived from a ground-based cloud radar by showing that both measurements yield model-simulated cloud droplet number concentrations within 10 %. The updraft velocity distributions illustrate distinct relationships between vertical cloud fields in different meteorological conditions.

  9. The vertical structure of Arctic haze as determined from airborne net-flux radiometer measurements

    NASA Technical Reports Server (NTRS)

    Ackerman, T. P.; Valero, F. P. J.

    1984-01-01

    From net-flux radiometer measurements and model results, the vertical layer structure is deduced of the Arctic haze encountered during two of the AGASP flights. The total value of the absorption optical depth is found to be on the order of 0.065 for both flights, with the majority of the absorbing aerosol concentrated in the lowest 1.6 km of the atmosphere. A comparison of these results with measurements of the carbon concentration leads to a value of the specific absorption of carbon of 24 sq m g. While higher than expected, this value is shown to be consistent with an internally-mixed aerosol of carbon cores and sulfate shells.

  10. Influence of local production and vertical transport on the organic aerosol budget over Paris

    NASA Astrophysics Data System (ADS)

    Janssen, R. H. H.; Tsimpidi, A. P.; Karydis, V. A.; Pozzer, A.; Lelieveld, J.; Crippa, M.; Prévôt, A. S. H.; Ait-Helal, W.; Borbon, A.; Sauvage, S.; Locoge, N.

    2017-08-01

    We performed a case study of the organic aerosol (OA) budget during the MEGAPOLI campaign during summer 2009 in Paris. We combined aerosol mass spectrometer, gas phase chemistry, and atmospheric boundary layer (ABL) data and applied the MXL/MESSy column model. We find that during daytime, vertical mixing due to ABL growth has opposing effects on secondary organic aerosol (SOA) and primary organic aerosol (POA) concentrations. POA concentrations are mainly governed by dilution due to boundary layer expansion and transport of POA-depleted air from aloft, while SOA concentrations are enhanced by entrainment of SOA-rich air from the residual layer (RL). Further, local emissions and photochemical production control the diurnal cycle of SOA. SOA from intermediate volatility organic compounds constitutes about half of the locally formed SOA mass. Other processes that previously have been shown to influence the urban OA budget, such as aging of semivolatile and intermediate volatility organic compounds (S/IVOC), dry deposition of S/IVOCs, and IVOC emissions, are found to have minor influences on OA. Our model results show that the modern carbon content of the OA is driven by vertical and long-range transport, with a minor contribution from local cooking emissions. SOA from regional sources and resulting from aging and long-lived precursors can lead to high SOA concentrations above the ABL, which can strongly influence ground-based observations through downward transport. Sensitivity analysis shows that modeled SOA concentrations in the ABL are equally sensitive to ABL dynamics as to SOA concentrations transported from the RL.

  11. How Well do State-of-the-Art Techniques Measuring the Vertical Profile of Tropospheric Aerosol Extinction Compare?

    NASA Technical Reports Server (NTRS)

    Schmid, B.; Ferrare, R.; Flynn, C.; Elleman, R.; Covert, D.; Strawa, A.; Welton, E.; Turner, D.; Jonsson, H.; Redemann, J.; hide

    2006-01-01

    The recent Department of Energy Atmospheric Radiation Measurement (ARM) Aerosol Intensive Operations Period (AIOP, May 2003) yielded one of the best measurement sets obtained to date to assess our ability to measure the vertical profile of ambient aerosol extinction sigma(ep)(lambda) in the lower troposphere. During one month, a heavily instrumented aircraft with well-characterized aerosol sampling ability carrying well-proven and new aerosol instrumentation devoted most of the 60 available flight hours to flying vertical profiles over the heavily instrumented ARM Southern Great Plains (SGP) Climate Research Facility (CRF). This allowed us to compare vertical extinction profiles obtained from six different instruments: airborne Sun photometer (AATS-14), airborne nephelometer/absorption photometer, airborne cavity ring-down system, groundbased Raman lidar, and two ground-based elastic backscatter lidars. We find the in situ measured sigma(ep)(lambda) to be lower than the AATS-14 derived values. Bias differences are 0.002-0.004 Km!1 equivalent to 13-17% in the visible, or 45% in the near-infrared. On the other hand, we find that with respect to AATS-14, the lidar sigma(ep)(lambda) are higher: Bias differences are 0.004 Km(-1) (13%) and 0.007 Km(-1) (24%) for the two elastic backscatter lidars (MPLNET and MPLARM, lambda = 523 nm) and 0.029 Km(-1) (54%) for the Raman lidar (lambda = 355 nm). An unnoticed loss of sensitivity of the Raman lidar had occurred leading up to AIOP, and we expect better agreement from the recently restored system. Looking at the collective results from six field campaigns conducted since 1996, airborne in situ measurements of sigma(ep)(lambda) tend to be biased slightly low (17% at visible wavelengths) when compared to airborne Sun photometer sigma(ep)(lambda). On the other hand, sigma(ep)(lambda) values derived from lidars tend to have no or positive biases. From the bias differences we conclude that the typical systematic error associated

  12. Aerosol vertical distribution and optical properties over the arid and semi-arid areas of Northwest China

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Tian, P.; Cao, X.; Liang, J.

    2017-12-01

    Atmospheric aerosols affect the energy budget of the Earth-atmosphere system by direct interaction with solar radiation through scattering and absorption, also indirectly affect weather and climate by altering cloud formation, albedo, and lightning activity. To better understand the information on aerosols over the arid and semi-arid areas of Northwest China, we carried out a series of observation experiments in Wuwei, Zhangye, Dunhuang, and a permanent site SACOL (the Semi-Arid Climate and Environment Observatory of Lanzhou University) (35.95°N, 104.14°E) in Lanzhou, and optical properties using satellite and ground-based remote-sensing measurements. A modified dual-wavelength Mie-scattering lidar (L2S-SM II) inversion algorithm was proposed to simulate the optical property of dust aerosol more accurately. We introduced the physical significance of intrinsic mode functions (IMFs) and the noise component removed from the empirical mode decomposition (EMD) method into the denoising process of the micro-pulse lidar (CE370-2,Cimel) backscattering signal, and developed an EMD-based automatic data-denoising algorithm, which was proven to be better than the wavelet method. Also, we improved the cloud discrimination. On the basis of these studies, aerosol vertical distribution and optical properties were investigated. The main results were as follows:(1) Dust could be lifted up to a 8 km height over Northwest China; (2) From 2005 to 2008, and aerosol existed in the layer below 4 km at SACOL, and the daily average AOD was 87.8% below 0.4; (3) The average depolarization ratio, Ångström exponent α440/870nm and effective radius of black carbon aerosols were 0.24, 0.86±0.30 and 0.54±0.17 μm, respectively, from November 2010 to February 2011; (4) Compared to other regions of China, the Taklamakan Desert and Tibetan Plateau regions exhibit higher depolarization and color ratios because of the natural dust origin. Our studies provided the key information on the long

  13. MPL-Net Measurements of Aerosol and Cloud Vertical Distributions at Co-Located AERONET Sites

    NASA Technical Reports Server (NTRS)

    Welton, Ellsworth J.; Campbell, James R.; Berkoff, Timothy A.; Spinhirne, James D.; Tsay, Si-Chee; Holben, Brent; Starr, David OC. (Technical Monitor)

    2002-01-01

    In the early 1990s, the first small, eye-safe, and autonomous lidar system was developed, the Micropulse Lidar (MPL). The MPL acquires signal profiles of backscattered laser light from aerosols and clouds. The signals are analyzed to yield multiple layer heights, optical depths of each layer, average extinction-to-backscatter ratios for each layer, and profiles of extinction in each layer. In 2000, several MPL sites were organized into a coordinated network, called MPL-Net, by the Cloud and Aerosol Lidar Group at NASA Goddard Space Flight Center (GSFC) using funding provided by the NASA Earth Observing System. tn addition to the funding provided by NASA EOS, the NASA CERES Ground Validation Group supplied four MPL systems to the project, and the NASA TOMS group contributed their MPL for work at GSFC. The Atmospheric Radiation Measurement Program (ARM) also agreed to make their data available to the MPL-Net project for processing. In addition to the initial NASA and ARM operated sites, several other independent research groups have also expressed interest in joining the network using their own instruments. Finally, a limited amount of EOS funding was set aside to participate in various field experiments each year. The NASA Sensor Intercomparison and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) project also provides funds to deploy their MPL during ocean research cruises. All together, the MPL-Net project has participated in four major field experiments since 2000. Most MPL-Net sites and field experiment locations are also co-located with sunphotometers in the NASA Aerosol Robotic Network. (AERONET). Therefore, at these locations data is collected on both aerosol and cloud vertical structure as well as column optical depth and sky radiance. Real-time data products are now available from most MPL-Net sites. Our real-time products are generated at times of AERONET aerosol optical depth (AOD) measurements. The AERONET AOD is used as input to our

  14. Vertical distribution of aerosol optical properties in the Po Valley during the 2012 summer campaigns

    NASA Astrophysics Data System (ADS)

    Bucci, Silvia; Cristofanelli, Paolo; Decesari, Stefano; Marinoni, Angela; Sandrini, Silvia; Größ, Johannes; Wiedensohler, Alfred; Di Marco, Chiara F.; Nemitz, Eiko; Cairo, Francesco; Di Liberto, Luca; Fierli, Federico

    2018-04-01

    Studying the vertical distribution of aerosol particle physical and chemical properties in the troposphere is essential to understand the relative importance of local emission processes vs. long-range transport for column-integrated aerosol properties (e.g. the aerosol optical depth, AOD, affecting regional climate) as well as for the aerosol burden and its impacts on air quality at the ground. The main objective of this paper is to investigate the transport of desert dust in the middle troposphere and its intrusion into the planetary boundary layer (PBL) over the Po Valley (Italy), a region considered one of the greatest European pollution hotspots for the frequency that particulate matter (PM) limit values are exceeded. Events of mineral aerosol uplift from local (soil) sources and phenomena of hygroscopic growth at the ground are also investigated, possibly affecting the PM concentration in the region as well. During the PEGASOS 2012 field campaign, an integrated observing-modelling system was set up based on near-surface measurements (particle concentration and chemistry), vertical profiling (backscatter coefficient profiles from lidar and radiosoundings) and Lagrangian air mass transport simulations by FLEXPART model. Measurements were taken at the San Pietro Capofiume supersite (44°39' N, 11°37' E; 11 m a.s.l.), located in a rural area relatively close to some major urban and industrial emissive areas in the Po Valley. Mt. Cimone (44°12' N, 10°42' E; 2165 m a.s.l.) WMO/GAW station observations are also included in the study to characterize regional-scale variability. Results show that, in the Po Valley, aerosol is detected mainly below 2000 m a.s.l. with a prevalent occurrence of non-depolarizing particles ( > 50 % throughout the campaign) and a vertical distribution modulated by the PBL daily evolution. Two intense events of mineral dust transport from northern Africa (19-21 and 29 June to 2 July) are observed, with layers advected mainly above 2000 m

  15. Strong influence of deposition and vertical mixing on secondary organic aerosol concentrations in CMAQ and CAMx

    NASA Astrophysics Data System (ADS)

    Shu, Qian; Koo, Bonyoung; Yarwood, Greg; Henderson, Barron H.

    2017-12-01

    Differences between two air quality modeling systems reveal important uncertainties in model representations of secondary organic aerosol (SOA) fate. Two commonly applied models (CMAQ: Community Multiscale Air Quality; CAMx: Comprehensive Air Quality Model with extensions) predict very different OA concentrations over the eastern U.S., even when using the same source data for emissions and meteorology and the same SOA modeling approach. Both models include an option to output a detailed accounting of how each model process (e.g., chemistry, deposition, etc.) alters the mass of each modeled species, referred to as process analysis. We therefore perform a detailed diagnostic evaluation to quantify simulated tendencies (Gg/hr) of each modeled process affecting both the total model burden (Gg) of semi-volatile organic compounds (SVOC) in the gas (g) and aerosol (a) phases and the vertical structures to identify causes of concentration differences between the two models. Large differences in deposition (CMAQ: 69.2 Gg/d; CAMx: 46.5 Gg/d) contribute to significant OA bias in CMAQ relative to daily averaged ambient concentration measurements. CMAQ's larger deposition results from faster daily average deposition velocities (VD) for both SVOC (g) (VD,cmaq = 2.15 × VD,camx) and aerosols (VD,cmaq = 4.43 × Vd,camx). Higher aerosol deposition velocity would be expected to cause similar biases for inert compounds like elemental carbon (EC), but this was not seen. Daytime low-biases in EC were also simulated in CMAQ as expected but were offset by nighttime high-biases. Nighttime high-biases were a result of overly shallow mixing in CMAQ leading to a higher fraction of EC total atmospheric mass in the first layer (CAMx: 5.1-6.4%; CMAQ: 5.6-6.9%). Because of the opposing daytime and nighttime biases, the apparent daily average bias for EC is reduced. For OA, there are two effects of reduced vertical mixing: SOA and SVOC are concentrated near the surface, but SOA yields are reduced

  16. Three Dimensional Aerosol Climatology over India and the North Indian Ocean

    NASA Astrophysics Data System (ADS)

    Adams, A.; Zhang, C.

    2013-12-01

    Numerical models are indispensable tools to study aerosol effects on climate, including both aerosol direct and indirect radiative effects and their role in precipitation. But, agreement among the models has not been achieved, and thus it is not possible to accurately and confidently attain estimates of aerosol effects on climate. The lack of reliable knowledge on global three-dimensional (3D) aerosol climatology has prevented us from assessing the degree to which the disagreement in their aerosol climatic effects may come from differences of aerosol vertical structures in their simulations. To that end, we created a six year, global 3D extinction coefficient dataset for each aerosol species identifiable by the Level 2, Version 3, 5 km Aerosol Profile product from Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) onboard Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) as a tool to improve 3D model representations. Here we describe the 3D structure of aerosol in the Middle East, India, and the Northern Indian Ocean and some of the interesting dynamical features responsible for the vertical structure and external mixing of aerosol species. One interesting feature in the 3D structure during boreal summer is a well-defined EC core located 0 - 10°N, 40°E - 90°E (Somalia across the Indian subcontinent), centered at 3 km. This is controlled by a shallow meridional circulation about the core. Additionally, the Somali Low-Level Jet exists at this location, but is usually located below the core (~850 mb). Another interesting feature is a strong EC core located 0 - 15°N, 60°E - 90°E below 0.5 km. Polluted dust (external mixture of dust and smoke) and marine aerosol are collocated in this area with maximum AODs of ~0.5 and ~0.2 respectively. Due to the wind stress over ocean, collocation of aerosol species, altitude, and lack of transport pathway for polluted dust, it is possible that this is an example of aerosol misclassification by

  17. Aerosol optical characteristics and their vertical distributions under enhanced haze pollution events: effect of the regional transport of different aerosol types over eastern China

    NASA Astrophysics Data System (ADS)

    Sun, Tianze; Che, Huizheng; Qi, Bing; Wang, Yaqiang; Dong, Yunsheng; Xia, Xiangao; Wang, Hong; Gui, Ke; Zheng, Yu; Zhao, Hujia; Ma, Qianli; Du, Rongguang; Zhang, Xiaoye

    2018-03-01

    The climatological variation of aerosol properties and the planetary boundary layer (PBL) during 2013-2015 over the Yangtze River Delta (YRD) region were investigated by employing ground-based Micro Pulse Lidar (MPL) and CE-318 sun-photometer observations. Combining Moderate Resolution Imaging Spectroradiometer (MODIS) and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite products, enhanced haze pollution events affected by different types of aerosol over the YRD region were analyzed through vertical structures, spatial distributions, backward trajectories, and the potential source contribution function (PSCF) model. The results show that aerosols in the YRD are dominated by fine-mode particles, except in March. The aerosol optical depth (AOD) in June and September is higher due to high single scattering albedo (SSA) from hygroscopic growth, but it is lower in July and August due to wet deposition from precipitation. The PBL height (PBLH) is greater (means ranging from 1.23 to 1.84 km) and more variable in the warmer months of March to August, due to the stronger diurnal cycle and exchange of heat. Northern fine-mode pollutants are brought to the YRD at a height of 1.5 km. The SSA increases, blocking the radiation to the surface, and cooling the surface, thereby weakening turbulence, lowering the PBL, and in turn accelerating the accumulation of pollutants, creating a feedback to the cooling effect. Originated from the deserts in Xinjiang and Inner Mongolia, long-range transported dust masses are seen at heights of about 2 km over the YRD region with an SSA440 nm below 0.84, which heat air and raise the PBL, accelerating the diffusion of dust particles. Regional transport from biomass-burning spots to the south of the YRD region bring mixed aerosol particles at a height below 1.5 km, resulting in an SSA440 nm below 0.89. During the winter, the accumulation of the local emission layer is facilitated by stable weather conditions

  18. Transport and recirculation of aerosols off Southern Africa—macroscale plume structure

    NASA Astrophysics Data System (ADS)

    Tyson, P. D.; D'Abreton, P. C.

    A pall of aerosols and trace gases frequently occurs over southern Africa to a depth of ˜500 hPa, blanketing vast areas, particularly in the austral winter and spring. Large-scale offshore transport of these aerosols and trace gases in extremely large plumes from interior continental areas of the subcontinent to the Indian and Atlantic Oceans is a common occurrence. The nature of the transport plumes, their climatology, chemical composition and morphology are discussed. In the vertically integrated, surface-to-500 hPa layer, poleward of about 15° S, transport into the Indian Ocean is shown to be about 60% greater into the Indian Ocean than into the Atlantic Ocean. Recirculation of atmospheric constituents is considered and estimates of aerosol mass fluxes over central southern Africa are presented. Of the total of about 50 Mt yr -1 of aerosols being transported at the central meridian, 44% is shown to be recirculated material. The rest exits the subcontinent directly without recirculation. Preferred plume corridors of exit and entry are postulated for different localities on the east and west coasts. Two case studies of east- and west-coast plumes apparently flowing uniformly out of southern Africa are examined. The illusion of uniformity in plume structure is shown to be misleading. Both plumes are shown to be above and separated from the marine boundary layer. Each is over 1500 km in width and 3-5 km deep. Likewise, both are capped by absolutely stable layers at ˜500 hPa and exhibit a complex structure of both outflowing aerosols and trace gases and inflowing, recycled and recirculated material. Indications of the composition of the recirculated material are given and implications of the plume transports are considered.

  19. Lidar Observations of the Vertical Structure of Ozone and Aerosol during Wintertime High-Ozone Episodes Associated with Oil and Gas Exploration in the Uintah Basin

    NASA Astrophysics Data System (ADS)

    Senff, C. J.; Langford, A. O.; Banta, R. M.; Alvarez, R. J.; Weickmann, A.; Sandberg, S.; Marchbanks, R. D.; Brewer, A.; Hardesty, R. M.

    2013-12-01

    The Uintah Basin in northeast Utah has been experiencing extended periods of poor air quality in the winter months including very high levels of surface ozone. To investigate the causes of these wintertime ozone pollution episodes, two comprehensive studies were undertaken in January/February of 2012 and 2013. As part of these Uintah Basin Ozone Studies (UBOS), NOAA deployed its ground-based, scanning Tunable Optical Profiler for Aerosol and oZone (TOPAZ) lidar to document the vertical structure of ozone and aerosol backscatter from near the surface up to about 3 km above ground level (AGL). TOPAZ, along with a comprehensive set of chemistry and meteorological measurements, was situated in both years at the Horse Pool site at the northern edge of a large concentration of gas producing wells in the eastern part of the Uintah Basin. The 2012 study was characterized by unusually warm and snow-free condition and the TOPAZ lidar observed deep boundary layers (BL) and mostly well-mixed vertical ozone profiles at or slightly above tropospheric background levels. During UBOS 2013, winter weather conditions in the Uintah Basin were more typical with snow-covered ground and a persistent, shallow cold-pool layer. The TOPAZ lidar characterized with great temporal and spatial detail the evolution of multiple high-ozone episodes as well as cleanout events caused by the passage of synoptic-scale storm systems. Despite the snow cover, the TOPAZ observations show well-mixed afternoon ozone and aerosol profiles up to about 100 m AGL. After several days of pollutant buildup, BL ozone values reached 120-150 ppbv. Above the mixed layer, ozone values gradually decreased to tropospheric background values of around 50 ppbv throughout the several-hundred-meter-deep cold-pool layer and then stayed constant above that up to about 3 km AGL. During the ozone episodes, the lidar observations show no indication of either vertical or horizontal transport of high ozone levels to the surface, thus

  20. Global View of Aerosol Vertical Distributions from CALIPSO Lidar Measurements and GOCART Simulations: Regional and Seasonal Variations

    NASA Technical Reports Server (NTRS)

    Yu, Hongbin; Chin, Mian; Winker, David M.; Omar, Ali H.; Liu, Zhaoyan; Kittaka, Chieko; Diehl, Thomas

    2010-01-01

    This study examines seasonal variations of the vertical distribution of aerosols through a statistical analysis of the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) lidar observations from June 2006 to November 2007. A data-screening scheme is developed to attain good quality data in cloud-free conditions, and the polarization measurement is used to separate dust from non-dust aerosol. The CALIPSO aerosol observations are compared with aerosol simulations from the Goddard Chemistry Aerosol Radiation Transport (GOCART) model and aerosol optical depth (AOD) measurements from the MODerate resolution Imaging Spectroradiometer (MODIS). The CALIPSO observations of geographical patterns and seasonal variations of AOD are generally consistent with GOCART simulations and MODIS retrievals especially near source regions, while the magnitude of AOD shows large discrepancies in most regions. Both the CALIPSO observation and GOCART model show that the aerosol extinction scale heights in major dust and smoke source regions are generally higher than that in industrial pollution source regions. The CALIPSO aerosol lidar ratio also generally agrees with GOCART model within 30% on regional scales. Major differences between satellite observations and GOCART model are identified, including (1) an underestimate of aerosol extinction by GOCART over the Indian sub-continent, (2) much larger aerosol extinction calculated by GOCART than observed by CALIPSO in dust source regions, (3) much weaker in magnitude and more concentrated aerosol in the lower atmosphere in CALIPSO observation than GOCART model over transported areas in midlatitudes, and (4) consistently lower aerosol scale height by CALIPSO observation than GOCART model. Possible factors contributing to these differences are discussed.

  1. Aerosols and lightning activity: The effect of vertical profile and aerosol type

    NASA Astrophysics Data System (ADS)

    Proestakis, E.; Kazadzis, S.; Lagouvardos, K.; Kotroni, V.; Amiridis, V.; Marinou, E.; Price, C.; Kazantzidis, A.

    2016-12-01

    The Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument on board the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite has been utilized for the first time in a study regarding lightning activity modulation due to aerosols. Lightning activity observations, obtained by the ZEUS long range Lightning Detection Network, European Centre for Medium range Weather Forecasts (ECMWF) Convective Available Potential Energy (CAPE) data and Cloud Fraction (CF) retrieved by MODIS on board Aqua satellite have been combined with CALIPSO CALIOP data over the Mediterranean basin and for the period March to November, from 2007 to 2014. The results indicate that lightning activity is enhanced during days characterized by higher Aerosol Optical Depth (AOD) values, compared to days with no lightning. This study contributes to existing studies on the link between lightning activity and aerosols, which have been based just on columnar AOD satellite retrievals, by performing a deeper analysis into the effect of aerosol profiles and aerosol types. Correlation coefficients of R = 0.73 between the CALIPSO AOD and the number of lightning strikes detected by ZEUS and of R = 0.93 between ECMWF CAPE and lightning activity are obtained. The analysis of extinction coefficient values at 532 nm indicates that at an altitudinal range exists, between 1.1 km and 2.9 km, where the values for extinction coefficient of lightning-active and non-lightning-active cases are statistically significantly different. Finally, based on the CALIPSO aerosol subtype classification, we have investigated the aerosol conditions of lightning-active and non-lightning-active cases. According to the results polluted dust aerosols are more frequently observed during non-lightning-active days, while dust and smoke aerosols are more abundant in the atmosphere during the lightning-active days.

  2. Vertical Profiles of Light-Absorbing Aerosol: A Combination of In-situ and AERONET Observations during NASA DISCOVER-AQ

    NASA Astrophysics Data System (ADS)

    Ziemba, L. D.; Beyersdorf, A. J.; Chen, G.; Corr, C.; Crumeyrolle, S.; Giles, D. M.; Holben, B. N.; Hudgins, C.; Martin, R.; Moore, R.; Shook, M.; Thornhill, K. L., II; Winstead, E.; Anderson, B. E.

    2014-12-01

    Understanding the vertical profile of atmospheric aerosols plays a vital role in utilizing spaceborne, column-integrated satellite observations. The properties and distribution of light-absorbing aerosol are particularly uncertain despite significant air quality and climate ramifications. Advanced retrieval algorithms are able to derive complex aerosol properties (e.g., wavelength-dependent absorption coefficient and single scattering albedo) from remote-sensing measurements, but quantitative relationships to surface conditions remain a challenge. Highly systematic atmospheric profiling during four unique deployments for the NASA DISCOVER-AQ project (Baltimore, MD, 2011; San Joaquin Valley, CA, 2013; Houston, TX, 2013; Denver, CO, 2014) allow statistical assessment of spatial, temporal, and source-related variability for light-absorbing aerosol properties in these distinct regions. In-situ sampling in conjunction with a dense network of AERONET sensors also allows evaluation of the sensitivity, limitations, and advantages of remote-sensing data products over a wide range of conditions. In-situ aerosol and gas-phase observations were made during DISCOVER-AQ aboard the NASA P-3B aircraft. Aerosol absorption coefficients were measured by a Particle Soot Absorption Photometer (PSAP). Approximately 200 profiles for each of the four deployments were obtained, from the surface (25-300m altitude) to 5 km, and are used to calculate absorption aerosol optical depths (AAODs). These are quantitatively compared to AAOD derived from AERONET Level 1.5 retrievals to 1) explore discrepancies between measurements, 2) quantify the fraction of AAOD that exists directly at the surface and is often missed by airborne sampling, and 3) evaluate the potential for deriving ground-level black carbon (BC) concentrations for air quality prediction. Aerosol size distributions are used to assess absorption contributions from mineral dust, both at the surface and aloft. SP2 (Single Particle Soot

  3. The MAC aerosol climatology

    NASA Astrophysics Data System (ADS)

    Kinne, S.

    2015-12-01

    Aerosol is highly diverse in space and time. And many different aerosol optical properties are needed (consistent to each other) for the determination of radiative effects. To sidestep a complex (and uncertain) aerosol treatment (emission to mass to optics) a monthly gridded climatology for aerosol properties has been developed. This MPI Aerosol Climatology (MAC) is strongly tied to observational statistics for aerosol column optical properties by AERONET (over land) and by MAN (over oceans). To fill spatial gaps, to address decadal change and to address vertical variability, these sparsely distributed local data are extended with central data of an ensemble of output from global models with complex aerosol modules. This data merging in performed for aerosol column amount (AOD), for aerosol size (AOD,fine) and for aerosol absorption (AAOD). The resulting MAC aerosol climatology is an example for the combination of high quality local observations with spatial, temporal and vertical context from model simulations.

  4. Vertical profiles of fine and coarse aerosol particles over Cyprus: Comparison between in-situ drone measurements and remote sensing observations

    NASA Astrophysics Data System (ADS)

    Mamali, Dimitra; Marinou, Eleni; Pikridas, Michael; Kottas, Michael; Binietoglou, Ioannis; Kokkalis, Panagiotis; Tsekeri, Aleksandra; Amiridis, Vasilis; Sciare, Jean; Keleshis, Christos; Engelmann, Ronny; Ansmann, Albert; Russchenberg, Herman W. J.; Biskos, George

    2017-04-01

    Vertical profiles of the aerosol mass concentration derived from light detection and ranging (lidar) measurements were compared to airborne dried optical particle counter (OPC MetOne; Model 212) measurements during the INUIT-BACCHUS-ACTRIS campaign. The campaign took place in April 2016 and its main focus was the study of aerosol dust particles. During the campaign the NOA Polly-XT Raman lidar located at Nicosia (35.08° N, 33.22° E) was providing round-the-clock vertical profiles of aerosol optical properties. In addition, an unmanned aerial vehicle (UAV) carrying an OPC flew on 7 days during the first morning hours. The flights were performed at Orounda (35.1018° N, 33.0944° E) reaching altitudes of 2.5 km a.s.l, which allows comparison with a good fraction of the recorded lidar data. The polarization lidar photometer networking method (POLIPHON) was used for the estimation of the fine (non-dust) and coarse (dust) mode aerosol mass concentration profiles. This method uses as input the particle backscatter coefficient and the particle depolarization profiles of the lidar at 532 nm wavelength and derives the aerosol mass concentration. The first step in this approach makes use of the lidar observations to separate the backscatter and extinction contributions of the weakly depolarizing non-dust aerosol components from the contributions of the strongly depolarizing dust particles, under the assumption of an externally mixed two-component aerosol. In the second step, sun photometer retrievals of the fine and the coarse modes aerosol optical thickness (AOT) and volume concentration are used to calculate the associated concentrations from the extinction coefficients retrieved from the lidar. The estimated aerosol volume concentrations were converted into mass concentration with an assumption for the bulk aerosol density, and compared with the OPC measurements. The first results show agreement within the experimental uncertainty. This project received funding from the

  5. Orbiting lidar simulations. I - Aerosol and cloud measurements by an independent-wavelength technique

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Morley, B. M.; Livingston, J. M.; Grams, G. W.; Patterson, E. M.

    1982-01-01

    Aerosol and cloud measurements have been simulated for a Space Shuttle lidar. Expected errors - in signal, transmission, density, and calibration - are calculated algebraically and checked by simulating measurements and retrievals using random-number generators. By day, vertical structure is retrieved for tenuous clouds, Saharan aerosols, and boundary layer aerosols (at 0.53 and 1.06 micron) as well as strong volcanic stratospheric aerosols (at 0.53 micron). By night, all these constituents are retrieved plus upper tropospheric and stratospheric aerosols (at 1.06 micron), mesospheric aerosols (at 0.53 micron), and noctilucent clouds (at 1.06 and 0.53 micron). The vertical resolution was 0.1-0.5 km in the troposphere, 0.5-2.0 km above, except 0.25-1.0 km in the mesospheric cloud and aerosol layers; horizontal resolution was 100-2000 km.

  6. Vertical transport of Kelut volcanic stratospheric aerosols observed by the equatorial lidar and the Equatorial Atmosphere Radar

    NASA Astrophysics Data System (ADS)

    Nagasawa, C.; Abo, M.; Shibata, Y.

    2017-12-01

    The transport of substance between stratosphere and troposphere in the equatorial region makes an impact to the global climate change, but it has a lot of unknown behaviors. We have performed the lidar observations for survey of atmospheric structure of troposphere, stratosphere, and mesosphere over Kototabang (0.2S, 100.3E), Indonesia in the equatorial region since 2004. Kelut volcano (7.9S, 112.3E) in the Java island of Indonesia erupted on 13 February 2014. The CALIOP observed that the eruption cloud reached 26km above sea level in the tropical stratosphere, but most of the plume remained at 19-20 km over the tropopause. By CALIOP data analysis, aerosol clouds spread in the longitude direction with the lapse of time and arrived at equator in 5 days. After aerosol clouds reached equator, they moved towards the east along the equator by strong eastward equatorial wind of QBO. In June 2014 (4 months after the eruption), aerosol transport from the stratosphere to the troposphere were observed by the polarization lidar at Kototabang. At the same time, we can clearly see down phase structure of vertical wind velocity observed by EAR (Equatorial Atmosphere Radar) generated by the equatorial Kelvin wave. We investigate the transport of substance between stratosphere and troposphere in the equatorial region by data which have been collected by the polarization lidar at Kototabang and the EAR after Kelut volcano eruption. Using combination of ground based lidar, satellite based lidar, and atmosphere radar, we can get valuable evidence of equatorial transport of substance between the troposphere and the lower stratosphere. This work was supported by Collaborative Research based on MU Radar and Equatorial Atmosphere Radar.

  7. Aerosol-cloud interactions in mixed-phase convective clouds - Part 1: Aerosol perturbations

    NASA Astrophysics Data System (ADS)

    Miltenberger, Annette K.; Field, Paul R.; Hill, Adrian A.; Rosenberg, Phil; Shipway, Ben J.; Wilkinson, Jonathan M.; Scovell, Robert; Blyth, Alan M.

    2018-03-01

    precipitation enhancement occurs. Previous studies of deep convective clouds have related larger vertical velocities under high-aerosol conditions to enhanced latent heating from freezing. In the presented simulations changes in latent heating above the 0°C are negligible, but latent heating from condensation increases with aerosol concentrations. It is hypothesised that this increase is related to changes in the cloud field structure reducing the mixing of environmental air into the convective core. The precipitation response of the deeper mixed-phase clouds along well-established convergence lines can be the opposite of predictions from parcel models. This occurs when clouds interact with a pre-existing thermodynamic environment and cloud field structural changes occur that are not captured by simple parcel model approaches.

  8. A one-dimensional sectional aerosol model integrated with mesoscale meteorological data to study marine boundary layer aerosol dynamics

    NASA Astrophysics Data System (ADS)

    Caffrey, Peter F.; Hoppel, William A.; Shi, Jainn J.

    2006-12-01

    The dynamics of aerosols in the marine boundary layer are simulated with a one-dimensional, multicomponent, sectional aerosol model using vertical profiles of turbulence, relative humidity, temperature, vertical velocity, cloud cover, and precipitation provided by 3-D mesoscale meteorological model output. The Naval Research Laboratory's (NRL) sectional aerosol model MARBLES (Fitzgerald et al., 1998a) was adapted to use hourly meteorological input taken from NRL's Coupled Ocean-Atmosphere Prediction System (COAMPS). COAMPS-generated turbulent mixing coefficients and large-scale vertical velocities determine vertical exchange within the marine boundary layer and exchange with the free troposphere. Air mass back trajectories were used to define the air column history along which the meteorology was retrieved for use with the aerosol model. Details on the integration of these models are described here, as well as a description of improvements made to the aerosol model, including transport by large-scale vertical motions (such as subsidence and lifting), a revised sea-salt aerosol source function, and separate tracking of sulfate mass from each of the five sources (free tropospheric, nucleated, condensed from gas phase oxidation products, cloud-processed, and produced from heterogeneous oxidation of S(IV) on sea-salt aerosol). Results from modeling air masses arriving at Oahu, Hawaii, are presented, and the relative contribution of free-tropospheric sulfate particles versus sea-salt aerosol from the surface to CCN concentrations is discussed. Limitations and benefits of the method are presented, as are sensitivity analyses of the effect of large-scale vertical motions versus turbulent mixing.

  9. Vertical profiles of BC direct radiative effect over Italy: high vertical resolution data and atmospheric feedbacks

    NASA Astrophysics Data System (ADS)

    Močnik, Griša; Ferrero, Luca; Castelli, Mariapina; Ferrini, Barbara S.; Moscatelli, Marco; Grazia Perrone, Maria; Sangiorgi, Giorgia; Rovelli, Grazia; D'Angelo, Luca; Moroni, Beatrice; Scardazza, Francesco; Bolzacchini, Ezio; Petitta, Marcello; Cappelletti, David

    2016-04-01

    Black carbon (BC), and its vertical distribution, affects the climate. Global measurements of BC vertical profiles are lacking to support climate change research. To fill this gap, a campaign was conducted over three Italian basin valleys, Terni Valley (Appennines), Po Valley and Passiria Valley (Alps), to characterize the impact of BC on the radiative budget under similar orographic conditions. 120 vertical profiles were measured in winter 2010. The BC vertical profiles, together with aerosol size distribution, aerosol chemistry and meteorological parameters, have been determined using a tethered balloon-based platform equipped with: a micro-Aethalometer AE51 (Magee Scientific), a 1.107 Grimm OPC (0.25-32 μm, 31 size classes), a cascade impactor (Siuotas SKC), and a meteorological station (LSI-Lastem). The aerosol chemical composition was determined from collected PM2.5 samples. The aerosol absorption along the vertical profiles was measured and optical properties calculated using the Mie theory applied to the aerosol size distribution. The aerosol optical properties were validated with AERONET data and then used as inputs to the radiative transfer model libRadtran. Vertical profiles of the aerosol direct radiative effect, the related atmospheric absorption and the heating rate were calculated. Vertical profile measurements revealed some common behaviors over the studied basin valleys. From below the mixing height to above it, a marked concentration drop was found for both BC (from -48.4±5.3% up to -69.1±5.5%) and aerosol number concentration (from -23.9±4.3% up to -46.5±7.3%). These features reflected on the optical properties of the aerosol. Absorption and scattering coefficients decreased from below the MH to above it (babs from -47.6±2.5% up to -71.3±3.0% and bsca from -23.5±0.8% up to -61.2±3.1%, respectively). Consequently, the Single Scattering Albedo increased above the MH (from +4.9±2.2% to +7.4±1.0%). The highest aerosol absorption was

  10. Ensemble-Based Assimilation of Aerosol Observations in GEOS-5

    NASA Technical Reports Server (NTRS)

    Buchard, V.; Da Silva, A.

    2016-01-01

    MERRA-2 is the latest Aerosol Reanalysis produced at NASA's Global Modeling Assimilation Office (GMAO) from 1979 to present. This reanalysis is based on a version of the GEOS-5 model radiatively coupled to GOCART aerosols and includes assimilation of bias corrected Aerosol Optical Depth (AOD) from AVHRR over ocean, MODIS sensors on both Terra and Aqua satellites, MISR over bright surfaces and AERONET data. In order to assimilate lidar profiles of aerosols, we are updating the aerosol component of our assimilation system to an Ensemble Kalman Filter (EnKF) type of scheme using ensembles generated routinely by the meteorological assimilation. Following the work performed with the first NASA's aerosol reanalysis (MERRAero), we first validate the vertical structure of MERRA-2 aerosol assimilated fields using CALIOP data over regions of particular interest during 2008.

  11. Vertical Distribution of Aersols and Water Vapor Using CRISM Limb Observations

    NASA Technical Reports Server (NTRS)

    Smith, Michael D.; Wolff, Michael J.; Clancy, R. Todd

    2011-01-01

    Near-infrared spectra taken in a limb-viewing geometry by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on-board the Mars Reconnaissance Orbiter (MRO) provide a useful tool for probing atmospheric structure. Specifically, the observed radiance as a function of wavelength and height above the limb allows the vertical distribution of both dust and ice aerosols to be retrieved. These data serve as an important supplement to the aerosol profiling provided by the MRO/MCS instrument allowing independent validation and giving additional information on particle physical and scattering properties through multi-wavelength studies. A total of at least ten CRISM limb observations have been taken so far covering a full Martian year. Each set of limb observations nominally contains about four dozen scans across the limb giving pole-to-pole coverage for two orbits at roughly 100 and 290 W longitude over the Tharsis and Syrtis/Hellas regions, respectively. At each longitude, limb scans are spaced roughly 10 degrees apart in latitude, with a vertical spatial resolution on the limb of roughly 800 m. Radiative transfer modeling is used to model the observations. We compute synthetic CRISM limb spectra using a discrete-ordinates radiative transfer code that accounts for multiple scattering from aerosols and accounts for spherical geometry of the limb observations by integrating the source functions along curved paths in that coordinate system. Retrieved are 14-point vertical profiles for dust and water ice aerosols with resolution of 0.4 scale heights between one and six scale heights above the surface. After the aerosol retrieval is completed, the abundances of C02 (or surface pressure) and H20 gas are retrieved by matching the depth of absorption bands at 2000 nm for carbon dioxide and at 2600 run for water vapor. In addition to the column abundance of water vapor, limited information on its vertical structure can also be retrieved depending on the signal

  12. Fabrication of vertical nanowire resonators for aerosol exposure assessment

    NASA Astrophysics Data System (ADS)

    Merzsch, Stephan; Wasisto, Hutomo Suryo; Stranz, Andrej; Hinze, Peter; Weimann, Thomas; Peiner, Erwin; Waag, Andreas

    2013-05-01

    Vertical silicon nanowire (SiNW) resonators are designed and fabricated in order to assess exposure to aerosol nanoparticles (NPs). To realize SiNW arrays, nanolithography and inductively coupled plasma (ICP) deep reactive ion etching (DRIE) at cryogenic temperature are utilized in a top-down fabrication of SiNW arrays which have high aspect ratios (i.e., up to 34). For nanolithography process, a resist film thickness of 350 nm is applied in a vacuum contact mode to serve as a mask. A pattern including various diameters and distances for creating pillars is used (i.e., 400 nm up to 5 μm). In dry etching process, the etch rate is set high of 1.5 μm/min to avoid underetching. The etch profiles of Si wires can be controlled aiming to have either perpendicularly, negatively or positively profiled sidewalls by adjusting the etching parameters (e.g., temperature and oxygen content). Moreover, to further miniaturize the wire, multiple sacrificial thermal oxidations and subsequent oxide stripping are used yielding SiNW arrays of 650 nm in diameter and 40 μm in length. In the resonant frequency test, a piezoelectric shear actuator is integrated with the SiNWs inside a scanning electron microscope (SEM) chamber. The observation of the SiNW deflections are performed and viewed from the topside of the SiNWs to reduce the measurement redundancy. Having a high deflection of ~10 μm during its resonant frequency of 452 kHz and a low mass of 31 pg, the proposed SiNW is potential for assisting the development of a portable aerosol resonant sensor.

  13. The potential of LIRIC to validate the vertical profiles of the aerosol mass concentration estimated by an air quality model

    NASA Astrophysics Data System (ADS)

    Siomos, Nikolaos; Filoglou, Maria; Poupkou, Anastasia; Liora, Natalia; Dimopoulos, Spyros; Melas, Dimitris; Chaikovsky, Anatoli; Balis, Dimitris

    2015-04-01

    Vertical profiles of the aerosol mass concentration derived by a retrieval algorithm that uses combined sunphotometer and LIDAR data (LIRIC) were used in order to validate the mass concentration profiles estimated by the air quality model CAMx. LIDAR and CIMEL measurements of the Laboratory of Atmospheric Physics of the Aristotle University of Thessaloniki were used for this validation.The aerosol mass concentration profiles of the fine and coarse mode derived by CAMx were compared with the respective profiles derived by the retrieval algorithm. For the coarse mode particles, forecasts of the Saharan dust transportation model BSC-DREAM8bV2 were also taken into account. Each of the retrieval algorithm's profiles were matched to the models' profile with the best agreement within a time window of four hours before and after the central measurement. OPAC, a software than can provide optical properties of aerosol mixtures, was also employed in order to calculate the angstrom exponent and the lidar ratio values for 355nm and 532nm for each of the model's profiles aiming in a comparison with the angstrom exponent and the lidar ratio values derived by the retrieval algorithm for each measurement. The comparisons between the fine mode aerosol concentration profiles resulted in a good agreement between CAMx and the retrieval algorithm, with the vertical mean bias error never exceeding 7 μgr/m3. Concerning the aerosol coarse mode concentration profiles both CAMx and BSC-DREAM8bV2 values are severely underestimated, although, in cases of Saharan dust transportation events there is an agreement between the profiles of BSC-DREAM8bV2 model and the retrieval algorithm.

  14. Horizontal and vertical structure of reactive bromine events probed by bromine monoxide MAX-DOAS

    NASA Astrophysics Data System (ADS)

    Simpson, William R.; Peterson, Peter K.; Frieß, Udo; Sihler, Holger; Lampel, Johannes; Platt, Ulrich; Moore, Chris; Pratt, Kerri; Shepson, Paul; Halfacre, John; Nghiem, Son V.

    2017-08-01

    Heterogeneous photochemistry converts bromide (Br-) to reactive bromine species (Br atoms and bromine monoxide, BrO) that dominate Arctic springtime chemistry. This phenomenon has many impacts such as boundary-layer ozone depletion, mercury oxidation and deposition, and modification of the fate of hydrocarbon species. To study environmental controls on reactive bromine events, the BRomine, Ozone, and Mercury EXperiment (BROMEX) was carried out from early March to mid-April 2012 near Barrow (Utqiaġvik), Alaska. We measured horizontal and vertical gradients in BrO with multiple-axis differential optical absorption spectroscopy (MAX-DOAS) instrumentation at three sites, two mobile and one fixed. During the campaign, a large crack in the sea ice (an open lead) formed pushing one instrument package ˜ 250 km downwind from Barrow (Utqiaġvik). Convection associated with the open lead converted the BrO vertical structure from a surface-based event to a lofted event downwind of the lead influence. The column abundance of BrO downwind of the re-freezing lead was comparable to upwind amounts, indicating direct reactions on frost flowers or open seawater was not a major reactive bromine source. When these three sites were separated by ˜ 30 km length scales of unbroken sea ice, the BrO amount and vertical distributions were highly correlated for most of the time, indicating the horizontal length scales of BrO events were typically larger than ˜ 30 km in the absence of sea ice features. Although BrO amount and vertical distribution were similar between sites most of the time, rapid changes in BrO with edges significantly smaller than this ˜ 30 km length scale episodically transported between the sites, indicating BrO events were large but with sharp edge contrasts. BrO was often found in shallow layers that recycled reactive bromine via heterogeneous reactions on snowpack. Episodically, these surface-based events propagated aloft when aerosol extinction was higher (> 0.1 km

  15. North-south cross sections of the vertical aerosol distribution over the Atlantic Ocean from multiwavelength Raman/polarization lidar during Polarstern cruises

    PubMed Central

    Kanitz, T; Ansmann, A; Engelmann, R; Althausen, D

    2013-01-01

    Shipborne aerosol lidar observations were performed aboard the research vessel Polarstern in 2009 and 2010 during three north-south cruises from about 50°N to 50°S. The aerosol data set provides an excellent opportunity to characterize and contrast the vertical aerosol distribution over the Atlantic Ocean in the polluted northern and relatively clean southern hemisphere. Three case studies, an observed pure Saharan dust plume, a Patagonian dust plume east of South America, and a case of a mixed dust/smoke plume west of Central Africa are exemplarily shown and discussed by means of their optical properties. The meridional transatlantic cruises were used to determine the latitudinal cross section of the aerosol optical thickness (AOT). Profiles of particle backscatter and extinction coefficients are presented as mean profiles for latitudinal belts to contrast northern- and southern-hemispheric aerosol loads and optical effects. Results of lidar observations at Punta Arenas (53°S), Chile, and Stellenbosch (34°S), South Africa, are shown and confirm the lower frequency of occurrence of free-tropospheric aerosol in the southern hemisphere than in the northern hemisphere. The maximum latitudinal mean AOT of 0.27 was found in the northern tropics (0– 15°N) in the Saharan outflow region. Marine AOT is typically 0.05 ± 0.03. Particle optical properties are presented separately for the marine boundary layer and the free troposphere. Concerning the contrast between the anthropogenically influenced midlatitudinal aerosol conditions in the 30– 60°N belt and the respective belt in the southern hemisphere over the remote Atlantic, it is found that the AOT and extinction coefficients for the vertical column from 0–5km (total aerosol column) and 1–5km height (lofted aerosol above the marine boundary layer) are a factor of 1.6 and 2 higher at northern midlatitudes than at respective southern midlatitudes, and a factor of 2.5 higher than at the clean marine southern

  16. Vertical profiling of aerosol particles and trace gases over the central Arctic Ocean during summer

    NASA Astrophysics Data System (ADS)

    Kupiszewski, P.; Leck, C.; Tjernström, M.; Sjogren, S.; Sedlar, J.; Graus, M.; Müller, M.; Brooks, B.; Swietlicki, E.; Norris, S.; Hansel, A.

    2013-04-01

    Unique measurements of vertical size resolved aerosol particle concentrations, trace gas concentrations and meteorological data were obtained during the Arctic Summer Cloud Ocean Study (ASCOS, http://www.ascos.se), an International Polar Year project aimed at establishing the processes responsible for formation and evolution of low-level clouds over the high Arctic summer pack ice. The experiment was conducted from onboard the Swedish icebreaker Oden, and provided both ship- and helicopter-based measurements. This study focuses on the vertical helicopter profiles and onboard measurements obtained during a three-week period when Oden was anchored to a drifting ice floe, and sheds light on the characteristics of Arctic aerosol particles and their distribution throughout the lower atmosphere. Distinct differences in aerosol particle characteristics within defined atmospheric layers are identified. Near the surface (lowermost couple hundred meters), transport from the marginal ice zone (MIZ), if sufficiently short (less than ca. 2 days), condensational growth and cloud-processing develop the aerosol population. During two of the four representative periods defined in this study, such influence is shown. At altitudes above about 1 km, long-range transport occurs frequently. However, only infrequently does large-scale subsidence descend such air masses to become entrained into the mixed layer in the high Arctic, and therefore they are unlikely to directly influence low-level stratiform cloud formation. Nonetheless, long-range transport plumes can influence the radiative balance of the PBL by influencing formation and evolution of higher clouds, as well as through precipitation transport of particles downwards. New particle formation was occasionally observed, particularly in the near-surface layer. We hypothesize that the origin of these ultrafine particles can be from biological processes, both primary and secondary

  17. Vertical profiling of aerosol particles and trace gases over the central Arctic Ocean during summer

    NASA Astrophysics Data System (ADS)

    Kupiszewski, P.; Leck, C.; Tjernström, M.; Sjogren, S.; Sedlar, J.; Graus, M.; Müller, M.; Brooks, B.; Swietlicki, E.; Norris, S.; Hansel, A.

    2013-12-01

    Unique measurements of vertical size-resolved aerosol particle concentrations, trace gas concentrations and meteorological data were obtained during the Arctic Summer Cloud Ocean Study (ASCOS, www.ascos.se), an International Polar Year project aimed at establishing the processes responsible for formation and evolution of low-level clouds over the high Arctic summer pack ice. The experiment was conducted from on board the Swedish icebreaker Oden, and provided both ship- and helicopter-based measurements. This study focuses on the vertical helicopter profiles and onboard measurements obtained during a three-week period when Oden was anchored to a drifting ice floe, and sheds light on the characteristics of Arctic aerosol particles and their distribution throughout the lower atmosphere. Distinct differences in aerosol particle characteristics within defined atmospheric layers are identified. Within the lowermost couple hundred metres, transport from the marginal ice zone (MIZ), condensational growth and cloud processing develop the aerosol population. During two of the four representative periods defined in this study, such influence is shown. At altitudes above about 1 km, long-range transport occurs frequently. However, only infrequently does large-scale subsidence descend such air masses to become entrained into the mixed layer in the high Arctic, and therefore long-range transport plumes are unlikely to directly influence low-level stratiform cloud formation. Nonetheless, such plumes can influence the radiative balance of the planetary boundary layer (PBL) by influencing formation and evolution of higher clouds, as well as through precipitation transport of particles downwards. New particle formation was occasionally observed, particularly in the near-surface layer. We hypothesize that the origin of these ultrafine particles could be in biological processes, both primary and secondary, within the open leads between

  18. Vertical Distribution and Columnar Optical Properties of Springtime Biomass-Burning Aerosols over Northern Indochina during the 7-SEAS/BASELInE field campaign

    NASA Astrophysics Data System (ADS)

    Lin, N. H.; Wang, S. H.; Welton, E. J.; Holben, B. N.; Tsay, S. C.; Giles, D. M.; Stewart, S. A.; Janjai, S.; Anh, N. X.; Hsiao, T. C.; Chen, W. N.; Lin, T. H.; Buntoung, S.; Chantara, S.; Wiriya, W.

    2015-12-01

    In this study, the aerosol optical properties and vertical distributions in major biomass-burning emission area of northern Indochina were investigated using ground-based remote sensing (i.e., four Sun-sky radiometers and one lidar) during the Seven South East Asian Studies/Biomass-burning Aerosols & Stratocumulus Environment: Lifecycles & Interactions Experiment conducted during spring 2014. Despite the high spatial variability of the aerosol optical depth (AOD; which at 500 nm ranged from 0.75 to 1.37 depending on the site), the temporal variation of the daily AOD demonstrated a consistent pattern among the observed sites, suggesting the presence of widespread smoke haze over the region. Smoke particles were characterized as small (Ångström exponent at 440-870 nm of 1.72 and fine mode fraction of 0.96), strongly absorbing (single-scattering albedo at 440 nm of 0.88), mixture of black and brown carbon particles (absorption Ångström exponent at 440-870 nm of 1.5) suspended within the planetary boundary layer (PBL). Smoke plumes driven by the PBL dynamics in the mountainous region reached as high as 5 km above sea level; these plumes subsequently spread out by westerly winds over northern Vietnam, southern China, and the neighboring South China Sea. Moreover, the analysis of diurnal variability of aerosol loading and optical properties as well as vertical profile in relation to PBL development, fire intensity, and aerosol mixing showed that various sites exhibited different variability based on meteorological conditions, fuel type, site elevation, and proximity to biomass-burning sources. These local factors influence the aerosol characteristics in the region and distinguish northern Indochina smoke from other biomass-burning regions in the world.

  19. HSRL-2 Observations of Aerosol Variability During an Aerosol Build-up Event in Houston and Comparisons With WRF-Chem

    NASA Technical Reports Server (NTRS)

    Burton, Sharon P.; Saide, Pablo; Sawamura, Patricia; Hostetler, Chris; Ferrare, Rich; Scarino, Amy Jo; Berkoff, Tim; Harper, David; Cook, Tony; Rogers, Ray; hide

    2015-01-01

    The NASA Langley airborne multi-wavelength High Spectral Resolution Lidar (HSRL-2) provides vertical distribution of aerosol optical properties as curtains of aerosol extinction, backscatter and depolarization along the flight track, plus intensive properties that are used to infer aerosol type and external mixing of types. Deployed aboard the NASA Langley King Air on the DISCOVER-AQ field mission in Houston in September 2013, HSRL-2 flew a pattern that included 18 ground sites, repeated four times a day, coordinated with a suite of airborne in situ measurements. The horizontally and vertically resolved curtains of HSRL-2 measurements give an unparalleled view of the spatial and temporal variability of aerosol, which provide broad context for interpreting other measurements and models. Detailed comparisons of aerosol extinction are made with the WRF-Chem chemical transport model along the HSRL-2 flight path. The period from Sept. 11-14 is notable for a large aerosol build-up and persistent smoke layers. We investigate the aerosol properties using the vertically resolved HSRL-2 measurements and aerosol typing analysis plus WRFChem model tracers and back trajectories, and modeling of humidification effects.

  20. Retrieval of vertical aerosol- and trace gas profiles in the Antarctic troposphere using helicopter-borne MAX-DOAS measurements

    NASA Astrophysics Data System (ADS)

    Nasse, Jan-Marcus; Zielcke, Johannes; Buxmann, Joelle; Frieß, Udo; Platt, Ulrich

    2014-05-01

    During springtime in polar regions when the sunlight returns, bromine monoxide (BrO) is released from sea ice into the atmosphere from saline surfaces due to an autocatalytic reaction mechanism. BrO affects the oxidative properties of the troposphere and can lead to a virtually complete depletion of surface ozone within a few days or even hours. Furthermore, the oxidation of gaseous elemental mercury by BrO renders this toxic compound soluble and leads to a deposition and thus entry of mercury into the vulnerable biosphere. However, the exact nature of the bromine radical sources in polar regions, as well as the details of the mechanisms leading to bromine explosions and also the interactions between dynamics and chemistry are not yet completely understood. For a better understanding of these processes, an accurate determination of the spatio-temporal distribution of BrO is crucial. We present first measurements of BrO and aerosols performed onboard a helicopter using a compact Multi AXial Differential Absorption Spectroscopy (MAX-DOAS) instrument during a cruise of the German research vessel Polarstern in the Antarctic Weddell Sea between August and October 2013. Numerous flights were performed in the boundary layer as well as in the free troposphere up to 2300m. Due to its versatility, allowing measurements at multiple altitudes with small elevation angles and thus high air mass factors, a helicopter as a platform for MAX-DOAS measurements offers a considerably improved information content throughout the lower troposphere compared to MAX-DOAS measurements from the ground. Using our HEIPRO (HEIdelberg Profile) retrieval algorithm based on optimal estimation, vertical profiles of aerosols and trace gases can be retrieved with an unprecedented vertical resolution and a better sensitivity for higher altitudes. Furthermore, these measurements allow for a thorough characterization of the dynamical and chemical processes bromine radicals are involved in. We will present

  1. Lidar characterizations of atmospheric aerosols and clouds

    NASA Astrophysics Data System (ADS)

    Ferrare, R. A.; Hostetler, C. A.; Hair, J. W.; Burton, S. P.

    2017-12-01

    Knowledge of the vertical profile, composition, concentration, and size distribution of aerosols is required to quantify the impacts of aerosols on human health, global and regional climate, clouds and precipitation. In particular, radiative forcing due to anthropogenic aerosols is the most uncertain part of anthropogenic radiative forcing, with aerosol-cloud interactions (ACI) as the largest source of uncertainty in current estimates of global radiative forcing. Improving aerosol transport model predictions of the vertical profile of aerosol optical and microphysical characteristics is crucial for improving assessments of aerosol radiative forcing. Understanding how aerosols and clouds interact is essential for investigating the aerosol indirect effect and ACI. Through its ability to provide vertical profiles of aerosol and cloud distributions as well as important information regarding the optical and physical properties of aerosols and clouds, lidar is a crucial tool for addressing these science questions. This presentation describes how surface, airborne, and satellite lidar measurements have been used to address these questions, and in particular how High Spectral Resolution Lidar (HSRL) measurements provide profiles of aerosol properties (backscatter, extinction, depolarization, concentration, size) important for characterizing radiative forcing. By providing a direct measurement of aerosol extinction, HSRL provides more accurate aerosol measurement profiles and more accurate constraints for models than standard retrievals from elastic backscatter lidar, which loses accuracy and precision at lower altitudes due to attenuation from overlying layers. Information regarding particle size and abundance from advanced lidar retrievals provides better proxies for cloud-condensation-nuclei (CCN), which are required for assessing aerosol-cloud interactions. When combined with data from other sensors, advanced lidar measurements can provide information on aerosol and

  2. Lidar-Radiometer Inversion Code (LIRIC) for the Retrieval of Vertical Aerosol Properties from Combined Lidar Radiometer Data: Development and Distribution in EARLINET

    NASA Technical Reports Server (NTRS)

    Chaikovsky, A.; Dubovik, O.; Holben, Brent N.; Bril, A.; Goloub, P.; Tanre, D.; Pappalardo, G.; Wandinger, U.; Chaikovskaya, L.; Denisov, S.; hide

    2015-01-01

    This paper presents a detailed description of LIRIC (LIdar-Radiometer Inversion Code)algorithm for simultaneous processing of coincident lidar and radiometric (sun photometric) observations for the retrieval of the aerosol concentration vertical profiles. As the lidar radiometric input data we use measurements from European Aerosol Re-search Lidar Network (EARLINET) lidars and collocated sun-photometers of Aerosol Robotic Network (AERONET). The LIRIC data processing provides sequential inversion of the combined lidar and radiometric data by the estimations of column-integrated aerosol parameters from radiometric measurements followed by the retrieval of height-dependent concentrations of fine and coarse aerosols from lidar signals using integrated column characteristics of aerosol layer as a priori constraints. The use of polarized lidar observations allows us to discriminate between spherical and non-spherical particles of the coarse aerosol mode. The LIRIC software package was implemented and tested at a number of EARLINET stations. Inter-comparison of the LIRIC-based aerosol retrievals was performed for the observations by seven EARLNET lidars in Leipzig, Germany on 25 May 2009. We found close agreement between the aerosol parameters derived from different lidars that supports high robustness of the LIRIC algorithm. The sensitivity of the retrieval results to the possible reduction of the available observation data is also discussed.

  3. The Influence of Aerosol Hygroscopicity on Retrieving the Aerosol Extincting Coefficient from MPL Data

    NASA Astrophysics Data System (ADS)

    Zhao, G.; Zhao, C.

    2016-12-01

    Micro-pulse Lidar (MPL) measurements have been widely used to profile the ambient aerosol extincting coefficient(). Lidar Ratio (LR) ,which highly depends on the particle number size distribution (PNSD) and aerosol hygroscopicity, is the most important factor to retrieve the profile. A constant AOD constrained LR is usually used in current algorithms, which would lead to large bias when the relative humidity (RH) in the mixed layer is high. In this research, the influences of PNSD, aerosol hygroscopicity and RH profiles on the vertical variation of LR were investigated based on the datasets from field measurements in the North China Plain (NCP). Results show that LR can have an enhancement factor of more than 120% when the RH reaches to 92%. A new algorithm of retrieving the profile is proposed based on the variation of LR due to aerosol hygroscopicity. The magnitude and vertical structures of retrieved using this method can be significantly different to that of the fiexed LR method. The relative difference can reach up to 40% when the RH in the mixed layer is higher than 90% . Sensitivity studies show that RH profile and PNSD affect most on the retrieved by fiexed LR method. In view of this, a scheme of LR enhancement factor by RH is proposed in the NCP. The relative differnce of the calculated between using this scheme and the new algorithm with the variable LR can be less than 10%.

  4. Estimation of aerosol direct radiative forcing in Lecce during the 2013 ADRIMED campaign

    NASA Astrophysics Data System (ADS)

    Barragan, Ruben; Romano, Salvatore; Sicard, Michaël.; Burlizzi, Pasquale; Perrone, Maria-Rita; Comeron, Adolfo

    2015-10-01

    In the framework of the ChArMEx (Chemistry-Aerosol Mediterranean Experiment, http://charmex.lsce.ipsl.fr/) initiative, a field campaign took place in the western Mediterranean Basin between 10 June and 5 July 2013 within the ADRIMED (Aerosol Direct Radiative Impact on the regional climate in the MEDiterranean region) project. The scientific objectives of ADRIMED are the characterization of the typical "Mediterranean aerosol" and its direct radiative forcing (column closure and regional scale). This work is focused on the multi-intrusion Saharan dust transport period of moderate intensity that occurred over the western and central Mediterranean Basin during the period 14 - 27 June. The dust plumes were detected by the EARLINET/ACTRIS (European Aerosol Research Lidar Network / Aerosols, Clouds, and Trace gases Research InfraStructure Network, http://www.actris.net/) lidar stations of Barcelona (16 and 17 June) and Lecce (22 June). First, two well-known and robust radiative transfer models, parametrized by lidar profiles for the aerosol vertical distribution, are validated both in the shortwave and longwave spectral range 1) at the surface with down- and up-ward flux measurements from radiometers and 2) at the top of the atmosphere with upward flux measurements from the CERES (Clouds and the Earth's Radiant Energy System) radiometers on board the AQUA and TERRA satellites. The differences between models and their limitations are discussed. The instantaneous and clear-sky direct radiative forcing of mineral dust is then estimated using lidar data for parametrizing the particle vertical distribution at Lecce. The difference between the obtained forcings is discussed in regard to the mineralogy and vertical structure of the dust plume.

  5. Latitudinal Variations In Vertical Cloud Structure Of Jupiter As Determined By Ground- based Observation With Multispectral Imaging

    NASA Astrophysics Data System (ADS)

    Sato, T.; Kasaba, Y.; Takahashi, Y.; Murata, I.; Uno, T.; Tokimasa, N.; Sakamoto, M.

    2008-12-01

    We conducted ground-based observation of Jupiter with the liquid crystal tunable filter (LCTF) and EM-CCD camera in two methane absorption bands (700-757nm, 872-950nm at 3 nm step: total of 47 wavelengths) to derive detailed Jupiter's vertical cloud structure. The 2-meter reflector telescope at Nishi-Harima astronomical observatory in Japan was used for our observation on 26-30 May, 2008. After a series of image processing (composition of high quality images in each wavelength and geometry calibration), we converted observed intensity to absolute reflectivity at each pixel using standard star. As a result, we acquired Jupiter's data cubes with high-spatial resolution (about 1") and narrow band imaging (typically 7nm) in each methane absorption band by superimposing 30 Jupiter's images obtained in short exposure time (50 ms per one image). These data sets enable us to probe different altitudes of Jupiter from 100 mbar down to 1bar level with higher vertical resolution than using convectional interference filters. To interpret observed center-limb profiles, we developed radiative transfer code based on layer adding doubling algorithm to treat multiple scattering of solar light theoretically and extracted information on aerosol altitudes and optical properties using two-cloud model. First, we fit 5 different profiles simultaneously in continuum data (745-757 nm) to retrieve information on optical thickness of haze and single scattering albedo of cloud. Second, we fit 15 different profiles around 727nm methane absorption band and 13 different profiles around 890 nm methane absorption band to retrieve information on the aerosol altitude location and optical thickness of cloud. In this presentation, we present the results of these modeling simulations and discuss the latitudinal variations of Jupiter's vertical cloud structure.

  6. Impacts of synoptic condition and planetary boundary layer structure on the trans-boundary aerosol transport from Beijing-Tianjin-Hebei region to northeast China

    NASA Astrophysics Data System (ADS)

    Miao, Yucong; Guo, Jianping; Liu, Shuhua; Zhao, Chun; Li, Xiaolan; Zhang, Gen; Wei, Wei; Ma, Yanjun

    2018-05-01

    The northeastern China frequently experiences severe aerosol pollution in winter under unfavorable meteorological conditions. How and to what extent the meteorological factors affect the air quality there are not yet clearly understood. Thus, this study investigated the impacts of synoptic patterns on the aerosol transport and planetary boundary layer (PBL) structure in Shenyang from 1 to 3 December 2016, using surface observations, sounding measurements, satellite data, and three-dimensional simulations. Results showed that the aerosol pollution occurred in Shenyang was not only related to the local emissions, but also contributed by trans-boundary transport of aerosols from the Beiijng-Tianjin-Hebei (BTH) region. In the presence of the westerly and southwesterly synoptic winds, the aerosols emitted from BTH could be brought to Shenyang. From December 2 to 3, the aerosols emitted from BTH accounted for ∼20% of near-surface PM2.5 in Shenyang. In addition, the large-scale synoptic forcings could affect the vertical mixing of pollutants through modulating the PBL structure in Shenyang. The westerly and southwesterly synoptic winds not only brought the aerosols but also the warmer air masses from the southwest regions to Shenyang. The strong warm advections above PBL could enhance the already existing thermal inversion layers capping over PBL in Shenyang, leading to the suppressions of PBL. Both the trans-boundary transport of aerosols and the suppressions of PBL caused by the large-scale synoptic forcings should be partly responsible for the poor air quality in Shenyang, in addition to the high pollutant emissions. The present study revealed the physical mechanisms underlying the aerosol pollution in Shenyang, which has important implications for better forecasting and controlling the aerosols pollution.

  7. Sources and Removal of Springtime Arctic Aerosol

    NASA Astrophysics Data System (ADS)

    Willis, M. D.; Burkart, J.; Bozem, H.; Kunkel, D.; Schulz, H.; Hanna, S.; Aliabadi, A. A.; Bertram, A. K.; Hoor, P. M.; Herber, A. B.; Leaitch, R.; Abbatt, J.

    2017-12-01

    The sources and removal mechanisms of pollution transported to Arctic regions are key factors in controlling the impact of short-lived climate forcing agents on Arctic climate. We lack a predictive understanding of pollution transport to Arctic regions largely due to poor understanding of removal mechanisms and aerosol chemical and physical processing both within the Arctic and during transport. We present vertically resolved observations of aerosol physical and chemical properties in High Arctic springtime. While much previous work has focused on characterizing episodic events of high pollutant concentrations transported to Arctic regions, here we focus on measurements made under conditions consistent with chronic Arctic Haze, which is more representative of the pollution seasonal maximum observed at long term monitoring stations. On six flights based at Alert and Eureka, Nunavut, Canada, we observe evidence for vertical variations in both aerosol sources and removal mechanisms. With support from model calculations, we show evidence for sources of partially neutralized aerosol with higher organic aerosol (OA) and black carbon content in the middle troposphere, compared to lower tropospheric aerosol with higher amounts of acidic sulfate. Further, we show evidence for aerosol depletion relative to carbon monoxide, both in the mid-to-upper troposphere and within the Arctic Boundary Layer (ABL). Dry deposition, with relatively low removal efficiency, was responsible for aerosol removal in the ABL while ice or liquid-phase scavenging was responsible for aerosol removal at higher altitudes during transport. Overall, we find that vertical variations in both regional and remote aerosol sources, and removal mechanisms, combine with long aerosol residence times to drive the properties of springtime Arctic aerosol.

  8. Aerosol profiling during the large scale field campaign CINDI-2

    NASA Astrophysics Data System (ADS)

    Apituley, Arnoud; Roozendael, Michel Van; Richter, Andreas; Wagner, Thomas; Friess, Udo; Hendrick, Francois; Kreher, Karin; Tirpitz, Jan-Lukas

    2018-04-01

    For the validation of space borne observations of NO2 and other trace gases from hyperspectral imagers, ground based instruments based on the MAXDOAS technique are an excellent choice, since they rely on similar retrieval techniques as the observations from orbit. To ensure proper traceability of the MAXDOAS observations, a thorough validation and intercomparison is mandatory. Advanced MAXDOAS observation and retrieval techniques enable inferring vertical structure of trace gases and aerosols. These techniques and their results need validation by e.g. lidar techniques. For the proper understanding of the results from passive remote sensing techniques, independent observations are needed that include parameters needed to understand the light paths, i.e. in-situ aerosol observations of optical and microphysical properties, and essential are in particular the vertical profiles of aerosol optical properties by (Raman) lidar. The approach used in the CINDI-2 campaign held in Cabauw in 2016 is presented in this paper and the results will be discussed in the presentation at the conference.

  9. Influence of Saharan dust outbreaks and atmospheric stability upon vertical profiles of size-segregated aerosols and water vapor

    NASA Astrophysics Data System (ADS)

    Giménez, Joaquín; Pastor, Carlos; Castañer, Ramón; Nicolás, José; Crespo, Javier; Carratalá, Adoración

    2010-01-01

    Vertical profiles of aerosols and meteorological parameters were obtained using a hot air balloon and motorized paraglider. They were studied under anticyclonic conditions in four different contexts. Three flights occurred near sunrise, and one took place in the central hours of the day. The effects of North African dust intrusions were analyzed, whose entrance to the study area took place above the Stable Boundary Layer (SBL) in flight 1 and below it in flight 2. These flights have been compared with a non-intrusion situation (flight 3). A fourth flight characterized the profiles in the central hours of the day with a well-formed Convective Boundary Layer (CBL). With respect to the particle number distribution, the results show that not all sizes increase within the presence of an intrusion; during the first flight the smallest particles were not affected. The particle sizes affected in the second flight fell within the 0.35-2.5 μm interval. Under situations of convective dynamics, the reduction percentage of the particle number concentration reduces with increasing altitude, independently of their size, with respect to stability conditions. The negative vertical gradient for aerosols and water vapor, characteristic of a highly stable SBL (flight 3) becomes a constant profile within a CBL (flight 4). There are two situations that seem to alter the negative vertical gradient of the water vapor mixing ratio within the SBL: the presence of an intrusion and the possible stratification of the SBL based on different degrees of stability.

  10. Evaluation of the aerosol vertical distribution in global aerosol models through comparison against CALIOP measurements: AeroCom phase II results: AEROSOL PROFILES IN AEROCOM II GCM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koffi, Brigitte; Schulz, Michael; Bréon, François-Marie

    2016-06-27

    The ability of eleven models in simulating the aerosol vertical distribution from regional to global scales, as part of the second phase of the AeroCom model inter-comparison initiative (AeroCom II) is assessed and compared to results of the first phase. The evaluation is performed using a global monthly gridded dataset of aerosol extinction profiles built on purpose from the CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) Layer Product 3.01. Results over 12 sub-continental regions show that five models improved whereas three degraded in reproducing the Zα 0-6 km mean extinction height diagnostic, which is computed over the 0-6 km altitude rangemore » for each studied region and season. While the models’ performance remains highly variable, it has generally improved in terms of inter-regional diversity and seasonality. The biases in Zα 0-6 km have notably decreased in the U.S. and European industrial and downwind maritime regions, whereas the timing of the Zα 0-6 km peak season has improved for all but two models. However, most of the models now show a Zα 0-6 km underestimation over land, notably in the dust and biomass burning regions in Asia and Africa. At global scale, the AeroCom II models better reproduce the Zα 0-6 km latitudinal variability over ocean than over land. Hypotheses for the (changes in the) the performance of the individual models and for the inter-model diversity are discussed. We also provide an analysis of the CALIOP limitations and uncertainties that can contribute to the differences between the simulations and observations.« less

  11. Cloud vertical structure, precipitation, and cloud radiative effects over Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Yan, Y.; Lu, J.

    2017-12-01

    The vertical structure of clouds and its connection with precipitation and cloud radiative effects (CRE) over the Tibetan Plateau (TP) are analyzed and compared with its neighboring land and tropical oceans based on CloudSat and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) products and the Tropical Rainfall Measuring Mission (TRMM) precipitation data. Unique characteristics of cloud vertical structure and CRE over the TP are found. The cloud amount shows seasonal variation over the TP, which presents a single peak (located in 7-11 km) during January to April and two peaks (located in 5-8 km and 11-17 km separately) after mid-June, and then resumes to one peak (located in 5-10 km) after mid-August. Topography-induced restriction on moisture supply leads to a compression effect on clouds, i.e., the reduction in both cloud thickness and number of cloud layers, over the TP. The topography-induced compression effect is also shown in the range in the variation of cloud thickness and cloud-top height corresponding to different precipitation intensity, which is much smaller over the TP than its neighboring regions. In summer, cloud ice particles over the TP are mostly located at lower altitude (5-10 km) with richer variety of sizes and aggregation in no rain conditions compared to other regions. Ice water content becomes abundant and the number concentration tends to be dense at higher levels when precipitation is enhanced. The longwave CRE in the atmosphere over the TP is a net cooling effect. The vertical structure of CRE over the TP is unique compared to other regions: there exists a strong cooling layer of net CRE at the altitude of 8 km, from June to the beginning of October; the net radiative heating layer above the surface is shallower but stronger underneath 7 km and with a stronger seasonal variation over the TP.

  12. Retrieval of Vertical Aerosol and Trace Gas Distributions from Polarization Sensitive Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS)

    NASA Astrophysics Data System (ADS)

    Tirpitz, Jan-Lukas; Friess, Udo; Platt, Ulrich

    2017-04-01

    An accurate knowledge of the vertical distribution of trace gases and aerosols is crucial for our understanding of the chemical and dynamical processes in the lower troposphere. Their accurate determination is typically only possible by means of laborious and expensive airborne in-situ measurements but in the recent decades, numerous promising ground-based remote sensing approaches have been developed. One of them is to infer vertical distributions from "Differential Optical Absorption Spectroscopy" (DOAS) measurements. DOAS is a technique to analyze UV- and visible radiation spectra of direct or scattered sunlight, which delivers information on different atmospheric parameters, integrated over the light path from space to the instrument. An appropriate set of DOAS measurements, recorded under different viewing directions (Multi-Axis DOAS) and thus different light path geometries, provides information on the atmospheric state. The vertical profiles of aerosol properties and trace gas concentrations can be retrieved from such a set by numerical inversion techniques, incorporating radiative transfer models. The information content of measured data is rarely sufficient for a well-constrained retrieval, particularly for atmospheric layers above 1 km. We showed in first simulations that, apart from spectral properties, the polarization state of skylight is likely to provide a significant amount of additional information on the atmospheric state and thus to enhance retrieval quality. We present first simulations, expectations and ideas on how to implement and characterize a polarization sensitive Multi-Axis DOAS instrument and a corresponding profile retrieval algorithm.

  13. Dependence of air masses type on PBL vertical structure retrieved at the Mace Head station during EUCAARI campaign.

    NASA Astrophysics Data System (ADS)

    Milroy, Conor; Martucci, Giovanni; O'Dowd, Colin

    2010-05-01

    During the EUCAARI Intensive Observing Period held at the Mace Head GAW station from mid-May to mid-June, 2008, the PBL depth has been continuously measured by two ceilometers (Vaisala CL31 and Jenoptik CHM15K) and a microwave radiometer (RPG-HATPRO). The Lidar-Ceilometer, through the gradients in aerosol backscatter profiles, and the microwave profiler, through gradients in the specific humidity profiles, were used to remotely-sense the boundary layer structure. An automatic, newly developed Temporal Height-Tracking (THT) algorithm (Martucci et al., 2010) have been applied to both type of instruments data to retrieve the 2-layered structure of the local marine boundary layer. The two layers are defined as a lower, well mixed layer, i.e. the surface mixed layer, and the layer occupying the region below the free Troposphere inversion, i.e. the decoupled residual or convective layer. A categorization of the incoming air masses has been performed based on their origins and been used to asses the correlation with the PBL depths. The study confirmed the dependence of PBL vertical structure on different air masses and different type of advected aerosol.

  14. Vertical distribution of dimethylsulfide, sulfur dioxide, aerosol ions, and radon over the northeast Pacific Ocean

    NASA Technical Reports Server (NTRS)

    Andreae, M. O.; Berresheim, H.; Andreae, T. W.; Kritz, M. A.; Bates, T. S.

    1988-01-01

    The vertical distributions, in temperate latitudes, of dimethylsulfide (DMS), SO2, radon, methanesulfonate (MSA), nonsea-salt sulfate (nss-sulfate), and aerosol Na(+), NH4(+), and NO(-) ions were determined in samples collected by an aircraft over the northeast Pacific Ocean during May 3-12, 1985. DMS was also determined in surface seawater. It was found that DMS concentrations, both in seawater and in the atmospheric boundary layer, were significantly lower than the values reported previously for subtropical and tropical regions, reflecting the seasonal variability in the temperate North Pacific. The vertical profiles of DMS, MSA, SO2, and nss-sulfate were found to be strongly dependent on the convective stability of the atmosphere and on air mass origin. Biogenic sulfur emissions could account for most of the sulfur budget in the boundary layer, while the long-range transport of continentally derived air masses was mainly responsible for the elevated levels of both SO2 and nss-sulfate in the free troposphere.

  15. Profiling Transboundary Aerosols over Taiwan and Assessing Their Radiative Effects

    NASA Technical Reports Server (NTRS)

    Wang, Sheng-Hsiang; Lin, Neng-Huei; Chou, Ming-Dah; Tsay, Si-Chee; Welton, Ellsworth J.; Hsu, N. Christina; Giles, David M.; Liu, Gin-Rong; Holben, Brent N.

    2010-01-01

    A synergistic process was developed to study the vertical distributions of aerosol optical properties and their effects on solar heating using data retrieved from ground-based radiation measurements and radiative transfer simulations. Continuous MPLNET and AERONET observations were made at a rural site in northern Taiwan from 2005 to 2007. The aerosol vertical extinction profiles retrieved from ground-based lidar measurements were categorized into near-surface, mixed, and two-layer transport types, representing 76% of all cases. Fine-mode (Angstrom exponent, alpha, approx.1.4) and moderate-absorbing aerosols (columnar single-scattering albedo approx.0.93, asymmetry factor approx.0.73 at 440 nm wavelength) dominated in this region. The column-integrated aerosol optical thickness at 500 nm (tau(sub 500nm)) ranges from 0.1 to 0.6 for the near-surface transport type, but can be doubled in the presence of upper-layer aerosol transport. We utilize aerosol radiative efficiency (ARE; the impact on solar radiation per unit change of tau(sub 500nm)) to quantify the radiative effects due to different vertical distributions of aerosols. Our results show that the ARE at the top-of-atmosphere (-23 W/ sq m) is weakly sensitive to aerosol vertical distributions confined in the lower troposphere. On the other hand, values of the ARE at the surface are -44.3, -40.6 and -39.7 W/sq m 38 for near-surface, mixed, and two-layer transport types, respectively. Further analyses show that the impact of aerosols on the vertical profile of solar heating is larger for the near-surface transport type than that of two-layer transport type. The impacts of aerosol on the surface radiation and the solar heating profiles have implications for the stability and convection in the lower troposphere.

  16. The Potential of The Synergy of Sunphotometer and Lidar Data to Validate Vertical Profiles of The Aerosol Mass Concentration Estimated by An Air Quality Model

    NASA Astrophysics Data System (ADS)

    Siomos, N.; Filioglou, M.; Poupkou, A.; Liora, N.; Dimopoulos, S.; Melas, D.; Chaikovsky, A.; Balis, D. S.

    2016-06-01

    Vertical profiles of the aerosol mass concentration derived by the Lidar/Radiometer Inversion Code (LIRIC), that uses combined sunphotometer and lidar data, were used in order to validate the aerosol mass concentration profiles estimated by the air quality model CAMx. Lidar and CIMEL measurements performed at the Laboratory of Atmospheric Physics of the Aristotle University of Thessaloniki, Greece (40.5N, 22.9E) from the period 2013-2014 were used in this study.

  17. Vertical structures in vibrated wormlike micellar solutions

    NASA Astrophysics Data System (ADS)

    Epstein, Tamir; Deegan, Robert

    2008-11-01

    Vertically vibrated shear thickening particulate suspensions can support a free-standing interfaces oriented parallel to gravity. We find that shear thickening worm-like micellar solutions also support such vertical interfaces. Above a threshold in acceleration, the solution spontaneously accumulates into a labyrinthine pattern characterized by a well-defined vertical edge. The formation of vertical structures is of interest because they are unique to shear-thickening fluids, and they indicate the existence of an unknown stress bearing mechanism.

  18. Global Distribution and Vertical Structure of Clouds Revealed by CALIPSO

    NASA Astrophysics Data System (ADS)

    Yi, Y.; Minnis, P.; Winker, D.; Huang, J.; Sun-Mack, S.; Ayers, K.

    2007-12-01

    Understanding the effects of clouds on Earth's radiation balance, especially on longwave fluxes within the atmosphere, depends on having accurate knowledge of cloud vertical location within the atmosphere. The Cloud- Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite mission provides the opportunity to measure the vertical distribution of clouds at a greater detail than ever before possible. The CALIPSO cloud layer products from June 2006 to June 2007 are analyzed to determine the occurrence frequency and thickness of clouds as functions of time, latitude, and altitude. In particular, the latitude-longitude and vertical distributions of single- and multi-layer clouds and the latitudinal movement of cloud cover with the changing seasons are examined. The seasonal variablities of cloud frequency and geometric thickness are also analyzed and compared with similar quantities derived from the Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) using the Clouds and the Earth's Radiant Energy System (CERES) cloud retrieval algorithms. The comparisons provide an estimate of the errors in cloud fraction, top height, and thickness incurred by passive algorithms.

  19. Aerosol Optical Properties Measured Onboard the Ronald H. Brown During ACE Asia as a Function of Aerosol Chemical Composition and Source Region

    NASA Technical Reports Server (NTRS)

    Quinn, P. K.; Coffman, D. J.; Bates, T. S.; Welton, E. J.; Covert, D. S.; Miller, T. L.; Johnson, J. E.; Maria, S.; Russell, L.; Arimoto, R.

    2004-01-01

    During the ACE Asia intensive field campaign conducted in the spring of 2001 aerosol properties were measured onboard the R/V Ronald H. Brown to study the effects of the Asian aerosol on atmospheric chemistry and climate in downwind regions. Aerosol properties measured in the marine boundary layer included chemical composition; number size distribution; and light scattering, hemispheric backscattering, and absorption coefficients. In addition, optical depth and vertical profiles of aerosol 180 deg backscatter were measured. Aerosol within the ACE Asia study region was found to be a complex mixture resulting from marine, pollution, volcanic, and dust sources. Presented here as a function of air mass source region are the mass fractions of the dominant aerosol chemical components, the fraction of the scattering measured at the surface due to each component, mass scattering efficiencies of the individual components, aerosol scattering and absorption coefficients, single scattering albedo, Angstrom exponents, optical depth, and vertical profiles of aerosol extinction. All results except aerosol optical depth and the vertical profiles of aerosol extinction are reported at a relative humidity of 55 +/- 5%. An over-determined data set was collected so that measured and calculated aerosol properties could be compared, internal consistency in the data set could be assessed, and sources of uncertainty could be identified. By taking into account non-sphericity of the dust aerosol, calculated and measured aerosol mass and scattering coefficients agreed within overall experimental uncertainties. Differences between measured and calculated aerosol absorption coefficients were not within reasonable uncertainty limits, however, and may indicate the inability of Mie theory and the assumption of internally mixed homogeneous spheres to predict absorption by the ACE Asia aerosol. Mass scattering efficiencies of non-sea salt sulfate aerosol, sea salt, submicron particulate organic

  20. Titan's Aerosol and Stratospheric Ice Opacities Between 18 and 500 Micrometers: Vertical and Spectral Characteristics from Cassini CIRS

    NASA Technical Reports Server (NTRS)

    Anderson, Carrie M.; Samuelson, Robert E.

    2011-01-01

    Vertical distributions and spectral characteristics of Titan's photochemical aerosol and stratospheric ices are determined between 20 and 560 per centimeter (500-18 micrometers) from the Cassini Composite Infrared Spectrometer (CIRS). Results are obtained for latitudes of 15 N, 15 S, and 58 S, where accurate temperature profiles can be independently determined. In addition, estimates of aerosol and ice abundances at 62 N relative to those at 15 S are derived. Aerosol abundances are comparable at the two latitudes, but stratospheric ices are approximately 3 times more abundant at 62 N than at 15 S. Generally, nitrile ice clouds (probably HCN and HC3N), as inferred from a composite emission feature at approximately 160 per centimeter, appear to be located over a narrow altitude range in the stratosphere centered at approximately 90 km. Although most abundant at high northern latitudes, these nitrile ice clouds extend down through low latitudes and into mid southern latitudes, at least as far as 58 S. There is some evidence of a second ice cloud layer at approximately 60 km altitude at 58 S associated with an emission feature at approximately 80 per centimeter. We speculate that the identify of this cloud may be due to C2H6 ice, which in the vapor phase is the most abundant hydrocarbon (next to CH4) in the stratosphere of Titan. Unlike the highly restricted range of altitudes (50-100 km) associated with organic condensate clouds, Titan's photochemical aerosol appears to be well-mixed from the surface to the top of the stratosphere near an altitude of 300 km, and the spectral shape does not appear to change between 15 N and 58 S latitude. The ratio of aerosol-to-gas scale heights range from 1.3-2.4 at about 160 km to 1.1-1.4 at 300 km, although there is considerable variability with latitude, The aerosol exhibits a very broad emission feature peaking at approximately 140 per centimeter. Due to its extreme breadth and low wavenumber, we speculate that this feature may

  1. Evaluation of spatio-temporal variability of Hamburg Aerosol Climatology against aerosol datasets from MODIS and CALIOP

    NASA Astrophysics Data System (ADS)

    Pappas, V.; Hatzianastassiou, N.; Papadimas, C.; Matsoukas, C.; Kinne, S.; Vardavas, I.

    2013-08-01

    The new global aerosol climatology named HAC (Hamburg Aerosol Climatology) is compared against MODIS (Collection 5, 2000-2007) and CALIOP (Level 2-version 3, 2006-2011) retrievals. The comparison of aerosol optical depth (AOD) from HAC against MODIS shows larger HAC AOD values over regions with higher aerosol loads and smaller HAC AOD values than MODIS for regions with lower loads. The HAC data are found to be more reliable over land and for low AOD values. The largest differences between HAC and MODIS occur from March to August for the Northern Hemisphere and from September to February for the Southern Hemisphere. In addition, both the spectral variability and vertical distribution of the HAC AOD are examined at selected AERONET (1998-2007) sites, representative of main aerosol types (pollutants, sea salt, biomass and dust). Based on comparisons against spectral AOD values from AERONET, the mean absolute percentage error in HAC AOD data is 25% at ultraviolet wavelengths (400 nm), 6-12% at visible and 18% at near-infrared (1000 nm). For the same AERONET sites, the HAC AOD vertical distribution is compared against CALIOP space lidar data. On a daily average basis, HAD AOD is less by 9% in the lowest 3 km than CALIOP values, especially for sites with biomass burning smoke, desert dust and sea salt spray. Above the boundary layer, the HAC AOD vertical distribution is reliable.

  2. Aerosol Activation Properties within and above Mixing Layer in the North China Plain

    NASA Astrophysics Data System (ADS)

    Deng, Z.; Ran, L.

    2013-12-01

    Aerosol particles, serving as cloud condensation nuclei (CCN), may modify the properties of clouds and have an impact on climate. The vertical distribution of aerosols and their activation properties is critical to quantify the effect of aerosols on clouds. An intensive field campaign, Vertical Observations of trace Gases and Aerosols in the North China Plain (VOGA-NCP 2013), was conducted in the North China Plain during the late July and early August 2013 to measure the vertical profiles of atmospheric components in this polluted region and estimate their effects on atmospheric environment and climate. Aerosols were measured with in-situ instruments and Lidar. Particularly, the aerosols were collected at 1000 m height with a 1 m3 bag sampler attached to a tethered balloon, and subsequently measured with combined scanning mobility particle sizer (SMPS) and CCN counter. Comparisons of size-resolved activation ratios at ground level and 1000 m height showed that aerosols in upper atmosphere were not only less concentrated, but also less CCN-active than those at the surface. The difference in aerosol properties between upper atmosphere and the ground indicates that the analysis of impacts of aerosols on cloud might be misleading in heavily polluted region based on the relationship of cloud properties and surface aerosols or column without considering the vertical distribution of aerosol activation abilities.

  3. Use of the NASA GEOS-5 SEAC4RS Meteorological and Aerosol Reanalysis for assessing simulated aerosol optical properties as a function of smoke age

    NASA Astrophysics Data System (ADS)

    Randles, C. A.; da Silva, A. M., Jr.; Colarco, P. R.; Darmenov, A.; Buchard, V.; Govindaraju, R.; Chen, G.; Hair, J. W.; Russell, P. B.; Shinozuka, Y.; Wagner, N.; Lack, D.

    2014-12-01

    The NASA Goddard Earth Observing System version 5 (GEOS-5) Earth system model, which includes an online aerosol module, provided chemical and weather forecasts during the SEAC4RS field campaign. For post-mission analysis, we have produced a high resolution (25 km) meteorological and aerosol reanalysis for the entire campaign period. In addition to the full meteorological observing system used for routine NWP, we assimilate 550 nm aerosol optical depth (AOD) derived from MODIS (both Aqua and Terra satellites), ground-based AERONET sun photometers, and the MISR instrument (over bright surfaces only). Daily biomass burning emissions of CO, CO2, SO2, and aerosols are derived from MODIS fire radiative power retrievals. We have also introduced novel smoke "age" tracers, which provide, for a given time, a snapshot histogram of the age of simulated smoke aerosol. Because GEOS-5 assimilates remotely sensed AOD data, it generally reproduces observed (column) AOD compared to, for example, the airborne 4-STAR instrument. Constraining AOD, however, does not imply a good representation of either the vertical profile or the aerosol microphysical properties (e.g., composition, absorption). We do find a reasonable vertical structure for aerosols is attained in the model, provided actual smoke injection heights are not much above the planetary boundary layer, as verified with observations from DIAL/HRSL aboard the DC8. The translation of the simulated aerosol microphysical properties to total column AOD, needed in the aerosol assimilation step, is based on prescribed mass extinction efficiencies that depend on wavelength, composition, and relative humidity. Here we also evaluate the performance of the simulated aerosol speciation by examining in situ retrievals of aerosol absorption/single scattering albedo and scattering growth factor (f(RH)) from the LARGE and AOP suite of instruments. Putting these comparisons in the context of smoke age as diagnosed by the model helps us to

  4. Measurement and Modeling of Vertically Resolved Aerosol Optical Properties and Radiative Fluxes Over the ARM SGP Site

    NASA Technical Reports Server (NTRS)

    Schmid, B.; Arnott, P.; Bucholtz, A.; Colarco, P.; Covert, D.; Eilers, J.; Elleman, R.; Ferrare, R.; Flagan, R.; Jonsson, H.

    2003-01-01

    In order to meet one of its goals - to relate observations of radiative fluxes and radiances to the atmospheric composition - the Department of Energy's Atmospheric Radiation Measurement (ARM) program has pursued measurements and modeling activities that attempt to determine how aerosols impact atmospheric radiative transfer, both directly and indirectly. However, significant discrepancies between aerosol properties measured in situ or remotely remain. One of the objectives of the Aerosol Intensive Operational Period (TOP) conducted by ARM in May 2003 at the ARM Southern Great Plains (SGP) site in north central Oklahoma was to examine and hopefully reduce these differences. The IOP involved airborne measurements from two airplanes over the heavily instrumented SGP site. We give an overview of airborne results obtained aboard the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter aircraft. The Twin Otter performed 16 research flights over the SGP site. The aircraft carried instrumentation to perform in-situ measurements of aerosol absorption, scattering, extinction and particle size. This included such novel techniques as the photoacoustic and cavity ring-down methods for in-situ absorption (675 nm) and extinction (675 and 1550 nm) and a new multiwavelength, filter-based absorption photometer (467, 530, 660 nm). A newly developed instrument measured cloud condensation nucleus concentration (CCN) concentrations at two supersaturation levels. Aerosol optical depth and extinction (354-2139 nm) were measured with the NASA Ames Airborne Tracking 14-channel sunphotometer. Furthermore, up-and downwelling solar (broadband and spectral) and infrared radiation were measured using seven individual radiometers. Three up-looking radiometers werer mounted on a newly developed stabilized platform, keeping the instruments level up to aircraft pitch and roll angles of approximately 10(exp 0). This resulted in unprecedented continuous vertical profiles

  5. Lidar Investigation of Aerosol Pollution Distribution near a Coal Power Plant

    NASA Technical Reports Server (NTRS)

    Mitsev, TS.; Kolarov, G.

    1992-01-01

    Using aerosol lidars with high spatial and temporal resolution with the possibility of real-time data interpretation can solve a large number of ecological problems related to the aerosol-field distribution and variation and the structure of convective flows. Significantly less expensive specialized lidars are used in studying anthropogenic aerosols in the planetary boundary layer. Here, we present results of lidar measurements of the mass-concentration field around a coal-fired power plant with intensive local aerosol sources. We studied the pollution evolution as a function of the emission dynamics and the presence of retaining layers. The technique used incorporates complex analysis of three types of lidar mapping: horizontal map of the aerosol field, vertical cross-section map, and a series of profiles along a selected path. The lidar-sounding cycle was performed for the time of atmosphere's quasi-stationarity.

  6. Vertical profile of elemental concentrations in aerosol particles in the Bermuda area during GCE/CASE/WATOX

    NASA Astrophysics Data System (ADS)

    Ennis, G.; Sievering, H.

    1990-06-01

    During the 1988 Global Change Expedition/Coordinated Air-Sea Experiment/Western Atlantic Ocean Experiment (GCE/CASE/WATOX) joint effort, research was conducted to determine elemental concentrations in atmospheric aerosol particles near Bermuda, to construct a three-level (15, 150, and 2600 m ASL) vertical profile of these concentrations, and to ascertain the source of the particles. Samples were collected by the NOAA King Air aircraft and NOAA ship Mt. Mitchell on July 24-28, 1988. Concentration determinations were made for 16 elements through the use of an X ray fluorescence instrument designed for analysis of small-mass samples. A layering effect was found; concentrations of several elements at 150 m were more than twice their respective concentrations at 15 m and 2600 m. Enrichment factors, V/Mn ratio, and correlations between concentrations suggest a Saharan mineral source, despite air mass back trajectories that show no direct continental input for up to 10 days prior to sample collection. Estimated total mineral aerosol concentrations at 15 m, 150 m, and 2600 m are 1.5, 4.1, and 2.1 μg m-3.

  7. Seasonal aerosol characteristics in the Amazon rain forest

    NASA Astrophysics Data System (ADS)

    Baars, H.; Althausen, D.; Ansmann, A.; Engelmann, R.; Heese, B.; Müller, D.; Pauliquevis, T.; Souza, R.; Artaxo, P.

    2012-04-01

    For the first time in Amazonia, continuous measurements of the vertical aerosol structure were carried out in the framework of EUCAARI (European Integrated Project on Aerosol, Cloud, Climate, Air Quality Interactions) and AMAZE-08 (Amazonian Aerosol Characterization Experiment). The observations were performed 60 km north of Manaus, Brazil (at 2° 35.5' S and 60° 2.3' W) in the central northern part of the Amazon rain forest from January to November 2008 with the automated multi-wavelength-Raman-polarization-lidar PollyXT. With this instrument, vertical profiles of the particle backscatter coefficient at 355, 532, and 1064 nm, of the particle extinction coefficient at 355 and 532 nm, and of the particle linear depolarization ratio at 355 nm can be determined. During the 10-months observational period, measurements were performed on 211 days resulting in more than 2500 hours of tropospheric aerosol and cloud profile observations. The analysis of the long-term data set revealed strong differences in the aerosol characteristics between the wet and the dry season. In the wet season, very clean atmospheric conditions occurred in ca. 50% of all observation cases. During these clean conditions, the aerosol optical depth (AOD) at 532 nm was less than 0.05 and the aerosol was trapped in the lowermost 2 km of the troposphere. However, also intrusions of Saharan dust and African biomass-burning aerosol (BBA) - characterized by a significantly increased AOD and particle depolarization ratio - were observed in about one third (32%) of all lidar observations. These African aerosol plumes extended usually from the surface up to about 3.5 km agl. During the dry season, BBA from fires on the South American continent was the dominant aerosol species. The mean AOD of the dry season was found to be a factor of 3 higher than the mean AOD of the wet season (0.26 compared to 0.08 at 532 nm). This is due to the high BBA concentration in the atmosphere. Maximum AOD values were less than 0

  8. Exploring the Effects of Cloud Vertical Structure on Cloud Microphysical Retrievals based on Polarized Reflectances

    NASA Astrophysics Data System (ADS)

    Miller, D. J.; Zhang, Z.; Platnick, S. E.; Ackerman, A. S.; Cornet, C.; Baum, B. A.

    2013-12-01

    A polarized cloud reflectance simulator was developed by coupling an LES cloud model with a polarized radiative transfer model to assess the capabilities of polarimetric cloud retrievals. With future remote sensing campaigns like NASA's Aerosols/Clouds/Ecosystems (ACE) planning to feature advanced polarimetric instruments it is important for the cloud remote sensing community to understand the retrievable information available and the related systematic/methodical limitations. The cloud retrieval simulator we have developed allows us to probe these important questions in a realistically relevant test bed. Our simulator utilizes a polarized adding-doubling radiative transfer model and an LES cloud field from a DHARMA simulation (Ackerman et al. 2004) with cloud properties based on the stratocumulus clouds observed during the DYCOMS-II field campaign. In this study we will focus on how the vertical structure of cloud microphysics can influence polarized cloud effective radius retrievals. Numerous previous studies have explored how retrievals based on total reflectance are affected by cloud vertical structure (Platnick 2000, Chang and Li 2002) but no such studies about the effects of vertical structure on polarized retrievals exist. Unlike the total cloud reflectance, which is predominantly multiply scattered light, the polarized reflectance is primarily the result of singly scattered photons. Thus the polarized reflectance is sensitive to only the uppermost region of the cloud (tau~<1) where photons can scatter once and still escape before being scattered again. This means that retrievals based on polarized reflectance have the potential to reveal behaviors specific to the cloud top. For example cloud top entrainment of dry air, a major influencer on the microphysical development of cloud droplets, can be potentially studied with polarimetric retrievals.

  9. On the Specification of Smoke Injection Heights for Aerosol Forecasting

    NASA Astrophysics Data System (ADS)

    da Silva, A.; Schaefer, C.; Randles, C. A.

    2014-12-01

    The proper forecasting of biomass burning (BB) aerosols in global or regional transport models requires not only the specification of emission rates with sufficient temporal resolution but also the injection layers of such emissions. While current near realtime biomass burning inventories such as GFAS, QFED, FINN, GBBEP and FLAMBE provide such emission rates, it is left for each modeling system to come up with its own scheme for distributing these emissions in the vertical. A number of operational aerosol forecasting models deposits BB emissions in the near surface model layers, relying on the model's parameterization of turbulent and convective transport to determine the vertical mass distribution of BB aerosols. Despite their simplicity such schemes have been relatively successful reproducing the vertical structure of BB aerosols, except for those large fires that produce enough buoyancy to puncture the PBL and deposit the smoke at higher layers. Plume Rise models such as the so-called 'Freitas model', parameterize this sub-grid buoyancy effect, but require the specification of fire size and heat fluxes, none of which is readily available in near real-time from current remotely-sensed products. In this talk we will introduce a bayesian algorithm for estimating file size and heat fluxes from MODIS brightness temperatures. For small to moderate fires the Freitas model driven by these heat flux estimates produces plume tops that are highly correlated with the GEOS-5 model estimate of PBL height. Comparison to MINX plume height estimates from MISR indicates moderate skill of this scheme predicting the injection height of large fires. As an alternative, we make use of OMPS UV aerosol index data in combination with estimates of Overshooting Convective Tops (from MODIS and Geo-stationary satellites) to detect PyCu events and specify the BB emission vertical mass distribution in such cases. We will present a discussion of case studies during the SEAC4RS field campaign in

  10. Comparative Study of Aerosol and Cloud Detected by CALIPSO and OMI

    NASA Technical Reports Server (NTRS)

    Chen, Zhong; Torres, Omar; McCormick, M. Patrick; Smith, William; Ahn, Changwoo

    2012-01-01

    The Ozone Monitoring Instrument (OMI) on the Aura Satellite detects the presence of desert dust and smoke particles (also known as aerosols) in terms of a parameter known as the UV Aerosol Index (UV AI). The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) mission measures the vertical distribution of aerosols and clouds. Aerosols and clouds play important roles in the atmosphere and climate system. Accurately detecting their presence, altitude, and properties using satellite radiance measurements is a very important task. This paper presents a comparative analysis of the CALIPSO Version 2 Vertical Feature Mask (VFM) product with the (OMI) UV Aerosol Index (UV AI) and reflectivity datasets for a full year of 2007. The comparison is done at regional and global scales. Based on CALIPSO arid OMI observations, the vertical and horizontal extent of clouds and aerosols are determined and the effects of aerosol type selection, load, cloud fraction on aerosol identification are discussed. It was found that the spatial-temporal correlation found between CALIPSO and OMI observations, is strongly dependent on aerosol types and cloud contamination. CALIPSO is more sensitivity to cloud and often misidentifies desert dust aerosols as cloud, while some small scale aerosol layers as well as some pollution aerosols are unidentified by OMI UV AI. Large differences in aerosol distribution patterns between CALIPSO and OMI are observed, especially for the smoke and pollution aerosol dominated areas. In addition, the results found a significant correlation between CALIPSO lidar 1064 nm backscatter and the OMI UV AI over the study regions.

  11. Vertical structure of foggy haze over the Beijing-Tianjin-Hebei area in January 2013

    NASA Astrophysics Data System (ADS)

    Han, Feng; Xu, Jun; He, Youjiang; Dang, Hongyan; Yang, Xuezhen; Meng, Fan

    2016-08-01

    In January 2013, frequent episodes of intense air pollution occurred in the Beijing-Tianjin-Hebei area (BTH), China. Besides the occurrence of region-wide dry haze pollution, foggy haze conditions also developed across the region on numerous days, lasting into the afternoon. Synergistic analysis, using multisatellite datasets, air sounding and surface meteorological observations, indicated that there was a vertical overlap of fog and aerosol layers during the foggy haze episodes in the region. Fog appeared at a low level of the atmosphere. The altitude of the upper boundary of the fog differed across the region, but it was always below 1 km. The aerosol layer that closely contacted with the top of the underlying fog was rather dense, having a high concentration comparable to that during severe pollution on the ground. Above the dense aerosol layer, aerosol with a concentration equivalent to that of moderate pollution stretched up to an altitude of 2 km. Beyond that, a tenuous aerosol layer extended 5 km into the atmosphere. This overlapping of fog and haze layers frequently occurred across the region in January 2013. The occurrence of a foggy haze over BTH could worsen the regional air quality, and its appearance across this region would have notable effects on the radiation balance.

  12. Biogenic VOC oxidation and organic aerosol formation in an urban nocturnal boundary layer: aircraft vertical profiles in Houston, TX

    NASA Astrophysics Data System (ADS)

    Brown, S. S.; Dubé, W. P.; Bahreini, R.; Middlebrook, A. M.; Brock, C. A.; Warneke, C.; de Gouw, J. A.; Washenfelder, R. A.; Atlas, E.; Peischl, J.; Ryerson, T. B.; Holloway, J. S.; Schwarz, J. P.; Spackman, R.; Trainer, M.; Parrish, D. D.; Fehshenfeld, F. C.; Ravishankara, A. R.

    2013-11-01

    Organic compounds are a large component of aerosol mass, but organic aerosol (OA) sources remain poorly characterized. Recent model studies have suggested nighttime oxidation of biogenic hydrocarbons as a potentially large OA source, but analysis of field measurements to test these predictions is sparse. We present nighttime vertical profiles of nitrogen oxides, ozone, VOCs and aerosol composition measured during low approaches of the NOAA P-3 aircraft to airfields in Houston, TX. This region has large emissions of both biogenic hydrocarbons and nitrogen oxides. The latter category serves as a source of the nitrate radical, NO3, a key nighttime oxidant. Biogenic VOCs (BVOC) and urban pollutants were concentrated within the nocturnal boundary layer (NBL), which varied in depth from 100-400 m. Despite concentrated NOx at low altitude, ozone was never titrated to zero, resulting in rapid NO3 radical production rates of 0.2-2.7 ppbv h-1 within the NBL. Monoterpenes and isoprene were frequently present within the NBL and underwent rapid oxidation (up to 1 ppbv h-1), mainly by NO3 and to a lesser extent O3. Concurrent enhancement in organic and nitrate aerosol on several profiles was consistent with primary emissions and with secondary production from nighttime BVOC oxidation, with the latter equivalent to or slightly larger than the former. Some profiles may have been influenced by biomass burning sources as well, making quantitative attribution of organic aerosol sources difficult. Ratios of organic aerosol to CO within the NBL ranged from 14 to 38 μg m-3 OA/ppmv CO. A box model simulation incorporating monoterpene emissions, oxidant formation rates and monoterpene SOA yields suggested overnight OA production of 0.5 to 9 μg m-3.

  13. LIVAS: a 3-D multi-wavelength aerosol/cloud database based on CALIPSO and EARLINET

    NASA Astrophysics Data System (ADS)

    Amiridis, V.; Marinou, E.; Tsekeri, A.; Wandinger, U.; Schwarz, A.; Giannakaki, E.; Mamouri, R.; Kokkalis, P.; Binietoglou, I.; Solomos, S.; Herekakis, T.; Kazadzis, S.; Gerasopoulos, E.; Proestakis, E.; Kottas, M.; Balis, D.; Papayannis, A.; Kontoes, C.; Kourtidis, K.; Papagiannopoulos, N.; Mona, L.; Pappalardo, G.; Le Rille, O.; Ansmann, A.

    2015-07-01

    We present LIVAS (LIdar climatology of Vertical Aerosol Structure for space-based lidar simulation studies), a 3-D multi-wavelength global aerosol and cloud optical database, optimized to be used for future space-based lidar end-to-end simulations of realistic atmospheric scenarios as well as retrieval algorithm testing activities. The LIVAS database provides averaged profiles of aerosol optical properties for the potential spaceborne laser operating wavelengths of 355, 532, 1064, 1570 and 2050 nm and of cloud optical properties at the wavelength of 532 nm. The global database is based on CALIPSO observations at 532 and 1064 nm and on aerosol-type-dependent backscatter- and extinction-related Ångström exponents, derived from EARLINET (European Aerosol Research Lidar Network) ground-based measurements for the UV and scattering calculations for the IR wavelengths, using a combination of input data from AERONET, suitable aerosol models and recent literature. The required spectral conversions are calculated for each of the CALIPSO aerosol types and are applied to CALIPSO backscatter and extinction data corresponding to the aerosol type retrieved by the CALIPSO aerosol classification scheme. A cloud optical database based on CALIPSO measurements at 532 nm is also provided, neglecting wavelength conversion due to approximately neutral scattering behavior of clouds along the spectral range of LIVAS. Averages of particle linear depolarization ratio profiles at 532 nm are provided as well. Finally, vertical distributions for a set of selected scenes of specific atmospheric phenomena (e.g., dust outbreaks, volcanic eruptions, wild fires, polar stratospheric clouds) are analyzed and spectrally converted so as to be used as case studies for spaceborne lidar performance assessments. The final global data set includes 4-year (1 January 2008-31 December 2011) time-averaged CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) data on a uniform grid of 1

  14. Ice crystallization in ultrafine water-salt aerosols: nucleation, ice-solution equilibrium, and internal structure.

    PubMed

    Hudait, Arpa; Molinero, Valeria

    2014-06-04

    Atmospheric aerosols have a strong influence on Earth's climate. Elucidating the physical state and internal structure of atmospheric aqueous aerosols is essential to predict their gas and water uptake, and the locus and rate of atmospherically important heterogeneous reactions. Ultrafine aerosols with sizes between 3 and 15 nm have been detected in large numbers in the troposphere and tropopause. Nanoscopic aerosols arising from bubble bursting of natural and artificial seawater have been identified in laboratory and field experiments. The internal structure and phase state of these aerosols, however, cannot yet be determined in experiments. Here we use molecular simulations to investigate the phase behavior and internal structure of liquid, vitrified, and crystallized water-salt ultrafine aerosols with radii from 2.5 to 9.5 nm and with up to 10% moles of ions. We find that both ice crystallization and vitrification of the nanodroplets lead to demixing of pure water from the solutions. Vitrification of aqueous nanodroplets yields nanodomains of pure low-density amorphous ice in coexistence with vitrified solute rich aqueous glass. The melting temperature of ice in the aerosols decreases monotonically with an increase of solute fraction and decrease of radius. The simulations reveal that nucleation of ice occurs homogeneously at the subsurface of the water-salt nanoparticles. Subsequent ice growth yields phase-segregated, internally mixed, aerosols with two phases in equilibrium: a concentrated water-salt amorphous mixture and a spherical cap-like ice nanophase. The surface of the crystallized aerosols is heterogeneous, with ice and solution exposed to the vapor. Free energy calculations indicate that as the concentration of salt in the particles, the advance of the crystallization, or the size of the particles increase, the stability of the spherical cap structure increases with respect to the alternative structure in which a core of ice is fully surrounded by

  15. Characterization of vertical aerosol flows by single particle mass spectrometry for micrometeorological analysis

    NASA Astrophysics Data System (ADS)

    Gelhausen, Elmar; Hinz, Klaus-Peter; Schmidt, Andres; Spengler, Bernhard

    2011-10-01

    A single particle mass spectrometer LAMPAS 2 (Laser Mass Analyzer for Particles in the Airborne State) was combined with an ultrasonic anemometer to provide a measurement system for monitoring environmental substance exchange as caused by emission/deposition of aerosol particles. For this study, 681 mass spectra of detected particles were sorted into groups of similarity by a clustering algorithm leading to five classes of different particle types. Each single mass spectrum was correlated to corresponding anemometer data (vertical wind vector and wind speed) in a time-resolved analysis. Due to sampling constraints time-resolution was limited to 36 s, as a result of transition time distributions through the sampling tube. Vertical particle flow (emission/deposition) was determined for all particles based on these data as acquired during a measuring campaign in Giessen, Germany. For a selected particle class a detailed up- and downwards flow consideration was performed to prove the developed approach. Particle flow of that class was dominated by an emission trend as expected. The presented combination of single-particle mass spectrometry and ultrasonic anemometry provides for the possibility to correlate chemical particle data and wind data in a distinct assignment for the description of turbulent particle behavior near earth surface. Results demonstrate the ability to apply the method to real micrometeorological systems, if sampling issues are properly considered for an intended time resolution.

  16. Biogenic VOC oxidation and organic aerosol formation in an urban nocturnal boundary layer: aircraft vertical profiles in Houston, TX

    NASA Astrophysics Data System (ADS)

    Brown, S. S.; Dubé, W. P.; Bahreini, R.; Middlebrook, A. M.; Brock, C. A.; Warneke, C.; de Gouw, J. A.; Washenfelder, R. A.; Atlas, E.; Peischl, J.; Ryerson, T. B.; Holloway, J. S.; Schwarz, J. P.; Spackman, R.; Trainer, M.; Parrish, D. D.; Fehshenfeld, F. C.; Ravishankara, A. R.

    2013-05-01

    Organic compounds are a large component of aerosol mass, but organic aerosol (OA) sources remain poorly characterized. Recent model studies have suggested nighttime oxidation of biogenic hydrocarbons as a potentially large OA source, but analysis of field measurements to test these predictions is sparse. We present nighttime vertical profiles of nitrogen oxides, ozone, VOCs and aerosol composition measured during low approaches of the NOAA P-3 aircraft to airfields in Houston, TX. This region has large emissions of both biogenic hydrocarbons and nitrogen oxides. The latter serves as a source of the nitrate radical, NO3, a key nighttime oxidant. Biogenic VOCs (BVOC) and urban pollutants were concentrated within the nocturnal boundary layer (NBL), which varied in depth from 100-400 m. Despite concentrated NOx at low altitude, ozone was never titrated to zero, resulting in rapid NO3 radical production rates of 0.2-2.7ppbv h-1 within the NBL. Monoterpenes and isoprene were frequently present within the NBL and underwent rapid oxidation (up to 1ppbv h-1), mainly by NO3 and to a lesser extent O3. Concurrent enhancement in organic and nitrate aerosol on several profiles was consistent with primary emissions and with secondary production from nighttime BVOC oxidation, with the latter equivalent to or slightly larger than the former. Ratios of organic aerosol to CO within the NBL ranged from 14 to 38 μg m-3 OA/ppmv CO. A box model simulation incorporating monoterpene emissions, oxidant formation rates and monoterpene SOA yields suggested overnight OA production of 0.5 to 9 μg m-3.

  17. Surface biofunctionalization and production of miniaturized sensor structures using aerosol printing technologies.

    PubMed

    Grunwald, Ingo; Groth, Esther; Wirth, Ingo; Schumacher, Julian; Maiwald, Marcus; Zoellmer, Volker; Busse, Matthias

    2010-03-01

    The work described in this paper demonstrates that very small protein and DNA structures can be applied to various substrates without denaturation using aerosol printing technology. This technology allows high-resolution deposition of various nanoscaled metal and biological suspensions. Before printing, metal and biological suspensions were formulated and then nebulized to form an aerosol which is aerodynamically focused on the printing module of the system in order to achieve precise structuring of the nanoscale material on a substrate. In this way, it is possible to focus the aerosol stream at a distance of about 5 mm from the printhead to the surface. This technology is useful for printing fluorescence-marked proteins and printing enzymes without affecting their biological activity. Furthermore, higher molecular weight DNA can be printed without shearing. The advantages, such as printing on complex, non-planar 3D structured surfaces, and disadvantages of the aerosol printing technology are also discussed and are compared with other printing technologies. In addition, miniaturized sensor structures with line thicknesses in the range of a few micrometers are fabricated by applying a silver sensor structure to glass. After sintering using an integrated laser or in an oven process, electrical conductivity is achieved within the sensor structure. Finally, we printed BSA in small micrometre-sized areas within the sensor structure using the same deposition system. The aerosol printing technology combined with material development offers great advantages for future-oriented applications involving biological surface functionalization on small areas. This is important for innovative biomedical micro-device development and for production solutions which bridge the disciplines of biology and electronics.

  18. Global-mean BC lifetime as an indicator of model skill? Constraining the vertical aerosol distribution using aircraft observations

    NASA Astrophysics Data System (ADS)

    Lund, M. T.; Samset, B. H.; Skeie, R. B.; Berntsen, T.

    2017-12-01

    Several recent studies have used observations from the HIPPO flight campaigns to constrain the modeled vertical distribution of black carbon (BC) over the Pacific. Results indicate a relatively linear relationship between global-mean atmospheric BC residence time, or lifetime, and bias in current models. A lifetime of less than 5 days is necessary for models to reasonably reproduce these observations. This is shorter than what many global models predict, which will in turn affect their estimates of BC climate impacts. Here we use the chemistry-transport model OsloCTM to examine whether this relationship between global BC lifetime and model skill also holds for a broader a set of flight campaigns from 2009-2013 covering both remote marine and continental regions at a range of latitudes. We perform four sets of simulations with varying scavenging efficiency to obtain a spread in the modeled global BC lifetime and calculate the model error and bias for each campaign and region. Vertical BC profiles are constructed using an online flight simulator, as well by averaging and interpolating monthly mean model output, allowing us to quantify sampling errors arising when measurements are compared with model output at different spatial and temporal resolutions. Using the OsloCTM coupled with a microphysical aerosol parameterization, we investigate the sensitivity of modeled BC vertical distribution to uncertainties in the aerosol aging and scavenging processes in more detail. From this, we can quantify how model uncertainties in the BC life cycle propagate into uncertainties in its climate impacts. For most campaigns and regions, a short global-mean BC lifetime corresponds with the lowest model error and bias. On an aggregated level, sampling errors appear to be small, but larger differences are seen in individual regions. However, we also find that model-measurement discrepancies in BC vertical profiles cannot be uniquely attributed to uncertainties in a single process or

  19. Characterization of a Quadrotor Unmanned Aircraft System for Aerosol-Particle-Concentration Measurements.

    PubMed

    Brady, James M; Stokes, M Dale; Bonnardel, Jim; Bertram, Timothy H

    2016-02-02

    High-spatial-resolution, near-surface vertical profiling of atmospheric chemical composition is currently limited by the availability of experimental platforms that can sample in constrained environments. As a result, measurements of near-surface gradients in trace gas and aerosol particle concentrations have been limited to studies conducted from fixed location towers or tethered balloons. Here, we explore the utility of a quadrotor unmanned aircraft system (UAS) as a sampling platform to measure vertical and horizontal concentration gradients of trace gases and aerosol particles at high spatial resolution (1 m) within the mixed layer (0-100 m). A 3D Robotics Iris+ autonomous quadrotor UAS was outfitted with a sensor package consisting of a two-channel aerosol optical particle counter and a CO2 sensor. The UAS demonstrated high precision in both vertical (±0.5 m) and horizontal positions (±1 m), highlighting the potential utility of quadrotor UAS drones for aerosol- and trace-gas measurements within complex terrain, such as the urban environment, forest canopies, and above difficult-to-access areas such as breaking surf. Vertical profiles of aerosol particle number concentrations, acquired from flights conducted along the California coastline, were used to constrain sea-spray aerosol-emission rates from coastal wave breaking.

  20. Application of the CALIOP Layer Product to Evaluate the Vertical Distribution of Aerosols Estimated by Global Models: AeroCom Phase I Results

    NASA Technical Reports Server (NTRS)

    Koffi, Brigitte; Schulz, Michael; Breon, Francois-Marie; Griesfeller, Jan; Winker, David; Balkanski, Yves; Bauer, Susanne; Berntsen, Terje; Chin, Mian; Collins, William D.; hide

    2012-01-01

    The CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) layer product is used for a multimodel evaluation of the vertical distribution of aerosols. Annual and seasonal aerosol extinction profiles are analyzed over 13 sub-continental regions representative of industrial, dust, and biomass burning pollution, from CALIOP 2007-2009 observations and from AeroCom (Aerosol Comparisons between Observations and Models) 2000 simulations. An extinction mean height diagnostic (Z-alpha) is defined to quantitatively assess the models' performance. It is calculated over the 0-6 km and 0-10 km altitude ranges by weighting the altitude of each 100 m altitude layer by its aerosol extinction coefficient. The mean extinction profiles derived from CALIOP layer products provide consistent regional and seasonal specificities and a low inter-annual variability. While the outputs from most models are significantly correlated with the observed Z-alpha climatologies, some do better than others, and 2 of the 12 models perform particularly well in all seasons. Over industrial and maritime regions, most models show higher Z-alpha than observed by CALIOP, whereas over the African and Chinese dust source regions, Z-alpha is underestimated during Northern Hemisphere Spring and Summer. The positive model bias in Z-alpha is mainly due to an overestimate of the extinction above 6 km. Potential CALIOP and model limitations, and methodological factors that might contribute to the differences are discussed.

  1. Vertical microphysical profiles of convective clouds as a tool for obtaining aerosol cloud-mediated climate forcings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenfeld, Daniel

    Quantifying the aerosol/cloud-mediated radiative effect at a global scale requires simultaneous satellite retrievals of cloud condensation nuclei (CCN) concentrations and cloud base updraft velocities (Wb). Hitherto, the inability to do so has been a major cause of high uncertainty regarding anthropogenic aerosol/cloud-mediated radiative forcing. This can be addressed by the emerging capability of estimating CCN and Wb of boundary layer convective clouds from an operational polar orbiting weather satellite. Our methodology uses such clouds as an effective analog for CCN chambers. The cloud base supersaturation (S) is determined by Wb and the satellite-retrieved cloud base drop concentrations (Ndb), which ismore » the same as CCN(S). Developing and validating this methodology was possible thanks to the ASR/ARM measurements of CCN and vertical updraft profiles. Validation against ground-based CCN instruments at the ARM sites in Oklahoma, Manaus, and onboard a ship in the northeast Pacific showed a retrieval accuracy of ±25% to ±30% for individual satellite overpasses. The methodology is presently limited to boundary layer not raining convective clouds of at least 1 km depth that are not obscured by upper layer clouds, including semitransparent cirrus. The limitation for small solar backscattering angles of <25º restricts the satellite coverage to ~25% of the world area in a single day. This methodology will likely allow overcoming the challenge of quantifying the aerosol indirect effect and facilitate a substantial reduction of the uncertainty in anthropogenic climate forcing.« less

  2. Global aerosol effects on convective clouds

    NASA Astrophysics Data System (ADS)

    Wagner, Till; Stier, Philip

    2013-04-01

    Atmospheric aerosols affect cloud properties, and thereby the radiation balance of the planet and the water cycle. The influence of aerosols on clouds is dominated by increase of cloud droplet and ice crystal numbers (CDNC/ICNC) due to enhanced aerosols acting as cloud condensation and ice nuclei. In deep convective clouds this increase in CDNC/ICNC is hypothesised to increase precipitation because of cloud invigoration through enhanced freezing and associated increased latent heat release caused by delayed warm rain formation. Satellite studies robustly show an increase of cloud top height (CTH) and precipitation with increasing aerosol optical depth (AOD, as proxy for aerosol amount). To represent aerosol effects and study their influence on convective clouds in the global climate aerosol model ECHAM-HAM, we substitute the standard convection parameterisation, which uses one mean convective cloud for each grid column, with the convective cloud field model (CCFM), which simulates a spectrum of convective clouds, each with distinct values of radius, mixing ratios, vertical velocity, height and en/detrainment. Aerosol activation and droplet nucleation in convective updrafts at cloud base is the primary driver for microphysical aerosol effects. To produce realistic estimates for vertical velocity at cloud base we use an entraining dry parcel sub cloud model which is triggered by perturbations of sensible and latent heat at the surface. Aerosol activation at cloud base is modelled with a mechanistic, Köhler theory based, scheme, which couples the aerosols to the convective microphysics. Comparison of relationships between CTH and AOD, and precipitation and AOD produced by this novel model and satellite based estimates show general agreement. Through model experiments and analysis of the model cloud processes we are able to investigate the main drivers for the relationship between CTH / precipitation and AOD.

  3. Interfacing the NRL 1-D High Vertical Resolution Aerosol Model with COAMPS

    DTIC Science & Technology

    2006-09-30

    model integrated with mesoscale meterological data to study marine boundary layer aerosol dynamics, J. Geophys. Res., in press, 2006. Hoppel, W. A...W.A. Hoppel, J.J. Shi: A one-dimensional sectional aerosol model integrated with mesoscale meterological data to study marine boundary layer aerosol

  4. Aerosol and Cloud Experiments in Eastern North Atlantic (ACE-ENA) Science Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jian; Dong, Xiquan; Wood, Robert

    With their extensive coverage, low clouds greatly impact global climate. Presently, low clouds are poorly represented in global climate models (GCMs), and the response of low clouds to changes in atmospheric greenhouse gases and aerosols remains the major source of uncertainty in climate simulations. The poor representations of low clouds in GCMs are in part due to inadequate observations of their microphysical and macrophysical structures, radiative effects, and the associated aerosol distribution and budget in regions where the aerosol impact is the greatest. The Eastern North Atlantic (ENA) is a region of persistent but diverse subtropical marine boundary-layer (MBL) clouds,more » whose albedo and precipitation are highly susceptible to perturbations in aerosol properties. Boundary-layer aerosol in the ENA region is influenced by a variety of sources, leading to strong variations in cloud condensation nuclei (CCN) concentration and aerosol optical properties. Recently a permanent ENA site was established by the U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility on Graciosa Island in the Azores, providing invaluable information on MBL aerosol and low clouds. At the same time, the vertical structures and horizontal variabilities of aerosol, trace gases, cloud, drizzle, and atmospheric thermodynamics are critically needed for understanding and quantifying the budget of MBL aerosol, the radiative properties, precipitation efficiency, and lifecycle of MBL clouds, and the cloud response to aerosol perturbations. Much of this data can be obtained only through aircraft-based measurements. In addition, the interconnected aerosol and cloud processes are best investigated by a study involving simultaneous in situ aerosol, cloud, and thermodynamics measurements. Furthermore, in situ measurements are also necessary for validating and improving ground-based retrieval algorithms at the ENA site. This project is motivated by

  5. Understanding aerosol-cloud interactions in the development of orographic cumulus congestus during IPHEx

    NASA Astrophysics Data System (ADS)

    Barros, A. P.; Duan, Y.

    2017-12-01

    A new cloud parcel model (CPM) including activation, condensation, collision-coalescence, and lateral entrainment processes is presented here to investigate aerosol-cloud interactions (ACI) in cumulus development prior to rainfall onset. The CPM was employed along with ground based radar and surface aerosol measurements to predict the vertical structure of cloud formation at early stages and evaluated against airborne observations of cloud microphysics and thermodynamic conditions during the Integrated Precipitation and Hydrology Experiment (IPHEx) over the Southern Appalachian Mountains. Further, the CPM was applied to explore the space of ACI physical parameters controlling cumulus congestus growth not available from measurements, and to examine how variations in aerosol properties and microphysical processes influence the evolution and thermodynamic state of clouds over complex terrain via sensitivity analysis. Modeling results indicate that simulated spectra with a low value of condensation coefficient (0.01) are in good agreement with IPHEx aircraft observations around the same altitude. This is in contrast with high values reported in previous studies assuming adiabatic conditions. Entrainment is shown to govern the vertical development of clouds and the change of droplet numbers with height, and the sensitivity analysis suggests that there is a trade-off between entrainment strength and condensation process. Simulated CDNC also exhibits high sensitivity to variations in initial aerosol concentration at cloud base, but weak sensitivity to aerosol hygroscopicity. Exploratory multiple-parcel simulations capture realistic time-scales of vertical development of cumulus congestus (deeper clouds and faster droplet growth). These findings provide new insights into determinant factors of mid-day cumulus congestus formation that can explain a large fraction of warm season rainfall in mountainous regions.

  6. Sources, Transport, and Climate Impacts of Biomass Burning Aerosols

    NASA Technical Reports Server (NTRS)

    Chin, Mian

    2010-01-01

    In this presentation, I will first talk about fundamentals of modeling of biomass burning emissions of aerosols, then show the results of GOCART model simulated biomass burning aerosols. I will compare the model results with observations of satellite and ground-based network in terms of total aerosol optical depth, aerosol absorption optical depth, and vertical distributions. Finally the long-range transport of biomass burning aerosols and the climate effects will be addressed. I will also discuss the uncertainties associated with modeling and observations of biomass burning aerosols

  7. An Overview of the GEOS-5 Aerosol Reanalysis

    NASA Technical Reports Server (NTRS)

    da Silva, Arlindo; Colarco, Peter Richard; Damenov, Anton Spasov; Buchard-Marchant, Virginie; Randles, Cynthia A.; Gupta, Pawan

    2011-01-01

    absorption on a global scale, we perform a detailed radiative transfer calculation to simulate the UV aerosol index, comparing our results to OMI measurements. By simulating aerosol attenuated backscatter, we use CALIPSO measurements to evaluate the vertical structure of our aerosol estimates, in particular in regions where we have larger discrepancies with OMI. Finally, the consistency of our AOD estimates with estimates from MISR, MODIS/Deep Blue, OMI and PARASOL will be briefly discussed.

  8. Vertical Distribution of Black and Brown Carbon over Shanghai during Winter

    NASA Astrophysics Data System (ADS)

    Zheng, M.; Yan, C.; Wang, D.; Fu, Q.

    2016-12-01

    Carbonaceous aerosols (i.e., black carbon, BC, and organic aerosol, OA) have significant impact on Earth's energy budget by scattering and absorbing solar radiation. Extensive carbonaceous aerosols have been emitted in mainland China. It is essential to study the column burden of carbonaceous aerosol and associated light absorption to better understand its radiative forcing. In this study, a tethered balloon-based field campaign was conducted over a Chinese megacity, Shanghai, in December of 2015, with the primary goal to investigate the vertical profile of air pollutants within the lower troposphere, especially during the polluted days. A 7-wavelength Aethalometer (AE-31) were adopted in the observation to obtain vertical profiles of atmospheric carbonaceous aerosols within the lower troposphere. Light absorption by black and brown carbon, the light absorbing organic components, were distinguished and separated based on difference between light absorption at 450 nm versus 880 nm. Light absorption of brown carbon relative to black carbon were also estimated to pose the importance of brown carbon. Besides, diurnal variation of black and brown carbon vertical profiles would also be discussed, with consideration of variation of height of planetary boundary layer.

  9. Climate Implications of the Heterogeneity of Anthropogenic Aerosol Forcing

    NASA Astrophysics Data System (ADS)

    Persad, Geeta Gayatri

    Short-lived anthropogenic aerosols are concentrated in regions of high human activity, where they interact with radiation and clouds, causing horizontally heterogeneous radiative forcing between polluted and unpolluted regions. Aerosols can absorb shortwave energy in the atmosphere, but deplete it at the surface, producing opposite radiative perturbations between the surface and atmosphere. This thesis investigates climate and policy implications of this horizontal and vertical heterogeneity of anthropogenic aerosol forcing, employing the Geophysical Fluid Dynamics Laboratory's AM2.1 and AM3 models, both at a global scale and using East Asia as a regional case study. The degree of difference between spatial patterns of climate change due to heterogeneous aerosol forcing versus homogeneous greenhouse gas forcing deeply impacts the detection, attribution, and prediction of regional climate change. This dissertation addresses a gap in current understanding of these two forcings' response pattern development, using AM2.1 historical forcing simulations. The results indicate that fast atmospheric and land-surface processes alone substantially homogenize the global pattern of surface energy flux response to heterogeneous aerosol forcing. Aerosols' vertical redistribution of energy significantly impacts regional climate, but is incompletely understood. It is newly identified here, via observations and historical and idealized forcing simulations, that increased aerosol-driven atmospheric absorption may explain half of East Asia's recent surface insolation decline. Further, aerosols' surface and atmospheric effects counteract each other regionally---atmospheric heating enhances summer monsoon circulation, while surface dimming suppresses it---but absorbing aerosols' combined effects reduce summer monsoon rainfall. This thesis constitutes the first vertical decomposition of aerosols' impacts in this high-emissions region and elucidates the monsoonal response to aerosols

  10. Aerosol Lidar and MODIS Satellite Comparisons for Future Aerosol Loading Forecast

    NASA Technical Reports Server (NTRS)

    DeYoung, Russell; Szykman, James; Severance, Kurt; Chu, D. Allen; Rosen, Rebecca; Al-Saadi, Jassim

    2006-01-01

    Knowledge of the concentration and distribution of atmospheric aerosols using both airborne lidar and satellite instruments is a field of active research. An aircraft based aerosol lidar has been used to study the distribution of atmospheric aerosols in the California Central Valley and eastern US coast. Concurrently, satellite aerosol retrievals, from the MODIS (Moderate Resolution Imaging Spectroradiometer) instrument aboard the Terra and Aqua satellites, were take over the Central Valley. The MODIS Level 2 aerosol data product provides retrieved ambient aerosol optical properties (e.g., optical depth (AOD) and size distribution) globally over ocean and land at a spatial resolution of 10 km. The Central Valley topography was overlaid with MODIS AOD (5x5 sq km resolution) and the aerosol scattering vertical profiles from a lidar flight. Backward air parcel trajectories for the lidar data show that air from the Pacific and northern part of the Central Valley converge confining the aerosols to the lower valley region and below the mixed layer. Below an altitude of 1 km, the lidar aerosol and MODIS AOD exhibit good agreement. Both data sets indicate a high presence of aerosols near Bakersfield and the Tehachapi Mountains. These and other results to be presented indicate that the majority of the aerosols are below the mixed layer such that the MODIS AOD should correspond well with surface measurements. Lidar measurements will help interpret satellite AOD retrievals so that one day they can be used on a routine basis for prediction of boundary layer aerosol pollution events.

  11. Vertical profiles of black carbon concentration and particle number size distribution in the North China Plain

    NASA Astrophysics Data System (ADS)

    Ran, L.; Deng, Z.

    2013-12-01

    The vertical distribution of aerosols is of great importance to our understanding in the impacts of aerosols on radiation balance and climate, as well as air quality and public health. To better understand and estimate the effects of atmospheric components including trace gases and aerosols on atmospheric environment and climate, an intensive field campaign, Vertical Observations of trace Gases and Aerosols in the North China Plain (VOGA-NCP), was carried out from late July to early August 2013 over a rural site in the polluted NCP. During the campaign, vertical profiles of black carbon (BC) concentration and particle number size distribution were measured respectively by a micro-Aethalometer and an optical particle counter attached to a tethered balloon within 1000 m height. Meteorological parameters, including temperature, relative humidity, wind speed and wind direction, were measured simultaneously by a radiosonde also attached to the tethered balloon. Preliminary results showed distinct diurnal variations of the vertical distribution of aerosol total number concentration and BC concentration, following the development of the mixing layer. Generally, there was a well mixing of aerosols within the mixing layer and a sharp decrease above the mixing layer. Particularly, a small peak of BC concentrations was observed around 400-500 m height for several profiles. Further analysis would be needed to explain such phenomenon. It was also found that measured vertical profiles of BC using the filter-based method might be affected by the vertical distribution of relative humidity.

  12. Quantification of marine aerosol subgrid variability and its correlation with clouds based on high-resolution regional modeling: Quantifying Aerosol Subgrid Variability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Guangxing; Qian, Yun; Yan, Huiping

    One limitation of most global climate models (GCMs) is that with the horizontal resolutions they typically employ, they cannot resolve the subgrid variability (SGV) of clouds and aerosols, adding extra uncertainties to the aerosol radiative forcing estimation. To inform the development of an aerosol subgrid variability parameterization, here we analyze the aerosol SGV over the southern Pacific Ocean simulated by the high-resolution Weather Research and Forecasting model coupled to Chemistry. We find that within a typical GCM grid, the aerosol mass subgrid standard deviation is 15% of the grid-box mean mass near the surface on a 1 month mean basis.more » The fraction can increase to 50% in the free troposphere. The relationships between the sea-salt mass concentration, meteorological variables, and sea-salt emission rate are investigated in both the clear and cloudy portion. Under clear-sky conditions, marine aerosol subgrid standard deviation is highly correlated with the standard deviations of vertical velocity, cloud water mixing ratio, and sea-salt emission rates near the surface. It is also strongly connected to the grid box mean aerosol in the free troposphere (between 2 km and 4 km). In the cloudy area, interstitial sea-salt aerosol mass concentrations are smaller, but higher correlation is found between the subgrid standard deviations of aerosol mass and vertical velocity. Additionally, we find that decreasing the model grid resolution can reduce the marine aerosol SGV but strengthen the correlations between the aerosol SGV and the total water mixing ratio (sum of water vapor, cloud liquid, and cloud ice mixing ratios).« less

  13. Exhaled Aerosol Pattern Discloses Lung Structural Abnormality: A Sensitivity Study Using Computational Modeling and Fractal Analysis

    PubMed Central

    Xi, Jinxiang; Si, Xiuhua A.; Kim, JongWon; Mckee, Edward; Lin, En-Bing

    2014-01-01

    Background Exhaled aerosol patterns, also called aerosol fingerprints, provide clues to the health of the lung and can be used to detect disease-modified airway structures. The key is how to decode the exhaled aerosol fingerprints and retrieve the lung structural information for a non-invasive identification of respiratory diseases. Objective and Methods In this study, a CFD-fractal analysis method was developed to quantify exhaled aerosol fingerprints and applied it to one benign and three malign conditions: a tracheal carina tumor, a bronchial tumor, and asthma. Respirations of tracer aerosols of 1 µm at a flow rate of 30 L/min were simulated, with exhaled distributions recorded at the mouth. Large eddy simulations and a Lagrangian tracking approach were used to simulate respiratory airflows and aerosol dynamics. Aerosol morphometric measures such as concentration disparity, spatial distributions, and fractal analysis were applied to distinguish various exhaled aerosol patterns. Findings Utilizing physiology-based modeling, we demonstrated substantial differences in exhaled aerosol distributions among normal and pathological airways, which were suggestive of the disease location and extent. With fractal analysis, we also demonstrated that exhaled aerosol patterns exhibited fractal behavior in both the entire image and selected regions of interest. Each exhaled aerosol fingerprint exhibited distinct pattern parameters such as spatial probability, fractal dimension, lacunarity, and multifractal spectrum. Furthermore, a correlation of the diseased location and exhaled aerosol spatial distribution was established for asthma. Conclusion Aerosol-fingerprint-based breath tests disclose clues about the site and severity of lung diseases and appear to be sensitive enough to be a practical tool for diagnosis and prognosis of respiratory diseases with structural abnormalities. PMID:25105680

  14. Regional Aerosol Forcing over India: Preliminary Results from the South West Asian Aerosol-Monsoon Interactions (SWAAMI) Aircraft Experiment

    NASA Astrophysics Data System (ADS)

    Morgan, W.; Brooks, J.; Fox, C.; Haslett, S.; Liu, D.; Kompalli, S. K.; Pathak, H.; Manoj, M. R.; Allan, J. D.; Haywood, J. M.; Highwood, E.; Langridge, J.; Nanjundaiah, R. S.; Krishnamoorthy, K.; Babu, S. S.; Satheesh, S. K.; Turner, A. G.; Coe, H.

    2016-12-01

    Aerosol particles from multiple sources across the Indian subcontinent build up to form a dense and extensive haze across the region in advance of the monsoon. These aerosols are thought to perturb the regional radiative balance and hydrological cycle, which may have a significant impact on the monsoon circulation, as well as influencing the associated cloud and rainfall of the system. However the nature and magnitude of such impacts are poorly understood or constrained. Major uncertainties relevant to the regional aerosol burden include its vertical distribution, the relative contribution of different pollution sources and natural emissions and the role of absorbing aerosol species (black carbon and mineral dust). The South West Asian Aerosol-Monsoon Interactions (SWAAMI) project sought to address these major uncertainties by conducting an airborne experiment during June/July 2016 on-board the UK Facility for Airborne Atmospheric Measurement (FAAM) BAe-146 research aircraft. Based out of Lucknow in the), The aircraft conducted multiple flights from Lucknow in the heart of the Indo-Gangetic Plain (IGP) in advance of the monsoon and during the onset phase. The spatial and vertical distribution of aerosol was evaluated across northern India, encompassing drier desert-like regions to the west, heavily populated urban and industrial centres over the IGP and air masses in outflow regions to the south-east towards the Bay of Bengal. Principal measurements included aerosol chemical composition using an Aerodyne Aerosol Mass Spectrometer and a DMT Single Particle Soot Photometer, alongside a Leosphere backscatter LIDAR. Sulphate was a major contributor to the aerosol burden across India, while the organic aerosol was elevated and more dominant over the most polluted regions of the IGP. Substantial aerosol concentrations were frequently observed up to altitudes of approximately 6km, with notable changes in aerosol chemical and physical properties when comparing different

  15. Biomass burning aerosol transport and vertical distribution over the South African-Atlantic region: Aerosol Transport Over SE Atlantic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, Sampa; Harshvardhan, H.; Bian, Huisheng

    Aerosols from wild-land fires could significantly perturb the global radiation balance and induce the climate change. In this study, the Community Atmospheric Model version 5 (CAM5) with prescribed daily fire aerosol emissions is used to investigate the spatial and seasonal characteristics of radiative forcings of wildfire aerosols including black carbon (BC) and particulate organic matter (POM). The global annual mean direct radiative forcing (DRF) of all fire aerosols is 0.15 W m-2, mainly due to the absorption of fire BC (0.25 W m-2), while fire POM induces a weak negative forcing (-0.05 W m-2). Strong positive DRF is found inmore » the Arctic and in the oceanic regions west of South Africa and South America as a result of amplified absorption of fire BC above low-level clouds, in general agreement with satellite observations. The global annual mean cloud radiative forcing due to all fire aerosols is -0.70 W m-2, resulting mainly from the fire POM indirect forcing (-0.59 W m-2). The large cloud liquid water path over land areas of the Arctic favors the strong fire aerosol indirect forcing (up to -15 W m-2) during the Arctic summer. Significant surface cooling, precipitation reduction and low-level cloud amount increase are also found in the Arctic summer as a result of the fire aerosol indirect effect. The global annual mean surface albedo forcing over land areas (0.03 W m-2) is mainly due to the fire BC-on-snow forcing (0.02 W m-2) with the maximum albedo forcing occurring in spring (0.12 W m-2) when snow starts to melt.« less

  16. OMPS Limb Profiler: Extending SAGE and CALIPSO Stratospheric Aerosol Records

    NASA Astrophysics Data System (ADS)

    Taha, G.; Bhartia, P. K.; Chen, Z.; Xu, P.; Loughman, R. P.; Jaross, G.

    2017-12-01

    The OMPS LP instrument is designed to provide high vertical resolution ozone and aerosol profiles from measurements of the scattered solar radiation in the 290-1000 nm spectral range. It collected its first Earth limb measurement in January 10, 2012, and continues to provide daily global measurements of ozone and aerosol profiles from the cloud top up to 60 km and 40 km respectively. The relatively high vertical and spatial sampling allow detection and tracking periodic events when aerosol particles are injected into the stratosphere, such as volcanic eruptions or meteor explosions. OMPS LP can extend the long-term records of stratospheric aerosol at high vertical resolution produced by variety of sensors, such as SAGEII, GOMOS, OSIRIS and CALIPSO. Most of these instruments ceased to operate or well beyond their designed lifetime. After an absence of over a decade, SAGE III/ISS was launched earlier this year and expected to resume the high quality aerosol data record. OMPS LP is also schedule to fly on JPSS-2 and 3. In this study we will examine the suitability of using LP profiles to continue the stratospheric aerosol records beyond SAGE, OSIRIS, and CALIPSO. We will compare OMPS LP released V1.0 aerosol extinction measurements to OSIRIS and CALIPSO. Initial results shows good agreement with OSIRIS measurements to within 20%, with larger bias in the southern hemisphere. To test the effect of the assumed aerosol size model (ASD) and phase function, we compare measurements taken at similar location and time with different viewing geometry. Comparison of ascending and descending aerosol extinction daily zonal means at high latitudes shows systematic bias that is well correlated with the solar scattering angle, indicating ASD uncertainties up to 30%. In addition, results showing latitudinal, and temporal variability of stratospheric aerosol extinction and optical depth for the three instruments will also be presented and compared. We will also present OMPS LP aerosol

  17. Observations of the vertical distributions of summertime atmospheric pollutants and the corresponding ozone production in Shanghai, China

    NASA Astrophysics Data System (ADS)

    Xing, Chengzhi; Liu, Cheng; Wang, Shanshan; Chan, Ka Lok; Gao, Yang; Huang, Xin; Su, Wenjing; Zhang, Chengxin; Dong, Yunsheng; Fan, Guangqiang; Zhang, Tianshu; Chen, Zhenyi; Hu, Qihou; Su, Hang; Xie, Zhouqing; Liu, Jianguo

    2017-12-01

    Ground-based multi-axis differential optical absorption spectroscopy (MAX-DOAS) and lidar measurements were performed in Shanghai, China, during May 2016 to investigate the vertical distribution of summertime atmospheric pollutants. In this study, vertical profiles of aerosol extinction coefficient, nitrogen dioxide (NO2) and formaldehyde (HCHO) concentrations were retrieved from MAX-DOAS measurements using the Heidelberg Profile (HEIPRO) algorithm, while vertical distribution of ozone (O3) was obtained from an ozone lidar. Sensitivity study of the MAX-DOAS aerosol profile retrieval shows that the a priori aerosol profile shape has significant influences on the aerosol profile retrieval. Aerosol profiles retrieved from MAX-DOAS measurements with Gaussian a priori profile demonstrate the best agreements with simultaneous lidar measurements and vehicle-based tethered-balloon observations among all a priori aerosol profiles. Tropospheric NO2 vertical column densities (VCDs) measured with MAX-DOAS show a good agreement with OMI satellite observations with a Pearson correlation coefficient (R) of 0.95. In addition, measurements of the O3 vertical distribution indicate that the ozone productions do not only occur at surface level but also at higher altitudes (about 1.1 km). Planetary boundary layer (PBL) height and horizontal and vertical wind field information were integrated to discuss the ozone formation at upper altitudes. The results reveal that enhanced ozone concentrations at ground level and upper altitudes are not directly related to horizontal and vertical transportation. Similar patterns of O3 and HCHO vertical distributions were observed during this campaign, which implies that the ozone productions near the surface and at higher altitudes are mainly influenced by the abundance of volatile organic compounds (VOCs) in the lower troposphere.

  18. Real-Time Characterization of Aerosol Particle Composition above the Urban Canopy in Beijing: Insights into the Interactions between the Atmospheric Boundary Layer and Aerosol Chemistry.

    PubMed

    Sun, Yele; Du, Wei; Wang, Qingqing; Zhang, Qi; Chen, Chen; Chen, Yong; Chen, Zhenyi; Fu, Pingqing; Wang, Zifa; Gao, Zhiqiu; Worsnop, Douglas R

    2015-10-06

    Despite extensive efforts into the characterization of air pollution during the past decade, real-time characterization of aerosol particle composition above the urban canopy in the megacity Beijing has never been performed to date. Here we conducted the first simultaneous real-time measurements of aerosol composition at two different heights at the same location in urban Beijing from December 19, 2013 to January 2, 2014. The nonrefractory submicron aerosol (NR-PM1) species were measured in situ by a high-resolution aerosol mass spectrometer at near-ground level and an aerosol chemical speciation monitor at 260 m on a 325 m meteorological tower in Beijing. Secondary aerosol showed similar temporal variations between ground level and 260 m, whereas much weaker correlations were found for the primary aerosol. The diurnal evolution of the ratios and correlations of aerosol species between 260 m and the ground level further illustrated a complex interaction between vertical mixing processes and local source emissions on aerosol chemistry in the atmospheric boundary layer. As a result, the aerosol compositions at the two heights were substantially different. Organic aerosol (OA), mainly composed of primary OA (62%), at the ground level showed a higher contribution to NR-PM1 (65%) than at 260 m (54%), whereas a higher concentration and contribution (15%) of nitrate was observed at 260 m, probably due to the favorable gas-particle partitioning under lower temperature conditions. In addition, two different boundary layer structures were observed, each interacting differently with the evolution processes of aerosol chemistry.

  19. LASE measurements of aerosols and water vapor during TARFOX

    NASA Technical Reports Server (NTRS)

    Ferrare, Richard A.; Ismail, Syed; Browell, Edward V.; Brackett, Vincent G.; Kooi, Susan A.; Clayton, Marian B.; Melfi, Harvey; Whiteman, David N.; Schwenner, Geary; Evans, Keith D.; hide

    1998-01-01

    The TARFOX (Tropospheric Aerosol Radiative Forcing Observational Experiment) intensive field campaign was designed to reduce uncertainties in estimates of the effects of anthropogenic aerosols on climate by measuring direct radiative effects and the optical, physical, and chemical properties of aerosols [1]. TARFOX was conducted off the East Coast of the United States between July 10-31, 1996. Ground, aircraft, and satellite-based sensors measured the sensitivity of radiative fields at various atmospheric levels to aerosol optical properties (i.e., optical thickness, phase function, single-scattering albedo) and to the vertical profile of aerosols. The LASE (Lidar Atmospheric Sensing Experiment) instrument, which was flown on the NASA ER-2 aircraft, measured vertical profiles of total scattering ratio and water vapor during a series of 9 flights. These profiles were used in real-time to help direct the other aircraft to the appropriate altitudes for intensive sampling of aerosol layers. We have subsequently used the LASE aerosol data to derive aerosol backscattering and extinction profiles. Using these aerosol extinction profiles, we derived estimates of aerosol optical thickness (AOT) and compared these with measurements of AOT from both ground and airborne sun photometers and derived from the ATSR-2 (Along Track and Scanning Radiometer 2) sensor on ERS-2 (European Remote Sensing Satellite-2). We also used the water vapor mixing ratio profiles measured simultaneously by LASE to derive precipitable water vapor and compare these to ground based measurements.

  20. Confinement and Structural Changes in Vertically Aligned Dust Structures

    NASA Astrophysics Data System (ADS)

    Hyde, Truell

    2013-10-01

    In physics, confinement is known to influence collective system behavior. Examples include coulomb crystal variants such as those formed from ions or dust particles (classical), electrons in quantum dots (quantum) and the structural changes observed in vertically aligned dust particle systems formed within a glass box placed on the lower electrode of a Gaseous Electronics Conference (GEC) rf reference cell. Recent experimental studies have expanded the above to include the biological domain by showing that the stability and dynamics of proteins confined through encapsulation and enzyme molecules placed in inorganic cavities such as those found in biosensors are also directly influenced by their confinement. In this paper, the self-assembly and subsequent collective behavior of structures formed from n, charged dust particles interacting with one another and located within a glass box placed on the lower, powered electrode of a GEC rf reference cell is discussed. Self-organized formation of vertically aligned one-dimensional chains, two-dimensional zigzag structures, and three-dimensional helical structures of triangular, quadrangular, pentagonal, hexagonal, and heptagonal symmetries are shown to occur. System evolution is shown to progress from one-dimensional chain structures, through a zigzag transition to a two-dimensional, spindle like structures, and then to various three-dimensional, helical structures exhibiting various symmetries. Stable configurations are shown to be strongly dependent upon system confinement. The critical conditions for structural transitions as well as the basic symmetry exhibited by the one-, two-, and three-dimensional structures that subsequently develop will be shown to be in good agreement with molecular dynamics simulations.

  1. Vertical structure use by the Stout Iguana (Cyclura pinguis) on Guana Island, BVI

    USGS Publications Warehouse

    Cheek, Christopher A.; Hlavaty, Shay; Perkins, Rebecca N.; Peyton, Mark A.; Ryan, Caitlin N.; Zavaleta, Jennifer C.; Boal, Clint W.; Perry, Gad

    2013-01-01

    The Stout Iguana (Cyclura pinguis) is a critically endangered species endemic to the Puerto Rico Bank and currently restricted to the British Virgin Islands (BVI). Our study on Guana Island, BVI, focused on vertical structure use. Based on previous incidental observations, we hypothesized that Stout Iguanas use vertical structures and that adults and juveniles use such structures differently. In October 2011, we documented movement and vertical structure use by adult (n = 4) and juvenile (n = 11) iguanas with tracking bobbins. We recorded structure types used, heights attained on structures, distances between structures, and structure sizes. We found that Stout Iguanas used vertical structure more than previously documented. Trees comprised a significantly greater (P < 0.001) proportion of structures used by juveniles than by adults, whereas rocks comprised the greatest proportion of structures used by adults. In addition to differential structure use, juveniles climbed significantly higher (2.4 vs. 0.9 m on average; P < 0.001) than adults. We found no difference in the diameter or distance between structures used by adults and juveniles. Our results suggest that vertical structure use may be an important habitat element for free-ranging juvenile Stout Iguanas. Habitat management that provides vertical structure may be advantageous for the conservation of this species.

  2. Evaluation of spatio-temporal variability of Hamburg Aerosol Climatology against aerosol datasets from MODIS and CALIOP

    NASA Astrophysics Data System (ADS)

    Pappas, V.; Hatzianastassiou, N.; Papadimas, C.; Matsoukas, C.; Kinne, S.; Vardavas, I.

    2013-02-01

    The new global aerosol climatology named HAC (Hamburg Aerosol Climatology) is compared against MODIS (MODerate resolution Imaging Spectroradiometer, Collection 5, 2000-2007) and CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization, Level 2-Version 3, 2006-2011) retrievals. The HAC aerosol optical depth (AOD) values are larger than MODIS in heavy aerosol load conditions (over land) and lower over oceans. Agreement between HAC and MODIS is better over land and for low AOD. Hemispherically, HAC has 16-17% smaller AOD values than MODIS. The discrepancy is slightly larger for the Southern Hemisphere (SH) than for the Northern Hemisphere (NH). Seasonally, the largest absolute differences are from March to August for NH and from September to February for SH. The spectral variability of HAC AOD is also evaluated against AERONET (1998-2007) data for sites representative of main aerosol types (pollutants, sea-salt, biomass and dust). The HAC has a stronger spectral dependence of AOD in the UV wavelengths, compared to AERONET and MODIS. For visible and near-infrared wavelengths, the spectral dependence is similar to AERONET. For specific sites, HAC AOD vertical distribution is compared to CALIOP data by looking at the fraction of columnar AOD at each altitude. The comparison suggests that HAC exhibits a smaller fraction of columnar AOD in the lowest 2-3 km than CALIOP, especially for sites with biomass burning smoke, desert dust and sea salt spray. For the region of the greater Mediterranean basin, the mean profile of HAC AOD is in very good agreement with CALIOP. The HAC AOD is very useful for distinguishing between natural and anthropogenic aerosols and provides high spectral resolution and vertically resolved information.

  3. Model representations of aerosol layers transported from North America over the Atlantic Ocean during the Two-Column Aerosol Project

    NASA Astrophysics Data System (ADS)

    Fast, Jerome D.; Berg, Larry K.; Zhang, Kai; Easter, Richard C.; Ferrare, Richard A.; Hair, Johnathan W.; Hostetler, Chris A.; Liu, Ying; Ortega, Ivan; Sedlacek, Arthur; Shilling, John E.; Shrivastava, Manish; Springston, Stephen R.; Tomlinson, Jason M.; Volkamer, Rainer; Wilson, Jacqueline; Zaveri, Rahul A.; Zelenyuk, Alla

    2016-08-01

    The ability of the Weather Research and Forecasting model with chemistry (WRF-Chem) version 3.7 and the Community Atmosphere Model version 5.3 (CAM5) in simulating profiles of aerosol properties is quantified using extensive in situ and remote sensing measurements from the Two-Column Aerosol Project (TCAP) conducted during July of 2012. TCAP was supported by the U.S. Department of Energy's Atmospheric Radiation Measurement program and was designed to obtain observations within two atmospheric columns; one fixed over Cape Cod, Massachusetts, and the other several hundred kilometers over the ocean. The performance is quantified using most of the available aircraft and surface measurements during July, and 2 days are examined in more detail to identify the processes responsible for the observed aerosol layers. The higher-resolution WRF-Chem model produced more aerosol mass in the free troposphere than the coarser-resolution CAM5 model so that the fraction of aerosol optical thickness above the residual layer from WRF-Chem was more consistent with lidar measurements. We found that the free troposphere layers are likely due to mean vertical motions associated with synoptic-scale convergence that lifts aerosols from the boundary layer. The vertical displacement and the time period associated with upward transport in the troposphere depend on the strength of the synoptic system and whether relatively high boundary layer aerosol concentrations are present where convergence occurs. While a parameterization of subgrid scale convective clouds applied in WRF-Chem modulated the concentrations of aerosols aloft, it did not significantly change the overall altitude and depth of the layers.

  4. Evaluation on Asian Dust Aerosol and Simulated Processes in CanAM4.2 Using Satellite Measurements and Station Data

    NASA Astrophysics Data System (ADS)

    Yiran, P.; Li, J.; von Salzen, K.; Dai, T.; Liu, D.

    2014-12-01

    Mineral dust is a significant contributor to global and Asian aerosol burden. Currently, large uncertainties still exist in simulated aerosol processes in global climate models (GCMs), which lead to a diversity in dust mass loading and spatial distribution of GCM projections. In this study, satellite measurements from CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) and observed aerosol data from Asian stations are compared with modelled aerosol in the Canadian Atmospheric Global Climate Model (CanAM4.2). Both seasonal and annual variations in Asian dust distribution are investigated. Vertical profile of simulated aerosol in troposphere is evaluated with CALIOP Level 3 products and local observed extinction for dust and total aerosols. Physical processes in GCM such as horizontal advection, vertical mixing, dry and wet removals are analyzed according to model simulation and available measurements of aerosol. This work aims to improve current understanding of Asian dust transport and vertical exchange on a large scale, which may help to increase the accuracy of GCM simulation on aerosols.

  5. Use of In Situ Cloud Condensation Nuclei, Extinction, and Aerosol Size Distribution Measurements to Test a Method for Retrieving Cloud Condensation Nuclei Profiles From Surface Measurements

    NASA Technical Reports Server (NTRS)

    Ghan, Stephen J.; Rissman, Tracey A.; Ellman, Robert; Ferrare, Richard A.; Turner, David; Flynn, Connor; Wang, Jian; Ogren, John; Hudson, James; Jonsson, Haflidi H.; hide

    2006-01-01

    If the aerosol composition and size distribution below cloud are uniform, the vertical profile of cloud condensation nuclei (CCN) concentration can be retrieved entirely from surface measurements of CCN concentration and particle humidification function and surface-based retrievals of relative humidity and aerosol extinction or backscatter. This provides the potential for long-term measurements of CCN concentrations near cloud base. We have used a combination of aircraft, surface in situ, and surface remote sensing measurements to test various aspects of the retrieval scheme. Our analysis leads us to the following conclusions. The retrieval works better for supersaturations of 0.1% than for 1% because CCN concentrations at 0.1% are controlled by the same particles that control extinction and backscatter. If in situ measurements of extinction are used, the retrieval explains a majority of the CCN variance at high supersaturation for at least two and perhaps five of the eight flights examined. The retrieval of the vertical profile of the humidification factor is not the major limitation of the CCN retrieval scheme. Vertical structure in the aerosol size distribution and composition is the dominant source of error in the CCN retrieval, but this vertical structure is difficult to measure from remote sensing at visible wavelengths.

  6. Black carbon's contribution to aerosol absorption optical depth over S. Korea

    NASA Astrophysics Data System (ADS)

    Lamb, K.; Perring, A. E.; Beyersdorf, A. J.; Anderson, B. E.; Segal-Rosenhaimer, M.; Redemann, J.; Holben, B. N.; Schwarz, J. P.

    2017-12-01

    Aerosol absorption optical depth (AAOD) monitored by ground-based sites (AERONET, SKYNET, etc.) is used to constrain climate radiative forcing from black carbon (BC) and other absorbing aerosols in global models, but few validation studies between in situ aerosol measurements and ground-based AAOD exist. AAOD is affected by aerosol size distributions, composition, mixing state, and morphology. Megacities provide appealing test cases for this type of study due to their association with very high concentrations of anthropogenic aerosols. During the KORUS-AQ campaign in S. Korea, which took place in late spring and early summer of 2016, in situ aircraft measurements over the Seoul Metropolitan Area and Taehwa Research Forest (downwind of Seoul) were repeated three times per flight over a 6 week period, providing significant temporal coverage of vertically resolved aerosol properties influenced by different meteorological conditions and sources. Measurements aboard the NASA DC-8 by the NOAA Humidified Dual Single Particle Soot Photometers (HD-SP2) quantified BC mass, size distributions, mixing state, and the hygroscopicity of BC containing aerosols. The in situ BC mass vertical profiles are combined with estimated absorption enhancement calculated from observed optical size and hygroscopicity using Mie theory, and then integrated over the depth of the profile to calculate BC's contribution to AAOD. Along with bulk aerosol size distributions and hygroscopicity, bulk absorbing aerosol optical properties, and on-board sky radiance measurements, these measurements are compared with ground-based AERONET site measurements of AAOD to evaluate closure between in situ vertical profiles of BC and AAOD measurements. This study will provide constraints on the relative importance of BC (including lensing and hygroscopicity effects) and non-BC components to AAOD over S. Korea.

  7. Overview of the aerosol measurements in the UTLS during the POSIDON campaign

    NASA Astrophysics Data System (ADS)

    Gao, R. S.; Liu, S.; Thornberry, T. D.; Rollins, A. W.; Yu, P.; Woods, S.; Bui, T. V.

    2017-12-01

    The tropical tropopause layer (TTL) is the main gateway for transport of aerosols from the troposphere to the stratosphere. Studies of aerosol properties in the TTL, however, are very limited. During the NASA Pacific Oxidants, Sulfur, Ice, Dehydration, and cONvection (POSIDON) Experiment in Guam in October 2016, we measured aerosol size distributions onboard the NASA WB-57F high altitude research aircraft up to 19 km. Multiple aerosol vertical profiles showed a robust enhancement of aerosols as a function of altitude between 15 and 19 km, with the aerosol number and mass concentrations of 10 cm-3 and 0.1 µg m-3, respectively, for particles in the size range of 140-3000 nm at 17 km altitude. Simulation using a global sectional aerosol model coupled with the Community Earth System Model generally agreed with aerosol observations, suggesting that the aerosol enhancement was likely due to in-situ particle formation and growth. Concurrent SO2 measurement showed that conversion of SO2 to sulfuric acid alone cannot explain the enhanced aerosol layer at TTL, indicating that other precursors or formation pathways exist for efficient aerosol formation. Using the measured mass concentration and an average vertical air velocity, the aerosol mass flux at the tropopause has been estimated. In addition, we investigated the potential aerosol removal processes and found no evidence for aerosol scavenging by ice.

  8. Impact of long-range transport pollution on aerosol properties over West Africa: observations during the DACCIWA airborne campaign

    NASA Astrophysics Data System (ADS)

    Denjean, Cyrielle; Bourrianne, Thierry; Burnet, Frederic; Deroubaix, Adrien; Brito, Joel; Dupuy, Régis; Colomb, Aurélie; Schwarzenboeck, Alfons; Sellegri, Karine; Chazette, Patrick; Duplissy, Jonathan; Flamant, Cyrille

    2017-04-01

    Southern West Africa (SWA) is a region highly vulnerable to climate change. Emissions of anthropogenic pollution have increased substantially over the past decades in the region and are projected to keep increasing. The region is also strongly impacted by important natural pollution from distant locations. Biomass burning mainly from vegetation fires in Central Africa and mineral dust from the Saharan and Sahel-Sudan regions are advected by winds to the SWA region especially in summer. Both biomass burning and mineral dust aerosols scatter and absorb solar radiation and are able to significantly modify the regional radiative budget. Presently, the potential radiative impact of dust and biomass burning particles on SWA is unclear due to inadequate data information on the aerosols properties and vertical distribution. In the framework of the Dynamics-Aerosol-Chemistry-Cloud Interactions in West Africa (DACCIWA) project, an unprecedented field campaign took place in summer 2016 in West Africa. The ATR-42 research aircraft operated by SAFIRE performed twenty flights to sample the local air pollution from maritime traffic and coastal megacities, as well as regional pollution from biomass burning and desert dust. The aircraft was equipped with state of the art in situ instrumentation to measure the aerosol optical properties (CAPS, nephelometer, PSAP), the aerosol size distribution (SMPS, GRIMM, USHAS, PCASP, FSSP) and the aerosol chemical composition (SP2, AMS). A mini backscattered lidar system provided additional measurements of the aerosol vertical structure and the aerosol optical properties such as the particulate depolarization ratio. The CHIMERE chemistry and transport model has been used to characterize the source area and the long-range transport of dust and biomass burning plumes. Here, we investigate the aerosol microphysical, chemical and optical properties of biomass burning and dust aerosols transported in SWA. In particular the following questions will be

  9. Vertical Profiles of Cloud Condensation Nuclei, Condensation Nuclei, Optical Aerosol, Aerosol Optical Properties, and Aerosol Volatility Measured from Balloons

    NASA Technical Reports Server (NTRS)

    Deshler, T.; Snider, J. R.; Vali, G.

    1998-01-01

    Under the support of this grant a balloon-borne gondola containing a variety of aerosol instruments was developed and flown from Laramie, Wyoming, (41 deg N, 105 deg W) and from Lauder, New Zealand (45 deg S, 170 deg E). The gondola includes instruments to measure the concentrations of condensation nuclei (CN), cloud condensation nuclei (CCN), optically detectable aerosol (OA.) (r greater than or equal to 0.15 - 2.0 microns), and optical scattering properties using a nephelometer (lambda = 530 microns). All instruments sampled from a common inlet which was heated to 40 C on ascent and to 160 C on descent. Flights with the CN counter, OA counter, and nephelometer began in July 1994. The CCN counter was added in November 1994, and the engineering problems were solved by June 1995. Since then the flights have included all four instruments, and were completed in January 1998. Altogether there were 20 flights from Laramie, approximately 5 per year, and 2 from Lauder. Of these there were one or more engineering problems on 6 of the flights from Laramie, hence the data are somewhat limited on those 6 flights, while a complete data set was obtained from the other 14 flights. Good CCN data are available from 12 of the Laramie flights. The two flights from Lauder in January 1998 were successful for all measurements. The results from these flights, and the development of the balloon-bome CCN counter have formed the basis for five conference presentations. The heated and unheated CN and OA measurements have been used to estimate the mass fraction of the aerosol volatile, while comparisons of the nephelometer measurements were used to estimate the light scattering, associated with the volatile aerosol. These estimates were calculated for 0.5 km averages of the ascent and descent data between 2.5 km and the tropopause, near 11.5 km.

  10. Estimating Marine Aerosol Particle Volume and Number from Maritime Aerosol Network Data

    NASA Technical Reports Server (NTRS)

    Sayer, A. M.; Smirnov, A.; Hsu, N. C.; Munchak, L. A.; Holben, B. N.

    2012-01-01

    As well as spectral aerosol optical depth (AOD), aerosol composition and concentration (number, volume, or mass) are of interest for a variety of applications. However, remote sensing of these quantities is more difficult than for AOD, as it is more sensitive to assumptions relating to aerosol composition. This study uses spectral AOD measured on Maritime Aerosol Network (MAN) cruises, with the additional constraint of a microphysical model for unpolluted maritime aerosol based on analysis of Aerosol Robotic Network (AERONET) inversions, to estimate these quantities over open ocean. When the MAN data are subset to those likely to be comprised of maritime aerosol, number and volume concentrations obtained are physically reasonable. Attempts to estimate surface concentration from columnar abundance, however, are shown to be limited by uncertainties in vertical distribution. Columnar AOD at 550 nm and aerosol number for unpolluted maritime cases are also compared with Moderate Resolution Imaging Spectroradiometer (MODIS) data, for both the present Collection 5.1 and forthcoming Collection 6. MODIS provides a best-fitting retrieval solution, as well as the average for several different solutions, with different aerosol microphysical models. The average solution MODIS dataset agrees more closely with MAN than the best solution dataset. Terra tends to retrieve lower aerosol number than MAN, and Aqua higher, linked with differences in the aerosol models commonly chosen. Collection 6 AOD is likely to agree more closely with MAN over open ocean than Collection 5.1. In situations where spectral AOD is measured accurately, and aerosol microphysical properties are reasonably well-constrained, estimates of aerosol number and volume using MAN or similar data would provide for a greater variety of potential comparisons with aerosol properties derived from satellite or chemistry transport model data.

  11. Size Resolved Measurements of Springtime Aerosol Particles over the Northern South China Sea

    NASA Technical Reports Server (NTRS)

    Atwood, Samuel A.; Reid, Jeffrey S.; Kreidenweis, Sonia M.; Cliff, Stephen S.; Zhao, Yongjing; Lin, Neng-Huei; Tsay, Si-Chee; Chu, Yu-Chi; Westphal, Douglas L.

    2012-01-01

    Large sources of aerosol particles and their precursors are ubiquitous in East Asia. Such sources are known to impact the South China Sea (henceforth SCS), a sometimes heavily polluted region that has been suggested as particularly vulnerable to climate change. To help elucidate springtime aerosol transport into the SCS, an intensive study was performed on the remote Dongsha (aka Pratas) Islands Atoll in spring 2010. As part of this deployment, a Davis Rotating-drum Uniform size-cut Monitor (DRUM) cascade impactor was deployed to collect size-resolved aerosol samples at the surface that were analyzed by X-ray fluorescence for concentrations of selected elements. HYSPLIT backtrajectories indicated that the transport of aerosol observed at the surface at Dongsha was occurring primarily from regions generally to the north and east. This observation was consistent with the apparent persistence of pollution and dust aerosol, along with sea salt, in the ground-based dataset. In contrast to the sea-level observations, modeled aerosol transport suggested that the westerly flow aloft (w700 hPa) transported smoke-laden air toward the site from regions from the south and west. Measured aerosol optical depth at the site was highest during time periods of modeled heavy smoke loadings aloft. These periods did not coincide with elevated aerosol concentrations at the surface, although the model suggested sporadic mixing of this free-tropospheric aerosol to the surface over the SCS. A biomass burning signature was not clearly identified in the surface aerosol composition data, consistent with this aerosol type remaining primarily aloft and not mixing strongly to the surface during the study. Significant vertical wind shear in the region also supports the idea that different source regions lead to varying aerosol impacts in different vertical layers, and suggests the potential for considerable vertical inhomogeneity in the SCS aerosol environment.

  12. Assessment of Aerosol Optical Property and Radiative Effect for the Layer Decoupling Cases over the Northern South China Sea During the 7-SEAS Dongsha Experiment

    NASA Technical Reports Server (NTRS)

    Pani, Shantau Kumar; Wang, Sheng-Hsiang; Lin, Neng-Huei; Tsay, Si-Chee; Lolli, Simone; Chuang, Ming-Tung; Lee, Chung-Te; Chantara, Somporn; Yu, Jin-Yi

    2016-01-01

    The aerosol radiative effect can be modulated by the vertical distribution and optical properties of aerosols, particularly when aerosol layers are decoupled. Direct aerosol radiative effects over the northern South China Sea (SCS) were assessed by incorporating an observed data set of aerosol optical properties obtained from the Seven South East Asian Studies (7-SEAS)/Dongsha Experiment into a radiative transfer model. Aerosol optical properties for a two-layer structure of aerosol transport were estimated. In the radiative transfer calculations, aerosol variability (i.e., diversity of source region, aerosol type, and vertical distribution) for the complex aerosol environment was also carefully quantified. The column-integrated aerosol optical depth (AOD) at 500nm was 0.1-0.3 for near-surface aerosols and increased 1-5 times in presence of upper layer biomass-burning aerosols. A case study showed the strong aerosol absorption (single-scattering albedo (omega) approx. = 0.92 at 440nm wavelength) exhibited by the upper layer when associated with predominantly biomass-burning aerosols, and the omega (approx. = 0.95) of near-surface aerosols was greater than that of the upper layer aerosols because of the presence of mixed type aerosols. The presence of upper level aerosol transport could enhance the radiative efficiency at the surface (i.e., cooling) and lower atmosphere (i.e., heating) by up to -13.7 and +9.6W/sq m2 per AOD, respectively. Such enhancement could potentially modify atmospheric stability, can influence atmospheric circulation, as well as the hydrological cycle over the tropical and low-latitude marginal northern SCS.

  13. Assessment of aerosol optical property and radiative effect for the layer decoupling cases over the northern South China Sea during the 7-SEAS/Dongsha Experiment

    NASA Astrophysics Data System (ADS)

    Pani, Shantanu Kumar; Wang, Sheng-Hsiang; Lin, Neng-Huei; Tsay, Si-Chee; Lolli, Simone; Chuang, Ming-Tung; Lee, Chung-Te; Chantara, Somporn; Yu, Jin-Yi

    2016-05-01

    The aerosol radiative effect can be modulated by the vertical distribution and optical properties of aerosols, particularly when aerosol layers are decoupled. Direct aerosol radiative effects over the northern South China Sea (SCS) were assessed by incorporating an observed data set of aerosol optical properties obtained from the Seven South East Asian Studies (7-SEAS)/Dongsha Experiment into a radiative transfer model. Aerosol optical properties for a two-layer structure of aerosol transport were estimated. In the radiative transfer calculations, aerosol variability (i.e., diversity of source region, aerosol type, and vertical distribution) for the complex aerosol environment was also carefully quantified. The column-integrated aerosol optical depth (AOD) at 500 nm was 0.1-0.3 for near-surface aerosols and increased 1-5 times in presence of upper layer biomass-burning aerosols. A case study showed the strong aerosol absorption (single-scattering albedo (ω) ≈ 0.92 at 440 nm wavelength) exhibited by the upper layer when associated with predominantly biomass-burning aerosols, and the ω (≈0.95) of near-surface aerosols was greater than that of the upper layer aerosols because of the presence of mixed type aerosols. The presence of upper level aerosol transport could enhance the radiative efficiency at the surface (i.e., cooling) and lower atmosphere (i.e., heating) by up to -13.7 and +9.6 W m-2 per AOD, respectively. Such enhancement could potentially modify atmospheric stability, can influence atmospheric circulation, as well as the hydrological cycle over the tropical and low-latitude marginal northern SCS.

  14. Spatial Interpolation of Aerosol Optical Depth Pollution: Comparison of Methods for the Development of Aerosol Distribution

    NASA Astrophysics Data System (ADS)

    Safarpour, S.; Abdullah, K.; Lim, H. S.; Dadras, M.

    2017-09-01

    Air pollution is a growing problem arising from domestic heating, high density of vehicle traffic, electricity production, and expanding commercial and industrial activities, all increasing in parallel with urban population. Monitoring and forecasting of air quality parameters are important due to health impact. One widely available metric of aerosol abundance is the aerosol optical depth (AOD). The AOD is the integrated light extinction coefficient over a vertical atmospheric column of unit cross section, which represents the extent to which the aerosols in that vertical profile prevent the transmission of light by absorption or scattering. Seasonal aerosol optical depth (AOD) values at 550 nm derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor onboard NASA's Terra satellites, for the 10 years period of 2000 - 2010 were used to test 7 different spatial interpolation methods in the present study. The accuracy of estimations was assessed through visual analysis as well as independent validation based on basic statistics, such as root mean square error (RMSE) and correlation coefficient. Based on the RMSE and R values of predictions made using measured values from 2000 to 2010, Radial Basis Functions (RBFs) yielded the best results for spring, summer and winter and ordinary kriging yielded the best results for fall.

  15. Aerosol data assimilation in the chemical transport model MOCAGE during the TRAQA/ChArMEx campaign: aerosol optical depth

    NASA Astrophysics Data System (ADS)

    Sič, Bojan; El Amraoui, Laaziz; Piacentini, Andrea; Marécal, Virginie; Emili, Emanuele; Cariolle, Daniel; Prather, Michael; Attié, Jean-Luc

    2016-11-01

    In this study, we describe the development of the aerosol optical depth (AOD) assimilation module in the chemistry transport model (CTM) MOCAGE (Modèle de Chimie Atmosphérique à Grande Echelle). Our goal is to assimilate the spatially averaged 2-D column AOD data from the National Aeronautics and Space Administration (NASA) Moderate-resolution Imaging Spectroradiometer (MODIS) instrument, and to estimate improvements in a 3-D CTM assimilation run compared to a direct model run. Our assimilation system uses 3-D-FGAT (first guess at appropriate time) as an assimilation method and the total 3-D aerosol concentration as a control variable. In order to have an extensive validation dataset, we carried out our experiment in the northern summer of 2012 when the pre-ChArMEx (CHemistry and AeRosol MEditerranean EXperiment) field campaign TRAQA (TRAnsport à longue distance et Qualité de l'Air dans le bassin méditerranéen) took place in the western Mediterranean basin. The assimilated model run is evaluated independently against a range of aerosol properties (2-D and 3-D) measured by in situ instruments (the TRAQA size-resolved balloon and aircraft measurements), the satellite Spinning Enhanced Visible and InfraRed Imager (SEVIRI) instrument and ground-based instruments from the Aerosol Robotic Network (AERONET) network. The evaluation demonstrates that the AOD assimilation greatly improves aerosol representation in the model. For example, the comparison of the direct and the assimilated model run with AERONET data shows that the assimilation increased the correlation (from 0.74 to 0.88), and reduced the bias (from 0.050 to 0.006) and the root mean square error in the AOD (from 0.12 to 0.07). When compared to the 3-D concentration data obtained by the in situ aircraft and balloon measurements, the assimilation consistently improves the model output. The best results as expected occur when the shape of the vertical profile is correctly simulated by the direct model. We

  16. High resolution humidity, temperature and aerosol profiling with MeteoSwiss Raman lidar

    NASA Astrophysics Data System (ADS)

    Dinoev, Todor; Arshinov, Yuri; Bobrovnikov, Sergei; Serikov, Ilya; Calpini, Bertrand; van den Bergh, Hubert; Parlange, Marc B.; Simeonov, Valentin

    2010-05-01

    Meteorological services rely, in part, on numerical weather prediction (NWP). Twice a day radiosonde observations of water vapor provide the required data for assimilation but this time resolution is insufficient to resolve certain meteorological phenomena. High time resolution temperature profiles from microwave radiometers are available as well but have rather low vertical resolution. The Raman LIDARs are able to provide temperature and humidity profiles with high time and range resolution, suitable for NWP model assimilation and validation. They are as well indispensible tools for continuous aerosol profiling for high resolution atmospheric boundary layer studies. To improve the database available for direct meteorological applications the Swiss meteo-service (MeteoSwiss), the Swiss Federal Institute of Technology in Lausanne (EPFL) and the Swiss National Science Foundation (SNSF) initiated a project to design and build an automated Raman lidar for day and night vertical profiling of tropospheric water vapor with the possibility to further upgrade it with an aerosol and temperature channels. The project was initiated in 2004 and RALMO (Raman Lidar for meteorological observations) was inaugurated in August 2008 at MeteoSwiss aerological station at Payerne. RALMO is currently operational and continuously profiles water vapor mixing ratio, aerosol backscatter ratio and aerosol extinction. The instrument is a fully automated, self-contained, eye-safe Raman lidar operated at 355 nm. Narrow field-of-view multi-telescope receiver and narrow band detection allow day and night-time vertical profiling of the atmospheric humidity. The rotational-vibrational Raman lidar responses from water vapor and nitrogen are spectrally separated by a high-throughput fiber coupled diffraction grating polychromator. The elastic backscatter and pure-rotational Raman lidar responses (PRR) from oxygen and nitrogen are spectrally isolated by a double grating polychromator and are used to

  17. Model representations of aerosol layers transported from North America over the Atlantic Ocean during the Two-Column Aerosol Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fast, Jerome D.; Berg, Larry K.; Zhang, Kai

    2016-08-22

    The ability of the Weather Research and Forecasting model with chemistry (WRF-Chem) version 3.7 and the Community Atmosphere Model version 5.3 (CAM5) in simulating profiles of aerosol properties is quantified using extensive in situ and remote sensing measurements from the Two Column Aerosol Project (TCAP) conducted during July of 2012. TCAP was supported by the U.S. Department of Energy’s Atmospheric Radiation Measurement program and was designed to obtain observations within two atmospheric columns; one fixed over Cape Cod, Massachusetts and the other several hundred kilometers over the ocean. The performance is quantified using most of the available aircraft and surfacemore » measurements during July, and two days are examined in more detail to identify the processes responsible for the observed aerosol layers. The higher resolution WRF-Chem model produced more aerosol mass in the free troposphere than the coarser resolution CAM5 model so that the fraction of aerosol optical thickness above the residual layer from WRF-Chem was more consistent with lidar measurements. We found that the free troposphere layers are likely due to mean vertical motions associated with synoptic-scale convergence that lifts aerosols from the boundary layer. The vertical displacement and the time period associated with upward transport in the troposphere depend on the strength of the synoptic system and whether relatively high boundary layer aerosol concentrations are present where convergence occurs. While a parameterization of subgrid scale convective clouds applied in WRF-Chem modulated the concentrations of aerosols aloft, it did not significantly change the overall altitude and depth of the layers.« less

  18. Model representations of aerosol layers transported from North America over the Atlantic Ocean during the Two-Column Aerosol Project

    DOE PAGES

    Fast, Jerome D.; Berg, Larry K.; Zhang, Kai; ...

    2016-08-22

    The ability of the Weather Research and Forecasting model with chemistry (WRF-Chem) version 3.7 and the Community Atmosphere Model version 5.3 (CAM5) in simulating profiles of aerosol properties is quantified using extensive in situ and remote sensing measurements from the Two-Column Aerosol Project (TCAP) conducted during July of 2012. TCAP was supported by the U.S. Department of Energy's Atmospheric Radiation Measurement program and was designed to obtain observations within two atmospheric columns; one fixed over Cape Cod, Massachusetts, and the other several hundred kilometers over the ocean. The performance is quantified using most of the available aircraft and surface measurementsmore » during July, and 2 days are examined in more detail to identify the processes responsible for the observed aerosol layers. The higher-resolution WRF-Chem model produced more aerosol mass in the free troposphere than the coarser-resolution CAM5 model so that the fraction of aerosol optical thickness above the residual layer from WRF-Chem was more consistent with lidar measurements. We found that the free troposphere layers are likely due to mean vertical motions associated with synoptic-scale convergence that lifts aerosols from the boundary layer. The vertical displacement and the time period associated with upward transport in the troposphere depend on the strength of the synoptic system and whether relatively high boundary layer aerosol concentrations are present where convergence occurs. In conclusion, while a parameterization of subgrid scale convective clouds applied in WRF-Chem modulated the concentrations of aerosols aloft, it did not significantly change the overall altitude and depth of the layers.« less

  19. Correlative measurements of the stratospheric aerosols

    NASA Astrophysics Data System (ADS)

    Santer, R.; Brogniez, C.; Herman, M.; Diallo, S.; Ackerman, M.

    1992-12-01

    Joint experiments were organized or available during stratospheric flights of a photopolarimeter, referred to as RADIBAL (radiometer balloon). In May 1984, RADIBAL flew simultaneously with another balloonborne experiment conducted by the Institut d'Aeronomie Spatiale de Belgique (IASB), which provides multiwavelength vertical profiles of the aerosol scattering coefficient. At this time, the El Chichon layer was observable quite directly from mountain sites. A ground-based station set up at Pic du Midi allowed an extensive description of the aerosol optical properties. The IASB and the Pic du Midi observations are consistent with the aerosol properties derived from the RADIBAL measurement analysis.

  20. Classification of summertime synoptic patterns in Beijing and their associations with boundary layer structure affecting aerosol pollution

    NASA Astrophysics Data System (ADS)

    Miao, Yucong; Guo, Jianping; Liu, Shuhua; Liu, Huan; Li, Zhanqing; Zhang, Wanchun; Zhai, Panmao

    2017-02-01

    Meteorological conditions within the planetary boundary layer (PBL) are closely governed by large-scale synoptic patterns and play important roles in air quality by directly and indirectly affecting the emission, transport, formation, and deposition of air pollutants. Partly due to the lack of long-term fine-resolution observations of the PBL, the relationships between synoptic patterns, PBL structure, and aerosol pollution in Beijing have not been well understood. This study applied the obliquely rotated principal component analysis in T-mode to classify the summertime synoptic conditions over Beijing using the National Centers for Environmental Prediction reanalysis from 2011 to 2014, and investigated their relationships with PBL structure and aerosol pollution by combining numerical simulations, measurements of surface meteorological variables, fine-resolution soundings, the concentration of particles with diameters less than or equal to 2.5 µm, total cloud cover (CLD), and reanalysis data. Among the seven identified synoptic patterns, three types accounted for 67 % of the total number of cases studied and were associated with heavy aerosol pollution events. These particular synoptic patterns were characterized by high-pressure systems located to the east or southeast of Beijing at the 925 hPa level, which blocked the air flow seaward, and southerly PBL winds that brought in polluted air from the southern industrial zone. The horizontal transport of pollutants induced by the synoptic forcings may be the most important factor affecting the air quality of Beijing in summer. In the vertical dimension, these three synoptic patterns featured a relatively low boundary layer height (BLH) in the afternoon, accompanied by high CLD and southerly cold advection from the seas within the PBL. The high CLD reduced the solar radiation reaching the surface, and suppressed the thermal turbulence, leading to lower BLH. Besides, the numerical sensitive experiments show that cold

  1. The Vertical Structure of Urban Soils and Their Convergence Across Cities

    EPA Science Inventory

    The theoretical patterns for vertical soil structure (e.g., A-B-C ordering of horizons) are a basis for research methods and our understanding of ecosystem structure and function in general. A general understanding of how urban soils differ from non-urban soils vertically is need...

  2. Multistatic aerosol-cloud lidar in space: A theoretical perspective

    NASA Astrophysics Data System (ADS)

    Mishchenko, M. I.; Alexandrov, M. D.; Brian, C.; Travis, L. D.

    2016-12-01

    Accurate aerosol and cloud retrievals from space remain quite challenging and typically involve solving a severely ill-posed inverse scattering problem. In this Perspective, we formulate in general terms an aerosol and aerosol-cloud interaction space mission concept intended to provide detailed horizontal and vertical profiles of aerosol physical characteristics as well as identify mutually induced changes in the properties of aerosols and clouds. We argue that a natural and feasible way of addressing the ill-posedness of the inverse scattering problem while having an exquisite vertical-profiling capability is to fly a multistatic (including bistatic) lidar system. We analyze theoretically the capabilities of a formation-flying constellation of a primary satellite equipped with a conventional monostatic (backscattering) lidar and one or more additional platforms each hosting a receiver of the scattered laser light. If successfully implemented, this concept would combine the measurement capabilities of a passive multi-angle multi-spectral polarimeter with the vertical profiling capability of a lidar; address the ill-posedness of the inverse problem caused by the highly limited information content of monostatic lidar measurements; address the ill-posedness of the inverse problem caused by vertical integration and surface reflection in passive photopolarimetric measurements; relax polarization accuracy requirements; eliminate the need for exquisite radiative-transfer modeling of the atmosphere-surface system in data analyses; yield the day-and-night observation capability; provide direct characterization of ground-level aerosols as atmospheric pollutants; and yield direct measurements of polarized bidirectional surface reflectance. We demonstrate, in particular, that supplementing the conventional backscattering lidar with just one additional receiver flown in formation at a scattering angle close to 170° can dramatically increase the information content of the

  3. Multistatic Aerosol Cloud Lidar in Space: A Theoretical Perspective

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael I.; Alexandrov, Mikhail D.; Cairns, Brian; Travis, Larry D.

    2016-01-01

    Accurate aerosol and cloud retrievals from space remain quite challenging and typically involve solving a severely ill-posed inverse scattering problem. In this Perspective, we formulate in general terms an aerosol and aerosol-cloud interaction space mission concept intended to provide detailed horizontal and vertical profiles of aerosol physical characteristics as well as identify mutually induced changes in the properties of aerosols and clouds. We argue that a natural and feasible way of addressing the ill-posedness of the inverse scattering problem while having an exquisite vertical-profiling capability is to fly a multistatic (including bistatic) lidar system. We analyze theoretically the capabilities of a formation-flying constellation of a primary satellite equipped with a conventional monostatic (backscattering) lidar and one or more additional platforms each hosting a receiver of the scattered laser light. If successfully implemented, this concept would combine the measurement capabilities of a passive multi-angle multi-spectral polarimeter with the vertical profiling capability of a lidar; address the ill-posedness of the inverse problem caused by the highly limited information content of monostatic lidar measurements; address the ill-posedness of the inverse problem caused by vertical integration and surface reflection in passive photopolarimetric measurements; relax polarization accuracy requirements; eliminate the need for exquisite radiative-transfer modeling of the atmosphere-surface system in data analyses; yield the day-and-night observation capability; provide direct characterization of ground-level aerosols as atmospheric pollutants; and yield direct measurements of polarized bidirectional surface reflectance. We demonstrate, in particular, that supplementing the conventional backscattering lidar with just one additional receiver flown in formation at a scattering angle close to 170deg can dramatically increase the information content of the

  4. Vertical variability of aerosol single-scattering albedo and equivalent black carbon concentration based on in-situ and remote sensing techniques during the iAREA campaigns in Ny-Ålesund

    NASA Astrophysics Data System (ADS)

    Markowicz, K. M.; Ritter, C.; Lisok, J.; Makuch, P.; Stachlewska, I. S.; Cappelletti, D.; Mazzola, M.; Chilinski, M. T.

    2017-09-01

    This work presents a methodology for obtaining vertical profiles of aerosol single scattering properties based on a combination of different measurement techniques. The presented data were obtained under the iAREA (Impact of absorbing aerosols on radiative forcing in the European Arctic) campaigns conducted in Ny-Ålesund (Spitsbergen) during the spring seasons of 2015-2017. The retrieval uses in-situ observations of black carbon concentration and absorption coefficient measured by a micro-aethalometer AE-51 mounted onboard a tethered balloon, as well as remote sensing data obtained from sun photometer and lidar measurements. From a combination of the balloon-borne in-situ and the lidar data, we derived profiles of single scattering albedo (SSA) as well as absorption, extinction, and aerosol number concentration. Results have been obtained in an altitude range from about 400 m up to 1600 m a.s.l. and for cases with increased aerosol load during the Arctic haze seasons of 2015 and 2016. The main results consist of the observation of increasing values of equivalent black carbon (EBC) and absorption coefficient with altitude, and the opposite trend for aerosol concentration for particles larger than 0.3 μm. SSA was retrieved with the use of lidar Raman and Klett algorithms for both 532 and 880 nm wavelengths. In most profiles, SSA shows relatively high temporal and altitude variability. Vertical variability of SSA computed from both methods is consistent; however, some discrepancy is related to Raman retrieval uncertainty and absorption coefficient estimation from AE-51. Typically, very low EBC concentration in Ny-Ålesund leads to large error in the absorbing coefficient. However, SSA uncertainty for both Raman and Klett algorithms seems to be reasonable, e.g. SSA of 0.98 and 0.95 relate to an error of ±0.01 and ± 0.025, respectively.

  5. [Vertical retraction syndrome caused by anomalous orbital structures].

    PubMed

    Yang, Qiong; Jiao, Yong-hong; Man, Feng-yuan; Wang, Zhen-chang; Chang, Qing-lin; Lu, Wei; Wang, Jing-hui; Zhao, Kan-xing

    2011-11-01

    To described the clinical feature and MRI imaging of six children with vertical retraction syndrome. Six children with unilateral vertical retraction syndrome between 15 months and 8 years of age, mean age was (5.01 ± 1.27) years old. Strabismus examination included diopter, prism diopters, eye movement examination, binocular vision and fundus examination. Imaging of the ocular motor nerves at the brainstem was performed in 0.8 mm thickness image planes using 3D-FIESTA sequence, the orbits were imaged with FSE T1, T2WI using surface coils, and within 2.0 mm thick planes. Four children showed hypertropia, characterized by limited depression, a light retraction of the globe during downward gaze and eyelid lag. The MRI imaging showed anomalous orbital structure in the superonasal quadrant that between medial rectus and superior rectus or adjacent to the superior rectus. Two children showed intermittent exotropia, characterized by limited elevation, retraction of the globe and narrowing of the palpebral fissure during upward gaze. The MRI imaging showed anomalous orbital structure was present in the inferotemporal quadrant, one originate in inferior rectus and another close to the lateral rectus. Anomalous orbital structures are a main cause of vertical retraction syndrome. The presence of specific unusual eye movement and MRI imaging may assist in diagnosis. When the eyelid lag was found since the early age, anomalous orbital structures were implied.

  6. Atmospheric soundings by SPICAM occultation observations: aerosol and ozone vertical profiles

    NASA Astrophysics Data System (ADS)

    Montmessin, F.

    2005-12-01

    The SPICAM instrument is a highly versatile, dual spectrometer probing both the UV and the NIR spectral region and is currently flying around Mars onboard Mars Express. Since the beginning of MEx operations, SPICAM has collected about thousand atmospheric profiles while observing in a solar or a stellar occultation mode. UV spectra bear the signatures of several species; i.e carbon dioxide, ozone and aerosols, while infrared spectra potentially bring information on atmospheric condensates and on water vapor. This presentation will focus on the measured aerosol, ozone and water vapor profiles. For the aerosol, we will emphasize the numerous observations made in the polar night and will also discuss some high altitude clouds discovered in the southern hemisphere. Ozone and water vapor profiles will be presented along with some General Circulation Model comparisons. This work has been supported by CNES.

  7. A New Satellite Aerosol Retrieval Using High Spectral Resolution Oxygen A-Band Measurements

    NASA Astrophysics Data System (ADS)

    Winker, D. M.; Zhai, P.

    2014-12-01

    Efforts to advance current satellite aerosol retrieval capabilities have mostly focused on polarimetric techniques. While there has been much interest in recent decades in the use of the oxygen A-band for retrievals of cloud height or surface pressure, these techniques are mostly based on A-band measurements with relatively low spectral resolution. We report here on a new aerosol retrieval technique based on high-resolution A-band spectra. Our goal is the development of a technique to retrieve aerosol absorption, one of the critical parameters affecting the global radiation budget and one which is currently poorly constrained by satellite measurements. Our approach relies on two key factors: 1) the use of high spectral resolution measurements which resolve the A-band line structure, and 2) the use of co-located lidar profile measurements to constrain the vertical distribution of scatterers. The OCO-2 satellite, launched in July this year and now flying in formation with the CALIPSO satellite, carries an oxygen A-band spectrometer with a spectral resolution of 21,000:1. This is sufficient to resolve the A-band line structure, which contains information on atmospheric photon path lengths. Combining channels with oxygen absorption ranging from weak to strong allows the separation of atmospheric and surface scattering. An optimal estimation algorithm for simultaneous retrieval of aerosol optical depth, aerosol absorption, and surface albedo has been developed. Lidar profile data is used for scene identification and to provide constraints on the vertical distribution of scatterers. As calibrated OCO-2 data is not expected until the end of this year, the algorithm has been developed and tested using simulated OCO-2 spectra. The simulations show that AOD and surface albedo can be retrieved with high accuracy. Retrievals of aerosol single scatter albedo are encouraging, showing good performance when AOD is larger than about 0.15. Retrieval performance improves as the

  8. Aerosols, clouds, and precipitation in the North Atlantic trades observed during the Barbados aerosol cloud experiment - Part 1: Distributions and variability

    NASA Astrophysics Data System (ADS)

    Jung, Eunsil; Albrecht, Bruce A.; Feingold, Graham; Jonsson, Haflidi H.; Chuang, Patrick; Donaher, Shaunna L.

    2016-07-01

    Shallow marine cumulus clouds are by far the most frequently observed cloud type over the Earth's oceans; but they are poorly understood and have not been investigated as extensively as stratocumulus clouds. This study describes and discusses the properties and variations of aerosol, cloud, and precipitation associated with shallow marine cumulus clouds observed in the North Atlantic trades during a field campaign (Barbados Aerosol Cloud Experiment- BACEX, March-April 2010), which took place off Barbados where African dust periodically affects the region. The principal observing platform was the Center for Interdisciplinary Remotely Piloted Aircraft Studies (CIRPAS) Twin Otter (TO) research aircraft, which was equipped with standard meteorological instruments, a zenith pointing cloud radar and probes that measured aerosol, cloud, and precipitation characteristics.The temporal variation and vertical distribution of aerosols observed from the 15 flights, which included the most intense African dust event during all of 2010 in Barbados, showed a wide range of aerosol conditions. During dusty periods, aerosol concentrations increased substantially in the size range between 0.5 and 10 µm (diameter), particles that are large enough to be effective giant cloud condensation nuclei (CCN). The 10-day back trajectories showed three distinct air masses with distinct vertical structures associated with air masses originating in the Atlantic (typical maritime air mass with relatively low aerosol concentrations in the marine boundary layer), Africa (Saharan air layer), and mid-latitudes (continental pollution plumes). Despite the large differences in the total mass loading and the origin of the aerosols, the overall shapes of the aerosol particle size distributions were consistent, with the exception of the transition period.The TO was able to sample many clouds at various phases of growth. Maximum cloud depth observed was less than ˜ 3 km, while most clouds were less than 1 km

  9. Explicit and Observation-based Aerosol Treatment in Tropospheric NO2 Retrieval over China from the Ozone Monitoring Instrument

    NASA Astrophysics Data System (ADS)

    Liu, M.; Lin, J.; Boersma, F.; Pinardi, G.; Wang, Y.; Chimot, J.; Wagner, T.; Xie, P.; Eskes, H.; Van Roozendael, M.; Hendrick, F.

    2017-12-01

    Satellite retrieval of vertical column densities (VCDs) of tropospheric nitrogen dioxide (NO2) is influenced by aerosols substantially. Aerosols affect the retrieval of "effective cloud fraction (CF)" and "effective cloud top pressure (CP)" that are used in the subsequent NO2 retrieval to account for the presentence of clouds. And aerosol properties and vertical distributions directly affect the NO2 air mass factor (AMF) calculations. Our published POMINO algorithm uses a parallelized LIDORT-driven AMFv6 code to derive CF, CP and NO2 VCD. Daily information on aerosol optical properties are taken from GEOS-Chem simulations, with aerosol optical depth (AOD) further constrained by monthly MODIS AOD. However, the published algorithm does not include an observation-based constraint of aerosol vertical distribution. Here we construct a monthly climatological observation dataset of aerosol extinction profiles, based on Level-2 CALIOP data over 2007-2015, to further constrain aerosol vertical distributions. GEOS-Chem captures the temporal variations of CALIOP aerosol layer heights (ALH) but has an overall underestimate by about 0.3 km. It tends to overestimate the aerosol extinction by 10% below 2 km but with an underestimate by 30% above 2 km, leading to a low bias by 10-30% in the retrieved tropospheric NO2 VCD. After adjusting GEOS-Chem aerosol extinction profiles by the CALIOP monthly ALH climatology, the retrieved NO2 VCDs increase by 4-16% over China on a monthly basis in 2012. The improved NO2 VCDs are better correlated to independent MAX-DOAS observations at three sites than POMINO and DOMINO are - especially for the polluted cases, R2 reaches 0.76 for the adjusted POMINO, much higher than that for the published POMINO (0.68) and DOMINO (0.38). The newly retrieved CP increases by 60 hPa on average, because of a stronger aerosol screening effect. Compared to the CF used in DOMINO, which implicitly includes aerosol information, our improved CF is much lower and can

  10. An Evaluation of the Naval Oceanic Vertical Aerosol Model During Key90

    DTIC Science & Technology

    1991-06-01

    regions with extensive aerosol content (such as were caused by the intentional burning of oil rigs). Many military devices operate in the visible to...that aerosol extinction above the second inversion is essentil y zero when the air mass parameter is calculated to be approximately equal to one do : s

  11. The Effect of Aerosols on Pluto's C2 Hydrocarbon Chemistry

    NASA Astrophysics Data System (ADS)

    Luspay-Kuti, Adrienn; Mandt, Kathleen; Jessup, Kandis-Lea; Hue, Vincent; Kammer, Joshua; Filwett, Rachael; Hamel, Mark

    2017-10-01

    On July 14, 2015 the New Horizons spacecraft flew through the Pluto system, providing critical details about Pluto’s atmosphere. The vertical profiles of N2 and CH4, C2H2, C2H4, and C2H6 derived from New Horizons Alice transmission data allow the more accurate modeling of Pluto’s atmosphere than in the pre-New Horizons era, and help better understand the physical and photochemical processes in Pluto’s atmosphere. All the measured C2 hydrocarbon densities showed an unexpected inversion between ~100 and 400 km, which suggests that processes other than chemistry play an important role in shaping their vertical profiles. We present here a state-of-the-art Pluto Ion-Neutral-Photochemistry (Pluto INP) model that includes the condensation onto and incorporation into aerosol particles, and evaluate the dominant production and loss processes of C2 hydrocarbons with a special emphasis on the role of aerosol interaction. We found that in order to reproduce the C2 profiles measured by New Horizons, they must stick to and be permanently removed by aerosols - a process different from condensation. We determined through empirical fits to the New Horizons data that the sticking efficiency of C2 hydrocarbons and the stickiness of the aerosol particles are inversely related to the available aerosol surface area, which has been inferred from observation to increase as altitude decreases. This counterintuitive relationship between sticking efficiency and available aerosol surfaces indicates that similarly to Titan, Pluto’s aerosols must harden and become less sticky as they age. Such hardening with ageing is both necessary and sufficient to explain the vertical profiles of C2 hydrocarbons in Pluto’s atmosphere.

  12. Observed correlations between aerosol and cloud properties in an Indian Ocean trade cumulus regime

    NASA Astrophysics Data System (ADS)

    Pistone, Kristina; Praveen, Puppala S.; Thomas, Rick M.; Ramanathan, Veerabhadran; Wilcox, Eric M.; Bender, Frida A.-M.

    2017-04-01

    There are multiple factors which affect the micro- and macrophysical properties of clouds, including the atmospheric vertical structure and dominant meteorological conditions in addition to aerosol concentration, all of which may be coupled to one another. In the quest to determine aerosol effects on clouds, these potential relationships must be understood. As bio- and fossil fuel combustion has increased in southeast Asia, corresponding increases in atmospheric aerosol pollution have been seen over the surrounding regions. These emissions notably include black carbon (BC) aerosols, which absorb rather than reflect solar radiation, affecting the atmosphere over the Indian Ocean through direct warming in addition to modifying cloud microphysical properties. The CARDEX (Cloud, Aerosol, Radiative forcing, Dynamics EXperiment) field campaign was conducted during the winter monsoon season (February and March) of 2012 in the northern Indian Ocean, a region dominated by trade cumulus clouds. During CARDEX, small unmanned aircraft were deployed, measuring aerosol, radiation, cloud, water vapor fluxes, and meteorological properties while a surface observatory collected continuous measurements of atmospheric precipitable water vapor (PWV), water vapor fluxes, surface and total-column aerosol, and cloud liquid water path (LWP). We present observations which indicate a positive correlation between aerosol and cloud LWP only when considering cases with low atmospheric water vapor (PWV)

  13. The Relationship Between Latent Heating, Vertical Velocity, and Precipitation Processes: the Impact of Aerosols on Precipitation in Organized Deep Convective Systems

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Li, Xiaowen

    2016-01-01

    A high-resolution, two-dimensional cloud-resolving model with spectral-bin microphysics is used to study the impact of aerosols on precipitation processes in both a tropical oceanic and a midlatitude continental squall line with regard to three processes: latent heating (LH), cold pool dynamics, and ice microphysics. Evaporative cooling in the lower troposphere is found to enhance rainfall in low cloud condensation nuclei (CCN) concentration scenarios in the developing stages of a midlatitude convective precipitation system. In contrast, the tropical case produced more rainfall under high CCN concentrations. Both cold pools and low-level convergence are stronger for those configurations having enhanced rainfall. Nevertheless, latent heat release is stronger (especially after initial precipitation) in the scenarios having more rainfall in both the tropical and midlatitude environment. Sensitivity tests are performed to examine the impact of ice and evaporative cooling on the relationship between aerosols, LH, and precipitation processes. The results show that evaporative cooling is important for cold pool strength and rain enhancement in both cases. However, ice microphysics play a larger role in the midlatitude case compared to the tropics. Detailed analysis of the vertical velocity-governing equation shows that temperature buoyancy can enhance updraftsdowndrafts in the middlelower troposphere in the convective core region; however, the vertical pressure gradient force (PGF) is of the same order and acts in the opposite direction. Water loading is small but of the same order as the net PGF-temperature buoyancy forcing. The balance among these terms determines the intensity of convection.

  14. Anthropogenic and Volcanic Contributions to the Tropospheric and Stratospheric Sulfate Aerosols

    NASA Technical Reports Server (NTRS)

    Chin, Mian

    2011-01-01

    We investigate anthropogenic and volcanic contributions to sulfate aerosol in the atmosphere through modeling and analysis of Aura data. We use a global model GOCART to simualte 502 and sulfate aerosol from 2000 to 2010 with the new anthropogenic and volcanic emission estimates to assess the origin of sulfate aerosols in the atmosphere. We will compare the model results with 502 data from OMI and MLS instrument on Aura, and aerosol vertical profiles from CALIPSO. Our goal is to understand the dec ada 1 trends of observed tropospheric and stratospheric aerosols.

  15. An analysis of the vertical structure equation for arbitrary thermal profiles

    NASA Technical Reports Server (NTRS)

    Cohn, Stephen E.; Dee, Dick P.

    1989-01-01

    The vertical structure equation is a singular Sturm-Liouville problem whose eigenfunctions describe the vertical dependence of the normal modes of the primitive equations linearized about a given thermal profile. The eigenvalues give the equivalent depths of the modes. The spectrum of the vertical structure equation and the appropriateness of various upper boundary conditions, both for arbitrary thermal profiles were studied. The results depend critically upon whether or not the thermal profile is such that the basic state atmosphere is bounded. In the case of a bounded atmosphere it is shown that the spectrum is always totally discrete, regardless of details of the thermal profile. For the barotropic equivalent depth, which corresponds to the lowest eigen value, upper and lower bounds which depend only on the surface temperature and the atmosphere height were obtained. All eigenfunctions are bounded, but always have unbounded first derivatives. It was proved that the commonly invoked upper boundary condition that vertical velocity must vanish as pressure tends to zero, as well as a number of alternative conditions, is well posed. It was concluded that the vertical structure equation always has a totally discrete spectrum under the assumptions implicit in the primitive equations.

  16. An analysis of the vertical structure equation for arbitrary thermal profiles

    NASA Technical Reports Server (NTRS)

    Cohn, Stephen E.; Dee, Dick P.

    1987-01-01

    The vertical structure equation is a singular Sturm-Liouville problem whose eigenfunctions describe the vertical dependence of the normal modes of the primitive equations linearized about a given thermal profile. The eigenvalues give the equivalent depths of the modes. The spectrum of the vertical structure equation and the appropriateness of various upper boundary conditions, both for arbitrary thermal profiles were studied. The results depend critically upon whether or not the thermal profile is such that the basic state atmosphere is bounded. In the case of a bounded atmosphere it is shown that the spectrum is always totally discrete, regardless of details of the thermal profile. For the barotropic equivalent depth, which corresponds to the lowest eigen value, upper and lower bounds which depend only on the surface temperature and the atmosphere height were obtained. All eigenfunctions are bounded, but always have unbounded first derivatives. It was proved that the commonly invoked upper boundary condition that vertical velocity must vanish as pressure tends to zero, as well as a number of alternative conditions, is well posed. It was concluded that the vertical structure equation always has a totally discrete spectrum under the assumptions implicit in the primitive equations.

  17. Aerosol observation using multi-wavelength Mie-Raman lidars of the Ad-Net and aerosol component analysis

    NASA Astrophysics Data System (ADS)

    Nishizawa, Tomoaki; Sugimoto, Nobuo; Shimizu, Atsushi; Uno, Itsushi; Hara, Yukari; Kudo, Rei

    2018-04-01

    We deployed multi-wavelength Mie-Raman lidars (MMRL) at three sites of the AD-Net and have conducted continuous measurements using them since 2013. To analyze the MMRL data and better understand the externally mixing state of main aerosol components (e.g., dust, sea-salt, and black carbon) in the atmosphere, we developed an integrated package of aerosol component retrieval algorithms, which have already been developed or are being developed, to estimate vertical profiles of the aerosol components. This package applies to the other ground-based lidar network data (e.g., EARLINET) and satellite-borne lidar data (e.g., CALIOP/CALIPSO and ATLID/EarthCARE) as well as the other lidar data of the AD-Net.

  18. Aerosol properties computed from aircraft-based observations during the ACE- Asia campaign. 2; A case study of lidar ratio closure and aerosol radiative effects

    NASA Technical Reports Server (NTRS)

    Kuzmanoski, Maja; Box, M. A.; Schmid, B.; Box, G. P.; Wang, J.; Russell, P. B.; Bates, D.; Jonsson, H. H.; Welton, Ellsworth J.; Flagan, R. C.

    2005-01-01

    For a vertical profile with three distinct layers (marine boundary, pollution and dust), observed during the ACE-Asia campaign, we carried out a comparison between the modeled lidar ratio vertical profile and that obtained from collocated airborne NASA AATS-14 sunphotometer and shipborne Micro-Pulse Lidar (MPL) measurements. Vertically resolved lidar ratio was calculated from two size distribution vertical profiles - one obtained by inversion of sunphotometer-derived extinction spectra, and one measured in-situ - combined with the same refractive index model based on aerosol chemical composition. The aerosol model implies single scattering albedos of 0.78 - 0.81 and 0.93 - 0.96 at 0.523 microns (the wavelength of the lidar measurements), in the pollution and dust layers, respectively. The lidar ratios calculated from the two size distribution profiles have close values in the dust layer; they are however, significantly lower than the lidar ratios derived from combined lidar and sunphotometer measurements, most probably due to the use of a simple nonspherical model with a single particle shape in our calculations. In the pollution layer, the two size distribution profiles yield generally different lidar ratios. The retrieved size distributions yield a lidar ratio which is in better agreement with that derived from lidar/sunphotometer measurements in this layer, with still large differences at certain altitudes (the largest relative difference was 46%). We explain these differences by non-uniqueness of the result of the size distribution retrieval and lack of information on vertical variability of particle refractive index. Radiative transfer calculations for this profile showed significant atmospheric radiative forcing, which occurred mainly in the pollution layer. We demonstrate that if the extinction profile is known then information on the vertical structure of absorption and asymmetry parameter is not significant for estimating forcing at TOA and the surface

  19. EARLINET: towards an advanced sustainable European aerosol lidar network

    NASA Astrophysics Data System (ADS)

    Pappalardo, G.; Amodeo, A.; Apituley, A.; Comeron, A.; Freudenthaler, V.; Linné, H.; Ansmann, A.; Bösenberg, J.; D'Amico, G.; Mattis, I.; Mona, L.; Wandinger, U.; Amiridis, V.; Alados-Arboledas, L.; Nicolae, D.; Wiegner, M.

    2014-08-01

    The European Aerosol Research Lidar Network, EARLINET, was founded in 2000 as a research project for establishing a quantitative, comprehensive, and statistically significant database for the horizontal, vertical, and temporal distribution of aerosols on a continental scale. Since then EARLINET has continued to provide the most extensive collection of ground-based data for the aerosol vertical distribution over Europe. This paper gives an overview of the network's main developments since 2000 and introduces the dedicated EARLINET special issue, which reports on the present innovative and comprehensive technical solutions and scientific results related to the use of advanced lidar remote sensing techniques for the study of aerosol properties as developed within the network in the last 13 years. Since 2000, EARLINET has developed greatly in terms of number of stations and spatial distribution: from 17 stations in 10 countries in 2000 to 27 stations in 16 countries in 2013. EARLINET has developed greatly also in terms of technological advances with the spread of advanced multiwavelength Raman lidar stations in Europe. The developments for the quality assurance strategy, the optimization of instruments and data processing, and the dissemination of data have contributed to a significant improvement of the network towards a more sustainable observing system, with an increase in the observing capability and a reduction of operational costs. Consequently, EARLINET data have already been extensively used for many climatological studies, long-range transport events, Saharan dust outbreaks, plumes from volcanic eruptions, and for model evaluation and satellite data validation and integration. Future plans are aimed at continuous measurements and near-real-time data delivery in close cooperation with other ground-based networks, such as in the ACTRIS (Aerosols, Clouds, and Trace gases Research InfraStructure Network) www.actris.net, and with the

  20. Measurements of fluorescent aerosols using a mutil-channel lidar spectrometer system during DUBI 2016 Campaign

    NASA Astrophysics Data System (ADS)

    Huang, Z.; Huang, J.; Zhou, T.; Shi, J.; Sugimoto, N.; Tang, K.

    2016-12-01

    Atmospheric bioaerosols are relevant for public health and may play an important role in the climate system. Previous studies have shown that abundant bioaerosols (such as microorganisms) injected into the atmosphere along with dust events, could affect leeward ecosystem and human health, even induce globe climate change. However, the challenge in quantifying bioaerosol climate effects (e.g., radiative forcing and aerosol-cloud interactions) arises from large spatial and temporal heterogeneity of their concentrations, compositions, sizes, shape and optical properties. Lidar, as one of most advanced active remote sensing, is used to offer some remarkable advantages for determining the vertical structure of atmospheric aerosols and their related optical properties. In order to investigate the characterization of atmospheric bioaerosols along transported pathways of dust aerosols, we carried out DUBI (DUst BIoaerosol) 2016 Campaign over Northern China in spring of 2016. Lots of instruments, including bioaerosol sampling, lidar as well as others, were installed at three sites­ (Erenhot, Zhangbei and Jinan) simultaneously. A multi-channel lidar spectrometer system was developed to observe Mie, Raman scattering and laser-induced fluorescence excitation at 355 nm from the atmosphere. The lidar system operated polarization measurements at 355nm, aiming to identify dust particles from other aerosols. It employs a high power pulsed laser with energy of 80mJ at 355nm and a received telescope with 350mm diameter. The receiver could simultaneously detect a wide fluorescent spectrum between 360nm and 720nm with spectral resolution 5.7 nm using two spectrometers simultaneously. The spectrometer mainly includes an F/3.7 Crossed Czerny-Turner spectrographs, a grating (1200 gr/mm) and a PMT array with 32 photocathode elements. Vertical structure of fluorescent aerosols in the atmosphere was observed by the developed lidar system at Zhangbei during DUBI 2016 Campaign. It has been

  1. Ambient Observations of Aerosols, Novel Aerosol Structures, And Their Engineering Applications

    NASA Astrophysics Data System (ADS)

    Beres, Nicholas D.

    The role of atmospheric aerosols remains a crucial issue in understanding and mitigating climate change in our world today. These particles influence the Earth by altering the Earth's delicate radiation balance, human health, and visibility. In particular, black carbon particulate matter remains the key driver in positive radiative forcing (i.e., warming) due to aerosols. Produced from the incomplete combustion of hydrocarbons, these compounds can be found in many different forms around the globe. This thesis provides an overview of three research topics: (1) the ambient characterization of aerosols in the Northern Indian Ocean, measurement techniques used, and how these aerosols influence local, regional, and global climate; (2) the exploration of novel soot superaggregate particles collected in the Northern Indian Ocean and around the globe and how the properties of these particles relate to human health and climate forcing; and (3) how aerogelated soot can be produced in a novel, one-step method utilizing an inverted flame reactor and how this material could be used in industrial settings.

  2. Sea spray aerosol structure and composition using cryogenic transmission electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patterson, Joseph P.; Collins, Douglas B.; Michaud, Jennifer M.

    The surface properties of atmospheric aerosol particles largely control their impact on climate by affecting their ability to uptake water, react heterogeneously, and nucleate ice in clouds. However, in the vacuum of a conventional electron microscope, the native surface structure often undergoes chemical rearrangement resulting in surfaces that are quite different from their atmospheric configurations. Herein, we report the development of a cryo-TEM approach where sea spray aerosol particles are flash frozen in their native state and then probed by electron microscopy. This unique approach allows for the detection of not only mixed salts, but also soft materials including wholemore » hydrated bacteria, diatoms, virus particles, marine vesicles, as well as gel networks within hydrated salt droplets. As a result, we anticipate this method will open up a new avenue of analysis for aerosol particles, not only for ocean-derived aerosols, but for those produced from other sources where there is interest in the transfer of organic or biological species from the biosphere to the atmosphere.« less

  3. Sea spray aerosol structure and composition using cryogenic transmission electron microscopy

    DOE PAGES

    Patterson, Joseph P.; Collins, Douglas B.; Michaud, Jennifer M.; ...

    2016-01-15

    The surface properties of atmospheric aerosol particles largely control their impact on climate by affecting their ability to uptake water, react heterogeneously, and nucleate ice in clouds. However, in the vacuum of a conventional electron microscope, the native surface structure often undergoes chemical rearrangement resulting in surfaces that are quite different from their atmospheric configurations. Herein, we report the development of a cryo-TEM approach where sea spray aerosol particles are flash frozen in their native state and then probed by electron microscopy. This unique approach allows for the detection of not only mixed salts, but also soft materials including wholemore » hydrated bacteria, diatoms, virus particles, marine vesicles, as well as gel networks within hydrated salt droplets. As a result, we anticipate this method will open up a new avenue of analysis for aerosol particles, not only for ocean-derived aerosols, but for those produced from other sources where there is interest in the transfer of organic or biological species from the biosphere to the atmosphere.« less

  4. Development and evaluation of the aerosol dynamics and gas phase chemistry model ADCHEM

    NASA Astrophysics Data System (ADS)

    Roldin, P.; Swietlicki, E.; Schurgers, G.; Arneth, A.; Lehtinen, K. E. J.; Boy, M.; Kulmala, M.

    2011-06-01

    The aim of this work was to develop a model suited for detailed studies of aerosol dynamics, gas and particle phase chemistry within urban plumes, from local scale (1 × 1 km2) to regional scale. This article describes and evaluates the trajectory model for Aerosol Dynamics, gas and particle phase CHEMistry and radiative transfer (ADCHEM). The model treats both vertical and horizontal dispersion perpendicular to an air mass trajectory (2-space dimensions). The Lagrangian approach enables a more detailed representation of the aerosol dynamics, gas and particle phase chemistry and a finer spatial and temporal resolution compared to that of available regional 3D-CTMs. These features make it among others well suited for urban plume studies. The aerosol dynamics model includes Brownian coagulation, dry deposition, wet deposition, in-cloud processing, condensation, evaporation, primary particle emissions and homogeneous nucleation. The organic mass partitioning was either modeled with a 2-dimensional volatility basis set (2D-VBS) or with the traditional two-product model approach. In ADCHEM these models consider the diffusion limited and particle size dependent condensation and evaporation of 110 and 40 different organic compounds respectively. The gas phase chemistry model calculates the gas phase concentrations of 61 different species, using 130 different chemical reactions. Daily isoprene and monoterpene emissions from European forests were simulated separately with the vegetation model LPJ-GUESS, and included as input to ADCHEM. ADCHEM was used to simulate the ageing of the urban plumes from the city of Malmö in southern Sweden (280 000 inhabitants). Several sensitivity tests were performed concerning the number of size bins, size structure method, aerosol dynamic processes, vertical and horizontal mixing, coupled or uncoupled condensation and the secondary organic aerosol formation. The simulations show that the full-stationary size structure gives accurate results

  5. Development and evaluation of the aerosol dynamic and gas phase chemistry model ADCHEM

    NASA Astrophysics Data System (ADS)

    Roldin, P.; Swietlicki, E.; Schurgers, G.; Arneth, A.; Lehtinen, K. E. J.; Boy, M.; Kulmala, M.

    2010-08-01

    The aim of this work was to develop a model ideally suited for detailed studies on aerosol dynamics, gas and particle phase chemistry within urban plumes, from local scale (1×1 km2) to regional or global scale. This article describes and evaluates the trajectory model for Aerosol Dynamics, gas and particle phase CHEMistry and radiative transfer (ADCHEM), which has been developed and used at Lund University since 2007. The model treats both vertical and horizontal dispersion perpendicular to an air mass trajectory (2-space dimensions), which is not treated in Lagrangian box-models (0-space dimensions). The Lagrangian approach enables a more detailed representation of the aerosol dynamics, gas and particle phase chemistry and a finer spatial and temporal resolution compared to that of available regional 3D-CTMs. These features make it among others ideally suited for urban plume studies. The aerosol dynamics model includes Brownian coagulation, dry deposition, wet deposition, in-cloud processing, condensation, evaporation, primary particle emissions and homogeneous nucleation. The gas phase chemistry model calculates the gas phase concentrations of 63 different species, using 119 different chemical reactions. Daily isoprene and monoterpene emissions from European forests were simulated separately with the vegetation model LPJ-GUESS, and included as input to ADCHEM. ADCHEM was used to simulate the ageing of the urban plumes from the city of Malmö in Southern Sweden (280 000 inhabitants). Several sensitivity tests were performed concerning the number of size bins, size structure method, coupled or uncoupled condensation, the volatility basis set (VBS) or traditional 2-product model for secondary organic aerosol formation, different aerosol dynamic processes and vertical and horizontal mixing. The simulations show that the full-stationary size structure gives accurate results with little numerical diffusion when more than 50 size bins are used between 1.5 and 2500 nm

  6. Long-term Aerosol Lidar Measurements At CNR-IMAA

    NASA Astrophysics Data System (ADS)

    Mona, L.; Amodeo, A.; D'Amico, G.; Pandolfi, M.; Pappalardo, G.

    2006-12-01

    Actual estimations of the aerosol effect on the radiation budget are affected by a large uncertainties mainly due to the high inhomogeneity and variability of atmospheric aerosol, in terms of concentration, shape, size distribution, refractive index and vertical distribution. Long-term measurements of vertical profiles of aerosol optical properties are needed to reduce these uncertainties. At CNR-IMAA (40° 36'N, 15° 44' E, 760 m above sea level), a lidar system for aerosol study is operative since May 2000 in the framework of EARLINET (European Aerosol Research Lidar Network). Until August 2005, it provided independent measurements of aerosol extinction and backscatter at 355 nm and aerosol backscatter profiles at 532 nm. After an upgrade of the system, it provides independent measurements of aerosol extinction and backscatter profiles at 355 and 532 nm, and of aerosol backscatter profiles at 1064 nm and depolarization ratio at 532 nm. For these measurements, lidar ratio at 355 and 532 nm and Angstrom exponent profiles at 355/532 nm are also obtained. Starting on May 2000, systematic measurements are performed three times per week according to the EARLINET schedule and further measurements are performed in order to investigate particular events, like dust intrusions, volcanic eruptions and forest fires. A climatological study has been carried out in terms of the seasonal behavior of the PBL height and of the aerosol optical properties calculated inside the PBL itself. In the free troposphere, an high occurrences of Saharan dust intrusions (about 1 day of Saharan dust intrusion every 10 days) has been observed at CNR-IMAA because of the short distance from the Sahara region. During 6 years of observations, very peculiar cases of volcanic aerosol emitted by Etna volcano and aerosol released by large forest fires burning occurred in Alaska and Canada have been observed in the free troposphere at our site. Particular attention is devoted to lidar ratio both for the

  7. Simulating the Effects of Semivolatile Compounds on Cloud Processing of Aerosol

    NASA Astrophysics Data System (ADS)

    Kokkola, H.; Kudzotsa, I.; Tonttila, J.; Raatikainen, T.; Romakkaniemi, S.

    2017-12-01

    Aerosol removal processes largely dictate how well aerosol is transported in the atmosphere and thus the aerosol load over remote regions depends on how effectively aerosol is removed during its transport from the source regions. This means that in order to model the global distribution aerosol, both in vertical and horizontal, wet deposition processes have to be properly modelled. However, in large scale models, the description of wet removal and the vertical redistribution of aerosol by cloud processes is often extremely simplified.Here we present a novel aerosol-cloud model SALSA, where the aerosol properties are tracked through different cloud processes. These processes include: cloud droplet activation, precipitation formation, ice nucleation, melting, and evaporation. It is a sectional model that includes separate size sections for non-activated aerosol, cloud droplets, precipitation droplets, and ice crystals. The aerosol-cloud model was coupled to a large eddy model UCLALES which simulates the boundary-layer dynamics. In this study, the model has been applied in studying the wet removal as well as interactions between aerosol, clouds, and semi-volatile compounds, ammonia and nitric acid. These semi-volative compounds are special in the sense that they co-condense together with water during cloud activation and have been suggested to form droplets that can be considered cloud-droplet-like already in subsaturated conditions. In our model, we calculate the kinetic partitioning of ammonia and sulfate thus explicitly taking into account the effect of ammonia and nitric acid in the cloud formation. Our simulations indicate that especially in polluted conditions, these compounds significantly affect the properties of cloud droplets thus significantly affecting the lifecycle of different aerosol compounds.

  8. Vertical Structure and Optical Properties of Titans Aerosols from Radiance Measurements Made Inside and Outside the Atmosphere

    NASA Technical Reports Server (NTRS)

    Doose, Lyn R.; Karkoschka, Erich; Tomasko, Martin G.; Anderson, Carrie M.

    2017-01-01

    Prompted by the detection of stratospheric cloud layers by Cassini's Composite Infrared Spectrometer (CIRS; see Anderson, C.M., Samuelson, R.E. [2011]. Icarus 212, 762-778), we have re-examined the observations made by the Descent Imager/Spectral Radiometer (DISR) in the atmosphere of Titan together with two constraints from measurements made outside the atmosphere. No evidence of thin layers (<1 km) in the DISR image data sets is seen beyond the three previously reported layers at 21 km, 11 km, and 7 km by Karkoschka and Tomasko (Karkoschka, E., Tomasko, M.G. [2009]. Icarus 199, 442-448). On the other hand, there is evidence of a thicker layer centered at about 55 km. A rise in radiance gradients in the Downward-Looking Visible Spectrometer (DLVS) data below 55 km indicates an increase in the volume extinction coefficient near this altitude. To fit the geometric albedo measured from outside the atmosphere the decrease in the single scattering albedo of Titan's aerosols at high altitudes, noted in earlier studies of DISR data, must continue to much higher altitudes. The altitude of Titan's limb as a function of wavelength requires that the scale height of the aerosols decrease with altitude from the 65 km value seen in the DISR observations below 140 km to the 45 km value at higher altitudes. We compared the variation of radiance with nadir angle observed in the DISR images to improve our aerosol model. Our new aerosol model fits the altitude and wavelength variations of the observations at small and intermediate nadir angles but not for large nadir angles, indicating an effect that is not reproduced by our radiative transfer model. The volume extinction profiles are modeled by continuous functions except near the enhancement level near 55 km altitude. The wavelength dependence of the extinction optical depth is similar to earlier results at wavelengths from 500 to 700 nm, but is smaller at shorter wavelengths and larger toward longer wavelengths. A Hapke

  9. Aerosols and seismo-ionosphere coupling: A review

    NASA Astrophysics Data System (ADS)

    Namgaladze, Aleksandr; Karpov, Mikhail; Knyazeva, Maria

    2018-06-01

    The role of atmosphere aerosols in the global electric circuit, particularly during earthquakes preparation periods, is discussed in this review paper. Aerosols participate in production and transport of electric charges as well as in clouds formation. Satellite imagery shows increased aerosol optical depth over the tectonic faults and formation of the anomalous clouds aligned with the faults shortly before the earthquake shocks. At the same time variations of the ionospheric electric field and total electron content (TEC) are observed. We assume that the vertical electric current is generated over the fault due to the separation and vertical transport of charges with different masses and polarities. This charges the ionosphere positively relative to the Earth in the same way as the thunderstorm currents do. The resulting electric field in the ionosphere drives F2-layer plasma via the electromagnetic [E→ ×B→ ] drift and decreases or increases electron density depending on the configuration of the electric field, thus, creating observed negative or positive TEC disturbances. The important role of the electric dynamo effect in these processes is underlined.

  10. Vertical Structure of Radiation-pressure-dominated Thin Disks: Link between Vertical Advection and Convective Stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong, Hong-Yu; Gu, Wei-Min, E-mail: guwm@xmu.edu.cn

    2017-04-20

    In the classic picture of standard thin accretion disks, viscous heating is balanced by radiative cooling through the diffusion process, and the radiation-pressure-dominated inner disk suffers convective instability. However, recent simulations have shown that, owing to the magnetic buoyancy, the vertical advection process can significantly contribute to energy transport. In addition, in comparing the simulation results with the local convective stability criterion, no convective instability has been found. In this work, following on from simulations, we revisit the vertical structure of radiation-pressure-dominated thin disks and include the vertical advection process. Our study indicates a link between the additional energy transportmore » and the convectively stable property. Thus, the vertical advection not only significantly contributes to the energy transport, but it also plays an important role in making the disk convectively stable. Our analyses may help to explain the discrepancy between classic theory and simulations on standard thin disks.« less

  11. CRISM Limb Observations of Aerosols and Water Vapor

    NASA Technical Reports Server (NTRS)

    Smith, Michael D.; Wolff, M.J.; Clancy, R.T.; Seelos, F.; Murchie, S.L.

    2009-01-01

    Near-infrared spectra taken in a limb-viewing geometry by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on-board the Mars Reconnaissance Orbiter (MRO) provide a useful tool for probing atmospheric structure. Here we describe preliminary work on the retrieval of vertical profiles of aerosols and water vapor from the CRISM limb observations. The first full set of CRISM limb observations was taken in July 2009, with subsequent limb observations planned once every two months. Each set of limb observations contains about four dozen scans across the limb giving pole-to-pole coverage for two orbits at roughly 100 and 290 W longitude. Radiative transfer modeling taking account of aerosol scattering in the limb-viewing geometry is used to model the observations. The retrievals show the height to which dust and water vapor extend and the location and height of water ice clouds. Results from the First set of CRISM limb observations (July 2009, Ls=300) show dust aerosol well-mixed to about three scale heights above the surface with thin water ice clouds above the dust near the equator and at mid-northern latitudes. Water vapor is concentrated at high southern latitudes.

  12. Black carbon vertical profiles strongly affect its radiative forcing uncertainty

    NASA Astrophysics Data System (ADS)

    Samset, B. H.; Myhre, G.; Schulz, M.; Balkanski, Y.; Bauer, S.; Berntsen, T. K.; Bian, H.; Bellouin, N.; Diehl, T.; Easter, R. C.; Ghan, S. J.; Iversen, T.; Kinne, S.; Kirkevåg, A.; Lamarque, J.-F.; Lin, G.; Liu, X.; Penner, J.; Seland, Ø.; Skeie, R. B.; Stier, P.; Takemura, T.; Tsigaridis, K.; Zhang, K.

    2012-11-01

    The impact of black carbon (BC) aerosols on the global radiation balance is not well constrained. Here twelve global aerosol models are used to show that at least 20% of the present uncertainty in modeled BC direct radiative forcing (RF) is due to diversity in the simulated vertical profile of BC mass. Results are from phases 1 and 2 of the global aerosol model intercomparison project (AeroCom). Additionally, a significant fraction of the variability is shown to come from high altitudes, as, globally, more than 40% of the total BC RF is exerted above 5 km. BC emission regions and areas with transported BC are found to have differing characteristics. These insights into the importance of the vertical profile of BC lead us to suggest that observational studies are needed to better characterize the global distribution of BC, including in the upper troposphere.

  13. Black carbon vertical profiles strongly affect its radiative forcing uncertainty

    NASA Astrophysics Data System (ADS)

    Samset, B. H.; Myhre, G.; Schulz, M.; Balkanski, Y.; Bauer, S.; Berntsen, T. K.; Bian, H.; Bellouin, N.; Diehl, T.; Easter, R. C.; Ghan, S. J.; Iversen, T.; Kinne, S.; Kirkevåg, A.; Lamarque, J.-F.; Lin, G.; Liu, X.; Penner, J. E.; Seland, Ø.; Skeie, R. B.; Stier, P.; Takemura, T.; Tsigaridis, K.; Zhang, K.

    2013-03-01

    The impact of black carbon (BC) aerosols on the global radiation balance is not well constrained. Here twelve global aerosol models are used to show that at least 20% of the present uncertainty in modeled BC direct radiative forcing (RF) is due to diversity in the simulated vertical profile of BC mass. Results are from phases 1 and 2 of the global aerosol model intercomparison project (AeroCom). Additionally, a significant fraction of the variability is shown to come from high altitudes, as, globally, more than 40% of the total BC RF is exerted above 5 km. BC emission regions and areas with transported BC are found to have differing characteristics. These insights into the importance of the vertical profile of BC lead us to suggest that observational studies are needed to better characterize the global distribution of BC, including in the upper troposphere.

  14. Black Carbon Vertical Profiles Strongly Affect Its Radiative Forcing Uncertainty

    NASA Technical Reports Server (NTRS)

    Samset, B. H.; Myhre, G.; Schulz, M.; Balkanski, Y.; Bauer, S.; Berntsen, T. K.; Bian, H.; Bellouin, N.; Diehl, T.; Easter, R. C.; hide

    2013-01-01

    The impact of black carbon (BC) aerosols on the global radiation balance is not well constrained. Here twelve global aerosol models are used to show that at least 20% of the present uncertainty in modeled BC direct radiative forcing (RF) is due to diversity in the simulated vertical profile of BC mass. Results are from phases 1 and 2 of the global aerosol model intercomparison project (AeroCom). Additionally, a significant fraction of the variability is shown to come from high altitudes, as, globally, more than 40% of the total BC RF is exerted above 5 km. BC emission regions and areas with transported BC are found to have differing characteristics. These insights into the importance of the vertical profile of BC lead us to suggest that observational studies are needed to better characterize the global distribution of BC, including in the upper troposphere.

  15. Vertical Transport of Aerosol Particles across Mountain Topography near the Los Angeles Basin

    NASA Astrophysics Data System (ADS)

    Murray, J. J.; Schill, S.; Freeman, S.; Bertram, T. H.; Lefer, B. L.

    2015-12-01

    Transport of aerosol particles is known to affect air quality and is largely dependent on the characteristic topography of the surrounding region. To characterize this transport, aerosol number distributions were collected with an Ultra-High Sensitivity Aerosol Spectrometer (UHSAS, DMT) during the 2015 NASA Student Airborne Research Program (SARP) in and around the Los Angeles Basin in Southern California. Increases in particle number concentration and size were observed over mountainous terrain north of Los Angeles County. Chemical analysis and meteorological lagrangian trajectories suggest orographic lifting processes, known as the "chimney effect". Implications for spatial transport and distribution will be discussed.

  16. Stratospheric Aerosol and Gas Experiment (SAGE) II and III Aerosol Extinction Measurements in the Arctic Middle and Upper Troposphere

    NASA Technical Reports Server (NTRS)

    Treffeisen, R. E.; Thomason, L. W.; Strom, J.; Herber, A. B.; Burton, S. P.; Yamanouchi, T.

    2006-01-01

    In recent years, substantial effort has been expended toward understanding the impact of tropospheric aerosols on Arctic climate and chemistry. A significant part of this effort has been the collection and documentation of extensive aerosol physical and optical property data sets. However, the data sets present significant interpretive challenges because of the diverse nature of these measurements. Among the longest continuous records is that by the spaceborne Stratospheric Aerosol and Gas Experiment (SAGE) II. Although SAGE tropospheric measurements are restricted to the middle and upper troposphere, they may be able to provide significant insight into the nature and variability of tropospheric aerosol, particularly when combined with ground and airborne observations. This paper demonstrates the capacity of aerosol products from SAGE II and its follow-on experiment SAGE III to describe the temporal and vertical variations of Arctic aerosol characteristics. We find that the measurements from both instruments are consistent enough to be combined. Using this combined data set, we detect a clear annual cycle in the aerosol extinction for the middle and upper Arctic troposphere.

  17. Characterizing the Vertical Profile of Aerosol Particle Extinction and Linear Depolarization over Southeast Asia and the Maritime Continent: The 2007-2009 View from CALIOP

    NASA Technical Reports Server (NTRS)

    Campbell, James R.; Reid, Jeffrey S.; Westphal, Douglas L.; Zhang, Jianglong; Tackett, Jason L.; Chew, Boon Ning; Welton, Ellsworth J.; Shimizu, Atsushi; Sugimoto, Nobuo; Aoki, Kazuma; hide

    2012-01-01

    Vertical profiles of 0.532 µm aerosol particle extinction coefficient and linear volume depolarization ratio are described for Southeast Asia and the Maritime Continent. Quality-screened and cloud-cleared Version 3.01 Level 2 NASA Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP) 5-km Aerosol Profile datasets are analyzed from 2007 to 2009. Numerical simulations from the U.S. Naval Aerosol Analysis and Predictive System (NAAPS), featuring two-dimensional variational assimilation of NASA Moderate Resolution Imaging Spectroradiometer and Multi-angle Imaging Spectro- Radiometer quality-assured datasets, combined with regional ground-based lidar measurements, are considered for assessing CALIOP retrieval performance, identifying bias, and evaluating regional representativeness. CALIOP retrievals of aerosol particle extinction coefficient and aerosol optical depth (AOD) are high over land and low over open waters relative to NAAPS (0.412/0.312 over land for all data points inclusive, 0.310/0.235 when the per bin average is used and each is treated as single data points; 0.102/0.151 and 0.086/0.124, respectively, over ocean). Regional means, however, are very similar (0.180/0.193 for all data points and 0.155/0.159 when averaged per normalized bin), as the two factors offset one another. The land/ocean offset is investigated, and discrepancies attributed to interpretation of particle composition and a-priori assignment of the extinction-to-backscatter ratio ("lidar ratio") necessary for retrieving the extinction coefficient from CALIOP signals. Over land, NAAPS indicates more dust present than CALIOP algorithms are identifying, indicating a likely assignment of a higher lidar ratio representative of more absorptive particles. NAAPS resolvesmore smoke overwater than identified with CALIOP, indicating likely usage of a lidar ratio characteristic of less absorptive particles to be applied that biases low AOD there. Over open waters except within the Bay of Bengal

  18. Airborne Aerosol Closure Studies During PRIDE

    NASA Technical Reports Server (NTRS)

    Redemann, Jens; Livingston, John M.; Russell, Philip B.; Schmid, Beat; Reid, Jeff

    2000-01-01

    The Puerto Rico Dust Experiment (PRIDE) was conducted during June/July of 2000 to study the properties of Saharan dust aerosols transported across the Atlantic Ocean to the Caribbean Islands. During PRIDE, the NASA Ames Research Center six-channel (380 - 1020 nm) airborne autotracking sunphotometer (AATS-6) was operated aboard a Piper Navajo airplane alongside a suite of in situ aerosol instruments. The in situ aerosol instrumentation relevant to this paper included a Forward Scattering Spectrometer Probe (FSSP-100) and a Passive Cavity Aerosol Spectrometer Probe (PCASP), covering the radius range of approx. 0.05 to 10 microns. The simultaneous and collocated measurement of multi-spectral aerosol optical depth and in situ particle size distribution data permits a variety of closure studies. For example, vertical profiles of aerosol optical depth obtained during local aircraft ascents and descents can be differentiated with respect to altitude and compared to extinction profiles calculated using the in situ particle size distribution data (and reasonable estimates of the aerosol index of refraction). Additionally, aerosol extinction (optical depth) spectra can be inverted to retrieve estimates of the particle size distributions, which can be compared directly to the in situ size distributions. In this paper we will report on such closure studies using data from a select number of vertical profiles at Cabras Island, Puerto Rico, including measurements in distinct Saharan Dust Layers. Preliminary results show good agreement to within 30% between mid-visible aerosol extinction derived from the AATS-6 optical depth profiles and extinction profiles forward calculated using 60s-average in situ particle size distributions and standard Saharan dust aerosol refractive indices published in the literature. In agreement with tendencies observed in previous studies, our initial results show an underestimate of aerosol extinction calculated based on the in situ size distributions

  19. Vertical Profiling of Air Pollution at RAPCD

    NASA Technical Reports Server (NTRS)

    Newchurch, Michael J.; Fuller, Kirk A.; Bowdle, David A.; Johnson, Steven; Knupp, Kevin; Gillani, Noor; Biazar, Arastoo; Mcnider, Richard T.; Burris, John

    2004-01-01

    The interaction between local and regional pollution levels occurs at the interface of the Planetary Boundary Layer and the Free Troposphere. Measuring the vertical distribution of ozone, aerosols, and winds with high temporal and vertical resolution is essential to diagnose the nature of this interchange and ultimately for accurately forecasting ozone and aerosol pollution levels. The Regional Atmospheric Profiling Center for Discovery, RAPCD, was built and instrumented to address this critical issue. The ozone W DIAL lidar, Nd:YAG aerosol lidar, and 2.1 micron Doppler wind lidar, along with balloon- borne ECC ozonesondes form the core of the W C D instrumentation for addressing this problem. Instrumentation in the associated Mobile Integrated Profiling (MIPS) laboratory includes 91 5Mhz profiler, sodar, and ceilometer. The collocated Applied particle Optics and Radiometry (ApOR) laboratory hosts an FTIR along with MOUDI and optical particle counters. With MODELS-3 analysis by colleagues in the National Space Science and Technology Center on the UAH campus and the co- located National Weather Service Forecasting Office in Huntsville, AL we are developing a unique facility for advancing the state of the science of pollution forecasting.

  20. Electrospray neutralization process and apparatus for generation of nano-aerosol and nano-structured materials

    DOEpatents

    Bailey, Charles L.; Morozov, Victor; Vsevolodov, Nikolai N.

    2010-08-17

    The claimed invention describes methods and apparatuses for manufacturing nano-aerosols and nano-structured materials based on the neutralization of charged electrosprayed products with oppositely charged electrosprayed products. Electrosprayed products include molecular ions, nano-clusters and nano-fibers. Nano-aerosols can be generated when neutralization occurs in the gas phase. Neutralization of electrospan nano-fibers with molecular ions and charged nano-clusters may result in the formation of fibrous aerosols or free nano-mats. Nano-mats can also be produced on a suitable substrate, forming efficient nano-filters.

  1. Indirect and semi-direct aerosol campaign: The impact of Arctic aerosols on clouds

    DOE PAGES

    McFarquhar, Greg M.; Ghan, Steven; Verlinde, Johannes; ...

    2011-02-01

    A comprehensive dataset of microphysical and radiative properties of aerosols and clouds in the boundary layer in the vicinity of Barrow, Alaska, was collected in April 2008 during the Indirect and Semi-Direct Aerosol Campaign (ISDAC). ISDAC's primary aim was to examine the effects of aerosols, including those generated by Asian wildfires, on clouds that contain both liquid and ice. ISDAC utilized the Atmospheric Radiation Measurement Pro- gram's permanent observational facilities at Barrow and specially deployed instruments measuring aerosol, ice fog, precipitation, and radiation. The National Research Council of Canada Convair-580 flew 27 sorties and collected data using an unprecedented 41more » stateof- the-art cloud and aerosol instruments for more than 100 h on 12 different days. Aerosol compositions, including fresh and processed sea salt, biomassburning particles, organics, and sulfates mixed with organics, varied between flights. Observations in a dense arctic haze on 19 April and above, within, and below the single-layer stratocumulus on 8 and 26 April are enabling a process-oriented understanding of how aerosols affect arctic clouds. Inhomogeneities in reflectivity, a close coupling of upward and downward Doppler motion, and a nearly constant ice profile in the single-layer stratocumulus suggests that vertical mixing is responsible for its longevity observed during ISDAC. Data acquired in cirrus on flights between Barrow and Fairbanks, Alaska, are improving the understanding of the performance of cloud probes in ice. Furthermore, ISDAC data will improve the representation of cloud and aerosol processes in models covering a variety of spatial and temporal scales, and determine the extent to which surface measurements can provide retrievals of aerosols, clouds, precipitation, and radiative heating.« less

  2. Quantifying the response of the ORAC aerosol optical depth retrieval for MSG SEVIRI to aerosol model assumptions

    NASA Astrophysics Data System (ADS)

    Bulgin, Claire E.; Palmer, Paul I.; Merchant, Christopher J.; Siddans, Richard; Gonzi, Siegfried; Poulsen, Caroline A.; Thomas, Gareth E.; Sayer, Andrew M.; Carboni, Elisa; Grainger, Roy G.; Highwood, Eleanor J.; Ryder, Claire L.

    2011-03-01

    We test the response of the Oxford-RAL Aerosol and Cloud (ORAC) retrieval algorithm for Meteosat Second Generation Spinning Enhanced Visible and InfraRed Imager (MSG SEVIRI) to changes in the aerosol properties used in the dust aerosol model, using data from the Dust Outflow and Deposition to the Ocean (DODO) flight campaign in August 2006. We find that using the observed DODO free tropospheric aerosol size distribution and refractive index increases simulated top of the atmosphere radiance at 0.55 μm assuming a fixed aerosol optical depth of 0.5 by 10-15%, reaching a maximum difference at low solar zenith angles. We test the sensitivity of the retrieval to the vertical distribution of the aerosol and find that this is unimportant in determining simulated radiance at 0.55 μm. We also test the ability of the ORAC retrieval when used to produce the GlobAerosol data set to correctly identify continental aerosol outflow from the African continent, and we find that it poorly constrains aerosol speciation. We develop spatially and temporally resolved prior distributions of aerosols to inform the retrieval which incorporates five aerosol models: desert dust, maritime, biomass burning, urban, and continental. We use a Saharan Dust Index and the GEOS-Chem chemistry transport model to describe dust and biomass burning aerosol outflow and compare AOD using our speciation against the GlobAerosol retrieval during January and July 2006. We find AOD discrepancies of 0.2-1 over regions of intense biomass burning outflow, where AOD from our aerosol speciation and GlobAerosol speciation can differ by as much as 50-70%.

  3. Assessing the vertical structure of baroclinic tidal currents in a global model

    NASA Astrophysics Data System (ADS)

    Timko, Patrick; Arbic, Brian; Scott, Robert

    2010-05-01

    Tidal forcing plays an important role in many aspects of oceanography. Mixing, transport of particulates and internal wave generation are just three examples of local phenomena that may depend on the strength of local tidal currents. Advances in satellite altimetry have made an assessment of the global barotropic tide possible. However, the vertical structure of the tide may only be observed by deployment of instruments throughout the water column. Typically these observations are conducted at pre-determined depths based upon the interest of the observer. The high cost of such observations often limits both the number and the length of the observations resulting in a limit to our knowledge of the vertical structure of tidal currents. One way to expand our insight into the baroclinic structure of the ocean is through the use of numerical models. We compare the vertical structure of the global baroclinic tidal velocities in 1/12 degree HYCOM (HYbrid Coordinate Ocean Model) to a global database of current meter records. The model output is a subset of a 5 year global simulation that resolves the eddying general circulation, barotropic tides and baroclinic tides using 32 vertical layers. The density structure within the simulation is both vertically and horizontally non-uniform. In addition to buoyancy forcing the model is forced by astronomical tides and winds. We estimate the dominant semi-diurnal (M2), and diurnal (K1) tidal constituents of the model data using classical harmonic analysis. In regions where current meter record coverage is adequate, the model skill in replicating the vertical structure of the dominant diurnal and semi-diurnal tidal currents is assessed based upon the strength, orientation and phase of the tidal ellipses. We also present a global estimate of the baroclinic tidal energy at fixed depths estimated from the model output.

  4. GCM Simulations of the Aerosol Indirect Effect: Sensitivity to Cloud Parameterization and Aerosol Burden

    NASA Technical Reports Server (NTRS)

    Menon, Surabi; DelGenio, Anthony D.; Koch, Dorothy; Tselioudis, George; Hansen, James E. (Technical Monitor)

    2001-01-01

    We describe the coupling of the Goddard Institute for Space Studies (GISS) general circulation model (GCM) to an online sulfur chemistry model and source models for organic matter and sea-salt that is used to estimate the aerosol indirect effect. The cloud droplet number concentration is diagnosed empirically from field experiment datasets over land and ocean that observe droplet number and all three aerosol types simultaneously; corrections are made for implied variations in cloud turbulence levels. The resulting cloud droplet number is used to calculate variations in droplet effective radius, which in turn allows us to predict aerosol effects on cloud optical thickness and microphysical process rates. We calculate the aerosol indirect effect by differencing the top-of-the-atmosphere net cloud radiative forcing for simulations with present-day vs. pre-industrial emissions. Both the first (radiative) and second (microphysical) indirect effects are explored. We test the sensitivity of our results to cloud parameterization assumptions that control the vertical distribution of cloud occurrence, the autoconversion rate, and the aerosol scavenging rate, each of which feeds back significantly on the model aerosol burden. The global mean aerosol indirect effect for all three aerosol types ranges from -1.55 to -4.36 W m(exp -2) in our simulations. The results are quite sensitive to the pre-industrial background aerosol burden, with low pre-industrial burdens giving strong indirect effects, and to a lesser extent to the anthropogenic aerosol burden, with large burdens giving somewhat larger indirect effects. Because of this dependence on the background aerosol, model diagnostics such as albedo-particle size correlations and column cloud susceptibility, for which satellite validation products are available, are not good predictors of the resulting indirect effect.

  5. GCM Simulations of the Aerosol Indirect Effect: Sensitivity to Cloud Parameterization and Aerosol Burden

    NASA Technical Reports Server (NTRS)

    Menon, Surabi; DelGenio, Anthony D.; Koch, Dorothy; Tselioudis, George; Hansen, James E. (Technical Monitor)

    2001-01-01

    We describe the coupling of the Goddard Institute for Space Studies (GISS) general circulation model (GCM) to an online sulfur chemistry model and source models for organic matter and sea-salt that is used to estimate the aerosol indirect effect. The cloud droplet number concentration is diagnosed empirically from field experiment datasets over land and ocean that observe droplet number and all three aerosol types simultaneously; corrections are made for implied variations in cloud turbulence levels. The resulting cloud droplet number is used to calculate variations in droplet effective radius, which in turn allows us to predict aerosol effects on cloud optical thickness and microphysical process rates. We calculate the aerosol indirect effect by differencing the top-of-the-atmosphere net cloud radiative forcing for simulations with present-day vs. pre-industrial emissions. Both the first (radiative) and second (microphysical) indirect effects are explored. We test the sensitivity of our results to cloud parameterization assumptions that control the vertical distribution of cloud occurrence, the autoconversion rate, and the aerosol scavenging rate, each of which feeds back significantly on the model aerosol burden. The global mean aerosol indirect effect for all three aerosol types ranges from -1.55 to -4.36 W/sq m in our simulations. The results are quite sensitive to the pre-industrial background aerosol burden, with low pre-industrial burdens giving strong indirect effects, and to a lesser extent to the anthropogenic aerosol burden, with large burdens giving somewhat larger indirect effects. Because of this dependence on the background aerosol, model diagnostics such as albedo-particle size correlations and column cloud susceptibility, for which satellite validation products are available, are not good predictors of the resulting indirect effect.

  6. Sea Spray Aerosol Structure and Composition Using Cryogenic Transmission Electron Microscopy

    PubMed Central

    2016-01-01

    The composition and surface properties of atmospheric aerosol particles largely control their impact on climate by affecting their ability to uptake water, react heterogeneously, and nucleate ice in clouds. However, in the vacuum of a conventional electron microscope, the native surface and internal structure often undergo physicochemical rearrangement resulting in surfaces that are quite different from their atmospheric configurations. Herein, we report the development of cryogenic transmission electron microscopy where laboratory generated sea spray aerosol particles are flash frozen in their native state with iterative and controlled thermal and/or pressure exposures and then probed by electron microscopy. This unique approach allows for the detection of not only mixed salts, but also soft materials including whole hydrated bacteria, diatoms, virus particles, marine vesicles, as well as gel networks within hydrated salt droplets—all of which will have distinct biological, chemical, and physical processes. We anticipate this method will open up a new avenue of analysis for aerosol particles, not only for ocean-derived aerosols, but for those produced from other sources where there is interest in the transfer of organic or biological species from the biosphere to the atmosphere. PMID:26878061

  7. Aerosol, cloud, and precipitation interactions in Eastern North Atlantic

    NASA Astrophysics Data System (ADS)

    Wang, J.; Wood, R.; Dong, X.

    2017-12-01

    site. This presentation will describe the setup and strategies of the study, early results from the first deployment on vertical structures and horizontal variabilities of aerosol properties, cloud and drizzle microphysics, and insights into the processes that drive the properties and interactions of aerosol and marine low clouds.

  8. Effects of atmospheric dynamics and aerosols on the fraction of supercooled water clouds

    NASA Astrophysics Data System (ADS)

    Li, Jiming; Lv, Qiaoyi; Zhang, Min; Wang, Tianhe; Kawamoto, Kazuaki; Chen, Siyu; Zhang, Beidou

    2017-02-01

    Based on 8 years of (January 2008-December 2015) cloud phase information from the GCM-Oriented Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) Cloud Product (GOCCP), aerosol products from CALIPSO and meteorological parameters from the ERA-Interim products, the present study investigates the effects of atmospheric dynamics on the supercooled liquid cloud fraction (SCF) during nighttime under different aerosol loadings at global scale to better understand the conditions of supercooled liquid water gradually transforming to ice phase. Statistical results indicate that aerosols' effect on nucleation cannot fully explain all SCF changes, especially in those regions where aerosols' effect on nucleation is not a first-order influence (e.g., due to low ice nuclei aerosol frequency). By performing the temporal and spatial correlations between SCFs and different meteorological factors, this study presents specifically the relationship between SCF and different meteorological parameters under different aerosol loadings on a global scale. We find that the SCFs almost decrease with increasing of aerosol loading, and the SCF variation is closely related to the meteorological parameters but their temporal relationship is not stable and varies with the different regions, seasons and isotherm levels. Obviously negative temporal correlations between SCFs versus vertical velocity and relative humidity indicate that the higher vertical velocity and relative humidity the smaller SCFs. However, the patterns of temporal correlation for lower-tropospheric static stability, skin temperature and horizontal wind are relatively more complex than those of vertical velocity and humidity. For example, their close correlations are predominantly located in middle and high latitudes and vary with latitude or surface type. Although these statistical correlations have not been used to establish a certain causal relationship, our results may provide a unique point of view

  9. Apparatus for sampling and characterizing aerosols

    DOEpatents

    Dunn, Patrick F.; Herceg, Joseph E.; Klocksieben, Robert H.

    1986-01-01

    Apparatus for sampling and characterizing aerosols having a wide particle size range at relatively low velocities may comprise a chamber having an inlet and an outlet, the chamber including: a plurality of vertically stacked, successive particle collection stages; each collection stage includes a separator plate and a channel guide mounted transverse to the separator plate, defining a labyrinthine flow path across the collection stage. An opening in each separator plate provides a path for the aerosols from one collection stage to the next. Mounted within each collection stage are one or more particle collection frames.

  10. Tomographic reconstruction of an aerosol plume using passive multiangle observations from the MISR satellite instrument

    NASA Astrophysics Data System (ADS)

    Garay, Michael J.; Davis, Anthony B.; Diner, David J.

    2016-12-01

    We present initial results using computed tomography to reconstruct the three-dimensional structure of an aerosol plume from passive observations made by the Multi-angle Imaging SpectroRadiometer (MISR) instrument on NASA's Terra satellite. MISR views the Earth from nine different angles at four visible and near-infrared wavelengths. Adopting the 672 nm channel, we treat each view as an independent measure of aerosol optical thickness along the line of sight at 1.1 km resolution. A smoke plume over dark water is selected as it provides a more tractable lower boundary condition for the retrieval. A tomographic algorithm is used to reconstruct the horizontal and vertical aerosol extinction field for one along-track slice from the path of all camera rays passing through a regular grid. The results compare well with ground-based lidar observations from a nearby Micropulse Lidar Network site.

  11. A study on characterization of stratospheric aerosol and gas parameters with the spacecraft solar occultation experiment

    NASA Technical Reports Server (NTRS)

    Chu, W. P.

    1977-01-01

    Spacecraft remote sensing of stratospheric aerosol and ozone vertical profiles using the solar occultation experiment has been analyzed. A computer algorithm has been developed in which a two step inversion of the simulated data can be performed. The radiometric data are first inverted into a vertical extinction profile using a linear inversion algorithm. Then the multiwavelength extinction profiles are solved with a nonlinear least square algorithm to produce aerosol and ozone vertical profiles. Examples of inversion results are shown illustrating the resolution and noise sensitivity of the inversion algorithms.

  12. “Lidar Investigations of Aerosol, Cloud, and Boundary Layer Properties Over the ARM ACRF Sites”

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferrare, Richard; Turner, David

    2015-01-13

    Project goals; Characterize the aerosol and ice vertical distributions over the ARM NSA site, and in particular to discriminate between elevated aerosol layers and ice clouds in optically thin scattering layers; Characterize the water vapor and aerosol vertical distributions over the ARM Darwin site, how these distributions vary seasonally, and quantify the amount of water vapor and aerosol that is above the boundary layer; Use the high temporal resolution Raman lidar data to examine how aerosol properties vary near clouds; Use the high temporal resolution Raman lidar and Atmospheric Emitted Radiance Interferometer (AERI) data to quantify entrainment in optically thinmore » continental cumulus clouds; and Use the high temporal Raman lidar data to continue to characterize the turbulence within the convective boundary layer and how the turbulence statistics (e.g., variance, skewness) is correlated with larger scale variables predicted by models.« less

  13. Linking Remotely Sensed Aerosol Types to Their Chemical Composition

    NASA Technical Reports Server (NTRS)

    Dawson, Kyle William; Kacenelenbogen, Meloe S.; Johnson, Matthew S.; Burton, Sharon P.; Hostetler, Chris A.; Meskhidze, Nicholas

    2016-01-01

    Aerosol types measured during the Ship-Aircraft Bio-Optical Research (SABOR) experiment are related to GEOS-Chem model chemical composition. The application for this procedure to link model chemical components to aerosol type is desirable for understanding aerosol evolution over time. The Mahalanobis distance (DM) statistic is used to cluster model groupings of five chemical components (organic carbon, black carbon, sea salt, dust and sulfate) in a way analogous to the methods used by Burton et al. [2012] and Russell et al. [2014]. First, model-to-measurement evaluation is performed by collocating vertically resolved aerosol extinction from SABOR High Spectral Resolution LiDAR (HSRL) to the GEOS-Chem nested high-resolution data. Comparisons of modeled-to-measured aerosol extinction are shown to be within 35% +/- 14%. Second, the model chemical components are calculation into five variables to calculate the DM and cluster means and covariances for each HSRL-retrieved aerosol type. The layer variables from the model are aerosol optical depth (AOD) ratios of (i) sea salt and (ii) dust to total AOD, mass ratios of (iii) total carbon (i.e. sum of organic and black carbon) to the sum of total carbon and sulfate (iv) organic carbon to black carbon, and (v) the natural log of the aerosol-to-molecular extinction ratio. Third, the layer variables and at most five out of twenty SABOR flights are used to form the pre-specified clusters for calculating DM and to assign an aerosol type. After determining the pre-specified clusters, model aerosol types are produced for the entire vertically resolved GEOS-Chem nested domain over the United States and the model chemical component distributions relating to each type are recorded. Resulting aerosol types are Dust/Dusty Mix, Maritime, Smoke, Urban and Fresh Smoke (separated into 'dark' and 'light' by a threshold of the organic to black carbon ratio). Model-calculated DM not belonging to a specific type (i.e. not meeting a threshold

  14. Linking remotely sensed aerosol types to their chemical composition

    NASA Astrophysics Data System (ADS)

    Dawson, K. W.; Kacenelenbogen, M. S.; Johnson, M. S.; Burton, S. P.; Hostetler, C. A.; Meskhidze, N.

    2016-12-01

    Aerosol types measured during the Ship-Aircraft Bio-Optical Research (SABOR) experiment are related to GEOS-Chem model chemical composition. The application for this procedure to link model chemical components to aerosol type is desirable for understanding aerosol evolution over time. The Mahalanobis distance (DM) statistic is used to cluster model groupings of five chemical components (organic carbon, black carbon, sea salt, dust and sulfate) in a way analogous to the methods used by Burton et al. [2012] and Russell et al. [2014]. First, model-to-measurement evaluation is performed by collocating vertically resolved aerosol extinction from SABOR High Spectral Resolution LiDAR (HSRL) to the GEOS-Chem nested high-resolution data. Comparisons of modeled-to-measured aerosol extinction are shown to be within 35% ± 14%. Second, the model chemical components are calculation into five variables to calculate the DM and cluster means and covariances for each HSRL-retrieved aerosol type. The layer variables from the model are aerosol optical depth (AOD) ratios of (i) sea salt and (ii) dust to total AOD, mass ratios of (iii) total carbon (i.e. sum of organic and black carbon) to the sum of total carbon and sulfate (iv) organic carbon to black carbon, and (v) the natural log of the aerosol-to-molecular extinction ratio. Third, the layer variables and at most five out of twenty SABOR flights are used to form the pre-specified clusters for calculating DM and to assign an aerosol type. After determining the pre-specified clusters, model aerosol types are produced for the entire vertically resolved GEOS-Chem nested domain over the United States and the model chemical component distributions relating to each type are recorded. Resulting aerosol types are Dust/Dusty Mix, Maritime, Smoke, Urban and Fresh Smoke (separated into `dark' and `light' by a threshold of the organic to black carbon ratio). Model-calculated DM not belonging to a specific type (i.e. not meeting a threshold

  15. Spatial and temporal variations of aerosols around Beijing in summer 2006: 2. Local and column aerosol optical properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsui, Hitoshi; Koike, Makoto; Kondo, Yutaka

    Weather Research and Forecasting (WRF)-chem model calculations were conducted to study aerosol optical properties around Beijing, China, during the Campaign of Air Quality Research in Beijing and Surrounding Region 2006 (CAREBeijing-2006) period. In this paper, we interpret aerosol optical properties in terms of aerosol mass concentrations and their chemical compositions by linking model calculations with measurements. In general, model calculations reproduced observed features of spatial and temporal variations of various surface and column aerosol optical parameters in and around Beijing. Spatial and temporal variations of aerosol absorption, scattering, and extinction coefficient corresponded well to those of elemental carbon (primary aerosol),more » sulfate (secondary aerosol), and the total aerosol mass concentration, respectively. These results show that spatial and temporal variations of the absorption coefficient are controlled by local emissions (within 100 km around Beijing during the preceding 24 h), while those of the scattering coefficient are controlled by regional-scale emissions (within 500 km around Beijing during the preceding 3 days) under synoptic-scale meteorological conditions, as discussed in our previous study of aerosol mass concentration. Vertical profiles of aerosol extinction revealed that the contribution of secondary aerosols and their water uptake increased with altitude within the planetary boundary layer, leading to a considerable increase in column aerosol optical depth (AOD) around Beijing. These effects are the main factors causing differences in regional and temporal variations between particulate matter (PM) mass concentration at the surface and column AOD over a wide region in the northern part of the Great North China Plain.« less

  16. Towards quantifying global aerosol radiative effects using lidar

    NASA Astrophysics Data System (ADS)

    Thorsen, T. J.

    2017-12-01

    Spaceborne lidar observations alleviate many of the limitations of passivesensors and have great potential to provide accurate global all-sky estimatesof the aerosol direct radiative effect (DRE). However, analysis of CALIPSOlidar observations show that CALIPSO does not detect allradiatively-significant aerosol, i.e. aerosol that directly modifies theEarth's radiation budget. We estimated that using CALIPSO observationsresults in an underestimate of the magnitude of the global mean aerosol DREby up to 54%. The CATS lidar on-board the ISS is shown to have a poorersensitivity than CALIPSO and the expected sensitivity of the upcoming ATLIDlidar on EarthCARE indicates that calculations of the aerosol DRE willcontinue to be significantly biased. Improvements to our knowledge of aerosol forcing, which contributes thelargest uncertainty to climate sensitivity, could be achieved by a futurespace-based HSRL mission. To this end, high-accuracy ground-based andairborne lidar datasets have been used to compute the detection sensitivityrequired to accurately resolve the aerosol DRE. Multiwavelength HSRLmeasurements also can retrieve vertically-resolved aerosol optical propertiesneeded for radiative transfer calculations which are not provided by currentsatellite observations. Current satellite observations also do not provideall the quantities needed to compute the aerosol direct radiative forcing,i.e. the radiative effect of just anthropogenic aerosols. A multiwavelengthHSRL allows for a more refined aerosol classification to be made enablingboth calculations of anthropogenic aerosol radiative effects and betterconstraints on global models.

  17. Particle size distribution of the stratospheric aerosol from SCIAMACHY limb measurements

    NASA Astrophysics Data System (ADS)

    Rozanov, Alexei; Malinina, Elizaveta; Bovensmann, Heinrich; Burrows, John

    2017-04-01

    A crucial role of the stratospheric aerosols for the radiative budget of the Earth's atmosphere and the consequences for the climate change are widely recognized. A reliable knowledge on physical and optical properties of the stratospheric aerosols as well as on their vertical and spatial distributing is a key issue to assure a proper initialization and running conditions for climate models. On a global scale this information can only be gained from space borne measurements. While a series of past, present and future instruments provide extensive date sets of such aerosol characteristics as extinction coefficient or backscattering ratio, information on a size distribution of the stratospheric aerosols is sparse. One of the important sources on vertically and spatially resolved information on the particle size distribution of stratospheric aerosols is provided by space borne measurements of the scattered solar light in limb viewing geometry performed in visible, near-infrared and short-wave infrared spectral ranges. SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY) instrument operated on the European satellite Envisat from 2002 to 2102 was capable of providing spectral information needed to retrieve parameters of aerosol particle size distributions. In this presentation we discuss the retrieval method, present first validation results with SAGE II data and analyze first data sets of stratospheric aerosol particle size distribution parameters obtained from SCIAMACHY limb measurements. The research work was performed in the framework of ROMIC (Role of the middle atmosphere in climate) project.

  18. Chemical Composition of African Biomass Burning Aerosols Over the Southeast Atlantic: Aerosol Mass Spectrometer Results from the 2016 and 2017 ORACLES Field Campaigns.

    NASA Astrophysics Data System (ADS)

    Dobracki, A. N.; Howell, S. G.; Freitag, S.; Smirnow, N.; Podolske, J. R.

    2017-12-01

    Biomass burning (BB) is one of the largest contributors of anthropogenic aerosols in the atmosphere. During BB events, organic and inorganic gases and particles are emitted into the atmosphere. Because of their abundance, particle size, and radiative properties, BB aerosols play an important role in global climate. Southern Africa produces 30% of the Earth's BB aerosol particles. Organics, Nitrates, sulfates, and refractory black carbon, along with other chemical species are lofted into the free troposphere and transported over the Southeast Atlantic Ocean. However, considerate uncertainty remains in the chemical composition of these plumes with its large variety of organic and inorganic species. As part of the NASA ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) 2016 and 2017 airborne field campaigns, an Aerosol Mass Spectrometer (AMS) was used to sample the chemical composition and chemical structure of the aerosol in this region. Results show constant vertical stratification within the plume over the course of the campaign (August 2017 / September 2016). Using nitrate (NO3) and organic carbon (OC) as two tracers, the structure of the September 2016 plume had a ratio of 1:8 (NO3:OC) in the upper plume (3km-5km), while the lower plume (1km-2.5km) had a ratio of 1:12 (NO3:OC). AMS measurements were supported by carbon monoxide (CO) and carbon dioxide (CO2) measurements. This data revealed a modified combustion efficiency (MCE= ΔCO2/ΔCO2 + ΔCO) of <0.97 in the upper plume, and a higher MCE > 0.97 in the lower plume. An MCE above 0.9 represents efficient burning processes. Additionally, concentrations of C2(H2O)2 (m/z60), a common chemical fragment from breaking up carbohydrates (primarily levoglucosan) emitted by burning biomass only represented <1% of total organics throughout the campaign. These low concentrations are due to efficient combustion rather than oxidation during transport. These results are consistent with earlier studies of

  19. CATS Version 2 Aerosol Feature Detection and Applications for Data Assimilation

    NASA Technical Reports Server (NTRS)

    Nowottnick, E. P.; Yorks, J. E.; Selmer, P. A.; Palm, S. P.; Hlavka, D. L.; Pauly, R. M.; Ozog, S.; McGill, M. J.; Da Silva, A.

    2017-01-01

    The Cloud Aerosol Transport System (CATS) lidar has been operating onboard the International Space Station (ISS) since February 2015 and provides vertical observations of clouds and aerosols using total attenuated backscatter and depolarization measurements. From February March 2015, CATS operated in Mode 1, providing backscatter and depolarization measurements at 532 and 1064 nm. CATS began operation in Mode 2 in March 2015, providing backscatter and depolarization measurements at 1064 nm and has continued to operate to the present in this mode. CATS level 2 products are derived from these measurements, including feature detection, cloud aerosol discrimination, cloud and aerosol typing, and optical properties of cloud and aerosol layers. Here, we present changes to our level 2 algorithms, which were aimed at reducing several biases in our version 1 level 2 data products. These changes will be incorporated into our upcoming version 2 level 2 data release in summer 2017. Additionally, owing to the near real time (NRT) data downlinking capabilities of the ISS, CATS provides expedited NRT data products within 6 hours of observation time. This capability provides a unique opportunity for supporting field campaigns and for developing data assimilation techniques to improve simulated cloud and aerosol vertical distributions in models. We additionally present preliminary work toward assimilating CATS observations into the NASA Goddard Earth Observing System version 5 (GEOS-5) global atmospheric model and data assimilation system.

  20. A critical look at spatial scale choices in satellite-based aerosol indirect effect studies

    NASA Astrophysics Data System (ADS)

    Grandey, B. S.; Stier, P.

    2010-12-01

    Analysing satellite datasets over large regions may introduce spurious relationships between aerosol and cloud properties due to spatial variations in aerosol type, cloud regime and synoptic regime climatologies. Using MODerate resolution Imaging Spectroradiometer data, we calculate relationships between aerosol optical depth τa derived liquid cloud droplet effective number concentration Ne and liquid cloud droplet effective radius re at different spatial scales. Generally, positive values of vertical-align: 50%; font-size: 10px; color: #000;">dlnNevertical-align: -15%; font-size: 10px; color: #000;">dlnτa are found for ocean regions, whilst negative values occur for many land regions. The spatial distribution of vertical-align: 50%; font-size: 10px; color: #000;">dlnrevertical-align: -15%; font-size: 10px; color: #000;">dlnτa shows approximately the opposite pattern, with generally postive values for land regions and negative values for ocean regions. We find that for region sizes larger than 4° × 4°, spurious spatial variations in retrieved cloud and aerosol properties can introduce widespread significant errors to calculations of vertical-align: 50%; font-size: 10px; color: #000;">dlnNevertical-align: -15%; font-size: 10px; color: #000;">dlnτa and vertical-align: 50%; font-size: 10px; color: #000;">dlnrevertical-align: -15%; font-size: 10px; color: #000;">dlnτa. For regions on the scale of 60° × 60°, these methodological errors may lead to an overestimate in global cloud albedo effect radiative forcing of order 80% relative to that calculated for regions on the scale of

  1. A critical look at spatial scale choices in satellite-based aerosol indirect effect studies

    NASA Astrophysics Data System (ADS)

    Grandey, B. S.; Stier, P.

    2010-06-01

    Analysing satellite datasets over large regions may introduce spurious relationships between aerosol and cloud properties due to spatial variations in aerosol type, cloud regime and synoptic regime climatologies. Using MODerate resolution Imaging Spectroradiometer data, we calculate relationships between aerosol optical depth τa, derived liquid cloud droplet effective number concentration Ne and liquid cloud droplet effective radius re at different spatial scales. Generally, positive values of vertical-align: 50%; font-size: .7em; color: #000;"> dlnNe vertical-align: -15%; font-size: .7em; color: #000;"> dlnτa are found for ocean regions, whilst negative values occur for many land regions. The spatial distribution of vertical-align: 50%; font-size: .7em; color: #000;"> dlnre vertical-align: -15%; font-size: .7em; color: #000;"> dlnτa shows approximately the opposite pattern, with generally postive values for land regions and negative values for ocean regions. We find that for region sizes larger than 4°×4°, spurious spatial variations in retrieved cloud and aerosol properties can introduce widespread significant errors to calculations of vertical-align: 50%; font-size: .7em; color: #000;"> dlnNe vertical-align: -15%; font-size: .7em; color: #000;"> dlnτa and vertical-align: 50%; font-size: .7em; color: #000;"> dlnre vertical-align: -15%; font-size: .7em; color: #000;"> dlnτa . For regions on the scale of 60°×60°, these methodological errors may lead to an overestimate in global cloud albedo effect radiative forcing of order 80%.

  2. Raman Lidar Profiling of Aerosols Over the Central US; Diurnal Variability and Comparisons with the GOCART Model

    NASA Technical Reports Server (NTRS)

    Ferrare, R. A.; Chin, M.; Clayton, M.; Turner, D.

    2002-01-01

    We use profiles of aerosol extinction, water vapor mixing ratio, and relative humidity measured by the ARM SGP Raman lidar in northern Oklahoma to show how the vertical distributions of aerosol extinction and water vapor vary throughout the diurnal cycle. While significant (20-30%) variations in aerosol extinction occurred near the surface as well as aloft, smaller (approximately 10%) variations were observed in the diurnal variability of aerosol optical thickness (AOT). The diurnal variations in aerosol extinction profiles are well correlated with corresponding variations in the average relative humidity profiles. The water vapor mixing ratio profiles and integrated water vapor amounts generally show less diurnal variability. The Raman lidar profiles are also used to evaluate the aerosol optical thickness and aerosol extinction profiles simulated by the GOCART global aerosol model. Initial comparisons show that the AOT simulated by GOCART was in closer agreement with the AOT derived from the Raman lidar and Sun photometer measurements during November 2000 than during September 2000. For both months, the vertical variability in average aerosol extinction profiles simulated by GOCART is less than the variability in the corresponding Raman lidar profiles.

  3. Spatial variation of aerosol optical properties around the high-alpine site Jungfraujoch (3580 m a.s.l.)

    NASA Astrophysics Data System (ADS)

    Zieger, P.; Kienast-Sjögren, E.; Starace, M.; von Bismarck, J.; Bukowiecki, N.; Baltensperger, U.; Wienhold, F. G.; Peter, T.; Ruhtz, T.; Collaud Coen, M.; Vuilleumier, L.; Maier, O.; Emili, E.; Popp, C.; Weingartner, E.

    2012-05-01

    the LIDAR beam. Furthermore, the dominance of long-range transported Saharan dust was observed in all measurements for several days, however only for a shorter time period in the in-situ measurements due to the vertical structure of the dust plume. The optical properties of the aerosol column retrieved from SEVIRI and MODIS showed the same magnitude and a similar temporal evolution as the measurements at the KLS and the JFJ. Remaining differences are attributed to the complex terrain and simplifications in the aerosol retrieval scheme in general.

  4. Spatial variation of aerosol optical properties around the high-alpine site Jungfraujoch (3580 m a.s.l.)

    NASA Astrophysics Data System (ADS)

    Zieger, P.; Kienast-Sjögren, E.; Starace, M.; von Bismarck, J.; Bukowiecki, N.; Baltensperger, U.; Wienhold, F. G.; Peter, T.; Ruhtz, T.; Collaud Coen, M.; Vuilleumier, L.; Maier, O.; Emili, E.; Popp, C.; Weingartner, E.

    2012-08-01

    the LIDAR beam. Furthermore, the dominance of long-range transported Saharan dust was observed in all measurements for several days, however only for a shorter time period in the in-situ measurements due to the vertical structure of the dust plume. The optical properties of the aerosol column retrieved from SEVIRI and MODIS showed the same magnitude and a similar temporal evolution as the measurements at the KLS and the JFJ. Remaining differences are attributed to the complex terrain and simplifications in the aerosol retrieval scheme in general.

  5. Seismic performance for vertical geometric irregularity frame structures

    NASA Astrophysics Data System (ADS)

    Ismail, R.; Mahmud, N. A.; Ishak, I. S.

    2018-04-01

    This research highlights the result of vertical geometric irregularity frame structures. The aid of finite element analysis software, LUSAS was used to analyse seismic performance by focusing particularly on type of irregular frame on the differences in height floors and continued in the middle of the building. Malaysia’s building structures were affected once the earthquake took place in the neighbouring country such as Indonesia (Sumatera Island). In Malaysia, concrete is widely used in building construction and limited tension resistance to prevent it. Analysing structural behavior with horizontal and vertical static load is commonly analyses by using the Plane Frame Analysis. The case study of this research is to determine the stress and displacement in the seismic response under this type of irregular frame structures. This study is based on seven-storey building of Clinical Training Centre located in Sungai Buloh, Selayang, Selangor. Since the largest earthquake occurs in Acheh, Indonesia on December 26, 2004, the data was recorded and used in conducting this research. The result of stress and displacement using IMPlus seismic analysis in LUSAS Modeller Software under the seismic response of a formwork frame system states that the building is safe to withstand the ground and in good condition under the variation of seismic performance.

  6. Formulation of human-structure interaction system models for vertical vibration

    NASA Astrophysics Data System (ADS)

    Caprani, Colin C.; Ahmadi, Ehsan

    2016-09-01

    In this paper, human-structure interaction system models for vibration in the vertical direction are considered. This work assembles various moving load models from the literature and proposes extension of the single pedestrian to a crowd of pedestrians for the FE formulation for crowd-structure interaction systems. The walking pedestrian vertical force is represented as a general time-dependent force, and the pedestrian is in turn modelled as moving force, moving mass, and moving spring-mass-damper. The arbitrary beam structure is modelled using either a formulation in modal coordinates or finite elements. In each case, the human-structure interaction (HSI) system is first formulated for a single walking pedestrian and then extended to consider a crowd of pedestrians. Finally, example applications for single pedestrian and crowd loading scenarios are examined. It is shown how the models can be used to quantify the interaction between the crowd and bridge structure. This work should find use for the evaluation of existing and new footbridges.

  7. Radiative Effects of Aerosol in the Marine Environment: Tales from the Two-Column Aerosol Project

    NASA Astrophysics Data System (ADS)

    Berg, L. K.; Fast, J. D.; Barnard, J.; Chand, D.; Chapman, E. G.; Comstock, J. M.; Ferrare, R. A.; Flynn, C. J.; Hair, J. W.; Hostetler, C. A.; Hubbe, J.; Johnson, R.; Kassianov, E.; Kluzek, C.; Laskin, A.; Lee, Y.; Mei, F.; Michalsky, J. J.; Redemann, J.; Rogers, R. R.; Russell, P. B.; Sedlacek, A. J.; Schmid, B.; Shilling, J. E.; Shinozuka, Y.; Springston, S. R.; Tomlinson, J. M.; Wilson, J. M.; Zelenyuk, A.; Berkowitz, C. M.

    2013-12-01

    There is still uncertainty associated with the direct radiative forcing by atmospheric aerosol and its representation in atmospheric models. This is particularly true in marine environments near the coast where the aerosol loading is a function of both naturally occurring and anthropogenic aerosol. These regions are also subject to variable synoptic and thermally driven flows (land-sea breezes) that transport aerosol between the continental and marine environments. The situation is made more complicated due to seasonal changes in aerosol emissions. Given these differences in emissions, we expect significant differences in the aerosol intensive and extensive properties between summer and winter and data is needed to evaluate models over the wide range of conditions. To address this issue, the recently completed Two Column Aerosol Project (TCAP) was designed to measure the key aerosol parameters in two atmospheric columns, one located over Cape Cod, Massachusetts and another approximately 200 km from the coast over the Atlantic Ocean. Measurements included aerosol size distribution, chemical composition, optical properties and vertical distribution. Several aspects make TCAP unique, including the year-long deployment of a suite of surface-based instruments by the US Department of Energy's Atmospheric Radiation Measurement (ARM) Climate Research Facility and two aircraft intensive operations periods supported by the ARM Airborne Facility, one conducted in July 2012 and a second in February 2013. The presentation will include a discussion of the impact of the aerosol optical properties and their uncertainty on simulations of the radiation budget within the TCAP domain in the context of both single column and regional scale models. Data from TCAP will be used to highlight a number of important factors, including diurnal variation in aerosol optical depth measured at the surface site, systematic changes in aerosol optical properties (including scattering, absorption, and

  8. Aerosol physical properties in the stratosphere (APPS) radiometer design

    NASA Technical Reports Server (NTRS)

    Gray, C. R.; Woodin, E. A.; Anderson, T. J.; Magee, R. J.; Karthas, G. W.

    1977-01-01

    The measurement concepts and radiometer design developed to obtain earth-limb spectral radiance measurements for the Aerosol Physical Properties in the Stratosphere (APPS) measurement program are presented. The measurements made by a radiometer of this design can be inverted to yield vertical profiles of Rayleigh scatterers, ozone, nitrogen dioxide, aerosol extinction, and aerosol physical properties, including a Junge size-distribution parameter, and a real and imaginary index of refraction. The radiometer design provides the capacity for remote sensing of stratospheric constituents from space on platforms such as the space shuttle and satellites, and therefore provides for global measurements on a daily basis.

  9. Host Model Uncertainty in Aerosol Radiative Forcing Estimates - The AeroCom Prescribed Experiment

    NASA Astrophysics Data System (ADS)

    Stier, P.; Kinne, S.; Bellouin, N.; Myhre, G.; Takemura, T.; Yu, H.; Randles, C.; Chung, C. E.

    2012-04-01

    Anthropogenic and natural aerosol radiative effects are recognized to affect global and regional climate. However, even for the case of identical aerosol emissions, the simulated direct aerosol radiative forcings show significant diversity among the AeroCom models (Schulz et al., 2006). Our analysis of aerosol absorption in the AeroCom models indicates a larger diversity in the translation from given aerosol radiative properties (absorption optical depth) to actual atmospheric absorption than in the translation of a given atmospheric burden of black carbon to the radiative properties (absorption optical depth). The large diversity is caused by differences in the simulated cloud fields, radiative transfer, the relative vertical distribution of aerosols and clouds, and the effective surface albedo. This indicates that differences in host model (GCM or CTM hosting the aerosol module) parameterizations contribute significantly to the simulated diversity of aerosol radiative forcing. The magnitude of these host model effects in global aerosol model and satellites retrieved aerosol radiative forcing estimates cannot be estimated from the diagnostics of the "standard" AeroCom forcing experiments. To quantify the contribution of differences in the host models to the simulated aerosol radiative forcing and absorption we conduct the AeroCom Prescribed experiment, a simple aerosol model and satellite retrieval intercomparison with prescribed highly idealised aerosol fields. Quality checks, such as diagnostic output of the 3D aerosol fields as implemented in each model, ensure the comparability of the aerosol implementation in the participating models. The simulated forcing variability among the models and retrievals is a direct measure of the contribution of host model assumptions to the uncertainty in the assessment of the aerosol radiative effects. We will present the results from the AeroCom prescribed experiment with focus on the attribution to the simulated variability

  10. Comparison of Cloud and Aerosol Detection between CERES Edition 3 Cloud Mask and CALIPSO Version 2 Data Products

    NASA Astrophysics Data System (ADS)

    Trepte, Qing; Minnis, Patrick; Sun-Mack, Sunny; Trepte, Charles

    Clouds and aerosol play important roles in the global climate system. Accurately detecting their presence, altitude, and properties using satellite radiance measurements is a crucial first step in determining their influence on surface and top-of-atmosphere radiative fluxes. This paper presents a comparison analysis of a new version of the Clouds and Earth's Radiant Energy System (CERES) Edition 3 cloud detection algorithms using Aqua MODIS data with the recently released Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) Version 2 Vertical Feature Mask (VFM). Improvements in CERES Edition 3 cloud mask include dust detection, thin cirrus tests, enhanced low cloud detection at night, and a smoother transition from mid-latitude to polar regions. For the CALIPSO Version 2 data set, changes to the lidar calibration can result in significant improvements to its identification of optically thick aerosol layers. The Aqua and CALIPSO satellites, part of the A-train satellite constellation, provide a unique opportunity for validating passive sensor cloud and aerosol detection using an active sensor. In this paper, individual comparison cases will be discussed for different types of clouds and aerosols over various surfaces, for daytime and nighttime conditions, and for regions ranging from the tropics to the poles. Examples will include an assessment of the CERES detection algorithm for optically thin cirrus, marine stratus, and polar night clouds as well as its ability to characterize Saharan dust plumes off the African coast. With the CALIPSO lidar's unique ability to probe the vertical structure of clouds and aerosol layers, it provides an excellent validation data set for cloud detection algorithms, especially for polar nighttime clouds.

  11. Improved simulation of aerosol, cloud, and density measurements by shuttle lidar

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Morley, B. M.; Livingston, J. M.; Grams, G. W.; Patterson, E. W.

    1981-01-01

    Data retrievals are simulated for a Nd:YAG lidar suitable for early flight on the space shuttle. Maximum assumed vertical and horizontal resolutions are 0.1 and 100 km, respectively, in the boundary layer, increasing to 2 and 2000 km in the mesosphere. Aerosol and cloud retrievals are simulated using 1.06 and 0.53 microns wavelengths independently. Error sources include signal measurement, conventional density information, atmospheric transmission, and lidar calibration. By day, tenuous clouds and Saharan and boundary layer aerosols are retrieved at both wavelengths. By night, these constituents are retrieved, plus upper tropospheric, stratospheric, and mesospheric aerosols and noctilucent clouds. Density, temperature, and improved aerosol and cloud retrievals are simulated by combining signals at 0.35, 1.06, and 0.53 microns. Particlate contamination limits the technique to the cloud free upper troposphere and above. Error bars automatically show effect of this contamination, as well as errors in absolute density nonmalization, reference temperature or pressure, and the sources listed above. For nonvolcanic conditions, relative density profiles have rms errors of 0.54 to 2% in the upper troposphere and stratosphere. Temperature profiles have rms errors of 1.2 to 2.5 K and can define the tropopause to 0.5 km and higher wave structures to 1 or 2 km.

  12. The physico-chemical evolution of atmospheric aerosols and the gas-particle partitioning of inorganic aerosol during KORUS-AQ

    NASA Astrophysics Data System (ADS)

    Lee, T.; Park, T.; Lee, J. B.; Lim, Y. J.; Ahn, J.; Park, J. S.; Soo, C. J.; Desyaterik, Y.; Collett, J. L., Jr.

    2017-12-01

    Aerosols influence climate change directly by scattering and absorption and indirectly by acting as cloud condensation nuclei and some of the effects of aerosols are reduction in visibility, deterioration of human health, and deposition of pollutants to ecosystems. Urban area is large source of aerosols and aerosol precursors. Aerosol sources are both local and from long-range transport. Long-range transport processed aerosol are often dominant sources of aerosol pollution in Korea. To improve our knowledge of aerosol chemistry, Korea and U.S-Air Quality (KORUS-AQ) of Aircraft-based aerosol measurement took place in and around Seoul, Korea during May and June 2016. KORUS-AQ campaigns were conducted to study the chemical characterization and processes of pollutants in the Seoul Metropolitan area to regional scales of Korean peninsula. Aerodyne High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS) was deployed on aircraft platforms on-board DC-8 (NASA) aircraft. We characterized aerosol chemical properties and mass concentrations of sulfate, nitrate, ammonium and organics in polluted air plumes and investigate the spatial and vertical distribution of the species. The results of studies show that organics is predominant in Aerosol and a significant fraction of the organics is oxygenated organic aerosol (OOA) at the high altitude. Both Nitrate and sulfate can partition between the gas and particle phases. The ratios for HNO3/(N(V) (=gaseous HNO3 + particulate Nitrate) and SO2/(SO2+Sulfate) were found to exhibit quite different distributions between the particles and gas phase for the locations during KORUS-AQ campaign, representing potential for formation of additional particulate nitrate and sulfate. The results of those studies can provide highly resolved temporal and spatial air pollutant, which are valuable for air quality model input parameters for aerosol behaviour.

  13. The impacts of aerosol loading, composition, and water uptake on aerosol extinction variability in the Baltimore-Washington, D.C. region

    NASA Astrophysics Data System (ADS)

    Beyersdorf, A. J.; Ziemba, L. D.; Chen, G.; Corr, C. A.; Crawford, J. H.; Diskin, G. S.; Moore, R. H.; Thornhill, K. L.; Winstead, E. L.; Anderson, B. E.

    2016-01-01

    In order to utilize satellite-based aerosol measurements for the determination of air quality, the relationship between aerosol optical properties (wavelength-dependent, column-integrated extinction measured by satellites) and mass measurements of aerosol loading (PM2.5 used for air quality monitoring) must be understood. This connection varies with many factors including those specific to the aerosol type - such as composition, size, and hygroscopicity - and to the surrounding atmosphere, such as temperature, relative humidity (RH), and altitude, all of which can vary spatially and temporally. During the DISCOVER-AQ (Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality) project, extensive in situ atmospheric profiling in the Baltimore, MD-Washington, D.C. region was performed during 14 flights in July 2011. Identical flight plans and profile locations throughout the project provide meaningful statistics for determining the variability in and correlations between aerosol loading, composition, optical properties, and meteorological conditions. Measured water-soluble aerosol mass was composed primarily of ammonium sulfate (campaign average of 32 %) and organics (57 %). A distinct difference in composition was observed, with high-loading days having a proportionally larger percentage of sulfate due to transport from the Ohio River Valley. This composition shift caused a change in the aerosol water-uptake potential (hygroscopicity) such that higher relative contributions of inorganics increased the bulk aerosol hygroscopicity. These days also tended to have higher relative humidity, causing an increase in the water content of the aerosol. Conversely, low-aerosol-loading days had lower sulfate and higher black carbon contributions, causing lower single-scattering albedos (SSAs). The average black carbon concentrations were 240 ng m-3 in the lowest 1 km, decreasing to 35 ng m-3 in the free troposphere (above

  14. Aerosol effects on clouds and precipitation over the eastern China

    NASA Astrophysics Data System (ADS)

    Wang, W. C.; Chen, G.; Song, Y.

    2017-12-01

    Anthropogenic aerosols (sulfates, nitrates and black carbons) can act as cloud condensation nuclei to regulate cloud droplet number and size, thereby changing cloud radiative properties and atmospheric short- and long-wave radiation. These together with aerosol direct radiative effects in turn alter the circulation with likely effects on the spatial distribution of cloud and precipitation. We conduct WRF model simulations over the eastern China to investigate the aerosol-cloud-climate interactions. In general, more aerosols yield more but smaller cloud droplets and larger cloud water content, whereas the changes of vertical distribution of cloud cover exhibit strong regional variations. For example, the low-cloud fraction and water content increase by more than 10% over the west part of the Yangtze-Huai River Valley (YHRV) and the southeast coastal region, but decrease over the east part of the YHRV, and high-cloud fraction decreases in South and North China but increases in the YHRV. The radiative forcing of aerosols and cloud changes are compared, with focus on the effects of changes of vertical distribution of cloud properties (microphysics and fraction). The precipitation changes are found to be closely associated with the circulation change, which favors more (and longer duration) rainfall over the YHRV but less (and shorter) rainfall over other regions. Details of the circulation change and its associations with clouds and precipitation will be presented.

  15. Observed correlations between aerosol and cloud properties in an Indian Ocean trade cumulus regime

    NASA Astrophysics Data System (ADS)

    Pistone, Kristina; Praveen, Puppala S.; Thomas, Rick M.; Ramanathan, Veerabhadran; Wilcox, Eric M.; Bender, Frida A.-M.

    2016-04-01

    There are many contributing factors which determine the micro- and macrophysical properties of clouds, including atmospheric vertical structure, dominant meteorological conditions, and aerosol concentration, all of which may be coupled to one another. In the quest to determine aerosol effects on clouds, these potential relationships must be understood. Here we describe several observed correlations between aerosol conditions and cloud and atmospheric properties in the Indian Ocean winter monsoon season.In the CARDEX (Cloud, Aerosol, Radiative forcing, Dynamics EXperiment) field campaign conducted in February and March 2012 in the northern Indian Ocean, continuous measurements were made of atmospheric precipitable water vapor (PWV) and the liquid water path (LWP) of trade cumulus clouds, concurrent with measurements of water vapor flux, cloud and aerosol vertical profiles, meteorological data, and surface and total-column aerosol from instrumentation at a ground observatory and on small unmanned aircraft. We present observations which indicate a positive correlation between aerosol and cloud LWP only when considering cases with low atmospheric water vapor (PWV < 40 kg m-2), a criterion which acts to filter the data to control for the natural meteorological variability in the region.We then use the aircraft and ground-based measurements to explore possible mechanisms behind this observed aerosol-LWP correlation. The increase in cloud liquid water is found to coincide with a lowering of the cloud base, which is itself attributable to increased boundary layer humidity in polluted conditions. High pollution is found to correlate with both higher temperatures and higher humidity measured throughout the boundary layer. A large-scale analysis, using satellite observations and meteorological reanalysis, corroborates these covariations: high-pollution cases are shown to originate as a highly polluted boundary layer air mass approaching the observatory from a northwesterly

  16. Elevated Aerosol Layers and Their Radiative Impact over Kanpur During Monsoon Onset Period

    NASA Technical Reports Server (NTRS)

    Sarangi, Chandan; Tripathi, S. N.; Mishra, A. K.; Welton, E. J.

    2016-01-01

    Accurate information about aerosol vertical distribution is needed to reduce uncertainties in aerosol radiative forcing and its effect on atmospheric dynamics. The present study deals with synergistic analyses of aerosol vertical distribution and aerosol optical depth (AOD) with meteorological variables using multisatellite and ground-based remote sensors over Kanpur in central Indo-Gangetic Plain (IGP). Micro-Pulse Lidar Network-derived aerosol vertical extinction (sigma) profiles are analyzed to quantify the interannual and daytime variations during monsoon onset period (May-June) for 2009-2011. The mean aerosol profile is broadly categorized into two layers viz., a surface layer (SL) extending up to 1.5 km (where sigma decreased exponentially with height) and an elevated aerosol layer (EAL) extending between 1.5 and 5.5 km. The increase in total columnar aerosol loading is associated with relatively higher increase in contribution from EAL loading than that from SL. The mean contributions of EALs are about 60%, 51%, and 50% to total columnar AOD during 2009, 2010, and 2011, respectively. We observe distinct parabolic EALs during early morning and late evening but uniformly mixed EALs during midday. The interannual and daytime variations of EALs are mainly influenced by long-range transport and convective capacity of the local emissions, respectively. Radiative flux analysis shows that clear-sky incoming solar radiation at surface is reduced with increase in AOD, which indicates significant cooling at surface. Collocated analysis of atmospheric temperature and aerosol loading reveals that increase in AOD not only resulted in surface dimming but also reduced the temperature (approximately 2-3 C) of lower troposphere (below 3 km altitude). Radiative transfer simulations indicate that the reduction of incoming solar radiation at surface is mainly due to increased absorption by EALs (with increase in total AOD). The observed cooling in lower troposphere in high

  17. Effects of Atmospheric Dynamics and Aerosols on the Fraction of Supercooled Water Clouds

    NASA Astrophysics Data System (ADS)

    Li, J.

    2016-12-01

    Based on the 8 years (2007-2015) of data of cloud phase information from the GCM-Oriented Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) Cloud Product (GOCCP), aerosol products from CALIPSO, and meteorological parameters from the ERA-Interim products, this study investigates the effects of atmospheric dynamics on the supercooled liquid cloud fraction (SCF) under different aerosol loadings at a global scale in order to better understand the conditions under which supercooled liquid water will gradually transform to ice phase. Statistical results indicate that aerosols' effect on nucleation cannot fully explain all SCF changes, especially in those regions where aerosols' effect on nucleation is not a first-order influence (e.g., due to low IN aerosol frequency). By performing the temporal and spatial correlations between SCFs and different meteorological factors, we find that the impacts of different meteorological factors on SCFs contain obvious regional differences. In the tropics, obvious positive correlations between SCFs and vertical velocity and relative humidity indicate that high vertical velocity and relative humidity suppress ice formation. However, the impacts of LTSS, skin temperature and horizontal wind on SCFs are relatively complex than those of vertical velocity and humidity. But, their effects are predominantly located in middle and high latitudes, and the temporal correlations with SCFs depend on latitude or surface type. In addition, this study also indicates that strong horizontal wind inhibits the glaciation of supercooled droplets in the middle and high latitudes. Our results verify the importance and regional of dynamical factors on the changes of supercooled water cloud fraction, thus have potential implications for further improving the parameterization of the cloud phase and determining the climate feedbacks.

  18. The Vertical Structure of Urban Soils and Their Convergence Across Cities

    NASA Astrophysics Data System (ADS)

    Herrmann, D.; Schifman, L. A.; Shuster, W.; Schwarz, K.

    2017-12-01

    The theoretical patterns for vertical soil structure (e.g., A-B-C ordering of horizons) are a basis for research methods and our understanding of ecosystem structure and function in general. A general understanding of how urban soils differ from non-urban soils vertically is needed to inform urban research methods and advance our knowledge of urban ecosystems. We performed a soil taxonomic assessment of 391 deep soil cores (up to 5-m) collected in 11 cities across the U.S. and Puerto Rico. The likely soil series in the absence of urbanization was identified for each soil core and comparison soil taxonomy data for agricultural and wildlands land uses soils of the same soil series was gathered from the NASIS database. We hypothesized that urbanization has modified the vertical arrangement of soil horizons and decreased their vertical complexity (e.g., degree of horizonation). In addition, we hypothesized that soils in each city are becoming more like each other and less like their pre-urbanization soils. Urban soils had fewer soil horizons than their non-urban references; specifically, urban soils had two fewer distinct genetic horizons in the top meter of soil. B horizons were commonly lost or reduced in extent as A horizons deepened and C horizons shallowed in urban relative to reference soils. The order of horizons was also different from reference and theoretical soil structure. Namely A-C transitions with an absence of B horizons was more common in urban than non-urban soils. If these patterns hold across more cities, our results indicate a need to revisit the conventional predictions of vertical soil structure for understanding urban ecosystems. Finally, we found that several attributes for urban soils with evidence of significant disturbance associated with urbanization were converging across cities. Similar findings have been found for surface soils; here we show the structure of urban soil convergence at greater soil depths than previously reported.

  19. CALIPSO Detection of an Asian Tropopause Aerosol Layer

    NASA Technical Reports Server (NTRS)

    Vemier, J.-P.; Thomason, L. W.; Kar, J.

    2011-01-01

    The first four years of the CALIPSO lidar measurements have revealed the existence of an aerosol layer at the tropopause level associated with the Asian monsoon season in June, July and August. This Asian Tropopause Aerosol Layer (ATAL) extends geographically from Eastern Mediterranean (down to North Africa) to Western China (down to Thailand), and vertically from 13 to 18 km. The Scattering Ratio inferred from CALIPSO shows values between 1.10. 1.15 on average with associated depolarization ratio of less than 5%. The Gaussian distribution of the points indicates that the mean value is statistically driven by an enhancement of the background aerosol level and not by episodic events such as a volcanic eruption or cloud contamination. Further satellite observations of aerosols and gases as well as field campaigns are urgently needed to characterize this layer, which is likely to be a significant source of non-volcanic aerosols for the global upper troposphere with a potential impact on its radiative and chemical balance

  20. Inversion of scattered radiance horizon profiles for gaseous concentrations and aerosol parameters

    NASA Technical Reports Server (NTRS)

    Malchow, H. L.; Whitney, C. K.

    1977-01-01

    Techniques have been developed and used to invert limb scan measurements for vertical profiles of atmospheric state parameters. The parameters which can be found are concentrations of Rayleigh scatters, ozone, NO2, and aerosols, and aerosol physical properties including a Junge-size distribution parameter and real and imaginary parts of the index of refraction.

  1. Vertically resolved characteristics of air pollution during two severe winter haze episodes in urban Beijing, China

    NASA Astrophysics Data System (ADS)

    Wang, Qingqing; Sun, Yele; Xu, Weiqi; Du, Wei; Zhou, Libo; Tang, Guiqian; Chen, Chen; Cheng, Xueling; Zhao, Xiujuan; Ji, Dongsheng; Han, Tingting; Wang, Zhe; Li, Jie; Wang, Zifa

    2018-02-01

    We conducted the first real-time continuous vertical measurements of particle extinction (bext), gaseous NO2, and black carbon (BC) from ground level to 260 m during two severe winter haze episodes at an urban site in Beijing, China. Our results illustrated four distinct types of vertical profiles: (1) uniform vertical distributions (37 % of the time) with vertical differences less than 5 %, (2) higher values at lower altitudes (29 %), (3) higher values at higher altitudes (16 %), and (4) significant decreases at the heights of ˜ 100-150 m (14 %). Further analysis demonstrated that vertical convection as indicated by mixing layer height, temperature inversion, and local emissions are three major factors affecting the changes in vertical profiles. Particularly, the formation of type 4 was strongly associated with the stratified layer that was formed due to the interactions of different air masses and temperature inversions. Aerosol composition was substantially different below and above the transition heights with ˜ 20-30 % higher contributions of local sources (e.g., biomass burning and cooking) at lower altitudes. A more detailed evolution of vertical profiles and their relationship with the changes in source emissions, mixing layer height, and aerosol chemistry was illustrated by a case study. BC showed overall similar vertical profiles as those of bext (R2 = 0.92 and 0.69 in November and January, respectively). While NO2 was correlated with bext for most of the time, the vertical profiles of bext / NO2 varied differently for different profiles, indicating the impact of chemical transformation on vertical profiles. Our results also showed that more comprehensive vertical measurements (e.g., more aerosol and gaseous species) at higher altitudes in the megacities are needed for a better understanding of the formation mechanisms and evolution of severe haze episodes in China.

  2. On the Vertical Structure of Seasonal, Interannual and Intraseasonal Flows

    DTIC Science & Technology

    1992-12-01

    regions. Extensive use is made of a primitive equation (PE) model, as a diagnostic tool, to explore the extent to which tropical heating might influence ...vertical modes, while Wiin-Nielsen (1971a and b) studied the time 2 behaviour of long waves for various vertical structures. More recent investigations...nonlinear three-leve PE model, are used to determine the influence of tropical heating on extratropica wave response. In Chapter 4, the interannual changes

  3. Lower tropospheric distributions of O3 and aerosol over Raoyang, a rural site in the North China Plain

    NASA Astrophysics Data System (ADS)

    Wang, Rui; Xu, Xiaobin; Jia, Shihui; Ma, Ruisheng; Ran, Liang; Deng, Zhaoze; Lin, Weili; Wang, Ying; Ma, Zhiqiang

    2017-03-01

    The North China Plain (NCP) has become one of the most polluted regions in China, with the rapidly increasing economic growth in the past decades. High concentrations of ambient O3 and aerosol have been observed at urban as well as rural sites in the NCP. Most of the in situ observations of air pollutants have been conducted near the ground so that current knowledge about the vertical distributions of tropospheric O3 and aerosol over the NCP region is still limited. In this study, vertical profiles of O3 and size-resolved aerosol concentrations below 2.5 km were measured in summer 2014 over a rural site in the NCP, using an unmanned aerial vehicle (UAV) equipped with miniature analyzers. In addition, vertical profiles of aerosol scattering property in the lower troposphere and vertical profiles of O3 below 1 km were also observed at the site using a lidar and tethered balloon, respectively. The depths of the mixed layer and residual layer were determined according to the vertical gradients of lidar particle extinction and aerosol number concentration. Average O3 and size-resolved aerosol number concentration in both the mixed and residual layer were obtained from the data observed in seven UAV flights. The results show that during most of the flights the O3 levels above the top of mixed layer were higher than those below. Such a positive gradient in the vertical distribution of O3 makes the residual layer an important source of O3 in the mixed layer, particularly during the morning when the top of mixed layer is rapidly elevated. In contrast to O3, aerosol number concentration was normally higher in the mixed layer than in the residual layer, particularly in the early morning. Aerosol particles were overwhelmingly distributed in the size range < 1 µm, showing slight differences between the mixed and residual layers. Our measurements confirm that the lower troposphere over the rural area of the NCP is largely impacted by anthropogenic pollutants locally emitted or

  4. Comparing multiple model-derived aerosol optical properties to spatially collocated ground-based and satellite measurements

    NASA Astrophysics Data System (ADS)

    Ocko, Ilissa B.; Ginoux, Paul A.

    2017-04-01

    Anthropogenic aerosols are a key factor governing Earth's climate and play a central role in human-caused climate change. However, because of aerosols' complex physical, optical, and dynamical properties, aerosols are one of the most uncertain aspects of climate modeling. Fortunately, aerosol measurement networks over the past few decades have led to the establishment of long-term observations for numerous locations worldwide. Further, the availability of datasets from several different measurement techniques (such as ground-based and satellite instruments) can help scientists increasingly improve modeling efforts. This study explores the value of evaluating several model-simulated aerosol properties with data from spatially collocated instruments. We compare aerosol optical depth (AOD; total, scattering, and absorption), single-scattering albedo (SSA), Ångström exponent (α), and extinction vertical profiles in two prominent global climate models (Geophysical Fluid Dynamics Laboratory, GFDL, CM2.1 and CM3) to seasonal observations from collocated instruments (AErosol RObotic NETwork, AERONET, and Cloud-Aerosol Lidar with Orthogonal Polarization, CALIOP) at seven polluted and biomass burning regions worldwide. We find that a multi-parameter evaluation provides key insights on model biases, data from collocated instruments can reveal underlying aerosol-governing physics, column properties wash out important vertical distinctions, and improved models does not mean all aspects are improved. We conclude that it is important to make use of all available data (parameters and instruments) when evaluating aerosol properties derived by models.

  5. Thermal Emission Spectrometer Results: Mars Atmospheric Thermal Structure and Aerosol Distribution

    NASA Technical Reports Server (NTRS)

    Smith, Michael D.; Pearl, John C.; Conrath, Barney J.; Christensen, Philip R.; Vondrak, Richard R. (Technical Monitor)

    2001-01-01

    Infrared spectra returned by the Thermal Emission Spectrometer (TES) are well suited for retrieval of the thermal structure and the distribution of aerosols in the Martian atmosphere. Combined nadir- and limb-viewing spectra allow global monitoring of the atmosphere up to 0.01 mbar (65 km). We report here on the atmospheric thermal structure and the distribution of aerosols as observed thus far during the mapping phase of the Mars Global Surveyor mission. Zonal and temporal mean cross sections are used to examine the seasonal evolution of atmospheric temperatures and zonal winds during a period extending from northern hemisphere mid-summer through vernal equinox (L(sub s) = 104-360 deg). Temperature maps at selected pressure levels provide a characterization of planetary-scale waves. Retrieved atmospheric infrared dust opacity maps show the formation and evolution of regional dust storms during southern hemisphere summer. Response of the atmospheric thermal structure to the changing dust loading is observed. Maps of water-ice clouds as viewed in the thermal infrared are presented along with seasonal trends of infrared water-ice opacity. Uses of these observations for diagnostic studies of the dynamics of the atmosphere are discussed.

  6. On relationship between aerosols and PM2.5

    NASA Astrophysics Data System (ADS)

    Sano, Itaru; Mukai, Sonoyo; Nakata, Makiko

    2015-04-01

    Since aerosol optical thickness (AOT) is a key parameter of aerosols and description of the Earth's radiation budget, it is widely measured from ground sun photometer network NASA/AERONET [Holben et al., 1998] and from satellite. Fine and surface level aerosol particle called PM2.5, whose diameter is 2.5 μ m or less, is a well-known parameter for understanding polluted level of air. Smirnov et al. reported a good agreement between ground based AERONET AOT (870 nm) and dust concentrations at Barbados [Smirnov et al., 2000]. Wang and Christopher founded a good correlation between satellite based MODIS AOT product and PM2.5 in Alabama area [Wang and 2003]. Long range transported dusts, particularly Asian dust events, are easy to change the vertical profile of aerosol extinction. The vertical profile is important to estimate PM information because both AOT information measured from ground or satellite are integrated value of aerosol extinction from ground to space, i.e. columnar AOT. Thus, we have also proposed correlations between ground level PM2.5 and AERONET AOT (670 nm) in two cases of ordinary air condition and dusty days [Sano et al., 2010]. In this work, we investigate the relationship between PM2.5 and AERONET AOT considering LIDAR measurements. Note that all of instruments are set up at the roof of the University building (50 m) and collocated in 10 m area. Surface-level AOT is derived from AERONET AOT multiplied by an averaged vertical aerosol extinction given by LIDAR. Note that the definition of surface-level AOT in this work is assumed as AOT up to 500 m height. Introduction of surface-level AOT enables to avoid the contamination of dusty aerosol signal existing at high altitude from columnar AOT. The cloud aerosol imager (CAI) on GOSAT satellite has four observing wavelengths, 380, 670, 870 nm, and 1.6 μ m. In this work three channels are selected to estimate aerosol information. Look-up table (LUT) method is applied to estimate the optical properties

  7. Aerosol-Cloud Interactions during Tropical Deep Convection: Evidence for the Importance of Free Tropospheric Aerosols

    NASA Technical Reports Server (NTRS)

    Ackerman, A.; Jensen, E.; Stevens, D.; Wang, D.; Heymsfield, A.; Miloshevich, L.; Twohy, C.; Poellot, M.; VanReken, T.; Fridland, Ann

    2003-01-01

    NASA's 2002 CRYSTAL-FACE field experiment focused on the formation and evolution of tropical cirrus cloud systems in southern Florida. Multiple aircraft extensively sampled cumulonimbus dynamical and microphysical properties, as well as characterizing ambient aerosol populations both inside and outside the full depth of the convective column. On July 18, unique measurements were taken when a powerful updraft was traversed directly by aircraft, providing a window into the primary source region of cumulonimbus anvil crystals. Observations of the updraft, entered at approximately l0 km altitude and -34 C, indicated more than 200 cloud particles per mL at vertical velocities exceeding 20 m/s and the presence of significant condensation nuclei and liquid water within the core. In this work, aerosol and cloud phase observations are integrated by simulating the updraft conditions using a large-eddy resolving model with 3 explicit multiphase microphysics, including treatment of size-resolved aerosol fields, aerosol activation and freezing, and evaporation of cloud particles back to the aerosol phase. Simulations were initialized with observed thermodynamic and aerosol size distributions profiles and convection was driven by surface fluxes assimilated from the ARPS forecast model. Model results are consistent with the conclusions that most crystals are homogeneously frozen droplets and that entrained free tropospheric aerosols may contribute a significant fraction of the crystals. Thus most anvil crystals appear to be formed aloft in updraft cores, well above cloud base. These conclusions are supported by observations of hydrometeor size distribution made while traversing the dore, as well as aerosol and cloud particle size distributions generally observed by aircraft below 4km and crystal properties generally observed by aircraft above 12km.

  8. The investigation of advanced remote sensing techniques for the measurement of aerosol characteristics

    NASA Technical Reports Server (NTRS)

    Deepak, A.; Becher, J.

    1979-01-01

    Advanced remote sensing techniques and inversion methods for the measurement of characteristics of aerosol and gaseous species in the atmosphere were investigated. Of particular interest were the physical and chemical properties of aerosols, such as their size distribution, number concentration, and complex refractive index, and the vertical distribution of these properties on a local as well as global scale. Remote sensing techniques for monitoring of tropospheric aerosols were developed as well as satellite monitoring of upper tropospheric and stratospheric aerosols. Computer programs were developed for solving multiple scattering and radiative transfer problems, as well as inversion/retrieval problems. A necessary aspect of these efforts was to develop models of aerosol properties.

  9. Origin, Transport, and Vertical Distribution of Atmospheric Polluntants over the Northern Sourth China Sea During the 7-SEAS-Dongsha Experiment

    NASA Technical Reports Server (NTRS)

    Wang, Sheng-Hsiang; Tsay, Si-Chee; Lin, Neng-Huei; Chang, Shuenn-Chin; Li, Can; Welton, Ellsworth J.; Holben, Brent N.; Hsu, N. Christina; Lau, William K. M.; Lolli, Simone; hide

    2012-01-01

    During the spring of 2010, comprehensive in situ measurements were made for the first time on a small atoll (Dongsha Island) in the northern South China Sea (SCS), a key region of the 7-SEAS (the Seven South East Asian Studies) program. This paper focuses on characterizing the source origins, transport processes, and vertical distributions of the Asian continental outflows over the region, using measurements including mass concentration, optical properties, hygroscopicity, and vertical distribution of the aerosol particles, as well as the trace gas composition. Cluster analysis of backward trajectories classified 52% of the air masses arriving at ground level of Dongsha Island as having a continental origin, mainly from northern China to the northern SCS, passing the coastal area and being confined in the marine boundary layer (0-0.5 km). Compared to aerosols of oceanic origin, the fine mode continental aerosols have a higher concentration, extinction coefficient, and single-scattering albedo at 550 nm (i.e., 19 vs. 14 microg per cubic meter in PM(sub 2.5); 77 vs. 59 M per meter in beta(sub e); and 0.94 vs. 0.90 in omega, respectively). These aerosols have a higher hygroscopicity (f at 85% RH = 2.1) than those in the upwind inland regions, suggesting that the aerosols transported to the northern SCS were modified by the marine environment. In addition to the near-surface aerosol transport, a significant upper-layer (3-4 km) transport of biomass-burning aerosols was observed. Our results suggest that emissions from both China and Southeast Asia could have a significant impact on the aerosol loading and other aerosol properties over the SCS. Furthermore, the complex vertical distribution of aerosols-coinciding-with-clouds has implications for remote-sensing observations and aerosol-cloud-radiation interactions.

  10. Cloud-Resolving Model Simulations of Aerosol-Cloud Interactions Triggered by Strong Aerosol Emissions in the Arctic

    NASA Astrophysics Data System (ADS)

    Wang, H.; Kravitz, B.; Rasch, P. J.; Morrison, H.; Solomon, A.

    2014-12-01

    Previous process-oriented modeling studies have highlighted the dependence of effectiveness of cloud brightening by aerosols on cloud regimes in warm marine boundary layer. Cloud microphysical processes in clouds that contain ice, and hence the mechanisms that drive aerosol-cloud interactions, are more complicated than in warm clouds. Interactions between ice particles and liquid drops add additional levels of complexity to aerosol effects. A cloud-resolving model is used to study aerosol-cloud interactions in the Arctic triggered by strong aerosol emissions, through either geoengineering injection or concentrated sources such as shipping and fires. An updated cloud microphysical scheme with prognostic aerosol and cloud particle numbers is employed. Model simulations are performed in pure super-cooled liquid and mixed-phase clouds, separately, with or without an injection of aerosols into either a clean or a more polluted Arctic boundary layer. Vertical mixing and cloud scavenging of particles injected from the surface is still quite efficient in the less turbulent cold environment. Overall, the injection of aerosols into the Arctic boundary layer can delay the collapse of the boundary layer and increase low-cloud albedo. The pure liquid clouds are more susceptible to the increase in aerosol number concentration than the mixed-phase clouds. Rain production processes are more effectively suppressed by aerosol injection, whereas ice precipitation (snow) is affected less; thus the effectiveness of brightening mixed-phase clouds is lower than for liquid-only clouds. Aerosol injection into a clean boundary layer results in a greater cloud albedo increase than injection into a polluted one, consistent with current knowledge about aerosol-cloud interactions. Unlike previous studies investigating warm clouds, the impact of dynamical feedback due to precipitation changes is small. According to these results, which are dependent upon the representation of ice nucleation

  11. Seasonality of Aerosols the Southeastern United States

    NASA Astrophysics Data System (ADS)

    Ford, B. J.; Heald, C. L.

    2012-12-01

    Previous studies have suggested that increases in atmospheric aerosols of biogenic origin may have caused regional cooling over the southeastern United States in recent decades. Understanding the sources and behaviors of these aerosols is important for determining their role in a changing climate and managing their air quality impacts. In this study, we investigate the strong seasonality in aerosol optical depth (AOD) observed by MODIS, MISR, and CALIOP instruments over the southeastern United States and show that this is not simulated by a chemical transport model (GEOS-Chem). However, the model does reproduce surface PM 2.5 concentrations in the region as reported by the IMPROVE and Southeastern Aerosol Research and Characterization (SEARCH) networks, as well as the muted seasonality of these concentrations. In addition, these surface measurements show that organic aerosol makes up a small fraction of total PM 2.5 and has relatively little seasonality, which calls into question the importance of biogenic aerosol as a driver for climate change in the region. Sounding profiles and ground observations of relative humidity suggest that the magnitude of seasonality in AOD cannot be explained by seasonal differences in the hygroscopic growth of aerosols. CALIOP measurements of the vertical profile of aerosol extinction confirm that the likely reconciliation of the differences in seasonality between the surface PM 2.5 and AOD observations is the formation of aerosol aloft, a process not captured by the model. These findings provide initial insights for the Southern Oxidant and Aerosol Study (SOAS) campaign in 2013 which aims to investigate the anthropogenic influence on biogenic aerosol formation in the Southeastern US and elucidate the impact on regional climate and air quality.

  12. Stratospheric Aerosol Measurements

    NASA Technical Reports Server (NTRS)

    Pueschel, Rudolf, F.; Gore, Warren J. (Technical Monitor)

    1998-01-01

    Stratospheric aerosols affect the atmospheric energy balance by scattering and absorbing solar and terrestrial radiation. They also can alter stratospheric chemical cycles by catalyzing heterogeneous reactions which markedly perturb odd nitrogen, chlorine and ozone levels. Aerosol measurements by satellites began in NASA in 1975 with the Stratospheric Aerosol Measurement (SAM) program, to be followed by the Stratospheric Aerosol and Gas Experiment (SAGE) starting in 1979. Both programs employ the solar occultation, or Earth limb extinction, techniques. Major results of these activities include the discovery of polar stratospheric clouds (PSCs) in both hemispheres in winter, illustrations of the impacts of major (El Chichon 1982 and Pinatubo 1991) eruptions, and detection of a negative global trend in lower stratospheric/upper tropospheric aerosol extinction. This latter result can be considered a triumph of successful worldwide sulfur emission controls. The SAGE record will be continued and improved by SAGE III, currently scheduled for multiple launches beginning in 2000 as part of the Earth Observing System (EOS). The satellite program has been supplemented by in situ measurements aboard the ER-2 (20 km ceiling) since 1974, and from the DC-8 (13 km ceiling) aircraft beginning in 1989. Collection by wire impactors and subsequent electron microscopic and X-ray energy-dispersive analyses, and optical particle spectrometry have been the principle techniques. Major findings are: (1) The stratospheric background aerosol consists of dilute sulfuric acid droplets of around 0.1 micrometer modal diameter at concentration of tens to hundreds of monograms per cubic meter; (2) Soot from aircraft amounts to a fraction of one percent of the background total aerosol; (3) Volcanic eruptions perturb the sulfuric acid, but not the soot, aerosol abundance by several orders of magnitude; (4) PSCs contain nitric acid at temperatures below 195K, supporting chemical hypotheses

  13. The effect of cloud screening on MAX-DOAS aerosol retrievals.

    NASA Astrophysics Data System (ADS)

    Gielen, Clio; Van Roozendael, Michel; Hendrik, Francois; Fayt, Caroline; Hermans, Christian; Pinardi, Gaia; De Backer, Hugo; De Bock, Veerle; Laffineur, Quentin; Vlemmix, Tim

    2014-05-01

    In recent years, ground-based multi-axis differential absorption spectroscopy (MAX-DOAS) has shown to be ideally suited for the retrieval of tropospheric trace gases and deriving information on the aerosol properties. These measurements are invaluable to our understanding of the physics and chemistry of the atmospheric system, and the impact on the Earth's climate. Unfortunately, MAX-DOAS measurements are often performed under strong non-clear-sky conditions, causing strong data quality degradation and uncertainties on the retrievals. Here we present the result of our cloud-screening method, using the colour index (CI), on aerosol retrievals from MAX-DOAS measurements (AOD and vertical profiles). We focus on two large data sets, from the Brussels and Beijing area. Using the CI we define 3 different sky conditions: bad (=full thick cloud cover/extreme aerosols), mediocre (=thin clouds/aerosols) and good (=clear sky). We also flag the presence of broken/scattered clouds. We further compare our cloud-screening method with results from cloud-cover fractions derived from thermic infrared measurements. In general, our method shows good results to qualify the sky and cloud conditions of MAX-DOAS measurements, without the need for other external cloud-detection systems. Removing data under bad-sky and broken-cloud conditions results in a strongly improved agreement, in both correlation and slope, between the MAX-DOAS aerosol retrievals and data from other instruments (e.g. AERONET, Brewer). With the improved AOD retrievals, the seasonal and diurnal variations of the aerosol content and vertical distribution at both sites can be investigated in further detail. By combining with additional information derived by other instruments (Brewer, lidar, ...) operated at the stations, we will further study the observed aerosol characteristics, and their influence on and by meteorological conditions such as clouds and/or the boundary layer height.

  14. Helical structures in vertically aligned dust particle chains in a complex plasma

    NASA Astrophysics Data System (ADS)

    Hyde, Truell W.; Kong, Jie; Matthews, Lorin S.

    2013-05-01

    Self-assembly of structures from vertically aligned, charged dust particle bundles within a glass box placed on the lower, powered electrode of a Gaseous Electronics Conference rf reference cell were produced and examined experimentally. Self-organized formation of one-dimensional vertical chains, two-dimensional zigzag structures, and three-dimensional helical structures of triangular, quadrangular, pentagonal, hexagonal, and heptagonal symmetries are shown to occur. System evolution is shown to progress from a one-dimensional chain structure, through a zigzag transition to a two-dimensional, spindlelike structure, and then to various three-dimensional, helical structures exhibiting multiple symmetries. Stable configurations are found to be dependent upon the system confinement, γ2=ω0h/ω0v2 (where ω0h,v are the horizontal and vertical dust resonance frequencies), the total number of particles within a bundle, and the rf power. For clusters having fixed numbers of particles, the rf power at which structural phase transitions occur is repeatable and exhibits no observable hysteresis. The critical conditions for these structural phase transitions as well as the basic symmetry exhibited by the one-, two-, and three-dimensional structures that subsequently develop are in good agreement with the theoretically predicted configurations of minimum energy determined employing molecular dynamics simulations for charged dust particles confined in a prolate, spheroidal potential as presented theoretically by Kamimura and Ishihara [Kamimura and Ishihara, Phys. Rev. EPLEEE81063-651X10.1103/PhysRevE.85.016406 85, 016406 (2012)].

  15. CATS Cloud-Aerosol Products and Near Real Time Capabilities

    NASA Astrophysics Data System (ADS)

    Nowottnick, E. P.; Yorks, J. E.; McGill, M. J.; Palm, S. P.; Hlavka, D. L.; Selmer, P. A.; Rodier, S. D.; Vaughan, M. A.

    2016-12-01

    The Cloud-Aerosol Transport System (CATS) is a backscatter lidar that is designed to demonstrate technologies in space for future Earth Science missions. CATS is located on the International Space Station (ISS), where it has been operating semi-continuously since February 2015. CATS provides observations of cloud and aerosol vertical profiles similar to CALIPSO, but with more comprehensive coverage of the tropics and mid-latitudes due to the ISS orbit properties. Additionally, the ISS orbit permits the study of diurnal variability of clouds and aerosols. CATS data has applications for identifying of cloud phase and aerosol types. Analysis of recent Level 2 data yield several biases in cloud and aerosol layer detection and identification, as well as retrievals of optical properties that will be improved for the next version to be released in late 2016. With data latency of less than 6 hours, CATS data is also being used for forecasting of volcanic plume transport, experimental data assimilation into aerosol transport models (GEOS-5, NAAPS), and field campaign flight planning (KORUS-AQ, ORACLES).

  16. Airborne Sunphotometry of Aerosol Optical Depth and Columnar Water Vapor During ACE-Asia

    NASA Technical Reports Server (NTRS)

    Redemann, Jens; Schmid, B.; Russell, P. B.; Livingston, J. M.; Eilers, J. A.; Ramirez, S. A.; Kahn, R.; Hipskind, R. Stephen (Technical Monitor)

    2001-01-01

    During the Intensive Field Campaign (IFC) of the Aerosol Characterization Experiment - Asia (ACE-Asia), March-May 2001, the 6-channel NASA Ames Airborne Tracking Sunphotometer (AATS-6) operated during 15 of the 19 research flights aboard the NCAR C- 130, while its 14-channel counterpart (AATS- 14) was flown successfully on all 18 research flights of a Twin Otter aircraft operated by the Center for Interdisciplinary Remotely Piloted Aircraft Studies (CIRPAS), Monterey, CA. ACE-Asia was the fourth in a series of aerosol characterization experiments and focused on aerosol outflow from the Asian continent to the Pacific basin. Each ACE was designed to integrate suborbital and satellite measurements and models so as to reduce the uncertainty in calculations of the climate forcing due to aerosols. The Ames Airborne Tracking Sunphotometers measured solar beam transmission at 6 (380-1021 nm, AATS-6) and 14 wavelengths (353-1558 nm, AATS-14) respectively, yielding aerosol optical depth (AOD) spectra and column water vapor (CWV). Vertical differentiation in profiles yielded aerosol extinction and water vapor concentration. The wavelength dependence of AOD and extinction indicates that supermicron dust was often a major component of the aerosol. Frequently this dust-containing aerosol extended to high altitudes. For example, in data flights analyzed to date 34 +/- 13% of full-column AOD(525 nm) was above 3 km. In contrast, only 10 +/- 4% of CWV was above 3 km. In this paper, we will show first sunphotometer-derived results regarding the spatial variation of AOD and CWV, as well as the vertical distribution of aerosol extinction and water vapor concentration. Preliminary comparison studies between our AOD/aerosol extinction data and results from: (1) extinction products derived using in situ measurements and (2) AOD retrievals using the Multi-angle Imaging Spectro-Radiometer (MISR) aboard the TERRA satellite will also be presented.

  17. ALADINA - an unmanned research aircraft for observing vertical and horizontal distributions of ultrafine particles within the atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Altstädter, B.; Platis, A.; Wehner, B.; Scholtz, A.; Lampert, A.; Wildmann, N.; Hermann, M.; Käthner, R.; Bange, J.; Baars, H.

    2014-12-01

    This paper presents the unmanned research aircraft Carolo P360 "ALADINA" (Application of Light-weight Aircraft for Detecting IN-situ Aerosol) for investigating the horizontal and vertical distribution of ultrafine particles in the atmospheric boundary layer (ABL). It has a wingspan of 3.6 m, a maximum take-off weight of 25 kg and is equipped with aerosol instrumentation and meteorological sensors. A first application of the system, together with the unmanned research aircraft MASC (Multi-Purpose Airborne Carrier) of the Eberhard-Karls University of Tübingen (EKUT), is described. As small payload for ALADINA, two condensation particle counters (CPC) and one optical particle counter (OPC) were miniaturized by re-arranging the vital parts and composing them in a space saving way in the front compartment of the airframe. The CPCs are improved concerning the lower detection threshold and the response time. Each system was characterized in the laboratory and calibrated with test aerosols. The CPCs are operated with two different lower detection threshold diameters of 6 and 18 nm. The amount of ultrafine particles, which is an indicator for new particle formation, is derived from the difference in number concentrations of the two CPCs. Turbulence and thermodynamic structure of the boundary layer are described by measurements of fast meteorological sensors that are mounted at the aircraft nose. A first demonstration of ALADINA and a feasibility study were conducted in Melpitz near Leipzig, Germany, at the Global Atmosphere Watch (GAW) station of the Leibniz Institute for Tropospheric Research (TROPOS) on two days in October 2013. There, various ground-based instruments are installed for long-term atmospheric monitoring. The ground-based infrastructure provides valuable additional background information to embed the flights in the continuous atmospheric context and is used for validation of the airborne results. The development of the boundary layer, derived from

  18. Analysis of aerosol effects on warm clouds over the Yangtze River Delta from multi-sensor satellite observations

    NASA Astrophysics Data System (ADS)

    Liu, Yuqin; de Leeuw, Gerrit; Kerminen, Veli-Matti; Zhang, Jiahua; Zhou, Putian; Nie, Wei; Qi, Ximeng; Hong, Juan; Wang, Yonghong; Ding, Aijun; Guo, Huadong; Krüger, Olaf; Kulmala, Markku; Petäjä, Tuukka

    2017-05-01

    Aerosol effects on low warm clouds over the Yangtze River Delta (YRD, eastern China) are examined using co-located MODIS, CALIOP and CloudSat observations. By taking the vertical locations of aerosol and cloud layers into account, we use simultaneously observed aerosol and cloud data to investigate relationships between cloud properties and the amount of aerosol particles (using aerosol optical depth, AOD, as a proxy). Also, we investigate the impact of aerosol types on the variation of cloud properties with AOD. Finally, we explore how meteorological conditions affect these relationships using ERA-Interim reanalysis data. This study shows that the relation between cloud properties and AOD depends on the aerosol abundance, with a different behaviour for low and high AOD (i.e. AOD < 0.35 and AOD > 0.35). This applies to cloud droplet effective radius (CDR) and cloud fraction (CF), but not to cloud optical thickness (COT) and cloud top pressure (CTP). COT is found to decrease when AOD increases, which may be due to radiative effects and retrieval artefacts caused by absorbing aerosol. Conversely, CTP tends to increase with elevated AOD, indicating that the aerosol is not always prone to expand the vertical extension. It also shows that the COT-CDR and CWP (cloud liquid water path)-CDR relationships are not unique, but affected by atmospheric aerosol loading. Furthermore, separation of cases with either polluted dust or smoke aerosol shows that aerosol-cloud interaction (ACI) is stronger for clouds mixed with smoke aerosol than for clouds mixed with dust, which is ascribed to the higher absorption efficiency of smoke than dust. The variation of cloud properties with AOD is analysed for various relative humidity and boundary layer thermodynamic and dynamic conditions, showing that high relative humidity favours larger cloud droplet particles and increases cloud formation, irrespective of vertical or horizontal level. Stable atmospheric conditions enhance cloud cover

  19. Observed correlations between aerosol and cloud properties in an Indian Ocean trade cumulus regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pistone, Kristina; Praveen, Puppala S.; Thomas, Rick M.

    There are many contributing factors which determine the micro- and macrophysical properties of clouds, including atmospheric vertical structure, dominant meteorological conditions, and aerosol concentration, all of which may be coupled to one another. In the quest to determine aerosol effects on clouds, these potential relationships must be understood. Here we describe several observed correlations between aerosol conditions and cloud and atmospheric properties in the Indian Ocean winter monsoon season.In the CARDEX (Cloud, Aerosol, Radiative forcing, Dynamics EXperiment) field campaign conducted in February and March 2012 in the northern Indian Ocean, continuous measurements were made of atmospheric precipitable water vapor (PWV)more » and the liquid water path (LWP) of trade cumulus clouds, concurrent with measurements of water vapor flux, cloud and aerosol vertical profiles, meteorological data, and surface and total-column aerosol from instrumentation at a ground observatory and on small unmanned aircraft. We present observations which indicate a positive correlation between aerosol and cloud LWP only when considering cases with low atmospheric water vapor (PWV < 40 kg m –2), a criterion which acts to filter the data to control for the natural meteorological variability in the region.We then use the aircraft and ground-based measurements to explore possible mechanisms behind this observed aerosol–LWP correlation. The increase in cloud liquid water is found to coincide with a lowering of the cloud base, which is itself attributable to increased boundary layer humidity in polluted conditions. High pollution is found to correlate with both higher temperatures and higher humidity measured throughout the boundary layer. A large-scale analysis, using satellite observations and meteorological reanalysis, corroborates these covariations: high-pollution cases are shown to originate as a highly polluted boundary layer air mass approaching the observatory from a

  20. Observed correlations between aerosol and cloud properties in an Indian Ocean trade cumulus regime

    DOE PAGES

    Pistone, Kristina; Praveen, Puppala S.; Thomas, Rick M.; ...

    2016-04-27

    There are many contributing factors which determine the micro- and macrophysical properties of clouds, including atmospheric vertical structure, dominant meteorological conditions, and aerosol concentration, all of which may be coupled to one another. In the quest to determine aerosol effects on clouds, these potential relationships must be understood. Here we describe several observed correlations between aerosol conditions and cloud and atmospheric properties in the Indian Ocean winter monsoon season.In the CARDEX (Cloud, Aerosol, Radiative forcing, Dynamics EXperiment) field campaign conducted in February and March 2012 in the northern Indian Ocean, continuous measurements were made of atmospheric precipitable water vapor (PWV)more » and the liquid water path (LWP) of trade cumulus clouds, concurrent with measurements of water vapor flux, cloud and aerosol vertical profiles, meteorological data, and surface and total-column aerosol from instrumentation at a ground observatory and on small unmanned aircraft. We present observations which indicate a positive correlation between aerosol and cloud LWP only when considering cases with low atmospheric water vapor (PWV < 40 kg m –2), a criterion which acts to filter the data to control for the natural meteorological variability in the region.We then use the aircraft and ground-based measurements to explore possible mechanisms behind this observed aerosol–LWP correlation. The increase in cloud liquid water is found to coincide with a lowering of the cloud base, which is itself attributable to increased boundary layer humidity in polluted conditions. High pollution is found to correlate with both higher temperatures and higher humidity measured throughout the boundary layer. A large-scale analysis, using satellite observations and meteorological reanalysis, corroborates these covariations: high-pollution cases are shown to originate as a highly polluted boundary layer air mass approaching the observatory from a

  1. Temporal Variation of Aerosol Properties at a Rural Continental Site and Study of Aerosol Evolution through Growth Law Analysis

    NASA Technical Reports Server (NTRS)

    Wang, Jian; Collins, Don; Covert, David; Elleman, Robert; Ferrare, Richard A.; Gasparini, Roberto; Jonsson, Haflidi; Ogren, John; Sheridan, Patrick; Tsay, Si-Chee

    2006-01-01

    Aerosol size distributions were measured by a Scanning Mobility Particle Sizer (SMPS) onboard the CIRPAS Twin Otter aircraft during 16 flights at the Southern Great Plains (SGP) site in northern central Oklahoma as part of the Aerosol Intensive Operation period in May, 2003. During the same period a second SMPS was deployed at a surface station and provided continuous measurements. Combined with trace gas measurements at the SGP site and back-trajectory analysis, the aerosol size distributions provided insights into the sources of aerosols observed at the SGP site. High particle concentrations, observed mostly during daytime, were well correlated with the sulfur dioxide (SO2) mixing ratios, suggesting nucleation involving sulfuric acid is likely the main source of newly formed particles at the SGP. Aerosols within plumes originating from wildfires in Central America were measured at the surface site. Vertically compact aerosol layers, which can be traced back to forest fires in East Asia, were intercepted at altitudes over 3000 meters. Analyses of size dependent particle growth rates for four periods during which high cloud coverage was observed indicate growth dominated by volume controlled reactions. Sulfate accounts for 50% to 72% of the increase in aerosol volume concentration; the rest of the volume concentration increase was likely due to secondary organic species. The growth law analyses and meteorological conditions indicate that the sulfate was produced mainly through aqueous oxidation of SO2 in clouds droplets and hydrated aerosol particles.

  2. Columnar aerosol properties over oceans by combining surface and aircraft measurements: sensitivity analysis.

    PubMed

    Zhang, T; Gordon, H R

    1997-04-20

    We report a sensitivity analysis for the algorithm presented by Gordon and Zhang [Appl. Opt. 34, 5552 (1995)] for inverting the radiance exiting the top and bottom of the atmosphere to yield the aerosol-scattering phase function [P(?)] and single-scattering albedo (omega(0)). The study of the algorithm's sensitivity to radiometric calibration errors, mean-zero instrument noise, sea-surface roughness, the curvature of the Earth's atmosphere, the polarization of the light field, and incorrect assumptions regarding the vertical structure of the atmosphere, indicates that the retrieved omega(0) has excellent stability even for very large values (~2) of the aerosol optical thickness; however, the error in the retrieved P(?) strongly depends on the measurement error and on the assumptions made in the retrieval algorithm. The retrieved phase functions in the blue are usually poor compared with those in the near infrared.

  3. Vertical velocity structure and geometry of clear air convective elements

    NASA Technical Reports Server (NTRS)

    Rowland, J. R.; Arnold, A.

    1975-01-01

    The paper discusses observations of individual convective elements with a high-power narrow-beam scanning radar, an FM-CW radar, and an acoustic sounder, including the determination of the vertical air velocity patterns of convective structures with the FM-CW radar and acoustic sounder. Data are presented which link the observed velocity structure and geometrical patterns to previously proposed models of boundary layer convection. It is shown that the high-power radar provides a clear three-dimensional picture of convective cells and fields over a large area with a resolution of 150 m, where the convective cells are roughly spherical. Analysis of time-height records of the FM-CW radar and acoustic sounder confirms the downdraft-entrainment mechanism of the convective cell. The Doppler return of the acoustic sounder and the insect-trail slopes on FM-CW radar records are independent but redundant methods for obtaining the vertical velocity patterns of convective structures.

  4. CALIPSO Observations of Stratospheric Aerosols: A Preliminary Assessment

    NASA Technical Reports Server (NTRS)

    Thomason, Larry W.; Pitts, Michael C.; Winker, David M.

    2007-01-01

    We have examined the 532-nm aerosol backscatter coefficient measurements by the Cloud- Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) for their use in the observation of stratospheric aerosol. CALIPSO makes observations that span from 82 S to 82 N each day and, for each profile, backscatter coefficient values reported up to approx. 40 km. The possibility of using CALIPSO for stratospheric aerosol observations is demonstrated by the clear observation of the 20 May 2006 eruption of Montserrat in the earliest CALIPSO data in early June as well as by observations showing the 7 October 2006 eruption of Tavurvur (Rabaul). However, the very low aerosol loading within the stratosphere makes routine observations of the stratospheric aerosol far more difficult than relatively dense volcanic plumes. Nonetheless, we found that averaging a complete days worth of nighttime only data into 5-deg latitude by 1-km vertical bins reveals a stratospheric aerosol data centered near an altitude of 20 km, the clean wintertime polar vortices, and a small maximum in the lower tropical stratosphere. However, the derived values are clearly too small and often negative in much of the stratosphere. The data can be significantly improved by increasing the measured backscatter (molecular and aerosol) by approximately 5% suggesting that the current method of calibrating to a pure molecular atmosphere at 30 km is most likely the source of the low values.

  5. Microbial structure and chemical components of aerosols caused by rotating brushes in a wastewater treatment plant.

    PubMed

    Han, Yunping; Li, Lin; Liu, Junxin; Zhang, Mengzhu

    2012-11-01

    Bacterial community structure and the chemical components in aerosols caused by rotating brushes in an Orbal oxidation ditch were assessed in a Beijing municipal wastewater treatment plant. Air samples were collected at different distances from the aerosol-generating rotating brushes. Molecular culture-independent methods were used to characterize the community structure of the airborne bacteria in each sample regardless of cell culturability. A clone library of 16S rDNA directly amplified from air DNA of each sample was constructed and sequenced to analyze the community composition and diversity. Insoluble particles and water-soluble ions emitted with microorganisms in aerosols were analysis by a scanning electron microscope together with energy dispersive X-ray spectroscopy and ion chromatogram analyzer. In total, most of the identified bacteria were Proteobacteria. The majority of sequences near the rotating brushes (the main source of the bioaerosols) were Proteobacteria (62.97 %) with β-(18.52 %) and γ-(44.45 %) subgroups and Bacteroidetes (29.63 %). Complex patterns were observed for each sampling location, suggesting a highly diverse community structure, comparable to that found in water in the Orbal oxidation ditch. Accompany with microorganisms, 46.36 μg/m(3) of SO (4) (2-) , 29.35 μg/m(3) of Cl(-), 21.51 μg/m(3) of NO (3) (-) , 19.76 μg/m(3) of NH (4) (+) , 11.42 μg/m(3) of PO (4) (3-) , 6.18 μg/m(3) of NO (2) (-) , and elements of Mg, Cl, K, Na, Fe, S, and P were detected from the air near the aerosols source. Differences in the structure of the bacterial communities and chemical components in the aerosols observed between sampling sites indicated important site-related variability. The composition of microorganisms in water was one of the most important sources of bacterial communities in bioaerosols. Chemical components in bioaerosols may provide a media for airborne microorganism attachment, as well as a suitable microenvironment for

  6. Overview of the Chemistry-Aerosol Mediterranean Experiment/Aerosol Direct Radiative Forcing on the Mediterranean Climate (ChArMEx/ADRIMED) summer 2013 campaign

    NASA Astrophysics Data System (ADS)

    Mallet, M.; Dulac, F.; Formenti, P.; Nabat, P.; Sciare, J.; Roberts, G.; Pelon, J.; Ancellet, G.; Tanré, D.; Parol, F.; Denjean, C.; Brogniez, G.; di Sarra, A.; Alados-Arboledas, L.; Arndt, J.; Auriol, F.; Blarel, L.; Bourrianne, T.; Chazette, P.; Chevaillier, S.; Claeys, M.; D'Anna, B.; Derimian, Y.; Desboeufs, K.; Di Iorio, T.; Doussin, J.-F.; Durand, P.; Féron, A.; Freney, E.; Gaimoz, C.; Goloub, P.; Gómez-Amo, J. L.; Granados-Muñoz, M. J.; Grand, N.; Hamonou, E.; Jankowiak, I.; Jeannot, M.; Léon, J.-F.; Maillé, M.; Mailler, S.; Meloni, D.; Menut, L.; Momboisse, G.; Nicolas, J.; Podvin, T.; Pont, V.; Rea, G.; Renard, J.-B.; Roblou, L.; Schepanski, K.; Schwarzenboeck, A.; Sellegri, K.; Sicard, M.; Solmon, F.; Somot, S.; Torres, B.; Totems, J.; Triquet, S.; Verdier, N.; Verwaerde, C.; Waquet, F.; Wenger, J.; Zapf, P.

    2016-01-01

    levels of atmospheric pollutants or intense biomass burning events in the region. However, numerous mineral dust plumes were observed during the campaign, with the main sources located in Morocco, Algeria and Tunisia, leading to aerosol optical depth (AOD) values ranging between 0.2 and 0.6 (at 440 nm) over the western and central Mediterranean basins. One important point of this experiment concerns the direct observations of aerosol extinction onboard the ATR-42, using the CAPS system, showing local maxima reaching up to 150 M m-1 within the dust plume. Non-negligible aerosol extinction (about 50 M m-1) has also been observed within the marine boundary layer (MBL). By combining the ATR-42 extinction coefficient observations with absorption and scattering measurements, we performed a complete optical closure revealing excellent agreement with estimated optical properties. This additional information on extinction properties has allowed calculation of the dust single scattering albedo (SSA) with a high level of confidence over the western Mediterranean. Our results show a moderate variability from 0.90 to 1.00 (at 530 nm) for all flights studied compared to that reported in the literature on this optical parameter. Our results underline also a relatively low difference in SSA with values derived near dust sources. In parallel, active remote-sensing observations from the surface and onboard the F-20 aircraft suggest a complex vertical structure of particles and distinct aerosol layers with sea spray and pollution located within the MBL, and mineral dust and/or aged North American smoke particles located above (up to 6-7 km in altitude). Aircraft and balloon-borne observations allow one to investigate the vertical structure of the aerosol size distribution showing particles characterized by a large size (> 10 µm in diameter) within dust plumes. In most of cases, a coarse mode characterized by an effective diameter ranging between 5 and 10 µm, has been detected above the

  7. Vertical and Horizontal Vegetation Structure across Natural and Modified Habitat Types at Mount Kilimanjaro

    PubMed Central

    Rutten, Gemma; Ensslin, Andreas; Hemp, Andreas; Fischer, Markus

    2015-01-01

    In most habitats, vegetation provides the main structure of the environment. This complexity can facilitate biodiversity and ecosystem services. Therefore, measures of vegetation structure can serve as indicators in ecosystem management. However, many structural measures are laborious and require expert knowledge. Here, we used consistent and convenient measures to assess vegetation structure over an exceptionally broad elevation gradient of 866–4550m above sea level at Mount Kilimanjaro, Tanzania. Additionally, we compared (human)-modified habitats, including maize fields, traditionally managed home gardens, grasslands, commercial coffee farms and logged and burned forests with natural habitats along this elevation gradient. We distinguished vertical and horizontal vegetation structure to account for habitat complexity and heterogeneity. Vertical vegetation structure (assessed as number, width and density of vegetation layers, maximum canopy height, leaf area index and vegetation cover) displayed a unimodal elevation pattern, peaking at intermediate elevations in montane forests, whereas horizontal structure (assessed as coefficient of variation of number, width and density of vegetation layers, maximum canopy height, leaf area index and vegetation cover) was lowest at intermediate altitudes. Overall, vertical structure was consistently lower in modified than in natural habitat types, whereas horizontal structure was inconsistently different in modified than in natural habitat types, depending on the specific structural measure and habitat type. Our study shows how vertical and horizontal vegetation structure can be assessed efficiently in various habitat types in tropical mountain regions, and we suggest to apply this as a tool for informing future biodiversity and ecosystem service studies. PMID:26406985

  8. Vertical and Horizontal Vegetation Structure across Natural and Modified Habitat Types at Mount Kilimanjaro.

    PubMed

    Rutten, Gemma; Ensslin, Andreas; Hemp, Andreas; Fischer, Markus

    2015-01-01

    In most habitats, vegetation provides the main structure of the environment. This complexity can facilitate biodiversity and ecosystem services. Therefore, measures of vegetation structure can serve as indicators in ecosystem management. However, many structural measures are laborious and require expert knowledge. Here, we used consistent and convenient measures to assess vegetation structure over an exceptionally broad elevation gradient of 866-4550 m above sea level at Mount Kilimanjaro, Tanzania. Additionally, we compared (human)-modified habitats, including maize fields, traditionally managed home gardens, grasslands, commercial coffee farms and logged and burned forests with natural habitats along this elevation gradient. We distinguished vertical and horizontal vegetation structure to account for habitat complexity and heterogeneity. Vertical vegetation structure (assessed as number, width and density of vegetation layers, maximum canopy height, leaf area index and vegetation cover) displayed a unimodal elevation pattern, peaking at intermediate elevations in montane forests, whereas horizontal structure (assessed as coefficient of variation of number, width and density of vegetation layers, maximum canopy height, leaf area index and vegetation cover) was lowest at intermediate altitudes. Overall, vertical structure was consistently lower in modified than in natural habitat types, whereas horizontal structure was inconsistently different in modified than in natural habitat types, depending on the specific structural measure and habitat type. Our study shows how vertical and horizontal vegetation structure can be assessed efficiently in various habitat types in tropical mountain regions, and we suggest to apply this as a tool for informing future biodiversity and ecosystem service studies.

  9. Analysis of DIAL/HSRL aerosol backscatter and extinction profiles during the SEAC4RS campaign with an aerosol assimilation system

    NASA Astrophysics Data System (ADS)

    Weaver, C. J.; da Silva, A. M., Jr.; Colarco, P. R.; Randles, C. A.

    2015-12-01

    We retrieve aerosol concentrations and optical information from vertical profiles of airborne 532 nm extinction and 532 and 1064 nm backscatter measurements made during the SEAC4RS summer 2013 campaign. The observations are from the High Spectral Resolution Lidar (HSRL) Airborne Differential Absorption Lidar (DIAL) on board the NASA DC-8. Instead of retrieving information about aerosol microphysical properties such as indexes of refraction, we seek information more directly applicable to an aerosol transport model - in our case the Goddard Chemistry Aerosol Radiation and Transport (GOCART) module used in the GEOS-5 Earth modeling system. A joint atmosphere/aerosol mini-reanalysis was performed for the SEAC4RS period using GEOS-5. The meteorological reanalysis followed the MERRA-2 atmospheric reanalysis protocol, and aerosol information from MODIS, MISR, and AERONET provided a constraint on the simulated aerosol optical depth (i.e., total column loading of aerosols). We focus on the simulated concentrations of 10 relevant aerosol species simulated by the GOCART module: dust, sulfate, and organic and black carbon. Our first retrieval algorithm starts with the SEAC4RS mini-reanalysis and adjusts the concentration of each GOCART aerosol species so that differences between the observed and simulated backscatter and extinction measurements are minimized. In this case, too often we are unable to simulate the observations by simple adjustment of the aerosol concentrations. A second retrieval approach adjusts both the aerosol concentrations and the optical parameters (i.e., assigned mass extinction efficiency) associated with each GOCART species. We present results from DC-8 flights over smoke from forest fires over the western US using both retrieval approaches. Finally, we compare our retrieved quantities with in-situ observations of aerosol absorption, scattering, and mass concentrations at flight altitude.

  10. Microphysical processing of aerosol particles in orographic clouds

    NASA Astrophysics Data System (ADS)

    Pousse-Nottelmann, S.; Zubler, E. M.; Lohmann, U.

    2015-01-01

    An explicit and detailed treatment of cloud-borne particles allowing for the consideration of aerosol cycling in clouds has been implemented in the regional weather forecast and climate model COSMO. The effects of aerosol scavenging, cloud microphysical processing and regeneration upon cloud evaporation on the aerosol population and on subsequent cloud formation are investigated. For this, two-dimensional idealized simulations of moist flow over two bell-shaped mountains were carried out varying the treatment of aerosol scavenging and regeneration processes for a warm-phase and a mixed-phase orographic cloud. The results allowed to identify different aerosol cycling mechanisms. In the simulated non-precipitating warm-phase cloud, aerosol mass is incorporated into cloud droplets by activation scavenging and released back to the atmosphere upon cloud droplet evaporation. In the mixed-phase cloud, a first cycle comprises cloud droplet activation and evaporation via the Wegener-Bergeron-Findeisen process. A second cycle includes below-cloud scavenging by precipitating snow particles and snow sublimation and is connected to the first cycle via the riming process which transfers aerosol mass from cloud droplets to snow flakes. In the simulated mixed-phase cloud, only a negligible part of the total aerosol mass is incorporated into ice crystals. Sedimenting snow flakes reaching the surface remove aerosol mass from the atmosphere. The results show that aerosol processing and regeneration lead to a vertical redistribution of aerosol mass and number. However, the processes not only impact the total aerosol number and mass, but also the shape of the aerosol size distributions by enhancing the internally mixed/soluble accumulation mode and generating coarse mode particles. Concerning subsequent cloud formation at the second mountain, accounting for aerosol processing and regeneration increases the cloud droplet number concentration with possible implications for the ice

  11. Microphysical processing of aerosol particles in orographic clouds

    NASA Astrophysics Data System (ADS)

    Pousse-Nottelmann, S.; Zubler, E. M.; Lohmann, U.

    2015-08-01

    An explicit and detailed treatment of cloud-borne particles allowing for the consideration of aerosol cycling in clouds has been implemented into COSMO-Model, the regional weather forecast and climate model of the Consortium for Small-scale Modeling (COSMO). The effects of aerosol scavenging, cloud microphysical processing and regeneration upon cloud evaporation on the aerosol population and on subsequent cloud formation are investigated. For this, two-dimensional idealized simulations of moist flow over two bell-shaped mountains were carried out varying the treatment of aerosol scavenging and regeneration processes for a warm-phase and a mixed-phase orographic cloud. The results allowed us to identify different aerosol cycling mechanisms. In the simulated non-precipitating warm-phase cloud, aerosol mass is incorporated into cloud droplets by activation scavenging and released back to the atmosphere upon cloud droplet evaporation. In the mixed-phase cloud, a first cycle comprises cloud droplet activation and evaporation via the Wegener-Bergeron-Findeisen (WBF) process. A second cycle includes below-cloud scavenging by precipitating snow particles and snow sublimation and is connected to the first cycle via the riming process which transfers aerosol mass from cloud droplets to snowflakes. In the simulated mixed-phase cloud, only a negligible part of the total aerosol mass is incorporated into ice crystals. Sedimenting snowflakes reaching the surface remove aerosol mass from the atmosphere. The results show that aerosol processing and regeneration lead to a vertical redistribution of aerosol mass and number. Thereby, the processes impact the total aerosol number and mass and additionally alter the shape of the aerosol size distributions by enhancing the internally mixed/soluble Aitken and accumulation mode and generating coarse-mode particles. Concerning subsequent cloud formation at the second mountain, accounting for aerosol processing and regeneration increases

  12. MAX-DOAS measurements of tropospheric vertical profiles of aerosols, NO2, SO2 and HCHO in the suburban area of Xintai city, China: comparisons with aircraft and ground-based measurements, and investigation of transport

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Dörner, Steffen; Wagner, Thomas; Wang, Yuying; He, Hao; Ren, Xinrong; Li, Zhanqing; Li, Donghui; Xu, Hua; Li, Zhengqiang; Xu, Jiwei; Liu, Dong; Wang, Zhenzhu; De Smedt, Isabelle; Theys, Nicolas

    2017-04-01

    Xingtai is one of the most polluted cities in China and is located on the western edge of the large industrial zone of the North China plain. The Taihang Mountains in the west of Xingtai block transport of polluted air mass towards western China and cause accumulation of pollutants along the mountains. Severely polluted air harms health of about seven million inhabitants in Xingtai. Air pollution also affects condensation nuclei for the formation of convective clouds, and thus potentially initiates heavy rainfall. In order to study the interaction of pollutants and clouds, the Atmosphere-Aerosol-Boundary Layer-Cloud (A2BC) Interaction Joint Experiment was held around Xingtai in the period from May to June 2016. Various instruments measuring gaseous pollutants, aerosols, clouds, precipitation, and radiance are operated at a monitoring station (37.18° N, 114.36° E) in the suburban area of Xintai city and aboard two aircrafts which fly up and down in spirals between 0.2 km and 4 km over the station. We operated a Multi Axis (MAX-) Differential Optical Absorption Spectroscopy (DOAS) instrument at the station in order to derive tropospheric vertical profiles of aerosols, NO2, SO2 and HCHO during daytime with a time resolution of about 10 minutes. We apply our profile inversion algorithm PriAM based on the optimal estimation theory to retrieve trace gas and aerosol profiles. The results are compared with other ground-based and aircraft measurements. In general reasonable consistency was found, but the comparison also revealed a considerable smoothing effect of the MAX-DOAS retrievals. The MAX-DOAS results are applied to characterize the vertical profiles and the diurnal cycles of the trace gas and aerosol pollutants. Lifted layers of pollutants, especially aerosols and SO2, were frequently observed during the campaign indicating frequent transport events of pollutants over the station. Rapid cleaning events of pollutants were also observed. We further investigate the

  13. Electrical sensing of the dynamical structure of the planetary boundary layer

    NASA Astrophysics Data System (ADS)

    Nicoll, K. A.; Harrison, R. G.; Silva, H. G.; Salgado, R.; Melgâo, M.; Bortoli, D.

    2018-04-01

    Turbulent and convective processes within the planetary boundary layer are responsible for the transport of moisture, momentum and particulate matter, but are also important in determining the electrical charge transport of the lower atmosphere. This paper presents the first high resolution vertical charge profiles during fair weather conditions, obtained with instrumented radiosonde balloons over Alqueva, Portugal during the summer of 2014. The short intervals (4 h) between balloon flights enabled the diurnal variation in the vertical profile of charge within the boundary layer to be examined in detail, with much smaller charges (up to 20 pC m- 3) observed during stable night time periods than during the day. Following sunrise, the evolution of the charge profile was complex, demonstrating charged ultrafine aerosol, lofted upwards by daytime convection. This produced charge up to 92 pC m- 3 up to 500 m above the surface. The diurnal variation in the integrated column of charge above the site tracked closely with the diurnal variation in near surface charge as derived from a nearby electric field sensor, confirming the importance of the link between surface charge generation processes and aloft. The local aerosol vertical profiles were estimated using backscatter measurements from a collocated ceilometer. These were utilised in a simple model to calculate the charge expected due to vertical conduction current flow in the global electric circuit through aerosol layers. The analysis presented here demonstrates that charge can provide detailed information about boundary layer transport, particularly in regard to the ultrafine aerosol structure, that conventional thermodynamic and ceilometer measurements do not.

  14. Characterizing Aerosol Distributions and Optical Properties Using the NASA Langley High Spectral Resolution Lidar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hostetler, Chris; Ferrare, Richard

    The objective of this project was to provide vertically and horizontally resolved data on aerosol optical properties to assess and ultimately improve how models represent these aerosol properties and their impacts on atmospheric radiation. The approach was to deploy the NASA Langley Airborne High Spectral Resolution Lidar (HSRL) and other synergistic remote sensors on DOE Atmospheric Science Research (ASR) sponsored airborne field campaigns and synergistic field campaigns sponsored by other agencies to remotely measure aerosol backscattering, extinction, and optical thickness profiles. Synergistic sensors included a nadir-viewing digital camera for context imagery, and, later in the project, the NASA Goddard Institutemore » for Space Studies (GISS) Research Scanning Polarimeter (RSP). The information from the remote sensing instruments was used to map the horizontal and vertical distribution of aerosol properties and type. The retrieved lidar parameters include profiles of aerosol extinction, backscatter, depolarization, and optical depth. Products produced in subsequent analyses included aerosol mixed layer height, aerosol type, and the partition of aerosol optical depth by type. The lidar products provided vertical context for in situ and remote sensing measurements from other airborne and ground-based platforms employed in the field campaigns and was used to assess the predictions of transport models. Also, the measurements provide a data base for future evaluation of techniques to combine active (lidar) and passive (polarimeter) measurements in advanced retrieval schemes to remotely characterize aerosol microphysical properties. The project was initiated as a 3-year project starting 1 January 2005. It was later awarded continuation funding for another 3 years (i.e., through 31 December 2010) followed by a 1-year no-cost extension (through 31 December 2011). This project supported logistical and flight costs of the NASA sensors on a dedicated aircraft, the

  15. Remote Sensing of Aerosol Over the Land from the Earth Observing System MODIS Instrument

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram; Tanre, Didier; Remer, Lorraine; Einaudi, Franco (Technical Monitor)

    2000-01-01

    On Dec 18, 1999, NASA launched the Moderate-Resolution Imaging Spectroradiometer (MODIS) instrument on the Earth Observing System (EOS) Terra mission, in a spectacular launch. The mission will provide morning (10:30 AM) global observations of aerosol and other related parameters. It will be followed a year later by a MODIS instrument on EOS Aqua for afternoon observations (1:30 PM). MODIS will measure aerosol over land and ocean with its eight 500 m and 250 m channels in the solar spectrum (0-41 to 2.2 micrometers). Over the land MODIS will measure the total column aerosol loading, and distinguish between submicron pollution particles and large soil particles. Standard daily products of resolution of ten kilometers and global mapped eight day and monthly products on a 1x1 degree global scale will be produced routinely and make available for no or small reproduction charge to the international community. Though the aerosol products will not be available everywhere over the land, it is expected that they will be useful for assessments of the presence, sources and transport of urban pollution, biomass burning aerosol, and desert dust. Other measurements from MODIS will supplement the aerosol information, e.g., land use change, urbanization, presence and magnitude of biomass burning fires, and effect of aerosol on cloud microphysics. Other instruments on Terra, e.g. Multi-angle Imaging SpectroRadiometer (MISR) and the Clouds and the Earth's Radiant Energy System (CERES), will also measure aerosol, its properties and radiative forcing in tandem with the MODIS measurements. During the Aqua period, there are plans to launch in 2003 the Pathfinder Instruments for Cloud and Aerosol Spaceborne Observations (PICASSO) mission for global measurements of the aerosol vertical structure, and the PARASOL mission for aerosol characterization. Aqua-MODIS, PICASSO and PARASOL will fly in formation for detailed simultaneous characterization of the aerosol three-dimensional field, which

  16. SPICAM: studying the global structure and composition of the Martian atmosphere

    NASA Astrophysics Data System (ADS)

    Bertaux, J.-L.; Fonteyn, D.; Korablev, O.; Chassefre, E.; Dimarellis, E.; Dubois, J. P.; Hauchecorne, A.; Lefèvre, F.; Cabane, M.; Rannou, P.; Levasseur-Regourd, A. C.; Cernogora, G.; Quemerais, E.; Hermans, C.; Kockarts, G.; Lippens, C.; de Maziere, M.; Moreau, D.; Muller, C.; Neefs, E.; Simon, P. C.; Forget, F.; Hourdin, F.; Talagrand, O.; Moroz, V. I.; Rodin, A.; Sandel, B.; Stern, A.

    2004-08-01

    The SPICAM (SPectroscopy for the Investigation of the Characteristics of the Atmosphere of Mars) instrument consists of two spectrometers. The UV spectrometer addresses key issues about ozone and its H2O coupling, aerosols, the atmospheric vertical temperature structure and the ionosphere. The IR spectrometer is aimed primarily at H2O and abundances and vertical profiling of H2O and aerosols. SPICAM's density/temperature profiles will aid the development of meteorological and dynamical atmospheric models from the surface up to 160 km altitude. UV observations of the upper atmosphere will study the ionosphere and its direct interaction with the solar wind. They will also allow a better understanding of escape mechanisms, crucial for insight into the long-term evolution of the atmosphere.

  17. MAESTRO Measurements of Atmospheric Aerosol

    NASA Astrophysics Data System (ADS)

    McElroy, Tom; Drummond, James; Zou, Jason

    2014-05-01

    MAESTRO (Measurements of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation) is now in its 11th year on orbit as part of the Atmospheric Chemistry Experiment on the Canadian Space Agency's SCISAT satellite. MAESTRO data analysis has been dogged by a deficiency in accurate timing between the measurements made by the partner instrument, the ACE-FTS (Atmospheric Chemistry Experiment, Fourier Transform Spectrometer), that provides the atmospheric pressure-temperature profile and observation tangent altitudes used in the MAESTRO data analysis. Attempts have been made to use apparent air column density and oxygen A-band absorption as a mechanism to line up the tangent heights, but to no avail. A new product is now being produced, based on matching the modeled ozone slant columns from the ACE-FTS retrievals with the MAESTRO slant column measurements. The approach is very promising and indicates that a valuable product from the MAESTRO wavelength-dependent aerosol extinction likely result. The usefulness of the profile matching technique will be demonstrated and some aerosol absorption profiles will be presented in comparison with measurements made by the ACE Imager aerosol profile results. While the process optimizes the comparison between ACE-FTS ozone profile data and that from MAESTRO, it does not detract from the higher vertical resolution information provided by MAESTRO.

  18. Relating Aerosol Mass and Optical Depth in the Summertime Continental Boundary Layer

    NASA Astrophysics Data System (ADS)

    Brock, C. A.; Wagner, N.; Middlebrook, A. M.; Attwood, A. R.; Washenfelder, R. A.; Brown, S. S.; McComiskey, A. C.; Gordon, T. D.; Welti, A.; Carlton, A. G.; Murphy, D. M.

    2014-12-01

    Aerosol optical depth (AOD), the column-integrated ambient aerosol light extinction, is determined from satellite and ground-based remote sensing measurements. AOD is the parameter most often used to validate earth system model simulations of aerosol mass. Relating aerosol mass to AOD, however, is problematic due to issues including aerosol water uptake as a function of relative humidity (RH) and the complicated relationship between aerosol physicochemical properties and light extinction. Measurements of aerosol microphysical, chemical, and optical properties help to constrain the relationship between aerosol mass and optical depth because aerosol extinction at ambient RH is a function of the abundance, composition and size distribution of the aerosol. We use vertical profiles of humidity and dry aerosol extinction observed in the southeastern United States (U.S.) to examine the relationship between submicron aerosol mass concentration and extinction at ambient RH. We show that the κ-Köhler parameterization directly, and without additional Mie calculations, describes the change in extinction with varying RH as a function of composition for both aged aerosols typical of the polluted summertime continental boundary layer and the biomass burning aerosols we encountered. We calculate how AOD and the direct radiative effect in the eastern U.S. have likely changed due to trends in aerosol composition in recent decades. We also examine the sensitivity of AOD to the RH profile and to aerosol composition, size distribution and abundance.

  19. Earth cloud, aerosol, and radiation explorer optical payload development status

    NASA Astrophysics Data System (ADS)

    Hélière, A.; Wallace, K.; Pereira do Carmo, J.; Lefebvre, A.

    2017-09-01

    The European Space Agency (ESA) and the Japan Aerospace Exploration Agency (JAXA) are co-operating to develop as part of ESA's Living Planet Programme, the third Earth Explorer Core Mission, EarthCARE, with the ojective of improving the understanding of the processes involving clouds, aerosols and radiation in the Earth's atmosphere. EarthCARE payload consists of two active and two passive instruments: an ATmospheric LIDar (ATLID), a Cloud Profiling Radar (CPR), a Multi-Spectral Imager (MSI) and a Broad-Band Radiometer (BBR). The four instruments data are processed individually and in a synergetic manner to produce a large range of products, which include vertical profiles of aerosols, liquid water and ice, observations of cloud distribution and vertical motion within clouds, and will allow the retrieval of profiles of atmospheric radiative heating and cooling. MSI is a compact instrument with a 150 km swath providing 500 m pixel data in seven channels, whose retrieved data will give context to the active instrument measurements, as well as providing cloud and aerosol information. BBR measures reflected solar and emitted thermal radiation from the scene. Operating in the UV range at 355 nm, ATLID provides atmospheric echoes from ground to an altitude of 40 km. Thanks to a high spectral resolution filtering, the lidar is able to separate the relative contribution of aerosol and molecular scattering, which gives access to aerosol optical depth. Co-polarised and cross-polarised components of the Mie scattering contribution are measured on dedicated channels. This paper will provide a description of the optical payload implementation, the design and characterisation of the instruments.

  20. Observed correlations between aerosol and cloud properties in an Indian Ocean trade cumulus regime

    NASA Astrophysics Data System (ADS)

    Pistone, K.; Praveen, P. S.; Thomas, R. M.; Ramanathan, V.; Wilcox, E.; Bender, F. A.-M.

    2015-10-01

    There are many contributing factors which determine the micro- and macrophysical properties of clouds, including atmospheric structure, dominant meteorological conditions, and aerosol concentration, all of which may be coupled to one another. In the quest to determine aerosol effects on clouds, these potential relationships must be understood, as changes in atmospheric conditions due to aerosol may change the expected magnitude of indirect effects by altering cloud properties in unexpected ways. Here we describe several observed correlations between aerosol conditions and cloud and atmospheric properties in the Indian Ocean winter monsoon season. In the CARDEX (Cloud, Aerosol, Radiative forcing, Dynamics EXperiment) field campaign conducted in February and March 2012 in the northern Indian Ocean, continuous measurements of atmospheric precipitable water vapor and the liquid water path (LWP) of trade cumulus clouds were made, concurrent with measurements of water vapor flux, cloud and aerosol vertical profiles, meteorological data, and surface and total-column aerosol. Here we present evidence of a positive correlation between aerosol and cloud LWP which becomes clear after the data are filtered to control for the natural meteorological variability in the region. We then use the aircraft and ground observatory measurements to explore the mechanisms behind the observed aerosol-LWP correlation. We determine that increased boundary-layer humidity lowering the cloud base is responsible for the observed increase in cloud liquid water. Large-scale analysis indicates that high pollution cases originate with a highly-polluted boundary layer air mass approaching the observatory from a northwesterly direction. This polluted mass exhibits higher temperatures and humidity than the clean case, the former of which may be attributable to heating due to aerosol absorption of solar radiation over the subcontinent. While high temperature conditions dispersed along with the high-aerosol

  1. Estimates of the aerosol indirect effect over the Baltic Sea region derived from 12 years of MODIS observations

    NASA Astrophysics Data System (ADS)

    Saponaro, Giulia; Kolmonen, Pekka; Sogacheva, Larisa; Rodriguez, Edith; Virtanen, Timo; de Leeuw, Gerrit

    2017-02-01

    Retrieved from the Moderate Resolution Imaging Spectroradiometer (MODIS) on-board the Aqua satellite, 12 years (2003-2014) of aerosol and cloud properties were used to statistically quantify aerosol-cloud interaction (ACI) over the Baltic Sea region, including the relatively clean Fennoscandia and the more polluted central-eastern Europe. These areas allowed us to study the effects of different aerosol types and concentrations on macro- and microphysical properties of clouds: cloud effective radius (CER), cloud fraction (CF), cloud optical thickness (COT), cloud liquid water path (LWP) and cloud-top height (CTH). Aerosol properties used are aerosol optical depth (AOD), Ångström exponent (AE) and aerosol index (AI). The study was limited to low-level water clouds in the summer. The vertical distributions of the relationships between cloud properties and aerosols show an effect of aerosols on low-level water clouds. CF, COT, LWP and CTH tend to increase with aerosol loading, indicating changes in the cloud structure, while the effective radius of cloud droplets decreases. The ACI is larger at relatively low cloud-top levels, between 900 and 700 hPa. Most of the studied cloud variables were unaffected by the lower-tropospheric stability (LTS), except for the cloud fraction. The spatial distribution of aerosol and cloud parameters and ACI, here defined as the change in CER as a function of aerosol concentration for a fixed LWP, shows positive and statistically significant ACI over the Baltic Sea and Fennoscandia, with the former having the largest values. Small negative ACI values are observed in central-eastern Europe, suggesting that large aerosol concentrations saturate the ACI.

  2. A Model Simulation of Pinatubo Volcanic Aerosols in the Stratosphere

    NASA Technical Reports Server (NTRS)

    Zhao , Jing-xia; Turco, Richard P.; Toon, Owen B.

    1995-01-01

    A one-dimensional, time-dependent model is used to study the chemical, microphysical, and radiative properties of volcanic aerosols produced by the Mount Pinatubo eruption on June 15, 1991. Our model treats gas-phase sulfur photochemistry, gas-to-particle conversion of sulfur, and the microphysics of sulfate aerosols and ash particles under stratospheric conditions. The dilution and diffusion of the volcanic eruption clouds are also accounted for in these conditions. Heteromolecular homogeneous and heterogeneous binary H2SO4/H2O nucleation, acid and water condensational growth, coagulation, and gravitational sedimentation are treated in detail in the model. Simulations suggested that after several weeks, the volcanic cloud was composed mainly of sulfuric acid/water droplets produced in situ from the SO2 emissions. The large amounts of SO2 (around 20 Mt) injected into the stratosphere by the Pinatubo eruption initiated homogeneous nucleation which generated a high concentration of small H2SO4/H2O droplets. These newly formed particles grew rapidly by condensation and coagulation in the first few months and then reach their stabilized sizes with effective radii in a range between 0.3 and 0.5 micron approximately one-half year after the eruption. The predicted volcanic cloud parameters reasonably agree with measurements in term of the vertical distribution and lifetime of the volcanic aerosols, their basic microphysical structures (e.g., size distribution, concentration, mass ratio, and surface area) and radiative properties. The persistent volcanic aerosols can produce significant anomalies in the radiation field, which have important climatic consequences. The large enhancement in aerosol surface area can result in measurable global stratospheric ozone depletion.

  3. Optimal design of aperiodic, vertical silicon nanowire structures for photovoltaics.

    PubMed

    Lin, Chenxi; Povinelli, Michelle L

    2011-09-12

    We design a partially aperiodic, vertically-aligned silicon nanowire array that maximizes photovoltaic absorption. The optimal structure is obtained using a random walk algorithm with transfer matrix method based electromagnetic forward solver. The optimal, aperiodic structure exhibits a 2.35 times enhancement in ultimate efficiency compared to its periodic counterpart. The spectral behavior mimics that of a periodic array with larger lattice constant. For our system, we find that randomly-selected, aperiodic structures invariably outperform the periodic array.

  4. Cloud-Scale Vertical Velocity and Turbulent Dissipation Rate Retrievals

    DOE Data Explorer

    Shupe, Matthew

    2013-05-22

    Time-height fields of retrieved in-cloud vertical wind velocity and turbulent dissipation rate, both retrieved primarily from vertically-pointing, Ka-band cloud radar measurements. Files are available for manually-selected, stratiform, mixed-phase cloud cases observed at the North Slope of Alaska (NSA) site during periods covering the Mixed-Phase Arctic Cloud Experiment (MPACE, late September through early November 2004) and the Indirect and Semi-Direct Aerosol Campaign (ISDAC, April-early May 2008). These time periods will be expanded in a future submission.

  5. Airborne High Spectral Resolution Lidar Aerosol Measurements during MILAGRO and TEXAQS/GOMACCS

    NASA Technical Reports Server (NTRS)

    Ferrare, Richard; Hostetler, Chris; Hair, John; Cook Anthony; Harper, David; Burton, Sharon; Clayton, Marian; Clarke, Antony; Russell, Phil; Redemann, Jens

    2007-01-01

    Two1 field experiments conducted during 2006 provided opportunities to investigate the variability of aerosol properties near cities and the impacts of these aerosols on air quality and radiative transfer. The Megacity Initiative: Local and Global Research Observations (MILAGRO) /Megacity Aerosol Experiment in Mexico City (MAX-MEX)/Intercontinental Chemical Transport Experiment-B (INTEX-B) joint experiment conducted during March 2006 investigated the evolution and transport of pollution from Mexico City. The Texas Air Quality Study (TEXAQS)/Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS) (http://www.al.noaa.gov/2006/) conducted during August and September 2006 investigated climate and air quality in the Houston/Gulf of Mexico region. During both missions, the new NASA Langley airborne High Spectral Resolution Lidar (HSRL) was deployed on the NASA Langley B200 King Air aircraft and measured profiles of aerosol extinction, backscattering, and depolarization to: 1) characterize the spatial and vertical distributions of aerosols, 2) quantify aerosol extinction and optical thickness contributed by various aerosol types, 3) investigate aerosol variability near clouds, 4) evaluate model simulations of aerosol transport, and 5) assess aerosol optical properties derived from a combination of surface, airborne, and satellite measurements.

  6. Assessment of aerosol's mass concentrations from measured linear particle depolarization ratio (vertically resolved) and simulations

    NASA Astrophysics Data System (ADS)

    Nemuc, A.; Vasilescu, J.; Talianu, C.; Belegante, L.; Nicolae, D.

    2013-11-01

    Multi-wavelength depolarization Raman lidar measurements from Magurele, Romania are used in this study along with simulated mass-extinction efficiencies to calculate the mass concentration profiles of different atmospheric components, due to their different depolarization contribution to the 532 nm backscatter coefficient. Linear particle depolarization ratio (δpart) was computed using the relative amplification factor and the system-dependent molecular depolarization. The low depolarizing component was considered as urban/smoke, with a mean δpart of 3%, while for the high depolarizing component (mineral dust) a mean δpart of 35% was assumed. For this study 11 months of lidar measurements were analysed. Two study cases are presented in details: one for a typical Saharan dust aerosol intrusion, 10 June 2012 and one for 12 July 2012 when a lofted layer consisting of biomass burning smoke extended from 3 to 4.5 km height. Optical Properties of Aerosols and Clouds software package (OPAC) classification and conversion factors were used to calculate mass concentrations. We found that calibrated depolarization measurements are critical in distinguishing between smoke-reach aerosol during the winter and dust-reach aerosol during the summer, as well as between elevated aerosol layers having different origins. Good agreement was found between lidar retrievals and DREAM- Dust REgional Atmospheric Model forecasts in cases of Saharan dust. Our method was also compared against LIRIC (The Lidar/Radiometer Inversion Code) and very small differences were observed.

  7. Assessment of aerosol's mass concentrations from measured linear particle depolarization ratio (vertically resolved) and simulations

    NASA Astrophysics Data System (ADS)

    Nemuc, A.; Vasilescu, J.; Talianu, C.; Belegante, L.; Nicolae, D.

    2013-06-01

    Multiwavelength depolarization Raman lidar measurements from Magurele, Romania are used in this study along with simulated mass-extinction efficiencies to calculate the mass concentrations profiles of different atmospheric components, due to their different depolarization contribution to the 532 nm backscatter coefficient. Linear particle depolarization ratio (δpart) was computed using the relative amplification factor and the system-dependent molecular depolarization. The low depolarizing component was considered as urban/smoke, with a mean δpart of 3%, while for the high depolarizing component (mineral dust) a mean δpart of 35% was assumed. For this study 11 months of lidar measurements were analyzed. Two study cases are presented in details: one for a typical Saharan dust aerosol intrusion, 10 June 2012 and one for 12 July 2012 when a lofted layer consisting of biomass burning smoke extended from 3 to 4.5 km height. Optical Properties of Aerosols and Clouds software package (OPAC) classification and conversion factors were used to calculate mass concentrations. We found that calibrated depolarization measurements are critical to distinguish between smoke-reach aerosol during the winter and dust-reach aerosol during the summer, as well as between elevated aerosol layers having different origins. Good agreement was found between lidar retrievals and DREAM- Dust REgional Atmospheric Model forecasts in cases of Saharan dust. Our method was also compared against LIRIC (The Lidar/Radiometer Inversion Code) and very small differences were observed.

  8. On the Vertical Nature of Biomass Burning Plumes by the California Coast and Their Relationship with Marine Boundary Layer Clouds

    NASA Astrophysics Data System (ADS)

    Hu, L.; Montzka, S. A.; Godwin, D.; Andrews, A. E.; Thoning, K. W.; Miller, B. R.; Sweeney, C.; Miller, J. B.; Lehman, S.; Siso, C.; Mondeel, D. J.; Hall, B. D.; Nance, J. D.; Tans, P. P.; Elkins, J. W.

    2016-12-01

    Biomass burning (BB) plumes can significantly impact stratocumulus clouds (Sc), the dominant cloud type by global area, by altering their microphysical properties. The California (CA) coast is home to one of the three major semi-permanent stratocumulus (Sc) cloud decks in the world and BB emissions are of growing concern in the western United States, owing to both a warmer climate and fire-control strategies over recent decades. The thickness and vertical position of BB plumes, especially relative to clouds, is critical to understand how the aerosol will affect the thermodynamic structure of the atmosphere, cloud properties, and radiative forcing. This study reports on the characterization of the vertical, spatial, and temporal nature of BB aerosol over coastal CA, based on airborne data collected in the months of July and August for 2013 and 2016. Results from over 100 soundings indicate that multiple BB plume layers exist above clouds, with the thickness of BB plumes and their vertical position relative to cloud top varying significantly as a function of distance from coastline. Comparison of soundings at a given location at two different times of day reveals significant variation in BB characteristics. Intercomparisons for BB plume characteristics are explored between the field data, NAAPS, and CALIPSO.

  9. On the Vertical Nature of Biomass Burning Plumes by the California Coast and Their Relationship with Marine Boundary Layer Clouds

    NASA Astrophysics Data System (ADS)

    Hossein Mardi, A.; MacDonald, A. B.; Dadashazar, H.; Crosbie, E.; WANG, Z.; Lynch, P.; Campbell, J. R.; Jonsson, H.; Sorooshian, A.

    2017-12-01

    Biomass burning (BB) plumes can significantly impact stratocumulus clouds (Sc), the dominant cloud type by global area, by altering their microphysical properties. The California (CA) coast is home to one of the three major semi-permanent stratocumulus (Sc) cloud decks in the world and BB emissions are of growing concern in the western United States, owing to both a warmer climate and fire-control strategies over recent decades. The thickness and vertical position of BB plumes, especially relative to clouds, is critical to understand how the aerosol will affect the thermodynamic structure of the atmosphere, cloud properties, and radiative forcing. This study reports on the characterization of the vertical, spatial, and temporal nature of BB aerosol over coastal CA, based on airborne data collected in the months of July and August for 2013 and 2016. Results from over 100 soundings indicate that multiple BB plume layers exist above clouds, with the thickness of BB plumes and their vertical position relative to cloud top varying significantly as a function of distance from coastline. Comparison of soundings at a given location at two different times of day reveals significant variation in BB characteristics. Intercomparisons for BB plume characteristics are explored between the field data, NAAPS, and CALIPSO.

  10. Atmospheric aerosol composition and source apportionments to aerosol in southern Taiwan

    NASA Astrophysics Data System (ADS)

    Tsai, Ying I.; Chen, Chien-Lung

    In this study, the chemical characteristics of winter aerosol at four sites in southern Taiwan were determined and the Gaussian Trajectory transfer coefficient model (GTx) was then used to identify the major air pollutant sources affecting the study sites. Aerosols were found to be acidic at all four sites. The most important constituents of the particulate matter (PM) by mass were SO 42-, organic carbon (OC), NO 3-, elemental carbon (EC) and NH 4+, with SO 42-, NO 3-, and NH 4+ together constituting 86.0-87.9% of the total PM 2.5 soluble inorganic salts and 68.9-78.3% of the total PM 2.5-10 soluble inorganic salts, showing that secondary photochemical solution components such as these were the major contributors to the aerosol water-soluble ions. The coastal site, Linyuan (LY), had the highest PM mass percentage of sea salts, higher in the coarse fraction, and higher sea salts during daytime than during nighttime, indicating that the prevailing daytime sea breeze brought with it more sea-salt aerosol. Other than sea salts, crustal matter, and EC in PM 2.5 at Jenwu (JW) and in PM 2.5-10 at LY, all aerosol components were higher during nighttime, due to relatively low nighttime mixing heights limiting vertical and horizontal dispersion. At JW, a site with heavy traffic loadings, the OC/EC ratio in the nighttime fine and coarse fractions of approximately 2.2 was higher than during daytime, indicating that in addition to primary organic aerosol (POA), secondary organic aerosol (SOA) also contributed to the nighttime PM 2.5. This was also true of the nighttime coarse fraction at LY. The GTx produced correlation coefficients ( r) for simulated and observed daily concentrations of PM 10 at the four sites (receptors) in the range 0.45-0.59 and biases from -6% to -20%. Source apportionment indicated that point sources were the largest PM 10 source at JW, LY and Daliao (DL), while at Meinung (MN), a suburban site with less local PM 10, SO x and NO x emissions, upwind

  11. How much of the global aerosol optical depth is found in the boundary layer and free troposphere?

    NASA Astrophysics Data System (ADS)

    Bourgeois, Quentin; Ekman, Annica M. L.; Renard, Jean-Baptiste; Krejci, Radovan; Devasthale, Abhay; Bender, Frida A.-M.; Riipinen, Ilona; Berthet, Gwenaël; Tackett, Jason L.

    2018-06-01

    The global aerosol extinction from the CALIOP space lidar was used to compute aerosol optical depth (AOD) over a 9-year period (2007-2015) and partitioned between the boundary layer (BL) and the free troposphere (FT) using BL heights obtained from the ERA-Interim archive. The results show that the vertical distribution of AOD does not follow the diurnal cycle of the BL but remains similar between day and night highlighting the presence of a residual layer during night. The BL and FT contribute 69 and 31 %, respectively, to the global tropospheric AOD during daytime in line with observations obtained in Aire sur l'Adour (France) using the Light Optical Aerosol Counter (LOAC) instrument. The FT AOD contribution is larger in the tropics than at mid-latitudes which indicates that convective transport largely controls the vertical profile of aerosols. Over oceans, the FT AOD contribution is mainly governed by long-range transport of aerosols from emission sources located within neighboring continents. According to the CALIOP aerosol classification, dust and smoke particles are the main aerosol types transported into the FT. Overall, the study shows that the fraction of AOD in the FT - and thus potentially located above low-level clouds - is substantial and deserves more attention when evaluating the radiative effect of aerosols in climate models. More generally, the results have implications for processes determining the overall budgets, sources, sinks and transport of aerosol particles and their description in atmospheric models.

  12. Aerosol Classification from High Spectral Resolution Lidar Measurements

    NASA Astrophysics Data System (ADS)

    Burton, S. P.; Hair, J. W.; Ferrare, R. A.; Hostetler, C. A.; Kahnert, M.; Vaughan, M. A.; Cook, A. L.; Harper, D. B.; Berkoff, T.; Seaman, S. T.; Collins, J. E., Jr.; Fenn, M. A.; Rogers, R. R.

    2015-12-01

    The NASA Langley airborne High Spectral Resolution Lidars, HSRL-1 and HSRL-2, have acquired large datasets of vertically resolved aerosol extinction, backscatter, and depolarization during >30 airborne field missions since 2006. The lidar measurements of aerosol intensive parameters like lidar ratio and color ratio embed information about intrinsic aerosol properties, and are combined to qualitatively classify HSRL aerosol measurements into aerosol types. Knowledge of aerosol type is important for assessing aerosol radiative forcing, and can provide useful information for source attribution studies. However, atmospheric aerosol is frequently not a single pure type, but instead is a mixture, which affects the optical and radiative properties of the aerosol. We show that aerosol intensive parameters measured by lidar can be understood using mixing rules for cases of external mixing. Beyond coarse classification and mixing between classes, variations in the lidar aerosol intensive parameters provide additional insight into aerosol processes and composition. This is illustrated by depolarization measurements at three wavelengths, 355 nm, 532 nm, and 1064 nm, made by HSRL-2. Particle depolarization ratio is an indicator of non-spherical particles. Three cases each have a significantly different spectral dependence of the depolarization ratio, related to the size of the depolarizing particles. For two dust cases, large non-spherical particles account for the depolarization of the lidar light. The spectral dependence reflects the size distribution of these particles and reveals differences in the transport histories of the two plumes. For a smoke case, the depolarization is inferred to be due to the presence of small coated soot aggregates. Interestingly, the depolarization at 355 nm is similar for this smoke case compared to the dust cases, having potential implications for the upcoming EarthCARE satellite, which will measure particle depolarization ratio only at 355 nm.

  13. Atmospheric aerosol profiling with a bistatic imaging lidar system.

    PubMed

    Barnes, John E; Sharma, N C Parikh; Kaplan, Trevor B

    2007-05-20

    Atmospheric aerosols have been profiled using a simple, imaging, bistatic lidar system. A vertical laser beam is imaged onto a charge-coupled-device camera from the ground to the zenith with a wide-angle lens (CLidar). The altitudes are derived geometrically from the position of the camera and laser with submeter resolution near the ground. The system requires no overlap correction needed in monostatic lidar systems and needs a much smaller dynamic range. Nighttime measurements of both molecular and aerosol scattering were made at Mauna Loa Observatory. The CLidar aerosol total scatter compares very well with a nephelometer measuring at 10 m above the ground. The results build on earlier work that compared purely molecular scattered light to theory, and detail instrument improvements.

  14. The Global Atmosphere Watch Aerosol Programme

    NASA Astrophysics Data System (ADS)

    Baltensperger, U.

    2003-04-01

    The Global Atmosphere Watch (GAW) programme is a WMO sponsored activity and currently supported by about 80 WMO member countries. It is the goal of GAW to develop and maintain long-term measurements of atmospheric constituents in order to detect trends, develop aerosol predictive capabilities and understand proc- esses. With respect to aerosols, the objective of GAW is to support a global network determining the spatio-temporal distribution of aerosol properties related to climate forcing and air quality up to multi-decadal time scales. The GAW network consists of 22 Global stations and some 300 Regional stations. The Scientific Advisory Group (SAG) for Aerosols will soon publish their recommendations for aerosol measurements. Each site should have an acceptable aerosol sampling inlet. Regional stations measure aerosol optical depth, as well as the aerosol light scattering and absorption coefficient. If possible these should be complemented by routine mass concentration and composition measurements in two aerosol size fractions. At Global stations, a larger number of measurements are desirable. These include the Regional parameters list above as well as the light scattering, hemispheric backscat- tering, and absorption coefficients at various wavelengths, aerosol number concen- tration, cloud condensation nuclei (CCN) concentration at 0.5% supersaturation, and diffuse, global and direct solar radiation. Additional parameters such as the aerosol size distribution, detailed size fractionated chemical composition, dependence of aerosol properties on relative humidity, CCN concentration at various supersatura- tions, and the vertical distribution of aerosol properties should be measured intermit- tently at Global stations. Examples from the Jungfraujoch (Swiss Alps, 3580 m asl) will be given, where many of the parameters listed above are measured. Data are delivered to and made available by the World Data Centre for Aerosols (WDCA, located in Ispra, Italy http

  15. Experimental Characterization of Radiation Forcing due to Atmospheric Aerosols

    NASA Astrophysics Data System (ADS)

    Sreenivas, K. R.; Singh, D. K.; Ponnulakshmi, V. K.; Subramanian, G.

    2011-11-01

    Micro-meteorological processes in the nocturnal atmospheric boundary layer (NBL) including the formation of radiation-fog and the development of inversion layers are controlled by heat transfer and the vertical temperature distribution close to the ground. In a recent study, it has been shown that the temperature profile close to the ground in stably-stratified, NBL is controlled by the radiative forcing due to suspended aerosols. Estimating aerosol forcing is also important in geo-engineering applications to evaluate the use of aerosols to mitigate greenhouse effects. Modeling capability in the above scenarios is limited by our knowledge of this forcing. Here, the design of an experimental setup is presented which can be used for evaluating the IR-radiation forcing on aerosols under either Rayleigh-Benard condition or under conditions corresponding to the NBL. We present results indicating the effect of surface emissivities of the top and bottom boundaries and the aerosol concentration on the temperature profiles. In order to understand the observed enhancement of the convection-threshold, we have determined the conduction-radiation time constant of an aerosol laden air layer. Our results help to explain observed temperature profiles in the NBL, the apparent stability of such profiles and indicate the need to account for the effect of aerosols in climatic/weather models.

  16. The Global Ozone and Aerosol Profiles and Aerosol Hygroscopic Effect and Absorption Optical Depth (GOA2HEAD) Network Initiative

    NASA Astrophysics Data System (ADS)

    Gao, R. S.; Elkins, J. W.; Frost, G. J.; McComiskey, A. C.; Murphy, D. M.; Ogren, J. A.; Petropavlovskikh, I. V.; Rosenlof, K. H.

    2014-12-01

    Inverse modeling using measurements of ozone (O3) and aerosol is a powerful tool for deriving pollutant emissions. Because they have relatively long lifetimes, O3 and aerosol are transported over large distances. Frequent and globally spaced vertical profiles rather than ground-based measurements alone are therefore highly desired. Three requirements necessary for a successful global monitoring program are: Low equipment cost, low operation cost, and reliable measurements of known uncertainty. Conventional profiling using aircraft provides excellent data, but is cost prohibitive on a large scale. Here we describe a new platform and instruments meeting all three global monitoring requirements. The platform consists of a small balloon and an auto-homing glider. The glider is released from the balloon at about 5 km altitude, returning the light instrument package to the launch location, and allowing for consistent recovery of the payload. Atmospheric profiling can be performed either during ascent or descent (or both) depending on measurement requirements. We will present the specifications for two instrument packages currently under development. The first measures O3, RH, p, T, dry aerosol particle number and size distribution, and aerosol optical depth. The second measures dry aerosol particle number and size distribution, and aerosol absorption coefficient. Other potential instrument packages and the desired spatial/temporal resolution for the GOA2HEAD monitoring initiative will also be discussed.

  17. Lidar measurements of stratospheric aerosols over Menlo Park, California, October 1972 - March 1974

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Viezee, W.; Hake, R. D.

    1974-01-01

    During an 18-month period, 30 nighttime observations of stratospheric aerosols were made using a ground based ruby lidar located near the Pacific coast of central California (37.5 deg. N, 122.2 deg. W). Vertical profiles of the lidar scattering ratio and the particulate backscattering coefficient were obtained by reference to a layer of assumed negligible particulate content. An aerosol layer centered near 21 km was clearly evident in all observations, but its magnitude and vertical distribution varied considerably throughout the observation period. A reduction of particulate backscattering in the 23- to 30-km layer during late January 1973 appears to have been associated with the sudden stratospheric warming which occurred at that time.

  18. CLouds, and Aerosols Radiative Impacts and Forcing: Year 2016 (CLARIFY-2016)

    NASA Astrophysics Data System (ADS)

    Haywood, J. M.; Bellouin, N.; Carslaw, K. S.; Coe, H.; Field, P.; Highwood, E. J.; Redemann, J.; Stier, P.; Wood, R.; Zuidema, P.

    2013-12-01

    Strongly absorbing biomass burning aerosols (BBAs) exist above highly reflectant stratocumulus clouds in the SE Atlantic with implications on the direct (e.g. Haywood et al., 2003), semi-direct (e.g. Johnson et al., 2006), and indirect effect of aerosols, implications on the remote sensing of cloud optical properties, development of clouds and feedback processes. Here, we present an analysis of modelled estimates of the direct effect using twelve models from the AEROCOM project (Myhre et al., 2013) to show that estimates of the direct effect in SE Atlantic range from strongly negative to strongly positive. Furthermore, we evaluate the performance of the HadGEM2 model and show it cannot replicate the extreme values of positive forcing inferred from high spectral resolution satellite retrievals. By examining patterns of deposition, we infer that the indirect effect from biomass burning aerosols is very limited in the model, but without detailed measurements we are unsure of the validity of this inference. We conclude that the SE Atlantic is therefore of key importance in determining the radiative forcing of biomass burning aerosols and provides a very stringent test for global climate models as they need to accurately represent the geographic distribution of the aerosol optical depth, the wavelength dependent aerosol single scattering albedo, the vertical profile of the aerosol, the geographic distribution of the cloud, the cloud fraction, the cloud liquid water content, the cloud droplet effective radii, and the vertical profile of the cloud. These results are used as scientific rationale to justify a new measurement campaign: CLouds and Aerosol Radiative Impacts and Forcing: Year-2016 (CLARIFY-2016). Haywood, J.M., Osborne, S.R. Francis, P.N., Keil, A., Formenti, P., Andreae, M.O., and Kaye, P.H., The mean physical and optical properties of regional haze dominated by biomass burning aerosol measured from the C-130 aircraft during SAFARI 2000, J. Geophys. Res., 108

  19. Airborne Sunphotometry of African Dust and Marine Boundary Layer Aerosols in PRIDE

    NASA Technical Reports Server (NTRS)

    Livingston, John M.; Redemann, Jens; Russell, Philip; Schmid, Beat; Reid, Jeff; Pilewskie, Peter; Hipskind, R. Stephen (Technical Monitor)

    2000-01-01

    The Puerto Rico Dust Experiment (PRIDE) was conducted during summer 2000 to study the radiative, microphysical and transport properties of Saharan dust in the Caribbean region. During PRIDE, NASA Ames Research Center's six-channel airborne autotracking sunphotometer (AATS-6) was operated aboard a Piper Navajo airplane based at Roosevelt Roads Naval Station on the northeast coast of Puerto Rico. AATS-6 measurements were taken during 21 science flights off the coast of Puerto Rico in the western Caribbean. Data were acquired within and above the Marine Boundary Layer (MBL) and the Saharan Aerosol Layer (SAL) up to 5.5 km altitude tinder a wide range of dust loadings. Aerosol optical depth (AOD) spectra and columnar water vapor (CWV) values have been calculated from the AATS-6 measurements by using sunphotometer calibration data obtained at Mauna Loa Observatory (3A kin ASL) before (May) and after (October) PRIDE. Mid-visible AOD values measured near the surface during PRIDE ranged from 0.07 on the cleanest day to 0.55 on the most turbid day. Values measured above the MBL were as high as 0.35; values above the SAL were as low as 0.01. The fraction of total column AOD due to Saharan dust cannot be determined precisely from AATS-6 AOD data alone due to the uncertainty in the extent of vertical mixing of the dust down through the MBL. However, analyses of ground-based and airborne in-situ aerosol sampling measurements and ground-based aerosol lidar backscatter data should yield accurate characterization of the vertical mixing that will enable calculation of the Saharan dust AOD component from the sunphotometer data. Examples will be presented showing measured AATS-6 AOD spectra, calculated aerosol extinction and water vapor density vertical profiles, and aerosol size distributions retrieved by inversion of the AOD spectra. Near sea-surface AOD spectra acquired by AATS-6 during horizontal flight legs at 30 m ASL are available for validation of AOD derived from coincident

  20. The Organic Aerosols of Titan's Atmosphere

    NASA Technical Reports Server (NTRS)

    Sotin, Christophe; Lawrence, Kenneth; Beauchamp, Patricia M.; Zimmerman, Wayne

    2012-01-01

    One of Titan's many characteristics is the presence of a haze that veils its surface. This haze is composed of heavy organic particles and determining the chemical composition of these particles is a primary objective for future probes that would conduct in situ analysis. Meanwhile, solar occultations provide constraints on the optical characteristics of the haze layer. This paper describes solar occultation observations obtained by the Visual and Infrared Mapping Spectrometer (VIMS) onboard the Cassini spacecraft. These observations strongly constrain the optical characteristics of the haze layer. We detail the different steps involved in the processing of these data and apply them to two occultations that were observed at the South Pole and at the equator in order to investigate the latitudinal dependence of optical properties. The light curves obtained in seven atmospheric windows between 0.933-microns to 5-microns allow us to characterize atmospheric layers from 300 km to the surface. Very good fits of the light curves are obtained using a simple profile of number density of aerosols that is characterized by a scale height. The main difference between the South Pole and the equator is that the value of the scale height increases with altitude at the South Pole whereas it decreases at the equator. The vertically integrated amount of aerosols is similar at the two locations. The curve describing the cross-section versus wavelength is identical at the two locations suggesting that the aerosols have similar characteristics. Finally, we find that the two-way vertical transmission at 5-microns is as large as 80% at both locations.

  1. Aerosol composition and variability in the Baltimore-Washington, DC region

    NASA Astrophysics Data System (ADS)

    Beyersdorf, A. J.; Ziemba, L. D.; Chen, G.; Corr, C. A.; Crawford, J. H.; Diskin, G. S.; Moore, R. H.; Thornhill, K. L.; Winstead, E. L.; Anderson, B. E.

    2015-08-01

    In order to utilize satellite-based aerosol measurements for the determination of air quality, the relationship between aerosol optical properties (wavelength-dependent, column-integrated extinction measured by satellites) and mass measurements of aerosol loading (PM2.5 used for air quality monitoring) must be understood. This connection varies with many factors including those specific to the aerosol type, such as composition, size and hygroscopicity, and to the surrounding atmosphere, such as temperature, relative humidity (RH) and altitude, all of which can vary spatially and temporally. During the DISCOVER-AQ (Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality) project, extensive in-situ atmospheric profiling in the Baltimore, MD-Washington, DC region was performed during fourteen flights in July 2011. Identical flight plans and profile locations throughout the project provide meaningful statistics for determining the variability in and correlations between aerosol loading, composition, optical properties and meteorological conditions. Measured water-soluble aerosol mass was composed primarily of ammonium sulfate (campaign average of 32 %) and organics (57 %). A distinct difference in composition was observed with high-loading days having a proportionally larger percentage of ammonium sulfate (up to 49 %) due to transport from the Ohio River Valley. This composition shift caused a change in the aerosol water-uptake potential (hygroscopicity) such that higher relative contributions of ammonium sulfate increased the bulk aerosol hygroscopicity. These days also tended to have higher relative humidity causing an increase in the water content of the aerosol. Conversely, low aerosol loading days had lower ammonium sulfate and higher black carbon contributions causing lower single scattering albedos (SSAs). The average black carbon concentrations were 240 ng m-3 in the lowest 1 km decreasing to 35 ng m-3

  2. A study on the use of radar and lidar for characterizing ultragiant aerosol

    NASA Astrophysics Data System (ADS)

    Madonna, F.; Amodeo, A.; D'Amico, G.; Pappalardo, G.

    2013-09-01

    19 April to 19 May 2010, volcanic aerosol layers originating from the Eyjafjallajökull volcano were observed at the Institute of Methodologies for Environmental Analysis of the National Research Council of Italy Atmospheric Observatory, named CIAO (40.60°N, 15.72°E, 760 m above sea level), in Southern Italy with a multiwavelength Raman lidar. During this period, ultragiant aerosols were also observed at CIAO using a colocated 8.45 mm wavelength Doppler radar. The Ka-band radar signatures observed in four separate days (19 April and 7, 10, and 13 May) are consistent with the observation of nonspherical ultragiant aerosols characterized by values of linear depolarization ratio (LDR) higher than -4 dB. Air mass back trajectory analysis suggests a volcanic origin of the ultragiant aerosols observed by the radar. The observed values of the radar reflectivity (Ze) are consistent with a particle effective radius (r) larger than 50-75 µm. Scattering simulations based on the T-matrix approach show that the high LDR values can be explained if the observed particles have an absolute aspect ratio larger than 3.0 and consist of an internal aerosol core and external ice shell, with a variable radius ratio ranging between 0.2 and 0.7 depending on the shape and aspect ratio. Comparisons between daytime vertical profiles of aerosol backscatter coefficient (β) as measured by lidar and radar LDR reveal a decrease of β where ultragiant particles are observed. Scattering simulations based on Mie theory show how the lidar capability in typing ultragiant aerosols could be limited by low number concentrations or by the presence of an external ice shell covering the aerosol particles. Preferential vertical alignment of the particles is discussed as another possible reason for the decrease of β.

  3. Vertical structure of recent Arctic warming.

    PubMed

    Graversen, Rune G; Mauritsen, Thorsten; Tjernström, Michael; Källén, Erland; Svensson, Gunilla

    2008-01-03

    Near-surface warming in the Arctic has been almost twice as large as the global average over recent decades-a phenomenon that is known as the 'Arctic amplification'. The underlying causes of this temperature amplification remain uncertain. The reduction in snow and ice cover that has occurred over recent decades may have played a role. Climate model experiments indicate that when global temperature rises, Arctic snow and ice cover retreats, causing excessive polar warming. Reduction of the snow and ice cover causes albedo changes, and increased refreezing of sea ice during the cold season and decreases in sea-ice thickness both increase heat flux from the ocean to the atmosphere. Changes in oceanic and atmospheric circulation, as well as cloud cover, have also been proposed to cause Arctic temperature amplification. Here we examine the vertical structure of temperature change in the Arctic during the late twentieth century using reanalysis data. We find evidence for temperature amplification well above the surface. Snow and ice feedbacks cannot be the main cause of the warming aloft during the greater part of the year, because these feedbacks are expected to primarily affect temperatures in the lowermost part of the atmosphere, resulting in a pattern of warming that we only observe in spring. A significant proportion of the observed temperature amplification must therefore be explained by mechanisms that induce warming above the lowermost part of the atmosphere. We regress the Arctic temperature field on the atmospheric energy transport into the Arctic and find that, in the summer half-year, a significant proportion of the vertical structure of warming can be explained by changes in this variable. We conclude that changes in atmospheric heat transport may be an important cause of the recent Arctic temperature amplification.

  4. Clouds, Aerosols, and Precipitation in the Marine Boundary Layer: An Arm Mobile Facility Deployment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, Robert; Wyant, Matthew; Bretherton, Christopher S.

    The Clouds, Aerosol, and Precipitation in the Marine Boundary Layer (CAP-MBL) deployment at Graciosa Island in the Azores generated a 21 month (April 2009-December 2010) comprehensive dataset documenting clouds, aerosols and precipitation using the Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF). The scientific aim of the deployment is to gain improved understanding of the interactions of clouds, aerosols and precipitation in the marine boundary layer. Graciosa Island straddles the boundary between the subtropics and midlatitudes in the Northeast Atlantic Ocean, and consequently experiences a great diversity of meteorological and cloudiness conditions. Low clouds are the dominant cloud type, with stratocumulusmore » and cumulus occurring regularly. Approximately half of all clouds contained precipitation detectable as radar echoes below the cloud base. Radar and satellite observations show that clouds with tops from 1- 11 km contribute more or less equally to surface-measured precipitation at Graciosa. A wide range of aerosol conditions was sampled during the deployment consistent with the diversity of sources as indicated by back trajectory analysis. Preliminary findings suggest important two-way interactions between aerosols and clouds at Graciosa, with aerosols affecting light precipitation and cloud radiative properties while being controlled in part by precipitation scavenging. The data from at Graciosa are being compared with short-range forecasts made a variety of models. A pilot analysis with two climate and two weather forecast models shows that they reproduce the observed time-varying vertical structure of lower-tropospheric cloud fairly well, but the cloud-nucleating aerosol concentrations less well. The Graciosa site has been chosen to be a permanent fixed ARM site that became operational in October 2013.« less

  5. Clouds, aerosol, and precipitation in the Marine Boundary Layer: An ARM mobile facility deployment

    DOE PAGES

    Wood, Robert; Luke, Ed; Wyant, Matthew; ...

    2014-04-27

    The Clouds, Aerosol, and Precipitation in the Marine Boundary Layer (CAP-MBL) deployment at Graciosa Island in the Azores generated a 21-month (April 2009-December 2010) comprehensive dataset documenting clouds, aerosols, and precipitation using the Atmospheric Radiation Measurement Program (ARM) Mobile Facility (AMF). The scientific aim of the deployment is to gain improved understanding of the interactions of clouds, aerosols, and precipitation in the marine boundary layer. Graciosa Island straddles the boundary between the subtropics and midlatitudes in the Northeast Atlantic Ocean and consequently experiences a great diversity of meteorological and cloudiness conditions. Low clouds are the dominant cloud type, with stratocumulusmore » and cumulus occurring regularly. Approximately half of all clouds contained precipitation detectable as radar echoes below the cloud base. Radar and satellite observations show that clouds with tops from 1-11 km contribute more or less equally to surface-measured precipitation at Graciosa. A wide range of aerosol conditions was sampled during the deployment consistent with the diversity of sources as indicated by back-trajectory analysis. Preliminary findings suggest important two-way interactions between aerosols and clouds at Graciosa, with aerosols affecting light precipitation and cloud radiative properties while being controlled in part by precipitation scavenging.The data from Graciosa are being compared with short-range forecasts made with a variety of models. A pilot analysis with two climate and two weather forecast models shows that they reproduce the observed time-varying vertical structure of lower-tropospheric cloud fairly well but the cloud-nucleating aerosol concentrations less well. The Graciosa site has been chosen to be a permanent fixed ARM site that became operational in October 2013.« less

  6. Intra and inter-continental aerosol transport and local and regional impacts

    NASA Astrophysics Data System (ADS)

    Charles, Leona Ann Marie

    vertical layering of aerosols in the troposphere from passive remote sensing measurements. Therefore, the connection with air pollution is very poor. Furthermore, the vertical structure of the aerosol is very important in assessing transport events and how they mix with the Planetary Boundary Layer (PBL). The need to fill this data gap and supply vertical information on plume detection has led to the launch of the Cloud Aerosol Lidar and Infrared Pathfinder Satellite (CALIPSO) space borne lidar system, which can in principle provide vertical profiles of aerosol backscatter that can be used in the assimilation schemes. One particular problem which needs to be addressed, is the fact that the relationship between the optical scattering coefficients (or AOD) and the PM2.5 mass is not simple. Finally, regarding non-attainment of National Ambient Air Quality Standards (NAAQS), it has also been shown that a significant portion of the PM2.5 aerosol mass can be due to non-local sources. This fact is critical in assessing the appropriate strategy in emission controls, as part of the state implementation plan (SIP) to come into compliance. However, these studies are usually based on statistical analysis tools such as Positive Factor Analysis (PFA), and are not applicable to any single measurement. In addition, little is known about the impact of episodic long range transport as a possible mechanism for affecting local pollution. Such a mechanism cannot be investigated by statistical means or by any existing air transport models which do not consider high altitude plumes (aerosol layers), and must be studied solely with an appropriate suite of measurements including the simultaneous use of sky radiometers, lidars and satellites. Furthermore, since fine particulate matter is so crucial to identify, multi-wavelength determination of aerosol properties such as angstrom coefficient are necessary. It is our purpose to investigate the possibility that such long range transport events can

  7. Generating Aerosol Data Products from Airborne in-situ Observations made during 2011 DISCOVER-AQ Field Campaign

    NASA Astrophysics Data System (ADS)

    Thornhill, K. L.; Anderson, B. E.; Winstead, E. L.; Chen, G.; Beyersdorf, A. J.; Ziemba, L. D.

    2011-12-01

    In July 2011, the first of four DISCOVER-AQ (Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality) planned field campaigns was completed. The investigation is a broad collaboration between federal and state agencies and academic institutions with the primary goal of improving the interpretation of satellite observations of surface-level trace gas and aerosol parameters by making detailed correlative measurements from aircraft and ground-based instruments in urban regions plagued by air-quality issues. Phase I studied the air-quality of the lower troposphere in and around the Washington, D.C. and Baltimore areas along the I-95 corridor. In-situ airborne data is essential in providing a link between the broad swath satellite measurements and the measurements made by ground based sensors. This is accomplished by examining the relationship between column-integrated values obtained through in-situ sampling and surface measured values, as aircraft can fully characterize atmospheric chemical/aerosol constituents at a given time and location. To that end, the NASA P-3B was instrumented to record fast-response measurements of various gas-phase tracers and aerosol characteristics of pollution. A flight pattern was created and executed for each of the 14 research flights that had the P-3B performing a series of spiral ascents/descents over six ground sites to perform detailed vertical characterizations of the chemical and aerosol structure. The in-situ aerosol characterization was performed by the NASA Langley Aerosol Research Group Experiment (LARGE) using 15 instruments to measure aerosol microphysical, chemical and optical properties. In this presentation we discuss the process in which aerosol science data is generated, from the collection of more than 10 GB of data per 8 hour flight, to the initial QA/QC required to produce a preliminary data product within 24 hours of landing, through final data submission

  8. Contributions to the Understanding of Aerosol Microphysics Towards Improving the Assessment of Climate Radiative Forcing

    NASA Astrophysics Data System (ADS)

    Dawson, Kyle William

    CCNc measured hygroscopicity and HTDMA measured hygroscopicity at 90% RH, and are discussed in terms of hydration regimes associated with structural changes imposed by polymer/salt crosslinks. Second, motivated by a necessity to provide better constraints for climate model assessments of radiative forcing, a computational study for developing a link between climate models and observations from remote sensing techniques is presented. The Creating Aerosol Types from CHemistry (CATCH) algorithm has been developed for providing atmospheric models with estimated aerosol types, analogous to those that are retrieved by remote sensing methods. To date, the link between models and remote sensing retrievals is crude and is based on the total column attenuation of radiation by aerosol called the aerosol optical depth (AOD). In this study, through multivariate clustering techniques, this link is expanded to produce model-calculated aerosol types of dusty mix, maritime, urban, smoke, and fresh smoke, that are analogous to those retrieved by remote sensing. The CATCH algorithm shows that vertically-resolved aerosol types compare well to those measured by aircraft-mounted High Spectral Resolution Lidar - version 1 (HSRL-1) during the Ship-Aircraft Bio-Optical Research (SABOR) field campaign during July/August of 2014. Flight-by-flight comparisons of the type-apportioned AOD and vertically-resolved aerosol extinction also compare well. The CATCH algorithm is then applied to a high-resolution nested grid domain over North America and found to produce encouraging results of spatially relevant aerosol types such as dusty mix aerosol over the Caribbean, maritime aerosol over oceans, urban aerosol over large cities, smoke aerosol over weak forest fires, and fresh smoke aerosol over strong forest fires.

  9. Vertical Structure of The Polluted Low Troposphere During Escompte 2001.

    NASA Astrophysics Data System (ADS)

    Saïd, F.; Escompte Team

    ESCOMPTE 2001 is a field experiment that took place in the south-east of France, from June 11th to July 13th, with the aim of understanding chemical constitu- ants transformation and transport and to improve numerical models devoted to pol- lution study and forecasting. Information about the experiment can be found on http://medias.obs-mip.fr/escompte. The studied area was roughly 120x120 km includ- ing a big town, Marseille and a petroleum complex around the Fos-Berre pond. Various experimental means such as radiosounding, UHF and VHF radars, lidars and aircraft were involved in order to study the 3D distribution of chemical species in relationship with the dynamical processes. The vertical distribution of horizontal wind, ozone, aerosols and water vapor content revealed several cases with complex stratification. This stratification could also be detected on the lidars extinction coefficients or on the radars reflectivity. The superposed layers extended on large areas and were steady. The aim is to try to understand how these staggered layers have been formed and whether they interfere with the mixed layer. If ever they did, they could play a major part in the pollution process.

  10. Clouds, Aerosol, and Precipitation in the Marine Boundary Layer: An ARM Mobile Facility Deployment

    NASA Technical Reports Server (NTRS)

    Wood, Robert; Wyant, Matthew; Bretherton, Christopher S.; Remillard, Jasmine; Kollias, Pavlos; Fletcher, Jennifer; Stemmler, Jayson; de Szoeke, Simone; Yuter, Sandra; Miller, Matthew; hide

    2015-01-01

    Capsule: A 21-month deployment to Graciosa Island in the northeastern Atlantic Ocean is providing an unprecedented record of the clouds, aerosols and meteorology in a poorly-sampled remote marine environment The Clouds, Aerosol, and Precipitation in the Marine Boundary Layer (CAP-MBL) deployment at Graciosa Island in the Azores generated a 21 month (April 2009- December 2010) comprehensive dataset documenting clouds, aerosols and precipitation using the Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF). The scientific aim of the deployment is to gain improved understanding of the interactions of clouds, aerosols and precipitation in the marine boundary layer. Graciosa Island straddles the boundary between the subtropics and midlatitudes in the Northeast Atlantic Ocean, and consequently experiences a great diversity of meteorological and cloudiness conditions. Low clouds are the dominant cloud type, with stratocumulus and cumulus occurring regularly. Approximately half of all clouds contained precipitation detectable as radar echoes below the cloud base. Radar and satellite observations show that clouds with tops from 1- 11 km contribute more or less equally to surface-measured precipitation at Graciosa. A wide range of aerosol conditions was sampled during the deployment consistent with the diversity of sources as indicated by back trajectory analysis. Preliminary findings suggest important two-way interactions between aerosols and clouds at Graciosa, with aerosols affecting light precipitation and cloud radiative properties while being controlled in part by precipitation scavenging. The data from at Graciosa are being compared with short-range forecasts made a variety of models. A pilot analysis with two climate and two weather forecast models shows that they reproduce the observed time-varying vertical structure of lower-tropospheric cloud fairly well, but the cloud-nucleating aerosol concentrations less well. The Graciosa site has been chosen to be a

  11. Aerosol layer height from synergistic use of VIIRS and OMPS

    NASA Astrophysics Data System (ADS)

    Lee, J.; Hsu, N. Y. C.; Sayer, A. M.; Kim, W.; Seftor, C. J.

    2017-12-01

    This study presents an Aerosol Single-scattering albedo and Height Estimation (ASHE) algorithm, which retrieves the height of UV-absorbing aerosols by synergistically using the Visible Infrared Imaging Radiometer Suite (VIIRS) and the Ozone Mapping and Profiler Suite (OMPS). ASHE provides height information over a much broader area than ground-based or spaceborne lidar measurements by benefitting from the wide swaths of the two instruments used. As determination of single-scattering albedo (SSA) of the aerosol layer is the most critical part for the performance and coverage of ASHE, here we demonstrate three different strategies to constrain the SSA. First, ASHE is able to retrieve the SSA of UV-absorbing aerosols when Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) provides vertical profiles of the aerosol layer of interest. Second, Aerosol Robotic Network (AERONET) inversions can directly constrain the SSA of the aerosol layer when collocated with VIIRS or OMPS. Last, a SSA climatology from ASHE, AERONET, or other data sources can be used for large-scale, aged aerosol events, for which climatological SSA is well-known, at the cost of a slight decrease in retrieval accuracy. The same algorithm can be applied to measurements of similar type, such as those made by the Moderate Resolution Imaging Spectroradiometer (MODIS) and Ozone Monitoring Instrument (OMI), for a long-term, consistent data record.

  12. Vertical Structure of Ice Cloud Layers From CloudSat and CALIPSO Measurements and Comparison to NICAM Simulations

    NASA Technical Reports Server (NTRS)

    Ham, Seung-Hee; Sohn, Byung-Ju; Kato, Seiji; Satoh, Masaki

    2013-01-01

    The shape of the vertical profile of ice cloud layers is examined using 4 months of CloudSat and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) global measurements taken on January, April, July, and October 2007. Ice clouds are selected using temperature profiles when the cloud base is located above the 253K temperature level. The obtained ice water content (IWC), effective radius, or extinction coefficient profiles are normalized by their layer mean values and are expressed in the normalized vertical coordinate, which is defined as 0 and 1 at the cloud base and top heights, respectively. Both CloudSat and CALIPSO observations show that the maximum in the IWC and extinction profiles shifts toward the cloud bottom, as the cloud depth increases. In addition, clouds with a base reaching the surface in a high-latitude region show that the maximum peak of the IWC and extinction profiles occurs near the surface, which is presumably due to snow precipitation. CloudSat measurements show that the seasonal difference in normalized cloud vertical profiles is not significant, whereas the normalized cloud vertical profile significantly varies depending on the cloud type and the presence of precipitation. It is further examined if the 7 day Nonhydrostatic Icosahedral Atmospheric Model (NICAM) simulation results from 25 December 2006 to 1 January 2007 generate similar cloud profile shapes. NICAM IWC profiles also show maximum peaks near the cloud bottom for thick cloud layers and maximum peaks at the cloud bottom for low-level clouds near the surface. It is inferred that oversized snow particles in the NICAM cloud scheme produce a more vertically inhomogeneous IWC profile than observations due to quick sedimentation.

  13. Chemical, optical and radiative characteristics of aerosols during haze episodes of winter in the North China Plain

    NASA Astrophysics Data System (ADS)

    Ding, Jing; Zhang, Yufen; Han, Suqin; Xiao, Zhimei; Wang, Jiao; Feng, Yinchang

    2018-05-01

    Aerosol and water vapor radiative forcings, shortwave atmospheric heating rates and longwave atmospheric cooling rates were determined based on in situ physical and chemical measurements of aerosol, associated with the Mie theory and a radiative transfer model, LOWTRAN7, during the two haze episodes in the winter of 2013 in Tianjin, China. The aerosol types considered in LOWTRAN7 included rural, urban, marine, desert and custom aerosols. The default ratio of the absorption coefficient to the extinction coefficient for urban aerosol in LOWTRAN7 was approximately double of those found in this work, implying the weaker absorption ability of aerosols in the North China Plain (NCP). Moreover, the aerosol is assumed to be evenly distributed below 1 km of planetary boundary layer (PBL) on hazy days in LOWTRAN7. If the default urban aerosol optical properties and extinction profile in LOWTRAN7 is employed directly, a larger energy imbalance between the atmosphere and surface is generated and the warming effect of the aerosol is magnified. Hence, modified urban aerosol optical properties were established to replace the corresponding parameters' database in LOWTRAN7. The aerosol extinction profiles were obtained based on a 255-m meteorological tower and observed results from the studies about Tianjin. In the NCP, the aerosol had little impact on atmospheric counter radiation. The water vapor is the crucial factor that affects atmospheric counter radiation. Both modified high shortwave heating rates and longwave cooling rates occur near the surface due to the abundance of aerosol and water vapor. The modified net atmospheric heating rate near the surface is 1.2 K d-1 on hazy days and 0.3 K d-1 on non-hazy days. Compared with the default urban aerosol optical properties and its vertical distribution in LOWTRAN7, the feedback effect of the modified urban aerosol on the boundary layer may not necessarily result in a stable lower atmosphere, but depends on the aerosol light

  14. The structural evolution of magnesium acetate complex in aerosols by FTIR-ATR spectra

    NASA Astrophysics Data System (ADS)

    Pang, Shu-Feng; Wu, Chang-Qin; Zhang, Qing-Nuan; Zhang, Yun-Hong

    2015-05-01

    The structural evolution of magnesium acetate complex in aerosols with the relative humidity (RH) has been studied by ATR-FTIR technique. When the RH is higher than 66%, the ν4 band lies at 929 cm-1 meaning the free CH3COO- ions in Mg(CH3COO)2 droplets. At the 66% RH, ν4 band positioned at 939 cm-1, accompanying the ν8 band shift to 1554 cm-1, which indicats that the free CH3COO- ions are bounded to Mg2+ ions to form [Mg(H2O)5(CH3COO)]+ species. At the 57.7% RH, the ν8-COO band shifts to 1556 cm-1 accompanying the ν3 band at 1421 cm-1 and the appearance of shoulder at 1452 cm-1, which suggests the formation of chain-structure connected by the bridging bidentate of Mg2(CH3COO)4(H2O)2. In the region of 57.7-18.7% RH, the shoulder at 1452 cm-1 increases with the decrease in RH, showing the increase of Mg2(CH3COO)4(H2O)2. From the water-content, the water-transfer from and to the surface of the aerosols became limited, showing the aerosols enter the gel state. Below 18.7%RH, water-loss becomes rapid and the ν8 band performs blue-shift. At 3.8%RH, the ν8 band positioned at 1581 cm-1, showing the anhydrous Mg(CH3COO)2 solid, which can be reflected by the ν4 band at 947 cm-1. During the humidification process, the reverse structural evolution can be found.

  15. Molecular structure impacts on secondary organic aerosol formation from glycol ethers

    NASA Astrophysics Data System (ADS)

    Li, Lijie; Cocker, David R.

    2018-05-01

    Glycol ethers, a class of widely used solvents in consumer products, are often considered exempt as volatile organic compounds based on their vapor pressure or boiling points by regulatory agencies. However, recent studies found that glycol ethers volatilize at ambient conditions nearly as rapidly as the traditional high-volatility solvents indicating the potential of glycol ethers to form secondary organic aerosol (SOA). This is the first work on SOA formation from glycol ethers. The impact of molecular structure, specifically -OH, on SOA formation from glycol ethers and related ethers are investigated in the work. Ethers with and without -OH, with methyl group hindrance on -OH and with -OH at different location are studied in the presence of NOX and under "NOX free" conditions. Photooxidation experiments under different oxidation conditions confirm that the processing of ethers is a combination of carbonyl formation, cyclization and fragmentation. Bulk SOA chemical composition analysis and oxidation products identified in both gas and particle phase suggests that the presence and location of -OH in the carbon bond of ethers determine the occurrence of cyclization mechanism during ether oxidation. The cyclization is proposed as a critical SOA formation mechanism to prevent the formation of volatile compounds from fragmentation during the oxidation of ethers. Glycol ethers with -CH2-O-CH2CH2OH structure is found to readily form cyclization products, especially with the presence of NOx, which is more relevant to urban atmospheric conditions than without NOx. Glycol ethers are evaluated as dominating SOA precursors among all ethers studied. It is estimated that the contribution of glycol ethers to anthropogenic SOA is roughly 1% of the current organic aerosol from mobile sources. The contribution of glycol ethers to anthropogenic SOA is roughly 1% of the current organic aerosol from mobile sources and will play a more important role in future anthropogenic SOA

  16. New approaches to high-resolution mapping of marine vertical structures.

    PubMed

    Robert, Katleen; Huvenne, Veerle A I; Georgiopoulou, Aggeliki; Jones, Daniel O B; Marsh, Leigh; D O Carter, Gareth; Chaumillon, Leo

    2017-08-21

    Vertical walls in marine environments can harbour high biodiversity and provide natural protection from bottom-trawling activities. However, traditional mapping techniques are usually restricted to down-looking approaches which cannot adequately replicate their 3D structure. We combined sideways-looking multibeam echosounder (MBES) data from an AUV, forward-looking MBES data from ROVs and ROV-acquired videos to examine walls from Rockall Bank and Whittard Canyon, Northeast Atlantic. High-resolution 3D point clouds were extracted from each sonar dataset and structure from motion photogrammetry (SfM) was applied to recreate 3D representations of video transects along the walls. With these reconstructions, it was possible to interact with extensive sections of video footage and precisely position individuals. Terrain variables were derived on scales comparable to those experienced by megabenthic individuals. These were used to show differences in environmental conditions between observed and background locations as well as explain spatial patterns in ecological characteristics. In addition, since the SfM 3D reconstructions retained colours, they were employed to separate and quantify live coral colonies versus dead framework. The combination of these new technologies allows us, for the first time, to map the physical 3D structure of previously inaccessible habitats and demonstrates the complexity and importance of vertical structures.

  17. Dispersion of aerosol particles in the atmosphere: Fukushima

    NASA Astrophysics Data System (ADS)

    Haszpra, Tímea; Lagzi, István; Tél, Tamás

    2013-04-01

    Investigation of dispersion and deposition of aerosol particles in the atmosphere is an essential issue, because they have an effect on the biosphere and atmosphere. Moreover, aerosol particles have different transport properties and chemical and physical transformations in the atmosphere compared to gas phase air pollutants. The motion of a particle is described by a set of ordinary differential equations. The large-scale dynamics in the horizontal direction can be described by the equations of passive scalar advection, but in the vertical direction a well-defined terminal velocity should be taken into account as a term added to the vertical wind component. In the planetary boundary layer turbulent diffusion has an important role in the particle dispersion, which is taken into account by adding stochastic terms to the deterministic equations above. Wet deposition is also an essential process in the lower levels of the atmosphere, however, its precise parameterization is a challenge. For the simulations the wind field and other necessary data were taken from the ECMWF ERA-Interim database. In the case of the Fukushima Daiichi nuclear disaster (March-April 2011) radioactive aerosol particles were also released in the planetary boundary layer. Simulations (included the continuous and varying emission from the nuclear power plant) will be presented for the period of 14-23 March. Results show that wet deposition also has to be taken into consideration in the lower levels of the atmosphere. Furthermore, dynamical system characteristics are evaluated for the aerosol particle dynamics. The escape rate of particles was estimated both with and without turbulent diffusion, and in both cases when there was no wet deposition and also when wet deposition was taken into consideration.

  18. The Tropical Convective Spectrum. Part 1; Archetypal Vertical Structures

    NASA Technical Reports Server (NTRS)

    Boccippio, Dennis J.; Petersen, Walter A.; Cecil, Daniel J.

    2005-01-01

    A taxonomy of tropical convective and stratiform vertical structures is constructed through cluster analysis of 3 yr of Tropical Rainfall Measuring Mission (TRMM) "warm-season" (surface temperature greater than 10 C) precipitation radar (PR) vertical profiles, their surface rainfall, and associated radar-based classifiers (convective/ stratiform and brightband existence). Twenty-five archetypal profile types are identified, including nine convective types, eight stratiform types, two mixed types, and six anvil/fragment types (nonprecipitating anvils and sheared deep convective profiles). These profile types are then hierarchically clustered into 10 similar families, which can be further combined, providing an objective and physical reduction of the highly multivariate PR data space that retains vertical structure information. The taxonomy allows for description of any storm or local convective spectrum by the profile types or families. The analysis provides a quasi-independent corroboration of the TRMM 2A23 convective/ stratiform classification. The global frequency of occurrence and contribution to rainfall for the profile types are presented, demonstrating primary rainfall contribution by midlevel glaciated convection (27%) and similar depth decaying/stratiform stages (28%-31%). Profiles of these types exhibit similar 37- and 85-GHz passive microwave brightness temperatures but differ greatly in their frequency of occurrence and mean rain rates, underscoring the importance to passive microwave rain retrieval of convective/stratiform discrimination by other means, such as polarization or texture techniques, or incorporation of lightning observations. Close correspondence is found between deep convective profile frequency and annualized lightning production, and pixel-level lightning occurrence likelihood directly tracks the estimated mean ice water path within profile types.

  19. Aerosol loading in the Southeastern United States: reconciling surface and satellite observations

    NASA Astrophysics Data System (ADS)

    Ford, B.; Heald, C. L.

    2013-04-01

    We investigate the seasonality in aerosols over the Southeastern United States using observations from several satellite instruments (MODIS, MISR, CALIOP) and surface network sites (IMPROVE, SEARCH, AERONET). We find that the strong summertime enhancement in satellite-observed aerosol optical depth (factor 2-3 enhancement over wintertime AOD) is not present in surface mass concentrations (25-55% summertime enhancement). Goldstein et al. (2009) previously attributed this seasonality in AOD to biogenic organic aerosol; however, surface observations show that organic aerosol only accounts for ~35% of PM2.5 mass and exhibits similar seasonality to total PM2.5. The GEOS-Chem model generally reproduces these surface aerosol measurements, but under represents the AOD seasonality observed by satellites. We show that seasonal differences in water uptake cannot sufficiently explain the magnitude of AOD increase. As CALIOP profiles indicate the presence of additional aerosol in the lower troposphere (below 700 hPa), which cannot be explained by vertical mixing; we conclude that the discrepancy is due to a missing source of aerosols above the surface in summer.

  20. Analysis of photonic spot profile converter and bridge structure on SOI platform for horizontal and vertical integration

    NASA Astrophysics Data System (ADS)

    Majumder, Saikat; Jha, Amit Kr.; Biswas, Aishik; Banerjee, Debasmita; Ganguly, Dipankar; Chakraborty, Rajib

    2017-08-01

    Horizontal spot size converter required for horizontal light coupling and vertical bridge structure required for vertical integration are designed on high index contrast SOI platform in order to form more compact integrated photonic circuits. Both the structures are based on the concept of multimode interference. The spot size converter can be realized by successive integration of multimode interference structures with reducing dimension on horizontal plane, whereas the optical bridge structure consists of a number of vertical multimode interference structure connected by single mode sections. The spot size converter can be modified to a spot profile converter when the final single mode waveguide is replaced by a slot waveguide. Analysis have shown that by using three multimode sections in a spot size converter, an Gaussian input having spot diameter of 2.51 μm can be converted to a spot diameter of 0.25 μm. If the output single mode section is replaced by a slot waveguide, this input profile can be converted to a flat top profile of width 50 nm. Similarly, vertical displacement of 8μm is possible by using a combination of two multimode sections and three single mode sections in the vertical bridge structure. The analyses of these two structures are carried out for both TE and TM modes at 1550 nm wavelength using the semi analytical matrix method which is simple and fast in computation time and memory. This work shows that the matrix method is equally applicable for analysis of horizontally as well as vertically integrated photonic circuit.

  1. Altitude Differentiated Aerosol Extinction Over Tenerife (North Atlantic Coast) During ACE-2 by Means of Ground and Airborne Photometry and Lidar Measurements

    NASA Technical Reports Server (NTRS)

    Formenti, P.; Elias, T.; Welton, J.; Diaz, J. P.; Exposito, F.; Schmid, B.; Powell, D.; Holben, B. N.; Smirnov, A.; Andreae, M. O.; hide

    2000-01-01

    Retrievals of spectral aerosol optical depths (tau(sub a)) by means of sun photometers have been undertaken in Tenerife (28 deg 16' N, 16 deg 36' W) during ACE-2 (June-July 1997). Five ground-based sites were located at four different altitudes in the marine boundary layer and in the free troposphere, from 0 to 3570 m asl. The goal of the investigation was to provide estimates of the vertical aerosol extinction over the island, both under clean and turbid conditions. Inversion of spectral tau(sub a) allowed to retrieve size distributions, from which the single scattering albedo omega(sub 0) and the asymmetry factor g could be estimated as a function of altitude. These parameters were combined to calculate aerosol forcing in the column. Emphasis is put on episodes of increased turbidity, which were observed at different locations simultaneously, and attributed to outbreaks of mineral dust from North Africa. Differentiation of tau(sub a) as a function of altitude provided the vertical profile of the extinction coefficient sigma(sub e). For dust outbreaks, aerosol extinction is concentrated in two distinct layers above and below the strong subsidence inversion around 1200 m asl. Vertical profiles of tau(sub a) and sigma(sub e) are shown for July 8. In some occasions, vertical profiles are compared to LIDAR observations, performed both at sea level and in the low free troposphere, and to airborne measurements of aerosol optical depths.

  2. THE VERTICAL X-SHAPED STRUCTURE IN THE MILKY WAY: EVIDENCE FROM A SIMPLE BOXY BULGE MODEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Zhaoyu; Shen Juntai, E-mail: jshen@shao.ac.cn

    2012-09-20

    A vertical X-shaped structure in the Galactic bulge was recently reported. Here, we present evidence of a similar X-shaped structure in the Shen et al. 2010 bar/boxy bulge model that simultaneously matches the stellar kinematics successfully. The X-shaped structure is found in the central region of our bar/boxy bulge model and is qualitatively consistent with the observed one in many aspects. End-to-end separations of the X-shaped structure in the radial and vertical directions are roughly 3 kpc and 1.8 kpc, respectively. The X-shaped structure contains about 7% of light in the boxy bulge region, but it is significant enough tomore » be identified in observations. An X-shaped structure naturally arises in the formation of bar/boxy bulges and is mainly associated with orbits trapped around the vertically extended x{sub 1} family. Like the bar in our model, the X-shaped structure tilts away from the Sun-Galactic center line by 20 Degree-Sign . The X-shaped structure becomes increasingly symmetric about the disk plane, so the observed symmetry may indicate that it formed at least a few billion years ago. The existence of the vertical X-shaped structure suggests that the formation of the Milky Way bulge is shaped mainly by internal disk dynamical instabilities.« less

  3. Anthropogenic and Volcanic Contributions to the Decadal Variations of Aerosols in the Upper Troposphere and Lower Stratosphere

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Diehl, Thomas; Bian, Huisheng; Aquila, Valentina; Colarco, Peter R.; Tan, Qian; Burrows, John P.; Krotov, Nickolay A.; Vernier, Jean P.; Lu, Zifeng; hide

    2014-01-01

    We investigated the anthropogenic and volcanic contributions to sulfate aerosol in the stratosphere through modeling and analysis of satellite data. We use a global model GOCART to simulate SO2 and sulfate aerosol in the period of 2000 to 2010, during which numerous volcanic eruptions occurred although nothing like the magnitudes of El Chichon or Pinatubo. We compared the model results with the column SO2 data from OMI and stratospheric SO2 data from MLS instrument on Aura satellite and the aerosol vertical profiles from the SCIAMACHY instrument on Envisat and the CALIOP instrument on CALIPSO satellites. Finally, we assessed the relative contributions of volcanic aerosols vs. anthropogenic aerosols to the observed decadal stratospheric aerosol trends.

  4. North Atlantic Aerosol Radiative Impacts Based on Satellite Measurements and Aerosol Intensive Properties from TARFOX and ACE-2

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Bergstrom, Robert W.; Schmid, B.; Livingston, J. M.

    2000-01-01

    We estimate the impact of North Atlantic aerosols on the net short-wave flux at the tropopause by combining satellite-derived aerosol optical depth (AOD) maps with model aerosol properties determined via closure analyses in TARFOX and ACE 2. We exclude African dust, primarily by restricting latitudes to 25-60 N. The analyses use in situ aerosol composition measurements and air- and ship-borne sun-photometer measurements of AOD spectra. The aerosol model yields computed flux sensitivities (dFlux/dAOD) that agree with measurements by airborne flux radiometers in TARFOX. Its midvisible single-scattering albedo is 0.9. which is in the range obtained from in situ measurements of scattering and absorption in both TARFOX and ACE 2. Combining satellite-derived AOD maps with the aerosol model yields maps of 24-hour average net radiative flux changes. For simultaneous AVHRR, radiance measurements exceeded the sunphotometer AODs by about 0.04. However. shipboard sunphotometer and AVHRR AODs agreed Within 0.02 for data acquired during satellite overflights on two other days. We discuss attempts to demonstrate column closure within the MBL by comparing shipboard sunphotometer AODs and values calculated from simultaneous shipboard in-situ aerosol size distribution measurements. These comparisons were mostly unsuccessful, but they illustrate the difficulties inherent in this type of closure analysis. Specifically, AODs derived from near-surface in-situ size distribution measurements are extremely sensitive to the assumed hygroscopic growth model that itself requires an assumption of particle composition as a function of height and size, to the radiosonde-measured relative humidity, and to the vertical profile of particle number. We investigate further the effects of hygroscopic particle growth within the MBL by using shipboard lidar aerosol backscatter profiles together with the sunphotometer AOD.

  5. The impact of volcanic aerosol on the Northern Hemisphere stratospheric polar vortex: mechanisms and sensitivity to forcing structure

    NASA Astrophysics Data System (ADS)

    Toohey, M.; Krüger, K.; Bittner, M.; Timmreck, C.; Schmidt, H.

    2014-12-01

    Observations and simple theoretical arguments suggest that the Northern Hemisphere (NH) stratospheric polar vortex is stronger in winters following major volcanic eruptions. However, recent studies show that climate models forced by prescribed volcanic aerosol fields fail to reproduce this effect. We investigate the impact of volcanic aerosol forcing on stratospheric dynamics, including the strength of the NH polar vortex, in ensemble simulations with the Max Planck Institute Earth System Model. The model is forced by four different prescribed forcing sets representing the radiative properties of stratospheric aerosol following the 1991 eruption of Mt. Pinatubo: two forcing sets are based on observations, and are commonly used in climate model simulations, and two forcing sets are constructed based on coupled aerosol-climate model simulations. For all forcings, we find that simulated temperature and zonal wind anomalies in the NH high latitudes are not directly impacted by anomalous volcanic aerosol heating. Instead, high-latitude effects result from enhancements in stratospheric residual circulation, which in turn result, at least in part, from enhanced stratospheric wave activity. High-latitude effects are therefore much less robust than would be expected if they were the direct result of aerosol heating. Both observation-based forcing sets result in insignificant changes in vortex strength. For the model-based forcing sets, the vortex response is found to be sensitive to the structure of the forcing, with one forcing set leading to significant strengthening of the polar vortex in rough agreement with observation-based expectations. Differences in the dynamical response to the forcing sets imply that reproducing the polar vortex responses to past eruptions, or predicting the response to future eruptions, depends on accurate representation of the space-time structure of the volcanic aerosol forcing.

  6. Regional and Global Aspects of Aerosols in Western Africa: From Air Quality to Climate

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Diehl, Thomas; Kucsera, Tom; Spinhime, Jim; Palm, Stephen; Holben, Brent; Ginoux, Paul

    2006-01-01

    Western Africa is one of the most important aerosol source regions in the world. Major aerosol sources include dust from the world's largest desert Sahara, biomass burning from the Sahel, pollution aerosols from local sources and long-range transport from Europe, and biogenic sources from vegetation. Because these sources have large seasonal variations, the aerosol composition over the western Africa changes significantly with time. These aerosols exert large influences on local air quality and regional climate. In this study, we use the Goddard Chemistry Aerosol Radiation and Transport (GOCART) model to analyze satellite lidar data from the GLAS instrument on the ICESat and the sunphotometer data from the ground-based network AERONET taken in both the wet (September - October 2003) and dry (February - March 2004) seasons over western Africa. We will quantify the seasonal variations of aerosol sources and compositions and aerosol spatial (horizontal and vertical) distributions over western Africa. We will also assess the climate impact of western African aerosols. Such studies will be applied to support the international project, Africa Monsoon Multidisciplinary Analysis (AMMA) and to analyze the AMMA data.

  7. Investigating vertical distribution patterns of lower tropospheric PM2.5 using unmanned aerial vehicle measurements

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Bing; Wang, Dong-Sheng; Lu, Qing-Chang; Peng, Zhong-Ren; Wang, Zhan-Yong

    2018-01-01

    A lightweight unmanned aerial vehicle (UAV) was outfitted with miniaturized sensors to investigate the vertical distribution patterns and sources of fine aerosol particles (PM2.5) within the 1 000 m lower troposphere. A total of 16 UAV flights were conducted in the Yangtze River Delta (YRD) region, China, from the summer to winter in 2014. The associated ground-level measurements from two environmental monitoring stations were also used for background analysis. The results show that ground-level PM2.5 concentrations demonstrated a decreasing trend from Feb. to Jul. and an increasing trend from Aug. to Jan. (the following year). Higher PM2.5 concentrations during the day were mainly observed in the morning (Local Time, LT 05-09) in the spring and summer. However, higher PM2.5 concentrations occurred mainly in the late afternoon and evening (LT 16-20) in the autumn and winter, excluding severe haze pollution days when higher PM2.5 concentrations were also observed during the morning periods. Lower tropospheric PM2.5 concentrations exhibited similar diurnal vertical distribution patterns from the summer to winter. The PM2.5 concentrations decreased with height in the morning, with significantly large vertical gradients from the summer to winter. By contrast, the aerosol particles were well mixed with PM2.5 concentrations of lower than 35 μg ṡm-3 in the early afternoon (LT 12-16) due to sufficient expansions of the planetary boundary layer. The mean vertical PM2.5 concentrations within the 1 000 m lower troposphere in the morning were much larger in the winter (∼87.5 μg ṡm-3) than in the summer and autumn (∼20 μg ṡm-3). However, subtle differences of ∼11 μg ṡm-3 in the mean vertical PM2.5 concentrations were observed in the early afternoon from the summer to winter. The vertical distribution patterns of black carbon and its relationships with PM2.5 indicated that the lower tropospheric aerosol particles might be mainly derived from fossil

  8. Complex experiment on the study of microphysical, chemical, and optical properties of aerosol particles and estimation of atmospheric aerosol contribution in the Earth radiation budget

    NASA Astrophysics Data System (ADS)

    Matvienko, G. G.; Belan, B. D.; Panchenko, M. V.; Romanovskii, O. A.; Sakerin, S. M.; Kabanov, D. M.; Turchinovich, S. A.; Turchinovich, Yu. S.; Eremina, T. A.; Kozlov, V. S.; Terpugova, S. A.; Pol'kin, V. V.; Yausheva, E. P.; Chernov, D. G.; Zuravleva, T. B.; Bedareva, T. V.; Odintsov, S. L.; Burlakov, V. D.; Arshinov, M. Yu.; Ivlev, G. A.; Savkin, D. E.; Fofonov, A. V.; Gladkikh, V. A.; Kamardin, A. P.; Belan, D. B.; Grishaev, M. V.; Belov, V. V.; Afonin, S. V.; Balin, Yu. S.; Kokhanenko, G. P.; Penner, I. E.; Samoilova, S. V.; Antokhin, P. N.; Arshinova, V. G.; Davydov, D. K.; Kozlov, A. V.; Pestunov, D. A.; Rasskazchikova, T. M.; Simonenkov, D. V.; Sklyadneva, T. K.; Tolmachev, G. N.; Belan, S. B.; Shmargunov, V. P.; Rostov, A. P.; Tikhomirova, O. V.; Shefer, N. A.; Safatov, A. S.; Kozlov, A. S.; Malyshkin, S. B.; Maksimova, T. A.

    2014-11-01

    The main aim of the work was complex experimental measurements of microphysical, chemical, and optical parameters of aerosol particles in the surface air layer and free atmosphere. From the measurement data, the entire set of aerosol optical parameters was retrieved, required for radiation calculations. Three measurement runs were carried out in 2013 within the experiment: in spring, when the aerosol generation maximum is observed, in summer (July), when the altitude of the atmospheric boundary layer is the highest, and in the late summer - early autumn, when the second nucleation period is recorded. The following instruments were used in the experiment: diffusion aerosol spectrometers (DAS), GRIMM photoelectric counters, angle-scattering nephelometers, aethalometer, SP-9/6 sun photometer, RE 318 Sun-Sky radiometer (AERONET), MS-53 pyrheliometer, MS-802 pyranometer, ASP aureole photometer, SSP scanning photometer, TU-134 Optik flying laboratory, Siberian lidar station, stationary multiwave lidar complex LOZA-M, spectrophotometric complex for measuring total ozone and NO2, multivariable instrument for measuring atmospheric parameters, METEO-2 USM, 2.4 AEHP-2.4m station for satellite data receive. Results of numerical calculations of solar down-fluxes on the Earth's surface were compared with the values measured in clear air in the summer periods in 2010—2012 in a background region of Siberian boreal zone. It was shown that the relative differences between model and experimental values of direct and total radiation do not exceed 1% and 3%, respectively, with accounting for instrumental errors and measurement error of atmospheric parameters. Thus, independent data on optical, meteorological, and microphysical atmospheric parameters allow mutual intercalibration and supplement and, hence, provide for qualitatively new data, which can explain physical nature of processes that form the vertical structure of the aerosol filed.

  9. Aerosol Measurements by the Globally Distributed Micro Pulse Lidar Network

    NASA Technical Reports Server (NTRS)

    Spinhirne, James; Welton, Judd; Campbell, James; Berkoff, Tim; Starr, David (Technical Monitor)

    2001-01-01

    Full time measurements of the vertical distribution of aerosol are now being acquired at a number of globally distributed MP (micro pulse) lidar sites. The MP lidar systems provide full time profiling of all significant cloud and aerosol to the limit of signal attenuation from compact, eye safe instruments. There are currently eight sites in operation and over a dozen planned. At all sited there are also passive aerosol and radiation measurements supporting the lidar data. Four of the installations are at Atmospheric Radiation Measurement program sites. The network operation includes instrument operation and calibration and the processing of aerosol measurements with standard retrievals and data products from the network sites. Data products include optical thickness and extinction cross section profiles. Application of data is to supplement satellite aerosol measurements and to provide a climatology of the height distribution of aerosol. The height distribution of aerosol is important for aerosol transport and the direct scattering and absorption of shortwave radiation in the atmosphere. Current satellite and other data already provide a great amount of information on aerosol distribution, but no passive technique can adequately resolve the height profile of aerosol. The Geoscience Laser Altimeter System (GLAS) is an orbital lidar to be launched in early 2002. GLAS will provide global measurements of the height distribution of aerosol. The MP lidar network will provide ground truth and analysis support for GLAS and other NASA Earth Observing System data. The instruments, sites, calibration procedures and standard data product algorithms for the MPL network will be described.

  10. The importance of plume rise on the concentrations and atmospheric impacts of biomass burning aerosol

    NASA Astrophysics Data System (ADS)

    Walter, Carolin; Freitas, Saulo R.; Kottmeier, Christoph; Kraut, Isabel; Rieger, Daniel; Vogel, Heike; Vogel, Bernhard

    2016-07-01

    We quantified the effects of the plume rise of biomass burning aerosol and gases for the forest fires that occurred in Saskatchewan, Canada, in July 2010. For this purpose, simulations with different assumptions regarding the plume rise and the vertical distribution of the emissions were conducted. Based on comparisons with observations, applying a one-dimensional plume rise model to predict the injection layer in combination with a parametrization of the vertical distribution of the emissions outperforms approaches in which the plume heights are initially predefined. Approximately 30 % of the fires exceed the height of 2 km with a maximum height of 8.6 km. Using this plume rise model, comparisons with satellite images in the visible spectral range show a very good agreement between the simulated and observed spatial distributions of the biomass burning plume. The simulated aerosol optical depth (AOD) with data of an AERONET station is in good agreement with respect to the absolute values and the timing of the maximum. Comparison of the vertical distribution of the biomass burning aerosol with CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) retrievals also showed the best agreement when the plume rise model was applied. We found that downwelling surface short-wave radiation below the forest fire plume is reduced by up to 50 % and that the 2 m temperature is decreased by up to 6 K. In addition, we simulated a strong change in atmospheric stability within the biomass burning plume.

  11. Microfluidic Air Sampler for Highly Efficient Bacterial Aerosol Collection and Identification.

    PubMed

    Bian, Xiaojun; Lan, Ying; Wang, Bing; Zhang, Yu Shrike; Liu, Baohong; Yang, Pengyuan; Zhang, Weijia; Qiao, Liang

    2016-12-06

    The early warning capability of the presence of biological aerosol threats is an urgent demand in ensuing civilian and military safety. Efficient and rapid air sample collection in relevant indoor or outdoor environment is a key step for subsequent analysis of airborne microorganisms. Herein, we report a portable battery-powered sampler that is capable of highly efficient bioaerosol collection. The essential module of the sampler is a polydimethylsiloxane (PDMS) microfluidic chip, which consisted of a 3-loop double-spiral microchannel featuring embedded herringbone and sawtooth wave-shaped structures. Vibrio parahemolyticus (V. parahemolyticus) as a model microorganism, was initially employed to validate the bioaerosol collection performance of the device. Results showed that the sampling efficacy reached as high as >99.9%. The microfluidic sampler showed greatly improved capturing efficiency compared with traditional plate sedimentation methods. The high performance of our device was attributed to the horizontal inertial centrifugal force and the vertical turbulence applied to airflow during sampling. The centrifugation field and turbulence were generated by the specially designed herringbone structures when air circulated in the double-spiral microchannel. The sawtooth wave-shaped microstructure created larger specific surface area for accommodating more aerosols. Furthermore, a mixture of bacterial aerosols formed by V. parahemolyticus, Listeria monocytogenes, and Escherichia coli was extracted by the microfluidic sampler. Subsequent integration with mass spectrometry conveniently identified the multiple bacterial species captured by the sampler. Our developed stand-alone and cable-free sampler shows clear advantages comparing with conventional strategies, including portability, easy-to-use, and low cost, indicating great potential in future field applications.

  12. Evaluation of multi-model aerosol distributions over East Asia using in-situ and satellite observations during summer 2008

    NASA Astrophysics Data System (ADS)

    Quennehen, B.; Raut, J.; Law, K.; Ancellet, G.; Bazureau, A.; Thomas, J.; Daskalakis, N.; Kim, S.; Zhu, T.

    2013-12-01

    As part of the EU ECLIPSE (Evaluating the CLimate and air quality ImPacts of Short-livEd pollutants) project, which aims to quantify the climate impact of short lived climate forcers (SLCFs), including aerosols, black carbon and ozone, the WRF-Chem regional and six global (ECHAM6, EMEP, HadGEM, OsloCTM, NORESM, TM4) models are evaluated using observations in East-Asia. Simulations are compared at horizontal and vertical scales to satellite observations, as well as data from field campaigns which took place in summer 2008, and from long-term measurement stations. Models were run with the same emissions, namely, the ECLIPSE anthropogenic (based on the GAINS model), GFED 3.1 fire and RCP 6.0 ship and aircraft emissions for 2008. The initial and boundary conditions for the WRF-Chem regional model were specified from the TM4 global chemical transport model. Firstly, this study evaluates the ability of the models to simulate aerosol physical, optical and chemical properties at a large scale, both horizontally and vertically, using monthly mean satellite observations such as CALIPSO, MODIS and IASI. Secondly, model daily and hourly results are evaluated at more regional/local scales using ground-based data and measurements from summer 2008 intensive campaigns, including aircraft data (CAPMEX and CAREBEIJING). In this study, we assess aerosol total concentrations and size distributions simulated by the model. The radiative impact of anthropogenic aerosol layers has already been investigated but less is known about the influence of vertical layering in the atmosphere. Pollution layers have different radiative impacts whether they are below or above clouds and in that sense, a better understanding of their spatial and vertical extent is critical. Information about pollution layers and cloud optical properties and locations over East-Asia are determined using observations from IASI for trace gases and CALIPSO for aerosols. The radiative impact of the aerosol layers is

  13. Aerosol Fluxes over Amazon Rain Forest Measured with the Eddy Covariance Method

    NASA Astrophysics Data System (ADS)

    Ahlm, L.; Nilsson, E. D.; Krejci, R.; Mårtensson, E. M.; Vogt, M.; Artaxo, P.

    2008-12-01

    We present measurements of vertical aerosol fluxes over the Amazon carried out on top of K34, a 50 meter high tower in the Cuieiras Reserve about 50 km north of Manaus in northern Brazil. The turbulent fluxes were measured with the eddy covariance method. The covariance of vertical wind speed from a sonic anemometer Gill Windmaster and total aerosol number concentration from a condensation particle counter (CPC) TSI 3010 provided the total number flux (diameter >0.01 μm). The covariance of vertical wind speed and size resolved number concentrations from an optical particle counter (OPC) Grimm 1.109 provided size resolved number fluxes in 15 bins from 0.25 μm to 2.5 μm diameter. Additionally fluxes of CO2 and H2O were derived from Li-7500 observations. The observational period, from early March to early August, includes both wet and dry season. OPC fluxes generally show net aerosol deposition both during wet and dry season with the largest downward fluxes during midday. CPC fluxes show different patterns in wet and dry season. During dry season, when number concentrations are higher, downward fluxes clearly dominate. In the wet season however, when number concentrations are lower, our data indicates that upward and downward fluxes are quite evenly distributed during course of a day. On average there is a peak in upward flux during late morning and another peak during the afternoon. Since the OPC fluxes in the same time show net deposition, there is an indication of net source of primary aerosol particles with diameters between 10 and 250 nm emitted from the rain forest. Future data analysis will hopefully shed light on origin and formation mechanism of these particles and thus provide a deeper insight in the rain forest - atmosphere interactions. The aerosol flux measurements were carried out as a part of the AMAZE project in collaboration with University of Sao Paulo, Brazil, and financial support was provided by Swedish International Development Cooperation

  14. CALIPSO-Inferred Aerosol Direct Radiative Effects: Bias Estimates Using Ground-Based Raman Lidars

    NASA Technical Reports Server (NTRS)

    Thorsen, Tyler; Fu, Qiang

    2016-01-01

    Observational constraints on the change in the radiative energy budget caused by the presence of aerosols, i.e. the aerosol direct radiative effect (DRE), have recently been made using observations from the Cloud- Aerosol Lidar and Infrared Pathfinder Satellite (CALIPSO). CALIPSO observations have the potential to provide improved global estimates of aerosol DRE compared to passive sensor-derived estimates due to CALIPSO's ability to perform vertically-resolved aerosol retrievals over all surface types and over cloud. In this study we estimate the uncertainties in CALIPSO-inferred aerosol DRE using multiple years of observations from the Atmospheric Radiation Measurement (ARM) program's Raman lidars (RL) at midlatitude and tropical sites. Examined are assumptions about the ratio of extinction-to-backscatter (i.e. the lidar ratio) made by the CALIPSO retrievals, which are needed to retrieve the aerosol extinction profile. The lidar ratio is shown to introduce minimal error in the mean aerosol DRE at the top-of-atmosphere and surface. It is also shown that CALIPSO is unable to detect all radiatively-significant aerosol, resulting in an underestimate in the magnitude of the aerosol DRE by 30-50%. Therefore, global estimates of the aerosol DRE inferred from CALIPSO observations are likely too weak.

  15. CALIPSO-Inferred Aerosol Direct Radiative Effects: Bias Estimates Using Ground-Based Raman Lidars

    NASA Technical Reports Server (NTRS)

    Thorsen, Tyler; Fu, Qiang

    2015-01-01

    Observational constraints on the change in the radiative energy budget caused by the presence of aerosols, i.e. the aerosol direct radiative effect (DRE), have recently been made using observations from the Cloud- Aerosol Lidar and Infrared Pathfinder Satellite (CALIPSO). CALIPSO observations have the potential to provide improved global estimates of aerosol DRE compared to passive sensor-derived estimates due to CALIPSO's ability to perform vertically-resolved aerosol retrievals over all surface types and over cloud. In this study we estimate the uncertainties in CALIPSO-inferred aerosol DRE using multiple years of observations from the Atmospheric Radiation Measurement (ARM) program's Raman lidars (RL) at mid-latitude and tropical sites. Examined are assumptions about the ratio of extinction-to-backscatter (i.e. the lidar ratio) made by the CALIPSO retrievals, which are needed to retrieve the aerosol extinction profile. The lidar ratio is shown to introduce minimal error in the mean aerosol DRE at the top-of-atmosphere and surface. It is also shown that CALIPSO is unable to detect all radiatively-significant aerosol, resulting in an underestimate in the magnitude of the aerosol DRE by 30â€"50%. Therefore, global estimates of the aerosol DRE inferred from CALIPSO observations are likely too weak.

  16. Numerical simulation of advection fog formation on multi-disperse aerosols due to combustion-related pollutants

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Liaw, G. S.

    1980-01-01

    The effects of multi-disperse distribution of the aerosol population are presented. Single component and multi-component aerosol species on the condensation/nucleation processes which affect the reduction in visibility are described. The aerosol population with a high particle concentration provided more favorable conditions for the formation of a denser fog than the aerosol population with a greater particle size distribution when the value of the mass concentration of the aerosols was kept constant. The results were used as numerical predictions of fog formation. Two dimensional observations in horizontal and vertical coordinates, together with time-dependent measurements were needed as initial values for the following physical parameters: (1)wind profiles; (2) temperature profiles; (3) humidity profiles; (4) mass concentration of aerosol particles; (5) particle size distribution of aerosols; and (6) chemical composition of aerosols. Formation and dissipation of advection fog, thus, can be forecasted numerically by introducing initial values obtained from the observations.

  17. Quantitative impact of aerosols on numerical weather prediction. Part II: Impacts to IR radiance assimilation

    NASA Astrophysics Data System (ADS)

    Marquis, J. W.; Campbell, J. R.; Oyola, M. I.; Ruston, B. C.; Zhang, J.

    2017-12-01

    This is part II of a two-part series examining the impacts of aerosol particles on weather forecasts. In this study, the aerosol indirect effects on weather forecasts are explored by examining the temperature and moisture analysis associated with assimilating dust contaminated hyperspectral infrared radiances. The dust induced temperature and moisture biases are quantified for different aerosol vertical distribution and loading scenarios. The overall impacts of dust contamination on temperature and moisture forecasts are quantified over the west coast of Africa, with the assistance of aerosol retrievals from AERONET, MPL, and CALIOP. At last, methods for improving hyperspectral infrared data assimilation in dust contaminated regions are proposed.

  18. Generating monodisperse pharmacological aerosols using the spinning-top aerosol generator.

    PubMed

    Biddiscombe, Martyn F; Barnes, Peter J; Usmani, Omar S

    2006-01-01

    Pharmacological aerosols of precisely controlled particle size and narrow dispersity can be generated using the spinning-top aerosol generator (STAG). The ability of the STAG to generate monodisperse aerosols from solutions of raw drug compounds makes it a valuable research instrument. In this paper, the versatility of this instrument has been further demonstrated by aerosolizing a range of commercially available nebulized pulmonary therapy preparations. Nebules of Flixotide (fluticasone propionate), Pulmicort (budesonide), Combivent (salbutamol sulphate and ipratropium bromide), Bricanyl (terbutaline sulphate), Atrovent(ipratropium bromide), and Salamol (salbutamol sulphate) were each mixed with ethanol and delivered to the STAG. Monodisperse drug aerosol distributions were generated with MMADs of 0.95-6.7 microm. To achieve larger particle sizes from the nebulizer drug suspensions, the STAG formed compound particle agglomerates derived from the smaller insoluble drug particles. These compound agglomerates behaved aerodynamically as a single particle, and this was verified using an aerodynamic particle sizer and an Andersen Cascade Impactor. Scanning electron microscope images demonstrated their physical structure. On the other hand using the nebulizer drug solutions, spherical particles proportional to the original droplet diameter were generated. The aerosols generated by the STAG can allow investigators to study the scientific principles of inhaled drug deposition and lung physiology for a range of therapeutic agents.

  19. Satellite Perspective of Aerosol Intercontinental Transport: From Qualitative Tracking to Quantitative Characterization

    NASA Technical Reports Server (NTRS)

    Yu, Hongbin; Remer, Lorraine A.; Kahn, Ralph A.; Chin, Mian; Zhang, Yan

    2012-01-01

    Evidence of aerosol intercontinental transport (ICT) is both widespread and compelling. Model simulations suggest that ICT could significantly affect regional air quality and climate, but the broad inter-model spread of results underscores a need of constraining model simulations with measurements. Satellites have inherent advantages over in situ measurements to characterize aerosol ICT, because of their spatial and temporal coverage. Significant progress in satellite remote sensing of aerosol properties during the Earth Observing System (EOS) era offers opportunity to increase quantitative characterization and estimates of aerosol ICT, beyond the capability of pre-EOS era satellites that could only qualitatively track aerosol plumes. EOS satellites also observe emission strengths and injection heights of some aerosols, aerosol precursors, and aerosol-related gases, which can help characterize aerosol ICT. After an overview of these advances, we review how the current generation of satellite measurements have been used to (1) characterize the evolution of aerosol plumes (e.g., both horizontal and vertical transport, and properties) on an episodic basis, (2) understand the seasonal and inter-annual variations of aerosol ICT and their control factors, (3) estimate the export and import fluxes of aerosols, and (4) evaluate and constrain model simulations. Substantial effort is needed to further explore an integrated approach using measurements from on-orbit satellites (e.g., A-Train synergy) for observational characterization and model constraint of aerosol intercontinental transport and to develop advanced sensors for future missions.

  20. Tethered balloon-based measurements of meteorological variables and aerosols

    NASA Technical Reports Server (NTRS)

    Sentell, R. J.; Storey, R. W.; Chang, J. J. C.; Jacobsen, S. J.

    1976-01-01

    Tethered balloon based measurements of the vertical distributions of temperature, humidity, wind speed, and aerosol concentrations were taken over a 4-hour period beginning at sunrise on June 29, 1976, at Wallops Island, Virginia. Twelve consecutive profiles of each variable were obtained from ground to about 500 meters. These measurements were in conjuction with a noise propagation study on remotely arrayed acoustic range (ROMAAR) at Wallops Flight Center. An organized listing of these vertical soundings is presented. The tethered balloon system configuration utilized for these measurements is described.

  1. Dust aerosol and optical properties over North Africa simulated with the ALADIN numerical prediction model from 2006 to 2010

    NASA Astrophysics Data System (ADS)

    Mokhtari, M.; Tulet, P.; Fischer, C.; Bouteloup, Y.; Bouyssel, F.; Brachemi, O.

    2015-02-01

    vertical structure of the dust aerosol extinction.

  2. Comparisons of Airborne HSRL and Modeled Aerosol Profiles

    NASA Astrophysics Data System (ADS)

    Ferrare, R. A.; Burton, S. P.; Hostetler, C. A.; Hair, J. W.; Ismail, S.; Rogers, R. R.; Notari, A.; Berkoff, T.; Butler, C. F.; Collins, J. E., Jr.; Fenn, M. A.; Scarino, A. J.; Clayton, M.; Mueller, D.; Chemyakin, E.; Fast, J. D.; Berg, L. K.; Randles, C. A.; Colarco, P. R.; daSilva, A.

    2014-12-01

    Aerosol profiles derived from a regional and a global model are compared with aerosol profiles acquired by NASA Langley Research Center (LaRC) airborne High Spectral Resolution Lidars (HSRLs) during recent field missions. We compare simulated aerosol profiles obtained from the WRF-Chem regional model with those measured by the airborne HSRL-2 instrument over the Atlantic Ocean east of Cape Cod in July 2012 during the Department of Energy Two-Column Aerosol Project (TCAP). While deployed on the LaRC King Air during TCAP, HSRL-2 acquired profiles of aerosol extinction at 355 and 532 nm, as well as aerosol backscatter and depolarization at 355, 532, and 1064 nm. Additional HSRL-2 data products include profiles of aerosol type, mixed layer depth, and aerosol microphysical parameters (e.g. effective radius, concentration). The HSRL-2 and WRF-Chem aerosol profiles are compared along the aircraft flight tracks. HSRL-2 profiles acquired during the NASA Deriving Information on Surface Conditions from COlumn and VERtically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) mission over Houston during September 2013 are compared with the NASA Goddard Earth Observing System global model, version 5 (GEOS-5) profiles. In addition to comparing backscatter and extinction profiles, the fraction of aerosol extinction and optical thickness from various aerosol species from GEOS-5 are compared with aerosol extinction and optical thickness contributed by aerosol types derived from HSRL-2 data. We also compare aerosol profiles modeled by GEOS-5 with those measured by the airborne LaRC DIAL/HSRL instrument during August and September 2013 when it was deployed on the NASA DC-8 for the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) mission. DIAL/HSRL measured extinction (532 nm), backscatter (532 and 1064 nm), and depolarization profiles (532 and 1064 nm) in both nadir and zenith directions during long transects over the

  3. The Influence of the 2006 Indonesian Biomass Burning Aerosols on Tropical Dynamics Studied with the GEOS-5 AGCM

    NASA Technical Reports Server (NTRS)

    Ott, Lesley; Duncan, Bryan; Pawson, Steven; Colarco, Peter; Chin, Mian; Randles, Cynthia; Diehl, Thomas; Nielsen, Eric

    2009-01-01

    The direct and semi-direct effects of aerosols produced by Indonesian biomass burning (BB) during August November 2006 on tropical dynamics have been examined using NASA's Goddard Earth Observing System, Version 5 (GEOS-5) atmospheric general circulation model (AGCM). The AGCM includes CO, which is transported by resolved and sub-grid processes and subject to a linearized chemical loss rate. Simulations were driven by two sets of aerosol forcing fields calculated offline, one that included Indonesian BB aerosol emissions and one that did not. In order to separate the influence of the aerosols from internal model variability, the means of two ten-member ensembles were compared. Diabatic heating from BB aerosols increased temperatures over Indonesia between 150 and 400 hPa. The higher temperatures resulted in strong increases in upward grid-scale vertical motion, which increased water vapor and CO over Indonesia. In October, the largest increases in water vapor were found in the mid-troposphere (25%) while the largest increases in CO occurred just below the tropopause (80 ppbv or 50%). Diabatic heating from the Indonesian BB aerosols caused CO to increase by 9% throughout the tropical tropopause layer in November and 5% in the lower stratosphere in December. The results demonstrate that aerosol heating plays an important role in the transport of BB pollution and troposphere-to-stratosphere transport. Changes in vertical motion and cloudiness induced by aerosol heating can also alter the transport and phase of water vapor in the upper troposphere/lower stratosphere.

  4. Constraining Upper Troposphere/Lower Stratosphere Aerosol Physical Processes with High-Altitude Aircraft Measurements

    NASA Technical Reports Server (NTRS)

    Jensen, Eric; Rosenlof, Karen H.; Thornberry, Troy

    2018-01-01

    Interest in a more complete understanding of the sources, composition and microphysics of stratospheric aerosol particles has intensified during recent years for several reasons: (1) small volcanic eruptions have been recognized as a driver of short-term changes in climate forcing; (2) emissions of sulfur dioxide (SO2) and other aerosol precursors have shifted to south Asia and other low latitude regions with intense vertical transport; (3) organic material has been recognized as a key contributor to lower stratospheric aerosol mass; and (4) interest in possible solar radiation management (geoengineering) through significant enhancements in stratospheric aerosols has intensified. To address stratospheric aerosol science issues, we are proposing a NASA Earth Ventures mission to NASA to provide extensive high-altitude aircraft measurements of critical gas-phase and aerosol properties at multiple locations across the planet. In this presentation, we will discuss the objectives of the proposed campaign, the measurements provided, the sampling strategy, and the modeling and analysis approaches that would be used to address specific science questions.

  5. El Chichon and 'mystery cloud' aerosols between 30 and 55 km Global observations from the SME visible spectrometer

    NASA Astrophysics Data System (ADS)

    Clancy, R. T.

    1986-09-01

    Visible limb radiances measured by the Solar Mesosphere Explorer (SME) are used to obtain volume scattering ratios for aerosol loading in the 30-55 km altitude range of the stratosphere. Global maps of these ratios are presented for the period January 1982 to August 1984. Significant aerosol scattering from the 'mystery cloud' and El Chichon aerosol layers are found above 30 km. A timescale of approximately 2 months between the appearance of the aerosol at 30.5 km and at 37.5 km is consistent with vertical transport of aerosol or vapor by eddy diffusion above 30 km. An anticorrelation exists between aerosol scattering and stratospheric temperatures. Periods of lower stratospheric temperatures may account for the formation of aerosol between 40 and 55 km altitude.

  6. El Chichon and 'mystery cloud' aerosols between 30 and 55 km Global observations from the SME visible spectrometer

    NASA Technical Reports Server (NTRS)

    Clancy, R. T.

    1986-01-01

    Visible limb radiances measured by the Solar Mesosphere Explorer (SME) are used to obtain volume scattering ratios for aerosol loading in the 30-55 km altitude range of the stratosphere. Global maps of these ratios are presented for the period January 1982 to August 1984. Significant aerosol scattering from the 'mystery cloud' and El Chichon aerosol layers are found above 30 km. A timescale of approximately 2 months between the appearance of the aerosol at 30.5 km and at 37.5 km is consistent with vertical transport of aerosol or vapor by eddy diffusion above 30 km. An anticorrelation exists between aerosol scattering and stratospheric temperatures. Periods of lower stratospheric temperatures may account for the formation of aerosol between 40 and 55 km altitude.

  7. Aerosol Radiative Forcing in Asian Continental Outflow

    NASA Technical Reports Server (NTRS)

    Pueschel, R.; Kinne, S.; Redemann, J.; Gore, Warren J. (Technical Monitor)

    2000-01-01

    Aerosols in elevated layers were sampled with FSSP-probes and wire impactors over the Pacific ocean aboard the NASA DC-8 aircraft. Analyses of particle size and morphology identifies two distinctly different aerosol types for cases when the mid-visible extinctions exceed 0.2/km. Smaller sizes (effective radii of 0.2 um) and moderate absorption (mid-visible single scattering albedo of.935) are typical for urban-industrial pollution. Larger sizes (effective radii of 0.7 um) and weak absorption (mid-visible single scattering albedo of 0.985) identify dust. This aerosol classification is in agreement with its origin as determined by airmass back trajectory analysis. Based on lidar vertical profiling, aerosol dominated by dust and urban-industrial pollution above 3km were assigned mid-visible optical depths of 0.50 and 0.27, respectively. Radiative transfer simulations, considering a 50% cloud-cover below the aerosol layers, suggest (on a daily tP C)C> basis) small reductions (-4W/m2) to the energy budget at the top of the atmosphere for both aerosol types. For c' 0 dust, more backscattering of sunlight (weaker solar absorption) is compensated by a stronger greenhouse effect due to larger sizes. Forced reductions to the energy budget at the surface are 12W/m2 for both aerosol types. In contrast, impacts on heating rates within the aerosol layers are quite different: While urban-industrial aerosol warms the layer (at +0.6K/day as solar heating dominates), dust cools (at -0.5K/day as infrared cooling dominates). Sensitivity tests show the dependence of the aerosol climatic impact on the optical depth, particle size, absorptivity, and altitude of the layers, as well as clouds and surface properties. Climatic cooling can be eliminated (1) for the urban-industrial aerosol if absorption is increased to yield a mid-visible single scattering albedo of 0.89, or if the ocean is replaced by a land surface; (2) for the dust aerosol if the effective radius is increased from 0.7 to 1

  8. Clouds, Aerosols, and Precipitation in the Marine Boundary Layer: An Arm Mobile Facility Deployment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, Robert; Wyant, Matthew; Bretherton, Christopher S.

    The Clouds, Aerosol, and Precipitation in the Marine Boundary Layer (CAP-MBL) 38 deployment at Graciosa Island in the Azores generated a 21 month (April 2009-December 2010) 39 comprehensive dataset documenting clouds, aerosols and precipitation using the Atmospheric 40 Radiation Measurement (ARM) Mobile Facility (AMF). The scientific aim of the deployment is 41 to gain improved understanding of the interactions of clouds, aerosols and precipitation in the 42 marine boundary layer. 43 Graciosa Island straddles the boundary between the subtropics and midlatitudes in the 44 Northeast Atlantic Ocean, and consequently experiences a great diversity of meteorological and 45 cloudiness conditions. Lowmore » clouds are the dominant cloud type, with stratocumulus and cumulus 46 occurring regularly. Approximately half of all clouds contained precipitation detectable as radar 47 echoes below the cloud base. Radar and satellite observations show that clouds with tops from 1-48 11 km contribute more or less equally to surface-measured precipitation at Graciosa. A wide 49 range of aerosol conditions was sampled during the deployment consistent with the diversity of 50 sources as indicated by back trajectory analysis. Preliminary findings suggest important two-way 51 interactions between aerosols and clouds at Graciosa, with aerosols affecting light precipitation 52 and cloud radiative properties while being controlled in part by precipitation scavenging. 53 The data from at Graciosa are being compared with short-range forecasts made a variety 54 of models. A pilot analysis with two climate and two weather forecast models shows that they 55 reproduce the observed time-varying vertical structure of lower-tropospheric cloud fairly well, 56 but the cloud-nucleating aerosol concentrations less well. The Graciosa site has been chosen to 57 be a long-term ARM site that became operational in October 2013.« less

  9. An Integrated Cloud-Aerosol-Radiation Product Using CERES, MODIS, CALIPSO and CloudSat Data

    NASA Astrophysics Data System (ADS)

    Sun-Mack, S.; Gibson, S.; Chen, Y.; Wielicki, B.; Minnis, P.

    2006-12-01

    The goal of this paper is to provide the first integrated data set of global vertical profiles of aerosols, clouds, and radiation using the combined NASA A-Train data from Aqua CERES and MODIS, CALIPSO, and CloudSat. All of these instruments are flying in formation as part of the Aqua Train, or A-Train. This paper will present the preliminary results of merging aerosol and cloud data from the CALIPSO active lidar, cloud data from CloudSat, integrated column aerosol and cloud data from the MODIS CERES analyses, and surface and top-of-atmosphere broadband radiation fluxes from CERES. These new data will provide unprecedented ability to test and improve global cloud and aerosol models, to investigate aerosol direct and indirect radiative forcing, and to validate the accuracy of global aerosol, cloud, and radiation data sets especially in polar regions and for multi-layered cloud conditions.

  10. Advanced BCD technology with vertical DMOS based on a semi-insulation structure

    NASA Astrophysics Data System (ADS)

    Kui, Ma; Xinghua, Fu; Jiexin, Lin; Fashun, Yang

    2016-07-01

    A new semi-insulation structure in which one isolated island is connected to the substrate was proposed. Based on this semi-insulation structure, an advanced BCD technology which can integrate a vertical device without extra internal interconnection structure was presented. The manufacturing of the new semi-insulation structure employed multi-epitaxy and selectively multi-doping. Isolated islands are insulated with the substrate by reverse-biased PN junctions. Adjacent isolated islands are insulated by isolation wall or deep dielectric trenches. The proposed semi-insulation structure and devices fixed in it were simulated through two-dimensional numerical computer simulators. Based on the new BCD technology, a smart power integrated circuit was designed and fabricated. The simulated and tested results of Vertical DMOS, MOSFETs, BJTs, resistors and diodes indicated that the proposed semi-insulation structure is reasonable and the advanced BCD technology is validated. Project supported by the National Natural Science Foundation of China (No. 61464002), the Science and Technology Fund of Guizhou Province (No. Qian Ke He J Zi [2014]2066), and the Dr. Fund of Guizhou University (No. Gui Da Ren Ji He Zi (2013)20Hao).

  11. Vertical Structure of NGC 4631

    NASA Astrophysics Data System (ADS)

    Ann, Hong Bae; Seo, Mira Seo; Baek, Su-Ja

    2011-02-01

    We present a deep CCD imaging in B and V bands which allows us to analyze the vertical structure of NGC 4631. We derive the scale heights of the thin and thick disks at a variety of positions along the major axis of the disk. The scale heights of the thin disk are nearly constant while those of the thick disk tend to increase with increasing galactocentric distance. The mean scale heights of the thin disk derived from B and V images are similar to each other (˜450 pc). Instead, those of the thick disk show a strong east-west asymmetry which is caused by the diffuse stellar emission that is most prominent in the north west regions above the disk plane. The ratio of scale heights (z_{thick}/z_{thin}) is about 2.5 in the east side of the disk. However, this ratio is greater than 4 for the thick disk above the disk plane in the west side of the galaxy.

  12. Aerosol as a player in the Arctic Amplification - an aerosol-climate model evaluation study

    NASA Astrophysics Data System (ADS)

    Schacht, Jacob; Heinold, Bernd; Tegen, Ina

    2017-04-01

    Climate warming is much more pronounced in the Arctic than in any other region on Earth - a phenomenon referred to as the "Arctic Amplification". This is closely related to a variety of specific feedback mechanisms, which relative importance, however, is not yet sufficiently understood. The local changes in the Arctic climate are far-reaching and affect for example the general atmospheric circulation and global energy transport. Aerosol particles from long-range transport and local sources play an important role in the Arctic system by modulating the energy balance (directly by interaction with solar and thermal infrared radiation and indirectly by changing cloud properties and atmospheric dynamics). The main source regions of anthropogenic aerosol are Europe and East Asia, but also local shipping and oil/gas extraction may contribute significantly. In addition, important sources are widespread, mainly natural boreal forest fires. Most of the European aerosol is transported through the lower atmospheric layers in wintertime. The Asian aerosol is transported through higher altitudes. Because of the usually pristine conditions in the Arctic even small absolute changes in aerosol concentration can have large impacts on the Arctic climate. Using global and Arctic-focused model simulations, we aim at investigating the sources and transport pathways of natural and anthropogenic aerosol to the Arctic region, as well as their impact on radiation and clouds. Here, we present first results from an aerosol-climate model evaluation study. Simulations were performed with the global aerosol-climate model ECHAM6-HAM2, using three different state-of-the-art emission inventories (ACCMIP, ACCMIP + GFAS emissions for wildfires and ECLIPSE). The runs were performed in nudged mode at T63 horizontal resolution (approximately 1.8°) with 47 vertical levels for the 10-year period 2006-2015. Black carbon (BC) and sulphate (SO4) are of particular interest. BC is highly absorbing in the

  13. Sensitivity of Homogeneous Ice Nucleation to Aerosol Perturbations and Its Implications for Aerosol Indirect Effects Through Cirrus Clouds

    NASA Astrophysics Data System (ADS)

    Liu, X.; Shi, X.

    2018-02-01

    The magnitude and sign of anthropogenic aerosol impacts on cirrus clouds through ice nucleation are still very uncertain. In this study, aerosol sensitivity (ηα), defined as the sensitivity of the number concentration (Ni) of ice crystals formed from homogeneous ice nucleation to aerosol number concentration (Na), is examined based on simulations from a cloud parcel model. The model represents the fundamental process of ice crystal formation that results from homogeneous nucleation. We find that the geometric dispersion (σ) of the aerosol size distribution used in the model is a key factor for ηα. For a monodisperse size distribution, ηα is close to zero in vertical updrafts (V < 50 cm s-1) typical of cirrus clouds. However, ηα increases to 0.1-0.3 (i.e., Ni increases by a factor of 1.3-2.0 for a tenfold increase in Na) if aerosol particles follow lognormal size distributions with a σ of 1.6-2.3 in the upper troposphere. By varying the input aerosol and environmental parameters, our model reproduces a large range of ηα values derived from homogeneous ice nucleation parameterizations widely used in global climate models (GCMs). The differences in ηα from these parameterizations can translate into a range of anthropogenic aerosol longwave indirect forcings through cirrus clouds from 0.05 to 0.36 W m-2 with a GCM. Our study suggests that a larger ηα (0.1-0.3) is more plausible and the homogeneous nucleation parameterizations should include a realistic aerosol size distribution to accurately quantify anthropogenic aerosol indirect effects.

  14. Resolving the Aerosol Piece of the Global Climate Picture

    NASA Astrophysics Data System (ADS)

    Kahn, R. A.

    2017-12-01

    Factors affecting our ability to calculate climate forcing and estimate model predictive skill include direct radiative effects of aerosols and their indirect effects on clouds. Several decades of Earth-observing satellite observations have produced a global aerosol column-amount (AOD) record, but an aerosol microphysical property record required for climate and many air quality applications is lacking. Surface-based photometers offer qualitative aerosol-type classification, and several space-based instruments map aerosol air-mass types under favorable conditions. However, aerosol hygroscopicity, mass extinction efficiency (MEE), and quantitative light absorption, must be obtained from in situ measurements. Completing the aerosol piece of the climate picture requires three elements: (1) continuing global AOD and qualitative type mapping from space-based, multi-angle imagers and aerosol vertical distribution from near-source stereo imaging and downwind lidar, (2) systematic, quantitative in situ observations of particle properties unobtainable from space, and (3) continuing transport modeling to connect observations to sources, and extrapolate limited sampling in space and time. At present, the biggest challenges to producing the needed aerosol data record are: filling gaps in particle property observations, maintaining global observing capabilities, and putting the pieces together. Obtaining the PDFs of key particle properties, adequately sampled, is now the leading observational deficiency. One simplifying factor is that, for a given aerosol source and season, aerosol amounts often vary, but particle properties tend to be repeatable. SAM-CAAM (Systematic Aircraft Measurements to Characterize Aerosol Air Masses), a modest aircraft payload deployed frequently could fill this gap, adding value to the entire satellite data record, improving aerosol property assumptions in retrieval algorithms, and providing MEEs to translate between remote-sensing optical constraints

  15. Aerosol pollution potential from major population centers

    NASA Astrophysics Data System (ADS)

    Kunkel, D.; Tost, H.; Lawrence, M. G.

    2012-09-01

    Major population centers (MPCs) or mega-cities represent the largest of growing urban agglomerations with major societal and environmental implications. In terms of air quality they are seen as localized but strong emission sources of aerosols and trace gases which in turn affect air pollution levels in the city or in downwind regions. In the state-of-the-art atmospheric chemistry general circulation model EMAC, generic aerosol and gas phase tracers with equal emission source strengths at 46 MPC locations are used to study the balance between local pollution build up and pollution export, either vertically into the upper troposphere or horizontally, but remaining in the lower atmosphere. The insoluble gas phase tracers with fixed lifetimes are transported with the atmospheric circulation, while the aerosol tracers also undergo gravitational sedimentation as well as dry and wet deposition processes. The strength of low-level tracer export depends on the location of the emission source and prevailing meteorology, in particular on atmospheric stability and the height of the boundary layer and the mixing out of this layer. In contrast, vertical transport of tracer mass depends on the tracer's solubility: the more soluble a tracer is the less mass reaches altitudes above five kilometers. Hence, the mass of insoluble gas phase tracer above five kilometers can be up to ten times higher than the hydrophilic aerosol mass from the same source. In the case of aerosol tracers, pollution build up around the source is determined by meteorological factors which have only indirect effects on tracer lifetime, like surface wind, boundary layer height, and turbulent mixing as well as those which affect the lifetime of the tracers such as precipitation. The longer a tracer stays in the atmosphere, the lower is the relative importance of the location of the source to the atmospheric mass and thus the lower is the relative local pollution build up. We further use aerosol deposition

  16. Aerosol pollution potential from major population centers

    NASA Astrophysics Data System (ADS)

    Kunkel, D.; Tost, H.; Lawrence, M. G.

    2013-04-01

    Major population centers (MPCs), or megacities, represent the largest of growing urban agglomerations with major societal and environmental implications. In terms of air quality, they are seen as localized but strong emission sources of aerosols and trace gases which in turn affect air pollution levels in the city or in downwind regions. In the state-of-the-art atmospheric chemistry general circulation model EMAC, generic aerosol and gas-phase tracers with equal emission source strengths at 46 MPC locations are used to study the balance between local pollution build-up and pollution export, either vertically into the upper troposphere or horizontally in the lower troposphere. The insoluble gas-phase tracers with fixed lifetimes are transported with the atmospheric circulation, while the aerosol tracers also undergo gravitational sedimentation as well as dry and wet deposition processes. The strength of low-level tracer export depends on the location of the emission source and prevailing meteorology, in particular on atmospheric stability and the height of the boundary layer and the mixing out of this layer. In contrast, vertical transport of tracer mass depends on the tracer's solubility: the more soluble a tracer is, the less mass reaches altitudes above five kilometers. Hence, the mass of insoluble gas-phase tracer above five kilometers can be up to ten times higher than the hydrophilic aerosol mass from the same source. In the case of aerosol tracers, pollution build-up around the source is determined by meteorological factors which have only indirect effects on tracer lifetime, like surface wind, boundary layer height, and turbulent mixing, as well as those which affect the lifetime of the tracers such as precipitation. The longer a tracer stays in the atmosphere, the lower is the relative importance of the location of the source to the atmospheric mass, and thus the lower is the relative local pollution build-up. We further use aerosol deposition fields to

  17. Spatial distribution analysis of the OMI aerosol layer height: a pixel-by-pixel comparison to CALIOP observations

    NASA Astrophysics Data System (ADS)

    Chimot, Julien; Pepijn Veefkind, J.; Vlemmix, Tim; Levelt, Pieternel F.

    2018-04-01

    A global picture of atmospheric aerosol vertical distribution with a high temporal resolution is of key importance not only for climate, cloud formation, and air quality research studies but also for correcting scattered radiation induced by aerosols in absorbing trace gas retrievals from passive satellite sensors. Aerosol layer height (ALH) was retrieved from the OMI 477 nm O2 - O2 band and its spatial pattern evaluated over selected cloud-free scenes. Such retrievals benefit from a synergy with MODIS data to provide complementary information on aerosols and cloudy pixels. We used a neural network approach previously trained and developed. Comparison with CALIOP aerosol level 2 products over urban and industrial pollution in eastern China shows consistent spatial patterns with an uncertainty in the range of 462-648 m. In addition, we show the possibility to determine the height of thick aerosol layers released by intensive biomass burning events in South America and Russia from OMI visible measurements. A Saharan dust outbreak over sea is finally discussed. Complementary detailed analyses show that the assumed aerosol properties in the forward modelling are the key factors affecting the accuracy of the results, together with potential cloud residuals in the observation pixels. Furthermore, we demonstrate that the physical meaning of the retrieved ALH scalar corresponds to the weighted average of the vertical aerosol extinction profile. These encouraging findings strongly suggest the potential of the OMI ALH product, and in more general the use of the 477 nm O2 - O2 band from present and future similar satellite sensors, for climate studies as well as for future aerosol correction in air quality trace gas retrievals.

  18. Theoretical Characterization of the Radiative Properties of Dust Aerosol for the Air Force Combat Climatology Center Point Analysis Intelligence System

    DTIC Science & Technology

    2007-03-01

    dust aerosol is known to absorb radiation in these wavelengths. Therefore, the absorptive properties of the aerosol must be taken into account to...of the dust aerosol on radiation propagation is complicated. The study addressed this problem by modeling various radiative transfer situations...are ubiquitous in nature and frequently are the determining factor in the amount of radiation received at a sensor.” The horizontal and vertical

  19. Development of an aerosol chamber for calibration of 220Rn progeny detectors

    NASA Astrophysics Data System (ADS)

    Sorimachi, Atsuyuki; Ishikawa, Tetsuo; Tokonami, Shinji

    2014-09-01

    This paper describes an aerosol chamber system that can be used for calibrations and performance experiments of passive 220Rn progeny detectors. For the purpose of this study, an aerosol generation system using carnauba wax as the aerosol material was mounted into the 220Rn chamber. We used the chamber to measure characteristics of the equilibrium factor (F) of 220Rn and unattached fraction (fp) of 220Rn progeny, which are important parameters for dose estimation. The first experiment showed that continuous and stable generation of the unattached and aerosol-attached 220Rn progeny concentrations was obtained. We observed that the spatial distributions in the chamber of the vertical profiles of the unattached and aerosol-attached 220Rn progeny concentrations were homogeneous, as were the particle number concentration and count median diameter. The values of F and fp and their characteristics observed in this study were in the same range as the values reported from indoor measurements. We found that the characteristics of F and fp were dependent on the aerosol conditions (particle diameter and particle number concentration).

  20. Vertical Transport Processes for Inert and Scavenged Species: TRACE-A Measurements

    NASA Technical Reports Server (NTRS)

    Chatfield, Robert B.; Chan, K. Roland (Technical Monitor)

    1997-01-01

    The TRACE-A mission of the NASA DC-8 aircraft made a large-scale survey of the tropical and subtropical atmosphere in September and October of 1992. Both In-situ measurements of CO (G. Sachsen NASA Langley) and aerosol size (J. Browell group, NASA Langley) provide excellent data sets with which to constrain vertical transport by planetary boundary layer mixing and deep-cloud cumulus convection. Lidar profiles of aerosol-induced scattering and ozone (also by Bremen) are somewhat require more subtle interpretation as tracers, but the vertical information on layering largely compensates for these complexities. The reason this DC-8 dataset is so useful is that very large areas of biomass burning over Africa and South America provide surface sources of appropriate sizes with which to characterize vertical and horizontal motions; the major limitation of our source description is that biomass burning patterns move considerably every few days, and daily burning inventories are a matter of concurrent, intensive research. We use the Penn State / NCAR MM5 model in an assimilation mode on the synoptic and intercontinental scale, and assess the success it shows in vertical transport descriptions. We find that the general level of emissions suggested by the climatological approach (Will. Has, U. of Montana) appears to be approximately correct, possibly a bit low, for this October, 1992, time period. Vertical transport in planetary boundary layer mixing to 5.5 kin was observed and reproduced in our simulations. Furthermore we find evidence that Blackader "transilient" or matrix-transport scheme is needed, but may require some adaptation in our tracer model: CO seems to exhibit very high values at the top of the planetary boundary layer, a process that stretches the eddy-diffusion parameterization. We will report on progress in improving the deep convective transport of carbon monoxide: the Grail scheme as we used it at 100 kin resolution did not transport enough material to the

  1. Utilization of O4 slant column density to derive aerosol layer height from a spaceborne UV-visible hyperspectral sensor: sensitivity and case study

    NASA Astrophysics Data System (ADS)

    Park, S. S.; Kim, J.; Lee, H.; Torres, O.; Lee, K.-M.; Lee, S. D.

    2015-03-01

    The sensitivities of oxygen-dimer (O4) slant column densities (SCDs) to changes in aerosol layer height are investigated using simulated radiances by a radiative transfer model, Linearized Discrete Ordinate Radiative Transfer (LIDORT), and Differential Optical Absorption Spectroscopy (DOAS) technique. The sensitivities of the O4 SCDs to aerosol types and optical properties are also evaluated and compared. Among the O4 absorption bands at 340, 360, 380, and 477 nm, the O4 absorption band at 477 nm is found to be the most suitable to retrieve the aerosol effective height. However, the O4 SCD at 477 nm is significantly influenced not only by the aerosol layer effective height but also by aerosol vertical profiles, optical properties including single scattering albedo (SSA), aerosol optical depth (AOD), and surface albedo. Overall, the error of the retrieved aerosol effective height is estimated to be 414 m (16.5%), 564 m (22.4%), and 1343 m (52.5%) for absorbing, dust, and non-absorbing aerosol, respectively, assuming knowledge on the aerosol vertical distribution type. Using radiance data from the Ozone Monitoring Instrument (OMI), a new algorithm is developed to derive the aerosol effective height over East Asia after the determination of the aerosol type and AOD from the MODerate resolution Imaging Spectroradiometer (MODIS). The retrieved aerosol effective heights are lower by approximately 300 m (27 %) compared to those obtained from the ground-based LIDAR measurements.

  2. Hygroscopic Measurements of Aerosol Particles in Colorado during the Discover AQ Campaign 2014

    NASA Astrophysics Data System (ADS)

    Orozco, D.; Delgado, R.; Espinosa, R.; Martins, J. V.; Hoff, R. M.

    2014-12-01

    In ambient conditions, aerosol particles experience hygroscopic growth due to the influence of relative humidity (RH), scattering more light than when the particles are dry. The quantitative knowledge of the RH effect and its influence on the light scattering and, in particular, on the phase function and polarization of aerosol particles is of substantial importance when comparing ground observations with other optical aerosol measurements such satellite and sunphotometric retrievals of aerosol optical depth and their inversions. In the summer of 2014, the DISCOVER-AQ campaign was held in Colorado, where systematic and concurrent observations of column- integrated surface, and vertically-resolved distributions of aerosols and trace gases relevant to air quality and their evolution during the day were observed. Aerosol optical properties were measured in the UMBC trailer at the city of Golden using a TSI-3563 nephelometer and an in-situ Polarized Imaging Nephelometer (PI-NEPH) designed and built by the LACO group at UMBC. The PI-NEPH measures aerosol phase matrix components in high angular range between 2 and 178 degrees scattering angle at three wavelengths (λ=473, 532 and 671nm). The two measured elements of the phase matrix, intensity (P11) and linear polarization (P12) provide extensive characterization of the scattering properties of the studied aerosol. The scattering coefficient, P11 and P12 were measured under different humidity conditions to obtain the enhancement factor f(RH) and the dependence of P11 and P12 to RH using a humidifier dryer system covering a RH range from 20 to 90%. The ratio between scattering coefficients at high and low humidity in Golden Colorado showed relatively low hygroscopic growth in the aerosol particles f(RH=80%) was 1.27±0.19 for the first three weeks of sampling. According to speciated measurements performed at the UMBC trailer, the predominance of dust and organic aerosols over more hygroscopic nitrate and sulfate in the

  3. Persistence of urban organic aerosols composition: Decoding their structural complexity and seasonal variability.

    PubMed

    Matos, João T V; Duarte, Regina M B O; Lopes, Sónia P; Silva, Artur M S; Duarte, Armando C

    2017-12-01

    Organic Aerosols (OAs) are typically defined as highly complex matrices whose composition changes in time and space. Focusing on time vector, this work uses two-dimensional nuclear magnetic resonance (2D NMR) techniques to examine the structural features of water-soluble (WSOM) and alkaline-soluble organic matter (ASOM) sequentially extracted from fine atmospheric aerosols collected in an urban setting during cold and warm seasons. This study reveals molecular signatures not previously decoded in NMR-related studies of OAs as meaningful source markers. Although the ASOM is less hydrophilic and structurally diverse than its WSOM counterpart, both fractions feature a core with heteroatom-rich branched aliphatics from both primary (natural and anthropogenic) and secondary origin, aromatic secondary organics originated from anthropogenic aromatic precursors, as well as primary saccharides and amino sugar derivatives from biogenic emissions. These common structures represent those 2D NMR spectral signatures that are present in both seasons and can thus be seen as an "annual background" profile of the structural composition of OAs at the urban location. Lignin-derived structures, nitroaromatics, disaccharides, and anhydrosaccharides signatures were also identified in the WSOM samples only from periods identified as smoke impacted, which reflects the influence of biomass-burning sources. The NMR dataset on the H-C molecules backbone was also used to propose a semi-quantitative structural model of urban WSOM, which will aid efforts for more realistic studies relating the chemical properties of OAs with their atmospheric behavior. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. 980 nm tapered lasers with photonic crystal structure for low vertical divergence

    NASA Astrophysics Data System (ADS)

    Ma, Xiaolong; Qu, Hongwei; Zhao, Pengchao; Liu, Yun; Zheng, Wanhua

    2016-10-01

    High power tapered lasers with nearly diffraction-limited beam quality have attracted much attention in numerous applications such as nonlinear frequency conversion, optical pumping of solid-state and fiber lasers, medical treatment and others. However, the large vertical divergence of conventional tapered lasers is a disadvantage, which makes beam shaping difficult and expensive in applications. Diode lasers with photonic crystal structure can achieve a large mode size and a narrow vertical divergence. In this paper, we present tapered lasers with photonic crystal structure emitting at 980 nm. The epitaxial layer is grown using metal organic chemical vapor deposition. The device has a total cavity length of 2 mm, which consists of a 400-um long ridge-waveguide section and a 1600-um long tapered section. The taper angle is 4°. An output power of 3.3 W is achieved with a peak conversion efficiency of 35% in pulsed mode. The threshold current is 240 mA and the slope efficiency is 0.78 W/A. In continuous wave mode, the output power is 2.87 W, which is limited by a suddenly failure resulting from catastrophic optical mirror damage. The far field divergences with full width at half maximum are 12.3° in the vertical direction and 2.9° in the lateral direction at 0.5 A. At high injection level the vertical divergence doesn't exceed 16°. Beam quality factor M2 is measured based on second moment definition in CW mode. High beam quality is demonstrated by M2 value of less than 2 in both vertical and lateral directions.

  5. Comparison of structural features of water-soluble organic matter from atmospheric aerosols with those of aquatic humic substances

    NASA Astrophysics Data System (ADS)

    Duarte, Regina M. B. O.; Santos, Eduarda B. H.; Pio, Casimiro A.; Duarte, Armando C.

    Elemental analysis, Fourier transform infrared coupled to attenuated total reflectance (FTIR-ATR) and solid-state cross polarization with magic angle spinning- 13C-nuclear magnetic resonance (CPMAS 13C NMR) spectroscopies were used to compare the chemical features of water-soluble organic compounds (WSOC) from atmospheric aerosols with those of aquatic humic and fulvic acids. The influence of different meteorological conditions on the structural composition of aerosol WSOC was also evaluated. Prior to the structural characterisation, the WSOC samples were separated into hydrophobic acids and hydrophilic acids fractions by using a XAD-8/XAD-4 isolation procedure. Results showed that WSOC hydrophobic acids are mostly aliphatic (40-62% of total NMR peak area), followed by oxygenated alkyls (15-21%) and carboxylic acid (5.4-13.4%) functional groups. Moreover, the aromatic content of aerosol WSOC samples collected between autumn and winter seasons is higher (˜18-19%) than that of samples collected during warmer periods (˜6-10%). The presence of aromatic signals typical of lignin-derived structures in samples collected during low-temperature conditions highlights the major contribution of wood burning processes in domestic fireplaces into the bulk chemical properties of WSOC from aerosols. According to our investigations, aerosol WSOC hydrophobic acids and aquatic fulvic and humic acids hold similar carbon functional groups; however, they differ in terms of the relative carbon distribution. Elemental analysis indicates that H and N contents of WSOC hydrophobic acids samples surpass those of aquatic fulvic and humic acids. In general, the obtained results suggest that WSOC hydrophobic acids have a higher aliphatic character and a lower degree of oxidation than those of standard fulvic and humic acids. The study here reported suggests that aquatic fulvic and humic acids may not be good models for WSOC from airborne particulate matter.

  6. Aerosol loading in the Southeastern United States: reconciling surface and satellite observations

    NASA Astrophysics Data System (ADS)

    Ford, B.; Heald, C. L.

    2013-09-01

    We investigate the seasonality in aerosols over the Southeastern United States using observations from several satellite instruments (MODIS, MISR, CALIOP) and surface network sites (IMPROVE, SEARCH, AERONET). We find that the strong summertime enhancement in satellite-observed aerosol optical depth (AOD) (factor 2-3 enhancement over wintertime AOD) is not present in surface mass concentrations (25-55% summertime enhancement). Goldstein et al. (2009) previously attributed this seasonality in AOD to biogenic organic aerosol; however, surface observations show that organic aerosol only accounts for ∼35% of fine particulate matter (smaller than 2.5 μm in aerodynamic diameter, PM2.5) and exhibits similar seasonality to total surface PM2.5. The GEOS-Chem model generally reproduces these surface aerosol measurements, but underrepresents the AOD seasonality observed by satellites. We show that seasonal differences in water uptake cannot sufficiently explain the magnitude of AOD increase. As CALIOP profiles indicate the presence of additional aerosol in the lower troposphere (below 700 hPa), which cannot be explained by vertical mixing, we conclude that the discrepancy is due to a missing source of aerosols above the surface layer in summer.

  7. Understanding the impact of saharan dust aerosols on tropical cyclones

    NASA Astrophysics Data System (ADS)

    Naeger, Aaron

    Genesis of Tropical Cyclones (TCs) in the main development region for Atlantic hurricanes is tied to convection initiated by African easterly waves (AEWs) during Northern hemisphere summer and fall seasons. The main development region is also impacted by dust aerosols transported from the Sahara. It has been hypothesized that dust aerosols can modulate the development of TCs through aerosol-radiation and aerosol-cloud interaction processes. In this study, we investigate the impact of dust aerosols on TC development using the Weather Research and Forecasting model coupled with chemistry (WRF-Chem). We first develop a technique to constrain the WRF-Chem model with a realistic three-dimensional spatial distribution of dust aerosols. The horizontal distribution of dust is specified using the Moderate Resolution Imaging Spectroradiometer (MODIS) derived aerosol products and output from the Goddard Chemistry Aerosol Radiation and Transport (GOCART) model. The vertical distribution of dust is constrained using the Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO). We validate our technique through in situ aircraft measurements where both showed aerosol number concentrations from 20-30 cm-3 in the atmosphere for Saharan dust moving over the eastern Atlantic Ocean. Then, we use the satellite data constraint technique to nudge the WRF-Chem aerosol fields throughout the simulation of TC Florence developing over the eastern Atlantic Ocean during September 2006. Three different experiments are conducted where the aerosol-radiation and aerosol-cloud interaction processes are either activated or deactivated in the model while all other model options are identical between the experiments. By comparing the model experiment results, the impact of the aerosol interaction processes on TC development can be understood. The results indicate that dust aerosols can delay or prevent the development of a TC as the minimum sea level pressure of TC Florence was 13 h

  8. Vertical profiles of nitrous acid in the nocturnal urban atmosphere of Houston, TX

    NASA Astrophysics Data System (ADS)

    Wong, K. W.; Oh, H.-J.; Lefer, B.; Rappenglück, B.; Stutz, J.

    2010-12-01

    Nitrous acid (HONO) often plays an important role in tropospheric photochemistry as a major precursor of the hydroxyl radical (OH) in early morning hours and potentially during the day. However, the processes leading to formation of HONO and its vertical distribution at night, which can have a considerable impact on daytime ozone formation, are currently poorly characterized by observations and models. Long-path differential optical absorption spectroscopy (LP-DOAS) measurements of HONO during the 2006 TexAQS II Radical and Aerosol Measurement Project (TRAMP), near downtown Houston, TX, show nocturnal vertical profiles of HONO, with mixing ratios of up to 2.2 ppb near the surface and below 100 ppt aloft. Three nighttime periods of HONO, NO2 and O3 observations during TRAMP were used to perform model simulations of vertical mixing ratio profiles. By adjusting vertical mixing and NOx emissions the modeled NO2 and O3 mixing ratios showed very good agreement with the observations. Using a simple conversion of NO2 to HONO on the ground, direct HONO emissions, as well as HONO loss at the ground and on aerosol, the observed HONO profiles were reproduced well by the model. The unobserved increase of HONO to NO2 ratio (HONO/NO2) with altitude that was simulated by the initial model runs was found to be due to HONO uptake being too small on aerosol and too large on the ground. Refined model runs, with adjusted HONO uptake coefficients, showed much better agreement of HONO and HONO/NO2 for two typical nights, except during morning rush hour, when other HONO formation pathways are most likely active. One of the nights analyzed showed increase of HONO mixing ratios together with decreasing NO2 mixing ratios that the model was unable to reproduce, most likely due to the impact of weak precipitation during this night. HONO formation and removal rates averaged over the lowest 300 m of the atmosphere showed that NO2 to HONO conversion on the ground was the dominant source of HONO

  9. Vertical profiles of nitrous acid in the nocturnal urban atmosphere of Houston, TX

    NASA Astrophysics Data System (ADS)

    Wong, K. W.; Oh, H.-J.; Lefer, B. L.; Rappenglück, B.; Stutz, J.

    2011-04-01

    Nitrous acid (HONO) often plays an important role in tropospheric photochemistry as a major precursor of the hydroxyl radical (OH) in early morning hours and potentially during the day. However, the processes leading to formation of HONO and its vertical distribution at night, which can have a considerable impact on daytime ozone formation, are currently poorly characterized by observations and models. Long-path differential optical absorption spectroscopy (LP-DOAS) measurements of HONO during the 2006 TexAQS II Radical and Aerosol Measurement Project (TRAMP), near downtown Houston, TX, show nocturnal vertical profiles of HONO, with mixing ratios of up to 2.2 ppb near the surface and below 100 ppt aloft. Three nighttime periods of HONO, NO2 and O3 observations during TRAMP were used to perform model simulations of vertical mixing ratio profiles. By adjusting vertical mixing and NOx emissions the modeled NO2 and O3 mixing ratios showed very good agreement with the observations. Using a simple conversion of NO2 to HONO on the ground, direct HONO emissions, as well as HONO loss at the ground and on aerosol, the observed HONO profiles were reproduced by the model for 1-2 and 7-8 September in the nocturnal boundary layer (NBL). The unobserved increase of HONO to NO2 ratio (HONO/NO2) with altitude that was simulated by the initial model runs was found to be due to HONO uptake being too small on aerosol and too large on the ground. Refined model runs, with adjusted HONO uptake coefficients, showed much better agreement of HONO and HONO/NO2 for two typical nights, except during morning rush hour, when other HONO formation pathways are most likely active. One of the nights analyzed showed an increase of HONO mixing ratios together with decreasing NO2 mixing ratios that the model was unable to reproduce, most likely due to the impact of weak precipitation during this night. HONO formation and removal rates averaged over the lowest 300 m of the atmosphere showed that NO2 to

  10. Waterspout as a special type of atmospheric aerosol dusty plasma

    NASA Astrophysics Data System (ADS)

    Rantsev-Kartinov, Valentin A.

    2004-11-01

    An analysis of databases of photographic images of oceanic surface revealed the presence of oceanic skeletal structures (OSS) [1] Rantsev-Kartinov V.A., Preprint . The OSSs presumably differ from the formerly found skeletal structures (SS) (Phys. Lett. A 306 (2002) 175) only by the fact that OSS are filled in with the closely packed blocks of a smaller size, up to thin, tens of microns-sized capillaries. The SSs in the Earth atmosphere were suggested [1] to be produced during atmospheric electricity activity by the volcanic-born dust. The fall-out of such SSs on the oceanic surface is a material source of OSS. Here we suggest that an OSS block [1] in the form of vertically oriented floating cylinder may be a stimulator of waterspout (WS). The main body of WS may be interpreted as a special type of atmospheric aerosol dusty plasma, and WS column - as a long-lived filament, being formed in the process of electric breakdown between the cloud and oceanic surface. The charged water drops aerosol may behave similar to microdust and lift upward to the cloud by the electrostatic force. With such a capillary&;electrostatic model of WS, it appears possible to interpret many effects related to WS.

  11. The Structural Changes of Tropical Cyclones Upon Interaction with Vertical Wind Shear

    NASA Technical Reports Server (NTRS)

    Ritchie, Elizabeth A.

    2003-01-01

    The Fourth Convection and Moisture Experiment (CAMEX-4) provided a unique opportunity to observe the distributions and document the roles of important atmospheric factors that impact the development of the core asymmetries and core structural changes of tropical cyclones embedded in vertical wind shear. The state-of-the-art instruments flown on the NASA DC-8 and ER-2, in addition to those on the NOAA aircraft, provided a unique set of observations that documented the core structure throughout the depth of the tropical cyclone. These data have been used to conduct a combined observational and modeling study using a state-of-the-art, high- resolution mesoscale model to examine the role of the environmental vertical wind shear in producing tropical cyclone core asymmetries, and the effects on the structure and intensity of tropical cyclones.The scientific objectives of this study were to obtain in situ measurements that would allow documentation of the physical mechanisms that influence the development of the asymmetric convection and its effect on the core structure of the tropical cyclone.

  12. An inexpensive active optical remote sensing instrument for assessing aerosol distributions.

    PubMed

    Barnes, John E; Sharma, Nimmi C P

    2012-02-01

    Air quality studies on a broad variety of topics from health impacts to source/sink analyses, require information on the distributions of atmospheric aerosols over both altitude and time. An inexpensive, simple to implement, ground-based optical remote sensing technique has been developed to assess aerosol distributions. The technique, called CLidar (Charge Coupled Device Camera Light Detection and Ranging), provides aerosol altitude profiles over time. In the CLidar technique a relatively low-power laser transmits light vertically into the atmosphere. The transmitted laser light scatters off of air molecules, clouds, and aerosols. The entire beam from ground to zenith is imaged using a CCD camera and wide-angle (100 degree) optics which are a few hundred meters from the laser. The CLidar technique is optimized for low altitude (boundary layer and lower troposphere) measurements where most aerosols are found and where many other profiling techniques face difficulties. Currently the technique is limited to nighttime measurements. Using the CLidar technique aerosols may be mapped over both altitude and time. The instrumentation required is portable and can easily be moved to locations of interest (e.g. downwind from factories or power plants, near highways). This paper describes the CLidar technique, implementation and data analysis and offers specifics for users wishing to apply the technique for aerosol profiles.

  13. Simulation of the Aerosol-Atmosphere Interaction in the Dead Sea Area with COSMO-ART

    NASA Astrophysics Data System (ADS)

    Vogel, Bernhard; Bangert, Max; Kottmeier, Christoph; Rieger, Daniel; Schad, Tobias; Vogel, Heike

    2014-05-01

    The Dead Sea is a unique environment located in the Dead Sea Rift Valley. The fault system of the Dead Sea Rift Valley marks the political borders between Israel, Jordan, and Palestine. The Dead Sea region and the ambient Eastern Mediterranean coastal zone provide a natural laboratory for studying atmospheric processes ranging from the smallest scale of cloud processes to regional weather and climate. The virtual institute DESERVE is designed as a cross-disciplinary and cooperative international project of the Helmholtz Centers KIT, GFZ, and UFZ with well-established partners in Israel, Jordan and Palestine. One main focus of one of the work packages is the role of aerosols in modifying clouds and precipitation and in developing the Dead Sea haze layer as one of the most intriguing questions. The haze influences visibility, solar radiation, and evaporation and may even affect economy and health. We applied the online coupled model system COSMO-ART, which is able to treat the feedback processes between aerosol, radiation, and cloud formation, for a case study above the Dead Sea and adjacent regions. Natural aerosol like mineral dust and sea salt as well as anthropogenic primary and secondary aerosol is taken into account. Some of the observed features like the vertical double structure of the haze layer are already covered by the simulation. We found that absorbing aerosol like mineral dust causes a temperature increase in parts of the model domain. In other areas a decrease in temperature due to cirrus clouds modified by elevated dust layers is simulated.

  14. Effects of Aircraft On Aerosol Abundance in the Upper Troposphere

    NASA Technical Reports Server (NTRS)

    Ferry, G. V.; Pueschel, R. F.; Strawa, A. W.; Howard, S. D.; Verma, S.; Mahoney, M. J.; Bui, T. P.; Hannan, J. R.; Fuelberg, H. E.; Condon, Estelle P. (Technical Monitor)

    1999-01-01

    A significant increase in sulfuric acid aerosol concentration was detected above 10 km pressure altitude during a cross-corridor flight out of Shannon on October 23, 1997. The source of this aerosol is ascribed to commercial aircraft operations in flight corridors above 10 km, because (1) a stable atmosphere prevented vertical air mass exchanges and thus eliminated surface sources, (2) air mass back trajectories documented the absence of remote continental sources, and (3) temperature profiler data showed the tropopause at least one kilometers above flight altitude throughout the flight. Particle volatility identified 70% H2SO4, 20% (NH4)2SO4 and 10% nonvolatile aerosol in the proximity of flight corridors, and (10-30)% H2SO4, up to 50% (NH4)2SO4, and (40-60)% nonvolatile aerosols in air that was not affected by aircraft operations below 10 km. Only a very small fraction of the nonvolatile particles (determined with a condensation nucleus counter) could be morphologically identified as soot aerosol (validated by scanning electron microscopy of wire impactor samples). The newly formed H2SO4 particles did not measurably affect surface area and volume of the background aerosol due to their small size, hence did not affect radiative transfer directly.

  15. Aerosol Variations in Boundary Atmospheres: Review and Prospect

    NASA Astrophysics Data System (ADS)

    Chen, Bin; Shi, Guangyu

    Atmospheric aerosols play important roles in climate and atmospheric chemistry: They scatter sunlight, provide condensation nuclei for cloud droplets, and participate in heterogeneous chemical reactions. To enable better understanding of the vertical physical, chemical and optical feathers of the aerosols in East Asia, using some atmospheric and aerosol measurement instruments on board a kind of tethered-balloon system, a series of measurements were operated in some typical areas of East Asia, including Dunhuang, which is located in the source origin district of Asian dust and Beijing, which is the representative of large inland city during the years of 2002-2011. Mineral compositions carried by the airborne particles were analyzed as well as the microbial components, meanwhile the Lidar data were compared to the direct measurements in order to get the correlation between the optical properties of the particles and their physical and chemical variations in the boundary atmosphere. Moreover, the simultaneous observations over the districts of China, Japan and Korea, and even Pakistan supported by an international cooperative project are highly expected, in order to know the changes of the chemical, physical and even optical and radiation properties of the atmospheric aerosols during their long-range transport.

  16. Sidewall patterning—a new wafer-scale method for accurate patterning of vertical silicon structures

    NASA Astrophysics Data System (ADS)

    Westerik, P. J.; Vijselaar, W. J. C.; Berenschot, J. W.; Tas, N. R.; Huskens, J.; Gardeniers, J. G. E.

    2018-01-01

    For the definition of wafer scale micro- and nanostructures, in-plane geometry is usually controlled by optical lithography. However, options for precisely patterning structures in the out-of-plane direction are much more limited. In this paper we present a versatile self-aligned technique that allows for reproducible sub-micrometer resolution local modification along vertical silicon sidewalls. Instead of optical lithography, this method makes smart use of inclined ion beam etching to selectively etch the top parts of structures, and controlled retraction of a conformal layer to define a hard mask in the vertical direction. The top, bottom or middle part of a structure could be selectively exposed, and it was shown that these exposed regions can, for example, be selectively covered with a catalyst, doped, or structured further.

  17. Evaluating Vertical Moisture Structure of the Madden-Julian Oscillation in Contemporary GCMs

    NASA Astrophysics Data System (ADS)

    Guan, B.; Jiang, X.; Waliser, D. E.

    2013-12-01

    The Madden-Julian Oscillation (MJO) remains a major challenge in our understanding and modeling of the tropical convection and circulation. Many models have troubles in realistically simulating key characteristics of the MJO, such as the strength, period, and eastward propagation. For models that do simulate aspects of the MJO, it remains to be understood what parameters and processes are the most critical in determining the quality of the simulations. This study focuses on the vertical structure of moisture in MJO simulations, with the aim to identify and understand the relationship between MJO simulation qualities and key parameters related to moisture. A series of 20-year simulations conducted by 26 GCMs are analyzed, including four that are coupled to ocean models and two that have a two-dimensional cloud resolving model embedded (i.e., superparameterized). TRMM precipitation and ERA-Interim reanalysis are used to evaluate the model simulations. MJO simulation qualities are evaluated based on pattern correlations of lead/lag regressions of precipitation - a measure of the model representation of the eastward propagating MJO convection. Models with strongest and weakest MJOs (top and bottom quartiles) are compared in terms of differences in moisture content, moisture convergence, moistening rate, and moist static energy. It is found that models with strongest MJOs have better representations of the observed vertical tilt of moisture. Relative importance of convection, advection, boundary layer, and large scale convection/precipitation are discussed in terms of their contribution to the moistening process. The results highlight the overall importance of vertical moisture structure in MJO simulations. The work contributes to the climatological component of the joint WCRP-WWRP/THORPEX YOTC MJO Task Force and the GEWEX Atmosphere System Study (GASS) global model evaluation project focused on the vertical structure and diabatic processes of the MJO.

  18. The vertical structure of gaseous galaxy discs in cold dark matter haloes

    NASA Astrophysics Data System (ADS)

    Benítez-Llambay, Alejandro; Navarro, Julio F.; Frenk, Carlos S.; Ludlow, Aaron D.

    2018-01-01

    We study the vertical structure of polytropic centrifugally supported gaseous discs embedded in cold dark matter (CDM) haloes. At fixed radius, R, the shape of the vertical density profile depends weakly on whether the disc is self-gravitating (SG) or non-self-gravitating (NSG). The disc 'characteristic' thickness, zH, set by the midplane sound speed and circular velocity, zNSG = (cs/Vc)R, in the NSG case, and by the sound speed and surface density, z_SG = c_s^2/GΣ, in SG discs, is smaller than zSG and zNSG. SG discs are typically Toomre unstable, NSG discs are stable. Exponential discs in CDM haloes with roughly flat circular velocity curves 'flare' outwards. Flares in mono abundance or coeval populations in galaxies like the Milky Way are thus not necessarily due to radial migration. For the polytropic equation of state of the Evolution and Assembly of GaLaxies and their Environments (EAGLE) simulations, discs that match observational constraints are NSG for Md < 3 × 109 M⊙ and SG at higher masses, if fully gaseous. We test these analytic results using a set of idealized smoothed particle hydrodynamic simulations and find excellent agreement. Our results clarify the role of the gravitational softening on the thickness of simulated discs, and on the onset of radial instabilities. EAGLE low-mass discs are NSG so the softening plays no role in their vertical structure. High-mass discs are expected to be SG and unstable, and may be artificially thickened and stabilized unless gravity is well resolved. Simulations with spatial resolution high enough to not compromise the vertical structure of a disc also resolve the onset of their instabilities, but the converse is not true.

  19. Intra-tidal variability of the vertical current structure in the western Dutch Wadden Sea

    NASA Astrophysics Data System (ADS)

    de Vries, Jurre; Ridderinkhof, Herman; van Aken, Hendrik

    2014-05-01

    Long-term velocity measurements are presented which were collected during three different seasons at one single location in an estuarine basin of the western Dutch Wadden Sea. These data are used to investigate the processes that determine the variability of the vertical current structure in the western Dutch Wadden Sea, in combination with simplified model runs using the one-dimensional water column model GETM (http://www.getm.eu/). Jay and Musiak [1996] were the first to suggest that intra-tidal variations in the vertical current might be important in determining the residual circulation patterns. More research [e.g. Stacey et al., 2001; Burchard and Hetland, 2010] has supported this hypothesis. Recently, lateral processes have been shown to influence the vertical current structure of alongstream velocity and hence the residual circulation [e.g. Lerczak and Geyer, 2004; Burchard and Schuttelaars, 2012]. Therefore to better understand the tidal dynamics in the western Dutch Wadden Sea, it is crucial to understand the processes that determine the vertical current structure. The two main findings of this study are that the complex bathymetry at the study site seems to produce an intra-tidal asymmetry in near-bed velocities and secondly that cross-stream processes strongly modify the current structure during late flood. Near-bed velocity and the bed roughness are greater during ebb than during flood. The GETM simulations suggest that vertical mixing during ebb is sufficient to destroy vertical stratification generated by classical tidal straining. The cross-stream current during late flood generate vertical stratification and drive an early reversal of the flood current near the surface. Therefore, it is hypothesized that this processes might increase the residual estuarine circulation at the study site. References - Burchard, H., Hetland, R.D. (2010), Quantifying the contributions of tidal straining and gravitational circulation to residual circulation in

  20. Utilization of O4 slant column density to derive aerosol layer height from a space-borne UV-visible hyperspectral sensor: sensitivity and case study

    NASA Astrophysics Data System (ADS)

    Park, Sang Seo; Kim, Jhoon; Lee, Hanlim; Torres, Omar; Lee, Kwang-Mog; Lee, Sang Deok

    2016-02-01

    The sensitivities of oxygen-dimer (O4) slant column densities (SCDs) to changes in aerosol layer height are investigated using the simulated radiances by a radiative transfer model, the linearized pseudo-spherical vector discrete ordinate radiative transfer (VLIDORT), and the differential optical absorption spectroscopy (DOAS) technique. The sensitivities of the O4 index (O4I), which is defined as dividing O4 SCD by 1040 molecules2 cm-5, to aerosol types and optical properties are also evaluated and compared. Among the O4 absorption bands at 340, 360, 380, and 477 nm, the O4 absorption band at 477 nm is found to be the most suitable to retrieve the aerosol effective height. However, the O4I at 477 nm is significantly influenced not only by the aerosol layer effective height but also by aerosol vertical profiles, optical properties including single scattering albedo (SSA), aerosol optical depth (AOD), particle size, and surface albedo. Overall, the error of the retrieved aerosol effective height is estimated to be 1276, 846, and 739 m for dust, non-absorbing, and absorbing aerosol, respectively, assuming knowledge on the aerosol vertical distribution shape. Using radiance data from the Ozone Monitoring Instrument (OMI), a new algorithm is developed to derive the aerosol effective height over East Asia after the determination of the aerosol type and AOD from the MODerate resolution Imaging Spectroradiometer (MODIS). About 80 % of retrieved aerosol effective heights are within the error range of 1 km compared to those obtained from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) measurements on thick aerosol layer cases.

  1. Coarse mode aerosols in the High Arctic

    NASA Astrophysics Data System (ADS)

    Baibakov, K.; O'Neill, N. T.; Chaubey, J. P.; Saha, A.; Duck, T. J.; Eloranta, E. W.

    2014-12-01

    Fine mode (submicron) aerosols in the Arctic have received a fair amount of scientific attention in terms of smoke intrusions during the polar summer and Arctic haze pollution during the polar winter. Relatively little is known about coarse mode (supermicron) aerosols, notably dust, volcanic ash and sea salt. Asian dust is a regular springtime event whose optical and radiative forcing effects have been fairly well documented at the lower latitudes over North America but rarely reported for the Arctic. Volcanic ash, whose socio-economic importance has grown dramatically since the fear of its effects on aircraft engines resulted in the virtual shutdown of European civil aviation in the spring of 2010 has rarely been reported in the Arctic in spite of the likely probability that ash from Iceland and the Aleutian Islands makes its way into the Arctic and possibly the high Arctic. Little is known about Arctic sea salt aerosols and we are not aware of any literature on the optical measurement of these aerosols. In this work we present preliminary results of the combined sunphotometry-lidar analysis at two High Arctic stations in North America: PEARL (80°N, 86°W) for 2007-2011 and Barrow (71°N,156°W) for 2011-2014. The multi-years datasets were analyzed to single out potential coarse mode incursions and study their optical characteristics. In particular, CIMEL sunphotometers provided coarse mode optical depths as well as information on particle size and refractive index. Lidar measurements from High Spectral Resolution lidars (AHSRL at PEARL and NSHSRL at Barrow) yielded vertically resolved aerosol profiles and gave an indication of particle shape and size from the depolarization ratio and color ratio profiles. Additionally, we employed supplementary analyses of HYSPLIT backtrajectories, OMI aerosol index, and NAAPS (Navy Aerosol Analysis and Prediction System) outputs to study the spatial context of given events.

  2. ALADINA - an unmanned research aircraft for observing vertical and horizontal distributions of ultrafine particles within the atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Altstädter, B.; Platis, A.; Wehner, B.; Scholtz, A.; Wildmann, N.; Hermann, M.; Käthner, R.; Baars, H.; Bange, J.; Lampert, A.

    2015-04-01

    This paper presents the unmanned research aircraft Carolo P360 "ALADINA" (Application of Light-weight Aircraft for Detecting IN situ Aerosol) for investigating the horizontal and vertical distribution of ultrafine particles in the atmospheric boundary layer (ABL). It has a wingspan of 3.6 m, a maximum take-off weight of 25 kg and is equipped with aerosol instrumentation and meteorological sensors. A first application of the system, together with the unmanned research aircraft MASC (Multi-Purpose Airborne Carrier) of the Eberhard Karls University of Tübingen (EKUT), is described. As small payload for ALADINA, two condensation particle counters (CPC) and one optical particle counter (OPC) were miniaturised by re-arranging the vital parts and composing them in a space-saving way in the front compartment of the airframe. The CPCs are improved concerning the lower detection threshold and the response time to less than 1.3 s. Each system was characterised in the laboratory and calibrated with test aerosols. The CPCs are operated in this study with two different lower detection threshold diameters of 11 and 18 nm. The amount of ultrafine particles, which is an indicator for new particle formation, is derived from the difference in number concentrations of the two CPCs (ΔN). Turbulence and thermodynamic structure of the boundary layer are described by measurements of fast meteorological sensors that are mounted at the aircraft nose. A first demonstration of ALADINA and a feasibility study were conducted in Melpitz near Leipzig, Germany, at the Global Atmosphere Watch (GAW) station of the Leibniz Institute for Tropospheric Research (TROPOS) on 2 days in October 2013. There, various ground-based instruments are installed for long-term atmospheric monitoring. The ground-based infrastructure provides valuable additional background information to embed the flights in the continuous atmospheric context and is used for validation of the airborne results. The development of the

  3. Evaluating Secondary Inorganic Aerosols in Three Dimensions

    NASA Technical Reports Server (NTRS)

    Mezuman, Keren; Bauer, Susanne E.; Tsigaridis, Kostas

    2016-01-01

    The spatial distribution of aerosols and their chemical composition dictates whether aerosols have a cooling or a warming effect on the climate system. Hence, properly modeling the three-dimensional distribution of aerosols is a crucial step for coherent climate simulations. Since surface measurement networks only give 2-D data, and most satellites supply integrated column information, it is thus important to integrate aircraft measurements in climate model evaluations. In this study, the vertical distribution of secondary inorganic aerosol (i.e., sulfate, ammonium, and nitrate) is evaluated against a collection of 14 AMS flight campaigns and surface measurements from 2000 to 2010 in the USA and Europe. GISS ModelE2 is used with multiple aerosol microphysics (MATRIX, OMA) and thermodynamic (ISORROPIA II, EQSAM) configurations. Our results show that the MATRIX microphysical scheme improves the model performance for sulfate, but that there is a systematic underestimation of ammonium and nitrate over the USA and Europe in all model configurations. In terms of gaseous precursors, nitric acid concentrations are largely underestimated at the surface while overestimated in the higher levels of the model. Heterogeneous reactions on dust surfaces are an important sink for nitric acid, even high in the troposphere. At high altitudes, nitrate formation is calculated to be ammonia limited. The underestimation of ammonium and nitrate in polluted regions is most likely caused by a too simplified treatment of the NH3/NH4(+) partitioning which affects the HNO3/NO3(-) partitioning.

  4. Aerosol-Monsoon Interaction, maintenance and variability of the Asian Tropopause Aerosol Layer (ATAL)

    NASA Astrophysics Data System (ADS)

    Yuan, C.; Lau, W. K. M.; Li, Z.

    2016-12-01

    In recent years, the discovery of the Asian Tropopause Aerosol Layer (ATAL) from NASA satellite observations has sparked much interests in research on its composition, origin and relationships to the transport processes of atmospheric constituents in the upper troposphere and lower stratosphere (UTLS) and the variability of the Asian Monsoon Anticyclone (AMA). In this paper, based on analysis of MERRA2 reanalysis data, we present results showing that: 1) water vapor, aerosols and chemical gases (BC, OC, dust and CO) originated for the earth surface contribute significantly to the composition of the ATAL during the Asian summer monsoon, 2) one of the major pathways is via the strong large-scale vertical motion, and convective ascent over the Northern Himalayan Foothills during the peak phase of the Indian monsoon, 3) once transported into the UTLS , atmospheric constituents are capped by the Tropopuase inversion Layer (TIL) and advected around within and in the vicinity of the AMA forming the ATAL, 4) the ATAL is modulated by UTLS transport processes which undergo intrinsic monsoon intraseasonal oscillations with 20-30 day quasi-periodicity, coupled to lower tropospheric monsoon dynamics and diabatic heating processes, 5) the pre-monsoon accumulation of absorbing aerosols (BC, OC and dust) over the Indo-Gangetic Plain is more than likely to play an important role in enhancing the UTLS transport of atmospheric constituents from the earth surface to the ATAL.

  5. UAS as a Support for Atmospheric Aerosols Research: Case Study

    NASA Astrophysics Data System (ADS)

    Chiliński, Michał T.; Markowicz, Krzysztof M.; Kubicki, Marek

    2018-01-01

    Small drones (multi-copters) have the potential to deliver valuable data for atmospheric research. They are especially useful for collecting vertical profiles of optical and microphysical properties of atmospheric aerosols. Miniaturization of sensors, such as aethalometers and particle counters, allows for collecting profiles of black carbon concentration, absorption coefficient, and particle size distribution. Vertical variability of single-scattering properties has a significant impact on radiative transfer and Earth's climate, but the base of global measurements is very limited. This results in high uncertainties of climate/radiation models. Vertical range of modern multi-copters is up to 2000 m, which is usually enough to study aerosols up to the top of planetary boundary layer on middle latitudes. In this study, we present the benefits coming from usage of small drones in atmospheric research. The experiment, described as a case study, was conducted at two stations (Swider and Warsaw) in Poland, from October 2014 to March 2015. For over 6 months, photoacoustic extinctiometers collected data at both stations. This enabled us to compare the stations and to establish ground reference of black carbon concentrations for vertical profiles collected by ceilometer and drone. At Swider station, we used Vaisala CL-31 ceilometer. It delivered vertical profiles of range corrected signal, which were analysed together with profiles acquired by micro-aethalometer AE-51 and Vaisala RS92-SGP radiosonde carried by a hexacopter drone. Near to the surface, black carbon gradient of ≈ 400 (\\upmu g/m^3 )/100 m was detected, which was below the ceilometer minimal altitude of detection. This confirmed the usefulness of drones and potential of their support for remote sensing techniques.

  6. Detection of aerosol pollution sources during sandstorms in Northwestern China using remote sensed and model simulated data

    NASA Astrophysics Data System (ADS)

    Filonchyk, Mikalai; Yan, Haowen; Yang, Shuwen; Lu, Xiaomin

    2018-02-01

    The present paper has used a comprehensive approach to study atmosphere pollution sources including the study of vertical distribution characteristics, the epicenters of occurrence and transport of atmospheric aerosol in North-West China under intensive dust storm registered in all cities of the region in April 2014. To achieve this goal, the remote sensing data using Moderate Resolution Imaging Spectroradiometer satellite (MODIS) as well as model-simulated data, were used, which facilitate tracking the sources, routes, and spatial extent of dust storms. The results of the study have shown strong territory pollution with aerosol during sandstorm. According to ground-based air quality monitoring stations data, concentrations of PM10 and PM2.5 exceeded 400 μg/m3 and 150 μg/m3, respectively, the ratio PM2.5/PM10 being within the range of 0.123-0.661. According to MODIS/Terra Collection 6 Level-2 aerosol products data and the Deep Blue algorithm data, the aerosol optical depth (AOD) at 550 nm in the pollution epicenter was within 0.75-1. The vertical distribution of aerosols indicates that the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) 532 nm total attenuates backscatter coefficient ranges from 0.01 to 0.0001 km-1 × sr-1 with the distribution of the main types of aerosols in the troposphere of the region within 0-12.5 km, where the most severe aerosol contamination is observed in the lower troposphere (at 3-6 km). According to satellite sounding and model-simulated data, the sources of pollution are the deserted regions of Northern and Northwestern China.

  7. Determination of nocturnal aerosol properties from a combination of lunar photometer and lidar observations

    NASA Astrophysics Data System (ADS)

    Li, Donghui; Li, Zhengqiang; Lv, Yang; Zhang, Ying; Li, Kaitao; Xu, Hua

    2015-10-01

    Aerosol plays a key role in the assessment of global climate change and environmental health, while observation is one of important way to deepen the understanding of aerosol properties. In this study, the newly instrument - lunar photometer is used to measure moonlight and nocturnal column aerosol optical depth (AOD, τ) is retrieved. The AOD algorithm is test and verified with sun photometer both in high and low aerosol loading. Ångström exponent (α) and fine/coarse mode AOD (τf, τc) 1 is derived from spectral AOD. The column aerosol properties (τ, α, τf, τc) inferred from the lunar photometer is analyzed based on two month measurement in Beijing. Micro-pulse lidar has advantages in retrieval of aerosol vertical distribution, especially in night. However, the typical solution of lidar equation needs lidar ratio(ratio of aerosol backscatter and extinction coefficient) assumed in advance(Fernald method), or constrained by AOD2. Yet lidar ratio is varied with aerosol type and not easy to fixed, and AOD is used of daylight measurement, which is not authentic when aerosol loading is different from day and night. In this paper, the nocturnal AOD measurement from lunar photometer combined with mie scattering lidar observations to inverse aerosol extinction coefficient(σ) profile in Beijing is discussed.

  8. Aerosol Retrievals from Proposed Satellite Bistatic Lidar Observations: Algorithm and Information Content

    NASA Astrophysics Data System (ADS)

    Alexandrov, M. D.; Mishchenko, M. I.

    2017-12-01

    Accurate aerosol retrievals from space remain quite challenging and typically involve solving a severely ill-posed inverse scattering problem. We suggested to address this ill-posedness by flying a bistatic lidar system. Such a system would consist of formation flying constellation of a primary satellite equipped with a conventional monostatic (backscattering) lidar and an additional platform hosting a receiver of the scattered laser light. If successfully implemented, this concept would combine the measurement capabilities of a passive multi-angle multi-spectral polarimeter with the vertical profiling capability of a lidar. Thus, bistatic lidar observations will be free of deficiencies affecting both monostatic lidar measurements (caused by the highly limited information content) and passive photopolarimetric measurements (caused by vertical integration and surface reflection).We present a preliminary aerosol retrieval algorithm for a bistatic lidar system consisting of a high spectral resolution lidar (HSRL) and an additional receiver flown in formation with it at a scattering angle of 165 degrees. This algorithm was applied to synthetic data generated using Mie-theory computations. The model/retrieval parameters in our tests were the effective radius and variance of the aerosol size distribution, complex refractive index of the particles, and their number concentration. Both mono- and bimodal aerosol mixtures were considered. Our algorithm allowed for definitive evaluation of error propagation from measurements to retrievals using a Monte Carlo technique, which involves random distortion of the observations and statistical characterization of the resulting retrieval errors. Our tests demonstrated that supplementing a conventional monostatic HSRL with an additional receiver dramatically increases the information content of the measurements and allows for a sufficiently accurate characterization of tropospheric aerosols.

  9. What does reflection from cloud sides tell us about vertical distribution of cloud droplets?

    NASA Technical Reports Server (NTRS)

    Marshak, A.; Kaufman, Yoram; Martins, V.; Zubko, Victor

    2006-01-01

    In order to accurately measure the interaction of clouds with aerosols, we have to resolve the vertical distribution of cloud droplet sizes and determine the temperature of glaciation for clean and polluted clouds. Knowledge of the droplet vertical profile is also essential for understanding precipitation. So far, all existing satellites either measure cloud microphysics only at cloud top (e.g., MODIS) or give a vertical profile of precipitation sized droplets (e.g., Cloudsat). What if one measures cloud microphysical properties in the vertical by retrieving them from the solar and infrared radiation reflected or emitted from cloud sides? This was the idea behind CLAIM-3D (A 3D - cloud aerosol interaction mission) recently proposed by NASA GSFC. This presentation will focus on the interpretation of the radiation reflected from cloud sides. In contrast to plane-parallel approximation, a conventional approach to all current operational retrievals, 3D radiative transfer will be used for interpreting the observed reflectances. As a proof of concept, we will show a few examples of radiation reflected from cloud fields generated by a simple stochastic cloud model with prescribed microphysics. Instead of fixed values of the retrieved effective radii, the probability density functions of droplet size distributions will serve as possible retrievals.

  10. MGS TES Measurements of Dust and Ice Aerosol Behaviors

    NASA Astrophysics Data System (ADS)

    Clancy, R. T.; Wolff, M. J.; Christensen, P. R.

    2000-10-01

    The Thermal Emission Spectrometer (TES, Christensen et al., Science, v279, 1692-1697, 1998) on board the Mars Global Surveyor obtains simultaneous solar band and thermal IR spectral emission-phase-function (EPF) observations with global spatial coverage and continuous seasonal sampling. These measurements allow the first comprehensive study of the coupled visible scattering and thermal IR absorption properties of Mars atmospheric aerosols, a fundamental requirement towards defining opacities, particle sizes, and particle shapes for separable dust and water ice aerosol components. Furthermore, TES limb sounding at solar band and IR wavelengths may be analyzed in the context of these EPF column determinations to constrain the distinctive vertical profile behaviors of dust and ice clouds. We present initial radiative transfer analyses of TES visible and IR EPFs, which indicate surprisingly complex dust and ice aerosol behaviors over all latitudes and seasons. Distinctive backscattering peaks of variable intensity are observed for several types of water ice clouds, along with evidence for ice-coated dust aerosols. We will present a broad spatial and temporal sampling of solar band and spectral IR results for Mars atmospheric ice and dust aerosols observed over the 1998-2000 period. This research is supported by the MGS Participating Scientist and MED Science Data Analysis programs.

  11. Arabian Sea tropical cyclones intensified by emissions of black carbon and other aerosols.

    PubMed

    Evan, Amato T; Kossin, James P; Chung, Chul Eddy; Ramanathan, V

    2011-11-02

    Throughout the year, average sea surface temperatures in the Arabian Sea are warm enough to support the development of tropical cyclones, but the atmospheric monsoon circulation and associated strong vertical wind shear limits cyclone development and intensification, only permitting a pre-monsoon and post-monsoon period for cyclogenesis. Thus a recent increase in the intensity of tropical cyclones over the northern Indian Ocean is thought to be related to the weakening of the climatological vertical wind shear. At the same time, anthropogenic emissions of aerosols have increased sixfold since the 1930s, leading to a weakening of the southwesterly lower-level and easterly upper-level winds that define the monsoonal circulation over the Arabian Sea. In principle, this aerosol-driven circulation modification could affect tropical cyclone intensity over the Arabian Sea, but so far no such linkage has been shown. Here we report an increase in the intensity of pre-monsoon Arabian Sea tropical cyclones during the period 1979-2010, and show that this change in storm strength is a consequence of a simultaneous upward trend in anthropogenic black carbon and sulphate emissions. We use a combination of observational, reanalysis and model data to demonstrate that the anomalous circulation, which is radiatively forced by these anthropogenic aerosols, reduces the basin-wide vertical wind shear, creating an environment more favourable for tropical cyclone intensification. Because most Arabian Sea tropical cyclones make landfall, our results suggest an additional impact on human health from regional air pollution.

  12. Lidar investigations of thermal regime and aerosol stratification of the stratosphere over tomsk

    NASA Astrophysics Data System (ADS)

    Matvienko, Gennady; Marichev, Valeriy; Bochkovsky, Dmitry

    2018-04-01

    One of the important applications of lidar techniques is the study of thermal regime and aerosol content of the stratosphere. Such investigations in monitoring mode were started at the Institute of atmospheric optics since 1994 and are continued to date. The main attention is paid for the study of the unexpected disturbances caused by winter stratospheric warming. In this paper we present the results of the study of the vertical distribution of temperature and aerosol over Tomsk of last years.

  13. The Structure of Vertical Wind Shear in Tropical Cyclone Environments: Implications for Forecasting and Predictability

    NASA Astrophysics Data System (ADS)

    Finocchio, Peter M.

    The vertical wind shear measured between 200 and 850 hPa is commonly used to diagnose environmental interactions with a tropical cyclone (TC) and to forecast the storm's intensity and structural evolution. More often than not, stronger vertical shear within this deep layer prohibits the intensification of TCs and leads to predictable asymmetries in precipitation. But such bulk measures of vertical wind shear can occasionally mislead the forecaster. In the first part of this dissertation, we use a series of idealized numerical simulations to examine how a TC responds to changing the structure of unidirectional vertical wind shear while fixing the 200-850-hPa shear magnitude. These simulations demonstrate a significant intensity response, in which shear concentrated in shallow layers of the lower troposphere prevents vortex intensification. We attribute the arrested development of TCs in lower-level shear to the intrusion of mid-level environmental air over the surface vortex early in the simulations. Convection developing on the downshear side of the storm interacts with the intruding air so as to enhance the downward flux of low-entropy air into the boundary layer. We also construct a two-dimensional intensity response surface from a set of simulations that sparsely sample the joint shear height-depth parameter space. This surface reveals regions of the two-parameter space for which TC intensity is particularly sensitive. We interpret these parameter ranges as those which lead to reduced intensity predictability. Despite the robust response to changing the shape of a sheared wind profile in idealized simulations, we do not encounter such sensitivity within a large set of reanalyzed TCs in the Northern Hemisphere. Instead, there is remarkable consistency in the structure of reanalyzed wind profiles around TCs. This is evident in the distributions of two new parameters describing the height and depth of vertical wind shear, which highlight a clear preference for

  14. Evaluation of Aerosol-cloud Interaction in the GISS Model E Using ARM Observations

    NASA Technical Reports Server (NTRS)

    DeBoer, G.; Bauer, S. E.; Toto, T.; Menon, Surabi; Vogelmann, A. M.

    2013-01-01

    Observations from the US Department of Energy's Atmospheric Radiation Measurement (ARM) program are used to evaluate the ability of the NASA GISS ModelE global climate model in reproducing observed interactions between aerosols and clouds. Included in the evaluation are comparisons of basic meteorology and aerosol properties, droplet activation, effective radius parameterizations, and surface-based evaluations of aerosol-cloud interactions (ACI). Differences between the simulated and observed ACI are generally large, but these differences may result partially from vertical distribution of aerosol in the model, rather than the representation of physical processes governing the interactions between aerosols and clouds. Compared to the current observations, the ModelE often features elevated droplet concentrations for a given aerosol concentration, indicating that the activation parameterizations used may be too aggressive. Additionally, parameterizations for effective radius commonly used in models were tested using ARM observations, and there was no clear superior parameterization for the cases reviewed here. This lack of consensus is demonstrated to result in potentially large, statistically significant differences to surface radiative budgets, should one parameterization be chosen over another.

  15. Vertically uniform formation pathways of tropospheric sulfate aerosols in East China detected from triple stable oxygen and radiogenic sulfur isotopes

    NASA Astrophysics Data System (ADS)

    Lin, Mang; Biglari, Saman; Zhang, Zhisheng; Crocker, Daniel; Tao, Jun; Su, Binbin; Liu, Lanzhong; Thiemens, Mark H.

    2017-05-01

    Sulfate aerosols (SO42-) in the continental outflow from East China significantly alter the atmospheric sulfur budget across the Pacific Rim, but its formation pathways, especially in the free troposphere (FT), remain poorly understood. Here we analyze stable oxygen (δ17O and δ18O) and radiogenic sulfur (35S) isotopes in SO42- collected at a mountain site in East China to investigate SO42- formation pathways at varying altitudes. We find that Δ17O (=δ17O-0.52 × δ18O) in SO42- is not correlated with 35S (a direct measure of high-altitude air masses). This pattern notably differs from the currently known 35S-Δ17O relation. The result implies that the formation pathway of tropospheric SO42- in East China is vertically uniform, likely due to large emissions and active convection in this region. Our measurements provide unambiguous isotopic constraints for reducing uncertainties in modeling SO42- in the FT over East China, which greatly affects regional climate but current models fail to accurately estimate.

  16. Utilization of O4 Slant Column Density to Derive Aerosol Layer Height from a Spaceborne UV-Visible Hyperspectral Sensor: Sensitivity and Case Study

    NASA Technical Reports Server (NTRS)

    Park, Sang Seo; Kim, Jhoon; Lee, Hanlim; Torres, Omar; Lee, Kwang-Mog; Lee, Sang Deok

    2016-01-01

    The sensitivities of oxygen-dimer (O4) slant column densities (SCDs) to changes in aerosol layer height are investigated using the simulated radiances by a radiative transfer model, the linearized pseudo-spherical vector discrete ordinate radiative transfer (VLIDORT), and the Differential Optical Absorption Spectroscopy (DOAS) technique. The sensitivities of the O4 index (O4I), which is defined as dividing O4 SCD by 10(exp 40) sq molecules cm(exp -5), to aerosol types and optical properties are also evaluated and compared. Among the O4 absorption bands at 340, 360, 380, and 477 nm, the O4 absorption band at 477 nm is found to be the most suitable to retrieve the aerosol effective height. However, the O4I at 477 nm is significantly influenced not only by the aerosol layer effective height but also by aerosol vertical profiles, optical properties including single scattering albedo (SSA), aerosol optical depth (AOD), particle size, and surface albedo. Overall, the error of the retrieved aerosol effective height is estimated to be 1276, 846, and 739 m for dust, non-absorbing, and absorbing aerosol, respectively, assuming knowledge on the aerosol vertical distribution shape. Using radiance data from the Ozone Monitoring Instrument (OMI), a new algorithm is developed to derive the aerosol effective height over East Asia after the determination of the aerosol type and AOD from the MODerate resolution Imaging Spectroradiometer (MODIS). About 80% of retrieved aerosol effective heights are within the error range of 1 km compared to those obtained from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) measurements on thick aerosol layer cases.

  17. Light Absorption and Excitation-Emission Fluorescence of Urban Organic Aerosol Components and Their Relationship to Chemical Structure.

    PubMed

    Chen, Qingcai; Ikemori, Fumikazu; Mochida, Michihiro

    2016-10-18

    The present study used a combination of solvent and solid-phase extractions to fractionate organic compounds with different polarities from total suspended particulates in Nagoya, Japan, and their optical characteristics were obtained on the basis of their UV-visible absorption spectra and excitation-emission matrices (EEMs). The relationship between their optical characteristics and chemical structures was investigated based on high-resolution aerosol mass spectra (HR-AMS spectra), soft ionization mass spectra and Fourier transform infrared (FT-IR) spectra. The major light-absorption organics were less polar organic fractions, which tended to have higher mass absorption efficiencies (MAEs) and lower wavelength dependent Ångström exponents (Å) than the more polar organic fractions. Correlation analyses indicate that organic compounds with O and N atoms may contribute largely to the total light absorption and fluorescence of the organic aerosol components. The extracts from the aerosol samples were further characterized by a classification of the EEM profiles using a PARAFAC model. Different fluorescence components in the aerosol organic EEMs were associated with specific AMS ions and with different functional groups from the FT-IR analysis. These results may be useful to determine and further classify the chromophores in atmospheric organic aerosols using EEM spectroscopy.

  18. Radiative Impact of Observed and Simulated Aerosol Layers Over the East Coast of North America

    NASA Astrophysics Data System (ADS)

    Berg, L. K.; Fast, J. D.; Burton, S. P.; Chand, D.; Comstock, J. M.; Ferrare, R. A.; Hair, J. W.; Hostetler, C. A.; Hubbe, J. M.; Kassianov, E.; Rogers, R. R.; Sedlacek, A. J., III; Shilling, J. E.; Tomlinson, J. M.; Wilson, J. M.; Zelenyuk, A.

    2014-12-01

    The vertical distribution of particles in the atmospheric column can have a large impact on the radiative forcing and cloud microphysics. A recent climatology constructed using data collected by the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) suggests elevated layers of aerosol are quite common near the North American east coast during both winter and summer. The Two-Column Aerosol Project (TCAP), conducted from June 2012 through June 2013, was a unique study utilizing both in situ and remotely sensed measurements designed to provide a comprehensive data set that can be used to investigate science questions related to aerosol radiative forcing and the vertical distribution of aerosol. The study sampled the atmosphere at a number of altitudes within two atmospheric columns; one located near the coast of North America (over Cape Cod, MA) and a second over the Atlantic Ocean several hundred kilometers from the coast. TCAP included the yearlong deployment of the U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF) located at the base of the Cape Cod column, as well as summer and winter aircraft intensive observation periods (IOPs) using the ARM Aerial Facility. One important finding from the TCAP summer IOP is the relatively common occurrence (during four of the six nearly cloud-free flights) of elevated aerosol layers in both the Cape Cod and maritime columns that were detected using the nadir pointing second-generation NASA Langley Research Center High-Spectral Resolution Lidar (HSRL-2). These elevated layers contributed up to 60% of the total observed aerosol optical depth (AOD). Many of these layers were also intercepted by the aircraft configured for in situ sampling, and the aerosol in the layers was found to have increased amounts of biomass burning material and nitrate compared to aerosol found near the surface. Both the in situ and remote sensing observations have been compared to

  19. Cloud and aerosol polarimetric imager

    NASA Astrophysics Data System (ADS)

    Zhang, Junqiang; Shao, Jianbing; Yan, Changxiang

    2014-02-01

    Cloud and Aerosol Polarimetric Imager (CAPI), which is the first onboard cloud and aerosol Polarimetric detector of CHINA, is developed to get cloud and aerosol data of atmosphere to retrieve aerosol optical and microphysical properties to increase the reversion precision of greenhouse gasses (GHGs). The instrument is neither a Polarization and Direction of Earth's Reflectance (POLDER) nor a Directional Polarimetric Camera (DPC) type polarized camera. It is a multispectral push broom system using linear detectors, and can get 5 bands spectral data, from ultraviolet (UV) to SWIR, of the same ground feature at the same time without any moving structure. This paper describes the CAPI instrument characteristics, composition, calibration, and the nearest development.

  20. Disentangling sea-surface temperature and anthropogenic aerosol influences on recent trends in South Asian monsoon rainfall

    NASA Astrophysics Data System (ADS)

    Patil, Nitin; Venkataraman, Chandra; Muduchuru, Kaushik; Ghosh, Subimal; Mondal, Arpita

    2018-05-01

    Recent studies point to combined effects of changes in regional land-use, anthropogenic aerosol forcing and sea surface temperature (SST) gradient on declining trends in the South Asian monsoon (SAM). This study attempted disentangling the effects produced by changes in SST gradient from those by aerosol levels in an atmospheric general circulation model. Two pairs of transient ensemble simulations were made, for a 40-year period from 1971 to 2010, with evolving versus climatological SSTs and with anthropogenic aerosol emissions fixed at 1971 versus 2010, in each case with evolution of the other forcing element, as well as GHGs. Evolving SST was linked to a widespread feedback on increased surface temperature, reduced land-sea thermal contrast and a weakened Hadley circulation, with weakening of cross-equatorial transport of moisture transport towards South Asia. Increases in anthropogenic aerosol levels (1971 versus 2010), led to an intensification of drying in the peninsular Indian region, through several regional pathways. Aerosol forcing induced north-south asymmetries in temperature and sea-level pressure response, and a cyclonic circulation in the Bay of Bengal, leading to an easterly flow, which opposes the monsoon flow, suppressing moisture transport over peninsular India. Further, aerosol induced decreases in convection, vertically integrated moisture flux convergence, evaporation flux and cloud fraction, in the peninsular region, were spatially congruent with reduced convective and stratiform rainfall. Overall, evolution of SST acted through a weakening of cross-equatorial moisture flow, while increases in aerosol levels acted through suppression of Arabian Sea moisture transport, as well as, of convection and vertical moisture transport, to influence the suppression of SAM rainfall.

  1. Seasonally Transported Aerosol Layers Over Southeast Atlantic are Closer to Underlying Clouds than Previously Reported

    NASA Technical Reports Server (NTRS)

    Rajapakshe, Chamara; Zhang, Zhibo; Yorks, John E.; Yu, Hongbin; Tan, Qian; Meyer, Kerry; Platnick, Steven; Winker, David M.

    2017-01-01

    From June to October, low-level clouds in the southeast (SE) Atlantic often underlie seasonal aerosol layers transported from African continent. Previously, the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) 532 nm lidar observations have been used to estimate the relative vertical location of the above-cloud aerosols (ACA) to the underlying clouds. Here we show new observations from NASA's Cloud-Aerosol Transport System (CATS) lidar. Two seasons of CATS 1064 nm observations reveal that the bottom of the ACA layer is much lower than previously estimated based on CALIPSO 532 nm observations. For about 60% of CATS nighttime ACA scenes, the aerosol layer base is within 360 m distance to the top of the underlying cloud. Our results are important for future studies of the microphysical indirect and semidirect effects of ACA in the SE Atlantic region.

  2. Long term aerosol and trace gas measurements in Central Amazonia

    NASA Astrophysics Data System (ADS)

    Artaxo, Paulo; Barbosa, Henrique M. J.; Ferreira de Brito, Joel; Carbone, Samara; Rizzo, Luciana V.; Andreae, Meinrat O.; Martin, Scot T.

    2016-04-01

    The central region of the Amazonian forest is a pristine region in terms of aerosol and trace gases concentrations. In the wet season, Amazonia is actually one of the cleanest continental region we can observe on Earth. A long term observational program started 20 years ago, and show important features of this pristine region. Several sites were used, between then ATTO (Amazon Tall Tower Observatory) and ZF2 ecological research site, both 70-150 Km North of Manaus, receiving air masses that traveled over 1500 km of pristine tropical forests. The sites are GAW regional monitoring stations. Aerosol chemical composition (OC/EC and trace elements) is being analysed using filters for fine (PM2.5) and coarse mode aerosol as well as Aerodyne ACSM (Aerosol Chemical Speciation Monitors). VOCs are measured using PTR-MS, while CO, O3 and CO2 are routinely measured. Aerosol absorption is being studied with AE33 aethalometers and MAAP (Multi Angle Absorption Photometers). Aerosol light scattering are being measured at several wavelengths using TSI and Ecotech nephelometers. Aerosol size distribution is determined using scanning mobility particle sizer at each site. Lidars measure the aerosol column up to 12 Km providing the vertical profile of aerosol extinction. The aerosol column is measures using AERONET sun photometers. In the wet season, organic aerosol comprises 75-85% of fine aerosol, and sulfate and nitrate concentrations are very low (1-3 percent). Aerosols are dominated by biogenic primary particles as well as SOA from biogenic precursors. Black carbon in the wet season accounts for 5-9% of fine mode aerosol. Ozone in the wet season peaks at 10-12 ppb at the middle of the day, while carbon monoxide averages at 50-80 ppb. Aerosol optical thickness (AOT) is a low 0.05 to 0.1 at 550 nm in the wet season. Sahara dust transport events sporadically enhance the concentration of soil dust aerosols and black carbon. In the dry season (August-December), long range transported

  3. Multi-sensor cloud and aerosol retrieval simulator and remote sensing from model parameters - Part 2: Aerosols

    NASA Astrophysics Data System (ADS)

    Wind, Galina; da Silva, Arlindo M.; Norris, Peter M.; Platnick, Steven; Mattoo, Shana; Levy, Robert C.

    2016-07-01

    The Multi-sensor Cloud Retrieval Simulator (MCRS) produces a "simulated radiance" product from any high-resolution general circulation model with interactive aerosol as if a specific sensor such as the Moderate Resolution Imaging Spectroradiometer (MODIS) were viewing a combination of the atmospheric column and land-ocean surface at a specific location. Previously the MCRS code only included contributions from atmosphere and clouds in its radiance calculations and did not incorporate properties of aerosols. In this paper we added a new aerosol properties module to the MCRS code that allows users to insert a mixture of up to 15 different aerosol species in any of 36 vertical layers.This new MCRS code is now known as MCARS (Multi-sensor Cloud and Aerosol Retrieval Simulator). Inclusion of an aerosol module into MCARS not only allows for extensive, tightly controlled testing of various aspects of satellite operational cloud and aerosol properties retrieval algorithms, but also provides a platform for comparing cloud and aerosol models against satellite measurements. This kind of two-way platform can improve the efficacy of model parameterizations of measured satellite radiances, allowing the assessment of model skill consistently with the retrieval algorithm. The MCARS code provides dynamic controls for appearance of cloud and aerosol layers. Thereby detailed quantitative studies of the impacts of various atmospheric components can be controlled.In this paper we illustrate the operation of MCARS by deriving simulated radiances from various data field output by the Goddard Earth Observing System version 5 (GEOS-5) model. The model aerosol fields are prepared for translation to simulated radiance using the same model subgrid variability parameterizations as are used for cloud and atmospheric properties profiles, namely the ICA technique. After MCARS computes modeled sensor radiances equivalent to their observed counterparts, these radiances are presented as input to

  4. Multi-Sensor Cloud and Aerosol Retrieval Simulator and Remote Sensing from Model Parameters . Part 2; Aerosols

    NASA Technical Reports Server (NTRS)

    Wind, Galina; Da Silva, Arlindo M.; Norris, Peter M.; Platnick, Steven; Mattoo, Shana; Levy, Robert C.

    2016-01-01

    The Multi-sensor Cloud Retrieval Simulator (MCRS) produces a simulated radiance product from any high-resolution general circulation model with interactive aerosol as if a specific sensor such as the Moderate Resolution Imaging Spectroradiometer (MODIS) were viewing a combination of the atmospheric column and land ocean surface at a specific location. Previously the MCRS code only included contributions from atmosphere and clouds in its radiance calculations and did not incorporate properties of aerosols. In this paper we added a new aerosol properties module to the MCRS code that allows users to insert a mixture of up to 15 different aerosol species in any of 36 vertical layers. This new MCRS code is now known as MCARS (Multi-sensor Cloud and Aerosol Retrieval Simulator). Inclusion of an aerosol module into MCARS not only allows for extensive, tightly controlled testing of various aspects of satellite operational cloud and aerosol properties retrieval algorithms, but also provides a platform for comparing cloud and aerosol models against satellite measurements. This kind of two-way platform can improve the efficacy of model parameterizations of measured satellite radiances, allowing the assessment of model skill consistently with the retrieval algorithm. The MCARS code provides dynamic controls for appearance of cloud and aerosol layers. Thereby detailed quantitative studies of the impacts of various atmospheric components can be controlled. In this paper we illustrate the operation of MCARS by deriving simulated radiances from various data field output by the Goddard Earth Observing System version 5 (GEOS-5) model. The model aerosol fields are prepared for translation to simulated radiance using the same model sub grid variability parameterizations as are used for cloud and atmospheric properties profiles, namely the ICA technique. After MCARS computes modeled sensor radiances equivalent to their observed counterparts, these radiances are presented as input to

  5. Parameterization of Cirrus Cloud Vertical Profiles and Geometrical Thickness Using CALIPSO and CloudSat Data

    NASA Astrophysics Data System (ADS)

    Khatri, P.; Iwabuchi, H.; Saito, M.

    2017-12-01

    High-level cirrus clouds, which normally occur over more than 20% of the globe, are known to have profound impacts on energy budget and climate change. The scientific knowledge regarding the vertical structure of such high-level cirrus clouds and their geometrical thickness are relatively poorer compared to low-level water clouds. Knowledge regarding cloud vertical structure is especially important in passive remote sensing of cloud properties using infrared channels or channels strongly influenced by gaseous absorption when clouds are geometrically thick and optically thin. Such information is also very useful for validating cloud resolving numerical models. This study analyzes global scale data of ice clouds identified by Cloud profiling Radar (CPR) onboard CloudSat and Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) onboard CALIPSO to parameterize (i) vertical profiles of ice water content (IWC), cloud-particle effective radius (CER), and ice-particle number concentration for varying ice water path (IWP) values and (ii) the relation of cloud geometrical thickness (CGT) with IWP and CER for varying cloud top temperature (CTT) values. It is found that the maxima in IWC and CER profile shifts towards cloud base with the increase of IWP. Similarly, if the cloud properties remain same, CGT shows an increasing trend with the decrease of CTT. The implementation of such cloud vertical inhomogeneity parameterization in the forward model used in the Integrated Cloud Analysis System ICAS (Iwabuchi et al., 2016) generally shows increase of brightness temperatures in infrared channels compared to vertically homogeneous cloud assumption. The cloud vertical inhomogeneity is found to bring noticeable changes in retrieved cloud properties. Retrieved CER and cloud top height become larger for optically thick cloud. We will show results of comparison of cloud properties retrieved from infrared measurements and active remote sensing.

  6. Global measurements of coarse-mode aerosol size distributions - first results from the Atmospheric Tomography Mission (ATom)

    NASA Astrophysics Data System (ADS)

    Weinzierl, B.; Dollner, M.; Schuh, H.; Brock, C. A.; Bui, T. V.; Gasteiger, J.; Froyd, K. D.; Schwarz, J. P.; Spanu, A.; Murphy, D. M.; Katich, J. M.; Kupc, A.; Williamson, C.

    2016-12-01

    Although coarse-mode aerosol (>1 µm diameter), composed mainly of mineral dust and sea-salt, is highly abundant over large regions of the world, these particles form a particularly poorly understood and characterized subset of atmospheric aerosol constituents. The NASA-sponsored Atmospheric Tomography Mission (ATom) is an unprecedented field program that investigates how human emissions affect air quality and climate change. ATom provides a singular opportunity to characterize the global coarse-mode size distribution by continuously profiling between 0.2 and 13 km with the NASA DC-8 research aircraft while traveling from the high Arctic down south the middle of the Pacific Ocean, to the Southern Ocean and back north over the Atlantic Ocean basin in four seasons. For ATom, the DC-8 aircraft has been equipped with multiple instruments to observe the composition of the air. The coarse mode and cloud particle size distribution is measured in-situ with a Cloud, Aerosol, and Precipitation Spectrometer (CAPS) mounted under the wing of the DC-8 research aircraft. The CAPS consists of an optical spectrometer providing size distributions in the size range between 0.5 and 50 µm and an imager detecting number concentration, size and shape of particles between 15 and 930 µm diameter. Early ATom flights indicated complicated vertical layering: over the sea, we regularly observed sea salt aerosol which extended from the ground up to 0.6-1 km altitude. In addition - depending on the location of the measurements - we frequently found layers with coarse mode aerosol originating from deserts and biomass burning aerosol aloft. In this study, we will present first results of coarse mode aerosol observations from the entire first ATom deployment in summer 2016. We will show vertical profiles of coarse mode aerosol number concentration, discuss their interhemispheric differences, and look into the question how frequently coarse-mode aerosol is externally mixed with submicron black

  7. Long-Term Evolution of the Aerosol Debris Cloud Produced by the 2009 Impact on Jupiter

    NASA Technical Reports Server (NTRS)

    Sanchez-Lavega, A.; Orton, G. S.; Hueso, R.; Perez-Hoyos, S.; Fletcher, L. N.; Garcia-Melendo, E.; Gomez-Forrellad, J. M.; de Pater, I.; Wong, M.; Hammel. H. B.; hide

    2011-01-01

    We present a study of the long-term evolution of the cloud of aerosols produced in the atmosphere of Jupiter by the impact of an object on 19 July 2009. The work is based on images obtained during 5 months from the impact to 31 December 2009 taken in visible continuum wavelengths and from 20 July 2009 to 28 May 2010 taken in near-infrared deep hydrogen-methane absorption bands at 2.1-2.3 micron. The impact cloud expanded zonally from approximately 5000 km (July 19) to 225,000 km (29 October, about 180 deg in longitude), remaining meridionally localized within a latitude band from 53.5 deg S to 61.5 deg S planetographic latitude. During the first two months after its formation the site showed heterogeneous structure with 500-1000 km sized embedded spots. Later the reflectivity of the debris field became more homogeneous due to clump mergers. The cloud was mainly dispersed in longitude by the dominant zonal winds and their meridional shear, during the initial stages, localized motions may have been induced by thermal perturbation caused by the impact's energy deposition. The tracking of individual spots within the impact cloud shows that the westward jet at 56.5 deg S latitude increases its eastward velocity with altitude above the tropopause by 5- 10 m/s. The corresponding vertical wind shear is low, about 1 m/s per scale height in agreement with previous thermal wind estimations. We found evidence for discrete localized meridional motions with speeds of 1-2 m/s. Two numerical models are used to simulate the observed cloud dispersion. One is a pure advection of the aerosols by the winds and their shears. The other uses the EPIC code, a nonlinear calculation of the evolution of the potential vorticity field generated by a heat pulse that simulates the impact. Both models reproduce the observed global structure of the cloud and the dominant zonal dispersion of the aerosols, but not the details of the cloud morphology. The reflectivity of the impact cloud decreased

  8. Full-Time, Eye-Safe Cloud and Aerosol Lidar Observation at Atmospheric Radiation Measurement Program Sites: Instruments and Data Analysis

    NASA Technical Reports Server (NTRS)

    Campbell, James R.; Hlavka, Dennis L.; Welton, Ellsworth J.; Flynn, Connor J.; Turner, David D.; Spinhirne, James D.; Scott, V. Stanley, III; Hwang, I. H.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Atmospheric radiative forcing, surface radiation budget, and top of the atmosphere radiance interpretation involves a knowledge of the vertical height structure of overlying cloud and aerosol layers. During the last decade, the U.S. Department of Energy through I the Atmospheric Radiation Measurement (ARM) program has constructed four long- term atmospheric observing sites in strategic climate regimes (north central Oklahoma, In Barrow. Alaska, and Nauru and Manus Islands in the tropical western Pacific). Micro Pulse Lidar (MPL) systems provide continuous, autonomous observation of all significant atmospheric cloud and aerosol at each of the central ARM facilities. Systems are compact and transmitted pulses are eye-safe. Eye-safety is achieved by expanding relatively low-powered outgoing Pulse energy through a shared, coaxial transmit/receive telescope. ARM NIPL system specifications, and specific unit optical designs are discussed. Data normalization and calibration techniques are presented. A multiple cloud boundary detection algorithm is also described. These techniques in tandem represent an operational value added processing package used to produce normalized data products for Cloud and aerosol research and the historical ARM data archive.

  9. Ground-based aerosol measurements during CHARMEX/ADRIMED campaign at Granada station

    NASA Astrophysics Data System (ADS)

    Granados-Muñoz, Maria Jose; Bravo-Aranda, Juan Antonio; Navas-Guzman, Francisco; Guerro-Rascado, Juan Luis; Titos, Gloria; Lyamani, Hassan; Valenzuela, Antonio; Cazorla, Alberto; Olmo, Francisco Jose; Mallet, Marc; Alados-Arboledas, Lucas

    2015-04-01

    In the framework of ChArMEx/ADRIMED (Chemistry-Aerosol Mediterranean Experiment, http://charmex.lsce.ipsl.fr/; Aerosol Direct Radiative Impact on the regional climate in the MEDiterranean region) projects, a field experiment based on in situ and remote sensing measurements from surface and airborne platforms was performed. The ADRIMED project aimed to capture the high complexity of the Mediterranean region by using an integrated approach based on intensive experimental field campaign and spaceborne observations, radiative transfer calculations and climate modelling with Regional Climate Models better adapted than global circulation models. For this purpose, measurements were performed at different surface super-sites (including Granada station) over the Occidental Mediterranean region during summer 2013 for creating an updated database of the physical, chemical, optical properties and the vertical distribution of the major "Mediterranean aerosols". Namely, measurements at Granada station were performed on 16 and 17 July 2013, in coincidence with the overpasses of the ATR aircraft over the station. The instrumentation used for the campaign includes both remote sensing instruments (a multiwavelength Raman lidar and a sun photometer) and in-situ measurements (a nephelometer, a Multi-Angle Absorption Photometer (MAAP), an Aerodynamic particle sizer (APS), a high volume sampler of PM10 and an aethalometer). During the measurement period a mineral dust event was detected, with similar dust load on both days. According to in-situ measurements, the event reached the surface level on 16 of June. Vertically resolved lidar measurements indicated presence of mineral dust layers up to 5 km asl both on 16 and 17 June 2013. Temporal evolution analysis indicated that on 17 June the dust layer decoupled from the boundary layer and disappeared around 14:00 UTC. In addition, lidar and sun-photometer data were used to retrieve volume concentration profiles by means of LIRIC (Lidar

  10. LOCAL AIR: Local Aerosol monitoring combining in-situ and Remote Sensing observations

    NASA Astrophysics Data System (ADS)

    Mona, Lucia; Caggiano, Rosa; Donvito, Angelo; Giannini, Vincenzo; Papagiannopoulos, Nikolaos; Sarli, Valentina; Trippetta, Serena

    2015-04-01

    The atmospheric aerosols have effects on climate, environment and health. Although the importance of the study of aerosols is well recognized, the current knowledge of the characteristics and their distribution is still insufficient, and there are large uncertainties in the current understanding of the role of aerosols on climate and the environment, both on a regional and local level. Overcoming these uncertainties requires a search strategy that integrates data from multiple platforms (eg, terrestrial, satellite, ships and planes) and the different acquisition techniques (for example, in situ measurements, remote sensing, modeling numerical and data assimilation) (Yu et al., 2006). To this end, in recent years, there have been many efforts such as the creation of networks dedicated to systematic observation of aerosols (eg, European Monitoring and Evaluation Programme-EMEP, European Aerosol Research Lidar NETwork-EARLINET, MicroPulse Lidar Network- MPLNET, and Aerosol Robotic NETwork-AERONET), the development and implementation of new satellite sensors and improvement of numerical models. The recent availability of numerous data to the ground, columnar and profiles of aerosols allows to investigate these aspects. An integrated approach between these different techniques could be able to provide additional information, providing greater insight into the properties of aerosols and their distribution and overcoming the limits of each single technique. In fact, the ground measurements allow direct determination of the physico-chemical properties of aerosols, but cannot be considered representative for large spatial and temporal scales and do not provide any information about the vertical profile of aerosols. On the other hand, the remote sensing techniques from the ground and satellite provide information on the vertical distribution of atmospheric aerosols both in the Planetary Boundary Layer (PBL), mainly characterized by the presence of aerosols originating from

  11. Vertical Profiles of Light Scattering, Light Absorption, and Single Scattering Albedo during the Dry, Biomass Burning Season in Southern Africa and Comparisons of In Situ and Remote Sensing Measurements of Aerosol Optical Depths

    NASA Technical Reports Server (NTRS)

    Magi, Brian I.; Hobbs, Peter V.; Schmid, Beat; Redermann, Jens

    2003-01-01

    Airborne in situ measurements of vertical profiles of aerosol light scattering, light absorption, and single scattering albedo (omega (sub 0)) are presented for a number of locations in southern Africa during the dry, biomass burning season. Features of the profiles include haze layers, clean air slots, and marked decreases in light scattering in passing from the boundary layer into the free troposphere. Frequency distributions of omega (sub 0) reflect the strong influence of smoke from biomass burning. For example, during a period when heavy smoke was advected into the region from the north, the mean value of omega (sub 0) in the boundary layer was 0.81 +/- 0.02 compared to 0.89 +/- 0.03 prior to this intrusion. Comparisons of layer aerosol optical depths derived from the in situ measurements with those measured by a Sun photometer aboard the aircraft show excellent agreement.

  12. Estimation and Bias Correction of Aerosol Abundance using Data-driven Machine Learning and Remote Sensing

    NASA Technical Reports Server (NTRS)

    Malakar, Nabin K.; Lary, D. L.; Moore, A.; Gencaga, D.; Roscoe, B.; Albayrak, Arif; Petrenko, Maksym; Wei, Jennifer

    2012-01-01

    Air quality information is increasingly becoming a public health concern, since some of the aerosol particles pose harmful effects to peoples health. One widely available metric of aerosol abundance is the aerosol optical depth (AOD). The AOD is the integrated light extinction coefficient over a vertical atmospheric column of unit cross section, which represents the extent to which the aerosols in that vertical profile prevent the transmission of light by absorption or scattering. The comparison between the AOD measured from the ground-based Aerosol Robotic Network (AERONET) system and the satellite MODIS instruments at 550 nm shows that there is a bias between the two data products. We performed a comprehensive analysis exploring possible factors which may be contributing to the inter-instrumental bias between MODIS and AERONET. The analysis used several measured variables, including the MODIS AOD, as input in order to train a neural network in regression mode to predict the AERONET AOD values. This not only allowed us to obtain an estimate, but also allowed us to infer the optimal sets of variables that played an important role in the prediction. In addition, we applied machine learning to infer the global abundance of ground level PM2.5 from the AOD data and other ancillary satellite and meteorology products. This research is part of our goal to provide air quality information, which can also be useful for global epidemiology studies.

  13. Dynamics of phytoplankton community structure in the South China Sea in response to the East Asian aerosol input

    NASA Astrophysics Data System (ADS)

    Guo, C.; Yu, J.; Ho, T.-Y.; Wang, L.; Song, S.; Kong, L.; Liu, H.

    2012-04-01

    Recent studies have demonstrated atmospheric deposition as an important source of bioreactive compounds to the ocean. The South China Sea (SCS), where aerosol loading is among the highest in the world, however, is poorly studied, particularly on the in situ response of phytoplankton community structures to atmospheric deposition. By conducting a series of microcosm bioassays at different hydrographical locations and simulating different aerosol event scales, we observed both positive and negative responses to the input of East Asian (EA) aerosol with high nitrogen (N) and trace metal contents, in terms of biomass, composition and physiological characteristics of phytoplankton communities. High levels of aerosol loading relieved phytoplankton nitrogen and trace metal limitations in SCS, and thus increased total phytoplankton biomass, enhanced their physiological indicators (e.g. photosynthetic efficiency) and shifted phytoplankton assemblages from being dominated by picoplankton to microphytoplanton, especially diatoms. However, under low levels of aerosol loading, the composition shift and biomass accumulation were not apparent, suggesting that the stimulation effects might be counterbalanced by enhanced grazing mortality indicated by increased abundance of protist grazers. Trace metal toxicity of the aerosols might also be the reason for the reduction of picocyanobacteria when amended with high EA aerosols. The magnitude and duration of the deposition event, as well as the hydrographical and trophic conditions of receiving waters are also important factors when predicting the influence of an aerosol deposition event. Our results demonstrated different responses of phytoplankton and microbial food web dynamics to different scales of atmospheric input events in SCS and highlighted the need for achieving an accurate comprehension of atmospheric nutrient on the biogeochemical cycles of the oceans.

  14. Height Dependency of Aerosol-Cloud Interaction Regimes: Height Dependency of ACI Regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Jingyi; Liu, Yangang; Zhang, Minghua

    This study investigates the height dependency of aerosol-cloud interaction regimes in terms of the joint dependence of the key cloud microphysical properties (e.g. cloud droplet number concentration, cloud droplet relative dispersion, etc.) on aerosol number concentration (N a) and vertical velocity (w). The three distinct regimes with different microphysical features are the aerosol-limited regime, the updraft-limited regime, and the transitional regime. The results reveal two new phenomena in updraft-limited regime: 1) The “condensational broadening” of cloud droplet size distribution in contrast to the well-known “condensational narrowing” in the aerosol-limited regime; 2) Above the level of maximum supersaturation, some cloud dropletsmore » are deactivated into interstitial aerosols in the updraft-limited regime whereas all droplets remain activated in the aerosol-limited regime. Further analysis shows that the particle equilibrium supersaturation plays important role in understanding these unique features. Also examined is the height of warm rain initiation and its dependence on N a and w. The rain initiation height is found to depend primarily on either N a or w or both in different N a-w regimes, thus suggesting a strong regime dependence of the second aerosol indirect effect.« less

  15. Height Dependency of Aerosol-Cloud Interaction Regimes: Height Dependency of ACI Regime

    DOE PAGES

    Chen, Jingyi; Liu, Yangang; Zhang, Minghua; ...

    2018-01-10

    This study investigates the height dependency of aerosol-cloud interaction regimes in terms of the joint dependence of the key cloud microphysical properties (e.g. cloud droplet number concentration, cloud droplet relative dispersion, etc.) on aerosol number concentration (N a) and vertical velocity (w). The three distinct regimes with different microphysical features are the aerosol-limited regime, the updraft-limited regime, and the transitional regime. The results reveal two new phenomena in updraft-limited regime: 1) The “condensational broadening” of cloud droplet size distribution in contrast to the well-known “condensational narrowing” in the aerosol-limited regime; 2) Above the level of maximum supersaturation, some cloud dropletsmore » are deactivated into interstitial aerosols in the updraft-limited regime whereas all droplets remain activated in the aerosol-limited regime. Further analysis shows that the particle equilibrium supersaturation plays important role in understanding these unique features. Also examined is the height of warm rain initiation and its dependence on N a and w. The rain initiation height is found to depend primarily on either N a or w or both in different N a-w regimes, thus suggesting a strong regime dependence of the second aerosol indirect effect.« less

  16. An Algorithm for the Vertical Structure of Aerosol Extinction in the Lowest Kilometer of the Atmosphere: Rev. 1

    DTIC Science & Technology

    2017-11-01

    inversion layer, or the well-mixed boundary layer. In such cases a low cloud ceiling is not present. In all instances the atmospheric extinction profiles...height, radiation fog depth, or the inversion layer height. The visibility regions and several representative vertical profiles of extinction are...the coefficient B can be found by B = ln(D/A) . (2) The coefficient B is sometimes a function of the cloud ceiling height, the inversion layer height

  17. Vertical distribution of structural components in corn stover

    DOE PAGES

    Johnson, Jane M. F.; Karlen, Douglas L.; Gresham, Garold L.; ...

    2014-11-17

    In the United States, corn ( Zea mays L.) stover has been targeted for second generation fuel production and other bio-products. Our objective was to characterize sugar and structural composition as a function of vertical distribution of corn stover (leaves and stalk) that was sampled at physiological maturity and about three weeks later from multiple USA locations. A small subset of samples was assessed for thermochemical composition. Concentrations of lignin, glucan, and xylan were about 10% greater at grain harvest than at physiological maturity, but harvestable biomass was about 25% less due to stalk breakage. Gross heating density above themore » ear averaged 16.3 ± 0.40 MJ kg⁻¹, but with an alkalinity measure of 0.83 g MJ⁻¹, slagging is likely to occur during gasification. Assuming a stover harvest height of 10 cm, the estimated ethanol yield would be >2500 L ha⁻¹, but it would be only 1000 L ha⁻¹ if stover harvest was restricted to the material from above the primary ear. Vertical composition of corn stover is relatively uniform; thus, decision on cutting height may be driven by agronomic, economic and environmental considerations.« less

  18. Vertical distribution of structural components in corn stover

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Jane M. F.; Karlen, Douglas L.; Gresham, Garold L.

    In the United States, corn ( Zea mays L.) stover has been targeted for second generation fuel production and other bio-products. Our objective was to characterize sugar and structural composition as a function of vertical distribution of corn stover (leaves and stalk) that was sampled at physiological maturity and about three weeks later from multiple USA locations. A small subset of samples was assessed for thermochemical composition. Concentrations of lignin, glucan, and xylan were about 10% greater at grain harvest than at physiological maturity, but harvestable biomass was about 25% less due to stalk breakage. Gross heating density above themore » ear averaged 16.3 ± 0.40 MJ kg⁻¹, but with an alkalinity measure of 0.83 g MJ⁻¹, slagging is likely to occur during gasification. Assuming a stover harvest height of 10 cm, the estimated ethanol yield would be >2500 L ha⁻¹, but it would be only 1000 L ha⁻¹ if stover harvest was restricted to the material from above the primary ear. Vertical composition of corn stover is relatively uniform; thus, decision on cutting height may be driven by agronomic, economic and environmental considerations.« less

  19. Vertical distribution of structural components in corn stover

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jane M. F. Johnson; Douglas L. Karlen; Garold L. Gresham

    In the United States, corn (Zea mays L.) stover has been targeted for second generation fuel production and other bio-products. Our objective was to characterize sugar and structural composition as a function of vertical distribution of corn stover (leaves and stalk) that was sampled at physiological maturity and about three weeks later from multiple USA locations. A small subset of samples was assessed for thermochemical composition. Concentrations of lignin, glucan, and xylan were about 10% greater at grain harvest than at physiological maturity, but harvestable biomass was about 25% less due to stalk breakage. Gross heating density above the earmore » averaged 16.3 ± 0.40 MJ kg?¹, but with an alkalinity measure of 0.83 g MJ?¹, slagging is likely to occur during gasification. Assuming a stover harvest height of 10 cm, the estimated ethanol yield would be >2500 L ha?¹, but it would be only 1000 L ha?¹ if stover harvest was restricted to the material from above the primary ear. Vertical composition of corn stover is relatively uniform; thus, decision on cutting height may be driven by agronomic, economic and environmental considerations.« less

  20. Three-dimensional dust aerosol distribution and extinction climatology over northern Africa simulated with the ALADIN numerical prediction model from 2006 to 2010

    NASA Astrophysics Data System (ADS)

    Mokhtari, M.; Tulet, P.; Fischer, C.; Bouteloup, Y.; Bouyssel, F.; Brachemi, O.

    2015-08-01

    models. Moreover, the 3-D distribution of the simulated AOTs also provides information about the vertical structure of the dust aerosol extinction.

  1. New insights about cloud vertical structure from CloudSat and CALIPSO observations

    NASA Astrophysics Data System (ADS)

    Oreopoulos, Lazaros; Cho, Nayeong; Lee, Dongmin

    2017-09-01

    Active cloud observations from A-Train's CloudSat and CALIPSO satellites offer new opportunities to examine the vertical structure of hydrometeor layers. We use the 2B-CLDCLASS-LIDAR merged CloudSat-CALIPSO product to examine global aspects of hydrometeor vertical stratification. We group the data into major cloud vertical structure (CVS) classes based on our interpretation of how clouds in three standard atmospheric layers overlap and provide their global frequency of occurrence. The two most frequent CVS classes are single-layer (per our definition) low and high clouds that represent 53% of cloudy skies, followed by high clouds overlying low clouds, and vertically extensive clouds that occupy near-contiguously a large portion of the troposphere. The prevalence of these configurations changes seasonally and geographically, between daytime and nighttime, and between continents and oceans. The radiative effects of the CVS classes reveal the major radiative warmers and coolers from the perspective of the planet as a whole, the surface, and the atmosphere. Single-layer low clouds dominate planetary and atmospheric cooling and thermal infrared surface warming. We also investigate the consistency between passive and active views of clouds by providing the CVS breakdowns of Moderate Resolution Imaging Spectroradiometer cloud regimes for spatiotemporally coincident MODIS-Aqua (also on the A-Train) and CloudSat-CALIPSO daytime observations. When the analysis is expanded for a more in-depth look at the most heterogeneous of the MODIS cloud regimes, it ultimately confirms previous interpretations of their makeup that did not have the benefit of collocated active observations.

  2. Atmospheric aerosol backscatter measurements using a tunable coherent CO2 lidar

    NASA Technical Reports Server (NTRS)

    Menzies, R. T.; Kavaya, M. J.; Flamant, P. H.; Haner, D. A.

    1984-01-01

    Measurements of atmospheric aerosol backscatter coefficients, using a coherent CO2 lidar at 9.25- and 10.6-micron wavelengths, are described. Vertical profiles of the volume backscatter coefficient beta have been measured to a 10-km altitude over the Pasadena, CA, region. These measurements indicate a wide range of variability in beta both in and above the local boundary layer. Certain profiles also indicate a significant enhancement in beta at the 9.25-micron wavelength compared with beta at the 10.6-micron wavelength, which possibly indicates a major contribution to the volume backscatter from ammonium sulfate aerosol particles.

  3. Aerosol Remote Sensing in Polar Regions

    NASA Technical Reports Server (NTRS)

    Tomasi, Claudio; Kokhanovsky, Alexander A.; Lupi, Angelo; Ritter, Christoph; Smirnov, Alexander; O'Neill, Norman T.; Stone, Robert S.; Holben, Brent N.; Nyeki, Stephan; Wehrli, Christoph

    2014-01-01

    Multi-year sets of ground-based sun-photometer measurements conducted at 12 Arctic sites and 9 Antarctic sites were examined to determine daily mean values of aerosol optical thickness tau(lambda) at visible and near-infrared wavelengths, from which best-fit values of Ångström's exponent alpha were calculated. Analyzing these data, the monthly mean values of tau(0.50 micrometers) and alpha and the relative frequency histograms of the daily mean values of both parameters were determined for winter-spring and summer-autumn in the Arctic and for austral summer in Antarctica. The Arctic and Antarctic covariance plots of the seasonal median values of alpha versus tau(0.50 micrometers) showed: (i) a considerable increase in tau(0.50 micrometers) for the Arctic aerosol from summer to winter-spring, without marked changes in alpha; and (ii) a marked increase in tau(0.50 micrometer) passing from the Antarctic Plateau to coastal sites, whereas alpha decreased considerably due to the larger fraction of sea-salt aerosol. Good agreement was found when comparing ground-based sun-photometer measurements of tau(lambda) and alpha at Arctic and Antarctic coastal sites with Microtops measurements conducted during numerous AERONET/MAN cruises from 2006 to 2013 in three Arctic Ocean sectors and in coastal and off-shore regions of the Southern Atlantic, Pacific, and Indian Oceans, and the Antarctic Peninsula. Lidar measurements were also examined to characterize vertical profiles of the aerosol backscattering coefficient measured throughout the year at Ny-Ålesund. Satellite-based MODIS, MISR, and AATSR retrievals of tau(lambda) over large parts of the oceanic polar regions during spring and summer were in close agreement with ship-borne and coastal ground-based sun-photometer measurements. An overview of the chemical composition of mode particles is also presented, based on in-situ measurements at Arctic and Antarctic sites. Fourteen log-normal aerosol number size-distributions were

  4. Ozone and Aerosol Retrieval from Backscattered Ultraviolet Radiation

    NASA Technical Reports Server (NTRS)

    Bhartia, Pawan K.

    2012-01-01

    In this presentation we will discuss the techniques to estimate total column ozone and aerosol absorption optical depth from the measurements of back scattered ultraviolet (buv) radiation. The total ozone algorithm has been used to create a unique record of the ozone layer, spanning more than 3 decades, from a series of instruments (BUV, SBUV, TOMS, SBUV/2) flown on NASA, NOAA, Japanese and Russian satellites. We will discuss how this algorithm can be considered a generalization of the well-known Dobson/Brewer technique that has been used to process data from ground-based instruments for many decades, and how it differs from the DOAS techniques that have been used to estimate vertical column densities of a host of trace gases from data collected by GOME and SCIAMACHY instruments. The buv aerosol algorithm is most suitable for the detection of UV absorbing aerosols (smoke, desert dust, volcanic ash) and is the only technique that can detect aerosols embedded in clouds. This algorithm has been used to create a quarter century record of aerosol absorption optical depth using the buv data collected by a series of TOMS instruments. We will also discuss how the data from the OMI instrument launched on July 15, 2004 will be combined with data from MODIS and CALIPSO lidar data to enhance the accuracy and information content of satellite-derived aerosol measurements. The OMI and MODIS instruments are currently flying on EOS Aura and EOS Aqua satellites respectively, part of a constellation of satellites called the "A-train".

  5. Initial Verification of GEOS-4 Aerosols Using CALIPSO and MODIS: Scene Classification

    NASA Technical Reports Server (NTRS)

    Welton, Ellsworth J.; Colarco, Peter R.; Hlavka, Dennis; Levy, Robert C.; Vaughan, Mark A.; daSilva, Arlindo

    2007-01-01

    A-train sensors such as MODIS and MISR provide column aerosol properties, and in the process a means of estimating aerosol type (e.g. smoke vs. dust). Correct classification of aerosol type is important because retrievals are often dependent upon selection of the right aerosol model. In addition, aerosol scene classification helps place the retrieved products in context for comparisons and analysis with aerosol transport models. The recent addition of CALIPSO to the A-train now provides a means of classifying aerosol distribution with altitude. CALIPSO level 1 products include profiles of attenuated backscatter at 532 and 1064 nm, and depolarization at 532 nm. Backscatter intensity, wavelength ratio, and depolarization provide information on the vertical profile of aerosol concentration, size, and shape. Thus similar estimates of aerosol type using MODIS or MISR are possible with CALIPSO, and the combination of data from all sensors provides a means of 3D aerosol scene classification. The NASA Goddard Earth Observing System general circulation model and data assimilation system (GEOS-4) provides global 3D aerosol mass for sulfate, sea salt, dust, and black and organic carbon. A GEOS-4 aerosol scene classification algorithm has been developed to provide estimates of aerosol mixtures along the flight track for NASA's Geoscience Laser Altimeter System (GLAS) satellite lidar. GLAS launched in 2003 and did not have the benefit of depolarization measurements or other sensors from the A-train. Aerosol typing from GLAS data alone was not possible, and the GEOS-4 aerosol classifier has been used to identify aerosol type and improve the retrieval of GLAS products. Here we compare 3D aerosol scene classification using CALIPSO and MODIS with the GEOS-4 aerosol classifier. Dust, smoke, and pollution examples will be discussed in the context of providing an initial verification of the 3D GEOS-4 aerosol products. Prior model verification has only been attempted with surface mass

  6. Vertical and Spatial Profiling of Arctic Black Carbon on the North Slope of Alaska 2015: Comparison of Model and Observation

    NASA Astrophysics Data System (ADS)

    Sedlacek, A. J., III; Feng, Y.; Biraud, S.; Springston, S. R.

    2015-12-01

    One of the major issues confronting aerosol climate simulations of the Arctic and Antarctic Cryospheres is the lack of detailed data on the vertical and spatial distribution of aerosols with which to test these models. This is due, in part, to the inherent difficulty of conducting such measurements in extreme environments. One class of under measured radiative forcing agents in the Polar Region is the absorbing aerosol - black carbon and brown carbon. In particular, vertical profile information of BC is critical in reducing uncertainty in model assessment of aerosol radiative impact at high latitudes. During the summer of 2015, a Single-Particle Soot Photometer (SP2) was deployed aboard the Department of Energy (DOE) Gultstream-1 (G-1) aircraft to measure refractory BC (rBC) concentrations as part of the DOE-sponsored ACME-V (ARM Airborne Carbon Measurements) campaign. This campaign was conducted from June through to mid-September along the North Slope of Alaska and was punctuated by vertical profiling over 5 sites (Atquasuk, Barrow, Ivotuk, Oliktok, and Toolik). In addition, measurement of CO, CO2 and CH4were also taken to provide information on the spatial and seasonal differences in GHG sources and how these sources correlate with BC. Lastly, these aerosol and gas measurements provide an important dataset to assess the representativeness of ground sites at regional scales. Comparisons between observations and a global climate model (CAM5) simulations will be agumented with a discussion on the capability of the model to capture observed monthly mean profiles of BC and stratified aerosol layers. Additionally, the ability of the SP2 to partition rBC-containing particles into nascent or aged species allows an evaluation of how well the CAM5 model captures aging of long distant transported carbonaceous aerosols. Finally model sensitivity studies will be aso be presented that investigated the relative importance of the different emission sectors to the summer Arctic

  7. Utilization of O4 Slant Column Density to Derive Aerosol Layer Height from a Space-Borne UV-Visible Hyperspectral Sensor: Sensitivity and Case Study

    NASA Technical Reports Server (NTRS)

    Park, Sang Seo; Kim, Jhoon; Lee, Hanlim; Torres, Omar; Lee, Kwang-Mog; Lee, Sang Deok

    2016-01-01

    The sensitivities of oxygen-dimer (O4) slant column densities (SCDs) to changes in aerosol layer height are investigated using the simulated radiances by a radiative transfer model, the linearized pseudo-spherical vector discrete ordinate radiative transfer (VLIDORT), and the differential optical absorption spectroscopy (DOAS) technique. The sensitivities of the O4 index (O4I), which is defined as dividing O4 SCD by 10(sup 40) molecules (sup 2) per centimeters(sup -5), to aerosol types and optical properties are also evaluated and compared. Among the O4 absorption bands at 340, 360, 380, and 477 nanometers, the O4 absorption band at 477 nanometers is found to be the most suitable to retrieve the aerosol effective height. However, the O4I at 477 nanometers is significantly influenced not only by the aerosol layer effective height but also by aerosol vertical profiles, optical properties including single scattering albedo (SSA), aerosol optical depth (AOD), particle size, and surface albedo. Overall, the error of the retrieved aerosol effective height is estimated to be 1276, 846, and 739 meters for dust, non-absorbing, and absorbing aerosol, respectively, assuming knowledge on the aerosol vertical distribution shape. Using radiance data from the Ozone Monitoring Instrument (OMI), a new algorithm is developed to derive the aerosol effective height over East Asia after the determination of the aerosol type and AOD from the MODerate resolution Imaging Spectroradiometer (MODIS). About 80 percent of retrieved aerosol effective heights are within the error range of 1 kilometer compared to those obtained from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) measurements on thick aerosol layer cases.

  8. High Altitude Emissions of Black Carbon Aerosols: Potential Climate Implications

    NASA Astrophysics Data System (ADS)

    Satheesh, S. K.

    2017-12-01

    Synthesizing a series of ground-based and airborne measurements of aerosols over the Indian region during summer and pre-monsoon seasons have revealed the persistence of elevated absorbing aerosol layers over most of the Indian region; more than 50% of which located above clouds. Subsequent, in situ measurements of black carbon (BC) using high-altitude balloons, showed surprising layers with high concentrations in the middle and upper troposphere even at an altitude of 8 to 10 kms. Simultaneous measurements of the vertical thermal structure have shown localized warming due to BC absorption leading to large reduction in lapse rate and sharp temperature inversion, which in turn increases the atmospheric stability. This aerosol-induced stable layer is conducive for maintaining the black carbon layer longer at that level, leading thereby to further solar absorption and subsequently triggering dry convection. These observations support the `solar escalator' concept through which absorption-warming-convection cycles lead to self-lifting of BC to upper troposphere or even to lower stratosphere under favorable conditions in a matter of a few days. Employing an on-line regional chemistry transport model (WRF-Chem), incorporating aircraft emissions, it is shown that emissions from high-flying aircrafts as the most likely source of these elevated black carbon layers. These in-situ injected particles, produce significant warming of the thin air in those heights and lift these layers to even upper tropospheric/lower stratospheric heights, aided by the strong monsoonal convection occurring over the region, which are known to overshoot the tropical tropopause leading to injection of tropospheric air mass (along with its constituent aerosols) into the stratosphere, especially during monsoon season when the tropical tropopause layer is known to be thinnest. These simulations are further supported by the CALIPSO space-borne LIDAR derived extinction coefficient profiles. Based on

  9. Aerosol Extinction Profile Mapping with Lognormal Distribution Based on MPL Data

    NASA Astrophysics Data System (ADS)

    Lin, T. H.; Lee, T. T.; Chang, K. E.; Lien, W. H.; Liu, G. R.; Liu, C. Y.

    2017-12-01

    This study intends to challenge the profile mapping of aerosol vertical distribution by mathematical function. With the similarity in distribution pattern, lognormal distribution is examined for mapping the aerosol extinction profile based on MPL (Micro Pulse LiDAR) in situ measurements. The variables of lognormal distribution are log mean (μ) and log standard deviation (σ), which will be correlated with the parameters of aerosol optical depht (AOD) and planetary boundary layer height (PBLH) associated with the altitude of extinction peak (Mode) defined in this study. On the base of 10 years MPL data with single peak, the mapping results showed that the mean error of Mode and σ retrievals are 16.1% and 25.3%, respectively. The mean error of σ retrieval can be reduced to 16.5% under the cases of larger distance between PBLH and Mode. The proposed method is further applied to MODIS AOD product in mapping extinction profile for the retrieval of PM2.5 in terms of satellite observations. The results indicated well agreement between retrievals and ground measurements when aerosols under 525 meters are well-mixed. The feasibility of proposed method to satellite remote sensing is also suggested by the case study. Keyword: Aerosol extinction profile, Lognormal distribution, MPL, Planetary boundary layer height (PBLH), Aerosol optical depth (AOD), Mode

  10. Aerosol classification using EARLINET measurements for an intensive observational period

    NASA Astrophysics Data System (ADS)

    Papagiannopoulos, Nikolaos; Mona, Lucia; Pappalardo, Gelsomina

    2016-04-01

    ACTRIS (Aerosols, Clouds and Trace gases Research Infrastructure Network) organized an intensive observation period during summer 2012. This campaign aimed at the provision of advanced observations of physical and chemical aerosol properties, at the delivery of information about the 3D distribution of European atmospheric aerosols, and at the monitoring of Saharan dust intrusions events. EARLINET (European Aerosol Research Lidar Network) participated in the ACTRIS campaign through the addition of measurements according to the EARLINET schedule as well as daily lidar-profiling measurements around sunset by 11 selected lidar stations for the period from 8 June - 17 July. EARLINET observations during this almost two-month period are used to characterize the optical properties and vertical distribution of long-range transported aerosol over the broader area of Mediterranean basin. The lidar measurements of aerosol intensive parameters (lidar ratio, depolarization, Angstrom exponents) are shown to vary with location and aerosol type. A methodology based on EARLINET observations of frequently observed aerosol types is used to classify aerosols into seven separate types. The summertime Mediterranean basin is prone to African dust aerosols. Two major dust events were studied. The first episode occurred from the 18 to 21 of the June and the second one lasted from 28 June to 6 July. The lidar ratio within the dust layer was found to be wavelength independent with mean values of 58±14 sr at 355 nm and 57±11 sr at 532 nm. For the particle linear depolarization ratio, mean values of 0.27±0.04 at 532 nm have been found. Acknowledgements. The financial support for EARLINET in the ACTRIS Research Infrastructure Project by the European Union's Horizon 2020 research and innovation programme under grant agreement no. 654169 and previously under grant agreement no. 262254 in the Seventh Framework Programme (FP7/2007-2013) is gratefully acknowledged.

  11. Horizontal and Vertical Structures: The Dynamics of Organization in Higher Education

    ERIC Educational Resources Information Center

    Keeling, Richard P.; Underhile, Ric; Wall, Andrew F.

    2007-01-01

    The organization of institutions of higher education has been seen as operating with ambiguous purposes in vertically oriented structures that are only loosely connected. The rationale for this ambiguity is twofold: (1) to allow for creative thinking, and (2) to respect--and even encourage--the autonomy of different disciplines. But ambiguity of…

  12. Aerosol-cloud interactions in a multi-scale modeling framework

    NASA Astrophysics Data System (ADS)

    Lin, G.; Ghan, S. J.

    2017-12-01

    Atmospheric aerosols play an important role in changing the Earth's climate through scattering/absorbing solar and terrestrial radiation and interacting with clouds. However, quantification of the aerosol effects remains one of the most uncertain aspects of current and future climate projection. Much of the uncertainty results from the multi-scale nature of aerosol-cloud interactions, which is very challenging to represent in traditional global climate models (GCMs). In contrast, the multi-scale modeling framework (MMF) provides a viable solution, which explicitly resolves the cloud/precipitation in the cloud resolved model (CRM) embedded in the GCM grid column. In the MMF version of community atmospheric model version 5 (CAM5), aerosol processes are treated with a parameterization, called the Explicit Clouds Parameterized Pollutants (ECPP). It uses the cloud/precipitation statistics derived from the CRM to treat the cloud processing of aerosols on the GCM grid. However, this treatment treats clouds on the CRM grid but aerosols on the GCM grid, which is inconsistent with the reality that cloud-aerosol interactions occur on the cloud scale. To overcome the limitation, here, we propose a new aerosol treatment in the MMF: Explicit Clouds Explicit Aerosols (ECEP), in which we resolve both clouds and aerosols explicitly on the CRM grid. We first applied the MMF with ECPP to the Accelerated Climate Modeling for Energy (ACME) model to have an MMF version of ACME. Further, we also developed an alternative version of ACME-MMF with ECEP. Based on these two models, we have conducted two simulations: one with the ECPP and the other with ECEP. Preliminary results showed that the ECEP simulations tend to predict higher aerosol concentrations than ECPP simulations, because of the more efficient vertical transport from the surface to the higher atmosphere but the less efficient wet removal. We also found that the cloud droplet number concentrations are also different between the

  13. Aerosol Delivery for Amendment Distribution in Contaminated Vadose Zones

    NASA Astrophysics Data System (ADS)

    Hall, R. J.; Murdoch, L.; Riha, B.; Looney, B.

    2011-12-01

    Remediation of contaminated vadose zones is often hindered by an inability to effectively distribute amendments. Many amendment-based approaches have been successful in saturated formations, however, have not been widely pursued when treating contaminated unsaturated materials due to amendment distribution limitations. Aerosol delivery is a promising new approach for distributing amendments in contaminated vadose zones. Amendments are aerosolized and injected through well screens. During injection the aerosol particles are transported with the gas and deposited on the surfaces of soil grains. Resulting distributions are radially and vertically broad, which could not be achieved by injecting pure liquid-phase solutions. The objectives of this work were A) to characterize transport and deposition behaviors of aerosols; and B) to develop capabilities for predicting results of aerosol injection scenarios. Aerosol transport and deposition processes were investigated by conducting lab-scale injection experiments. These experiments involved injection of aerosols through a 2m radius, sand-filled wedge. A particle analyzer was used to measure aerosol particle distributions with time, and sand samples were taken for amendment content analysis. Predictive capabilities were obtained by constructing a numerical model capable of simulating aerosol transport and deposition in porous media. Results from tests involving vegetable oil aerosol injection show that liquid contents appropriate for remedial applications could be readily achieved throughout the sand-filled wedge. Lab-scale tests conducted with aqueous aerosols show that liquid accumulation only occurs near the point of injection. Tests were also conducted using 200 g/L salt water as the aerosolized liquid. Liquid accumulations observed during salt water tests were minimal and similar to aqueous aerosol results. However, particles were measured, and salt deposited distal to the point of injection. Differences between

  14. The GAW Aerosol Lidar Observation Network (GALION) as a source of near-real time aerosol profile data for model evaluation and assimilation

    NASA Astrophysics Data System (ADS)

    Hoff, R. M.; Pappalardo, G.

    2010-12-01

    In 2007, the WMO Global Atmospheric Watch’s Science Advisory Group on Aerosols described a global network of lidar networks called GAW Aerosol Lidar Observation Network (GALION). GALION has a purpose of providing expanded coverage of aerosol observations for climate and air quality use. Comprised of networks in Asia (AD-NET), Europe (EARLINET and CIS-LINET), North America (CREST and CORALNET), South America (ALINE) and with contribution from global networks such as MPLNET and NDACC, the collaboration provides a unique capability to define aerosol profiles in the vertical. GALION is designed to supplement existing ground-based and column profiling (AERONET, PHOTONS, SKYNET, GAWPFR) stations. In September 2010, GALION held its second workshop and one component of discussion focussed how the network would integrate into model needs. GALION partners have contributed to the Sand and Dust Storm Warning and Analysis System (SDS-WAS) and to assimilation in models such as DREAM. This paper will present the conclusions of those discussions and how these observations can fit into a global model analysis framework. Questions of availability, latency, and aerosol parameters that might be ingested into models will be discussed. An example of where EARLINET and GALION have contributed in near-real time observations was the suite of measurements during the Eyjafjallajokull eruption in Iceland and its impact on European air travel. Lessons learned from this experience will be discussed.

  15. Biomass Burning Organic Aerosol as a Modulator of Droplet Number in the Southern Atlantic

    NASA Astrophysics Data System (ADS)

    Kacarab, M.; Howell, S. G.; Small Griswold, J. D.; Thornhill, K. L., II; Wood, R.; Redemann, J.; Nenes, A.

    2017-12-01

    Aerosols play a significant yet highly variable role in local and global air quality and climate. They act as cloud condensation nuclei (CCN) and both scatter and absorb radiation, lending a large source of uncertainty to climate predictions. Biomass burning organic aerosol (BBOA) can drastically elevate CCN concentrations, but the response in cloud droplet number may be suppressed or even reversed due to low supersaturations that develop from strong competition for water vapor. Constraining droplet response to BBOA is a key factor to understanding aerosol-cloud interactions. The southeastern Atlantic (SEA) cloud deck off the west coast of central Africa is a prime opportunity to study these cloud-BBOA interactions for marine stratocumulus as during winter in the southern hemisphere the SEA cloud deck is overlain by a large, optically thick BBOA plume. The NASA ObseRvations of Aerosols above Clouds and their intEractionS (ORACLES) study focuses on increasing the understanding of how these BBOA affect the SEA cloud deck. Measurements of CCN concentration, aerosol size distribution and composition, updraft velocities, and cloud droplet number in and around the SEA cloud deck and associated BBOA plume were taken aboard the NASA P-3 aircraft during the first two years of the ORACLES campaign in September 2016 and August 2017. Here we evaluate the predicted and observed droplet number sensitivity to the aerosol fluctuations and quantify, using the data, the drivers of droplet number variability (vertical velocity or aerosol properties) as a function of biomass burning plume characteristics. Over the course of the campaign, different levels of BBOA influence in the marine boundary layer (MBL) were observed, allowing for comparison of cloud droplet number, hygroscopicity parameter (κ), and maximum in-cloud supersaturation over a range of "clean" and "dirty" conditions. Droplet number sensitivity to aerosol concentration, κ, and vertical updraft velocities are also

  16. Analysis and high resolution modelling of black carbon vertical profiles measured over three Italian valleys

    NASA Astrophysics Data System (ADS)

    Gandolfi, Ilaria; Curci, Gabriele; Falasca, Serena; Ferrero, Luca

    2017-04-01

    Analysis and high resolution modelling of black carbon vertical profiles measured over three Italian valleys Ilaria Gandolfi1,2, Gabriele Curci1,2, Serena Falasca1,2, Luca Ferrero3 1 Department of Physical and Chemical Sciences, University of L'Aquila, L'Aquila, Italy 2 Center of Excellence CETEMPS, University of L'Aquila, L'Aquila, Italy 3 POLARIS Research Centre, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126, Milan, Italy Last decades were characterized by a growing interest in aerosols: mainly for their effect on human health and on the energy balance of solar and planetary radiation, thus their role in climate change. In this study, we analyze the evolution of vertical profile of black carbon (BC) through tethered balloon observations and chemistry-transport modelling. Black carbon is regarded as the second most important anthropogenic climate forcing agent and its concentration varies significantly depending on the altitude and the sources on the territory. In winter of 2010 University Of Milan Bicocca conducted three intensive measurements campaigns over three Italian basin valleys (Terni, Po Valley, Passiria Valley). The choice of the valleys was made taking into consideration the orography and the river basin structure. The measurement campaign was based on a helium-filled tethered balloon, on which the instrumentation for the analysis has been mounted; the instrumentation consisted on a meteorological station, an OPC, a cascade impactor and a micro-Aethalometer. Subsequently, at University of L'Aquila simulations were produced to help interpretation of these vertical aerosol profiles (mass, composition and distribution) and related optical properties (scattering, absorption) using a chemistry-transport model (WRF-CHIMERE) at high horizontal resolution (1 km). The analysis focused primarily on the calculation of the heating rate and of the Direct Radiative Effect (DRE), and on the analysis of the

  17. Aerosol and CCN in southwest Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Collins, Don; Li, Runjun; Axisa, Duncan; Kucera, Paul; Burger, Roelof

    2010-05-01

    to confirm this. Results of routine flight patterns designed to examine the spatial, vertical, and day-to-day variability of the aerosol will be presented and the link between the aerosol at the surface and aloft will be quantified. This presentation will emphasize the regional character of the aerosol and will assess its influence on cloud microphysics.

  18. Evidence of horizontal and vertical transport of water in the Southern Hemisphere tropical tropopause layer (TTL) from high-resolution balloon observations

    NASA Astrophysics Data System (ADS)

    Khaykin, Sergey M.; Pommereau, Jean-Pierre; Riviere, Emmanuel D.; Held, Gerhard; Ploeger, Felix; Ghysels, Melanie; Amarouche, Nadir; Vernier, Jean-Paul; Wienhold, Frank G.; Ionov, Dmitry

    2016-09-01

    High-resolution in situ balloon measurements of water vapour, aerosol, methane and temperature in the upper tropical tropopause layer (TTL) and lower stratosphere are used to evaluate the processes affecting the stratospheric water budget: horizontal transport (in-mixing) and hydration by cross-tropopause overshooting updrafts. The obtained in situ evidence of these phenomena are analysed using satellite observations by Aura MLS (Microwave Limb Sounder) and CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) together with trajectory and transport modelling performed using CLaMS (Chemical Lagrangian Model of the Stratosphere) and HYSPLIT (Hybrid Single-Particle Lagrangian Integrated Trajectory) model. Balloon soundings were conducted during March 2012 in Bauru, Brazil (22.3° S) in the frame of the TRO-Pico campaign for studying the impact of convective overshooting on the stratospheric water budget. The balloon payloads included two stratospheric hygrometers: FLASH-B (Fluorescence Lyman-Alpha Stratospheric Hygrometer for Balloon) and Pico-SDLA instrument as well as COBALD (Compact Optical Backscatter Aerosol Detector) sondes, complemented by Vaisala RS92 radiosondes. Water vapour vertical profiles obtained independently by the two stratospheric hygrometers are in excellent agreement, ensuring credibility of the vertical structures observed. A signature of in-mixing is inferred from a series of vertical profiles, showing coincident enhancements in water vapour (of up to 0.5 ppmv) and aerosol at the 425 K (18.5 km) level. Trajectory analysis unambiguously links these features to intrusions from the Southern Hemisphere extratropical stratosphere, containing more water and aerosol, as demonstrated by MLS and CALIPSO global observations. The in-mixing is successfully reproduced by CLaMS simulations, showing a relatively moist filament extending to 20° S. A signature of local cross-tropopause transport of water is observed in a particular

  19. Lidar Observations of Tropospheric Aerosols Over Northeastern South Africa During the ARREX and SAFARI-2000 Dry Season Experiments

    NASA Technical Reports Server (NTRS)

    Campbell, James R.; Welton, Ellsworth J.; Spinhirne, James D.; Ji, Qiang; Tsay, Si-Chee; Piketh, Stuart J.; Barenbrug, Marguerite; Holben, Brent; Starr, David OC. (Technical Monitor)

    2002-01-01

    During the ARREX-1999 and SAFARI-2000 Dry Season experiments a micropulse lidar (523 nm) instrument was operated at the Skukuza Airport in northeastern South Africa. The Mar was collocated with a diverse array of passive radiometric equipment. For SAFARI-2000 the processed Mar data yields a daytime time-series of layer mean/derived aerosol optical properties, including extinction-to-backscatter ratios and vertical extinction cross-section profile. Combined with 523 run aerosol optical depth and spectral Angstrom exponent calculations from available CIMEL sun-photometer data and normalized broadband flux measurements the temporal evolution of the near surface aerosol layer optical properties is analyzed for climatological trends. For the densest smoke/haze events the extinction-to-backscatter ratio is found to be between 60-80/sr, and corresponding Angstrom exponent calculations near and above 1.75. The optical characteristics of an evolving smoke event from SAFARI-2000 are extensively detailed. The advecting smoke was embedded within two distinct stratified thermodynamic layers, causing the particulate mass to advect over the instrument array in an incoherent manner on the afternoon of its occurrence. Surface broadband flux forcing due to the smoke is calculated, as is the evolution in the vertical aerosol extinction profile as measured by the Han Finally, observations of persistent elevated aerosol during ARREX-1999 are presented and discussed. The lack of corroborating observations the following year makes these observation; both unique and noteworthy in the scope of regional aerosol transport over southern Africa.

  20. Aerosol contamination survey during dust storm process in Northwestern China using ground, satellite observations and atmospheric modeling data

    NASA Astrophysics Data System (ADS)

    Filonchyk, Mikalai; Yan, Haowen; Shareef, Tawheed Mohammed Elhessin; Yang, Shuwen

    2018-01-01

    The present survey addresses the comprehensive description of geographic locations, transport ways, size, and vertical aerosol distribution during four large dust events which occurred in the Northwest China. Based on the data from 35 ground-based air quality monitoring stations and the satellite data, emission flows for dust events within the period of 2014 to 2017 have been estimated. The data show that maximum peak daily average PM10 and PM2.5 concentrations exceeded 380 and 150 μg/m3, respectively, and the PM2.5/PM10 ratio was ranging within 0.12-0.66. Both satellite data and simulation data of the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) coincide with location and extension of a dust cloud. The Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) found dust at 0 to 10 km altitude which remained at this level during the most part of its trajectory. The vertical aerosol distribution at a wave of 532 nm total attenuated backscatter coefficient range of 0.0025-0.003 km-1 × sr-1. Moderate Resolution Imaging Spectroradiometer (MODIS) (Terra) Collection 6 Level-3 aerosol products data show that aerosol optical depth (AOD) at pollution epicenters exceeds 1. A comprehensive data survey thus demonstrated that the main sources of high aerosol pollutions in the territory were deserted areas of North and Northwest China as well as the most part of the Republic of Mongolia, where one of the largest deserts, Gobi, extends.

  1. Aerosol typing - key information from aerosol studies

    NASA Astrophysics Data System (ADS)

    Mona, Lucia; Kahn, Ralph; Papagiannopoulos, Nikolaos; Holzer-Popp, Thomas; Pappalardo, Gelsomina

    2016-04-01

    Aerosol typing is a key source of aerosol information from ground-based and satellite-borne instruments. Depending on the specific measurement technique, aerosol typing can be used as input for retrievals or represents an output for other applications. Typically aerosol retrievals require some a priori or external aerosol type information. The accuracy of the derived aerosol products strongly depends on the reliability of these assumptions. Different sensors can make use of different aerosol type inputs. A critical review and harmonization of these procedures could significantly reduce related uncertainties. On the other hand, satellite measurements in recent years are providing valuable information about the global distribution of aerosol types, showing for example the main source regions and typical transport paths. Climatological studies of aerosol load at global and regional scales often rely on inferred aerosol type. There is still a high degree of inhomogeneity among satellite aerosol typing schemes, which makes the use different sensor datasets in a consistent way difficult. Knowledge of the 4d aerosol type distribution at these scales is essential for understanding the impact of different aerosol sources on climate, precipitation and air quality. All this information is needed for planning upcoming aerosol emissions policies. The exchange of expertise and the communication among satellite and ground-based measurement communities is fundamental for improving long-term dataset consistency, and for reducing aerosol type distribution uncertainties. Aerosol typing has been recognized as one of its high-priority activities of the AEROSAT (International Satellite Aerosol Science Network, http://aero-sat.org/) initiative. In the AEROSAT framework, a first critical review of aerosol typing procedures has been carried out. The review underlines the high heterogeneity in many aspects: approach, nomenclature, assumed number of components and parameters used for the

  2. Evaluations of Thin Cirrus Contamination and Screening in Ground Aerosol Observations Using Collocated Lidar Systems

    NASA Technical Reports Server (NTRS)

    Huang, Jingfeng; Hsu, N. Christina; Tsay, Si-Chee; Holben, Brent N.; Welton, Ellsworth J.; Smirnov, Alexander; Jeong, Myeong-Jae; Hansell, Richard A.; Berkoff, Timothy A.

    2012-01-01

    Cirrus clouds, particularly sub visual high thin cirrus with low optical thickness, are difficult to be screened in operational aerosol retrieval algorithms. Collocated aerosol and cirrus observations from ground measurements, such as the Aerosol Robotic Network (AERONET) and the Micro-Pulse Lidar Network (MPLNET), provide us with an unprecedented opportunity to examine the susceptibility of operational aerosol products to thin cirrus contamination. Quality assured aerosol optical thickness (AOT) measurements were also tested against the CALIPSO vertical feature mask (VFM) and the MODIS-derived thin cirrus screening parameters for the purpose of evaluating thin cirrus contamination. Key results of this study include: (1) Quantitative evaluations of data uncertainties in AERONET AOT retrievals are conducted. Although AERONET cirrus screening schemes are successful in removing most cirrus contamination, strong residuals displaying strong spatial and seasonal variability still exist, particularly over thin cirrus prevalent regions during cirrus peak seasons, (2) Challenges in matching up different data for analysis are highlighted and corresponding solutions proposed, and (3) Estimation of the relative contributions from cirrus contamination to aerosol retrievals are discussed. The results are valuable for better understanding and further improving ground aerosol measurements that are critical for aerosol-related climate research.

  3. Comparison of MAX-DOAS profiling algorithms during CINDI-2 - Part 1: aerosols

    NASA Astrophysics Data System (ADS)

    Friess, Udo; Hendrick, Francois; Tirpitz, Jan-Lukas; Apituley, Arnoud; van Roozendael, Michel; Kreher, Karin; Richter, Andreas; Wagner, Thomas

    2017-04-01

    The second Cabauw Intercomparison campaign for Nitrogen Dioxide measuring Instruments (CINDI-2) took place at the Cabauw Experimental Site for Atmospheric Research (CESAR; Utrecht area, The Netherlands) from 25 August until 7 October 2016. CINDI-2 was aiming at assessing the consistency of MAX-DOAS slant column density measurements of tropospheric species (NO2, HCHO, O3, and O4) relevant for the validation of future ESA atmospheric Sentinel missions, through coordinated operation of a large number of DOAS and MAXDOAS instruments from all over the world. An important objective of the campaign was to study the relationship between remote-sensing column and profile measurements of the above species and collocated reference ancillary observations. For this purpose, the CINDI-2 Profiling Task Team (CPTT) was created, involving 22 groups performing aerosol and trace gas vertical profile inversion using dedicated MAX-DOAS profiling algorithms, as well as the teams responsible for ancillary profile and surface concentration measurements (NO2 analysers, NO2 sondes, NO2 and Raman LIDARs, CAPS, Long-Path DOAS, sun photometer, nephelometer, etc). The main purpose of the CPTT is to assess the consistency of the different profiling tools for retrieving aerosol extinction and trace gas vertical profiles through comparison exercises using commonly defined settings and to validate the retrievals with correlative observations. In this presentation, we give an overview of the MAX-DOAS vertical profile comparison results, focusing on the retrieval of aerosol extinction profiles, with the trace gas retrievals being presented in a companion abstract led by F. Hendrick. The performance of the different algorithms is investigated with respect to the variable visibility and cloud conditions encountered during the campaign. The consistency between optimal-estimation-based and parameterized profiling tools is also evaluated for these different conditions, together with the level of agreement

  4. Giant aerosol observations with cloud radar: methodology and effects

    NASA Astrophysics Data System (ADS)

    Guma Claramunt, Pilar; Madonna, Fabio; Amodeo, Aldo; Bauer-Pfundstein, Matthias; Papagiannopoulos, Nikolaos; Pappalardo, Gelsomina

    2017-04-01

    Giant aerosol particles can act as Giant Cloud Condensation Nuclei (GCCN), and determine the droplet concentration at the cloud formation, the clouds albedo and lifetime, and the precipitation formation. In addition, depending on their composition, they can also act as IN. It is not yet clear if they can also expedite rain processes. The main techniques used nowadays in measuring aerosols, which are lidar and sun photometer, cannot retrieve aerosol microphysical properties for particles bigger than a few microns, which means that they do not account for giant aerosols. Therefore, the distribution and impact in the atmosphere and climate of these particles is not well known and the aerosol transport models largely underestimate them. Recent studies have demonstrated that cloud radars are able to detect ultragiant volcanic aerosols also at a large distance from the source. In this study, an innovative methodology for the observation of giant aerosols using the millimeter wavelength radar has been developed and applied to 6 years of measurements carried out at CNR-IMAA Atmospheric Observatory (CIAO), in Potenza, South Italy, finding more than 40 giant aerosol events per year and a good agreement with the aerosol climatologic data. Besides, the effects of giant aerosols in the local and regional meteorology have been studied by correlating several atmospheric variables in the time period following the observation of giant particles. The meteorological situation has been assessed through the data classification into cases characterized by different pressure vertical velocities at the upper atmosphere (400 hPa), Giant aerosols are correlated to lower values of the Cloud Optical Depth (COD) in presence of stable or unstable atmospheric conditions while higher values are found for an intermediate stability. The giant aerosols effects on the Liquid Water Path (LWP) are closely linked to those in the Aerosol Optical Thickness (AOD). The highest increases in the LWP occurs

  5. New insights into the vertical structure of the September 2015 dust storm employing eight ceilometers and auxiliary measurements over Israel

    NASA Astrophysics Data System (ADS)

    Uzan, Leenes; Egert, Smadar; Alpert, Pinhas

    2018-03-01

    On 7 September 2015, an unprecedented and unexceptional extreme dust storm struck the eastern Mediterranean (EM) basin. Here, we provide an overview of the previous studies and describe the dust plume evolution over a relatively small area, i.e., Israel. This study presents vertical profiles provided by an array of eight ceilometers covering the Israeli shore, inland and mountain regions. We employ multiple tools including spectral radiometers (Aerosol Robotic Network - AERONET), ground particulate matter concentrations, satellite images, global/diffuse/direct solar radiation measurements and radiosonde profiles. The main findings reveal that the dust plume penetrated Israel on 7 September from the northeast in a downward motion to southwest. On 8 September, the lower level of the dust plume reached 200 m above ground level, generating aerosol optical depth (AOD) above 3 and extreme ground particulate matter concentrations up to ˜ 10 000 µm m-3. A most interesting feature on 8 September was the very high variability in the surface solar radiation in the range of 200-600 W m-2 (22 sites) over just a distance of several hundred kilometers in spite of the thick dust layer above. Furthermore, 8 September shows the lowest radiation levels for this event. On the following day, the surface solar radiation increased, thus enabling a late (between 11:00 and 12:00 UTC) sea breeze development mainly in the coastal zone associated with a creation of a narrow dust layer detached from the ground. On 10 September, the AOD values started to drop down to ˜ 1.5, and the surface concentrations of particulate matter decreased as well as the ceilometers' aerosol indications (signal counts) although Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) revealed an upper dust layer remained.

  6. Dependence of Hurricane intensity and structures on vertical resolution and time-step size

    NASA Astrophysics Data System (ADS)

    Zhang, Da-Lin; Wang, Xiaoxue

    2003-09-01

    In view of the growing interests in the explicit modeling of clouds and precipitation, the effects of varying vertical resolution and time-step sizes on the 72-h explicit simulation of Hurricane Andrew (1992) are studied using the Pennsylvania State University/National Center for Atmospheric Research (PSU/NCAR) mesoscale model (i.e., MM5) with the finest grid size of 6 km. It is shown that changing vertical resolution and time-step size has significant effects on hurricane intensity and inner-core cloud/precipitation, but little impact on the hurricane track. In general, increasing vertical resolution tends to produce a deeper storm with lower central pressure and stronger three-dimensional winds, and more precipitation. Similar effects, but to a less extent, occur when the time-step size is reduced. It is found that increasing the low-level vertical resolution is more efficient in intensifying a hurricane, whereas changing the upper-level vertical resolution has little impact on the hurricane intensity. Moreover, the use of a thicker surface layer tends to produce higher maximum surface winds. It is concluded that the use of higher vertical resolution, a thin surface layer, and smaller time-step sizes, along with higher horizontal resolution, is desirable to model more realistically the intensity and inner-core structures and evolution of tropical storms as well as the other convectively driven weather systems.

  7. CART Raman Lidar Aerosol and Water Vapor Measurements in the Vicinity of Clouds

    NASA Technical Reports Server (NTRS)

    Clayton, Marian B.; Ferrare, Richard A.; Turner, David; Newsom, Rob; Sivaraman, Chitra

    2008-01-01

    Aerosol and water vapor profiles acquired by the Raman lidar instrument located at the Climate Research Facility (CRF) at Southern Great Plains (SGP) provide data necessary to investigate the atmospheric variability in the vicinity of clouds near the top of the planetary boundary layer (PBL). Recent CARL upgrades and modifications to the routine processing algorithms afforded the necessarily high temporal and vertical data resolutions for these investigations. CARL measurements are used to investigate the behavior of aerosol backscattering and extinction and their correlation with water vapor and relative humidity.

  8. Contrasting influences of aerosols on cloud properties during deficient and abundant monsoon years

    PubMed Central

    Patil, Nitin; Dave, Prashant; Venkataraman, Chandra

    2017-01-01

    Direct aerosol radiative forcing facilitates the onset of Indian monsoon rainfall, based on synoptic scale fast responses acting over timescales of days to a month. Here, we examine relationships between aerosols and coincident clouds over the Indian subcontinent, using observational data from 2000 to 2009, from the core monsoon region. Season mean and daily timescales were considered. The correlation analyses of cloud properties with aerosol optical depth revealed that deficient monsoon years were characterized by more frequent and larger decreases in cloud drop size and ice water path, but increases in cloud top pressure, with increases in aerosol abundance. The opposite was observed during abundant monsoon years. The correlations of greater aerosol abundance, with smaller cloud drop size, lower evidence of ice processes and shallower cloud height, during deficient rainfall years, imply cloud inhibition; while those with larger cloud drop size, greater ice processes and a greater cloud vertical extent, during abundant rainfall years, suggest cloud invigoration. The study establishes that continental aerosols over India alter cloud properties in diametrically opposite ways during contrasting monsoon years. The mechanisms underlying these effects need further analysis. PMID:28337991

  9. Contrasting influences of aerosols on cloud properties during deficient and abundant monsoon years.

    PubMed

    Patil, Nitin; Dave, Prashant; Venkataraman, Chandra

    2017-03-24

    Direct aerosol radiative forcing facilitates the onset of Indian monsoon rainfall, based on synoptic scale fast responses acting over timescales of days to a month. Here, we examine relationships between aerosols and coincident clouds over the Indian subcontinent, using observational data from 2000 to 2009, from the core monsoon region. Season mean and daily timescales were considered. The correlation analyses of cloud properties with aerosol optical depth revealed that deficient monsoon years were characterized by more frequent and larger decreases in cloud drop size and ice water path, but increases in cloud top pressure, with increases in aerosol abundance. The opposite was observed during abundant monsoon years. The correlations of greater aerosol abundance, with smaller cloud drop size, lower evidence of ice processes and shallower cloud height, during deficient rainfall years, imply cloud inhibition; while those with larger cloud drop size, greater ice processes and a greater cloud vertical extent, during abundant rainfall years, suggest cloud invigoration. The study establishes that continental aerosols over India alter cloud properties in diametrically opposite ways during contrasting monsoon years. The mechanisms underlying these effects need further analysis.

  10. Assessment of Aerosol Distributions from GEOS-5 Using the CALIPSO Feature Mask

    NASA Technical Reports Server (NTRS)

    Welton, Ellsworth

    2010-01-01

    A-train sensors such as MODIS, MISR, and CALIPSO are used to determine aerosol properties, and in the process a means of estimating aerosol type (e.g. smoke vs. dust). Correct classification of aerosol type is important for climate assessment, air quality applications, and for comparisons and analysis with aerosol transport models. The Aerosols-Clouds-Ecosystems (ACE) satellite mission proposed in the NRC Decadal Survey describes a next generation aerosol and cloud suite similar to the current A-train, including a lidar. The future ACE lidar must be able to determine aerosol type effectively in conjunction with modeling activities to achieve ACE objectives. Here we examine the current capabilities of CALIPSO and the NASA Goddard Earth Observing System general circulation model and data assimilation system (GEOS-5), to place future ACE needs in context. The CALIPSO level 2 feature mask includes vertical profiles of aerosol layers classified by type. GEOS-5 provides global 3D aerosol mass for sulfate, sea salt, dust, and black and organic carbon. A GEOS aerosol scene classification algorithm has been developed to provide estimates of aerosol mixtures and extinction profiles along the CALIPSO orbit track. In previous work, initial comparisons between GEOS-5 derived aerosol mixtures and CALIPSO derived aerosol types were presented for July 2007. In general, the results showed that model and lidar derived aerosol types did not agree well in the boundary layer. Agreement was poor over Europe, where CALIPSO indicated the presence of dust and pollution mixtures yet GEOS-5 was dominated by pollution with little dust. Over the ocean in the tropics, the model appeared to contain less sea salt than detected by CALIPSO, yet at high latitudes the situation was reserved. Agreement between CALIPSO and GEOS-5, aerosol types improved above the boundary layer, primarily in dust and smoke dominated regions. At higher altitudes (> 5 km), the model contained aerosol layers not detected

  11. Combined Retrievals of Boreal Forest Fire Aerosol Properties with a Polarimeter and Lidar

    NASA Technical Reports Server (NTRS)

    Knobelspiesse, K.; Cairns, B.; Ottaviani, M.; Ferrare, R.; Haire, J.; Hostetler, C.; Obland, M.; Rogers, R.; Redemann, J.; Shinozuka, Y.; hide

    2011-01-01

    Absorbing aerosols play an important, but uncertain, role in the global climate. Much of this uncertainty is due to a lack of adequate aerosol measurements. While great strides have been made in observational capability in the previous years and decades, it has become increasingly apparent that this development must continue. Scanning polarimeters have been designed to help resolve this issue by making accurate, multi-spectral, multi-angle polarized observations. This work involves the use of the Research Scanning Polarimeter (RSP). The RSP was designed as the airborne prototype for the Aerosol Polarimetery Sensor (APS), which was due to be launched as part of the (ultimately failed) NASA Glory mission. Field observations with the RSP, however, have established that simultaneous retrievals of aerosol absorption and vertical distribution over bright land surfaces are quite uncertain. We test a merger of RSP and High Spectral Resolution Lidar (HSRL) data with observations of boreal forest fire smoke, collected during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS). During ARCTAS, the RSP and HSRL instruments were mounted on the same aircraft, and validation data were provided by instruments on an aircraft flying a coordinated flight pattern. We found that the lidar data did indeed improve aerosol retrievals using an optimal estimation method, although not primarily because of the constraints imposed on the aerosol vertical distribution. The more useful piece of information from the HSRL was the total column aerosol optical depth, which was used to select the initial value (optimization starting point) of the aerosol number concentration. When ground based sun photometer network climatologies of number concentration were used as an initial value, we found that roughly half of the retrievals had unrealistic sizes and imaginary indices, even though the retrieved spectral optical depths agreed within uncertainties to

  12. Ozone and Aerosol Retrieval from Backscattered Ultraviolet Radiation

    NASA Technical Reports Server (NTRS)

    Bhartia, Pawan K.

    2004-01-01

    In this presentation we will discuss the techniques to estimate total column ozone and aerosol absorption optical depth from the measurements of backscattered ultraviolet (buv) radiation. The total ozone algorithm has been used to create a unique record of the ozone layer, spanning more than 3 decades, from a series of instruments (BUV, SBUV, TOMS, SBUV/2) flown on NASA, NOAA, Japanese and Russian satellites. We will discuss how this algorithm can be considered a generalization of the well-known Dobson/Brewer technique that has been used to process data from ground-based instruments for many decades, and how it differs from the DOAS techniques that have been used to estimate vertical column densities of a host of trace gases from data collected by GOME and SCIAMACHY instruments. The BUV aerosol algorithm is most suitable for the detection of UV absorbing aerosols (smoke, desert dust, volcanic ash) and is the only technique that can detect aerosols embedded in clouds. This algorithm has been used to create a quarter century record of aerosol absorption optical depth using the BUV data collected by a series of TOMS instruments. We will also discuss how the data from the OM1 instrument launched on July 15,2004 will be combined with data from MODIS and CALIPSO lidar data to enhance the accuracy and information content of satellite-derived aerosol measurements. The OM1 and MODIS instruments are currently flying on EOS Aura and EOS Aqua satellites respectively, part of a constellation of satellites called the "A-train". The CALIPSO satellite is expected to join this constellation in mid 2005.

  13. Cloud microphysics and aerosol indirect effects in the global climate model ECHAM5-HAM

    NASA Astrophysics Data System (ADS)

    Lohmann, U.; Stier, P.; Hoose, C.; Ferrachat, S.; Roeckner, E.; Zhang, J.

    2007-03-01

    The double-moment cloud microphysics scheme from ECHAM4 has been coupled to the size-resolved aerosol scheme ECHAM5-HAM. ECHAM5-HAM predicts the aerosol mass and number concentrations and the aerosol mixing state. This results in a much better agreement with observed vertical profiles of the black carbon and aerosol mass mixing ratios than with the previous version ECHAM4, where only the different aerosol mass mixing ratios were predicted. Also, the simulated liquid, ice and total water content and the cloud droplet and ice crystal number concentrations as a function of temperature in stratiform mixed-phase clouds between 0 and -35°C agree much better with aircraft observations in the ECHAM5 simulations. ECHAM5 performs better because more realistic aerosol concentrations are available for cloud droplet nucleation and because the Bergeron-Findeisen process is parameterized as being more efficient. The total anthropogenic aerosol effect includes the direct, semi-direct and indirect effects and is defined as the difference in the top-of-the-atmosphere net radiation between present-day and pre-industrial times. It amounts to -1.8 W m-2 in ECHAM5, when a relative humidity dependent cloud cover scheme and present-day aerosol emissions representative for the year 2000 are used. It is larger when either a statistical cloud cover scheme or a different aerosol emission inventory are employed.

  14. Remote sensing of aerosols by synergy of caliop and modis

    NASA Astrophysics Data System (ADS)

    Kudo, Rei; Nishizawa, Tomoaki; Higurashi, Akiko; Oikawa, Eiji

    2018-04-01

    For the monitoring of the global 3-D distribution of aerosol components, we developed the method to retrieve the vertical profiles of water-soluble, light absorbing carbonaceous, dust, and sea salt particles by the synergy of CALIOP and MODIS data. The aerosol product from the synergistic method is expected to be better than the individual products of CALIOP and MODIS. We applied the method to the biomass-burning event in Africa and the dust event in West Asia. The reasonable results were obtained; the much amount of the water-soluble and light absorbing carbonaceous particles were estimated in the biomass-burning event, and the dust particles were estimated in the dust event.

  15. Aerosol remote sensing in polar regions

    DOE PAGES

    Tomasi, Claudio; Kokhanovsky, Alexander A.; Lupi, Angelo; ...

    2015-01-01

    Multi-year sets of ground-based sun-photometer measurements conducted at 12 Arctic sites and 9 Antarctic sites were examined to determine daily mean values of aerosol optical thickness τ(λ) at visible and near-infrared wavelengths, from which best-fit values of Ångström's exponent α were calculated. Analysing these data, the monthly mean values of τ(0.50 μm) and α and the relative frequency histograms of the daily mean values of both parameters were determined for winter–spring and summer–autumn in the Arctic and for austral summer in Antarctica. The Arctic and Antarctic covariance plots of the seasonal median values of α versus τ(0.50 μm) showed: (i)more » a considerable increase in τ(0.50 μm) for the Arctic aerosol from summer to winter–spring, without marked changes in α; and (ii) a marked increase in τ(0.50 μm) passing from the Antarctic Plateau to coastal sites, whereas α decreased considerably due to the larger fraction of sea-salt aerosol. Good agreement was found when comparing ground-based sun-photometer measurements of τ(λ) and α at Arctic and Antarctic coastal sites with Microtops measurements conducted during numerous AERONET/MAN cruises from 2006 to 2013 in three Arctic Ocean sectors and in coastal and off-shore regions of the Southern Atlantic, Pacific, and Indian Oceans, and the Antarctic Peninsula. Lidar measurements were also examined to characterise vertical profiles of the aerosol backscattering coefficient measured throughout the year at Ny-Ålesund. Satellite-based MODIS, MISR, and AATSR retrievals of τ(λ) over large parts of the oceanic polar regions during spring and summer were in close agreement with ship-borne and coastal ground-based sun-photometer measurements. An overview of the chemical composition of mode particles is also presented, based on in-situ measurements at Arctic and Antarctic sites. Fourteen log-normal aerosol number size-distributions were defined to represent the average features of nuclei

  16. Aerosol remote sensing in polar regions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomasi, Claudio; Kokhanovsky, Alexander A.; Lupi, Angelo

    Multi-year sets of ground-based sun-photometer measurements conducted at 12 Arctic sites and 9 Antarctic sites were examined to determine daily mean values of aerosol optical thickness τ(λ) at visible and near-infrared wavelengths, from which best-fit values of Ångström's exponent α were calculated. Analysing these data, the monthly mean values of τ(0.50 μm) and α and the relative frequency histograms of the daily mean values of both parameters were determined for winter–spring and summer–autumn in the Arctic and for austral summer in Antarctica. The Arctic and Antarctic covariance plots of the seasonal median values of α versus τ(0.50 μm) showed: (i)more » a considerable increase in τ(0.50 μm) for the Arctic aerosol from summer to winter–spring, without marked changes in α; and (ii) a marked increase in τ(0.50 μm) passing from the Antarctic Plateau to coastal sites, whereas α decreased considerably due to the larger fraction of sea-salt aerosol. Good agreement was found when comparing ground-based sun-photometer measurements of τ(λ) and α at Arctic and Antarctic coastal sites with Microtops measurements conducted during numerous AERONET/MAN cruises from 2006 to 2013 in three Arctic Ocean sectors and in coastal and off-shore regions of the Southern Atlantic, Pacific, and Indian Oceans, and the Antarctic Peninsula. Lidar measurements were also examined to characterise vertical profiles of the aerosol backscattering coefficient measured throughout the year at Ny-Ålesund. Satellite-based MODIS, MISR, and AATSR retrievals of τ(λ) over large parts of the oceanic polar regions during spring and summer were in close agreement with ship-borne and coastal ground-based sun-photometer measurements. An overview of the chemical composition of mode particles is also presented, based on in-situ measurements at Arctic and Antarctic sites. Fourteen log-normal aerosol number size-distributions were defined to represent the average features of nuclei

  17. Spatio-temporal variability of aerosols in the tropics relationship with atmospheric and oceanic environments

    NASA Astrophysics Data System (ADS)

    Zuluaga-Arias, Manuel D.

    2011-12-01

    of surface temperature, atmospheric wind, geopotential height, outgoing longwave radiation, water vapor and precipitation together with the climatology of aerosols provide insight on how the variables interact. Different modes of variability, especially in intraseasonal time scales appear as strong modulators of the aerosol distribution. In particular, we investigate how two modes of variability related to the westward propagating synoptic African Easterly Waves of the Tropical Atlantic Ocean affect the horizontal and vertical structure of the environment. The statistical significance of these two modes is tested with the use of two different spectral techniques. The pattern of propagation of aerosol load shows good correspondence with the progression of the atmospheric and oceanic conditions suitable for dust mobilization over the Atlantic Ocean. We present extensions to previous studies related with dust variability over the Atlantic region by evaluating the performance of the long period satellite aerosol retrievals in determining modes of aerosol variability. Results of the covariability between aerosols-environment motivate the use of statistical regression models to test the significance of the forecasting skill of daily AOD time series. The regression models are calibrated using atmospheric variables as predictors from the reanalysis variables. The results show poor forecasting skill with significant error growing after the 3 rd day of the prediction. It is hypothesized that the simplicity of linear models results in an inability to provide a useful forecast.

  18. Effect of MERRA-2 initial and boundary conditions on WRF-Chem aerosol simulations over the Arabian Peninsula

    NASA Astrophysics Data System (ADS)

    Ukhov, Alexander; Stenchikov, Georgiy

    2017-04-01

    In this study, we test the sensitivity of the horizontal and vertical distributions of aerosols to the initial and boundary conditions (IC&BC) of the aerosol/chemistry. We use the WRF-Chem model configured over the Arabian Peninsula to study both dust and anthropogenic aerosols. Currently, in the WRF-Chem the aerosol/chemistry IC&BC are constructed using either default aerosol/chemistry profiles with no inflow of aerosols and chemicals through the lateral boundaries or using the aerosol/chemistry fields from MOZART, the model for ozone and related chemical tracers from the NCAR. Here, we construct aerosol/chemistry IC&BC using MERRA-2 output. MERRA-2 is a recently developed reanalysis that assimilates ground-based and satellite observations to provide the improved distributions of aerosols and chemical species. We ran WRF-Chem simulations for July-August 2015 using GOCART/AFWA dust emission and GOCART aerosol schemes. We used the EDGAR HTAP V4 dataset to calculate SO2 emissions. Comparison of three runs initiated using the same ERA-Interim reanalysis fields but different aerosol/chemistry IC&BC (default WRF-Chem, MOZART, and MERRA-2) with AERONET, Micropulse Lidar, Balloon, and satellite observations shows that the MERRA-2 IC&BC are superior.

  19. Improved parameterization for the vertical flux of dust aerosols emitted by an eroding soil

    USDA-ARS?s Scientific Manuscript database

    The representation of the dust cycle in atmospheric circulation models hinges on an accurate parameterization of the vertical dust flux at emission. However, existing parameterizations of the vertical dust flux vary substantially in their scaling with wind friction velocity, require input parameters...

  20. Retrievals of Profiles of Fine And Coarse Aerosols Using Lidar And Radiometric Space Measurements

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram; Tanre, Didier; Leon, Jean-Francois; Pelon, Jacques; Lau, William K. M. (Technical Monitor)

    2002-01-01

    In couple of years we expect the launch of the CALIPSO lidar spaceborne mission designed to observe aerosols and clouds. CALIPSO will collect profiles of the lidar attenuated backscattering coefficients in two spectral wavelengths (0.53 and 1.06 microns). Observations are provided along the track of the satellite around the globe from pole to pole. The attenuated backscattering coefficients are sensitive to the vertical distribution of aerosol particles, their shape and size. However the information is insufficient to be mapped into unique aerosol physical properties and vertical distribution. Infinite number of physical solutions can reconstruct the same two wavelength backscattered profile measured from space. CALIPSO will fly in formation with the Aqua satellite and the MODIS spectro-radiometer on board. Spectral radiances measured by MODIS in six channels between 0.55 and 2.13 microns simultaneously with the CALIPSO observations can constrain the solutions and resolve this ambiguity, albeit under some assumptions. In this paper we describe the inversion method and apply it to aircraft lidar and MODIS data collected over a dust storm off the coast of West Africa during the SHADE experiment. It is shown that the product of the single scattering albedo, omega, and the phase function, P, for backscattering can be retrieved from the synergism between measurements avoiding a priori hypotheses required for inverting lidar measurements alone. The resultant value of (omega)P(180 deg.) = 0.016/sr are significantly different from what is expected using Mie theory, but are in good agreement with recent results obtained from lidar observations of dust episodes. The inversion is robust in the presence of noise of 10% and 20% in the lidar signal in the 0.53 and 1.06 pm channels respectively. Calibration errors of the lidar of 5 to 10% can cause an error in optical thickness of 20 to 40% respectively in the tested cases. The lidar calibration errors cause degradation in the