Sample records for aerosol volume concentration

  1. Estimating Marine Aerosol Particle Volume and Number from Maritime Aerosol Network Data

    NASA Technical Reports Server (NTRS)

    Sayer, A. M.; Smirnov, A.; Hsu, N. C.; Munchak, L. A.; Holben, B. N.

    2012-01-01

    As well as spectral aerosol optical depth (AOD), aerosol composition and concentration (number, volume, or mass) are of interest for a variety of applications. However, remote sensing of these quantities is more difficult than for AOD, as it is more sensitive to assumptions relating to aerosol composition. This study uses spectral AOD measured on Maritime Aerosol Network (MAN) cruises, with the additional constraint of a microphysical model for unpolluted maritime aerosol based on analysis of Aerosol Robotic Network (AERONET) inversions, to estimate these quantities over open ocean. When the MAN data are subset to those likely to be comprised of maritime aerosol, number and volume concentrations obtained are physically reasonable. Attempts to estimate surface concentration from columnar abundance, however, are shown to be limited by uncertainties in vertical distribution. Columnar AOD at 550 nm and aerosol number for unpolluted maritime cases are also compared with Moderate Resolution Imaging Spectroradiometer (MODIS) data, for both the present Collection 5.1 and forthcoming Collection 6. MODIS provides a best-fitting retrieval solution, as well as the average for several different solutions, with different aerosol microphysical models. The average solution MODIS dataset agrees more closely with MAN than the best solution dataset. Terra tends to retrieve lower aerosol number than MAN, and Aqua higher, linked with differences in the aerosol models commonly chosen. Collection 6 AOD is likely to agree more closely with MAN over open ocean than Collection 5.1. In situations where spectral AOD is measured accurately, and aerosol microphysical properties are reasonably well-constrained, estimates of aerosol number and volume using MAN or similar data would provide for a greater variety of potential comparisons with aerosol properties derived from satellite or chemistry transport model data.

  2. Volume and surface area size distribution, water mass and model fitting of GCE/CASE/WATOX marine aerosols

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Sievering, H.; Boatman, J.

    1990-06-01

    As a part of the Global Change Expedition/Coordinated Air-Sea Experiment/Western Atlantic Ocean Experiment (GCE/CASE/WATOX), size distributions of marine aerosols were measured at two altitudes of about 2750 and 150 m above sea level (asl) over the size range 0.1 ˜ 32 μm. Lognormal fitting was applied to the corrected aerosol size spectra to determine the volume and surface area size distributions of the CASE-WATOX marine aerosols. Each aerosol size distribution was fitted with three lognormal distributions representing fine-, large-, and giant-particle modes. Water volume fraction and dry particle size of each aerosol size distribution were also calculated using empirical formulas for particle size as a function of relative humidity and particle type. Because of the increased influence from anthropogenic sources in the continental United States, higher aerosol volume concentrations were observed in the fine-particle mode near-shore off the east coast; 2.11 and 3.63 μm3 cm-3 for free troposphere (FT) and marine boundary layer (MBL), compared with the open-sea Bermuda area values; 0.13 and 0.74 μm3 cm-3 for FT and MBL. The large-particle mode exhibits the least variations in volume distributions between the east coast and open-sea Bermuda area, having a volume geometric median diameter (VGMD) between 1.4 and 1.6 μm and a geometric standard deviation between 1.57 and 1.68. For the giant-particle mode, larger VGMD and volume concentrations were observed for marine aerosols nearshore off the east coast than in the open-sea Bermuda area because of higher relative humidity and higher surface wind speed conditions. Wet VGMD and aerosol water volume concentrations at 15 m asl ship level were determined by extrapolating from those obtained by analysis of the CASE-WATOX aircraft aerosol data. Abundance of aerosol water in the MBL serves as an important pathway for heterogeneous conversion of SO2 in sea salt aerosol particles.

  3. Characterization of Florida red tide aerosol and the temporal profile of aerosol concentration.

    PubMed

    Cheng, Yung Sung; Zhou, Yue; Pierce, Richard H; Henry, Mike; Baden, Daniel G

    2010-05-01

    Red tide aerosols containing aerosolized brevetoxins are produced during the red tide bloom and transported by wind to coastal areas of Florida. This study reports the characterization of Florida red tide aerosols in human volunteer studies, in which an asthma cohort spent 1h on Siesta Beach (Sarasota, Florida) during aerosolized red tide events and non-exposure periods. Aerosol concentrations, brevetoxin levels, and particle size distribution were measured. Hourly filter samples were taken and analyzed for brevetoxin and NaCl concentrations. In addition, the aerosol mass concentration was monitored in real time. The results indicated that during a non-exposure period in October 2004, no brevetoxin was detected in the water, resulting in non-detectable levels of brevetoxin in the aerosol. In March 2005, the time-averaged concentrations of brevetoxins in water samples were moderate, in the range of 5-10 microg/L, and the corresponding brevetoxin level of Florida red tide aerosol ranged between 21 and 39 ng/m(3). The temporal profiles of red tide aerosol concentration in terms of mass, NaCl, and brevetoxin were in good agreement, indicating that NaCl and brevetoxins are components of the red tide aerosol. By continuously monitoring the marine aerosol and wind direction at Siesta Beach, we observed that the marine aerosol concentration varied as the wind direction changed. The temporal profile of the Florida red tide aerosol during a sampling period could be explained generally with the variation of wind direction. Copyright 2009 Elsevier Ltd. All rights reserved.

  4. High air volume to low liquid volume aerosol collector

    DOEpatents

    Masquelier, Donald A.; Milanovich, Fred P.; Willeke, Klaus

    2003-01-01

    A high air volume to low liquid volume aerosol collector. A high volume flow of aerosol particles is drawn into an annular, centripetal slot in a collector which directs the aerosol flow into a small volume of liquid pool contained is a lower center section of the collector. The annular jet of air impinges into the liquid, imbedding initially airborne particles in the liquid. The liquid in the pool continuously circulates in the lower section of the collector by moving to the center line, then upwardly, and through assistance by a rotating deflector plate passes back into the liquid at the outer area adjacent the impinging air jet which passes upwardly through the liquid pool and through a hollow center of the collector, and is discharged via a side outlet opening. Any liquid droplets escaping with the effluent air are captured by a rotating mist eliminator and moved back toward the liquid pool. The collector includes a sensor assembly for determining, controlling, and maintaining the level of the liquid pool, and includes a lower centrally located valve assembly connected to a liquid reservoir and to an analyzer for analyzing the particles which are impinged into the liquid pool.

  5. Sea-State Dependence of Aerosol Concentration in the Marine Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Lenain, L.; Melville, W. K.

    2016-02-01

    While sea spray aerosols represent a large portion of the aerosols present in the marine environment, and despite evidence of the importance of surface wave and wave-breaking related processes in the coupling of the ocean with the atmosphere, sea spray source generation functions are traditionally parameterized by the wind speed at 10m. It is clear that unless the wind and wave field are fully developed, the source function will be a function of both wind and wave parameters. In this study, we report on an air-sea interaction experiment, the ONR phase-resolved High-Resolution Air-Sea Interaction experiments (HIRES), conducted off the coast of Northern California in June 2010. Detailed measurements of aerosol number concentration in the Marine Atmospheric Boundary Layer (MABL), at altitudes ranging from as low as 30m and up to 800m AMSL over a broad range of environmental conditions (significant wave height, Hs, of 2 to 4.5m and wind speed at 10m height, U10, of 10 to 18 m/s) collected from an instrumented research aircraft, are presented. Aerosol number densities and volume are computed over a range of particle diameters from 0.1 to 200 µm, while the surface conditions, i.e. significant wave height, moments of the breaker length distribution Λ(c), and wave breaking dissipation, were measured by a suite of electro-optical sensors that included the NASA Airborne Topographic Mapper (ATM). The sea-state dependence of the aerosol concentration in the MABL is evident, ultimately stressing the need to incorporate wave and wave kinematics in the spray source generation functions that are traditionally primarily parameterized by surface winds. A scaling of the measured aerosol volume distribution by wave and atmospheric state variables is proposed.

  6. Ice nucleating particle concentration during a combustion aerosol event

    NASA Astrophysics Data System (ADS)

    Adams, Mike; O'Sullivan, Daniel; Porter, Grace; Sanchez-Marroquin, Alberto; Tarn, Mark; Harrison, Alex; McQuaid, Jim; Murray, Benjamin

    2017-04-01

    The formation of ice in supercooled clouds is important for cloud radiative properties, their lifetime and the formation of precipitation. Cloud water droplets can supercool to below -33oC, but in the presence of Ice Nucleating Particles (INPs) freezing can be initiated at much higher temperatures. The concentration of atmospheric aerosols that are active as INPs depends on a number of factors, such as temperature and aerosol composition and concentration. However, our knowledge of which aerosol types serve as INPs is limited. For example, there has been much discussion over whether aerosol from combustion processes are important as INP. This is significant because combustion aerosol have increased in concentration dramatically since pre-industrial times and therefore have the potential to exert a significant anthropogenic impact on clouds and climate. In this study we made measurements of INP concentrations in Leeds over a specific combustion aerosol event in order to test if there was a correlation between INP concentrations and combustion aerosol. The combustion aerosol event was on the 5th November which is a major bonfire and firework event celebrated throughout the UK. During the event we observed a factor of five increase in aerosol and a factor of 10 increase in black carbon, but observed no significant increase in INP concentration. This implies that black carbon and combustion aerosol did not compete with the background INP during this event.

  7. AGRICULTURAL AMMONIA EMISSIONS AND AMMONIUM CONCENTRATIONS ASSOCIATED WITH AEROSOLS AND PRECIPITATION IN THE SOUTHEAST UNITED STATES

    EPA Science Inventory

    Temporal and spatial variations in ammonia (NH3) emissions and ammonium (NH4+) concentrations associated with aerosols and volume-weighted NH4+ concentration in precipitation are investigated over the period 1990-1998 in the southeast United States (Alabama, Florida, Georgia, Ken...

  8. Impact of radon gas concentration in the aerosoles profile

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lukaj, Edmond, E-mail: mondilukaj@yahoo.com; Vila, Floran, E-mail: floranvila@yahoo.com; Mandija, Florian, E-mail: fmandija@yahoo.com

    Radon gases relased from building materials and from earth surface are the major responsibility of air ionization. Radon nuclear decay can produce an alpha particle with high energy and Radon progeny. This particle and gamma rays can deliver particles in the air and produce ions with different polarities. This ions, because of induced electric charge, can attach with air aerosols and charge them with their electric charge. The charged aerosols can interact with the other aerosols and ions. Because of this exchange, the air conductivity and the aerosol profiles will change dependently by Radon gas concentration and gamma radiation. Observationsmore » show an increase in concentration of Radon during the night, and a decrease during the daylight time. The Radon gas concentration changed hour by hour can induce aerosol profile to change. This dependency between the aerosol profiles and the Radon gas concentrations is discussed.« less

  9. Improved Large-Volume Sampler for the Collection of Bacterial Cells from Aerosol

    PubMed Central

    White, L. A.; Hadley, D. J.; Davids, D. E.; Naylor, R.

    1975-01-01

    A modified large-volume sampler was demonstrated to be an efficient device for the collection of mono-disperse aerosols of rhodamine B and poly-disperse aerosols of bacterial cells. Absolute efficiency for collection of rhodamine B varied from 100% with 5-μm particles to about 70% with 0.5-μm particles. The sampler concentrated the particles from 950 liters of air into a flow of between 1 and 2 ml of collecting fluid per min. Spores of Bacillus subtilis var. niger were collected at an efficiency of about 82% compared to the collection in the standard AGI-30 sampler. In the most desirable collecting fluids tested, aerosolized cells of Serratia marcescens, Escherichia coli, and Aerobacter aerogenes were collected at comparative efficiencies of approximately 90, 80, and 90%, respectively. The modified sampler has practical application in the study of aerosol transmission of respiratory pathogens. Images PMID:803820

  10. Continuous dry dispersion of multi-walled carbon nanotubes to aerosols with high concentrations of individual fibers

    NASA Astrophysics Data System (ADS)

    Simonow, Barbara Katrin; Wenzlaff, Daniela; Meyer-Plath, Asmus; Dziurowitz, Nico; Thim, Carmen; Thiel, Jana; Jandy, Mikolaj; Plitzko, Sabine

    2018-06-01

    The assessment of the toxicity of airborne nanofibers is an important task. It relies on toxicological inhalation studies and validated exposure measurement techniques. Both require nanofiber-containing aerosols of known morphological composition and controlled fraction of individual fibers. Here, a dry powder dispersion method is presented that operates with mixtures of nanofibers and microscale beads. Aerosolization experiments of mixtures of multi-walled carbon nanotubes (MWCNTs) and glass beads that were continuously fed into a Venturi nozzle enabled high generation rates of aerosols composed of individual and agglomerate nanofiber structures. The aerosol process achieved good stability over more than 2 h with respect to concentration and aerodynamic size distribution. Its operation duration is limited only by the reservoir volume of the cyclone used to separate the beads from the aerosol. The aerosol concentration can be controlled by changing the mass ratio of MWCNTs and glass beads or by adapting the mass feed rate to the nozzle. For two agglomerated MWCNT materials, aerosol concentrations ranged from 1700 to 64,000 nano-objects per cm3. Comprehensive scanning electron microscope analysis of filter samples was performed to categorize and determine the morphological composition of the aerosol, its fiber content as well as fiber length and diameter distributions. High fractions of individual fibers of up to 34% were obtained, which shows the setup to be capable of dispersing also highly tangled MWCNT agglomerates effectively.

  11. Lung volume is a determinant of aerosol bolus dispersion.

    PubMed

    Schulz, Holger; Eder, Gunter; Heyder, Joachim

    2003-01-01

    The technique of inhaling a small volume element labeled with particles ("aerosol bolus") can be used to assess convective gas mixing in the lung. While a bolus undergoes mixing in the lung, particles are dispersed in an increasing volume of the respired air. However, determining factors of bolus dispersion are not yet completely understood. The present study tested the hypothesis that bolus dispersion is related, among others, to the total volume in which the bolus is allowed to mix--i.e., to the individual lung size. Bolus dispersion was measured in 32 anesthetized, mechanically ventilated dogs with total lung capacities (TLCs) of 1.1-2.5 L. Six-milliliter aerosol boluses were introduced at various preselected time-points during inspiration to probe different volumetric lung depths. Dispersion (SD) was determined by moment analysis of particle concentrations in the expired air. We found linear correlations between SD at a given lung depth and the individual end-inspiratory lung volume (V(L)). The relationship was tightest for boluses inhaled deepest into the lungs: SD(40) = 0.068 V(L) - 1.77, r(2) = 0.59. Normalizing SD to V(L) abolished this dependency and resulted in a considerable reduction of inter-individual variability as compared to the uncorrected measurements. These data indicate that lung size influences measurements of bolus dispersion. It therefore appears reasonable to apply a normalization procedure before interpreting the data. Apart from a reduction in measurement variability, this should help to separate the effects on bolus dispersion of altered lung volumes and altered mixing processes in diseased lungs.

  12. Determination of the volume activity concentration of alpha artificial radionuclides with alpha spectrometer.

    PubMed

    Liu, B; Zhang, Q; Li, Y

    1997-12-01

    This paper introduces a method to determine the volume activity concentration of alpha and/or beta artificial radionuclides in the environment and radon/thoron progeny background-compensation based on a Si surface-barrier detector. By measuring the alpha peak counts of 218Po and 214Po in two time intervals, the activity concentration of 218Po, 214Pb and 214Bi aerosol particles were determined; meanwhile, the total beta count of 214Pb and 214Bi aerosols was also calculated from their decay scheme. With the average equilibrium factor of thoron progeny in general environment, the alpha and beta counts of thoron progeny were approximately evaluated by 212Po alpha peak counts. The alpha count of transuranic aerosols was determined by subtracting the trail counts of radon/thoron progeny alpha peaks. The total count of beta artificial radionuclides was determined by subtracting the beta counts of radon/thoron progeny aerosol particles. In our preliminary experiments, if the radon progeny concentration is less than 15 Bq m(-3), the lower limit of detection of transuranics concentration is less than 0.1 Bq m(-3). Even if the radon progeny concentration is as high as 75 Bq m(-3), the lower limit of detection of total beta activity concentration of artificial nuclides aerosols is less than 1 Bq m(-3).

  13. Validation of LIRIC aerosol concentration retrievals using airborne measurements during a biomass burning episode over Athens

    NASA Astrophysics Data System (ADS)

    Kokkalis, Panagiotis; Amiridis, Vassilis; Allan, James D.; Papayannis, Alexandros; Solomos, Stavros; Binietoglou, Ioannis; Bougiatioti, Aikaterini; Tsekeri, Alexandra; Nenes, Athanasios; Rosenberg, Philip D.; Marenco, Franco; Marinou, Eleni; Vasilescu, Jeni; Nicolae, Doina; Coe, Hugh; Bacak, Asan; Chaikovsky, Anatoli

    2017-01-01

    In this paper we validate the Lidar-Radiometer Inversion Code (LIRIC) retrievals of the aerosol concentration in the fine mode, using the airborne aerosol chemical composition dataset obtained over the Greater Athens Area (GAA) in Greece, during the ACEMED campaign. The study focuses on the 2nd of September 2011, when a long-range transported smoke layer was observed in the free troposphere over Greece, in the height range from 2 to 3 km. CIMEL sun-photometric measurements revealed high AOD ( 0.4 at 532 nm) and Ångström exponent values ( 1.7 at 440/870 nm), in agreement with coincident ground-based lidar observations. Airborne chemical composition measurements performed over the GAA, revealed increased CO volume concentration ( 110 ppbv), with 57% sulphate dominance in the PM1 fraction. For this case, we compare LIRIC retrievals of the aerosol concentration in the fine mode with the airborne Aerosol Mass Spectrometer (AMS) and Passive Cavity Aerosol Spectrometer Probe (PCASP) measurements. Our analysis shows that the remote sensing retrievals are in a good agreement with the measured airborne in-situ data from 2 to 4 km. The discrepancies observed between LIRIC and airborne measurements at the lower troposphere (below 2 km), could be explained by the spatial and temporal variability of the aerosol load within the area where the airborne data were averaged along with the different time windows of the retrievals.

  14. Vertical Profiles of Aerosol Volume from High Spectral Resolution Infrared Transmission Measurements: Results

    NASA Technical Reports Server (NTRS)

    Eldering, Annmarie; Kahn, Brian H.; Mills, Franklin P.; Irion, Fredrick W.; Steele, Helen M.; Gunson, Michael R.

    2004-01-01

    The high-resolution infrared absorption spectra of the Atmospheric Trace Molecule Spectroscopy (ATMOS) experiment are utilized to derive vertical profiles of sulfate aerosol volume density and extinction coefficient. Following the eruption of Mt. Pinatubo in June 1991, the ATMOS spectra obtained on three Space Shuttle missions (1992, 1993, and 1994) provide a unique opportunity to study the global stratospheric sulfate aerosol layer shortly after a major volcanic eruption and periodically during the decay phase. Synthetic sulfate aerosol spectra are fit to the observed spectra, and a global fitting inversion routine is used to derive vertical profiles of sulfate aerosol volume density. Vertical profiles of sulfate aerosol volume density for the three missions over portions of the globe are presented, with the peak in aerosol volume density occurring from as low as 10 km (polar latitudes) to as high as 20 km (subtropical latitudes). Derived aerosol volume density is as high as 2-3.5 (mu)m(exp 3) per cubic centimeter +/-10% in 1992, decreasing to 0.2-0.5 (mu)m(exp 3) per cubic centimeter +/-20% in 1994, in agreement with other experiments. Vertical extinction profiles derived from ATMOS are compared with profiles from Improved Stratospheric And Mesospheric Sounder (ISAMS) and Cryogenic Limb Array Etalon Spectrometer (CLAES) that coincide in space and time and show good general agreement. The uncertainty of the ATMOS vertical profiles is similar to CLAES and consistently smaller than ISAMS at similar altitudes.

  15. Estimation of columnar concentrations of absorbing and scattering fine mode aerosol components using AERONET data

    NASA Astrophysics Data System (ADS)

    Choi, Yongjoo; Ghim, Young Sung

    2016-11-01

    Columnar concentrations of absorbing and scattering components of fine mode aerosols were estimated using Aerosol Robotic Network (AERONET) data for a site downwind of Seoul. The study period was between March 2012 and April 2013 including the period of the Distributed Regional Aerosol Gridded Observation Networks (DRAGON)-Asia campaign in March to May 2012. The Maxwell Garnett mixing rule was assumed for insoluble components embedded in a host solution, while the volume average mixing rule was assumed for the aqueous solution of soluble components. During the DRAGON-Asia campaign the surface concentrations of major components of fine particles were measured. The columnar mass fractions of black carbon (BC), organic carbon (OC), mineral dust (MD), and ammonium sulfate (AS) were 1.5, 5.9, 6.6, and 52%, respectively, which were comparable to the mass fractions measured at the surface for BC, OC, and secondary inorganic aerosols at 2.3, 18, and 55%. The vertical distributions of BC and AS were investigated by employing the concept of a column height. While the column height for BC was similar to the planetary boundary layer (PBL) height, that for AS was 4.4 times higher than the PBL height and increased with air temperature from March to May. The monthly variations of the columnar mass concentrations during the study period were generally well explained in term of meteorology and emission characteristics. However, certain variations of MD were different from those typically observed primarily because only fine mode aerosols were considered.

  16. Unexpectedly high ultrafine aerosol concentrations above East Antarctic sea-ice

    NASA Astrophysics Data System (ADS)

    Humphries, R. S.; Klekociuk, A. R.; Schofield, R.; Keywood, M.; Ward, J.; Wilson, S. R.

    2015-10-01

    The effect of aerosols on clouds and their radiative properties is one of the largest uncertainties in our understanding of radiative forcing. A recent study has concluded that better characterisation of pristine, natural aerosol processes leads to the largest reduction in these uncertainties. Antarctica, being far from anthropogenic activities, is an ideal location for the study of natural aerosol processes. Aerosol measurements in Antarctica are often limited to boundary layer air-masses at spatially sparse coastal and continental research stations, with only a handful of studies in the sea ice region. In this paper, the first observational study of sub-micron aerosols in the East Antarctic sea ice region is presented. Measurements were conducted aboard the ice-breaker Aurora Australis in spring 2012 and found that boundary layer condensation nuclei (CN3) concentrations exhibited a five-fold increase moving across the Polar Front, with mean Polar Cell concentrations of 1130 cm-3 - higher than any observed elsewhere in the Antarctic and Southern Ocean region. The absence of evidence for aerosol growth suggested that nucleation was unlikely to be local. Air parcel trajectories indicated significant influence from the free troposphere above the Antarctic continent, implicating this as the likely nucleation region for surface aerosol, a similar conclusion to previous Antarctic aerosol studies. The highest aerosol concentrations were found to correlate with low pressure systems, suggesting that the passage of cyclones provided an accelerated pathway, delivering air-masses quickly from the free-troposphere to the surface. After descent from the Antarctic free troposphere, trajectories suggest that sea ice boundary layer air-masses travelled equator-ward into the low albedo Southern Ocean region, transporting with them emissions and these aerosol nuclei where, after growth, may potentially impact on the region's radiative balance. The high aerosol concentrations and

  17. Unexpectedly high ultrafine aerosol concentrations above East Antarctic sea ice

    NASA Astrophysics Data System (ADS)

    Humphries, R. S.; Klekociuk, A. R.; Schofield, R.; Keywood, M.; Ward, J.; Wilson, S. R.

    2016-02-01

    Better characterisation of aerosol processes in pristine, natural environments, such as Antarctica, have recently been shown to lead to the largest reduction in uncertainties in our understanding of radiative forcing. Our understanding of aerosols in the Antarctic region is currently based on measurements that are often limited to boundary layer air masses at spatially sparse coastal and continental research stations, with only a handful of studies in the vast sea-ice region. In this paper, the first observational study of sub-micron aerosols in the East Antarctic sea ice region is presented. Measurements were conducted aboard the icebreaker Aurora Australis in spring 2012 and found that boundary layer condensation nuclei (CN3) concentrations exhibited a five-fold increase moving across the polar front, with mean polar cell concentrations of 1130 cm-3 - higher than any observed elsewhere in the Antarctic and Southern Ocean region. The absence of evidence for aerosol growth suggested that nucleation was unlikely to be local. Air parcel trajectories indicated significant influence from the free troposphere above the Antarctic continent, implicating this as the likely nucleation region for surface aerosol, a similar conclusion to previous Antarctic aerosol studies. The highest aerosol concentrations were found to correlate with low-pressure systems, suggesting that the passage of cyclones provided an accelerated pathway, delivering air masses quickly from the free troposphere to the surface. After descent from the Antarctic free troposphere, trajectories suggest that sea-ice boundary layer air masses travelled equatorward into the low-albedo Southern Ocean region, transporting with them emissions and these aerosol nuclei which, after growth, may potentially impact on the region's radiative balance. The high aerosol concentrations and their transport pathways described here, could help reduce the discrepancy currently present between simulations and observations of

  18. Winter monsoon variability and its impact on aerosol concentrations in East Asia.

    PubMed

    Jeong, Jaein I; Park, Rokjin J

    2017-02-01

    We investigate the relationship between winter aerosol concentrations over East Asia and variability in the East Asian winter monsoon (EAWM) using GEOS-Chem 3-D global chemical transport model simulations and ground-based aerosol concentration data. We find that both observed and modeled surface aerosol concentrations have strong relationships with the intensity of the EAWM over northern (30-50°N, 100-140°E) and southern (20-30°N, 100-140°E) East Asia. In strong winter monsoon years, compared to weak winter monsoon years, lower and higher surface PM 2.5 concentrations by up to 25% are shown over northern and southern East Asia, respectively. Analysis of the simulated results indicates that the southward transport of aerosols is a key process controlling changes in aerosol concentrations over East Asia associated with the EAWM. Variability in the EAWM is found to play a major role in interannual variations in aerosol concentrations; consequently, changes in the EAWM will be important for understanding future changes in wintertime air quality over East Asia. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Physicochemical characterization of Capstone depleted uranium aerosols I: uranium concentration in aerosols as a function of time and particle size.

    PubMed

    Parkhurst, Mary Ann; Cheng, Yung Sung; Kenoyer, Judson L; Traub, Richard J

    2009-03-01

    During the Capstone Depleted Uranium (DU) Aerosol Study, aerosols containing DU were produced inside unventilated armored vehicles (i.e., Abrams tanks and Bradley Fighting Vehicles) by perforation with large-caliber DU penetrators. These aerosols were collected and characterized, and the data were subsequently used to assess human health risks to personnel exposed to DU aerosols. The DU content of each aerosol sample was first quantified by radioanalytical methods, and selected samples, primarily those from the cyclone separator grit chambers, were analyzed radiochemically. Deposition occurred inside the vehicles as particles settled on interior surfaces. Settling rates of uranium from the aerosols were evaluated using filter cassette samples that collected aerosol as total mass over eight sequential time intervals. A moving filter was used to collect aerosol samples over time, particularly within the first minute after a shot. The results demonstrate that the peak uranium concentration in the aerosol occurred in the first 10 s after perforation, and the concentration decreased in the Abrams tank shots to about 50% within 1 min and to less than 2% after 30 min. The initial and maximum uranium concentrations were lower in the Bradley vehicle than those observed in the Abrams tank, and the concentration levels decreased more slowly. Uranium mass concentrations in the aerosols as a function of particle size were evaluated using samples collected in a cyclone sampler, which collected aerosol continuously for 2 h after perforation. The percentages of uranium mass in the cyclone separator stages ranged from 38 to 72% for the Abrams tank with conventional armor. In most cases, it varied with particle size, typically with less uranium associated with the smaller particle sizes. Neither the Abrams tank with DU armor nor the Bradley vehicle results were specifically correlated with particle size and can best be represented by their average uranium mass concentrations of 65

  20. Characterization of aerosol composition, concentrations, and sources at Baengnyeong Island, Korea using an aerosol mass spectrometer

    NASA Astrophysics Data System (ADS)

    Lee, Taehyoung; Choi, Jinsoo; Lee, Gangwoong; Ahn, Junyoung; Park, Jin Soo; Atwood, Samuel A.; Schurman, Misha; Choi, Yongjoo; Chung, Yoomi; Collett, Jeffrey L.

    2015-11-01

    To improve understanding of the sources and chemical properties of particulate pollutants on the western side of the Korean Peninsula, an Aerodyne High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS) measured non-refractory fine (PM1) particles from May to November, 2011 at Baengnyeong Island, South Korea. Organic matter and sulfate were generally the most abundant species and exhibited maximum concentrations of 36 μg/m3 and 39 μg/m3, respectively. Nitrate concentrations peaked at 32 μg/m3 but were typically much lower than sulfate and organic matter concentrations. May, September, October, and November featured the highest monthly average concentrations, with lower concentrations typically observed from June through August. Potential source contribution function (PSCF) analysis and individual case studies revealed that transport from eastern China, an area with high SO2 emissions, was associated with high particulate sulfate concentrations at the measurement site. Observed sulfate aerosol sometimes was fully neutralized by ammonium but often was acidic; the average ammonium to sulfate molar ratio was 1.49. Measured species size distributions revealed a range of sulfate particle size distributions with modes between 100 and 600 nm. Organic aerosol source regions were widespread, including contributions from eastern China and South Korea. Positive matrix factorization (PMF) analysis indicated three "factors," or types of organic aerosol, comprising one primary, hydrocarbon-like organic aerosol (HOA) and two oxidized organic aerosol (OOA) components, including a more oxidized (MO-OOA) and a less oxidized (LO-OOA) oxidized organic aerosol. On average, HOA and OOA contributed 21% and 79% of the organic mass (OM), respectively, with the MO-OOA fraction nearly three times as abundant as the LO-OOA fraction. Biomass burning contributions to observed OM were low during the late spring/early summer agricultural burning season in eastern China, since

  1. SAGE Aerosol Measurements. Volume 2: 1 January - 31 December 1980

    NASA Technical Reports Server (NTRS)

    Mccormick, M. P.

    1986-01-01

    The stratospheric Aerosol and Gas Experiment (SAGE) satellite system, launched on February 18, 1979, provides profiles of aerosol extinction at wavelengths of 1.00 and 0.45 micron, ozone concentration, and nitrogen dioxide concentration. Data taken during sunset events in the form of zonal averages and seasonal averages of the aerosol extinction at 1.00 and 0.45 micron, ratios of the aerosol extinction to the molecular extinction at 1.00 micron, and ratios of the aerosol extinction at 0.45 micron to the aerosol extinction at 1.00 micron are presented. The averages for l980 are shown in tables and in profile and contour plots (as a function of altitude and latitude). In addition, temperature data provided by the National Oceanic and Atmospheric Administration (NOAA) for the time and location of each SAGE measurement are averaged and shown in a similar format.

  2. Temporal Variation of Aerosol Properties at a Rural Continental Site and Study of Aerosol Evolution through Growth Law Analysis

    NASA Technical Reports Server (NTRS)

    Wang, Jian; Collins, Don; Covert, David; Elleman, Robert; Ferrare, Richard A.; Gasparini, Roberto; Jonsson, Haflidi; Ogren, John; Sheridan, Patrick; Tsay, Si-Chee

    2006-01-01

    Aerosol size distributions were measured by a Scanning Mobility Particle Sizer (SMPS) onboard the CIRPAS Twin Otter aircraft during 16 flights at the Southern Great Plains (SGP) site in northern central Oklahoma as part of the Aerosol Intensive Operation period in May, 2003. During the same period a second SMPS was deployed at a surface station and provided continuous measurements. Combined with trace gas measurements at the SGP site and back-trajectory analysis, the aerosol size distributions provided insights into the sources of aerosols observed at the SGP site. High particle concentrations, observed mostly during daytime, were well correlated with the sulfur dioxide (SO2) mixing ratios, suggesting nucleation involving sulfuric acid is likely the main source of newly formed particles at the SGP. Aerosols within plumes originating from wildfires in Central America were measured at the surface site. Vertically compact aerosol layers, which can be traced back to forest fires in East Asia, were intercepted at altitudes over 3000 meters. Analyses of size dependent particle growth rates for four periods during which high cloud coverage was observed indicate growth dominated by volume controlled reactions. Sulfate accounts for 50% to 72% of the increase in aerosol volume concentration; the rest of the volume concentration increase was likely due to secondary organic species. The growth law analyses and meteorological conditions indicate that the sulfate was produced mainly through aqueous oxidation of SO2 in clouds droplets and hydrated aerosol particles.

  3. MCS precipitation and downburst intensity response to increased aerosol concentrations

    NASA Astrophysics Data System (ADS)

    Clavner, M.; Cotton, W. R.; van den Heever, S. C.

    2015-12-01

    Mesoscale convective systems (MCSs) are important contributors to rainfall in the High Plains of the United States as well as producers of severe weather such as hail, tornados and straight-line wind events known as derechos. Past studies have shown that changes in aerosol concentrations serving as cloud condensation nuclei (CCN) alter the MCS hydrometeor characteristics which in turn modify precipitation yield, downdraft velocity, cold-pool strength, storm propagation and the potential for severe weather to occur. In this study, the sensitivity of MCS precipitation characteristics and convective downburst velocities associated with a derecho to changes in CCN concentrations were examined by simulating a case study using the Regional Atmospheric Modeling System (RAMS). The case study of the 8 May 2009 "Super-Derecho" MCS was chosen since it produced a swath of widespread wind damage in association with an embedded large-scale bow echo, over a broad region from the High Plains of western Kansas to the foothills of the Appalachians. The sensitivity of the storm to changes in CCN concentrations was examined by conducting a set of three simulations which differed in the initial aerosol concentration based on output from the 3D chemical transport model, GEOS-Chem. Results from this study indicate that while increasing CCN concentrations led to an increase in precipitation rates, the changes to the derecho strength were not linear. A moderate increase in aerosol concentration reduced the derecho strength, while the simulation with the highest aerosol concentrations increased the derecho intensity. These changes are attributed to the impact of enhanced CCN concentration on the production of convective downbursts. An analysis of aerosol loading impacts on these MCS features will be presented.

  4. Enhancement of PM2.5 Concentrations by Aerosol-Meteorology Interactions Over China

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Zhang, Qiang; Hong, Chaopeng; Zheng, Yixuan; Geng, Guannan; Tong, Dan; Zhang, Yuxuan; Zhang, Xiaoye

    2018-01-01

    Aerosol-meteorology interactions can change surface aerosol concentrations via different mechanisms such as altering radiation budget or cloud microphysics. However, few studies investigated the impacts of different mechanisms on temporal and spatial distribution of PM2.5 concentrations over China. Here we used the fully coupled Weather Research and Forecasting model with online chemistry (WRF-Chem) to quantify the enhancement of PM2.5 concentrations by aerosol-meteorology feedback in China in 2014 for different seasons and separate the relative impacts of aerosol radiation interactions (ARIs) and aerosol-cloud interactions (ACIs). We found that ARIs and ACIs could increase population-weighted annual mean PM2.5 concentration over China by 4.0 μg/m3 and 1.6 μg/m3, respectively. We found that ARIs play a dominant role in aerosol-meteorology interactions in winter, while the enhancement of PM2.5 concentration by ARIs and ACIs is comparable in other three seasons. ARIs reduced the wintertime monthly mean wind speed and planetary boundary layer (PBL) height by up to 0.1 m/s and 160 m, respectively, but increased the relative humidity by up to 4%, leading to accumulation of pollutants within PBL. Also, ARIs reduced dry deposition velocity of aerosols by up to 20%, resulting in an increase in PM2.5 lifetime and concentrations. ARIs can increase wintertime monthly mean surface PM2.5 concentration by a maximum of 30 μg/m3 in Sichuan Basin. ACIs can also increase PM2.5 concentration with more significant impacts in wet seasons via reduced wet scavenging and enhanced in-cloud chemistry. Dominant processes in PM2.5 enhancement are also clarified in different seasons. Results show that physical process is more important than chemical processes in winter in ARIs, while chemical process of secondary inorganic aerosols production may be crucial in wet seasons via ACIs.

  5. Comparison of Aerosol Volume Size Distributions between Surface and Ground-based Remote Sensing Measurements Downwind of Seoul, Korea during MAPS-Seoul

    NASA Astrophysics Data System (ADS)

    Kim, P.; Choi, Y.; Ghim, Y. S.

    2016-12-01

    Both sunphotometer (Cimel, CE-318) and skyradiometer (Prede, POM-02) were operated in May, 2015 as a part of the Megacity Air Pollution Studies-Seoul (MAPS-Seoul) campaign. These instruments were collocated at the Hankuk University of Foreign Studies (Hankuk_UFS) site of AErosol RObotic NETwork (AERONET) and the Yongin (YGN) site of SKYradiometer NETwork (SKYNET). The aerosol volume size distribution at the surface was measured using a wide range aerosol spectrometer (WRAS) system consisting of a scanning mobility particle sizer (Grimm, Model 5.416; 45 bins, 0.01-1.09 μm) and an optical particle counter (Grimm, Model 1.109; 31 bins, 0.27-34 μm). The measurement site (37.34oN, 127.27oE, 167 m above sea level) is located about 35 km southeast of downtown Seoul. To investigate the discrepancies in volume concentrations, effective diameters and fine mode volume fractions, we compared the volume size distributions from sunphotometer, skyradiometer, and WRAS system when the measurement time coincided within 5 minutes considering that the measurement intervals were different between instruments.

  6. Sensitivity of warm-frontal processes to cloud-nucleating aerosol concentrations

    NASA Technical Reports Server (NTRS)

    Igel, Adele L.; Van Den Heever, Susan C.; Naud, Catherine M.; Saleeby, Stephen M.; Posselt, Derek J.

    2013-01-01

    An extratropical cyclone that crossed the United States on 9-11 April 2009 was successfully simulated at high resolution (3-km horizontal grid spacing) using the Colorado State University Regional Atmospheric Modeling System. The sensitivity of the associated warm front to increasing pollution levels was then explored by conducting the same experiment with three different background profiles of cloud-nucleating aerosol concentration. To the authors' knowledge, no study has examined the indirect effects of aerosols on warm fronts. The budgets of ice, cloud water, and rain in the simulation with the lowest aerosol concentrations were examined. The ice mass was found to be produced in equal amounts through vapor deposition and riming, and the melting of ice produced approximately 75% of the total rain. Conversion of cloud water to rain accounted for the other 25%. When cloud-nucleating aerosol concentrations were increased, significant changes were seen in the budget terms, but total precipitation remained relatively constant. Vapor deposition onto ice increased, but riming of cloud water decreased such that there was only a small change in the total ice production and hence there was no significant change in melting. These responses can be understood in terms of a buffering effect in which smaller cloud droplets in the mixed-phase region lead to both an enhanced vapor deposition and decreased riming efficiency with increasing aerosol concentrations. Overall, while large changes were seen in the microphysical structure of the frontal cloud, cloud-nucleating aerosols had little impact on the precipitation production of the warm front.

  7. Spatial variability of carbonaceous aerosol concentrations in East and West Jerusalem.

    PubMed

    von Schneidemesser, Erika; Zhou, Iiabin; Stone, Elizabeth A; Schauer, James I; Shpund, Jacob; Brenner, Shmuel; Qasrawi, Radwan; Abdeen, Ziad; Sarnat, Jeremy A

    2010-03-15

    Carbonaceous aerosol concentrations and sources were compared during a year long study at two sites in East and West Jerusalem that were separated by a distance of approximately 4 km. One in six day 24-h PM(2.5) elemental and organic carbon concentrations were measured, along with monthly average concentrations of particle-phase organic compound tracers for primary and secondary organic aerosol sources.Tracer compounds were used in a chemical mass balance ICMB) model to determine primary and secondary source contributions to organic carbon. The East Jerusalem sampling site at Al Quds University experienced higher concentrations of organic carbon (OC) and elemental carbon (EC) compared to the West Jerusalem site at Hebrew University. The annual average concentrations of OC and EC at the East Jerusalem site were 5.20 and 2.19 μg m(-3), respectively, and at the West Jerusalem site were 4.03 and 1.14 μg m(-3), respectively. Concentrations and trends of secondary organic aerosol and vegetative detritus were similar at both sites, but large differences were observed in the concentrations of organic aerosol from fossil fuel combustion and biomass burning, which was the cause of the large differences in OC and EC concentrations observed at the two sites.

  8. Aerosol concentrations and composition in the North Pacific marine boundary layer

    NASA Astrophysics Data System (ADS)

    Choi, Yongjoo; Rhee, Tae Siek; Collett, Jeffrey L.; Park, Taehyun; Park, Seung-Myung; Seo, Beom-Keun; Park, Gyutae; Park, Keyhong; Lee, Taehyoung

    2017-12-01

    Ship-borne measurements of inorganic and organic aerosols, including methanesulfonic acid (MSA), were conducted over the Northern Pacific using a High Resolution Time of Flight Aerosol Mass Spectrometer (AMS). This study, conducted aboard the Korean ice breaker R/V Araon, was part of the SHIP-borne Pole-to-Pole Observations (SHIPPO) project. Based on air mass source region, the cruise track could be divided into five sections. Overall, the South Asia and Northern Japan ship transects showed higher aerosol concentrations due to continental pollution and biomass burning sources, respectively. In all five regions, the average mass concentrations of sulfate and organic aerosols (OA) were much higher than concentrations of nitrate and ammonium. Positive matrix factorization (PMF) analysis distinguished two organic aerosol factors as hydrocarbon-like and oxidized OA (HOA and OOA). HOA peaked in South Asia under the influence of anthropogenic pollution source areas, such as China and Korea, and generally decreased with increasing latitude across the full study region. OOA concentrations peaked in Northern Japan near the Tsugaru Strait and appear to reflect fine particle contributions from biomass burning. The mean HOA concentration in the clean marine area (Aleutian Island to Siberia) was 0.06 μg/m3 and comprised approximately 8% of the OA mass fraction. The highest MSA concentrations peaked in the Aleutian Islands at nearly 15 μg/m3, suggesting influence from higher dimethyl sulfide (DMS) emissions resulting from biological nutrient uptake during summer. The MSA/sulfate ratio, an indicator of the relative fine particle contributions of DMS and anthropogenic sources, revealed a sharp gradient as the ship approached the clean marine areas where the dominance of DMS increased. The patterns in OOA, HOA, and MSA concentrations found in this study provide a better understanding of the characteristics of inorganic and organic aerosols in the Northern Pacific Ocean.

  9. Retrieve Aerosol Concentration Based On Surface Model and Distribution of Concentration of PM2.5 ——A Case Study of Beijing

    NASA Astrophysics Data System (ADS)

    Cui, H.

    2017-12-01

    As China's economy continues to grow, urbanization continues to advance, along with growth in all areas to pollutant emissions in the air industry, air quality also continued to deteriorate. Aerosol concentrations as a measure of air quality of the most important part of are more and more people's attention. Traditional monitoring stations measuring aerosol concentration method is accurate, but time-consuming and can't be done simultaneously measure a large area, can only rely on data from several monitoring sites to predict the concentration of the panorama. Remote Sensing Technology retrieves aerosol concentrations being by virtue of their efficient, fast advantages gradually into sight. In this paper, by the method of surface model to start with the physical processes of atmospheric transport, innovative aerosol concentration coefficient proposed to replace the traditional aerosol concentrations, pushed to a set of retrieval of aerosol concentration coefficient method, enabling fast and efficient Get accurate air pollution target area. At the same paper also monitoring data for PM2.5 in Beijing were analyzed from different angles, from the perspective of the data summarized in Beijing PM2.5 concentration of time, space, geographical distribution and concentration of PM2.5 and explored the relationship between aerosol concentration coefficient and concentration of PM2.5.

  10. Physicochemical Characterization of Capstone Depleted Uranium Aerosols I: Uranium Concentration in Aerosols as a Function of Time and Particle Size

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parkhurst, MaryAnn; Cheng, Yung-Sung; Kenoyer, Judson L.

    2009-03-01

    During the Capstone Depleted Uranium (DU) Aerosol Study, aerosols containing depleted uranium were produced inside unventilated armored vehicles (i.e., Abrams tanks and Bradley Fighting Vehicles) by perforation with large-caliber DU penetrators. These aerosols were collected and characterized, and the data were subsequently used to assess human health risks to personnel exposed to DU aerosols. The DU content of each aerosol sample was first quantified by radioanalytical methods, and selected samples, primarily those from the cyclone separator grit chambers, were analyzed radiochemically. Deposition occurred inside the vehicles as particles settled on interior surfaces. Settling rates of uranium from the aerosols weremore » evaluated using filter cassette samples that collected aerosol as total mass over eight sequential time intervals. A moving filter was used to collect aerosol samples over time particularly within the first minute after the shot. The results demonstrate that the peak uranium concentration in the aerosol occurred in the first 10 s, and the concentration decreased in the Abrams tank shots to about 50% within 1 min and to less than 2% 30 min after perforation. In the Bradley vehicle, the initial (and maximum) uranium concentration was lower than those observed in the Abrams tank and decreased more slowly. Uranium mass concentrations in the aerosols as a function of particle size were evaluated using samples collected in the cyclone samplers, which collected aerosol continuously for 2 h post perforation. The percentages of uranium mass in the cyclone separator stages from the Abrams tank tests ranged from 38% to 72% and, in most cases, varied with particle size, typically with less uranium associated with the smaller particle sizes. Results with the Bradley vehicle ranged from 18% to 29% and were not specifically correlated with particle size.« less

  11. Process evaluation of sea salt aerosol concentrations at remote marine locations

    NASA Astrophysics Data System (ADS)

    Struthers, H.; Ekman, A. M.; Nilsson, E. D.

    2011-12-01

    Sea salt, an important natural aerosol, is generated by bubbles bursting at the surface of the ocean. Sea salt aerosol contributes significantly to the global aerosol burden and radiative budget and are a significant source of cloud condensation nuclei in remote marine areas (Monahan et al., 1986). Consequently, changes in marine aerosol abundance is expected to impact on climate forcing. Estimates of the atmospheric burden of sea salt aerosol mass derived from chemical transport and global climate models vary greatly both in the global total and the spatial distribution (Texor et al. 2006). This large uncertainty in the sea salt aerosol distribution in turn contributes to the large uncertainty in the current estimates of anthropogenic aerosol climate forcing (IPCC, 2007). To correctly attribute anthropogenic climate change and to veraciously project future climate, natural aerosols including sea salt must be understood and accurately modelled. In addition, the physical processes that determine the sea salt aerosol concentration are susceptible to modification due to climate change (Carslaw et al., 2010) which means there is the potential for feedbacks within the climate/aerosol system. Given the large uncertainties in sea salt aerosol modelling, there is an urgent need to evaluate the process description of sea salt aerosols in global models. An extremely valuable source of data for model evaluation is the long term measurements of PM10 sea salt aerosol mass available from a number of remote marine observation sites around the globe (including the GAW network). Sea salt aerosol concentrations at remote marine locations depend strongly on the surface exchange (emission and deposition) as well as entrainment or detrainment to the free troposphere. This suggests that the key parameters to consider in any analysis include the sea surface water temperature, wind speed, precipitation rate and the atmospheric stability. In this study, the sea salt aerosol observations

  12. The effect of formaldehyde and nitrogen-containing compounds on the size and volume of aerosol particles

    NASA Astrophysics Data System (ADS)

    Millage, K.; Galloway, M. M.; De Haan, D. O.

    2012-12-01

    Atmospheric aerosol can interact with clouds in many ways, often resulting in the redistribution or absorption of solar energy or changes in precipitation efficiency. Secondary organic aerosol (SOA) in particular has been linked to climate change and a reduction in the number and size of cloud particles. The reactions of nitrogen containing compounds (primary amines, amino acids and ammonium sulfate) with carbonyl compounds (such as formaldehyde and glycolaldehyde) are potential sources of SOA. Aerosol containing formaldehyde and nitrogen-containing compounds (glycine, methylamine, arginine, or ammonium sulfate) was generated from buffered solutions (pH 5.4) using a nebulizer. The aerosol was then equilibrated into a chamber containing humid air (82-84% RH), and particle sizes were measured using a SMPS system over a period of 1 hour in order to examine how the size and volume of the aerosol particles changed. Formaldehyde concentrations were varied over multiple experiments. Arginine displayed a trend of increasing relative particle size with increasing formaldehyde concentration. Ammonium sulfate and formaldehyde displayed a decrease in relative particle sizes from 0:1 to 2:1 ratios of formaldehyde to ammonium sulfate, but then an increase in relative particle sizes with increasing amounts of formaldehyde. Similarly, glycine and methylamine initially displayed decreasing relative particle sizes, until reaching a 1:1 ratio of each to formaldehyde at which point the relative particle sizes steadily increased. These effects were likely caused by the evaporation of first-generation imine products.

  13. Potential source identification for aerosol concentrations over a site in Northwestern India

    NASA Astrophysics Data System (ADS)

    Payra, Swagata; Kumar, Pramod; Verma, Sunita; Prakash, Divya; Soni, Manish

    2016-03-01

    The collocated measurements of aerosols size distribution (ASD) and aerosol optical thickness (AOT) are analyzed simultaneously using Grimm aerosol spectrometer and MICROTOP II Sunphotometer over Jaipur, capital of Rajasthan in India. The contrast temperature characteristics during winter and summer seasons of year 2011 are investigated in the present study. The total aerosol number concentration (TANC, 0.3-20 μm) during winter season was observed higher than in summer time and it was dominated by fine aerosol number concentration (FANC < 2 μm). Particles smaller than 0.8 μm (at aerodynamic size) constitute ~ 99% of all particles in winter and ~ 90% of particles in summer season. However, particles greater than 2 μm contribute ~ 3% and ~ 0.2% in summer and winter seasons respectively. The aerosols optical thickness shows nearly similar AOT values during summer and winter but corresponding low Angstrom Exponent (AE) values during summer than winter, respectively. In this work, Potential Source Contribution Function (PSCF) analysis is applied to identify locations of sources that influenced concentrations of aerosols over study area in two different seasons. PSCF analysis shows that the dust particles from Thar Desert contribute significantly to the coarse aerosol number concentration (CANC). Higher values of the PSCF in north from Jaipur showed the industrial areas in northern India to be the likely sources of fine particles. The variation in size distribution of aerosols during two seasons is clearly reflected in the log normal size distribution curves. The log normal size distribution curves reveals that the particle size less than 0.8 μm is the key contributor in winter for higher ANC.

  14. Aerosol concentration and size distribution measured below, in, and above cloud from the DOE G-1 during VOCALS-REx

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kleinman L. I.; Daum, P. H.; Lee, Y.-N.

    2012-01-04

    During the VOCALS Regional Experiment, the DOE G-1 aircraft was used to sample a varying aerosol environment pertinent to properties of stratocumulus clouds over a longitude band extending 800 km west from the Chilean coast at Arica. Trace gas and aerosol measurements are presented as a function of longitude, altitude, and dew point in this study. Spatial distributions are consistent with an upper atmospheric source for O{sub 3} and South American coastal sources for marine boundary layer (MBL) CO and aerosol, most of which is acidic sulfate. Pollutant layers in the free troposphere (FT) can be a result of emissionsmore » to the north in Peru or long range transport from the west. At a given altitude in the FT (up to 3 km), dew point varies by 40 C with dry air descending from the upper atmospheric and moist air having a boundary layer (BL) contribution. Ascent of BL air to a cold high altitude results in the condensation and precipitation removal of all but a few percent of BL water along with aerosol that served as CCN. Thus, aerosol volume decreases with dew point in the FT. Aerosol size spectra have a bimodal structure in the MBL and an intermediate diameter unimodal distribution in the FT. Comparing cloud droplet number concentration (CDNC) and pre-cloud aerosol (D{sub p} > 100 nm) gives a linear relation up to a number concentration of {approx}150 cm{sup -3}, followed by a less than proportional increase in CDNC at higher aerosol number concentration. A number balance between below cloud aerosol and cloud droplets indicates that {approx}25 % of aerosol with D{sub p} > 100 nm are interstitial (not activated). A direct comparison of pre-cloud and in-cloud aerosol yields a higher estimate. Artifacts in the measurement of interstitial aerosol due to droplet shatter and evaporation are discussed. Within each of 102 constant altitude cloud transects, CDNC and interstitial aerosol were anti-correlated. An examination of one cloud as a case study shows that the

  15. Determination of radionuclide concentrations in ground level air using the ASS-500 high volume sampler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frenzel, E.; Arnold, D.; Wershofen, H.

    1996-06-01

    A method for determination of radionuclide concentrations in air aerosol samples collected by the high volume aerosol sampler ASS-500 was elaborated. The aerosol sampling station ASS-500 is a Stand alone, all-weather proofed instrument. It is designed for representative sampling of airborne radionuclides from ground level air at a height of about 1.5 m above ground level. The ASS-500 station enables continuous air monitoring both normal and emergency Situations. The collection of aerosols on the Petrianov FPP-15-1.5 type filter out of an air volume of about 100,000 m{sup 3} (sampling period 1 wk) or of about 250,000 m{sup 3} (sampling periodmore » 3 wk) admits accurate spectrometric low level measurements of natural and artificial radionuclides. The achieved detection limit is 0.5 {mu}Bq m{sup -3} and 0.2 {mu}Bq m{sup -3} for {sup 137}Cs, respectively. A new developed air flow Meter system allows to enhance the collected air volume to about 150,000 m{sup 3} per week and lowers the detection limit to <0.4 {mu}Bq m{sup -3} for {sup 137}Cs for weekly collected aerosol samples. In Poland the CLOR uses 9 Stations ASS-500 at different sites as atmospheric radioactivity control system. On the basis of spectrometric measurements of natural and artificial radionuclides in the collected aerosol samples at the different sites, CLOR establishes a weekly report about the radiological situation at Poland for responsible authorities. The very low achievable detection limit of the Station ASS-500 due 10 the high air flow fate and the long possible sampling period were the key argument for other government radiation protection authorities in Europe to introduce the Station ASS-500 into their low level radionuclide atmospheric monitoring programs (Austria, Belarus, France, Germany, Iceland, Spain, Switzerland, Ukraine).« less

  16. Estimation of atmospheric columnar organic matter (OM) mass concentration from remote sensing measurements of aerosol spectral refractive indices

    NASA Astrophysics Data System (ADS)

    Zhang, Ying; Li, Zhengqiang; Sun, Yele; Lv, Yang; Xie, Yisong

    2018-04-01

    Aerosols have adverse effects on human health and air quality, changing Earth's energy balance and lead to climate change. The components of aerosol are important because of the different spectral characteristics. Based on the low hygroscopic and high scattering properties of organic matter (OM) in fine modal atmospheric aerosols, we develop an inversion algorithm using remote sensing to obtain aerosol components including black carbon (BC), organic matter (OM), ammonium nitrate-like (AN), dust-like (DU) components and aerosol water content (AW). In the algorithm, the microphysical characteristics (i.e. volume distribution and complex refractive index) of particulates are preliminarily separated to fine and coarse modes, and then aerosol components are retrieved using bimodal parameters. We execute the algorithm using remote sensing measurements of sun-sky radiometer at AERONET site (Beijing RADI) in a period from October of 2014 to January of 2015. The results show a reasonable distribution of aerosol components and a good fit for spectral feature calculations. The mean OM mass concentration in atmospheric column is account for 14.93% of the total and 56.34% of dry and fine-mode aerosol, being a fairly good correlation (R = 0.56) with the in situ observations near the surface layer.

  17. Comparison of aerosol volume size distributions between column and surface measurements downwind of Seoul, Korea

    NASA Astrophysics Data System (ADS)

    Park, J. S.; Choi, Y.; Ghim, Y. S.

    2015-12-01

    The aerosol volume size distribution is one of the most important parameters in retrieving aerosol optical properties and studying radiative forcing. The column-integrated aerosol volume size distribution for AERONET was obtained from inversion product level 1.5 (22 bins between 0.1 and 30 μm in diameter) from the measurements of CIMEL sunphotometer (CE-318); that for SKYNET was obtained using skyrad.pack V5 (20 bins, 0.02-33 μm) from the measurements of PREDE skyradiometer (POM-02). The aerosol volume size distribution at the surface was measured using a wide range aerosol spectrometer system consisting of a scanning mobility particle scanner (Grimm, Model 5.419; 89 bins, 0.005-0.35 μm) and an optical particle counter (Grimm, Model 1.109; 31 bins, 0.27-34 μm). The measurement was conducted in Yongin, downwind of Seoul, Korea, from April 30 to June 27, 2015. The measurement site is located on the rooftop of a five-story building on the hill (37.34°N, 127.27°E, 167 m above sea level) in the global campus of Hankuk University of Foreign Studies. To investigate the discrepancy in effective diameter and fine mode volume fraction, we compared the volume size distributions when the measurement time coincided within 5 minutes because the measurement intervals were different between instruments.

  18. Determination of saturation pressure and enthalpy of vaporization of semi-volatile aerosols: the integrated volume mentod

    EPA Science Inventory

    This study presents the integrated volume method for estimating saturation pressure and enthalpy of vaporization of a whole aerosol distribution. We measure the change of total volume of an aerosol distribution between a reference state and several heated states, with the heating...

  19. Effect of high concentrations of inorganic seed aerosols on secondary organic aerosol formation in the m-xylene/NO x photooxidation system

    NASA Astrophysics Data System (ADS)

    Lu, Zifeng; Hao, Jiming; Takekawa, Hideto; Hu, Lanhua; Li, Junhua

    High concentrations (>15 μm 3 cm -3) of CaSO 4, Ca(NO 3) 2 and (NH 4) 2SO 4 were selected as surrogates of dry neutral, aqueous neutral and dry acidic inorganic seed aerosols, respectively, to study the effects of inorganic seeds on secondary organic aerosol (SOA) formation in irradiated m-xylene/NO x photooxidation systems. The results indicate that neither ozone formation nor SOA formation is significantly affected by the presence of neutral aerosols (both dry CaSO 4 and aqueous Ca(NO 3) 2), even at elevated concentrations. The presence of high concentrations of (NH 4) 2SO 4 aerosols (dry acidic) has no obvious effect on ozone formation, but it does enhance SOA generation and increase SOA yields. In addition, the effect of dry (NH 4) 2SO 4 on SOA yield is found to be positively correlated with the (NH 4) 2SO 4 surface concentration, and the effect is pronounced only when the surface concentration reaches a threshold value. Further, it is proposed that the SOA generation enhancement is achieved by particle-phase heterogeneous reactions induced and catalyzed by the acidity of dry (NH 4) 2SO 4 seed aerosols.

  20. Spatial and temporal distributions of aerosol concentrations and depositions in Asia during the year 2010.

    PubMed

    Park, Soon-Ung; Lee, In-Hye; Joo, Seung Jin

    2016-01-15

    Aerosol Modeling System (AMS) that is consisted of the Asian Dust Aerosol Model2 (ADAM2) and the Community Multi-scale Air Quality (CMAQ) modeling system has been employed to document the spatial distributions of the monthly and the annual averaged concentration of both the Asian dust (AD) aerosol and the anthropogenic aerosol (AA), and their total depositions in the Asian region for the year 2010. It is found that the annual mean surface aerosol (PM10) concentrations in the Asian region affect in a wide region as a complex mixture of AA and AD aerosols; they are predominated by the AD aerosol in the AD source region of northern China and Mongolia with a maximum concentration exceeding 300 μg m(-3); AAs are predominated in the high pollutant emission regions of southern and eastern China and northern India with a maximum concentration exceeding 110 μg m(-3); while the mixture of AA and AD aerosols is dominated in the downwind regions extending from the Yellow Sea to the Northwest Pacific Ocean. It is also found that the annual total deposition of aerosols in the model domain is found to be 485 Tg (372 Tg by AD aerosol and 113 Tg by AA), of which 66% (319 Tg) is contributed by the dry deposition (305 Tg by AD aerosol and 14 Tg by AA) and 34% (166 Tg) by the wet deposition (66 Tg by AD aerosol and 100 Tg by AA), suggesting about 77% of the annual total deposition being contributed by the AD aerosol mainly through the dry deposition process and 24% of it by AA through the wet deposition process. The monthly mean aerosol concentration and the monthly total deposition show a significant seasonal variation with high in winter and spring, and low in summer. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Characterization of a Quadrotor Unmanned Aircraft System for Aerosol-Particle-Concentration Measurements.

    PubMed

    Brady, James M; Stokes, M Dale; Bonnardel, Jim; Bertram, Timothy H

    2016-02-02

    High-spatial-resolution, near-surface vertical profiling of atmospheric chemical composition is currently limited by the availability of experimental platforms that can sample in constrained environments. As a result, measurements of near-surface gradients in trace gas and aerosol particle concentrations have been limited to studies conducted from fixed location towers or tethered balloons. Here, we explore the utility of a quadrotor unmanned aircraft system (UAS) as a sampling platform to measure vertical and horizontal concentration gradients of trace gases and aerosol particles at high spatial resolution (1 m) within the mixed layer (0-100 m). A 3D Robotics Iris+ autonomous quadrotor UAS was outfitted with a sensor package consisting of a two-channel aerosol optical particle counter and a CO2 sensor. The UAS demonstrated high precision in both vertical (±0.5 m) and horizontal positions (±1 m), highlighting the potential utility of quadrotor UAS drones for aerosol- and trace-gas measurements within complex terrain, such as the urban environment, forest canopies, and above difficult-to-access areas such as breaking surf. Vertical profiles of aerosol particle number concentrations, acquired from flights conducted along the California coastline, were used to constrain sea-spray aerosol-emission rates from coastal wave breaking.

  2. SAGE aerosol measurements. Volume 1: February 21, 1979 to December 31, 1979

    NASA Technical Reports Server (NTRS)

    Mccormick, M. P.

    1985-01-01

    The Stratospheric Aerosol and Gas Experiment (SAGE) satellite system, launched on February 18, 1979, provides profiles of aerosol extinction, ozone concentration, and nitrogen dioxide concentration between about 80 N and 80 S. Zonal averages, separated into sunrise and sunset events, and seasonal averages of the aerosol extinction at 1.00 microns and 0.45 microns ratios of the aerosol extinction to the molecular extinction at 1.00 microns, and ratios of the aerosol extinction at 0.45 microns to the aerosol extinction at 1.00 microns are given. The averages for 1979 are shown in tables and in profile and contour plots (as a function of altitude and latitude). In addition, temperature data provided by the National Oceanic and Atmospheric Administration (NOAA) for the time and location of each SAGE measurement are averaged and shown in a similar format. Typical values of the peak aerosol extinction were 0.0001 to 0.0002 km at 1.00 microns depth values for the 1.00 microns channel varied between 0.001 and 0.002 over all latitudes.

  3. Aerosol concentration and size distribution measured below, in, and above cloud from the DOE G-1 during VOCALS-REx

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kleinman, L.I.; Daum, P. H.; Lee, Y.-N.

    2011-06-21

    During the VOCALS Regional Experiment, the DOE G-1 aircraft was used to sample a varying aerosol environment pertinent to properties of stratocumulus clouds over a longitude band extending 800 km west from the Chilean coast at Arica. Trace gas and aerosol measurements are presented as a function of longitude, altitude, and dew point in this study. Spatial distributions are consistent with an upper atmospheric source for O{sub 3} and South American coastal sources for marine boundary layer (MBL) CO and aerosol, most of which is acidic sulfate in agreement with the dominant pollution source being SO{sub 2} from Cu smeltersmore » and power plants. Pollutant layers in the free troposphere (FT) can be a result of emissions to the north in Peru or long range transport from the west. At a given altitude in the FT (up to 3 km), dew point varies by 40 C with dry air descending from the upper atmospheric and moist air having a BL contribution. Ascent of BL air to a cold high altitude results in the condensation and precipitation removal of all but a few percent of BL water along with aerosol that served as CCN. Thus, aerosol volume decreases with dew point in the FT. Aerosol size spectra have a bimodal structure in the MBL and an intermediate diameter unimodal distribution in the FT. Comparing cloud droplet number concentration (CDNC) and pre-cloud aerosol (Dp > 100 nm) gives a linear relation up to a number concentration of {approx}150 cm{sup -3}, followed by a less than proportional increase in CDNC at higher aerosol number concentration. A number balance between below cloud aerosol and cloud droplets indicates that {approx}25% of aerosol in the PCASP size range are interstitial (not activated). One hundred and two constant altitude cloud transects were identified and used to determine properties of interstitial aerosol. One transect is examined in detail as a case study. Approximately 25 to 50% of aerosol with D{sub p} > 110 nm were not activated, the difference between

  4. Predicting Thermal Behavior of Secondary Organic Aerosols

    EPA Science Inventory

    Volume concentrations of steady-state secondary organic aerosol (SOA) were measured in 139 steadystate single precursor hydrocarbon oxidation experiments after passing through a temperature controlled inlet tube. Higher temperatures resulted in greater loss of particle volume, wi...

  5. Future aerosol concentrations in Europe: Effects of changing meteorology and emissions

    NASA Astrophysics Data System (ADS)

    Coleman, Liz; Martin, Damien; Radalescu, Razvan; O'Dowd, Colin

    2013-05-01

    The ambient particulate matter concentrations are assessed using annual simulations for model validation period 2006, and for future time-slice years 2030, 2050 and 2100 under RCP scenario 6.0. Meteorological initial and boundary conditions are procured from ECHAM5-HAMMOC global simulations. The contribution of natural and anthropogenic processes to aerosol concentrations are assessed with particular emphasis on accumulation mode sea salt, organic enrichment thereof and future levels of secondary organic aerosol from isoprene.

  6. Estimation of surface-level PM2.5 concentration using aerosol optical thickness through aerosol type analysis method

    NASA Astrophysics Data System (ADS)

    Chen, Qi-Xiang; Yuan, Yuan; Huang, Xing; Jiang, Yan-Qiu; Tan, He-Ping

    2017-06-01

    Surface-level particulate matter is closely related to column aerosol optical thickness (AOT). Previous researches have successfully used column AOT and different meteorological parameters to estimate surface-level PM concentration. In this study, the performance of a selected linear model that estimates surface-level PM2.5 concentration was evaluated following the aerosol type analysis method (ATAM) for the first time. We utilized 443 daily average data for Xuzhou, Jiangsu province, collected using Aerosol Robotic Network (AERONET) during the period October 2013 to April 2016. Several parameters including atmospheric boundary layer height (BLH), relative humidity (RH), and effective radius of the aerosol size distribution (Ref) were used to assess the relationship between the column AOT and PM2.5 concentration. By including the BLH, ambient RH, and effective radius, the correlation (R2) increased from 0.084 to 0.250 at Xuzhou, and with the use of ATAM, the correlation increased further to 0.335. To compare the results, 450 daily average data for Beijing, pertaining to the same period, were utilized. The study found that model correlations improved by varying degrees in different seasons and at different sites following ATAM. The average urban industry (UI) aerosol ratios at Xuzhou and Beijing were 0.792 and 0.451, respectively, demonstrating poorer air conditions at Xuzhou. PM2.5 estimation at Xuzhou showed lower correlation (R2 = 0.335) compared to Beijing (R2 = 0.407), and the increase of R2 at Xuzhou and Beijing site following use of ATAM were 33.8% and 12.4%, respectively.

  7. Black Carbon Concentration from Worldwide Aerosol Robotic Network (AERONET)

    NASA Technical Reports Server (NTRS)

    Schuster, Greg; Dubovik, Oleg; Holben, Brent; Clothiaux, Eugene

    2008-01-01

    Worldwide black carbon concentration measurements are needed to assess the efficacy of the carbon emissions inventory and transport model output. This requires long-term measurements in many regions, as model success in one region or season does not apply to all regions and seasons. AERONET is an automated network of more than 180 surface radiometers located throughout the world. The sky radiance measurements obtained by AERONET are inverted to provide column-averaged aerosol refractive indices and size distributions for the AERONET database, which we use to derive column-averaged black carbon concentrations and specific absorptions that are constrained by the measured radiation field. This provides a link between AERONET sky radiance measurements and the elemental carbon concentration of transport models without the need for an optics module in the transport model. Knowledge of both the black carbon concentration and aerosol absorption optical depth (i.e., input and output of the optics module) will enable improvements to the transport model optics module.

  8. Assessment of nicotine concentration in electronic nicotine delivery system (ENDS) liquids and precision of dosing to aerosol.

    PubMed

    Kosmider, Leon; Sobczak, Andrzej; Szołtysek-Bołdys, Izabela; Prokopowicz, Adam; Skórka, Agnieszka; Abdulafeez, Oluyadi; Koszowski, Bartosz

    2015-01-01

    Global use of electronic nicotine delivery systems (ENDS; also called electronic cigarettes, e-cigarettes) has increased dramatically in recent years. However, due to the limited safety studies and growing concerns on the potential toxicity from long term use of ENDS, many national and international governments have employed regulatory measures to curtail its use. One of the most significant challenges regulators of ENDS encounter is the lack of quality standards to assess ENDS, e-liquid (solution used with ENDS which contain nicotine--a highly toxic and addictive substance), and amount of nicotine delivery to aerosol during ENDS use. Aims of the study were to (1) measure and compare nicotine concentration in e-liquids to values reported by manufacturers on packaging labels; (2) assess the precision of nicotine delivery from tank during aerosol formation. Methods: Nine popular Polish e-liquids (based on the market share data from October 2014) were purchased for the study. The labelled nicotine concentration for the selected e-liquids ranged between 11-25 mg/mL. All e-liquids were aerosolized in the laboratory using a smoking simulation machine (Palaczbot). Each e-liquid was aerosolized in a series of 6 consecutive bouts. A single bout consisted of 15 puffs with the following puff topography: 65 mL puff volume, 2.8 sec. puff duration, and 19 sec. interpuff interval. A total of 90 puffs were generated from each e-liquid. Nicotine content in the e-liquids and the aerosol generated were determined by gas chromatography with thermionic sensitive detection (GC-TSD). For seven of nine analyzed e-liquids, the difference between measured and manufacturer labeled nicotine concentration was less than 10%. Nicotine dose in aerosol per bout ranged between 0.77-1.49 mg (equivalent to one-half the nicotine a smoker inhales from a single combustible cigarette). Our analysis showed the high consistency between the labeled and measured nicotine concentration for popular on the

  9. Direct gravimetric determination of aerosol mass concentration in central antarctica.

    PubMed

    Annibaldi, Anna; Truzzi, Cristina; Illuminati, Silvia; Scarponi, Giuseppe

    2011-01-01

    In Antarctica, experimental difficulties due to extreme conditions have meant that aerosol mass has rarely been measured directly by gravimetry, and only in coastal areas where concentrations were in the range of 1-7 μg m(-3). The present work reports on a careful differential weighing methodology carried out for the first time on the plateau of central Antarctica (Dome C, East Antarctica). To solve problems of accurate aerosol mass measurements, a climatic room was used for conditioning and weighing filters. Measurements were carried out in long stages of several hours of readings with automatic recording of temperature/humidity and mass. This experimental scheme allowed us to sample from all the measurements (up to 2000) carried out before and after exposure, those which were recorded under the most stable humidity conditions and, even more importantly, as close to each other as possible. The automatic reading of the mass allowed us in any case to obtain hundreds of measurements from which to calculate average values with uncertainties sufficiently low to meet the requirements of the differential weighing procedure (±0.2 mg in filter weighing, between ±7% and ±16% both in aerosol mass and concentration measurements). The results show that the average summer aerosol mass concentration (aerodynamic size ≤10 μm) in central Antarctica is about 0.1 μg m(-3), i.e., about 1/10 of that of coastal Antarctic areas. The concentration increases by about 4-5 times at a site very close to the station.

  10. Aerosol concentration measurements and correlations with air mass trajectories at the Pierre Auger Observatory

    NASA Astrophysics Data System (ADS)

    Micheletti, M. I.; Louedec, K.; Freire, M.; Vitale, P.; Piacentini, R. D.

    2017-06-01

    Aerosols play an important role in radiative transfer processes involved in different fields of study. In particular, their influence is crucial in the attenuation of light at astronomical and astrophysical observatories, and has to be taken into account in light transfer models employed to reconstruct the signals. The Andean Argentinean region is increasingly being considered as a good candidate to host such facilities, as well as the ones for solar-energy resources, and an adequate knowledge of aerosols characteristics there is needed, but it is not always possible due to the vast area involved and the scarce atmospheric data at ground. The aim of this work is to find correlations between aerosol data and particle trajectories that can give an insight into the origin and behaviour of aerosols in this zone and can be employed in situations in which one does not have local aerosol measurements. For this purpose, an aerosol spectrometer and dust monitor (Grimm 1.109) was installed at the Pierre Auger Observatory of ultra-high-energy cosmic rays, to record aerosol concentrations in different size intervals, at surface level. These measurements are analysed and correlated with air mass trajectories obtained from HYSPLIT (NOAA) model calculations. High aerosol concentrations are registered predominantly when air masses have travelled mostly over continental areas, mainly from the NE direction, while low aerosol concentrations are found in correspondence with air masses coming from the Pacific Ocean, from the NW direction. Different size distribution patterns were found for the aerosols depending on their origin: marine or continental. This work shows for the first time the size distribution of aerosols registered at the Pierre Auger Observatory. The correlations found between mass and particle concentrations (total and for different size ranges) and HYSPLIT air mass trajectories, confirm that the latter can be employed as a useful tool to infer the sources, evolution

  11. Comparison of aerosol volume size distributions retrieved from ground-based remote sensing measurements with those from an optical particle counter on the ground

    NASA Astrophysics Data System (ADS)

    Kim, B.; Choi, Y.; Ghim, Y.

    2013-12-01

    Both Cimel CE-318 sunphotometer and POM-02 skyradiometer were operated for around 15 months starting from March 2012 as a part of the DRAGON (Distributed Regional Aerosol Gridded Observation Networks) campaign. These two instruments were collocated at the Hankuk_UFS (Hankuk University of Foreign Studies) site of AERONET (AErosol RObotic NETwork,) and the YGN (Yongin) site of SKYNET (SKYradiometer NETwork). We have also measured the particle concentration on the ground using an optical particle counter (Grimm Model 1.108) since the beginning of this year. The measurement site (37.02 °N, 127.16 °E, 167 m above sea level) is located about 35 km southeast of downtown Seoul. We compare the volume size distributions from sunphotometer, skyradiometer, and optical particle counter for the former part of this year. In the retrieval process, AERONET assumes 22 bins for 0.05-15 μm while SKYNET assumes 20 bins for 0.01-20 μm. The optical particle counter measures the particle number concentrations between 0.25 and 32 μm in 31 bins. Since the measurement intervals are different between instruments, we compare the distributions when the measurement time coincides within 5 minutes as well as mean distributions from the instruments. We examine the differences in mode radii and volume concentrations of fine and coarse mode aerosols between instruments.

  12. Sampling and physical characterization of diesel exhaust aerosols. SAE Paper 770720

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verrant, J.A.; Kittelson, D.A.

    Diesel exhaust aerosols are highly dynamic and therefore, difficult to sample without introducing falsification. This paper describes a study of these aerosols using a rapid dilution sampling system and an electrical aerosol analyzer. An Onan single cylinder indirect injection engine was used as an exhaust source. The sampler diluted the exhaust with clean air in ratios of 400:1 to 600:1 in order to prevent sample falsification by condensation and coagulation. The electrical aerosol analyzer was used to determine particle size and concentration. Volume concentration in the exhaust ranged from 2000 to 50,000 ..mu.. m/sup 3/ cm/sup -3/ which correspond tomore » mass loadings of 2.0 to 50 mg m/sup -3/ (assuming a density of 1 gm cm/sup -3/). Volume geometric mean diameters ranged from 0.12 to 0.19 ..mu..m. Evaporation and coagulation effects on diesel aerosols were observed by aging in a Teflon holding bag. A simple evaporation model was fit to the decrease of aerosol volume concentration with time. The fit revealed that the aerosols evaporated as if they were composed of normal paraffins in the 350 to 500 molecular weight range. Although the sample dilution system used in this study may alter the sample somewhat, it is probably analogous to what happens at the tailpipe of a vehicle. Measurements taken on a test track in the exhaust plume of a Peugeot 504 diesel showed aerosol size distributions very similar to those measured in our laboratory studies.« less

  13. Reconstruction of Aerosol Concentration and Composition from Glacier Ice Cores

    NASA Astrophysics Data System (ADS)

    Vogel, Alexander; Dällenbach, Kaspar; El-Haddad, Imad; Wendl, Isabel; Eichler, Anja; Schwikowski, Margit

    2017-04-01

    Reconstruction of the concentration and composition of natural aerosol in an undisturbed atmosphere enables the evaluation of the understanding of aerosol-climate effects, which is currently based on highly uncertain emission inventories of the biosphere under pre-industrial conditions. Understanding of the natural state of the pre-industrial atmosphere and evaluating the atmospheric perturbations by anthropogenic emissions, and their potential feedbacks, is essential for accurate model predictions of the future climate (Boucher et al., 2013). Here, we present a new approach for the chemical characterization of the organic fraction preserved in cold-glacier ice cores. From this analysis historic trends of atmospheric organic aerosols are reconstructed, allowing new insights on organic aerosol composition and mass in the pre-industrial atmosphere, which can help to improve climate models through evaluation of our current understanding of aerosol radiative effects. We present results from a proof-of-principal study, analyzing an 800 year ice core record from the Lomonosovfonna glacier ice core, drilled in 2009 in Svalbard, Norway, using a setup that has until then only been applied on offline measurements of aerosol filter extracts (Dällenbach et al., 2016): The melted ice was nebulized and dried, such that aerosols are formed from the soluble and insoluble organic and inorganic compounds that are preserved in the ice. To improve the sensitivity, the aerosol stream was then enriched by the application of an online aerosol concentrator, before the aerosol was analyzed by electron ionization within a high resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). We were able to demonstrate that this setup is a quantitative method toward nitrate and sulfate when internal inorganic standards of NH415NO3 and (NH4)234SO4 are added to the sample. Comparison between AMS and IC measurements of nitrate and sulfate resulted in an excellent agreement. The analysis of

  14. Source appointment of fine particle number and volume concentration during severe haze pollution in Beijing in January 2013.

    PubMed

    Liu, Zirui; Wang, Yuesi; Hu, Bo; Ji, Dongsheng; Zhang, Junke; Wu, Fangkun; Wan, Xin; Wang, Yonghong

    2016-04-01

    Extreme haze episodes repeatedly shrouded Beijing during the winter of 2012-2013, causing major environmental and health problems. To better understand these extreme events, particle number size distribution (PNSD) and particle chemical composition (PCC) data collected in an intensive winter campaign in an urban site of Beijing were used to investigate the sources of ambient fine particles. Positive matrix factorization (PMF) analysis resolved a total of eight factors: two traffic factors, combustion factors, secondary aerosol, two accumulation mode aerosol factors, road dust, and long-range transported (LRT) dust. Traffic emissions (54%) and combustion aerosol (27%) were found to be the most important sources for particle number concentration, whereas combustion aerosol (33%) and accumulation mode aerosol (37%) dominated particle volume concentrations. Chemical compositions and sources of fine particles changed dynamically in the haze episodes. An enhanced role of secondary inorganic species was observed in the formation of haze pollution. Regional transport played an important role for high particles, contribution of which was on average up to 24-49% during the haze episodes. Secondary aerosols from urban background presented the largest contributions (45%) for the rapid increase of fine particles in the severest haze episode. In addition, the invasion of LRT dust aerosols further elevated the fine particles during the extreme haze episode. Our results showed a clear impact of regional transport on the local air pollution, suggesting the importance of regional-scale emission control measures in the local air quality management of Beijing.

  15. Aerosol formation by ozonolysis of α- and β-pinene with initial concentrations below 1 ppb

    NASA Astrophysics Data System (ADS)

    Saathoff, Harald; Naumann, Karl-Heinz; Möhler, Ottmar

    2014-05-01

    Secondary organic aerosols (SOA) from the oxidation of biogenic volatile organic compounds (BVOC) are a large fraction of the tropospheric aerosol especially over tropical continental regions. The dominant SOA forming compounds are monoterpenes of which pinene is the most abundant. The reactions of monoterpenes with OH radicals, NO3 radicals, and ozone yield secondary organic aerosol mass in highly variable yields. Despite the various studies on SOA formation the influence of temperature and precursor concentrations on SOA yields are still major uncertainties in tropospheric aerosol models. In previous studies we observed a negative temperature dependence of SOA yields for SOA from ozonolysis α-pinene and limonene (Saathoff et al., 2009). However, this study as well as most of the literature data for measured SOA yields is limited to terpene concentrations of several ppb and higher (e.g. Bernard et al., 2012), hence about an order of magnitude higher than terpene concentrations even near their sources. Monoterpene concentrations in and above tropical or boral forests reach values up to a few tenth of a ppb during daytime decreasing rapidly with altitude in the boundary layer (Kesselmeier et al. 2000; Boy et al., 2004). Therefore we investigated the yield of SOA material from the ozonolysis of α- and β-pinene under simulated tropospheric conditions in the large aerosol chamber AIDA on time scales of several hours and for terpene concentrations between 0.1 and 1 ppb. The temperatures investigated were 243, 274, and 296 K with relative humidities ranging from 25% to 41%. The organic aerosol was generated by controlled oxidation with an excess of ozone (220-930 ppb) and the aerosol yield is calculated from size distributions measured with differential mobility analysers (SMPS, TSI, 3071 & 3080N) in the size range between 2 and 820 nm. On the basis of the measured initial particle size distribution, particle number concentration (CPC, TSI, 3775, 3776, 3022), and

  16. High concentration agglomerate dynamics at high temperatures.

    PubMed

    Heine, M C; Pratsinis, S E

    2006-11-21

    The dynamics of agglomerate aerosols are investigated at high solids concentrations that are typical in industrial scale manufacture of fine particles (precursor mole fraction larger than 10 mol %). In particular, formation and growth of fumed silica at such concentrations by chemical reaction, coagulation, and sintering is simulated at nonisothermal conditions and compared to limited experimental data and commercial product specifications. Using recent chemical kinetics for silica formation by SiCl4 hydrolysis and neglecting aerosol polydispersity, the evolution of the diameter of primary particles (specific surface area, SSA), hard- and soft-agglomerates, along with agglomerate effective volume fraction (volume occupied by agglomerate) is investigated. Classic Smoluchowski theory is fundamentally limited for description of soft-agglomerate Brownian coagulation at high solids concentrations. In fact, these high concentrations affect little the primary particle diameter (or SSA) but dominate the soft-agglomerate diameter, structure, and volume fraction, leading to gelation consistent with experimental data. This indicates that restructuring and fragmentation should affect product particle characteristics during high-temperature synthesis of nanostructured particles at high concentrations in aerosol flow reactors.

  17. Influence of the Surf Zone on the Marine Aerosol Concentration in a Coastal Area

    NASA Astrophysics Data System (ADS)

    Tedeschi, Gilles; van Eijk, Alexander M. J.; Piazzola, Jacques; Kusmierczyk-Michulec, Jolanta T.

    2017-01-01

    Sea-salt aerosol concentrations in the coastal zone are assessed with the numerical aerosol-transport model MACMod that applies separate aerosol source functions for open ocean and the surf zone near the sea-land transition. Numerical simulations of the aerosol concentration as a function of offshore distance from the surf zone compare favourably with experimental data obtained during a surf-zone aerosol experiment in Duck, North Carolina in autumn 2007. Based on numerical simulations, the effect of variations in aerosol production (source strength) and transport conditions (wind speed, air-sea temperature difference), we show that the surf-zone aerosols are replaced by aerosols generated over the open ocean as the airmass advects out to sea. The contribution from the surf-generated aerosol is significant during high wind speeds and high wave events, and is significant up to 30 km away from the production zone. At low wind speeds, the oceanic component dominates, except within 1-5 km of the surf zone. Similar results are obtained for onshore flow, where no further sea-salt aerosol production occurs as the airmass advects out over land. The oceanic aerosols that are well-mixed throughout the boundary layer are then more efficiently transported inland than are the surf-generated aerosols, which are confined to the first few tens of metres above the surface, and are therefore also more susceptible to the type of surface (trees or grass) that determines the deposition velocity.

  18. Spatial variability of aerosol and black carbon concentrations in the troposphere of the Russian Arctic

    NASA Astrophysics Data System (ADS)

    Kozlov, Valerii S.; Panchenko, Mikhail V.; Paris, Jean D.; Nédéléc, Philippe; Chernov, Dmitry G.; Shmargunov, Vladimir P.

    2015-11-01

    A cycle of flights of the Optik TU-134 Flying Laboratory of IAO SB RAS over regions of Western Siberia and the Russian Arctic (55.0-74.8°N, 61.3-82.9°E) was carried out on October 15-17 of 2014 within the framework of the YAK-AEROSIB Russian—French Project. The mass concentrations of submicron aerosol and Black Carbon (BC) in the troposphere up to a height of 8.5 km were measured in the flights. The ranges of variability were 0.3-20 μg/m3 for the aerosol concentration and 0.02-1 μg/m3 for the BC concentration. In the subpolar latitudes of 71-74.8°N, the lower levels of aerosol (0.8-6 μg/m3) and BC (0.02-0.3 μg/m3) were observed. The comparison of the results of airborne sensing in 2008 and 2014 has shown that in the Western Subartic the aerosol and BC concentrations in the vertical profiles up to six times exceeded those observed in the Eastern Subarctic (0.3-1 μg/m3 and 10-50 ng/m3). The excess of the mean integral BC concentrations and the aerosol optical depth was, on average, 2-2.5 times (0.16 mg/m2; 0.02). In the region of the Kara Sea at heights of 0.5-2 and 4-6 km, the excess of the aerosol content in the western sector in comparison with the eastern one was, on average, 2 times, while for the black carbon the excess achieved 7 times at heights of 1-2 km (0.25- 0.035 μg/m3). The mean integral concentrations of aerosol and black carbon ˜ 1.3 times exceeded those in the clearer eastern region of the sea (0.31 mg/m2; 0.049). The obtained estimates indicate the decrease of the aerosol and BC concentrations in the subpolar latitudes of the Russian Federation from the west to the east.

  19. Drivers of Seasonal Variability in Marine Boundary Layer Aerosol Number Concentration Investigated Using a Steady State Approach

    NASA Astrophysics Data System (ADS)

    Mohrmann, Johannes; Wood, Robert; McGibbon, Jeremy; Eastman, Ryan; Luke, Edward

    2018-01-01

    Marine boundary layer (MBL) aerosol particles affect the climate through their interaction with MBL clouds. Although both MBL clouds and aerosol particles have pronounced seasonal cycles, the factors controlling seasonal variability of MBL aerosol particle concentration are not well constrained. In this paper an aerosol budget is constructed representing the effects of wet deposition, free-tropospheric entrainment, primary surface sources, and advection on the MBL accumulation mode aerosol number concentration (Na). These terms are then parameterized, and by assuming that on seasonal time scales Na is in steady state, the budget equation is rearranged to form a diagnostic equation for Na based on observable variables. Using data primarily collected in the subtropical northeast Pacific during the MAGIC campaign (Marine ARM (Atmospheric Radiation Measurement) GPCI (GCSS Pacific Cross-Section Intercomparison) Investigation of Clouds), estimates of both mean summer and winter Na concentrations are made using the simplified steady state model and seasonal mean observed variables. These are found to match well with the observed Na. To attribute the modeled difference between summer and winter aerosol concentrations to individual observed variables (e.g., precipitation rate and free-tropospheric aerosol number concentration), a local sensitivity analysis is combined with the seasonal difference in observed variables. This analysis shows that despite wintertime precipitation frequency being lower than summer, the higher winter precipitation rate accounted for approximately 60% of the modeled seasonal difference in Na, which emphasizes the importance of marine stratocumulus precipitation in determining MBL aerosol concentrations on longer time scales.

  20. SAGE aerosol measurements. Volume 3: January 1, 1981 to November 18, 1981

    NASA Technical Reports Server (NTRS)

    Mccormick, M. Patrick

    1987-01-01

    The Stratospheric Aerosol and Gas Experiment (SAGE) satellite system, launched February 18, 1979, obtained profiles of aerosol extinction at 1.00 micron and 0.45 micron ozone concentration, and nitrogen dioxide concentration. Data taken during sunset events are presented in the form of zonal and seasonal averages of aerosol extinction of 1.00 micron and 0.45 micron, ratios of aerosol extinction to molecular extinction at 1.00 micron and ratios of aerosol extinction at 0.45 micron to aerosol extinction at 1.00 micron. Averages for 1981 are shown in tables, and in profile and contour plots (as a function of altitude and latitude). In addition, temperature data provided by NOAA for the time and location of each SAGE measurement are averaged and shown in a similar format. The stratospheric aerosol distribution for 1981 shows effects of volcanically injected material from eruptions of Ulawun, Alaid, and Pagan. Peak values of aerosol extinction at 0.45 micron and 1.00 micron were 2 to 4 times higher than typical peak values observed during near background conditions. Stratospheric aerosol optical depth values at 1.00 microns increased by a factor of about 2 from near background levels in regions of volcanic activity. During the year, these values ranged from between 0.001 and 0.006. The largest were near the location of a recent eruption. The distribution of the ratio of aerosol to molecular extinction at 1.00 microns also showed that maximum values are found in the vicinity of an eruption. These maximums varied in altitude, but remained below a height of about 25 km. No attempt has been made to give detailed explanations or interpretations of these data. The intent is to provide, in a ready-to-use visual format, representative zonal and seasonal averages of aerosol extinction data for the third calendar year of the SAGE data set to facilitate atmospheric and climatic studies.

  1. Indirect effect of changing aerosol concentrations on methane and ozone radiative forcing

    NASA Astrophysics Data System (ADS)

    Rowlinson, Matthew; Rap, Alexandru; Arnold, Steve; Forster, Piers; Chipperfield, Martyn

    2017-04-01

    % decreases atmospheric sulpate concentrations by 44% after 2 years, while increasing global OH concentrations by 0.9%. CH4 lifetime is reduced by approximately 50 days as a result, leading to a decrease in CH4 burden of 38ppb. NOx is anticipated to have a similar but much larger effect (Matsui and Koike 2016). The Edwards and Slingo offline radiation model is also used to calculate changes to direct and indirect aerosol forcing. Presented here is the net RF change following 50% emission decrease of each aerosol or precursors, accounting for the direct and indirect aerosol effect as well as indirect effects via oxidation chemistry on the RF due to CH4 and tropospheric O3.

  2. Drivers of Seasonal Variability in Marine Boundary Layer Aerosol Number Concentration Investigated Using a Steady State Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohrmann, Johannes; Wood, Robert; McGibbon, Jeremy

    Marine boundary layer (MBL) aerosol particles affect the climate through their interaction with MBL clouds. Although both MBL clouds and aerosol particles have pronounced seasonal cycles, the factors controlling seasonal variability of MBL aerosol particle concentration are not well-constrained. In this paper an aerosol budget is constructed representing the effects of wet deposition, free-tropospheric entrainment, primary surface sources, and advection on the MBL accumulation mode aerosol number concentration (N a). These terms are further parameterized, and by assuming that on seasonal timescales N a is in steady state, the budget equation is rearranged to form a diagnostic equation for Nmore » a based on observable variables. Using data primarily collected in the subtropical northeast Pacific during the MAGIC campaign (Marine ARM (Atmospheric Radiation Measurement) GPCI (GCSS Pacific Cross-section Intercomparison) Investigation of Clouds), estimates of both mean summer and winter N a concentrations are made using the simplified steady-state model and seasonal mean observed variables, and are found to match well with the observed N a. To attribute the modeled difference between summer and winter aerosol concentrations to individual observed variables (e.g. precipitation rate, free-tropospheric aerosol number concentration), a local sensitivity analysis is combined with the seasonal difference in observed variables. This analysis shows that despite wintertime precipitation frequency being lower than summer, the higher winter precipitation rate accounted for approximately 60% of the modeled seasonal difference in N a, which emphasizes the importance of marine stratocumulus precipitation in determining MBL aerosol concentrations on longer time scales.« less

  3. Drivers of Seasonal Variability in Marine Boundary Layer Aerosol Number Concentration Investigated Using a Steady State Approach

    DOE PAGES

    Mohrmann, Johannes; Wood, Robert; McGibbon, Jeremy; ...

    2018-01-21

    Marine boundary layer (MBL) aerosol particles affect the climate through their interaction with MBL clouds. Although both MBL clouds and aerosol particles have pronounced seasonal cycles, the factors controlling seasonal variability of MBL aerosol particle concentration are not well-constrained. In this paper an aerosol budget is constructed representing the effects of wet deposition, free-tropospheric entrainment, primary surface sources, and advection on the MBL accumulation mode aerosol number concentration (N a). These terms are further parameterized, and by assuming that on seasonal timescales N a is in steady state, the budget equation is rearranged to form a diagnostic equation for Nmore » a based on observable variables. Using data primarily collected in the subtropical northeast Pacific during the MAGIC campaign (Marine ARM (Atmospheric Radiation Measurement) GPCI (GCSS Pacific Cross-section Intercomparison) Investigation of Clouds), estimates of both mean summer and winter N a concentrations are made using the simplified steady-state model and seasonal mean observed variables, and are found to match well with the observed N a. To attribute the modeled difference between summer and winter aerosol concentrations to individual observed variables (e.g. precipitation rate, free-tropospheric aerosol number concentration), a local sensitivity analysis is combined with the seasonal difference in observed variables. This analysis shows that despite wintertime precipitation frequency being lower than summer, the higher winter precipitation rate accounted for approximately 60% of the modeled seasonal difference in N a, which emphasizes the importance of marine stratocumulus precipitation in determining MBL aerosol concentrations on longer time scales.« less

  4. Inversion of scattered radiance horizon profiles for gaseous concentrations and aerosol parameters

    NASA Technical Reports Server (NTRS)

    Malchow, H. L.; Whitney, C. K.

    1977-01-01

    Techniques have been developed and used to invert limb scan measurements for vertical profiles of atmospheric state parameters. The parameters which can be found are concentrations of Rayleigh scatters, ozone, NO2, and aerosols, and aerosol physical properties including a Junge-size distribution parameter and real and imaginary parts of the index of refraction.

  5. Evolution of size-segregated aerosol mass concentration during the Antarctic summer at Northern Foothills, Victoria Land

    NASA Astrophysics Data System (ADS)

    Illuminati, Silvia; Bau, Sébastien; Annibaldi, Anna; Mantini, Caterina; Libani, Giulia; Truzzi, Cristina; Scarponi, Giuseppe

    2016-01-01

    Within the framework of the Italian National Programm for Antarctic Research (PNRA), the first direct gravimetric measurements of size-segregated aerosol fractions were carried out at Faraglione Camp, ˜3-km far from the Italian station "M. Zucchelli" (Terra Nova Bay, Ross Sea), during the 2014-2015 austral summer. A six-stage high-volume cascade impactor with size classes between 10 μm and 0.49 μm, and, in parallel, for comparison purposes, a PM10 high-volume sampler (50% cut-off aerodynamic diameter of 10 μm) were used. A 10-day sampling strategy was adopted. Aerosol mass measurements were carried out before and after exposure by using a microbalance specifically designed for the filter weight and placed inside a glove bag in order to maintain stable temperature and humidity conditions during weighing sessions. Measured atmospheric concentrations (referred to the "actual air conditions" of mean temperature of 268 K and mean pressure of 975 hPa) of size-segregated aerosol fractions showed the following values, given as size range, means (interquartile range): Dp < 0.49 μm, 0.33 (0.26-0.34) μg m-3; 0.49-0.95 μm, 0.20 (0.19-0.24) μg m-3; 0.95-1.5 μm, 0.16 (0.13-0.21) μg m-3; 1.5-3.0 μm 0.075 (0.05-0.11) μg m-3; 3.0-7.2 μm 0.12 (0.02-0.19) μg m-3; 7.2-10 μm 0.06 (0.01-0.03) μg m-3. The average mass concentration of the total PM10 at Faraglione Camp for the entire sampling period was 0.92 (0.67-1.1) μg m-3. Although a great variability, the aerosol mass concentration showed a tri-modal distribution, with an accumulation mode (in the range 0.1-1.0 μm) and two coarse modes (CM1 in the range 1.0-3.0 μm, and CM2 in the range 3.0-10 μm). From 50% to 90% of the PM10 mass comes from particles of a size smaller than 1.0 μm. The two coarse modes represented from ˜5% to ˜35% of the PM10, showing opposite seasonal trends (CM1 decreased while CM2 increased). During summer, PM10 mass concentration increased to a maximum of ˜1.6 μg m-3 at mid-December, while

  6. Contribution of feldspar and marine organic aerosols to global ice nucleating particle concentrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vergara-Temprado, Jesús; Murray, Benjamin J.; Wilson, Theodore W.

    Ice-nucleating particles (INPs) are known to affect the amount of ice in mixed-phase clouds, thereby influencing many of their properties. The atmospheric INP concentration changes by orders of magnitude from terrestrial to marine environments, which typically contain much lower concentrations. Many modelling studies use parameterizations for heterogeneous ice nucleation and cloud ice processes that do not account for this difference because they were developed based on INP measurements made predominantly in terrestrial environments without considering the aerosol composition. Errors in the assumed INP concentration will influence the simulated amount of ice in mixed-phase clouds, leading to errors in top-of-atmosphere radiativemore » flux and ultimately the climate sensitivity of the model. Here we develop a global model of INP concentrations relevant for mixed-phase clouds based on laboratory and field measurements of ice nucleation by K-feldspar (an ice-active component of desert dust) and marine organic aerosols (from sea spray). The simulated global distribution of INP concentrations based on these two species agrees much better with currently available ambient measurements than when INP concentrations are assumed to depend only on temperature or particle size. Underestimation of INP concentrations in some terrestrial locations may be due to the neglect of INPs from other terrestrial sources. Our model indicates that, on a monthly average basis, desert dusts dominate the contribution to the INP population over much of the world, but marine organics become increasingly important over remote oceans and they dominate over the Southern Ocean. However, day-to-day variability is important. Because desert dust aerosol tends to be sporadic, marine organic aerosols dominate the INP population on many days per month over much of the mid- and high-latitude Northern Hemisphere. This study advances our understanding of which aerosol species need to be included in order

  7. Impacts of interannual variation of the East Asian winter monsoon on aerosol concentrations over eastern China

    NASA Astrophysics Data System (ADS)

    Zhu, J.; Liao, H.; Li, J.; Feng, J.

    2012-04-01

    China has been experiencing increased concentrations of aerosols, commonly attributed to the large increases in emissions associated with the rapid economic development. We apply a global three-dimensional Goddard Earth Observing System chemical transport model (GEOS-Chem) driven by the NASA/GEOS-4 assimilated meteorological data to quantify the impacts of East Asian winter monsoon (EAWM) on the aerosol concentrations over eastern China. We found that the simulated aerosol concentrations over eastern China have strong interannual variation and negative correlations with the strength of EAWM. Model results show that, accounting for sulfate, nitrate, ammonium, black carbon, and organic carbon aerosols, the winter surface layer PM2.5 concentration averaged over eastern China (110°-125°E, 20°-45°N) can be 17.97% (4.78 µg m-3) higher in the weak monsoon years than that in the strong monsoon years. Regionally, the weakening of EAWM is shown to be able to increase PM2.5 concentration in the middle and lower reach of the Yellow River by 12 µg m-3. This point indicates that climate change associated with variation of EAWM has an essential influence on worsening air quality over eastern China. The possible causes of higher aerosol concentrations in the weak monsoon years may be attributed to the changing in wind fields and planetary boundary layer height between the weak and strong monsoon years. Sensitivity studies are performed to identify the role of chemical reaction associated with temperature and humidity on the higher aerosol concentrations in the weak monsoon years over eastern China.

  8. THERMAL PROPERTIES OF SECONDARY ORGANIC AEROSOLS

    EPA Science Inventory

    Volume concentrations of steady-state secondary organic aerosol (SOA) were measured in several hydrocarbon/NOx irradiation experiments. These measurements were used to estimate the thermal behavior of the particles that may be formed in the atmosphere. These laborator...

  9. Capstone Depleted Uranium Aerosol Biokinetics, Concentrations, and Doses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guilmette, Raymond A.; Miller, Guthrie; Parkhurst, MaryAnn

    2009-02-26

    One of the principal goals of the Capstone Depleted Uranium (DU) Aerosol Study was to quantify and characterize DU aerosols generated inside armored vehicles by perforation with a DU penetrator. This study consequently produced a database in which the DU aerosol source terms were specified both physically and chemically for a variety of penetrator-impact geometries and conditions. These source terms were used to calculate radiation doses and uranium concentrations for various scenarios as part of the Capstone DU Human Health Risk Assessment (HHRA). This paper describes the scenario-related biokinetics of uranium, and summarizes intakes, chemical concentrations to the organs, andmore » E(50) and HT(50) for organs and tissues based on exposure scenarios for personnel in vehicles at the time of perforation as well as for first responders. For a given exposure scenario (duration time and breathing rates), the range of DU intakes among the target vehicles and shots was not large, about a factor of 10, with the lowest being from a ventilated operational Abrams tank and the highest being for an unventilated Abrams with DU penetrator perforating DU armor. The ranges of committed effective doses were more scenario-dependent than were intakes. For example, the largest range, a factor of 20, was shown for scenario A, a 1-min exposure, whereas, the range was only a factor of two for the first-responder scenario (E). In general, the committed effective doses were found to be in the tens of mSv. The risks ascribed to these doses are discussed separately.« less

  10. Amazon boundary layer aerosol concentration sustained by vertical transport during rainfall

    DOE PAGES

    Wang, Jian; Krejci, Radovan; Giangrande, Scott; ...

    2016-10-24

    The nucleation of atmospheric vapours is an important source of new aerosol particles that can subsequently grow to form cloud condensation nuclei in the atmosphere. Most field studies of atmospheric aerosols over continents are influenced by atmospheric vapours of anthropogenic origin and, in consequence, aerosol processes in pristine, terrestrial environments remain poorly understood. The Amazon rainforest is one of the few continental regions where aerosol particles and their precursors can be studied under near-natural conditions, but the origin of small aerosol particles that grow into cloud condensation nuclei in the Amazon boundary layer remains unclear. Here we present aircraft- andmore » ground-based measurements under clean conditions during the wet season in the central Amazon basin. We find that high concentrations of small aerosol particles (with diameters of less than 50 nanometres) in the lower free troposphere are transported from the free troposphere into the boundary layer during precipitation events by strong convective downdrafts and weaker downward motions in the trailing stratiform region. Lastly, this rapid vertical transport can help to maintain the population of particles in the pristine Amazon boundary layer, and may therefore influence cloud properties and climate under natural conditions.« less

  11. Amazon boundary layer aerosol concentration sustained by vertical transport during rainfall

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Krejci, Radovan; Giangrande, Scott; Kuang, Chongai; Barbosa, Henrique M. J.; Brito, Joel; Carbone, Samara; Chi, Xuguang; Comstock, Jennifer; Ditas, Florian; Lavric, Jost; Manninen, Hanna E.; Mei, Fan; Moran-Zuloaga, Daniel; Pöhlker, Christopher; Pöhlker, Mira L.; Saturno, Jorge; Schmid, Beat; Souza, Rodrigo A. F.; Springston, Stephen R.; Tomlinson, Jason M.; Toto, Tami; Walter, David; Wimmer, Daniela; Smith, James N.; Kulmala, Markku; Machado, Luiz A. T.; Artaxo, Paulo; Andreae, Meinrat O.; Petäjä, Tuukka; Martin, Scot T.

    2016-11-01

    The nucleation of atmospheric vapours is an important source of new aerosol particles that can subsequently grow to form cloud condensation nuclei in the atmosphere. Most field studies of atmospheric aerosols over continents are influenced by atmospheric vapours of anthropogenic origin (for example, ref. 2) and, in consequence, aerosol processes in pristine, terrestrial environments remain poorly understood. The Amazon rainforest is one of the few continental regions where aerosol particles and their precursors can be studied under near-natural conditions, but the origin of small aerosol particles that grow into cloud condensation nuclei in the Amazon boundary layer remains unclear. Here we present aircraft- and ground-based measurements under clean conditions during the wet season in the central Amazon basin. We find that high concentrations of small aerosol particles (with diameters of less than 50 nanometres) in the lower free troposphere are transported from the free troposphere into the boundary layer during precipitation events by strong convective downdrafts and weaker downward motions in the trailing stratiform region. This rapid vertical transport can help to maintain the population of particles in the pristine Amazon boundary layer, and may therefore influence cloud properties and climate under natural conditions.

  12. Amazon boundary layer aerosol concentration sustained by vertical transport during rainfall.

    PubMed

    Wang, Jian; Krejci, Radovan; Giangrande, Scott; Kuang, Chongai; Barbosa, Henrique M J; Brito, Joel; Carbone, Samara; Chi, Xuguang; Comstock, Jennifer; Ditas, Florian; Lavric, Jost; Manninen, Hanna E; Mei, Fan; Moran-Zuloaga, Daniel; Pöhlker, Christopher; Pöhlker, Mira L; Saturno, Jorge; Schmid, Beat; Souza, Rodrigo A F; Springston, Stephen R; Tomlinson, Jason M; Toto, Tami; Walter, David; Wimmer, Daniela; Smith, James N; Kulmala, Markku; Machado, Luiz A T; Artaxo, Paulo; Andreae, Meinrat O; Petäjä, Tuukka; Martin, Scot T

    2016-11-17

    The nucleation of atmospheric vapours is an important source of new aerosol particles that can subsequently grow to form cloud condensation nuclei in the atmosphere. Most field studies of atmospheric aerosols over continents are influenced by atmospheric vapours of anthropogenic origin (for example, ref. 2) and, in consequence, aerosol processes in pristine, terrestrial environments remain poorly understood. The Amazon rainforest is one of the few continental regions where aerosol particles and their precursors can be studied under near-natural conditions, but the origin of small aerosol particles that grow into cloud condensation nuclei in the Amazon boundary layer remains unclear. Here we present aircraft- and ground-based measurements under clean conditions during the wet season in the central Amazon basin. We find that high concentrations of small aerosol particles (with diameters of less than 50 nanometres) in the lower free troposphere are transported from the free troposphere into the boundary layer during precipitation events by strong convective downdrafts and weaker downward motions in the trailing stratiform region. This rapid vertical transport can help to maintain the population of particles in the pristine Amazon boundary layer, and may therefore influence cloud properties and climate under natural conditions.

  13. Influence of crustal dust and sea spray supermicron particle concentrations and acidity on inorganic NO 3 − aerosol during the 2013 Southern Oxidant and Aerosol Study

    DOE PAGES

    Allen, H. M.; Draper, D. C.; Ayres, B. R.; ...

    2015-09-25

    Inorganic aerosol composition was measured in the southeastern United States, a region that exhibits high aerosol mass loading during the summer, as part of the 2013 Southern Oxidant and Aerosol Study (SOAS) campaign. Measurements using a Monitor for AeRosols and GAses (MARGA) revealed two periods of high aerosol nitrate (NO 3 −) concentrations during the campaign. These periods of high nitrate were correlated with increased concentrations of supermicron crustal and sea spray aerosol species, particularly Na + and Ca 2+, and with a shift towards aerosol with larger (1 to 2.5 μm) diameters. We suggest this nitrate aerosol forms bymore » multiphase reactions of HNO 3 and particles, reactions that are facilitated by transport of crustal dust and sea spray aerosol from a source within the United States. The observed high aerosol acidity prevents the formation of NH 4NO 3, the inorganic nitrogen species often dominant in fine-mode aerosol at higher pH. In addition, calculation of the rate of the heterogeneous uptake of HNO 3 on mineral aerosol supports the conclusion that aerosol NO 3 − is produced primarily by this process, and is likely limited by the availability of mineral cation-containing aerosol surface area. Modeling of NO 3 − and HNO 3 by thermodynamic equilibrium models (ISORROPIA II and E-AIM) reveals the importance of including mineral cations in the southeastern United States to accurately balance ion species and predict gas–aerosol phase partitioning.« less

  14. Particle deposition in human respiratory system: deposition of concentrated hygroscopic aerosols.

    PubMed

    Varghese, Suresh K; Gangamma, S

    2009-06-01

    In the nearly saturated human respiratory tract, the presence of water-soluble substances in the inhaled aerosols can cause change in the size distribution of the particles. This consequently alters the lung deposition profiles of the inhaled airborne particles. Similarly, the presence of high concentration of hygroscopic aerosols also affects the water vapor and temperature profiles in the respiratory tract. A model is presented to analyze these effects in human respiratory system. The model solves simultaneously the heat and mass transfer equations to determine the size evolution of respirable particles and gas-phase properties within human respiratory tract. First, the model predictions for nonhygroscopic aerosols are compared with experimental results. The model results are compared with experimental results of sodium chloride particles. The model reproduces the major features of the experimental data. The water vapor profile is significantly modified only when a high concentration of particles is present. The model is used to study the effect of equilibrium assumptions on particle deposition. Simulations show that an infinite dilution solution assumption to calculate the saturation equilibrium over droplet could induce errors in estimating particle growth. This error is significant in the case of particles of size greater than 1 mum and at number concentrations higher than 10(5)/cm(3).

  15. Variations of the aerosol concentration and chemical composition over the arid steppe zone of Southern Russia in summer

    NASA Astrophysics Data System (ADS)

    Artamonova, M. S.; Gubanova, D. P.; Iordanskii, M. A.; Lebedev, V. A.; Maksimenkov, L. O.; Minashkin, V. M.; Obvintsev, Y. I.; Chketiani, O. G.

    2016-12-01

    Variations in the surface aerosol over the arid steppe zone of Southern Russia have been measured. The parameters of atmospheric aerosol (mass concentration, both dispersed and elemental compositions) and meteorological parameters were measured in Tsimlaynsk raion (Rostov oblast). The chemical composition of aerosol particles in the atmospheric surface layer has been determined, and the coefficients of enrichment of elements with respect to clarkes in the Earth's crust have been calculated. It is shown that, in summer, arid aerosols are transported from both alkaline and sandy soils of Kalmykia to the air basin over the observation zone. Aerosol particles in the surface air layer over this region have been found to contain the products of combustion of oil, coal, and ethylized fuel. These combustion products make a small contribution to the total mass concentration of atmospheric aerosol; however, they are most hazardous to the health of people because of their sizes and heavy-metal contents. A high concentration of submicron sulfur-containing aerosol particles of chemocondensation nature has been recorded. Sources of aerosol of both natural and anthropogenic origins in southern Russia are discussed.

  16. Emission Controls Versus Meteorological Conditions in Determining Aerosol Concentrations in Beijing during the 2008 Olympic Games

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Yi; Liu, Xiaohong; Zhao, Chun

    A series of emission control measures were undertaken in Beijing and the adjacent provinces in China during the 2008 Beijing Olympic Games on August 8th-24th, 2008. This provides a unique opportunity for investigating the effectiveness of emission controls on air pollution in Beijing. We conducted a series of numerical experiments over East Asia for the period of July to September 2008 using a coupled meteorology-chemistry model (WRF-Chem). Model can generally reproduce the observed variation of aerosol concentrations. Consistent with observations, modeled concentrations of aerosol species (sulfate, nitrate, ammonium, black carbon, organic carbon, total particulate matter) in Beijing were decreased bymore » 30-50% during the Olympic period compared to the other periods in July and August in 2008 and the same period in 2007. Model results indicate that emission controls were effective in reducing the aerosol concentrations by comparing simulations with and without emission controls. However, our analysis suggests that meteorological conditions (e.g., wind direction and precipitation) are at least as important as emission controls in producing the low aerosol concentrations appearing during the Olympic period. Transport from the regions surrounding Beijing determines the temporal variation of aerosol concentrations in Beijing. Based on the budget analysis, we suggest that emission control strategy should focus on the regional scale instead of the local scale to improve the air quality over Beijing.« less

  17. Long-Term Observations on Aerosol Elemental Carbon and Mass Concentrations in Winter-Time in New Delhi: Implications for Local Source Changes

    NASA Astrophysics Data System (ADS)

    Aggarwal, S. G.; Singh, K.; Singh, N.; Gupta, P. K.

    2009-12-01

    Fossil-fuel and bio-fuel burning are the two major sources identified for high carbonaceous aerosol loadings in several mega cities in India. In the last decade, according to a report from the Central Pollution Control Board (CPCB, 1999), the vehicular emission (mostly diesel-powered engines) was contributed to ~67% of the total air pollution load in New Delhi. Therefore, a policy decision was taken by the government, and most of the diesel-powered engines were converted to compressed natural gas (CNG) -powered engines by 2003. To better understand the effect of these changes on air quality, we collected high volume aerosol samples (total suspended particles, TSP) mostly for a day basis at our institute building in New Delhi almost everyday during winter season (November to January) from 2002 to 2008. We found very high mean aerosol loading, i.e., 488±47 μg m-3 in 2002 winter, which dropped significantly to 280±73 μg m-3 in 2003 winter. Thereafter, a steadily increased trend of aerosol mass loadings was observed, i.e., 339±112, 339±120, 412±107 and 444±55 μg m-3 in 2004, 2005, 2006 and 2007 winters, respectively. Similar trend was also observed for elemental carbon (EC) concentration in TSP, which was peaked in 2002 (47±11 μg m-3) and minimized in 2003 (32±6 μg m-3), and then gradually increased to 41±8 μg m-3 in 2007 winter. These decline trends of aerosol mass and EC concentrations in 2003 can be explained well, because of the conversion of diesel engine to CNG engines of public transport facilities. However, again increase in aerosol mass and EC concentrations possibly because of a high increase in road traffic in recent years. According to the economic survey of New Delhi 2008-09, the number of vehicles (which includes all types of engines, i.e., petrol, diesel and CNG) has grown from ~3.3 millions in 1997-98 to ~5.6 millions in 2007-08. The influence of engine types and vehicle population on aerosol loading can also be explained well by SO2 and

  18. Climatology of Aerosol Optical Properties in Southern Africa

    NASA Technical Reports Server (NTRS)

    Queface, Antonio J.; Piketh, Stuart J.; Eck, Thomas F.; Tsay, Si-Chee

    2011-01-01

    A thorough regionally dependent understanding of optical properties of aerosols and their spatial and temporal distribution is required before we can accurately evaluate aerosol effects in the climate system. Long term measurements of aerosol optical depth, Angstrom exponent and retrieved single scattering albedo and size distribution, were analyzed and compiled into an aerosol optical properties climatology for southern Africa. Monitoring of aerosol parameters have been made by the AERONET program since the middle of the last decade in southern Africa. This valuable information provided an opportunity for understanding how aerosols of different types influence the regional radiation budget. Two long term sites, Mongu in Zambia and Skukuza in South Africa formed the core sources of data in this study. Results show that seasonal variation of aerosol optical thicknesses at 500 nm in southern Africa are characterized by low seasonal multi-month mean values (0.11 to 0.17) from December to May, medium values (0.20 to 0.27) between June and August, and high to very high values (0.30 to 0.46) during September to November. The spatial distribution of aerosol loadings shows that the north has high magnitudes than the south in the biomass burning season and the opposite in none biomass burning season. From the present aerosol data, no long term discernable trends are observable in aerosol concentrations in this region. This study also reveals that biomass burning aerosols contribute the bulk of the aerosol loading in August-October. Therefore if biomass burning could be controlled, southern Africa will experience a significant reduction in total atmospheric aerosol loading. In addition to that, aerosol volume size distribution is characterized by low concentrations in the non biomass burning period and well balanced particle size contributions of both coarse and fine modes. In contrast high concentrations are characteristic of biomass burning period, combined with

  19. [A simple testing installation for the production of aerosols with constant bacteria-contaminated concentrations].

    PubMed

    Herbst, M; Lehmhus, H; Oldenburg, B; Orlowski, C; Ohgke, H

    1983-04-01

    A simple experimental set for the production and investigation of bacterially contaminated solid-state aerosols with constant concentration is described. The experimental set consists mainly of a fluidized bed-particle generator within a modified chamber for formaldehyde desinfection. The special conditions for the production of a defined concentration of particles and microorganisms are to be found out empirically. In a first application aerosol-sizing of an Andersen sampler is investigated. The findings of Andersen (1) are confirmed with respect to our experimental conditions.

  20. Estimation of the Cloud condensation nuclei concentration(CCN) and aerosol optical depth(AOD) relation in the Arctic region

    NASA Astrophysics Data System (ADS)

    Jung, C. H.; Yoon, Y. J.; Ahn, S. H.; Kang, H. J.; Gim, Y. T.; Lee, B. Y.

    2017-12-01

    Information of the spatial and temporal variations of cloud condensation nuclei (CCN) concentrations is important in estimating aerosol indirect effects. Generally, CCN aerosol is difficult to estimate using remote sensing methods. Although there are many CCN measurements data, extensive measurements of CCN are not feasible because of the complex nature of the operation and high cost, especially in the Arctic region. Thus, there have been many attempts to estimate CCN concentrations from more easily obtainable parameters such as aerosol optical depth (AOD) because AOD has the advantage of being readily observed by remote sensing from space by several sensors. For example, some form of correlation was derived between AOD and the number concentration of cloud condensation nuclei (CCN) through the comparison results from AERONET network and CCN measurements (Andreae 2009). In this study, a parameterization of CCN concentration as a function of AOD at 500 nm is given in the Arctic region. CCN data was collected during the period 2007-2013 at the Zeppelin observatory (78.91° N, 11.89° E, 474 masl). The AERONET network and MODIS AOD data are compared with ground measured CCN measurement and the relations between AOD and CCN are parameterized. The seasonal characteristics as well as long term trends are also considered. Through the measurement, CCN concentration remains high during spring because of aerosol transportation from the mid-latitudes, known as Arctic Haze. Lowest CCN number densities were observed during Arctic autumn and early winter when aerosol long-range transport into the Arctic is not effective and new particle formation ceases. The results show that the relation between AOD and CCN shows a different parameter depending on the seasonal aerosol and CCN characteristics. This seasonal different CCN-AOD relation can be interpreted as many physico-chemical aerosol properties including aerosol size distribution, composition. ReferenceAndreae, M. O. (2009

  1. Investigation of Aerosol Surface Area Estimation from Number and Mass Concentration Measurements: Particle Density Effect.

    PubMed

    Ku, Bon Ki; Evans, Douglas E

    2012-04-01

    For nanoparticles with nonspherical morphologies, e.g., open agglomerates or fibrous particles, it is expected that the actual density of agglomerates may be significantly different from the bulk material density. It is further expected that using the material density may upset the relationship between surface area and mass when a method for estimating aerosol surface area from number and mass concentrations (referred to as "Maynard's estimation method") is used. Therefore, it is necessary to quantitatively investigate how much the Maynard's estimation method depends on particle morphology and density. In this study, aerosol surface area estimated from number and mass concentration measurements was evaluated and compared with values from two reference methods: a method proposed by Lall and Friedlander for agglomerates and a mobility based method for compact nonspherical particles using well-defined polydisperse aerosols with known particle densities. Polydisperse silver aerosol particles were generated by an aerosol generation facility. Generated aerosols had a range of morphologies, count median diameters (CMD) between 25 and 50 nm, and geometric standard deviations (GSD) between 1.5 and 1.8. The surface area estimates from number and mass concentration measurements correlated well with the two reference values when gravimetric mass was used. The aerosol surface area estimates from the Maynard's estimation method were comparable to the reference method for all particle morphologies within the surface area ratios of 3.31 and 0.19 for assumed GSDs 1.5 and 1.8, respectively, when the bulk material density of silver was used. The difference between the Maynard's estimation method and surface area measured by the reference method for fractal-like agglomerates decreased from 79% to 23% when the measured effective particle density was used, while the difference for nearly spherical particles decreased from 30% to 24%. The results indicate that the use of particle density

  2. Aerosol particle and organic vapor concentrations at industrial work sites in Malaysia.

    PubMed

    Armstrong, R W; Rood, M J; Sani, S; Mohamed, M; Rashid, M; Jab, A T; Landsberger, S

    2001-01-01

    The objective of this study was to establish baseline data about air pollutants potentially related to nasopharyngeal carcinoma (NPC) in the Federal Territory and Selangor, Malaysia. During 1991-1993, ambient air quality was monitored at 42 work sites representing ten industrial sectors: adhesive manufacturing, foundries, latex processing, metalworking, plywood/veneer milling, ricemilling, rubber tire manufacturing, sawmilling, shoemaking, and textile related industries. At each work site, aerosol particle size distributions and concentrations of formaldehyde, benzene, toluene, isopropyl alcohol, and furfural were measured. Mean aerosol particle concentrations ranged from 61 micrograms/m3 in foundries to 5,578 micrograms/m3 in ricemills, with five industries (adhesives, metalworking, ricemilling, sawmilling, and shoemaking) exceeding the US EPA 24-hr ambient air standard for PM-10. Formaldehyde concentrations exceeded the threshold limit value (TLV) in adhesives factories. Other vapours and elements measured were well below TLVs.

  3. Impact of atmospheric boundary layer depth variability and wind reversal on the diurnal variability of aerosol concentration at a valley site.

    PubMed

    Pal, S; Lee, T R; Phelps, S; De Wekker, S F J

    2014-10-15

    The development of the atmospheric boundary layer (ABL) plays a key role in affecting the variability of atmospheric constituents such as aerosols, greenhouse gases, water vapor, and ozone. In general, the concentration of any tracers within the ABL varies due to the changes in the mixing volume (i.e. ABL depth). In this study, we investigate the impact on the near-surface aerosol concentration in a valley site of 1) the boundary layer dilution due to vertical mixing and 2) changes in the wind patterns. We use a data set obtained during a 10-day field campaign in which a number of remote sensing and in-situ instruments were deployed, including a ground-based aerosol lidar system for monitoring of the ABL top height (zi), a particle counter to determine the number concentration of aerosol particles at eight different size ranges, and tower-based standard meteorological instruments. Results show a clearly visible decreasing trend of the mean daytime zi from 2900 m AGL (above ground level) to 2200 m AGL during a three-day period which resulted in increased near-surface pollutant concentrations. An inverse relationship exists between the zi and the fine fraction (0.3-0.7 μm) accumulation mode particles (AMP) on some days due to the dilution effect in a well-mixed ABL. These days are characterized by the absence of daytime upvalley winds and the presence of northwesterly synoptic-driven winds. In contrast, on the days with an onset of an upvalley wind circulation after the morning transition, the wind-driven local transport mechanism outweighs the ABL-dilution effect in determining the variability of AMP concentration. The interplay between the ABL depth evolution and the onset of the upvalley wind during the morning transition period significantly governs the air quality in a valley and could be an important component in the studies of mountain meteorology and air quality. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Estimation of surface-level PM concentration based on aerosol type classification and near-surface AOD over Korea

    NASA Astrophysics Data System (ADS)

    Kim, Kwanchul; Noh, Youngmin; Lee, Kwon H.

    2016-04-01

    Surface-level PM distribution was estimated from the satellite aerosol optical depth (AOD) products, taking the account of aerosol type classification and near-surface AOD over Jeju, Korea. For this purpose, data from various instruments such as satellites, sunphotometer, and Micro-pulse Lidar (MPL) was used during March 2008 and October 2009. Initial analyses of comparison with sunphotometer AOD and PM concentration showed some relatively poor relationship over Jeju, Korea. Since the AERONET L2 data has significant number of observations with high AOT values paired to low surface-level PM values, which were believed to be the effect of long-rage transport aerosols like as Asian dust and biomass burning. Stronger correlations (exceeding R = 0.8) were obtained by screening long-rage transport aerosols and calculating near-surface AOT considering aerosol profiles data from MPL and HYSPLIT air mass trajectory. The relationship found between corrected satellite observed AOD and surface-level PM concentration over Jeju is very similar. An approach to reduce the discrepancy between satellite observed AOD and PM concentration is demonstrated by tuning thresholds used to detect aerosol type from sunphotometer inversion data. Finally, the satellite observed AOD-surface PM concentration correlation is significantly improved. Our study clearly demonstrates that satellite observed AOD is a good surrogate for monitoring PM air quality over Korea.

  5. Estimating particle speciation concentrations using MISR retrieved aerosol properties in southern California

    NASA Astrophysics Data System (ADS)

    Meng, X.; Liu, Y.; Diner, D. J.; Garay, M. J.

    2016-12-01

    Ambient fine particle (PM2.5) has been positively associated with increased mortality and morbidity worldwide. Recent studies highlight the characteristics and differential toxicity of PM2.5 chemical components, which are important for identifying sources, developing targeted particulate matter (PM) control strategies, and protecting public health. Modelling with satellite retrieved data has been proved as the most cost-effective way to estimate ground PM2.5 levels; however, limited studies have predict PM2.5 chemical components with this method. In this study, the experimental MISR 4.4 km aerosol retrievals were used to predict ground-level particle sulfate, nitrite, organic carbon and element carbon concentrations in 16 counties of southern California. The PM2.5 chemical components concentrations were obtained from the National Chemical Speciation Network (CSN) and the Interagency Monitoring of Protected Visual Environments (IMPROVE) network. A generalized additive model (GAM) was developed based on 16-years data (2000-2015) by combining the MISR aerosol retrievals, meteorological variables and geographical indicators together. Model performance was assessed by model fitted R2 and root-mean-square error (RMSE) and 10-fold cross validation. Spatial patterns of sulfate, nitrate, OC and EC concentrations were also examined with 2-D prediction surfaces. This is the first attempt to develop high-resolution spatial models to predict PM2.5 chemical component concentrations with MISR retrieved aerosol properties, which will provide valuable population exposure estimates for future studies on the characteristics and differential toxicity of PM2.5 speciation.

  6. Increases in aerosol concentrations over eastern China due to the decadal-scale weakening of the East Asian summer monsoon

    NASA Astrophysics Data System (ADS)

    Zhu, Jianlei; Liao, Hong; Li, Jianping

    2012-05-01

    China has been experiencing increased concentrations of aerosols, commonly attributed to the large increases in emissions associated with the rapid economic development. We show by using a chemical transport model driven by the assimilated meteorological fields that the observed decadal-scale weakening of the East Asian summer monsoon also contributed to the increases in aerosols in China. We find that the simulated aerosol concentrations have strong negative correlations with the strength of the East Asian Summer monsoon. Accounting for sulfate, nitrate, ammonium, black carbon, and organic carbon aerosols, the summer surface-layer PM2.5 concentration averaged over eastern China (110°-125°E, 20°-45°N) can be 17.7% higher in the weakest monsoon years than in the strongest monsoon years. The weakening of the East Asian Summer monsoon increases aerosol concentrations mainly by the changes in atmospheric circulation (the convergence of air pollutants) in eastern China.

  7. Vertical distribution of aerosol number concentration in the troposphere over Siberia derived from airborne in-situ measurements

    NASA Astrophysics Data System (ADS)

    Arshinov, Mikhail Yu.; Belan, Boris D.; Paris, Jean-Daniel; Machida, Toshinobu; Kozlov, Alexandr; Malyskin, Sergei; Simonenkov, Denis; Davydov, Denis; Fofonov, Alexandr

    2016-04-01

    Knowledge of the vertical distribution of aerosols particles is very important when estimating aerosol radiative effects. To date there are a lot of research programs aimed to study aerosol vertical distribution, but only a few ones exist in such insufficiently explored region as Siberia. Monthly research flights and several extensive airborne campaigns carried out in recent years in Siberian troposphere allowed the vertical distribution of aerosol number concentration to be summarized. In-situ aerosol measurements were performed in a wide range of particle sizes by means of improved version of the Novosibirsk-type diffusional particle sizer and GRIMM aerosol spectrometer Model 1.109. The data on aerosol vertical distribution enabled input parameters for the empirical equation of Jaenicke (1993) to be derived for Siberian troposphere up to 7 km. Vertical distributions of aerosol number concentration in different size ranges averaged for the main seasons of the year will be presented. This work was supported by Interdisciplinary integration projects of the Siberian Branch of the Russian Academy of Science No. 35, No. 70 and No. 131; the Branch of Geology, Geophysics and Mining Sciences of RAS (Program No. 5); and Russian Foundation for Basic Research (grant No. 14-05-00526). Jaenicke R. Tropospheric aerosols, in Aerosol-Cloud-Climate Interactions, edited by P.V. Hobs. -Academic Press, San Diego, CA, 1993.- P. 1-31.

  8. Effects of diesel exhaust aftertreatment devices on concentrations and size distribution of aerosols in underground mine air.

    PubMed

    Bugarski, Aleksandar D; Schnakenberg, George H; Hummer, Ion A; Cauda, Emanuele; Janisko, Samuel I; Patts, Larry D

    2009-09-01

    Three types of uncatalyzed diesel particulate filter (DPF) systems, three types of high-temperature disposable filter elements (DFEs), and one diesel oxidation catalytic converter (DOC) were evaluated in underground mine conditions for their effects on the concentrations and size distributions of diesel aerosols. Those effects were compared with the effects of a standard muffler. The experimental work was conducted directly in an underground environment using a unique diesel laboratory developed in an underground experimental mine. The DPF systems reduced total mass of aerosols in the mine air approximately 10-fold for light-load and 20-fold or more for high-load test conditions. The DFEs offered similar reductions in aerosol mass concentrations. The efficiency of the new DFEs significantly increased with accumulation of operating time and buildup of diesel particulate matter in the porous structure of the filter elements. A single laundering process did not exhibit substantial effects on performance of the filter element The effectiveness of DPFs and DFEs in removing aerosols by number was strongly influenced by engine operating mode. The concentrations of nucleation mode aerosols in the mine air were found to be substantially higher for both DPFs and DFEs when the engine was operated at high-load modes than at low-load modes. The effects of the DOC on mass and number concentrations of aerosols in mine air were relatively minor when compared to those of the DPF and DFE systems.

  9. An Investigation of Size-Dependent Concentration of Trace Elements in Aerosols Emitted from the Oil-Fired Heating Plants

    NASA Technical Reports Server (NTRS)

    Singh, J. J.; Sentell, R. J.; Khandelwal, G. S.

    1976-01-01

    Aerosols emitted from two oil-fired heating plants were aerodynamically separated into eight size groups and were analyzed using the photon-induced X-ray emission (PIXE) technique. It was found that Zn, Mo, Ag, and Pb, and (to a lesser extent) Cd, have a tendency to concentrate preferentially on the smaller aerosols. All of these elements, in certain chemical forms, are known to be toxic. Zinc and molybdenum, although present in low concentrations in the parent fuels, show the strongest tendencies to be concentrated in finer aerosols. Selenium, previously reported to show a very strong tendency to concentration in finer fly ash from coal-fired power plants shows little preference for surface residence. Vanadium, which occurs in significant concentration in the oil fuels for both plants, also shows little preference for surface concentration. Even though the absolute concentrations of the toxic elements involved are well below the safety levels established by the National Institute for Occupational Safety and Health (NIOSH), it would be advisable to raise the heights of the heating-plant exhaust chimneys well above the neighborhood buildings to insure more efficient aerosol dispersal.

  10. Investigation of Aerosol Surface Area Estimation from Number and Mass Concentration Measurements: Particle Density Effect

    PubMed Central

    Ku, Bon Ki; Evans, Douglas E.

    2015-01-01

    For nanoparticles with nonspherical morphologies, e.g., open agglomerates or fibrous particles, it is expected that the actual density of agglomerates may be significantly different from the bulk material density. It is further expected that using the material density may upset the relationship between surface area and mass when a method for estimating aerosol surface area from number and mass concentrations (referred to as “Maynard’s estimation method”) is used. Therefore, it is necessary to quantitatively investigate how much the Maynard’s estimation method depends on particle morphology and density. In this study, aerosol surface area estimated from number and mass concentration measurements was evaluated and compared with values from two reference methods: a method proposed by Lall and Friedlander for agglomerates and a mobility based method for compact nonspherical particles using well-defined polydisperse aerosols with known particle densities. Polydisperse silver aerosol particles were generated by an aerosol generation facility. Generated aerosols had a range of morphologies, count median diameters (CMD) between 25 and 50 nm, and geometric standard deviations (GSD) between 1.5 and 1.8. The surface area estimates from number and mass concentration measurements correlated well with the two reference values when gravimetric mass was used. The aerosol surface area estimates from the Maynard’s estimation method were comparable to the reference method for all particle morphologies within the surface area ratios of 3.31 and 0.19 for assumed GSDs 1.5 and 1.8, respectively, when the bulk material density of silver was used. The difference between the Maynard’s estimation method and surface area measured by the reference method for fractal-like agglomerates decreased from 79% to 23% when the measured effective particle density was used, while the difference for nearly spherical particles decreased from 30% to 24%. The results indicate that the use of

  11. Personal exposure to aerosolized red tide toxins (brevetoxins).

    PubMed

    Cheng, Yung Sung; Zhou, Yue; Naar, Jerome; Irvin, C Mitch; Su, Wei-Chung; Fleming, Lora E; Kirkpatrick, Barbara; Pierce, Richard H; Backer, Lorraine C; Baden, Daniel G

    2010-06-01

    Florida red tides occur annually in the Gulf of Mexico from blooms of the marine dinoflagellate, Karenia brevis, which produces highly potent natural polyether toxins, brevetoxins. Several epidemiologic studies have demonstrated that human exposure to red tide aerosol could result in increased respiratory symptoms. Environmental monitoring of aerosolized brevetoxins was performed using a high-volume sampler taken hourly at fixed locations on Siesta Beach, Florida. Personal exposure was monitored using personal air samplers and taking nasal swab samples from the subjects who were instructed to spend 1 hr on Sarasota Beach during two sampling periods of an active Florida red tide event in March 2005, and in May 2008 when there was no red tide. Results showed that the aerosolized brevetoxins from the personal sampler were in modest agreement with the environmental concentration taken from a high-volume sampler. Analysis of nasal swab samples for brevetoxins demonstrated 68% positive samples in the March 2005 sampling period when air concentrations of brevetoxins were between 50 to 120 ng/m(3) measured with the high-volume sampler. No swab samples showed detectable levels of brevetoxins in the May 2008 study, when all personal samples were below the limit of detection. However, there were no statistical correlations between the amounts of brevetoxins detected in the swab samples with either the environmental or personal concentration. Results showed that the personal sample might provide an estimate of individual exposure level. Nasal swab samples showed that brevetoxins indeed were inhaled and deposited in the nasal passage during the March 2005 red tide event.

  12. Efficacy of High-volume Evacuator in Aerosol Reduction: Truth or Myth? A Clinical and Microbiological Study.

    PubMed

    Desarda, Hitesh; Gurav, Abhijit; Dharmadhikari, Chandrakant; Shete, Abhijeet; Gaikwad, Subodh

    2014-01-01

    Background and aims. Basic periodontal treatment aims at eliminating supra- and sub-gingival plaque and establishing conditions which will allow effective self-performed plaque control. This aim is primarily achieved with sonic and ultrasonic scalers. However, generation of bacterial aerosols during these procedures is of great concern to patients, the dentist and the dental assistant. The aim of this study was to compare the reduction in aerosol with and without high-volume evacuator through a microbiological study. Materials and methods. For this clinical study a fumigated closed operatory was selected. Maxillary incisors and canines were selected as an area for scaling. Piezoelectric ultrasonic scaling was performed in the absence and in the presence of a high-volume evacuator at 12 and 20 inches from the patient's oral cavity. In both groups scaling was carried out for 10 minutes. Nutrient agar plates were exposed for a total of 20 minutes. After this procedure, nutrient agar plates were incubated in an incubator at 37°C for 24 hours. The next day the nutrient agar plates were examined for colony forming units by a single microbiologist. Results. The results showed no statistically significant differences in colony forming units (CFU) with and without the use of a high-volume evacuator either at 12 or 20 inches from the patient's oral cavity. Conclusion. It was concluded that high-volume evacuator, when used as a separate unit without any modification, is not effective in reducing aerosol counts and environmental contamination.

  13. Contributions of Organic Sources to Atmospheric Aerosol Particle Concentrations and Growth

    NASA Astrophysics Data System (ADS)

    Russell, L. M.

    2017-12-01

    Organic molecules are important contributors to aerosol particle mass and number concentrations through primary emissions as well as secondary growth in the atmosphere. New techniques for measuring organic aerosol components in atmospheric particles have improved measurements of this contribution in the last 20 years, including Scanning Transmission X-ray Microscopy Near Edge X-ray Absorption Fine Structure (STXM-NEXAFS), Fourier Transform Infrared spectroscopy (FTIR), and High-Resolution Aerosol Mass Spectrometry (AMS). STXM-NEXAFS individual aerosol particle composition illustrated the variety of morphology of organic components in marine aerosols, the inherent relationships between organic composition and shape, and the links between atmospheric aerosol composition and particles produced in smog chambers. This type of single particle microscopy has also added to size distribution measurements by providing evidence of how surface-controlled and bulk-controlled processes contribute to the growth of particles in the atmosphere. FTIR analysis of organic functional groups are sufficient to distinguish combustion, marine, and terrestrial organic particle sources and to show that each of those types of sources has a surprisingly similar organic functional group composition over four different oceans and four different continents. Augmenting the limited sampling of these off-line techniques with side-by-side inter-comparisons to online AMS provides complementary composition information and consistent quantitative attribution to sources (despite some clear method differences). Single-particle AMS techniques using light scattering and event trigger modes have now also characterized the types of particles found in urban, marine, and ship emission aerosols. Most recently, by combining with off-line techniques, single particle composition measurements have separated and quantified the contributions of organic, sulfate and salt components from ocean biogenic and sea spray

  14. Hillslope soil erosion estimated from aerosol concentrations, North Halawa Valley, Oahu, Hawaii

    USGS Publications Warehouse

    Hill, B.R.; Fuller, C.C.; DeCarlo, E.H.

    1997-01-01

    Concentrations of aerosolic quartz and 137Cs were used to estimate rates of hillslope soil erosion during 1990-91 in the North Halawa Valley on the island of Oahu, Hawaii. Fluvial transport of quartz was estimated to be 6.1 Mg in 1990 and 14.9 Mg in 1991. Fluvial transport of 137Cs from North Halawa Valley was estimated to be 1.29 ?? 109 pCi in 1991. Results were used with quartz contents, 137Cs activities, and bulk densities of hillslope soils to compute rates of basinwide hillslope soil erosion ranging from 0.1 to 0.3 mm yr-1. These rates are within the range of previous estimates of denudation computed for drainage basins on Oahu. The aerosol-concentration approach, therefore, is a useful method for assessing basinwide soil erosion.

  15. Investigation of the seasonal variations of aerosol physicochemical properties and their impact on cloud condensation nuclei number concentration

    NASA Astrophysics Data System (ADS)

    Logan, Timothy S.

    Aerosols are among the most complex yet widely studied components of the atmosphere not only due to the seasonal variability of their physical and chemical properties but also their effects on climate change. The three main aerosol types that are known to affect the physics and chemistry of the atmosphere are: mineral dust, anthropogenic pollution, and biomass burning aerosols. In order to understand how these aerosols affect the atmosphere, this dissertation addresses the following three scientific questions through a combination of surface and satellite observations: SQ1: What are the seasonal and regional variations of aerosol physico-chemical properties at four selected Asian sites? SQ2: How do these aerosol properties change during transpacific and intra-continental long range transport? SQ3: What are the impacts of aerosol properties on marine boundary layer cloud condensation nuclei number concentration? This dissertation uses an innovative approach to classify aerosol properties by region and season to address SQ1. This is useful because this method provides an additional dimension when investigating the physico-chemical properties of aerosols by linking a regional and seasonal dependence to both the aerosol direct and indirect effects. This method involves isolating the aerosol physico-chemical properties into four separate regions using AERONET retrieved Angstrom exponent (AEAOD) and single scattering co-albedo (o oabs) to denote aerosol size and absorptive properties. The aerosols events are then clustered by season. The method is first applied to four AERONET sites representing single mode aerosol dominant regions: weakly absorbing pollution (NASA Goddard), strongly absorbing pollution (Mexico City), mineral dust (Solar Village), and biomass burning smoke (Alta Floresta). The method is then applied to four Asian sites that represent complicated aerosol components. There are strong regional and seasonal influences of the four aerosol types over the

  16. Organic condensation: a vital link connecting aerosol formation to cloud condensation nuclei (CCN) concentrations

    NASA Astrophysics Data System (ADS)

    Riipinen, I.; Pierce, J. R.; Yli-Juuti, T.; Nieminen, T.; Häkkinen, S.; Ehn, M.; Junninen, H.; Lehtipalo, K.; Petäjä, T.; Slowik, J.; Chang, R.; Shantz, N. C.; Abbatt, J.; Leaitch, W. R.; Kerminen, V.-M.; Worsnop, D. R.; Pandis, S. N.; Donahue, N. M.; Kulmala, M.

    2011-04-01

    Atmospheric aerosol particles influence global climate as well as impair air quality through their effects on atmospheric visibility and human health. Ultrafine (<100 nm) particles often dominate aerosol numbers, and nucleation of atmospheric vapors is an important source of these particles. To have climatic relevance, however, the freshly nucleated particles need to grow in size. We combine observations from two continental sites (Egbert, Canada and Hyytiälä, Finland) to show that condensation of organic vapors is a crucial factor governing the lifetimes and climatic importance of the smallest atmospheric particles. We model the observed ultrafine aerosol growth with a simplified scheme approximating the condensing species as a mixture of effectively non-volatile and semi-volatile species, demonstrate that state-of-the-art organic gas-particle partitioning models fail to reproduce the observations, and propose a modeling approach that is consistent with the measurements. We find that roughly half of the mass of the condensing mass needs to be distributed proportional to the aerosol surface area (thus implying that the condensation is governed by gas-phase concentration rather than the equilibrium vapour pressure) to explain the observed aerosol growth. We demonstrate the large sensitivity of predicted number concentrations of cloud condensation nuclei (CCN) to these interactions between organic vapors and the smallest atmospheric nanoparticles - highlighting the need for representing this process in global climate models.

  17. A study on the relationship between mass concentrations, chemistry and number size distribution of urban fine aerosols in Milan, Barcelona and London

    NASA Astrophysics Data System (ADS)

    Rodríguez, S.; van Dingenen, R.; Putaud, J.-P.; Dell'Acqua, A.; Pey, J.; Querol, X.; Alastuey, A.; Chenery, S.; Ho, K.-F.; Harrison, R.; Tardivo, R.; Scarnato, B.; Gemelli, V.

    2007-05-01

    A physicochemical characterization, including aerosol number size distribution, chemical composition and mass concentrations, of the urban fine aerosol captured in MILAN, BARCELONA and LONDON is presented in this article. The objective is to obtain a comprehensive picture of the microphysical processes involved in aerosol dynamics during the: 1) regular evolution of the urban aerosol (daily, weekly and seasonal basis) and in the day-to-day variations (from clean-air to pollution-events), and 2) the link between "aerosol chemistry and mass concentrations" with the "number size distribution". The mass concentrations of the fine PM2.5 aerosol exhibit a high correlation with the number concentration of >100 nm particles N>100 (nm) ("accumulation mode particles") which only account for <20% of the total number concentration N of fine aerosols; but do not correlate with the number of <100 nm particles ("ultrafine particles"), which accounts for >80% of fine particles number concentration. Organic matter and black-carbon are the only aerosol components showing a significant correlation with the ultrafine particles, attributed to vehicles exhausts emissions; whereas ammonium-nitrate, ammonium-sulphate and also organic matter and black-carbon correlate with N>100 (nm) and attributed to condensation mechanisms, other particle growth processes and some primary emissions. Time series of the aerosol DpN diameter (dN/dlogD mode), mass PM2.5 concentrations and number N>100 (nm) concentrations exhibit correlated day-to-day variations, which point to a significant involvement of condensation of semi-volatile compounds during urban pollution events. This agrees with the observation that ammonium-nitrate is the component exhibiting the highest increases from mid-to-high pollution episodes, when the highest DpN increases are observed. The results indicates that "fine PM2.5 particles urban pollution events" tend to occur when condensation processes have made particles grow large enough

  18. The Impact of Aerosol Particle Mixing State on the Hygroscopicity of Sea Spray Aerosol.

    PubMed

    Schill, Steven R; Collins, Douglas B; Lee, Christopher; Morris, Holly S; Novak, Gordon A; Prather, Kimberly A; Quinn, Patricia K; Sultana, Camille M; Tivanski, Alexei V; Zimmermann, Kathryn; Cappa, Christopher D; Bertram, Timothy H

    2015-06-24

    Aerosol particles influence global climate by determining cloud droplet number concentrations, brightness, and lifetime. Primary aerosol particles, such as those produced from breaking waves in the ocean, display large particle-particle variability in chemical composition, morphology, and physical phase state, all of which affect the ability of individual particles to accommodate water and grow into cloud droplets. Despite such diversity in molecular composition, there is a paucity of methods available to assess how particle-particle variability in chemistry translates to corresponding differences in aerosol hygroscopicity. Here, an approach has been developed that allows for characterization of the distribution of aerosol hygroscopicity within a chemically complex population of atmospheric particles. This methodology, when applied to the interpretation of nascent sea spray aerosol, provides a quantitative framework for connecting results obtained using molecular mimics generated in the laboratory with chemically complex ambient aerosol. We show that nascent sea spray aerosol, generated in situ in the Atlantic Ocean, displays a broad distribution of particle hygroscopicities, indicative of a correspondingly broad distribution of particle chemical compositions. Molecular mimics of sea spray aerosol organic material were used in the laboratory to assess the volume fractions and molecular functionality required to suppress sea spray aerosol hygroscopicity to the extent indicated by field observations. We show that proper accounting for the distribution and diversity in particle hygroscopicity and composition are important to the assessment of particle impacts on clouds and global climate.

  19. Characterizing the influence of anthropogenic emissions and transport variability on sulfate aerosol concentrations at Mauna Loa Observatory

    NASA Astrophysics Data System (ADS)

    Potter, Lauren E.

    Sulfate aerosol in the atmosphere has substantial impacts on human health and environmental quality. Most notably, atmospheric sulfate has the potential to modify the earth's climate system through both direct and indirect radiative forcing mechanisms (Meehl et al., 2007). Emissions of sulfur dioxide, the primary precursor of sulfate aerosol, are now globally dominated by anthropogenic sources as a result of widespread fossil fuel combustion. Economic development in Asian countries since 1990 has contributed considerably to atmospheric sulfur loading, particularly China, which currently emits approximately 1/3 of global anthropogenic SO2 (Klimont et al., 2013). Observational and modeling studies have confirmed that anthropogenic pollutants from Asian sources can be transported long distances with important implications for future air quality and global climate change. Located in the remote Pacific Ocean (19.54°N, 155.58°W) at an elevation of 3.4 kilometers above sea level, Mauna Loa Observatory (MLO) is an ideal measurement site for ground-based, free tropospheric observations and is well situated to experience influence from springtime Asian outflow. This study makes use of a 14-year data set of aerosol ionic composition, obtained at MLO by the University of Hawaii at Manoa. Daily filter samples of total aerosol concentrations were made during nighttime downslope (free-tropospheric) transport conditions, from 1995 to 2008, and were analyzed for aerosol-phase concentrations of the following species: nitrate (NO3-), sulfate (SO42-), methanesulfonate (MSA), chloride (Cl-), oxalate, sodium (Na+), ammonium (NH 4+), potassium (K+), magnesium (Mg 2+), and calcium (Ca2+). An understanding of the factors controlling seasonal and interannual variations in aerosol speciation and concentrations at this site is complicated by the relatively short lifetimes of aerosols, compared with greenhouse gases which have also been sampled over long time periods at MLO. Aerosol filter

  20. Hourly elemental concentrations in PM2.5 aerosols sampled simultaneously at urban background and road site

    NASA Astrophysics Data System (ADS)

    Dall'Osto, M.; Querol, X.; Amato, F.; Karanasiou, A.; Lucarelli, F.; Nava, S.; Calzolai, G.; Chiari, M.

    2012-08-01

    Hourly-resolved aerosol chemical speciation data can be a highly powerful tool to determine the source origin of atmospheric pollutants in urban Environments. Aerosol mass concentrations of seventeen elements (Na, Mg, Al, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Sr and Pb) were obtained by time (1 h) and size (PM2.5 particulate matter <2.5 μm) resolved Particle Induced X-ray Emission (PIXE) measurements. In the Marie Curie FP7-EU framework of SAPUSS (Solving Aerosol Problems by Using Synergistic Strategies), the unique approach used is the simultaneous PIXE measurements at two monitoring sites: urban background (UB) and a street canyon traffic road site (RS). Elements related to primary non exhaust traffic emission (Fe, Cu), dust resuspension (Ca) and anthropogenic Cl were found enhanced at the RS, whereas industrial related trace metals (Zn, Pb, Mn) were found at higher concentrations at the more ventilated UB site. When receptor modelling was performed with positive matrix factorization (PMF), nine different aerosol sources were identified at both sites: three types of regional aerosols (secondary sulphate (S) - 27%, biomass burning (K) - 5%, sea salt (Na-Mg) - 17%), three types of dust aerosols (soil dust (Al-Ti) - 17%, urban crustal dust (Ca) - 6%, and primary traffic non exhaust brake dust (Fe-Cu) - 7%), and three types industrial aerosol plumes-like events (shipping oil combustion (V-Ni) - 17%, industrial smelters (Zn-Mn) - 3%, and industrial combustion (Pb-Cl) - 5%). The validity of the PMF solution of the PIXE data is supported by strong correlations with external single particle mass spectrometry measurements. Beside apportioning the aerosol sources, some important air quality related conclusions can be drawn about the PM2.5 fraction simultaneously measured at the UB and RS sites: (1) the regional aerosol sources impact both monitoring sites at similar concentrations regardless their different ventilation conditions; (2) by contrast, local industrial

  1. Estimation of the contributions of long range transported aerosol in East Asia to carbonaceous aerosol and PM concentrations in Seoul, Korea using highly time resolved measurements: a PSCF model approach.

    PubMed

    Jeong, Ukkyo; Kim, Jhoon; Lee, Hanlim; Jung, Jinsang; Kim, Young J; Song, Chul H; Koo, Ja-Ho

    2011-07-01

    The contributions of long range transported aerosol in East Asia to carbonaceous aerosol and particulate matter (PM) concentrations in Seoul, Korea were estimated with potential source contribution function (PSCF) calculations. Carbonaceous aerosol (organic carbon (OC) and elemental carbon (EC)), PM(2.5), and PM(10) concentrations were measured from April 2007 to March 2008 in Seoul, Korea. The PSCF and concentration weighted trajectory (CWT) receptor models were used to identify the spatial source distributions of OC, EC, PM(2.5), and coarse particles. Heavily industrialized areas in Northeast China such as Harbin and Changchun and East China including the Pearl River Delta region, the Yangtze River Delta region, and the Beijing-Tianjin region were identified as high OC, EC and PM(2.5) source areas. The conditional PSCF analysis was introduced so as to distinguish the influence of aerosol transported from heavily polluted source areas on a receptor site from that transported from relatively clean areas. The source contributions estimated using the conditional PSCF analysis account for not only the aerosol concentrations of long range transported aerosols but also the number of transport days effective on the measurement site. Based on the proposed algorithm, the condition of airmass pathways was classified into two types: one condition where airmass passed over the source region (PS) and another condition where airmass did not pass over the source region (NPS). For most of the seasons during the measurement period, 249.5-366.2% higher OC, EC, PM(2.5), and coarse particle concentrations were observed at the measurement site under PS conditions than under NPS conditions. Seasonal variations in the concentrations of OC, EC, PM(2.5), and coarse particles under PS, NPS, and background aerosol conditions were quantified. The contributions of long range transported aerosols on the OC, EC, PM(2.5), and coarse particle concentrations during several Asian dust events were

  2. Influence of air mass origin on aerosol properties at a remote Michigan forest site

    NASA Astrophysics Data System (ADS)

    VanReken, T. M.; Mwaniki, G. R.; Wallace, H. W.; Pressley, S. N.; Erickson, M. H.; Jobson, B. T.; Lamb, B. K.

    2015-04-01

    The northern Great Lakes region of North America is a large, relatively pristine area. To date, there has only been limited study of the atmospheric aerosol in this region. During summer 2009, a detailed characterization of the atmospheric aerosol was conducted at the University of Michigan Biological Station (UMBS) as part of the Community Atmosphere-Biosphere Interactions Experiment (CABINEX). Measurements included particle size distribution, water-soluble composition, and CCN activity. Aerosol properties were strongly dependent on the origin of the air masses reaching the site. For ∼60% of the study period, air was transported from sparsely populated regions to the northwest. During these times aerosol loadings were low, with mean number and volume concentrations of 1630 cm-3 and 1.91 μm3 cm-3, respectively. The aerosol during clean periods was dominated by organics, and exhibited low hygroscopicities (mean κ = 0.18 at s = 0.3%). When air was from more populated regions to the east and south (∼29% of the time), aerosol properties reflected a stronger anthropogenic influence, with 85% greater particle number concentrations, 2.5 times greater aerosol volume, six times more sulfate mass, and increased hygroscopicity (mean к = 0.24 at s = 0.3%). These trends are have the potential to influence forest-atmosphere interactions and should be targeted for future study.

  3. Influence of air mass origin on aerosol properties at a remote Michigan forest site

    DOE PAGES

    VanReken, T. M.; Mwaniki, G. R.; Wallace, H. W.; ...

    2015-02-10

    The northern Great Lakes region of North America is a large, relatively pristine area. To date, there has only been limited study of the atmospheric aerosol in this region. During summer 2009, a detailed characterization of the atmospheric aerosol was conducted at the University of Michigan Biological Station (UMBS) as part of the Community Atmosphere–Biosphere Interactions Experiment (CABINEX). Measurements included particle size distribution, water-soluble composition, and CCN activity. Aerosol properties were strongly dependent on the origin of the air masses reaching the site. For ~60% of the study period, air was transported from sparsely populated regions to the northwest. Duringmore » these times aerosol loadings were low, with mean number and volume concentrations of 1630 cm -3 and 1.91 μm 3 cm -3, respectively. The aerosol during clean periods was dominated by organics, and exhibited low hygroscopicities (mean κ = 0.18 at s = 0.3%). When air was from more populated regions to the east and south (~29% of the time), aerosol properties reflected a stronger anthropogenic influence, with 85% greater particle number concentrations, 2.5 times greater aerosol volume, six times more sulfate mass, and increased hygroscopicity (mean к = 0.24 at s = 0.3%). Furthermore, these trends are have the potential to influence forest–atmosphere interactions and should be targeted for future study.« less

  4. Two-wavelength mid-IR diagnostic for temperature and n-dodecane concentration in an aerosol shock tube

    NASA Astrophysics Data System (ADS)

    Klingbeil, A. E.; Jeffries, J. B.; Davidson, D. F.; Hanson, R. K.

    2008-11-01

    A two-wavelength, mid-IR optical absorption diagnostic is developed for simultaneous temperature and n-dodecane vapor concentration measurements in an aerosol-laden shock tube. FTIR absorption spectra for the temperature range 323 to 773 K are used to select the two wavelengths (3409.0 and 3432.4 nm). Shock-heated mixtures of n-dodecane vapor in argon are then used to extend absorption cross section data at these wavelengths to 1322 K. The sensor is used to validate a model of the post-evaporation temperature and pressure of shock-heated fuel aerosol, which can ultimately be used for the study of the chemistry of low-vapor-pressure compounds and fuel blends. The signal-to-noise ratio of the temperature and concentration are ˜20 and ˜30, respectively, illustrating the sensitivity of this diagnostic. The good agreement between model and measurement provide confidence in the use of this aerosol shock tube to provide well-known thermodynamic conditions. At high temperatures, pseudo-first-order decomposition rates are extracted from time-resolved concentration measurements, and data from vapor and aerosol shocks are found to be in good agreement. Notably, the n-dodecane concentration measurements exhibit slower decomposition than predicted by models using two published reaction mechanisms, illustrating the need for further kinetic studies of this hydrocarbon. These results demonstrate the potential of multi-wavelength mid-IR laser sensors for hydrocarbon measurements in environments with time-varying temperature and concentration.

  5. Potential sources of Southern Siberia aerosols by data of AERONET site in Tomsk, Russia

    NASA Astrophysics Data System (ADS)

    Shukurov, K. A.; Shukurova, L. M.

    2017-11-01

    For all days of measurements in 2002-2015 of volume concentration of aerosols at the AERONET Tomsk/Tomsk-22 station an array of 10-day backward trajectories of air parcels arriving in Tomsk into seven layers of the troposphere with heights in the range of 0.5-5.0 km is calculated using the trajectory model NOAA HYSPLIT_4. For the three fractions of the aerosol with particle sizes < 1.0 μm, 1.0-2.5 μm, 2.5-5.0 μm and their sum (< 5.0 μm), the field of capacity of the potential sources of aerosols of these fractions for southern Siberia is determined by the CWT (concentration weighted trajectory) method using the backward trajectory array. The analysis is carried out taking into account the processes both the scavenging of the aerosols with precipitation and the dry deposition. Trajectories arriving at different heights were analyzed taking into account the weight coefficients proportional to the backward light scattering coefficients of an aerosols at corresponding heights for warm and cold seasons in Western Siberia. The most capable (in unit of volume concentration μm3 /μm2 ) potential sources of these fractions for southern Siberia are located above North Africa, Eastern Siberia, Central Asia and the Dzhungarian desert in the Xinjiang-Uyghur Autonomous Region of China.

  6. A study on the relationship between mass concentrations, chemistry and number size distribution of urban fine aerosols in Milan, Barcelona and London

    NASA Astrophysics Data System (ADS)

    Rodríguez, S.; van Dingenen, R.; Putaud, J.-P.; Dell'Acqua, A.; Pey, J.; Querol, X.; Alastuey, A.; Chenery, S.; Ho, K.-F.; Harrison, R. M.; Tardivo, R.; Scarnato, B.; Gianelle, V.

    2007-01-01

    A physicochemical characterization of the urban fine aerosol (aerosol number size distribution, chemical composition and mass concentrations) in Milan, Barcelona and London is presented in this article. The objective is to obtain a comprehensive picture on the involvement of the microphysical processes of the aerosol dynamic in the: 1) regular evolution of the urban aerosol (daily, weekly and seasonal basis) and in the day-to-day variations (from clean-air to pollution-events), and 2) link between "aerosol chemistry and mass concentrations" with the "number size distribution". The mass concentrations of the fine PM2.5 aerosol exhibit a high correlation with the number concentration of particles >100 nm (which only accounts for <20% of the total number concentration N of fine aerosols) and do not correlate with the number of particles <100 nm ("ultrafine particles", which accounts for >80% of fine particles). Organic matter (OM) and black-carbon (BC) are the only aerosol components showing a significant correlation with ultrafine particles (attributed to vehicles emissions), whereas ammonium-nitrate, ammonium-sulphate and also OM and BC correlate with N>100(nm) (attributed to gas-to-particle transformation mechanisms and some primary emissions). Time series of the aerosol DpN diameter (dN/dlogD mode), mass PM2.5 concentrations and number N>100(nm) concentrations, exhibit correlated day-to-day variations which point to a significant involvement of condensation of semi-volatile compounds during urban pollution events. This agrees with the fact that ammonium-nitrate is the component exhibiting the highest increases from mid-to-high pollution episodes, when the highest DpN increases are observed. The results indicates that "fine PM2.5 particles urban pollution events" tend to occur when condensation processes have made particles grow enough to produce significant concentrations of N>100(nm). In contrast, because the low contribution of ultrafine particles to the fine

  7. Estimation of surface-level PM concentration from satellite observation taking into account the aerosol vertical profiles and hygroscopicity.

    PubMed

    Kim, Kwanchul; Lee, Kwon H; Kim, Ji I; Noh, Youngmin; Shin, Dong H; Shin, Sung K; Lee, Dasom; Kim, Jhoon; Kim, Young J; Song, Chul H

    2016-01-01

    Surface-level PM10 distribution was estimated from the satellite aerosol optical depth (AOD) products, taking the account of vertical profiles and hygroscopicity of aerosols over Jeju, Korea during March 2008 and October 2009. In this study, MODIS AOD data from the Terra and Aqua satellites were corrected with aerosol extinction profiles and relative humidity data. PBLH (Planetary Boundary Layer Height) was determined from MPLNET lidar-derived aerosol extinction coefficient profiles. Through statistical analysis, better agreement in correlation (R = 0.82) between the hourly PM10 concentration and hourly average Sunphotometer AOD was the obtained when vertical fraction method (VFM) considering Haze Layer Height (HLH) and hygroscopic growth factor f(RH) was used. The validity of the derived relationship between satellite AOD and surface PM10 concentration clearly demonstrates that satellite AOD data can be utilized for remote sensing of spatial distribution of regional PM10 concentration. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Spinning-disk generation and drying of monodisperse solid aerosols with output concentrations sufficient for single-breath inhalation studies.

    PubMed

    Byron, P R; Hickey, A J

    1987-01-01

    The air-driven spinning-disk aerosol generator was modified to allow the production of monodisperse dry spherical aerosols of disodium fluorescein (as model solute) in high output concentrations. Output concentrations were determined by filtration. Optical and aerodynamic size distributions were determined microscopically (after electrostatic precipitation) and by cascade impaction. The generator housing allowed the entrainment of 25-microns primary aqueous solution droplets in a 10-L X min-1 downward flow of dry, filtered air. Internal equipment surfaces were machined flush and polished to minimize aerosol losses. Primary droplets were dried within a stainless steel pipe encased in a tube furnace. Water vapor was removed by diffusion drying. Disk-driven air, satellite droplets, and additional dilution air were vented to waste without using a vacuum. Generator yields were increased by reducing the size of the satellite droplet extraction gap. Aerosols were generated reproducibly by delivering aqueous solutions at a rate of 0.2 mL X min-1 to the center of the disk and spinning at 1000 rps. Dry aerosols, with mass median aerodynamic diameters of 2, 4.9, and 9 microns, were produced in concentrations of 0.89, 5.48, and 54.6 micrograms X L-1 from aqueous solutions containing 0.0374, 0.584, and 3.4% solute by weight. Geometric standard deviations were less than 1.2 in all cases. Concentrations are several times higher than others in the literature and are suitable for single-breath inhalation studies of therapeutic aerosol deposition and effect.

  9. Numerical analysis of the formation process of aerosols in the alveoli

    NASA Astrophysics Data System (ADS)

    Haslbeck, Karsten; Seume, Jörg R.

    2008-11-01

    For a successful diagnosis of lung diseases through an analysis of non-volatile molecules in the exhaled breath, an exact understanding of the aerosol formation process is required. This process is modeled using Computational Fluid Dynamics (CFD). The model shows the interaction of the boundary surface between the streamed airway and the local epithelial liquid layer. A 2-D volume mesh of an alveolus is generated by taking into account the connection of the alveoli with the sacculi alveolares (SA). The Volume of Fluid (VOF) Method is used to model the interface between the gas and the liquid film. The non-Newtonian flow is modeled by the implementation of the Ostwald de Waele model. Surface tension is a function of the surfactant concentration. The VOF-Method allows the distribution of the concentration of the epithelial liquid layer at the surface to be traced in a transient manner. The simulations show the rupturing of the liquid film through the drop formation. Aerosol particles are ejected into the SA and do not collide with the walls. The quantity, the geometrical size as well as the velocity distributions of the generated aerosols are determined. The data presented in the paper provide the boundary conditions for future CFD analysis of the aerosol transport through the airways up to exhalation.

  10. Effects of Precursor Concentration and Acidic Sulfate in Aqueous Glyoxal−OH Radical Oxidation and Implications for Secondary Organic Aerosol

    PubMed Central

    2009-01-01

    Previous experiments demonstrated that aqueous OH radical oxidation of glyoxal yields low-volatility compounds. When this chemistry takes place in clouds and fogs, followed by droplet evaporation (or if it occurs in aerosol water), the products are expected to remain partially in the particle phase, forming secondary organic aerosol (SOA). Acidic sulfate exists ubiquitously in atmospheric water and has been shown to enhance SOA formation through aerosol phase reactions. In this work, we investigate how starting concentrations of glyoxal (30−3000 μM) and the presence of acidic sulfate (0−840 μM) affect product formation in the aqueous reaction between glyoxal and OH radical. The oxalic acid yield decreased with increasing precursor concentrations, and the presence of sulfuric acid did not alter oxalic acid concentrations significantly. A dilute aqueous chemistry model successfully reproduced oxalic acid concentrations, when the experiment was performed at cloud-relevant concentrations (glyoxal <300 μM), but predictions deviated from measurements at increasing concentrations. Results elucidate similarities and differences in aqueous glyoxal chemistry in clouds and in wet aerosols. They validate for the first time the accuracy of model predictions at cloud-relevant concentrations. These results suggest that cloud processing of glyoxal could be an important source of SOA. PMID:19924930

  11. Optical and microphysical properties of atmospheric aerosols in Moldova

    NASA Astrophysics Data System (ADS)

    Aculinin, Alexandr; Smicov, Vladimir

    2010-05-01

    Measurements of aerosol properties in Kishinev, Moldova are being carried out within the framework of the international AERONET program managed by NASA/GSFC since 1999. Direct solar and sky diffuse radiances are measured by using of sunphotometer Cimel-318. Aerosol optical properties are retrieved from measured radiances by using of smart computational procedures developed by the AERONET's team. The instrument is situated at the ground-based solar radiation monitoring station giving the opportunity to make simultaneous spectral (win sunphotometer) and broadband (with the set of sensors from radiometric complex) solar radiation. Detailed description of the station and investigations in progress can be found at the http://arg.phys.asm.md. Ground station is placed in an urban environment of Kishinev city (47.00N; 28.56E; 205 m a.s.l). Summary of aerosol optical and microphysical properties retrieved from direct solar and diffuse sky radiance observations at Moldova site from September 1999 to June 2009 are presented below. Number of measurements (total): 1695 Number of measurements (for ?o, n, k): 223 Range of aerosol optical depth (AOD) @440 nm: 0.03 < ?(440) < 2.30, < ?(440)>=0.25 Range of Ångström parameter < α440_870 >: 0.14 < α < 2.28 Asymmetry factor (440/670/870/1020): 0.70/0.63/0.59/0.58 ±0.04 Refraction (n) and absorption (k) indices@440 nm: 1.41 ± 0.06; 0.009 ± 0.005 Single scattering albedo < ?o >(440/670/870/1020): 0.93/0.92/0.90/0.89 ±0.04 Parameters of volume particle size distribution function: (fine mode) volume median radius r v,f , μm: 0.17 ± 0.06 particle volume concentration Cv,f, μm3/μm2: 0.04 ± 0.03 (coarse mode) volume median radius rv,c , μm: 3.08 ± 0.64 particle volume concentration Cv,c, μm3/μm2: 0.03 ± 0.03 Climatic norms of AOD@500 nm and Ångström parameter < α440_870 > at the site of observation are equal to 0.21 ± 0.06 and 1.45 ± 0.14, respectively. The aerosol type in Moldova may be considered as 'urban

  12. The Role of Atmospheric Aerosol Concentration on Deep Convective Precipitation: Cloud-resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Li, X.; Khain, A.; Mastsui, T.; Lang, S.; Simpson, J.

    2007-01-01

    Aerosols and especially their effect on clouds are one of the key components of the climate system and the hydrological cycle [Ramanathan et al., 20011. Yet, the aerosol effect on clouds remains largely unknown and the processes involved not well understood. A recent report published by the National Academy of Science states "The greatest uncertainty about the aerosol climate forcing - indeed, the largest of all the uncertainties about global climate forcing - is probably the indirect effect of aerosols on clouds NRC [2001]." The aerosol effect on clouds is often categorized into the traditional "first indirect (i.e., Twomey)" effect on the cloud droplet sizes for a constant liquid water path and the "semi-direct" effect on cloud coverage. The aerosol effect on precipitation processes, also known as the second type of aerosol indirect effect, is even more complex, especially for mixed-phase convective clouds. ln this paper, a cloud-resolving model (CRM) with detailed spectral-bin microphysics was used to examine the effect of aerosols on three different deep convective cloud systems that developed in different geographic locations: South Florida, Oklahoma and the Central Pacific. In all three cases, rain reaches the ground earlier for the low CCN (clean) case. Rain suppression is also evident in all three cases with high CCN (dirty) case. However, this suppression only occurs during the first hour of the simulations. During the mature stages of the simulations, the effects of increasing aerosol concentration range from rain suppression in the Oklahoma case, to almost no effect in the Florida case, to rain enhancement in the Pacific case. These results show the complexity of aerosol interactions with convection.

  13. Simulating Aerosol Size Distribution and Mass Concentration with Simultaneous Nucleation, Condensation/Coagulation, and Deposition with the GRAPES-CUACE

    NASA Astrophysics Data System (ADS)

    Zhou, Chunhong; Shen, Xiaojing; Liu, Zirui; Zhang, Yangmei; Xin, Jinyuan

    2018-04-01

    A coupled aerosol-cloud model is essential for investigating the formation of haze and fog and the interaction of aerosols with clouds and precipitation. One of the key tasks of such a model is to produce correct mass and number size distributions of aerosols. In this paper, a parameterization scheme for aerosol size distribution in initial emission, which took into account the measured mass and number size distributions of aerosols, was developed in the GRAPES-CUACE [Global/Regional Assimilation and PrEdiction System-China Meteorological Administration (CMA) Unified Atmospheric Chemistry Environment model]—an online chemical weather forecast system that contains microphysical processes and emission, transport, and chemical conversion of sectional multi-component aerosols. In addition, the competitive mechanism between nucleation and condensation for secondary aerosol formation was improved, and the dry deposition was also modified to be in consistent with the real depositing length. Based on the above improvements, the GRAPES-CUACE simulations were verified against observational data during 1-31 January 2013, when a series of heavy regional haze-fog events occurred in eastern China. The results show that the aerosol number size distribution from the improved experiment was much closer to the observation, whereas in the old experiment the number concentration was higher in the nucleation mode and lower in the accumulation mode. Meanwhile, the errors in aerosol number size distribution as diagnosed by its sectional mass size distribution were also reduced. Moreover, simulations of organic carbon, sulfate, and other aerosol components were improved and the overestimation as well as underestimation of PM2.5 concentration in eastern China was significantly reduced, leading to increased correlation coefficient between simulated and observed PM2.5 by more than 70%. In the remote areas where bad simulation results were produced previously, the correlation coefficient

  14. Vertical profiles of fine and coarse aerosol particles over Cyprus: Comparison between in-situ drone measurements and remote sensing observations

    NASA Astrophysics Data System (ADS)

    Mamali, Dimitra; Marinou, Eleni; Pikridas, Michael; Kottas, Michael; Binietoglou, Ioannis; Kokkalis, Panagiotis; Tsekeri, Aleksandra; Amiridis, Vasilis; Sciare, Jean; Keleshis, Christos; Engelmann, Ronny; Ansmann, Albert; Russchenberg, Herman W. J.; Biskos, George

    2017-04-01

    Vertical profiles of the aerosol mass concentration derived from light detection and ranging (lidar) measurements were compared to airborne dried optical particle counter (OPC MetOne; Model 212) measurements during the INUIT-BACCHUS-ACTRIS campaign. The campaign took place in April 2016 and its main focus was the study of aerosol dust particles. During the campaign the NOA Polly-XT Raman lidar located at Nicosia (35.08° N, 33.22° E) was providing round-the-clock vertical profiles of aerosol optical properties. In addition, an unmanned aerial vehicle (UAV) carrying an OPC flew on 7 days during the first morning hours. The flights were performed at Orounda (35.1018° N, 33.0944° E) reaching altitudes of 2.5 km a.s.l, which allows comparison with a good fraction of the recorded lidar data. The polarization lidar photometer networking method (POLIPHON) was used for the estimation of the fine (non-dust) and coarse (dust) mode aerosol mass concentration profiles. This method uses as input the particle backscatter coefficient and the particle depolarization profiles of the lidar at 532 nm wavelength and derives the aerosol mass concentration. The first step in this approach makes use of the lidar observations to separate the backscatter and extinction contributions of the weakly depolarizing non-dust aerosol components from the contributions of the strongly depolarizing dust particles, under the assumption of an externally mixed two-component aerosol. In the second step, sun photometer retrievals of the fine and the coarse modes aerosol optical thickness (AOT) and volume concentration are used to calculate the associated concentrations from the extinction coefficients retrieved from the lidar. The estimated aerosol volume concentrations were converted into mass concentration with an assumption for the bulk aerosol density, and compared with the OPC measurements. The first results show agreement within the experimental uncertainty. This project received funding from the

  15. A novel continuous powder aerosolizer (CPA) for inhalative administration of highly concentrated recombinant surfactant protein-C (rSP-C) surfactant to preterm neonates.

    PubMed

    Pohlmann, G; Iwatschenko, P; Koch, W; Windt, H; Rast, M; de Abreu, M Gama; Taut, F J H; De Muynck, C

    2013-12-01

    In pulmonary medicine, aerosolization of substances for continuous inhalation is confined to different classes of nebulizers with their inherent limitations. Among the unmet medical needs is the lack of an aerosolized surfactant preparation for inhalation by preterm neonates, to avoid the risks associated with endotracheal intubation and surfactant bolus instillation. In the present report, we describe a high-concentration continuous powder aerosolization system developed for delivery of inhalable surfactant to preterm neonates. The developed device uses a technique that allows efficient aerosolization of dry surfactant powder, generating a surfactant aerosol of high concentration. In a subsequent humidification step, the heated aerosol particles are covered with a surface layer of water. The wet surfactant aerosol is then delivered to the patient interface (e.g., nasal prongs) through a tube. The performance characteristics of the system are given as mass concentration, dose rate, and size distribution of the generated aerosol. Continuous aerosol flows of about 0.84 L/min can be generated from dry recombinant surfactant protein-C surfactant, with concentrations of up to 12 g/m(3) and median particle sizes of the humidified particles in the range of 3 to 3.5 μm at the patient interface. The system has been successfully used in preclinical studies. The device with its continuous high-concentration delivery is promising for noninvasive delivery of surfactant aerosol to neonates and has the potential for becoming a versatile disperser platform closing the gap between continuously operating nebulizers and discontinuously operating dry powder inhaler devices.

  16. Assessment of aerosol's mass concentrations from measured linear particle depolarization ratio (vertically resolved) and simulations

    NASA Astrophysics Data System (ADS)

    Nemuc, A.; Vasilescu, J.; Talianu, C.; Belegante, L.; Nicolae, D.

    2013-11-01

    Multi-wavelength depolarization Raman lidar measurements from Magurele, Romania are used in this study along with simulated mass-extinction efficiencies to calculate the mass concentration profiles of different atmospheric components, due to their different depolarization contribution to the 532 nm backscatter coefficient. Linear particle depolarization ratio (δpart) was computed using the relative amplification factor and the system-dependent molecular depolarization. The low depolarizing component was considered as urban/smoke, with a mean δpart of 3%, while for the high depolarizing component (mineral dust) a mean δpart of 35% was assumed. For this study 11 months of lidar measurements were analysed. Two study cases are presented in details: one for a typical Saharan dust aerosol intrusion, 10 June 2012 and one for 12 July 2012 when a lofted layer consisting of biomass burning smoke extended from 3 to 4.5 km height. Optical Properties of Aerosols and Clouds software package (OPAC) classification and conversion factors were used to calculate mass concentrations. We found that calibrated depolarization measurements are critical in distinguishing between smoke-reach aerosol during the winter and dust-reach aerosol during the summer, as well as between elevated aerosol layers having different origins. Good agreement was found between lidar retrievals and DREAM- Dust REgional Atmospheric Model forecasts in cases of Saharan dust. Our method was also compared against LIRIC (The Lidar/Radiometer Inversion Code) and very small differences were observed.

  17. Assessment of aerosol's mass concentrations from measured linear particle depolarization ratio (vertically resolved) and simulations

    NASA Astrophysics Data System (ADS)

    Nemuc, A.; Vasilescu, J.; Talianu, C.; Belegante, L.; Nicolae, D.

    2013-06-01

    Multiwavelength depolarization Raman lidar measurements from Magurele, Romania are used in this study along with simulated mass-extinction efficiencies to calculate the mass concentrations profiles of different atmospheric components, due to their different depolarization contribution to the 532 nm backscatter coefficient. Linear particle depolarization ratio (δpart) was computed using the relative amplification factor and the system-dependent molecular depolarization. The low depolarizing component was considered as urban/smoke, with a mean δpart of 3%, while for the high depolarizing component (mineral dust) a mean δpart of 35% was assumed. For this study 11 months of lidar measurements were analyzed. Two study cases are presented in details: one for a typical Saharan dust aerosol intrusion, 10 June 2012 and one for 12 July 2012 when a lofted layer consisting of biomass burning smoke extended from 3 to 4.5 km height. Optical Properties of Aerosols and Clouds software package (OPAC) classification and conversion factors were used to calculate mass concentrations. We found that calibrated depolarization measurements are critical to distinguish between smoke-reach aerosol during the winter and dust-reach aerosol during the summer, as well as between elevated aerosol layers having different origins. Good agreement was found between lidar retrievals and DREAM- Dust REgional Atmospheric Model forecasts in cases of Saharan dust. Our method was also compared against LIRIC (The Lidar/Radiometer Inversion Code) and very small differences were observed.

  18. Global Estimates of Average Ground-Level Fine Particulate Matter Concentrations from Satellite-Based Aerosol Optical Depth

    NASA Technical Reports Server (NTRS)

    Van Donkelaar, A.; Martin, R. V.; Brauer, M.; Kahn, R.; Levy, R.; Verduzco, C.; Villeneuve, P.

    2010-01-01

    Exposure to airborne particles can cause acute or chronic respiratory disease and can exacerbate heart disease, some cancers, and other conditions in susceptible populations. Ground stations that monitor fine particulate matter in the air (smaller than 2.5 microns, called PM2.5) are positioned primarily to observe severe pollution events in areas of high population density; coverage is very limited, even in developed countries, and is not well designed to capture long-term, lower-level exposure that is increasingly linked to chronic health effects. In many parts of the developing world, air quality observation is absent entirely. Instruments aboard NASA Earth Observing System satellites, such as the MODerate resolution Imaging Spectroradiometer (MODIS) and the Multi-angle Imaging SpectroRadiometer (MISR), monitor aerosols from space, providing once daily and about once-weekly coverage, respectively. However, these data are only rarely used for health applications, in part because the can retrieve the amount of aerosols only summed over the entire atmospheric column, rather than focusing just on the near-surface component, in the airspace humans actually breathe. In addition, air quality monitoring often includes detailed analysis of particle chemical composition, impossible from space. In this paper, near-surface aerosol concentrations are derived globally from the total-column aerosol amounts retrieved by MODIS and MISR. Here a computer aerosol simulation is used to determine how much of the satellite-retrieved total column aerosol amount is near the surface. The five-year average (2001-2006) global near-surface aerosol concentration shows that World Health Organization Air Quality standards are exceeded over parts of central and eastern Asia for nearly half the year.

  19. Solid aerosol generator

    DOEpatents

    Prescott, Donald S.; Schober, Robert K.; Beller, John

    1992-01-01

    An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates.

  20. Ground-based observation of aerosol optical properties in Lanzhou, China.

    PubMed

    Yu, Xingna; Zhu, Bin; Fan, Shuxian; Yin, Yan; Bu, Xiaoli

    2009-01-01

    Aerosol optical properties from August 2006 to July 2007 were obtained from ground-based and sky radiance measurements in Semi-Arid Climate and Environment Observatory of Lanzhou University (SACOL), China. High aerosol optical thickness (AOT) associated with low Angström exponent (alpha) was mainly observed in spring, which was consistent with the seasonal dust production from Hexi Corridor. The maximum monthly average value of AOT 0.56 occurred in March of 2007, which was two times larger than the minimum value of 0.28 in October of 2006. Approximately 60% of the AOT ranged between 0.3 and 0.5, and nearly 93% of alpha value varied from 0.1 to 0.8, which occurred in spring. The significant correlation between aerosol properties and water vapor content was not observed. The aerosol volume size distribution can be characterized by the bimodal logarithm normal structure: fine mode (r < 0.6 microm) and coarse mode (r > 0.6 microm). Aerosols in spring of SACOL were dominated by large particles with the volume concentration ratio of coarse to fine modes being 7.85. The average values of asymmetry factor (g) in the wavelength range 440-1020 nm were found to be 0.71, 0.67, 0.67 and 0.69 in spring, summer, autumn and winter, respectively.

  1. Vapor-phase concentrations of PAHs and their derivatives determined in a large city: correlations with their atmospheric aerosol concentrations.

    PubMed

    Barrado, Ana Isabel; García, Susana; Sevillano, Marisa Luisa; Rodríguez, Jose Antonio; Barrado, Enrique

    2013-11-01

    Thirteen PAHs, five nitro-PAHs and two hydroxy-PAHs were determined in 55 vapor-phase samples collected in a suburban area of a large city (Madrid, Spain), from January 2008 to February 2009. The data obtained revealed correlations between the concentrations of these compounds and a series of meteorological factors (e.g., temperature, atmospheric pressure) and physical-chemical factors (e.g., nitrogen and sulfur oxides). As a consequence, seasonal trends were observed in the atmospheric pollutants. A "mean sample" for the 14-month period would contain a total PAH concentration of 13835±1625 pg m(-3) and 122±17 pg m(-3) of nitro-PAHs. When the data were stratified by season, it emerged that a representative sample of the coldest months would contain 18900±2140 pg m(-3) of PAHs and 150±97 pg m(-3) of nitro-PAHs, while in an average sample collected in the warmest months, these values drop to 9293±1178 pg m(-3) for the PAHs and to 97±13 pg m(-3) for the nitro-PAHs. Total vapor phase concentrations of PAHs were one order of magnitude higher than concentrations detected in atmospheric aerosol samples collected on the same dates. Total nitro-PAH concentrations were comparable to their aerosol concentrations whereas vapor phase OH-PAHs were below their limits of the detection, indicating these were trapped in airborne particles. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Precipitation effects on aerosol concentration in the background EMEP station of Zarra (Valencia), Spain

    NASA Astrophysics Data System (ADS)

    Calvo, Ana Isabel; San Martín, Isabel; Castro, Amaya; Alonso-Blanco, Elisabeth; Alves, Célia; Duarte, Márcio; Fernández-González, Sergio; Fraile, Roberto

    2014-05-01

    Aerosols and precipitation are closely related, presenting a bidirectional influence and constituting an important source of uncertainties on climate change studies. However, they are usually studied independently and in general are only linked to one another for the development or validation of cloud models. The primary and secondary pollutants may be removed by wet and dry deposition. Wet deposition, including in-cloud and below-cloud scavenging processes, can efficiently remove atmospheric aerosols and it is considered a critical process for determining aerosol concentrations in the atmosphere. In this study, aerosols and precipitation data from a background Spanish EMEP (Cooperative Programme for the Monitoring and Evaluation of Long Range Transmission of Air Pollutants in Europe) station located in Zarra, Valencia (Spain) were analyzed (1° 06' W and 39° 05' N, 885 m asl). The effect of precipitation on aerosol concentration was studied and the correlation between the intensity of precipitation and scavenging effect was investigated. In order to evaluate the effects of precipitation on different aerosol size ranges three different aerosol fractions were studied: PM10, PM10-2.5 and PM2.5. In order to eliminate the influence of the air mass changes, only the days in which the air mass of the precipitation day and the previous day had the same origin were considered. Thus, from a total of 3586 rainy days registered from March 2001 to December 2010, 34 precipitation days satisfied this condition and were analyzed. During the period of study, daily precipitation ranged between 0.2 and 28.8 mm, with a mean value of 4 mm. Regarding the origin of the air masses, those from west were dominant at the three height levels investigated (500, 1500 and 3000 m). In order to obtain additional information, aerosol and precipitation chemical composition were also studied in relation to the days of precipitation and the previous days. Furthermore, in order to identify the type

  3. [Aerosol optical properties during different air-pollution episodes over Beijing].

    PubMed

    Shi, Chan-Zhen; Yu, Xing-Na; Zhou, Bin; Xiang, Lei; Nie, Hao-Hao

    2013-11-01

    Based on the 2005-2011 data from Aerosol Robotic Network (AERONET), this study conducted analysis on aerosol optical properties over Beijing during different air-pollution episodes (biomass burning, CNY firework, dust storm). The aerosol optical depth (AOD) showed notable increases in the air-pollution episodes while the AOD (at 440 nm) during dust storm was 4. 91, 4. 07 and 2.65 times higher as background, biomass burning and firework aerosols. AOD along with Angstrom exponent (alpha) can be used to determine the aerosol types. The dust aerosol had the highest AOD and the lowest alpha. The alpha value of firework (1.09) was smaller than biomass burning (1.21) and background (1.27), indicating that coarse particles were dominant in the former type. Higher AOD of burnings (than background) can be attributed to the optical extinction capability of black carbon aerosol. The single scattering albedo (SSA) was insensitive to wavelength. The SSA value of dust (0.934) was higher than background (0.878), biomass burning (0.921) and firework (0.905). Additionally, the extremely large SSA of burnings here maybe was caused by the aging smoke, hygroscopic growth and so on. The peak radius of aerosol volume size distributions were 0.1-0.2 microm and 2.24 -3.85 microm in clear and polluted conditions. The value of volume concentration ratio between coarse and fine particles was in the order of clear background (1.04), biomass burning (1.10), CNY firework (1.91) and dust storm (4.96) episode.

  4. Solid aerosol generator

    DOEpatents

    Prescott, D.S.; Schober, R.K.; Beller, J.

    1992-03-17

    An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration is disclosed. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates. 2 figs.

  5. Estimated effects of temperature on secondary organic aerosol concentrations.

    PubMed

    Sheehan, P E; Bowman, F M

    2001-06-01

    The temperature-dependence of secondary organic aerosol (SOA) concentrations is explored using an absorptive-partitioning model under a variety of simplified atmospheric conditions. Experimentally determined partitioning parameters for high yield aromatics are used. Variation of vapor pressures with temperature is assumed to be the main source of temperature effects. Known semivolatile products are used to define a modeling range of vaporization enthalpy of 10-25 kcal/mol-1. The effect of diurnal temperature variations on model predictions for various assumed vaporization enthalpies, precursor emission rates, and primary organic concentrations is explored. Results show that temperature is likely to have a significant influence on SOA partitioning and resulting SOA concentrations. A 10 degrees C decrease in temperature is estimated to increase SOA yields by 20-150%, depending on the assumed vaporization enthalpy. In model simulations, high daytime temperatures tend to reduce SOA concentrations by 16-24%, while cooler nighttime temperatures lead to a 22-34% increase, compared to constant temperature conditions. Results suggest that currently available constant temperature partitioning coefficients do not adequately represent atmospheric SOA partitioning behavior. Air quality models neglecting the temperature dependence of partitioning are expected to underpredict peak SOA concentrations as well as mistime their occurrence.

  6. Quantifying compositional impacts of ambient aerosol on cloud droplet formation

    NASA Astrophysics Data System (ADS)

    Lance, Sara

    volume fraction, showing that measurable aging of the aerosol population occurs during the day, on the timescale of a few hours. The mixing state of the aerosol, also showing a consistent diurnal pattern, clearly correlates with a chemical tracer for local combustion sources. Chapter 4 describes results from the GoMACCS field study, in which the CCNc was subsequently deployed on an airborne field campaign in Houston, Texas during August-September, 2006. GoMACCS tested our ability to predict CCN for highly polluted conditions with limited chemical information. Assuming the particles were composed purely of ammonium sulfate, CCN closure was obtained with a 10% overprediction bias on average for CCN concentrations ranging from less than 100 cm-3 to over 10,000 cm-3, but with on average 50% variability. Assuming measured concentrations of organics to be internally mixed and insoluble tended to reduce the overprediction bias for less polluted conditions, but led to underprediction bias in the most polluted conditions. A likely explanation is that the high organic concentrations in the polluted environments depress the surface tension of the droplets, thereby enabling activation at lower soluble fractions.

  7. Wide-range particle characterization and elemental concentration in Beijing aerosol during the 2013 Spring Festival.

    PubMed

    Jing, Hui; Li, Yu-Feng; Zhao, Jiating; Li, Bai; Sun, Jialong; Chen, Rui; Gao, Yuxi; Chen, Chunying

    2014-09-01

    The number and mass concentration, size distribution, and the concentration of 16 elements were studied in aerosol samples during the Spring Festival celebrations in 2013 in Beijing, China. Both the number and mass concentration increased sharply in a wide range from 10 nm to 10 μm during the firecrackers and fireworks activities. The prominent increase of the number concentration was in 50 nm-500 nm with a peak of 1.7 × 10(5)/cm(3) at 150 nm, which is 8 times higher than that after 1.5 h. The highest mass concentration was in 320-560 nm, which is 4 times higher than the control. K, Mg, Sr, Ba and Pb increased sharply during the firework activities in PM10. Although the aerosol emission from firework activities is a short-term air quality degradation event, there may be a substantial hazard arising from the chemical composition of the emitted particles. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Vertical profile of elemental concentrations in aerosol particles in the Bermuda area during GCE/CASE/WATOX

    NASA Astrophysics Data System (ADS)

    Ennis, G.; Sievering, H.

    1990-06-01

    During the 1988 Global Change Expedition/Coordinated Air-Sea Experiment/Western Atlantic Ocean Experiment (GCE/CASE/WATOX) joint effort, research was conducted to determine elemental concentrations in atmospheric aerosol particles near Bermuda, to construct a three-level (15, 150, and 2600 m ASL) vertical profile of these concentrations, and to ascertain the source of the particles. Samples were collected by the NOAA King Air aircraft and NOAA ship Mt. Mitchell on July 24-28, 1988. Concentration determinations were made for 16 elements through the use of an X ray fluorescence instrument designed for analysis of small-mass samples. A layering effect was found; concentrations of several elements at 150 m were more than twice their respective concentrations at 15 m and 2600 m. Enrichment factors, V/Mn ratio, and correlations between concentrations suggest a Saharan mineral source, despite air mass back trajectories that show no direct continental input for up to 10 days prior to sample collection. Estimated total mineral aerosol concentrations at 15 m, 150 m, and 2600 m are 1.5, 4.1, and 2.1 μg m-3.

  9. Organosulfates and organic acids in Arctic aerosols: speciation, annual variation and concentration levels

    NASA Astrophysics Data System (ADS)

    Hansen, A. M. K.; Kristensen, K.; Nguyen, Q. T.; Zare, A.; Cozzi, F.; Nøjgaard, J. K.; Skov, H.; Brandt, J.; Christensen, J. H.; Ström, J.; Tunved, P.; Krejci, R.; Glasius, M.

    2014-02-01

    Sources, composition and occurrence of secondary organic aerosols (SOA) in the Arctic were investigated at Zeppelin Mountain, Svalbard, and Station Nord, northeast Greenland, during the full annual cycle of 2008 and 2010 respectively. We focused on the speciation of three types of SOA tracers: organic acids, organosulfates and nitrooxy organosulfates from both anthropogenic and biogenic precursors, here presenting organosulfate concentrations and compositions during a full annual cycle and chemical speciation of organosulfates in Arctic aerosols for the first time. Aerosol samples were analysed using High Performance Liquid Chromatography coupled to a quadrupole Time-of-Flight mass spectrometer (HPLC-q-TOF-MS). A total of 11 organic acids (terpenylic acid, benzoic acid, phthalic acid, pinic acid, suberic acid, azelaic acid, adipic acid, pimelic acid, pinonic acid, diaterpenylic acid acetate (DTAA) and 3-methyl-1,2,3-butanetricarboxylic acid (MBTCA)), 12 organosulfates and one nitrooxy organosulfate were identified at the two sites. Six out of the 12 organosulfates are reported for the first time. Concentrations of organosulfates follow a distinct annual pattern at Station Nord, where high concentration were observed in late winter and early spring, with a mean total concentration of 47 (±14) ng m-3, accounting for 7 (±2)% of total organic matter, contrary to a considerably lower organosulfate mean concentration of 2 (±3) ng m-3 (accounting for 1 (±1)% of total organic matter) observed during the rest of the year. The organic acids followed the same temporal trend as the organosulfates at Station Nord; however the variations in organic acid concentrations were less pronounced, with a total mean organic acid concentration of 11.5 (±4) ng m-3 (accounting for 1.7 (±0.6)% of total organic matter) in late winter and early spring, and 2.2 (±1) ng m-3 (accounting for 0.9 (±0.4)% of total organic matter) during the rest of the year. At Zeppelin Mountain

  10. Perspective: Aerosol microphysics: From molecules to the chemical physics of aerosols

    NASA Astrophysics Data System (ADS)

    Bzdek, Bryan R.; Reid, Jonathan P.

    2017-12-01

    Aerosols are found in a wide diversity of contexts and applications, including the atmosphere, pharmaceutics, and industry. Aerosols are dispersions of particles in a gas, and the coupling of the two phases results in highly dynamic systems where chemical and physical properties like size, composition, phase, and refractive index change rapidly in response to environmental perturbations. Aerosol particles span a wide range of sizes from 1 nm to tens of micrometres or from small molecular clusters that may more closely resemble gas phase molecules to large particles that can have similar qualities to bulk materials. However, even large particles with finite volumes exhibit distinct properties from the bulk condensed phase, due in part to their higher surface-to-volume ratio and their ability to easily access supersaturated solute states inaccessible in the bulk. Aerosols represent a major challenge for study because of the facile coupling between the particle and gas, the small amounts of sample available for analysis, and the sheer breadth of operative processes. Time scales of aerosol processes can be as short as nanoseconds or as long as years. Despite their very different impacts and applications, fundamental chemical physics processes serve as a common theme that underpins our understanding of aerosols. This perspective article discusses challenges in the study of aerosols and highlights recent chemical physics advancements that have enabled improved understanding of these complex systems.

  11. Modelling organic aerosol concentrations and properties during ChArMEx summer campaigns of 2012 and 2013 in the western Mediterranean region

    NASA Astrophysics Data System (ADS)

    Chrit, Mounir; Sartelet, Karine; Sciare, Jean; Pey, Jorge; Marchand, Nicolas; Couvidat, Florian; Sellegri, Karine; Beekmann, Matthias

    2017-10-01

    In the framework of the Chemistry-Aerosol Mediterranean Experiment, a measurement site was set up at a remote site (Ersa) on Corsica Island in the northwestern Mediterranean Sea. Measurement campaigns performed during the summers of 2012 and 2013 showed high organic aerosol concentrations, mostly from biogenic origin. This work aims to represent the organic aerosol concentrations and properties (oxidation state and hydrophilicity) using the air-quality model Polyphemus with a surrogate approach for secondary organic aerosol (SOA) formation. Biogenic precursors are isoprene, monoterpenes and sesquiterpenes. In this work, the following model oxidation products of monoterpenes are added: (i) a carboxylic acid (MBTCA) to represent multi-generation oxidation products in the low-NOx regime, (ii) organic nitrate chemistry and (iii) extremely low-volatility organic compounds (ELVOCs) formed by ozonolysis. The model shows good agreement of measurements of organic concentrations for both 2012 and 2013 summer campaigns. The modelled oxidation property and hydrophilic organic carbon properties of the organic aerosols also agree reasonably well with the measurements. The influence of the different chemical processes added to the model on the oxidation level of organics is studied. Measured and simulated water-soluble organic carbon (WSOC) concentrations show that even at a remote site next to the sea, about 64 % of the organic carbon is soluble. The concentrations of WSOC vary with the origins of the air masses and the composition of organic aerosols. The marine organic emissions only contribute to a few percent of the organic mass in PM1, with maxima above the sea.

  12. Ground-based aerosol measurements during CHARMEX/ADRIMED campaign at Granada station

    NASA Astrophysics Data System (ADS)

    Granados-Muñoz, Maria Jose; Bravo-Aranda, Juan Antonio; Navas-Guzman, Francisco; Guerro-Rascado, Juan Luis; Titos, Gloria; Lyamani, Hassan; Valenzuela, Antonio; Cazorla, Alberto; Olmo, Francisco Jose; Mallet, Marc; Alados-Arboledas, Lucas

    2015-04-01

    In the framework of ChArMEx/ADRIMED (Chemistry-Aerosol Mediterranean Experiment, http://charmex.lsce.ipsl.fr/; Aerosol Direct Radiative Impact on the regional climate in the MEDiterranean region) projects, a field experiment based on in situ and remote sensing measurements from surface and airborne platforms was performed. The ADRIMED project aimed to capture the high complexity of the Mediterranean region by using an integrated approach based on intensive experimental field campaign and spaceborne observations, radiative transfer calculations and climate modelling with Regional Climate Models better adapted than global circulation models. For this purpose, measurements were performed at different surface super-sites (including Granada station) over the Occidental Mediterranean region during summer 2013 for creating an updated database of the physical, chemical, optical properties and the vertical distribution of the major "Mediterranean aerosols". Namely, measurements at Granada station were performed on 16 and 17 July 2013, in coincidence with the overpasses of the ATR aircraft over the station. The instrumentation used for the campaign includes both remote sensing instruments (a multiwavelength Raman lidar and a sun photometer) and in-situ measurements (a nephelometer, a Multi-Angle Absorption Photometer (MAAP), an Aerodynamic particle sizer (APS), a high volume sampler of PM10 and an aethalometer). During the measurement period a mineral dust event was detected, with similar dust load on both days. According to in-situ measurements, the event reached the surface level on 16 of June. Vertically resolved lidar measurements indicated presence of mineral dust layers up to 5 km asl both on 16 and 17 June 2013. Temporal evolution analysis indicated that on 17 June the dust layer decoupled from the boundary layer and disappeared around 14:00 UTC. In addition, lidar and sun-photometer data were used to retrieve volume concentration profiles by means of LIRIC (Lidar

  13. Temporal variability in aerosol composition at an urban site, Varanasi in the eastern Indo-Gangetic Plain

    NASA Astrophysics Data System (ADS)

    Ram, Kirpa; Norra, Stefan; Yuan, Chen; Venkata Satish, Rangu; Rastogi, Neeraj

    2017-04-01

    PM2.5 aerosol samples (n=31) were collected from an urban site, Varanasi (25° 28'N, 83°0' E) in the eastern Indo-Gangetic Plain during May 2015 to March 2016 using a mini-volume sampler (Leckel GmbH, Germany) at a flow rate of 200 l/hr. The PM2.5 samples were integrated for 7 days and were analyzed for organic and elemental carbon (OC & EC), water-soluble OC (WSOC), organic and inorganic nitrogen (ON & IN) and water-soluble inorganic species (WSIS) to study the geochemical behavior of aerosols. The mass concentration of OC and EC varies from 4.2 to 105.2 (average: 32.8) μg m-3 and 1.2 to 7.0 (average: 4.6) μg m-3 during the study period with total carbonaceous aerosols (TCA=1.6*OC+EC), on an average, accounting for ˜59% of PM2.5 mass. Relatively high WSOC/OC ratio (average: 0.55±0.18; range 0.18-0.86) indicate a significant contribution from the secondary organic aerosols at Varanasi. The concentration of ON varies from less than detection limit to 5.3 (average: 2.4) μg m-3 which contribute to ˜12% of WSOC highlighting the presence of nitro-organic compounds in aerosols at Varanasi. The average WSIS contribution to PM2.5 is only 17% with a strong seasonal variability (range: 4-36%). Generally, carbonaceous and inorganic aerosol concentration is higher during winter, fall and post-monsoon that those in the summer when dust aerosol contribution is significant (as high as 75% of PM2.5 mass). This study highlights the role of nitro-organic compounds in secondary organic aerosols which is lacking in Indian aerosols. Furthermore, these aerosol samples could be very important for the study of particle morphology and composition using scanning-electron Microscope-Energy Dispersive X-ray due to lower impaction in the mini-volume sampler.

  14. Wintertime aerosol in Las Vegas, Nevada

    NASA Astrophysics Data System (ADS)

    Brown, Steven G.

    Numerous studies have found adverse health effects in subjects who live next to major roadways due to air pollution; in particular, there can be severe impacts on lung function and development in children living and/or attending school next to major roadways due to their exposure to air pollutants, including particulate matter (PM) or aerosol. The composition of aerosol at an elementary school next to a major freeway in Las Vegas, Nevada during winter 2008 was measured using a suite of measurements. An Aerodyne High Resolution Aerosol Mass Spectrometer (HR-AMS) was used to quantify the composition of non-refractory PM1 aerosol, including organic matter (OM); an Aethalometer was used to quantify black carbon (BC); a Sunset OCEC analyzer was used to measure organic and elemental carbon (OC, EC); and a particle-into-liquid system (PILS) coupled to two ion chromatographs (IC) was used to measure fine particle ions. Hi-volume PM2.5 samplers were used to collect aerosol on quartz fiber filters at between 2 and 24 hour intervals during the study, a subset of which were analyzed for PAHs and the biomass burning tracer levoglucosan. Data were analyzed by positive matrix factorization (PMF) to determine the amount of fresh, hydrocarbon-like organic aerosol (HOA), more oxidized OA (low-volatility and semi-volatile OA [LV-OOA, SV-OOA]) and biomass burning OA (BBOA). PM1 aerosol was predominantly carbonaceous, with OM plus BC accounting for 74% of the overall average 6.9 mug/m3 of PM measured. BC had a diurnal pattern similar to traffic volume, while OM was higher in the evening compared to the morning. OM was a mixture of fresh HOA, urban- and regional-scale OOA, and BBOA; in the evening, SV-OOA and BBOA peaked, while HOA concentrations were on average the same in the morning and evening, similar to BC. OM/OC ratios were low (1.52 +/-0.14 on average) during the morning rush hour (average OM = 2.4 mug/m3) when vehicular emissions dominate this near-road measurement site, and

  15. Study of Aerosol Optical Properties Over Two Sites in the Foothills of the Central Himalayas

    NASA Astrophysics Data System (ADS)

    Rupakheti, D.; Kang, S.; Cong, Z.; Rupakheti, M.; Tripathee, L.; Panday, A. K.; Holben, B.

    2018-04-01

    Atmospheric aerosol possesses impacts on climate system and ecological environments, human health and agricultural productivity. The environment over Himalayas and Tibetan Plateau region are continuously degraded due to the transport of pollution from the foothills of the Himalayas; mostly the Indo-Gangetic Plain (IGP). Thus, analysis of aerosol optical properties over two sites; Lumbini and Kathmandu (the southern slope of central Himalayas) using AERONET's CIMEL sun photometer were conducted in this study. Aerosol optical depth (AOD at 500 nm), angstrom exponent (α or AE), volume size distribution (VSD), single scattering albedo (SSA) and asymmetry parameter (AP) were studied for 2013-2014 and the average AOD was found to be: 0.64 ± 0.41 (Lumbini) and 0.45 ± 0.30 (Kathmandu). The average AE was found to be: 1.25 ± 0.24 and 1.26 ± 0.18 respectively for two sites. The relation between AOD and AE was used to discriminate the aerosol types over these sites which indicated anthropogenic, mixed and biomass burning origin aerosol constituted the major aerosol types in Lumbini and Kathmandu. A clear bi-modal distribution of aerosol volume size was observed with highest volume concentration during the post-monsoon season in fine mode and pre-monsoon season in coarse mode (Lumbini) and highest value over both modes during pre-monsoon season in Kathmandu. The single scattering albedo (SSA) and asymmetry parameter (AP) analyses suggested aerosols over the Himalayan foothills sites are dominated by absorbing and anthropogenic aerosols from urban and industrial activities and biomass burning. Long-term studies are essential to understand and characterize the nature of aerosol over this research gap zone.

  16. Retrieval of Aerosol Parameters from Continuous H24 Lidar-Ceilometer Measurements

    NASA Astrophysics Data System (ADS)

    Dionisi, D.; Barnaba, F.; Costabile, F.; Di Liberto, L.; Gobbi, G. P.; Wille, H.

    2016-06-01

    Ceilometer technology is increasingly applied to the monitoring and the characterization of tropospheric aerosols. In this work, a method to estimate some key aerosol parameters (extinction coefficient, surface area concentration and volume concentration) from ceilometer measurements is presented. A numerical model has been set up to derive a mean functional relationships between backscatter and the above mentioned parameters based on a large set of simulated aerosol optical properties. A good agreement was found between the modeled backscatter and extinction coefficients and the ones measured by the EARLINET Raman lidars. The developed methodology has then been applied to the measurements acquired by a prototype Polarization Lidar-Ceilometer (PLC). This PLC instrument was developed within the EC- LIFE+ project "DIAPASON" as an upgrade of the commercial, single-channel Jenoptik CHM15k system. The PLC run continuously (h24) close to Rome (Italy) for a whole year (2013-2014). Retrievals of the aerosol backscatter coefficient at 1064 nm and of the relevant aerosol properties were performed using the proposed methodology. This information, coupled to some key aerosol type identification made possible by the depolarization channel, allowed a year-round characterization of the aerosol field at this site. Examples are given to show how this technology coupled to appropriate data inversion methods is potentially useful in the operational monitoring of parameters of air quality and meteorological interest.

  17. Long-term observations of aerosol and cloud condensation nuclei concentrations in Barbados

    NASA Astrophysics Data System (ADS)

    Pöhlker, Mira L.; Klimach, Thomas; Krüger, Ovid O.; Hrabe de Angelis, Isabella; Ditas, Florian; Praß, Maria; Holanda, Bruna; Su, Hang; Weber, Bettina; Pöhlker, Christopher; Farrell, David A.; Stevens, Bjorn; Prospero, Joseph M.; Andreae, Meinrat O.; Pöschl, Ulrich

    2017-04-01

    Long-term observation of atmospheric aerosol and cloud condensation nuclei (CCN) concentrations has been conducted at the Ragged Point site in Barbados since August 2016. Ragged Point is a well-established station to monitor the transatlantic transport of Saharan dust outbreaks [1]. In the absence of dust plumes, it represents an ideal site to analyze the maritime boundary layer aerosol that is transported with the trade winds over the Atlantic towards Barbados [2,3]. Broad aerosol size distribution (10 nm to 10 µm) as well as size-resolved CCN measurements at 10 different supersaturations from 0.05 % to 0.84 % have been conducted. The continuous online analyses are supplemented by intensive sampling periods to probe specific aerosol properties with various offline techniques (i.e., microscopy and spectroscopy). Aerosol key properties from our measurements are compared with the continuous and in depth observation of cloud properties at Deebles Point, which is in close neighborhood to the Ragged Point site [2]. Moreover, our activities have been synchronized with the HALO-NARVAL-2 aircraft campaign in August 2016 that added further detailed information on shallow cumulus clouds, which are characteristic for the Atlantic trade winds and represent a crucial factor in the Earth climate system. Our measurements have the following two focal points: (i) We aim to obtain a detailed CCN climatology for the alternation of maritime and dust-impacted episodes at this unique coastal location. This study will complement our recent in-depth analysis for the long-term CCN variability at a remote rain forest location [4]. (ii) Furthermore, we aim to collect detailed information on the role of different aerosol populations on the properties of the climatically important shallow cumulus clouds. References: [1] Prospero, J. M., Collard, F. X., Molinie, J., Jeannot, A. (2014), Global Biogeochemical Cycles, 28, 757-773. [2] Stevens, B., et al. (2016), Bulletin of the American

  18. The Role of Atmospheric Aerosol Concentration on Deep Convective Precipitation: Cloud-Resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Li, Xiaowen; Khain, Alexander; Matsui, Toshihisa; Lang, Stephen; Simpson, Joanne

    2010-01-01

    Aerosols and especially their effect on clouds are one of the key components of the climate system and the hydrological cycle [Ramanathan et al., 2001]. Yet, the aerosol effect on clouds remains largely unknown and the processes involved not well understood. A recent report published by the National Academy of Science states "The greatest uncertainty about the aerosol climate forcing - indeed, the largest of all the uncertainties about global climate forcing - is probably the indirect effect of aerosols on clouds NRC [2001]." The aerosol effect on Clouds is often categorized into the traditional "first indirect (i.e., Twomey)" effect on the cloud droplet sizes for a constant liquid water path and the "semi-direct" effect on cloud coverage. The aerosol effect on precipitation processes, also known as the second type of aerosol indirect effect, is even more complex, especially for mixed-phase convective clouds. In this paper, a cloud-resolving model (CRM) with detailed spectral-bin microphysics was used to examine the effect of aerosols on three different deep convective cloud systems that developed in different geographic locations: South Florida, Oklahoma and the Central Pacific, In all three cases, rain reaches the ground earlier for the low CCN (clean) case. Rain suppression is also evident in all three cases with high CCN (dirty) case. However, this suppression only occurs during the first hour of the simulations. During the mature stages of the simulations, the effects of increasing aerosol concentration range from rain suppression in the Oklahoma case, to almost no effect in the Florida case, to rain enhancement in the Pacific case. These results show the complexity of aerosol interactions with convection. The model results suggest that evaporative cooling is a key process in determining whether high CCN reduces or enhances precipitation. Stronger evaporative cooling can produce a stronger cold pool and thus stronger low-level convergence through interactions

  19. The effects of deep convection on the concentration and size distribution of aerosol particles within the upper troposphere: A case study

    NASA Astrophysics Data System (ADS)

    Yin, Yan; Chen, Qian; Jin, Lianji; Chen, Baojun; Zhu, Shichao; Zhang, Xiaopei

    2012-11-01

    A cloud resolving model coupled with a spectral bin microphysical scheme was used to investigate the effects of deep convection on the concentration and size distribution of aerosol particles within the upper troposphere. A deep convective storm that occurred on 1 December, 2005 in Darwin, Australia was simulated, and was compared with available radar observations. The results showed that the radar echo of the storm in the developing stage was well reproduced by the model. Sensitivity tests for aerosol layers at different altitudes were conducted in order to understand how the concentration and size distribution of aerosol particles within the upper troposphere can be influenced by the vertical transport of aerosols as a result of deep convection. The results indicated that aerosols originating from the boundary layer can be more efficiently transported upward, as compared to those from the mid-troposphere, due to significantly increased vertical velocity through the reinforced homogeneous freezing of droplets. Precipitation increased when aerosol layers were lofted at different altitudes, except for the case where an aerosol layer appeared at 5.4-8.0 km, in which relatively more efficient heterogeneous ice nucleation and subsequent Wegener-Bergeron-Findeisen process resulted in more pronounced production of ice crystals, and prohibited the formation of graupel particles via accretion. Sensitivity tests revealed, at least for the cases considered, that the concentration of aerosol particles within the upper troposphere increased by a factor of 7.71, 5.36, and 5.16, respectively, when enhanced aerosol layers existed at 0-2.2 km, 2.2-5.4 km, and 5.4-8.0 km, with Aitken mode and a portion of accumulation mode (0.1-0.2μm) particles being the most susceptible to upward transport.

  20. In Situ Aerosol Profile Measurements and Comparisons with SAGE 3 Aerosol Extinction and Surface Area Profiles at 68 deg North

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Under funding from this proposal three in situ profile measurements of stratospheric sulfate aerosol and ozone were completed from balloon-borne platforms. The measured quantities are aerosol size resolved number concentration and ozone. The one derived product is aerosol size distribution, from which aerosol moments, such as surface area, volume, and extinction can be calculated for comparison with SAGE III measurements and SAGE III derived products, such as surface area. The analysis of these profiles and comparison with SAGE III extinction measurements and SAGE III derived surface areas are provided in Yongxiao (2005), which comprised the research thesis component of Mr. Jian Yongxiao's M.S. degree in Atmospheric Science at the University of Wyoming. In addition analysis continues on using principal component analysis (PCA) to derive aerosol surface area from the 9 wavelength extinction measurements available from SAGE III. Ths paper will present PCA components to calculate surface area from SAGE III measurements and compare these derived surface areas with those available directly from in situ size distribution measurements, as well as surface areas which would be derived from PCA and Thomason's algorithm applied to the four wavelength SAGE II extinction measurements.

  1. Interpretation of Secondary Organic Aerosol Formation from Diesel Exhaust Photooxidation in an Environmental Chamber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakao, Shunsuke; Shrivastava, ManishKumar B.; Nguyen, Anh

    2011-04-14

    Secondary organic aerosol (SOA) formation from diesel exhaust in a smog chamber was investigated. Particle volume measurement based on mobility diameter is shown to underestimate SOA formation from diesel exhaust due to the external void space of agglomerate particles, in which case mass-based measurement technique is necessary. Rapid determination of particle effective density as a function of particle mass was performed by an Aerosol Particle Mass analyzer – Scanning Mobility Particle Sizer (APM-SMPS) to obtain particle mass concentration and fractal dimension. Continuous aging of aerosol was observed in terms of atomic ratio (O/C), from 0.05 to 0.25 in 12 hours,more » underscoring the importance of multi-generational oxidation of low-volatile organic vapors emitted from diesel engine as the significant source of oxygenated SOA. Experimental conditions possibly have strong impacts on physical evolution of diesel particulates in a smog chamber. Higher particle effective densities were observed when raw exhaust was injected into a full bag as opposed to filling a bag with diluted exhaust using an ejector diluter. When longer transfer line was used for injecting diesel exhaust into the smog chamber, rapid particle coagulation was observed, leading to increasing particle volume concentration in dark while its mass concentration is decreasing.« less

  2. A qualitative comparison of secondary organic aerosol yields and composition from ozonolysis of monoterpenes at varying concentrations of NO2

    NASA Astrophysics Data System (ADS)

    Draper, D. C.; Farmer, D. K.; Desyaterik, Y.; Fry, J. L.

    2015-11-01

    The effect of NO2 on secondary organic aerosol (SOA) formation from ozonolysis of α-pinene, β-pinene, Δ3-carene, and limonene was investigated using a dark flow-through reaction chamber. SOA mass yields were calculated for each monoterpene from ozonolysis with varying NO2 concentrations. Kinetics modeling of the first-generation gas-phase chemistry suggests that differences in observed aerosol yields for different NO2 concentrations are consistent with NO3 formation and subsequent competition between O3 and NO3 to oxidize each monoterpene. α-Pinene was the only monoterpene studied that showed a systematic decrease in both aerosol number concentration and mass concentration with increasing [NO2]. β-Pinene and Δ3-carene produced fewer particles at higher [NO2], but both retained moderate mass yields. Limonene exhibited both higher number concentrations and greater mass concentrations at higher [NO2]. SOA from each experiment was collected and analyzed by HPLC-ESI-MS, enabling comparisons between product distributions for each system. In general, the systems influenced by NO3 oxidation contained more high molecular weight products (MW > 400 amu), suggesting the importance of oligomerization mechanisms in NO3-initiated SOA formation. α-Pinene, which showed anomalously low aerosol mass yields in the presence of NO2, showed no increase in these oligomer peaks, suggesting that lack of oligomer formation is a likely cause of α-pinene's near 0 % yields with NO3. Through direct comparisons of mixed-oxidant systems, this work suggests that NO3 is likely to dominate nighttime oxidation pathways in most regions with both biogenic and anthropogenic influences. Therefore, accurately constraining SOA yields from NO3 oxidation, which vary substantially with the volatile organic compound precursor, is essential in predicting nighttime aerosol production.

  3. A comparison of secondary organic aerosol (SOA) yields and composition from ozonolysis of monoterpenes at varying concentrations of NO2

    NASA Astrophysics Data System (ADS)

    Draper, D. C.; Farmer, D. K.; Desyaterik, Y.; Fry, J. L.

    2015-05-01

    The effect of NO2 on secondary organic aerosol (SOA) formation from ozonolysis of α-pinene, β-pinene, Δ3-carene, and limonene was investigated using a dark flow-through reaction chamber. SOA mass yields were calculated for each monoterpene from ozonolysis with varying NO2 concentrations. Kinetics modeling of the first generation gas-phase chemistry suggests that differences in observed aerosol yields for different NO2 concentrations are consistent with NO3 formation and subsequent competition between O3 and NO3 to oxidize each monoterpene. α-pinene was the only monoterpene studied that showed a systematic decrease in both aerosol number concentration and mass concentration with increasing [NO2]. β-pinene and Δ3-carene produced fewer particles at higher [NO2], but both retained moderate mass yields. Limonene exhibited both higher number concentrations and greater mass concentrations at higher [NO2]. SOA from each experiment was collected and analyzed by HPLC-ESI-MS, enabling comparisons between product distributions for each system. In general, the systems influenced by NO3 oxidation contained more high molecular weight products (MW >400 amu), suggesting the importance of oligomerization mechanisms in NO3-initiated SOA formation. α-pinene, which showed anomalously low aerosol mass yields in the presence of NO2, showed no increase in these oligomer peaks, suggesting that lack of oligomer formation is a likely cause of α-pinene's near 0% yields with NO3. Through direct comparisons of mixed-oxidant systems, this work suggests that NO3 is likely to dominate nighttime oxidation pathways in most regions with both biogenic and anthropogenic influences. Therefore, accurately constraining SOA yields from NO3 oxidation, which vary substantially with the VOC precursor, is essential in predicting nighttime aerosol production.

  4. Spatial and seasonal patterns in urban influence on regional concentrations of speciated aerosols across the United States

    NASA Astrophysics Data System (ADS)

    Hand, J. L.; Schichtel, B. A.; Malm, W. C.; Pitchford, M.; Frank, N. H.

    2014-11-01

    Monthly, seasonal, and annual mean estimates of urban influence on regional concentrations of major aerosol species were computed using speciated aerosol data from the rural IMPROVE network (Interagency Monitoring of Protected Visual Environments) and the United States Environmental Protection Agency's urban Chemical Speciation Network for the 2008 through 2011 period. Aggregated for sites across the continental United States, the annual mean and one standard error in urban excess (defined as the ratio of urban to nearby rural concentrations) was highest for elemental carbon (3.3 ± 0.2), followed by ammonium nitrate (2.5 ± 0.2), particulate organic matter (1.78 ± 0.08), and ammonium sulfate (1.23 ± 0.03). The seasonal variability in urban excess was significant for carbonaceous aerosols and ammonium nitrate in the West, in contrast to the low seasonal variability in the urban influence of ammonium sulfate. Generally for all species, higher excess values in the West were associated with localized urban sources while in the East excess was more regional in extent. In addition, higher excess values in the western United States in winter were likely influenced not only by differences in sources but also by combined meteorological and topographic effects. This work has implications for understanding the spatial heterogeneity of major aerosol species near the interface of urban and rural regions and therefore for designing appropriate air quality management strategies. In addition, the spatial patterns in speciated mass concentrations provide constraints for regional and global models.

  5. Optical, physical, and chemical properties of springtime aerosol over Barrow Alaska in 2008

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shantz, Nicole C.; Gultepe, Ismail; Andrews, Elisabeth

    2014-03-06

    Airborne observations from four flights during the 2008 Indirect and Semi-Direct Aerosol Campaign (ISDAC) are used to examine some cloud-free optical, physical, and chemical properties of aerosol particles in the springtime Arctic troposphere. The number concentrations of particles larger than 0.12 μm (Na>120), important for light extinction and cloud droplet formation, ranged from 15 to 2260 cm -3, with the higher Na>120 cases dominated by measurements from two flights of long-range transported biomass burning (BB) aerosols. The two other flights examined here document a relatively clean aerosol and an Arctic Haze aerosol impacted by larger particles largely composed of dust.more » For observations from the cleaner case and the BB cases, the particle light scattering coefficients at low relative humidity (RH<20%) increased nonlinearly with increasing Na>120, driven mostly by an increase in mean sizes of particles with increasing Na>120 (BB cases). For those three cases, particle light absorption coefficients also increased nonlinearly with increasing Na>120 and linearly with increasing submicron particle volume concentration. In addition to black carbon, brown carbon was estimated to have increased light absorption coefficients by 27% (450 nm wavelength) and 14% (550 nm) in the BB cases. For the case with strong dust influence, the absorption relative to submicron particle volume was small compared with the other cases. There was a slight gradient of Passive Cavity Aerosol Spectrometer Probe (PCASP) mean volume diameter (MVD) towards smaller sizes with increasing height, which suggests more scavenging of the more elevated particles, consistent with a typically longer lifetime of particles higher in the atmosphere. However, in approximately 10% of the cases, the MVD increased (>0.4 μm) with increasing altitude, suggesting transport of larger fine particle mass (possibly coarse particle mass) at high levels over the Arctic. This may be because of transport of

  6. Organosulfates and organic acids in Arctic aerosols: speciation, annual variation and concentration levels

    NASA Astrophysics Data System (ADS)

    Hansen, A. M. K.; Kristensen, K.; Nguyen, Q. T.; Zare, A.; Cozzi, F.; Nøjgaard, J. K.; Skov, H.; Brandt, J.; Christensen, J. H.; Ström, J.; Tunved, P.; Krejci, R.; Glasius, M.

    2014-08-01

    Sources, composition and occurrence of secondary organic aerosols in the Arctic were investigated at Zeppelin Mountain, Svalbard, and Station Nord, northeastern Greenland, during the full annual cycle of 2008 and 2010, respectively. Speciation of organic acids, organosulfates and nitrooxy organosulfates - from both anthropogenic and biogenic precursors were in focus. A total of 11 organic acids (terpenylic acid, benzoic acid, phthalic acid, pinic acid, suberic acid, azelaic acid, adipic acid, pimelic acid, pinonic acid, diaterpenylic acid acetate and 3-methyl-1,2,3-butanetricarboxylic acid), 12 organosulfates and 1 nitrooxy organosulfate were identified in aerosol samples from the two sites using a high-performance liquid chromatograph (HPLC) coupled to a quadrupole Time-of-Flight mass spectrometer. At Station Nord, compound concentrations followed a distinct annual pattern, where high mean concentrations of organosulfates (47 ± 14 ng m-3) and organic acids (11.5 ± 4 ng m-3) were observed in January, February and March, contrary to considerably lower mean concentrations of organosulfates (2 ± 3 ng m-3) and organic acids (2.2 ± 1 ng m-3) observed during the rest of the year. At Zeppelin Mountain, organosulfate and organic acid concentrations remained relatively constant during most of the year at a mean concentration of 15 ± 4 ng m-3 and 3.9 ± 1 ng m-3, respectively. However during four weeks of spring, remarkably higher concentrations of total organosulfates (23-36 ng m-3) and total organic acids (7-10 ng m-3) were observed. Elevated organosulfate and organic acid concentrations coincided with the Arctic haze period at both stations, where northern Eurasia was identified as the main source region. Air mass transport from northern Eurasia to Zeppelin Mountain was associated with a 100% increase in the number of detected organosulfate species compared with periods of air mass transport from the Arctic Ocean, Scandinavia and Greenland. The results from this

  7. Improved solid aerosol generator

    DOEpatents

    Prescott, D.S.; Schober, R.K.; Beller, J.

    1988-07-19

    An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates. 2 figs.

  8. The potential of LIRIC to validate the vertical profiles of the aerosol mass concentration estimated by an air quality model

    NASA Astrophysics Data System (ADS)

    Siomos, Nikolaos; Filoglou, Maria; Poupkou, Anastasia; Liora, Natalia; Dimopoulos, Spyros; Melas, Dimitris; Chaikovsky, Anatoli; Balis, Dimitris

    2015-04-01

    Vertical profiles of the aerosol mass concentration derived by a retrieval algorithm that uses combined sunphotometer and LIDAR data (LIRIC) were used in order to validate the mass concentration profiles estimated by the air quality model CAMx. LIDAR and CIMEL measurements of the Laboratory of Atmospheric Physics of the Aristotle University of Thessaloniki were used for this validation.The aerosol mass concentration profiles of the fine and coarse mode derived by CAMx were compared with the respective profiles derived by the retrieval algorithm. For the coarse mode particles, forecasts of the Saharan dust transportation model BSC-DREAM8bV2 were also taken into account. Each of the retrieval algorithm's profiles were matched to the models' profile with the best agreement within a time window of four hours before and after the central measurement. OPAC, a software than can provide optical properties of aerosol mixtures, was also employed in order to calculate the angstrom exponent and the lidar ratio values for 355nm and 532nm for each of the model's profiles aiming in a comparison with the angstrom exponent and the lidar ratio values derived by the retrieval algorithm for each measurement. The comparisons between the fine mode aerosol concentration profiles resulted in a good agreement between CAMx and the retrieval algorithm, with the vertical mean bias error never exceeding 7 μgr/m3. Concerning the aerosol coarse mode concentration profiles both CAMx and BSC-DREAM8bV2 values are severely underestimated, although, in cases of Saharan dust transportation events there is an agreement between the profiles of BSC-DREAM8bV2 model and the retrieval algorithm.

  9. Probing chemical transformation in picolitre volume aerosol droplets

    NASA Astrophysics Data System (ADS)

    Miloserdov, Anatolij; Day, Calum P. F.; Rosario, Gabriela L.; Horrocks, Benjamin R.; Carruthers, Antonia E.

    2017-08-01

    We have demonstrated chemical transformation in single microscopic-sized aerosol droplets localised in optical tweezers. Droplets in situ are measured during chemical transformation processes of solvent exchange and solute transformation through an ion exchange reaction. Solvent exchange between deionised water and heavy water in aerosol droplets is monitored through observation of the OH and OD Raman stretches. A change in solute chemistry of aerosol is achieved through droplet coalescence events between calcium chloride and sodium carbonate to promote ion exchange. The transformation forming meta-stable and stable states of CaCO3 is observed and analysed using Gaussian peak decomposition to reveal polymorphs.

  10. Boundary Layer Aerosol Composition over Sierra Nevada Mountains using 9.11- and 10.59-micron CW Lidars and Modeled Backscatter from Size Distribution Data

    NASA Technical Reports Server (NTRS)

    Cutten, D. R.; Jarzembski, M. A.; Srivastava, V.; Pueschel, R. F.; Howard, S. D.; McCaul, E. W., Jr.

    2003-01-01

    An inversion technique has been developed to determine volume fractions of an atmospheric aerosol composed primarily of ammonium sulfate and ammonium nitrate and water combined with fixed concentration of elemental and organic carbon. It is based on measured aerosol backscatter obtained with 9.11 - and 10.59-micron wavelength continuous wave CO2 lidars and modeled backscatter from aerosol size distribution data. The technique is demonstrated during a flight of the NASA DC-8 aircraft over the Sierra Nevada Mountain Range, California on 19 September, 1995. Volume fraction of each component and effective complex refractive index of the composite particle were determined assuming an internally mixed composite aerosol model. The volume fractions were also used to re-compute aerosol backscatter, providing good agreement with the lidar-measured data. The robustness of the technique for determining volume fractions was extended with a comparison of calculated 2.1,-micron backscatter from size distribution data with the measured lidar data converted to 2.1,-micron backscatter using an earlier derived algorithm, verifying the algorithm as well as the backscatter calculations.

  11. Black carbon aerosol mixing state, organic aerosols and aerosol optical properties over the UK

    NASA Astrophysics Data System (ADS)

    McMeeking, G. R.; Morgan, W. T.; Flynn, M.; Highwood, E. J.; Turnbull, K.; Haywood, J.; Coe, H.

    2011-05-01

    Black carbon (BC) aerosols absorb sunlight thereby leading to a positive radiative forcing and a warming of climate and can also impact human health through their impact on the respiratory system. The state of mixing of BC with other aerosol species, particularly the degree of internal/external mixing, has been highlighted as a major uncertainty in assessing its radiative forcing and hence its climate impact, but few in situ observations of mixing state exist. We present airborne single particle soot photometer (SP2) measurements of refractory BC (rBC) mass concentrations and mixing state coupled with aerosol composition and optical properties measured in urban plumes and regional pollution over the UK. All data were obtained using instrumentation flown on the UK's BAe-146-301 large Atmospheric Research Aircraft (ARA) operated by the Facility for Airborne Atmospheric Measurements (FAAM). We measured sub-micron aerosol composition using an aerosol mass spectrometer (AMS) and used positive matrix factorization to separate hydrocarbon-like (HOA) and oxygenated organic aerosols (OOA). We found a higher number fraction of thickly coated rBC particles in air masses with large OOA relative to HOA, higher ozone-to-nitrogen oxides (NOx) ratios and large concentrations of total sub-micron aerosol mass relative to rBC mass concentrations. The more ozone- and OOA-rich air masses were associated with transport from continental Europe, while plumes from UK cities had higher HOA and NOx and fewer thickly coated rBC particles. We did not observe any significant change in the rBC mass absorption efficiency calculated from rBC mass and light absorption coefficients measured by a particle soot absorption photometer despite observing significant changes in aerosol composition and rBC mixing state. The contributions of light scattering and absorption to total extinction (quantified by the single scattering albedo; SSA) did change for different air masses, with lower SSA observed in

  12. Artifacts in measuring aerosol uptake kinetics: the roles of time, concentration and adsorption

    NASA Astrophysics Data System (ADS)

    Renbaum, L. H.; Smith, G. D.

    2011-07-01

    In laboratory studies of organic aerosol particles reacting with gas-phase oxidants, high concentrations of radicals are often used to study on the timescale of seconds reactions which may be occurring over days or weeks in the troposphere. Implicit in this approach is the assumption that radical concentration and time are interchangeable parameters, though this has not been established. Here, the kinetics of OH- and Cl-initiated oxidation reactions of model single-component liquid (squalane) and supercooled (brassidic acid and 2-octyldodecanoic acid) organic aerosols are studied by varying separately the radical concentration and the reaction time. Two separate flow tubes with residence times of 2 and 66 s are used, and [OH] and [Cl] are varied by adjusting either the laser photolysis fluence or the radical precursor concentration ([O3] or [Cl2], respectively) used to generate the radicals. It is found that the rates measured by varying the radical concentration and the reaction time are equal only if the precursor concentrations are the same in the two approaches. Further, the rates depend on the concentrations of the precursor species with a Langmuir-type functional form suggesting that O3 and Cl2 saturate the surface of the liquid particles. It is believed that the presence of O3 inhibits the rate of OH reaction, perhaps by reacting with OH radicals or by O3 or intermediate species blocking surface sites, while Cl2 enhances the rate of Cl reaction by participating in a radical chain mechanism. These results have important implications for laboratory experiments in which high concentrations of gas-phase oxidants are used to study atmospheric reactions over short timescales and may explain the variability in recent measurements of the reactive uptake of OH on squalane particles in reactor systems used in this and other laboratories.

  13. Artifacts in measuring aerosol uptake kinetics: the roles of time, concentration and adsorption

    NASA Astrophysics Data System (ADS)

    Renbaum, L. H.; Smith, G. D.

    2011-03-01

    In laboratory studies of organic aerosol particles reacting with gas-phase oxidants, high concentrations of radicals are often used to study on the timescale of seconds reactions which may be occurring over days or weeks in the troposphere. Implicit in this approach is the assumption that radical concentration and time are interchangeable parameters, though this has not been established. Here, the kinetics of OH- and Cl-initiated oxidation reactions of model single-component liquid organic aerosols (squalane, brassidic acid and 2-octyldodecanoic acid) are studied by varying separately the radical concentration and the reaction time. Two separate flow tubes with residence times of 2 and 66 s are used, and [OH] and [Cl] are varied by adjusting either the laser photolysis fluence or the radical precursor concentration ([O3] or [Cl2], respectively) used to generate the radicals. It is found that the rates measured by varying the radical concentration and the reaction time are equal only if the precursor concentrations are the same in the two approaches. Further, the rates depend on the concentrations of the precursor species with a Langmuir-type functional form suggesting that O3 and Cl2 saturate the surface of the liquid particles. It is believed that the presence of O3 inhibits the rate of OH reaction, perhaps by reacting with OH radicals or blocking surface sites, while Cl2 enhances the rate of Cl reaction by participating in a radical chain mechanism. These results have important implications for laboratory experiments in which high concentrations of gas-phase oxidants are used to study atmospheric reactions over short timescales and may explain the variability in recent measurements of the reactive uptake of OH on squalane particles in reactor systems used in this and other laboratories.

  14. PIXE investigation of aerosol composition over the Zambian Copperbelt

    NASA Astrophysics Data System (ADS)

    Meter, S. L.; Formenti, P.; Piketh, S. J.; Annegarn, H. J.; Kneen, M. A.

    1999-04-01

    Atmospheric sulphate aerosol concentrations are of interest in climate change studies because of their negative climate forcing potential. Quantification of their forcing strength requires the compilation of global sulphur emission inventories to determine the magnitude of regional sources. We report on measurements of the ambient aerosol concentrations in proximity to a copper refinery in the central African Copperbelt, along the border of Zambia and the Democratic Republic of the Congo. This region is historically regarded as one of the largest African sources of sulphate aerosols. Sulphate is produced by oxidation in the atmosphere of SO 2 emitted during the pyrometallurgical processing of Cu-Co sulphide ores. Since the last quantification of sulphur emissions (late 1960s), there has been large-scale reduction in copper production and more frequent use of the leaching technique with negligible sulphur emissions. Samples were collected over four weeks, November-December 1996, at Kitwe, Zambia. A low volume two-stage time-resolving aerosol sampler (streaker) was used. Coarse and fine mode aerosols were separated at >2.5 and >10 μmad. Hourly elemental concentrations were determined by 3.2 MeV PIXE, and routinely yielded Si, S, K, Ca, Ti, Mn, Fe, Cu and Zn, above detection limits. Si, K, Ca and Fe (major crustal components) dominated the coarse elemental mass. In the fine stage, S and Si accounted for up to 80% of the measured mass, and S alone up to 60%. Time series analysis allowed the division of sulphur and crustal elements (Si, K, Ca, Fe) between (i) background concentrations representative of synoptic scale air masses; and (ii) contributions from local sources, i.e., copper smelter and re-suspended soil dust. Short duration episodes of S concentrations, up to 26 μg/m 3, were found simultaneously with enhanced Cu, Fe and Zn. Contributions from individual pyrometallurgic processes and the cobalt slag dump could be distinguished from the elemental signatures

  15. Black carbon in aerosol during BIBLE B

    NASA Astrophysics Data System (ADS)

    Liley, J. Ben; Baumgardner, D.; Kondo, Y.; Kita, K.; Blake, D. R.; Koike, M.; Machida, T.; Takegawa, N.; Kawakami, S.; Shirai, T.; Ogawa, T.

    2003-02-01

    The Biomass Burning and Lightning Experiment (BIBLE) A and B campaigns over the tropical western Pacific during springtime deployed a Gulfstream-II aircraft with systems to measure ozone and numerous precursor species. Aerosol measuring systems included a MASP optical particle counter, a condensation nucleus (CN) counter, and an absorption spectrometer for black carbon. Aerosol volume was very low in the middle and upper troposphere during both campaigns, and during BIBLE A, there was little aerosol enhancement in the boundary layer away from urban areas. In BIBLE B, there was marked aerosol enhancement in the lowest 3 km of the atmosphere. Mixing ratios of CN in cloud-free conditions in the upper troposphere were in general higher than in the boundary layer, indicating new particle formation from gaseous precursors. High concentrations of black carbon were observed during BIBLE B, with mass loadings up to 40 μg m-3 representing as much as one quarter of total aerosol mass. Strong correlations with hydrocarbon enhancement allow the determination of a black carbon emission ratio for the fires at that time. Expressed as elemental carbon, it is about 0.5% of carbon dioxide and 6% of carbon monoxide emissions from the same fires, comparable to methane production, and greater than that of other hydrocarbons.

  16. Black carbon in aerosol during BIBLE B

    NASA Astrophysics Data System (ADS)

    Liley, J. Ben; Baumgardner, D.; Kondo, Y.; Kita, K.; Blake, D. R.; Koike, M.; Machida, T.; Takegawa, N.; Kawakami, S.; Shirai, T.; Ogawa, T.

    2002-02-01

    The Biomass Burning and Lightning Experiment (BIBLE) A and B campaigns over the tropical western Pacific during springtime deployed a Gulfstream-II aircraft with systems to measure ozone and numerous precursor species. Aerosol measuring systems included a MASP optical particle counter, a condensation nucleus (CN) counter, and an absorption spectrometer for black carbon. Aerosol volume was very low in the middle and upper troposphere during both campaigns, and during BIBLE A, there was little aerosol enhancement in the boundary layer away from urban areas. In BIBLE B, there was marked aerosol enhancement in the lowest 3 km of the atmosphere. Mixing ratios of CN in cloud-free conditions in the upper troposphere were in general higher than in the boundary layer, indicating new particle formation from gaseous precursors. High concentrations of black carbon were observed during BIBLE B, with mass loadings up to 40 μg m-3 representing as much as one quarter of total aerosol mass. Strong correlations with hydrocarbon enhancement allow the determination of a black carbon emission ratio for the fires at that time. Expressed as elemental carbon, it is about 0.5% of carbon dioxide and 6% of carbon monoxide emissions from the same fires, comparable to methane production, and greater than that of other hydrocarbons.

  17. Airborne measurement of submicron aerosol number concentration and CCN activity in and around the Korean Peninsula and their comparison to ground measurement in Seoul

    NASA Astrophysics Data System (ADS)

    Park, M.; Kim, N.; Yum, S. S.

    2016-12-01

    Aerosols exert impact not only on human health and visibility but also on climate change directly by scattering or absorbing solar radiation and indirectly by acting as cloud condensation nuclei (CCN) and thus altering cloud radiative and microphysical properties. Aerosol indirect effects on climate has been known to have large uncertainty because of insufficient measurement data on aerosol and CCN activity distribution. Submicron aerosol number concentration (NCN, TSI CPC) and CCN number concentration (NCCN, DMT CCNC) were measured on board the NASA DC-8 research aircraft and at a ground site at Olympic Park in Seoul from May 2nd to June 10th, 2016. CCNC on the airborne platform was operated with the fixed internal supersaturation of 0.6% and CCNC at the ground site was operated with the five different supersaturations (0.2%, 0.4%, 0.6%, 0.8%, and 1.0%). The NASA DC-8 conducted 20 research flights (about 150 hours) in and around the Korean Peninsula and the ground measurement at Olympic Park was continuously made during the measurement period. Both airborne and ground measurements showed spatially and temporally varied aerosol number concentration and CCN activity. Aerosol number concentration in the boundary layer measured on airborne platform was highly affected by pollution sources on the ground. The average diurnal distribution of ground aerosol number concentration showed distinct peaks are located at about 0800, 1500, and 2000. The middle peak indicates that new particle formation events frequently occurred during the measurement period. CCN activation ratio at 0.6% supersaturation (NCCN/NCN) of the airborne measurement ranged from 0.1 to 0.9, indicating that aerosol properties in and around the Korean Peninsula varied so much (e. g. size, hygroscopicity). Comprehensive analysis results will be shown at the conference.

  18. The global impact of the transport sectors on atmospheric aerosol in 2030 - Part 2: Aviation

    NASA Astrophysics Data System (ADS)

    Righi, Mattia; Hendricks, Johannes; Sausen, Robert

    2016-04-01

    We use the EMAC (ECHAM/MESSy Atmospheric Chemistry) global climate-chemistry model coupled to the aerosol module MADE (Modal Aerosol Dynamics model for Europe, adapted for global applications) to simulate the impact of aviation emissions on global atmospheric aerosol and climate in 2030. Emissions of short-lived gas and aerosol species follow the four Representative Concentration Pathways (RCPs) designed in support of the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. We compare our findings with the results of a previous study with the same model configuration focusing on year 2000 emissions. We also characterize the aviation results in the context of the other transport sectors presented in a companion paper. In spite of a relevant increase in aviation traffic volume and resulting emissions of aerosol (black carbon) and aerosol precursor species (nitrogen oxides and sulfur dioxide), the aviation effect on particle mass concentration in 2030 remains quite negligible (on the order of a few ng m-3), about 1 order of magnitude less than the increase in concentration due to other emission sources. Due to the relatively small size of the aviation-induced aerosol, however, the increase in particle number concentration is significant in all scenarios (about 1000 cm-3), mostly affecting the northern mid-latitudes at typical flight altitudes (7-12 km). This largely contributes to the overall change in particle number concentration between 2000 and 2030, which also results in significant climate effects due to aerosol-cloud interactions. Aviation is the only transport sector for which a larger impact on the Earth's radiation budget is simulated in the future: the aviation-induced radiative forcing in 2030 is more than doubled with respect to the year 2000 value of -15 mW m-2 in all scenarios, with a maximum value of -63 mW m-2 simulated for RCP2.6.

  19. Spatio-temporal aerosol particle distributions in the UT/LMS measured by the IAGOS-CARIBIC Observatory

    NASA Astrophysics Data System (ADS)

    Assmann, Denise; Hermann, Markus; Weigelt, Andreas; Martinsson, Bengt; Brenninkmeijer, Carl; Rauthe-Schöch, Armin; van Velthoven, Peter; Bönisch, Harald; Zahn, Andreas

    2017-04-01

    Submicrometer aerosol particles in the upper troposphere and lowermost stratosphere (UT/LMS) influence the Earth`s radiation budget directly and, more important, indirectly, by acting as cloud condensation nuclei and by changing trace gas concentrations through heterogeneous chemical processes. Since 1997, regular in situ UT/LMS aerosol particle measurements have been conducted by the Leibniz Institute for Tropospheric Research, Leipzig, Germany and the University of Lund, Sweden, using the the CARIBIC (now IAGOS-CARIBIC) observatory (www.caribic-atmospheric.com) onboard a passenger aircraft. Submicrometer aerosol particle number concentrations and the aerosol particle size distribution are measured using three condensation particle counters and one optical particle size spectrometer. Moreover, particle elemental composition is determined using an aerosol impactor sampler and post-flight ion beam analysis (PIXE, PESA) of the samples in the laboratory. Based on this unique data set, including meteorological analysis, we present representative spatio-temporal distributions of particle number, surface, volume and elemental concentrations in an altitude of 8-12 km covering a large fraction of the northern hemisphere. We discuss the measured values in the different size regimes with respect to sources and sinks in different regions. Additionally, we calculated highly resolved latitudinal and longitudinal cross sections of the particle number size distribution, probability density functions and trends in particle number concentrations, but also in elemental composition, determined from our regular measurements over more than a decade. Moreover, we generated seasonal contour plots for particle number concentrations, the potential temperature, and the equivalent latitude. The results are interpreted with respect to aerosol microphysics and transport using CARIBIC trace gas data like ozone and water vapour. The influence of clouds in the troposphere and the different

  20. Carbonaceous Aerosol Characterization during 2016 KOR-US 2016

    NASA Astrophysics Data System (ADS)

    Rodriguez, B.; Santos, G. M.; Sanchez, D.; Jeong, D.; Czimczik, C. I.; Kim, S.

    2017-12-01

    Atmospheric carbonaceous aerosols are a major component of fine particulate matter and assume important roles in Earth's climate and human health. Because atmospheric carbonaceous aerosols exist as a continuum ranging from small, light-scattering organic carbon (OC), to highly-condensed, light-absorbing elemental carbon (EC) they have contrasting effects on interaction with incoming and outgoing radiation, cloud formation, and snow/ice albedo. By strengthening our understanding of the relative contribution and sources of OC and EC we will be able to further describe aerosol formation and mixing at the regional level. To understand the relative anthropogenic and biogenic contributions to carbonaceous aerosol, 12 PM10 aerosols samples were collected on quartz fiber filters at the Mt. Taewha Research Forest in South Korea during the KORUS-AQ 2016 campaign over periods of 24-48 hours with a high-volume air sampler. Analysis of bulk C and N concentrations and absorption properties of filter extracts interspersed with HYSPLIT model results indicated that continental outflow across the Yellow Sea in enriched in bulk nitrogen loading and enhanced bulk absorptive properties of the aerosols. Bulk radiocarbon analysis also indicated enriched values in all samples indicating contamination from a nuclear power plant or the combustion of biomedical waste nearby. Here, we aim to investigate further the chemical characterization of VOCs adsorbed unto the aerosol through TD-GC-TOFMS. With this dataset we aim to determine the relative contribution of anthropogenic and biogenic aerosols by utilizing specific chemical tracers for source apportionment.

  1. Observations of Aerosol-Cloud Interactions with Varying Vertical Separation between Biomass-Burning Aerosols and Stratocumulus Clouds over the South East Atlantic

    NASA Astrophysics Data System (ADS)

    Gupta, S.; McFarquhar, G. M.; Poellot, M.; O'Brien, J.; Delene, D. J.; Thornhill, K. L., II

    2017-12-01

    The ObseRvations of Aerosols above Clouds and their intEractionS (ORACLES) 2016 project provided in-situ measurements and remotely sensed retrievals of aerosol and cloud properties over the South East Atlantic during September, 2016 with a second deployment scheduled for August, 2017. Biomass burning aerosol from Southern Africa is advected toward the South East Atlantic at elevated altitudes and overlies the ubiquitous stratocumulus cloud deck over the ocean. The aerosols subside farther from the coast so that the vertical displacement between the clouds and aerosols varies, and whose effect on aerosol-cloud interaction is poorly known. A NASA P-3 aircraft was equipped with a Cloud Droplet Probe CDP sizing particles between 2 and 50μm, a Cloud and Aerosol Spectrometer CAS sizing between 0.51 and 50 μm and a 2D-stereo probe 2DS, nominally sizing between 10 and 1280 μm a Cloud Imaging Probe CIP, from 25 to 1600μm, and a High Volume Precipitation Sampler HVPS-3, from 150μm to 1.92cm for measuring number distribution functions (n(D)) along with a King probe for measuring liquid water content, LWC. A Passive Cavity Aerosol Spectrometer Probe PCASP measured aerosol particles between 0.1 to 3μm. Cloud legs from three research flights are classified into different regimes based on the aerosol concentration measured in the accumulation mode by the PCASP (Na) and its location above clouds. These legs include vertical transects through clouds and sawtooths (ramped legs starting above or below the cloud layer, completing a vertical transect through the cloud and repeating this pattern for several legs). The regimes; clean, mixing and separated, correspond to conditions with Na less than 100 cm-3 above cloud top, Na greater than 100 cm-3 within 100 m above cloud top and Na greater than 100 cm-3 separated from the cloud top by more than 100 m. During the mixing regime, measurements from CAS and 2DS show that droplet concentrations and cloud optical depths increased and

  2. Identification of aerosol composition from multi-wavelength lidar measurements

    NASA Technical Reports Server (NTRS)

    Wood, S. A.

    1984-01-01

    This paper seeks to develop the potential of lidar for the identification of the chemical composition of atmospheric aerosols. Available numerical computations suggest that aerosols can be identified by the wavelength dependence of aerosol optical properties. Since lidar can derive the volume backscatter coefficient as a function of wavelength, a multi-wavelength lidar system may be able to provide valuable information on the composition of aerosols. This research theoretically investigates the volume backscatter coefficients for the aerosol classes, sea-salts, and sulfates, as a function of wavelength. The results show that these aerosol compositions can be characterized and identified by their backscatter wavelength dependence. A method to utilize multi-wavelength lidar measurements to discriminate between compositionally different thin aerosol layers is discussed.

  3. Aerosol Size, CCN, and Black Carbon Properties at a Coastal Site in the Eastern U.S.

    NASA Astrophysics Data System (ADS)

    Royalty, T. M.; Petters, M. D.; Grieshop, A. P.; Meskhidze, N.; Reed, R. E.; Phillips, B.; Dawson, K. W.

    2015-12-01

    Atmospheric aerosols play an important role in regulating the global radiative budget through direct and indirect effects. To date, the role of sea spray aerosols in modulating climate remains poorly understood. Here we present results from measurements performed at the United States Army Corps of Engineers' Field Research Facility in Duck, North Carolina, USA. Aerosol mobility size distributions (10-600 nm), refractory black carbon (rBC) and scattering particle size distributions (200-620 nm), and size resolved cloud condensation nuclei distributions (.07% - .6% supersaturation) were collected at the end of a 560m pier. Aerosol characteristics associated with northerly, high wind speed (15+ m s-1) flow originating from an oceanic trajectory are contrasted with aerosol properties observed during a weak to moderate westerly flow originating from a continental trajectory. Both marine and continental air masses had aerosol with bi-modal number size distributions with modes centered at 30nm and 140nm. In the marine air-mass, the CCN concentration at supersaturation of 0.4%, total aerosol number, surface, and volume concentration were low. rBC number concentration (D > 200 nm) associated with the marine air-mass was an order of magnitude less than continental number concentration and indicative of relatively unpolluted air. These measurements are consistent with measurements from other coastal sites under marine influence. The relative proportion of Aitken mode size particles increased from 1:2 to 2:1 while aerosol surface area was < 25 μm2 cm-3, suggesting that conditions upwind were potentially conducive to new particle formation. Overall, these results will contribute a better understanding to composition and size variation of marine aerosols.

  4. Accumulation-mode aerosol number concentrations in the Arctic during the ARCTAS aircraft campaign: Long-range transport of polluted and clean air from the Asian continent

    NASA Astrophysics Data System (ADS)

    Matsui, H.; Kondo, Y.; Moteki, N.; Takegawa, N.; Sahu, L. K.; Koike, M.; Zhao, Y.; Fuelberg, H. E.; Sessions, W. R.; Diskin, G.; Anderson, B. E.; Blake, D. R.; Wisthaler, A.; Cubison, M. J.; Jimenez, J. L.

    2011-10-01

    We evaluate the impact of transport from midlatitudes on aerosol number concentrations in the accumulation mode (light-scattering particles (LSP) with diameters >180 nm) in the Arctic during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) campaign. We focus on transport from the Asian continent. We find marked contrasts in the number concentration (NLSP), transport efficiency (TEN_LSP, the fraction transported from sources to the Arctic), size distribution, and the chemical composition of aerosols between air parcels from anthropogenic sources in East Asia (Asian AN) and biomass burning sources in Russia and Kazakhstan (Russian BB). Asian AN air had lower NLSP and TEN_LSP (25 cm-3 and 18% in spring and 6.2 cm-3 and 3.0% in summer) than Russian BB air (280 cm-3 and 97% in spring and 36 cm-3 and 7.6% in summer) due to more efficient wet scavenging during transport from East Asia. Russian BB in this spring is the most important source of accumulation-mode aerosols over the Arctic, and BB emissions are found to be the primary source of aerosols within all the data in spring during ARCTAS. On the other hand, the contribution of Asian AN transport had a negligible effect on the accumulation-mode aerosol number concentration in the Arctic during ARCTAS. Compared with background air, NLSP was 2.3-4.7 times greater for Russian BB air but 2.4-2.6 times less for Asian AN air in both spring and summer. This result shows that the transport of Asian AN air decreases aerosol number concentrations in the Arctic, despite the large emissions of aerosols in East Asia. The very low aerosol number concentrations in Asian AN air were caused by wet removal during vertical transport in association with warm conveyor belts (WCBs). Therefore, this cleansing effect will be prominent for air transported via WCBs from other midlatitude regions and seasons. The inflow of clean midlatitude air can potentially have an important impact on

  5. Sensitive Detection and Identification of Isovanillin Aerosol Particles at the pg/cm3 Mass Concentration Level using Raman Spectroscopy

    DTIC Science & Technology

    2017-04-24

    Spectroscopy * R. L. Aggarwal1, S. Di Cecca, L. W. Farrar, Shabshelowitz, A...Public Release A compact Raman spectroscopy system with high sensitivity to chemical aerosols has been developed. This system has been used to...this represents the lowest chemical aerosol concentration and signal integration period product ever reported for a Raman spectroscopy system.

  6. Aerosol Enhancements in the Upper Troposphere Over The Amazon Forest: Do Amazonian Clouds Produce Aerosols?

    NASA Astrophysics Data System (ADS)

    Andreae, M. O.; Afchine, A.; Albrecht, R. I.; Artaxo, P.; Borrmann, S.; Cecchini, M. A.; Costa, A.; Dollner, M.; Fütterer, D.; Järvinen, E.; Klimach, T.; Konemann, T.; Kraemer, M.; Krüger, M. L.; Machado, L.; Mertes, S.; Pöhlker, C.; Poeschl, U.; Sauer, D. N.; Schnaiter, M.; Schneider, J.; Schulz, C.; Spanu, A.; Walser, A.; Weinzierl, B.; Wendisch, M.

    2015-12-01

    The German-Brazilian cooperative aircraft campaign ACRIDICON-CHUVA (Aerosol, Cloud, Precipitation, and Radiation Interactions and Dynamics of Convective Cloud Systems) on the German research aircraft HALO took place over the Amazon Basin in September/October 2014, with the objective of studying tropical deep convective clouds over the Amazon rainforest and their interactions with trace gases, aerosol particles, and atmospheric radiation. The aircraft was equipped with about 30 remote sensing and in-situ instruments for meteorological, trace gas, aerosol, cloud, precipitation, and solar radiation measurements. Fourteen research flights were conducted during this campaign. Observations during ACRIDICON-CHUVA showed high aerosol concentrations in the upper troposphere (UT) over the Amazon Basin, with concentrations after normalization to standard conditions often exceeding those in the boundary layer (BL). This behavior was consistent between several aerosol metrics, including condensation nuclei (CN), cloud condensation nuclei (CCN), and chemical species mass concentrations. These UT aerosols were different in their composition and size distribution from the aerosol in the BL, making convective transport of particles unlikely as a source. The regions in the immediate outflow of deep convective clouds were found to be depleted in aerosol particles, whereas enhanced aerosol number and mass concentrations were found in UT regions that had experienced outflow from deep convection in the preceding 24-48 hours. This suggests that aerosol production takes place in the UT based on volatile and condensable material brought up by deep convection. Subsequently, downward mixing and transport of upper tropospheric aerosol may be a source of particles to the BL, where they increase in size by the condensation of biogenic volatile organic carbon (BVOC) oxidation products. This may be an important source of aerosol particles in the Amazonian BL, where aerosol nucleation and new

  7. Black carbon aerosol mixing state, organic aerosols and aerosol optical properties over the United Kingdom

    NASA Astrophysics Data System (ADS)

    McMeeking, G. R.; Morgan, W. T.; Flynn, M.; Highwood, E. J.; Turnbull, K.; Haywood, J.; Coe, H.

    2011-09-01

    Black carbon (BC) aerosols absorb sunlight thereby leading to a positive radiative forcing and a warming of climate and can also impact human health through their impact on the respiratory system. The state of mixing of BC with other aerosol species, particularly the degree of internal/external mixing, has been highlighted as a major uncertainty in assessing its radiative forcing and hence its climate impact, but few in situ observations of mixing state exist. We present airborne single particle soot photometer (SP2) measurements of refractory BC (rBC) mass concentrations and mixing state coupled with aerosol composition and optical properties measured in urban plumes and regional pollution over the United Kingdom. All data were obtained using instrumentation flown on the UK's BAe-146-301 large Atmospheric Research Aircraft (ARA) operated by the Facility for Airborne Atmospheric Measurements (FAAM). We measured sub-micron aerosol composition using an aerosol mass spectrometer (AMS) and used positive matrix factorization to separate hydrocarbon-like (HOA) and oxygenated organic aerosols (OOA). We found a higher number fraction of thickly coated rBC particles in air masses with large OOA relative to HOA, higher ozone-to-nitrogen oxides (NOx) ratios and large concentrations of total sub-micron aerosol mass relative to rBC mass concentrations. The more ozone- and OOA-rich air masses were associated with transport from continental Europe, while plumes from UK cities had higher HOA and NOx and fewer thickly coated rBC particles. We did not observe any significant change in the rBC mass absorption efficiency calculated from rBC mass and light absorption coefficients measured by a particle soot absorption photometer despite observing significant changes in aerosol composition and rBC mixing state. The contributions of light scattering and absorption to total extinction (quantified by the single scattering albedo; SSA) did change for different air masses, with lower SSA

  8. Use of high-volume outdoor smog chamber photo-reactors for studying physical and chemical atmospheric aerosol formation and composition

    NASA Astrophysics Data System (ADS)

    Borrás, E.; Ródenas, M.; Vera, T.; Muñoz, A.

    2015-12-01

    The atmospheric particulate matter has a large impact on climate, biosphere behaviour and human health. Its study is complex because of large number of species are present at low concentrations and the continuous time evolution, being not easily separable from meteorology, and transport processes. Closed systems have been proposed by isolating specific reactions, pollutants or products and controlling the oxidizing environment. High volume simulation chambers, such as EUropean PHOtoREactor (EUPHORE), are an essential tool used to simulate atmospheric photochemical reactions. This communication describes the last results about the reactivity of prominent atmospheric pollutants and the subsequent particulate matter formation. Specific experiments focused on organic aerosols have been developed at the EUPHORE photo-reactor. The use of on-line instrumentation, supported by off-line techniques, has provided well-defined reaction profiles, physical properties, and up to 300 different species are determined in particulate matter. The application fields include the degradation of anthropogenic and biogenic pollutants, and pesticides under several atmospheric conditions, studying their contribution on the formation of secondary organic aerosols (SOA). The studies performed at the EUPHORE have improved the mechanistic studies of atmospheric degradation processes and the knowledge about the chemical and physical properties of atmospheric particulate matter formed during these processes.

  9. Fog and Cloud Induced Aerosol Modification Observed by AERONET

    NASA Technical Reports Server (NTRS)

    Eck, T. F.; Holben, B. N.; Reid, J. S.; Giles, D. M.; Rivas, M. A.; Singh, R. P.; Tripathi, S. N.; Bruegge, C. J.; Platnick, S. E.; Arnold, G. T.; hide

    2011-01-01

    Large fine mode (sub-micron radius) dominated aerosols in size distributions retrieved from AERONET have been observed after fog or low-altitude cloud dissipation events. These column-integrated size distributions have been obtained at several sites in many regions of the world, typically after evaporation of low altitude cloud such as stratocumulus or fog. Retrievals with cloud processed aerosol are sometimes bimodal in the accumulation mode with the larger size mode often approx.0.4 - 0.5 microns radius (volume distribution); the smaller mode typically approx.0.12 to aprrox.0.20 microns may be interstitial aerosol that were not modified by incorporation in droplets and/or aerosol that are less hygroscopic in nature. Bimodal accumulation mode size distributions have often been observed from in situ measurements of aerosols that have interacted with clouds, and AERONET size distribution retrievals made after dissipation of cloud or fog are in good agreement with particle sizes measured by in situ techniques for cloud-processed aerosols. Aerosols of this type and large size range (in lower concentrations) may also be formed by cloud processing in partly cloudy conditions and may contribute to the shoulder of larger size particles in the accumulation mode retrievals, especially in regions where sulfate and other soluble aerosol are a significant component of the total aerosol composition. Observed trends of increasing aerosol optical depth (AOD) as fine mode radius increased suggests higher AOD in the near cloud environment and therefore greater aerosol direct radiative forcing than typically obtained from remote sensing, due to bias towards sampling at low cloud fraction.

  10. Impact of new particle formation on the concentrations of aerosols and cloud condensation nuclei around Beijing

    NASA Astrophysics Data System (ADS)

    Matsui, H.; Koike, M.; Kondo, Y.; Takegawa, N.; Wiedensohler, A.; Fast, J. D.; Zaveri, R. A.

    2011-10-01

    New particle formation (NPF) is one of the most important processes in controlling the concentrations of aerosols (condensation nuclei, CN) and cloud condensation nuclei (CCN) in the atmosphere. In this study, we introduce a new aerosol model representation with 20 size bins between 1 nm and 10 μm and activation-type and kinetic nucleation parameterizations into the WRF-chem model (called NPF-explicit WRF-chem). Model calculations were conducted in the Beijing region in China for the periods during the Campaign of Air Quality Research in Beijing and Surrounding Region 2006 (CARE-Beijing 2006) campaign conducted in August and September 2006. Model calculations successfully reproduced the timing of NPF and no-NPF days in the measurements (21 of 26 days). Model calculations also reproduced the subsequent rapid growth of new particles with a time scale of half a day. These results suggest that once a reasonable nucleation rate at a diameter of 1 nm is given, explicit calculations of condensation and coagulation processes can reproduce the clear contrast between NPF and no-NPF days as well as further growth up to several tens of nanometers. With this reasonable representation of the NPF process, we show that NPF contributed 20%-30% of the CN concentrations (>10 nm in diameter) in and around Beijing on average. We also show that NPF increases CCN concentrations at higher supersaturations (S > 0.2%), while it decreases them at lower supersaturations (S < 0.1%). This is likely because NPF suppresses the increases in both the size and hygroscopicity of preexisting particles through the competition of condensable gases between new particles and preexisting particles. Sensitivity calculations show that a reduction of primary aerosol emissions, such as black carbon (BC), would not necessarily decrease CCN concentrations because of an increase in NPF. Sensitivity calculations also suggest that the reduction ratio of primary aerosol and SO2 emissions will be key in enhancing or

  11. Seasonal evolution of anionic, cationic and non-ionic surfactant concentrations in coastal aerosols from Askö, Sweden

    NASA Astrophysics Data System (ADS)

    Gérard, Violaine; Nozière, Barbara; Baduel, Christine

    2015-04-01

    Surfactants present in atmospheric aerosols are expected to enhance the activation into cloud droplets by acting on one of the two key parameters of the Köhler equation: the surface tension, σ. But because the magnitude of this effect and its regional and temporal variability are still highly uncertain [1,2], various approaches have been developed to evidence it directly in the atmosphere. This work presents the analysis of surfactants present in PM2.5 aerosol fractions collected at the coastal site of Askö, Sweden (58° 49.5' N, 17° 39' E) from July to October 2010. The total surfactant fraction was extracted from the samples using an improved double extraction technique. Surface tension measurements performed with the pendant drop technique [3] indicated the presence of very strong surfactants (σ ~ 30 - 35 mN/m) in these aerosols. In addition, these extractions were combined with colorimetric methods to determine the anionic, cationic and non-ionic surfactant concentrations [4,5], and provided for the first time interference-free surfactant concentrations in atmospheric aerosols. At this site, the total surfactant concentration in the PM2.5 samples varied between 7 to 150 mM and was dominated by anionic and non-ionic ones. The absolute surface tension curves obtained for total surfactant fraction displayed Critical Micelle Concentrations (CMC) in the range 50 - 400 uM, strongly suggesting a biological origin for the surfactants. The seasonal evolution of these concentrations and their relationships with environmental or meteorological parameters at the site will be discussed. [1] Ekström, S., Nozière, B. et al., Biogeosciences, 2010, 7, 387 [2] Baduel, C., Nozière, B., Jaffrezo, J.-L., Atmos. Environ., 2012, 47, 413 [3] Nozière, B., Baduel, C., Jaffrezo, J.-L., Nat. Commun., 2014, 5, 1 [4] Latif, M. T.; Brimblecombe, P. Environ. Sci. Technol., 2004, 38, 6501 [5] Pacheco e Silva et al., Method to measure surfactant in fluid, 2013, US 2013/0337568 A1

  12. High Concentration Standard Aerosol Generator.

    DTIC Science & Technology

    1985-07-31

    Noncommercial Components .. .. ........ A-1 B. Maintenance Instructions and material Properties of Purchased Components . .. .. .. ... . . . . . . B-1...tration (if a lower flow or a wider size distribution is acceptable and 2) precautions and suggestions for use of different aerosol materials . Additional...details of the system (including shop drawings, 𔃻i4t lists of materials , and maintenance of commercially available components) are given in

  13. Is It Possible to Distinguish Between Dust and Salt Aerosol Over Waters with Unknown Chlorophyll Concentrations Using Spectral Remote Sensing?

    NASA Technical Reports Server (NTRS)

    Levy, R. C.; Kaufman, Y. J.

    1999-01-01

    Atmospheric aerosol has uncertain impacts on the global climate system, as well as on atmospheric and bio-geo-chemical processes of regional and local scales. EOS-MODIS is one example of a satellite sensor designed to improve understanding of the aerosols' type, size and distribution at all temporal and spatial scales. Ocean scientists also plan to use data from EOS-MODIS to assess the temporal and spatial coverage of in-water chlorophyll. MODIS is the first sensor planned to observe the combined ocean-atmosphere system with a wide spectral range (from 410 to 2200 nm). Dust aerosol and salt aerosol have similar spectral signals for wavelengths longer than 550 nm, but because dust selectively absorbs blue light, they have divergent signals in the blue wavelength regions (412 to 490 nm). Chlorophyll also selectively absorbs blue radiation, so that varying chlorophyll concentrations produces a highly varying signal in the blue regions, but less variability in the green, and almost no signal in the red to mid-infrared regions. Thus, theoretically, it may be difficult to differentiate dust and salt in the presence of unknown chlorophyll in the ocean. This study attempts to address the cases in which aerosol and chlorophyll signals can and cannot be separated. For the aerosol spectra, we use the aerosol lookup table from the operational MODIS aerosol-over-ocean algorithm, and for chlorophyll spectra, we use the SeaBAM data set (created for SeaWiFS). We compare the signals using Principal Component Analysis and attempt to retrieve both chlorophyll and aerosol properties using a variant of the operational MODIS aerosol-over-ocean algorithm. Results show that for small optical depths, less than 0.5, it is not possible to differentiate between dust and salt and to determine the chlorophyll concentration at the same time. For larger aerosol optical depths, the chlorophyll signals are comparatively insignificant, and we can hope to distinguish between dust and salt.

  14. WRF-Chem simulations of aerosols and anthropogenic aerosol radiative forcing in East Asia

    NASA Astrophysics Data System (ADS)

    Gao, Yi; Zhao, Chun; Liu, Xiaohong; Zhang, Meigen; Leung, L. Ruby

    2014-08-01

    This study aims to provide a first comprehensive evaluation of WRF-Chem for modeling aerosols and anthropogenic aerosol radiative forcing (RF, including direct, semi-direct and indirect forcing) over East Asia. Several numerical experiments were conducted from November 2007 to December 2008. Comparison between model results and observations shows that the model can generally reproduce the observed spatial distributions of aerosol concentration, aerosol optical depth (AOD) and single scattering albedo (SSA) from measurements at many sites, including the relatively higher aerosol concentration and AOD over East China and the relatively lower AOD over Southeast Asia, Korea, and Japan. The model also depicts the seasonal variation and transport of pollutions over East Asia. Particulate matter of 10 μm or less in the aerodynamic diameter (PM10), black carbon (BC), sulfate (SO42-), nitrate (NO3-) and ammonium (NH4+) concentrations are higher in spring than other seasons in Japan, which indicates the possible influence of pollutant transport from polluted area of East Asia. The model underestimates SO42- and organic carbon (OC) concentrations over mainland China by about a factor of 2, while overestimates NO3- concentration in autumn along the Yangtze River. The model captures the dust events at the Zhangye site in the semi-arid region of China. AOD is high over Southwest and Central China in winter and spring and over North China in winter, spring and summer while is low over South China in summer due to monsoon precipitation. SSA is lowest in winter and highest in summer. Anthropogenic aerosol RF is estimated to range from -5 to -20 W m-2 over land and -20 to -40 W m-2 over adjacent oceans at the top of atmosphere (TOA), 5-30 W m-2 in the atmosphere (ATM) and -15 to -40 W m-2 at the bottom (BOT). The warming effect of anthropogenic aerosol in ATM results from BC aerosol while the negative aerosol RF at TOA is caused by scattering aerosols such as SO42-, NO3- and NH4

  15. High summertime aerosol organic functional group concentrations from marine and seabird sources at Ross Island, Antarctica, during AWARE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jun; Dedrick, Jeramy; Russell, Lynn M.

    Observations of the organic components of the natural aerosol are scarce in Antarctica, which limits our understanding of natural aerosols and their connection to seasonal and spatial patterns of cloud albedo in the region. From November 2015 to December 2016, the ARM West Antarctic Radiation Experiment (AWARE) measured submicron aerosol properties near McMurdo Station at the southern tip of Ross Island. Submicron organic mass (OM), particle number, and cloud condensation nuclei concentrations were higher in summer than other seasons. The measurements included a range of compositions and concentrations that likely reflected both local anthropogenic emissions and natural background sources. We isolated themore » natural organic components by separating a natural factor and a local combustion factor. The natural OM was 150 times higher in summer than in winter. The local anthropogenic emissions were not hygroscopic and had little contribution to the CCN concentrations. Natural sources that included marine sea spray and seabird emissions contributed 56 % OM in summer but only 3 % in winter. The natural OM had high hydroxyl group fraction (55 %), 6 % alkane, and 6 % amine group mass, consistent with marine organic composition. In addition, the Fourier transform infrared (FTIR) spectra showed the natural sources of organic aerosol were characterized by amide group absorption, which may be from seabird populations. Finally, carboxylic acid group contributions were high in summer and associated with natural sources, likely forming by secondary reactions.« less

  16. High summertime aerosol organic functional group concentrations from marine and seabird sources at Ross Island, Antarctica, during AWARE

    DOE PAGES

    Liu, Jun; Dedrick, Jeramy; Russell, Lynn M.; ...

    2018-01-18

    Observations of the organic components of the natural aerosol are scarce in Antarctica, which limits our understanding of natural aerosols and their connection to seasonal and spatial patterns of cloud albedo in the region. From November 2015 to December 2016, the ARM West Antarctic Radiation Experiment (AWARE) measured submicron aerosol properties near McMurdo Station at the southern tip of Ross Island. Submicron organic mass (OM), particle number, and cloud condensation nuclei concentrations were higher in summer than other seasons. The measurements included a range of compositions and concentrations that likely reflected both local anthropogenic emissions and natural background sources. We isolated themore » natural organic components by separating a natural factor and a local combustion factor. The natural OM was 150 times higher in summer than in winter. The local anthropogenic emissions were not hygroscopic and had little contribution to the CCN concentrations. Natural sources that included marine sea spray and seabird emissions contributed 56 % OM in summer but only 3 % in winter. The natural OM had high hydroxyl group fraction (55 %), 6 % alkane, and 6 % amine group mass, consistent with marine organic composition. In addition, the Fourier transform infrared (FTIR) spectra showed the natural sources of organic aerosol were characterized by amide group absorption, which may be from seabird populations. Finally, carboxylic acid group contributions were high in summer and associated with natural sources, likely forming by secondary reactions.« less

  17. Seasonal Variations of Low Molecular Weight Dicarboxylic Acids in Atmospheric Aerosols at Okinawa Islands, Japan

    NASA Astrophysics Data System (ADS)

    Nakaema, F.; Handa, D.; Tanahara, A.; Arakaki, T.

    2009-04-01

    Low molecular weight dicarboxylic acids are major fraction of water soluble organic compounds in the atmospheric aerosols. Recently, economy of East Asia grows up remarkably, and atmospheric aerosols discharged from this area have been transported to Japan. In this study, we collected aerosol at Cape Hedo (CH) and University of the Ryukyus(UR), and studied the distribution and origin of low molecule dicarboxylic acid. Aerosols were collected on a quartz filter with a high volume air sampler. Low molecular weight dicarboxylic acids extracted by pure water were derivatized to dibutyl esters by reactions with BF3/butanol and were measured by GC-FID. In many samples, oxalic acid showed the highest concentration. Concentration of oxalic acid, malonic acid, succinic acid and malic acid were strongly correlated between the two sampling sites. Oxalic acid occupied on the average 83% and 76% of all the dicarboxylic acid measured for CH samples and UR samples. It is suggested that the aerosols in Okinawa were affected by secondary photochemical reactions, not by the primary emissions from local sources. The seasonal variation of the dicarboxylic acids concentrations in CH and UR showed higher in spring and fall, and a lower in summer. From the back trajectory analysis, dicarboxylic acids concentrations showed higher when an air mass came from East Asia area, and showed lower when it came from Pacific Ocean.

  18. Temporal and diurnal variations of carbonaceous aerosols and major ions in biomass burning influenced aerosols over Mt. Tai in the North China Plain during MTX2006

    NASA Astrophysics Data System (ADS)

    Boreddy, Suresh K. R.; Kawamura, Kimitaka; Okuzawa, Kazuhiro; Kanaya, Yugo; Wang, Zifa

    2017-04-01

    To better understand the impact of agricultural waste burning on the air quality of free troposphere over the North China Plain (NCP), we collected total suspended particles (TSP) at the summit of Mt. Tai, located in the NCP using a high volume air sampler during 29 May to 28 June 2006, when the field burning of agricultural residue was intense. Temporal variations of all measured species showed that their concentration increases from late May to mid June (major BB period), peaking during 12-14 June, and then significantly decreased towards late June (minor BB period). We noticed that a significant reduction in the concentrations of carbonaceous aerosols during the period of 8-11 June, when the wind direction shifted from southerly to northerly. We found that concentrations of carbonaceous aerosols and some major ions showed several times higher during major BB period than those of minor BB period. We also found that nighttime concentrations are higher than daytime during major BB period, suggesting that a long-range atmospheric transport of biomass burning plumes in the free troposphere, which arrived at the summit of Mt. Tai. In contrast, daytime concentrations are higher than nighttime during minor BB period. We found higher concentrations of secondary organic carbon (SOC) during major BB period, suggesting that formation of secondary organic aerosols through aqueous phase chemistry under high NOx conditions during a long-range atmospheric transport. nss-K+ showed about four times higher concentrations during major BB than those of minor BB. Concentrations of nss-Ca2+ are higher in nighttime during major BB period, implying that a significant long-range atmospheric transport of mineral dust over the sampling site. These results are further supported by the positive matrix factorization (PMF) analysis, which showed that biomass burning was a major source for the carbonaceous aerosols followed by mineral dust sources over the summit of Mt. Tai.

  19. Characteristics of columnar aerosol optical and microphysical properties retrieved from the sun photometer and its impact on radiative forcing over Skukuza (South Africa) during 1999-2010.

    PubMed

    Adesina, Ayodele Joseph; Piketh, Stuart; Kanike, Raghavendra Kumar; Venkataraman, Sivakumar

    2017-07-01

    The detailed analysis of columnar optical and microphysical properties of aerosols obtained from the AErosol RObotic NETwork (AERONET) Cimel sun photometer operated at Skukuza (24.98° S, 31.60° E, 150 m above sea level), South Africa was carried out using the level 2.0 direct sun and inversion products measured during 1999-2010. The observed aerosol optical depth (AOD) was generally low over the region, with high values noted in late winter (August) and mid-spring (September and October) seasons. The major aerosol types found during the study period were made of 3.74, 69.63, 9.34, 8.83, and 8.41% for polluted dust (PD), polluted continental (PC), non-absorbing (NA), slightly absorbing (SA), and moderately absorbing (MA) aerosols, respectively. Much attention was given to the aerosol fine- and coarse-modes deduced from the particle volume concentration, effective radius, and fine-mode volume fraction. The aerosol volume size distribution pattern was found to be bimodal with the fine-mode showing predominance relative to coarse-mode during the winter and spring seasons, owing to the onset of the biomass burning season. The mean values of total, fine-, and coarse-mode volume particle concentrations were 0.07 ± 0.04, 0.03 ± 0.03, and 0.04 ± 0.02 μm 3  μm -2 , respectively, whereas the mean respective effective radii observed at Skukuza for the abovementioned modes were 0.35 ± 0.17, 0.14 ± 0.02, and 2.08 ± 0.02 μm. The averaged shortwave direct aerosol radiative forcing (ARF) observed within the atmosphere was found to be positive (absorption or heating effect), whereas the negative forcing in the surface and TOA depicted significant cooling effect due to more scattering type particles.

  20. Global Estimates of Ambient Fine Particulate Matter Concentrations from Satellite-Based Aerosol Optical Depth: Development and Application

    PubMed Central

    van Donkelaar, Aaron; Martin, Randall V.; Brauer, Michael; Kahn, Ralph; Levy, Robert; Verduzco, Carolyn; Villeneuve, Paul J.

    2010-01-01

    Background Epidemiologic and health impact studies of fine particulate matter with diameter < 2.5 μm (PM2.5) are limited by the lack of monitoring data, especially in developing countries. Satellite observations offer valuable global information about PM2.5 concentrations. Objective In this study, we developed a technique for estimating surface PM2.5 concentrations from satellite observations. Methods We mapped global ground-level PM2.5 concentrations using total column aerosol optical depth (AOD) from the MODIS (Moderate Resolution Imaging Spectroradiometer) and MISR (Multiangle Imaging Spectroradiometer) satellite instruments and coincident aerosol vertical profiles from the GEOS-Chem global chemical transport model. Results We determined that global estimates of long-term average (1 January 2001 to 31 December 2006) PM2.5 concentrations at approximately 10 km × 10 km resolution indicate a global population-weighted geometric mean PM2.5 concentration of 20 μg/m3. The World Health Organization Air Quality PM2.5 Interim Target-1 (35 μg/m3 annual average) is exceeded over central and eastern Asia for 38% and for 50% of the population, respectively. Annual mean PM2.5 concentrations exceed 80 μg/m3 over eastern China. Our evaluation of the satellite-derived estimate with ground-based in situ measurements indicates significant spatial agreement with North American measurements (r = 0.77; slope = 1.07; n = 1057) and with noncoincident measurements elsewhere (r = 0.83; slope = 0.86; n = 244). The 1 SD of uncertainty in the satellite-derived PM2.5 is 25%, which is inferred from the AOD retrieval and from aerosol vertical profile errors and sampling. The global population-weighted mean uncertainty is 6.7 μg/m3. Conclusions Satellite-derived total-column AOD, when combined with a chemical transport model, provides estimates of global long-term average PM2.5 concentrations. PMID:20519161

  1. Aerosol Generation by Modern Flush Toilets.

    PubMed

    Johnson, David; Lynch, Robert; Marshall, Charles; Mead, Kenneth; Hirst, Deborah

    A microbe-contaminated toilet will produce bioaerosols when flushed. We assessed toilet plume aerosol from high efficiency (HET), pressure-assisted high efficiency (PAT), and flushometer (FOM) toilets with similar bowl water and flush volumes. Total and droplet nuclei "bioaerosols" were assessed. Monodisperse 0.25-1.9- μ m fluorescent microspheres served as microbe surrogates in separate trials in a mockup 5 m 3 water closet (WC). Bowl water seeding was approximately 10 12 particles/mL. Droplet nuclei were sampled onto 0.2- μ m pore size mixed cellulose ester filters beginning 15 min after the flush using open-face cassettes mounted on the WC walls. Pre- and postflush bowl water concentrations were measured. Filter particle counts were analyzed via fluorescent microscopy. Bowl headspace droplet count size distributions were bimodal and similar for all toilet types and flush conditions, with 95% of droplets < 2 μ m diameter and > 99% < 5 μ m. Up to 145,000 droplets were produced per flush, with the high-energy flushometer producing over three times as many as the lower energy PAT and over 12 times as many as the lowest energy HET despite similar flush volumes. The mean numbers of fluorescent droplet nuclei particles aerosolized and remaining airborne also increased with flush energy. Fluorescent droplet nuclei per flush decreased with increasing particle size. These findings suggest two concurrent aerosolization mechanisms-splashing for large droplets and bubble bursting for the fine droplets that form droplet nuclei.

  2. Aerosol Generation by Modern Flush Toilets

    PubMed Central

    Johnson, David; Lynch, Robert; Marshall, Charles; Mead, Kenneth; Hirst, Deborah

    2015-01-01

    A microbe-contaminated toilet will produce bioaerosols when flushed. We assessed toilet plume aerosol from high efficiency (HET), pressure-assisted high efficiency (PAT), and flushometer (FOM) toilets with similar bowl water and flush volumes. Total and droplet nuclei “bioaerosols” were assessed. Monodisperse 0.25–1.9-μm fluorescent microspheres served as microbe surrogates in separate trials in a mockup 5 m3 water closet (WC). Bowl water seeding was approximately 1012 particles/mL. Droplet nuclei were sampled onto 0.2-μm pore size mixed cellulose ester filters beginning 15 min after the flush using open-face cassettes mounted on the WC walls. Pre- and postflush bowl water concentrations were measured. Filter particle counts were analyzed via fluorescent microscopy. Bowl headspace droplet count size distributions were bimodal and similar for all toilet types and flush conditions, with 95% of droplets <2 μm diameter and >99% <5 μm. Up to 145,000 droplets were produced per flush, with the high-energy flushometer producing over three times as many as the lower energy PAT and over 12 times as many as the lowest energy HET despite similar flush volumes. The mean numbers of fluorescent droplet nuclei particles aerosolized and remaining airborne also increased with flush energy. Fluorescent droplet nuclei per flush decreased with increasing particle size. These findings suggest two concurrent aerosolization mechanisms—splashing for large droplets and bubble bursting for the fine droplets that form droplet nuclei. PMID:26635429

  3. Thoron concentration, aerosol characteristics of 212Pb and estimation of equivalent dose

    NASA Astrophysics Data System (ADS)

    Mohery, M.; Abdallah, A. M.; Kelany, Adel M.; Yaghmour, S. J.

    2014-08-01

    The thoron gas (220Rn) activity concentration as well as activity size distribution of unattached and attached 212Pb to aerosol particles was measured in the open air of Jeddah City, Kingdom of Saudi Arabia. An electroprecipitation method was applied for measuring the 220Rn concentration. A mean activity concentration of 220Rn was determined to be 1.80±0.47 Bq m-3. The unattached activities of 212Pb were collected using the wire screen diffusion battery technique while a low-pressure cascade impactor collected the attached activities. The mean activity median thermodynamic diameter (AMTD) of unattached 212Pb was determined to be 1.32 nm with a relative mean geometric standard deviation (σg) of 1.45. A mean concentration of unattached activity of 212Pb was found to be 9.48±1.12 mBq m-3. A mean unattached fraction (fp) of 0.028±0.002 was obtained at a mean aerosol particle concentration of 29×103 cm-3. Sometimes, the fp values were less than the detection limit of 0.009. A mean activity median aerodynamic diameter (AMAD) of the accumulation mode of attached 212Pb was determined to be 352 nm with a mean (σg) of 2.6. The mean value of specific air activity concentration of 212Pb associated with that mode was determined to be 310±12 mBq m-3. With a dosimetric model calculation (ICRP, 1994) the total and regional deposition fractions, total and regional equivalent doses could be evaluated considering the obtained parameters of the activity size distributions. At a total deposition fraction of about 97% of unattached activities the total equivalent dose to the human lung was determined to be 0.16 μSv while a total equivalent dose of 0.44 μSv was determined at a total deposition fraction of about 23% for the attached activities. It was found that an unattached fraction of fP≈3% yields to about 27% of the total equivalent dose.

  4. Face Masks and Cough Etiquette Reduce the Cough Aerosol Concentration of Pseudomonas aeruginosa in People with Cystic Fibrosis.

    PubMed

    Wood, Michelle E; Stockwell, Rebecca E; Johnson, Graham R; Ramsay, Kay A; Sherrard, Laura J; Jabbour, Nassib; Ballard, Emma; O'Rourke, Peter; Kidd, Timothy J; Wainwright, Claire E; Knibbs, Luke D; Sly, Peter D; Morawska, Lidia; Bell, Scott C

    2018-02-01

    People with cystic fibrosis (CF) generate Pseudomonas aeruginosa in droplet nuclei during coughing. The use of surgical masks has been recommended in healthcare settings to minimize pathogen transmission between patients with CF. To determine if face masks and cough etiquette reduce viable P. aeruginosa aerosolized during coughing. Twenty-five adults with CF and chronic P. aeruginosa infection were recruited. Participants performed six talking and coughing maneuvers, with or without face masks (surgical and N95) and hand covering the mouth when coughing (cough etiquette) in an aerosol-sampling device. An Andersen Cascade Impactor was used to sample the aerosol at 2 meters from each participant. Quantitative sputum and aerosol bacterial cultures were performed, and participants rated the mask comfort levels during the cough maneuvers. During uncovered coughing (reference maneuver), 19 of 25 (76%) participants produced aerosols containing P. aeruginosa, with a positive correlation found between sputum P. aeruginosa concentration (measured as cfu/ml) and aerosol P. aeruginosa colony-forming units. There was a reduction in aerosol P. aeruginosa load during coughing with a surgical mask, coughing with an N95 mask, and cough etiquette compared with uncovered coughing (P < 0.001). A similar reduction in total colony-forming units was observed for both masks during coughing; yet, participants rated the surgical masks as more comfortable (P = 0.013). Cough etiquette provided approximately half the reduction of viable aerosols of the mask interventions during voluntary coughing. Talking was a low viable aerosol-producing activity. Face masks reduce cough-generated P. aeruginosa aerosols, with the surgical mask providing enhanced comfort. Cough etiquette was less effective at reducing viable aerosols.

  5. Recent Rainfall and Aerosol Chemistry From Bermuda

    NASA Astrophysics Data System (ADS)

    Landing, W. M.; Shelley, R.; Kadko, D. C.

    2014-12-01

    This project was devoted to testing the use of Be-7 as a tracer for quantifying trace element fluxes from the atmosphere to the oceans. Rainfall and aerosol samples were collected between June 15, 2011 and July 27, 2013 at the Bermuda Institute of Ocean Sciences (BIOS) located near the eastern end of the island of Bermuda. Collectors were situated near ground level, clear of surrounding vegetation, at a meteorological monitoring station in front of the BIOS laboratory, about 10 m above sea level. This is a Bermuda Air Quality Program site used for ambient air quality monitoring. To quantify the atmospheric deposition of Be-7, plastic buckets were deployed for collection of fallout over ~3 week periods. Wet deposition was collected for trace element analysis using a specially modified "GEOTRACES" N-CON automated wet deposition collector. Aerosol samples were collected with a Tisch TE-5170V-BL high volume aerosol sampler, modified to collect 12 replicate samples on acid-washed 47mm diameter Whatman-41 filters, using procedures identical to those used for the US GEOTRACES aerosol program (Morton et al., 2013). Aerosol and rainfall samples were analyzed for total Na, Mg, Al, P, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Rb, Sr, Zr, Cd, Sb, Ba, La, Ce, Nd, Pb, Th, and U using ICPMS. Confirming earlier data from Bermuda, strong seasonality in rainfall and aerosol loading and chemistry was observed, particularly for aerosol and rainfall Fe concentrations when Saharan dust arrives in July/August with SE trajectories.

  6. Long-term variation of the concentrations of long-lived Rn descendants and cosmogenic 7Be and determination of the MRT of aerosols

    NASA Astrophysics Data System (ADS)

    Dueñas, C.; Fernández, M. C.; Carretero, J.; Liger, E.; Cañete, S.

    During a 6 years period, the atmospheric activity concentrations of the long-lived 222Rn daughters and 7Be concentrations were measured at Málaga (36° 43'40″ N; 4° 28'8″ W). The concentration data of long-lived radon daughters and 7Be together with meteorological variables were used for a comprehensive regression analysis of weekly variation of radioactivity in air. The seasonal variations of the concentrations show similar trend for the long-lived daughters of radon and 7Be concentrations. The activity concentrations were observed to be higher during the summer months than in other seasons. From the ratio between the activity concentrations of 210Po and 210Pb, a mean residence time of aerosol particles in the atmosphere of about 31 days was obtained. The average concentrations values of 210Pb and 7Be over the 6 years period have been found to be 510 and 4.6 mBq m -3, respectively. A mean aerosol mass concentrations of (46.6±7.8) μg m -3 was also determined during the period of measurements. The 7Be/ 210Pb activity ratios varied between 11 and 8.4. Correlation study has been carried out between the aerosol mass and concentrations of these tracers.

  7. Satellite and ground-based remote sensing of aerosols during intense haze event of October 2013 over lahore, Pakistan

    NASA Astrophysics Data System (ADS)

    Tariq, Salman; Zia, ul-Haq; Ali, Muhammad

    2016-02-01

    Due to increase in population and economic development, the mega-cities are facing increased haze events which are causing important effects on the regional environment and climate. In order to understand these effects, we require an in-depth knowledge of optical and physical properties of aerosols in intense haze conditions. In this paper an effort has been made to analyze the microphysical and optical properties of aerosols during intense haze event over mega-city of Lahore by using remote sensing data obtained from satellites (Terra/Aqua Moderate-resolution Imaging Spectroradiometer (MODIS) and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO)) and ground based instrument (AErosol RObotic NETwork (AERONET)) during 6-14 October 2013. The instantaneous highest value of Aerosol Optical Depth (AOD) is observed to be 3.70 on 9 October 2013 followed by 3.12 on 8 October 2013. The primary cause of such high values is large scale crop residue burning and urban-industrial emissions in the study region. AERONET observations show daily mean AOD of 2.36 which is eight times higher than the observed values on normal day. The observed fine mode volume concentration is more than 1.5 times greater than the coarse mode volume concentration on the high aerosol burden day. We also find high values (~0.95) of Single Scattering Albedo (SSA) on 9 October 2013. Scatter-plot between AOD (500 nm) and Angstrom exponent (440-870 nm) reveals that biomass burning/urban-industrial aerosols are the dominant aerosol type on the heavy aerosol loading day over Lahore. MODIS fire activity image suggests that the areas in the southeast of Lahore across the border with India are dominated by biomass burning activities. A Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model backward trajectory showed that the winds at 1000 m above the ground are responsible for transport from southeast region of biomass burning to Lahore. CALIPSO derived sub-types of

  8. Mount Saint Helens aerosol evolution

    NASA Technical Reports Server (NTRS)

    Oberbeck, V. R.; Farlow, N. H.; Snetsinger, K. G.; Ferry, G. V.; Fong, W.; Hayes, D. M.

    1982-01-01

    Stratospheric aerosol samples were collected using a wire impactor during the year following the eruption of Mt. St. Helens. Analysis of samples shows that aerosol volume increased for 6 months due to gas-to-particle conversion and then decreased to background levels in the following 6 months.

  9. Evaluation of VIIRS AOD over North China Plain: biases from aerosol models

    NASA Astrophysics Data System (ADS)

    Zhu, J.; Xia, X.; Wang, J.; Chen, H.; Zhang, J.; Oo, M. M.; Holz, R.

    2014-12-01

    With the launch of the Visible Infrared Imaging Radiometer Suit (VIIRS) instrument onboard Suomi National Polar-orbiting Partnership(S-NPP) in late 2011, the aerosol products of VIIRS are receiving much attention.To date, mostevaluations of VIIRS aerosol productswere carried out about aerosol optical depth (AOD). To further assess the VIIRS AOD in China which is a heavy polluted region in the world,we made a comparison between VIIRS AOD and CE-318 radiometerobservation at the following three sites overNorth China Plain (NCP): metropolis-Beijing (AERONET), suburbs-XiangHe (AERONET) and regional background site- Xinglong (CARSNET).The results showed the VIIRS AOD at 550 nm has a positive mean bias error (MBE) of 0.14-0.15 and root mean square error (RMBE) 0.20. Among three sites, Beijing is mainly a source of bias with MBE 0.17-0.18 and RMBE 0.23-0.24, and this bias is larger than some recent global statics recently published in the literature. Further analysis shows that this large bias in VIIRS AOD overNCP may be partly caused by the aerosol model selection in VIIRS aerosol inversion. According to the retrieval of sky radiance from CE-318 at three sites, aerosols in NCP have high mean real part of refractive indices (1.52-1.53), large volume mean radius (0.17-0.18) and low concentration (0.04-0.09) of fine aerosol, and small mean radius (2.86-2.92) and high concentration (0.06-0.16) of coarse mode aerosol. These observation-based aerosol single scattering properties and size of fine and coarse aerosols differ fromthe aerosol properties used in VIIRSoperational algorithm.The dominant aerosol models used in VIIRS algorithm for these three sites are less polluted urban aerosol in Beijing and low-absorption smoke in other two sites, all of which don't agree with the high imaginary part of refractive indices from CE-318 retrieval. Therefore, the aerosol models in VIIRS algorithm are likely to be refined in NCP region.

  10. Number concentration and size distribution of aerosol particles in the middle troposphere over the Western Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Zaizen, Yuji; Ikegami, Miwako; Tsutsumi, Yukitomo; Makino, Yukio; Okada, Kikuo; Jensen, Jørgen; Gras, John L.

    Number concentration and size distribution of aerosol particles were measured on board aircraft during the PACE (Pacific Atmospheric Chemistry Experiment) campaign from Australia to Japan in January 1994. The spatial distribution of condensation nuclei (CN) ( r ⩾ 4 nm) at 5-6 km altitude showed large variabilities in concentrations from 10 2 to 10 3 mg -1 that is, the concentrations were low (70-500 mg -1) in the intertropical convergence zone, high (400-1500 mg -1) in the subtropical highpressure area, and low again in the higher latitudes. An apparent opposite tendency was present between CN and large particle ( r ⩾ 0.15 μm) concentrations. The size distributions in the subtropical region exhibited high number concentrations of very fine particles ( r < 0.02 μm). Together with the horizontal observation, vertical observations of aerosols were carried out over some areas. In the subtropical area (Saipan), CN concentration increased with altitude in contrast to the large particle concentration. Also most of the particles collected at 6 km altitude over Saipan contained sulfuric acid. These results are consistent with the results of Clarke (1993, J. geophys. Res.98, 20,633-20,647) that new particle formation is favored in the upper troposphere.

  11. Multi-site characterization of tropical aerosols: Implications for regional radiative forcing

    NASA Astrophysics Data System (ADS)

    Sumit, Kumar; Devara, P. C. S.; Manoj, M. G.

    2012-03-01

    A land campaign, as a part of the Indian Space Research Organization-Geosphere Biosphere Program (ISRO-GBP), has been organized using a suit of instruments like AERONET (Aerosol Robotic Network) Sun/Sky sunphotometer, Microtops-II (MICROprocessor-controlled Total Ozone Portable Spectrometer), short-wave pyranometer from December 1, 2006 to April 30, 2007, over five locations (Ahmedabad, Pune, Sinhgad, Trivandrum and Gadanki) representing different environments. The dominance of different aerosol types such as biomass burning, urban/industrial pollution, marine origin and desert-dust particles is expected at these five sites. In all locations, significant day-to-day variability in AOD and Ångström exponent is observed. The Ångström exponent exhibits its lowest values over semi-arid region (Ahmedabad) 0.4-0.7, while it is around 1.8 at rural site (Gadanki). The retrieved volume size distributions for Pune, Ahmedabad and Trivandrum are found to be bimodal with varying concentration of each mode. Interesting feature of this observation is, very low coarse-mode volume concentration observed at Trivandrum even though observations were made about 300 m from the coast. The synergy of results from these complementary measurements is reflected in the computed regional aerosol radiative forcing and heating rates. We have used a radiative transfer model (SBDART) to examine the variations of aerosol direct radiative effect (ADRE) and heating rates to give an overall estimation of the effect on climate. The ADRE, over different measurement sites, at short wavelength is found to be negative at the surface in the range of - 18 to - 59 W m - 2 , and TOA forcing values varied from + 0.9 to - 8 W m - 2 .

  12. Analysis of DIAL/HSRL aerosol backscatter and extinction profiles during the SEAC4RS campaign with an aerosol assimilation system

    NASA Astrophysics Data System (ADS)

    Weaver, C. J.; da Silva, A. M., Jr.; Colarco, P. R.; Randles, C. A.

    2015-12-01

    We retrieve aerosol concentrations and optical information from vertical profiles of airborne 532 nm extinction and 532 and 1064 nm backscatter measurements made during the SEAC4RS summer 2013 campaign. The observations are from the High Spectral Resolution Lidar (HSRL) Airborne Differential Absorption Lidar (DIAL) on board the NASA DC-8. Instead of retrieving information about aerosol microphysical properties such as indexes of refraction, we seek information more directly applicable to an aerosol transport model - in our case the Goddard Chemistry Aerosol Radiation and Transport (GOCART) module used in the GEOS-5 Earth modeling system. A joint atmosphere/aerosol mini-reanalysis was performed for the SEAC4RS period using GEOS-5. The meteorological reanalysis followed the MERRA-2 atmospheric reanalysis protocol, and aerosol information from MODIS, MISR, and AERONET provided a constraint on the simulated aerosol optical depth (i.e., total column loading of aerosols). We focus on the simulated concentrations of 10 relevant aerosol species simulated by the GOCART module: dust, sulfate, and organic and black carbon. Our first retrieval algorithm starts with the SEAC4RS mini-reanalysis and adjusts the concentration of each GOCART aerosol species so that differences between the observed and simulated backscatter and extinction measurements are minimized. In this case, too often we are unable to simulate the observations by simple adjustment of the aerosol concentrations. A second retrieval approach adjusts both the aerosol concentrations and the optical parameters (i.e., assigned mass extinction efficiency) associated with each GOCART species. We present results from DC-8 flights over smoke from forest fires over the western US using both retrieval approaches. Finally, we compare our retrieved quantities with in-situ observations of aerosol absorption, scattering, and mass concentrations at flight altitude.

  13. Design of Nanomaterial Synthesis by Aerosol Processes

    PubMed Central

    Buesser, Beat; Pratsinis, Sotiris E.

    2013-01-01

    Aerosol synthesis of materials is a vibrant field of particle technology and chemical reaction engineering. Examples include the manufacture of carbon blacks, fumed SiO2, pigmentary TiO2, ZnO vulcanizing catalysts, filamentary Ni, and optical fibers, materials that impact transportation, construction, pharmaceuticals, energy, and communications. Parallel to this, development of novel, scalable aerosol processes has enabled synthesis of new functional nanomaterials (e.g., catalysts, biomaterials, electroceramics) and devices (e.g., gas sensors). This review provides an access point for engineers to the multiscale design of aerosol reactors for the synthesis of nanomaterials using continuum, mesoscale, molecular dynamics, and quantum mechanics models spanning 10 and 15 orders of magnitude in length and time, respectively. Key design features are the rapid chemistry; the high particle concentrations but low volume fractions; the attainment of a self-preserving particle size distribution by coagulation; the ratio of the characteristic times of coagulation and sintering, which controls the extent of particle aggregation; and the narrowing of the aggregate primary particle size distribution by sintering. PMID:22468598

  14. Design of nanomaterial synthesis by aerosol processes.

    PubMed

    Buesser, Beat; Pratsinis, Sotiris E

    2012-01-01

    Aerosol synthesis of materials is a vibrant field of particle technology and chemical reaction engineering. Examples include the manufacture of carbon blacks, fumed SiO(2), pigmentary TiO(2), ZnO vulcanizing catalysts, filamentary Ni, and optical fibers, materials that impact transportation, construction, pharmaceuticals, energy, and communications. Parallel to this, development of novel, scalable aerosol processes has enabled synthesis of new functional nanomaterials (e.g., catalysts, biomaterials, electroceramics) and devices (e.g., gas sensors). This review provides an access point for engineers to the multiscale design of aerosol reactors for the synthesis of nanomaterials using continuum, mesoscale, molecular dynamics, and quantum mechanics models spanning 10 and 15 orders of magnitude in length and time, respectively. Key design features are the rapid chemistry; the high particle concentrations but low volume fractions; the attainment of a self-preserving particle size distribution by coagulation; the ratio of the characteristic times of coagulation and sintering, which controls the extent of particle aggregation; and the narrowing of the aggregate primary particle size distribution by sintering.

  15. Investigation of the CCN Activity, BC and UVBC Mass Concentrations of Biomass Burning Aerosols during the 2013 BASELInE Campaign

    NASA Technical Reports Server (NTRS)

    Hsiao, Ta-Chih; Ye, Wei-Cheng; Wang, Sheng-Hsiang; Tsay, Si-Chee; Chen, Wei-Nai; Lin, Neng-Huei; Lee, Chung-Te; Hung, Hui-Ming; Chuang, Ming-Tung; Chantara, Somporn

    2015-01-01

    Biomass-burning (BB) aerosols, acting as cloud condensation nuclei (CCN), can influence cloud microphysical and radiative properties. In this study, we present CCN measured near the BB source regions over northern Southeast Asia (Doi Ang Khang, Thailand) and at downwind receptor areas (Lulin Atmospheric Background Station, Taiwan), focusing exclusively on 13-20 March 2013 as part of 2013 spring campaign of the Seven SouthEast Asian Studies (7-SEAS) intensive observation. One of the campaigns objectives is to characterize BB aerosols serving as CCN in SouthEast Asia (SEA). CCN concentrations were measured by a CCN counter at 5 supersaturation (SS) levels: 0.15%, 0.30%, 0.45%, 0.60%, and 0.75%. In addition, PM2.5 and black carbon mass concentrations were analyzed by using a tapered element oscillating microbalance and an aethalometer. It was found the number-size distributions and the characteristics of hygroscopicity (e.g., activation ratio and k) of BB aerosols in SEA have a strong diurnal pattern, and different behaviors of patterns were characterized under two distinct weather systems. The overall average value was low (0.05-0.1) but comparable with previous CCN studies in other BB source regions. Furthermore, a large fraction of UV-absorbing organic material (UVBC) and high Delta-C among BB aerosols were also observed, which suggest the existence of substantial particulate organic matter in fresh BB aerosols. These data provide the most extensive characterization of BB aerosols in SEA until now.

  16. Aqueous aerosol SOA formation: impact on aerosol physical properties.

    PubMed

    Woo, Joseph L; Kim, Derek D; Schwier, Allison N; Li, Ruizhi; McNeill, V Faye

    2013-01-01

    Organic chemistry in aerosol water has recently been recognized as a potentially important source of secondary organic aerosol (SOA) material. This SOA material may be surface-active, therefore potentially affecting aerosol heterogeneous activity, ice nucleation, and CCN activity. Aqueous aerosol chemistry has also been shown to be a potential source of light-absorbing products ("brown carbon"). We present results on the formation of secondary organic aerosol material in aerosol water and the associated changes in aerosol physical properties from GAMMA (Gas-Aerosol Model for Mechanism Analysis), a photochemical box model with coupled gas and detailed aqueous aerosol chemistry. The detailed aerosol composition output from GAMMA was coupled with two recently developed modules for predicting a) aerosol surface tension and b) the UV-Vis absorption spectrum of the aerosol, based on our previous laboratory observations. The simulation results suggest that the formation of oligomers and organic acids in bulk aerosol water is unlikely to perturb aerosol surface tension significantly. Isoprene-derived organosulfates are formed in high concentrations in acidic aerosols under low-NO(x) conditions, but more experimental data are needed before the potential impact of these species on aerosol surface tension may be evaluated. Adsorption of surfactants from the gas phase may further suppress aerosol surface tension. Light absorption by aqueous aerosol SOA material is driven by dark glyoxal chemistry and is highest under high-NO(x) conditions, at high relative humidity, in the early morning hours. The wavelength dependence of the predicted absorption spectra is comparable to field observations and the predicted mass absorption efficiencies suggest that aqueous aerosol chemistry can be a significant source of aerosol brown carbon under urban conditions.

  17. Mixed-phase aerosol particles

    NASA Astrophysics Data System (ADS)

    Corti, T.; Krieger, U. K.; Koop, T.; Peter, T.

    2003-04-01

    Within a liquid aerosol particle a solid phase may coexist with the liquid over a wide range of ambient conditions. The optical properties of such particles are of interest for a number of reasons. They will affect the scattering albedo of atmospheric aerosols, may cause depolarisation in lidar measurements, and potentially open a window for studying the internal morphology and physical properties (e.g. wetting properties, diffusion constants) of composite particles in laboratory experiments. In this contribution, we will present results of experimental and theoretical work on mixed-phase aerosol particles. The optical properties of mixed-phase particles depend on the location of the inclusion in the liquid phase, which is determined by the surface tensions of the involved interfaces. In the case of complete wetting, the energetically favoured position of the inclusion is in the volume of the liquid phase. For partial wetting, a position at the surface of the liquid phase is favoured, with the contact angle between the solid, liquid and air being described by Young's equation. For systems with small contact angles, the difference in energy between an inclusion situated at the droplets surface and in its volume may be so small that the thermal energy kT is sufficient to displace the inclusion from the droplet surface into its volume. The critical contact angle depends on the size of the inclusion and the droplet and ranges from 0.1 to 10 degrees. Examples of mixed-phase aerosol particles are aged soot particles and sea salt particles at low relative humidity. For aged soot, contact angles on sulphuric acid clearly above 10 degrees have been reported, so that soot inclusions are expected to be located at the surface of aerosol particles. For mixed-phase sea salt particles, consisting of a solid NaCl inclusion and an aqueous solution of mainly NaCl and MgCl2, our measurements on macroscopic NaCl crystals show a contact angle clearly below 10 degrees and possibly as

  18. A CLOSURE STUDY OF AEROSOL MASS CONCENTRATION MEASUREMENTS: COMPARISON OF VALUES OBTAINED WITH FILTERS AND BY DIRECT MEASUREMENTS OF MASS DISTRIBUTIONS. (R826372)

    EPA Science Inventory

    We compare measurements of aerosol mass concentrations obtained gravimetrically using Teflon coated glass fiber filters and by integrating mass distributions measured with the differential mobility analyzer–aerosol particle mass analyzer (DMA–APM) technique (Aero...

  19. INDOOR AEROSOLS AND EXPOSURE ASSESSMENT

    EPA Science Inventory

    This chapter provides an overview of both indoor aerosol concentration measurements, and the considerations for assessment of exposure to aerosols in non-occupational settings. The fixed-location measurements of concentration at an outdoor location, while commuting inside an a...

  20. Spatial and temporal variations of aerosols around Beijing in summer 2006: 2. Local and column aerosol optical properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsui, Hitoshi; Koike, Makoto; Kondo, Yutaka

    Weather Research and Forecasting (WRF)-chem model calculations were conducted to study aerosol optical properties around Beijing, China, during the Campaign of Air Quality Research in Beijing and Surrounding Region 2006 (CAREBeijing-2006) period. In this paper, we interpret aerosol optical properties in terms of aerosol mass concentrations and their chemical compositions by linking model calculations with measurements. In general, model calculations reproduced observed features of spatial and temporal variations of various surface and column aerosol optical parameters in and around Beijing. Spatial and temporal variations of aerosol absorption, scattering, and extinction coefficient corresponded well to those of elemental carbon (primary aerosol),more » sulfate (secondary aerosol), and the total aerosol mass concentration, respectively. These results show that spatial and temporal variations of the absorption coefficient are controlled by local emissions (within 100 km around Beijing during the preceding 24 h), while those of the scattering coefficient are controlled by regional-scale emissions (within 500 km around Beijing during the preceding 3 days) under synoptic-scale meteorological conditions, as discussed in our previous study of aerosol mass concentration. Vertical profiles of aerosol extinction revealed that the contribution of secondary aerosols and their water uptake increased with altitude within the planetary boundary layer, leading to a considerable increase in column aerosol optical depth (AOD) around Beijing. These effects are the main factors causing differences in regional and temporal variations between particulate matter (PM) mass concentration at the surface and column AOD over a wide region in the northern part of the Great North China Plain.« less

  1. Impact of new particle formation on the concentrations of aerosol number and cloud condensation nuclei around Beijing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsui, H.; Koike, Makoto; Kondo, Yutaka

    New particle formation (NPF) is one of the most important processes in controlling the concentrations of aerosol number (condensation nuclei, CN) and cloud condensation nuclei (CCN) in the atmosphere. In this study, we introduced a new aerosol model representation with 20 size bins between 1 nm and 10 {mu}m and activation-type and kinetic nucleation parameterizations into the WRF-chem model (called NPF-explicit WRF-chem). Model calculations were conducted in the Beijing region in China for the periods during the CARE-Beijing 2006 campaign conducted in August and September 2006. Model calculations successfully reproduced the timing of NPF and no-NPF days in the measurementsmore » (21 of 26 days). Model calculations also reproduced the subsequent rapid growth of new particles with a time scale of half a day. These results suggest that once a reasonable nucleation rate at a diameter of 1 nm is given, explicit calculations of condensation and coagulation processes can reproduce the clear contrast between NPF and no-NPF days as well as further growth up to several tens nanometers. With this reasonable representation of the NPF process, we show that NPF contributed 20-30% of CN concentrations (> 10 nm in diameter) in and around Beijing on average. We also show that NPF increases CCN concentrations at higher supersaturations (S > 0.2%), while it decreases them at lower supersaturations (S < 0.1%). This is likely because NPF suppresses the increases in both the size and hygroscopicity of pre-existing particles through the competition of condensable gases between new particles and pre-existing particles. Sensitivity calculations show that a reduction of primary aerosol emissions, such as black carbon (BC), would not necessarily decrease CCN concentrations because of an increase in NPF. Sensitivity calculations also suggest that the reduction ratio of primary aerosol and SO2 emissions will be key in enhancing or damping the BC mitigation effect.« less

  2. Aerosol and ozone distributions over the western North Atlantic during WATOX-86

    NASA Astrophysics Data System (ADS)

    Bridgman, H. A.; Schnell, Russell C.; Bodhaine, B. A.; Oltmans, S. J.

    1988-03-01

    On January 4, 6, 8, and 9, 1986, a series of National Oceanic and Atmospheric Administration WP-3D research flights was conducted over the western Atlantic Ocean 200-300 km off the coast of North America from Nova Scotia to Georgia as part of the Western Atlantic Ocean Experiment (WATOX). Rights were made perpendicular to NW airflow to establish the flux of gas and aerosol emissions off the North American continent to the ocean. Representative condensation nucleus (CN) concentrations averaged 150-250 cm-3 in the free troposphere in clean conditions, but in atmospheric layers containing anthropogenic air pollution transported from long distances, CN concentrations reached 6500 cm-3. In the marine boundary layer, CN concentrations averaged 500 to 750 cm-3 under relatively clean conditions, and 1500 to 3000 cm-3 in polluted air. Aerosol scattering extinction (bsp) ranged from 70 × 10-6 m-1 in the marine boundary layer to 20 × 10-6 m-1 in the free troposphere. Aerosol bsp was not as responsive to changes in atmospheric structure as CN although factor-of-2 changes across the marine boundary layer were observed. Aerosol size spectra in the marine boundary layer were an order of magnitude greater than those in the free troposphere. Consistent peaks in the volume spectra between 8 and 10 μm diameter established the importance of sea salt as a major aerosol component. Ozone profiles in the free troposphere, normally in the 30-40 ppb range, exhibited laminae of enhanced concentrations (up to 70 ppb) at moisture boundaries, suggesting that active ozone production was occurring at these levels. Ozone concentrations within the marine boundary layer were generally lower than in the free troposphere.

  3. Can Condensing Organic Aerosols Lead to Less Cloud Particles?

    NASA Astrophysics Data System (ADS)

    Gao, C. Y.; Tsigaridis, K.; Bauer, S.

    2017-12-01

    We examined the impact of condensing organic aerosols on activated cloud number concentration in a new aerosol microphysics box model, MATRIX-VBS. The model includes the volatility-basis set (VBS) framework in an aerosol microphysical scheme MATRIX (Multiconfiguration Aerosol TRacker of mIXing state) that resolves aerosol mass and number concentrations and aerosol mixing state. Preliminary results show that by including the condensation of organic aerosols, the new model (MATRIX-VBS) has less activated particles compared to the original model (MATRIX), which treats organic aerosols as non-volatile. Parameters such as aerosol chemical composition, mass and number concentrations, and particle sizes which affect activated cloud number concentration are thoroughly evaluated via a suite of Monte-Carlo simulations. The Monte-Carlo simulations also provide information on which climate-relevant parameters play a critical role in the aerosol evolution in the atmosphere. This study also helps simplifying the newly developed box model which will soon be implemented in the global model GISS ModelE as a module.

  4. Strong influence of deposition and vertical mixing on secondary organic aerosol concentrations in CMAQ and CAMx

    NASA Astrophysics Data System (ADS)

    Shu, Qian; Koo, Bonyoung; Yarwood, Greg; Henderson, Barron H.

    2017-12-01

    Differences between two air quality modeling systems reveal important uncertainties in model representations of secondary organic aerosol (SOA) fate. Two commonly applied models (CMAQ: Community Multiscale Air Quality; CAMx: Comprehensive Air Quality Model with extensions) predict very different OA concentrations over the eastern U.S., even when using the same source data for emissions and meteorology and the same SOA modeling approach. Both models include an option to output a detailed accounting of how each model process (e.g., chemistry, deposition, etc.) alters the mass of each modeled species, referred to as process analysis. We therefore perform a detailed diagnostic evaluation to quantify simulated tendencies (Gg/hr) of each modeled process affecting both the total model burden (Gg) of semi-volatile organic compounds (SVOC) in the gas (g) and aerosol (a) phases and the vertical structures to identify causes of concentration differences between the two models. Large differences in deposition (CMAQ: 69.2 Gg/d; CAMx: 46.5 Gg/d) contribute to significant OA bias in CMAQ relative to daily averaged ambient concentration measurements. CMAQ's larger deposition results from faster daily average deposition velocities (VD) for both SVOC (g) (VD,cmaq = 2.15 × VD,camx) and aerosols (VD,cmaq = 4.43 × Vd,camx). Higher aerosol deposition velocity would be expected to cause similar biases for inert compounds like elemental carbon (EC), but this was not seen. Daytime low-biases in EC were also simulated in CMAQ as expected but were offset by nighttime high-biases. Nighttime high-biases were a result of overly shallow mixing in CMAQ leading to a higher fraction of EC total atmospheric mass in the first layer (CAMx: 5.1-6.4%; CMAQ: 5.6-6.9%). Because of the opposing daytime and nighttime biases, the apparent daily average bias for EC is reduced. For OA, there are two effects of reduced vertical mixing: SOA and SVOC are concentrated near the surface, but SOA yields are reduced

  5. Effects of Aircraft On Aerosol Abundance in the Upper Troposphere

    NASA Technical Reports Server (NTRS)

    Ferry, G. V.; Pueschel, R. F.; Strawa, A. W.; Howard, S. D.; Verma, S.; Mahoney, M. J.; Bui, T. P.; Hannan, J. R.; Fuelberg, H. E.; Condon, Estelle P. (Technical Monitor)

    1999-01-01

    A significant increase in sulfuric acid aerosol concentration was detected above 10 km pressure altitude during a cross-corridor flight out of Shannon on October 23, 1997. The source of this aerosol is ascribed to commercial aircraft operations in flight corridors above 10 km, because (1) a stable atmosphere prevented vertical air mass exchanges and thus eliminated surface sources, (2) air mass back trajectories documented the absence of remote continental sources, and (3) temperature profiler data showed the tropopause at least one kilometers above flight altitude throughout the flight. Particle volatility identified 70% H2SO4, 20% (NH4)2SO4 and 10% nonvolatile aerosol in the proximity of flight corridors, and (10-30)% H2SO4, up to 50% (NH4)2SO4, and (40-60)% nonvolatile aerosols in air that was not affected by aircraft operations below 10 km. Only a very small fraction of the nonvolatile particles (determined with a condensation nucleus counter) could be morphologically identified as soot aerosol (validated by scanning electron microscopy of wire impactor samples). The newly formed H2SO4 particles did not measurably affect surface area and volume of the background aerosol due to their small size, hence did not affect radiative transfer directly.

  6. Professional ski waxers' exposure to PFAS and aerosol concentrations in gas phase and different particle size fractions.

    PubMed

    Nilsson, Helena; Kärrman, Anna; Rotander, Anna; van Bavel, Bert; Lindström, Gunilla; Westberg, Håkan

    2013-04-01

    Previous reports show that professional ski waxers have elevated blood levels of perfluorinated substances (PFAS) such as perfluorooctanoate (PFOA) and are exposed to very high concentrations of PFAS in air during ski waxing. Aerosol exposure increases the risk of cardiovascular disease, and PFOA is a potential hormonal disruptor and carcinogen, and can affect the fatty acid metabolism. Animal studies have shown that 8:2 FTOH can undergo biotransformation to PFOA. For the first time, this study presents an occupational scenario of professional ski waxers who are exposed to extremely high dust levels as well as per- and polyfluorinated compounds. Personal and fixed measurements of total aerosol, inhalable and respirable fractions were performed during World Cup events 2007-2010. The occupational exposure limit (OEL) is exceeded in 37% of the personal measurements with concentrations up to 15 mg m(-3) in air. There are differences between personal and area total aerosol concentrations with levels from personal measurements twice as high as those from the area measurements. The personal levels for FTOH ranged up to 996 μg m(-3) (mean = 114 μg m(-3)) and for PFOA up to 4.89 μg m(-3) (mean = 0.53 μg m(-3)) in ENV+ sorbent samples as compared to the general exposure levels from air reaching only low ng m(-3) (<30 ng m(-3)) levels. FTOHs were not detected in aerosols but PFOA showed an average level of 12 μg m(-3) (range = 1.2-47 μg m(-3)). The ski waxers' exposure to paraffin fumes and PFAS is not in compliance with the occupational exposure standards and by far exceed the general populations' exposure. Preventive measures must be taken to minimize the exposure in this occupational group.

  7. Vertical profiles of aerosol mass concentration derived by unmanned airborne in situ and remote sensing instruments during dust events

    NASA Astrophysics Data System (ADS)

    Mamali, Dimitra; Marinou, Eleni; Sciare, Jean; Pikridas, Michael; Kokkalis, Panagiotis; Kottas, Michael; Binietoglou, Ioannis; Tsekeri, Alexandra; Keleshis, Christos; Engelmann, Ronny; Baars, Holger; Ansmann, Albert; Amiridis, Vassilis; Russchenberg, Herman; Biskos, George

    2018-05-01

    In situ measurements using unmanned aerial vehicles (UAVs) and remote sensing observations can independently provide dense vertically resolved measurements of atmospheric aerosols, information which is strongly required in climate models. In both cases, inverting the recorded signals to useful information requires assumptions and constraints, and this can make the comparison of the results difficult. Here we compare, for the first time, vertical profiles of the aerosol mass concentration derived from light detection and ranging (lidar) observations and in situ measurements using an optical particle counter on board a UAV during moderate and weak Saharan dust episodes. Agreement between the two measurement methods was within experimental uncertainty for the coarse mode (i.e. particles having radii > 0.5 µm), where the properties of dust particles can be assumed with good accuracy. This result proves that the two techniques can be used interchangeably for determining the vertical profiles of aerosol concentrations, bringing them a step closer towards their systematic exploitation in climate models.

  8. Novel characterization of the aerosol and gas-phase composition of aerosolized jet fuel.

    PubMed

    Tremblay, Raphael T; Martin, Sheppard A; Fisher, Jeffrey W

    2010-04-01

    Few robust methods are available to characterize the composition of aerosolized complex hydrocarbon mixtures. The difficulty in separating the droplets from their surrounding vapors and preserving their content is challenging, more so with fuels, which contain hydrocarbons ranging from very low to very high volatility. Presented here is a novel method that uses commercially available absorbent tubes to measure a series of hydrocarbons in the vapor and droplets from aerosolized jet fuels. Aerosol composition and concentrations were calculated from the differential between measured total (aerosol and gas-phase) and measured gas-phase concentrations. Total samples were collected directly, whereas gas-phase only samples were collected behind a glass fiber filter to remove droplets. All samples were collected for 1 min at 400 ml min(-1) and quantified using thermal desorption-gas chromatography-mass spectrometry. This method was validated for the quantification of the vapor and droplet content from 4-h aerosolized jet fuel exposure to JP-8 and S-8 at total concentrations ranging from 200 to 1000 mg/m(3). Paired samples (gas-phase only and total) were collected every approximately 40 min. Calibrations were performed with neat fuel to calculate total concentration and also with a series of authentic standards to calculate specific compound concentrations. Accuracy was good when compared to an online GC-FID (gas chromatography-flame ionization detection) technique. Variability was 15% or less for total concentrations, the sum of all gas-phase compounds, and for most specific compound concentrations in both phases. Although validated for jet fuels, this method can be adapted to other hydrocarbon-based mixtures.

  9. Stratospheric aerosol optical depths, 1850-1990

    NASA Technical Reports Server (NTRS)

    Sato, Makiko; Hansen, James E.; Mccormick, M. Patrick; Pollack, James B.

    1993-01-01

    A global stratospheric aerosol database employed for climate simulations is described. For the period 1883-1990, aerosol optical depths are estimated from optical extinction data, whose quality increases with time over that period. For the period 1850-1882, aerosol optical depths are more crudely estimated from volcanological evidence for the volume of ejecta from major known volcanoes. The data set is available over Internet.

  10. Calculating Capstone Depleted Uranium Aerosol Concentrations from Beta Activity Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szrom, Fran; Falo, Gerald A.; Parkhurst, MaryAnn

    2009-03-01

    Beta activity measurements were used as surrogate measurements of uranium mass in aerosol samples collected during the field testing phase of the Capstone Depleted Uranium (DU) Aerosol Study. These aerosol samples generated by the perforation of armored combat vehicles were used to characterize the depleted uranium (DU) source term for the subsequent human health risk assessment (HHRA) of Capstone aerosols. Establishing a calibration curve between beta activity measurements and uranium mass measurements is straightforward if the uranium isotopes are in equilibrium with their immediate short-lived, beta-emitting progeny. For DU samples collected during the Capstone study, it was determined that themore » equilibrium between the uranium isotopes and their immediate short lived, beta-emitting progeny had been disrupted when penetrators had perforated target vehicles. Adjustments were made to account for the disrupted equilibrium and for wall losses in the aerosol samplers. Correction factors for the disrupted equilibrium ranged from 0.16 to 1, and the wall loss correction factors ranged from 1 to 1.92.« less

  11. Spatio-temporal aerosol particle distributions in the UT/LMS measured by the IAGOS-CARIBIC Observatory

    NASA Astrophysics Data System (ADS)

    Assmann, D. N.; Hermann, M.; Weigelt, A.; Martinsson, B. G.; Brenninkmeijer, C. A. M.; Rauthe-Schoech, A.; van Velthoven, P. J. F.; Boenisch, H.; Zahn, A.

    2016-12-01

    Submicrometer aerosol particles in the upper troposphere and lowermost stratosphere (UT/LMS) influence the Earth`s radiation budget directly and, more important, indirectly, by acting as cloud condensation nuclei and by changing trace gas concentrations through heterogeneous chemical processes. Since 1997, regular in situ UT/LMS aerosol particle measurements have been conducted by the Leibniz Institute for Tropospheric Research, Leipzig, Germany and the University of Lund, Sweden, using the the CARIBIC (now IAGOS-CARIBIC) observatory (www.caribic-atmospheric.com) onboard a passenger aircraft. Submicrometer aerosol particle number concentrations and the aerosol particle size distribution are measured using three condensation particle counters and one optical particle size spectrometer. Moreover, particle elemental composition is determined using an aerosol impactor sampler and post-flight ion beam analysis (PIXE, PESA) of the samples in the laboratory. Based on this unique data set, including meteorological analysis, we present representative spatio-temporal distributions of particle number, surface, volume, and elemental concentrations in an altitude of 8-12 km covering a large fraction of the northern hemisphere. We discuss the measured values in the different size regimes with respect to sources and sinks in different regions. Additionally, we calculated highly resolved latitudinal and longitudinal cross sections of the particle number size distribution, probability density functions and trends in particle number concentrations, but also in elemental composition, determined from our regular measurements over more than a decade. Moreover, we present the seasonality of particle number concentration in an equivelent latitude - potential temperature coordinate framework (see figure). The results are interpreted with respect to aerosol microphysics and transport using CARIBIC trace gas data like ozone and water vapour. The influence of clouds in the troposphere and

  12. Refinement of the probability density function model for preferential concentration of aerosol particles in isotropic turbulence

    NASA Astrophysics Data System (ADS)

    Zaichik, Leonid I.; Alipchenkov, Vladimir M.

    2007-11-01

    The purposes of the paper are threefold: (i) to refine the statistical model of preferential particle concentration in isotropic turbulence that was previously proposed by Zaichik and Alipchenkov [Phys. Fluids 15, 1776 (2003)], (ii) to investigate the effect of clustering of low-inertia particles using the refined model, and (iii) to advance a simple model for predicting the collision rate of aerosol particles. The model developed is based on a kinetic equation for the two-point probability density function of the relative velocity distribution of particle pairs. Improvements in predicting the preferential concentration of low-inertia particles are attained due to refining the description of the turbulent velocity field of the carrier fluid by including a difference between the time scales of the of strain and rotation rate correlations. The refined model results in a better agreement with direct numerical simulations for aerosol particles.

  13. An Intercomparison of Research Scanning Polarimeter Cloud Droplet Number Concentrations with Aerosol Properties over the Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Sinclair, K.; van Diedenhoven, B.; Cairns, B.; Alexandrov, M. D.; Ziemba, L. D.; Moore, R.; Crosbie, E.; Hostetler, C. A.

    2016-12-01

    Cloud droplet number concentration (CDNC) is a key parameter of of liquid clouds and is essential for the understanding of aerosol-cloud interaction. It couples surface aerosol composition and chemistry on the one hand and cloud reflectivity on the other. It impacts radiative forcing, cloud evolution, precipitation, global climate and, through observation, can be used to monitor the cloud albedo effect, or the first indirect effect. The North Atlantic and Marine Ecosystems Study (NAAMES), which is a NASA-led ship and air campaign that takes place off the east coast of Newfoundland, observed many low cloud decks and aerosols over a marine environment. This campaign has completed two of four deployments and provides an excellent opportunity for the Research Scanning Polarimeter (RSP) to cross-validate its approach of sensing CDNC with the Langley Aerosol Research Group Experiment's (LARGE's) Cloud Droplet Probe (CDP). The RSP is an airborne scanning sensor that provides high-precision measurements of polarized and full-intensity radiances at multiple angles over a wide spectral range. Each of the four NAAMES deployments are aligned to a specific annual event in the plankton cycle, along with other variations in environmental conditions. The Fall 2015 and spring 2016 deployments allow us to demonstrate and characterize the RSP's performance over a range of CDNCs and cloud types. We also assess correlations between the RSP CDNC measurements and atmospheric aerosol load. Using the LARGE Cloud Particle Counter (CPC) and Aerosol Mass Spectrometer (AMS), links between the size and type of aerosols and the RSP CDNC retrievals are explored.

  14. Source contributions to black carbon mass fractions in aerosol particles over the northwestern Pacific

    NASA Astrophysics Data System (ADS)

    Koga, Seizi; Maeda, Takahisa; Kaneyasu, Naoki

    Aerosol particle number size distributions above 0.3 μm in diameter and black carbon mass concentrations in aerosols were observed on Chichi-jima of the Ogasawara Islands in the northwestern Pacific from January 2000 to December 2002. Chichi-jima is suitable to observe polluted air masses from East Asia in winter and clean air masses over the western North Pacific in summer. In winter, aerosols over Chichi-jima were strongly affected by anthropogenic emissions in East Asia. The form of energy consumption in East Asia varies in various regions. Hence, each source region is expected to be characterized by an individual black carbon mass fraction. A three-dimensional Eulerian transport model was used to estimate contribution rates to air pollutants from each source region in East Asia. Because the Miyake-jima eruption began at the end of June 2000, the influence of smokes from Miyake-jima was also considered in the model calculation. The results of model calculations represent what must be noticed about smokes from volcanoes including Miyake-jima to interpret temporal variations of sulfur compounds over the northwestern Pacific. To evaluate black carbon mass fractions in anthropogenic aerosols as a function of source region, the relationships between the volume concentration of aerosol particles and the black carbon mass concentration in the winter were classified under each source region in East Asia. Consequently, the black carbon mass fractions in aerosols from China, Japan and the Korean Peninsula, and other regions were estimated to be 9-13%, 5-7%, and 4-5%, respectively.

  15. The effect of organic aerosol material on aerosol reactivity towards ozone

    NASA Astrophysics Data System (ADS)

    Batenburg, Anneke; Gaston, Cassandra; Thornton, Joel; Virtanen, Annele

    2015-04-01

    After aerosol particles are formed or emitted into the atmosphere, heterogeneous reactions with gaseous oxidants cause them to 'age'. Aging can change aerosol properties, such as the hygroscopicity, which is an important parameter in how the particles scatter radiation and form clouds. Conversely, heterogeneous reactions on aerosol particles play a significant role in the cycles of various atmospheric trace gases. Organic compounds, a large part of the total global aerosol matter, can exist in liquid or amorphous (semi)solid physical phases. Different groups have shown that reactions with ozone (O3) can be limited by bulk diffusion in organic aerosol, particularly in viscous, (semi)solid materials, and that organic coatings alter the surface interactions between gas and aerosol particles. We aim to better understand and quantify how the viscosity and phase of organic aerosol matter affect gas-particle interactions. We have chosen the reaction of O3 with particles composed of a potassium iodide (KI) core and a variable organic coating as a model system. The reaction is studied in an aerosol flow reactor that consists of a laminar flow tube and a movable, axial injector for the injection of O3. The aerosol-containing air is inserted at the tube's top. The interaction length (and therefore time), between the particles and the O3 can be varied by moving the injector. Alternatively, the production of aerosol particles can be modulated. The remaining O3 concentration is monitored from the bottom of the tube and particle concentrations are measured simultaneously, which allows us to calculate the reactive uptake coefficient γ. We performed exploratory experiments with internally mixed KI and polyethylene glycol (PEG) particles at the University of Washington (UW) in a setup with a residence time around 50 s. Aerosol particles were generated in an atomizer from solutions with varying concentrations of KI and PEG and inserted into the flow tube after they were diluted and

  16. Aircraft-based Aerosol Size and Composition Measurements during ACE-Asia and CRYSTAL-FACE using an Aerodyne Aerosol Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Bahreini, R.; Jimenez, J.; Delia, A.; Flagan, R. C.; Seinfeld, J. H.; Jayne, J. T.; Worsnop, D. R.

    2002-12-01

    An Aerodyne Aerosol Mass Spectrometer (AMS) was deployed in an aircraft for the first time during the ACE-Asia field campaign. The AMS was operated on board the CIRPAS Twin Otter aircraft to measure the size-resolved chemical composition of the submicron aerosols in the outflow from Eastern Asia. Research flights were carried out from March 31 to May 1, 2001 in an area that covered 127 E-135 E and 32 N-38 N on longitude and latitude, respectively. The submicron aerosol was typically distributed in distinct layers (from the boundary layer to ~ 3700 m). This is consistent with other on-board measurements. The aerosol in the pollution layers was mainly composed of sulfate, ammonium, and organics separated by cleaner layers. Sub-micron nitrate aerosols were also detected in some layers. Since the molar ratio of positive to negative ions did not exceed one on most of the constant altitude legs of the flights, the particles were not completely neutralized. Sulfate and organics concentrations of up to 10 and 5 ug m-3 (STP), respectively, were measured on some pollution layers. AMS measurements of sulfate concentration and NH4/SO4 mass ratio (~0.16 on average) are consistent with previously reported measurements at Cheju Island, South Korea [Charmichael et al., 1997; Chen et al., 1997] and Sapporo, Japan [Kaneyasu et al., 1995]. The mass-weighed size distribution of the sub-micron sulfate was relatively constant from day to day and layer to layer, with an aerodynamic mode at 350-500 nm (vacuum aerodynamic diameter) and FWHM ~ 400 nm on most of the layers. Furthermore, the ratios between SO4/ NH4/ NO3/ Organics were approximately independent of size in the sub-micron size range. Comparisons of AMS data to other on-board aerosol measurements will be presented. In particular, the AMS mass concentration correlates well with the aerosol volume determined by the on-board Differential Automated Classifying Aerosol Detector (DCAD). In addition, preliminary results of airborne size

  17. The Angstrom Exponent and Bimodal Aerosol Size Distributions

    NASA Technical Reports Server (NTRS)

    Schuster, Gregory L.; Dubovik, Oleg; Holben, Brent H.

    2005-01-01

    Powerlaws have long been used to describe the spectral dependence of aerosol extinction, and the wavelength exponent of the aerosol extinction powerlaw is commonly referred to as the Angstrom exponent. The Angstrom exponent is often used as a qualitative indicator of aerosol particle size, with values greater than two indicating small particles associated with combustion byproducts, and values less than one indicating large particles like sea salt and dust. In this study, we investigate the relationship between the Angstrom exponent and the mode parameters of bimodal aerosol size distributions using Mie theory calculations and Aerosol Robotic Network (AERONET) retrievals. We find that Angstrom exponents based upon seven wavelengths (0.34, 0.38, 0.44, 0.5, 0.67, 0.87, and 1.02 micrometers) are sensitive to the volume fraction of aerosols with radii less then 0.6 micrometers, but not to the fine mode effective radius. The Angstrom exponent is also known to vary with wavelength, which is commonly referred to as curvature; we show how the spectral curvature can provide additional information about aerosol size distributions for intermediate values of the Angstrom exponent. Curvature also has a significant effect on the conclusions that can be drawn about two-wavelength Angstrom exponents; long wavelengths (0.67, 0.87 micrometers) are sensitive to fine mode volume fraction of aerosols but not fine mode effective radius, while short wavelengths (0.38, 0.44 micrometers) are sensitive to the fine mode effective radius but not the fine mode volume fraction.

  18. Comparison of MADE3-simulated and observed aerosol distributions with a focus on aerosol vertical profiles

    NASA Astrophysics Data System (ADS)

    Kaiser, Christopher; Hendricks, Johannes; Righi, Mattia; Jöckel, Patrick

    2016-04-01

    The reliability of aerosol radiative forcing estimates from climate models depends on the accuracy of simulated global aerosol distribution and composition, as well as on the models' representation of the aerosol-cloud and aerosol-radiation interactions. To help improve on previous modeling studies, we recently developed the new aerosol microphysics submodel MADE3 that explicitly tracks particle mixing state in the Aitken, accumulation, and coarse mode size ranges. We implemented MADE3 into the global atmospheric chemistry general circulation model EMAC and evaluated it by comparison of simulated aerosol properties to observations. Compared properties include continental near-surface aerosol component concentrations and size distributions, continental and marine aerosol vertical profiles, and nearly global aerosol optical depth. Recent studies have shown the specific importance of aerosol vertical profiles for determination of the aerosol radiative forcing. Therefore, our focus here is on the evaluation of simulated vertical profiles. The observational data is taken from campaigns between 1990 and 2011 over the Pacific Ocean, over North and South America, and over Europe. The datasets include black carbon and total aerosol mass mixing ratios, as well as aerosol particle number concentrations. Compared to other models, EMAC with MADE3 yields good agreement with the observations - despite a general high bias of the simulated mass mixing ratio profiles. However, BC concentrations are generally overestimated by many models in the upper troposphere. With MADE3 in EMAC, we find better agreement of the simulated BC profiles with HIPPO data than the multi-model average of the models that took part in the AeroCom project. There is an interesting difference between the profiles from individual campaigns and more "climatological" datasets. For instance, compared to spatially and temporally localized campaigns, the model simulates a more continuous decline in both total

  19. Calculation of concentration fields of high-inertia aerosol particles in the flow past a cylindrical fibre

    NASA Astrophysics Data System (ADS)

    Zaripov, T. S.; Gilfanov, A. K.; Zaripov, S. K.; Rybdylova, O. D.; Sazhin, S. S.

    2018-01-01

    The behaviour of high-inertia aerosol particles’ concentration fields in stationary gas suspension flows around a cylinder is investigated using a numerical solution to the Navier-Stokes equations and the fully Lagrangian approach for four Stokes numbers (Stk = 0.1, 1, 4, 10) and three Reynolds numbers (Re = 1, 10, 100). It has been shown that the points of maximum particle concentration along each trajectory shift downstream both when Stk and/or Re increase.

  20. Aerosol-cloud interactions in mixed-phase convective clouds - Part 1: Aerosol perturbations

    NASA Astrophysics Data System (ADS)

    Miltenberger, Annette K.; Field, Paul R.; Hill, Adrian A.; Rosenberg, Phil; Shipway, Ben J.; Wilkinson, Jonathan M.; Scovell, Robert; Blyth, Alan M.

    2018-03-01

    Changes induced by perturbed aerosol conditions in moderately deep mixed-phase convective clouds (cloud top height ˜ 5 km) developing along sea-breeze convergence lines are investigated with high-resolution numerical model simulations. The simulations utilise the newly developed Cloud-AeroSol Interacting Microphysics (CASIM) module for the Unified Model (UM), which allows for the representation of the two-way interaction between cloud and aerosol fields. Simulations are evaluated against observations collected during the COnvective Precipitation Experiment (COPE) field campaign over the southwestern peninsula of the UK in 2013. The simulations compare favourably with observed thermodynamic profiles, cloud base cloud droplet number concentrations (CDNC), cloud depth, and radar reflectivity statistics. Including the modification of aerosol fields by cloud microphysical processes improves the correspondence with observed CDNC values and spatial variability, but reduces the agreement with observations for average cloud size and cloud top height. Accumulated precipitation is suppressed for higher-aerosol conditions before clouds become organised along the sea-breeze convergence lines. Changes in precipitation are smaller in simulations with aerosol processing. The precipitation suppression is due to less efficient precipitation production by warm-phase microphysics, consistent with parcel model predictions. In contrast, after convective cells organise along the sea-breeze convergence zone, accumulated precipitation increases with aerosol concentrations. Condensate production increases with the aerosol concentrations due to higher vertical velocities in the convective cores and higher cloud top heights. However, for the highest-aerosol scenarios, no further increase in the condensate production occurs, as clouds grow into an upper-level stable layer. In these cases, the reduced precipitation efficiency (PE) dominates the precipitation response and no further

  1. Aerosol elemental concentrations in the tropopause region from intercontinental flights with the Civil Aircraft for Regular Investigation of the Atmosphere Based on an Instrument Container (CARIBIC) platform

    NASA Astrophysics Data System (ADS)

    Papaspiropoulos, Giorgos; Martinsson, Bengt G.; Zahn, Andreas; Brenninkmeijer, Carl A. M.; Hermann, Markus; Heintzenberg, Jost; Fischer, Herbert; van Velthoven, Peter F. J.

    2002-12-01

    This study with the Civil Aircraft for Regular Investigation of the Atmosphere Based on an Instrument Container (CARIBIC) platform investigates the aerosol elemental concentrations at 9-11 km altitude in the northern hemisphere. Measurements from 31 intercontinental flights over a 2-year period between Germany and Sri Lanka/Maldives in the Indian Ocean are presented. Aerosol samples were collected with an impaction technique and were analyzed for the concentration of 18 elements using particle-induced X-ray emission (PIXE). Additional measurements of particle number concentrations, ozone and carbon monoxide concentrations, and meteorological modeling were included in the interpretation of the aerosol elemental concentrations. Particulate sulphur was found to be by far the most abundant element. Its upper tropospheric concentration increased, on average, by a factor of 2 from the tropics to midlatitudes, with another factor 2 higher concentrations in the lowermost stratosphere over midlatitudes. Correlation patterns and source profiles suggest contributions from crustal sources and biomass burning, but not from meteor ablation. Coinciding latitudinal gradients in particulate sulphur concentrations and emissions suggest that fossil fuel combustion is an important source of the aerosol in the upper troposphere and lowermost stratosphere. The measurements indicate aerosol transport along isentropic surfaces across the tropopause into the lowermost stratosphere. As a result of the prolonged residence time, ageing via oxidation of sulphur dioxide in the lowermost stratosphere was found to be a likely high-altitude, strong source that, along with downward transport of stratospheric air, could explain the vertical gradient of particulate sulphur mass concentration around the extratropical tropopause.

  2. Indian aerosols: present status.

    PubMed

    Mitra, A P; Sharma, C

    2002-12-01

    This article presents the status of aerosols in India based on the research activities undertaken during last few decades in this region. Programs, like International Geophysical Year (IGY), Monsoon Experiment (MONEX), Indian Middle Atmospheric Program (IMAP) and recently conducted Indian Ocean Experiment (INDOEX), have thrown new lights on the role of aerosols in global change. INDOEX has proved that the effects of aerosols are no longer confined to the local levels but extend at regional as well as global scales due to occurrence of long range transportation of aerosols from source regions along with wind trajectories. The loading of aerosols in the atmosphere is on rising due to energy intensive activities for developmental processes and other anthropogenic activities. One of the significant observation of INDOEX is the presence of high concentrations of carbonaceous aerosols in the near persistent winter time haze layer over tropical Indian Ocean which have probably been emitted from the burning of fossil-fuels and biofuels in the source region. These have significant bearing on the radiative forcing in the region and, therefore, have potential to alter monsoon and hydrological cycles. In general, the SPM concentrations have been found to be on higher sides in ambient atmosphere in many Indian cities but the NOx concentrations have been found to be on lower side. Even in the haze layer over Indian Ocean and surrounding areas, the NOx concentrations have been reported to be low which is not conducive of O3 formation in the haze/smog layer. The acid rain problem does not seem to exist at the moment in India because of the presence of neutralizing soil dust in the atmosphere. But the high particulate concentrations in most of the cities' atmosphere in India are of concern as it can cause deteriorated health conditions.

  3. A laboratory comparison of evacuation devices on aerosol reduction.

    PubMed

    Jacks, Mary E

    2002-01-01

    Aerosols are defined as airborne particles that range in size from 0.5 to 10 microns (micron). They are produced during ultrasonic instrumentation, but they can be reduced. Irrigant solutions, which produce the therapeutic effects of lavage, also combine with blood, saliva, and bacteria to produce potentially harmful airborne particulates. The American Dental Association (ADA) and the Centers for Disease Control and Prevention (CDC) recommend utilization of high volume evacuation, rubber dam, and patient positioning for aerosol control. But for the non-assisted dental hygienist, these recommendations are difficult to implement. This study was designed to compare the concentration of airborne particulates from ultrasonic scaling, utilizing three different methods of evacuation. In a laboratory setting, ultrasonic airborne particulates were generated utilizing a 25,000 cps magnetostrictive ultrasonic scaling instrument. Three evacuation devises were compared for effectiveness: a standard saliva ejector intraorally positioned; and two extraorally positioned, hands-free high-volume evacuation (HFHVE) techniques. One of these devices had a standard attachment, and, the other had a funnel-shaped attachment. Measurement of airborne particles was performed with a DataRAM Real-Time Aerosol Monitor. This study (N = 21) found a significant reduction in the number of airborne particulates with either form of extraoral HFHVE attachment in place. Standard attachments and funnel-shaped attachments to HFHVE resulted in reduction of particulates by 90.8% and 89.7%, respectively, when compared to the intraorally positioned standard saliva ejector. Utilizing either form of HFHVE during ultrasonic instrumentation significantly reduced the number of aerosolized particulates that reached the breathing space of the client and clinician. This lends support for the ADA and CDC recommendation that HVE be used during aerosol producing procedures. Currently, no preventive measure is 100

  4. CCN concentrations and BC warming influenced by maritime ship emitted aerosol plumes over southern Bay of Bengal.

    PubMed

    Ramana, M V; Devi, Archana

    2016-08-02

    Significant quantities of carbon soot aerosols are emitted into pristine parts of the atmosphere by marine shipping. Soot impacts the radiative balance of the Earth-atmosphere system by absorbing solar-terrestrial radiation and modifies the microphysical properties of clouds. Here we examined the impact of black carbon (BC) on net warming during monsoon season over southern Bay-of-Bengal, using surface and satellite measurements of aerosol plumes from shipping. Shipping plumes had enhanced the BC concentrations by a factor of four around the shipping lane and exerted a strong positive influence on net warming. Compiling all the data, we show that BC atmospheric heating rates for relatively-clean and polluted-shipping corridor locations to be 0.06 and 0.16 K/day respectively within the surface layer. Emissions from maritime ships had directly heated the lower troposphere by two-and-half times and created a gradient of around 0.1 K/day on either side of the shipping corridor. Furthermore, we show that ship emitted aerosol plumes were responsible for increase in the concentration of cloud condensation nuclei (CCN) by an order of magnitude that of clean air. The effects seen here may have significant impact on the monsoonal activity over Bay-of-Bengal and implications for climate change mitigation strategies.

  5. Trace Gas/Aerosol Interactions and GMI Modeling Support

    NASA Technical Reports Server (NTRS)

    Penner, Joyce E.; Liu, Xiaohong; Das, Bigyani; Bergmann, Dan; Rodriquez, Jose M.; Strahan, Susan; Wang, Minghuai; Feng, Yan

    2005-01-01

    Current global aerosol models use different physical and chemical schemes and parameters, different meteorological fields, and often different emission sources. Since the physical and chemical parameterization schemes are often tuned to obtain results that are consistent with observations, it is difficult to assess the true uncertainty due to meteorology alone. Under the framework of the NASA global modeling initiative (GMI), the differences and uncertainties in aerosol simulations (for sulfate, organic carbon, black carbon, dust and sea salt) solely due to different meteorological fields are analyzed and quantified. Three meteorological datasets available from the NASA DAO GCM, the GISS-II' GCM, and the NASA finite volume GCM (FVGCM) are used to drive the same aerosol model. The global sulfate and mineral dust burdens with FVGCM fields are 40% and 20% less than those with DAO and GISS fields, respectively due to its heavier rainfall. Meanwhile, the sea salt burden predicted with FVGCM fields is 56% and 43% higher than those with DAO and GISS, respectively, due to its stronger convection especially over the Southern Hemispheric Ocean. Sulfate concentrations at the surface in the Northern Hemisphere extratropics and in the middle to upper troposphere differ by more than a factor of 3 between the three meteorological datasets. The agreement between model calculated and observed aerosol concentrations in the industrial regions (e.g., North America and Europe) is quite similar for all three meteorological datasets. Away from the source regions, however, the comparisons with observations differ greatly for DAO, FVGCM and GISS, and the performance of the model using different datasets varies largely depending on sites and species. Global annual average aerosol optical depth at 550 nm is 0.120-0.131 for the three meteorological datasets.

  6. Diurnal and seasonal variations of concentration and size distribution of nano aerosols (10-1100 nm) enclosing radon decay products in the Postojna Cave, Slovenia.

    PubMed

    Bezek, M; Gregoric, A; Kávási, N; Vaupotic, J

    2012-11-01

    At the lowest point along the tourist route in the Postojna Cave, the activity concentration of radon ((222)Rn) short-lived decay products and number concentration and size distribution of background aerosol particles in the size range of 10-1100 nm were measured. In the warm yearly season, aerosol concentration was low (52 cm(-3)) with 21 % particles smaller than 50 nm, while in the cold season, it was higher (1238 cm(-3)) with 8 % of <50 nm particles. Radon activity concentrations were 4489 and 1108 Bq m(-3), and fractions of unattached radon decay products were 0.62 and 0.13, respectively.

  7. Local emission of primary air pollutants and its contribution to wet deposition and concentrations of aerosols and gases in ambient air in Japan

    NASA Astrophysics Data System (ADS)

    Aikawa, Masahide; Hiraki, Takatoshi; Tomoyose, Nobutaka; Ohizumi, Tsuyoshi; Noguchi, Izumi; Murano, Kentaro; Mukai, Hitoshi

    2013-11-01

    We studied wet deposition by precipitation and the concentrations of aerosols and gases in ambient air in relation to the primary air pollutants discharged from domestic areas. The concentrations of aerosols and gases were influenced by nearby emissions except for non-sea-salt SO, which is transported long distances. The area facing the Sea of Japan showed much larger wet deposition than other areas, although the domestic emissions of the primary air pollutants there were small and showed a peak in wet deposition from October to March, as distinct from April to September in other areas. We performed the correlation analyses between wet deposition of each component and the product of the concentrations of corresponding aerosols and gases in ambient air and the two-thirds power of the precipitation. From the results, following scavenging processes were suggested. • Sulfate and ammonium were scavenged in precipitation as particulate matter such as (NH4)2SO4 and NH4HSO4. • Nitrate was scavenged mainly in precipitation through gaseous HNO3. • Ammonium was complementarily scavenged in precipitation through aerosols such as (NH4)2SO4 and NH4HSO4 and through gaseous NH3.

  8. Targeted aerosolized delivery of ascorbate in the lungs of chlorine-exposed rats.

    PubMed

    Bracher, Andreas; Doran, Stephen F; Squadrito, Giuseppe L; Postlethwait, Edward M; Bowen, Larry; Matalon, Sadis

    2012-12-01

    Chlorine (Cl(2))-induced lung injury is a serious public health threat that may result from industrial and household accidents. Post-Cl(2) administration of aerosolized ascorbate in rodents decreased lung injury and mortality. However, the extent to which aerosolized ascorbate augments depleted ascorbate stores in distal lung compartments has not been assessed. We exposed rats to Cl(2) (300 ppm for 30 min) and returned them to room air. Within 15-30 min postexposure, rats breathed aerosolized ascorbate and desferal or vehicle (mean particle size 3.3 μm) through a nose-only exposure system for 60 min and were euthanized. We measured the concentrations of reduced ascorbate in the bronchoalveolar lavage (BAL), plasma, and lung tissues with high-pressure liquid chromatography, protein plasma concentration in the BAL, and the volume of the epithelia lining fluid (ELF). Cl(2)-exposed rats that breathed aerosolized vehicle had lower values of ascorbate in their BAL, ELF, and lung tissues compared to air-breathing rats. Delivery of aerosolized ascorbate increased reduced ascorbate in BAL, ELF, lung tissues, and plasma of both Cl(2) and air-exposed rats without causing lung injury. Based on mean diameter of aerosolized particles and airway sizes we calculated that approximately 5% and 1% of inhaled ascorbate was deposited in distal lung regions of air and Cl(2)-exposed rats, respectively. Significantly higher ascorbate levels were present in the BAL of Cl(2)-exposed rats when aerosol delivery was initiated 1 h post-Cl(2). Aerosol administration is an effective, safe, and noninvasive method for the delivery of low molecular weight antioxidants to the lungs of Cl(2)-exposed individuals for the purpose of decreasing morbidity and mortality. Delivery is most effective when initiated 1 h postexposure when the effects of Cl(2) on minute ventilation subside.

  9. Estimating PM2.5 speciation concentrations using prototype 4.4 km-resolution MISR aerosol properties over Southern California

    NASA Astrophysics Data System (ADS)

    Meng, Xia; Garay, Michael J.; Diner, David J.; Kalashnikova, Olga V.; Xu, Jin; Liu, Yang

    2018-05-01

    Research efforts to better characterize the differential toxicity of PM2.5 (particles with aerodynamic diameters less than or equal to 2.5 μm) speciation are often hindered by the sparse or non-existent coverage of ground monitors. The Multi-angle Imaging SpectroRadiometer (MISR) aboard NASA's Terra satellite is one of few satellite aerosol sensors providing information of aerosol shape, size and extinction globally for a long and continuous period that can be used to estimate PM2.5 speciation concentrations since year 2000. Currently, MISR only provides a 17.6 km product for its entire mission with global coverage every 9 days, a bit too coarse for air pollution health effects research and to capture local spatial variability of PM2.5 speciation. In this study, generalized additive models (GAMs) were developed using MISR prototype 4.4 km-resolution aerosol data with meteorological variables and geographical indicators, to predict ground-level concentrations of PM2.5 sulfate, nitrate, organic carbon (OC) and elemental carbon (EC) in Southern California between 2001 and 2015 at the daily level. The GAMs are able to explain 66%, 62%, 55% and 58% of the daily variability in PM2.5 sulfate, nitrate, OC and EC concentrations during the whole study period, respectively. Predicted concentrations capture large regional patterns as well as fine gradients of the four PM2.5 species in urban areas of Los Angeles and other counties, as well as in the Central Valley. This study is the first attempt to use MISR prototype 4.4 km-resolution AOD (aerosol optical depth) components data to predict PM2.5 sulfate, nitrate, OC and EC concentrations at the sub-regional scale. In spite of its low temporal sampling frequency, our analysis suggests that the MISR 4.4 km fractional AODs provide a promising way to capture the spatial hotspots and long-term temporal trends of PM2.5 speciation, understand the effectiveness of air quality controls, and allow our estimated PM2.5 speciation data to

  10. Elucidating the relationship between aerosol concentration and summertime boundary layer structure in central China.

    PubMed

    Liu, Lin; Guo, Jianping; Miao, Yucong; Liu, Lin; Li, Jian; Chen, Dandan; He, Jing; Cui, Chunguang

    2018-06-11

    Wuhan, a megacity in central China, suffers from frequent aerosol pollution and is accompanied by meteorological factors at both synoptic and local scales. Partly due to the lack of appropriate observations of planetary boundary layer (PBL), the associations between synoptic conditions, PBL, and pollution there are not yet fully understood. Thus, systematic analyses were conducted using the fine-resolution soundings, surface meteorological measurements, and aerosol observations in Wuhan during summer for the period 2013-2016, in combination with T-mode principal component analysis and simulations of backward trajectory. The results showed that the variations of boundary layer height (BLH) not only modulated the diurnal variation of PM 2.5 concentration in Wuhan, but also the daily pollution level. Five different synoptic patterns during summer in Wuhan were identified from reanalysis geopotential height fields. Among these synoptic patterns, two types characterized by northeasterly prevailing winds, were found to be associated with heavy pollution in Wuhan. Driven by the northeasterly winds, the polluted air mass from the heavily polluted regions could be easily transported to Wuhan, such as North China Plain and Yangtze River Delta. Such regional transports of pollutants must be partly responsible for the aerosol pollution in Wuhan. In addition, these two synoptic patterns were also featured by the relatively high cloud cover and low boundary layer height in Wuhan, which would favor the occurrence of pollution there. Overall, this study has important implications for understanding the important roles of meteorological factors in modulating aerosol pollution in central China. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. A reference aerosol for a radon reference chamber

    NASA Astrophysics Data System (ADS)

    Paul, Annette; Keyser, Uwe

    1996-02-01

    The measurement of radon and radon progenies and the calibration of their detection systems require the production and measurement of aerosols well-defined in size and concentration. In the German radon reference chamber, because of its unique chemical and physical properties, carnauba wax is used to produce standard aerosols. The aerosol size spectra are measured on-line by an aerosol measurement system in the range of 10 nm to 1 μm aerodynamic diameter. The experimental set-ups for the study of adsorption of radioactive ions on aerosols as function of their size and concentration will be described, the results presented and further adaptations for an aerosol jet introduced (for example, for the measurement of short-lived neutron-rich isotopes). Data on the dependence of aerosol radius, ion concentration and element selectivity is collected by using a 252Cf-sf source. The fission products of this source range widely in elements, isotopes and charges. Adsorption and the transport of radioactive ions on aerosols have therefore been studied for various ions for the first time, simultaneously with the aerosol size on-line spectrometry.

  12. Concentration Effects and Ion Properties Controlling the Fractionation of Halides during Aerosol Formation

    NASA Technical Reports Server (NTRS)

    Guzman, Marcelo I.; Athalye, Richa R.; Rodriguez, Jose M.

    2012-01-01

    During the aerosolization process at the sea surface, halides are incorporated into aerosol droplets, where they may play an important role in tropospheric ozone chemistry. Although this process may significantly contribute to the formation of reactive gas phase molecular halogens, little is known about the environmental factors that control how halides selectively accumulate at the air-water interface. In this study, the production of sea spray aerosol is simulated using electrospray ionization (ESI) of 100 nM equimolar solutions of NaCl, NaBr, NaI, NaNO2, NaNO3, NaClO4, and NaIO4. The microdroplets generated are analyzed by mass spectrometry to study the comparative enrichment of anions (f (Isub x-)) and their correlation with ion properties. Although no correlation exists between f (sub x-) and the limiting equivalent ionic conductivity, the correlation coefficient of the linear fit with the size of the anions R(sub x-), dehydration free-energy ?Gdehyd, and polarizability alpha, follows the order: (R(sub x-)(exp -2)) > (R(sub x-)(exp -1)) >(R(sub x-) > delta G(sub dehyd) > alpha. The same pure physical process is observed in H2O and D2O. The factor f (sub x-) does not change with pH (6.8-8.6), counterion (Li+, Na+, K+, and Cs+) substitution effects, or solvent polarity changes in methanol - and ethanol-water mixtures (0 <= xH2O <= 1). Sodium polysorbate 20 surfactant is used to modify the structure of the interface. Despite the observed enrichment of I- on the air-water interface of equimolar solutions, our results of seawater mimic samples agree with a model in which the interfacial composition is increasingly enriched in I- < Br- < Cl- over the oceanic boundary layer due to concentration effects in sea spray aerosol formation.

  13. simplified aerosol representations in global modeling

    NASA Astrophysics Data System (ADS)

    Kinne, Stefan; Peters, Karsten; Stevens, Bjorn; Rast, Sebastian; Schutgens, Nick; Stier, Philip

    2015-04-01

    The detailed treatment of aerosol in global modeling is complex and time-consuming. Thus simplified approaches are investigated, which prescribe 4D (space and time) distributions of aerosol optical properties and of aerosol microphysical properties. Aerosol optical properties are required to assess aerosol direct radiative effects and aerosol microphysical properties (in terms of their ability as aerosol nuclei to modify cloud droplet concentrations) are needed to address the indirect aerosol impact on cloud properties. Following the simplifying concept of the monthly gridded (1x1 lat/lon) aerosol climatology (MAC), new approaches are presented and evaluated against more detailed methods, including comparisons to detailed simulations with complex aerosol component modules.

  14. Measuring atmospheric aerosols of organic origin on multirotor Unmanned Aerial Vehicles (UAVs).

    NASA Astrophysics Data System (ADS)

    Crazzolara, Claudio; Platis, Andreas; Bange, Jens

    2017-04-01

    In-situ measurements of the spatial distribution and transportation of atmospheric organic particles such as pollen and spores are of great interdisciplinary interest such as: - In agriculture to investigate the spread of transgenetic material, - In paleoclimatology to improve the accuracy of paleoclimate models derived from pollen grains retrieved from sediments, and - In meteorology/climate research to determine the role of spores and pollen acting as nuclei in cloud formation processes. The few known state of the art in-situ measurement systems are using passive sampling units carried by fixed wing UAVs, thus providing only limited spatial resolution of aerosol concentration. Also the passively sampled air volume is determined with low accuracy as it is only calculated by the length of the flight path. We will present a new approach, which is based on the use of a multirotor UAV providing a versatile platform. On this UAV an optical particle counter in addition to a particle collecting unit, e.g. a conventional filter element and/or a inertial mass separator were installed. Both sampling units were driven by a mass flow controlled blower. This allows not only an accurate determination of the number and size concentration, but also an exact classification of the type of collected aerosol particles as well as an accurate determination of the sampled air volume. In addition, due to the application of a multirotor UAV with its automated position stabilisation system, the aerosol concentration can be measured with a very high spatial resolution of less than 1 m in all three dimensions. The combination of comprehensive determination of number, type and classification of aerosol particles in combination with the very high spatial resolution provides not only valuable progress in agriculture, paleoclimatology and meteorology, but also opens up the application of multirotor UAVs in new fields, for example for precise determination of the mechanisms of generation and

  15. AEROSOL AND GAS MEASUREMENT

    EPA Science Inventory

    Measurements provide fundamental information for evaluating and managing the impact of aerosols on air quality. Specific measurements of aerosol concentration and their physical and chemical properties are required by different users to meet different user-community needs. Befo...

  16. Whole-body nanoparticle aerosol inhalation exposures.

    PubMed

    Yi, Jinghai; Chen, Bean T; Schwegler-Berry, Diane; Frazer, Dave; Castranova, Vince; McBride, Carroll; Knuckles, Travis L; Stapleton, Phoebe A; Minarchick, Valerie C; Nurkiewicz, Timothy R

    2013-05-07

    Inhalation is the most likely exposure route for individuals working with aerosolizable engineered nano-materials (ENM). To properly perform nanoparticle inhalation toxicology studies, the aerosols in a chamber housing the experimental animals must have: 1) a steady concentration maintained at a desired level for the entire exposure period; 2) a homogenous composition free of contaminants; and 3) a stable size distribution with a geometric mean diameter < 200 nm and a geometric standard deviation σg < 2.5 (5). The generation of aerosols containing nanoparticles is quite challenging because nanoparticles easily agglomerate. This is largely due to very strong inter-particle forces and the formation of large fractal structures in tens or hundreds of microns in size (6), which are difficult to be broken up. Several common aerosol generators, including nebulizers, fluidized beds, Venturi aspirators and the Wright dust feed, were tested; however, none were able to produce nanoparticle aerosols which satisfy all criteria (5). A whole-body nanoparticle aerosol inhalation exposure system was fabricated, validated and utilized for nano-TiO2 inhalation toxicology studies. Critical components: 1) novel nano-TiO2 aerosol generator; 2) 0.5 m(3) whole-body inhalation exposure chamber; and 3) monitor and control system. Nano-TiO2 aerosols generated from bulk dry nano-TiO2 powders (primary diameter of 21 nm, bulk density of 3.8 g/cm(3)) were delivered into the exposure chamber at a flow rate of 90 LPM (10.8 air changes/hr). Particle size distribution and mass concentration profiles were measured continuously with a scanning mobility particle sizer (SMPS), and an electric low pressure impactor (ELPI). The aerosol mass concentration (C) was verified gravimetrically (mg/m(3)). The mass (M) of the collected particles was determined as M = (Mpost-Mpre), where Mpre and Mpost are masses of the filter before and after sampling (mg). The mass concentration was calculated as C = M

  17. Whole-Body Nanoparticle Aerosol Inhalation Exposures

    PubMed Central

    Yi, Jinghai; Chen, Bean T.; Schwegler-Berry, Diane; Frazer, Dave; Castranova, Vince; McBride, Carroll; Knuckles, Travis L.; Stapleton, Phoebe A.; Minarchick, Valerie C.; Nurkiewicz, Timothy R.

    2013-01-01

    Inhalation is the most likely exposure route for individuals working with aerosolizable engineered nano-materials (ENM). To properly perform nanoparticle inhalation toxicology studies, the aerosols in a chamber housing the experimental animals must have: 1) a steady concentration maintained at a desired level for the entire exposure period; 2) a homogenous composition free of contaminants; and 3) a stable size distribution with a geometric mean diameter < 200 nm and a geometric standard deviation σg < 2.5 5. The generation of aerosols containing nanoparticles is quite challenging because nanoparticles easily agglomerate. This is largely due to very strong inter-particle forces and the formation of large fractal structures in tens or hundreds of microns in size 6, which are difficult to be broken up. Several common aerosol generators, including nebulizers, fluidized beds, Venturi aspirators and the Wright dust feed, were tested; however, none were able to produce nanoparticle aerosols which satisfy all criteria 5. A whole-body nanoparticle aerosol inhalation exposure system was fabricated, validated and utilized for nano-TiO2 inhalation toxicology studies. Critical components: 1) novel nano-TiO2 aerosol generator; 2) 0.5 m3 whole-body inhalation exposure chamber; and 3) monitor and control system. Nano-TiO2 aerosols generated from bulk dry nano-TiO2 powders (primary diameter of 21 nm, bulk density of 3.8 g/cm3) were delivered into the exposure chamber at a flow rate of 90 LPM (10.8 air changes/hr). Particle size distribution and mass concentration profiles were measured continuously with a scanning mobility particle sizer (SMPS), and an electric low pressure impactor (ELPI). The aerosol mass concentration (C) was verified gravimetrically (mg/m3). The mass (M) of the collected particles was determined as M = (Mpost-Mpre), where Mpreand Mpost are masses of the filter before and after sampling (mg). The mass concentration was calculated as C = M/(Q*t), where Q is

  18. Relationship between fluid bed aerosol generator operation and the aerosol produced

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carpenter, R.L.; Yerkes, K.

    1980-12-01

    The relationships between bed operation in a fluid bed aerosol generator and aerosol output were studied. A two-inch diameter fluid bed aerosol generator (FBG) was constructed using stainless steel powder as a fluidizing medium. Fly ash from coal combustion was aerosolized and the influence of FBG operating parameters on aerosol mass median aerodynamic diameter (MMAD), geometric standard deviation (sigma/sub g/) and concentration was examined. In an effort to extend observations on large fluid beds to small beds using fine bed particles, minimum fluidizing velocities and elutriation constant were computed. Although FBG minimum fluidizing velocity agreed well with calculations, FBG elutriationmore » constant did not. The results of this study show that the properties of aerosols produced by a FBG depend on fluid bed height and air flow through the bed after the minimum fluidizing velocity is exceeded.« less

  19. Volume changes upon heating of aerosol particles from biomass burning using transmission electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adachi, Kouji; Sedlacek, Arthur J.; Kleinman, Lawrence

    The responses of aerosol particles to heating are important for measurements of their chemical, physical, and optical properties, classification, and determination of origin. However, the thermal behavior of organic aerosol particles is largely unknown. We provide a method to analyze such thermal behavior through heating from room temperature to >600°C by using a heating holder within a transmission electron microscope (TEM). Here we describe in-situ shape and size changes and variations in the compositions of individual particles before and after heating. We use ambient samples from wildland and agricultural biomass fires in North America collected during the 2013 Biomass Burnmore » Observation Project (BBOP). The results indicate that individual tar balls (TB; spherical organic material) from biomass burning retained, on average, up to 30% of their volume when heated to 600°C. Chemical analysis reveals that K and Na remain in the residues, whereas S and O were lost. In contrast to bulk sample measurements of carbonaceous particles using thermal/optical carbon analyzers, our single-particle results imply that many individual organic particles consist of multiple types of organic matter having different thermal stabilities. Beyond TBs, our results suggest that because of their thermal stability some organic particles may not be detectable by using aerosol mass spectrometry or thermal/optical carbon analyzers. This result can lead to an underestimate of the abundance of TBs and other organic particles, and therefore biomass burning may have more influence than currently recognized in regional and global climate models.« less

  20. Volume changes upon heating of aerosol particles from biomass burning using transmission electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adachi, Kouji; Sedlacek, Arthur J.; Kleinman, Lawrence

    Here, the responses of aerosol particles to heating are important for measurements of their chemical, physical, and optical properties, classification, and determination of origin. However, the thermal behavior of organic aerosol particles is largely unknown. We provide a method to analyze such thermal behavior through heating from room temperature to >600°C by using a heating holder within a transmission electron microscope (TEM). Here we describe in-situ shape and size changes and variations in the compositions of individual particles before and after heating. We use ambient samples from wildland and agricultural biomass fires in North America collected during the 2013 Biomassmore » Burn Observation Project (BBOP). The results indicate that individual tar balls (TB; spherical organic material) from biomass burning retained, on average, up to 30% of their volume when heated to 600°C. Chemical analysis reveals that K and Na remain in the residues, whereas S and O were lost. In contrast to bulk sample measurements of carbonaceous particles using thermal/optical carbon analyzers, our single-particle results imply that many individual organic particles consist of multiple types of organic matter having different thermal stabilities. Beyond TBs, our results suggest that because of their thermal stability some organic particles may not be detectable by using aerosol mass spectrometry or thermal/optical carbon analyzers. This result can lead to an underestimate of the abundance of TBs and other organic particles, and therefore biomass burning may have more influence than currently recognized in regional and global climate models.« less

  1. Volume changes upon heating of aerosol particles from biomass burning using transmission electron microscopy

    DOE PAGES

    Adachi, Kouji; Sedlacek, Arthur J.; Kleinman, Lawrence; ...

    2017-09-26

    Here, the responses of aerosol particles to heating are important for measurements of their chemical, physical, and optical properties, classification, and determination of origin. However, the thermal behavior of organic aerosol particles is largely unknown. We provide a method to analyze such thermal behavior through heating from room temperature to >600°C by using a heating holder within a transmission electron microscope (TEM). Here we describe in-situ shape and size changes and variations in the compositions of individual particles before and after heating. We use ambient samples from wildland and agricultural biomass fires in North America collected during the 2013 Biomassmore » Burn Observation Project (BBOP). The results indicate that individual tar balls (TB; spherical organic material) from biomass burning retained, on average, up to 30% of their volume when heated to 600°C. Chemical analysis reveals that K and Na remain in the residues, whereas S and O were lost. In contrast to bulk sample measurements of carbonaceous particles using thermal/optical carbon analyzers, our single-particle results imply that many individual organic particles consist of multiple types of organic matter having different thermal stabilities. Beyond TBs, our results suggest that because of their thermal stability some organic particles may not be detectable by using aerosol mass spectrometry or thermal/optical carbon analyzers. This result can lead to an underestimate of the abundance of TBs and other organic particles, and therefore biomass burning may have more influence than currently recognized in regional and global climate models.« less

  2. Kinetics of heterogeneous reactions of HO2 radical at ambient concentration levels with (NH4)2SO4 and NaCl aerosol particles.

    PubMed

    Taketani, Fumikazu; Kanaya, Yugo; Akimoto, Hajime

    2008-03-20

    The HO2 uptake coefficient (gamma) for inorganic submicrometer wet and dry aerosol particles ((NH4)2SO4 and NaCl) under ambient conditions (760 Torr and 296 +/- 2 K) was measured using an aerosol flow tube (AFT) coupled with a chemical conversion/laser-induced fluorescence (CC/LIF) technique. The CC/LIF technique enabled experiments to be performed at almost the same HO2 radical concentration as that in the atmosphere. HO2 radicals were injected into the AFT through a vertically movable Pyrex tube. Injector position-dependent profiles of LIF intensity were measured as a function of aerosol concentration. Measured gamma values for dry aerosols of (NH4)2SO4 were 0.04 +/- 0.02 and 0.05 +/- 0.02 at 20% and 45% relative humidity (RH), respectively, while those of NaCl were <0.01 and 0.02 +/- 0.01 at 20% and 53% RH, respectively. For wet (NH4)2SO4 aerosols, measured gamma values were 0.11 +/- 0.03, 0.15 +/- 0.03, 0.17 +/- 0.04, and 0.19 +/- 0.04, at 45%, 55%, 65%, and 75% RH, respectively, whereas for wet NaCl aerosols the values were 0.11 +/- 0.03, 0.09 +/- 0.02, and 0.10 +/- 0.02 for 53%, 63%, and 75% RH, respectively. Wet (NH4)2SO4 and NaCl aerosols doped with CuSO4 showed gamma values of 0.53 +/- 0.12 and 0.65 +/- 0.17, respectively. These results suggest that compositions, RH, and phase for aerosol particles are significant to HO2 uptake. Potential HO2 loss processes and their atmospheric contributions are discussed.

  3. Concentrations and size distributions of fine aerosol particles measured at roof level in urban zone

    NASA Astrophysics Data System (ADS)

    Despiau, S.; Croci, D.

    2007-05-01

    During the experimental Field Experiments to Constrain Models of Atmospheric Pollution and Transport of Emissions (ESCOMPTE) campaign in June-July 2001, concentrations and size distributions of fine particles (14-722 nm) were measured at roof level in downtown Marseille (France). Part of the campaign was dedicated to the study of aerosol behavior in relation to strong photochemical events (which were identified as "IOP" days) and their regional modeling. The analysis of the concentration variations and the evolution of average diurnal size distribution showed that an "IOP day" is not characterized by a specific concentration or its variation, nor by a specific evolution of the average size distribution. The morning traffic rush is detected at roof level by a net increase in particle concentration over the whole size range measured, indicating a production of ultrafine particles by the traffic but also the raising to roof level of particles of the accumulation mode. The increase is observed about 1 hour after the traffic peak at street level, which is characterized by strong increases in NOx and CO concentrations. The corresponding flux of particles at roof level has been estimated around 3 × 104 cm-2 s-1. A specific signature characterized by a strong and rapid burst of concentration (factor 2 to 4 in 15 min) of particles between 25 and 50 nm, independent of the traffic source, has been detected on six occasions during the campaign. These events occur systematically around noon, in cases of strong radiation, low relative humidity, and common wind direction. Despite the high-diameter value of these particles, it is suggested that they could result from a specific "secondary aerosol process" event involving ozone, biogenic, and/or anthropogenic gas precursors like iodine and VOCs.

  4. Spatial and temporal variations of aerosols around Beijing in summer 2006: 2. Local and column aerosol optical properties

    NASA Astrophysics Data System (ADS)

    Matsui, H.; Koike, M.; Kondo, Y.; Takegawa, N.; Fast, J. D.; PöSchl, U.; Garland, R. M.; Andreae, M. O.; Wiedensohler, A.; Sugimoto, N.; Zhu, T.

    2010-11-01

    Model calculations were conducted using the Weather Research and Forecasting model coupled with chemistry (WRF-chem) for the region around Beijing, China, in the summer of 2006, when the CAREBeijing-2006 intensive campaign was conducted. In this paper, we interpret aerosol optical properties in terms of aerosol mass concentrations and their chemical compositions by linking model calculations with measurements. The model calculations generally captured the observed variability of various surface and column aerosol optical parameters in and around Beijing. At the surface, the spatial and temporal variations of aerosol absorption and scattering coefficients corresponded well to those of elemental carbon and sulfate mass concentrations, respectively, and were controlled by local-scale (<100 km and <24 hours) and regional-scale (<500 km and <3 days) emissions, respectively. The contribution of secondary aerosols and their water uptake increased with altitude within the planetary boundary layer. This variation led to a considerable increase in column aerosol optical depth and was responsible for the differences in regional and temporal variations between surface and column aerosol optical properties around Beijing. These processes are expected to be common in other megacity regions as well. Model calculations, however, underestimated or overestimated the absolute levels of aerosol optical properties in and around Beijing by up to 60%. Sensitivity studies showed that these discrepancies were mostly due to the uncertainties in aerosol mixing state and aerosol density (affecting mass extinction efficiency) in the model calculations. Good agreement with measurements is achieved when these aerosol properties are accurately predicted or assumed; however, significant bias can result when these properties are inadequately treated, even if total aerosol mass concentrations are reproduced well in the model calculations.

  5. Missing ozone-induced potential aerosol formation in a suburban deciduous forest

    NASA Astrophysics Data System (ADS)

    Nakayama, T.; Kuruma, Y.; Matsumi, Y.; Morino, Y.; Sato, K.; Tsurumaru, H.; Ramasamy, S.; Sakamoto, Y.; Kato, S.; Miyazaki, Y.; Mochizuki, T.; Kawamura, K.; Sadanaga, Y.; Nakashima, Y.; Matsuda, K.; Kajii, Y.

    2017-12-01

    As a new approach to investigating formation processes of secondary organic aerosol (SOA) in the atmosphere, ozone-induced potential aerosol formation was measured in summer at a suburban forest site surrounded by deciduous trees, near Tokyo, Japan. After passage through a reactor containing high concentrations of ozone, increases in total particle volume (average of 1.4 × 109 nm3/cm3, which corresponds to 17% that of pre-existing particles) were observed, especially during daytime. The observed aerosol formations were compared with the results of box model simulations using simultaneously measured concentrations of gaseous and particulate species. According to the model, the relative contributions of isoprene, monoterpene, and aromatic hydrocarbon oxidation to SOA formation in the reactor were 24, 21, and 55%, respectively. However, the model could explain, on average, only ∼40% of the observed particle formation, and large discrepancies between the observations and model were found, especially around noon and in the afternoon when the concentrations of isoprene and oxygenated volatile organic compounds were high. The results suggest a significant contribution of missing (unaccounted-for) SOA formation processes from identified and/or unidentified volatile organic compounds, especially those emitted during daytime. Further efforts should be made to explore and parameterize this missing SOA formation to assist in the improvement of atmospheric chemistry and climate models.

  6. Hourly elemental concentrations in PM2.5 aerosols sampled simultaneously at urban background and road site during SAPUSS - diurnal variations and PMF receptor modelling

    NASA Astrophysics Data System (ADS)

    Dall'Osto, M.; Querol, X.; Amato, F.; Karanasiou, A.; Lucarelli, F.; Nava, S.; Calzolai, G.; Chiari, M.

    2013-04-01

    Hourly-resolved aerosol chemical speciation data can be a highly powerful tool to determine the source origin of atmospheric pollutants in urban environments. Aerosol mass concentrations of seventeen elements (Na, Mg, Al, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Sr and Pb) were obtained by time (1 h) and size (PM2.5 particulate matter < 2.5 μm) resolved aerosol samples analysed by Particle Induced X-ray Emission (PIXE) measurements. In the Marie Curie European Union framework of SAPUSS (Solving Aerosol Problems by Using Synergistic Strategies), the approach used is the simultaneous sampling at two monitoring sites in Barcelona (Spain) during September-October 2010: an urban background site (UB) and a street canyon traffic road site (RS). Elements related to primary non-exhaust traffic emission (Fe, Cu), dust resuspension (Ca) and anthropogenic Cl were found enhanced at the RS, whereas industrial related trace metals (Zn, Pb, Mn) were found at higher concentrations at the more ventilated UB site. When receptor modelling was performed with positive matrix factorization (PMF), nine different aerosol sources were identified at both sites: three types of regional aerosols (regional sulphate (S) - 27%, biomass burning (K) - 5%, sea salt (Na-Mg) - 17%), three types of dust aerosols (soil dust (Al-Ti) - 17%, urban crustal dust (Ca) - 6%, and primary traffic non-exhaust brake dust (Fe-Cu) - 7%), and three types of industrial aerosol plumes-like events (shipping oil combustion (V-Ni) - 17%, industrial smelters (Zn-Mn) - 3%, and industrial combustion (Pb-Cl) - 5%, percentages presented are average source contributions to the total elemental mass measured). The validity of the PMF solution of the PIXE data is supported by very good correlations with external single particle mass spectrometry measurements. Some important conclusions can be drawn about the PM2.5 mass fraction simultaneously measured at the UB and RS sites: (1) the regional aerosol sources impact both

  7. Sugars in Antarctic aerosol

    NASA Astrophysics Data System (ADS)

    Barbaro, Elena; Kirchgeorg, Torben; Zangrando, Roberta; Vecchiato, Marco; Piazza, Rossano; Barbante, Carlo; Gambaro, Andrea

    2015-10-01

    The processes and transformations occurring in the Antarctic aerosol during atmospheric transport were described using selected sugars as source tracers. Monosaccharides (arabinose, fructose, galactose, glucose, mannose, ribose, xylose), disaccharides (sucrose, lactose, maltose, lactulose), alcohol-sugars (erythritol, mannitol, ribitol, sorbitol, xylitol, maltitol, galactitol) and anhydrosugars (levoglucosan, mannosan and galactosan) were measured in the Antarctic aerosol collected during four different sampling campaigns. For quantification, a sensitive high-pressure anion exchange chromatography was coupled with a single quadrupole mass spectrometer. The method was validated, showing good accuracy and low method quantification limits. This study describes the first determination of sugars in the Antarctic aerosol. The total mean concentration of sugars in the aerosol collected at the ;Mario Zucchelli; coastal station was 140 pg m-3; as for the aerosol collected over the Antarctic plateau during two consecutive sampling campaigns, the concentration amounted to 440 and 438 pg m-3. The study of particle-size distribution allowed us to identify the natural emission from spores or from sea-spray as the main sources of sugars in the coastal area. The enrichment of sugars in the fine fraction of the aerosol collected on the Antarctic plateau is due to the degradation of particles during long-range atmospheric transport. The composition of sugars in the coarse fraction was also investigated in the aerosol collected during the oceanographic cruise.

  8. Supercritical Fluid Extraction and Analysis of Tropospheric Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Hansen, Kristen J.

    An integrated sampling and supercritical fluid extraction (SFE) cell has been designed for whole-sample analysis of organic compounds on tropospheric aerosol particles. The low-volume extraction cell has been interfaced with a sampling manifold for aerosol particle collection in the field. After sample collection, the entire SFE cell was coupled to a gas chromatograph; after on-line extraction, the cryogenically -focused sample was separated and the volatile compounds detected with either a mass spectrometer or a flame ionization detector. A 20-minute extraction at 450 atm and 90 ^circC with pure supercritical CO _2 is sufficient for quantitative extraction of most volatile compounds in aerosol particle samples. A comparison between SFE and thermal desorption, the traditional whole-sample technique for analyses of this type, was performed using ambient aerosol particle samples, as well as samples containing known amounts of standard analytes. The results of these studies indicate that SFE of atmospheric aerosol particles provides quantitative measurement of several classes of organic compounds. SFE provides information that is complementary to that gained by the thermal desorption analysis. The results also indicate that SFE with CO _2 can be validated as an alternative to thermal desorption for quantitative recovery of several organic compounds. In 1989, the organic constituents of atmospheric aerosol particles collected at Niwot Ridge, Colorado, along with various physical and meteorological data, were measured during a collaborative field study. Temporal changes in the composition of samples collected during summertime at the rural site were studied. Thermal desorption-GC/FID was used to quantify selected compounds in samples collected during the field study. The statistical analysis of the 1989 Niwot Ridge data set is presented in this work. Principal component analysis was performed on thirty-one variables selected from the data set in order to ascertain

  9. Measurements of Semi-volatile Aerosol and Its Effect on Aerosol Optical Properties During Southern Oxidant and Aerosol Study

    NASA Astrophysics Data System (ADS)

    Khlystov, A.; Grieshop, A. P.; Saha, P.; Subramanian, R.

    2013-12-01

    Semi-volatile compounds, including particle-bound water, comprise a large part of aerosol mass and have a significant influence on aerosol lifecycle and its optical properties. Understanding the properties of semi-volatile compounds, especially those pertaining to gas/aerosol partitioning, is of critical importance for our ability to predict concentrations and properties of ambient aerosol. A set of state-of-the-art instruments was deployed at the SEARCH site near Centerville, AL during the Southern Oxidant and Aerosol Study (SOAS) campaign in summer 2013 to measure the effect of temperature and relative humidity on aerosol size distribution, composition and optical properties. Light scattering and absorption by temperature- and humidity-conditioned aerosols was measured using three photo-acoustic extinctiometers (PAX) at three wavelengths (405 nm, 532 nm, and 870 nm). In parallel to these measurements, a long residence time temperature-stepping thermodenuder and a variable residence time constant temperature thermodenuder in combination with three SMPS systems and an Aerosol Chemical Speciation Monitor (ACSM) were used to assess aerosol volatility and kinetics of aerosol evaporation. It was found that both temperature and relative humidity have a strong effect on aerosol optical properties. The variable residence time thermodenuder data suggest that aerosol equilibrated fairly quickly, within 2 s, in contrast to other ambient observations. Preliminary analysis show that approximately 50% and 90% of total aerosol mass evaporated at temperatures of 100 C and 180C, respectively. Evaporation varied substantially with ambient aerosol loading and composition and meteorology. During course of this study, T50 (temperatures at which 50% aerosol mass evaporates) varied from 60 C to more than 120 C.

  10. Direct gravimetric measurements of the mass of the antarctic aerosol collected by high volume sampler: PM10 summer seasonal variation at Terra Nova Bay.

    PubMed

    Truzzi, Cristina; Lambertucci, Luca; Illuminati, Silvia; Annibaldi, Anna; Scarponi, Giuseppe

    2005-01-01

    An on-site procedure was set up for direct gravimetric measurement of the mass of aerosol collected using high volume impactors (aerodynamic size cut point of 10 microm, PM10); this knowledge has hitherto been unavailable. Using a computerized microbalance in a clean chemistry laboratory, under controlled temperature (+/-0.5 degrees C) and relative humidity (+/-1%), continuous, long time filter mass measurements (hours) were carried out before and after exposure, after a 48 h minimun equilibration at the laboratory conditions. The effect of the electrostatic charge was exhausted in 30-60 min, after which stable measurements were obtained. Measurements of filters exposed for 7-11 days (1.13 m3 min(-1)) in a coastal site near Terra Nova Bay (December 2000 - February 2001), gave results for aerosol mass in the order of 10-20 mg (SD approximately 2 mg), corresponding to atmospheric concentrations of 0.52-1.27 microg m(-3). Data show a seasonal behaviour in the PM10 content with an increase during December - early January, followed by a net decrease. The above results compare well with estimates obtained from proxy data for the Antarctic Peninsula (0.30 microg m(-3)), the Ronne Ice Shelf (1.49 microg m(-3)), and the South Pole (0.18 microg m(-3), summer 1974-1975, and 0.37 microg m(-3), average summer seasons 1975-1976 and 1977-1978), and from direct gravimetric measurements recently obtained from medium volume samplers at McMurdo station (downwind 3.39 microg m(-3), upwind 4.15 microg m(-3)) and at King George Island (2.5 microg m(-3), summer, particle diameter <20 microm). This finding opens the way to the direct measurement of the chemical composition of the Antarctic aerosol and, in turn, to a better knowledge of the snow/air relationships as required for the reconstruction of the chemical composition of past atmospheres from deep ice core data.

  11. Atmospheric aerosols: Their Optical Properties and Effects (supplement)

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A digest of technical papers is presented. Topics include aerosol size distribution from spectral attenuation with scattering measurements; comparison of extinction and backscattering coefficients for measured and analytic stratospheric aerosol size distributions; using hybrid methods to solve problems in radiative transfer and in multiple scattering; blue moon phenomena; absorption refractive index of aerosols in the Denver pollution cloud; a two dimensional stratospheric model of the dispersion of aerosols from the Fuego volcanic eruption; the variation of the aerosol volume to light scattering coefficient; spectrophone in situ measurements of the absorption of visible light by aerosols; a reassessment of the Krakatoa volcanic turbidity, and multiple scattering in the sky radiance.

  12. Tropospheric Aerosols

    NASA Astrophysics Data System (ADS)

    Buseck, P. R.; Schwartz, S. E.

    2003-12-01

    It is widely believed that "On a clear day you can see forever," as proclaimed in the 1965 Broadway musical of the same name. While an admittedly beautiful thought, we all know that this concept is only figurative. Aside from Earth's curvature and Rayleigh scattering by air molecules, aerosols - colloidal suspensions of solid or liquid particles in a gas - limit our vision. Even on the clearest day, there are billions of aerosol particles per cubic meter of air.Atmospheric aerosols are commonly referred to as smoke, dust, haze, and smog, terms that are loosely reflective of their origin and composition. Aerosol particles have arisen naturally for eons from sea spray, volcanic emissions, wind entrainment of mineral dust, wildfires, and gas-to-particle conversion of hydrocarbons from plants and dimethylsulfide from the oceans. However, over the industrial period, the natural background aerosol has been greatly augmented by anthropogenic contributions, i.e., those produced by human activities. One manifestation of this impact is reduced visibility (Figure 1). Thus, perhaps more than in other realms of geochemistry, when considering the composition of the troposphere one must consider the effects of these activities. The atmosphere has become a reservoir for vast quantities of anthropogenic emissions that exert important perturbations on it and on the planetary ecosystem in general. Consequently, much recent research focuses on the effects of human activities on the atmosphere and, through them, on the environment and Earth's climate. For these reasons consideration of the geochemistry of the atmosphere, and of atmospheric aerosols in particular, must include the effects of human activities. (201K)Figure 1. Impairment of visibility by aerosols. Photographs at Yosemite National Park, California, USA. (a) Low aerosol concentration (particulate matter of aerodynamic diameter less than 2.5 μm, PM2.5=0.3 μg m-3; particulate matter of aerodynamic diameter less than 10

  13. Identifying Aerosol Type/Mixture from Aerosol Absorption Properties Using AERONET

    NASA Technical Reports Server (NTRS)

    Giles, D. M.; Holben, B. N.; Eck, T. F.; Sinyuk, A.; Dickerson, R. R.; Thompson, A. M.; Slutsker, I.; Li, Z.; Tripathi, S. N.; Singh, R. P.; hide

    2010-01-01

    Aerosols are generated in the atmosphere through anthropogenic and natural mechanisms. These sources have signatures in the aerosol optical and microphysical properties that can be used to identify the aerosol type/mixture. Spectral aerosol absorption information (absorption Angstrom exponent; AAE) used in conjunction with the particle size parameterization (extinction Angstrom exponent; EAE) can only identify the dominant absorbing aerosol type in the sample volume (e.g., black carbon vs. iron oxides in dust). This AAE/EAE relationship can be expanded to also identify non-absorbing aerosol types/mixtures by applying an absorption weighting. This new relationship provides improved aerosol type distinction when the magnitude of absorption is not equal (e.g, black carbon vs. sulfates). The Aerosol Robotic Network (AERONET) data provide spectral aerosol optical depth and single scattering albedo - key parameters used to determine EAE and AAE. The proposed aerosol type/mixture relationship is demonstrated using the long-term data archive acquired at AERONET sites within various source regions. The preliminary analysis has found that dust, sulfate, organic carbon, and black carbon aerosol types/mixtures can be determined from this AAE/EAE relationship when applying the absorption weighting for each available wavelength (Le., 440, 675, 870nm). Large, non-spherical dust particles absorb in the shorter wavelengths and the application of 440nm wavelength absorption weighting produced the best particle type definition. Sulfate particles scatter light efficiently and organic carbon particles are small near the source and aggregate over time to form larger less absorbing particles. Both sulfates and organic carbon showed generally better definition using the 870nm wavelength absorption weighting. Black carbon generation results from varying combustion rates from a number of sources including industrial processes and biomass burning. Cases with primarily black carbon showed

  14. [Size distributions of aerosol during the Spring Festival in Nanjing].

    PubMed

    Wang, Hong-Lei; Zhu, Bin; Shen, Li-Juan; Liu, Xiao-Hui; Zhang, Ze-Feng; Yang, Yang

    2014-02-01

    In order to investigate the firework burning impacts on spectrum distribution of atmospheric aerosol during the Spring Festival in Nanjing, number concentration and mass concentration of aerosol as well as mass concentration of gas pollutants were measured during January 19-31, 2012. The results indicated that the concentration of aerosol between 10-20 nm decreased, aerosol concentration in the range of 50-100 nm, 100-200 nm and 200-500 nm increased during the firework burning period comparing to those during the non-burning period. However, there was no obvious variation for aerosol between 20-50 nm and 0.5-10 microm. The spectrum distribution of number concentration was bimodal during the non-burning period and unimodal during the burning period, with the peak value shifting to large diameter section. The mass concentration presented a bimodal distribution, the value of PM2.5/PM10 and PM10/PM10 increased by 10% during the burning period. The firework burning events had big influence on the density of aerosol between 1.0-2.1 microm.

  15. CCN Activity of Organic Aerosols Observed Downwind of Urban Emissions during CARES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mei, Fan; Setyan, Ari; Zhang, Qi

    2013-12-17

    During the Carbonaceous Aerosols and Radiative Effects Study (CARES), activation fraction of size-resolved aerosol particles and aerosol chemical composition were characterized at the T1 site (~60 km downwind of Sacramento, California) from 10 June to 28 June 2010. The hygroscopicity of CCN-active particles (K CCN) with diameter from 100 to 170 nm, derived from the size-resolved activated fraction, varied from 0.10 to 0.21, with an average of 0.15, which was substantially lower than that proposed for continental sites in earlier studies. The low K CCN value was due to the high organic volume fraction, averaged over 80% at the T1more » site. The derived K CCN exhibited little diurnal variation, consistent with the relatively constant organic volume fraction observed. At any time, over 90% of the size selected particles with diameter between 100 and 171nm were CCN active, suggesting most particles within this size range were aged background particles. Due to the large organic volume fraction, organic hygroscopicity (K org) strongly impacted particle hygroscopicity and therefore calculated CCN concentration. For vast majority of the cases, an increase of K org from 0.03 to 0.18, which are within the typical range, doubled the calculated CCN concentration. Organic hygroscopicity was derived from K CCN and aerosol chemical composition, and its variations with the fraction of total organic mass spectral signal at m/z 44 (f 44) and O:C were compared to results from previous studies. Overall, the relationships between K org and f 44 are quite consistent for organic aerosol (OA) observed during field studies and those formed in smog chamber. Compared to the relationship between K org and f 44, the relationship between K org and O:C exhibits more significant differences among different studies, suggesting korg may be better parameterized using f 44. A least squares fit yielded K org = 2.10 (±0.07) × f 44 -0.11 (±0.01) with the Pearson R 2 value of 0.71. One possible

  16. Using the OMI Aerosol Index and Absorption Aerosol Optical Depth to evaluate the NASA MERRA Aerosol Reanalysis

    NASA Astrophysics Data System (ADS)

    Buchard, V.; da Silva, A. M.; Colarco, P. R.; Darmenov, A.; Randles, C. A.; Govindaraju, R.; Torres, O.; Campbell, J.; Spurr, R.

    2014-12-01

    A radiative transfer interface has been developed to simulate the UV Aerosol Index (AI) from the NASA Goddard Earth Observing System version 5 (GEOS-5) aerosol assimilated fields. The purpose of this work is to use the AI and Aerosol Absorption Optical Depth (AAOD) derived from the Ozone Monitoring Instrument (OMI) measurements as independent validation for the Modern Era Retrospective analysis for Research and Applications Aerosol Reanalysis (MERRAero). MERRAero is based on a version of the GEOS-5 model that is radiatively coupled to the Goddard Chemistry, Aerosol, Radiation, and Transport (GOCART) aerosol module and includes assimilation of Aerosol Optical Depth (AOD) from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. Since AI is dependent on aerosol concentration, optical properties and altitude of the aerosol layer, we make use of complementary observations to fully diagnose the model, including AOD from the Multi-angle Imaging SpectroRadiometer (MISR), aerosol retrievals from the Aerosol Robotic Network (AERONET) and attenuated backscatter coefficients from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) mission to ascertain potential misplacement of plume height by the model. By sampling dust, biomass burning and pollution events in 2007 we have compared model produced AI and AAOD with the corresponding OMI products, identifying regions where the model representation of absorbing aerosols was deficient. As a result of this study over the Saharan dust region, we have obtained a new set of dust aerosol optical properties that retains consistency with the MODIS AOD data that were assimilated, while resulting in better agreement with aerosol absorption measurements from OMI. The analysis conducted over the South African and South American biomass burning regions indicates that revising the spectrally-dependent aerosol absorption properties in the near-UV region improves the modeled-observed AI comparisons

  17. Using the OMI aerosol index and absorption aerosol optical depth to evaluate the NASA MERRA Aerosol Reanalysis

    NASA Astrophysics Data System (ADS)

    Buchard, V.; da Silva, A. M.; Colarco, P. R.; Darmenov, A.; Randles, C. A.; Govindaraju, R.; Torres, O.; Campbell, J.; Spurr, R.

    2015-05-01

    A radiative transfer interface has been developed to simulate the UV aerosol index (AI) from the NASA Goddard Earth Observing System version 5 (GEOS-5) aerosol assimilated fields. The purpose of this work is to use the AI and aerosol absorption optical depth (AAOD) derived from the Ozone Monitoring Instrument (OMI) measurements as independent validation for the Modern Era Retrospective analysis for Research and Applications Aerosol Reanalysis (MERRAero). MERRAero is based on a version of the GEOS-5 model that is radiatively coupled to the Goddard Chemistry, Aerosol, Radiation, and Transport (GOCART) aerosol module and includes assimilation of aerosol optical depth (AOD) from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. Since AI is dependent on aerosol concentration, optical properties and altitude of the aerosol layer, we make use of complementary observations to fully diagnose the model, including AOD from the Multi-angle Imaging SpectroRadiometer (MISR), aerosol retrievals from the AErosol RObotic NETwork (AERONET) and attenuated backscatter coefficients from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) mission to ascertain potential misplacement of plume height by the model. By sampling dust, biomass burning and pollution events in 2007 we have compared model-produced AI and AAOD with the corresponding OMI products, identifying regions where the model representation of absorbing aerosols was deficient. As a result of this study over the Saharan dust region, we have obtained a new set of dust aerosol optical properties that retains consistency with the MODIS AOD data that were assimilated, while resulting in better agreement with aerosol absorption measurements from OMI. The analysis conducted over the southern African and South American biomass burning regions indicates that revising the spectrally dependent aerosol absorption properties in the near-UV region improves the modeled-observed AI comparisons

  18. The analysis of in situ and retrieved aerosol properties measured during three airborne field campaigns

    NASA Astrophysics Data System (ADS)

    Corr, Chelsea A.

    actinic flux (AF SSA) to those retrieved using ratios of direct and diffuse irradiance (DDR SSA) at four wavelengths: 332, 368, 415, and 500 mn. Both actinic flux and irradiance were measured atop the University of Houston's Moody Tower in Houston, TX as part of the Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) mission in September 2013. AF SSA values were consistently lower than DDR SSAs with largest offsets observed when aerosol optical depths was < ~0.2. AF SSA were also lower than those reported by the AErosol RObotic NETwork (AERONET) and column-averaged values calculated from aerosol scattering and absorption coefficients measured aboard the NASA P3-B aircraft at 450 and 550 nm. However, AAE values calculated from AF SSAs compared well to AERONET and column-averaged AAEs suggesting actinic flux retrievals can correctly resolve the spectral dependence of aerosol absorption. Recent work has suggested that mineral dust is the most important IN found in both anvil and synoptically formed cirrus clouds over North America. The vertical transport processes sustaining significant mineral dust in the upper troposphere (> 9 km) where these clouds form are not well understood, but deep convective systems (thunder storms) likely play a role. Bulk aerosol Ca2+ concentrations and volume size distributions were measured aboard the NASA DC-8 during the NCAR Deep Convective Clouds and Chemistry Experiment (DC-3) conducted in May/June 2012 in both the inflow and outflow regions of twelve isolated, high cloud base storms over CO and OK. Outflow/inflow ratios of both Ca2+ and total coarse (limn < diameter < 5 microm) aerosol volume (Vc)were high (> ~0.9) suggesting a significant fraction of ingested coarse mode dust was transported through these systems. Elevated Ca2+ and Vc in the outflow were most likely not artifacts of ice shattering given the general absence of a relationship between these

  19. The Potential of The Synergy of Sunphotometer and Lidar Data to Validate Vertical Profiles of The Aerosol Mass Concentration Estimated by An Air Quality Model

    NASA Astrophysics Data System (ADS)

    Siomos, N.; Filioglou, M.; Poupkou, A.; Liora, N.; Dimopoulos, S.; Melas, D.; Chaikovsky, A.; Balis, D. S.

    2016-06-01

    Vertical profiles of the aerosol mass concentration derived by the Lidar/Radiometer Inversion Code (LIRIC), that uses combined sunphotometer and lidar data, were used in order to validate the aerosol mass concentration profiles estimated by the air quality model CAMx. Lidar and CIMEL measurements performed at the Laboratory of Atmospheric Physics of the Aristotle University of Thessaloniki, Greece (40.5N, 22.9E) from the period 2013-2014 were used in this study.

  20. High Volume Air Sampling for Viral Aerosols: A Comparative Approach

    DTIC Science & Technology

    2010-03-01

    Solid Impaction Aerosol Collection (Verreault, 2008. Reproduced with Permission from American Society of Microbiology ) Liquid collection...Reproduced with Permission from American Society of Microbiology ) Filter aerosol collection is often more efficient than other sampling...collected using a crude filter consisting of a glass tube packed with dry cotton. Sample analysis was conducted by inoculating chicken embryos with

  1. Aerosol Chemical Composition and its Effects on Cloud-Aerosol Interactions during the 2007 CHAPS Experiment

    NASA Astrophysics Data System (ADS)

    Lee, Y.; Alexander, L.; Newburn, M.; Jayne, J.; Hubbe, J.; Springston, S.; Senum, G.; Andrews, B.; Ogren, J.; Kleinman, L.; Daum, P.; Berg, L.; Berkowitz, C.

    2007-12-01

    Chemical composition of submicron aerosol particles was determined using an Aerodyne Time-of-Flight Aerosol Mass Spectrometer (AMS) outfitted on the DOE G-1 aircraft during the Cumulus Humilis Aerosol Processing Study (CHAPS) conducted in Oklahoma City area in June 2007. The primary objective of CHAPS was to investigate the effects of urban emissions on cloud aerosol interactions as a function of processing of the emissions. Aerosol composition was typically determined at three different altitudes: below, in, and above cloud, in both upwind and downwind regions of the urban area. Aerosols were sampled from an isokinetic inlet with an upper size cut-off of ~1.5 micrometer. During cloud passages, the AMS also sampled particles that were dried from cloud droplets collected using a counter-flow virtual impactor (CVI) sampler. The aerosol mass concentrations were typically below 10 microgram per cubic meter, and were dominated by organics and sulfate. Ammonium was often less than required for complete neutralization of sulfate. Aerosol nitrate levels were very low. We noted that nitrate levels were significantly enhanced in cloud droplets compared to aerosols, most likely resulting from dissolution of gaseous nitric acid. Organic to sulfate ratios appeared to be lower in cloud droplets than in aerosols, suggesting cloud condensation nuclei properties of aerosol particles might be affected by loading and nature of the organic components in aerosols. In-cloud formation of sulfate was considered unimportant because of the very low SO2 concentration in the region. A detailed examination of the sources of the aerosol organic components (based on hydrocarbons determined using a proton transfer reaction mass spectrometer) and their effects on cloud formation as a function of atmospheric processing (based on the degree of oxidation of the organic components) will be presented.

  2. Distribution and radiative forcing of Asian dust and anthropogenic aerosols from East Asia simulated by SPRINTARS

    NASA Astrophysics Data System (ADS)

    Takemura, T.; Nakajima, T.; Uno, I.

    2002-12-01

    A three-dimensional aerosol transport-radiation model, SPRINTARS (Spectral Radiation-Transport Model for Aerosol Species), has been developed based on an atmospheric general circulation model of the Center for Climate System Research, University of Tokyo/National Institute for Environmental Studies, Japan to research the effects of aerosols on the climate system and atmospheric environment. SPRINTARS successfully simulates the long-range transport of the large-scale Asian dust storms from East Asia to North America by crossing the North Pacific Ocean in springtime 2001 and 2002. It is found from the calculated dust optical thickness that 10 to 20% of Asian dust around Japan reached North America. The simulation also reveals the importance of anthropogenic aerosols, which are carbonaceous and sulfate aerosols emitted from the industrialized areas in the East Asian continent, to air turbidity during the large-scale Asian dust storms. The simulated results are compared with a volume of observation data regarding the aerosol characteristics over East Asia in the spring of 2001 acquired by the intensive observation campaigns of ACE-Asia (Asian Pacific Regional Aerosol Characterization Experiment) and APEX (Asian Atmospheric Particulate Environmental Change Studies). The comparisons are carried out not only for aerosol concentrations but also for aerosol optical properties, such as optical thickness, Angstrom exponent which is a size index calculated by the log-slope exponent of the optical thickness between two wavelengths, and single scattering albedo. The consistence of Angstrom exponent between the simulation and observations means the reasonable simulation of the ratio of anthropogenic aerosols to Asian dust, which supports the suggestion by the simulation on the importance of anthropogenic aerosols to air turbidity during the large-scale Asian dust storms. SPRINTARS simultaneously calculates the aerosol direct and indirect radiative forcings. The direct radiative

  3. In Situ Aerosol Detector

    NASA Technical Reports Server (NTRS)

    Vakhtin, Andrei; Krasnoperov, Lev

    2011-01-01

    An affordable technology designed to facilitate extensive global atmospheric aerosol measurements has been developed. This lightweight instrument is compatible with newly developed platforms such as tethered balloons, blimps, kites, and even disposable instruments such as dropsondes. This technology is based on detection of light scattered by aerosol particles where an optical layout is used to enhance the performance of the laboratory prototype instrument, which allows detection of smaller aerosol particles and improves the accuracy of aerosol particle size measurement. It has been determined that using focused illumination geometry without any apertures is advantageous over using the originally proposed collimated beam/slit geometry (that is supposed to produce uniform illumination over the beam cross-section). The illumination source is used more efficiently, which allows detection of smaller aerosol particles. Second, the obtained integral scattered light intensity measured for the particle can be corrected for the beam intensity profile inhomogeneity based on the measured beam intensity profile and measured particle location. The particle location (coordinates) in the illuminated sample volume is determined based on the information contained in the image frame. The procedure considerably improves the accuracy of determination of the aerosol particle size.

  4. Dependency of black-carbon-induced atmospheric warming on the concentration of sulphate and organic aerosols

    NASA Astrophysics Data System (ADS)

    Kim, S.; Yoon, S.; in-Jin, C.; Ramanathan, V.; Ramana, M.

    2010-12-01

    Previous modeling studies have showed that the net radiative effect of black carbon (BC) and organic aerosols generated by fossil-fuel combustion and biomass-fuel cooking contribute to a warming by absorbing solar radiation, and the warming effect of fossil-fuel BC is larger than that of biomass-fuel cooking [Ramana et al., Nature Geoscience, 2010]. However, the extent of BC warming is regulated by the ambient concentrations of sulphate and organic carbon (OC) aerosols, which reflect the solar radiation and cool the surface, thus enhancing the net warming caused by BC and GHGs. This is because the major sources of BC also emit CO2 and other greenhouse gases (GHGs) (that warm the climate), and sulfates, nitrates, organics and other particles (that cool the climate). In this study, we present the impact of BC-to-sulphate and BC-to-OC ratios on atmospheric warming on the basis of surface-based filter and in-situ measurements at Gosan climate observatory in Jeju, South Korea and radiative transfer calculations with AERONET Cimel sun/sky radiometer and micro-pulse lidar measurements as a model input. We investigate (1) BC-to-sulphate and BC-to-OC ratios, (2) aerosol solar-absorption efficiency (i.e., co-single scattering albedo) and (3) corresponding atmospheric direct radiative forcing and heating rate of aerosol plumes from N. China (Beijing), S. China (Shanghai) and clean marine sources during ACE-Asia (April-May 2001), ABC-EAREX2005 (March-April 2005) and CAMPEX (August-September 2008), and discuss their relationships.

  5. Properties of Arctic Aerosol Particles and Residuals of Warm Clouds: Cloud Activation Efficiency and the Aerosol Indirect Effect

    NASA Astrophysics Data System (ADS)

    Zelenyuk, A.; Imre, D. G.; Leaitch, R.; Ovchinnikov, M.; Liu, P.; Macdonald, A.; Strapp, W.; Ghan, S. J.; Earle, M. E.

    2012-12-01

    Single particle mass spectrometer, SPLAT II, was used to characterize the size, composition, number concentration, density, and shape of individual Arctic spring aerosol. Background particles, particles above and below the cloud, cloud droplet residuals, and interstitial particles were characterized with goal to identify the properties that separate cloud condensation nuclei (CCN) from background aerosol particles. The analysis offers a comparison between warm clouds formed on clean and polluted days, with clean days having maximum particle concentrations (Na) lower than ~250 cm-3, as compared with polluted days, in which maximum concentration was tenfold higher. On clean days, particles were composed of organics, organics mixed with sulfates, biomass burning (BB), sea salt (SS), and few soot and dust particles. On polluted days, BB, organics associated with BB, and their mixtures with sulfate dominated particle compositions. Based on the measured compositions and size distributions of cloud droplet residuals, background aerosols, and interstitial particles, we conclude that these three particle types had virtually the same compositions, which means that cloud activation probabilities were surprisingly nearly composition independent. Moreover, these conclusions hold in cases in which less than 20% or more than 90% of background particles got activated. We concluded that for the warm clouds interrogated in this study particle size played a more important factor on aerosol CCN activity. Comparative analysis of all studied clouds reveals that aerosol activation efficiency strongly depends on the aerosol concentrations, such that at Na <200 cm-3, nearly all particles activate, and at higher concentrations the activation efficiency is lower. For example, when Na was greater than 1500 cm-3, less than ~30% of particles activated. The data suggest that as the number of nucleated droplets increases, condensation on existing droplets effectively competes with particle

  6. Study of aerosol behavior on the basis of morphological characteristics during festival events in India

    NASA Astrophysics Data System (ADS)

    Agrawal, Anubha; Upadhyay, Vinay K.; Sachdeva, Kamna

    2011-07-01

    Two important festival events were selected to assess their impacts on atmospheric chemistry by understanding settling velocity and emission time of aerosols. Using high volume sampler, aerosols were collected in a sequential manner to understand settling velocity and emission time of aerosols on a particular day. Composition and total suspended particulate load of the aerosols collected during the festivals were used as markers for strengthening the assessment. Terminal settling velocity of the aerosols were calculated using morphological and elemental compositional data, obtained from scanning electron microcopy (SEM) and energy dispersive X-ray (EDX) study. Aerosol load, black carbon, aromatic carbon and terminal velocity calculations were correlated to obtain conclusion that aerosols collected on the festival day might have been emitted prior to the festival. Settling time of aerosols collected on 17th and 19th October'09 during Diwali were found to be 36.5 (1.5 days) and 12.8 h, respectively. Carbon concentration estimated using EDX was found to be almost double in the sample collected after 2 days of the festival event. This strengthens our inference of time calculation where carbon with high concentration of load must have settled approximately after two days of the event. Settling time of aerosols collected on Holi morning and afternoon was found to be 1.7 and 24.8 h, respectively. Further, because of the small distance of 5.4 km between the meteorological station and sampling site, observed TSP values were compared with theoretical load values, calculated by using visibility values taken from the meteorological data. And it was found that both experimental and calculated values are close to each other about 50% of the times, which proves the assumption that experimental and meteorological data are comparable.

  7. New understanding and quantification of the regime dependence of aerosol-cloud interaction for studying aerosol indirect effects

    DOE PAGES

    Chen, Jingyi; Liu, Yangang; Zhang, Minghua; ...

    2016-02-28

    In this study, aerosol indirect effects suffer from large uncertainty in climate models and among observations. This study focuses on two plausible factors: regime dependence of aerosol-cloud interactions and the effect of cloud droplet spectral shape. We show, using a new parcel model, that combined consideration of droplet number concentration (N c) and relative dispersion (ε, ratio of standard deviation to mean radius of the cloud droplet size distribution) better characterizes the regime dependence of aerosol-cloud interactions than considering N c alone. Given updraft velocity (w), ε increases with increasing aerosol number concentration (N a) in the aerosol-limited regime, peaksmore » in the transitional regime, and decreases with further increasing N a in the updraft-limited regime. This new finding further reconciles contrasting observations in literature and reinforces the compensating role of dispersion effect. The nonmonotonic behavior of ε further quantifies the relationship between the transitional N a and w that separates the aerosol- and updraft-limited regimes.« less

  8. The Relationship between Aerosol Composition and Concentration and Visual Range on Barbados, West Indies: The Impact of African Dust

    NASA Astrophysics Data System (ADS)

    Huang, J.; Prospero, J.; Zhang, C.; Arimoto, R.

    2006-12-01

    Visual Range (VR) measured at Grantley Adams Airport on Barbados shows a very strong annual cycle with the minimum VR values occurring in June or July. This cycle closely matches the annual cycle of African dust concentrations measured in the trade winds at Barbados (13°15'N, 59°30'W) where observations first began in 1965. In winter, monthly mean VR was typically around 30 km or greater while in summer it frequently dipped below 20 km. This same clear signal is observed in the VR records from near-by islands where the same seasonal cycle of dust would be expected: St. Lucia, Martinique and Trinidad and Tobago. We examined the relationship between VR on Barbados and the concentrations of the three major aerosol constituents that we would expect to have the strongest influence on VR: mineral dust, sea salt, and non-sea- salt sulfate (nss-SO4^{=}). We used VR data for the period from 1973, when measurements first began, up to 2006. We found a large discrepancy between the observed VR at the airport and the VR derived from the Koschmieder equation using literature values for the optical properties of the aerosol components; this simple approach would require a much smaller constant than the commonly-used value, 3.912. We further explored the effects of particle size distribution and relative humidity. During boreal summer when VR is lowest, dust is the dominant supramicron aerosol component and it clearly is the major factor in controlling VR. Nonetheless the submicron fraction also has a comparable impact due to its significantly higher light scattering efficiency. During winter, when there is little or no dust, sea salt aerosol and sulfate are dominant. In this report we focus on the various factors that affect visibility on Barbados especially the role of aerosols dominated by supramicrometer particles. We also consider the effects of other factors such as wind speed and precipitation. Finally, we note that the close relationship between summertime VR and dust

  9. Concurrent Temporal and Spatial Trends in Sulfate and Organic Mass Concentrations Measured in the IMPROVE Monitoring Program

    NASA Astrophysics Data System (ADS)

    Malm, William C.; Schichtel, Bret A.; Hand, Jenny L.; Collett, Jeffrey L.

    2017-10-01

    Recent modeling and field studies have highlighted a relationship between sulfate concentrations and secondarily formed organic aerosols related to isoprene and other volatile biogenic gaseous emissions. The relationship between these biogenic emissions and sulfate is thought to be primarily associated with the effect of sulfate on aerosol acidity, increased aerosol water at high relative humidities, and aerosol volume. The Interagency Monitoring of Protected Visual Environments (IMPROVE) program provides aerosol concentration levels of sulfate (SO4) and organic carbon (OC) at 136 monitoring sites in rural and remote areas of the United States over time periods of between 15 and 28 years. This data set allows for an examination of relationships between these variables over time and space. The relative decreases in SO4 and OC were similar over most of the eastern United States, even though concentrations varied dramatically from one region to another. The analysis implied that for every unit decrease in SO4 there was about a 0.29 decrease in organic aerosol mass (OA = 1.8 × OC). This translated to a 2 μg/m3 decrease in biogenically derived secondary organic aerosol over 15 years in the southeastern United States. The analysis further implied that 35% and 27% in 2001 and 2015, respectively, of average total OA may be biogenically derived secondary organic aerosols and that there was a small but significant decrease in OA not linked to changes in SO4 concentrations. The analysis yields a constraint on ambient SO4-OC relationships that should help to refine and improve regional-scale chemical transport models.

  10. Characterization of Ambient Black Carbon Aerosols

    NASA Astrophysics Data System (ADS)

    Zhang, R.; Levy, M. E.; Zheng, J.; Molina, L. T.

    2013-12-01

    Because of the strong absorption over a broad range of the electromagnetic spectra, black carbon (BC) is a key short-lived climate forcer, which contributes significantly to climate change by direct radiative forcing and is the second most important component causing global warming after carbon dioxide. The impact of BC on the radiative forcing of the Earth-Atmosphere system is highly dependent of the particle properties. In this presentation, emphasis will be placed on characterizing BC containing aerosols in at the California-Mexico border to obtain a greater understanding of the atmospheric aging and properties of ambient BC aerosols. A comprehensive set of directly measured aerosol properties, including the particle size distribution, effective density, hygroscopicity, volatility, and several optical properties, will be discussed to quantify the mixing state and composition of ambient particles. In Tijuana, Mexico, submicron aerosols are strongly influenced by vehicle emissions; subsequently, the BC concentration in Tijuana is considerably higher than most US cities with an average BC concentration of 2.71 × 2.65 g cm-3. BC accounts for 24.75 % × 9.44 of the total submicron concentration on average, but periodically accounts for over 50%. This high concentration of BC strongly influences many observed aerosol properties such as single scattering albedo, hygroscopicity, effective density, and volatility.

  11. Reallocation in modal aerosol models: impacts on predicting aerosol radiative effects

    NASA Astrophysics Data System (ADS)

    Korhola, T.; Kokkola, H.; Korhonen, H.; Partanen, A.-I.; Laaksonen, A.; Lehtinen, K. E. J.; Romakkaniemi, S.

    2013-08-01

    In atmospheric modelling applications the aerosol particle size distribution is commonly represented by modal approach, in which particles in different size ranges are described with log-normal modes within predetermined size ranges. Such method includes numerical reallocation of particles from a mode to another for example during particle growth, leading to potentially artificial changes in the aerosol size distribution. In this study we analysed how this reallocation affects climatologically relevant parameters: cloud droplet number concentration, aerosol-cloud interaction coefficient and light extinction coefficient. We compared these parameters between a modal model with and without reallocation routines, and a high resolution sectional model that was considered as a reference model. We analysed the relative differences of the parameters in different experiments that were designed to cover a wide range of dynamic aerosol processes occurring in the atmosphere. According to our results, limiting the allowed size ranges of the modes and the following numerical remapping of the distribution by reallocation, leads on average to underestimation of cloud droplet number concentration (up to 100%) and overestimation of light extinction (up to 20%). The analysis of aerosol first indirect effect is more complicated as the ACI parameter can be either over- or underestimated by the reallocating model, depending on the conditions. However, for example in the case of atmospheric new particle formation events followed by rapid particle growth, the reallocation can cause around average 10% overestimation of the ACI parameter. Thus it is shown that the reallocation affects the ability of a model to estimate aerosol climate effects accurately, and this should be taken into account when using and developing aerosol models.

  12. Atmospheric Teleconnection over Eurasia Induced by Aerosol Radiative Forcing During Boreal Spring

    NASA Technical Reports Server (NTRS)

    Kim, Maeng-Ki; Lau, K. M.; Chin, Mian; Kim, Kyu-Myong; Sud, Y. C.; Walker, Greg K.

    2005-01-01

    The direct effects of aerosols on global and regional climate during boreal spring are investigated based on simulations using the NASA Global Modeling and Assimilation Office (GMAO) finite-volume general circulation model (fvGCM) with Microphyics of clouds in Relaxed Arakawa Schubert Scheme (McRAS). The aerosol loading are prescribed from three-dimensional monthly distribution of tropospheric aerosols viz., sulfate, black carbon, organic carbon, soil dust, and sea salt from output of the Goddard Ozone Chemistry Aerosol Radiation and Transport model (GOCART). The aerosol extinction coefficient, single scattering albedo, and asymmetric factor are computed as wavelength-dependent radiative forcing in the radiative transfer scheme of the fvGCM, and as a function of the aerosol loading and ambient relative humidity. We find that anomalous atmospheric heat sources induced by absorbing aerosols (dust and black carbon) excites a planetary scale teleconnection pattern in sea level pressure, temperature and geopotential height spanning North Africa through Eurasia to the North Pacific. Surface cooling due to direct effects of aerosols is found in the vicinity and downstream of the aerosol source regions, i.e., South Asia, East Asia, and northern and western Africa. Additionally, atmospheric heating is found in regions with large loading of dust (over Northern Africa, and Middle East), and black carbon (over South-East Asia). Paradoxically, the most pronounced feature in aerosol-induced surface temperature is an east-west dipole anomaly with strong cooling over the Caspian Sea, and warming over central and northeastern Asia, where aerosol concentration are low. Analyses of circulation anomalies show that the dipole anomaly is a part of an atmospheric teleconnection driven by atmospheric heating anomalies induced by absorbing aerosols in the source regions, but the influence was conveyed globally through barotropic energy dispersion and sustained by feedback processes

  13. Implementing marine organic aerosols into the GEOS-Chem model

    DOE PAGES

    Gantt, B.; Johnson, M. S.; Crippa, M.; ...

    2015-03-17

    Marine-sourced organic aerosols (MOAs) have been shown to play an important role in tropospheric chemistry by impacting surface mass, cloud condensation nuclei, and ice nuclei concentrations over remote marine and coastal regions. In this work, an online marine primary organic aerosol emission parameterization, designed to be used for both global and regional models, was implemented into the GEOS-Chem (Global Earth Observing System Chemistry) model. The implemented emission scheme improved the large underprediction of organic aerosol concentrations in clean marine regions (normalized mean bias decreases from -79% when using the default settings to -12% when marine organic aerosols are added). Modelmore » predictions were also in good agreement (correlation coefficient of 0.62 and normalized mean bias of -36%) with hourly surface concentrations of MOAs observed during the summertime at an inland site near Paris, France. Our study shows that MOAs have weaker coastal-to-inland concentration gradients than sea-salt aerosols, leading to several inland European cities having >10% of their surface submicron organic aerosol mass concentration with a marine source. The addition of MOA tracers to GEOS-Chem enabled us to identify the regions with large contributions of freshly emitted or aged aerosol having distinct physicochemical properties, potentially indicating optimal locations for future field studies.« less

  14. Implementing Marine Organic Aerosols Into the GEOS-Chem Model

    NASA Technical Reports Server (NTRS)

    Johnson, Matthew S.

    2015-01-01

    Marine-sourced organic aerosols (MOA) have been shown to play an important role in tropospheric chemistry by impacting surface mass, cloud condensation nuclei, and ice nuclei concentrations over remote marine and coastal regions. In this work, an online marine primary organic aerosol emission parameterization, designed to be used for both global and regional models, was implemented into the GEOS-Chem model. The implemented emission scheme improved the large under-prediction of organic aerosol concentrations in clean marine regions (normalized mean bias decreases from -79% when using the default settings to -12% when marine organic aerosols are added). Model predictions were also in good agreement (correlation coefficient of 0.62 and normalized mean bias of -36%) with hourly surface concentrations of MOA observed during the summertime at an inland site near Paris, France. Our study shows that MOA have weaker coastal-to-inland concentration gradients than sea-salt aerosols, leading to several inland European cities having > 10% of their surface submicron organic aerosol mass concentration with a marine source. The addition of MOA tracers to GEOS-Chem enabled us to identify the regions with large contributions of freshly-emitted or aged aerosol having distinct physicochemical properties, potentially indicating optimal locations for future field studies.

  15. Using Concentration Curves to Assess Organization-Specific Relationships between Surgeon Volumes and Outcomes.

    PubMed

    Kanter, Michael H; Huang, Yii-Chieh; Kally, Zina; Gordon, Margo A; Meltzer, Charles

    2018-06-01

    A well-documented association exists between higher surgeon volumes and better outcomes for many procedures, but surgeons may be reluctant to change practice patterns without objective, credible, and near real-time data on their performance. In addition, published thresholds for procedure volumes may be biased or perceived as arbitrary; typical reports compare surgeons grouped into discrete procedure volume categories, even though the volume-outcomes relationship is likely continuous. The concentration curves methodology, which has been used to analyze whether health outcomes vary with socioeconomic status, was adapted to explore the association between procedure volume and outcomes as a continuous relationship so that data for all surgeons within a health care organization could be included. Using widely available software and requiring minimal analytic expertise, this approach plots cumulative percentages of two variables of interest against each other and assesses the characteristics of the resulting curve. Organization-specific relationships between surgeon volumes and outcomes were examined for three example types of procedures: uncomplicated hysterectomies, infant circumcisions, and total thyroidectomies. The concentration index was used to assess whether outcomes were equally distributed unrelated to volumes. For all three procedures, the concentration curve methodology identified associations between surgeon procedure volumes and selected outcomes that were specific to the organization. The concentration indices confirmed the higher prevalence of examined outcomes among low-volume surgeons. The curves supported organizational discussions about surgical quality. Concentration curves require minimal resources to identify organization- and procedure-specific relationships between surgeon procedure volumes and outcomes and can support quality improvement. Copyright © 2018 The Joint Commission. Published by Elsevier Inc. All rights reserved.

  16. Aerosol composition, chemistry, and source characterization during the 2008 VOCALS Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Y.; Springston, S.; Jayne, J.

    2010-03-15

    Chemical composition of fine aerosol particles over the northern Chilean coastal waters was determined onboard the U.S. DOE G-1 aircraft during the VOCALS (VAMOS Ocean-Cloud-Atmosphere-Land Study) field campaign between October 16 and November 15, 2008. SO42-, NO3-, NH4+, and total organics (Org) were determined using an Aerodyne Aerosol Mass Spectrometer, and SO42-, NO3-, NH4+, Na+, Cl-, CH3SO3-, Mg2+, Ca2+, and K+ were determined using a particle-into-liquid sampler-ion chromatography technique. The results show the marine boundary layer (MBL) aerosol mass was dominated by non- sea-salt SO42- followed by Na+, Cl-, Org, NO3-, and NH4+, in decreasing importance; CH3SO3-, Ca2+, and K+more » rarely exceeded their respective limits of detection. The SO42- aerosols were strongly acidic as the equivalent NH4+ to SO42- ratio was only {approx}0.25 on average. NaCl particles, presumably of sea-salt origin, showed chloride deficits but retained Cl- typically more than half the equivalency of Na+, and are externally mixed with the acidic sulfate aerosols. Nitrate was observed only on sea-salt particles, consistent with adsorption of HNO3 on sea-salt aerosols, responsible for the Cl- deficit. Dust particles appeared to play a minor role, judging from the small volume differences between that derived from the observed mass concentrations and that calculated based on particle size distributions. Because SO42- concentrations were substantial ({approx}0.5 - {approx}3 {micro}g/m3) with a strong gradient (highest near the shore), and the ocean-emitted dimethylsulfide and its unique oxidation product, CH3SO3-, were very low (i.e., {le} 40 parts per trillion and <0.05 {micro}g/m3, respectively), the observed SO42- aerosols are believed to be primarily of terrestrial origin. Back trajectory calculations indicate sulfur emissions from smelters and power plants along coastal regions of Peru and Chile are the main sources of these SO4- aerosols. However, compared to observations, model

  17. Regional Aerosol Forcing over India: Preliminary Results from the South West Asian Aerosol-Monsoon Interactions (SWAAMI) Aircraft Experiment

    NASA Astrophysics Data System (ADS)

    Morgan, W.; Brooks, J.; Fox, C.; Haslett, S.; Liu, D.; Kompalli, S. K.; Pathak, H.; Manoj, M. R.; Allan, J. D.; Haywood, J. M.; Highwood, E.; Langridge, J.; Nanjundaiah, R. S.; Krishnamoorthy, K.; Babu, S. S.; Satheesh, S. K.; Turner, A. G.; Coe, H.

    2016-12-01

    Aerosol particles from multiple sources across the Indian subcontinent build up to form a dense and extensive haze across the region in advance of the monsoon. These aerosols are thought to perturb the regional radiative balance and hydrological cycle, which may have a significant impact on the monsoon circulation, as well as influencing the associated cloud and rainfall of the system. However the nature and magnitude of such impacts are poorly understood or constrained. Major uncertainties relevant to the regional aerosol burden include its vertical distribution, the relative contribution of different pollution sources and natural emissions and the role of absorbing aerosol species (black carbon and mineral dust). The South West Asian Aerosol-Monsoon Interactions (SWAAMI) project sought to address these major uncertainties by conducting an airborne experiment during June/July 2016 on-board the UK Facility for Airborne Atmospheric Measurement (FAAM) BAe-146 research aircraft. Based out of Lucknow in the), The aircraft conducted multiple flights from Lucknow in the heart of the Indo-Gangetic Plain (IGP) in advance of the monsoon and during the onset phase. The spatial and vertical distribution of aerosol was evaluated across northern India, encompassing drier desert-like regions to the west, heavily populated urban and industrial centres over the IGP and air masses in outflow regions to the south-east towards the Bay of Bengal. Principal measurements included aerosol chemical composition using an Aerodyne Aerosol Mass Spectrometer and a DMT Single Particle Soot Photometer, alongside a Leosphere backscatter LIDAR. Sulphate was a major contributor to the aerosol burden across India, while the organic aerosol was elevated and more dominant over the most polluted regions of the IGP. Substantial aerosol concentrations were frequently observed up to altitudes of approximately 6km, with notable changes in aerosol chemical and physical properties when comparing different

  18. On relationship between aerosols and PM2.5

    NASA Astrophysics Data System (ADS)

    Sano, Itaru; Mukai, Sonoyo; Nakata, Makiko

    2015-04-01

    of aerosols, i.e., AOT, volume fraction of fine and coarse mode particles, also single scattering albedo. Here is brief description of our aerosol retrieval and PM2.5 estimation. 1. Atmospheric correction is applied for each channel image based on AERONET measurements, Averaged surface albedo is calculated based on 1 month window, 2. Aerosol optical properties are estimated by using surface albedo and satellite imagery. 3. Obtained columnar AOT information is converted to surface AOT with LIDAR data. 4. PM2.5 distribution is obtained from the relationship given in the above item 3. [Holben et al., 1998] B. N. Holben, T. F. Eck, I. Slutsker, D. Tanré, J.P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, "AERONET - A federated instrument network and data archive for aerosol characterization," Rem. Sens. Environ., Vol. 66, pp. 1-16, 1998. [Smirnov et al., 2000] A. Smirnov, B.N. Holben, D. Savoie, J.M. Prospero, Y.J. Kaufman, D. Tanré, T.F. Eck, and I. Slutsker, "Relationship between column aerosol optical thickness and in situ ground based dust concentrations over Barbados," Geophy. Res. Lett., Vol. 27, pp. 1643-1646, 2000. [Wang and Christopher, 2003] J. Wang and S. A. Christopher, "Intercomparison between satellite-derived aerosol optical thickness and PM2.5 mass: Implications for air quality studies," Geophys. Res. Lett., Vol. 30, 2095, doi:10.1029/2003GL018174, 2003. [Sano et al., 2010] I. Sano, M. Mukai (Nakata), N. Iguchi, and S. Mukai, "Suspended particulate matter sampling at an urban AERONET site in Japan, part 2: relationship between column aerosol optical thickness and PM2.5 concentration," J. Appl. Remote Sens., Vol. 4, 043504, doi:10.1117/1.3327930, 2010.

  19. Global Distribution of Cloud Droplet Number Concentration, Autoconversion Rate, and Aerosol Indirect Effect Under Diabatic Droplet Activation

    NASA Technical Reports Server (NTRS)

    Barahona, Donifan; Sotiropoulou, Rafaella; Nenes, Athanasios

    2011-01-01

    This study presents a global assessment of the sensitivity of droplet number to diabatic activation (i.e., including effects from entrainment of dry air) and its first-order tendency on indirect forcing and autoconversion. Simulations were carried out with the NASA Global Modeling Initiative (GMI) atmospheric and transport model using climatological metereorological fields derived from the former NASA Data Assimilation Office (DAO), the NASA Finite volume GCM (FVGCM) and the Goddard Institute for Space Studies version II (GISS) GCM. Cloud droplet number concentration (CDNC) is calculated using a physically based prognostic parameterization that explicitly includes entrainment effects on droplet formation. Diabatic activation results in lower CDNC, compared to adiabatic treatment of the process. The largest decrease in CDNC (by up to 75 percent) was found in the tropics and in zones of moderate CCN concentration. This leads to a global mean effective radius increase between 0.2-0.5 micrometers (up to 3.5 micrometers over the tropics), a global mean autoconversion rate increase by a factor of 1.1 to 1.7 (up to a factor of 4 in the tropics), and a 0.2-0.4 W m(exp -2) decrease in indirect forcing. The spatial patterns of entrainment effects on droplet activation tend to reduce biases in effective radius (particularly in the tropics) when compared to satellite retrievals. Considering the diabatic nature of ambient clouds, entrainment effects on CDNC need to be considered in GCM studies of the aerosol indirect effect.

  20. Aerosol Remote Sensing from AERONET, the Ground-Based Satellite

    NASA Technical Reports Server (NTRS)

    Holben, Brent N.

    2012-01-01

    Atmospheric particles including mineral dust, biomass burning smoke, pollution from carbonaceous aerosols and sulfates, sea salt, impact air quality and climate. The Aerosol Robotic Network (AERONET) program, established in the early 1990s, is a federation of ground-based remote sensing aerosol networks of Sun/sky radiometers distributed around the world, which provides a long-term, continuous and readily accessible public domain database of aerosol optical (e.g., aerosol optical depth) and microphysical (e.g., aerosol volume size distribution) properties for aerosol characterization, validation of satellite retrievals, and synergism with Earth science databases. Climatological aerosol properties will be presented at key worldwide locations exhibiting discrete dominant aerosol types. Further, AERONET's temporary mesoscale network campaign (e.g., UAE2, TIGERZ, DRAGON-USA.) results that attempt to quantify spatial and temporal variability of aerosol properties, establish validation of ground-based aerosol retrievals using aircraft profile measurements, and measure aerosol properties on compatible spatial scales with satellite retrievals and aerosol transport models allowing for more robust validation will be discussed.

  1. Design and Fabrication of an Aerosol Concentrator.

    DTIC Science & Technology

    1980-05-08

    porous cylinder and into the shaft at the rate V3. Since the rotational velocity of the entrained aerosol particles is comparable to that of the rotating...discussed along with part 14, was made from 2.4-mm-diameter (0.093-in.-diameter) music wire and consisted of 7 turns with the ends closed and ground. The

  2. Aerosol Lidar and MODIS Satellite Comparisons for Future Aerosol Loading Forecast

    NASA Technical Reports Server (NTRS)

    DeYoung, Russell; Szykman, James; Severance, Kurt; Chu, D. Allen; Rosen, Rebecca; Al-Saadi, Jassim

    2006-01-01

    Knowledge of the concentration and distribution of atmospheric aerosols using both airborne lidar and satellite instruments is a field of active research. An aircraft based aerosol lidar has been used to study the distribution of atmospheric aerosols in the California Central Valley and eastern US coast. Concurrently, satellite aerosol retrievals, from the MODIS (Moderate Resolution Imaging Spectroradiometer) instrument aboard the Terra and Aqua satellites, were take over the Central Valley. The MODIS Level 2 aerosol data product provides retrieved ambient aerosol optical properties (e.g., optical depth (AOD) and size distribution) globally over ocean and land at a spatial resolution of 10 km. The Central Valley topography was overlaid with MODIS AOD (5x5 sq km resolution) and the aerosol scattering vertical profiles from a lidar flight. Backward air parcel trajectories for the lidar data show that air from the Pacific and northern part of the Central Valley converge confining the aerosols to the lower valley region and below the mixed layer. Below an altitude of 1 km, the lidar aerosol and MODIS AOD exhibit good agreement. Both data sets indicate a high presence of aerosols near Bakersfield and the Tehachapi Mountains. These and other results to be presented indicate that the majority of the aerosols are below the mixed layer such that the MODIS AOD should correspond well with surface measurements. Lidar measurements will help interpret satellite AOD retrievals so that one day they can be used on a routine basis for prediction of boundary layer aerosol pollution events.

  3. The Global Atmosphere Watch Aerosol Programme

    NASA Astrophysics Data System (ADS)

    Baltensperger, U.

    2003-04-01

    The Global Atmosphere Watch (GAW) programme is a WMO sponsored activity and currently supported by about 80 WMO member countries. It is the goal of GAW to develop and maintain long-term measurements of atmospheric constituents in order to detect trends, develop aerosol predictive capabilities and understand proc- esses. With respect to aerosols, the objective of GAW is to support a global network determining the spatio-temporal distribution of aerosol properties related to climate forcing and air quality up to multi-decadal time scales. The GAW network consists of 22 Global stations and some 300 Regional stations. The Scientific Advisory Group (SAG) for Aerosols will soon publish their recommendations for aerosol measurements. Each site should have an acceptable aerosol sampling inlet. Regional stations measure aerosol optical depth, as well as the aerosol light scattering and absorption coefficient. If possible these should be complemented by routine mass concentration and composition measurements in two aerosol size fractions. At Global stations, a larger number of measurements are desirable. These include the Regional parameters list above as well as the light scattering, hemispheric backscat- tering, and absorption coefficients at various wavelengths, aerosol number concen- tration, cloud condensation nuclei (CCN) concentration at 0.5% supersaturation, and diffuse, global and direct solar radiation. Additional parameters such as the aerosol size distribution, detailed size fractionated chemical composition, dependence of aerosol properties on relative humidity, CCN concentration at various supersatura- tions, and the vertical distribution of aerosol properties should be measured intermit- tently at Global stations. Examples from the Jungfraujoch (Swiss Alps, 3580 m asl) will be given, where many of the parameters listed above are measured. Data are delivered to and made available by the World Data Centre for Aerosols (WDCA, located in Ispra, Italy http

  4. Aerosol effect on cloud droplet size as monitored from surface-based remote sensing over East China Sea region

    NASA Astrophysics Data System (ADS)

    Pandithurai, G.; Takamura, T.; Yamaguchi, J.; Miyagi, K.; Takano, T.; Ishizaka, Y.; Dipu, S.; Shimizu, A.

    2009-07-01

    The effect of increased aerosol concentrations on the low-level, non-precipitating, ice-free stratus clouds is examined using a suite of surface-based remote sensing systems. Cloud droplet effective radius and liquid water path are retrieved using cloud radar and microwave radiometer. Collocated measurements of aerosol scattering coefficient, size distribution and cloud condensation nuclei (CCN) concentrations were used to examine the response of cloud droplet size and optical thickness to increased CCN proxies. During the episodic events of increase in aerosol accumulation-mode volume distribution, the decrease in droplet size and increase in cloud optical thickness is observed. The indirect effect estimates are made for both droplet effective radius and cloud optical thickness for different liquid water path ranges and they range 0.02-0.18 and 0.005-0.154, respectively. Data are also categorized into thin and thick clouds based on cloud geometric thickness (Δz) and estimates show IE values are relatively higher for thicker clouds.

  5. Size distribution and scattering phase function of aerosol particles retrieved from sky brightness measurements

    NASA Technical Reports Server (NTRS)

    Kaufman, Y. J.; Gitelson, A.; Karnieli, A.; Ganor, E. (Editor); Fraser, R. S.; Nakajima, T.; Mattoo, S.; Holben, B. N.

    1994-01-01

    Ground-based measurements of the solar transmission and sky radiance in a horizontal plane through the Sun are taken in several geographical regions and aerosol types: dust in a desert transition zone in Israel, sulfate particles in Eastern and Western Europe, tropical aerosol in Brazil, and mixed continental/maritime aerosol in California. Stratospheric aerosol was introduced after the eruption of Mount Pinatubo in June 1991. Therefore measurements taken before the eruption are used to analyze the properties of tropospheric aerosol; measurements from 1992 are also used to detect the particle size and concentration of stratospheric aerosol. The measurements are used to retrieve the size distribution and the scattering phase function at large scattering angles of the undisturbed aerosol particles. The retrieved properties represent an average on the entire atmospheric column. A comparison between the retrieved phase function for a scattering angle of 120 deg, with phase function predicted from the retrieved size distribution, is used to test the assumption of particle homogeneity and sphericity in radiative transfer models (Mie theory). The effect was found to be small (20% +/- 15%). For the stratospheric aerosol (sulfates), as expected, the phase function was very well predicted using the Mie theory. A model with a power law distribution, based on the spectral dependence of the optical thickness, alpha, cannot estimate accurately the phase function (up to 50% error for lambda = 0.87 microns). Before the Pinatubo eruption the ratio between the volumes of sulfate and coarse particles was very well correlated with alpha. The Pinatubo stratospheric aerosol destroyed this correlation. The aerosol optical properties are compared with analysis of the size, shape, and composition of the individual particles by electron microscopy of in situ samples. The measured volume size distribution before the injection of stratospheric aerosol consistently show two modes, sulfate

  6. Characterization of urban aerosol using aerosol mass spectrometry and proton nuclear magnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Cleveland, M. J.; Ziemba, L. D.; Griffin, R. J.; Dibb, J. E.; Anderson, C. H.; Lefer, B.; Rappenglück, B.

    2012-07-01

    Particulate matter was measured during August and September of 2006 in Houston as part of the Texas Air Quality Study II Radical and Aerosol Measurement Project. Aerosol size and composition were determined using an Aerodyne quadrupole aerosol mass spectrometer. Aerosol was dominated by sulfate (4.1 ± 2.6 μg m-3) and organic material (5.5 ± 4.0 μg m-3), with contributions of organic material from both primary (˜32%) and secondary (˜68%) sources. Secondary organic aerosol appears to be formed locally. In addition, 29 aerosol filter samples were analyzed using proton nuclear magnetic resonance (1H NMR) spectroscopy to determine relative concentrations of organic functional groups. Houston aerosols are less oxidized than those observed elsewhere, with smaller relative contributions of carbon-oxygen double bonds. These particles do not fit 1H NMR source apportionment fingerprints for identification of secondary, marine, and biomass burning organic aerosol, suggesting that a new fingerprint for highly urbanized and industrially influenced locations be established.

  7. Toxicity of atmospheric aerosols on marine phytoplankton

    USGS Publications Warehouse

    Paytan, A.; Mackey, K.R.M.; Chen, Y.; Lima, I.D.; Doney, S.C.; Mahowald, N.; Labiosa, R.; Post, A.F.

    2009-01-01

    Atmospheric aerosol deposition is an important source of nutrients and trace metals to the open ocean that can enhance ocean productivity and carbon sequestration and thus influence atmospheric carbon dioxide concentrations and climate. Using aerosol samples from different back trajectories in incubation experiments with natural communities, we demonstrate that the response of phytoplankton growth to aerosol additions depends on specific components in aerosols and differs across phytoplankton species. Aerosol additions enhanced growth by releasing nitrogen and phosphorus, but not all aerosols stimulated growth. Toxic effects were observed with some aerosols, where the toxicity affected picoeukaryotes and Synechococcus but not Prochlorococcus.We suggest that the toxicity could be due to high copper concentrations in these aerosols and support this by laboratory copper toxicity tests preformed with Synechococcus cultures. However, it is possible that other elements present in the aerosols or unknown synergistic effects between these elements could have also contributed to the toxic effect. Anthropogenic emissions are increasing atmospheric copper deposition sharply, and based on coupled atmosphere-ocean calculations, we show that this deposition can potentially alter patterns of marine primary production and community structure in high aerosol, low chlorophyll areas, particularly in the Bay of Bengal and downwind of South and East Asia.

  8. Long-Range Transport of Perchlorate Observed in the Atmospheric Aerosols Collected at Okinawa Island, Japan

    NASA Astrophysics Data System (ADS)

    Handa, D.; Okada, K.; Kuroki, Y.; Nakama, Y.; Nakajima, H.; Arakaki, T.; Tanahara, A.; Oomori, T.; Miyagi, T.; Kadena, H.; Ishizaki, T.; Nakama, F.

    2007-12-01

    The study of perchlorate has become quite active in the U.S. in the last several years. Perchlorate has been recognized as a new environmental pollutant and it attracted much attention quickly in the world. The health concern about perchlorate stems from the fact that it displaces iodide in the thyroid gland, while iodine-containing thyroid hormones are essential for proper neural development from the fetal stage through the first years of life. In this study, we determined the concentrations of perchlorate ion present in the atmospheric aerosols collected in Okinawa Island, Japan. We then examined the relationships between the perchlorate concentrations and the environmental parameters and the climatic conditions peculiar to Okinawa. Bulk aerosol samples were collected on quartz filters by using a high volume air sampler at Cape Hedo Atmosphere and Aerosol Monitoring Station (CHAAMS). Each sampling duration was one week. The quartz filters with aerosols were stirred with Milli-Q pure water for three hours before perchlorate ion was extracted. The extracted perchlorate ion concentrations were determined by ion chromatography (ICS-2000, DIONEX). The mean perchlorate concentration for the samples collected at CHAAMS was 1.83 ng/m3, and the minimum was 0.18 ng/m3. The samples collected during November 21-27, 2005, January 23-30, 2006 and April 24-01, 2006 had highest perchlorate concentrations. For these three samples, we performed back trajectory analysis, and found that the air mass for the three samples arrived from the Asian continent. A relatively strong correlation (r2 = 0.55) was found between perchlorate and nss-sulfate concentrations for the CHAAMS samples. Furthermore, we analyzed perchlorate in the soils and the fertilizers used for sugar cane farming around the CHAAMS area. The Milli-Q extract of the soil and the fertilizers did not contain any detectable levels of perchlorate ions. Therefore, it was suggested that perchlorate found in the atmospheric

  9. Concentration, distribution and variation of polar organic aerosol tracers in Ya'an, a middle-sized city in western China

    NASA Astrophysics Data System (ADS)

    Li, Li; Dai, Dongjue; Deng, Shihuai; Feng, Jialiang; Zhao, Min; Wu, Jun; Liu, Lu; Yang, Xiaohui; Wu, Sishi; Qi, Hui; Yang, Gang; Zhang, Xiaohong; Wang, Yingjun; Zhang, Yanzong

    2013-02-01

    PM2.5 (particulate matter with an aerodynamic diameter < 2.5 μm) and TSP (total suspended particulates) aerosol samples were collected in Ya'an, a middle-sized city with extensive wood resources in Southwestern China, to characterize the contribution of secondary organic aerosols (SOA) to the regional troposphere, the composition of the organic tracers as well as factors affecting their concentrations. A total of 34 samples were gathered on the Campus of Sichuan Agricultural University (SAU, urban site, in the city zone of Ya'an), while 49 samples were collected at Baima Spring Scenic Area (BSSA, forest site, situated about 30 km to the northeast of SAU) during June to July, 2010. Using GC/MS analysis with prior trimethylsilylation, organic tracers including isoprene oxidation products (2-methyltetrols, C5-alkene triols and 2-methylglyceric acid), α-/β-pinene oxidation products (norpinic acid, 3-hydroxyglutaric acid, 3-hydroxy-4,4-dimethylglutaric acid, and 3-methyl-1,2,3- butanetricarboxylic acid), a sesquiterpene oxidation product (β-caryophyllinic acid), sugars (glucose and fructose), sugar alcohols (arabitol, mannitol, erythritol, sorbitol and xylitol), anhydrosugars (levoglucosan, mannosan and galactosan) and malic acid were determined. The factors that could potentially affect the SOA tracer concentrations, i.e. trace gases (SO2, NOx, O3, NH3), aerosol acidity and meteorological parameters, were monitored. The results showed that the concentrations of total isoprene oxidation products were 72 and 82 ng/m3 at the two sampling locations, with 29 ± 18, 37 ± 9, 6 ± 2 ng/m3 at SAU and 57 ± 34, 33 ± 33, 4 ± 2 ng/m3 at BSSA for 2-methyltetrols, C5-alkene triols and 2-methylglyceric acid respectively. Compared with the concentrations of isoprene oxidation products, those of α-/β-pinene oxidation products and β-caryophyllinic acid were much lower, being 6 ± 33 and 0.5 ± 1.9 ng/m3 at SAU, and 9 ± 14 and 1.0 ± 1.2 ng/m3 at BSSA, respectively. The unique

  10. MATRIX-VBS Condensing Organic Aerosols in an Aerosol Microphysics Model

    NASA Technical Reports Server (NTRS)

    Gao, Chloe Y.; Tsigaridis, Konstas; Bauer, Susanne E.

    2015-01-01

    The condensation of organic aerosols is represented in a newly developed box-model scheme, where its effect on the growth and composition of particles are examined. We implemented the volatility-basis set (VBS) framework into the aerosol mixing state resolving microphysical scheme Multiconfiguration Aerosol TRacker of mIXing state (MATRIX). This new scheme is unique and advances the representation of organic aerosols in models in that, contrary to the traditional treatment of organic aerosols as non-volatile in most climate models and in the original version of MATRIX, this new scheme treats them as semi-volatile. Such treatment is important because low-volatility organics contribute significantly to the growth of particles. The new scheme includes several classes of semi-volatile organic compounds from the VBS framework that can partition among aerosol populations in MATRIX, thus representing the growth of particles via condensation of low volatility organic vapors. Results from test cases representing Mexico City and a Finish forrest condistions show good representation of the time evolutions of concentration for VBS species in the gas phase and in the condensed particulate phase. Emitted semi-volatile primary organic aerosols evaporate almost completely in the high volatile range, and they condense more efficiently in the low volatility range.

  11. Impacts of Future European Emission Reductions on Aerosol Particle Number Concentrations Accounting for Effects of Ammonia, Amines, and Organic Species.

    PubMed

    Julin, Jan; Murphy, Benjamin N; Patoulias, David; Fountoukis, Christos; Olenius, Tinja; Pandis, Spyros N; Riipinen, Ilona

    2018-01-16

    Although they are currently unregulated, atmospheric ultrafine particles (<100 nm) pose health risks because of, e.g., their capability to penetrate deep into the respiratory system. Ultrafine particles, often minor contributors to atmospheric particulate mass, typically dominate aerosol particle number concentrations. We simulated the response of particle number concentrations over Europe to recent estimates of future emission reductions of aerosol particles and their precursors. We used the chemical transport model PMCAMx-UF, with novel updates including state-of-the-art descriptions of ammonia and dimethylamine new particle formation (NPF) pathways and the condensation of organic compounds onto particles. These processes had notable impacts on atmospheric particle number concentrations. All three emission scenarios (current legislation, optimized emissions, and maximum technically feasible reductions) resulted in substantial (10-50%) decreases in median particle number concentrations over Europe. Consistent reductions were predicted in Central Europe, while Northern Europe exhibited smaller reductions or even increased concentrations. Motivated by the improved NPF descriptions for ammonia and methylamines, we placed special focus on the potential to improve air quality by reducing agricultural emissions, which are a major source of these species. Agricultural emission controls showed promise in reducing ultrafine particle number concentrations, although the change is nonlinear with particle size.

  12. [Observation study on aerosol optical properties and radiative forcing using the ground-based and satellite remote sensing at background station during the regional pollution episodes].

    PubMed

    Zhang, Xiao-Ling; Xia, Xiang-Ao; Che, Hui-Zheng; Tang, Jie; Tang, Yi-Xi; Meng, Wei; Dong, Fan

    2014-07-01

    The significant effect of anthropogenic pollutants transportation on the physical and optical properties of regional background atmospheric aerosol was studied by using ground-based and satellite remote sensing data obtained at the atmospheric background station (Shangdianzi, Beijing) of North China during October 1 to 15 in 2011. The aerosol mass concentration and reactive gases concentration increased obviously during periods of October 4-5, October 7-9, and October 11-12. Comparing with the background period of October 1-3, volume concentration increased by a factor of 3-6 for reactive gases such as NO(x), and CO, and a factor of 10-20 for SO2. Mass concentration of PM2.5 was about 200 microg x m(-3) on October 9. During haze period, the AOD at 500 nm varied between 0.60 to 1.00. The single scattering albedo (SSA) was lower than 0.88. And the black carbon concentration increased 4-8 times, which suggested the aerosol absorption was very strong during this pollution episode. The absorption of aerosol particles could cause 100-400 W x m(-2) increase of atmospheric radiation. The surface radiation decreased by about 100-300 W x m(-2) due to the aerosol scattering and absorption. This could cause higher stability of atmosphere, which will significantly affect the cloud and precipitation, and thus the regional weather and climate.

  13. Lidar characterizations of atmospheric aerosols and clouds

    NASA Astrophysics Data System (ADS)

    Ferrare, R. A.; Hostetler, C. A.; Hair, J. W.; Burton, S. P.

    2017-12-01

    Knowledge of the vertical profile, composition, concentration, and size distribution of aerosols is required to quantify the impacts of aerosols on human health, global and regional climate, clouds and precipitation. In particular, radiative forcing due to anthropogenic aerosols is the most uncertain part of anthropogenic radiative forcing, with aerosol-cloud interactions (ACI) as the largest source of uncertainty in current estimates of global radiative forcing. Improving aerosol transport model predictions of the vertical profile of aerosol optical and microphysical characteristics is crucial for improving assessments of aerosol radiative forcing. Understanding how aerosols and clouds interact is essential for investigating the aerosol indirect effect and ACI. Through its ability to provide vertical profiles of aerosol and cloud distributions as well as important information regarding the optical and physical properties of aerosols and clouds, lidar is a crucial tool for addressing these science questions. This presentation describes how surface, airborne, and satellite lidar measurements have been used to address these questions, and in particular how High Spectral Resolution Lidar (HSRL) measurements provide profiles of aerosol properties (backscatter, extinction, depolarization, concentration, size) important for characterizing radiative forcing. By providing a direct measurement of aerosol extinction, HSRL provides more accurate aerosol measurement profiles and more accurate constraints for models than standard retrievals from elastic backscatter lidar, which loses accuracy and precision at lower altitudes due to attenuation from overlying layers. Information regarding particle size and abundance from advanced lidar retrievals provides better proxies for cloud-condensation-nuclei (CCN), which are required for assessing aerosol-cloud interactions. When combined with data from other sensors, advanced lidar measurements can provide information on aerosol and

  14. Atmospheric aerosol composition and source apportionments to aerosol in southern Taiwan

    NASA Astrophysics Data System (ADS)

    Tsai, Ying I.; Chen, Chien-Lung

    In this study, the chemical characteristics of winter aerosol at four sites in southern Taiwan were determined and the Gaussian Trajectory transfer coefficient model (GTx) was then used to identify the major air pollutant sources affecting the study sites. Aerosols were found to be acidic at all four sites. The most important constituents of the particulate matter (PM) by mass were SO 42-, organic carbon (OC), NO 3-, elemental carbon (EC) and NH 4+, with SO 42-, NO 3-, and NH 4+ together constituting 86.0-87.9% of the total PM 2.5 soluble inorganic salts and 68.9-78.3% of the total PM 2.5-10 soluble inorganic salts, showing that secondary photochemical solution components such as these were the major contributors to the aerosol water-soluble ions. The coastal site, Linyuan (LY), had the highest PM mass percentage of sea salts, higher in the coarse fraction, and higher sea salts during daytime than during nighttime, indicating that the prevailing daytime sea breeze brought with it more sea-salt aerosol. Other than sea salts, crustal matter, and EC in PM 2.5 at Jenwu (JW) and in PM 2.5-10 at LY, all aerosol components were higher during nighttime, due to relatively low nighttime mixing heights limiting vertical and horizontal dispersion. At JW, a site with heavy traffic loadings, the OC/EC ratio in the nighttime fine and coarse fractions of approximately 2.2 was higher than during daytime, indicating that in addition to primary organic aerosol (POA), secondary organic aerosol (SOA) also contributed to the nighttime PM 2.5. This was also true of the nighttime coarse fraction at LY. The GTx produced correlation coefficients ( r) for simulated and observed daily concentrations of PM 10 at the four sites (receptors) in the range 0.45-0.59 and biases from -6% to -20%. Source apportionment indicated that point sources were the largest PM 10 source at JW, LY and Daliao (DL), while at Meinung (MN), a suburban site with less local PM 10, SO x and NO x emissions, upwind

  15. Optical Extinction and Aerosol Hygroscopicity in the Southeastern United States

    NASA Astrophysics Data System (ADS)

    Brock, C. A.; Gordon, T.; Wagner, N.; Lack, D. A.; Richardson, M.; Middlebrook, A. M.; Liao, J.; Murphy, D. M.; Attwood, A. R.; Washenfelder, R. A.; Campuzano Jost, P.; Day, D. A.; Jimenez, J. L.; Carlton, A. M. G.

    2015-12-01

    Most aerosol particles take up water and grow as relative humidity increases, leading to increased optical extinction, reduced visibility, greater aerosol optical depths (AODs), and altered radiative forcing, even while dry particulate mass remains constant. Relative humidity varies greatly temporally, horizontally, and especially vertically. Thus hygroscopicity is a confounding factor when attempting to link satellite-based observations of AOD to surface measurements of particulate mass or to model predictions of aerosol mass concentrations. Airborne observations of aerosol optical, chemical, and microphysical properties were made in the southeastern United States in the daytime in summer 2013 during the NOAA SENEX and NASA SEAC4RS projects. Applying κ-Köhler theory for hygroscopic growth to these data, the inferred hygroscopicity parameter κ for the organic fraction of the aerosol was <0.11. This κ for organics is toward the lower end of values found from laboratory studies of the aerosol formed from oxidation of biogenic precursors and from several field studies in rural environments. The gamma (γ) parameterization is commonly used to describe the change in aerosol extinction as a function of relative humidity. Because this formulation did not fit the airborne data well, a new parameterization was developed that better describes the observations. This new single-parameter κext formulation is physically based and relies upon the well-known approximately linear relationship between particle volume and optical extinction. The fitted parameter, κext, is nonlinearly related to the chemically derived κ parameter used in κ-Köhler theory. The values of κext determined from the airborne measurements are consistent with independent observations at a nearby ground site.

  16. Aerosol Delivery for Amendment Distribution in Contaminated Vadose Zones

    NASA Astrophysics Data System (ADS)

    Hall, R. J.; Murdoch, L.; Riha, B.; Looney, B.

    2011-12-01

    aqueous and oil deposition are assumed to occur due to surface interactions, and susceptibility to evaporation of aqueous aerosols. Distal salt accumulation during salt water aerosol tests suggests that solid salt forms as salt water aerosols evaporate. The solid salt aerosols are less likely to deposit, so they travel further than aqueous aerosols. A numerical model was calibrated using results from lab-scale tests. The calibrated model was then used to simulate field-scale aerosol injection. Results from field-scale simulations suggest that effective radii of influence on the scale of 8-10 meters could be achieved in partially saturated sand. The aerosol delivery process appears to be capable distributing oil amendments over considerable volumes of formation at concentrations appropriate for remediation purposes. Thus far, evaporation has limited liquid accumulation observed when distributing aqueous aerosols, however, results from salt water experiments suggest that injection of solid phase aerosols can effectively distribute water soluble amendments (electron donor, pH buffer, oxidants, etc.). Utilization of aerosol delivery could considerably expand treatment options for contaminated vadose zones at a wide variety of sites.

  17. Seasonal variability of aerosols and their characteristics in urban and rural locations of Delhi-NCR

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Purnima; Pandey, Alok Kumar; Kumar, Krishan; Jain, V. K.

    2017-10-01

    Present study shows the seasonal variation of the Aerosol Optical Depth (AOD) and aerosols characteristics in an urban and rural environment over Delhi-NCR. Aerosol sampling was carried out using a Mini-Volume sampler at an urban and rural location in Delhi-NCR. A relatively higher PM2.5 (particulate matter of size < 2.5 μm) concentrations were observed at the urban sampling site than the rural one in the summer as well as winter season. PM2.5 samples were further analyzed by Scanning Electron Microscopy (SEM) and Energy Dispersive X-Ray Spectroscopy (EDX) in order to understand the morphology and elemental composition of the PM2.5 aerosols. Summer SEM results showed the dominance of fluffy agglomerate (soot) in urban area whereas the rural area was relatively clean. The winter season SEM results showed the presence of aggregates of smaller particles at urban site whereas flaky, round and irregular shaped particles were observed at the rural site. EDX analysis showed the presence of elements such as C, Cu, Zn, Ga and Fe (representative elements) in varying concentrations at both the urban and rural sampling locations. NASA's Aqua satellite MODIS sensor AOD data for summer and winter seasons have been used to study the spatial distributions of aerosols over the study region. AOD was found to be relatively higher in urban area as compared to the rural area in both the summer and winter seasons indicating the contribution of high amount of anthropogenic aerosols in the urban atmosphere.

  18. Simulation of semi-explicit mechanisms of SOA formation from glyoxal in aerosol in a 3-D model

    NASA Astrophysics Data System (ADS)

    Knote, C.; Hodzic, A.; Jimenez, J. L.; Volkamer, R.; Orlando, J. J.; Baidar, S.; Brioude, J.; Fast, J.; Gentner, D. R.; Goldstein, A. H.; Hayes, P. L.; Knighton, W. B.; Oetjen, H.; Setyan, A.; Stark, H.; Thalman, R.; Tyndall, G.; Washenfelder, R.; Waxman, E.; Zhang, Q.

    2014-06-01

    New pathways to form secondary organic aerosol (SOA) have been postulated recently. Glyoxal, the smallest dicarbonyl, is one of the proposed precursors. It has both anthropogenic and biogenic sources, and readily partitions into the aqueous phase of cloud droplets and deliquesced particles where it undergoes both reversible and irreversible chemistry. In this work we extend the regional scale chemistry transport model WRF-Chem to include detailed gas-phase chemistry of glyoxal formation as well as a state-of-the-science module describing its partitioning and reactions in the aerosol aqueous-phase. A comparison of several proposed mechanisms is performed to quantify the relative importance of different formation pathways and their regional variability. The CARES/CalNex campaigns over California in summer 2010 are used as case studies to evaluate the model against observations. A month-long simulation over the continental United States (US) enables us to extend our results to the continental scale. In all simulations over California, the Los Angeles (LA) basin was found to be the hot spot for SOA formation from glyoxal, which contributes between 1% and 15% of the model SOA depending on the mechanism used. Our results indicate that a mechanism based only on a reactive (surface limited) uptake coefficient leads to higher SOA yields from glyoxal compared to a more detailed description that considers aerosol phase state and chemical composition. In the more detailed simulations, surface uptake is found to give the highest SOA mass yields compared to a volume process and reversible formation. We find that the yields of the latter are limited by the availability of glyoxal in aerosol water, which is in turn controlled by an increase in the Henry's law constant depending on salt concentrations ("salting-in"). A time dependence in this increase prevents substantial partitioning of glyoxal into aerosol water at high salt concentrations. If this limitation is removed, volume

  19. Aerosol microphysical and radiative effects on continental cloud ensembles

    NASA Astrophysics Data System (ADS)

    Wang, Yuan; Vogel, Jonathan M.; Lin, Yun; Pan, Bowen; Hu, Jiaxi; Liu, Yangang; Dong, Xiquan; Jiang, Jonathan H.; Yung, Yuk L.; Zhang, Renyi

    2018-02-01

    Aerosol-cloud-radiation interactions represent one of the largest uncertainties in the current climate assessment. Much of the complexity arises from the non-monotonic responses of clouds, precipitation and radiative fluxes to aerosol perturbations under various meteorological conditions. In this study, an aerosol-aware WRF model is used to investigate the microphysical and radiative effects of aerosols in three weather systems during the March 2000 Cloud Intensive Observational Period campaign at the US Southern Great Plains. Three simulated cloud ensembles include a low-pressure deep convective cloud system, a collection of less-precipitating stratus and shallow cumulus, and a cold frontal passage. The WRF simulations are evaluated by several ground-based measurements. The microphysical properties of cloud hydrometeors, such as their mass and number concentrations, generally show monotonic trends as a function of cloud condensation nuclei concentrations. Aerosol radiative effects do not influence the trends of cloud microphysics, except for the stratus and shallow cumulus cases where aerosol semi-direct effects are identified. The precipitation changes by aerosols vary with the cloud types and their evolving stages, with a prominent aerosol invigoration effect and associated enhanced precipitation from the convective sources. The simulated aerosol direct effect suppresses precipitation in all three cases but does not overturn the aerosol indirect effect. Cloud fraction exhibits much smaller sensitivity (typically less than 2%) to aerosol perturbations, and the responses vary with aerosol concentrations and cloud regimes. The surface shortwave radiation shows a monotonic decrease by increasing aerosols, while the magnitude of the decrease depends on the cloud type.

  20. The relationship between aerosol particles chemical composition and optical properties to identify the biomass burning contribution to fine particles concentration: a case study for São Paulo city, Brazil.

    PubMed

    de Miranda, Regina Maura; Lopes, Fabio; do Rosário, Nilton Évora; Yamasoe, Marcia Akemi; Landulfo, Eduardo; de Fatima Andrade, Maria

    2016-12-01

    The air quality in the Metropolitan Area of São Paulo (MASP) is primarily determined by the local pollution source contribution, mainly the vehicular fleet, but there is a concern about the role of remote sources to the fine mode particles (PM 2.5 ) concentration and composition. One of the most important remote sources of atmospheric aerosol is the biomass burning emissions from São Paulo state's inland and from the central and north portions of Brazil. This study presents a synergy of different measurements of atmospheric aerosol chemistry and optical properties in the MASP in order to show how they can be used as a tool to identify particles from local and remote sources. For the clear identification of the local and remote source contribution, aerosol properties measurements at surface level were combined with vertical profiles information. Over 15 days in the austral winter of 2012, particulate matter (PM) was collected using a cascade impactor and a Partisol sampler in São Paulo City. Mass concentrations were determined by gravimetry, black carbon concentrations by reflectance, and trace element concentrations by X-ray fluorescence. Aerosol optical properties were studied using a multifilter rotating shadowband radiometer (MFRSR), a Lidar system and satellite data. Optical properties, concentrations, size distributions, and elemental composition of atmospheric particles were strongly related and varied according to meteorological conditions. During the sampling period, PM mean mass concentrations were 17.4 ± 10.1 and 15.3 ± 6.9 μg/m 3 for the fine and coarse fractions, respectively. The mean aerosol optical depths at 415 nm and Ångström exponent (AE) over the whole period were 0.29 ± 0.14 and 1.35 ± 0.11, respectively. Lidar ratios reached values of 75 sr. The analyses of the impacts of an event of biomass burning smoke transport to the São Paulo city revealed significant changing on local aerosol concentrations and optical parameters

  1. Geochemistry of aerosols from an urban site, Varanasi, in the Eastern Indo-Gangetic Plain

    NASA Astrophysics Data System (ADS)

    Ram, Kirpa; Norra, Stefan; Zirzov, Felix; Singh, Sunita; Mehra, Manisha; Nanad Tripathi, Sachichida

    2016-04-01

    PM2.5 aerosol samples were collected from an urban site, Varanasi, in the eastern Indo-Gangetic Plain on weekly basis during 19 March to 29 May 2015 (n=12), along with daily samples (n=8) during 11 to 18 March 2015 to study the geochemical and morphological features of aerosols. Samples were collected with a low volume sampler (Leckel GmbH, Germany) on the terrace of the Institute of Environment and Sustainable Development building, located in the Banaras Hindu University campus in the southern part of the city. Samples were analyzed for element concentration by Inductively Coupled Plasma Mass Spectrometry and particle morphology by Scanning Electron Microscope. PM2.5 concentration ranged between 22.3 and 70.5 μgm-3 in daily samples, whereas those varied between 52.0 and 106 μgm-3 in weekly samples. Lead, potassium, aluminum, zinc and iron have conspicuously higher concentrations with Pb concentration exceeding above the annual limit of 50 ngm-3 in four samples. First results show a trend of corresponding concentrations of chemical elements originated from anthropogenic and geogenic sources. The biogenic particles are a minor fraction of the total particulate aerosols. The Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) back trajectory analysis of air parcels indicate that the air mass for the low loaded days originate from eastern directions including the region of the gulf of Bengal, where as high aerosols concentrations in cases of air masses arriving from north-western direction transporting the air pollutants from the Gangetic Plain towards Varanasi. Black carbon (BC) concentration, measured using an microaethalometer (AE-51), exhibit a strong variability (4.4 to 8.4 μg m-3) in the University campus which are ˜20-40% lower than those measured in the Varanasi city. The carbon content was found to be high with soot particles constituting the largest part in these samples and exist as single particle as well as attachment to other particles

  2. Estimating Ground-Level Particulate Matter (PM) Concentration using Satellite-derived Aerosol Optical Depth (AOD)

    NASA Astrophysics Data System (ADS)

    Park, Seohui; Im, Jungho

    2017-04-01

    Atmospheric aerosols are strongly associated with adverse human health effects. In particular, particulate matter less than 10 micrometers and 2.5 micrometers (i.e., PM10 and PM2.5, respectively) can cause cardiovascular and lung diseases such as asthma and chronic obstructive pulmonary disease (COPD). Air quality including PM has typically been monitored using station-based in-situ measurements over the world. However, in situ measurements do not provide spatial continuity over large areas. An alternative approach is to use satellite remote sensing as it provides data over vast areas at high temporal resolution. The literature shows that PM concentrations are related with Aerosol Optical Depth (AOD) that is derived from satellite observations, but it is still difficult to identify PM concentrations directly from AOD. Some studies used statistical approaches for estimating PM concentrations from AOD while some others combined numerical models and satellite-derived AOD. In this study, satellite-derived products were used to estimate ground PM concentrations based on machine learning over South Korea. Satellite-derived products include AOD from Geostationary Ocean Color Imager (GOCI), precipitation from Tropical Rainfall Measuring Mission (TRMM), soil moisture from AMSR-2, elevation from Shuttle Radar Topography Mission (SRTM), and land cover, land surface temperature and normalized difference vegetation index (NDVI) from Moderate Resolution Imaging Spectroradiometer (MODIS). PM concentrations data were collected from 318 stations. A statistical ordinary least squares (OLS) approach was also tested and compared with the machine learning approach (i.e., random forest). PM concentration was estimated during spring season (from March to May) in 2015 that typically shows high concentration of PM. The randomly selected 80% of data were used for model calibration and the remaining 20% were used for validation. The developed models were further tested for prediction of PM

  3. [Airborne Fungal Aerosol Concentration and Distribution Characteristics in Air- Conditioned Wards].

    PubMed

    Zhang, Hua-ling; Feng, He-hua; Fang, Zi-liang; Wang, Ben-dong; Li, Dan

    2015-04-01

    The effects of airborne fungus on human health in the hospital environment are related to not only their genera and concentrations, but also their particle sizes and distribution characteristics. Moreover, the mechanisms of aerosols with different particle sizes on human health are different. Fungal samples were obtained in medicine wards of Chongqing using a six-stage sampler. The airborne fungal concentrations, genera and size distributions of all the sampling wards were investigated and identified in detail. Results showed that airborne fungal concentrations were not correlated to the diseases or personnel density, but were related to seasons, temperature, and relative humidity. The size distribution rule had roughly the same for testing wards in winter and summer. The size distributions were not related with diseases and seasons, the percentage of airborne fungal concentrations increased gradually from stage I to stage III, and then decreased dramatically from stage V to stage VI, in general, the size of airborne fungi was a normal distribution. There was no markedly difference for median diameter of airborne fungi which was less 3.19 μm in these wards. There were similar dominant genera in all wards. They were Aspergillus spp, Penicillium spp and Alternaria spp. Therefore, attention should be paid to improve the filtration efficiency of particle size of 1.1-4.7 μm for air conditioning system of wards. It also should be targeted to choose appropriate antibacterial methods and equipment for daily hygiene and air conditioning system operation management.

  4. Aerosol processing in stratiform clouds in ECHAM6-HAM

    NASA Astrophysics Data System (ADS)

    Neubauer, David; Lohmann, Ulrike; Hoose, Corinna

    2013-04-01

    Aerosol processing in stratiform clouds by uptake into cloud particles, collision-coalescence, chemical processing inside the cloud particles and release back into the atmosphere has important effects on aerosol concentration, size distribution, chemical composition and mixing state. Aerosol particles can act as cloud condensation nuclei. Cloud droplets can take up further aerosol particles by collisions. Atmospheric gases may also be transferred into the cloud droplets and undergo chemical reactions, e.g. the production of atmospheric sulphate. Aerosol particles are also processed in ice crystals. They may be taken up by homogeneous freezing of cloud droplets below -38° C or by heterogeneous freezing above -38° C. This includes immersion freezing of already immersed aerosol particles in the droplets and contact freezing of particles colliding with a droplet. Many clouds do not form precipitation and also much of the precipitation evaporates before it reaches the ground. The water soluble part of the aerosol particles concentrates in the hydrometeors and together with the insoluble part forms a single, mixed, larger particle, which is released. We have implemented aerosol processing into the current version of the general circulation model ECHAM6 (Stevens et al., 2013) coupled to the aerosol module HAM (Stier et al., 2005). ECHAM6-HAM solves prognostic equations for the cloud droplet number and ice crystal number concentrations. In the standard version of HAM, seven modes are used to describe the total aerosol. The modes are divided into soluble/mixed and insoluble modes and the number concentrations and masses of different chemical components (sulphate, black carbon, organic carbon, sea salt and mineral dust) are prognostic variables. We extended this by an explicit representation of aerosol particles in cloud droplets and ice crystals in stratiform clouds similar to Hoose et al. (2008a,b). Aerosol particles in cloud droplets are represented by 5 tracers for the

  5. A Miniature System for Separating Aerosol Particles and Measuring Mass Concentrations

    PubMed Central

    Liang, Dao; Shih, Wen-Pin; Chen, Chuin-Shan; Dai, Chi-An

    2010-01-01

    We designed and fabricated a new sensing system which consists of two virtual impactors and two quartz-crystal microbalance (QCM) sensors for measuring particle mass concentration and size distribution. The virtual impactors utilized different inertial forces of particles in air flow to classify different particle sizes. They were designed to classify particle diameter, d, into three different ranges: d < 2.28 μm, 2.28 μm ≤ d ≤ 3.20 μm, d > 3.20 μm. The QCM sensors were coated with a hydrogel, which was found to be a reliable adhesive for capturing aerosol particles. The QCM sensor coated with hydrogel was used to measure the mass loading of particles by utilizing its characteristic of resonant frequency shift. An integrated system has been demonstrated. PMID:22319317

  6. Characterization of biomass burning aerosols from forest fire in Indonesia

    NASA Astrophysics Data System (ADS)

    Fujii, Y.; Iriana, W.; Okumura, M.; Lestari, P.; Tohno, S.; Akira, M.; Okuda, T.

    2012-12-01

    Biomass burning (forest fire, wild fire) is a major source of pollutants, generating an estimate of 104 Tg per year of aerosol particles worldwide. These particles have adverse human health effects and can affect the radiation budget and climate directly and indirectly. Eighty percent of biomass burning aerosols are generated in the tropics and about thirty percent of them originate in the tropical regions of Asia (Andreae, 1991). Several recent studies have reported on the organic compositions of biomass burning aerosols in the tropical regions of South America and Africa, however, there is little data about forest fire aerosols in the tropical regions of Asia. It is important to characterize biomass burning aerosols in the tropical regions of Asia because the aerosol properties vary between fires depending on type and moisture of wood, combustion phase, wind conditions, and several other variables (Reid et al., 2005). We have characterized PM2.5 fractions of biomass burning aerosols emitted from forest fire in Indonesia. During the dry season in 2012, PM2.5 aerosols from several forest fires occurring in Riau, Sumatra, Indonesia were collected on quartz and teflon filters with two mini-volume samplers. Background aerosols in forest were sampled during transition period of rainy season to dry season (baseline period). Samples were analyzed with several analytical instruments. The carbonaceous content (organic and elemental carbon, OC and EC) of the aerosols was analyzed by a thermal optical reflectance technique using IMPROVE protocol. The metal, inorganic ion and organic components of the aerosols were analyzed by X-ray Fluorescence (XRF), ion chromatography and gas chromatography-mass spectrometry, respectively. There was a great difference of chemical composition between forest fire and non-forest fire samples. Smoke aerosols for forest fires events were composed of ~ 45 % OC and ~ 2.5 % EC. On the other hand, background aerosols for baseline periods were

  7. Trends in aerosol abundances and distributions

    NASA Technical Reports Server (NTRS)

    Turco, R. P.; Mccormick, M. P.; Clancy, R. T.; Curran, R.; Deluisi, J.; Hamill, P.; Kent, G.; Rosen, J. M.; Toon, O. B.; Yue, G.

    1989-01-01

    The properties of aerosols that reside in the upper atmosphere are described. Special emphasis is given to the influence these aerosols have on ozone observation systems, mainly through radiative effects, and on ambient ozone concentrations, mainly through chemical effects. It has long been appreciated that stratospheric particles can interfere with the remote sensing of ozone distribution. The mechanism and magnitude of this interference are evaluated. Separate sections deal with the optical properties of upper atmospheric aerosols, long-term trends in stratospheric aerosols, perturbations of the stratospheric aerosol layer by volcanic eruptions, and estimates of the impacts that such particles have on remotely measured ozone concentrations. Another section is devoted to a discussion of the polar stratospheric clouds (PSC's). These unique clouds, recently discovered by satellite observation, are now thought to be intimately connected with the Antarctic ozone hole. Accordingly, interest in PSC's has grown considerably in recent years. This chapter describes what we know about the morphology, physical chemistry, and microphysics of PSC's.

  8. A satellite view of aerosols in the climate system

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.; Tanre, Didier; Boucher, Olivier

    2002-01-01

    Anthropogenic aerosols are intricately linked to the climate system and to the hydrologic cycle. The net effect of aerosols is to cool the climate system by reflecting sunlight. Depending on their composition, aerosols can also absorb sunlight in the atmosphere, further cooling the surface but warming the atmosphere in the process. These effects of aerosols on the temperature profile, along with the role of aerosols as cloud condensation nuclei, impact the hydrologic cycle, through changes in cloud cover, cloud properties and precipitation. Unravelling these feedbacks is particularly difficult because aerosols take a multitude of shapes and forms, ranging from desert dust to urban pollution, and because aerosol concentrations vary strongly over time and space. To accurately study aerosol distribution and composition therefore requires continuous observations from satellites, networks of ground-based instruments and dedicated field experiments. Increases in aerosol concentration and changes in their composition, driven by industrialization and an expanding population, may adversely affect the Earth's climate and water supply.

  9. Impact of aerosol size representation on modeling aerosol-cloud interactions

    DOE PAGES

    Zhang, Y.; Easter, R. C.; Ghan, S. J.; ...

    2002-11-07

    In this study, we use a 1-D version of a climate-aerosol-chemistry model with both modal and sectional aerosol size representations to evaluate the impact of aerosol size representation on modeling aerosol-cloud interactions in shallow stratiform clouds observed during the 2nd Aerosol Characterization Experiment. Both the modal (with prognostic aerosol number and mass or prognostic aerosol number, surface area and mass, referred to as the Modal-NM and Modal-NSM) and the sectional approaches (with 12 and 36 sections) predict total number and mass for interstitial and activated particles that are generally within several percent of references from a high resolution 108-section approach.more » The modal approach with prognostic aerosol mass but diagnostic number (referred to as the Modal-M) cannot accurately predict the total particle number and surface areas, with deviations from the references ranging from 7-161%. The particle size distributions are sensitive to size representations, with normalized absolute differences of up to 12% and 37% for the 36- and 12-section approaches, and 30%, 39%, and 179% for the Modal-NSM, Modal-NM, and Modal-M, respectively. For the Modal-NSM and Modal-NM, differences from the references are primarily due to the inherent assumptions and limitations of the modal approach. In particular, they cannot resolve the abrupt size transition between the interstitial and activated aerosol fractions. For the 12- and 36-section approaches, differences are largely due to limitations of the parameterized activation for non-log-normal size distributions, plus the coarse resolution for the 12-section case. Differences are larger both with higher aerosol (i.e., less complete activation) and higher SO2 concentrations (i.e., greater modification of the initial aerosol distribution).« less

  10. Retrieval of aerosol profiles combining sunphotometer and ceilometer measurements in GRASP code

    NASA Astrophysics Data System (ADS)

    Román, R.; Benavent-Oltra, J. A.; Casquero-Vera, J. A.; Lopatin, A.; Cazorla, A.; Lyamani, H.; Denjean, C.; Fuertes, D.; Pérez-Ramírez, D.; Torres, B.; Toledano, C.; Dubovik, O.; Cachorro, V. E.; de Frutos, A. M.; Olmo, F. J.; Alados-Arboledas, L.

    2018-05-01

    In this paper we present an approach for the profiling of aerosol microphysical and optical properties combining ceilometer and sun/sky photometer measurements in the GRASP code (General Retrieval of Aerosol and Surface Properties). For this objective, GRASP is used with sun/sky photometer measurements of aerosol optical depth (AOD) and sky radiances, both at four wavelengths and obtained from AErosol RObotic NETwork (AERONET), and ceilometer measurements of range corrected signal (RCS) at 1064 nm. A sensitivity study with synthetic data evidences the capability of the method to retrieve aerosol properties such as size distribution and profiles of volume concentration (VC), especially for coarse particles. Aerosol properties obtained by the mentioned method are compared with airborne in-situ measurements acquired during two flights over Granada (Spain) within the framework of ChArMEx/ADRIMED (Chemistry-Aerosol Mediterranean Experiment/Aerosol Direct Radiative Impact on the regional climate in the MEDiterranean region) 2013 campaign. The retrieved aerosol VC profiles agree well with the airborne measurements, showing a mean bias error (MBE) and a mean absolute bias error (MABE) of 0.3 μm3/cm3 (12%) and 5.8 μm3/cm3 (25%), respectively. The differences between retrieved VC and airborne in-situ measurements are within the uncertainty of GRASP retrievals. In addition, the retrieved VC at 2500 m a.s.l. is shown and compared with in-situ measurements obtained during summer 2016 at a high-atitude mountain station in the framework of the SLOPE I campaign (Sierra Nevada Lidar AerOsol Profiling Experiment). VC from GRASP presents high correlation (r = 0.91) with the in-situ measurements, but overestimates them, MBE and MABE being equal to 23% and 43%.

  11. Intercomparison of an Aerosol Chemical Speciation Monitor (ACSM) with ambient fine aerosol measurements in Downtown Atlanta, Georgia

    NASA Astrophysics Data System (ADS)

    Budisulistiorini, S. H.; Canagaratna, M. R.; Croteau, P. L.; Baumann, K.; Edgerton, E. S.; Kollman, M. S.; Ng, N. L.; Verma, V.; Shaw, S. L.; Knipping, E. M.; Worsnop, D. R.; Jayne, J. T.; Weber, R. J.; Surratt, J. D.

    2013-12-01

    -25%, and 34-51% for sulfate, ammonium, and nitrate, respectively. These comparisons are all close to the stated ±30% accuracy of the ACSM except for nitrate. These discrepancies could be due to positive biases in the ACSM nitrate concentrations from interferences at the NO+ (m/z 30) fragment ion and/or negative artifacts in the nitrate filter measurement (from volatilization of NH4NO3) are also possible. The organic matter OM/OC ratios derived from linear regression of ACSM OM vs. Sunset OC/EC analyzer are 4.18 ± 0.04 and 3.59 ± 0.02 for summer and fall, respectively. Linear correlations of the ACSM NR-PM1 plus EC with TEOM PM2.5 mass are strong (r2 > 0.7) with percentage difference of 19% and 80% during summer and fall, respectively. On the other hand, the ACSM NR-PM1 correlation with FRM PM1 is high (r2 > 0.8) with percentage difference of ±47% over three seasons. Correlation of ACSM NR-PM1 plus EC mass with SEMS-MCPC PM1 volume concentration results in an estimation of aerosol density of 1.61 g cm-3 for fall 2012 period. ACSM organic concentrations measured during this study were obtained using relative ionization efficiency (RIE) values observed in Aerodyne Aerosol Mass Spectrometer (AMS). Explicit calibration of the ACSM relative ionizations for ammonium, nitrate, and sulfate, during this study was shown to improve the comparisons between ACSM and collocated measurements for these species. The accuracy of the organic and total mass concentrations would likely also be improved if organic relative ionization efficiency values for the ACSM were available during this study. Laboratory calibrations of ACSM relative ionization efficiencies using organic particles of known composition are recommended for future studies.

  12. Characterization of Aerosols of Titanium Dioxide Nanoparticles Following Three Generation Methods Using an Optimized Aerosolization System Designed for Experimental Inhalation Studies

    PubMed Central

    Pujalté, Igor; Serventi, Alessandra; Noël, Alexandra; Dieme, Denis; Haddad, Sami; Bouchard, Michèle

    2017-01-01

    Nanoparticles (NPs) can be released in the air in work settings, but various factors influence the exposure of workers. Controlled inhalation experiments can thus be conducted in an attempt to reproduce real-life exposure conditions and assess inhalation toxicology. Methods exist to generate aerosols, but it remains difficult to obtain nano-sized and stable aerosols suitable for inhalation experiments. The goal of this work was to characterize aerosols of titanium dioxide (TiO2) NPs, generated using a novel inhalation system equipped with three types of generators—a wet collision jet nebulizer, a dry dust jet and an electrospray aerosolizer—with the aim of producing stable aerosols with a nano-diameter average (<100 nm) and monodispersed distribution for future rodent exposures and toxicological studies. Results showed the ability of the three generation systems to provide good and stable dispersions of NPs, applicable for acute (continuous up to 8 h) and repeated (21-day) exposures. In all cases, the generated aerosols were composed mainly of small aggregates/agglomerates (average diameter <100 nm) with the electrospray producing the finest (average diameter of 70–75 mm) and least concentrated aerosols (between 0.150 and 2.5 mg/m3). The dust jet was able to produce concentrations varying from 1.5 to 150 mg/m3, and hence, the most highly concentrated aerosols. The nebulizer collision jet aerosolizer was the most versatile generator, producing both low (0.5 mg/m3) and relatively high concentrations (30 mg/m3). The three optimized generators appeared suited for possible toxicological studies of inhaled NPs. PMID:29051446

  13. Aerosol and CCN in southwest Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Collins, Don; Li, Runjun; Axisa, Duncan; Kucera, Paul; Burger, Roelof

    2010-05-01

    As part of an ongoing study of the microphysical and dynamical controls on precipitation in southwest Saudi Arabia, a number of surface and aircraft-based instruments were used in summer / fall 2009 to measure the size distribution, hygroscopic properties, and cloud droplet nucleation efficiency of the local aerosol. Submicron size distributions were measured using differential mobility analyzers both on the ground and on board the aircraft, while an aerodynamic particle sizer and a forward scattering spectrometer probe were used to measure the supermicron size distributions on the ground and from on board the aircraft, respectively. Identical continuous flow cloud condensation nuclei counters were used to measure CCN spectra at the surface and aloft and a humidified tandem differential mobility analyzer was operated on the ground to measure size-resolved hygroscopicity. The aerosol in this arid environment is characterized by a persistent accumulation mode having hygroscopic and CCN efficiency properties consistent with a sulfate-rich aged aerosol. The particles in that background aerosol are generally sufficiently large and hygroscopic to activate at those supersaturations expected in the convective clouds responsible for most of the regional precipitation, which consequently acts as a lower bound on the resulting cloud droplet concentrations. Though the concentration, size distribution, and properties of the submicron aerosol generally changed very slowly over periods of several hours, abrupt ~doubling in concentration almost always accompanied the arrival of the sea breeze front that began along the Red Sea. Interestingly, the hygroscopicity and the shape of the size distribution differed little in the pre- and post-sea breeze air masses. The dust-dominated coarse mode typically contributed significantly more to the aerosol mass concentration than did the submicron mode and likely controlled the ice nuclei concentration, though no direct measurements were made

  14. Measurement of the aerosol absorption coefficient with the nonequilibrium process

    NASA Astrophysics Data System (ADS)

    Li, Liang; Li, Jingxuan; Bai, Hailong; Li, Baosheng; Liu, Shanlin; Zhang, Yang

    2018-02-01

    On the basis of the conventional Jamin interferometer,the improved measuring method is proposed that using a polarization type reentrant Jamin interferometer measures atmospheric aerosol absorption coefficient under the photothermal effect.The paper studies the relationship between the absorption coefficient of atmospheric aerosol particles and the refractive index change of the atmosphere.In Matlab environment, the variation curves of the output voltage of the interferometer with different concentration aerosol samples under stimulated laser irradiation were plotted.Besides, the paper also studies the relationship between aerosol concentration and the time required for the photothermal effect to reach equilibrium.When using the photothermal interferometry the results show that the time required for the photothermal effect to reach equilibrium is also increasing with the increasing concentration of aerosol particles,the absorption coefficient and time of aerosol in the process of nonequilibrium are exponentially changing.

  15. A new method for assessing the contribution of Primary Biological Atmospheric Particles to the mass concentration of the atmospheric aerosol.

    PubMed

    Perrino, Cinzia; Marcovecchio, Francesca

    2016-02-01

    Primary Biologic Atmospheric Particles (PBAPs) constitute an interesting and poorly investigated component of the atmospheric aerosol. We have developed and validated a method for evaluating the contribution of overall PBAPs to the mass concentration of atmospheric particulate matter (PM). The method is based on PM sampling on polycarbonate filters, staining of the collected particles with propidium iodide, observation at epifluorescence microscope and calculation of the bioaerosol mass using a digital image analysis software. The method has been also adapted to the observation and quantification of size-segregated aerosol samples collected by multi-stage impactors. Each step of the procedure has been individually validated. The relative repeatability of the method, calculated on 10 pairs of atmospheric PM samples collected side-by-side, was 16%. The method has been applied to real atmospheric samples collected in the vicinity of Rome, Italy. Size distribution measurements revealed that PBAPs was mainly in the coarse fraction of PM, with maxima in the range 5.6-10 μm. 24-h samples collected during different period of the year have shown that the concentration of bioaerosol was in the range 0.18-5.3 μg m(-3) (N=20), with a contribution to the organic matter in PM10 in the range 0.5-31% and to the total mass concentration of PM10 in the range 0.3-18%. The possibility to determine the concentration of total PBAPs in PM opens up interesting perspectives in terms of studying the health effects of these components and of increasing our knowledge about the composition of the organic fraction of the atmospheric aerosol. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Combining Airborne and Lidar Measurements for Attribution of Aerosol Layers

    NASA Astrophysics Data System (ADS)

    Nikandrova, A.; Väänänen, R.; Tabakova, K.; Kerminen, V. M.; O'Connor, E.

    2016-12-01

    The aim of this work was to identify discrete aerosol layers and diagnose their origin, investigate the strength of mixing within the free-troposphere and with the boundary layer (BL), and understand the impact that mixing has on local and long-range transport of aerosol. For these purposes we combined airborne in-situ aerosol measurements with data obtained by a High Spectral Resolution Lidar (HSRL). The HSRL was deployed in Hyytiälä, Southern Finland, from January to September 2014 as a part of the US DoE ARM (Atmospheric Radiation Measurement) Mobile Facility during the BAECC (Biogenic Aerosols - Effects on Cloud and Climate) Campaign. Two airborne campaigns took place in April and August 2014 during the BAECC campaign. The vertical profile of backscatter coefficient from the HSRL was used to diagnose the location and depth of significant aerosol layers in the atmosphere. Frequently, in addition to the BL, one or two tropospheric layers were identified. In-situ measurements of the aerosol size distribution in these layers were obtained from a Scanning Mobility Particle Sizer (SMPS) and Optical Particle Sizer (OPS), that were installed on board the aircraft; these measurements were combined to cover sizes ranging from 10 nm to 10 µm. As expected, the highest number concentration of aerosol particles at all size ranges was found predominantly in the BL. Many upper layers had size distributions with a similar shape to that in the BL but with overall lower concentrations attributed to dilution of particles into a large volume of air. Hence, these layers were likely of very similar origin to the air in the BL and presumably were the result of lofted residual layers. Intervening layers however, could contain markedly different distribution shapes, which could be attributed to both different air mass origins, and different ambient relative humidity. Potential for mixing between two discreet elevated layers was often seen as a thin interface layer, which exhibited a

  17. Comparison of the DiSCmini aerosol monitor to a handheld condensation particle counter and a scanning mobility particle sizer for submicrometer sodium chloride and metal aerosols

    PubMed Central

    Mills, Jessica B.; Park, Jae Hong; Peters, Thomas M.

    2016-01-01

    We evaluated the robust, lightweight DiSCmini (DM) aerosol monitor for its ability to measure the concentration and mean diameter of submicrometer aerosols. Tests were conducted with monodispersed and polydispersed aerosols composed of two particle types (sodium chloride, NaCl, and spark generated metal particles, which simulate particles found in welding fume) at three different steady-state concentration ranges (Low, <103; Medium, 103–104; and High, >104 particles/cm3). Particle number concentration, lung deposited surface area (LDSA) concentration, and mean size measured with the DM were compared to those measured with reference instruments, a scanning mobility particle sizer (SMPS) and a handheld condensation particle counter (CPC). Particle number concentrations measured with the DM were within 21% of those measured by reference instruments for polydisperse aerosols. Poorer agreement was observed for monodispersed aerosols (±35% for most tests and +130% for 300-nm NaCl). LDSA concentrations measured by the DM were 96% to 155% of those estimated with the SMPS. The geometric mean diameters measured with the DM were within 30% of those measured with the SMPS for monodispersed aerosols and within 25% for polydispersed aerosols (except for the case when the aerosol contained a substantial number of particles larger than 300 nm). The accuracy of the DM is reasonable for particles smaller than 300 nm but caution should be exercised when particles larger than 300 nm are present. PMID:23473056

  18. A New Optical Aerosol Spectrometer

    NASA Technical Reports Server (NTRS)

    Fonda, Mark; Malcolmson, Andrew; Bonin, Mike; Stratton, David; Rogers, C. Fred; Chang, Sherwood (Technical Monitor)

    1998-01-01

    An optical particle spectrometer capable of measuring aerosol particle size distributions from 0.02 to 100 micrometers has been developed. This instrument combines several optical methods in one, in-situ configuration; it can provide continuous data collection to encompass the wide dynamic size ranges and concentrations found in studies of modeled planetary atmospheres as well as terrestrial air quality research. Currently, the system is incorporated into an eight liter capacity spherical pressure vessel that is appropriate both for flowthrough and for in-situ particle generation. The optical sizing methods include polarization ratio, The scattering, and forward scattering detectors, with illumination from a fiber-coupled, Argon-ion laser. As particle sizes increase above 0.1 micrometer, a customized electronics and software system automatically shifts from polarization to diffraction-based measurements as the angular scattering detectors attain acceptable signal-to-noise ratios. The number concentration detection limits are estimated to be in the part-per-trillion (ppT by volume) range, or roughly 1000 submicron particles per cubic centimeter. Results from static experiments using HFC134A (approved light scattering gas standard), flow-through experiments using sodium chloride (NaCl) and carbon particles, and dynamic 'Tholin' (photochemical produced particles from ultraviolet (UV)-irradiated acetylene and nitrogen) experiments have been obtained. The optical spectrometer data obtained with particles have compared well with particle sizes determined by electron microscopy. The 'Tholin' tests provided real-time size and concentration data as the particles grew from about 30 nanometers to about 0.8 micrometers, with concentrations ranging from ppT to ppB, by volume. Tests are still underway, to better define sizing accuracy and concentration limits, these results will be reported.

  19. MATRIX-VBS (v1.0): Implementing an Evolving Organic Aerosol Volatility in an Aerosol Microphysics Model

    NASA Technical Reports Server (NTRS)

    Gao, Chloe Y.; Tsigaridis, Kostas; Bauer, Susanne E.

    2017-01-01

    The gas-particle partitioning and chemical aging of semi-volatile organic aerosol are presented in a newly developed box model scheme, where its effect on the growth, composition, and mixing state of particles is examined. The volatility-basis set (VBS) framework is implemented into the aerosol microphysical scheme MATRIX (Multiconfiguration Aerosol TRacker of mIXing state), which resolves mass and number aerosol concentrations and in multiple mixing-state classes. The new scheme, MATRIX-VBS, has the potential to significantly advance the representation of organic aerosols in Earth system models by improving upon the conventional representation as non-volatile particulate organic matter, often also with an assumed fixed size distribution. We present results from idealized cases representing Beijing, Mexico City, a Finnish forest, and a southeastern US forest, and investigate the evolution of mass concentrations and volatility distributions for organic species across the gas and particle phases, as well as assessing their mixing state among aerosol populations. Emitted semi-volatile primary organic aerosols evaporate almost completely in the intermediate-volatility range, while they remain in the particle phase in the low-volatility range. Their volatility distribution at any point in time depends on the applied emission factors, oxidation by OH radicals, and temperature. We also compare against parallel simulations with the original scheme, which represented only the particulate and non-volatile component of the organic aerosol, examining how differently the condensed-phase organic matter is distributed across the mixing states in the model. The results demonstrate the importance of representing organic aerosol as a semi-volatile aerosol, and explicitly calculating the partitioning of organic species between the gas and particulate phases.

  20. OZONE-ISOPRENE REACTION: RE-EXAMINATION OF THE FORMATION OF SECONDARY ORGANIC AEROSOL

    EPA Science Inventory

    The reaction of ozone and isoprene has been studied to examine physical and chemical characteristics of the secondary organic aerosol formed. Using a scanning mobility particle sizer, the volume distribution of the aerosol was found in the range 0.05 - 0.2 µm. The aerosol yield w...

  1. A novel method for calculating ambient aerosol liquid water content based on measurements of a humidified nephelometer system

    NASA Astrophysics Data System (ADS)

    Kuang, Ye; Zhao, Chun Sheng; Zhao, Gang; Tao, Jiang Chuan; Xu, Wanyun; Ma, Nan; Bian, Yu Xuan

    2018-05-01

    Water condensed on ambient aerosol particles plays significant roles in atmospheric environment, atmospheric chemistry and climate. Before now, no instruments were available for real-time monitoring of ambient aerosol liquid water contents (ALWCs). In this paper, a novel method is proposed to calculate ambient ALWC based on measurements of a three-wavelength humidified nephelometer system, which measures aerosol light scattering coefficients and backscattering coefficients at three wavelengths under dry state and different relative humidity (RH) conditions, providing measurements of light scattering enhancement factor f(RH). The proposed ALWC calculation method includes two steps: the first step is the estimation of the dry state total volume concentration of ambient aerosol particles, Va(dry), with a machine learning method called random forest model based on measurements of the dry nephelometer. The estimated Va(dry) agrees well with the measured one. The second step is the estimation of the volume growth factor Vg(RH) of ambient aerosol particles due to water uptake, using f(RH) and the Ångström exponent. The ALWC is calculated from the estimated Va(dry) and Vg(RH). To validate the new method, the ambient ALWC calculated from measurements of the humidified nephelometer system during the Gucheng campaign was compared with ambient ALWC calculated from ISORROPIA thermodynamic model using aerosol chemistry data. A good agreement was achieved, with a slope and intercept of 1.14 and -8.6 µm3 cm-3 (r2 = 0.92), respectively. The advantage of this new method is that the ambient ALWC can be obtained solely based on measurements of a three-wavelength humidified nephelometer system, facilitating the real-time monitoring of the ambient ALWC and promoting the study of aerosol liquid water and its role in atmospheric chemistry, secondary aerosol formation and climate change.

  2. Volatility Properties of Internally- and Externally-Mixed Ambient Aerosols at an Anthropogenically-influenced Forest Site in Southeastern USA

    NASA Astrophysics Data System (ADS)

    Khlystov, A.; Subramanian, R.

    2015-12-01

    Secondary organic aerosol (SOA) from biogenic sources has a significant contribution to ambient aerosol loadings in Southeastern USA and thus contributes to adverse health effects of air pollution and influences regional and global climate. Volatility properties of biogenic SOA determine its concentration, reactivity, and lifetime, but are still largely unknown. As part of a larger study to assess the effect of biogenic SOA on aerosol optical properties, a set of instruments, including scanning mobility sizers (SMPS), single particle soot photometer (SP2), and a thermodenuder, was deployed during June 2015 at a Duke Forest site near Chapel Hill, NC. The site is characterized by a significant contribution of both biogenic and urban (mostly traffic) sources. Measurements of changes in aerosol volume and optical size upon heating in the thermodenuder at different temperatures are used to derive volatility properties of the ambient aerosol. A limited set of experiments was carried out using the tandem differential mobility analysis (TDMA) approach to investigate whether the ambient aerosol at the Duke Forest site is internally mixed with respect to its volatility properties. In this presentation we will discuss equilibrium and kinetic aspects of aerosol volatility observed during this study and implications of external vs. internal mixing for derivation of bulk volatility properties of ambient aerosol.

  3. Clouds and aerosols in Puerto Rico - a new evaluation

    NASA Astrophysics Data System (ADS)

    Allan, J. D.; Baumgardner, D.; Raga, G. B.; Mayol-Bracero, O. L.; Morales-García, F.; García-García, F.; Montero-Martínez, G.; Borrmann, S.; Schneider, J.; Mertes, S.; Walter, S.; Gysel, M.; Dusek, U.; Frank, G. P.; Krämer, M.

    2007-08-01

    The influence of aerosols, both natural and anthropogenic, remains a major area of uncertainty when predicting the properties and behaviour of clouds and their influence on climate. In an attempt to better understand warm cloud formation in a tropical marine environment, a period of intensive measurements using some of the latest developments in online instrumentation took place in December 2004 in Puerto Rico. Simultaneous online measurements of aerosol size distributions, composition, hygroscopicity and optical properties were made near the lighthouse of Cape San Juan in the north-eastern corner of the island and at the top of East Peak mountain (1040 m a.s.l.), the two sites separated by 17 km. Additional measurements of the cloud droplet residual and interstitial aerosol properties were made at the mountain site, accompanied by measurements of cloud droplet size distributions, liquid water content and the chemical composition of cloud and rain water samples. Both aerosol composition and cloud properties were found to be sensitive to wind sector. Air from the east-northeast (ENE) was mostly free of anthropogenic influences, the submircron fraction being mainly composed of non-sea salt sulphate, while that from the east-southeast (ESE) was found to be moderately influenced by populated islands upwind, adding smaller (<100 nm), externally mixed, carbonaceous particles to the aerosol that increased the number concentrations by over a factor of 3. This change in composition was also accompanied with a reduction in the measured hygroscopicity and fractional cloud activation potential of the aerosol. At the mountain site, the average cloud droplet concentrations increased from 193 to 519 cm-3, median volume diameter decreased from 20 to 14 μm and the liquid water content increased from 0.24 to 0.31 g m-3 when the winds shifted from the ENE to ESE. Larger numbers of interstitial particles were recorded, most notably at sizes greater than 100 nm, which were absent

  4. Characterization of aerosols produced by cell sorters and evaluation of containment

    PubMed Central

    Holmes, Kevin L.

    2011-01-01

    In spite of the recognition by the flow cytometry community of potential aerosol hazards associated with cell sorting, there has been no previous study that has thoroughly characterized the aerosols that can be produced by cell sorters. In this study an Aerodynamic Particle Sizer was used to determine the concentration and aerodynamic diameter of aerosols produced by a FACS Aria II cell sorter under various conditions. Aerosol containment and evacuation was also evaluated using this novel methodology. The results showed that high concentrations of aerosols in the range of 1–3 μm can be produced in fail mode and that with decreased sheath pressure, aerosol concentration decreased and aerodynamic diameter increased. Although the engineering controls of the FACS Aria II for containment were effective, sort chamber evacuation of aerosols following a simulated nozzle obstruction was ineffective. However, simple modifications to the FACS Aria II are described that greatly improved sort chamber aerosol evacuation. The results of this study will facilitate the risk assessment of cell sorting potentially biohazardous samples by providing much needed data regarding aerosol production and containment. PMID:22052694

  5. Remote sensing and in-situ measurements of tropospheric aerosol, a PAMARCMiP case study

    NASA Astrophysics Data System (ADS)

    Hoffmann, Anne; Osterloh, Lukas; Stone, Robert; Lampert, Astrid; Ritter, Christoph; Stock, Maria; Tunved, Peter; Hennig, Tabea; Böckmann, Christine; Li, Shao-Meng; Eleftheriadis, Kostas; Maturilli, Marion; Orgis, Thomas; Herber, Andreas; Neuber, Roland; Dethloff, Klaus

    2012-06-01

    In this work, a closure experiment for tropospheric aerosol is presented. Aerosol size distributions and single scattering albedo from remote sensing data are compared to those measured in-situ. An aerosol pollution event on 4 April 2009 was observed by ground based and airborne lidar and photometer in and around Ny-Ålesund, Spitsbergen, as well as by DMPS, nephelometer and particle soot absorption photometer at the nearby Zeppelin Mountain Research Station. The presented measurements were conducted in an area of 40 × 20 km around Ny-Ålesund as part of the 2009 Polar Airborne Measurements and Arctic Regional Climate Model Simulation Project (PAMARCMiP). Aerosol mainly in the accumulation mode was found in the lower troposphere, however, enhanced backscattering was observed up to the tropopause altitude. A comparison of meteorological data available at different locations reveals a stable multi-layer-structure of the lower troposphere. It is followed by the retrieval of optical and microphysical aerosol parameters. Extinction values have been derived using two different methods, and it was found that extinction (especially in the UV) derived from Raman lidar data significantly surpasses the extinction derived from photometer AOD profiles. Airborne lidar data shows volume depolarization values to be less than 2.5% between 500 m and 2.5 km altitude, hence, particles in this range can be assumed to be of spherical shape. In-situ particle number concentrations measured at the Zeppelin Mountain Research Station at 474 m altitude peak at about 0.18 μm diameter, which was also found for the microphysical inversion calculations performed at 850 m and 1500 m altitude. Number concentrations depend on the assumed extinction values, and slightly decrease with altitude as well as the effective particle diameter. A low imaginary part in the derived refractive index suggests weakly absorbing aerosols, which is confirmed by low black carbon concentrations, measured at the

  6. Development of an aerosol microphysical module: Aerosol Two-dimensional bin module for foRmation and Aging Simulation (ATRAS)

    NASA Astrophysics Data System (ADS)

    Matsui, H.; Koike, M.; Kondo, Y.; Fast, J. D.; Takigawa, M.

    2014-09-01

    Number concentrations, size distributions, and mixing states of aerosols are essential parameters for accurate estimations of aerosol direct and indirect effects. In this study, we develop an aerosol module, designated the Aerosol Two-dimensional bin module for foRmation and Aging Simulation (ATRAS), that can explicitly represent these parameters by considering new particle formation (NPF), black carbon (BC) aging, and secondary organic aerosol (SOA) processes. A two-dimensional bin representation is used for particles with dry diameters from 40 nm to 10 μm to resolve both aerosol sizes (12 bins) and BC mixing states (10 bins) for a total of 120 bins. The particles with diameters between 1 and 40 nm are resolved using additional eight size bins to calculate NPF. The ATRAS module is implemented in the WRF-Chem model and applied to examine the sensitivity of simulated mass, number, size distributions, and optical and radiative parameters of aerosols to NPF, BC aging, and SOA processes over East Asia during the spring of 2009. The BC absorption enhancement by coating materials is about 50% over East Asia during the spring, and the contribution of SOA processes to the absorption enhancement is estimated to be 10-20% over northern East Asia and 20-35% over southern East Asia. A clear north-south contrast is also found between the impacts of NPF and SOA processes on cloud condensation nuclei (CCN) concentrations: NPF increases CCN concentrations at higher supersaturations (smaller particles) over northern East Asia, whereas SOA increases CCN concentrations at lower supersaturations (larger particles) over southern East Asia. The application of ATRAS in East Asia also shows that the impact of each process on each optical and radiative parameter depends strongly on the process and the parameter in question. The module can be used in the future as a benchmark model to evaluate the accuracy of simpler aerosol models and examine interactions between NPF, BC aging, and SOA

  7. Development of an aerosol microphysical module: Aerosol Two-dimensional bin module for foRmation and Aging Simulation (ATRAS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsui, H.; Koike, Makoto; Kondo, Yutaka

    2014-09-30

    Number concentrations, size distributions, and mixing states of aerosols are essential parameters for accurate estimation of aerosol direct and indirect effects. In this study, we developed an aerosol module, designated Aerosol Two-dimensional bin module for foRmation and Aging Simulation (ATRAS), that can represent these parameters explicitly by considering new particle formation (NPF), black carbon (BC) aging, and secondary organic aerosol (SOA) processes. A two-dimensional bin representation is used for particles with dry diameters from 40 nm to 10 µm to resolve both aerosol size (12 bins) and BC mixing state (10 bins) for a total of 120 bins. The particlesmore » with diameters from 1 to 40 nm are resolved using an additional 8 size bins to calculate NPF. The ATRAS module was implemented in the WRF-chem model and applied to examine the sensitivity of simulated mass, number, size distributions, and optical and radiative parameters of aerosols to NPF, BC aging and SOA processes over East Asia during the spring of 2009. BC absorption enhancement by coating materials was about 50% over East Asia during the spring, and the contribution of SOA processes to the absorption enhancement was estimated to be 10 – 20% over northern East Asia and 20 – 35% over southern East Asia. A clear north-south contrast was also found between the impacts of NPF and SOA processes on cloud condensation nuclei (CCN) concentrations: NPF increased CCN concentrations at higher supersaturations (smaller particles) over northern East Asia, whereas SOA increased CCN concentrations at lower supersaturations (larger particles) over southern East Asia. Application of ATRAS to East Asia also showed that the impact of each process on each optical and radiative parameter depended strongly on the process and the parameter in question. The module can be used in the future as a benchmark model to evaluate the accuracy of simpler aerosol models and examine interactions between NPF, BC aging, and SOA

  8. Diurnal cycling of urban aerosols under different weather regimes

    NASA Astrophysics Data System (ADS)

    Gregorič, Asta; Drinovec, Luka; Močnik, Griša; Remškar, Maja; Vaupotič, Janja; Stanič, Samo

    2016-04-01

    A one month measurement campaign was performed in summer 2014 in Ljubljana, the capital of Slovenia (population 280,000), aiming to study temporal and spatial distribution of urban aerosols and the mixing state of primary and secondary aerosols. Two background locations were chosen for this purpose, the first one in the city center (urban background - KIS) and the second one in the suburban background (Brezovica). Simultaneous measurements of black carbon (BC) and particle number size distribution of submicron aerosols (PM1) were conducted at both locations. In the summer season emission from traffic related sources is expected to be the main local contribution to BC concentration. Concentrations of aerosol species and gaseous pollutants within the planetary boundary layer are controlled by the balance between emission sources of primary aerosols and gases, production of secondary aerosols, chemical reactions of precursor gases under solar radiation and the rate of dilution by mixing within the planetary boundary layer (PBL) as well as with tropospheric air. Only local emission sources contribute to BC concentration during the stable PBL with low mixing layer height, whereas during the time of fully mixed PBL, regionally transported BC and other aerosols can contribute to the surface measurements. The study describes the diurnal behaviour of the submicron aerosol at the urban and suburban background location under different weather regimes. Particles in three size modes - nucleation (< 25 nm, NUM), Aitken (25 - 90 nm, AIM) and accumulation mode (90 - 800 nm, ACM), as well as BC mass concentration were evaluated separately for sunny, cloudy and rainy days, taking into account modelled values of PBL height. Higher particle number and black carbon concentrations were observed at the urban background (KIS) than at the suburban background location (Brezovica). Significant diurnal pattern of total particle concentration and black carbon concentration was observed at both

  9. Measurements of Hygroscopicity- and Size-Resolved Sea Spray Aerosol

    NASA Astrophysics Data System (ADS)

    Phillips, B.; Dawson, K. W.; Royalty, T. M.; Reed, R. E.; Petters, M.; Meskhidze, N.

    2015-12-01

    Atmospheric aerosols play a central role in many environmental processes by influencing the Earth's radiative balance, tropospheric chemistry, clouds, biogeochemical cycles, and visibility as well as adversely impacting human health. Based on their origin, atmospheric aerosols can be defined as anthropogenic or natural. Recent studies have shown that a large fraction of uncertainty in the radiative effects of anthropogenic aerosols is related to uncertainty in natural—background—aerosols. Marine aerosols are of particular interest due to the abundance of oceans covering the Earth's surface. Despite their importance, limited information is currently available for size- and composition-resolved marine aerosol emission fluxes. Our group has designed and built an instrument for measuring the size- and hygroscopicity-resolved sea spray aerosol fluxes. The instrument was first deployed during spring 2015 at the end of the 560 m pier of the US Army Corps of Engineers' Field Research Facility in Duck, NC. Measurements include 200 nm-sized diameter growth factor (hygroscopicity) distributions, sea spray particle flux measurements, and total sub-micron sized aerosol concentration. Ancillary ocean data includes salinity, pH, sea surface temperature, dissolved oxygen content, and relative fluorescence (proxy for [Chl-a]). Hygroscopicity distribution measurements show two broad peaks, one indicative of organics and sulfates and another suggestive of sea salt. The fraction of 200 nm-sized salt particles having hygroscopicity similar to that of sea-spray aerosol contributes up to ~24% of the distribution on days with high-speed onshore winds and up to ~3% on calm days with winds blowing from the continent. However, the total concentration of sea-spray-like particles originating from offshore versus onshore winds was relatively similar. Changes in the relative contribution of sea-salt to number concentration were caused by a concomitant changes in total aerosol concentration

  10. Aerosol Observability and Predictability: From Research to Operations for Chemical Weather Forecasting. Lagrangian Displacement Ensembles for Aerosol Data Assimilation

    NASA Technical Reports Server (NTRS)

    da Silva, Arlindo

    2010-01-01

    A challenge common to many constituent data assimilation applications is the fact that one observes a much smaller fraction of the phase space that one wishes to estimate. For example, remotely sensed estimates of the column average concentrations are available, while one is faced with the problem of estimating 3D concentrations for initializing a prognostic model. This problem is exacerbated in the case of aerosols because the observable Aerosol Optical Depth (AOD) is not only a column integrated quantity, but it also sums over a large number of species (dust, sea-salt, carbonaceous and sulfate aerosols. An aerosol transport model when driven by high-resolution, state-of-the-art analysis of meteorological fields and realistic emissions can produce skillful forecasts even when no aerosol data is assimilated. The main task of aerosol data assimilation is to address the bias arising from inaccurate emissions, and Lagrangian misplacement of plumes induced by errors in the driving meteorological fields. As long as one decouples the meteorological and aerosol assimilation as we do here, the classic baroclinic growth of error is no longer the main order of business. We will describe an aerosol data assimilation scheme in which the analysis update step is conducted in observation space, using an adaptive maximum-likelihood scheme for estimating background errors in AOD space. This scheme includes e explicit sequential bias estimation as in Dee and da Silva. Unlikely existing aerosol data assimilation schemes we do not obtain analysis increments of the 3D concentrations by scaling the background profiles. Instead we explore the Lagrangian characteristics of the problem for generating local displacement ensembles. These high-resolution state-dependent ensembles are then used to parameterize the background errors and generate 3D aerosol increments. The algorithm has computational complexity running at a resolution of 1/4 degree, globally. We will present the result of

  11. Long term aerosol and trace gas measurements in Central Amazonia

    NASA Astrophysics Data System (ADS)

    Artaxo, Paulo; Barbosa, Henrique M. J.; Ferreira de Brito, Joel; Carbone, Samara; Rizzo, Luciana V.; Andreae, Meinrat O.; Martin, Scot T.

    2016-04-01

    The central region of the Amazonian forest is a pristine region in terms of aerosol and trace gases concentrations. In the wet season, Amazonia is actually one of the cleanest continental region we can observe on Earth. A long term observational program started 20 years ago, and show important features of this pristine region. Several sites were used, between then ATTO (Amazon Tall Tower Observatory) and ZF2 ecological research site, both 70-150 Km North of Manaus, receiving air masses that traveled over 1500 km of pristine tropical forests. The sites are GAW regional monitoring stations. Aerosol chemical composition (OC/EC and trace elements) is being analysed using filters for fine (PM2.5) and coarse mode aerosol as well as Aerodyne ACSM (Aerosol Chemical Speciation Monitors). VOCs are measured using PTR-MS, while CO, O3 and CO2 are routinely measured. Aerosol absorption is being studied with AE33 aethalometers and MAAP (Multi Angle Absorption Photometers). Aerosol light scattering are being measured at several wavelengths using TSI and Ecotech nephelometers. Aerosol size distribution is determined using scanning mobility particle sizer at each site. Lidars measure the aerosol column up to 12 Km providing the vertical profile of aerosol extinction. The aerosol column is measures using AERONET sun photometers. In the wet season, organic aerosol comprises 75-85% of fine aerosol, and sulfate and nitrate concentrations are very low (1-3 percent). Aerosols are dominated by biogenic primary particles as well as SOA from biogenic precursors. Black carbon in the wet season accounts for 5-9% of fine mode aerosol. Ozone in the wet season peaks at 10-12 ppb at the middle of the day, while carbon monoxide averages at 50-80 ppb. Aerosol optical thickness (AOT) is a low 0.05 to 0.1 at 550 nm in the wet season. Sahara dust transport events sporadically enhance the concentration of soil dust aerosols and black carbon. In the dry season (August-December), long range transported

  12. Effect of oxidant concentration, exposure time, and seed particles on secondary organic aerosol chemical composition and yield

    NASA Astrophysics Data System (ADS)

    Lambe, A. T.; Chhabra, P. S.; Onasch, T. B.; Brune, W. H.; Hunter, J. F.; Kroll, J. H.; Cummings, M. J.; Brogan, J. F.; Parmar, Y.; Worsnop, D. R.; Kolb, C. E.; Davidovits, P.

    2015-03-01

    We performed a systematic intercomparison study of the chemistry and yields of secondary organic aerosol (SOA) generated from OH oxidation of a common set of gas-phase precursors in a Potential Aerosol Mass (PAM) continuous flow reactor and several environmental chambers. In the flow reactor, SOA precursors were oxidized using OH concentrations ranging from 2.0 × 108 to 2.2 × 1010 molec cm-3 over exposure times of 100 s. In the environmental chambers, precursors were oxidized using OH concentrations ranging from 2 × 106 to 2 × 107 molec cm-3 over exposure times of several hours. The OH concentration in the chamber experiments is close to that found in the atmosphere, but the integrated OH exposure in the flow reactor can simulate atmospheric exposure times of multiple days compared to chamber exposure times of only a day or so. In most cases, for a specific SOA type the most-oxidized chamber SOA and the least-oxidized flow reactor SOA have similar mass spectra, oxygen-to-carbon and hydrogen-to-carbon ratios, and carbon oxidation states at integrated OH exposures between approximately 1 × 1011 and 2 × 1011 molec cm-3 s, or about 1-2 days of equivalent atmospheric oxidation. This observation suggests that in the range of available OH exposure overlap for the flow reactor and chambers, SOA elemental composition as measured by an aerosol mass spectrometer is similar whether the precursor is exposed to low OH concentrations over long exposure times or high OH concentrations over short exposure times. This similarity in turn suggests that both in the flow reactor and in chambers, SOA chemical composition at low OH exposure is governed primarily by gas-phase OH oxidation of the precursors rather than heterogeneous oxidation of the condensed particles. In general, SOA yields measured in the flow reactor are lower than measured in chambers for the range of equivalent OH exposures that can be measured in both the flow reactor and chambers. The influence of sulfate seed

  13. Effect of oxidant concentration, exposure time, and seed particles on secondary organic aerosol chemical composition and yield

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lambe, A. T.; Chhabra, P. S.; Onasch, T. B.

    We performed a systematic intercomparison study of the chemistry and yields of secondary organic aerosol (SOA) generated from OH oxidation of a common set of gas-phase precursors in a Potential Aerosol Mass (PAM) continuous flow reactor and several environmental chambers. In the flow reactor, SOA precursors were oxidized using OH concentrations ranging from 2.0 × 10 8 to 2.2 × 10 10 molec cm -3 over exposure times of 100 s. In the environmental chambers, precursors were oxidized using OH concentrations ranging from 2 × 10 6 to 2 × 10 7 molec cm -3 over exposure times of severalmore » hours. The OH concentration in the chamber experiments is close to that found in the atmosphere, but the integrated OH exposure in the flow reactor can simulate atmospheric exposure times of multiple days compared to chamber exposure times of only a day or so. In most cases, for a specific SOA type the most-oxidized chamber SOA and the least-oxidized flow reactor SOA have similar mass spectra, oxygen-to-carbon and hydrogen-to-carbon ratios, and carbon oxidation states at integrated OH exposures between approximately 1 × 10 11 and 2 × 10 11 molec cm -3 s, or about 1–2 days of equivalent atmospheric oxidation. This observation suggests that in the range of available OH exposure overlap for the flow reactor and chambers, SOA elemental composition as measured by an aerosol mass spectrometer is similar whether the precursor is exposed to low OH concentrations over long exposure times or high OH concentrations over short exposure times. This similarity in turn suggests that both in the flow reactor and in chambers, SOA chemical composition at low OH exposure is governed primarily by gas-phase OH oxidation of the precursors rather than heterogeneous oxidation of the condensed particles. In general, SOA yields measured in the flow reactor are lower than measured in chambers for the range of equivalent OH exposures that can be measured in both the flow reactor and chambers. The

  14. Effect of oxidant concentration, exposure time, and seed particles on secondary organic aerosol chemical composition and yield

    DOE PAGES

    Lambe, A. T.; Chhabra, P. S.; Onasch, T. B.; ...

    2015-03-18

    We performed a systematic intercomparison study of the chemistry and yields of secondary organic aerosol (SOA) generated from OH oxidation of a common set of gas-phase precursors in a Potential Aerosol Mass (PAM) continuous flow reactor and several environmental chambers. In the flow reactor, SOA precursors were oxidized using OH concentrations ranging from 2.0 × 10 8 to 2.2 × 10 10 molec cm -3 over exposure times of 100 s. In the environmental chambers, precursors were oxidized using OH concentrations ranging from 2 × 10 6 to 2 × 10 7 molec cm -3 over exposure times of severalmore » hours. The OH concentration in the chamber experiments is close to that found in the atmosphere, but the integrated OH exposure in the flow reactor can simulate atmospheric exposure times of multiple days compared to chamber exposure times of only a day or so. In most cases, for a specific SOA type the most-oxidized chamber SOA and the least-oxidized flow reactor SOA have similar mass spectra, oxygen-to-carbon and hydrogen-to-carbon ratios, and carbon oxidation states at integrated OH exposures between approximately 1 × 10 11 and 2 × 10 11 molec cm -3 s, or about 1–2 days of equivalent atmospheric oxidation. This observation suggests that in the range of available OH exposure overlap for the flow reactor and chambers, SOA elemental composition as measured by an aerosol mass spectrometer is similar whether the precursor is exposed to low OH concentrations over long exposure times or high OH concentrations over short exposure times. This similarity in turn suggests that both in the flow reactor and in chambers, SOA chemical composition at low OH exposure is governed primarily by gas-phase OH oxidation of the precursors rather than heterogeneous oxidation of the condensed particles. In general, SOA yields measured in the flow reactor are lower than measured in chambers for the range of equivalent OH exposures that can be measured in both the flow reactor and chambers. The

  15. Aerosol Number Size Distribution and Type Classification from 4-Year Polarization Optical Particle Counter (POPC) Measurements at Urban-Mountain Site in Seoul

    NASA Astrophysics Data System (ADS)

    Park, H. J.; Kim, S. W.; Kobayashi, H.; Nishizawa, T.

    2017-12-01

    The Polarization Optical Particle Counter (POPC), unlike general OPCs, has the advantage capable of classifying the aerosol types (e.g., dust, anthropogenic pollution), because it measures particle number, size and depolarization ratio (DPR; the sphericity information of single particle) for 4 size bins with diameter (0.5-1, 1-3, 3-5, 5-10 μm). In this study, we investigate the temporal variations of particle number and volume size distributions with DPR values and classify aerosol types such as dust, anthropogenic pollution, from 4-year (2013-2016) POPC data at Seoul National University campus in Seoul, Korea. Coarse mode particles from 5-10 μm with relatively high DPR values (0.25-0.3) were distinctly appeared in in both spring (March-May) and winter (December-February) due to frequent transport of Asian dust particles. In summer (June -August), however, both aerosol number concentration and DPR value were decreased in all size bins due to the influences of relatively clean maritime airmass and frequent precipitations. In autumn (September - November), the particle number concentration in all size bins was the lowest. To classify the aerosol types, we investigate particle number and volume size distributions and DPR value for clean, dust-dominant and anthropogenic pollution-dominant cases, which were selected by PM10, PM2.5 mass concentrations and its ratio, because those parameters are clearly different among aerosol types (Kobayashi et al., 2014, Pan et al., 2016). Non-spherical coarse mode particles (Dp > 2.5 μm, 0.1 < DPR < 0.6) were dominantly observed during the dust-dominant period, while both spherical fine mode and coarse mode particles (Dp < 1 μm and Dp = 2-4 μm, DPR < 0.1) were dominantly appeared during the pollution event. The aerosol type classifications with these criteria values were successfully applied to the extreme Asian dust event from February 22 to 24, 2015. The results showed that pollution-dominant airmass preceded by the appearance

  16. Radiative Characteristics of Aerosol During Extreme Fire Event over Siberia in Summer 2012

    NASA Technical Reports Server (NTRS)

    Zhuravleva, Tatiana B.; Kabanov, Dmitriy M.; Nasrtdinov, Ilmir M.; Russkova, Tatiana V.; Sakerin, Sergey M.; Smirnov, Alexander; Holben, Brent N.

    2017-01-01

    Microphysical and optical properties of aerosol were studied during a mega-fire event in summer 2012 over Siberia using ground-based measurements of spectral solarradiation at the AERONET site in Tomsk and satellite observations. The data were analyzed using multi-year (2003-2013) measurements of aerosol characteristics under back-ground conditions and for less intense fires, differing in burning biomass type, stage of fire, remoteness from observation site, etc. (ordinary smoke). In June-August 2012, the average aerosol optical depth (AOD, 500 nm) had been 0.95+/-0.86, about a factor of 6 larger than background values (0.16+/-0.08), and a factor of 2.5 larger than in ordinary smoke. The AOD values were extremely high on 24-28 July and reached 3-5. A comparison with satellite observations showed that ground-based measurements in the region of Tomsk not only reflect the local AOD features, but are also characteristic for the territory of Western Siberia as a whole. Single scattering albedo (SSA, 440 nm) in this period ranged from 0.91 to 0.99 with an average of approx. 0.96 in the entire wavelength range of 440-1020 nm. The increase in absorptance of aerosol particles (SSA(440 nm)=0.92) and decrease in SSA with wavelength observed in ordinary smoke agree with the data from multi-year observations in analogous situations in the boreal zone of USA and Canada. Volume aerosol size distribution in extreme and ordinary smoke had a bimodal character with significant prevalence of fine-mode particles, but in summer 2012 the mean median radius and the width of the fine-mode distribution somewhat increased. In contrast to data from multi-year observations, in summer 2012 an increase in the volume concentration and median radius of the coarse mode was observed with growing AOD.

  17. Clouds and aerosols in Puerto Rico - a new evaluation

    NASA Astrophysics Data System (ADS)

    Allan, J. D.; Baumgardner, D.; Raga, G. B.; Mayol-Bracero, O. L.; Morales-García, F.; García-García, F.; Montero-Martínez, G.; Borrmann, S.; Schneider, J.; Mertes, S.; Walter, S.; Gysel, M.; Dusek, U.; Frank, G. P.; Krämer, M.

    2008-03-01

    The influence of aerosols, both natural and anthropogenic, remains a major area of uncertainty when predicting the properties and behaviour of clouds and their influence on climate. In an attempt to better understand warm cloud formation in a tropical marine environment, a period of intensive measurements took place in December 2004 in Puerto Rico, using some of the latest developments in online instrumentation such as aerosol mass spectrometers, cloud condensation nuclei counters and a hygroscopicity tandem differential mobility analyser. Simultaneous online measurements of aerosol size distributions, composition, hygroscopicity and optical properties were made near the lighthouse of Cape San Juan in the north-eastern corner of the island and at the top of East Peak mountain (1040 m a.s.l.), the two sites separated by 17 km. Additional measurements of the cloud droplet residual and interstitial aerosol properties were made at the mountain site, accompanied by measurements of cloud droplet size distributions, liquid water content and the chemical composition of cloud and rain water samples. Both aerosol composition and cloud properties were found to be sensitive to wind sector. Air from the east-northeast (ENE) was mostly free of anthropogenic influences, the submicron fraction being mainly composed of non-sea salt sulphate, while that from the east-southeast (ESE) was found to be moderately influenced by populated islands upwind, adding smaller (<100 nm), externally mixed, carbonaceous particles to the aerosol that increased the number concentrations by over a factor of 3. This change in composition was also accompanied with a reduction in the measured hygroscopicity and fractional cloud activation potential of the aerosol. At the mountain site, the average cloud droplet concentrations increased from 193 to 519 cm-3, median volume diameter decreased from 20 to 14 μm and the liquid water content increased from 0.24 to 0.31 g m-3 when the winds shifted from the ENE

  18. Preliminary investigation tests of novel antifungal topical aerosol

    PubMed Central

    Kapadia, Monali M.; Solanki, S. T.; Parmar, V.; Thosar, M. M.; Pancholi, S. S.

    2012-01-01

    Spray formulation can minimize pain and irritation experience during the application of conventional dosage forms. Econazole Nitrate is an active ingredient of the aerosol concentrate to be used for twice-daily application because of its long durability in the superficial layers of the fungal infected skin. The aim of this study is preliminary investigation of Econazole Nitrate spray by varying the concentrations of different constituents of the spray. The ratios of Propylene glycol (PG) and isopropyl myristate (IPM) were selected as independent variables in 22 full factorial designs, keeping the concentration of solvent, co-solvent and propellant LPG constant. Aerosol also contained Ethanol as solvent and Isopropyl alcohol as co-solvent. All ingredients of the aerosol were packaged in an aluminum container fitted with continuous-spray valves. Physical properties evaluated for the Econazole Nitrate spray included delivery rate, delivery amount, pressure, minimum fill, leakage, flammability, spray patterns, particle image and plume angle. Glass containers were used to study incompatibility between concentrate and propellant due to the ease of visible inspection. Isopropyl myristate at lower concentrate showed turbidity, while at high concentration it met the requirements for aerosol and produced Econazole Nitrate spray with expected characteristics. PMID:23066214

  19. Modeling the Relationships Between Aerosol Properties and the Direct and Indirect Effects of Aerosols on Climate

    NASA Technical Reports Server (NTRS)

    Toon, Owen B.

    1994-01-01

    Aerosols may affect climate directly by scattering and absorbing visible and infrared energy, They may also affect climate indirectly by modifying the properties of clouds through microphysical processes, and by altering abundances of radiatively important gases through heterogeneous chemistry. Researchers understand which aerosol properties control the direct effect of aerosols on the radiation budget. Unfortunately, despite an abundance of data on certain types of aerosols, much work remains to be done to determine the values of these properties. For instance we have little idea about the global distribution, seasonal variation, or interannual variability of the aerosol optical depth. Also we do not know the visible light absorption properties of tropical aerosols which may contain much debris from slash and burn agriculture. A positive correlation between aerosol concentrations and albedos of marine stratus clouds is observed, and the causative microphysics is understood. However, models suggest that it is difficult to produce new particles in the marine boundary layer. Some modelers have suggested that the particles in the marine boundary layer may originate in the free troposphere and be transported into the boundary layer. Others argue that the aerosols are created in the marine boundary layer. There are no data linking aerosol concentration and cirrus cloud albedo, and models suggest cirrus properties may not be very sensitive to aerosol abundance. There is clear evidence of a radiatively significant change in the global lower stratospheric ozone abundance during the past few decades. These changes are caused by heterogeneous chemical reactions occurring on the surfaces of particles. The rates of these reactions depend upon the chemical composition of the particles. Although rapid advances in understanding heterogeneous chemistry have been made, much remains to be done.

  20. Cloud-Resolving Model Simulations of Aerosol-Cloud Interactions Triggered by Strong Aerosol Emissions in the Arctic

    NASA Astrophysics Data System (ADS)

    Wang, H.; Kravitz, B.; Rasch, P. J.; Morrison, H.; Solomon, A.

    2014-12-01

    Previous process-oriented modeling studies have highlighted the dependence of effectiveness of cloud brightening by aerosols on cloud regimes in warm marine boundary layer. Cloud microphysical processes in clouds that contain ice, and hence the mechanisms that drive aerosol-cloud interactions, are more complicated than in warm clouds. Interactions between ice particles and liquid drops add additional levels of complexity to aerosol effects. A cloud-resolving model is used to study aerosol-cloud interactions in the Arctic triggered by strong aerosol emissions, through either geoengineering injection or concentrated sources such as shipping and fires. An updated cloud microphysical scheme with prognostic aerosol and cloud particle numbers is employed. Model simulations are performed in pure super-cooled liquid and mixed-phase clouds, separately, with or without an injection of aerosols into either a clean or a more polluted Arctic boundary layer. Vertical mixing and cloud scavenging of particles injected from the surface is still quite efficient in the less turbulent cold environment. Overall, the injection of aerosols into the Arctic boundary layer can delay the collapse of the boundary layer and increase low-cloud albedo. The pure liquid clouds are more susceptible to the increase in aerosol number concentration than the mixed-phase clouds. Rain production processes are more effectively suppressed by aerosol injection, whereas ice precipitation (snow) is affected less; thus the effectiveness of brightening mixed-phase clouds is lower than for liquid-only clouds. Aerosol injection into a clean boundary layer results in a greater cloud albedo increase than injection into a polluted one, consistent with current knowledge about aerosol-cloud interactions. Unlike previous studies investigating warm clouds, the impact of dynamical feedback due to precipitation changes is small. According to these results, which are dependent upon the representation of ice nucleation

  1. Elemental concentrations in tropospheric and lower stratospheric air in a Northeastern region of Poland

    NASA Astrophysics Data System (ADS)

    Braziewicz, Janusz; Kownacka, Ludwika; Majewska, Urszula; Korman, Andrzej

    Element concentrations of K, Ca, Ti, Cr, Fe, Ni, Cu, Zn, Se, Br, Sr and Pb as well as the activity of natural radionuclides 210Pb and 226Ra in air were measured. The aerosol samples were collected during tropospheric and stratospheric aircraft flights over the Northeastern region of Poland, which is mostly an agricultural and wooded area. The air volumes were filtered using Petrianov filters at 1, 3, 6, 9, 12 and 15 km above the ground level by special equipment attached to a jet plane. Aircraft flights were provided from September 1997 to August 1998 in 5 separate sampling runs. The long sampling distances served as a good representation of mean aerosol composition and distribution. Concentrations of the same elements were also measured using stationary equipment near the ground level at the outskirts of Warsaw. The vertical profiles of element concentration were obtained and the elemental compositions for the tropospheric and stratospheric aerosols were compared with those from the near-ground level. Contribution of K, Ca, Ti and Fe, which are the main components of soil, in total mass of all detected ones was estimated. Relative concentrations of all measured elements, which show any differences in the composition of the aerosol were calculated. The results obtained confirm the fact that the stratospheric reservoir is observed in the bottom stratosphere. The XRF method based on molybdenum X-ray tube was used as an analytical tool in the determination of aerosols trace elements. The altitude distributions of radioactivity of 226Ra and 210Pb were determined using radiochemical methods.

  2. Aerosol Microphysical and Radiative Effects on Continental Cloud Ensembles

    DOE PAGES

    Wang, Yuan; Vogel, Jonathan M.; Lin, Yun; ...

    2018-01-10

    Aerosol-cloud-radiation interactions represent one of the largest uncertainties in the current climate assessment. Much of the complexity arises from the non-monotonic responses of clouds, precipitation and radiative fluxes to aerosol perturbations under various meteorological conditions. Here, an aerosol-aware Weather Research and Forecasting (WRF) model is used to investigate the microphysical and radiative effects of aerosols in three weather systems during the March 2000 Cloud Intensive Observational Period campaign at the Southern Great Plains site of the US Atmospheric Radiation Measurement Program. Three cloud ensembles with different meteorological conditions are simulated, including a low-pressure deep convective cloud system, a series ofmore » lessprecipitating stratus and shallow cumulus, and a cold frontal passage. The WRF simulations are evaluated by the available observations of cloud fraction, liquid water path, precipitation, and surface temperature. The microphysical properties of cloud hydrometeors, such as their mass and number concentrations, generally show monotonic trends as a function of cloud condensation nuclei concentrations. Aerosol radiative effects do not interfere the trends of cloud microphysics, except for the stratus and shallow cumulus cases where aerosol semi-direct effects are identified. The precipitation changes by aerosols vary with the cloud types and their evolving stages, with more prominent aerosol invigoration effect and associated enhanced precipitation from the convective sources. Furthermore, the simulated aerosol direct effect suppresses precipitation in all three cases but does not overturn the direction of precipitation changes by the aerosol indirect effect. Cloud fraction exhibits much smaller sensitivity (typically less than 2%) to aerosol perturbations than the cloud microphysics, and the responses vary with aerosol concentrations and cloud regimes. The surface shortwave radiation shows a monotonic decrease by

  3. Aerosol Microphysical and Radiative Effects on Continental Cloud Ensembles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yuan; Vogel, Jonathan M.; Lin, Yun

    Aerosol-cloud-radiation interactions represent one of the largest uncertainties in the current climate assessment. Much of the complexity arises from the non-monotonic responses of clouds, precipitation and radiative fluxes to aerosol perturbations under various meteorological conditions. Here, an aerosol-aware Weather Research and Forecasting (WRF) model is used to investigate the microphysical and radiative effects of aerosols in three weather systems during the March 2000 Cloud Intensive Observational Period campaign at the Southern Great Plains site of the US Atmospheric Radiation Measurement Program. Three cloud ensembles with different meteorological conditions are simulated, including a low-pressure deep convective cloud system, a series ofmore » lessprecipitating stratus and shallow cumulus, and a cold frontal passage. The WRF simulations are evaluated by the available observations of cloud fraction, liquid water path, precipitation, and surface temperature. The microphysical properties of cloud hydrometeors, such as their mass and number concentrations, generally show monotonic trends as a function of cloud condensation nuclei concentrations. Aerosol radiative effects do not interfere the trends of cloud microphysics, except for the stratus and shallow cumulus cases where aerosol semi-direct effects are identified. The precipitation changes by aerosols vary with the cloud types and their evolving stages, with more prominent aerosol invigoration effect and associated enhanced precipitation from the convective sources. Furthermore, the simulated aerosol direct effect suppresses precipitation in all three cases but does not overturn the direction of precipitation changes by the aerosol indirect effect. Cloud fraction exhibits much smaller sensitivity (typically less than 2%) to aerosol perturbations than the cloud microphysics, and the responses vary with aerosol concentrations and cloud regimes. The surface shortwave radiation shows a monotonic decrease by

  4. Aerosol indirect effect from turbulence-induced broadening of cloud-droplet size distributions.

    PubMed

    Chandrakar, Kamal Kant; Cantrell, Will; Chang, Kelken; Ciochetto, David; Niedermeier, Dennis; Ovchinnikov, Mikhail; Shaw, Raymond A; Yang, Fan

    2016-12-13

    The influence of aerosol concentration on the cloud-droplet size distribution is investigated in a laboratory chamber that enables turbulent cloud formation through moist convection. The experiments allow steady-state microphysics to be achieved, with aerosol input balanced by cloud-droplet growth and fallout. As aerosol concentration is increased, the cloud-droplet mean diameter decreases, as expected, but the width of the size distribution also decreases sharply. The aerosol input allows for cloud generation in the limiting regimes of fast microphysics ([Formula: see text]) for high aerosol concentration, and slow microphysics ([Formula: see text]) for low aerosol concentration; here, [Formula: see text] is the phase-relaxation time and [Formula: see text] is the turbulence-correlation time. The increase in the width of the droplet size distribution for the low aerosol limit is consistent with larger variability of supersaturation due to the slow microphysical response. A stochastic differential equation for supersaturation predicts that the standard deviation of the squared droplet radius should increase linearly with a system time scale defined as [Formula: see text], and the measurements are in excellent agreement with this finding. The result underscores the importance of droplet size dispersion for aerosol indirect effects: increasing aerosol concentration changes the albedo and suppresses precipitation formation not only through reduction of the mean droplet diameter but also by narrowing of the droplet size distribution due to reduced supersaturation fluctuations. Supersaturation fluctuations in the low aerosol/slow microphysics limit are likely of leading importance for precipitation formation.

  5. Aerosol Therapy for Obstructive Lung Diseases

    PubMed Central

    2011-01-01

    Inhaled aerosol therapies are the mainstay of treatment of obstructive lung diseases. Aerosol devices deliver drugs rapidly and directly into the airways, allowing high local drug concentrations while limiting systemic toxicity. While numerous clinical trials, literature reviews, and expert panel guidelines inform the choice of inhalational drugs, deciding which aerosol device (ie, metered-dose inhaler, nebulizer, or dry powder inhaler) best suits a given patient and clinical setting can seem arbitrary and confusing. Similar confusion regarding Current Procedural Terminology (CPT) coding for administration of aerosol therapies can lead to lost revenue from underbilling and wasted administrative effort handling denied claims. This article reviews the aerosol devices currently available, discusses their relative merits in various clinical settings, and summarizes appropriate CPT coding for aerosol therapy. PMID:21896522

  6. Smoke and Pollution Aerosol Effect on Cloud Cover

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.; Koren, Ilan

    2006-01-01

    Pollution and smoke aerosols can increase or decrease the cloud cover. This duality in the effects of aerosols forms one of the largest uncertainties in climate research. Using solar measurements from Aerosol Robotic Network sites around the globe, we show an increase in cloud cover with an increase in the aerosol column concentration and an inverse dependence on the aerosol absorption of sunlight. The emerging rule appears to be independent of geographical location or aerosol type, thus increasing our confidence in the understanding of these aerosol effects on the clouds and climate. Preliminary estimates suggest an increase of 5% in cloud cover.

  7. Evaluation of the impact of long-range transport and aerosol concentration temporal variations at the eastern coast of the Baltic Sea.

    PubMed

    Ovadnevaite, J; Kvietkus, K; Sakalys, J

    2007-09-01

    Ambient particles vary greatly in their ability to affect visibility, climate and human health. The fine fraction of aerosol is responsible for greater and wider effects on human health; thus, investigation of this fraction is very important. Continuous measurements of PM2.5 (particulate matter below 2.5 microm in size) concentrations at the Preila monitoring station started in 2003. During a period of 2 years, the episodes of high daily and semi-hourly concentrations of PM2.5 were measured. These episodes did not depend on the season or time of day. The substantial role of long-range transport of pollutants to these increases in concentration was shown using chemical and statistical analysis. It was found that most of the severe episodes occurred when air masses came from a specific site besides it was established that air masses of different origin were characterized by different mixing layer depth. Lower mixing depth was observed in air masses characterized by higher observed concentrations at the measuring site and vice versa. PM2.5 concentrations showed diurnal and seasonal variations whose pattern reflected the regional origin of the aerosol. The regional pollution level was evaluated by the statistical analysis of PM2.5 concentrations. The background annual average of PM2.5 mass concentration for the eastern coast of the Baltic Sea was 15.1 +/- 0.8 microg m(-3).

  8. The boiling point of stratospheric aerosols.

    NASA Technical Reports Server (NTRS)

    Rosen, J. M.

    1971-01-01

    A photoelectric particle counter was used for the measurement of aerosol boiling points. The operational principle involves raising the temperature of the aerosol by vigorously heating a portion of the intake tube. At or above the boiling point, the particles disintegrate rather quickly, and a noticeable effect on the size distribution and concentration is observed. Stratospheric aerosols appear to have the same volatility as a solution of 75% sulfuric acid. Chemical analysis of the aerosols indicates that there are other substances present, but that the sulfate radical is apparently the major constituent.

  9. Development of an Aerosol Model of Cryptococcus Reveals Humidity as an Important Factor Affecting the Viability of Cryptococcus during Aerosolization

    PubMed Central

    Springer, Deborah J.; Saini, Divey; Byrnes, Edmond J.; Heitman, Joseph; Frothingham, Richard

    2013-01-01

    Cryptococcus is an emerging global health threat that is annually responsible for over 1,000,000 infections and one third of all AIDS patient deaths. There is an ongoing outbreak of cryptococcosis in the western United States and Canada. Cryptococcosis is a disease resulting from the inhalation of the infectious propagules from the environment. The current and most frequently used animal infection models initiate infection via liquid suspension through intranasal instillation or intravenous injection. These models do not replicate the typically dry nature of aerosol exposure and may hinder our ability to decipher the initial events that lead to clearance or the establishment of infection. We have established a standardized aerosol model of murine infection for the human fungal pathogen Cryptococcus. Aerosolized cells were generated utilizing a Collison nebulizer in a whole-body Madison Chamber at different humidity conditions. The aerosols inside the chamber were sampled using a BioSampler to determine viable aerosol concentration and spray factor (ratio of viable aerosol concentration to total inoculum concentration). We have effectively delivered yeast and yeast-spore mixtures to the lungs of mice and observed the establishment of disease. We observed that growth conditions prior to exposure and humidity within the Madison Chamber during exposure can alter Cryptococcus survival and dose retained in mice. PMID:23894542

  10. Optical measurement of medical aerosol media parameters

    NASA Astrophysics Data System (ADS)

    Sharkany, Josif P.; Zhytov, Nikolay B.; Sichka, Mikhail J.; Lemko, Ivan S.; Pintye, Josif L.; Chonka, Yaroslav V.

    2000-07-01

    The problem of aerosol media parameters measurements are presented in the work and these media are used for the treatment of the patients with bronchial asthma moreover we show the results of the development and the concentration and dispersity of the particles for the long-term monitoring under such conditions when the aggressive surroundings are available. The system for concentration measurements is developed, which consists of two identical photometers permitting to carry out the measurements of the transmission changes and the light dispersion depending on the concentration of the particles. The given system permits to take into account the error, connected with the deposition of the salt particles on the optical windows and the mirrors in the course of the long-term monitoring. For the controlling of the dispersity of the aggressive media aerosols the optical system is developed and used for the non-stop analysis of the Fure-spectra of the aerosols which deposit on the lavsan film. The registration of the information is performed with the help of the rule of the photoreceivers or CCD-chamber which are located in the Fure- plane. With the help of the developed optical system the measurements of the concentration and dispersity of the rock-salt aerosols were made in the medical mines of Solotvino (Ukraine) and in the artificial chambers of the aerosol therapy.

  11. Pollutants identification of ambient aerosols by two types of aerosol mass spectrometers over southeast coastal area, China.

    PubMed

    Yan, Jinpei; Chen, Liqi; Lin, Qi; Zhao, Shuhui; Li, Lei

    2018-02-01

    Two different aerosol mass spectrometers, Aerodyne Aerosol Mass Spectrometer (AMS) and Single Particle Aerosol Mass Spectrometer (SPAMS) were deployed to identify the aerosol pollutants over Xiamen, representing the coastal urban area. Five obvious processes were classified during the whole observation period. Organics and sulfate were the dominant components in ambient aerosols over Xiamen. Most of the particles were in the size range of 0.2-1.0μm, accounting for over 97% of the total particles measured by both instruments. Organics, as well as sulfate, measured by AMS were in good correlation with measured by SPAMS. However, high concentration of NH 4 + was obtained by AMS, while extremely low value of NH 4 + was detected by SPAMS. Contrarily, high particle number counts of NO 3 - and Cl - were given by SPAMS while low concentrations of NO 3 - and Cl - were measured by AMS. The variations of POA and SOA obtained from SPAMS during event 1 and event 2 were in accordance with the analysis of HOA and OOA given by AMS, suggesting that both of AMS and SPAMS can well identify the organic clusters of aerosol particles. Overestimate or underestimate of the aerosol sources and acidity would be present in some circumstances when the measurement results were used to analyze the aerosol properties, because of the detection loss of some species for both instruments. Copyright © 2017. Published by Elsevier B.V.

  12. A continuous plutonium aerosol monitor for use in high radon environments.

    PubMed

    Li, HuiBin; Jia, MingYan; Li, GuoShen; Wang, YinDong

    2012-01-01

    Radon concentration is very high in underground basements and other facilities. Radon concentration in a nuclear facility locates in the granite tunnel can be as high as 10(4) Bq m(-3) in summer. Monitoring plutonium aerosol in this circumstance is seriously interfered by radon daughters. In order to solve this problem, a new continuous aerosol monitor that can monitor very low plutonium aerosol concentration in high radon background was developed. Several techniques were used to reduce interference of radon daughters, and the minimum detectable concentrations in various radon concentrations were measured.

  13. The Chemical Composition and Mixing State of Sea Spray Aerosol and Organic Aerosol in the Winter-Spring Arctic

    NASA Astrophysics Data System (ADS)

    Kirpes, R.; Bondy, A. L.; Bonanno, D.; Moffet, R.; Wang, B.; Laskin, A.; Ault, A. P.; Pratt, K.

    2016-12-01

    The Arctic region is undergoing rapid transformations and loss of sea ice due to climate change. With increased sea ice fracturing resulting in greater open ocean surface, winter emissions of sea spray aerosol (SSA) are expected to be increasing. Additionally, during the winter-spring transition, Arctic haze contributes to the Arctic aerosol budget. The magnitude of aerosol climate effects depends on the aerosol composition and mixing state (distribution of chemical species within and between particles). However, few studies of aerosol chemistry have been conducted in the winter Arctic, despite it being a time when aerosol impacts on clouds are expected to be significant. To study aerosol composition and mixing state in the winter Arctic, atmospheric particles were collected near Barrow, Alaska in January and February 2014 for off-line individual particle chemical analysis. SSA was the most prevalent particle type observed. Sulfate and nitrate were observed to be internally mixed with SSA and organic aerosol. Greater than 98% of observed SSA particles contained organic content, with 15-35% organic volume fraction on average for individual particles. The SSA organic compounds consisted of carbohydrates, lipids, and fatty acids found in the seawater surface microlayer. SSA was determined to be emitted from open leads, while transported sulfate and nitrate contributed to aging of SSA and organic aerosol. Determining the aerosol chemical composition and mixing state in the winter Arctic will further the understanding of how individual aerosol particles impact climate through radiative effects and cloud formation.

  14. The design of an aerosol test tunnel for occupational hygiene investigations

    NASA Astrophysics Data System (ADS)

    Blackford, D. B.; Heighington, K.

    An aerosol test tunnel which provides large working sections is described and its performance evaluated. Air movement within the tunnel is achieved with a powerful D.C. motor and centrifugal fan. Test dusts are dispersed and injected into the tunnel by means of an aerosol generator. A unique divertor valve allows aerosol laden air to be either cleaned by a commercial pulse jet filtration unit or recycled around the tunnel to obtain a high aerosol concentration. The tunnel instrumentation is managed by a microcomputer which automatically controls the airspeed and aerosol concentration.

  15. Low-cost wind tunnel for aerosol inhalation studies.

    PubMed

    Chung, I P; Dunn-Rankin, D; Phalen, R F; Oldham, M J

    1992-04-01

    A low-cost wind tunnel for aerosol studies has been designed, constructed, and evaluated for aerosol uniformity with 2- and 0.46-micron particles. A commercial nebulizer was used to produce the suspended test particles, and a custom-made, four-hole injector was used to introduce the aerosol into the wind tunnel. A commercially available optical particle counter measured the particle concentration. Performance tests of the velocity profile and particle concentration distribution at two flow rates showed that the system performs well for small particles.

  16. Atmospheric Teleconnection over Eurasia Induced by Aerosol Radiative Forcing during Boreal Spring

    NASA Technical Reports Server (NTRS)

    Kim, Maeng-Ki; Lau, William K. M.; Chin, Mian; Kim, Kyu-Myong; Sud, Y. C.; Walker, Greg K.

    2006-01-01

    The direct effects of aerosols on global and regional climate during boreal spring are investigated based on numerical simulations with the NASA Global Modeling and Assimilation Office finite-volume general circulation model (fvGCM) with Microphyics of Clouds with the Relaxed Arakawa Schubert Scheme (McRAS), using aerosol forcing functions derived from the Goddard Ozone Chemistry Aerosol Radiation and Transport model (GOCART). The authors find that anomalous atmospheric heat sources induced by absorbing aerosols (dust and black carbon) excite a planetary-scale teleconnection pattern in sea level pressure, temperature, and geopotential height spanning North Africa through Eurasia to the North Pacific. Surface cooling due to direct effects of aerosols is found in the vicinity and downstream of the aerosol source regions, that is, South Asia, East Asia, and northern and western Africa. Significant atmospheric heating is found in regions with large loading of dust (over northern Africa and the Middle East) and black carbon (over Southeast Asia). Paradoxically, the most pronounced feature in aerosol-induced surface temperature is an east west dipole anomaly with strong cooling over the Caspian Sea and warming over central and northeastern Asia, where aerosol concentrations are low. Analyses of circulation anomalies show that the dipole anomaly is a part of an atmospheric teleconnection pattern driven by atmospheric heating anomalies induced by absorbing aerosols in the source regions, but the influence was conveyed globally through barotropic energy dispersion and sustained by feedback processes associated with the regional circulations. The surface temperature signature associated with the aerosol-induced teleconnection bears striking resemblance to the spatial pattern of observed long-term trend in surface temperature over Eurasia. Additionally, the boreal spring wave train pattern is similar to that reported by Fukutomi et al. associated with the boreal summer

  17. Anomalies of the Asian Monsoon Induced by Aerosol Forcings

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.; Kim, M. K.

    2004-01-01

    Impacts of aerosols on the Asian summer monsoon are studied using the NASA finite volume General Circulation Model (fvGCM), with radiative forcing derived from three-dimensional distributions of five aerosol species i.e., black carbon, organic carbon, soil dust, and sea salt from the Goddard Chemistry Aerosol Radiation and Transport Model (GOCART). Results show that absorbing aerosols, i.e., black carbon and dust, induce large-scale upper-level heating anomaly over the Tibetan Plateau in April and May, ushering in & early onset of the Indian summer monsoon. Absorbing aerosols also I i enhance lower-level heating and anomalous ascent over northern India, intensifying the Indian monsoon. Overall, the aerosol-induced large-scale surface' temperature cooling leads to a reduction of monsoon rainfall over the East Asia continent, and adjacent oceanic regions.

  18. Emission of intermediate, semi and low volatile organic compounds from traffic and their impact on secondary organic aerosol concentrations over Greater Paris

    NASA Astrophysics Data System (ADS)

    Sartelet, K.; Zhu, S.; Moukhtar, S.; André, M.; André, J. M.; Gros, V.; Favez, O.; Brasseur, A.; Redaelli, M.

    2018-05-01

    Exhaust particle emissions are mostly made of black carbon and/or organic compounds, with some of these organic compounds existing in both the gas and particle phases. Although emissions of volatile organic compounds (VOC) are usually measured at the exhaust, emissions in the gas phase of lower volatility compounds (POAvapor) are not. However, these gas-phase emissions may be oxidised after emission and enhance the formation of secondary organic aerosols (SOA). They are shown here to contribute to most of the SOA formation in Central Paris. POAvapor emissions are usually estimated from primary organic aerosol emissions in the particle phase (POA). However, they could also be estimated from VOC emissions for both gasoline and diesel vehicles using previously published measurements from chamber measurements. Estimating POAvapor from VOC emissions and ageing exhaust emissions with a simple model included in the Polyphemus air-quality platform compare well to measurements of SOA formation performed in chamber experiments. Over Greater Paris, POAvapor emissions estimated using POA and VOC emissions are compared using the HEAVEN bottom-up traffic emissions model. The impact on the simulated atmospheric concentrations is then assessed using the Polyphemus/Polair3D chemistry-transport model. Estimating POAvapor emissions from VOC emissions rather than POA emissions lead to lower emissions along motorway axes (between -50% and -70%) and larger emissions in urban areas (up to between +120% and +140% in Central Paris). The impact on total organic aerosol concentrations (gas plus particle) is lower than the impact on emissions: between -8% and 25% along motorway axes and in urban areas respectively. Particle-phase organic concentrations are lower when POAvapor emissions are estimated from VOC than POA emissions, even in Central Paris where the total organic aerosol concentration is higher, because of different assumptions on the emission volatility distribution, stressing the

  19. Aerosol indirect effect on tropospheric ozone via lightning

    NASA Astrophysics Data System (ADS)

    Yuan, T.; Remer, L. A.; Bian, H.; Ziemke, J. R.; Albrecht, R. I.; Pickering, K. E.; Oreopoulos, L.; Goodman, S. J.; Yu, H.; Allen, D. J.

    2012-12-01

    Tropospheric ozone (O3) is a pollutant and major greenhouse gas and its radiative forcing is still uncertain. The unresolved difference between modeled and observed natural background O3 concentrations is a key source of the uncertainty. Here we demonstrate remarkable sensitivity of lightning activity to aerosol loading with lightning activity increasing more than 30 times per unit of aerosol optical depth over our study area. We provide observational evidence that indicates the observed increase in lightning activity is caused by the influx of aerosols from a volcano. Satellite data analyses suggest O3 is increased as a result of aerosol-induced increase in lightning and lightning produced NOx. Model simulations with prescribed lightning change corroborate the satellite data analysis. This aerosol-O3 connection is achieved via aerosol increasing lightning and thus lightning produced nitrogen oxides. This aerosol-lightning-ozone link provides a potential physical mechanism that may account for a part of the model-observation difference in background O3 concentration. More importantly, O3 production increase from this link is concentrated in the upper troposphere, where O3 is most efficient as a greenhouse gas. Both of these implications suggest a stronger O3 historical radiative forcing. This introduces a new pathway, through which increasing in aerosols from pre-industrial time to present day enhances tropospheric O3 production. Aerosol forcing thus has a warming component via its effect on O3 production. Sensitivity simulations suggest that 4-8% increase of tropospheric ozone, mainly in the tropics, is expected if aerosol-lighting-ozone link is parameterized, depending on the background emission scenario. We note, however, substantial uncertainties remain on the exact magnitude of aerosol effect on tropospheric O3 via lightning. The challenges for obtaining a quantitative global estimate of this effect are also discussed. Our results have significant implications

  20. A Nanometer Aerosol Size Analyzer (nASA) for Rapid Measurement of High-concentration Size Distributions

    NASA Astrophysics Data System (ADS)

    Han, Hee-Siew; Chen, Da-Ren; Pui, David Y. H.; Anderson, Bruce E.

    2000-03-01

    We have developed a fast-response nanometer aerosol size analyzer (nASA) that is capable of scanning 30 size channels between 3 and 100 nm in a total time of 3 s. The analyzer includes a bipolar charger (Po210), an extended-length nanometer differential mobility analyzer (Nano-DMA), and an electrometer (TSI 3068). This combination of components provides particle size spectra at a scan rate of 0.1 s per channel free of uncertainties caused by response-time-induced smearing. The nASA thus offers a fast response for aerosol size distribution measurements in high-concentration conditions and also eliminates the need for applying a de-smearing algorithm to resulting data. In addition, because of its thermodynamically stable means of particle detection, the nASA is useful for applications requiring measurements over a broad range of sample pressures and temperatures. Indeed, experimental transfer functions determined for the extended-length Nano-DMA using the tandem differential mobility analyzer (TDMA) technique indicate the nASA provides good size resolution at pressures as low as 200 Torr. Also, as was demonstrated in tests to characterize the soot emissions from the J85-GE engine of a T-38 aircraft, the broad dynamic concentration range of the nASA makes it particularly suitable for studies of combustion or particle formation processes. Further details of the nASA performance as well as results from calibrations, laboratory tests and field applications are presented below.

  1. Control of aerosol contaminants in indoor air: combining the particle concentration reduction with microbial inactivation.

    PubMed

    Grinshpun, Sergey A; Adhikari, Atin; Honda, Takeshi; Kim, Ki Youn; Toivola, Mika; Rao, K S Ramchander; Reponen, Tiina

    2007-01-15

    An indoor air purification technique, which combines unipolar ion emission and photocatalytic oxidation (promoted by a specially designed RCI cell), was investigated in two test chambers, 2.75 m3 and 24.3 m3, using nonbiological and biological challenge aerosols. The reduction in particle concentration was measured size selectively in real-time, and the Air Cleaning Factor and the Clean Air Delivery Rate (CADR) were determined. While testing with virions and bacteria, bioaerosol samples were collected and analyzed, and the microorganism survival rate was determined as a function of exposure time. We observed that the aerosol concentration decreased approximately 10 to approximately 100 times more rapidly when the purifier operated as compared to the natural decay. The data suggest that the tested portable unit operating in approximately 25 m3 non-ventilated room is capable to provide CADR-values more than twice as great than the conventional closed-loop HVAC system with a rating 8 filter. The particle removal occurred due to unipolar ion emission, while the inactivation of viable airborne microorganisms was associated with photocatalytic oxidation. Approximately 90% of initially viable MS2 viruses were inactivated resulting from 10 to 60 min exposure to the photocatalytic oxidation. Approximately 75% of viable B. subtilis spores were inactivated in 10 min, and about 90% or greater after 30 min. The biological and chemical mechanisms that led to the inactivation of stress-resistant airborne viruses and bacterial spores were reviewed.

  2. A Nanometer Aerosol Size Analyzer (nASA) for Rapid Measurement of High-Concentration Size Distributions

    NASA Technical Reports Server (NTRS)

    Han, Hee-Siew; Chen, Da-Ren; Pui, David Y. H.; Anderson, Bruce E.

    2001-01-01

    We have developed a fast-response Nanometer Aerosol Size Analyzer (nASA) that is capable of scanning 30 size channels between 3 and 100 nm in a total time of 3 seconds. The analyzer includes a bipolar charger (P0210), an extended-length Nanometer Differential Mobility Analyzer (Nano-DMA), and an electrometer (TSI 3068). This combination of components provides particle size spectra at a scan rate of 0.1 second per channel free of uncertainties caused by response-time-induced smearing. The nASA thus offers a fast response for aerosol size distribution measurements in high-concentration conditions and also eliminates the need for applying a de-smearing algorithm to resulting data. In addition, because of its thermodynamically stable means of particle detection, the nASA is useful for applications requiring measurements over a broad range of sample pressures and temperatures. Indeed, experimental transfer functions determined for the extended-length Nano-DMA using the Tandem Differential Mobility Analyzer (TDMA) technique indicate the nASA provides good size resolution at pressures as low as 200 Torr. Also, as was demonstrated in tests to characterize the soot emissions from the J85-GE engine of a T38 aircraft, the broad dynamic concentration range of the nASA makes it particularly suitable for studies of combustion or particle formation processes. Further details of the nASA performance as well as results from calibrations, laboratory tests and field applications are presented.

  3. Bronchoscopic assessment of airway retention time of aerosolized xylitol

    PubMed Central

    Durairaj, Lakshmi; Neelakantan, Srividya; Launspach, Janice; Watt, Janet L; Allaman, Margaret M; Kearney, William R; Veng-Pedersen, Peter; Zabner, Joseph

    2006-01-01

    Background Human airway surface liquid (ASL) has abundant antimicrobial peptides whose potency increases as the salt concentration decreases. Xylitol is a 5-carbon sugar that has the ability to lower ASL salt concentration, potentially enhancing innate immunity. Xylitol was detected for 8 hours in the ASL after application in airway epithelium in vitro. We tested the airway retention time of aerosolized iso-osmotic xylitol in healthy volunteers. Methods After a screening spirometry, volunteers received 10 ml of nebulized 5% xylitol. Bronchoscopy was done at 20 minutes (n = 6), 90 minutes (n = 6), and 3 hours (n = 5) after nebulization and ASL was collected using microsampling probes, followed by bronchoalveolar lavage (BAL). Xylitol concentration was measured by nuclear magnetic resonance spectroscopy and corrected for dilution using urea concentration. Results All subjects tolerated nebulization and bronchoscopy well. Mean ASL volume recovered from the probes was 49 ± 23 μl. The mean ASL xylitol concentration at 20, 90, and 180 minutes was 1.6 ± 1.9 μg/μl, 0.6 ± 0.6 μg/μl, and 0.1 ± 0.1 μg/μl, respectively. Corresponding BAL concentration corrected for dilution was consistently lower at all time points. The terminal half-life of aerosolized xylitol obtained by the probes was 45 minutes with a mean residence time of 65 minutes in ASL. Corresponding BAL values were 36 and 50 minutes, respectively. Conclusion After a single dose nebulization, xylitol was detected in ASL for 3 hours, which was shorter than our in vitro measurement. The microsampling probe performed superior to BAL when sampling bronchial ASL. PMID:16483382

  4. 40 CFR Table F-5 to Subpart F of... - Estimated Mass Concentration Measurement of PM2.5 for Idealized “Typical” Coarse Aerosol Size...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 5 2011-07-01 2011-07-01 false Estimated Mass Concentration... 53—Estimated Mass Concentration Measurement of PM2.5 for Idealized “Typical” Coarse Aerosol Size Distribution Particle Aerodynamic Diameter (µm) Test Sampler Fractional Sampling Effectiveness Interval Mass...

  5. 40 CFR Table F-5 to Subpart F of... - Estimated Mass Concentration Measurement of PM2.5 for Idealized “Typical” Coarse Aerosol Size...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 5 2010-07-01 2010-07-01 false Estimated Mass Concentration... 53—Estimated Mass Concentration Measurement of PM2.5 for Idealized “Typical” Coarse Aerosol Size Distribution Particle Aerodynamic Diameter (µm) Test Sampler Fractional Sampling Effectiveness Interval Mass...

  6. Aerosol Indirect Effects on Cirrus Clouds in Global Aerosol-Climate Models

    NASA Astrophysics Data System (ADS)

    Liu, X.; Zhang, K.; Wang, Y.; Neubauer, D.; Lohmann, U.; Ferrachat, S.; Zhou, C.; Penner, J.; Barahona, D.; Shi, X.

    2015-12-01

    Cirrus clouds play an important role in regulating the Earth's radiative budget and water vapor distribution in the upper troposphere. Aerosols can act as solution droplets or ice nuclei that promote ice nucleation in cirrus clouds. Anthropogenic emissions from fossil fuel and biomass burning activities have substantially perturbed and enhanced concentrations of aerosol particles in the atmosphere. Global aerosol-climate models (GCMs) have now been used to quantify the radiative forcing and effects of aerosols on cirrus clouds (IPCC AR5). However, the estimate uncertainty is very large due to the different representation of ice cloud formation and evolution processes in GCMs. In addition, large discrepancies have been found between model simulations in terms of the spatial distribution of ice-nucleating aerosols, relative humidity, and temperature fluctuations, which contribute to different estimates of the aerosol indirect effect through cirrus clouds. In this presentation, four GCMs with the start-of-the art representations of cloud microphysics and aerosol-cloud interactions are used to estimate the aerosol indirect effects on cirrus clouds and to identify the causes of the discrepancies. The estimated global and annual mean anthropogenic aerosol indirect effect through cirrus clouds ranges from 0.1 W m-2 to 0.3 W m-2 in terms of the top-of-the-atmosphere (TOA) net radiation flux, and 0.5-0.6 W m-2 for the TOA longwave flux. Despite the good agreement on global mean, large discrepancies are found at the regional scale. The physics behind the aerosol indirect effect is dramatically different. Our analysis suggests that burden of ice-nucleating aerosols in the upper troposphere, ice nucleation frequency, and relative role of ice formation processes (i.e., homogeneous versus heterogeneous nucleation) play key roles in determining the characteristics of the simulated aerosol indirect effects. In addition to the indirect effect estimate, we also use field campaign

  7. A Pure Marine Aerosol Model, for Use in Remote Sensing Applications

    NASA Technical Reports Server (NTRS)

    Sayer, A. M.; Smirnov, A.; Hsu, N. C.; Holben, B. N.

    2011-01-01

    Retrievals of aerosol optical depth (AOD) and related parameters from satellite measurements typically involve prescribed models of aerosol size and composition, and are therefore dependent on how well these models are able to represent the radiative behaviour of real aerosols, This study uses aerosol volume size distributions retrieved from Sun-photometer measurements at 11 Aerosol Robotic Network (AERONET) island sites, spread throughout the world's oceans, as a basis to define such a model for unpolluted maritime aerosols. Size distributions are observed to be bimodal and approximately lognormal, although the coarse mode is skewed with a long tail on the low-radius end, The relationship of AOD and size distribution parameters to meteorological conditions is also examined, As wind speed increases, so do coarse-mode volume and radius, The AOD and Angstrom exponent (alpha) show linear relationships with wind speed, although there is considerable scatter in all these relationships, limiting their predictive power. Links between aerosol properties and near-surface relative humidity, columnar water vapor, and sea surface temperature are also explored. A recommended bimodal maritime model, which is able to reconstruct the AERONET AOD with accuracy of order 0.01-0.02, is presented for use in aerosol remote sensing applications. This accuracy holds at most sites and for wavelengths between 340 nm and 1020 nm. Calculated lidar ratios are also provided, and differ significantly from those currently used in Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) processing.

  8. Implementation of aerosol-cloud interactions in the regional atmosphere-aerosol model COSMO-MUSCAT(5.0) and evaluation using satellite data

    NASA Astrophysics Data System (ADS)

    Dipu, Sudhakar; Quaas, Johannes; Wolke, Ralf; Stoll, Jens; Mühlbauer, Andreas; Sourdeval, Odran; Salzmann, Marc; Heinold, Bernd; Tegen, Ina

    2017-06-01

    The regional atmospheric model Consortium for Small-scale Modeling (COSMO) coupled to the Multi-Scale Chemistry Aerosol Transport model (MUSCAT) is extended in this work to represent aerosol-cloud interactions. Previously, only one-way interactions (scavenging of aerosol and in-cloud chemistry) and aerosol-radiation interactions were included in this model. The new version allows for a microphysical aerosol effect on clouds. For this, we use the optional two-moment cloud microphysical scheme in COSMO and the online-computed aerosol information for cloud condensation nuclei concentrations (Cccn), replacing the constant Cccn profile. In the radiation scheme, we have implemented a droplet-size-dependent cloud optical depth, allowing now for aerosol-cloud-radiation interactions. To evaluate the models with satellite data, the Cloud Feedback Model Intercomparison Project Observation Simulator Package (COSP) has been implemented. A case study has been carried out to understand the effects of the modifications, where the modified modeling system is applied over the European domain with a horizontal resolution of 0.25° × 0.25°. To reduce the complexity in aerosol-cloud interactions, only warm-phase clouds are considered. We found that the online-coupled aerosol introduces significant changes for some cloud microphysical properties. The cloud effective radius shows an increase of 9.5 %, and the cloud droplet number concentration is reduced by 21.5 %.

  9. Seasonality of Aerosols the Southeastern United States

    NASA Astrophysics Data System (ADS)

    Ford, B. J.; Heald, C. L.

    2012-12-01

    Previous studies have suggested that increases in atmospheric aerosols of biogenic origin may have caused regional cooling over the southeastern United States in recent decades. Understanding the sources and behaviors of these aerosols is important for determining their role in a changing climate and managing their air quality impacts. In this study, we investigate the strong seasonality in aerosol optical depth (AOD) observed by MODIS, MISR, and CALIOP instruments over the southeastern United States and show that this is not simulated by a chemical transport model (GEOS-Chem). However, the model does reproduce surface PM 2.5 concentrations in the region as reported by the IMPROVE and Southeastern Aerosol Research and Characterization (SEARCH) networks, as well as the muted seasonality of these concentrations. In addition, these surface measurements show that organic aerosol makes up a small fraction of total PM 2.5 and has relatively little seasonality, which calls into question the importance of biogenic aerosol as a driver for climate change in the region. Sounding profiles and ground observations of relative humidity suggest that the magnitude of seasonality in AOD cannot be explained by seasonal differences in the hygroscopic growth of aerosols. CALIOP measurements of the vertical profile of aerosol extinction confirm that the likely reconciliation of the differences in seasonality between the surface PM 2.5 and AOD observations is the formation of aerosol aloft, a process not captured by the model. These findings provide initial insights for the Southern Oxidant and Aerosol Study (SOAS) campaign in 2013 which aims to investigate the anthropogenic influence on biogenic aerosol formation in the Southeastern US and elucidate the impact on regional climate and air quality.

  10. Aerosol indirect effect from turbulence-induced broadening of cloud-droplet size distributions

    PubMed Central

    Chandrakar, Kamal Kant; Cantrell, Will; Chang, Kelken; Ciochetto, David; Niedermeier, Dennis; Ovchinnikov, Mikhail; Shaw, Raymond A.; Yang, Fan

    2016-01-01

    The influence of aerosol concentration on the cloud-droplet size distribution is investigated in a laboratory chamber that enables turbulent cloud formation through moist convection. The experiments allow steady-state microphysics to be achieved, with aerosol input balanced by cloud-droplet growth and fallout. As aerosol concentration is increased, the cloud-droplet mean diameter decreases, as expected, but the width of the size distribution also decreases sharply. The aerosol input allows for cloud generation in the limiting regimes of fast microphysics (τc<τt) for high aerosol concentration, and slow microphysics (τc>τt) for low aerosol concentration; here, τc is the phase-relaxation time and τt is the turbulence-correlation time. The increase in the width of the droplet size distribution for the low aerosol limit is consistent with larger variability of supersaturation due to the slow microphysical response. A stochastic differential equation for supersaturation predicts that the standard deviation of the squared droplet radius should increase linearly with a system time scale defined as τs−1=τc−1+τt−1, and the measurements are in excellent agreement with this finding. The result underscores the importance of droplet size dispersion for aerosol indirect effects: increasing aerosol concentration changes the albedo and suppresses precipitation formation not only through reduction of the mean droplet diameter but also by narrowing of the droplet size distribution due to reduced supersaturation fluctuations. Supersaturation fluctuations in the low aerosol/slow microphysics limit are likely of leading importance for precipitation formation. PMID:27911802

  11. Aerosol indirect effect from turbulence-induced broadening of cloud-droplet size distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chandrakar, Kamal Kant; Cantrell, Will; Chang, Kelken

    2016-11-28

    The influence of aerosol concentration on cloud droplet size distribution is investigated in a laboratory chamber that enables turbulent cloud formation through moist convection. The experiments allow steady-state microphysics to be achieved, with aerosol input balanced by cloud droplet growth and fallout. As aerosol concentration is increased the cloud droplet mean diameter decreases as expected, but the width of the size distribution also decreases sharply. The aerosol input allows for cloud generation in the limiting regimes of fast microphysics (τ c < τ t) for high aerosol concentration, and slow microphysics (τ c > τ t) for low aerosol concentration;more » here, τ c is the phase relaxation time and τ t is the turbulence correlation time. The increase in the width of the droplet size distribution for the low aerosol limit is consistent with larger variability of supersaturation due to the slow microphysical response. A stochastic differential equation for supersaturation predicts that the standard deviation of the squared droplet radius should increase linearly with a system time scale defined as τ s -1 =τ c -1 + τ t -1, and the measurements are in excellent agreement with this finding. This finding underscores the importance of droplet size dispersion for the aerosol indirect effect: increasing aerosol concentration not only suppresses precipitation formation through reduction of the mean droplet diameter, but perhaps more importantly, through narrowing of the droplet size distribution due to reduced supersaturation fluctuations. Supersaturation fluctuations in the low aerosol / slow microphysics limit are likely of leading importance for precipitation formation.« less

  12. Modification, calibration, and performance of the Ultra-High Sensitivity Aerosol Spectrometer for particle size distribution and volatility measurements during the Atmospheric Tomography Mission (ATom) airborne campaign

    NASA Astrophysics Data System (ADS)

    Kupc, Agnieszka; Williamson, Christina; Wagner, Nicholas L.; Richardson, Mathews; Brock, Charles A.

    2018-01-01

    Atmospheric aerosol is a key component of the chemistry and climate of the Earth's atmosphere. Accurate measurement of the concentration of atmospheric particles as a function of their size is fundamental to investigations of particle microphysics, optical characteristics, and chemical processes. We describe the modification, calibration, and performance of two commercially available, Ultra-High Sensitivity Aerosol Spectrometers (UHSASs) as used on the NASA DC-8 aircraft during the Atmospheric Tomography Mission (ATom). To avoid sample flow issues related to pressure variations during aircraft altitude changes, we installed a laminar flow meter on each instrument to measure sample flow directly at the inlet as well as flow controllers to maintain constant volumetric sheath flows. In addition, we added a compact thermodenuder operating at 300 °C to the inlet line of one of the instruments. With these modifications, the instruments are capable of making accurate (ranging from 7 % for Dp < 0.07 µm to 1 % for Dp > 0.13 µm), precise (< ±1.2 %), and continuous (1 Hz) measurements of size-resolved particle number concentration over the diameter range of 0.063-1.0 µm at ambient pressures of > 1000 to 225 hPa, while simultaneously providing information on particle volatility.We assessed the effect of uncertainty in the refractive index (n) of ambient particles that are sized by the UHSAS assuming the refractive index of ammonium sulfate (n = 1.52). For calibration particles with n between 1.44 and 1.58, the UHSAS diameter varies by +4/-10 % relative to ammonium sulfate. This diameter uncertainty associated with the range of refractive indices (i.e., particle composition) translates to aerosol surface area and volume uncertainties of +8.4/-17.8 and +12.4/-27.5 %, respectively. In addition to sizing uncertainty, low counting statistics can lead to uncertainties of < 20 % for aerosol surface area and < 30 % for volume with 10 s time resolution. The UHSAS reduction in

  13. Control of particle size by coagulation of novel condensation aerosols in reservoir chambers.

    PubMed

    Hong, John N; Hindle, Michael; Byron, Peter R

    2002-01-01

    The coagulation growth behavior of capillary aerosol generator (CAG) condensation aerosols was investigated in a series of reservoir chambers. Aerosols consisted of a condensed system of 0.7% w/w benzil (model drug) in propylene glycol (vehicle). These were generated into 250-, 500-, 1,000-, and 2,000-mL reservoirs in both flowing air-stream and static air experiments. Changes in drug and total aerosol particle size were measured by a MOUDI cascade impactor. In both series of experiments the CAG aerosols grew in size. Growth in flowing air-stream experiments was attributed to the amount of accumulation aerosols experienced in reservoirs during sampling and increased with increasing reservoir volume. Mean (SD) MMAD's for the total mass distribution measured for the 250- and 2,000-mL reservoirs were 0.70 (0.02) and 0.87 (0.03) microm, respectively. For the benzil mass distribution, they were 0.64 (0.02) and 0.87 (0.06) microm, respectively. Growth in static air experiments was dependent on the volume aerosol boluses were restricted to and increased with decreasing reservoir volume. Mean (SD) initial MMAD's for the benzil mass distribution for the 250- and 2,000-mL reservoirs were 1.44 (0.03) and 1.24 (0.08) microm, respectively. Holding aerosols for up to 60 sec further increased their size. Mean (SD) MMAD's for benzil after holding for 60 sec in these reservoirs were 2.28 (0.04) and 1.67 (0.09) microm, respectively. The coagulation behavior and therefore particle size of CAG aerosols may be modified and controlled by reservoir chambers for drug targeting within the respiratory tract.

  14. Aerosolized Surfactants, Anti-Inflammatory Drugs, and Analgesics.

    PubMed

    Willson, Douglas F

    2015-06-01

    Drug delivery by aerosol may have several advantages over other modes, particularly if the lung is the target organ. Aerosol delivery may allow achievement of higher concentrations while minimizing systemic effects and offers convenience, rapid onset of action, and avoidance of the needles and sterile technique necessary with intravenous drug administration. Aerosol delivery may change the pharmacokinetics of many drugs, however, and an awareness of the caveats of aerosolized drug delivery is mandatory to ensure both safety and adequate drug delivery. This paper discusses the administration of surfactants, anti-inflammatory agents, and analgesics by the aerosol route. Copyright © 2015 by Daedalus Enterprises.

  15. Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants. Volume 2

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The National Aeronautics and Space Administration (NASA) is aware of the potential toxicological hazards to humans that might be associated with prolonged spacecraft missions. Despite major engineering advances in controlling the atmosphere within spacecraft, some contamination of the air appears inevitable. NASA has measured numerous airborne contaminants during space missions. As the missions increase in duration and complexity, ensuring the health and well-being of astronauts traveling and working in this unique environment becomes increasingly difficult. As part of its efforts to promote safe conditions aboard spacecraft, NASA requested the National Research Council (NRC) to develop guidelines for establishing spacecraft maximum allowable concentrations (SMACs) for contaminants, and to review SMACs for various space-craft contaminants to determine whether NASA's recommended exposure limits are consistent with the guidelines recommended by the subcommittee. In response to NASA's request, the NRC organized the Subcommittee on Guidelines for Developing Spacecraft Maximum Allowable Concentrations for Space Station Contaminants within the Committee On Toxicology (COT). In the first phase of its work, the subcommittee developed the criteria and methods for preparing SMACs for spacecraft contaminants. The subcommittee's report, entitled Guidelines for Developing Spacecraft Maximum Allowable Concentrations for Space Station Contaminants, was published in 1992. The executive summary of that report is reprinted as Appendix A of this volume. In the second phase of the study, the Subcommittee on Spacecraft Maximum Allowable Concentrations reviewed reports prepared by NASA scientists and contractors recommending SMACs for approximately 35 spacecraft contaminants. The subcommittee sought to determine whether the SMAC reports were consistent with the 1992 guidelines. Appendix B of this volume contains the SMAC reports for 12 chemical contaminants that have been reviewed for

  16. ELECTRICAL AEROSOL DETECTOR (EAD) MEASUREMENTS AT THE ST. LOUIS SUPERSITE

    EPA Science Inventory

    The Model 3070A Electrical Aerosol Detector (EAD) measures a unique aerosol parameter called total aerosol length. Reported as mm/cm3, aerosol length can be thought of as a number concentration times average diameter, or simply as d1 weighting. This measurement falls between nu...

  17. A Monte-Carlo Analysis of Organic Aerosol Volatility with Aerosol Microphysics

    NASA Astrophysics Data System (ADS)

    Gao, C. Y.; Tsigaridis, K.; Bauer, S. E.

    2016-12-01

    A newly developed box model scheme, MATRIX-VBS, includes the volatility-basis set (VBS) framework in an aerosol microphysical scheme MATRIX (Multiconfiguration Aerosol TRacker of mIXing state), which resolves aerosol mass and number concentrations and aerosol mixing state. The new scheme advanced the representation of organic aerosols in Earth system models by improving the traditional and simplistic treatment of organic aerosols as non-volatile and with a fixed size distribution. Further development includes adding the condensation of organics on coarse mode aerosols - dust and sea salt, thus making all organics in the system semi-volatile. To test and simplify the model, a Monte-Carlo analysis is performed to pin point which processes affect organics the most under which chemical and meteorological conditions. Since the model's parameterizations have the ability to capture a very wide range of conditions, from very clean to very polluted and for a wide range of meteorological conditions, all possible scenarios on Earth across the whole parameter space, including temperature, location, emissions and oxidant levels, are examined. The Monte-Carlo simulations provide quantitative information on the sensitivity of the newly developed model and help us understand how organics are affecting the size distribution, mixing state and volatility distribution at varying levels of meteorological conditions and pollution levels. In addition, these simulations give information on which parameters play a critical role in the aerosol distribution and evolution in the atmosphere and which do not, that will facilitate the simplification of the box model, an important step in its implementation in the global model.

  18. MAPPING ANNUAL MEAN GROUND-LEVEL PM2.5 CONCENTRATIONS USING MULTIANGLE IMAGING SPECTRORADIOMETER AEROSOL OPTICAL THICKNESS OVER THE CONTIGUOUS UNITED STATES

    EPA Science Inventory

    We present a simple approach to estimating ground-level fine particle (PM2.5, particles smaller than 2.5 um in diameter) concentration using global atmospheric chemistry models and aerosol optical thickness (AOT) measurements from the Multi- angle Imaging SpectroRadiometer (MISR)...

  19. Characterizations of atmospheric fungal aerosol in Beijing, China

    NASA Astrophysics Data System (ADS)

    Liang, Linlin; Engling, Guenter; He, Kebin; Du, Zhenyu

    2013-04-01

    Fungal aerosols constitute the most abundant fraction of biological aerosols in the atmosphere, influencing human health, the biosphere, atmospheric chemistry and climate. However, the total abundance of fungal spores in the atmosphere is still poorly understood and quantified. PM10 and PM2.5 samples were collected by high volume samplers simultaneously at a rural site (MY) and an urban site (THU) in Beijing, China. Various carbohydrates were quantified by high-performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD), including the sugar alcohols mannitol and arabitol, proposed as molecular tracers for fungal aerosol. The annual average concentrations of arabitol in PM2.5 and PM10 at the THU site were 7.4±9.4 ng/m3 and 10.3±9.5 ng/m3, and the respective mannitol concentrations were 21.0±20.4 ng/m3 and 31.9±26.9 ng/m3. Compared to PM10, the monthly average concentrations of arabitol and mannitol in PM2.5 did not vary significantly and were present at nearly consistent levels in the different seasons. Moreover, during summer and autumn higher arabitol and mannitol levels than during spring and winter were observed in coarse particles, probably due to different dominant sources of fungal spores in different seasons. In the dry period (i.e., winter and spring) in Beijing, probably only the suspension from exposed surfaces, (e.g., soil resuspension, transported dust, etc.) can be regarded as the main sources for fungal aerosols. On the other hand, in summer and autumn, fungal spores in the atmosphere can be derived from more complex sources, including plants, vegetation decomposition and agricultural activity, such as ploughing; these fungal spore sources may contribute more to coarse PM. Mannitol and arabitol correlated well with each other, both in PM10 (R2 = 0.71) and PM2.5 (R2 = 0.81). Although fungal spore levels at rural sites were consistently higher than those at urban sites in other studies, the findings in our study were

  20. Isoprene derived secondary organic aerosol in a global aerosol chemistry climate model

    NASA Astrophysics Data System (ADS)

    Stadtler, Scarlet; Kühn, Thomas; Taraborrelli, Domenico; Kokkola, Harri; Schultz, Martin

    2017-04-01

    Secondary organic aerosol (SOA) impacts earth's climate and human health. Since its precursor chemistry and its formation are not fully understood, climate models cannot catch its direct and indirect effects. Global isoprene emissions are higher than any other non-methane hydrocarbons. Therefore, SOA from isoprene-derived, low volatile species (iSOA) is simulated using a global aerosol chemistry climate model ECHAM6-HAM-SALSA-MOZ. Isoprene oxidation in the chemistry model MOZ is following a novel semi-explicit scheme, embedded in a detailed atmospheric chemical mechanism. For iSOA formation four low volatile isoprene oxidation products were identified. The group method by Nanoonlal et al. 2008 was used to estimate their evaporation enthalpies ΔHvap. To calculate the saturation concentration C∗(T) the sectional aerosol model SALSA uses the gas phase concentrations simulated by MOZ and their corresponding ΔHvap to obtain the saturation vapor pressure p∗(T) from the Clausius Clapeyron equation. Subsequently, the saturation concentration is used to calculate the explicit kinetic partitioning of these compounds forming iSOA. Furthermore, the irreversible heterogeneous reactions of IEPOX and glyoxal from isoprene were included. The possibility of reversible heterogeneous uptake was ignored at this stage, leading to an upper estimate of the contribution of glyoxal to iSOA mass.

  1. Modeling the Absorbing Aerosol Index

    NASA Technical Reports Server (NTRS)

    Penner, Joyce; Zhang, Sophia

    2003-01-01

    We propose a scheme to model the absorbing aerosol index and improve the biomass carbon inventories by optimizing the difference between TOMS aerosol index (AI) and modeled AI with an inverse model. Two absorbing aerosol types are considered, including biomass carbon and mineral dust. A priori biomass carbon source was generated by Liousse et al [1996]. Mineral dust emission is parameterized according to surface wind and soil moisture using the method developed by Ginoux [2000]. In this initial study, the coupled CCM1 and GRANTOUR model was used to determine the aerosol spatial and temporal distribution. With modeled aerosol concentrations and optical properties, we calculate the radiance at the top of the atmosphere at 340 nm and 380 nm with a radiative transfer model. The contrast of radiance at these two wavelengths will be used to calculate AI. Then we compare the modeled AI with TOMS AI. This paper reports our initial modeling for AI and its comparison with TOMS Nimbus 7 AI. For our follow-on project we will model the global AI with aerosol spatial and temporal distribution recomputed from the IMPACT model and DAO GEOS-1 meteorology fields. Then we will build an inverse model, which applies a Bayesian inverse technique to optimize the agreement of between model and observational data. The inverse model will tune the biomass burning source strength to reduce the difference between modelled AI and TOMS AI. Further simulations with a posteriori biomass carbon sources from the inverse model will be carried out. Results will be compared to available observations such as surface concentration and aerosol optical depth.

  2. Carbonaceous aerosols from prescribed burning of a boreal forest ecosystem

    NASA Technical Reports Server (NTRS)

    Mazurek, Monica A.; Cofer, Wesley R., III; Levine, Joel S.

    1991-01-01

    During the boreal forest burn studied, the ambient concentrations for the particle carbon smoke aerosol are highest for the full-fire burn conditions and vary significantly throughout the burn. Collection strategies must accordingly define ranges in the smoke aerosol concentrations produced. While the highest elemental C concentrations are observed during full-fire conditions, the great majority of smoke aerosol particles are in the form of organic C particles irrespective of fire temperature. The formation of organic C light-scattering particles was a significant process in the burn studied.

  3. Optical properties and CCN activity of aerosols in a high-altitude Himalayan environment: Results from RAWEX-GVAX: CCN activity of aerosols over Himalayas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gogoi, Mukunda M.; Babu, S. Suresh; Jayachandran, V.

    2015-03-27

    The seasonality and mutual dependence of aerosol optical properties and cloud condensation nuclei (CCN) activity under varying meteorological conditions at the high-altitude Nainital site (~2 km) in the Indo-Gangetic Plains were examined using nearly year-round measurements (June 2011 to March 2012) at the Atmospheric Radiation Measurement (ARM) mobile facility as part of the RAWEX-GVAX experiment of the Indian Space Research Organization and the U.S. Department of Energy. The results from collocated measurements provided enhanced aerosol scattering and absorption coefficients, CCN concentrations and total condensation nuclei (CN) concentrations during the dry autumn and winter months. The CCN concentration (at a supersaturationmore » of 0.46) was higher during periods of high aerosol absorption (single-scattering albedo (SSA) < 0.80) than during periods of high aerosol scattering (SSA > 0.85), indicating that the aerosol composition seasonally changes and influences the CCN activity. The monthly mean CCN activation ratio (at a supersaturation of 0.46) was highest (> 0.7) in late autumn (November); this finding is attributed to the contribution of biomass-burning aerosols to CCN formation at high supersaturation conditions.« less

  4. Inversion of multiwavelength Raman lidar data for retrieval of bimodal aerosol size distribution

    NASA Astrophysics Data System (ADS)

    Veselovskii, Igor; Kolgotin, Alexei; Griaznov, Vadim; Müller, Detlef; Franke, Kathleen; Whiteman, David N.

    2004-02-01

    We report on the feasibility of deriving microphysical parameters of bimodal particle size distributions from Mie-Raman lidar based on a triple Nd:YAG laser. Such an instrument provides backscatter coefficients at 355, 532, and 1064 nm and extinction coefficients at 355 and 532 nm. The inversion method employed is Tikhonov's inversion with regularization. Special attention has been paid to extend the particle size range for which this inversion scheme works to ~10 μm, which makes this algorithm applicable to large particles, e.g., investigations concerning the hygroscopic growth of aerosols. Simulations showed that surface area, volume concentration, and effective radius are derived to an accuracy of ~50% for a variety of bimodal particle size distributions. For particle size distributions with an effective radius of <1 μm the real part of the complex refractive index was retrieved to an accuracy of +/-0.05, the imaginary part was retrieved to 50% uncertainty. Simulations dealing with a mode-dependent complex refractive index showed that an average complex refractive index is derived that lies between the values for the two individual modes. Thus it becomes possible to investigate external mixtures of particle size distributions, which, for example, might be present along continental rims along which anthropogenic pollution mixes with marine aerosols. Measurement cases obtained from the Institute for Tropospheric Research six-wavelength aerosol lidar observations during the Indian Ocean Experiment were used to test the capabilities of the algorithm for experimental data sets. A benchmark test was attempted for the case representing anthropogenic aerosols between a broken cloud deck. A strong contribution of particle volume in the coarse mode of the particle size distribution was found.

  5. Inversion of multiwavelength Raman lidar data for retrieval of bimodal aerosol size distribution.

    PubMed

    Veselovskii, Igor; Kolgotin, Alexei; Griaznov, Vadim; Müller, Detlef; Franke, Kathleen; Whiteman, David N

    2004-02-10

    We report on the feasibility of deriving microphysical parameters of bimodal particle size distributions from Mie-Raman lidar based on a triple Nd:YAG laser. Such an instrument provides backscatter coefficients at 355, 532, and 1064 nm and extinction coefficients at 355 and 532 nm. The inversion method employed is Tikhonov's inversion with regularization. Special attention has been paid to extend the particle size range for which this inversion scheme works to approximately 10 microm, which makes this algorithm applicable to large particles, e.g., investigations concerning the hygroscopic growth of aerosols. Simulations showed that surface area, volume concentration, and effective radius are derived to an accuracy of approximately 50% for a variety of bimodal particle size distributions. For particle size distributions with an effective radius of < 1 microm the real part of the complex refractive index was retrieved to an accuracy of +/- 0.05, the imaginary part was retrieved to 50% uncertainty. Simulations dealing with a mode-dependent complex refractive index showed that an average complex refractive index is derived that lies between the values for the two individual modes. Thus it becomes possible to investigate external mixtures of particle size distributions, which, for example, might be present along continental rims along which anthropogenic pollution mixes with marine aerosols. Measurement cases obtained from the Institute for Tropospheric Research six-wavelength aerosol lidar observations during the Indian Ocean Experiment were used to test the capabilities of the algorithm for experimental data sets. A benchmark test was attempted for the case representing anthropogenic aerosols between a broken cloud deck. A strong contribution of particle volume in the coarse mode of the particle size distribution was found.

  6. Assessing the Dynamics of Organic Aerosols over the North Atlantic Ocean

    PubMed Central

    Kasparian, Jérôme; Hassler, Christel; Ibelings, Bas; Berti, Nicolas; Bigorre, Sébastien; Djambazova, Violeta; Gascon-Diez, Elena; Giuliani, Grégory; Houlmann, Raphaël; Kiselev, Denis; de Laborie, Pierric; Le, Anh-Dao; Magouroux, Thibaud; Neri, Tristan; Palomino, Daniel; Pfändler, Stéfanie; Ray, Nicolas; Sousa, Gustavo; Staedler, Davide; Tettamanti, Federico; Wolf, Jean-Pierre; Beniston, Martin

    2017-01-01

    The influence of aerosols on climate is highly dependent on the particle size distribution, concentration, and composition. In particular, the latter influences their ability to act as cloud condensation nuclei, whereby they impact cloud coverage and precipitation. Here, we simultaneously measured the concentration of aerosols from sea spray over the North Atlantic on board the exhaust-free solar-powered vessel “PlanetSolar”, and the sea surface physico-chemical parameters. We identified organic-bearing particles based on individual particle fluorescence spectra. Organic-bearing aerosols display specific spatio-temporal distributions as compared to total aerosols. We propose an empirical parameterization of the organic-bearing particle concentration, with a dependence on water salinity and sea-surface temperature only. We also show that a very rich mixture of organic aerosols is emitted from the sea surface. Such data will certainly contribute to providing further insight into the influence of aerosols on cloud formation, and be used as input for the improved modeling of aerosols and their role in global climate processes. PMID:28361985

  7. Aerosol Properties Observed in the Subtropical North Pacific Boundary Layer

    NASA Astrophysics Data System (ADS)

    Royalty, T. M.; Phillips, B. N.; Dawson, K. W.; Reed, R.; Meskhidze, N.; Petters, M. D.

    2017-09-01

    The impact of anthropogenic aerosol on climate forcing remains uncertain largely due to inadequate representation of natural aerosols in climate models. The marine boundary layer (MBL) might serve as a model location to study natural aerosol processes. Yet source and sink mechanisms controlling the MBL aerosol number, size distribution, chemical composition, and hygroscopic properties remain poorly constrained. Here aerosol size distribution and water uptake measurements were made aboard the R/V Hi'ialakai from 27 June to 3 July 2016 in the subtropical North Pacific Ocean. Size distributions were predominantly bimodal with an average integrated number concentration of 197 ± 98 cm-3. Hygroscopic growth factors were measured using the tandem differential mobility analyzer technique for dry 48, 96, and 144 nm particles. Mode kappa values for these were 0.57 ± 0.12, 0.51 ± 0.09, and 0.52 ± 0.08, respectively. To better understand remote MBL aerosol sources, a new algorithm was developed which decomposes hygroscopicity distributions into three classes: carbon-containing particles, sulfate-like particles, and sodium-containing particles. Results from this algorithm showed low and steady sodium-containing particle concentrations while the sulfate-like and carbon-containing particle concentrations varied during the cruise. According to the classification scheme, carbon-containing particles contributed at least 3-7%, sulfate-like particles contributed at most 77-88% and sodium-containing particles at least contributed 9-16% to the total aerosol number concentration. Size distribution and hygroscopicity data, in conjunction with air mass back trajectory analysis, suggested that the aerosol budget in the subtropical North Pacific MBL may be controlled by aerosol entrainment from the free troposphere.

  8. Microphysical processing of aerosol particles in orographic clouds

    NASA Astrophysics Data System (ADS)

    Pousse-Nottelmann, S.; Zubler, E. M.; Lohmann, U.

    2015-01-01

    An explicit and detailed treatment of cloud-borne particles allowing for the consideration of aerosol cycling in clouds has been implemented in the regional weather forecast and climate model COSMO. The effects of aerosol scavenging, cloud microphysical processing and regeneration upon cloud evaporation on the aerosol population and on subsequent cloud formation are investigated. For this, two-dimensional idealized simulations of moist flow over two bell-shaped mountains were carried out varying the treatment of aerosol scavenging and regeneration processes for a warm-phase and a mixed-phase orographic cloud. The results allowed to identify different aerosol cycling mechanisms. In the simulated non-precipitating warm-phase cloud, aerosol mass is incorporated into cloud droplets by activation scavenging and released back to the atmosphere upon cloud droplet evaporation. In the mixed-phase cloud, a first cycle comprises cloud droplet activation and evaporation via the Wegener-Bergeron-Findeisen process. A second cycle includes below-cloud scavenging by precipitating snow particles and snow sublimation and is connected to the first cycle via the riming process which transfers aerosol mass from cloud droplets to snow flakes. In the simulated mixed-phase cloud, only a negligible part of the total aerosol mass is incorporated into ice crystals. Sedimenting snow flakes reaching the surface remove aerosol mass from the atmosphere. The results show that aerosol processing and regeneration lead to a vertical redistribution of aerosol mass and number. However, the processes not only impact the total aerosol number and mass, but also the shape of the aerosol size distributions by enhancing the internally mixed/soluble accumulation mode and generating coarse mode particles. Concerning subsequent cloud formation at the second mountain, accounting for aerosol processing and regeneration increases the cloud droplet number concentration with possible implications for the ice

  9. Microphysical processing of aerosol particles in orographic clouds

    NASA Astrophysics Data System (ADS)

    Pousse-Nottelmann, S.; Zubler, E. M.; Lohmann, U.

    2015-08-01

    An explicit and detailed treatment of cloud-borne particles allowing for the consideration of aerosol cycling in clouds has been implemented into COSMO-Model, the regional weather forecast and climate model of the Consortium for Small-scale Modeling (COSMO). The effects of aerosol scavenging, cloud microphysical processing and regeneration upon cloud evaporation on the aerosol population and on subsequent cloud formation are investigated. For this, two-dimensional idealized simulations of moist flow over two bell-shaped mountains were carried out varying the treatment of aerosol scavenging and regeneration processes for a warm-phase and a mixed-phase orographic cloud. The results allowed us to identify different aerosol cycling mechanisms. In the simulated non-precipitating warm-phase cloud, aerosol mass is incorporated into cloud droplets by activation scavenging and released back to the atmosphere upon cloud droplet evaporation. In the mixed-phase cloud, a first cycle comprises cloud droplet activation and evaporation via the Wegener-Bergeron-Findeisen (WBF) process. A second cycle includes below-cloud scavenging by precipitating snow particles and snow sublimation and is connected to the first cycle via the riming process which transfers aerosol mass from cloud droplets to snowflakes. In the simulated mixed-phase cloud, only a negligible part of the total aerosol mass is incorporated into ice crystals. Sedimenting snowflakes reaching the surface remove aerosol mass from the atmosphere. The results show that aerosol processing and regeneration lead to a vertical redistribution of aerosol mass and number. Thereby, the processes impact the total aerosol number and mass and additionally alter the shape of the aerosol size distributions by enhancing the internally mixed/soluble Aitken and accumulation mode and generating coarse-mode particles. Concerning subsequent cloud formation at the second mountain, accounting for aerosol processing and regeneration increases

  10. Assessing Modeled CO2 Retention and Rebreathing of a Facemask Designed for Efficient Delivery of Aerosols to Infants

    PubMed Central

    Mundt, Christian; Sventitskiy, Alexander; Cehelsky, Jeffrey E.; Patters, Andrea B.; Tservistas, Markus; Hahn, Michael C.; Juhl, Gerd; DeVincenzo, John P.

    2012-01-01

    Background. New aerosol drugs for infants may require more efficient delivery systems, including face masks. Maximizing delivery efficiency requires tight-fitting masks with minimal internal mask volumes, which could cause carbon dioxide (CO2) retention. An RNA-interference-based antiviral for treatment of respiratory syncytial virus in populations that may include young children is designed for aerosol administration. CO2 accumulation within inhalation face masks has not been evaluated. Methods. We simulated airflow and CO2 concentrations accumulating over time within a new facemask designed for infants and young children (PARI SMARTMASK® Baby). A one-dimensional model was first examined, followed by 3-dimensional unsteady computational fluid dynamics analyses. Normal infant breathing patterns and respiratory distress were simulated. Results. The maximum average modeled CO2 concentration within the mask reached steady state (3.2% and 3% for normal and distressed breathing patterns resp.) after approximately the 5th respiratory cycle. After steady state, the mean CO2 concentration inspired into the nostril was 2.24% and 2.26% for normal and distressed breathing patterns, respectively. Conclusion. The mask is predicted to cause minimal CO2 retention and rebreathing. Infants with normal and distressed breathing should tolerate the mask intermittently delivering aerosols over brief time frames. PMID:22792479

  11. Changes in ground-level PM mass concentration and column aerosol optical depth over East Asia during 2004-2014

    NASA Astrophysics Data System (ADS)

    Nam, J.; Kim, S. W.; Park, R.; Yoon, S. C.; Sugimoto, N.; Park, J. S.; Hong, J.

    2015-12-01

    Multi-year records of moderate resolution imaging spectroradiometer (MODIS), ground-level particulate matter (PM) mass concentration, cloud-aerosol lidar with orthogonal polarization (CALIOP), and ground-level lidar were analyzed to investigate seasonal and annual changes of aerosol optical depth (AOD) and PM mass concentration over East Asia. Least mean square fit method is applied to detect the trends and their magnitudes for each selected regions and stations. Eleven-year MODIS measurements show generally increasing trends in both AOD (1.18 % yr-1) and Ångström exponent (0.98 % yr-1), especially over the east coastal industrialized region in China. Monthly variation of AOD show maximum value at April-July, which were related to the progress of summer monsoon rain band and stationary continental air mass on the northeast of Asia. Increasing trends of AOD were found for eight cites in China (0.80 % yr-1) and Seoul site, Korea (0.40 % yr-1), whereas no significant change were shown in Gosan background site (0.04 % yr-1) and decreasing trend at five background sites in Japan (-0.42 % yr-1). Contrasting to AOD trend, all fifteen sites in China (-1.28 % yr-1), Korea (-2.77 % yr-1), and Japan (-2.03 % yr-1) showed decreasing trend of PM10 mass concentration. Also, PM2.5 mass concentration at Beijing, Seoul, Rishiri, and Oki show significant decreasing trend of -1.16 % yr-1. To further discuss the opposite trend of surface PM mass concentration and column AOD, we investigate vertical aerosol profile from lidar measurements. AOD estimated for planetary boundary layer (surface~1.5 km altitude; AODPBL) from CALIOP measurements over East China show decreasing trend of -1.71 % yr-1 over the period of 2007-2014, wherever AOD estimated for free troposphere (1.5 km~5 km altitude; AODFT) show increasing trend of 2.92 % yr-1. In addition, ground-level lidar measurements in Seoul show decreasing AODPBL trend of -2.57 % yr-1, whereas, AODFT show no significant change (-0.44 % yr

  12. The effect of aerosols on northern hemisphere wintertime stationary waves

    NASA Astrophysics Data System (ADS)

    Lewinschal, Anna; Ekman, Annica M. L.

    2010-05-01

    Aerosol particles have a considerable impact on the energy budget of the atmosphere because of their ability to scatter and absorb incoming solar radiation. Since the beginning of the industrialisation a large increase has been seen mainly in the concentrations of sulphate and black carbon as a result of combustion of fossil fuel and biomass burning. Aerosol particles have a relatively short residence time in the atmosphere why the aerosol concentration shows a large variation spatially as well as in time where high concentrations are found close to emission sources. This leads to a highly varying radiative forcing pattern which modifies temperature gradients which in turn can alter the pressure distribution and lead to changes in the circulation in the atmosphere. In this study, the effect on the wintertime planetary scale waves on the northern hemisphere is specifically considered together with the regional climate impact due to changes in the stationary waves. To investigate the effect of aerosols on the circulation a global general circulation model based on the ECMWF operational forecast model is used (EC-Earth). The aerosol description in EC-Earth consists of prescribed monthly mean mass concentration fields of five different types of aerosols: sulphate, black carbon, organic carbon, dust and sea salt. Only the direct radiative effect is considered and the different aerosol types are treated as external mixtures. Changes in the stationary wave pattern are determined by comparing model simulations using present-day and pre-industrial concentrations of aerosol particles. Since the planetary scale waves largely influence the storm tracks and are an important part of the meridional heat transport, changes in the wave pattern may have substantial impact on the climate globally and locally. By looking at changes in the model simulations globally it can be found that the aerosol radiative forcing has the potential to change the stationary wave pattern. Furthermore

  13. Contact ice nucleation by submicron atmospheric aerosols

    NASA Technical Reports Server (NTRS)

    Deshler, T.

    1982-01-01

    An apparatus designed to measure the concentrations of submicron contact ice nuclei is described. Here, natural forces transfer nuclei to supercooled sample drops suspended in an aerosol stream. Experimental measurements of the scavenging rate of the sample drops for several humidities and aerosol sizes are found to be in agreement with theory to within a factor of two. This fact, together with the statistical tests showing a difference between the data and control samples, is seen as indicating that a reliable measurement of the concentrations of submicron contact ice nuclei has been effected. A figure is included showing the ice nucleus concentrations as a function of temperature and assumed aerosol radius. For a 0.01 micron radius, the average is 1/liter at -15 C and 3/liter at -18 C. It is noted that the measurements are in fair agreement with ice crystal concentrations in stable winter clouds measured over Elk Mountain, WY (Vali et al., 1982).

  14. Laboratory and field measurements of organic aerosols with the photoionization aerosol mass spectrometer

    NASA Astrophysics Data System (ADS)

    Dreyfus, Matthew A.

    Analytical methods developed to sample and characterize ambient organic aerosols often face the trade-off between long sampling times and the loss of detailed information regarding specific chemical species present. The soft, universal ionization scheme of the Photoionization Aerosol Mass Spectrometer (PIAMS) allows for identification of various chemical compounds by a signature ion, often the molecular ion. The goal of this thesis work is to apply PIAMS to both laboratory and field experiments to answer questions regarding the formation, composition, and behavior of organic aerosols. To achieve this goal, a variety of hardware and software upgrades were administered to PIAMS to optimize the instrument. Data collection and processing software were either refined or built from the ground up to simplify difficult or monotonous tasks. Additional components were added to PIAMS with the intent to automate the instrument, enhance the results, and make the instrument more rugged and user-friendly. These changes, combined with the application of an external particle concentration system (mini-Versatile Aerosol Concentration Enrichment System, m-VACES), allowed PIAMS to be suitable for field measurements of organic aerosols. Two such field campaigns were completed, both at the State of Delaware Air Quality Monitoring Site in Wilmington, Delaware: a one week period in June, 2006, and an 18 day period in October and November of 2007. A sampling method developed was capable of collecting sufficient ambient organic aerosol and analyzing it with a time resolution of 3.5 minutes. Because of this method, short term concentration changes of individual species can be tracked. Combined with meteorological data, the behavior of these species can be analyzed as a function of time or wind direction. Many compounds are found at enhanced levels during the evening/night-time hours; potentially due to the combined effects of temperature inversion, and fresh emissions in a cooler environment

  15. Aerosol composition and source apportionment in Santiago de Chile

    NASA Astrophysics Data System (ADS)

    Artaxo, Paulo; Oyola, Pedro; Martinez, Roberto

    1999-04-01

    Santiago de Chile, São Paulo and Mexico City are Latin American urban areas that suffer from heavy air pollution. In order to study air pollution in Santiago area, an aerosol source apportionment study was designed to measure ambient aerosol composition and size distribution for two downtown sampling sites in Santiago. The aerosol monitoring stations were operated in Gotuzo and Las Condes during July and August 1996. The study employed stacked filter units (SFU) for aerosol sampling, collecting fine mode aerosol (dp<2 μm) and coarse mode aerosol (2Aerosol mass (PM 10 mass of particles smaller than 10 μm) and black carbon concentration were also measured. Particle-Induced X-ray Emission (PIXE) was used to measure the concentration of 22 trace elements at levels below 0.5 ng m -3. Quantitative aerosol source apportionment was performed using Absolute Principal Factor Analysis (APFA). Very high aerosol concentrations were observed (up to 400 μg/m 3 PM 10). The main aerosol particle sources in Santiago are resuspended soil dust and traffic emissions. Coarse particles account for 63% of PM 10 aerosol in Gotuzo and 53% in Las Condes. A major part of this component is resuspended soil dust. In the fine fraction, resuspended soil dust accounts for 15% of fine mass, and the aerosols associated with transportation activities account for a high 64% of the fine particle mass. Sulfate particle is an important component of the aerosol in Santiago, mainly originating from gas-to-particle conversion from SO 2. In the Gotuzo site, sulfates are the highest aerosol component, accounting for 64.5% of fine mass. Direct traffic emissions are generally mixed with resuspended soil dust. It is difficult to separate the two components, because the soil dust in downtown Santiago is contaminated with Pb, Br, Cl, and other heavy metals that are also tracers for traffic emissions. Residual oil combustion is observed, with the presence of V, S and Ni. An

  16. Aerosol indirect effect from turbulence-induced broadening of cloud-droplet size distributions

    DOE PAGES

    Chandrakar, Kamal Kant; Cantrell, Will; Chang, Kelken; ...

    2016-11-28

    Here, the influence of aerosol concentration on cloud droplet size distribution is investigated in a laboratory chamber that enables turbulent cloud formation through moist convection. The experiments allow steady-state microphysics to be achieved, with aerosol input balanced by cloud droplet growth and fallout. As aerosol concentration is increased the cloud droplet mean diameter decreases as expected, but the width of the size distribution also decreases sharply. The aerosol input allows for cloud generation in the limiting regimes of fast microphysics (τ c < τ t) for high aerosol concentration, and slow microphysics (τ c > τ t) for low aerosolmore » concentration; here, τ c is the phase relaxation time and τ t is the turbulence correlation time. The increase in the width of the droplet size distribution for the low aerosol limit is consistent with larger variability of supersaturation due to the slow microphysical response. A stochastic differential equation for supersaturation predicts that the standard deviation of the squared droplet radius should increase linearly with a system time scale defined as τ s -1 =τ c -1 + τ t -1, and the measurements are in excellent agreement with this finding. This finding underscores the importance of droplet size dispersion for the aerosol indirect effect: increasing aerosol concentration not only suppresses precipitation formation through reduction of the mean droplet diameter, but perhaps more importantly, through narrowing of the droplet size distribution due to reduced supersaturation fluctuations. Supersaturation fluctuations in the low aerosol / slow microphysics limit are likely of leading importance for precipitation formation.« less

  17. Aerosol indirect effect from turbulence-induced broadening of cloud-droplet size distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chandrakar, Kamal Kant; Cantrell, Will; Chang, Kelken

    Here, the influence of aerosol concentration on cloud droplet size distribution is investigated in a laboratory chamber that enables turbulent cloud formation through moist convection. The experiments allow steady-state microphysics to be achieved, with aerosol input balanced by cloud droplet growth and fallout. As aerosol concentration is increased the cloud droplet mean diameter decreases as expected, but the width of the size distribution also decreases sharply. The aerosol input allows for cloud generation in the limiting regimes of fast microphysics (τ c < τ t) for high aerosol concentration, and slow microphysics (τ c > τ t) for low aerosolmore » concentration; here, τ c is the phase relaxation time and τ t is the turbulence correlation time. The increase in the width of the droplet size distribution for the low aerosol limit is consistent with larger variability of supersaturation due to the slow microphysical response. A stochastic differential equation for supersaturation predicts that the standard deviation of the squared droplet radius should increase linearly with a system time scale defined as τ s -1 =τ c -1 + τ t -1, and the measurements are in excellent agreement with this finding. This finding underscores the importance of droplet size dispersion for the aerosol indirect effect: increasing aerosol concentration not only suppresses precipitation formation through reduction of the mean droplet diameter, but perhaps more importantly, through narrowing of the droplet size distribution due to reduced supersaturation fluctuations. Supersaturation fluctuations in the low aerosol / slow microphysics limit are likely of leading importance for precipitation formation.« less

  18. Regional and local variations in atmospheric aerosols using ground-based sun photometry during Distributed Regional Aerosol Gridded Observation Networks (DRAGON) in 2012

    NASA Astrophysics Data System (ADS)

    Sano, Itaru; Mukai, Sonoyo; Nakata, Makiko; Holben, Brent N.

    2016-11-01

    Aerosol mass concentrations are affected by local emissions as well as long-range transboundary (LRT) aerosols. This work investigates regional and local variations of aerosols based on Distributed Regional Aerosol Gridded Observation Networks (DRAGON). We constructed DRAGON-Japan and DRAGON-Osaka in spring of 2012. The former network covers almost all of Japan in order to obtain aerosol information in regional scale over Japanese islands. It was determined from the DRAGON-Japan campaign that the values of aerosol optical thickness (AOT) decrease from west to east during an aerosol episode. In fact, the highest AOT was recorded at Fukue Island at the western end of the network, and the value was much higher than that of urban areas. The latter network (DRAGON-Osaka) was set as a dense instrument network in the megalopolis of Osaka, with a population of 12 million, to better understand local aerosol dynamics in urban areas. AOT was further measured with a mobile sun photometer attached to a car. This transect information showed that aerosol concentrations rapidly changed in time and space together when most of the Osaka area was covered with moderate LRT aerosols. The combined use of the dense instrument network (DRAGON-Osaka) and high-frequency measurements provides the motion of aerosol advection, which coincides with the wind vector around the layer between 700 and 850 hPa as provided by the reanalysis data of the National Centers for Environmental Prediction (NCEP).

  19. Regional and Local Variations in Atmospheric Aerosols Using Ground-Based Sun Photometry During Distributed Regional Aerosol Gridded Observation Networks (DRAGON) in 2012

    NASA Technical Reports Server (NTRS)

    Sano, Itaru; Mukai, Sonoyo; Nakata, Makiko; Holben, Brent N.

    2016-01-01

    Aerosol mass concentrations are affected by local emissions as well as long-range transboundary (LRT) aerosols. This work investigates regional and local variations of aerosols based on Distributed Regional Aerosol Gridded Observation Networks (DRAGON).We constructed DRAGON-Japan and DRAGON-Osaka in spring of 2012. The former network covers almost all of Japan in order to obtain aerosol information in regional scale over Japanese islands. It was determined from the DRAGON-Japan campaign that the values of aerosol optical thickness (AOT) decrease from west to east during an aerosol episode. In fact, the highest AOT was recorded at Fukue Island at the western end of the network, and the value was much higher than that of urban areas. The latter network (DRAGON-Osaka) was set as a dense instrument network in the megalopolis of Osaka, with a population of 12 million, to better understand local aerosol dynamics in urban areas. AOT was further measured with a mobile sun photometer attached to a car. This transect information showed that aerosol concentrations rapidly changed in time and space together when most of the Osaka area was covered with moderate LRT aerosols. The combined use of the dense instrument network (DRAGON-Osaka) and high-frequency measurements provides the motion of aerosol advection, which coincides with the wind vector around the layer between 700 and 850 hPa as provided by the reanalysis data of the National Centers for Environmental Prediction (NCEP).

  20. Cloud condensation nuclei closure study on summer arctic aerosol

    NASA Astrophysics Data System (ADS)

    Martin, M.; Chang, R. Y.-W.; Sierau, B.; Sjogren, S.; Swietlicki, E.; Abbatt, J. P. D.; Leck, C.; Lohmann, U.

    2011-03-01

    We present an aerosol - cloud condensation nuclei CCN) closure study on summer high Arctic aerosol based on measurements that were carried out in summer 2008 during the Arctic Summer Cloud Ocean Study (ASCOS) on board the Swedish ice breaker Oden. The data presented here were collected during a three-week time period in the pack ice (>85° N) when the icebreaker Oden was moored to an ice floe and drifted passively during the most biological active period into autumn freeze up conditions. CCN number concentrations were obtained using two CCN counters measuring at different supersaturations. The directly measured CCN number concentration is then compared with a CCN number concentration calculated using both bulk aerosol mass composition data from an aerosol mass spectrometer and aerosol number size distributions obtained from a differential mobility particle sizer, assuming κ-Köhler theory and an internally mixed aerosol. For the two highest measured supersaturations, 0.73 and 0.41%, closure could not be achieved with the investigated settings concerning hygroscopicity and density. The calculated CCN number concentration was always higher than the measured one. One possible explanation is that the smaller particles that activate at these supersaturations have a relative larger insoluble organic mass fraction and thus are less good CCN than the larger particles. At 0.20, 0.15 and 0.10% supersaturation, the measured CCN number can be represented with different parameters for the hygroscopicity and density of the particles. For the best agreement of the calculated CCNnumber concentration with the measured one the organic fraction of the aerosol needs to be nearly insoluble (қorg=0.02). However, this is not unambigious and қorg=0.2 is found as an upper limit at 0.1% supersaturation.

  1. Quantification of marine aerosol subgrid variability and its correlation with clouds based on high-resolution regional modeling: Quantifying Aerosol Subgrid Variability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Guangxing; Qian, Yun; Yan, Huiping

    One limitation of most global climate models (GCMs) is that with the horizontal resolutions they typically employ, they cannot resolve the subgrid variability (SGV) of clouds and aerosols, adding extra uncertainties to the aerosol radiative forcing estimation. To inform the development of an aerosol subgrid variability parameterization, here we analyze the aerosol SGV over the southern Pacific Ocean simulated by the high-resolution Weather Research and Forecasting model coupled to Chemistry. We find that within a typical GCM grid, the aerosol mass subgrid standard deviation is 15% of the grid-box mean mass near the surface on a 1 month mean basis.more » The fraction can increase to 50% in the free troposphere. The relationships between the sea-salt mass concentration, meteorological variables, and sea-salt emission rate are investigated in both the clear and cloudy portion. Under clear-sky conditions, marine aerosol subgrid standard deviation is highly correlated with the standard deviations of vertical velocity, cloud water mixing ratio, and sea-salt emission rates near the surface. It is also strongly connected to the grid box mean aerosol in the free troposphere (between 2 km and 4 km). In the cloudy area, interstitial sea-salt aerosol mass concentrations are smaller, but higher correlation is found between the subgrid standard deviations of aerosol mass and vertical velocity. Additionally, we find that decreasing the model grid resolution can reduce the marine aerosol SGV but strengthen the correlations between the aerosol SGV and the total water mixing ratio (sum of water vapor, cloud liquid, and cloud ice mixing ratios).« less

  2. aerosol radiative effects and forcing: spatial and temporal distributions

    NASA Astrophysics Data System (ADS)

    Kinne, Stefan

    2014-05-01

    A monthly climatology for aerosol optical properties based on a synthesis from global modeling and observational data has been applied to illustrate spatial distributions and global averages of aerosol radiative impacts. With the help of a pre-industrial reference for aerosol optical properties from global modeling, also the aerosol direct forcing (ca -0.35W/m2 globally and annual averaged) and their spatial and seasonal distributions and contributions by individual aerosol components are estimated. Finally, CCN and IN concentrations associated with this climatology are applied to estimate aerosol indirect effects and forcing.

  3. Latitudinal distribution of aerosol black carbon and its mass fraction to composite aerosols over peninsular India during winter season

    NASA Astrophysics Data System (ADS)

    Moorthy, K. Krishna; Babu, S. Suresh; Badarinath, K. V. S.; Sunilkumar, S. V.; Kiranchand, T. R.; Ahmed, Y. Nazeer

    2007-04-01

    During a land campaign to characterise the spatial distribution of aerosols over peninsular India during the winter season, extensive, collocated, and spatially resolved measurements of mass concentration of the composite aerosols (MT) as well as that (MB) of aerosol Black Carbon (BC) were made over different environments (coastal, industrial, urban, village, remote, semiarid) of the western peninsular India. High concentrations of BC, >2.5 μg m-3, were observed along the west coast, from ~8°N up to 14.5°N, and moderate values (1.0 to 2.5 μg m-3) over inland regions from 15 to 18°N. Latitudinally, BC concentration decreased from south to north, @~160 ng m-3 for every degree increase in latitude. The spatial pattern of BC mass fraction differed from that of MB, with regions of high (8 to 16%) ratios spreading more interior, implying higher fractional load of BC at locations where the BC concentrations remain lower.

  4. Confinement of surface waves at the air-water interface to control aerosol size and dispersity

    NASA Astrophysics Data System (ADS)

    Nazarzadeh, Elijah; Wilson, Rab; King, Xi; Reboud, Julien; Tassieri, Manlio; Cooper, Jonathan M.

    2017-11-01

    The precise control over the size and dispersity of droplets, produced within aerosols, is of great interest across many manufacturing, food, cosmetic, and medical industries. Amongst these applications, the delivery of new classes of high value drugs to the lungs has recently attracted significant attention from pharmaceutical companies. This is commonly achieved through the mechanical excitation of surface waves at the air liquid interface of a parent liquid volume. Previous studies have established a correlation between the wavelength on the surface of liquid and the final aerosol size. In this work, we show that the droplet size distribution of aerosols can be controlled by constraining the liquid inside micron-sized cavities and coupling surface acoustic waves into different volumes of liquid inside micro-grids. In particular, we show that by reducing the characteristic physical confinement size (i.e., either the initial liquid volume or the cavities' diameters), higher harmonics of capillary waves are revealed with a consequent reduction of both aerosol mean size and dispersity. In doing so, we provide a new method for the generation and fine control of aerosols' sizes distribution.

  5. PM 2.5 mass concentrations in comparison with aerosol optical depths over the Arabian Sea and Indian Ocean during winter monsoon

    NASA Astrophysics Data System (ADS)

    Ramachandran, S.

    An analysis of PM 2.5 mass concentrations and 0.5 μm aerosol optical depths (AODs) during the Northeast winter monsoon seasons of 1996-2000 is performed and intercompared. AODs are found to show diurnal variations over Coastal India (CI) (west coast) while they are relatively smooth over the Arabian Sea (AS) (5-20°N) and tropical Indian Ocean (TIO) (5°N-20°S). PM 2.5, PM 10 and total mass concentrations show less variations in a day over these oceanic regions. Columnar AODs are found to increase with an increase in the marine boundary layer aerosol concentrations over CI and AS while an opposite trend is seen over TIO. The yearly-mean AODs and mass concentrations are found to increase over CI and AS, over TIO the mass concentrations increased while the AODs decreased during 1996-2000. It is found from the 7-days air back trajectory analyses that at different altitudes air masses can originate from different source regions leading to changes in chemical, physical and optical characteristics of the aerosol between the surface and column. The differences in the surface and columnar measurements could also occur due to changes in the meteorological conditions, wind patterns, in addition to changes in production and subsequently the transport of aerosols. Least-squares fits to the above intercomparison resulted in intercepts of 0.24 and 0.22 over CI and AS indicating that the background AODs over these oceanic regions are higher. An examination of the daily-mean wind speeds and PM 2.5 mass concentrations yielded an index of wind dependence of 0.04 for AS and 0.07 for TIO. The background PM 2.5 mass concentrations are also found to be high at 36 and 25 μg m -3 over AS and TIO, respectively, indicating a stronger influence from the continent. Frequency distribution figures show that 28% of the PM 2.5 values over CI lie in the 60-80 μg m -3 range. Over AS the dominant mode of distribution is 40-60 μg m -3 with a peak value of 42%. Over TIO PM 2.5 values are found to

  6. Seasonal dependence of aerosol processing in urban Philadelphia

    NASA Astrophysics Data System (ADS)

    Avery, A. M.; Waring, M. S.; DeCarlo, P. F.

    2017-12-01

    Urban aerosols pose an important threat to human health due to the conflation of emissions and concentrated population exposed. Winter and summer aerosol and trace gas measurements were taken in downtown Philadelphia in 2016. Measurements included aerosol composition and size with an Aerodyne Aerosol Mass Spectrometer (AMS), particle size distributions with an SMPS, and an aethalometer. Trace gas measurements of O3, NO, CH4, CO, and CO2 were taken concurrently. Sampling in seasonal extremes provided contrast in aerosol and trace gas composition, aerosol processing, and emission factors. Inorganic aerosol components contributed approximately 60% of the submicron aerosol mass, while summertime aerosol composition was roughly 70% organic matter. Positive Matrix Factorization (PMF) on the organic aerosol (OA) matrix revealed three factors in common in each season, including an oxygenated organic aerosol (OOA) factor with different temporal behavior in each season. In summertime, OOA varied diurnally with ozone and daytime temperature, but in the wintertime, it was anti-correlated with ozone and temperature, and instead trended with calculated liquid water, indicating a seasonally-dependent processing of organic aerosol in Philadelphia's urban environment. Due to the inorganic dominant winter aerosol, liquid water much higher (2.65 μg/m3) in winter than in summer (1.54 μg/m3). Diurnally varying concentrations of background gas phase species (CH4, CO2) were higher in winter and varied less as a result of boundary layer conditions; ozone was also higher in background in winter than summer. Winter stagnation events with low windspeed showed large buildup of trace gases CH4, CO, CO2, and NO. Traffic related aerosol was also elevated with black carbon and hydrocarbon-like OA (HOA) plumes of each at 3-5 times higher than the winter the average value for each. Winter ratios of HOA to black carbon were significantly higher in the winter than the summer due to lower

  7. Seasonality of major aerosol species and their transformations in Cairo megacity

    NASA Astrophysics Data System (ADS)

    Favez, Olivier; Cachier, Hélène; Sciare, Jean; Alfaro, Stéphane C.; El-Araby, Tarek M.; Harhash, Maha A.; Abdelwahab, Magdy M.

    Bulk aerosols sampled on a weekly basis at two Cairo (Egypt) urban sites from January 2003 to May 2006 were analysed for their chemical composition of major aerosol species (elemental carbon, water soluble/insoluble organic carbon, nitrate, sulphate, ammonium, chloride, sodium and calcium). Data subsequently obtained constitute one of the longest and more detailed dataset related to Cairo aerosols, and offer the opportunity to investigate seasonal trends. Dust aerosols (derived from calcium measurements) displayed maximum concentrations in spring and winter, due to frequent dust storms, but also high background concentration levels (˜50 μg m -3) all year long. Within these particles, about 40% on average of Ca 2+ was found to be associated with SO 42-, NO 3- and/or Cl -, pointing out "dust anthropization" processes and their subsequent climatic impact on a regional scale. Seasonal variations of non-dust aerosols, equally distributed between carbonaceous aerosols and ions, were also observed, with concentrations of the order of 100 μg m -3 in autumn and winter, and of 60 μg m -3 in spring and summer. High concentration levels of non-sea-salt chloride (up to 15 μg m -3 on a monthly basis), likely of industrial origin, were observed in autumn and winter. During the autumn "Black Cloud" event, biomass burning aerosols originating from rice straw burning in the Nile Delta have shown to account for 12%, 35% and 50% of Cairo EC, WIOC and WSOC mass concentrations, respectively. Finally, relatively low WSOC/OC ratios (˜1/3) were obtained all the year long, calling for more investigation on the water-solubility of organic aerosols originating from the burning of agricultural waste, and on that of secondary organic aerosols formed in dry urban atmospheres.

  8. Characterization of Cooking-Related Aerosols

    NASA Astrophysics Data System (ADS)

    Niedziela, R. F.; Blanc, L. E.

    2010-12-01

    The temperatures at which food is cooked are usually high enough to drive oils and other organic compounds out of materials which are being prepared for consumption. As these compounds move away from the hot cooking surface and into the atmosphere, they can participate in chemical reactions or condense to form particles. Given the high concentration of cooking in urban areas, cooking-related aerosols likely contribute to the overall amount of particulate matter on a local scale. Reported here are results for the mid-infrared optical characterization of aerosols formed during the cooking of several meat and vegetable samples in an inert atmosphere. The samples were heated in a novel aerosol generator that is designed to collect particles formed immediately above the cooking surface and inject them into a laminar aerosol flow cell. Preliminary results for the chemical processing of cooking-related aerosols in synthetic air will also be presented.

  9. Aerosol generation and measurement of multi-wall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Myojo, Toshihiko; Oyabu, Takako; Nishi, Kenichiro; Kadoya, Chikara; Tanaka, Isamu; Ono-Ogasawara, Mariko; Sakae, Hirokazu; Shirai, Tadashi

    2009-01-01

    Mass production of some kinds of carbon nanotubes (CNT) is now imminent, but little is known about the risk associated with their exposure. It is important to assess the propensity of the CNT to release particles into air for its risk assessment. In this study, we conducted aerosolization of a multi-walled CNT (MWCNT) to assess several aerosol measuring instruments. A Palas RBG-1000 aerosol generator applied mechanical stress to the MWCNT by a rotating brush at feed rates ranging from 2 to 20 mm/h, which the MWCNT was fed to a two-component fluidized bed. The fluidized bed aerosol generator was used to disperse the MWCNT aerosol once more. We monitored the generated MWCNT aerosol concentrations based on number, area, and mass using a condensation particle counter and nanoparticle surface area monitor. Also we quantified carbon mass in MWCNT aerosol samples by a carbon monitor. The shape of aerosolized MWCNT fibers was observed by a scanning electron microscope (SEM). The MWCNT was well dispersed by our system. We found isolated MWCNT fibers in the aerosols by SEM and the count median lengths of MWCNT fibers were 4-6 μm. The MWCNT was quantified by the carbon monitor with a modified condition based on the NIOSH analytical manual. The MWCNT aerosol concentration (EC mass base) was 4 mg/m3 at 2 mm/h in this study.

  10. Aerosol beam-focus laser-induced plasma spectrometer device

    DOEpatents

    Cheng, Meng-Dawn

    2002-01-01

    An apparatus for detecting elements in an aerosol includes an aerosol beam focuser for concentrating aerosol into an aerosol beam; a laser for directing a laser beam into the aerosol beam to form a plasma; a detection device that detects a wavelength of a light emission caused by the formation of the plasma. The detection device can be a spectrometer having at least one grating and a gated intensified charge-coupled device. The apparatus may also include a processor that correlates the wavelength of the light emission caused by the formation of the plasma with an identity of an element that corresponds to the wavelength. Furthermore, the apparatus can also include an aerosol generator for forming an aerosol beam from bulk materials. A method for detecting elements in an aerosol is also disclosed.

  11. Toward understanding atmospheric physics impacting the relationship between columnar aerosol optical depth and near-surface PM2.5 mass concentrations in Nevada and California, U.S.A., during 2013

    NASA Astrophysics Data System (ADS)

    Loría-Salazar, S. Marcela; Panorska, Anna; Arnott, W. Patrick; Barnard, James C.; Boehmler, Jayne M.; Holmes, Heather A.

    2017-12-01

    Determining the relationship between columnar aerosol optical depth (τext) and surface particulate matter concentrations (PM2.5) is desired to estimate surface aerosol concentrations over broad spatial and temporal scales using satellite remote sensing. However, remote sensing studies incur challenges when surface aerosol pollution (i.e. PM2.5) is not correlated with columnar conditions (i.e., τext). PM2.5 data fusion models that rely on satellite data and statistical relationships of τext and PM2.5 may not be able to capture the physical conditions impacting the relationships that cause columnar and surface aerosols to not be correlated in the western U.S. Therefore, an extensive examination of the atmospheric conditions is required to improve surface estimates of PM2.5 that rely on columnar aerosol measurements. This investigation uses datasets from both routine monitoring networks and models of meteorological variables and aerosol physical parameters to understand the atmospheric conditions under which surface aerosol pollution can be explained by column measurements in California and Nevada during 2013. A novel quadrant method, that utilizes statistical analysis, was developed to investigate the relationship between τext and PM2.5. The results from this investigation show that τext and PM2.5 had a positive association (τext and PM2.5 increase together) when local sources of pollution or wildfires dominated aerosol pollution in the presence of a deep and well-mixed planetary boundary layer (PBL). Moreover, τext and PM2.5 had no association (where the variables are not related) when stable conditions, long-range transport, or entrainment of air from above the PBL were observed. It was found that seasonal categorization of the relationship between τext and PM2.5, an approach commonly used in statistical models to estimate surface concentrations with satellite remote sensing, may not be enough to account for the atmospheric conditions that drive the

  12. Measurements of the absorption coefficient of stratospheric aerosols

    NASA Technical Reports Server (NTRS)

    Ogren, J. A.; Ahlquist, N. C.; Clarke, A. D.; Charlson, R. J.

    1981-01-01

    The absorption coefficients of stratospheric aerosols are measured using a variation on the integrating plate method. The technique is based on the decrease in the transparency of a substrate when an absorbing aerosol is deposited on it. A Lambert scatterer is placed behind the substrate to integrate forward scattered light and minimize the effect of scattering on the measurement. The low pressure in the stratosphere is used for the direct impaction of particles onto a narrow strip of opal glass. The eight samples collected had a median value of 4 x 10 to the -9th m with an uncertainty of + or - 5 x 10 to the -9th m. If this absorption is due to graphitic carbon, then its concentration is estimated at about 0.4 ng/cu m, or about 0.25% of the total aerosol mass concentration. Estimates of the aerosol scattering coefficients based on satellite extinction inversions result in an aerosol single-scattering albedo in the range of 0.96-1.0.

  13. A Miniature Aerosol Sensor for Detecting Polydisperse Airborne Ultrafine Particles.

    PubMed

    Zhang, Chao; Wang, Dingqu; Zhu, Rong; Yang, Wenming; Jiang, Peng

    2017-04-22

    Counting and sizing of polydisperse airborne nanoparticles have attracted most attentions owing to increasing widespread presence of airborne engineered nanoparticles or ultrafine particles. Here we report a miniature aerosol sensor to detect particle size distribution of polydisperse ultrafine particles based on ion diffusion charging and electrical detection. The aerosol sensor comprises a couple of planar electrodes printed on two circuit boards assembled in parallel, where charging, precipitation and measurement sections are integrated into one chip, which can detect aerosol particle size in of 30-500 nm, number concentration in range of 5 × 10²-10⁷ /cm³. The average relative errors of the measured aerosol number concentration and the particle size are estimated to be 12.2% and 13.5% respectively. A novel measurement scheme is proposed to actualize a real-time detection of polydisperse particles by successively modulating the measurement voltage and deducing the particle size distribution through a smart data fusion algorithm. The effectiveness of the aerosol sensor is experimentally demonstrated via measurements of polystyrene latex (PSL) aerosol and nucleic acid aerosol, as well as sodium chloride aerosol particles.

  14. Impact of fog processing on water soluble organic aerosols.

    NASA Astrophysics Data System (ADS)

    Tripathi, S. N.; Chakraborty, A.; Gupta, T.

    2017-12-01

    Fog is a natural meteorological phenomenon that occurs all around the world, and contains a substantial quantity of liquid water. Fog is generally seen as a natural cleansing agent but can also form secondary organic aerosols (SOA) via aqueous processing of ambient organics. Few field studies have reported elevated O/C ratio and SOA mass during or after fog events. However, mechanism behind aqueous SOA formation and its contribution to total organic aerosols (OA) still remains unclear. In this study we have tried to explore the impact of fog/aqueous processing on the characteristics of water soluble organic aerosols (WSOC), which to our knowledge has not been studied before. To assess this, both online (using HR-ToF-AMS) and offline (using a medium volume PM2.5 sampler and quartz filter) aerosol sampling were carried out at Kanpur, India from 15 December 2014 - 10 February 2015. Further, offline analysis of the aqueous extracts of the collected filters were carried out by AMS to characterize the water soluble OA (WSOA). Several (17) fog events occurred during the campaign and high concentrations of OA (151 ± 68 µg/m3) and WSOA (47 ± 19 µg/m3) were observed. WSOA/OA ratios were similar during fog (0.36 ± 0.14) and nofog (0.34 ± 0.15) periods. WSOA concentrations were also similar (slightly higher) during foggy (49 ± 18 µg/m3) and non-foggy periods (46 ± 20 µg/m3), in spite of fog scavenging. However, WSOA was more oxidized during foggy period (average O/C = 0.81) than non foggy periods (average O/C = 0.70). Like WSOA, OA was also more oxidized during foggy periods (average O/C = 0.64) than non foggy periods (average O/C = 0.53). During fog, WSOA to WIOA (water insoluble OA) ratios were higher (0.65 ± 0.16) compared to non foggy periods (0.56 ± 0.15). These observations clearly showed that WSOA become more dominant and processed during fog events, possibly due to the presence of fog droplets. This study highlights that fog processing of soluble organics

  15. Development of an aerosol chamber for calibration of 220Rn progeny detectors

    NASA Astrophysics Data System (ADS)

    Sorimachi, Atsuyuki; Ishikawa, Tetsuo; Tokonami, Shinji

    2014-09-01

    This paper describes an aerosol chamber system that can be used for calibrations and performance experiments of passive 220Rn progeny detectors. For the purpose of this study, an aerosol generation system using carnauba wax as the aerosol material was mounted into the 220Rn chamber. We used the chamber to measure characteristics of the equilibrium factor (F) of 220Rn and unattached fraction (fp) of 220Rn progeny, which are important parameters for dose estimation. The first experiment showed that continuous and stable generation of the unattached and aerosol-attached 220Rn progeny concentrations was obtained. We observed that the spatial distributions in the chamber of the vertical profiles of the unattached and aerosol-attached 220Rn progeny concentrations were homogeneous, as were the particle number concentration and count median diameter. The values of F and fp and their characteristics observed in this study were in the same range as the values reported from indoor measurements. We found that the characteristics of F and fp were dependent on the aerosol conditions (particle diameter and particle number concentration).

  16. Influence of indoor microbial aerosol on the welfare of meat ducks.

    PubMed

    Yu, G L; Wei, L M; Liu, Y Y; Liu, J Y; Wang, Y; Gao, J; Chai, T J; Cai, Y M

    2016-01-01

    The aim of the study was to evaluate the effects of microbial aerosols on ducks' welfare and provide information on which to establish microbial aerosol concentration standards for poultry. A total of 1800 1-d-old Cherry Valley ducks were randomly divided into 5 groups (A, B, C, D and E) with 360 ducks in each. To obtain objective data, each group had three replications. Different microbial aerosol concentrations in different groups were created by controlling ventilation and bedding cleaning frequency. Group A was the control group and hygienic conditions deteriorated progressively from group B to E. A 6-stage Andersen impactor was used to detect the aerosol concentration of aerobes, fungi, gram-negative bacteria and an AGI-30 microbial air sampler detected endotoxins. Physiological stress was evaluated in the ducks by adrenocorticotropic hormone (ACTH) values in serum. To assess the effects of bioaerosol factors, welfare indicators including fluctuating asymmetry (FA), appearance and gait as well as the Lactobacillus caecal concentration were evaluated. The data showed group D had already reached the highest limit of concentration of airborne aerobic bacteria, airborne fungi, airborne gram-negative bacteria and airborne endotoxin. The ducks in this group had significantly increased serum ACTH values and significantly decreased caecal lactobacilli concentration. Furthermore, appearance and gait scores, wing length and overall FA and caecal Lactobacillus concentration in this group were significantly increased at 6 and 8 weeks of age. In conclusion, high concentrations of microbial aerosol adversely affected the welfare of meat ducks. The microbial aerosol values in group D suggest a preliminary upper limit concentration of bioaerosols in ambient air for healthy meat ducks.

  17. Unique airborne measurements at the tropopause of Fukushima Xe-133, aerosol, and aerosol precursors indicate aerosol formation via homogeneous and cosmic ray induced nucleation

    NASA Astrophysics Data System (ADS)

    Schlager, Hans; Arnold, Frank; Aufmhoff, Heinfried; Minikin, Andreas; Baumann, Robert; Simgen, Hardy; Lindemann, Stefan; Rauch, Ludwig; Kaether, Frank; Pirjola, Liisa; Schumann, Ulrich

    2014-05-01

    We report unique airborne measurements, at the tropopause, of the Fukushima radio nuclide Xe-133, aerosol particles (size, shape, number concentration, volatility), aerosol precursor gases (particularly SO2, HNO3, H2O). Our measurements and accompanying model simulations indicate homogeneous and cosmic ray induced aerosol formation at the tropopause. Using an extremely sensitive detection method, we managed to detect Fukushima Xe-133, an ideal transport tracer, at and even above the tropopause. To our knowledge, these airborne Xe-133 measurements are the only of their kind. Our investigations represent a striking example how a pioneering measurement of a Fukshima radio nuclide, employing an extremely sensitive method, can lead to new insights into an important atmospheric process. After the Fukushima accidential Xe-133 release (mostly during 11-15 March 2011), we have conducted two aircraft missions, which took place over Central Europe, on 23 March and 11 April 2011. In the air masses, encountered by the research aircraft on 23 March, we have detected Fukushima Xe-133 by an extremely sensitive method, at and even above the tropopause. Besides increased concentrations of Xe-133, we have detected also increased concentrations of the gases SO2, HNO3, and H2O. The Xe-133 data and accompanying transport model simulations indicate that a West-Pacific Warm Conveyor Belt (WCB) lifted East-Asian planetary boundary layer air to and even above the tropopause, followed by relatively fast quasi-horizontal advection to Europe. Along with Xe-133, anthropogenic SO2, NOx (mostly released from East-Asian ground-level combustion sources), and warer vapour were also lifted by the WCB. After the lift, SO2 and NOx experienced efficient solar UV-radiation driven conversion to the important aerosol precursors gases H2SO4 and HNO3. Our investigations indicate that, increased concentrations of the gases SO2, HNO3, and H2O promoted homogeneous and cosmic ray induced aerosol formation at and

  18. Aerosol impacts on climate and environment over East Asia

    NASA Astrophysics Data System (ADS)

    Nakata, M.; Sano, I.; Mukai, S.

    2014-12-01

    It is well known that the aerosol distribution in East Asia is complex due to both the increasing emissions of the anthropogenic aerosols associated with economic growth and the behavior of natural dusts. Therefore, detailed observations of atmospheric particles in East Asian are important. It is concerned about the change of concentration of aerosols causes various effects on the climate by directly and indirectly modifying the optical properties and lifetimes of cloud. In addition to radiation budget change, aerosol has a significant potential to change cloud and precipitation. These circulation fields change influence on emission of natural aerosols such as dust aerosols and sea salt aerosols. Also, air pollution in megacities in East Asia has become a serious problem. Especially problematic are fine particles called PM2.5, whose diameter is 2.5 mm or less. Particulate matter (PM) pollution as indicated by high PM2.5 readings will cause a spike in the mortality rate of patients suffering from heart and lung diseases. Because fine particles are much smaller than inhalable coarse particles, the can penetrate deeper into the lungs and cause more severe effects on human health. Anthropogenic sources of PM2.5 include automobiles, factories, coal-burning power plants, and heaters in homes. It is well known that the size of dust particles decreases during long-range transport via westerly winds, and the resulting dust storms can contain high concentrations of fine particles. Accordingly, PM2.5 concentrations correspond well to both anthropogenic and dust aerosols. This work intends to investigate impacts of aerosol on regional climate change and environment over East Asia using observations and model simulations.

  19. Aerosol accumulation intensity and composition variations under different weather conditions in urban environment

    NASA Astrophysics Data System (ADS)

    Steinberga, Iveta; Bikshe, Janis; Eindorfa, Aiva

    2014-05-01

    During the last decade aerosol (PM10, PM2.5) mass and composition measurements were done in different urban environments - parallel street canyons, industrial sites and at the background level in Riga, Latvia. Effect of meteorological parameters on the accumulation and ventilation intensity was investigated in order to understand microclimatological parameters affecting aerosol pollution level and chemical composition changes. In comparison to industrial sites (shipping activities, bulk cargo, oil and naphtha processing), urban street canyon aerosol mass concentration was significantly higher, for PM10 number of daily limit exceedances are higher by factor 3.4 - 3.9 in street canyons. Exceedances of PM2.5 annual limits were identified only in street canyons as well. Precipitation intensity, wind speed, days with mist highly correlates with aerosol concentration; in average during the year about 1 - 2 % presence of calm wind days, 20 - 30 days with mist facilitate accumulation of aerosols and mitigating growing of secondary aerosols. It has been assessed that about 25 % of daily exceedances in street canyons are connected with sea salt/street sanding factor. Strong dependency of wind speed and direction were identified in winter time - low winds (0.4 - 1.7 m/s) blowing from south, south-east (cross section of the street) contributing to PM10 concentrations over 100 - 150 ug/m3. Seasonal differences in aerosol concentrations were identified as a result of recombination of direct source impact, specific meteorological and synoptical conditions during the period from January until April when usually dominates extremely high aerosol concentrations. While aerosol mass concentration levels in monitoring sites significantly differs, concentrations of heavy metals (Pb, Ni, Cd, and As) are almost at the same level, even more - concentration of Cd for some years was higher in industrial area where main pollution is caused by oil processing and storage, heavy traffic

  20. Characteristics of Aerosols over the Garhwal Himalayas: India

    NASA Astrophysics Data System (ADS)

    Soni, A.; Panwar, P.; Sundriyal, S.; Prabhu, V.; Shridhar, V.

    2017-12-01

    Aerosols and Black Carbon (BC) is very important pollutants in context of global warming study. Due to high spatio-temporal variation in aerosols, there is a large uncertainty in climate change study. This study was conducted to understand the particulate pollution level in different altitude ranging from 300 m AMSL to 2600 m AMSL (see fig.). In this study eight different sizes of aerosols (10 µm to 0.43 µm) concentration along with BC measured during summer season (MJJ) of 2014-2016 over 5 different locations of Garhwal Himalayas using Anderson Cascade Impactor (ACI) and Aethalometer AE-33. Sampling was performed continuously for 15-20 days at each site. It is the preliminary study to understand the sources of aerosols. Further chemical analysis of different sizes of aerosols helps to identify sources accurately. It will also help in future policies implications. High altitude site i.e. at 2600 m was very close to the Gangotri Glacier where river Ganga originates. The Ganga is one of the most important river in India, millions people rely on the water of this river. Since last decade many catastrophic events happened in this region because of melting of glacier fastly. Previously, no one studies BC and aerosols over this important fragile landscape. BC concentration was ranging from 4.72 ± 5.64 µg m-3 to 15.06 ± 7.69 µg m-3 at 2600 m to 300 m AMSL. At high altitude site highest aerosol concentration was observed to be 56.43 µg m-3 on the size range of PM3.3-4.7. During April-May there was a big fire event (around 3500 hector forest burnt) and the sampling period at 2600 m was on May. So that, to understand transportation of aerosols from forest fire region backward trajectories were calculated using HYSPLIT model. It gives evidence that during summer months aerosols transported from neighbouring forest fire area. While the concentration at lowest altitude was observed to be 248.95 µg m-3 in the size range of PM9-10 which is much higher than the permissible

  1. SAM 2 Measurements of the Polar Stratospheric Aerosol, volume 2. April 1979 to October 1979

    NASA Technical Reports Server (NTRS)

    Mccormick, M. P.; Steele, H. M.; Hamill, P.

    1982-01-01

    The Stratospheric Aerosol Measurement (SAM) II sensor is abroad the Earth orbiting Nimbus 7 spacecraft proving extinction measurements of the Antarctic and Arctic stratospheric aerosol with a vertical resolution of 1 km. Representative examples and weekly averages of aerosol data and corresponding temperature profiles for the time and place of each SAM II measurement (April 29, 1979, to October 27, 1979) is presented. Contours of aerosol extinction as a function of altitude and longitude or time were plotted and weekly aerosol optical depths were calculated. Seasonal variations and variations in space (altitude and longitude) for both polar regions are easily seen. Typical values of aerosol extinction at the SAM II wavelength of 1.0 micron for the time priod were 1 to 3 x 10 to the -4th power km -1 in the main stratospheric aerosol layer. Optical depths for the stratosphere were about 0.002. Polar stratospheric clouds at altitudes between the tropopause and 20 km were observed during the Antarctic winter at various times and locations. A ready-to-use format containing a representative sample of the second 6 months of data to be used in atmospheric and climatic studies is presented.

  2. Aerosol characteristics and sources for the Amazon basin during the wet season

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Artaxo, P.; Maenhaut, W.; Storms, H.

    1990-09-20

    Fine (< 2.0 {mu}m) and coarse (2.0 - 15 {mu}m) aerosol fractions were collected using stacked filter units, at three sites under the forest canopy and at three levels of a tower inside the jungle. Particle-induced x-ray emission (PIXE) was used to measure concentrations Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Br, Rb, Sr, Zr, and Pb. Morphological and trace element measurements of individual particles were carried out by automated electron probe x-ray microanalysis. Gravimetric analysis was performed to obtain the fine and coarse aerosol mass concentration. The concentrations ofmore » soil dust related elements (Al, Si, Ti, Fe, Mn) were 5 times larger in the wet season compared to the 1985 ABLE 2A dry season experiment. Biogenic aerosol related elements in the fine fraction showed lower concentrations in the wet season. Fine aerosol mass concentration averaged only 2.1 {plus minus} 0.7 {mu}g m{sup {minus}3}, while the average coarse mass concentration was 6.1 {plus minus} 1.8 {mu}g m{sup {minus}3}. Sulfur concentrations averaged 76 {plus minus} 14 ng m{sup {minus}3} in the fine fraction and 37 {plus minus} 9 ng m{sup {minus}3} in the coarse fraction. Only two factors explained about 90% of the data variability for the fine and coarse aerosol fractions. These were soil dust (represented mainly by Al, Si, Ti, Mn, and Fe) and biogenic aerosol (represented by K, P, Cl, S, Zn, and the aerosol mass concentration). Biogenic particles account for 55-95% of the airborne concentrations and consisted of leaf fragments, pollen grains, fungi, algae, and other types of particles. It is possible that biogenic particles can play an important role in the global aerosol budget and in the global biogeochemical cycles of various elements.« less

  3. Physico-chemical properties of aerosols in Sao Paulo, Brazil and mechanisms of secondary organic aerosol formation.

    NASA Astrophysics Data System (ADS)

    Artaxo, Paulo; Ferreira de Brito, Joel; Varanda Rizzo, Luciana; Luiza Godoy, Maria; Godoy, Jose Marcus

    2013-04-01

    Megacities emissions are increasingly becoming a global issue, where emissions from the transportation sector play an increasingly important role. Sao Paulo is a megacity with a population of about 18 million people, 7 million cars and large-scale industrial emissions. As a result of the vehicular and industrial emissions, the air quality in Sao Paulo is bellow WMO standards for aerosol particles and ozone. Many uncertainties are found on gas- and particulate matter vehicular emission factors and their following atmospheric processes, e.g. secondary organic aerosol formation. Due to the uniqueness of the vehicular fuel in Brazil, largely based on ethanol use, such characterization currently holds further uncertainties. To improve the understanding of the role of this unique emission characteristics, we are running a source apportionment study in Sao Paulo focused on the mechanisms of organic aerosol formation. One of the goals of this study is a quantitative aerosol source apportionment focused on vehicular emissions, including ethanol and gasohol (both fuels used by light-duty vehicles). This study comprises four sampling sites with continuous measurements for one year, where trace elements and organic aerosol are being measured for PM2.5 and PM10 along with real-time NOx, O3, PM10 and CO measurements. Aerosol optical properties and size distribution are being measured on a rotation basis between sampling stations. Furthermore, a Proton-Transfer-Reaction Mass Spectrometer (PTR-MS) and an Aerosol Chemical Speciation Monitor (ACSM) are used to measure in real time VOCs and aerosol composition, respectively. Trace elements were measured using XRF and OC/EC analysis was determined with a Sunset OC/EC instrument. A TSI Nephelometer with 3 wavelengths measure light scattering and a MAAP measure black carbon. Results show aerosol number concentrations ranging between 10,000 and 35,000 cm-3, mostly concentrated in the nucleation and Aitken modes, with a peak in size at 80

  4. Soot Aerosol In The Atmosphere: Pole-to-Pole Distribution And Contributions by Aircraft

    NASA Technical Reports Server (NTRS)

    Pueschel, R. F.; Verma, S.; Howard, S. D.; Ferry, G. V.; Goodman, J.; Allen, D. A.; Strawa, Anthony W. (Technical Monitor)

    1995-01-01

    Interest in the distribution of black carbon (soot) aerosol (BCA) in the atmosphere is warranted for the following reasons: (1) BCA has the highest absorption cross section of any compound known, thus it can absorb solar radiation to cause atmospheric warming; (2) BCA is a strong adsorber of gases, thus it can catalyze heterogeneous chemical reactions to modify the chemical composition of the atmosphere; (3) If aircraft emission is the major source of atmospheric BCA, it can serve as an atmospheric tracer of aircraft exhaust. We collect BCA particles greater than or equal to 0.02 micrometer diameter by wires mounted on both the DC-8 and ER-2 aircraft. After return to the laboratory, the wires are examined with a field emission scanning electron microscope to identify BCA particles by their characteristic morphology. Typically, BCA exists in the atmosphere as small particles of complex morphology. The particle sizes at the source are measured in tens of Angstrom units; after a short residence time in the atmosphere, individual particles coalesce to loosely packed agglomerates of typical dimensions 0.01 to 0.1 micrometer. We approximate the size of each BCA aggregate by that of a sphere of equivalent volume. This is done by computing the volume of a sphere whose diameter is the mean between averaged minimum and maximum dimensions of the BCA particle. While this procedure probably underestimates the actual surface area, it permits us to compare BCA size distributions among themselves and with other types of aerosols. When statistically justified, we fit lognormal distributions to the data points to determine number concentrations, geometric mean radii, standard deviations, BCA surface areas and volumes. Results to date permit the following conclusions: (1) BCA concentration in the northern stratosphere averages 0.6 ng per cubic meters. This amount is one part in 10(exp 4) after a volcanic eruption (e.g., Pinatubo) increasing to about one percent during volcanic

  5. Synchronised Aerosol Mass Spectrometer Measurements across Europe

    NASA Astrophysics Data System (ADS)

    Nemitz, Eiko

    2010-05-01

    Up to twelve Aerodyne Aerosol Mass Spectrometers (AMSs) were operated simultaneously at rural and background stations (EMEP and EUSAAR sites) across Europe. Measurements took place during three intensive periods, in collaboration between the European EUCAARI IP and the EMEP monitoring activities under the UNECE Convention for Long-Range Transboundary Air Pollution (CLRTAP) during three contrasting months (May 2008, Sep/Oct 2008, Feb/Mar 2009). These measurements were conducted, analysed and quality controlled carefully using a unified protocol, providing the largest spatial database of aerosol chemical composition measured with a unified online technique to date, and a unique snapshots of the European non-refractory submicron aerosol climatology. As campaign averages over all active monitoring sites, organics represent 28 to 43%, sulphate 18 to 25%, ammonium 13 to 15% and nitrate 15 to 36% of the resolved aerosol mass, with the highest relative nitrate contribution during the Feb/Mar campaign. The measurements demonstrate that in NW Europe (e.g. Ireland, UK, The Netherlands, Germany, Switzerland) the regional submicron aerosol tends to be neutralised and here nitrates make a major contribution to the aerosol mass. By contrast, periods with low nitrate and acidic aerosol were observed at sites in S and E Europe (e.g. Greece, Finland), presumably due to a combination of larger SO2 point sources in Easter Europe, smaller local NH3 sources and, in the case of Greece, higher temperatures. While at the more marine and remote sites (Ireland, Scotland, Finland) nitrate concentrations were dominated by episodic transport phenomena, at continental sites (Switzerland, Germany, Hungary) nitrate followed a clear diurnal cycle, reflecting the thermodynamic behaviour of ammonium nitrate. The datasets clearly shows spatially co-ordinated, large-scale pollution episodes of organics, sulphate and nitrate, the latter being most pronounced during the Feb/Mar campaign. At selected

  6. SAM 2 measurements of the polar stratospheric aerosol. Volume 9: October 1982 - April 1983

    NASA Technical Reports Server (NTRS)

    Mcmaster, L. R.; Powell, K. A.

    1991-01-01

    The Stratospheric Aerosol Measurement (SAM) II sensor aboard Nimbus 7 is providing 1.0 micron extinction measurements of Antarctic and Arctic stratospheric aerosols with a vertical resolution of 1 km. Representative examples and weekly averages including corresponding temperature profiles provided by NOAA for the time and place of each SAM II measurement are presented. Contours of aerosol extinction as a function of altitude and longitude or time are plotted, and aerosol optical depths are calculated for each week. Typical values of aerosol extinction and stratospheric optical depth in the Arctic are unusually large due to the presence of material from the El Chichon volcano eruption in the Spring of 1982. For example, the optical depth peaked at 0.068, more than 50 times background values. Typical values of aerosol extinction and stratospheric optical depth in the Antarctic varied considerably during this period due to the transport and arrival of the material from the El Chichon eruption. For example, the stratospheric optical depth varied from 0.002 in October 1982, to 0.021 in January 1983. Polar stratospheric clouds were observed during the Arctic winter, as expected. A representative sample is provided of the ninth 6-month period of data to be used in atmospheric and climatic studies.

  7. Fine Mode Aerosol over the United Arab Emirates

    NASA Astrophysics Data System (ADS)

    Ross, K. E.; Piketh, S. J.; Reid, J. S.; Reid, E. A.

    2005-12-01

    The aerosol loading of the atmosphere over the Arabian Gulf region is extremely diverse and is composed not only of dust, but also of pollution that is derived largely from oil-related activities. Fine mode pollution particles are most efficient at scattering incoming solar radiation and have the potential to act as cloud condensation nuclei (CCN), and may therefore have implications for climate change. The smaller aerosols may also pose a health hazard if present in high concentrations. The United Arab Emirates Unified Aerosol Experiment (UAE2) was designed to investigate aerosol and meteorological characteristics over the region using ground-based, aircraft and satellite measurements, and was conducted in August and September 2004. Aerosol chemical composition has been obtained from filters that were collected at the site of the Mobile Atmospheric Aerosol and Radiation Characterization Observatory (MAARCO) on the coast of the UAE between Abu Dhabi and Dubai. Filter samples were also collected on an airborne platform in order to assess how aerosol chemical composition varies across the region and throughout the depth of the boundary layer. Results of the analysis of the PM2.5 coastal samples show that ammonium sulphate is the most prevalent constituent of the fine mode aerosol in the region (>50% of the mass), followed by organic matter, alumino-silicates, calcium carbonate and black carbon. Source apportionment indicates that most of the fine aerosol mass is derived from fossil fuel combustion, while mineral dust and local vehicle emissions also contribute to the fine aerosol loading. The organic carbon-to-total carbon ratio of the aerosol is 0.65, which is typical of fossil fuel combustion. The dominance of sulphates means that the fine mode aerosol in the region is probably responsible for a negative radiative forcing, and that the polluting emissions significantly elevate the concentration of CCN.

  8. Seasonal changes in Fe species and soluble Fe concentration in the atmosphere in the Northwest Pacific region based on the analysis of aerosols collected in Tsukuba, Japan

    NASA Astrophysics Data System (ADS)

    Takahashi, Y.; Furukawa, T.; Kanai, Y.; Uematsu, M.; Zheng, G.; Marcus, M. A.

    2013-08-01

    Atmospheric iron (Fe) can be a significant source of nutrition for phytoplankton inhabiting remote oceans, which in turn has a large influence on the Earth's climate. The bioavailability of Fe in aerosols depends mainly on the fraction of soluble Fe (= [FeSol]/[FeTotal], where [FeSol] and [FeTotal] are the atmospheric concentrations of soluble and total Fe, respectively). However, the numerous factors affecting the soluble Fe fraction have not been fully understood. In this study, the Fe species, chemical composition, and soluble Fe concentrations in aerosols collected in Tsukuba, Japan were investigated over a year (nine samples from December 2002 to October 2003) to identify the factors affecting the amount of soluble Fe supplied into the ocean. The soluble Fe concentration in aerosols is correlated with those of sulfate and oxalate originated from anthropogenic sources, suggesting that soluble Fe is mainly derived from anthropogenic sources. Moreover, the soluble Fe concentration is also correlated with the enrichment factors of vanadium and nickel emitted by fossil fuel combustion. These results suggest that the degree of Fe dissolution is influenced by the magnitude of anthropogenic activity, such as fossil fuel combustion. X-ray absorption fine structure (XAFS) spectroscopy was performed in order to identify the Fe species in aerosols. Fitting of XAFS spectra coupled with micro X-ray fluorescence analysis (μ-XRF) showed the main Fe species in aerosols in Tsukuba to be illite, ferrihydrite, hornblende, and Fe(III) sulfate. Moreover, the soluble Fe fraction in each sample measured by leaching experiments is closely correlated with the Fe(III) sulfate fraction determined by the XAFS spectrum fitting, suggesting that Fe(III) sulfate is the main soluble Fe in the ocean. Another possible factor that can control the amount of soluble Fe supplied into the ocean is the total Fe(III) concentration in the atmosphere, which was high in spring due to the high mineral

  9. Seasonal changes in Fe species and soluble Fe concentration in the atmosphere in the Northwest Pacific region based on the analysis of aerosols collected in Tsukuba, Japan

    NASA Astrophysics Data System (ADS)

    Takahashi, Y.; Furukawa, T.; Kanai, Y.; Uematsu, M.; Zheng, G.; Marcus, M. A.

    2013-03-01

    Atmospheric iron (Fe) can be a significant source of nutrition for phytoplankton inhabiting remote oceans, which in turn has a large influence on the Earth's climate. The bioavailability of Fe in aerosols depends mainly on the fraction of soluble Fe (= [FeSol]/[FeTotal], where [FeSol] and [FeTotal] are the atmospheric concentrations of soluble and total Fe, respectively). However, the numerous factors affecting the soluble Fe fraction have not been fully understood. In this study, the Fe species, chemical composition, and soluble Fe concentrations in aerosols collected in Tsukuba, Japan were investigated over a year (nine samples from December 2002 to October 2003) to identify the factors affecting the amount of soluble Fe supplied into the ocean. The soluble Fe concentration in aerosols is correlated with those of sulfate and oxalate originated from anthropogenic sources, suggesting that soluble Fe is mainly derived from anthropogenic sources. Moreover, the soluble Fe concentration is also correlated with the enrichment factors of vanadium and nickel emitted by fossil fuel combustion. These results suggest that the degree of Fe dissolution is influenced by the magnitude of anthropogenic activity, such as fossil fuel combustion. X-ray absorption fine structure (XAFS) spectroscopy was performed in this study to identify the Fe species in aerosols. The fitting of XAFS spectra coupled with micro X-ray fluorescence analysis (XRF) determined the main Fe species in aerosols in Tsukuba to be illite, ferrihydrite, hornblende, and Fe(III) sulfate. Moreover, the soluble Fe fraction in each sample measured by leaching experiments is closely correlated with the Fe(III) sulfate fraction determined by the XAFS spectrum fitting, suggesting that Fe(III) sulfate is the main soluble Fe in the ocean. Another possible factor that can control the amount of soluble Fe supplied into the ocean is the total Fe(III) concentration in the atmosphere, which was high in spring due to the high

  10. Design of an ultraviolet fluorescence lidar for biological aerosol detection

    NASA Astrophysics Data System (ADS)

    Rao, Zhimin; Hua, Dengxin; He, Tingyao; Le, Jing

    2016-09-01

    In order to investigate the biological aerosols in the atmosphere, we have designed an ultraviolet laser induced fluorescence lidar based on the lidar measuring principle. The fluorescence lidar employs a Nd:YAG laser of 266 nm as an excited transmitter, and examines the intensity of the received light at 400 nm for biological aerosol concentration measurements. In this work, we firstly describe the designed configuration and the simulation to estimate the measure range and the system resolution of biological aerosol concentration under certain background radiation. With a relative error of less than 10%, numerical simulations show the system is able to monitor biological aerosols within detected distances of 1.8 km and of 7.3 km in the daytime and nighttime, respectively. Simulated results demonstrate the designed fluorescence lidar is capable to identify a minimum concentration of biological aerosols at 5.0×10-5 ppb in the daytime and 1.0×10-7 ppb in the nighttime at the range of 0.1 km. We believe the ultraviolet laser induced fluorescence lidar can be spread in the field of remote sensing of biological aerosols in the atmosphere.

  11. Diurnal variations of aerosol characteristics at a rural measuring site close to the Ruhr-Area, Germany

    NASA Astrophysics Data System (ADS)

    Kuhlbusch, T. A. J.; John, A. C.; Fissan, H.

    PM10, PM2.5, and Black Carbon (BC) mass concentrations as well as number size distributions were measured quasi-online at a rural sampling site from 18 September to 17 October 1997. Average PM10, PM2.5, and BC mass concentrations were 37 ± 25, 25 ± 23, and 2 ± 1 μgm -3, respectively. All determined aerosol characteristics showed significant diurnal variations with generally higher concentrations during daytime compared to nights. Maxima in mass concentrations were around 11 AM and 8 PM during weekdays, most likely caused by commuter traffic. Decreased mass concentrations, changes in chemical composition and size distribution have been observed for the time from 12 to 5 PM. Diurnal variations of the BC/PM2.5 mass ratio revealed a minimum between 12 and 4 PM. The ratio of particle volume (0.5-2.5 μm) to particle mass (PM2.5) called 'potential density' also showed significant diurnal changes. These changes could be attributed to increasing in mixing height and windspeed. The determined diurnal variations in particle mass, composition, and size distribution may be relevant for epidemiological studies. We propose that diurnally weighted averages of relevant aerosol characteristics, which take diurnal patterns of human activities into account, should be used in epidemiological studies.

  12. Evolution of aerosol downwind of a major highway

    NASA Astrophysics Data System (ADS)

    Liggio, J.; Staebler, R. M.; Brook, J.; Li, S.; Vlasenko, A. L.; Sjostedt, S. J.; Gordon, M.; Makar, P.; Mihele, C.; Evans, G. J.; Jeong, C.; Wentzell, J. J.; Lu, G.; Lee, P.

    2010-12-01

    Primary aerosol from traffic emissions can have a considerable impact local and regional scale air quality. In order to assess the effect of these emissions and of future emissions scenarios, air quality models are required which utilize emissions representative of real world conditions. Often, the emissions processing systems which provide emissions input for the air quality models rely on laboratory testing of individual vehicles under non-ambient conditions. However, on the sub-grid scale particle evolution may lead to changes in the primary emitted size distribution and gas-particle partitioning that are not properly considered when the emissions are ‘instantly mixed’ within the grid volume. The affect of this modeling convention on model results is not well understood. In particular, changes in organic gas/particle partitioning may result in particle evaporation or condensation onto pre-existing aerosol. The result is a change in the particle distribution and/or an increase in the organic mass available for subsequent gas-phase oxidation. These effects may be missing from air-quality models, and a careful analysis of field data is necessary to quantify their impact. A study of the sub-grid evolution of aerosols (FEVER; Fast Evolution of Vehicle Emissions from Roadways) was conducted in the Toronto area in the summer of 2010. The study included mobile measurements of particle size distributions with a Fast mobility particle sizer (FMPS), aerosol composition with an Aerodyne aerosol mass spectrometer (AMS), black carbon (SP2, PA, LII), VOCs (PTR-MS) and other trace gases. The mobile laboratory was used to measure the concentration gradient of the emissions at perpendicular distances from the highway as well as the physical and chemical evolution of the aerosol. Stationary sites at perpendicular distances and upwind from the highway also monitored the particle size distribution. In addition, sonic anemometers mounted on the mobile lab provided measurements of

  13. Aerosol optical properties during firework, biomass burning and dust episodes in Beijing

    NASA Astrophysics Data System (ADS)

    Yu, Xingna; Shi, Chanzhen; Ma, Jia; Zhu, Bin; Li, Mei; Wang, Jing; Yang, Suying; Kang, Na

    2013-12-01

    In order to characterize the aerosol optical properties during different pollution episodes that occurred in Beijing, the aerosol loading, scattering, and size distributions are presented using solar and sky radiance measurements from 2001 to 2010 in this paper. A much higher aerosol loading than the background level was observed during the pollution episodes. The average aerosol optical depth (AOD) is largest during dust episodes coupled with the lowest Ångström exponent (α), while higher AOD and lower α were more correlated with firework and biomass burning days. The total mean AOD at 440, 675, 870 and 1020 nm were 0.24, 0.49, 0.64 and 1.38 in the clean, firework display, biomass burning and dust days, respectively. The mean α for dust days was 0.51 and exceeded 1.1 for the remaining episodes. The size distribution of the dusty periods was dominated by the coarse mode, but the coarse mode was similar magnitude to the fine mode during the firework and biomass burning days. The volume concentration of the coarse mode during the dust days increased by a magnitude of more than 2-8 times that derived in the other three aerosol conditions, suggesting that dust is the major contributor of coarse mode particles in Beijing. The single scattering albedo (SSA) values also increased during the pollution episodes. The overall mean SSA at the four wavelengths were 0.865, 0.911, 0.922 and 0.931 in clean, firework display, biomass burning, and dust days in Beijing, respectively. However, in the blue spectral range, the dust aerosols exhibited pronounced absorption.

  14. Natural Aerosols Explain Seasonal and Spatial Patterns of Southern Ocean Cloud Albedo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCoy, Daniel; Burrows, Susannah M.; Wood, R.

    2015-07-17

    Small particles called aerosols act as nucleation sites for cloud drop formation, affecting clouds and cloud properties – ultimately influencing the cloud dynamics, lifetime, water path and areal extent that determine the reflectivity (albedo) of clouds. The concentration Nd of droplets in clouds that influences planetary albedo is sensitive to the availability of aerosol particles on which the droplets form. Natural aerosol concentrations not only affect cloud properties themselves, but also modulate the sensitivity of clouds to changes in anthropogenic aerosols. Here, it is shown that modeled natural aerosols, principally marine biogenic primary and secondary aerosol sources, explain more thanmore » half of the spatiotemporal variability in satellite-observed Nd. Enhanced Nd over regions of high biological activity is found to be driven primarily by high concentrations of sulfate aerosol at lower Southern Ocean latitudes (35-45°S) and by organic matter in sea spray aerosol at higher latitudes (45-55°S). Biogenic sources are estimated to increase the summertime mean reflected solar radiation in excess of 10 W m-2 over parts of the Southern Ocean, which is comparable to the annual mean increases expected from anthropogenic aerosols over heavily polluted regions of the Northern Hemisphere.« less

  15. Natural aerosols explain seasonal and spatial patterns of Southern Ocean cloud albedo

    PubMed Central

    McCoy, Daniel T.; Burrows, Susannah M.; Wood, Robert; Grosvenor, Daniel P.; Elliott, Scott M.; Ma, Po-Lun; Rasch, Phillip J.; Hartmann, Dennis L.

    2015-01-01

    Atmospheric aerosols, suspended solid and liquid particles, act as nucleation sites for cloud drop formation, affecting clouds and cloud properties—ultimately influencing the cloud dynamics, lifetime, water path, and areal extent that determine the reflectivity (albedo) of clouds. The concentration Nd of droplets in clouds that influences planetary albedo is sensitive to the availability of aerosol particles on which the droplets form. Natural aerosol concentrations affect not only cloud properties themselves but also modulate the sensitivity of clouds to changes in anthropogenic aerosols. It is shown that modeled natural aerosols, principally marine biogenic primary and secondary aerosol sources, explain more than half of the spatiotemporal variability in satellite-observed Nd. Enhanced Nd is spatially correlated with regions of high chlorophyll a, and the spatiotemporal variability in Nd is found to be driven primarily by high concentrations of sulfate aerosol at lower Southern Ocean latitudes (35o to 45oS) and by organic matter in sea spray aerosol at higher latitudes (45o to 55oS). Biogenic sources are estimated to increase the summertime mean reflected solar radiation in excess of 10 W m–2 over parts of the Southern Ocean, which is comparable to the annual mean increases expected from anthropogenic aerosols over heavily polluted regions of the Northern Hemisphere. PMID:26601216

  16. Characteristics of aerosol acidity in Hong Kong

    NASA Astrophysics Data System (ADS)

    Pathak, Ravi Kant; Louie, Peter K. K.; Chan, Chak K.

    The ammonium-to-sulfate ratio ([NH 4+]/[SO 42-]) and the strong acidity have been generally used as parameters to describe the acidic nature of atmospheric aerosols. However, both parameters do not provide the in situ acidic characteristics of atmospheric aerosols, which are more relevant to the reactivity and the environmental impacts of the aerosols. In this study, the in situ free acid concentrations and the in situ pH of aerosols are investigated to understand the acidic characteristics of atmospheric aerosols in Hong Kong (HK). Over 182 datasets on 24 h Respirable Suspended Particles (RSP) samples collected in 2001 from seven air-quality-monitoring sites run by the Hong Kong Environmental Protection Department are analyzed. Simulations using the Aerosol Inorganic Model (AIM2) reveal that the in situ acidity, i.e., the free acid concentration ([H +] free), is only a minor fraction (˜23%) of the estimated strong acidity in the fine particles because of the presence of bisulfate ions. The acidity characteristics of fine particles are a function of mainly RH and ammonium to sulfate ratio. The in situ free acid concentration, the normalized water content ([H 2O] AIM2/[SO 42-]), and the dissociation of bisulfate to free acid in the aerosols decrease as the [NH 4+]/[SO 42-] ratio increases and the Relative Humidity (RH) decreases. The acidic fine mode particles have average molar [NH 4+]/[SO 42-] ratio of 1.42, strong acidity of 51 nmol m -3, in situ acidity of 11 nmol m -3, and in situ pH of 0.25 on average. Our findings suggest that even the more neutralized ([NH 4+]/[SO 42-] >1.5) particles, such as those found when HK is under the influence of continental air masses from the Chinese mainland, can have high in situ acidity and low pH when the RH is low. This study calls for more investigation of the acidity of aerosols in HK, incorporating the concepts of in situ acidity and pH.

  17. Characterization of distinct Arctic aerosol accumulation modes and their sources

    NASA Astrophysics Data System (ADS)

    Lange, R.; Dall'Osto, M.; Skov, H.; Nøjgaard, J. K.; Nielsen, I. E.; Beddows, D. C. S.; Simo, R.; Harrison, R. M.; Massling, A.

    2018-06-01

    In this work we use cluster analysis of long term particle size distribution data to expand an array of different shorter term atmospheric measurements, thereby gaining insights into longer term patterns and properties of Arctic aerosol. Measurements of aerosol number size distributions (9-915 nm) were conducted at Villum Research Station (VRS), Station Nord in North Greenland during a 5 year record (2012-2016). Alongside this, measurements of aerosol composition, meteorological parameters, gaseous compounds and cloud condensation nuclei (CCN) activity were performed during different shorter occasions. K-means clustering analysis of particle number size distributions on daily basis identified several clusters. Clusters of accumulation mode aerosols (main size modes > 100 nm) accounted for 56% of the total aerosol during the sampling period (89-91% during February-April, 1-3% during June-August). By association to chemical composition, cloud condensation nuclei properties, and meteorological variables, three typical accumulation mode aerosol clusters were identified: Haze (32% of the time), Bimodal (14%) and Aged (6%). In brief: (1) Haze accumulation mode aerosol shows a single mode at 150 nm, peaking in February-April, with highest loadings of sulfate and black carbon concentrations. (2) Accumulation mode Bimodal aerosol shows two modes, at 38 nm and 150 nm, peaking in June-August, with the highest ratio of organics to sulfate concentrations. (3) Aged accumulation mode aerosol shows a single mode at 213 nm, peaking in September-October and is associated with cloudy and humid weather conditions during autumn. The three aerosol clusters were considered alongside CCN concentrations. We suggest that organic compounds, that are likely marine biogenic in nature, greatly influence the Bimodal cluster and contribute significantly to its CCN activity. This stresses the importance of better characterizing the marine ecosystem and the aerosol-mediated climate effects in the

  18. A Water Mass Tracer Detected in Aerosols Demonstrates Ocean-Atmosphere Mass Transfer and Links Sea Spray Aerosol to Source Waters

    NASA Astrophysics Data System (ADS)

    Pendergraft, M.; Grimes, D. J.; Giddings, S. N.; Feddersen, F.; Prather, K. A.; Santander, M.; Lee, C.; Beall, C.

    2016-12-01

    During September and October of 2015 the Cross Surfzone/Inner-shelf Dye Exchange (CSIDE) project released rhodamine WT dye to study nearshore water movement and exchange offshore along a Southern California sandy beach. We utilized this opportunity to investigate ocean-atmosphere mass transfer via sea spray aerosol and linkage to source waters. Aerosol-concentrating sampling equipment was deployed at beachside and inland locations during three dye releases. Concentrated aerosol samples were analyzed for dye content using fluorescence spectroscopy. Here we present the ocean and atmosphere conditions associated with the presence and absence of dye in aerosol samples. Dye was identified in aerosol samples collected 0.1-0.3 km from the shoreline for 6 hs during the first and third dye releases of the CSIDE project. During these releases the dye persisted in the waters upwind of the sampling equipment. Dye was not detected in aerosol samples collected during the second release during which dye was moved away from waters upwind of the sampling equipment. Recovery of a chemical tracer in sea spray aerosol allows direct linkage to a known source area in the ocean that is independent of, but supported by, wind data. Our observations demonstrate: a tight ocean-atmosphere spatial coupling; a short residence time of coastal marine constituents before transfer to the atmosphere; that the ocean is both a sink for and a source of atmospheric and terrestrial material; and that human inputs to the ocean can return to us in sea spray aerosol.

  19. The Aerosol Coarse Mode Initiative

    NASA Astrophysics Data System (ADS)

    Arnott, W. P.; Adhikari, N.; Air, D.; Kassianov, E.; Barnard, J.

    2014-12-01

    Many areas of the world show an aerosol volume distribution with a significant coarse mode and sometimes a dominant coarse mode. The large coarse mode is usually due to dust, but sea salt aerosol can also play an important role. However, in many field campaigns, the coarse mode tends to be ignored, because it is difficult to measure. This lack of measurements leads directly to a concomitant "lack of analysis" of this mode. Because, coarse mode aerosols can have significant effects on radiative forcing, both in the shortwave and longwave spectrum, the coarse mode -- and these forcings -- should be accounted for in atmospheric models. Forcings based only on fine mode aerosols have the potential to be misleading. In this paper we describe examples of large coarse modes that occur in areas of large aerosol loading (Mexico City, Barnard et al., 2010) as well as small loadings (Sacramento, CA; Kassianov et al., 2012; and Reno, NV). We then demonstrate that: (1) the coarse mode can contribute significantly to radiative forcing, relative to the fine mode, and (2) neglecting the coarse mode may result in poor comparisons between measurements and models. Next we describe -- in general terms -- the limitations of instrumentation to measure the coarse mode. Finally, we suggest a new initiative aimed at examining coarse mode aerosol generation mechanisms; transport and deposition; chemical composition; visible and thermal IR refractive indices; morphology; microphysical behavior when deposited on snow and ice; and specific instrumentation needs. Barnard, J. C., J. D. Fast, G. Paredes-Miranda, W. P. Arnott, and A. Laskin, 2010: Technical Note: Evaluation of the WRF-Chem "Aerosol Chemical to Aerosol Optical Properties" Module using data from the MILAGRO campaign, Atmospheric Chemistry and Physics, 10, 7325-7340. Kassianov, E. I., M. S. Pekour, and J. C. Barnard, 2012: Aerosols in Central California: Unexpectedly large contribution of coarse mode to aerosol radiative forcing

  20. Dust aerosol properties and radiative forcing observed in spring during 2001-2014 over urban Beijing, China.

    PubMed

    Yu, Xingna; Lü, Rui; Kumar, K Raghavendra; Ma, Jia; Zhang, Qiuju; Jiang, Yilun; Kang, Na; Yang, Suying; Wang, Jing; Li, Mei

    2016-08-01

    The ground-based characteristics (optical and radiative properties) of dust aerosols measured during the springtime between 2001 and 2014 were investigated over urban Beijing, China. The seasonal averaged aerosol optical depth (AOD) during spring of 2001-2014 was about 0.78 at 440 nm. During dust days, higher AOD occurred associated with lower Ångström exponent (AE). The mean AE440-870 in the springtime was about 1.0, indicating dominance of fine particles over the region. The back-trajectory analysis revealed that the dust was transported from the deserts of Inner Mongolia and Mongolia arid regions to Beijing. The aerosol volume size distribution showed a bimodal distribution pattern, with its highest peak observed in coarse mode for all episodes (especially for dust days with increased volume concentration). The single scattering albedo (SSA) increased with wavelength on dust days, indicating the presence of more scattering particles. Furthermore, the complex parts (real and imaginary) of refractive index showed distinct characteristics with lower imaginary values (also scattering) on dust days. The shortwave (SW; 0.2-4.0 μm) and longwave (LW; 4-100 μm) aerosol radiative forcing (ARF) values were computed from the Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART) model both at the top of atmosphere (TOA) and the bottom of atmosphere (BOA) during dust and non-dust (dust free) days, and the corresponding heating rates and forcing efficiencies were also estimated. The SW (LW) ARF, therefore, produced significant cooling (warming) effects at both the TOA and the BOA over Beijing.

  1. Aerosol tests conducted at Aberdeen Proving Grounds MD.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brockmann, John E.; Lucero, Daniel A.; Servantes, Brandon Lee

    Test data are reported that demonstrate the deposition from a spray dispersion system (Illinois Tool Works inductively charging rotary atomization nozzle) for application of decontamination solution to various surfaces in the passenger cabin of a Boeing 737 aircraft. The decontamination solution (EnviroTru) was tagged with a known concentration of fluorescein permitting determination of both airborne decontaminant concentration and surface deposited decontaminant solution so that the effective deposition rates and surface coverage could be determined and correlated with the amount of material sprayed. Six aerosol dispersion tests were conducted. In each test, aluminum foil deposition coupons were set out throughout themore » passenger area and the aerosol was dispersed. The aerosol concentration was measured with filter samplers as well as with optical techniques Average aerosol deposition ranged from 3 to 15 grams of decontamination solution per square meter. Some disagreement was observed between various instruments utilizing different measurement principles. These results demonstrate a potentially effective method to disperse decontaminant to interior surfaces of a passenger aircraft.« less

  2. Inhalation chamber with size discriminator for liquid aerosols.

    PubMed

    Tsuda, S; Iwasaki, M; Yoshida, M; Shirasu, Y

    1984-06-01

    To minimize data variation in inhalation toxicity testing and to evaluate human and animal hazards of inhaled chemicals, a practical inhalation chamber with a size discriminator for mists was developed to provide high concentration liquid aerosols of defined particle sizes. Liquid aerosols generated with an atomizer were separated by an impinging separator which was composed of aerosol jets directed upward against a flat plate. The principle of the separator eliminates particles larger than a calculated cutoff size in micrometer and submicrometer ranges by changing the orifice diameter of the jet nozzle under constant air flow. The mists thus separated are introduced into the space between two concentric cylinders just above the impaction plate. Ten rats can be positioned around the periphery of the chamber wall equidistant from the impaction plate, with their snouts thrust into the inhalation space. Preliminary testing with olive oil and water aerosols using particle cutoff sizes of 1, 3, and 3.3 micron showed that the obtained separation of particles was very clear, although the cutoff point seemed to shift somewhat to smaller values than calculated; the shift was especially evident with water aerosols. The concentrations obtained were more than 1 mg/liter when the cutoff point was selected at 1 micron. The mist at the inhalation space attained a steady concentration and particle size distribution within 2 min of the onset of mist injection, remained over a 4-hr period, and was cleared within 2 min of the cessation of mist generation.

  3. Model representations of aerosol layers transported from North America over the Atlantic Ocean during the Two-Column Aerosol Project

    NASA Astrophysics Data System (ADS)

    Fast, Jerome D.; Berg, Larry K.; Zhang, Kai; Easter, Richard C.; Ferrare, Richard A.; Hair, Johnathan W.; Hostetler, Chris A.; Liu, Ying; Ortega, Ivan; Sedlacek, Arthur; Shilling, John E.; Shrivastava, Manish; Springston, Stephen R.; Tomlinson, Jason M.; Volkamer, Rainer; Wilson, Jacqueline; Zaveri, Rahul A.; Zelenyuk, Alla

    2016-08-01

    The ability of the Weather Research and Forecasting model with chemistry (WRF-Chem) version 3.7 and the Community Atmosphere Model version 5.3 (CAM5) in simulating profiles of aerosol properties is quantified using extensive in situ and remote sensing measurements from the Two-Column Aerosol Project (TCAP) conducted during July of 2012. TCAP was supported by the U.S. Department of Energy's Atmospheric Radiation Measurement program and was designed to obtain observations within two atmospheric columns; one fixed over Cape Cod, Massachusetts, and the other several hundred kilometers over the ocean. The performance is quantified using most of the available aircraft and surface measurements during July, and 2 days are examined in more detail to identify the processes responsible for the observed aerosol layers. The higher-resolution WRF-Chem model produced more aerosol mass in the free troposphere than the coarser-resolution CAM5 model so that the fraction of aerosol optical thickness above the residual layer from WRF-Chem was more consistent with lidar measurements. We found that the free troposphere layers are likely due to mean vertical motions associated with synoptic-scale convergence that lifts aerosols from the boundary layer. The vertical displacement and the time period associated with upward transport in the troposphere depend on the strength of the synoptic system and whether relatively high boundary layer aerosol concentrations are present where convergence occurs. While a parameterization of subgrid scale convective clouds applied in WRF-Chem modulated the concentrations of aerosols aloft, it did not significantly change the overall altitude and depth of the layers.

  4. Major Ion Content of Aerosols from Denali Base Camp during Summer 2013

    NASA Astrophysics Data System (ADS)

    Wake, C. P.; Burakowski, E. A.; Osterberg, E. C.

    2014-12-01

    Aerosol samples were collected on Teflon filters at a site up-glacier from Denali Base Camp (2380 m) in Denali National Park, Alaska during May and June of 2013 using an autonomous aerosol sampler powered by solar panels and batteries. The samples were analyzed for major ions via ion chromatography. Surface and fresh snow samples were also collected over the same time period and analyzed for major ions. Ion concentrations in the aerosol samples are completely dominated by NH4+ (mean concentration of 6.6 nmol/m3) and SO4= (mean concentration of 4.0 nmol/m3). Overall, the ion burden in aerosol samples from Denali Base Camp was much lower compared to aerosol samples collected from the Denali National Park and Trapper Creek IMPROVE sites over the same time period. In contrast to the aerosol chemistry, the snow chemistry is more balanced, with NH4+, Ca2+, and Na+ dominating the cation concentrations and NO3-, Cl-, and SO4= dominating the anion concentrations. The higher levels of Ca2+, Na+, and Cl- in the snow (relative to NH4+ and SO4=) compared to relative concentrations in the aerosol samples suggest that dry deposition of sea salt and dust are important contributors to the major ion signals preserved in the snow. This has important ramifications for improving our understanding of the reconstruction of North Pacific climate variability and change from glaciochemical records currently being developed from the 208 m ice cores recovered from the Mt. Hunter plateau (3900 m) during the summer of 2013.

  5. Computer-automated silica aerosol generator and animal inhalation exposure system

    PubMed Central

    McKinney, Walter; Chen, Bean; Schwegler-Berry, Diane; Frazer, Dave G.

    2015-01-01

    Inhalation exposure systems are necessary tools for determining the dose response relationship of inhaled toxicants under a variety of exposure conditions. The objective of this study was to develop an automated computer controlled system to expose small laboratory animals to precise concentrations of uniformly dispersed airborne silica particles. An acoustical aerosol generator was developed which was capable of re-suspending particles from bulk powder. The aerosolized silica output from the generator was introduced into the throat of a venturi tube. The turbulent high-velocity air stream within the venturi tube increased the dispersion of the re-suspended powder. That aerosol was then used to expose small laboratory animals to constant aerosol concentrations, up to 20mg/m3, for durations lasting up to 8h. Particle distribution and morphology of the silica aerosol delivered to the exposure chamber were characterized to verify that a fully dispersed and respirable aerosol was being produced. The inhalation exposure system utilized a combination of airflow controllers, particle monitors, data acquisition devices and custom software with automatic feedback control to achieve constant and repeatable exposure environments. The automatic control algorithm was capable of maintaining median aerosol concentrations to within ±0.2 mg/m3 of a user selected target concentration during exposures lasting from 2 to 8 h. The system was able to reach 95% of the desired target value in <10min during the beginning phase of an exposure. This exposure system provided a highly automated tool for conducting inhalation toxicology studies involving silica particles. PMID:23796015

  6. Unveiling aerosol-cloud interactions - Part 1: Cloud contamination in satellite products enhances the aerosol indirect forcing estimate

    NASA Astrophysics Data System (ADS)

    Christensen, Matthew W.; Neubauer, David; Poulsen, Caroline A.; Thomas, Gareth E.; McGarragh, Gregory R.; Povey, Adam C.; Proud, Simon R.; Grainger, Roy G.

    2017-11-01

    Increased concentrations of aerosol can enhance the albedo of warm low-level cloud. Accurately quantifying this relationship from space is challenging due in part to contamination of aerosol statistics near clouds. Aerosol retrievals near clouds can be influenced by stray cloud particles in areas assumed to be cloud-free, particle swelling by humidification, shadows and enhanced scattering into the aerosol field from (3-D radiative transfer) clouds. To screen for this contamination we have developed a new cloud-aerosol pairing algorithm (CAPA) to link cloud observations to the nearest aerosol retrieval within the satellite image. The distance between each aerosol retrieval and nearest cloud is also computed in CAPA. Results from two independent satellite imagers, the Advanced Along-Track Scanning Radiometer (AATSR) and Moderate Resolution Imaging Spectroradiometer (MODIS), show a marked reduction in the strength of the intrinsic aerosol indirect radiative forcing when selecting aerosol pairs that are located farther away from the clouds (-0.28±0.26 W m-2) compared to those including pairs that are within 15 km of the nearest cloud (-0.49±0.18 W m-2). The larger aerosol optical depths in closer proximity to cloud artificially enhance the relationship between aerosol-loading, cloud albedo, and cloud fraction. These results suggest that previous satellite-based radiative forcing estimates represented in key climate reports may be exaggerated due to the inclusion of retrieval artefacts in the aerosol located near clouds.

  7. Long-term observation of water-soluble chemical components in the bulk atmospheric aerosols collected at Okinawa, Japan

    NASA Astrophysics Data System (ADS)

    Handa, Daishi; Somada, Yuka; Ijyu, Moriaki; Azechi, Sotaro; Nakaema, Fumiya; Arakaki, Takemitsu; Tanahara, Akira

    2010-05-01

    The economic development and population growth in recent Asia spread air pollution. Emission rate of air pollutants from Asia, in particular oxides of nitrogen, surpassed those from North America and Europe and should continue to exceed them for decades. The study of the long-range transported air pollution from Asian continent has gained a special attention in Japan because of increase in photochemical oxidants in relatively remote islands. Okinawa Island is situated approximately 1500 km south of Tokyo, Japan, 2000 km southeast of Beijing, China, and 1000 km south of South Korea. Its location in Asia is well suited for studying long-range transport of air pollutants in East Asia because maritime air mass prevails during summer, while continental air mass dominates during fall, winter, and spring. The maritime air mass data can be seen as background and can be compared with continental air masses which have been affected by anthropogenic activities. Bulk aerosol samples were collected on quartz filters by using a high volume air sampler. Sampling duration was one week for each sample. We determined the concentrations of water-soluble anions, cations and dissolved organic carbon (DOC) in the bulk aerosols collected at the Cape Hedo Atmosphere and Aerosol Monitoring Station (CHAAMS) using ion chromatography, atomic absorption spectrometry, and total organic carbon analyzer, respectively. We will report water-soluble chemical components data of anions, cations and DOC in bulk atmospheric aerosols collected at CHAAMS during August, 2005 to April, 2010. Seasonal variation of water-soluble chemical components showed that the concentrations were relatively low in summer, higher in fall and winter, and the highest in spring. When air mass came from Asian Continent, the concentrations of water-soluble chemical components were much higher compared to the other directions. In addition, we calculated background concentration of water-soluble chemical components at Okinawa

  8. Vertical distributions of aerosols under different weather conditions: Analysis of in-situ aircraft measurements in Beijing, China

    NASA Astrophysics Data System (ADS)

    Zhang, Qiang; Ma, XinCheng; Tie, Xuexi; Huang, Mengyu; Zhao, Chunsheng

    In this study, aerosol vertical distributions of 17 in-situ aircraft measurements during 2005 and 2006 springs are analyzed. The 17 flights are carefully selected to exclude dust events, and the analyses are focused on the vertical distributions of aerosol particles associated with anthropogenic activities. The results show that the vertical distributions of aerosol particles are strongly affected by weather and meteorological conditions, and 3 different types of aerosol vertical distributions corresponding to different weather systems are defined in this study. The measurement with a flat vertical gradient and low surface aerosol concentrations is defined as type-1; a gradual decrease of aerosols with altitudes and modest surface aerosol concentrations is defined as type-2; a sharp vertical gradient (aerosols being strongly depressed in the PBL) with high surface aerosol concentrations is defined as type-3. The weather conditions corresponding to the 3 different aerosol types are high pressure, between two high pressures, and low pressure systems (frontal inversions), respectively. The vertical mixing and horizontal transport for the 3 different vertical distributions are analyzed. Under the type-1 condition, the vertical mixing and horizontal transport were rapid, leading to strong dilution of aerosols in both vertical and horizontal directions. As a result, the aerosol concentrations in PBL (planetary boundary layer) were very low, and the vertical distribution was flat. Under the type-2 condition, the vertical mixing was strong and there was no strong barrier at the PBL height. The horizontal transport (wind flux) was modest. As a result, the aerosol concentrations were gradually reduced with altitude, with modest surface aerosol concentrations. Under the type-3 condition, there was a cold front near the region. As a result, a frontal inversion associated with weak vertical mixing appeared at the top of the inversion layer, forming a very strong barrier to

  9. Quantifying the effect of organic aerosol aging and intermediate-volatility emissions on regional-scale aerosol pollution in China

    PubMed Central

    Zhao, Bin; Wang, Shuxiao; Donahue, Neil M.; Jathar, Shantanu H.; Huang, Xiaofeng; Wu, Wenjing; Hao, Jiming; Robinson, Allen L.

    2016-01-01

    Secondary organic aerosol (SOA) is one of the least understood constituents of fine particles; current widely-used models cannot predict its loadings or oxidation state. Recent laboratory experiments demonstrated the importance of several new processes, including aging of SOA from traditional precursors, aging of primary organic aerosol (POA), and photo-oxidation of intermediate volatility organic compounds (IVOCs). However, evaluating the effect of these processes in the real atmosphere is challenging. Most models used in previous studies are over-simplified and some key reaction trajectories are not captured, and model parameters are usually phenomenological and lack experimental constraints. Here we comprehensively assess the effect of organic aerosol (OA) aging and intermediate-volatility emissions on regional-scale OA pollution with a state-of-the-art model framework and experimentally constrained parameters. We find that OA aging and intermediate-volatility emissions together increase OA and SOA concentrations in Eastern China by about 40% and a factor of 10, respectively, thereby improving model-measurement agreement significantly. POA and IVOCs both constitute over 40% of OA concentrations, and IVOCs constitute over half of SOA concentrations; this differs significantly from previous apportionment of SOA sources. This study facilitates an improved estimate of aerosol-induced climate and health impacts, and implies a shift from current fine-particle control policies. PMID:27350423

  10. Aqueous-Phase Mechanism for Secondary Organic Aerosol Formation from Isoprene: Application to the Southeast United States and Co-Benefit of SO2 Emission Controls

    NASA Technical Reports Server (NTRS)

    Marais, E. A.; Jacob, D. J.; Jimenez, J. L.; Campuzano-Jost, P.; Day, D. A.; Hu, W.; Krechmer, J.; Zhu, L.; Kim, P. S.; Miller, C. C.; hide

    2016-01-01

    Isoprene emitted by vegetation is an important precursor of secondary organic aerosol (SOA), but the mechanism and yields are uncertain. Aerosol is prevailingly aqueous under the humid conditions typical of isoprene-emitting regions. Here we develop an aqueous-phase mechanism for isoprene SOA formation coupled to a detailed gas-phase isoprene oxidation scheme. The mechanism is based on aerosol reactive uptake coefficients (gamma) for water-soluble isoprene oxidation products, including sensitivity to aerosol acidity and nucleophile concentrations. We apply this mechanism to simulation of aircraft (SEAC4RS) and ground-based (SOAS) observations over the Southeast US in summer 2013 using the GEOS-Chem chemical transport model. Emissions of nitrogen oxides (NOx = NO + NO2) over the Southeast US are such that the peroxy radicals produced from isoprene oxidation (ISOPO2) react significantly with both NO (high-NOx pathway) and HO2 (low-NOx pathway), leading to different suites of isoprene SOA precursors. We find a mean SOA mass yield of 3.3 % from isoprene oxidation, consistent with the observed relationship of total fine organic aerosol (OA) and formaldehyde (a product of isoprene oxidation). Isoprene SOA production is mainly contributed by two immediate gas-phase precursors, isoprene epoxydiols (IEPOX, 58% of isoprene SOA) from the low-NOx pathway and glyoxal (28%) from both low- and high-NOx pathways. This speciation is consistent with observations of IEPOX SOA from SOAS and SEAC4RS. Observations show a strong relationship between IEPOX SOA and sulfate aerosol that we explain as due to the effect of sulfate on aerosol acidity and volume. Isoprene SOA concentrations increase as NOx emissions decrease (favoring the low-NOx pathway for isoprene oxidation), but decrease more strongly as SO2 emissions decrease (due to the effect of sulfate 42 on aerosol acidity and volume). The US EPA projects 2013-2025 decreases in anthropogenic emissions of 34% for NOx (leading to 7

  11. GCM Simulations of the Aerosol Indirect Effect: Sensitivity to Cloud Parameterization and Aerosol Burden

    NASA Technical Reports Server (NTRS)

    Menon, Surabi; DelGenio, Anthony D.; Koch, Dorothy; Tselioudis, George; Hansen, James E. (Technical Monitor)

    2001-01-01

    We describe the coupling of the Goddard Institute for Space Studies (GISS) general circulation model (GCM) to an online sulfur chemistry model and source models for organic matter and sea-salt that is used to estimate the aerosol indirect effect. The cloud droplet number concentration is diagnosed empirically from field experiment datasets over land and ocean that observe droplet number and all three aerosol types simultaneously; corrections are made for implied variations in cloud turbulence levels. The resulting cloud droplet number is used to calculate variations in droplet effective radius, which in turn allows us to predict aerosol effects on cloud optical thickness and microphysical process rates. We calculate the aerosol indirect effect by differencing the top-of-the-atmosphere net cloud radiative forcing for simulations with present-day vs. pre-industrial emissions. Both the first (radiative) and second (microphysical) indirect effects are explored. We test the sensitivity of our results to cloud parameterization assumptions that control the vertical distribution of cloud occurrence, the autoconversion rate, and the aerosol scavenging rate, each of which feeds back significantly on the model aerosol burden. The global mean aerosol indirect effect for all three aerosol types ranges from -1.55 to -4.36 W m(exp -2) in our simulations. The results are quite sensitive to the pre-industrial background aerosol burden, with low pre-industrial burdens giving strong indirect effects, and to a lesser extent to the anthropogenic aerosol burden, with large burdens giving somewhat larger indirect effects. Because of this dependence on the background aerosol, model diagnostics such as albedo-particle size correlations and column cloud susceptibility, for which satellite validation products are available, are not good predictors of the resulting indirect effect.

  12. GCM Simulations of the Aerosol Indirect Effect: Sensitivity to Cloud Parameterization and Aerosol Burden

    NASA Technical Reports Server (NTRS)

    Menon, Surabi; DelGenio, Anthony D.; Koch, Dorothy; Tselioudis, George; Hansen, James E. (Technical Monitor)

    2001-01-01

    We describe the coupling of the Goddard Institute for Space Studies (GISS) general circulation model (GCM) to an online sulfur chemistry model and source models for organic matter and sea-salt that is used to estimate the aerosol indirect effect. The cloud droplet number concentration is diagnosed empirically from field experiment datasets over land and ocean that observe droplet number and all three aerosol types simultaneously; corrections are made for implied variations in cloud turbulence levels. The resulting cloud droplet number is used to calculate variations in droplet effective radius, which in turn allows us to predict aerosol effects on cloud optical thickness and microphysical process rates. We calculate the aerosol indirect effect by differencing the top-of-the-atmosphere net cloud radiative forcing for simulations with present-day vs. pre-industrial emissions. Both the first (radiative) and second (microphysical) indirect effects are explored. We test the sensitivity of our results to cloud parameterization assumptions that control the vertical distribution of cloud occurrence, the autoconversion rate, and the aerosol scavenging rate, each of which feeds back significantly on the model aerosol burden. The global mean aerosol indirect effect for all three aerosol types ranges from -1.55 to -4.36 W/sq m in our simulations. The results are quite sensitive to the pre-industrial background aerosol burden, with low pre-industrial burdens giving strong indirect effects, and to a lesser extent to the anthropogenic aerosol burden, with large burdens giving somewhat larger indirect effects. Because of this dependence on the background aerosol, model diagnostics such as albedo-particle size correlations and column cloud susceptibility, for which satellite validation products are available, are not good predictors of the resulting indirect effect.

  13. A Miniature Aerosol Sensor for Detecting Polydisperse Airborne Ultrafine Particles

    PubMed Central

    Zhang, Chao; Wang, Dingqu; Zhu, Rong; Yang, Wenming; Jiang, Peng

    2017-01-01

    Counting and sizing of polydisperse airborne nanoparticles have attracted most attentions owing to increasing widespread presence of airborne engineered nanoparticles or ultrafine particles. Here we report a miniature aerosol sensor to detect particle size distribution of polydisperse ultrafine particles based on ion diffusion charging and electrical detection. The aerosol sensor comprises a couple of planar electrodes printed on two circuit boards assembled in parallel, where charging, precipitation and measurement sections are integrated into one chip, which can detect aerosol particle size in of 30–500 nm, number concentration in range of 5 × 102–5 × 107 /cm3. The average relative errors of the measured aerosol number concentration and the particle size are estimated to be 12.2% and 13.5% respectively. A novel measurement scheme is proposed to actualize a real-time detection of polydisperse particles by successively modulating the measurement voltage and deducing the particle size distribution through a smart data fusion algorithm. The effectiveness of the aerosol sensor is experimentally demonstrated via measurements of polystyrene latex (PSL) aerosol and nucleic acid aerosol, as well as sodium chloride aerosol particles. PMID:28441740

  14. The Impact of Aerosols on Cloud and Precipitation Processes: Cloud-Resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Li, Xiaowen; Khain, Alexander; Matsui, Toshihisa; Lang, Stephen; Simpson, Joanne

    2008-01-01

    Aerosols and especially their effect on clouds are one of the key components of the climate system and the hydrological cycle [Ramanathan et al., 2001]. Yet, the aerosol effect on clouds remains largely unknown and the processes involved not well understood. A recent report published by the National Academy of Science states "The greatest uncertainty about the aerosol climate forcing - indeed, the largest of all the uncertainties about global climate forcing - is probably the indirect effect of aerosols on clouds [NRC, 2001]." The aerosol effect on clouds is often categorized into the traditional "first indirect (i.e., Twomey)" effect on the cloud droplet sizes for a constant liquid water path [Twomey, 1977] and the "semi-direct" effect on cloud coverage [e.g., Ackerman et al ., 2001]." Enhanced aerosol concentrations can also suppress warm rain processes by producing a narrow droplet spectrum that inhibits collision and coalescence processes [e.g., Squires and Twomey, 1961; Warner and Twomey, 1967; Warner, 1968; Rosenfeld, 19991. The aerosol effect on precipitation processes, also known as the second type of aerosol indirect effect [Albrecht, 1989], is even more complex, especially for mixed-phase convective clouds. Table 1 summarizes the key observational studies identifying the microphysical properties, cloud characteristics, thermodynamics and dynamics associated with cloud systems from high-aerosol continental environments. For example, atmospheric aerosol concentrations can influence cloud droplet size distributions, warm-rain process, cold-rain process, cloud-top height, the depth of the mixed phase region, and occurrence of lightning. In addition, high aerosol concentrations in urban environments could affect precipitation variability by providing an enhanced source of cloud condensation nuclei (CCN). Hypotheses have been developed to explain the effect of urban regions on convection and precipitation [van den Heever and Cotton, 2007 and Shepherd, 2005

  15. Vertical variability of aerosol single-scattering albedo and equivalent black carbon concentration based on in-situ and remote sensing techniques during the iAREA campaigns in Ny-Ålesund

    NASA Astrophysics Data System (ADS)

    Markowicz, K. M.; Ritter, C.; Lisok, J.; Makuch, P.; Stachlewska, I. S.; Cappelletti, D.; Mazzola, M.; Chilinski, M. T.

    2017-09-01

    This work presents a methodology for obtaining vertical profiles of aerosol single scattering properties based on a combination of different measurement techniques. The presented data were obtained under the iAREA (Impact of absorbing aerosols on radiative forcing in the European Arctic) campaigns conducted in Ny-Ålesund (Spitsbergen) during the spring seasons of 2015-2017. The retrieval uses in-situ observations of black carbon concentration and absorption coefficient measured by a micro-aethalometer AE-51 mounted onboard a tethered balloon, as well as remote sensing data obtained from sun photometer and lidar measurements. From a combination of the balloon-borne in-situ and the lidar data, we derived profiles of single scattering albedo (SSA) as well as absorption, extinction, and aerosol number concentration. Results have been obtained in an altitude range from about 400 m up to 1600 m a.s.l. and for cases with increased aerosol load during the Arctic haze seasons of 2015 and 2016. The main results consist of the observation of increasing values of equivalent black carbon (EBC) and absorption coefficient with altitude, and the opposite trend for aerosol concentration for particles larger than 0.3 μm. SSA was retrieved with the use of lidar Raman and Klett algorithms for both 532 and 880 nm wavelengths. In most profiles, SSA shows relatively high temporal and altitude variability. Vertical variability of SSA computed from both methods is consistent; however, some discrepancy is related to Raman retrieval uncertainty and absorption coefficient estimation from AE-51. Typically, very low EBC concentration in Ny-Ålesund leads to large error in the absorbing coefficient. However, SSA uncertainty for both Raman and Klett algorithms seems to be reasonable, e.g. SSA of 0.98 and 0.95 relate to an error of ±0.01 and ± 0.025, respectively.

  16. Formation of halogen-induced secondary organic aerosol (XOA)

    NASA Astrophysics Data System (ADS)

    Kamilli, Katharina; Ofner, Johannes; Zetzsch, Cornelius; Held, Andreas

    2013-04-01

    Reactive halogen species (RHS) are very important due to their potential of stratospheric ozone depletion and surface ozone destruction. RHS seem to interact with precursors of secondary organic aerosol (SOA) similarly to common atmospheric oxidants like OH radicals and ozone. The potential interaction of RHS with preformed SOA has recently been studied (Ofner et al., 2012). Although aerosol formation from reaction of RHS with typical SOA precursors was previously studied (e.g. Cai et al., 2006), no data are available on bromine-induced aerosol formation from organic precursors yet. An aerosol smog-chamber was used to examine the halogen-induced secondary organic aerosol (XOA) formation under atmospheric conditions using simulated sunlight. With a concentration of 10 ppb for the organic precursor, 2 ppb for molecular chlorine, and 10 ppb for molecular bromine, the experimental setup is close to ambient conditions. By combined measurements of the aerosol size distribution, ozone and NOx mixing ratios, as well as the decay of the organic precursor, aerosol yields and aerosol growth rates were determined. The decay of the organic precursor was analyzed by capillary gas chromatography coupled with flame-ionization detection (GC-FID) and the aerosol size distribution was measured using a Scanning Mobility Particle Sizer (SMPS). Additionally, with the decay rate of the precursor and the calculated photolysis rates of molecular halogen species, based on the well-known spectrum of the solar simulator, mechanistic details on the XOA formation pathways can be determined. We observed XOA formation even at very low precursor and RHS concentrations with a diameter mode at 10-20 nm and a number concentration up to 1000000 particles cm-3. While the XOA formation from chlorine is very rapid, the interaction of bromine with the organic precursors is about five times slower. The aerosol yield reached maximum values of 0.01 for the reaction of chlorine with α-pinene and 0.0004 for

  17. Long term atmospheric aerosol characterization in the Amazon Basin

    NASA Astrophysics Data System (ADS)

    Artaxo, Paulo; Gerab, Fábio; Yamasoe, Marcia A.

    This chapter presents a characterization of atmospheric aerosols collected in different places in the Amazon Basin. Both the biogenic aerosol emission from the forest and the particulate material which is emitted to the atmosphere due to the large scale man-made burns during the dry season were studied. The samples were collected during a three year period at three different locations in the Amazon (Cuiabá, Alta Floresta and Serra do Navio), using stacked filter units. Aerosol samples were also collected directly over fires of cerrado vegetation and tropical primary forest burns The samples were analyzed using several techniques for a number of elements. Gravimetric analyses were used to determine the total atmospheric aerosol concentration. Multivariate statistical analysis was used in order to identify and characterize the sources of the atmospheric aerosol present in the sampled regions. Cerrado burning emissions were enriched compared to forest ones, specially for Cl, K and Zn. High atmospheric aerosol concentrations were observed in large amazonian areas due to emissions from man-made burns in the period from June to September. The emissions from burns dominate the fine fraction of the atmospheric aerosol with characteristic high contents of black carbon, S and K. Aerosols emitted in biomass burning process are correlated to the increase in the aerosol optical thickness of the atmosphere during the Amazonian dry season. The Serra do Navio aerosol is characterized by biogenic emissions with strong marine influence. The presence of trace elements characteristic of soil particulate associated with this marine contribution indicates the existence of aerosol transport from Africa to South America. Similar composition characteristics were observed in the biogenic emission aerosols from Serra do Navio and Alta Floresta.

  18. Relationship Between Aerosol Optical Depth and Particulate Matter Over Singapore: Effects of Aerosol Vertical Distributions

    NASA Technical Reports Server (NTRS)

    Chew, Boo Ning; Campbell, James; Hyer, Edward J.; Salinas, Santo V.; Reid, Jeffrey S.; Welton, Ellsworth J.; Holben, Brent N.; Liew, Soo Chin

    2016-01-01

    As part of the Seven Southeast Asian Studies (7SEAS) program, an Aerosol Robotic Network (AERONET) sun photometer and a Micro-Pulse Lidar Network (MPLNET) instrument have been deployed at Singapore to study the regional aerosol environment of the Maritime Continent (MC). In addition, the Navy Aerosol Analysis and Prediction System (NAAPS) is used to model aerosol transport over the region. From 24 September 2009 to 31 March 2011, the relationships between ground-, satellite- and model-based aerosol optical depth (AOD) and particulate matter with aerodynamic equivalent diameters less than 2.5 microns (PM2.5) for air quality applications are investigated. When MPLNET-derived aerosol scale heights are applied to normalize AOD for comparison with surface PM2.5 data, the empirical relationships are shown to improve with an increased 11%, 10% and 5% in explained variances, for AERONET, MODIS and NAAPS respectively. The ratios of root mean square errors to standard deviations for the relationships also show corresponding improvements of 8%, 6% and 2%. Aerosol scale heights are observed to be bimodal with a mode below and another above the strongly-capped/deep near-surface layer (SCD; 0-1.35 km). Aerosol extinctions within the SCD layer are well-correlated with surface PM2.5 concentrations, possibly due to strong vertical mixing in the region.

  19. Preliminary Experiments Using a Passive Detector for Measuring Indoor 220Rn Progeny Concentrations with an Aerosol Chamber.

    PubMed

    Sorimachi, Atsuyuki; Tokonami, Shinji; Kranrod, Chutima; Ishikawa, Tetsuo

    2015-06-01

    This paper describes preliminary experiments using a passive detector for integrating measurements of indoor thoron (²²⁰Rn) progeny concentrations with an aerosol chamber. A solid state nuclear detector (CR-39) covered with a thin aluminum-vaporized polyethylene plate (Mylar film) was used to detect only alpha particles emitted from ²¹²Po due to ²²⁰Rn progeny deposited on the detector surfaces. The initial experiment showed that Mylar film with area density of more than 5 mg cm⁻² was suitable to cut off completely alpha particles of 7.7 MeV from ²¹⁴Po of ²²²Rn progeny decay. In the experiment using the passive detector, it was observed that the net track density increased linearly with an increase of time-integrating ²²⁰Rn progeny concentration. As a result of dividing deposition rates by atom concentrations, the deposition velocity was given as 0.023 cm s⁻¹ for total ²²⁰Rn progeny. The model estimates of deposition velocities were 0.330 cm s⁻¹ for unattached ²²⁰Rn progeny and 0.0011 cm s⁻¹ for aerosol-attached ²²⁰Rn progeny using Lai-Nazaroff formulae. These deposition velocities were in the same range with the results reported in the literature. It was also found that the exposure experiments showed little influence of vertical profiles and surface orientations of the passive detector in the chamber on the detection responses, which was in good agreement with that in the model estimates. Furthermore, it was inferred that the main uncertainty of the passive detector was inhomogeneous deposition of Rn progeny onto its detection surfaces.

  20. Composition and diurnal variability of the natural Amazonian aerosol

    NASA Astrophysics Data System (ADS)

    Graham, Bim; Guyon, Pascal; Maenhaut, Willy; Taylor, Philip E.; Ebert, Martin; Matthias-Maser, Sabine; Mayol-Bracero, Olga L.; Godoi, Ricardo H. M.; Artaxo, Paulo; Meixner, Franz X.; Moura, Marcos A. Lima; Rocha, Carlos H. EçA. D'almeida; Grieken, Rene Van; Glovsky, M. Michael; Flagan, Richard C.; Andreae, Meinrat O.

    2003-12-01

    As part of the Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA)-Cooperative LBA Airborne Regional Experiment (CLAIRE) 2001 campaign, separate day and nighttime aerosol samples were collected in July 2001 at a ground-based site in Amazonia, Brazil, in order to examine the composition and temporal variability of the natural "background" aerosol. A combination of analytical techniques was used to characterize the elemental and ionic composition of the aerosol. Major particle types larger than ˜0.5 μm were identified by electron and light microscopy. Both the coarse and fine aerosol were found to consist primarily of organic matter (˜70 and 80% by mass, respectively), with the coarse fraction containing small amounts of soil dust and sea-salt particles and the fine fraction containing some non-sea-salt sulfate. Coarse particulate mass concentrations (CPM ≈ PM10 - PM2) were found to be highest at night (average = 3.9 ± 1.4 μg m-3, mean night-to-day ratio = 1.9 ± 0.4), while fine particulate mass concentrations (FPM ≈ PM2) increased during the daytime (average = 2.6 ± 0.8 μg m-3, mean night-to-day ratio = 0.7 ± 0.1). The nocturnal increase in CPM coincided with an increase in primary biological particles in this size range (predominantly yeasts and other fungal spores), resulting from the trapping of surface-derived forest aerosol under a shallow nocturnal boundary layer and a lake-land breeze effect at the site, although active nocturnal sporulation may have also contributed. Associated with this, we observed elevated nighttime concentrations of biogenic elements and ions (P, S, K, Cu, Zn, NH4+) in the CPM fraction. For the FPM fraction a persistently higher daytime concentration of organic carbon was found, which indicates that photochemical production of secondary organic aerosol from biogenic volatile organic compounds may have made a significant contribution to the fine aerosol. Dust and sea-salt-associated elements/ions in the CPM fraction

  1. Spacecraft maximum allowable concentrations for selected airborne contaminants, volume 1

    NASA Technical Reports Server (NTRS)

    1994-01-01

    As part of its efforts to promote safe conditions aboard spacecraft, NASA requested the National Research Council (NRC) to develop guidelines for establishing spacecraft maximum allowable concentrations (SMAC's) for contaminants, and to review SMAC's for various spacecraft contaminants to determine whether NASA's recommended exposure limits are consistent with the guidelines recommended by the subcommittee. In response to NASA's request, the NRC organized the Subcommittee on Guidelines for Developing Spacecraft Maximum Allowable Concentrations for Space Station Contaminants within the Committee on Toxicology (COT). In the first phase of its work, the subcommittee developed the criteria and methods for preparing SMAC's for spacecraft contaminants. The subcommittee's report, entitled Guidelines for Developing Spacecraft Maximum Allowable Concentrations for Space Station Contaminants, was published in 1992. The executive summary of that report is reprinted as Appendix A of this volume. In the second phase of the study, the Subcommittee on Spacecraft Maximum Allowable Concentrations reviewed reports prepared by NASA scientists and contractors recommending SMAC's for 35 spacecraft contaminants. The subcommittee sought to determine whether the SMAC reports were consistent with the 1992 guidelines. Appendix B of this volume contains the first 11 SMAC reports that have been reviewed for their application of the guidelines developed in the first phase of this activity and approved by the subcommittee.

  2. Using different assumptions of aerosol mixing state and chemical composition to predict CCN concentrations based on field measurements in urban Beijing

    NASA Astrophysics Data System (ADS)

    Ren, Jingye; Zhang, Fang; Wang, Yuying; Collins, Don; Fan, Xinxin; Jin, Xiaoai; Xu, Weiqi; Sun, Yele; Cribb, Maureen; Li, Zhanqing

    2018-05-01

    Understanding the impacts of aerosol chemical composition and mixing state on cloud condensation nuclei (CCN) activity in polluted areas is crucial for accurately predicting CCN number concentrations (NCCN). In this study, we predict NCCN under five assumed schemes of aerosol chemical composition and mixing state based on field measurements in Beijing during the winter of 2016. Our results show that the best closure is achieved with the assumption of size dependent chemical composition for which sulfate, nitrate, secondary organic aerosols, and aged black carbon are internally mixed with each other but externally mixed with primary organic aerosol and fresh black carbon (external-internal size-resolved, abbreviated as EI-SR scheme). The resulting ratios of predicted-to-measured NCCN (RCCN_p/m) were 0.90 - 0.98 under both clean and polluted conditions. Assumption of an internal mixture and bulk chemical composition (INT-BK scheme) shows good closure with RCCN_p/m of 1.0 -1.16 under clean conditions, implying that it is adequate for CCN prediction in continental clean regions. On polluted days, assuming the aerosol is internally mixed and has a chemical composition that is size dependent (INT-SR scheme) achieves better closure than the INT-BK scheme due to the heterogeneity and variation in particle composition at different sizes. The improved closure achieved using the EI-SR and INT-SR assumptions highlight the importance of measuring size-resolved chemical composition for CCN predictions in polluted regions. NCCN is significantly underestimated (with RCCN_p/m of 0.66 - 0.75) when using the schemes of external mixtures with bulk (EXT-BK scheme) or size-resolved composition (EXT-SR scheme), implying that primary particles experience rapid aging and physical mixing processes in urban Beijing. However, our results show that the aerosol mixing state plays a minor role in CCN prediction when the κorg exceeds 0.1.

  3. Metals and possible sources of lead in aerosols at the Dinghushan nature reserve, southern China.

    PubMed

    Zhu, Xiao-min; Kuang, Yuan-wen; Li, Jiong; Schroll, Reiner; Wen, Da-zhi

    2015-08-15

    Aerosols play an important role in depositing metals into forest ecosystems. Better understanding of forest aerosols with regard to their metal content and their possible sources is of great significance for air quality and forest health. Particulate matter with an aerodynamic diameter less than 2.5 µm (PM(2.5)) in aerosols was collected every month for 20 months using moderate-volume samplers in the Dinghushan (DHS) nature reserve in southern China. The concentrations of metals (Al, Cd, Mn, Ni, Pb, and Zn) as well as the Pb isotopic ratios in the PM(2.5) samples were measured by inductively coupled plasma mass spectrometry (ICP-MS). Moderate pollution with aerosol PM(2.5) was detected at the DHS nature reserve with the air mass from mainland China being the predominant PM(2.5) source. The high enrichment factors (EFs) for the heavy metals Pb, Cd, and Zn, as well as the PM(2.5) mass concentrations, coupled with backward trajectory analysis, indicated the anthropogenic origins of the PM(2.5) and of the heavy metals in the PM(2.5). The Pb isotopic ratios revealed the contributions from various Pb sources, which varied between seasons. Industrial emissions and automobile exhaust from the Pearl River Delta (PRD) primarily contributed to the anthropogenic Pb in PM(2.5), although there was occasionally a contribution from coal combustion during the wet season. Pb isotopic ratios analyses are helpful for air quality assessment and Pb source tracing. Copyright © 2015 John Wiley & Sons, Ltd.

  4. Natural aerosols explain seasonal and spatial patterns of Southern Ocean cloud albedo.

    PubMed

    McCoy, Daniel T; Burrows, Susannah M; Wood, Robert; Grosvenor, Daniel P; Elliott, Scott M; Ma, Po-Lun; Rasch, Phillip J; Hartmann, Dennis L

    2015-07-01

    Atmospheric aerosols, suspended solid and liquid particles, act as nucleation sites for cloud drop formation, affecting clouds and cloud properties-ultimately influencing the cloud dynamics, lifetime, water path, and areal extent that determine the reflectivity (albedo) of clouds. The concentration N d of droplets in clouds that influences planetary albedo is sensitive to the availability of aerosol particles on which the droplets form. Natural aerosol concentrations affect not only cloud properties themselves but also modulate the sensitivity of clouds to changes in anthropogenic aerosols. It is shown that modeled natural aerosols, principally marine biogenic primary and secondary aerosol sources, explain more than half of the spatiotemporal variability in satellite-observed N d. Enhanced N d is spatially correlated with regions of high chlorophyll a, and the spatiotemporal variability in N d is found to be driven primarily by high concentrations of sulfate aerosol at lower Southern Ocean latitudes (35(o) to 45(o)S) and by organic matter in sea spray aerosol at higher latitudes (45(o) to 55(o)S). Biogenic sources are estimated to increase the summertime mean reflected solar radiation in excess of 10 W m(-2) over parts of the Southern Ocean, which is comparable to the annual mean increases expected from anthropogenic aerosols over heavily polluted regions of the Northern Hemisphere.

  5. Wet Removal of Organic and Black Carbon Aerosols

    NASA Astrophysics Data System (ADS)

    Torres, A.; Bond, T. C.; Lehmann, C.

    2012-12-01

    Organic carbon (OC) and black carbon (BC) aerosols derived from the combustion of fossil fuels and biomass are significant atmospheric pollutants that alter the Earth's radiation balance and affect human health. Carbonaceous aerosol lifetime and extent of its effects are mainly controlled by its wet removal, especially by rain. Limited work has been done to measure both BC and OC from rain events even though these aerosols are co-emitted and exist together in the atmosphere. The choices of analytical techniques for measuring OC and BC in water are limited, and researchers often employ the same techniques used for measuring atmospheric carbon particles. There is no agreement in the methods employed for monitoring carbon concentration in precipitation. As part of the method development, the Single Particle Soot Photometer (SP2), Thermal-Optical Analysis (TOA), Ultraviolet/Visible (UV/VIS) Spectrophotometer, and the Total Organic Carbon (TOC) Analyzer were evaluated for measuring BC suspended in water, water insoluble OC (WIOC) and dissolved OC (DOC). The study also monitored the concentration of BC, WIOC, and DOC in rainwater collected at Bondville (Illinois) for 18 months. Results indicated that 34% (±3%) of the BC mass was lost in the SP2 analysis, most probably during the nebulization process. Filtration required for TOA also had large losses (>75%) because quartz fiber filters were ineffective for capturing BC particles from water. Addition of NH4H2PO4 as a coagulant improved (>95%) the capture efficiency of the filters. UV/VIS spectrophotometry had good linearity, but the sensitivity for detecting BC particles (±20 μg/L) suspended in water was inadequate. TOC analysis was a robust technique for measuring both DOC and total carbon (BC + OC). The chosen techniques were TOC analysis for DOC, and TOA with an optimized filtration procedure for BC and WIOC. The mean concentrations in rainwater were 8.72 (±9.84) μg/L of BC, 88.97 (±62.64) μg/L of WIOC, and 1

  6. Symposium Entitled: Particle Lung Interactions: ’Overload’ Related Phenomena. A Journal of Aerosol Medicine - Deposition, Clearance, and Effects in the Lung. Volume 3, Supplement 1

    DTIC Science & Technology

    1991-04-01

    week and two years (subchronic GMRL studies versus chronic ITRI and Fh-ITA studies ); exposure concentrations were changed by a factor of 40 (Fh-ITA...a forum for the publication of studies involving inhalation of particles and gases in the respiratory tract, covering the use of aerosols as tools to... study basic physiologic phenomena, their use as selective delivery systems for medication, and the toxic effects of inhaled agents. JOURNAL OF AEROSOL

  7. Intercomparison and closure calculations using measurements of aerosol species and optical properties during the Yosemite Aerosol Characterization Study

    NASA Astrophysics Data System (ADS)

    Malm, William C.; Day, Derek E.; Carrico, Christian; Kreidenweis, Sonia M.; Collett, Jeffrey L.; McMeeking, Gavin; Lee, Taehyoung; Carrillo, Jacqueline; Schichtel, Bret

    2005-07-01

    Physical and optical properties of inorganic aerosols have been extensively studied, but less is known about carbonaceous aerosols, especially as they relate to the non-urban settings such as our nation's national parks and wilderness areas. Therefore an aerosol characterization study was conceived and implemented at one national park that is highly impacted by carbonaceous aerosols, Yosemite. The primary objective of the study was to characterize the physical, chemical, and optical properties of a carbon-dominated aerosol, including the ratio of total organic matter weight to organic carbon, organic mass scattering efficiencies, and the hygroscopic characteristics of a carbon-laden ambient aerosol, while a secondary objective was to evaluate a variety of semi-continuous monitoring systems. Inorganic ions were characterized using 24-hour samples that were collected using the URG and Interagency Monitoring of Protected Visual Environments (IMPROVE) monitoring systems, the micro-orifice uniform deposit impactor (MOUDI) cascade impactor, as well as the semi-continuous particle-into-liquid sampler (PILS) technology. Likewise, carbonaceous material was collected over 24-hour periods using IMPROVE technology along with the thermal optical reflectance (TOR) analysis, while semi-continuous total carbon concentrations were measured using the Rupprecht and Patashnick (R&P) instrument. Dry aerosol number size distributions were measured using a differential mobility analyzer (DMA) and optical particle counter, scattering coefficients at near-ambient conditions were measured with nephelometers fitted with PM10 and PM2.5 inlets, and "dry" PM2.5 scattering was measured after passing ambient air through Perma Pure Nafion® dryers. In general, the 24-hour "bulk" measurements of various aerosol species compared more favorably with each other than with the semi-continuous data. Semi-continuous sulfate measurements correlated well with the 24-hour measurements, but were biased low by

  8. A Marine Aerosol Reference Tank system as a breaking wave analogue for the production of foam and sea-spray aerosols

    NASA Astrophysics Data System (ADS)

    Stokes, M. D.; Deane, G. B.; Prather, K.; Bertram, T. H.; Ruppel, M. J.; Ryder, O. S.; Brady, J. M.; Zhao, D.

    2013-04-01

    In order to better understand the processes governing the production of marine aerosols a repeatable, controlled method for their generation is required. The Marine Aerosol Reference Tank (MART) has been designed to closely approximate oceanic conditions by producing an evolving bubble plume and surface foam patch. The tank utilizes an intermittently plunging sheet of water and large volume tank reservoir to simulate turbulence, plume and foam formation, and the water flow is monitored volumetrically and acoustically to ensure the repeatability of conditions.

  9. Deposition flux of aerosol particles and 15 polycyclic aromatic hydrocarbons in the North China Plain.

    PubMed

    Wang, Xilong; Liu, Shuzhen; Zhao, Jingyu; Zuo, Qian; Liu, Wenxin; Li, Bengang; Tao, Shu

    2014-04-01

    The present study examined deposition fluxes of aerosol particles and 15 polycyclic aromatic hydrocarbons (PAHs) associated with the particles in the North China Plain. The annual mean deposition fluxes of aerosol particles and 15 PAHs were 0.69 ± 0.46 g/(m(2) ×d) and 8.5 ± 6.2 μg/(m(2) ×d), respectively. Phenanthrene, fluoranthene, pyrene, chrysene, benzo[b]fluoranthene, and benzo[k]fluoranthene were the dominant PAHs bound to deposited aerosol particles throughout the year. The total concentration of 15 PAHs in the deposited aerosol particles was the highest in winter but lowest in spring. The highest PAH concentration in the deposited aerosol particles in winter was because the heating processes highly increased the concentration in atmospheric aerosol particles. Low temperature and weak sunshine in winter reduced the degradation rate of deposited aerosol particle-bound PAHs, especially for those with low molecular weight. The lowest PAH concentration in deposited aerosol particles in spring resulted from the frequently occurring dust storms, which diluted PAH concentrations. The mean deposition flux of PAHs with aerosol particles in winter (16 μg/[m(2) ×d]) reached 3 times to 5 times that in other seasons (3.5-5.0 μg/[m(2) ×d]). The spatial variation of the deposition flux of PAHs with high molecular weight (e.g., benzo[a]pyrene) was consistent with their concentrations in the atmospheric aerosol particles, whereas such a phenomenon was not observed for those with low molecular weight (e.g., phenanthrene) because of their distinct hydrophobicity, Henry's law constant, and the spatially heterogeneous meteorological conditions. © 2013 SETAC.

  10. Glyoxal contribution to aerosols over Los Angeles

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2012-01-01

    Laboratory and field studies have indicated that glyoxal (chemical formula OCHCHO), an atmospheric oxidation product of isoprene and aromatic compounds, may contribute to secondary organic aerosols in the atmosphere, which can block sunlight and affect atmospheric chemistry. Some aerosols are primary aerosols, emitted directly into the atmosphere, while others are secondary, formed through chemical reactions in the atmosphere. Washenfelder et al. describe in situ glyoxal measurements from Pasadena, Calif., near Los Angeles, made during summer 2010. They used three different methods to calculate the contribution of glyoxal to secondary atmospheric aerosol and found that it is responsible for 0-0.2 microgram per cubic meter, or 0-4%, of the secondary organic aerosol mass. The researchers also compared their results to those of a previous study that calculated the glyoxal contribution to aerosol for Mexico City. Mexico City had higher levels of organic aerosol mass from glyoxal. They suggest that the lower contribution of glyoxal to aerosol concentrations for Los Angeles may be due to differences in the composition or water content of the aerosols above the two cities. (Journal of Geophysical Research-Atmospheres, doi:10.1029/2011JD016314, 2011)

  11. Ganges Valley Aerosol Experiment (GVAX) Final Campaign Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kotamarthi, VR

    2013-12-01

    In general, the Indian Summer Monsoon (ISM) as well as the and the tropical monsoon climate is influenced by a wide range of factors. Under various climate change scenarios, temperatures over land and into the mid troposphere are expected to increase, intensifying the summer pressure gradient differential between land and ocean and thus strengthening the ISM. However, increasing aerosol concentration, air pollution, and deforestation result in changes to surface albedo and insolation, potentially leading to low monsoon rainfall. Clear evidence points to increasing aerosol concentrations over the Indian subcontinent with time, and several hypotheses regarding the effect on monsoons havemore » been offered. The Ganges Valley Aerosol Experiment (GVAX) field study aimed to provide critical data to address these hypotheses and contribute to developing better parameterizations for tropical clouds, convection, and aerosol-cloud interactions. The primary science questions for the mission were as follows:« less

  12. Seasonal variation of water-soluble chemical components in the bulk atmospheric aerosols collected at Okinawa Island, Japan

    NASA Astrophysics Data System (ADS)

    Handa, D.; Nakajima, H.; Nakaema, F.; Arakaki, T.; Tanahara, A.

    2008-12-01

    The economic development and population growth in recent Asia spread air pollution. Emission rate of air pollutants from Asia, in particular oxides of nitrogen, surpassed those from North America and Europe and should continue to exceed them for decades. The study of the air pollution transported from Asian continent has gained a special attention in Japan. Okinawa Island is situated approximately 1500 km south of Tokyo, Japan, 2000 km southeast of Beijing, China, and 1000 km south of South Korea. Its location is ideal in observing East Asian atmospheric aerosols because maritime air mass prevails during summer, while continental air mass dominates during fall, winter, and spring. The maritime air mass data can be seen as background and can be compared with continental air masses which have been affected by anthropogenic activities. In 2005, Cape Hedo Atmosphere and Aerosol Monitoring Station (CHAAMS) was established by the National Institute for Environmental Studies (NIES) at the northern tip of Okinawa Island, Japan to monitor the air quality of Asia. Bulk aerosol samples were collected on quartz filters by using a high volume air sampler. Sampling duration was one week for each sample. We determined the concentrations of water-soluble anions, cations and dissolved organic carbon in the bulk aerosols collected at the CHAAMS, using ion chromatography, atomic absorption spectrometry, and total organic carbon analyzer, respectively. Seasonal variation of water-soluble chemical components showed that the concentrations were relatively low in summer, higher in fall and winter, and the highest in spring. When air mass came from Asian Continent, the concentrations of water-soluble chemical components were much higher compared to the other directions.

  13. Measurements of Organic Composition of Aerosol and Rainwater Samples Using Offline Aerosol Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    OBrien, R. E.; Ridley, K. J.; Canagaratna, M. R.; Croteau, P.; Budisulistiorini, S. H.; Cui, T.; Green, H. S.; Surratt, J. D.; Jayne, J. T.; Kroll, J. H.

    2016-12-01

    A thorough understanding of the sources, evolution, and budgets of atmospheric organic aerosol requires widespread measurements of the amount and chemical composition of atmospheric organic carbon in the condensed phase (within particles and water droplets). Collecting such datasets requires substantial spatial and temporal (long term) coverage, which can be challenging when relying on online measurements by state-of-the-art research-grade instrumentation (such as those used in atmospheric chemistry field studies). Instead, samples are routinely collected using relatively low-cost techniques, such as aerosol filters, for offline analysis of their chemical composition. However, measurements made by online and offline instruments can be fundamentally different, leading to disparities between data from field studies and those from more routine monitoring. To better connect these two approaches, and take advantage of the benefits of each, we have developed a method to introduce collected samples into online aerosol instruments using nebulization. Because nebulizers typically require tens to hundreds of milliliters of solution, limiting this technique to large samples, we developed a new, ultrasonic micro-nebulizer that requires only small volumes (tens of microliters) of sample for chemical analysis. The nebulized (resuspended) sample is then sent into a high-resolution Aerosol Mass Spectrometer (AMS), a widely-used instrument that provides key information on the chemical composition of aerosol particulate matter (elemental ratios, carbon oxidation state, etc.), measurements that are not typically made for collected atmospheric samples. Here, we compare AMS data collected using standard on-line techniques with our offline analysis, demonstrating the utility of this new technique to aerosol filter samples. We then apply this approach to organic aerosol filter samples collected in remote regions, as well as rainwater samples from across the US. This data provides

  14. Fluorescent biological aerosol particles: Concentrations, emissions, and exposures in a northern California residence.

    PubMed

    Tian, Y; Liu, Y; Misztal, P K; Xiong, J; Arata, C M; Goldstein, A H; Nazaroff, W W

    2018-04-06

    Residences represent an important site for bioaerosol exposure. We studied bioaerosol concentrations, emissions, and exposures in a single-family residence in northern California with 2 occupants using real-time instrumentation during 2 monitoring campaigns (8 weeks during August-October 2016 and 5 weeks during January-March 2017). Time- and size-resolved fluorescent biological aerosol particles (FBAP) and total airborne particles were measured in real time in the kitchen using an ultraviolet aerodynamic particle sizer (UVAPS). Time-resolved occupancy status, household activity data, air-change rates, and spatial distribution of size-resolved particles were also determined throughout the house. Occupant activities strongly influenced indoor FBAP levels. Indoor FBAP concentrations were an order of magnitude higher when the house was occupied than when the house was vacant. Applying an integral material-balance approach, geometric mean of total FBAP emissions from human activities observed to perturb indoor levels were in the range of 10-50 million particles per event. During the summer and winter campaigns, occupants spent an average of 10 and 8.5 hours per day, respectively, awake and at home. During these hours, the geometric mean daily-averaged FBAP exposure concentration (1-10 μm diameter) was similar for each subject at 40 particles/L for summer and 29 particles/L for winter. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Model representations of aerosol layers transported from North America over the Atlantic Ocean during the Two-Column Aerosol Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fast, Jerome D.; Berg, Larry K.; Zhang, Kai

    2016-08-22

    The ability of the Weather Research and Forecasting model with chemistry (WRF-Chem) version 3.7 and the Community Atmosphere Model version 5.3 (CAM5) in simulating profiles of aerosol properties is quantified using extensive in situ and remote sensing measurements from the Two Column Aerosol Project (TCAP) conducted during July of 2012. TCAP was supported by the U.S. Department of Energy’s Atmospheric Radiation Measurement program and was designed to obtain observations within two atmospheric columns; one fixed over Cape Cod, Massachusetts and the other several hundred kilometers over the ocean. The performance is quantified using most of the available aircraft and surfacemore » measurements during July, and two days are examined in more detail to identify the processes responsible for the observed aerosol layers. The higher resolution WRF-Chem model produced more aerosol mass in the free troposphere than the coarser resolution CAM5 model so that the fraction of aerosol optical thickness above the residual layer from WRF-Chem was more consistent with lidar measurements. We found that the free troposphere layers are likely due to mean vertical motions associated with synoptic-scale convergence that lifts aerosols from the boundary layer. The vertical displacement and the time period associated with upward transport in the troposphere depend on the strength of the synoptic system and whether relatively high boundary layer aerosol concentrations are present where convergence occurs. While a parameterization of subgrid scale convective clouds applied in WRF-Chem modulated the concentrations of aerosols aloft, it did not significantly change the overall altitude and depth of the layers.« less

  16. Model representations of aerosol layers transported from North America over the Atlantic Ocean during the Two-Column Aerosol Project

    DOE PAGES

    Fast, Jerome D.; Berg, Larry K.; Zhang, Kai; ...

    2016-08-22

    The ability of the Weather Research and Forecasting model with chemistry (WRF-Chem) version 3.7 and the Community Atmosphere Model version 5.3 (CAM5) in simulating profiles of aerosol properties is quantified using extensive in situ and remote sensing measurements from the Two-Column Aerosol Project (TCAP) conducted during July of 2012. TCAP was supported by the U.S. Department of Energy's Atmospheric Radiation Measurement program and was designed to obtain observations within two atmospheric columns; one fixed over Cape Cod, Massachusetts, and the other several hundred kilometers over the ocean. The performance is quantified using most of the available aircraft and surface measurementsmore » during July, and 2 days are examined in more detail to identify the processes responsible for the observed aerosol layers. The higher-resolution WRF-Chem model produced more aerosol mass in the free troposphere than the coarser-resolution CAM5 model so that the fraction of aerosol optical thickness above the residual layer from WRF-Chem was more consistent with lidar measurements. We found that the free troposphere layers are likely due to mean vertical motions associated with synoptic-scale convergence that lifts aerosols from the boundary layer. The vertical displacement and the time period associated with upward transport in the troposphere depend on the strength of the synoptic system and whether relatively high boundary layer aerosol concentrations are present where convergence occurs. In conclusion, while a parameterization of subgrid scale convective clouds applied in WRF-Chem modulated the concentrations of aerosols aloft, it did not significantly change the overall altitude and depth of the layers.« less

  17. Impacts of Long-Range Transport of Metals from East Asia in Bulk Aerosols Collected at the Okinawa Archipelago, Japan

    NASA Astrophysics Data System (ADS)

    A, Sotaro; S, Yuka; I, Moriaki; N, Fumiya; H, Daishi; A, Takemitsu; T, Akira

    2010-05-01

    Economy of East Asia has been growing rapidly, and atmospheric aerosols discharged from this region have been transported to Japan. Okinawa island is situated approximately 1500 km south of Tokyo, Japan, 2000 km southeast of Beijing, China, and 1000 km of south Korea. Its location in Asian is well suited for studying long-range transport of air pollutants in East Asia because maritime air mass prevails during summer, while continental air mass dominates during fall, winter, and spring. The maritime air mass data can be seen as background and can be compared with continental air mass which has been affected by anthropogenic activities. Therefore, Okinawa region is suitable area for studying impacts of air pollutants from East Asia. We simultaneously collected bulk aerosol samples by using the same type of high volume air samplers at Cape Hedo Atmospheric Aerosol Monitoring Station (CHAAMS, Okinawa island), Kume island (ca. 160 km south-west of CHAAMS), and Minami-Daitou island (ca. 320 km south-east of CHAAMS). We determined the concentrations of acid-digested metals using atomic absorption spectrometer and inductively-coupled plasma mass spectrometry (ICP-MS). We report and discuss spatial and temporal distribution of metals in the bulk atmospheric aerosols collected at CHAAMS, Kume island and Minami-Daitou island during June, 2008 to June 2009. We also determined 'background' concentration of metals in Okinawa archipelago. We then compare each chemical component among CHAAMS, Kume island and Minami-Daitou island to elucidate the influence of the transport processes and distances from Asian continent on metal concentrations.

  18. INDOOR/OUTDOOR AEROSOL CONCENTRATION RATIOS DURING THE 1999 FRESNO PARTICULATE MATTER EXPOSURE STUDIES AS A FUNCTION OF SIZE, SEASON, AND TIME OF DAY

    EPA Science Inventory

    The 1999 Fresno particulate matter exposure studies tools place in February (winter season) and April/May (spring season) for two periods of four weeks. During that time, near-continuous measurements of indoor and outdoor aerosol concentrations were made with a scanning mobilit...

  19. Overview of the aerosol measurements in the UTLS during the POSIDON campaign

    NASA Astrophysics Data System (ADS)

    Gao, R. S.; Liu, S.; Thornberry, T. D.; Rollins, A. W.; Yu, P.; Woods, S.; Bui, T. V.

    2017-12-01

    The tropical tropopause layer (TTL) is the main gateway for transport of aerosols from the troposphere to the stratosphere. Studies of aerosol properties in the TTL, however, are very limited. During the NASA Pacific Oxidants, Sulfur, Ice, Dehydration, and cONvection (POSIDON) Experiment in Guam in October 2016, we measured aerosol size distributions onboard the NASA WB-57F high altitude research aircraft up to 19 km. Multiple aerosol vertical profiles showed a robust enhancement of aerosols as a function of altitude between 15 and 19 km, with the aerosol number and mass concentrations of 10 cm-3 and 0.1 µg m-3, respectively, for particles in the size range of 140-3000 nm at 17 km altitude. Simulation using a global sectional aerosol model coupled with the Community Earth System Model generally agreed with aerosol observations, suggesting that the aerosol enhancement was likely due to in-situ particle formation and growth. Concurrent SO2 measurement showed that conversion of SO2 to sulfuric acid alone cannot explain the enhanced aerosol layer at TTL, indicating that other precursors or formation pathways exist for efficient aerosol formation. Using the measured mass concentration and an average vertical air velocity, the aerosol mass flux at the tropopause has been estimated. In addition, we investigated the potential aerosol removal processes and found no evidence for aerosol scavenging by ice.

  20. On the implications of aerosol liquid water and phase ...

    EPA Pesticide Factsheets

    Organic compounds and liquid water are major aerosol constituents in the southeast United States (SE US). Water associated with inorganic constituents (inorganic water) can contribute to the partitioning medium for organic aerosol when relative humidities or organic matter to organic carbon (OM ∕ OC) ratios are high such that separation relative humidities (SRH) are below the ambient relative humidity (RH). As OM ∕ OC ratios in the SE US are often between 1.8 and 2.2, organic aerosol experiences both mixing with inorganic water and separation from it. Regional chemical transport model simulations including inorganic water (but excluding water uptake by organic compounds) in the partitioning medium for secondary organic aerosol (SOA) when RH  >  SRH led to increased SOA concentrations, particularly at night. Water uptake to the organic phase resulted in even greater SOA concentrations as a result of a positive feedback in which water uptake increased SOA, which further increased aerosol water and organic aerosol. Aerosol properties, such as the OM ∕ OC and hygroscopicity parameter (κorg), were captured well by the model compared with measurements during the Southern Oxidant and Aerosol Study (SOAS) 2013. Organic nitrates from monoterpene oxidation were predicted to be the least water-soluble semivolatile species in the model, but most biogenically derived semivolatile species in the Community Multiscale Air Quality (CMAQ) model were hig

  1. Aerosol chemistry during the wet season in central Amazonia - The influence of long-range transport

    NASA Technical Reports Server (NTRS)

    Talbot, R. W.; Andreae, M. O.; Berresheim, H.; Artaxo, P.; Garstang, M.

    1990-01-01

    The temporal variation in the concentration and chemistry of the atmospheric aerosol over central Amazonia, Brazil, during the 1987 wet season is discussed based on ground and aircraft collected data obtained during the NASA GTE ABLE 2B expedition conducted in April/May 1987. It is found that wet-season aerosol concentrations and composition are variable in contrast to the more uniform biogenic aerosol observed during the 1985 dry season; four distinct intervals of enhanced aerosol concentration coincided with short periods (3 to 5 d) of extensive rainfall. It is hypothesized that aerosol chemistry in Amazonia during the wet season is strongly influenced by long-range transport of soil dust, marine aerosol, and possibly biomass combustion products advected into the central Basin by large-scale tropospheric circulation, producing periodic pulses of material input to local boundary layer air. The resultant wet-season aerosol regime is dynamic, in contrast to the uniformity of natural biogenic aerosols during the dry season.

  2. Numerical simulation of advection fog formation on multi-disperse aerosols due to combustion-related pollutants

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Liaw, G. S.

    1980-01-01

    The effects of multi-disperse distribution of the aerosol population are presented. Single component and multi-component aerosol species on the condensation/nucleation processes which affect the reduction in visibility are described. The aerosol population with a high particle concentration provided more favorable conditions for the formation of a denser fog than the aerosol population with a greater particle size distribution when the value of the mass concentration of the aerosols was kept constant. The results were used as numerical predictions of fog formation. Two dimensional observations in horizontal and vertical coordinates, together with time-dependent measurements were needed as initial values for the following physical parameters: (1)wind profiles; (2) temperature profiles; (3) humidity profiles; (4) mass concentration of aerosol particles; (5) particle size distribution of aerosols; and (6) chemical composition of aerosols. Formation and dissipation of advection fog, thus, can be forecasted numerically by introducing initial values obtained from the observations.

  3. Secondary Organic Aerosol Formation in the Captive Aerosol Growth and Evolution (CAGE) Chambers during the Southern Oxidant and Aerosol Study (SOAS) in Centreville, AL

    NASA Astrophysics Data System (ADS)

    Leong, Y.; Karakurt Cevik, B.; Hernandez, C.; Griffin, R. J.; Taylor, N.; Matus, J.; Collins, D. R.

    2013-12-01

    Secondary organic aerosol (SOA) represents a large portion of sub-micron particulate matter on a global scale. The composition of SOA and its formation processes are heavily influenced by anthropogenic and biogenic activity. Volatile organic compounds (VOCs) that are emitted naturally from forests or from human activity serve as precursors to SOA formation. Biogenic SOA (BSOA) is formed from biogenic VOCs and is prevalent in forested regions like the Southeastern United States. The formation and enhancement of BSOA under anthropogenic influences such as nitrogen oxides (NOx), sulfur dioxide (SO2), and oxygen radicals are still not well understood. The lack of information on anthropogenic BSOA enhancement and the reversibility of SOA formation could explain the underprediction of SOA in current models. To address some of these gaps in knowledge, this study was conducted as part of the Southern Oxidant and Aerosol Study (SOAS) in Centreville, AL during the summer of 2013. SOA growth experiments were conducted in two Captive Aerosol Growth and Evolution (CAGE) outdoor chambers located at the SEARCH site. Ambient trace gas concentrations were maintained in these chambers using semi-permeable gas-exchange membranes, while studying the growth of injected monodisperse seed aerosol. The control chamber was operated under ambient conditions; the relative humidity and oxidant and NOx levels were perturbed in the second chamber. This design allows experiments to capture the natural BSOA formation processes in the southeastern atmosphere and to study the influence of anthropogenic activity on aerosol chemistry. Chamber experiments were periodically monitored with physical and chemical instrumentation including a scanning mobility particle sizer (SMPS), a cloud condensation nuclei counter (CCNC), a humidified tandem differential mobility analyzer (H-TDMA), and an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). The CAGE experiments focused on SOA

  4. Spectral solar attenuation due to aerosol loading over an urban area in India

    NASA Astrophysics Data System (ADS)

    Latha, K. Madhavi; Badarinath, K. V. S.

    2005-06-01

    Anthropogenic activities in urban areas are sources for atmospheric aerosols and are increasing due to population explosion and migration. Many large cities in the developing world are presently plagued by high levels of atmospheric pollution and long-term effect of urban aerosol on climate is an important topic. In the present study, ground-based measurements of solar irradiance, aerosol loading and black carbon (BC) aerosol concentration have been analyzed during different aerosol loading conditions during 2003 over an urban environment. BC aerosols concentration has been observed to be enhanced during high aerosol optical depth day suggesting influence of local anthropogenic activities. The analysis of wind fields over the study area during the measurement period is from north with continental air mass prevailing over the region. Spectral measurements of solar irradiance exhibited variations based on aerosol loading in urban atmosphere. Relative attenuations caused by aerosols have been found to be of the order of 21% and 17% on the irradiance on visible and near infrared respectively.

  5. Homogeneous Aerosol Freezing in the Tops of High-Altitude Tropical Cumulonimbus Clouds

    NASA Technical Reports Server (NTRS)

    Jensen, E. J.; Ackerman, A. S.

    2006-01-01

    Numerical simulations of deep, intense continental tropical convection indicate that when the cloud tops extend more than a few kilometers above the liquid water homogeneous freezing level, ice nucleation due to freezing of entrained aqueous sulfate aerosols generates large concentrations of small crystals (diameters less than approx. equal to 20 micrometers). The small crystals produced by aerosol freezing have the largest impact on cloud-top ice concentration for convective clouds with strong updrafts but relatively low aerosol concentrations. An implication of this result is that cloud-top ice concentrations in high anvil cirrus can be controlled primarily by updraft speeds in the tops of convective plumes and to a lesser extent by aerosol concentrations in the uppermost troposphere. While larger crystals precipitate out and sublimate in subsaturated air below, the population of small crystals can persist in the saturated uppermost troposphere for many hours, thereby prolonging the lifetime of remnants from anvil cirrus in the tropical tropopause layer.

  6. Temperature Dependency of the Correlation between Secondary Organic Aerosol and Monoterpenes Concentrations at a Boreal Forest Site in Finland

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Zhang, W.; Rinne, J.

    2016-12-01

    Climate feedbacks represent the large uncertainty in the climate projection partly due to the difficulties to quantify the feedback mechanisms in the biosphere-atmosphere interaction. Recently, a negative climate feedback mechanism whereby higher temperatures and CO2-levels boost continental biomass production, leading to increased biogenic secondary organic aerosol (SOA) and cloud condensation nuclei concentrations, tending to cause cooling, has been attached much attention. To quantify the relationship between biogenic organic compounds (BVOCs) and SOA, a five-year data set (2008, 2010-2011,2013-2014) for SOA and monoterpenes concentrations (the dominant fraction of BVOCs) measured at the SMEAR II station in Hyytiälä, Finland, is analyzed. Our results show that there is a moderate linear correlation between SOA and monoterpenes concentration with the correlation coefficient (R) as 0.66. To rule out the influence of anthropogenic aerosols, the dataset is further filtered by selecting the data at the wind direction of cleaner air mass, leading to an improved R as 0.68. As temperature is a critical factor for vegetation growth, BVOC emissions, and condensation rate, the correlation between SOA and monoterpenes concentration at different temperature windows are studied. The result shows a higher R and slope of linear regression as temperature increases. To identify the dominant oxidant responsible for the BVOC-SOA conversion, the correlations between SOA concentration and the monoterpenes oxidation rates by O3 and OH are compared, suggesting more SOA is contributed by O3 oxidation process. Finally, the possible processes and factors such as the atmospheric boundary layer depth, limiting factor in the monoterpenes oxidation process, as well as temperature sensitivity in the condensation process contributing to the temperature dependence of correlation between BVOA and SOA are investigated.

  7. Where and What Is Pristine Marine Aerosol?

    NASA Astrophysics Data System (ADS)

    Russell, L. M.; Frossard, A. A.; Long, M. S.; Burrows, S. M.; Elliott, S.; Bates, T. S.; Quinn, P.

    2014-12-01

    The sources and composition of atmospheric marine aerosol particles have been measured by functional group composition (from Fourier transform infrared spectroscopy) to identify the organic composition of the pristine primary marine (ocean-derived) particles as 65% hydroxyl, 21% alkane, 6% amine, and 7% carboxylic acid functional groups [Frossard et al., 2014a,b]. Pristine but non-primary components from photochemical reactions (likely from biogenic marine vapor emissions) add carboxylic acid groups. Non-pristine contributions include shipping effluent in seawater and ship emissions, which add additional alkane groups (up to 70%), and coastal or continental emissions mix in alkane and carboxylic acid groups. The pristine primary marine (ocean-derived) organic aerosol composition is nearly identical to model generated primary marine aerosol particles from bubbled seawater, indicating that its overall functional group composition is the direct consequence of the organic constituents of the seawater source. While the seawater organic functional group composition was nearly invariant across all three ocean regions studied and the ratio of organic carbon to sodium (OC/Na+) in the generated primary marine aerosol particles remained nearly constant over a broad range of chlorophyll-a concentrations, the generated primary marine aerosol particle alkane group fraction increased with chlorophyll-a concentrations. In addition, the generated primary marine aerosol particles have a hydroxyl group absorption peak location characteristic of monosaccharides and disaccharides, where the seawater hydroxyl group peak location is closer to that of polysaccharides. References Cited Frossard, Amanda A., Lynn M. Russell, Paola Massoli, Timothy S. Bates, and Patricia K. Quinn, "Side-by-Side Comparison of Four Techniques Explains the Apparent Differences in the Organic Composition of Generated and Ambient Marine Aerosol Particles," Aerosol Science and Technology - Aerosol Research Letter

  8. Background aerosol over the Himalayas and Tibetan Plateau: observed characteristics of aerosol mass loading

    NASA Astrophysics Data System (ADS)

    Liu, B.; Cong, Z.; Wang, Y.; Xin, J.; Wan, X.; Pan, Y.; Liu, Z.; Wang, Y.; Zhang, G.; Kang, S.

    2016-12-01

    To investigate the atmospheric aerosols of the Himalayas and Tibetan Plateau (HTP), an observation network was established within the region's various ecosystems, including at Ngari, Qomolangma (QOMS), Nam Co, and SouthEastern Tibetan (SET) stations. In this paper we illustrate aerosol mass loadings by integrating in situ measurements with satellite and ground-based remote sensing datasets for the 2011-2013 period, on both local and large scales. Mass concentrations of these surface atmospheric aerosols were relatively low and varied with land cover, showing a general tendency of Ngari and QOMS (barren sites) > Nam Co (grassland site) > SET (forest site). Bimodal mass distributions of size-segregated particles were found at all sites, with a relatively small peak in accumulation mode and a more notable peak in coarse mode. Diurnal variations in fine aerosol masses generally displayed a bi-peak pattern at the QOMS, Nam Co and SET stations and a single-peak pattern at the Ngari station, controlled by the effects of local geomorphology, mountain-valley breeze circulation and aerosol emissions. Combining surface aerosols data and atmospheric-column aerosol optical properties, the TSP mass and aerosol optical depth (AOD) of the Multi-angle Imaging Spectroradiometer (MISR) generally decreased as land cover changed from barren to forest, in inverse relation to the PM2.5 ratios. The seasonality of aerosol mass parameters was land-cover dependent. Over forest and grassland areas, TSP mass, PM2.5 mass, MISR-AOD and fine-mode AOD were higher in spring and summer, followed by relatively lower values in autumn and winter. At the barren site (the QOMS station), there were inconsistent seasonal variations between surface TSP mass (PM2.5 mass) and atmospheric column AOD (fine-mode AOD). Our findings implicate that, HTP aerosol masses (especially their reginal characteristics and fine particle emissions) need to be treated sensitively in relation to assessments of their climatic

  9. Satellite remote sensing of dust aerosol indirect effects on ice cloud formation.

    PubMed

    Ou, Steve Szu-Cheng; Liou, Kuo-Nan; Wang, Xingjuan; Hansell, Richard; Lefevre, Randy; Cocks, Stephen

    2009-01-20

    We undertook a new approach to investigate the aerosol indirect effect of the first kind on ice cloud formation by using available data products from the Moderate-Resolution Imaging Spectrometer (MODIS) and obtained physical understanding about the interaction between aerosols and ice clouds. Our analysis focused on the examination of the variability in the correlation between ice cloud parameters (optical depth, effective particle size, cloud water path, and cloud particle number concentration) and aerosol optical depth and number concentration that were inferred from available satellite cloud and aerosol data products. Correlation results for a number of selected scenes containing dust and ice clouds are presented, and dust aerosol indirect effects on ice clouds are directly demonstrated from satellite observations.

  10. Antarctic polar stratospheric aerosols: The roles of nitrates, chlorides and sulfates

    NASA Technical Reports Server (NTRS)

    Pueschel, R. F.; Snetsinger, K. G.; Goodman, J. K.; Ferry, G. V.; Oberbeck, V. R.; Verma, S.; Fong, W.

    1988-01-01

    Nitric and hydrochloric acids have been postulated to condense in the winter polar stratosphere to become an important component of polar stratospheric clouds. One implication is that the removal of NO(y) from the gas phase by this mechanism allows high Cl(x) concentrations to react with O3, because the formation of ClNO3 is inhibited. Contributions of NO3 and Cl to the stratospheric aerosol were determined during the 1987 Airborne Antarctic Ozone Experiment by testing for the presence of nitrates and chlorides in the condensed phase. Aerosol particles were collected on four 500 micron diameter gold wires, each pretreated differently to give results that were specific to certain physical and chemical aerosol properties. One wire was carbon-coated for concentration and size analyses by scanning electron microscopy; X-ray energy dispersive analyses permitted the detection of S and Cl in individual particles. Three more wires were coated with Nitron, barium chloride and silver nitrate, respectively, to detect nitrate, sulfate and chloride in aerosol particles. All three ions, viz., sulfates, nitrates and chlorides were detected in the Antarctic stratospheric aerosol. In terms of number concentrations, the aerosol was dominated by sulfates, followed by chlorides and nitrates. An inverse linear regression can be established between nitrate concentrations and ozone mixing ratio, and between temperature and nitrates.

  11. Response of different regional online coupled models to aerosol-radiation interactions

    NASA Astrophysics Data System (ADS)

    Forkel, Renate; Balzarini, Alessandra; Brunner, Dominik; Baró, Rocio; Curci, Gabriele; Hirtl, Marcus; Honzak, Luka; Jiménez-Guerrero, Pedro; Jorba, Oriol; Pérez, Juan L.; Pirovano, Guido; San José, Roberto; Schröder, Wolfram; Tuccella, Paolo; Werhahn, Johannes; Wolke, Ralf; Žabkar, Rahela

    2016-04-01

    The importance of aerosol-meteorology interactions and their representation in online coupled regional atmospheric chemistry-meteorology models was investigated in COST Action ES1004 (EuMetChem, http://eumetchem.info/). Case study results from different models (COSMO-Muscat, COSMO-ART, and different configurations of WRF-Chem), which were applied for Europe as a coordinated exercise for the year 2010, are analyzed with respect to inter-model variability and the response of the different models to direct and indirect aerosol-radiation interactions. The main focus was on two episodes - the Russian heat wave and wildfires episode in July/August 2010 and a period in October 2010 with enhanced cloud cover and rain and including an of Saharan dust transport to Europe. Looking at physical plausibility the decrease in downward solar radiation and daytime temperature due to the direct aerosol effect is robust for all model configurations. The same holds for the pronounced decrease in cloud water content and increase in solar radiation for cloudy conditions and very low aerosol concentrations that was found for WRF-Chem when aerosol cloud interactions were considered. However, when the differences were tested for statistical significance no significant differences in mean solar radiation and mean temperature between the baseline case and the simulations including the direct and indirect effect from simulated aerosol concentrations were found over Europe for the October episode. Also for the fire episode differences between mean temperature and radiation from the simulations with and without the direct aerosol effect were not significant for the major part of the modelling domain. Only for the region with high fire emissions in Russia, the differences in mean solar radiation and temperature due to the direct effect were found to be significant during the second half of the fire episode - however only for a significance level of 0.1. The few observational data indicate that

  12. Aerosol-Cloud Interactions and Cloud Microphysical Properties in the Asir Region of Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Kucera, P. A.; Axisa, D.; Burger, R. P.; Li, R.; Collins, D. R.; Freney, E. J.; Buseck, P. R.

    2009-12-01

    In recent advertent and inadvertent weather modification studies, a considerable effort has been made to understand the impact of varying aerosol properties and concentration on cloud properties. Significant uncertainties exist with aerosol-cloud interactions for which complex microphysical processes link the aerosol and cloud properties. Under almost all environmental conditions, increased aerosol concentrations within polluted air masses will enhance cloud droplet concentration relative to that in unperturbed regions. The interaction between dust particles and clouds are significant, yet the conditions in which dust particles become cloud condensation nuclei (CCN) are uncertain. In order to quantify this aerosol effect on clouds and precipitation, a field campaign was launched in the Asir region, located adjacent to the Red Sea in the southwest region of Saudi Arabia. Ground measurements of aerosol size distributions, hygroscopic growth factors, CCN concentrations as well as aircraft measurements of cloud hydrometeor size distributions were observed in the Asir region in August 2009. The presentation will include a summary of the analysis and results with a focus on aerosol-cloud interactions and cloud microphysical properties observed during the convective season in the Asir region.

  13. In Situ Measurements of Aerosol Mass Concentration and Spectral Absorption at Three Location in and Around Mexico City

    NASA Astrophysics Data System (ADS)

    Chaudhry, Z.; Martins, V.; Li, Z.

    2006-12-01

    As a result of population growth and increasing industrialization, air pollution in heavily populated urban areas is one of the central environmental problems of the century. As a part of the MILAGRO (Megacity Initiative: Local and Global Research Observations) study, Nuclepore filters were collected in two size ranges (PM10 and PM2.5) at 12 hour intervals at three location in Mexico during March, 2006. Sampling stations were located at the Instituto Mexicano del Petroleo (T0), at the Rancho La Bisnago in the State of Hidalgo (T2) and along the Gulf Coast in Tampico (Tam). Each filter was analyzed for mass concentration, aerosol scattering and absorption efficiencies. Mass concentrations at T0 ranged from 47 to 179 μg/m3 for PM10 with an average concentration of 96 μg/m3, and from 20 to 93 μg/m3 for PM2.5 with an average concentration of 41 μg/m3. Mass concentrations at T2 ranged from 12 to 154 μg/m3 for PM10 with an average concentration of 51 μg/m3, and from 7 to 50 μg/m3 for PM2.5 with an average concentration of 25 μg/m3. Mass concentrations at Tam ranged from 34 to 80 μg/m3 for PM10 with an average concentration of 52 μg/m3, and from 8 to 23 μg/m3 for PM2.5 with an average concentration of 13 μg/m3. While some of the extreme values are likely linked to local emissions, regional air pollution episodes also played important roles. Each of the sampling stations experienced a unique atmospheric condition. The site at T0 was influenced by urban air pollution and dust storms, the site at T2 was significantly less affected by air pollution but more affected by regional dust storms and local dust devils while Tam was influenced by air pollution, dust storms and the natural marine environment. The spectral mass absorption efficiency was measured from 350 to 2500 nm and shows large differences between the absorption properties of soil dust, black carbon, and organic aerosols. The strong spectral differences observed can be related to differences in

  14. GASFLOW: A Computational Fluid Dynamics Code for Gases, Aerosols, and Combustion, Volume 3: Assessment Manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Müller, C.; Hughes, E. D.; Niederauer, G. F.

    1998-10-01

    Los Alamos National Laboratory (LANL) and Forschungszentrum Karlsruhe (FzK) are developing GASFLOW, a three-dimensional (3D) fluid dynamics field code as a best- estimate tool to characterize local phenomena within a flow field. Examples of 3D phenomena include circulation patterns; flow stratification; hydrogen distribution mixing and stratification; combustion and flame propagation; effects of noncondensable gas distribution on local condensation and evaporation; and aerosol entrainment, transport, and deposition. An analysis with GASFLOW will result in a prediction of the gas composition and discrete particle distribution in space and time throughout the facility and the resulting pressure and temperature loadings on the wallsmore » and internal structures with or without combustion. A major application of GASFLOW is for predicting the transport, mixing, and combustion of hydrogen and other gases in nuclear reactor containment and other facilities. It has been applied to situations involving transporting and distributing combustible gas mixtures. It has been used to study gas dynamic behavior in low-speed, buoyancy-driven flows, as well as sonic flows or diffusion dominated flows; and during chemically reacting flows, including deflagrations. The effects of controlling such mixtures by safety systems can be analyzed. The code version described in this manual is designated GASFLOW 2.1, which combines previous versions of the United States Nuclear Regulatory Commission code HMS (for Hydrogen Mixing Studies) and the Department of Energy and FzK versions of GASFLOW. The code was written in standard Fortran 90. This manual comprises three volumes. Volume I describes the governing physical equations and computational model. Volume II describes how to use the code to set up a model geometry, specify gas species and material properties, define initial and boundary conditions, and specify different outputs, especially graphical displays. Sample problems are included

  15. Atmospheric aerosol backscatter measurements using a tunable coherent CO2 lidar

    NASA Technical Reports Server (NTRS)

    Menzies, R. T.; Kavaya, M. J.; Flamant, P. H.; Haner, D. A.

    1984-01-01

    Measurements of atmospheric aerosol backscatter coefficients, using a coherent CO2 lidar at 9.25- and 10.6-micron wavelengths, are described. Vertical profiles of the volume backscatter coefficient beta have been measured to a 10-km altitude over the Pasadena, CA, region. These measurements indicate a wide range of variability in beta both in and above the local boundary layer. Certain profiles also indicate a significant enhancement in beta at the 9.25-micron wavelength compared with beta at the 10.6-micron wavelength, which possibly indicates a major contribution to the volume backscatter from ammonium sulfate aerosol particles.

  16. Evolution of the stratospheric aerosol in the northern hemisphere following the June 1991 volcanic eruption of Mount Pinatubo: Role of tropospheric-stratospheric exchange and transport

    NASA Astrophysics Data System (ADS)

    Jónsson, Hafliòi H.; Wilson, James C.; Brock, Charles A.; Dye, J. E.; Ferry, G. V.; Chan, K. R.

    1996-01-01

    Since the eruption of Mount Pinatubo in June, 1991, measurements of particle size and concentration have intermittently been carried out from an ER-2 aircraft at altitudes of up to 21 km at midlatitudes and high latitudes in the northern hemisphere. They show the evolution and purge of the volcanic aerosol to be due to an interaction of aerosol mechanics with tropospheric-stratospheric exchange processes, transport, and mixing. During the first 5 months after the eruption the volcanic plume spread to higher latitudes in laminae and filaments, producing steep spatial gradients in the properties of the stratospheric aerosol. At the same time the concentration of newly formed particles in the plume rapidly decreased toward background values as a result of coagulation while particle size and aerosol surface area continued to increase. By December 1991, the particle number mixing ratios and aerosol surface area mixing ratios had become spatially uniform over a wide range of latitudes above 18 km. The surface area mixing ratios peaked in this region of the stratosphere at ˜35 times their background values in the winter of 1992. The corresponding condensed mass mixing ratio enhancement was by a factor of ˜200. After the winter of 1992, a gradual removal of the volcanic mass began and initially was dominated by sedimentation above 18 km. The aerosol surface area mixing ratio thus decreased by an order of magnitude over 2.5 years, and the aerosol volume, or condensed mass, mixing ratio decayed by an order of magnitude over approximately 1.7 years. Below 18 km, the purging of the Pinatubo aerosol at mid-latitudes appeared sporadic and disorderly and was strongly influenced by episodal rapid quasi-isentropic transport and dilution by tropical air of tropospheric origin having high condensation nuclei mixing ratios but low mixing ratios of aerosol surface area or condensed mass compared to the volcanic aerosol.

  17. Aerosol Radiative Forcing Derived From SeaWIFS - Retrieved Aerosol Optical Properties

    NASA Technical Reports Server (NTRS)

    Chou, Mong-Dah; Chan, Pui-King; Wang, Menghua; Einaudi, Franco (Technical Monitor)

    2000-01-01

    CERES is systematically larger than the model calculations by -3 W M-2. In the equatorial region, the CERES-derived net downward solar flux is even larger than the model calculations without including aerosols. It is possible that the CERES incorrectly identified regions of high humidity and high aerosol concentration as being cloud contaminated and, hence, overestimated the clear sky net downward solar flux.

  18. Derivation of Aerosol Columnar Mass from MODIS Optical Depth

    NASA Technical Reports Server (NTRS)

    Gasso, Santiago; Hegg, Dean A.

    2003-01-01

    In order to verify performance, aerosol transport models (ATM) compare aerosol columnar mass (ACM) with those derived from satellite measurements. The comparison is inherently indirect since satellites derive optical depths and they use a proportionality constant to derive the ACM. Analogously, ATMs output a four dimensional ACM distribution and the optical depth is linearly derived. In both cases, the proportionality constant requires a direct intervention of the user by prescribing the aerosol composition and size distribution. This study introduces a method that minimizes the direct user intervention by making use of the new aerosol products of MODIS. A parameterization is introduced for the derivation of columnar aerosol mass (AMC) and CCN concentration (CCNC) and comparisons between sunphotometer, MODIS Airborne Simulator (MAS) and in-measurements are shown. The method still relies on the scaling between AMC and optical depth but the proportionality constant is dependent on the MODIS derived r$_{eff}$,\\eta (contribution of the accumulation mode radiance to the total radiance), ambient RH and an assumed constant aerosol composition. The CCNC is derived fkom a recent parameterization of CCNC as a function of the retrieved aerosol volume. By comparing with in-situ data (ACE-2 and TARFOX campaigns), it is shown that retrievals in dry ambient conditions (dust) are improved when using a proportionality constant dependent on r$ {eff}$ and \\eta derived in the same pixel. In high humidity environments, the improvement inthe new method is inconclusive because of the difficulty in accounting for the uneven vertical distribution of relative humidity. Additionally, two detailed comparisons of AMC and CCNC retrieved by the MAS algorithm and the new method are shown. The new method and MAS retrievals of AMC are within the same order of magnitude with respect to the in-situ measurements of aerosol mass. However, the proposed method is closer to the in-situ measurements than

  19. Collection of Aerosolized Human Cytokines Using Teflon® Filters

    PubMed Central

    McKenzie, Jennifer H.; McDevitt, James J.; Fabian, M. Patricia; Hwang, Grace M.; Milton, Donald K.

    2012-01-01

    Background Collection of exhaled breath samples for the analysis of inflammatory biomarkers is an important area of research aimed at improving our ability to diagnose, treat and understand the mechanisms of chronic pulmonary disease. Current collection methods based on condensation of water vapor from exhaled breath yield biomarker levels at or near the detection limits of immunoassays contributing to problems with reproducibility and validity of biomarker measurements. In this study, we compare the collection efficiency of two aerosol-to-liquid sampling devices to a filter-based collection method for recovery of dilute laboratory generated aerosols of human cytokines so as to identify potential alternatives to exhaled breath condensate collection. Methodology/Principal Findings Two aerosol-to-liquid sampling devices, the SKC® Biosampler and Omni 3000™, as well as Teflon® filters were used to collect aerosols of human cytokines generated using a HEART nebulizer and single-pass aerosol chamber setup in order to compare the collection efficiencies of these sampling methods. Additionally, methods for the use of Teflon® filters to collect and measure cytokines recovered from aerosols were developed and evaluated through use of a high-sensitivity multiplex immunoassay. Our results show successful collection of cytokines from pg/m3 aerosol concentrations using Teflon® filters and measurement of cytokine levels in the sub-picogram/mL concentration range using a multiplex immunoassay with sampling times less than 30 minutes. Significant degradation of cytokines was observed due to storage of cytokines in concentrated filter extract solutions as compared to storage of dry filters. Conclusions Use of filter collection methods resulted in significantly higher efficiency of collection than the two aerosol-to-liquid samplers evaluated in our study. The results of this study provide the foundation for a potential new technique to evaluate biomarkers of inflammation in

  20. Apparatus and method for collection and concentration of respirable particles into a small fluid volume

    DOEpatents

    Simon, Jonathan N.; Brown, Steve B.

    2002-01-01

    An apparatus and method for the collection of respirable particles and concentration of such particles into a small fluid volume. The apparatus captures and concentrates small (1-10 .mu.m) respirable particles into a sub-millileter volume of fluid. The method involves a two step operation, collection and concentration: wherein collection of particles is by a wetted surface having small vertical slits that act as capillary channels; and concentration is carried out by transfer of the collected particles to a small volume (sub-milliliter) container by centrifugal force whereby the particles are forced through the vertical slits and contact a non-wetted wall surface, and are deflected to the bottom where they are contained for analysis, such as a portable flow cytometer or a portable PCR DNA analysis system.