Sample records for aerospace regional aircraft

  1. 75 FR 7405 - Airworthiness Directives; British Aerospace Regional Aircraft Model Jetstream Series 3101 and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-19

    ... Airworthiness Directives; British Aerospace Regional Aircraft Model Jetstream Series 3101 and Jetstream Model... available in the AD docket shortly after receipt. FOR FURTHER INFORMATION CONTACT: Taylor Martin, Aerospace... AD docket. Relevant Service Information BAE Systems has issued British Aerospace Jetstream Series...

  2. 75 FR 22517 - Airworthiness Directives; British Aerospace Regional Aircraft Model Jetstream Series 3101 and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-29

    ... Airworthiness Directives; British Aerospace Regional Aircraft Model Jetstream Series 3101 and Jetstream Model... INFORMATION CONTACT: Taylor Martin, Aerospace Engineer, FAA, Small Airplane Directorate, 901 Locust, Room 301... [Amended] 0 2. The FAA amends Sec. 39.13 by adding the following new AD: 2010-09-02 British Aerospace...

  3. Aircraft of Today. Aerospace Education I.

    ERIC Educational Resources Information Center

    Savler, D. S.

    This textbook gives a brief idea about the modern aircraft used in defense and for commercial purposes. Aerospace technology in its present form has developed along certain basic principles of aerodynamic forces. Different parts in an airplane have different functions to balance the aircraft in air, provide a thrust, and control the general…

  4. Propulsion Systems for Aircraft. Aerospace Education II. Instructional Unit II.

    ERIC Educational Resources Information Center

    Elmer, James D.

    This curriculum guide accompanies another publication in the Aerospace Education II series entitled "Propulsion Systems for Aircraft." The guide includes specific guidelines for teachers on each chapter in the textbook. Suggestions are included for objectives (traditional and behavioral), suggested outline, orientation, suggested key…

  5. Potential and prospective implementation of carbon nanotubes on next generation aircraft and space vehicles: A review of current and expected applications in aerospace sciences

    NASA Astrophysics Data System (ADS)

    Gohardani, Omid; Elola, Maialen Chapartegui; Elizetxea, Cristina

    2014-10-01

    Carbon nanotubes have instigated the interest of many different scientific fields since their authenticated introduction, more than two decades ago. Particularly in aerospace applications, the potential implementations of these advanced materials have been predicted to have a large impact on future aircraft and space vehicles, mainly due to their distinct features, which include superior mechanical, thermal and electrical properties. This article provides the very first consolidated review of the imminent prospects of utilizing carbon nanotubes and nanoparticles in aerospace sciences, based on their recent implementations and predicted future applications. Explicitly, expected carbon nanotube employment in aeronautics and astronautics are identified for commercial aircraft, military aircraft, rotorcraft, unmanned aerial vehicles, satellites, and space launch vehicles. Attention is devoted to future utilization of carbon nanotubes, which may comprise hydrogen storage encapsulation, composite material implementation, lightning protection for aircraft, aircraft icing mitigation, reduced weight of airframes/satellites, and alleviation of challenges related to future space launch. This study further sheds light onto recent actualized implementations of carbon nanotubes in aerospace applications, as well as current and prospective challenges related to their usage in aerospace sciences, encompassing health and safety hazards, large scale manufacturing, achievement of optimum properties, recycling, and environmental impacts.

  6. Design of the advanced regional aircraft, the DART-75

    NASA Technical Reports Server (NTRS)

    Elliot, Steve; Gislason, Jason; Huffstetler, Mark; Mann, Jon; Withers, Ashley; Zimmerman, Mark

    1992-01-01

    The need for regional aircraft stems from the problem of hub airport congestion. Regional travel will allow a passenger to commute from one spoke city to another spoke city without entering the congested hub airport. In addition, those people traveling longer routes may begin the flight at home instead of traveling to the hub airport. At this time, there is no American aerospace company that produces a regional transport for under 100 passengers. The intention of the Developmental Advanced Regional Transport (DART-75) is to fill this void with a modern, efficient regional aircraft. This design achieves the efficiency through a number of advanced features including three lifting surfaces, partial composite construction, and an advanced engine design. Efficiency is not the only consideration. Structural integrity, fatigue life, ease of maintenance, passenger comfort and convenience, and environmental aspects must all be considered. These factors force the design team to face many tradeoffs that are studied to find the best solution. The final consideration that cannot be overlooked is that of cost. The DART-75 is a 75-passenger medium-range regional transport intended for spoke-to-spoke, spoke-to-hub, and some hub-to-hub operations. Included are the general descriptions of the structures, weight and balance, stability and control, performance, and engine design.

  7. Roles, uses, and benefits of general aviation aircraft in aerospace engineering education

    NASA Technical Reports Server (NTRS)

    Odonoghue, Dennis P.; Mcknight, Robert C.

    1994-01-01

    Many colleges and universities throughout the United States offer outstanding programs in aerospace engineering. In addition to the fundamentals of aerodynamics, propulsion, flight dynamics, and air vehicle design, many of the best programs have in the past provided students the opportunity to design and fly airborne experiments on board various types of aircraft. Sadly, however, the number of institutions offering such 'airborne laboratories' has dwindled in recent years. As a result, opportunities for students to apply their classroom knowledge, analytical skills, and engineering judgement to the development and management of flight experiments on an actual aircraft are indeed rare. One major reason for the elimination of flight programs by some institutions, particularly the smaller colleges, is the prohibitive cost of operating and maintaining an aircraft as a flying laboratory. The purpose of this paper is to discuss simple, low-cost, relevant flight experiments that can be performed using readily available general aviation aircraft. This paper examines flight experiments that have been successfully conducted on board the NASA Lewis Research Center's T-34B aircraft, as part of the NASA/AIAA/University Flight Experiment Program for Students (NAUFEPS) and discusses how similar experiments could be inexpensively performed on other general aviation aircraft.

  8. NASA Ames aerospace systems directorate research

    NASA Technical Reports Server (NTRS)

    Albers, James A.

    1991-01-01

    The Aerospace Systems Directorate is one of four research directorates at the NASA Ames Research Center. The Directorate conducts research and technology development for advanced aircraft and aircraft systems in intelligent computational systems and human-machine systems for aeronautics and space. The Directorate manages research and aircraft technology development projects, and operates and maintains major wind tunnels and flight simulation facilities. The Aerospace Systems Directorate's research and technology as it relates to NASA agency goals and specific strategic thrusts are discussed.

  9. 78 FR 11567 - Airworthiness Directives; Gulfstream Aerospace LP (Type Certificate Previously Held by Israel...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-19

    ... Airworthiness Directives; Gulfstream Aerospace LP (Type Certificate Previously Held by Israel Aircraft... Aerospace LP (Type Certificate Previously Held by Israel Aircraft Industries, Ltd.) Model Gulfstream G150... Gulfstream Aerospace LP (Type Certificate Previously Held by Israel Aircraft Industries, Ltd.): Amendment 39...

  10. Heat transfer in aerospace propulsion

    NASA Technical Reports Server (NTRS)

    Simoneau, Robert J.; Hendricks, Robert C.; Gladden, Herbert J.

    1988-01-01

    Presented is an overview of heat transfer related research in support of aerospace propulsion, particularly as seen from the perspective of the NASA Lewis Research Center. Aerospace propulsion is defined to cover the full spectrum from conventional aircraft power plants through the Aerospace Plane to space propulsion. The conventional subsonic/supersonic aircraft arena, whether commercial or military, relies on the turbine engine. A key characteristic of turbine engines is that they involve fundamentally unsteady flows which must be properly treated. Space propulsion is characterized by very demanding performance requirements which frequently push systems to their limits and demand tailored designs. The hypersonic flight propulsion systems are subject to severe heat loads and the engine and airframe are truly one entity. The impact of the special demands of each of these aerospace propulsion systems on heat transfer is explored.

  11. Recent advances in the development of aerospace materials

    NASA Astrophysics Data System (ADS)

    Zhang, Xuesong; Chen, Yongjun; Hu, Junling

    2018-02-01

    In recent years, much progress has been made on the development of aerospace materials for structural and engine applications. Alloys, such as Al-based alloys, Mg-based alloys, Ti-based alloys, and Ni-based alloys, are developed for aerospace industry with outstanding advantages. Composite materials, the innovative materials, are taking more and more important roles in aircrafts. However, recent aerospace materials still face some major challenges, such as insufficient mechanical properties, fretting wear, stress corrosion cracking, and corrosion. Consequently, extensive studies have been conducted to develop the next generation aerospace materials with superior mechanical performance and corrosion resistance to achieve improvements in both performance and life cycle cost. This review focuses on the following topics: (1) materials requirements in design of aircraft structures and engines, (2) recent advances in the development of aerospace materials, (3) challenges faced by recent aerospace materials, and (4) future trends in aerospace materials.

  12. The F-18 systems research aircraft facility

    NASA Technical Reports Server (NTRS)

    Sitz, Joel R.

    1992-01-01

    To help ensure that new aerospace initiatives rapidly transition to competitive U.S. technologies, NASA Dryden Flight Research Facility has dedicated a systems research aircraft facility. The primary goal is to accelerate the transition of new aerospace technologies to commercial, military, and space vehicles. Key technologies include more-electric aircraft concepts, fly-by-light systems, flush airdata systems, and advanced computer architectures. Future aircraft that will benefit are the high-speed civil transport and the National AeroSpace Plane. This paper describes the systems research aircraft flight research vehicle and outlines near-term programs.

  13. Anechoic Chambers: Aerospace Applications. (Latest Citations from the Aerospace Database)

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The bibliography contains citations concerning the design, development, performance, and applications of anechoic chambers in the aerospace industry. Anechoic chamber testing equipment, techniques for evaluation of aerodynamic noise, microwave and radio antennas, and other acoustic measurement devices are considered. Shock wave studies on aircraft models and components, electromagnetic measurements, jet flow studies, and antenna radiation pattern measurements for industrial and military aerospace equipment are discussed. (Contains 50-250 citations and includes a subject term index and title list.)

  14. Anechoic Chambers: Aerospace Applications. (Latest Citations from the Aerospace Database)

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The bibliography contains citations concerning the design, development, performance, and applications of anechoic chambers in the aerospace industry. Anechoic chamber testing equipment, techniques for evaluation of aerodynamic noise, microwave and radio antennas, and other acoustic measurement devices are considered. Shock wave studies on aircraft models and components, electromagnetic measurements, jet flow studies, and antenna radiation pattern measurements for industrial and military aerospace equipment are discussed. (Contains 50-250 citations and includes a subject term index and title list.)

  15. Aerospace toxicology overview: aerial application and cabin air quality.

    PubMed

    Chaturvedi, Arvind K

    2011-01-01

    Aerospace toxicology is a rather recent development and is closely related to aerospace medicine. Aerospace toxicology can be defined as a field of study designed to address the adverse effects of medications, chemicals, and contaminants on humans who fly within or outside the atmosphere in aviation or on space flights. The environment extending above and beyond the surface of the Earth is referred to as aerospace. The term aviation is frequently used interchangeably with aerospace. The focus of the literature review performed to prepare this paper was on aerospace toxicology-related subject matters, aerial application and aircraft cabin air quality. Among the important topics addressed are the following: · Aerial applications of agricultural chemicals, pesticidal toxicity, and exposures to aerially applied mixtures of chemicals and their associated formulating solvents/surfactants The safety of aerially encountered chemicals and the bioanalytical methods used to monitor exposures to some of them · The presence of fumes and smoke, as well as other contaminants that may generally be present in aircraft/space vehicle cabin air · And importantly, the toxic effects of aerially encountered contaminants, with emphasis on the degradation products of oils, fluids, and lubricants used in aircraft, and finally · Analytical methods used for monitoring human exposure to CO and HCN are addressed in the review, as are the signs and symptoms associated with exposures to these combustion gases. Although many agricultural chemical monitoring studies have been published, few have dealt with the occurrence of such chemicals in aircraft cabin air. However, agricultural chemicals do appear in cabin air; indeed, attempts have been made to establish maximum allowable concentrations for several of the more potentially toxic ones that are found in aircraft cabin air. In this article, I emphasize the need for precautionary measures to be taken to minimize exposures to aerially

  16. Aerospace Safety Advisory Panel

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The following areas of NASA's responsibilities are examined: (1) the Space Transportation System (STS) operations and evolving program elements; (2) establishment of the Space Station program organization and issuance of requests for proposals to the aerospace industry; and (3) NASA's aircraft operations, including research and development flight programs for two advanced X-type aircraft.

  17. NASA-UVa light aerospace alloy and structure technology program supplement: Aluminum-based materials for high speed aircraft

    NASA Technical Reports Server (NTRS)

    Starke, E. A., Jr.

    1993-01-01

    This report on the NASA-UVa Light Aerospace Alloy and Structure Technology Program Supplement: Aluminum-Based Materials for High Speed Aircraft covers the period from January 1, 1992 to June 30, 1992. The objective of the research is to develop aluminum alloys and aluminum matrix composites for the airframe which can efficiently perform in the HSCT environment for periods as long as 60,000 hours (certification for 120,000 hours) and, at the same time, meet the cost and weight requirements for an economically viable aircraft. Current industry baselines focus on flight at Mach 2.4. The research covers four major materials systems: (1) ingot metallurgy 2XXX, 6XXX, and 8XXX alloys, (2) powder metallurgy 2XXX alloys, (3) rapidly solidified, dispersion strengthened Al-Fe-X alloys, and (4) discontinuously reinforced metal matrix composites. There are ten major tasks in the program which also include evaluation and trade-off studies by Boeing and Douglas aircraft companies.

  18. NASA-UVa light aerospace alloy and structures technology program supplement: Aluminum-based materials for high speed aircraft

    NASA Technical Reports Server (NTRS)

    Starke, E. A., Jr. (Editor)

    1995-01-01

    This report on the NASA-UVa light aerospace alloy and structure technology program supplement: Aluminum-Based Materials for High Speed Aircraft covers the period from July 1, 1992. The objective of the research is to develop aluminum alloys and aluminum matrix composites for the airframe which can efficiently perform in the HSCT environment for periods as long as 60,000 hours (certification for 120,000 hours) and, at the same time, meet the cost and weight requirements for an economically viable aircraft. Current industry baselines focus on flight at Mach 2.4. The research covers four major materials systems: (1) Ingot metallurgy 2XXX, 6XXX, and 8XXX alloys, (2) Powder metallurgy 2XXX alloys, (3) Rapidly solidified, dispersion strengthened Al-Fe-X alloys, and (4) Discontinuously reinforced metal matrix composites. There are ten major tasks in the program which also include evaluation and trade-off studies by Boeing and Douglas aircraft companies.

  19. Advanced Ceramic Materials for Future Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Misra, Ajay

    2015-01-01

    With growing trend toward higher temperature capabilities, lightweight, and multifunctionality, significant advances in ceramic matrix composites (CMCs) will be required for future aerospace applications. The presentation will provide an overview of material requirements for future aerospace missions, and the role of ceramics and CMCs in meeting those requirements. Aerospace applications will include gas turbine engines, aircraft structure, hypersonic and access to space vehicles, space power and propulsion, and space communication.

  20. 78 FR 47546 - Airworthiness Directives; Gulfstream Aerospace LP (Type Certificate Previously Held by Israel...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-06

    ... Airworthiness Directives; Gulfstream Aerospace LP (Type Certificate Previously Held by Israel Aircraft... Gulfstream Aerospace LP (Type Certificate Previously Held by Israel Aircraft Industries, Ltd.) Model... Aviation Authority of Israel (CAAI), which is the aviation authority for Israel, has issued Israeli...

  1. Ethernet for Aerospace Applications - Ethernet Heads for the Skies

    NASA Technical Reports Server (NTRS)

    Grams, Paul R.

    2015-01-01

    One of the goals of aerospace applications is to reduce the cost and complexity of avionic systems. Ethernet is a highly scalable, flexible, and popular protocol. The aerospace market is large, with a forecasted production of over 50,000 turbine-powered aircraft valued at $1.7 trillion between 2012 and 2022. Boeing estimates demand for commercial aircraft by 2033 to total over 36,000 with a value of over $5 trillion. In 2014 US airlines served over 750 million passengers and this is growing over 2% yearly. Electronic fly-by-wire is now used for all airliners and high performance aircraft. Although Ethernet has been widely used for four decades, its use in aerospace applications is just beginning to become common. Ethernet is the universal solution in commercial networks because of its high bandwidths, lower cost, openness, reliability, maintainability, flexibility, and interoperability. However, when Ethernet was designed applications with time-critical, safety relevant and deterministic requirements were not given much consideration. Many aerospace applications use a variety of communication architectures that add cost and complexity. Some of them are SpaceWire, MIL-STD-1553, Avionics Full Duplex Switched Ethernet (AFDX), and Time-Triggered Ethernet (TTE). Aerospace network designers desire to decrease the number of networks to reduce cost and effort while improving scalability, flexibility, openness, maintainability, and reliability. AFDX and TTE are being considered more for critical aerospace systems because they provide redundancy, failover protection, guaranteed timing, and frame priority and are based on Ethernet IEEE 802.3. This paper explores the use of AFDX and TTE for aerospace applications.

  2. U.S. aerospace industry opinion of the effect of computer-aided prediction-design technology on future wind-tunnel test requirements for aircraft development programs

    NASA Technical Reports Server (NTRS)

    Treon, S. L.

    1979-01-01

    A survey of the U.S. aerospace industry in late 1977 suggests that there will be an increasing use of computer-aided prediction-design technology (CPD Tech) in the aircraft development process but that, overall, only a modest reduction in wind-tunnel test requirements from the current level is expected in the period through 1995. Opinions were received from key spokesmen in 23 of the 26 solicited major companies or corporate divisions involved in the design and manufacture of nonrotary wing aircraft. Development programs for nine types of aircraft related to test phases and wind-tunnel size and speed range were considered.

  3. Optical Information Processing for Aerospace Applications 2

    NASA Technical Reports Server (NTRS)

    Stermer, R. L. (Compiler)

    1984-01-01

    Current research in optical processing, and determination of its role in future aerospace systems was reviewed. It is shown that optical processing offers significant potential for aircraft and spacecraft control, pattern recognition, and robotics. It is demonstrated that the development of optical devices and components can be implemented in practical aerospace configurations.

  4. Advanced technology for future regional transport aircraft

    NASA Technical Reports Server (NTRS)

    Williams, L. J.

    1982-01-01

    In connection with a request for a report coming from a U.S. Senate committee, NASA formed a Small Transport Aircraft Technology (STAT) team in 1978. STAT was to obtain information concerning the technical improvements in commuter aircraft that would likely increase their public acceptance. Another area of study was related to questions regarding the help which could be provided by NASA's aeronautical research and development program to commuter aircraft manufacturers with respect to the solution of technical problems. Attention is given to commuter airline growth, current commuter/region aircraft and new aircraft in development, prospects for advanced technology commuter/regional transports, and potential benefits of advanced technology. A list is provided of a number of particular advances appropriate to small transport aircraft, taking into account small gas turbine engine component technology, propeller technology, three-dimensional wing-design technology, airframe aerodynamics/propulsion integration, and composite structure materials.

  5. 76 FR 41432 - Airworthiness Directives; Gulfstream Aerospace LP (Type Certificate Previously Held by Israel...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-14

    ... Aerospace LP (Type Certificate Previously Held by Israel Aircraft Industries, Ltd.) Model Galaxy, Gulfstream... Aerospace LP (Type Certificate previously held by Israel Aircraft Industries, Ltd.) Model Galaxy airplanes... Bulletin 150-27- 123, Revision 1, dated January 27, 2011. (2) For Model Galaxy and Gulfstream 200 airplanes...

  6. The 1991 International Aerospace and Ground Conference on Lightning and Static Electricity, volume 1

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The proceedings of the 1991 International Aerospace and Ground Conference on Lightning and Static Electricity are reported. Some of the topics covered include: lightning, lightning suppression, aerospace vehicles, aircraft safety, flight safety, aviation meteorology, thunderstorms, atmospheric electricity, warning systems, weather forecasting, electromagnetic coupling, electrical measurement, electrostatics, aircraft hazards, flight hazards, meteorological parameters, cloud (meteorology), ground effect, electric currents, lightning equipment, electric fields, measuring instruments, electrical grounding, and aircraft instruments.

  7. Aerospace Dermatology

    PubMed Central

    Arora, Sandeep

    2017-01-01

    Evolutionarily, man is a terrestrial mammal, adapted to land. Aviation and now space/microgravity environment, hence, pose new challenges to our physiology. Exposure to these changes affects the human body in acute and chronic settings. Since skin reflects our mental and physical well-being, any change/side effects of this environment shall be detected on the skin. Aerospace industry offers a unique environment with a blend of all possible occupational disorders, encompassing all systems of the body, particularly the skin. Aerospace dermatologists in the near future shall be called upon for their expertise as we continue to push human physiological boundaries with faster and more powerful military aircraft and look to colonize space stations and other planets. Microgravity living shall push dermatology into its next big leap-space, the final frontier. This article discusses the physiological effects of this environment on skin, effect of common dermatoses in aerospace environment, effect of microgravity on skin, and occupational hazards of this industry. PMID:28216729

  8. Aerospace Dermatology.

    PubMed

    Arora, Sandeep

    2017-01-01

    Evolutionarily, man is a terrestrial mammal, adapted to land. Aviation and now space/microgravity environment, hence, pose new challenges to our physiology. Exposure to these changes affects the human body in acute and chronic settings. Since skin reflects our mental and physical well-being, any change/side effects of this environment shall be detected on the skin. Aerospace industry offers a unique environment with a blend of all possible occupational disorders, encompassing all systems of the body, particularly the skin. Aerospace dermatologists in the near future shall be called upon for their expertise as we continue to push human physiological boundaries with faster and more powerful military aircraft and look to colonize space stations and other planets. Microgravity living shall push dermatology into its next big leap-space, the final frontier. This article discusses the physiological effects of this environment on skin, effect of common dermatoses in aerospace environment, effect of microgravity on skin, and occupational hazards of this industry.

  9. NASA HPCC Technology for Aerospace Analysis and Design

    NASA Technical Reports Server (NTRS)

    Schulbach, Catherine H.

    1999-01-01

    The Computational Aerosciences (CAS) Project is part of NASA's High Performance Computing and Communications Program. Its primary goal is to accelerate the availability of high-performance computing technology to the US aerospace community-thus providing the US aerospace community with key tools necessary to reduce design cycle times and increase fidelity in order to improve safety, efficiency and capability of future aerospace vehicles. A complementary goal is to hasten the emergence of a viable commercial market within the aerospace community for the advantage of the domestic computer hardware and software industry. The CAS Project selects representative aerospace problems (especially design) and uses them to focus efforts on advancing aerospace algorithms and applications, systems software, and computing machinery to demonstrate vast improvements in system performance and capability over the life of the program. Recent demonstrations have served to assess the benefits of possible performance improvements while reducing the risk of adopting high-performance computing technology. This talk will discuss past accomplishments in providing technology to the aerospace community, present efforts, and future goals. For example, the times to do full combustor and compressor simulations (of aircraft engines) have been reduced by factors of 320:1 and 400:1 respectively. While this has enabled new capabilities in engine simulation, the goal of an overnight, dynamic, multi-disciplinary, 3-dimensional simulation of an aircraft engine is still years away and will require new generations of high-end technology.

  10. In-Situ Load System for Calibrating and Validating Aerodynamic Properties of Scaled Aircraft in Ground-Based Aerospace Testing Applications

    NASA Technical Reports Server (NTRS)

    Lynn, Keith C. (Inventor); Acheson, Michael J. (Inventor); Commo, Sean A. (Inventor); Landman, Drew (Inventor)

    2016-01-01

    An In-Situ Load System for calibrating and validating aerodynamic properties of scaled aircraft in ground-based aerospace testing applications includes an assembly having upper and lower components that are pivotably interconnected. A test weight can be connected to the lower component to apply a known force to a force balance. The orientation of the force balance can be varied, and the measured forces from the force balance can be compared to applied loads at various orientations to thereby develop calibration factors.

  11. The 12th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Mechanisms developed for various aerospace applications are discussed. Specific topics covered include: boom release mechanisms, separation on space shuttle orbiter/Boeing 747 aircraft, payload handling, spaceborne platform support, and deployment of spaceborne antennas and telescopes.

  12. Job Prospects for Aerospace Engineers.

    ERIC Educational Resources Information Center

    Basta, Nicholas

    1987-01-01

    Discusses the recent trends in job opportunities for aerospace engineers. Mentions some of the political, technological, and economic factors affecting the overall employment picture. Includes a description of the job prospects created by the general upswing of the large commercial aircraft market. (TW)

  13. 78 FR 12995 - Airworthiness Directives; Gulfstream Aerospace LP (Type Certificate Previously Held by Israel...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-26

    ... Aerospace LP (Type Certificate Previously Held by Israel Aircraft Industries, Ltd.) Airplanes AGENCY... propose to supersede an existing airworthiness directive (AD) that applies to all Gulfstream Aerospace... information identified in this proposed AD, contact Gulfstream Aerospace Corporation, P.O. Box 2206, Mail...

  14. Sputtering and ion plating for aerospace applications

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1981-01-01

    Sputtering and ion plating technologies are reviewed in terms of their potential and present uses in the aerospace industry. Sputtering offers great universality and flexibility in depositing any material or in the synthesis of new ones. The sputter deposition process has two areas of interest: thin film and fabrication technology. Thin film sputtering technology is primarily used for aerospace mechanical components to reduce friction, wear, erosion, corrosion, high temperature oxidation, diffusion and fatigue, and also to sputter-construct temperature and strain sensors for aircraft engines. Sputter fabrication is used in intricate aircraft component manufacturing. Ion plating applications are discussed in terms of the high energy evaporant flux and the high throwing power. Excellent adherence and 3-dimensional coverage are the primary attributes of this technology.

  15. Sputtering and ion plating for aerospace applications

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1981-01-01

    Sputtering and ion plating technologies are reviewed in terms of their potential and present uses in the aerospace industry. Sputtering offers great universality and flexibility in depositing any material or in the synthesis of new ones. The sputter deposition process has two areas of interest: thin film and fabrication technology. Thin film sputtering technology is primarily used for aerospace mechanical components to reduce friction, wear, erosion, corrosion, high temperature oxidation, diffusion and fatigue, and also to sputter-construct temperature and strain sensors for aircraft engines. Sputter fabrication is used in intricate aircraft component manufacturing. Ion plating applications are discussed in terms of the high energy evaporant flux and the high throwing power. Excellent adherence and 3 dimensional coverage are the primary attributes of this technology.

  16. PREFACE: Trends in Aerospace Manufacturing 2009 International Conference

    NASA Astrophysics Data System (ADS)

    Ridgway, Keith; Gault, Rosemary; Allen, Adrian

    2011-12-01

    The aerospace industry is rapidly changing. New aircraft structures are being developed and aero-engines are becoming lighter and more environmentally friendly. In both areas, innovative materials and manufacturing methods are used in an attempt to get maximum performance for minimum cost. At the same time, the structure of the industry has changed and there has been a move from large companies designing, manufacturing components and assembling aircraft to one of large global supply chains headed by large system integrators. All these changes have forced engineers and managers to bring in innovations in design, materials, manufacturing technologies and supply chain management. In September 2009, the Advanced Manufacturing Research Centre (AMRC) at the University of Sheffield held the inaugural Trends in Aerospace Manufacturing conference (TRAM09). This brought together 28 speakers over two days, who presented in sessions on advanced manufacturing trends for the aerospace sector. Areas covered included new materials, including composites, advanced machining, state of the art additive manufacturing techniques, assembly and supply chain issues.

  17. Summary of 2017 NASA Workshop on Assessment of Advanced Battery Technologies for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Misra, Ajay

    2018-01-01

    A workshop on assessment of battery technologies for future aerospace applications was held in Cleveland, OH on August 16-17. The focus of the workshop, hosted by NASA GRC, was to assess (1) the battery needs for future aerospace missions, (2) the state of battery technology and projected technology advances, and (3) the need for additional investments for future aerospace missions. The workshop had 109 attendees that included internationally recognized technology leaders from academia and national laboratories, high level executives from government and industry, small businesses, and startup companies. A significant portion of the workshop was focused on batteries for electrified aircraft. The presentation will summarize the finding on the state of battery technologies for electrified aircraft and will include assessment of current state of battery technology, gaps in battery technology for application in electrified aircraft, and recommended technology development options for meeting near-term and long-term needs of electrified aircraft.

  18. 77 FR 16432 - Airworthiness Directives; Cessna Aircraft Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-21

    ... CONTACT: David Fairback, Aerospace Engineer, Mechanical Systems and Propulsion Branch, ACE-116W, FAA... Fairback, Aerospace Engineer, Mechanical Systems and Propulsion Branch, ACE- 116W, FAA, Wichita Aircraft...

  19. 1998 IEEE Aerospace Conference. Proceedings.

    NASA Astrophysics Data System (ADS)

    The following topics were covered: science frontiers and aerospace; flight systems technologies; spacecraft attitude determination and control; space power systems; smart structures and dynamics; military avionics; electronic packaging; MEMS; hyperspectral remote sensing for GVP; space laser technology; pointing, control, tracking and stabilization technologies; payload support technologies; protection technologies; 21st century space mission management and design; aircraft flight testing; aerospace test and evaluation; small satellites and enabling technologies; systems design optimisation; advanced launch vehicles; GPS applications and technologies; antennas and radar; software and systems engineering; scalable systems; communications; target tracking applications; remote sensing; advanced sensors; and optoelectronics.

  20. Proceedings of the NASA Aerospace Technology Symposium 2002

    NASA Technical Reports Server (NTRS)

    Bowen, Brent D. (Editor); Fink, Mary M. (Editor); Schaaf, Michaela M. (Editor)

    2002-01-01

    Reports are presented from the NASA Aerospace Technology Symposium 2002 on the following: Geo-Referenced Altitude Hold For Latex Ballons; NASA Spaceport Research: Opportunities For space Grant and EPSCoR Involvement; Numerical Simulation Of The Combustion Of Fuel Droplets: Applications, Aircraft/Spacecraft Flight Control, Guidance Navigation; Expertise In System Dynamics and Control, Control Theory and Aerospace Education Ooutreach Opportunities; and Technology For The Improvement Of General Aviation Security: A Needs Assessmemt.

  1. Theory of Aircraft Flight. Aerospace Education II.

    ERIC Educational Resources Information Center

    Elmer, James D.

    This revised textbook, one in the Aerospace Education II series, provides answers to many questions related to airplanes and properties of air flight. The first chapter provides a description of aerodynamic forces and deals with concepts such as acceleration, velocity, and forces of flight. The second chapter is devoted to the discussion of…

  2. The Status and Future of Aerospace Engineering Education in Turkey.

    ERIC Educational Resources Information Center

    Hale, Francis J.

    There is no aerospace industry in Turkey, and the level of operational activity is low even though the potential for the exploitation of aviation is high. The government of Turkey hopes to establish an aircraft factory in conjunction with a foreign contractor and is aware of the need for aerospace engineering education. This paper describes the…

  3. Development of a Dynamically Configurable, Object-Oriented Framework for Distributed, Multi-modal Computational Aerospace Systems Simulation

    NASA Technical Reports Server (NTRS)

    Afjeh, Abdollah A.; Reed, John A.

    2003-01-01

    The following reports are presented on this project:A first year progress report on: Development of a Dynamically Configurable,Object-Oriented Framework for Distributed, Multi-modal Computational Aerospace Systems Simulation; A second year progress report on: Development of a Dynamically Configurable, Object-Oriented Framework for Distributed, Multi-modal Computational Aerospace Systems Simulation; An Extensible, Interchangeable and Sharable Database Model for Improving Multidisciplinary Aircraft Design; Interactive, Secure Web-enabled Aircraft Engine Simulation Using XML Databinding Integration; and Improving the Aircraft Design Process Using Web-based Modeling and Simulation.

  4. Development and Deployment of an Aerospace Recommended Practice (ARP) Compliant Measurement System for nvPM Certification Measurements of Aircraft Engines - Current Status.

    NASA Astrophysics Data System (ADS)

    Whitefield, P. D.; Hagen, D. E.; Lobo, P.; Miake-Lye, R. C.

    2015-12-01

    The Society of Automotive Engineers (SAE) Aircraft Exhaust Emissions Measurement Committee (E-31) has published an Aerospace Information Report (AIR) 6241 detailing the sampling system for the measurement of non-volatile particulate matter (nvPM) from aircraft engines (SAE 2013). The system is designed to operate in parallel with existing International Civil Aviation Organization (ICAO) Annex 16 compliant combustion gas sampling systems used for emissions certification from aircraft engines captured by conventional (Annex 16) gas sampling rakes (ICAO, 2008). The SAE E-31 committee is also working to ballot an Aerospace Recommended Practice (ARP) that will provide the methodology and system specification to measure nvPM from aircraft engines. The ARP is currently in preparation and is expected to be ready for ballot in 2015. A prototype AIR-compliant nvPM measurement system - The North American Reference System (NARS) has been built and evaluated at the MSTCOE under the joint sponsorship of the FAA, EPA and Transport Canada. It has been used to validate the performance characteristics of OEM AIR-compliant systems and is being used in engine certification type testing at OEM facilities to obtain data from a set of representative engines in the fleet. The data collected during these tests will be used by ICAO/CAEP/WG3/PMTG to develop a metric on which on the regulation for nvPM emissions will be based. This paper will review the salient features of the NARS including: (1) emissions sample transport from probe tip to the key diagnostic tools, (2) the mass and number-based diagnostic tools for nvPM mass and number concentration measurement and (3) methods employed to assess the extent of nvPM loss throughout the sampling system. This paper will conclude with a discussion of the recent results from inter-comparison studies conducted with other US - based systems that gives credence to the ARP's readiness for ballot.

  5. The Russian Perception of the NATO Aerospace Threat: Could It Lead to Preemption

    DTIC Science & Technology

    2016-09-01

    64 | Air & Space Power Journal The Russian Perception of the NATO Aerospace Threat Could It Lead to Preemption? Lt Col Thomas R. McCabe, USAFR...authoritative Russian military writings and spokesmen have repeatedly declared that the aerospace sphere, where air and space combine into a single...air and space capability, especially its airfields, aircraft, and aerospace defenses.36 Another key objective, as previously noted, may be a

  6. Stealth Aircraft Technology. (Latest Citations from the Aerospace Database)

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The bibliography contains citations concerning design, manufacture, and history of aircraft incorporating stealth technology. Citations focus on construction materials, testing, aircraft performance, and technology assessment. Fighter aircraft, bombers, missiles, and helicopters represent coverage. (Contains 50-250 citations and includes a subject term index and title list.)

  7. Aeromedical solutions for aerospace safety.

    PubMed

    Kapoor, Pawan; Gaur, Deepak

    2017-10-01

    All facets of activity in the speciality of Aviation Medicine are essentially aimed at enhancing aerospace safety. This paper highlights some innovative changes brought about by Aerospace Medicine in the three major fields of the speciality namely, medical evaluation, aeromedical training and research. Based on lab and field studies, military aircrew are now permitted flying with Modifinil as 'Go' Pill and Zolpidem as 'No-Go' Pill during sustained operations. Several other drugs for disabilities like Hypertension and CAD are now permitted for aviators. Comprehensive revision of policy permitting early return to flying is an on-going process. OPRAM courses for all three streams of aircrew in IAF have contributed to reduce aircraft accident rates. Human Engineering Consultancy and expert advice is provided by specialists at IAM as well as those in the field. In future, the country needs to provide better post-service opportunities to aerospace medicine specialists. This, in turn, will attract bright young minds to the specialty. The ISRO Humanin-Space programme will be an exciting challenge for all in this unique field. Aerospace Medicine continues to provide aerospace safety solutions to the IAF and the aviation industry. The nation needs to continue to utilize and support this specialty.

  8. Aerospace Science Education, A Curriculum Guide.

    ERIC Educational Resources Information Center

    Hilburn, Paul

    This curriculum guide was developed by the Alaska State Department of Education for the purpose of aiding elementary and secondary school teachers in incorporating elements of aerospace science in the classroom. The section of the guide designed for elementary school teachers includes chapters under the headings: Aircraft, Airports, Weather,…

  9. Mission Analysis and Aircraft Sizing of a Hybrid-Electric Regional Aircraft

    NASA Technical Reports Server (NTRS)

    Antcliff, Kevin R.; Guynn, Mark D.; Marien, Ty V.; Wells, Douglas P.; Schneider, Steven J.; Tong, Michael T.

    2016-01-01

    The purpose of this study was to explore advanced airframe and propulsion technologies for a small regional transport aircraft concept (approximately 50 passengers), with the goal of creating a conceptual design that delivers significant cost and performance advantages over current aircraft in that class. In turn, this could encourage airlines to open up new markets, reestablish service at smaller airports, and increase mobility and connectivity for all passengers. To meet these study goals, hybrid-electric propulsion was analyzed as the primary enabling technology. The advanced regional aircraft is analyzed with four levels of electrification, 0 percent electric with 100 percent conventional, 25 percent electric with 75 percent conventional, 50 percent electric with 50 percent conventional, and 75 percent electric with 25 percent conventional for comparison purposes. Engine models were developed to represent projected future turboprop engine performance with advanced technology and estimates of the engine weights and flowpath dimensions were developed. A low-order multi-disciplinary optimization (MDO) environment was created that could capture the unique features of parallel hybrid-electric aircraft. It is determined that at the size and range of the advanced turboprop: The battery specific energy must be 750 watt-hours per kilogram or greater for the total energy to be less than for a conventional aircraft. A hybrid vehicle would likely not be economically feasible with a battery specific energy of 500 or 750 watt-hours per kilogram based on the higher gross weight, operating empty weight, and energy costs compared to a conventional turboprop. The battery specific energy would need to reach 1000 watt-hours per kilogram by 2030 to make the electrification of its propulsion an economically feasible option. A shorter range and/or an altered propulsion-airframe integration could provide more favorable results.

  10. Adopting exergy analysis for use in aerospace

    NASA Astrophysics Data System (ADS)

    Hayes, David; Lone, Mudassir; Whidborne, James F.; Camberos, José; Coetzee, Etienne

    2017-08-01

    Thermodynamic analysis methods, based on an exergy metric, have been developed to improve system efficiency of traditional heat driven systems such as ground based power plants and aircraft propulsion systems. However, in more recent years interest in the topic has broadened to include applying these second law methods to the field of aerodynamics and complete aerospace vehicles. Work to date is based on highly simplified structures, but such a method could be shown to have benefit to the highly conservative and risk averse commercial aerospace sector. This review justifies how thermodynamic exergy analysis has the potential to facilitate a breakthrough in the optimization of aerospace vehicles based on a system of energy systems, through studying the exergy-based multidisciplinary design of future flight vehicles.

  11. Eagle RTS: A design for a regional transport aircraft

    NASA Technical Reports Server (NTRS)

    Bryer, Paul; Buckles, Jon; Lemke, Paul; Peake, Kirk

    1992-01-01

    This university design project concerns the Eagle RTS (Regional Transport System), a 66 passenger, twin turboprop aircraft with a range of 836 nautical miles. It will operate with a crew of two pilots and two flight attendents. This aircraft will employ the use of aluminum alloys and composite materials to reduce the aircraft weight and increase aerodynamic efficiency. The Eagle RTS will use narrow body aerodynamics with a canard configuration to improve performance. Leading edge technology will be used in the cockpit to improve flight handling and safety. The Eagle RTS propulsion system will consist of two turboprop engines with a total thrust of approximately 6300 pounds, 3150 pounds thrust per engine, for the cruise configuration. The engines will be mounted on the aft section of the aircraft to increase passenger safety in the event of a propeller failure. Aft mounted engines will also increase the overall efficiency of the aircraft by reducing the aircraft's drag. The Eagle RTS is projected to have a takeoff distance of approximately 4700 feet and a landing distance of 6100 feet. These distances will allow the Eagle RTS to land at the relatively short runways of regional airports.

  12. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 42: An analysis of the transfer of Scientific and Technical Information (STI) in the US aerospace industry

    NASA Technical Reports Server (NTRS)

    Kennedy, John M.; Pinelli, Thomas E.; Hecht, Laura F.; Barclay, Rebecca O.

    1994-01-01

    The U.S. aerospace industry has a long history of federal support for research related to its needs. Since the establishment of the National Advisory Committee for Aeronautics (NACA) in 1915, the federal government has provided continuous research support related to flight and aircraft design. This research has contributed to the international preeminence of the U.S. aerospace industry. In this paper, we present a sociological analysis of aerospace engineers and scientists and how their attitudes and behaviors impact the flow of scientific and technical information (STI). We use a constructivist framework to explain the spotty dissemination of federally funded aerospace research. Our research is aimed towards providing federal policymakers with a clearer understanding of how and when federally funded aerospace research is used. This understanding will help policymakers design improved information transfer systems that will aid the competitiveness of the U.S. aerospace industry.

  13. 76 FR 70040 - Airworthiness Directives; Gulfstream Aerospace LP (Type Certificate Previously Held by Israel...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-10

    ... Aerospace LP (type certificate previously held by Israel Aircraft Industries, Ltd.) Model Galaxy and....) Model Galaxy airplanes; and Gulfstream Aerospace LP Model Gulfstream 200 airplanes; serial numbers 004... Bulletin 150-27- 123, Revision 1, dated January 27, 2011. (2) For Model Galaxy and Gulfstream 200 airplanes...

  14. 76 FR 28635 - Airworthiness Directives; British Aerospace Regional Aircraft Model HP.137 Jetstream Mk.1...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-18

    ... AD docket shortly after receipt. List of Subjects in 14 CFR Part 39 Air transportation, Aircraft... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration 14 CFR Part 39 [Docket No. FAA-2011...), Department of Transportation (DOT). ACTION: Final rule. SUMMARY: We are adopting a new airworthiness...

  15. Damping in aerospace composite materials

    NASA Astrophysics Data System (ADS)

    Agneni, A.; Balis Crema, L.; Castellani, A.

    Experimental results are presented on specimens of carbon and Kevlar fibers in epoxy resin, materials used in many aerospace structures (control surfaces and wings in aircraft, large antennas in spacecraft, etc.). Some experimental methods of estimating damping ratios are first reviewed, either in the time domain or in the frequency domain. Some damping factor estimates from experimental tests are then shown; in order to evaluate the effects of the aerospace environment, damping factors have been obtained in a typical range of temperature, namely between +120 C and -120 C, and in the pressure range from room pressure to 10 exp -6 torr. Finally, a theoretical approach for predicting the bounds of the damping coefficients is shown, and prediction data are compared with experimental results.

  16. 77 FR 58323 - Airworthiness Directives; Gulfstream Aerospace LP (Type Certificate Previously Held by Israel...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-20

    ... Aerospace LP (Type Certificate Previously Held by Israel Aircraft Industries, Ltd.) Airplanes AGENCY... Previously Held by Israel Aircraft Industries, Ltd.) Model Gulfstream G150 airplanes. This proposed AD was.... Discussion The Civil Aviation Authority of Israel (CAAI), which is the aviation authority for Israel, has...

  17. Bayesian framework for aerospace gas turbine engine prognostics

    NASA Astrophysics Data System (ADS)

    Zaidan, M. A.; Mills, A. R.; Harrison, R. F.

    Prognostics is an emerging capability of modern health monitoring that aims to increase the fidelity of failure predictions. In the aerospace industry, it is a key technology to maximise aircraft availability, offering a route to increase time in-service and reduce operational disruption through improved asset management.

  18. Polymer and ceramic nanocomposites for aerospace applications

    NASA Astrophysics Data System (ADS)

    Rathod, Vivek T.; Kumar, Jayanth S.; Jain, Anjana

    2017-11-01

    This paper reviews the potential of polymer and ceramic matrix composites for aerospace/space vehicle applications. Special, unique and multifunctional properties arising due to the dispersion of nanoparticles in ceramic and metal matrix are briefly discussed followed by a classification of resulting aerospace applications. The paper presents polymer matrix composites comprising majority of aerospace applications in structures, coating, tribology, structural health monitoring, electromagnetic shielding and shape memory applications. The capabilities of the ceramic matrix nanocomposites to providing the electromagnetic shielding for aircrafts and better tribological properties to suit space environments are discussed. Structural health monitoring capability of ceramic matrix nanocomposite is also discussed. The properties of resulting nanocomposite material with its disadvantages like cost and processing difficulties are discussed. The paper concludes after the discussion of the possible future perspectives and challenges in implementation and further development of polymer and ceramic nanocomposite materials.

  19. Soft impacts on aerospace structures

    NASA Astrophysics Data System (ADS)

    Abrate, Serge

    2016-02-01

    This article provides an overview of the literature dealing with three types of soft impacts of concern for the aerospace applications, namely impacts of rain drops, hailstones and birds against aircraft. It describes the physics of the problem as it has become better understood through experiments, analyses, and numerical simulations. Some emphasis has been placed on the material models and the numerical approaches used in modeling these three types of projectiles.

  20. Operational Art and Aircraft Runway Requirements

    DTIC Science & Technology

    1989-12-01

    Center for Aerospace Doctrine, Research. and Education (AUCADRE). They are dedicaled to the advancement of the art and science -.f applying aerospace...36112-5532. Operational Art and * Aircraft Runway Requirements C. 0 M. 0 Thank you for your assistance Report No. AU-ARI-CP-89-4 Operational Art and...publication. iiU ABSTRACT A commander exercises operational art to achieve strategic goals through his design, organization, and conduct of campaigns. In

  1. PTERA - Modular Aircraft Flight Test

    NASA Image and Video Library

    2016-01-13

    Aerospace testing can be costly and time consuming but a new modular, subscale remotely piloted aircraft offers NASA researchers more affordable options for developing a wide range of cutting edge aviation and space technologies. The Prototype-Technology Evaluation and Research Aircraft (PTERA), developed by Area-I, Inc., of Kennesaw, Georgia, is an extremely versatile and high quality, yet inexpensive, flying laboratory bridging the gap between wind tunnels and crewed flight testing.

  2. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 14: An analysis of the technical communications practices reported by Israeli and US aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Barclay, Rebecca O.; Pinelli, Thomas E.; Elazar, David; Kennedy, John M.

    1991-01-01

    As part of Phase 4 of the NASA/DoD Aerospace Knowledge Diffusion Research Project, two pilot studies were conducted that investigated the technical communications practices of Israeli and U.S. aerospace engineers and scientists. Both studies had the same five objectives: first, to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communications to their profession; second, to determine the use and production of technical communications by aerospace engineers and scientists; third, to seek their view about the appropriate content of an undergraduate course in technical communications; fourth, to determine aerospace engineers' and scientists' use of libraries, technical information centers, and on-line databases; and fifth, to determine the use and importance of computer and information technology to them. A self-administered questionnaire was mailed to randomly selected U.S. aerospace engineers and scientists who are working in cryogenics, adaptive walls, and magnetic suspension. A slightly modified version was sent to Israeli aerospace engineers and scientists working at Israel Aircraft Industries, LTD. Responses of the Israeli and U.S. aerospace engineers and scientists to selected questions are presented in this paper.

  3. Cost-effective lightweight mirrors for aerospace and defense

    NASA Astrophysics Data System (ADS)

    Woodard, Kenneth S.; Comstock, Lovell E.; Wamboldt, Leonard; Roy, Brian P.

    2015-05-01

    The demand for high performance, lightweight mirrors was historically driven by aerospace and defense (A&D) but now we are also seeing similar requirements for commercial applications. These applications range from aerospace-like platforms such as small unmanned aircraft for agricultural, mineral and pollutant aerial mapping to an eye tracking gimbaled mirror for optometry offices. While aerospace and defense businesses can often justify the high cost of exotic, low density materials, commercial products rarely can. Also, to obtain high performance with low overall optical system weight, aspheric surfaces are often prescribed. This may drive the manufacturing process to diamond machining thus requiring the reflective side of the mirror to be a diamond machinable material. This paper summarizes the diamond machined finishing and coating of some high performance, lightweight designs using non-exotic substrates to achieve cost effective mirrors. The results indicate that these processes can meet typical aerospace and defense requirements but may also be competitive in some commercial applications.

  4. CORBASec Used to Secure Distributed Aerospace Propulsion Simulations

    NASA Technical Reports Server (NTRS)

    Blaser, Tammy M.

    2003-01-01

    The NASA Glenn Research Center and its industry partners are developing a Common Object Request Broker (CORBA) Security (CORBASec) test bed to secure their distributed aerospace propulsion simulations. Glenn has been working with its aerospace propulsion industry partners to deploy the Numerical Propulsion System Simulation (NPSS) object-based technology. NPSS is a program focused on reducing the cost and time in developing aerospace propulsion engines. It was developed by Glenn and is being managed by the NASA Ames Research Center as the lead center reporting directly to NASA Headquarters' Aerospace Technology Enterprise. Glenn is an active domain member of the Object Management Group: an open membership, not-for-profit consortium that produces and manages computer industry specifications (i.e., CORBA) for interoperable enterprise applications. When NPSS is deployed, it will assemble a distributed aerospace propulsion simulation scenario from proprietary analytical CORBA servers and execute them with security afforded by the CORBASec implementation. The NPSS CORBASec test bed was initially developed with the TPBroker Security Service product (Hitachi Computer Products (America), Inc., Waltham, MA) using the Object Request Broker (ORB), which is based on the TPBroker Basic Object Adaptor, and using NPSS software across different firewall products. The test bed has been migrated to the Portable Object Adaptor architecture using the Hitachi Security Service product based on the VisiBroker 4.x ORB (Borland, Scotts Valley, CA) and on the Orbix 2000 ORB (Dublin, Ireland, with U.S. headquarters in Waltham, MA). Glenn, GE Aircraft Engines, and Pratt & Whitney Aircraft are the initial industry partners contributing to the NPSS CORBASec test bed. The test bed uses Security SecurID (RSA Security Inc., Bedford, MA) two-factor token-based authentication together with Hitachi Security Service digital-certificate-based authentication to validate the various NPSS users. The test

  5. Recent advances in aerospace composite NDE

    NASA Astrophysics Data System (ADS)

    Georgeson, Gary E.

    2002-06-01

    As the aerospace industry continues to advance the design and use of composite structure, the NDE community faces the difficulties of trying to keep up. The challenges lie in manufacturing evaluation of the newest aerospace structures and materials and the in-service inspection and monitoring of damaged or aging composites. This paper provides examples of several promising NDI applications in the world of aerospace composites. Airborne (or non-contact) Ultrasonic Testing (UT) has been available for decades, but recently has generated new interest due to significant improvements in transducer design and low noise electronics. Boeing is developing inspection techniques for composite joints and core blankets using this technology. In-service inspection techniques for thick, multi-layer structures are also being advanced. One effective technique integrates the S-9 Sondicator, a traditional bond testing device, with Boeing's Mobile Automated Scanner (MAUS) platform. Composite patches have seen limited use on-aircraft, due, in part, to the difficulty of determining the quality of a bonded joint. A unique approach using Electronic Speckle Pattern Interferometry (ESPI) is showing promise as a bonded patch-inspection method. Other NDI techniques currently being developed for aerospace application are also briefly discussed.

  6. Emerging Needs for Pervasive Passive Wireless Sensor Networks on Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Wilson, William C.; Juarez, Peter D.

    2014-01-01

    NASA is investigating passive wireless sensor technology to reduce instrumentation mass and volume in ground testing, air flight, and space exploration applications. Vehicle health monitoring systems (VHMS) are desired on all aerospace programs to ensure the safety of the crew and the vehicles. Pervasive passive wireless sensor networks facilitate VHMS on aerospace vehicles. Future wireless sensor networks on board aerospace vehicles will be heterogeneous and will require active and passive network systems. Since much has been published on active wireless sensor networks, this work will focus on the need for passive wireless sensor networks on aerospace vehicles. Several passive wireless technologies such as microelectromechanical systems MEMS, SAW, backscatter, and chipless RFID techniques, have all shown potential to meet the pervasive sensing needs for aerospace VHMS applications. A SAW VHMS application will be presented. In addition, application areas including ground testing, hypersonic aircraft and spacecraft will be explored along with some of the harsh environments found in aerospace applications.

  7. Deicing System Protects General Aviation Aircraft

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Kelly Aerospace Thermal Systems LLC worked with researchers at Glenn Research Center on deicing technology with assistance from the Small Business Innovation Research (SBIR) program. Kelly Aerospace acquired Northcoast Technologies Ltd., a firm that had conducted work on a graphite foil heating element under a NASA SBIR contract and developed a lightweight, easy-to-install, reliable wing and tail deicing system. Kelly Aerospace engineers combined their experiences with those of the Northcoast engineers, leading to the certification and integration of a thermoelectric deicing system called Thermawing, a DC-powered air conditioner for single-engine aircraft called Thermacool, and high-output alternators to run them both. Thermawing, a reliable anti-icing and deicing system, allows pilots to safely fly through ice encounters and provides pilots of single-engine aircraft the heated wing technology usually reserved for larger, jet-powered craft. Thermacool, an innovative electric air conditioning system, uses a new compressor whose rotary pump design runs off an energy-efficient, brushless DC motor and allows pilots to use the air conditioner before the engine even starts

  8. Small Engine Technology (SET) Task 24 Business and Regional Aircraft System Studies

    NASA Technical Reports Server (NTRS)

    Lieber, Lysbeth

    2003-01-01

    This final report has been prepared by Honeywell Engines & Systems, Phoenix, Arizona, a unit of Honeywell International Inc., documenting work performed during the period June 1999 through December 1999 for the National Aeronautics and Space Administration (NASA) Glenn Research Center, Cleveland, Ohio, under the Small Engine Technology (SET) Program, Contract No. NAS3-27483, Task Order 24, Business and Regional Aircraft System Studies. The work performed under SET Task 24 consisted of evaluating the noise reduction benefits compared to the baseline noise levels of representative 1992 technology aircraft, obtained by applying different combinations of noise reduction technologies to five business and regional aircraft configurations. This report focuses on the selection of the aircraft configurations and noise reduction technologies, the prediction of noise levels for those aircraft, and the comparison of the noise levels with those of the baseline aircraft.

  9. Design of a turbofan powered regional transport aircraft

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The majority of the market for small commercial transport aircraft is dominated by high-efficiency, propeller-driven aircraft of non-U.S. manufacture. During the past year senior student design teams at Purdue developed and then responded to a Request For Proposal (RFP) for a regional transport aircraft. The RFP development identified promising world markets and their needs. The students responded by designing aircraft with ranges of up to 1500 n.m. and passenger loads of 50 to 90. During the design project, special emphasis was placed upon keeping acquisition cost and direct operating costs at a low level while providing passengers with quality comfort levels. Twelve student teams worked for one semester developing their designs. Several of the more successful designs and those that placed a high premium on innovation are described. The depth of detail and analysis in these student efforts are also illustrated.

  10. Toxicological findings in fatally injured pilots of 979 amateur-built aircraft accidents.

    DOT National Transportation Integrated Search

    2011-12-01

    "Biological samples collected from fatally injured pilots in aviation accidents involving all types of aircraft, including : amateur-built aircraft, are submitted to the Civil Aerospace Medical Institute (CAMI) for accident investigation. : These sam...

  11. Automation of the aircraft design process

    NASA Technical Reports Server (NTRS)

    Heldenfels, R. R.

    1974-01-01

    The increasing use of the computer to automate the aerospace product development and engineering process is examined with emphasis on structural analysis and design. Examples of systems of computer programs in aerospace and other industries are reviewed and related to the characteristics of aircraft design in its conceptual, preliminary, and detailed phases. Problems with current procedures are identified, and potential improvements from optimum utilization of integrated disciplinary computer programs by a man/computer team are indicated.

  12. Public Sector Benefits From Aerospace Research and Development

    ERIC Educational Resources Information Center

    Hamilton, Jeffrey T.

    1973-01-01

    Many benefits from aerospace research have occurred: research on quiet aircraft engines, worldwide news coverage, contributions to the national economy, development of reliable fluid amplifiers and logic systems, attempts to control airport congestion, a low speed air sensor for use on a pulmonary flow meter and even as a flow meter in a large…

  13. A New Approach to Aircraft Robust Performance Analysis

    NASA Technical Reports Server (NTRS)

    Gregory, Irene M.; Tierno, Jorge E.

    2004-01-01

    A recently developed algorithm for nonlinear system performance analysis has been applied to an F16 aircraft to begin evaluating the suitability of the method for aerospace problems. The algorithm has a potential to be much more efficient than the current methods in performance analysis for aircraft. This paper is the initial step in evaluating this potential.

  14. Influence of structural dynamics on vehicle design - Government view. [of aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Kordes, E. E.

    1977-01-01

    Dynamic design considerations for aerospace vehicles are discussed, taking into account fixed wing aircraft, rotary wing aircraft, and launch, space, and reentry vehicles. It is pointed out that space vehicles have probably had the most significant design problems from the standpoint of structural dynamics, because their large lightweight structures are highly nonlinear. Examples of problems in the case of conventional aircraft include the flutter encountered by high performance military aircraft with external stores. A description is presented of a number of examples which illustrate the direction of present efforts for improving aircraft efficiency. Attention is given to the results of studies on the structural design concepts for the arrow-wing supersonic cruise aircraft configuration and a system study on low-wing-loading, short haul transports.

  15. Fourth NASA Workshop on Computational Control of Flexible Aerospace Systems, part 2

    NASA Technical Reports Server (NTRS)

    Taylor, Lawrence W., Jr. (Compiler)

    1991-01-01

    A collection of papers presented at the Fourth NASA Workshop on Computational Control of Flexible Aerospace Systems is given. The papers address modeling, systems identification, and control of flexible aircraft, spacecraft and robotic systems.

  16. New developments in aluminum for aircraft and automobiles

    NASA Technical Reports Server (NTRS)

    Petit, Jocelyn I.

    1994-01-01

    A common bond for the aircraft and automobile industry is the need for cost-efficient, lightweight structures such as provided by aluminum based materials. The topics are presented in viewgraph form and cover the following: new developments in aluminum for aircraft and automobiles; forces shaping future automotive materials needs; aluminum strength/weakness versus competitive materials; evolution of aluminum aerospace alloys; forces shaping future aircraft materials needs; fiber/metal structural laminates; and property requirements for jetliner and military transport applications.

  17. A Survey of Power Electronics Applications in Aerospace Technologies

    NASA Technical Reports Server (NTRS)

    Kankam, M. David; Elbuluk, Malik E.

    2001-01-01

    The insertion of power electronics in aerospace technologies is becoming widespread. The application of semiconductor devices and electronic converters, as summarized in this paper, includes the International Space Station, satellite power system, and motor drives in 'more electric' technology applied to aircraft, starter/generators and reusable launch vehicles. Flywheels, servo systems embodying electromechanical actuation, and spacecraft on-board electric propulsion are discussed. Continued inroad by power electronics depends on resolving incompatibility of using variable frequency for 400 Hz-operated aircraft equipment. Dual-use electronic modules should reduce system development cost.

  18. Industrial Design in Aerospace/Role of Aesthetics

    NASA Technical Reports Server (NTRS)

    Bushnell, Dennis M.

    2006-01-01

    Industrial design creates and develops concepts and specifications that seek to simultaneously and synergistically optimize function, production, value and appearance. The inclusion of appearance, or esthetics, as a major design metric represents both an augmentation of conventional engineering design and an intersection with artistic endeavor(s). Report surveys past and current industrial design practices and examples across aerospace including aircraft and spacecraft, both exterior and interior.

  19. Aircraft noise in the region of the Bucharest-Otopeni Airport. [noise pollution in airport environment

    NASA Technical Reports Server (NTRS)

    Costescu, M.; Gherghel, C.; Curtoglu, A.

    1974-01-01

    Aircraft noise, especially in the region adjoining airports, constitutes a problem that will be aggravated in the near future because of increasing aircraft traffic and the appearance of new types of large tonnage aircraft with continuously increasing powers and speeds. Criteria for the evaluation of aircraft noise are reported and some results of studies carried out in the region of Bucharest-Otopeni Airport are detailed.

  20. Assessment of the Flammability of Aircraft Hydraulic Fluids

    DTIC Science & Technology

    1979-07-01

    and C. Y. Ito, Editors, " Thermophysical Properties of Selected Aerospace Materials," Part 1, Thermal Radiation Properties , Purdue University., 1976...34 Thermophysical Properties of Selected Aerospace Materials," Part 1, Thermal Radiation Properties , Purdue University, 1976. 9. J. M. Kuchta, "Summary of...propagation properties , and heats of combustion of a number of aircraft fluids. These included currently used (cont’d) FtORM DD I JAN 7 1473 EDITION

  1. Training Engineers of Joint Programs for the European Aerospace Industry.

    ERIC Educational Resources Information Center

    Thomas, Jurgen

    1985-01-01

    Examines topics and issues related to training engineers of joint programs for the European aerospace industry. Forms of cooperation, European educational systems, and skills needed to successfully work as an engineer in a joint program for the European aircraft industry are the major areas addressed. (JN)

  2. Human systems integration in remotely piloted aircraft operations.

    PubMed

    Tvaryanas, Anthony P

    2006-12-01

    The role of humans in remotely piloted aircraft (RPAs) is qualitatively different from manned aviation, lessening the applicability of aerospace medicine human factors knowledge derived from traditional cockpits. Aerospace medicine practitioners should expect to be challenged in addressing RPA crewmember performance. Human systems integration (HSI) provides a model for explaining human performance as a function of the domains of: human factors engineering; personnel; training; manpower; environment, safety, and occupational health (ESOH); habitability; and survivability. RPA crewmember performance is being particularly impacted by issues involving the domains of human factors engineering, personnel, training, manpower, ESOH, and habitability. Specific HSI challenges include: 1) changes in large RPA operator selection and training; 2) human factors engineering deficiencies in current RPA ground control station design and their impact on human error including considerations pertaining to multi-aircraft control; and 3) the combined impact of manpower shortfalls, shiftwork-related fatigue, and degraded crewmember effectiveness. Limited experience and available research makes it difficult to qualitatively or quantitatively predict the collective impact of these issues on RPA crewmember performance. Attending to HSI will be critical for the success of current and future RPA crewmembers. Aerospace medicine practitioners working with RPA crewmembers should gain first-hand knowledge of their task environment while the larger aerospace medicine community needs to address the limited information available on RPA-related aerospace medicine human factors. In the meantime, aeromedical decisions will need to be made based on what is known about other aerospace occupations, realizing this knowledge may have only partial applicability.

  3. 38th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    Boesiger, Edward A. (Compiler)

    2006-01-01

    The Aerospace Mechanisms Symposium (AMS) provides a unique forum for those active in the design, production and use of aerospace mechanisms. A major focus is the reporting of problems and solutions associated with the development and flight certification of new mechanisms. Organized by the Mechanisms Education Association, the National Aeronautics and Space Administration and Lockheed Martin Space Systems Company (LMSSC) share the responsibility for hosting the AMS. Now in its 38th symposium, the AMS continues to be well attended, attracting participants from both the U.S. and abroad. The 38th AMs, hosted by the NASA Langley Research Center in Williamsburg, Virginia, was held May 17-19, 2006. During these three days, 34 papers were presented. Topics included gimbals, tribology, actuators, aircraft mechanisms, deployment mechanisms, release mechanisms, and test equipment. Hardware displays during the supplier exhibit gave attendees an opportunity to meet with developers of current and future mechanism components.

  4. IT Data Mining Tool Uses in Aerospace

    NASA Technical Reports Server (NTRS)

    Monroe, Gilena A.; Freeman, Kenneth; Jones, Kevin L.

    2012-01-01

    Data mining has a broad spectrum of uses throughout the realms of aerospace and information technology. Each of these areas has useful methods for processing, distributing, and storing its corresponding data. This paper focuses on ways to leverage the data mining tools and resources used in NASA's information technology area to meet the similar data mining needs of aviation and aerospace domains. This paper details the searching, alerting, reporting, and application functionalities of the Splunk system, used by NASA's Security Operations Center (SOC), and their potential shared solutions to address aircraft and spacecraft flight and ground systems data mining requirements. This paper also touches on capacity and security requirements when addressing sizeable amounts of data across a large data infrastructure.

  5. Aircraft Flutter Testing

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Wilmer Reed gained international recognition for his innovative research, contributions and patented ideas relating to flutter and aeroelasticity of aerospace vehicles at Langley Research Center. In the early 1980's, Reed retired from Langley and joined the engineering staff of Dynamic Engineering Inc. While at DEI, Reed conceived and patented the DEI Flutter Exciter, now used world-wide in flight flutter testing of new or modified aircraft designs. When activated, the DEI Flutter Exciter alternately deflects the airstream upward and downward in a rapid manner, creating a force similar to that produced by an oscillating trailing edge flap. The DEI Flutter Exciter is readily adaptable to a variety of aircraft.

  6. 75 FR 12713 - Airworthiness Directives; AVOX Systems and B/E Aerospace Oxygen Cylinders as Installed on Various...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-17

    .../E Aerospace Oxygen Cylinders as Installed on Various 14 CFR Part 23 and CAR 3 Airplanes AGENCY... and B/E Aerospace oxygen cylinders, as installed on various 14 CFR part 23 or CAR 3 airplanes. This... installed on various 14 CFR part 23 or CAR 3 airplanes and aircraft certificated in other categories. The...

  7. Aerospace Community. Aerospace Education I.

    ERIC Educational Resources Information Center

    Mickey, V. V.

    This book, one in the series on Aerospace Education I, emphasizes the two sides of aerospace--military aerospace and civilian aerospace. Chapter 1 includes a brief discussion on the organization of Air Force bases and missile sites in relation to their missions. Chapter 2 examines the community services provided by Air Force bases. The topics…

  8. NASA's activities in the conservation of strategic aerospace materials

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.

    1980-01-01

    The United States imports 50-100 percent of certain metals critical to the aerospace industry, namely, cobalt, columbium, chromium, and tantalum. In an effort to reduce this dependence on foreign sources, NASA is planning a program called Conservation of Strategic Aerospace Materials (COSAM), which will provide technology minimizing strategic metal content in the components of aerospace structures such as aircraft engines. With a proposed starting date of October 1981, the program will consist of strategic element substitution, process technology development, and alternate materials research. NASA's two-fold pre-COSAM studies center on, first, substitution research involving nickel-base and cobalt-base superalloys (Waspaloy, Udimet-700, MAE-M247, Rene 150, HA-188) used in turbine disks, low-pressure blades, turbine blades, and combustors; and, second, alternate materials research devoted initially to investigating possible structural applications of the intermetallic alloys nickel aluminide and iron aluminide.

  9. Aerospace materials for nonaerospace applications

    NASA Technical Reports Server (NTRS)

    Johnston, R. L.; Dawn, F. S.

    1974-01-01

    Many of the flame-resistant nonmetallic materials that were developed for the Apollo and Skylab programs are discussed for commercial and military applications. Interchanges of information are taking place with the government agencies, industries, and educational institutions, which are interested in applications of fire-safe nonmetallic materials. These materials are particularly applicable to the design of aircraft, mass transit interiors, residential and public building constructions, nursing homes and hospitals, and to other fields of fire safety applications. Figures 22, 23 and 24 show the potential nonaerospace applications of flame-resistant aerospace materials are shown.

  10. Postmortem alcohol production in fatal aircraft accidents.

    DOT National Transportation Integrated Search

    1992-07-01

    During 1989 and 1990, the Civil Aerospace Medical Institute (CAMI) received specimens from 975 victims of fatal aircraft accidents. The maximum concentration of ethanol allowed under FAA regulations (0.04%. 40mg/dL) was exceeded in 79 of these cases ...

  11. Civil Aircraft Side-Facing Seat Research Summary

    DTIC Science & Technology

    2012-11-01

    1983 to 2005, Proceedings of the American Helicopter Society Forum 66, Phoenix, Arizona, May 10-13, 2010. 11. Tulloch, J. Ejection Seat Back...Civil Aircraft Side-Facing Seat Research Summary Richard DeWeese David Moorcroft Civil Aerospace Medical Institute Federal Aviation...

  12. 75 FR 47197 - Airworthiness Directives; Schweizer Aircraft Corporation (Schweizer) Model 269D Helicopters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-05

    ..., Aviation Safety Engineer, FAA, New York Aircraft Certification Office, Airframe and Propulsion Branch, 1600..., Aerospace Engineer, Aviation Safety Engineer, FAA, New York Aircraft Certification Office, Airframe and Propulsion Branch, 1600 Stewart Ave., suite 410, Westbury, New York 11590, telephone (516) 228-7304, fax (516...

  13. Metal- and intermetallic-matrix composites for aerospace propulsion and power systems

    NASA Astrophysics Data System (ADS)

    Doychak, J.

    1992-06-01

    Successful development and deployment of metal-matrix composites and intermetallic- matrix composites are critical to reaching the goals of many advanced aerospace propulsion and power development programs. The material requirements are based on the aerospace propulsion and power system requirements, economics, and other factors. Advanced military and civilian aircraft engines will require higher specific strength materials that operate at higher temperatures, and the civilian engines will also require long lifetimes. The specific space propulsion and power applications require hightemperature, high-thermal-conductivity, and high-strength materials. Metal-matrix composites and intermetallic-matrix composites either fulfill or have the potential of fulfilling these requirements.

  14. Firefighting and Emergency Response Study of Advanced Composites Aircraft. Objective 2: Firefighting Effectiveness of Technologies and Agents on Composite Aircraft Fires

    DTIC Science & Technology

    2011-12-31

    current methods used for aluminum-skinned aircraft. To this end, a series of medium-scale fire experiments were performed on aerospace composite materials...History.....................................................................................................................4 3. METHODS , ASSUMPTIONS AND...4.3. Agent Cost Analysis ..........................................................................................................21 5. CONCLUSIONS

  15. Aerodynamic aircraft design methods and their notable applications: Survey of the activity in Japan

    NASA Technical Reports Server (NTRS)

    Fujii, Kozo; Takanashi, Susumu

    1991-01-01

    An overview of aerodynamic aircraft design methods and their recent applications in Japan is presented. A design code which was developed at the National Aerospace Laboratory (NAL) and is in use now is discussed, hence, most of the examples are the result of the collaborative work between heavy industry and the National Aerospace Laboratory. A wide variety of applications in transonic to supersonic flow regimes are presented. Although design of aircraft elements for external flows are the main focus, some of the internal flow applications are also presented. Recent applications of the design code, using the Navier Stokes and Euler equations in the analysis mode, include the design of HOPE (a space vehicle) and Upper Surface Blowing (USB) aircraft configurations.

  16. Development of Structural Health Management Technology for Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Prosser, W. H.

    2003-01-01

    As part of the overall goal of developing Integrated Vehicle Health Management (IVHM) systems for aerospace vehicles, NASA has focused considerable resources on the development of technologies for Structural Health Management (SHM). The motivations for these efforts are to increase the safety and reliability of aerospace structural systems, while at the same time decreasing operating and maintenance costs. Research and development of SHM technologies has been supported under a variety of programs for both aircraft and spacecraft including the Space Launch Initiative, X-33, Next Generation Launch Technology, and Aviation Safety Program. The major focus of much of the research to date has been on the development and testing of sensor technologies. A wide range of sensor technologies are under consideration including fiber-optic sensors, active and passive acoustic sensors, electromagnetic sensors, wireless sensing systems, MEMS, and nanosensors. Because of their numerous advantages for aerospace applications, most notably being extremely light weight, fiber-optic sensors are one of the leading candidates and have received considerable attention.

  17. Interdisciplinary optimum design. [of aerospace structures

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, Jaroslaw; Haftka, Raphael T.

    1986-01-01

    Problems related to interdisciplinary interactions in the design of a complex engineering systems are examined with reference to aerospace applications. The interdisciplinary optimization problems examined include those dealing with controls and structures, materials and structures, control and stability, structure and aerodynamics, and structure and thermodynamics. The discussion is illustrated by the following specific applications: integrated aerodynamic/structural optimization of glider wing; optimization of an antenna parabolic dish structure for minimum weight and prescribed emitted signal gain; and a multilevel optimization study of a transport aircraft.

  18. Aerospace Safety Advisory Panel report to the NASA acting administrator

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The level of activity of the Aerospace Safety Advisory Panel was increased smewhat during 1985 in concert with the increased mission rate of the National Space Transportation System, the evolutionary changes in management and operation of that program, and the preparation of the Vandenberg Launch Site; the implementation of the Program Definition Phase of the Space Station Program; and the actual flight testing of the X-29 research aircraft. Impending payload STS missions and NASA's overall aircraft operations are reviewed. The safety aspects of the LEASAT salvage mission were assessed. The findings and recommendation of the committee are summerized.

  19. MEMS sensing and control: an aerospace perspective

    NASA Astrophysics Data System (ADS)

    Schoess, Jeffrey N.; Arch, David K.; Yang, Wei; Cabuz, Cleopatra; Hocker, Ben; Johnson, Burgess R.; Wilson, Mark L.

    2000-06-01

    Future advanced fixed- and rotary-wing aircraft, launch vehicles, and spacecraft will incorporate smart microsensors to monitor flight integrity and provide flight control inputs. This paper provides an overview of Honeywell's MEMS technologies for aerospace applications of sensing and control. A unique second-generation polysilicon resonant microbeam sensor design is described. It incorporates a micron-level vacuum-encapsulated microbeam to optically sense aerodynamic parameters and to optically excite the sensor pick off: optically excited self-resonant microbeams form the basis for a new class of versatile, high- performance, low-cost MEMS sensors that uniquely combine silicon microfabrication technology with optoelectronic technology that can sense dynamic pressure, acceleration forces, acoustic emission, and many other aerospace parameters of interest. Honeywell's recent work in MEMS tuning fork gyros for inertial sensing and a MEMS free- piston engine are also described.

  20. Aircraft Electric/Hybrid-Electric Power and Propulsion Workshop Perspective of the V/STOL Aircraft Systems Tech Committee

    NASA Technical Reports Server (NTRS)

    Hange, Craig E.

    2016-01-01

    This presentation will be given at the AIAA Electric Hybrid-Electric Power Propulsion Workshop on July 29, 2016. The workshop is being held so the AIAA can determine how it can support the introduction of electric aircraft into the aerospace industry. This presentation will address the needs of the community within the industry that advocates the use of powered-lift as important new technologies for future aircraft and air transportation systems. As the current chairman of the VSTOL Aircraft Systems Technical Committee, I will be presenting generalized descriptions of the past research in developing powered-lift and generalized observations on how electric and hybrid-electric propulsion may provide advances in the powered-lift field.

  1. Aircraft Spacings that Produce a Vortex-Free Region Below Flight Formation

    NASA Technical Reports Server (NTRS)

    Rossow, Vernon J.

    2000-01-01

    Theoretical estimates are presented for the motion of vortex wakes shed by multiple aircraft flying in close formation. The purpose of the theoretical study was to determine whether the spacings between adjacent aircraft in close formations could be designed so that the lift-generated vortices being trailed would move upward rather than downward. In this way, a region below the formation is produced that is free of vortices. It was found that aircraft can be arranged in formations so that the inboard wake vortices all move upward rather than downward. The two outboard vortices travel downward at a greatly reduced velocity that depends on the number of aircraft in the formation. If the desired motions are to be produced, the lateral spacings between adjacent aircraft centerlines must be between 1.1 and 1.5 wingspans, and the vertical spacings between -0.025 and -0.15 wingspans. Since the range of acceptable spacings is small, it is recommended that the position accuracy between aircraft in the formation be kept within about + or - 0.01 wingspan of the center of acceptable spacings so that aircraft meandering do not cause unwanted vortex excursions. It was also found that, if the in-trail spacings between adjacent aircraft are more than 4 wingspans, the foregoing vertical spacings must be adjusted to allow for the additional downward travel of the vortices shed by leading aircraft.

  2. Fractional order PID controller for improvement of PMSM speed control in aerospace applications

    NASA Astrophysics Data System (ADS)

    Saraji, Ali Motalebi; Ghanbari, Mahmood

    2014-12-01

    Because of the benefits reduced size, cost and maintenance, noise, CO2 emissions and increased control flexibility and precision, to meet these expectations, electrical equipment increasingly utilize in modern aircraft systems and aerospace industry rather than conventional mechanic, hydraulic, and pneumatic power systems. Electric motor drives are capable of converting electrical power to drive actuators, pumps, compressors, and other subsystems at variable speeds. In the past decades, permanent magnet synchronous motor (PMSM) and brushless dc (BLDC) motor were investigated for aerospace applications such as aircraft actuators. In this paper, the fractional-order PID controller is used in the design of speed loop of PMSM speed control system. Having more parameters for tuning fractional order PID controller lead to good performance ratio to integer order. This good performance is shown by comparison fractional order PID controller with the conventional PI and tuned PID controller by Genetic algorithm in MATLAB soft wear.

  3. Testing Aerospace Gears for Bending Fatigue, Pitting, and Scuffing

    NASA Technical Reports Server (NTRS)

    Krantz, Timothy; Anderson, Cody; Shareef, Iqbal; Fetty, Jason

    2017-01-01

    This work was motivated by the goal to increase the power to weight ratio of rotorcraft drive systems. Experiments were conducted to establish the performance of gears made from an aerospace alloy used in production aircraft. Bending fatigue, pitting, and scuffing test procedures and results are documented. The data establishes a baseline for evaluation of new technologies. Recommendations are made to improve test procedures for future work.

  4. Research Opportunities in Advanced Aerospace Concepts

    NASA Technical Reports Server (NTRS)

    Jones, Gregory S.; Bangert, Linda S.; Garber, Donald P.; Huebner, Lawrence D.; McKinley, Robert E.; Sutton, Kenneth; Swanson, Roy C., Jr.; Weinstein, Leonard

    2000-01-01

    This report is a review of a team effort that focuses on advanced aerospace concepts of the 21st Century. The paper emphasis advanced technologies, rather than cataloging every unusual aircraft that has ever been attempted. To dispel the myth that "aerodynamics is a mature science" an extensive list of "What we cannot do, or do not know" was enumerated. A zeit geist, a feeling for the spirit of the times, was developed, based on existing research goals. Technological drivers and the constraints that might influence these technological developments in a future society were also examined. The present status of aeronautics, space exploration, and non-aerospace applications, both military and commercial, including enabling technologies are discussed. A discussion of non-technological issues affecting advanced concepts research is presented. The benefit of using the study of advanced vehicles as a tool to uncover new directions for technology development is often necessary. An appendix is provided containing examples of advanced vehicle configurations currently of interest.

  5. Reusable aerospace system with horizontal take-off

    NASA Astrophysics Data System (ADS)

    Lozino-Lozinskii, G. E.; Shkadov, L. M.; Plokhikh, V. P.

    1990-10-01

    An aerospace system (ASS) concept aiming at cost reductions for launching facilities, reduction of ground preparations for start and launch phases, flexibility of use, international inspection of space systems, and emergency rescue operations is presented. The concept suggests the utilization of an AN-225 subsonic carrier aircraft capable of carrying up to 250 ton of the external load, external fuel tank, and orbital spacecraft. It includes a horizontal take-off, full reusable or single-use system, orbital aircraft with hypersonic characteristics, the use of an air-breathing jet engine on the first stage of launch, and the utilization of advanced structural materials. Among possible applications for ASS are satellite launches into low supporting orbits, suborbital cargo and passenger flights, scientific and economic missions, and the technical servicing of orbital vehicles and stations.

  6. Ultrasonic Characterization of Aerospace Composites

    NASA Technical Reports Server (NTRS)

    Leckey, Cara; Johnston, Patrick; Haldren, Harold; Perey, Daniel

    2015-01-01

    Composite materials have seen an increased use in aerospace in recent years and it is expected that this trend will continue due to the benefits of reduced weight, increased strength, and other factors. Ongoing work at NASA involves the investigation of the large-scale use of composites for spacecraft structures (SLS components, Orion Composite Crew Module, etc). NASA is also involved in work to enable the use of composites in advanced aircraft structures through the Advanced Composites Project (ACP). In both areas (space and aeronautics) there is a need for new nondestructive evaluation and materials characterization techniques that are appropriate for characterizing composite materials. This paper will present an overview of NASA's needs for characterizing aerospace composites, including a description of planned and ongoing work under ACP for the detection of composite defects such as fiber waviness, reduced bond strength, delamination damage, and microcracking. The research approaches include investigation of angle array, guided wave, and phase sensitive ultrasonic methods. The use of ultrasonic simulation tools for optimizing and developing methods will also be discussed.

  7. Modeling Aircraft Emissions for Regional-scale Air Quality: Adapting a New Global Aircraft Emissions Database for the U.S

    NASA Astrophysics Data System (ADS)

    Arunachalam, S.; Baek, B. H.; Vennam, P. L.; Woody, M. C.; Omary, M.; Binkowski, F.; Fleming, G.

    2012-12-01

    Commercial aircraft emit substantial amounts of pollutants during their complete activity cycle that ranges from landing-and-takeoff (LTO) at airports to cruising in upper elevations of the atmosphere, and affect both air quality and climate. Since these emissions are not uniformly emitted over the earth, and have substantial temporal and spatial variability, it is vital to accurately evaluate and quantify the relative impacts of aviation emissions on ambient air quality. Regional-scale air quality modeling applications do not routinely include these aircraft emissions from all cycles. Federal Aviation Administration (FAA) has developed the Aviation Environmental Design Tool (AEDT), a software system that dynamically models aircraft performance in space and time to calculate fuel burn and emissions from gate-to-gate for all commercial aviation activity from all airports globally. To process in-flight aircraft emissions and to provide a realistic representation of these for treatment in grid-based air quality models, we have developed an interface processor called AEDTproc that accurately distributes full-flight chorded emissions in time and space to create gridded, hourly model-ready emissions input data. Unlike the traditional emissions modeling approach of treating aviation emissions as ground-level sources or processing emissions only from the LTO cycles in regional-scale air quality studies, AEDTproc distributes chorded inventories of aircraft emissions during LTO cycles and cruise activities into a time-variant 3-D gridded structure. We will present results of processed 2006 global emissions from AEDT over a continental U.S. modeling domain to support a national-scale air quality assessment of the incremental impacts of aircraft emissions on surface air quality. This includes about 13.6 million flights within the U.S. out of 31.2 million flights globally. We will focus on assessing spatio-temporal variability of these commercial aircraft emissions, and

  8. Design of the advanced regional aircraft, the DART-75

    NASA Technical Reports Server (NTRS)

    Elliott, Steve; Gislason, Jason; Huffstetler, Mark; Mann, Jon; Withers, Ashley; Zimmerman, Mark

    1992-01-01

    This design analysis is intended to show the capabilities of the DART-75, a 75 passenger medium-range regional transport. Included are the detailed descriptions of the structures, performance, stability and control, weight and balance, and engine design. The design should allow for the DART to become the premier regional aircraft of the future due to some advanced features like the canard, semi-composite construction, and advanced engines.

  9. Fractional order PID controller for improvement of PMSM speed control in aerospace applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saraji, Ali Motalebi; Ghanbari, Mahmood

    Because of the benefits reduced size, cost and maintenance, noise, CO2 emissions and increased control flexibility and precision, to meet these expectations, electrical equipment increasingly utilize in modern aircraft systems and aerospace industry rather than conventional mechanic, hydraulic, and pneumatic power systems. Electric motor drives are capable of converting electrical power to drive actuators, pumps, compressors, and other subsystems at variable speeds. In the past decades, permanent magnet synchronous motor (PMSM) and brushless dc (BLDC) motor were investigated for aerospace applications such as aircraft actuators. In this paper, the fractional-order PID controller is used in the design of speed loopmore » of PMSM speed control system. Having more parameters for tuning fractional order PID controller lead to good performance ratio to integer order. This good performance is shown by comparison fractional order PID controller with the conventional PI and tuned PID controller by Genetic algorithm in MATLAB soft wear.« less

  10. Knowledge-Based Aircraft Automation: Managers Guide on the use of Artificial Intelligence for Aircraft Automation and Verification and Validation Approach for a Neural-Based Flight Controller

    NASA Technical Reports Server (NTRS)

    Broderick, Ron

    1997-01-01

    The ultimate goal of this report was to integrate the powerful tools of artificial intelligence into the traditional process of software development. To maintain the US aerospace competitive advantage, traditional aerospace and software engineers need to more easily incorporate the technology of artificial intelligence into the advanced aerospace systems being designed today. The future goal was to transition artificial intelligence from an emerging technology to a standard technology that is considered early in the life cycle process to develop state-of-the-art aircraft automation systems. This report addressed the future goal in two ways. First, it provided a matrix that identified typical aircraft automation applications conducive to various artificial intelligence methods. The purpose of this matrix was to provide top-level guidance to managers contemplating the possible use of artificial intelligence in the development of aircraft automation. Second, the report provided a methodology to formally evaluate neural networks as part of the traditional process of software development. The matrix was developed by organizing the discipline of artificial intelligence into the following six methods: logical, object representation-based, distributed, uncertainty management, temporal and neurocomputing. Next, a study of existing aircraft automation applications that have been conducive to artificial intelligence implementation resulted in the following five categories: pilot-vehicle interface, system status and diagnosis, situation assessment, automatic flight planning, and aircraft flight control. The resulting matrix provided management guidance to understand artificial intelligence as it applied to aircraft automation. The approach taken to develop a methodology to formally evaluate neural networks as part of the software engineering life cycle was to start with the existing software quality assurance standards and to change these standards to include neural network

  11. Advanced materials for aircraft engine applications.

    PubMed

    Backman, D G; Williams, J C

    1992-02-28

    A review of advances for aircraft engine structural materials and processes is presented. Improved materials, such as superalloys, and the processes for making turbine disks and blades have had a major impact on the capability of modern gas turbine engines. New structural materials, notably composites and intermetallic materials, are emerging that will eventually further enhance engine performance, reduce engine weight, and thereby enable new aircraft systems. In the future, successful aerospace manufacturers will combine product design and materials excellence with improved manufacturing methods to increase production efficiency, enhance product quality, and decrease the engine development cycle time.

  12. Thermal Decoating of Aerospace Aluminum Alloys for Aircraft Recycling

    NASA Astrophysics Data System (ADS)

    Muñiz Lerma, Jose Alberto; Jung, In-Ho; Brochu, Mathieu

    2016-06-01

    Recycling of aircraft aluminum alloys can be complex due to the presence of their corrosion protection coating that includes inorganic compounds containing Cr(VI). In this study, the characterization and thermal degradation behavior of the coating on aluminum substrates coming from an aircraft destined for recycling are presented. Elements such as Sr, Cr, Si, Ba, Ti, S, C, and O were found in three different layers by EDS elemental mapping corresponding to SrCrO4, Rutile-TiO2, SiO2, and BaSO4 with an overall particle size D 50 = 1.96 µm. The thermal degradation profile analyzed by TGA showed four different stages. The temperature of complete degradation at the fourth stage occurred at 753.15 K (480 °C) at lower heating rates. At higher heating rates and holding an isotherm at the same temperature, the residence time to fully decompose the aircraft coating has been estimated as 4.0 ± 0.2 minutes. The activation energy calculated by the Flynn-Wall-Ozawa and the modified Coats-Redfern methods for multiple fraction of decomposition showed a non-constant behavior indicating the complexity of the reaction. Finally, the concentration of Cr(VI) released to the environment during thermal decoating was obtained by UV-Vis spectroscopy. It was found that 2.6 ± 0.1 µg of Cr(VI)/mm2 of aluminum substrate could be released unless adequate particle controls are used.

  13. Development of methodologies for the estimation of thermal properties associated with aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Scott, Elaine P.

    1993-01-01

    Thermal stress analyses are an important aspect in the development of aerospace vehicles such as the National Aero-Space Plane (NASP) and the High-Speed Civil Transport (HSCT) at NASA-LaRC. These analyses require knowledge of the temperature within the structures which consequently necessitates the need for thermal property data. The initial goal of this research effort was to develop a methodology for the estimation of thermal properties of aerospace structural materials at room temperature and to develop a procedure to optimize the estimation process. The estimation procedure was implemented utilizing a general purpose finite element code. In addition, an optimization procedure was developed and implemented to determine critical experimental parameters to optimize the estimation procedure. Finally, preliminary experiments were conducted at the Aircraft Structures Branch (ASB) laboratory.

  14. Development of methodologies for the estimation of thermal properties associated with aerospace vehicles

    NASA Astrophysics Data System (ADS)

    Scott, Elaine P.

    1993-12-01

    Thermal stress analyses are an important aspect in the development of aerospace vehicles such as the National Aero-Space Plane (NASP) and the High-Speed Civil Transport (HSCT) at NASA-LaRC. These analyses require knowledge of the temperature within the structures which consequently necessitates the need for thermal property data. The initial goal of this research effort was to develop a methodology for the estimation of thermal properties of aerospace structural materials at room temperature and to develop a procedure to optimize the estimation process. The estimation procedure was implemented utilizing a general purpose finite element code. In addition, an optimization procedure was developed and implemented to determine critical experimental parameters to optimize the estimation procedure. Finally, preliminary experiments were conducted at the Aircraft Structures Branch (ASB) laboratory.

  15. 76 FR 18033 - Airworthiness Directives; Piper Aircraft, Inc. (Type Certificate Previously Held by The New Piper...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-01

    ..., any comments received, and other information. The address for the Docket Office (phone: 800-647-5527... INFORMATION CONTACT: Darby Mirocha, Aerospace Engineer, FAA, Atlanta Aircraft Certification Office, 1701... Manager, Atlanta Aircraft Certification Office, FAA, has the authority to approve AMOCs for this AD, if...

  16. Bibliography on aircraft fire hazards and safety. Volume 2: Safety. Part 1: Key numbers 1 to 524

    NASA Technical Reports Server (NTRS)

    Pelouch, J. J., Jr. (Compiler); Hacker, P. T. (Compiler)

    1974-01-01

    Bibliographic citations are presented to describe and define aircraft safety methods, equipment, and criteria. Some of the subjects discussed are: (1) fire and explosion suppression using whiffle balls, (2) ultraviolet flame detecting sensors, (3) evaluation of flame arrestor materials for aircraft fuel systems, (4) crash fire prevention system for supersonic commercial aircraft, and (5) fire suppression for aerospace vehicles.

  17. Advanced model-based FDIR techniques for aerospace systems: Today challenges and opportunities

    NASA Astrophysics Data System (ADS)

    Zolghadri, Ali

    2012-08-01

    This paper discusses some trends and recent advances in model-based Fault Detection, Isolation and Recovery (FDIR) for aerospace systems. The FDIR challenges range from pre-design and design stages for upcoming and new programs, to improvement of the performance of in-service flying systems. For space missions, optimization of flight conditions and safe operation is intrinsically related to GNC (Guidance, Navigation & Control) system of the spacecraft and includes sensors and actuators monitoring. Many future space missions will require autonomous proximity operations including fault diagnosis and the subsequent control and guidance recovery actions. For upcoming and future aircraft, one of the main issues is how early and robust diagnosis of some small and subtle faults could contribute to the overall optimization of aircraft design. This issue would be an important factor for anticipating the more and more stringent requirements which would come in force for future environmentally-friendlier programs. The paper underlines the reasons for a widening gap between the advanced scientific FDIR methods being developed by the academic community and technological solutions demanded by the aerospace industry.

  18. Future regional transport aircraft market, constraints, and technology stimuli

    NASA Technical Reports Server (NTRS)

    Harvey, W. Don; Foreman, Brent

    1992-01-01

    This report provides updated information on the current market and operating environment and identifies interlinking technical possibilities for competitive future commuter-type transport aircraft. The conclusions on the market and operating environment indicate that the regional airlines are moving toward more modern and effective fleets with greater passenger capacity and comfort, reduced noise levels, increased speed, and longer range. This direction leads to a nearly 'seamless' service and continued code-sharing agreements with the major carriers. Whereas the benefits from individual technologies may be small, the overall integration in existing and new aircraft designs can produce improvements in direct operating cost and competitiveness. Production costs are identified as being equally important as pure technical advances.

  19. Longitudinal long-period dynamics of aerospace craft

    NASA Technical Reports Server (NTRS)

    Berry, Donald T.

    1988-01-01

    Linear analyses are performed to examine the generic aspects of aerospace vehicle longitudinal long-period or trajectory modes of motion. The influence of Mach number, dynamic pressure, thrust-to-drag ratio, and propulsion system thrust laws on the longitudinal trajectory modes is presented in terms of phugoid frequency and damping and height mode stability. The results of these analyses are compared to flying qualities requirements where possible, and potential deficiencies in both the vehicle and the criteria are noted. A preliminary look at possible augmentation schemes to improve potential deficiencies is also presented. Interpretation of the practical consequences of the results is aided by typical time histories. Results indicate that propulsion system characteristics are the dominant influence on the longitudinal long-period flight dynamics of hypersonic aerospace craft. However, straightforward augmentation systems demonstrated the potential to accommodate these influences if the effects are included in the design process. These efforts may be hampered by a lack of design criteria for hypersonic aircraft.

  20. Mishap risk control for advanced aerospace/composite materials

    NASA Technical Reports Server (NTRS)

    Olson, John M.

    1994-01-01

    Although advanced aerospace materials and advanced composites provide outstanding performance, they also present several unique post-mishap environmental, safety, and health concerns. The purpose of this paper is to provide information on some of the unique hazards and concerns associated with these materials when damaged by fire, explosion, or high-energy impact. Additionally, recommended procedures and precautions are addressed as they pertain to all phases of a composite aircraft mishap response, including fire-fighting, investigation, recovery, clean-up, and guidelines are general in nature and not application-specific. The goal of this project is to provide factual and realistic information which can be used to develop consistent and effective procedures and policies to minimize the potential environmental, safety, and health impacts of a composite aircraft mishap response effort.

  1. The Aerospace Age. Aerospace Education I.

    ERIC Educational Resources Information Center

    Smith, J. C.

    This book is written for use only in the Air Force ROTC program and cannot be purchased on the open market. The book describes the historical development of aerospace industry. The first chapter contains a brief review of the aerospace environment and the nature of technological changes brought by the aerospace revolution. The following chapter…

  2. Payload Technologies for Remotely Piloted Aircraft

    NASA Technical Reports Server (NTRS)

    Wegener, Steve

    2000-01-01

    Matching the capabilities of Remotely Piloted Aircraft (RPA) to the needs of users defines the direction of future investment. These user needs and advances in payload capabilities are driving the evolution of a commercially viable RPA aerospace industry. New perspectives are needed to realize the potential of RPAs. Advances in payload technologies and the impact on RPA design and operations will be explored.

  3. Payload Technologies For Remotely Piloted Aircraft

    NASA Technical Reports Server (NTRS)

    Wegener, Steve; Condon, Estelle (Technical Monitor)

    2001-01-01

    Matching the capabilities of Remotely Piloted Aircraft (RPA) to the needs of users defines the direction of future investment. These user needs and advances in payload capabilities are driving the evolution of a commercially viable RPA aerospace industry. New perspectives are needed to realize the potential of RPAs. Advances in payload technologies and the impact on RPA design and operations will be explored.

  4. AGARD Flight Test Instrumentation Series. Volume 7. Strain Gauge Measurements on Aircraft

    DTIC Science & Technology

    1976-04-01

    U.S. DEPARTMENT OF CRY11ERCE Natioal Techaical Infnaitm Soice AD-A026 838 AGARD FLIGHT TEST INSTRUMENTATION SERIES VOLUME 7. STRAIN GUAGE...MEASUREMENTS ON AIRCRAFT ADVISORY GROUP FOR AEROSPACE RESEARCH AND DEVELOPMENT PREPARED FOR.I NORTH ATLANTIC TREATY ORGANIZATION APRIL 1976 • • ,. h VI -i• d...INFORMATION DOCUMENT PROCESSING WORKSHEET ,5.RVICE USCOMM-DC 41420.P7I AGARD-AG-160 Volume 7 NORTH ATLANTIC TREATY ORGANIZATION ADVISORY GROUP FOR AEROSPACE

  5. Serial Escape System For Aircraft Crews

    NASA Technical Reports Server (NTRS)

    Wood, Kenneth E.

    1990-01-01

    Emergency escape system for aircraft and aerospace vehicles ejects up to seven crewmembers, one by one, within 120 s. Intended for emergencies in which disabled craft still in stable flight at no more than 220 kn (113 m/s) equivalent airspeed and sinking no faster than 110 ft/s (33.5 m/s) at altitudes up to 50,000 ft (15.2 km). Ejection rockets load themselves from magazine after each crewmember ejected. Jumpmaster queues other crewmembers and helps them position themselves on egress ramp. Rockets pull crewmembers clear of aircraft structure. Provides orderly, controlled exit and avoids ditching at sea or landing in rough terrain.

  6. The aerospace energy systems laboratory: Hardware and software implementation

    NASA Technical Reports Server (NTRS)

    Glover, Richard D.; Oneil-Rood, Nora

    1989-01-01

    For many years NASA Ames Research Center, Dryden Flight Research Facility has employed automation in the servicing of flight critical aircraft batteries. Recently a major upgrade to Dryden's computerized Battery Systems Laboratory was initiated to incorporate distributed processing and a centralized database. The new facility, called the Aerospace Energy Systems Laboratory (AESL), is being mechanized with iAPX86 and iAPX286 hardware running iRMX86. The hardware configuration and software structure for the AESL are described.

  7. Dynamic tests of composite panels of an aircraft wing

    NASA Astrophysics Data System (ADS)

    Splichal, Jan; Pistek, Antonin; Hlinka, Jiri

    2015-10-01

    The paper describes the analysis of aerospace composite structures under dynamic loading. Today, it is common to use design procedures based on assumption of static loading only, and dynamic loading is rarely assumed and applied in design and certification of aerospace structures. The paper describes the application of dynamic loading for the design of aircraft structures, and the validation of the procedure on a selected structure. The goal is to verify the possibility of reducing the weight through improved design/modelling processes using dynamic loading instead of static loading. The research activity focuses on the modelling and testing of a composite panel representing a local segment of an aircraft wing section, investigating in particular the buckling behavior under dynamic loading. Finite Elements simulation tools are discussed, as well as the advantages of using a digital optical measurement system for the evaluation of the tests. The comparison of the finite element simulations with the results of the tests is presented.

  8. The national aero-space plane

    NASA Technical Reports Server (NTRS)

    Mendez, Bruce

    1988-01-01

    The National Aerospace Plane is an extremely versatile and adaptable aircraft. It can be developed into an Orient Express that would dramatically improve trade with countries in Asia and elsewhere: a commuter transport to ferry men and materials to space, an advanced tactical fighter or bomber, and an unparalleled high altitude spy-plane to observe troubled spots all over the globe. Utilizing the technology developed by this pilot program, it will be possible to quickly and easily get to low Earth orbit, go halfway around the world in a fraction of the time it previously took, and lead the world in the development of advanced technology to improve our lives and the lives of many others.

  9. A Briefing on Metrics and Risks for Autonomous Decision-Making in Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Frost, Susan; Goebel, Kai Frank; Galvan, Jose Ramon

    2012-01-01

    Significant technology advances will enable future aerospace systems to safely and reliably make decisions autonomously, or without human interaction. The decision-making may result in actions that enable an aircraft or spacecraft in an off-nominal state or with slightly degraded components to achieve mission performance and safety goals while reducing or avoiding damage to the aircraft or spacecraft. Some key technology enablers for autonomous decision-making include: a continuous state awareness through the maturation of the prognostics health management field, novel sensor development, and the considerable gains made in computation power and data processing bandwidth versus system size. Sophisticated algorithms and physics based models coupled with these technological advances allow reliable assessment of a system, subsystem, or components. Decisions that balance mission objectives and constraints with remaining useful life predictions can be made autonomously to maintain safety requirements, optimal performance, and ensure mission objectives. This autonomous approach to decision-making will come with new risks and benefits, some of which will be examined in this paper. To start, an account of previous work to categorize or quantify autonomy in aerospace systems will be presented. In addition, a survey of perceived risks in autonomous decision-making in the context of piloted aircraft and remotely piloted or completely autonomous unmanned autonomous systems (UAS) will be presented based on interviews that were conducted with individuals from industry, academia, and government.

  10. The very large airplane: safety, health, and comfort considerations. Air Transport Medicine Committee, Aerospace Medical Association.

    PubMed

    1997-10-01

    In recent years, aircraft manufacturers have been considering a very large airplane with a capacity of 600-1000 passengers. The human factors aspects of such an unprecedented enterprise demand that the aerospace medicine community take an active role early on in the design phase. Consequently, the Aerospace Medical Association formed an international task force to prepare a paper containing pertinent human factors recommendations for the manufacturers. This paper, including the recommendations herein, has been forwarded to Boeing and Airbus as well as to 50 major airlines of the world.

  11. 75 FR 36296 - Airworthiness Directives; Gulfstream Aerospace LP (Type Certificate Previously Held by Israel...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-25

    ... Manual to prohibit deploying the air brakes above the stated speed. You may obtain further information by... SPEED 360 KIAS/0.79 M i NOTE During emergency, air brakes may be used at speeds above 0.79 M i. '' Note... Airworthiness Directives; Gulfstream Aerospace LP (Type Certificate Previously Held by Israel Aircraft...

  12. 75 FR 57844 - Airworthiness Directives; Gulfstream Aerospace LP (Type Certificate Previously Held by Israel...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-23

    ... inserting a copy of this AD into the AFM. ``MAXIMUM AIR BRAKES OPERATION/EXTENDED SPEED 360 KIAS/0.79 Mi NOTE During emergency, air brakes may be used at speeds above 0.79 M i. '' Note 1: When a statement... Airworthiness Directives; Gulfstream Aerospace LP (Type Certificate Previously Held by Israel Aircraft...

  13. Drag Reduction Devices for Aircraft (Latest Citations from the Aerospace Database)

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The bibliography contains citations concerning the modeling, application, testing, and development of drag reduction devices for aircraft. Slots, flaps, fences, large-eddy breakup (LEBU) devices, vortex generators and turbines, Helmholtz resonators, and winglets are among the devices discussed. Contour shaping to ensure laminar flow, control boundary layer transition, or minimize turbulence is also covered. Applications include the wings, nacelles, fuselage, empennage, and externals of aircraft designed for high-lift, subsonic, or supersonic operation. The design, testing, and development of directional grooves, commonly called riblets, are covered in a separate bibliography.(Contains 50-250 citations and includes a subject term index and title list.)

  14. Passengers' perception of the safety demonstration on board an aircraft

    NASA Astrophysics Data System (ADS)

    Ruenruoy, Ratchada

    The cabin safety demonstration on board an aircraft is one of the methods to provide safety information for passengers before aircraft takeoff. However, passengers' enthusiasm toward safety demonstrations is normally low. Therefore, the study of passengers' perception toward safety briefings on board an aircraft is important in increasing the safety awareness for the travelling public on commercial aircraft. A survey was distributed to measure the perceptions of Middle Tennessee State University (MTSU) faculty and staff, Aerospace students, and international students who have traveled in the last year. It was generally found that watching the cabin safety demonstration before aircraft takeoff was believed to be important for passengers. However, the attention to the safety demonstration remained low because the safety briefings were not good enough in terms of clear communication, particularly in the recorded audio demonstration and the live safety demonstration methods of briefing.

  15. Metal- matrix composite processing technologies for aircraft engine applications

    NASA Astrophysics Data System (ADS)

    Pank, D. R.; Jackson, J. J.

    1993-06-01

    Titanium metal-matrix composites (MMC) are prime candidate materials for aerospace applications be-cause of their excellent high-temperature longitudinal strength and stiffness and low density compared with nickel- and steel-base materials. This article examines the steps GE Aircraft Engines (GEAE) has taken to develop an induction plasma deposition (IPD) processing method for the fabrication of Ti6242/SiC MMC material. Information regarding process methodology, microstructures, and mechani-cal properties of consolidated MMC structures will be presented. The work presented was funded under the GE-Aircraft Engine IR & D program.

  16. Insitu aircraft verification of the quality of satellite cloud winds over oceanic regions

    NASA Technical Reports Server (NTRS)

    Hasler, A. F.; Skillman, W. C.

    1979-01-01

    A five year aircraft experiment to verify the quality of satellite cloud winds over oceans using in situ aircraft inertial navigation system wind measurements is presented. The final results show that satellite measured cumulus cloud motions are very good estimators of the cloud base wind for trade wind and subtropical high regions. The average magnitude of the vector differences between the cloud motion and the cloud base wind is given. For cumulus clouds near frontal regions, the cloud motion agreed best with the mean cloud layer wind. For a very limited sample, cirrus cloud motions also most closely followed the mean wind in the cloud layer.

  17. Development of Integrated Programs for Aerospace-vehicle design (IPAD): Reference design process

    NASA Technical Reports Server (NTRS)

    Meyer, D. D.

    1979-01-01

    The airplane design process and its interfaces with manufacturing and customer operations are documented to be used as criteria for the development of integrated programs for the analysis, design, and testing of aerospace vehicles. Topics cover: design process management, general purpose support requirements, design networks, and technical program elements. Design activity sequences are given for both supersonic and subsonic commercial transports, naval hydrofoils, and military aircraft.

  18. The design and fabrication of microstrip omnidirectional array antennas for aerospace applications

    NASA Technical Reports Server (NTRS)

    Campbell, T. G.; Appleton, M. W.; Lusby, T. K.

    1976-01-01

    A microstrip antenna design concept was developed that will provide quasi-omnidirectional radiation pattern characteristics about cylindrical and conical aerospace structures. L-band and S-band antenna arrays were designed, fabricated, and, in some cases, flight tested for rocket, satellite, and aircraft drone applications. Each type of array design is discussed along with a thermal cover design that was required for the sounding rocket applications.

  19. Modeling Flight: The Role of Dynamically Scaled Free-Flight Models in Support of NASA's Aerospace Programs

    NASA Technical Reports Server (NTRS)

    Chambers, Joseph

    2010-01-01

    The state of the art in aeronautical engineering has been continually accelerated by the development of advanced analysis and design tools. Used in the early design stages for aircraft and spacecraft, these methods have provided a fundamental understanding of physical phenomena and enabled designers to predict and analyze critical characteristics of new vehicles, including the capability to control or modify unsatisfactory behavior. For example, the relatively recent emergence and routine use of extremely powerful digital computer hardware and software has had a major impact on design capabilities and procedures. Sophisticated new airflow measurement and visualization systems permit the analyst to conduct micro- and macro-studies of properties within flow fields on and off the surfaces of models in advanced wind tunnels. Trade studies of the most efficient geometrical shapes for aircraft can be conducted with blazing speed within a broad scope of integrated technical disciplines, and the use of sophisticated piloted simulators in the vehicle development process permits the most important segment of operations the human pilot to make early assessments of the acceptability of the vehicle for its intended mission. Knowledgeable applications of these tools of the trade dramatically reduce risk and redesign, and increase the marketability and safety of new aerospace vehicles. Arguably, one of the more viable and valuable design tools since the advent of flight has been testing of subscale models. As used herein, the term "model" refers to a physical article used in experimental analyses of a larger full-scale vehicle. The reader is probably aware that many other forms of mathematical and computer-based models are also used in aerospace design; however, such topics are beyond the intended scope of this document. Model aircraft have always been a source of fascination, inspiration, and recreation for humans since the earliest days of flight. Within the scientific

  20. Jet aircraft engine exhaust emissions database development: Year 1990 and 2015 scenarios

    NASA Technical Reports Server (NTRS)

    Landau, Z. Harry; Metwally, Munir; Vanalstyne, Richard; Ward, Clay A.

    1994-01-01

    Studies relating to environmental emissions associated with the High Speed Civil Transport (HSCT) military jet and charter jet aircraft were conducted by McDonnell Douglas Aerospace Transport Aircraft. The report includes engine emission results for baseline 1990 charter and military scenario and the projected jet engine emissions results for a 2015 scenario for a Mach 1.6 HSCT charter and military fleet. Discussions of the methodology used in formulating these databases are provided.

  1. Development of a Dynamically Configurable,Object-Oriented Framework for Distributed, Multi-modal Computational Aerospace Systems Simulation

    NASA Technical Reports Server (NTRS)

    Afjeh, Abdollah A.; Reed, John A.

    2003-01-01

    This research is aimed at developing a neiv and advanced simulation framework that will significantly improve the overall efficiency of aerospace systems design and development. This objective will be accomplished through an innovative integration of object-oriented and Web-based technologies ivith both new and proven simulation methodologies. The basic approach involves Ihree major areas of research: Aerospace system and component representation using a hierarchical object-oriented component model which enables the use of multimodels and enforces component interoperability. Collaborative software environment that streamlines the process of developing, sharing and integrating aerospace design and analysis models. . Development of a distributed infrastructure which enables Web-based exchange of models to simplify the collaborative design process, and to support computationally intensive aerospace design and analysis processes. Research for the first year dealt with the design of the basic architecture and supporting infrastructure, an initial implementation of that design, and a demonstration of its application to an example aircraft engine system simulation.

  2. Common display performance requirements for military and commercial aircraft product lines

    NASA Astrophysics Data System (ADS)

    Hoener, Steven J.; Behrens, Arthur J.; Flint, John R.; Jacobsen, Alan R.

    2001-09-01

    Obtaining high quality Active Matrix Liquid Crystal (AMLCD) glass to meet the needs of the commercial and military aerospace business is a major challenge, at best. With the demise of all domestic sources of AMLCD substrate glass, the industry is now focused on overseas sources, which are primarily producing glass for consumer electronics. Previous experience with ruggedizing commercial glass leads to the expectation that the aerospace industry can leverage off the commercial market. The problem remains, while the commercial industry is continually changing and improving its products, the commercial and military aerospace industries require stable and affordable supplies of AMLCD glass for upwards of 20 years to support production and maintenance operations. The Boeing Engineering and Supplier Management Process Councils have chartered a group of displays experts from multiple aircraft product divisions within the Boeing Company, the Displays Process Action Team (DPAT), to address this situation from an overall corporate perspective. The DPAT has formulated a set of Common Displays Performance Requirements for use across the corporate line of commercial and military aircraft products. Though focused on the AMLCD problem, the proposed common requirements are largely independent of display technology. This paper describes the strategy being pursued within the Boeing Company to address the AMLCD supply problem and details the proposed implementation process, centered on common requirements for both commercial and military aircraft displays. Highlighted in this paper are proposed common, or standard, display sizes and the other major requirements established by the DPAT, along with the rationale for these requirements.

  3. Development and analysis of insulation constructions for aerospace wiring applications

    NASA Astrophysics Data System (ADS)

    Slenski, George A.; Woodford, Lynn M.

    1993-03-01

    The Wright Laboratory Materials Directorate at WPAFB, Ohio recently completed a research and development program under contract with the McDonnell Douglas Aerospace Company, St. Louis, Missouri. Program objectives were to develop wire insulation performance requirements, evaluate candidate insulations, and prepare preliminary specification sheets on the most promising candidates. Aircraft wiring continues to be a high maintenance item and a major contributor to electrically-related aircraft mishaps. Mishap data on aircraft show that chafing of insulation is the most common mode of wire failure. Improved wiring constructions are expected to increase aircraft performance and decrease costs by reducing maintenance actions. In the laboratory program, new insulation constructions were identified that had overall improved performance in evaluation tests when compared to currently available MIL-W-81381 and MIL-W-22759 wiring. These insulations are principally aromatic polyimide and crosslinked ethylene tetrafluoroethylene (ETFE), respectively. Candidate insulations identified in preliminary specification sheets were principally fluoropolymers with a polyimide inner layer. Examples of insulation properties evaluated included flammability, high temperature mechanical and electrical performance, fluid immersion, and susceptibility to arc propagation under applied power chafing conditions. Potential next generation wire insulation materials are also reviewed.

  4. An overview of the British Aerospace HOTOL transatmospheric vehicle

    NASA Technical Reports Server (NTRS)

    Mesnard, J.

    1986-01-01

    British Aerospace's space-going aircraft and economical launcher Hotol, so named for its horizontal take-off and landing ability, is described. The craft uses Rolls Royce's new Swallow engine, the principle behind which is still secret, which burns atmospheric oxygen until it leaves the atmosphere and then switches to liquid oxygen. This lightens the craft's fuel load tremendously, so that it can carry significant payloads and still take off and land like a normal airplane. A typical future mission for the craft is described.

  5. The Aerospace Energy Systems Laboratory: A BITBUS networking application

    NASA Technical Reports Server (NTRS)

    Glover, Richard D.; Oneill-Rood, Nora

    1989-01-01

    The NASA Ames-Dryden Flight Research Facility developed a computerized aircraft battery servicing facility called the Aerospace Energy Systems Laboratory (AESL). This system employs distributed processing with communications provided by a 2.4-megabit BITBUS local area network. Customized handlers provide real time status, remote command, and file transfer protocols between a central system running the iRMX-II operating system and ten slave stations running the iRMX-I operating system. The hardware configuration and software components required to implement this BITBUS application are required.

  6. The 1991 International Aerospace and Ground Conference on Lightning and Static Electricity, volume 2

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The proceedings of the conference are reported. The conference focussed on lightning protection, detection, and forecasting. The conference was divided into 26 sessions based on research in lightning, static electricity, modeling, and mapping. These sessions spanned the spectrum from basic science to engineering, concentrating on lightning prediction and detection and on safety for ground facilities, aircraft, and aerospace vehicles.

  7. Aerospace Environment. Aerospace Education I.

    ERIC Educational Resources Information Center

    Savler, D. S.; Smith, J. C.

    This book is one in the series on Aerospace Education I. It briefly reviews current knowledge of the universe, the earth and its life-supporting atmosphere, and the arrangement of celestial bodies in outer space and their physical characteristics. Chapter 1 includes a brief survey of the aerospace environment. Chapters 2 and 3 examine the…

  8. Military Aerospace. Aerospace Education II.

    ERIC Educational Resources Information Center

    Smith, J. C.

    This book is a revised publication in the series on Aerospace Education II. It describes the employment of aerospace forces, their methods of operation, and some of the weapons and equipment used in combat and combat support activities. The first chapter describes some of the national objectives and policies served by the Air Force in peace and…

  9. Workshop on Aerosols and Particulates from Aircraft Gas Turbine Engines

    NASA Technical Reports Server (NTRS)

    Wey, Chown Chou (Compiler)

    1999-01-01

    In response to the National Research Council (NRC) recommendations, the Workshop on Aerosols and Particulates from Aircraft Gas Turbine Engines was organized by the NASA Lewis Research Center and held on July 29-30, 1997 at the Ohio Aerospace Institute in Cleveland, Ohio. The objective is to develop consensus among experts in the field of aerosols from gas turbine combustors and engines as to important issues and venues to be considered. Workshop participants' expertise included engine and aircraft design, combustion processes and kinetics, atmospheric science, fuels, and flight operations and instrumentation.

  10. Aircraft technology opportunities for the 21st Century

    NASA Technical Reports Server (NTRS)

    Albers, James A.; Zuk, John

    1988-01-01

    New aircraft technologies are presented that have the potential to expand the air transportation system and reduce congestion through new operating capabilities, and at the same time provide greater levels of safety and environmental compatibility. Both current and planned civil aeronautics technology at the NASA Ames, Lewis, and Langley Research Centers are addressed. The complete spectrum of current aircraft and new vehicle concepts is considered including rotorcraft (helicopters and tiltrotors), vertical and short takeoff and landing (V/STOL) and short takeoff and landing (STOL) aircraft, subsonic transports, high speed transports, and hypersonic/transatmospheric vehicles. New technologies for current aircraft will improve efficiency, affordability, safety, and environmental compatibility. Research and technology promises to enable development of new vehicles that will revolutionize or greatly change the transportation system. These vehicles will provide new capabilities which will lead to enormous market opportunities and economic growth, as well as improve the competitive position of the U.S. aerospace industry.

  11. Reusable cryogenic foam insulation for advanced aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Mcauliffe, Patrick S.; Taylor, Allan H.; Sparks, Larry L.; Dube, William P.

    1991-01-01

    Future high-speed aircraft and aerospace vehicles using cryogenic propellants will require an advanced reusable insulation system for the propellant tank structure. This cryogenic insulation system must be lightweight, structurally and thermally efficient, and capable of multiple reuse without cracking or degraded performance. This paper presents recent progress in the development of a reusable cryogenic foam insulation system having a maximum service temperature of 400 F. The system consists of preshaped, precut blocks of rigid polymethacrylimide foam insulation, wrapped with a high-temperature Kapton and aluminum foil vapor barrier which is adhesively bonded to the propellant tank wall.

  12. Photonic elements in smart systems for use in aerospace platforms

    NASA Astrophysics Data System (ADS)

    Adamovsky, Grigory; Baumbick, Robert J.; Tabib-Azar, Massood

    1998-07-01

    To compete globally in the next millennium, designers of new transportation vehicles will have to be innovative. Keen competition will reward innovative concepts that are developed and proven first. In order to improve reliability of aerospace platforms and reduce operating cots, new technologies must be exploited to produce autonomous systems, based on highly distributed, smart systems, which can be treated as line replaceable units. These technologies include photonics, which provide sensing and information transfer functions, and micro electro mechanical systems that will produce the actuation and, in some cases, may even provide a computing capability that resembles the hydro- mechanical control system used in older aircraft systems. The combination of these technologies will provide unique systems that will enable achieving the reliability and cost goals dictated by global market. In the article we review some of these issues and discuss a role of photonics in smart system for aerospace platforms.

  13. Assessment of avionics technology in European aerospace organizations

    NASA Technical Reports Server (NTRS)

    Martinec, D. A.; Baumbick, Robert; Hitt, Ellis; Leondes, Cornelius; Mayton, Monica; Schwind, Joseph; Traybar, Joseph

    1992-01-01

    This report provides a summary of the observations and recommendations made by a technical panel formed by the National Aeronautics and Space Administration (NASA). The panel, comprising prominent experts in the avionics field, was tasked to visit various organizations in Europe to assess the level of technology planned for use in manufactured civil avionics in the future. The primary purpose of the study was to assess avionics systems planned for implementation or already employed on civil aircraft and to evaluate future research, development, and engineering (RD&E) programs, address avionic systems and aircraft programs. The ultimate goal is to ensure that the technology addressed by NASa programs is commensurate with the needs of the aerospace industry at an international level. The panel focused on specific technologies, including guidance and control systems, advanced cockpit displays, sensors and data networks, and fly-by-wire/fly-by-light systems. However, discussions the panel had with the European organizations were not limited to these topics.

  14. Conceptual design for aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Gratzer, Louis B.

    1989-01-01

    The designers of aircraft and more recently, aerospace vehicles have always struggled with the problems of evolving their designs to produce a machine which would perform its assigned task(s) in some optimum fashion. Almost invariably this involved dealing with more variables and constraints than could be handled in any computationally feasible way. With the advent of the electronic digital computer, the possibilities for introducing more variable and constraints into the initial design process led to greater expectations for improvement in vehicle (system) efficiency. The creation of the large scale systems necessary to achieve optimum designs has, for many reason, proved to be difficult. From a technical standpoint, significant problems arise in the development of satisfactory algorithms for processing of data from the various technical disciplines in a way that would be compatible with the complex optimization function. Also, the creation of effective optimization routines for multi-variable and constraint situations which could lead to consistent results has lagged. The current capability for carrying out the conceptual design of an aircraft on an interdisciplinary bases was evaluated to determine the need for extending this capability, and if necessary, to recommend means by which this could be carried out. Based on a review of available documentation and individual consultations, it appears that there is extensive interest at Langley Research Center as well as in the aerospace community in providing a higher level of capability that meets the technical challenges. By implication, the current design capability is inadequate and it does not operate in a way that allows the various technical disciplines to participate and cooperately interact in the design process. Based on this assessment, it was concluded that substantial effort should be devoted to developing a computer-based conceptual design system that would provide the capability needed for the near

  15. Systems study of transport aircraft incorporating advanced aluminum alloys

    NASA Technical Reports Server (NTRS)

    Sakata, I. F.

    1982-01-01

    A study was performed to quantify the potential benefits of utilizing advanced aluminum alloys in commercial transport aircraft and to define the effort necessary to develop fully the alloys to a viable commercial production capability. The comprehensive investigation (1) established realistic advanced aluminum alloy property goals to maximize aircraft systems effectiveness (2) identified performance and economic benefits of incorporating the advanced alloy in future advanced technology commercial aircraft designs (3) provided a recommended plan for development and integration of the alloys into commercial aircraft production (4) provided an indication of the timing and investigation required by the metal producing industry to support the projected market and (5) evaluate application of advanced aluminum alloys to other aerospace and transit systems as a secondary objective. The results of the investigation provided a roadmap and identified key issues requiring attention in an advanced aluminum alloy and applications technology development program.

  16. Controls and Health Management Technologies for Intelligent Aerospace Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay

    2004-01-01

    With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Technology Branch at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC) in Cleveland, Ohio, is leading and participating in various projects in partnership with other organizations within GRC and across NASA, the U.S. aerospace industry, and academia to develop advanced controls and health management technologies that will help meet these challenges through the concept of an Intelligent Engine. The key enabling technologies for an Intelligent Engine are the increased efficiencies of components through active control, advanced diagnostics and prognostics integrated with intelligent engine control to enhance component life, and distributed control with smart sensors and actuators in an adaptive fault tolerant architecture. This paper describes the current activities of the Controls and Dynamics Technology Branch in the areas of active component control and propulsion system intelligent control, and presents some recent analytical and experimental results in these areas.

  17. Women in Aerospace Awards

    NASA Image and Video Library

    2010-10-26

    NASA Langley Aerospace Engineer Jill Lynette Hanna Prince receives the Women in Aerospace Achievement in Aerospace award from North Carolina State Professor Robert Tolson during the Women in Aerospace organization's annual awards ceremony and banquet held at the Ritz-Carlton Hotel in Arlington, VA on Tuesday, Oct. 26, 2010. Four current NASA leaders and one retiree were recognized for their work by Women in Aerospace. The event celebrates women's professional excellence in aerospace and honors women who have made outstanding contributions to the aerospace community. Photo Credit: (NASA/Bill Ingalls)

  18. Scenario-Based Specification and Evaluation of Architectures for Health Monitoring of Aerospace Structures

    NASA Technical Reports Server (NTRS)

    Mukkamala, Ravi; Sundaram, P.

    2001-01-01

    HUMS systems have been an area of increased research in the recent times due to two main reasons: (a) increase in the occurrences of accidents in the aerospace, and (b) stricter FAA regulations on aircrafts maintenance [2]. There are several problems associated with the maintenance of aircrafts that the HUMS systems can solve through the use of several monitoring technologies.This paper documents our methodology of employing scenarios in the specification and evaluation of architecture for HUMS. Section 2 investigates related works that use scenarios in software development. Section 3 describes how we use scenarios in our work, which is followed by a demonstration of our methods in the development of KUMS in section 4. Conclusion summarizes results.

  19. CO2, NOx, and particle emissions from aircraft and support activities at a regional airport.

    PubMed

    Klapmeyer, Michael E; Marr, Linsey C

    2012-10-16

    The goal of this research was to quantify emissions of carbon dioxide (CO(2)), nitrogen oxides (NO(x)), particle number, and black carbon (BC) from in-use aircraft and related activity at a regional airport. Pollutant concentrations were measured adjacent to the airfield and passenger terminal at the Roanoke Regional Airport in Virginia. Observed NO(x) emission indices (EIs) for jet-powered, commuter aircraft were generally lower than those contained in the International Civil Aviation Organization databank for both taxi (same as idle) and takeoff engine settings. NO(x) EIs ranged from 1.9 to 3.7 g (kg fuel)(-1) across five types of aircraft during taxiing, whereas EIs were consistently higher, 8.8-20.6 g (kg fuel)(-1), during takeoff. Particle number EIs ranged from 1.4 × 10(16) to 7.1 × 10(16) (kg fuel)(-1) and were slightly higher in taxi mode than in takeoff mode for four of the five types of aircraft. Diurnal patterns in CO(2) and NO(x) concentrations were influenced mainly by atmospheric conditions, while patterns in particle number concentrations were attributable mainly to patterns in aircraft activity. CO(2) and NO(x) fluxes measured by eddy covariance were higher at the terminal than at the airfield and were lower than found in urban areas.

  20. Certification Processes for Safety-Critical and Mission-Critical Aerospace Software

    NASA Technical Reports Server (NTRS)

    Nelson, Stacy

    2003-01-01

    This document is a quick reference guide with an overview of the processes required to certify safety-critical and mission-critical flight software at selected NASA centers and the FAA. Researchers and software developers can use this guide to jumpstart their understanding of how to get new or enhanced software onboard an aircraft or spacecraft. The introduction contains aerospace industry definitions of safety and safety-critical software, as well as, the current rationale for certification of safety-critical software. The Standards for Safety-Critical Aerospace Software section lists and describes current standards including NASA standards and RTCA DO-178B. The Mission-Critical versus Safety-Critical software section explains the difference between two important classes of software: safety-critical software involving the potential for loss of life due to software failure and mission-critical software involving the potential for aborting a mission due to software failure. The DO-178B Safety-critical Certification Requirements section describes special processes and methods required to obtain a safety-critical certification for aerospace software flying on vehicles under auspices of the FAA. The final two sections give an overview of the certification process used at Dryden Flight Research Center and the approval process at the Jet Propulsion Lab (JPL).

  1. NASA Glenn Research in Controls and Diagnostics for Intelligent Aerospace Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay

    2007-01-01

    With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Branch (CDB) at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC) in Cleveland, Ohio, is leading and participating in various projects in partnership with other organizations within GRC and across NASA, the U.S. aerospace industry, and academia to develop advanced controls and health management technologies that will help meet these challenges through the concept of Intelligent Propulsion Systems. This presentation describes the current CDB activities in support of the NASA Aeronautics Research Mission, with an emphasis on activities under the Integrated Vehicle Health Management (IVHM) and Integrated Resilient Aircraft Control (IRAC) projects of the Aviation Safety Program. Under IVHM, CDB focus is on developing advanced techniques for monitoring the health of the aircraft engine gas path with a focus on reliable and early detection of sensor, actuator and engine component faults. Under IRAC, CDB focus is on developing adaptive engine control technologies which will increase the probability of survival of aircraft in the presence of damage to flight control surfaces or to one or more engines. The technology development plans are described as well as results from recent research accomplishments.

  2. Aerospace materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dornheim, M.A.

    1991-04-01

    A comprehensive evaluation is made of the development trends in high performance advanced aerospace structural materials applications. It is noted that the anticipated predominance of thermoplastic composite-matrix polymers in the F-22/F-23 ATF propotypes has not materialized, due both to their high materials and processing costs and the emergence of a more tractable high operating temperature thermoset, BMI, whose toughness characteristics are of the order of those associated with thermoplastics. No more than 15 percent of F-22 weight is thermoplastics; the F-23 use of such resins is nill. Throughout the advanced nonmetallics industry, reduced DOD procurements have come to represent slowmore » growth and the prospect of consolidation. Also, such lightweight Al-based metallics as the Al-Li alloys have posed a major market-share challenge to polymeric composites, as in the case of the C-17 airlifter's 6,269 lbs of such Al-Li alloys as 2090, largely in cargo floor and ramp bulkhead structures. The EFA fighter makes frequent use of SPF-DB Ti alloys in combat damage-critical components. Metal-matrix composites employing titanium aluminide matrices will be extensively used in the X-30 hypersonic aircraft program.« less

  3. Development of fault tolerant adaptive control laws for aerospace systems

    NASA Astrophysics Data System (ADS)

    Perez Rocha, Andres E.

    The main topic of this dissertation is the design, development and implementation of intelligent adaptive control techniques designed to maintain healthy performance of aerospace systems subjected to malfunctions, external parameter changes and/or unmodeled dynamics. The dissertation is focused on the development of novel adaptive control configurations that rely on non-linear functions that appear in the immune system of living organisms as main source of adaptation. One of the main goals of this dissertation is to demonstrate that these novel adaptive control architectures are able to improve overall performance and protect the system while reducing control effort and maintaining adequate operation outside bounds of nominal design. This research effort explores several phases, ranging from theoretical stability analysis, simulation and hardware implementation on different types of aerospace systems including spacecraft, aircraft and quadrotor vehicles. The results presented in this dissertation are focused on two main adaptivity approaches, the first one is intended for aerospace systems that do not attain large angles and use exact feedback linearization of Euler angle kinematics. A proof of stability is presented by means of the circle Criterion and Lyapunov's direct method. The second approach is intended for aerospace systems that can attain large attitude angles (e.g. space systems in gravity-less environments), the adaptation is incorporated on a baseline architecture that uses partial feedback linearization of quaternions kinematics. In this case, the closed loop stability was analyzed using Lyapunov's direct method and Barbalat's Lemma. It is expected that some results presented in this dissertation can contribute towards the validation and certification of direct adaptive controllers.

  4. Modulation and control of matrix converter for aerospace application

    NASA Astrophysics Data System (ADS)

    Kobravi, Keyhan

    In the context of modern aircraft systems, a major challenge is power conversion to supply the aircraft's electrical instruments. These instruments are energized through a fixed-frequency internal power grid. In an aircraft, the available sources of energy are a set of variable-speed generators which provide variable-frequency ac voltages. Therefore, to energize the internal power grid of an aircraft, the variable-frequency ac voltages should be converted to a fixed-frequency ac voltage. As a result, an ac to ac power conversion is required within an aircraft's power system. This thesis develops a Matrix Converter to energize the aircraft's internal power grid. The Matrix Converter provides a direct ac to ac power conversion. A major challenge of designing Matrix Converters for aerospace applications is to minimize the volume and weight of the converter. These parameters are minimized by increasing the switching frequency of the converter. To design a Matrix Converter operating at a high switching frequency, this thesis (i) develops a scheme to integrate fast semiconductor switches within the current available Matrix Converter topologies, i.e., MOSFET-based Matrix Converter, and (ii) develops a new modulation strategy for the Matrix Converter. This Matrix Converter and the new modulation strategy enables the operation of the converter at a switching-frequency of 40kHz. To provide a reliable source of energy, this thesis also develops a new methodology for robust control of Matrix Converter. To verify the performance of the proposed MOSFET-based Matrix Converter, modulation strategy, and control design methodology, various simulation and experimental results are presented. The experimental results are obtained under operating condition present in an aircraft. The experimental results verify the proposed Matrix Converter provides a reliable power conversion in an aircraft under extreme operating conditions. The results prove the superiority of the proposed Matrix

  5. Electric power processing, distribution and control for advanced aerospace vehicles.

    NASA Technical Reports Server (NTRS)

    Krausz, A.; Felch, J. L.

    1972-01-01

    The results of a current study program to develop a rational basis for selection of power processing, distribution, and control configurations for future aerospace vehicles including the Space Station, Space Shuttle, and high-performance aircraft are presented. Within the constraints imposed by the characteristics of power generation subsystems and the load utilization equipment requirements, the power processing, distribution and control subsystem can be optimized by selection of the proper distribution voltage, frequency, and overload/fault protection method. It is shown that, for large space vehicles which rely on static energy conversion to provide electric power, high-voltage dc distribution (above 100 V dc) is preferable to conventional 28 V dc and 115 V ac distribution per MIL-STD-704A. High-voltage dc also has advantages over conventional constant frequency ac systems in many aircraft applications due to the elimination of speed control, wave shaping, and synchronization equipment.

  6. Preliminary tests of vulnerability of typical aircraft electronics to lightning-induced voltages

    NASA Technical Reports Server (NTRS)

    Plumer, J. A.; Walko, L. C.

    1974-01-01

    Tests made on two pieces of typical aircraft electronics equipment to ascertain their vulnerability to simulated lightning-induced transient voltages representative of those which might occur in flight when the aircraft is struck by lightning were conducted. The test results demonstrated that such equipment can be interfered with or damaged by transient voltages as low as 21 volts peak. Greater voltages can cause failure of semiconductor components within the equipment. The results emphasize a need for establishment of coordinated system susceptibility and component vulnerability criteria to achieve lightning protection of aerospace electrical and electronic systems.

  7. A neural based intelligent flight control system for the NASA F-15 flight research aircraft

    NASA Technical Reports Server (NTRS)

    Urnes, James M.; Hoy, Stephen E.; Ladage, Robert N.; Stewart, James

    1993-01-01

    A flight control concept that can identify aircraft stability properties and continually optimize the aircraft flying qualities has been developed by McDonnell Aircraft Company under a contract with the NASA-Dryden Flight Research Facility. This flight concept, termed the Intelligent Flight Control System, utilizes Neural Network technology to identify the host aircraft stability and control properties during flight, and use this information to design on-line the control system feedback gains to provide continuous optimum flight response. This self-repairing capability can provide high performance flight maneuvering response throughout large flight envelopes, such as needed for the National Aerospace Plane. Moreover, achieving this response early in the vehicle's development schedule will save cost.

  8. An artificial intelligence-based structural health monitoring system for aging aircraft

    NASA Technical Reports Server (NTRS)

    Grady, Joseph E.; Tang, Stanley S.; Chen, K. L.

    1993-01-01

    To reduce operating expenses, airlines are now using the existing fleets of commercial aircraft well beyond their originally anticipated service lives. The repair and maintenance of these 'aging aircraft' has therefore become a critical safety issue, both to the airlines and the Federal Aviation Administration. This paper presents the results of an innovative research program to develop a structural monitoring system that will be used to evaluate the integrity of in-service aerospace structural components. Currently in the final phase of its development, this monitoring system will indicate when repair or maintenance of a damaged structural component is necessary.

  9. Jet aircraft engine emissions database development: 1992 military, charter, and nonscheduled traffic

    NASA Technical Reports Server (NTRS)

    Metwally, Munir

    1995-01-01

    Studies relating to environmental emissions database for the military, charter, and non-scheduled traffic for the year 1992 were conducted by McDonnell Douglas Aerospace Transport Aircraft. The report also includes a comparison with a previous emission database for year 1990. Discussions of the methodology used in formulating these databases are provided.

  10. Aerospace Medicine

    NASA Technical Reports Server (NTRS)

    Michaud, Vince

    2015-01-01

    NASA Aerospace Medicine overview - Aerospace Medicine is that specialty area of medicine concerned with the determination and maintenance of the health, safety, and performance of those who fly in the air or in space.

  11. Applications of structural optimization methods to fixed-wing aircraft and spacecraft in the 1980s

    NASA Technical Reports Server (NTRS)

    Miura, Hirokazu; Neill, Douglas J.

    1992-01-01

    This report is the summary of a technical survey on the applications of structural optimization in the U.S. aerospace industry through the 1980s. Since applications to rotary wing aircraft will be covered by other literature, applications to fixed-wing aircraft and spacecraft were considered. It became clear that very significant progress has been made during this decade, indicating this technology is about to become one of the practical tools in computer aided structural design.

  12. Ikhana: Unmanned Aircraft System Western States Fire Missions. Monographs in Aerospace History, Number 44

    NASA Technical Reports Server (NTRS)

    Merlin, Peter W.

    2009-01-01

    In 2006, NASA Dryden Flight Research Center, Edwards, Calif., obtained a civil version of the General Atomics MQ-9 unmanned aircraft system and modified it for research purposes. Proposed missions included support of Earth science research, development of advanced aeronautical technology, and improving the utility of unmanned aerial systems in general. The project team named the aircraft Ikhana a Native American Choctaw word meaning intelligent, conscious, or aware in order to best represent NASA research goals. Building on experience with these and other unmanned aircraft, NASA scientists developed plans to use the Ikhana for a series of missions to map wildfires in the western United States and supply the resulting data to firefighters in near-real time. A team at NASA Ames Research Center, Mountain View, Calif., developed a multispectral scanner that was key to the success of what became known as the Western States Fire Missions. Carried out by team members from NASA, the U.S. Department of Agriculture Forest Service, National Interagency Fire Center, National Oceanic and Atmospheric Administration, Federal Aviation Administration, and General Atomics Aeronautical Systems Inc., these flights represented an historic achievement in the field of unmanned aircraft technology.

  13. Aerospace Meteorology Lessons Learned Relative to Aerospace Vehicle Design and Operations

    NASA Technical Reports Server (NTRS)

    Vaughan, William W.; Anderson, B. Jeffrey

    2004-01-01

    Aerospace Meteorology came into being in the 1950s as the development of rockets for military and civilian usage grew in the United States. The term was coined to identify those involved in the development of natural environment models, design/operational requirements, and environment measurement systems to support the needs of aerospace vehicles, both launch vehicles and spacecraft. It encompassed the atmospheric environment of the Earth, including Earth orbit environments. Several groups within the United States were active in this area, including the Department of Defense, National Aeronautics and Space Administration, and a few of the aerospace industry groups. Some aerospace meteorology efforts were similar to those being undertaken relative to aviation interests. As part of the aerospace meteorology activities a number of lessons learned resulted that produced follow on efforts which benefited from these experiences, thus leading to the rather efficient and technologically current descriptions of terrestrial environment design requirements, prelaunch monitoring systems, and forecast capabilities available to support the development and operations of aerospace vehicles.

  14. Recent Advances in Active Infrared Thermography for Non-Destructive Testing of Aerospace Components.

    PubMed

    Ciampa, Francesco; Mahmoodi, Pooya; Pinto, Fulvio; Meo, Michele

    2018-02-16

    Active infrared thermography is a fast and accurate non-destructive evaluation technique that is of particular relevance to the aerospace industry for the inspection of aircraft and helicopters' primary and secondary structures, aero-engine parts, spacecraft components and its subsystems. This review provides an exhaustive summary of most recent active thermographic methods used for aerospace applications according to their physical principle and thermal excitation sources. Besides traditional optically stimulated thermography, which uses external optical radiation such as flashes, heaters and laser systems, novel hybrid thermographic techniques are also investigated. These include ultrasonic stimulated thermography, which uses ultrasonic waves and the local damage resonance effect to enhance the reliability and sensitivity to micro-cracks, eddy current stimulated thermography, which uses cost-effective eddy current excitation to generate induction heating, and microwave thermography, which uses electromagnetic radiation at the microwave frequency bands to provide rapid detection of cracks and delamination. All these techniques are here analysed and numerous examples are provided for different damage scenarios and aerospace components in order to identify the strength and limitations of each thermographic technique. Moreover, alternative strategies to current external thermal excitation sources, here named as material-based thermography methods, are examined in this paper. These novel thermographic techniques rely on thermoresistive internal heating and offer a fast, low power, accurate and reliable assessment of damage in aerospace composites.

  15. Recent Advances in Active Infrared Thermography for Non-Destructive Testing of Aerospace Components

    PubMed Central

    Mahmoodi, Pooya; Pinto, Fulvio; Meo, Michele

    2018-01-01

    Active infrared thermography is a fast and accurate non-destructive evaluation technique that is of particular relevance to the aerospace industry for the inspection of aircraft and helicopters’ primary and secondary structures, aero-engine parts, spacecraft components and its subsystems. This review provides an exhaustive summary of most recent active thermographic methods used for aerospace applications according to their physical principle and thermal excitation sources. Besides traditional optically stimulated thermography, which uses external optical radiation such as flashes, heaters and laser systems, novel hybrid thermographic techniques are also investigated. These include ultrasonic stimulated thermography, which uses ultrasonic waves and the local damage resonance effect to enhance the reliability and sensitivity to micro-cracks, eddy current stimulated thermography, which uses cost-effective eddy current excitation to generate induction heating, and microwave thermography, which uses electromagnetic radiation at the microwave frequency bands to provide rapid detection of cracks and delamination. All these techniques are here analysed and numerous examples are provided for different damage scenarios and aerospace components in order to identify the strength and limitations of each thermographic technique. Moreover, alternative strategies to current external thermal excitation sources, here named as material-based thermography methods, are examined in this paper. These novel thermographic techniques rely on thermoresistive internal heating and offer a fast, low power, accurate and reliable assessment of damage in aerospace composites. PMID:29462953

  16. Women in Aerospace Awards

    NASA Image and Video Library

    2010-10-26

    NASA Headquarters Program Planning Specialist Beth Beck speaks after being given the Women in Aerospace's Aerospace Awareness Award at the organization's annual awards ceremony and banquet held at the Ritz-Carlton Hotel in Arlington, VA on Tuesday, Oct. 26, 2010. Four current NASA leaders and one retiree were recognized for their work by Women in Aerospace. The event celebrates women's professional excellence in aerospace and honors women who have made outstanding contributions to the aerospace community. Photo Credit: (NASA/Bill Ingalls)

  17. Lightweight, fire-retardant, crashworthy aircraft seat cushioning

    NASA Technical Reports Server (NTRS)

    Haslim, Leonard A.; Mcdonough, Paul T.

    1991-01-01

    A two page discussion of non-aerospace seating applications and the design of NASA's safety seat cushioning (SSC) is presented. The SSC was designed for both safety and comfort in order to replace polyurethane cushioning which is flammable and produces lethal fumes upon combustion. The SSC is composed of advanced fabric reinforced composites and is lightweight, fire-retardent, and crashworthy. The seat design consists of central elliptical tubular spring supports made of fire-resistant and fatigue-durable composites surrounded by a fire-blocking sheath. The cushioning is made crashworthy by incorporating energy-absorbing, viscoelastic layers between the nested, elliptical-hoop springs. The design is intended to provide comfortable seating that meets aircraft-loading requirements without using the conventional polyurethane materials. The designs of an aircraft seat and structural components of the SSC are also presented.

  18. Advances in the design of common pressure vessel nickel hydrogen batteries for aerospace applications

    NASA Technical Reports Server (NTRS)

    Zagrodnik, Jeffrey P.; Jones, Kenneth R.

    1991-01-01

    Over 7000 low-earth-orbit (LEO) cycles were demonstrated on a full-size aerospace common pressure vessel (CPV) prototype. The battery demonstrated the capability of the basic CPV design to meet the life and reliability requirements of aerospace missions. Subsequent design modifications have been employed to address the shortcomings of the original design and several new prototypes have been fabricated. These include a 12-cell 125 amp-hour geosynchronous earth-orbit (GEO) battery and a 22-cell 10.5 amp-hour LEO battery. Cells for an 80-cell battery intended to demonstrate the high voltage capability of the CPV design have also been fabricated. In addition, assembly of a 20-cell aircraft starting battery prototype is in progress, and testing of a group of 12-volt, 160 amp-hour terrestrial batteries is continuing.

  19. 76 FR 18376 - Airworthiness Directives; CPAC, Inc. (Type Certificate Formerly Held by Commander Aircraft...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-04

    ... Engineer, Wichita Aircraft Certification Office (ACO), FAA, 1801 Airport Road, Room 100; phone: (316) 946-4155; fax: (316) 946-4107; e- mail: [email protected] . SUPPLEMENTARY INFORMATION: Discussion The FAA.... Baktha, Senior Aerospace Engineer, 1801 Airport Road, Room 100; phone: (316) 946-4155; fax: (316) 946...

  20. Linear-parameter-varying gain-scheduled control of aerospace systems

    NASA Astrophysics Data System (ADS)

    Barker, Jeffrey Michael

    The dynamics of many aerospace systems vary significantly as a function of flight condition. Robust control provides methods of guaranteeing performance and stability goals across flight conditions. In mu-syntthesis, changes to the dynamical system are primarily treated as uncertainty. This method has been successfully applied to many control problems, and here is applied to flutter control. More recently, two techniques for generating robust gain-scheduled controller have been developed. Linear fractional transformation (LFT) gain-scheduled control is an extension of mu-synthesis in which the plant and controller are explicit functions of parameters measurable in real-time. This LFT gain-scheduled control technique is applied to the Benchmark Active Control Technology (BACT) wing, and compared with mu-synthesis control. Linear parameter-varying (LPV) gain-scheduled control is an extension of Hinfinity control to parameter varying systems. LPV gain-scheduled control directly incorporates bounds on the rate of change of the scheduling parameters, and often reduces conservatism inherent in LFT gain-scheduled control. Gain-scheduled LPV control of the BACT wing compares very favorably with the LFT controller. Gain-scheduled LPV controllers are generated for the lateral-directional and longitudinal axes of the Innovative Control Effectors (ICE) aircraft and implemented in nonlinear simulations and real-time piloted nonlinear simulations. Cooper-Harper and pilot-induced oscillation ratings were obtained for an initial design, a reference aircraft and a redesign. Piloted simulation results for the initial LPV gain-scheduled control of the ICE aircraft are compared with results for a conventional fighter aircraft in discrete pitch and roll angle tracking tasks. The results for the redesigned controller are significantly better than both the previous LPV controller and the conventional aircraft.

  1. Design of a turbofan powered regional transport aircraft

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The majority of the market for small commercial transport aircraft is dominated by high efficiency propeller driven aircraft of non-U.S. manufacture. During the past year, an aircraft was designed with ranges of up to 1500 nautical miles and passenger loads between 50 and 90. Special emphasis was placed upon keeping acquisition cost and direct operating costs at a low level while providing passengers with quality comfort levels. Several designs are presented which place a high premium on design innovation.

  2. Advances in Protective Coatings and Their Application to Ageing Aircraft

    DTIC Science & Technology

    2000-04-01

    Aerospace Material Specification Selectively (1997) Strippable Acrylic Finishing Schemes - Matt and Glossy - 23. K.R. Baldwin and C.J.E. Smith, Repair...corrosion through design, the selection of military and civil aircraft during the last thirty years. Research materials that are resistant to corrosion and...compliant coatings. initiation of corrosion. This paper first examines the general principles involved in 2.2 Materials selection the corrosion

  3. Aerospace Education - An Overview

    ERIC Educational Resources Information Center

    Journal of Aerospace Education, 1975

    1975-01-01

    Discusses the surge of interest throughout the country in aerospace education and discusses what aerospace education is, the implications in career education and the relevance of aerospace education in the curriculum. (BR)

  4. Basic Aerospace Education Library

    ERIC Educational Resources Information Center

    Journal of Aerospace Education, 1975

    1975-01-01

    Lists the most significant resource items on aerospace education which are presently available. Includes source books, bibliographies, directories, encyclopedias, dictionaries, audiovisuals, curriculum/planning guides, aerospace statistics, aerospace education statistics and newsletters. (BR)

  5. JPRS Report, Science & Technology, Japan, 27th Aircraft Symposium, Part 3

    DTIC Science & Technology

    1991-02-14

    Kaoru Wakairo, et al.] Aircraft-Mounted Optical Data Bus (3): Bus Control Software, Performance Evaluation Test [Mitsumi Mayanägi, Minoru...Article by Hiroyasu Kawahara, Kaoru Wakairo, and Akira Watanabe, National Aerospace Laboratory; Tomoyuli Udagawa, Kengo Takeda, and Noboru Shobayashi...89 pp 518-521 [Article by Tadao Uchida, Mitsumi Mayanagi, Minoru Takizawa, Toshiharu Inagaki, Koki Hozumi, and Kazutoshi Ishikawa , National

  6. SIERRA-Flux: Measuring Regional Surface Fluxes of Carbon Dioxide, Methane, and Water Vapor from an Unmanned Aircraft System

    NASA Technical Reports Server (NTRS)

    Fladeland; Yates, Emma Louise; Bui, Thaopaul Van; Dean-Day, Jonathan; Kolyer, Richard

    2011-01-01

    The Eddy-Covariance Method for quantifying surface-atmosphere fluxes is a foundational technique for measuring net ecosystem exchange and validating regional-to-global carbon cycle models. While towers or ships are the most frequent platform for measuring surface-atmosphere exchange, experiments using aircraft for flux measurements have yielded contributions to several large-scale studies including BOREAS, SMACEX, RECAB by providing local-to-regional coverage beyond towers. The low-altitude flight requirements make airborne flux measurements particularly dangerous and well suited for unmanned aircraft.

  7. 150 Passenger Commercial Aircraft

    NASA Technical Reports Server (NTRS)

    Bucovsky, Adrian; Romli, Fairuz I.; Rupp, Jessica

    2002-01-01

    It has been projected that the need for a short-range mid-sized, aircraft is increasing. The future strategy to decrease long-haul flights will increase the demand for short-haul flights. Since passengers prefer to meet their destinations quickly, airlines will increase the frequency of flights, which will reduce the passenger load on the aircraft. If a point-to-point flight is not possible, passengers will prefer only a one-stop short connecting flight to their final destination. A 150-passenger aircraft is an ideal vehicle for these situations. It is mid-sized aircraft and has a range of 3000 nautical miles. This type of aircraft would market U.S. domestic flights or inter-European flight routes. The objective of the design of the 150-passenger aircraft is to minimize fuel consumption. The configuration of the aircraft must be optimized. This aircraft must meet CO2 and NOx emissions standards with minimal acquisition price and operating costs. This report contains all the work that has been performed for the completion of the design of a 150 passenger commercial aircraft. The methodology used is the Technology Identification, Evaluation, and Selection (TIES) developed at Georgia Tech Aerospace Systems Design laboratory (ASDL). This is an eight-step conceptual design process to evaluate the probability of meeting the design constraints. This methodology also allows for the evaluation of new technologies to be implemented into the design. The TIES process begins with defining the problem with a need established and a market targeted. With the customer requirements set and the target values established, a baseline concept is created. Next, the design space is explored to determine the feasibility and viability of the baseline aircraft configuration. If the design is neither feasible nor viable, new technologies can be implemented to open up the feasible design space and allow for a plausible solution. After the new technologies are identified, they must be evaluated

  8. A Solution to the Small Enrollment Problem in Aerospace Engineering--Self-Paced Materials Used in an Independent Studies Mode.

    ERIC Educational Resources Information Center

    Fowler, Wallace T.; Watkins, R. D.

    With the decline in enrollment in the early 1970's, many aerospace engineering departments had too few students to offer some required courses. At the University of Texas at Austin, a set of personalized system of instruction (PSI) materials for the aircraft performance, stability, and control course was developed. The paper includes a description…

  9. Ensuring Interoperability Between Unmanned Aircraft Detect-and-Avoid and Manned Aircraft Collision Avoidance

    NASA Technical Reports Server (NTRS)

    Thipphavong, David; Cone, Andrew; Lee, Seungman

    2017-01-01

    The Unmanned Aircraft Systems (UAS) community in the United States has identified the need for a collision avoidance region in which UAS Detect-and-Avoid (DAA) vertical guidance is restricted to preclude interoperability issues with manned aircraft collision avoidance system vertical resolution advisories (RAs). This paper documents the process by which the collision avoidance region was defined. Three candidate definitions were evaluated on 1.3 million simulated pairwise encounters between UAS and manned aircraft covering a wide range of horizontal and vertical closure rates, angles, and miss distances. Each definition was evaluated with regard to UAS DAA interoperability with manned aircraft collision avoidance in terms of how well it achieved: 1) the primary objective of restricting DAA vertical guidance prior to RAs when the aircraft are close, and 2) the secondary objective of avoiding unnecessary restrictions of DAA vertical guidance at DAA alerts when the aircraft are further apart. The collision avoidance region definition that fully achieves the primary objective and best achieves the secondary objective was recommended to and accepted by the UAS community in the United States. By this definition, UAS and manned aircraft are in the collision avoidance region where DAA vertical guidance is restricted when the time to closest point of approach (CPA) is less than 50 seconds and either the time to co-altitude is less than 50 seconds or the current vertical separation is less than 800 feet.

  10. Lightweight DC-DC Converter with Partial Power Processing and MPPT for a Solar Powered Aircraft

    NASA Astrophysics Data System (ADS)

    Diab-Marzouk, Ahmad

    A lightweight dc-dc partial power processing converter is demonstrated for solar aerospace applications. A system-level model is conceived to determine conformity to payload and target distance objectives, with the Solarship aircraft used as an application example. The concept of partial power processing is utilized to realize a high efficiency lightweight converter that performs Max Peak Power Tracking (MPPT) to transfer power from the aircraft solar array to the high-voltage battery bus. The isolated Cuk is determined to be a suitable converter topology for the application. A small-signal model is derived for control design. The operation of a 400V, 2.7 kW prototype is verified at high frequency (200 kHz), high efficiency (> 98%), small mass (0.604 kg), and uses no electrolytic capacitors. MPPT operation is verified on a 376 V commercial solar installation at The University of Toronto. The prototype serves as an enabling technology for solar aerospace applications.

  11. NASA's F-15B testbed aircraft with Gulfstream Quiet Spike sonic boom mitigator attached

    NASA Image and Video Library

    2006-07-06

    Gulfstream Aerospace and NASA's Dryden Flight Research Center are testing the structural integrity of a telescopic 'Quiet Spike' sonic boom mitigator on the F-15B testbed. The Quiet Spike was developed as a means of controlling and reducing the sonic boom caused by an aircraft 'breaking' the sound barrier.

  12. Structural health monitoring and impact detection for primary aircraft structures

    NASA Astrophysics Data System (ADS)

    Kosters, Eric; van Els, Thomas J.

    2010-04-01

    The increasing use of thermoplastic carbon fiber-reinforced plastic (CFRP) materials in the aerospace industry for primary aircraft structures, such as wing leading-edge surfaces and fuselage sections, has led to rapid growth in the field of structural health monitoring (SHM). Impact, vibration, and load can all cause failure, such as delamination and matrix cracking, in composite materials. Moreover, the internal material damage can occur without being visible to the human eye, making inspection of and clear insight into structural integrity difficult using currently available evaluation methods. Here, we describe the detection of impact and its localization in materials and structures by high-speed interrogation of multiple-fiber Bragg grating (FBG) sensors mounted on a composite aircraft component.

  13. 78 FR 38690 - Aerospace Executive Service Trade Mission at the Singapore Airshow 2014

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-27

    ... world, serving as an international marketplace and networking platform for the global aerospace... the aerospace industry worldwide. As a leading global aviation hub in Asia Pacific, Singapore (the...-Pacific economies are leading the pace of recovery in the global aviation sector: The Asia-Pacific region...

  14. Aerospace induction motor actuators driven from a 20-kHz power link

    NASA Technical Reports Server (NTRS)

    Hansen, Irving G.

    1990-01-01

    Aerospace electromechanical actuators utilizing induction motors are under development in sizes up to 40 kW. While these actuators have immediate application to the Advanced Launch System (ALS) program, several potential applications are currently under study including the Advanced Aircraft Program. Several recent advances developed for the Space Station Freedom have allowed induction motors to be selected as a first choice for such applications. Among these technologies are bi-directional electronics and high frequency power distribution techniques. Each of these technologies are discussed with emphasis on their impact upon induction motor operation.

  15. Evaluation of a Hydrogen Fuel Cell Powered Blended-Wing-Body Aircraft Concept for Reduced Noise and Emissions

    NASA Technical Reports Server (NTRS)

    Guynn, Mark D.; Freh, Joshua E.; Olson, Erik D.

    2004-01-01

    This report describes the analytical modeling and evaluation of an unconventional commercial transport aircraft concept designed to address aircraft noise and emission issues. A blended-wing-body configuration with advanced technology hydrogen fuel cell electric propulsion is considered. Predicted noise and emission characteristics are compared to a current technology conventional configuration designed for the same mission. The significant technology issues which have to be addressed to make this concept a viable alternative to current aircraft designs are discussed. This concept is one of the "Quiet Green Transport" aircraft concepts studied as part of NASA's Revolutionary Aerospace Systems Concepts (RASC) Program. The RASC Program was initiated to develop revolutionary concepts that address strategic objectives of the NASA Enterprises, such as reducing aircraft noise and emissions, and to identify advanced technology requirements for the concepts.

  16. Women in Aerospace Awards

    NASA Image and Video Library

    2010-10-26

    NASA Deputy Administrator Lori Garver speaks after being given the Women in Aerospace's Outstanding Member Award at the organization's annual awards ceremony and banquet held at the Ritz-Carlton Hotel in Arlington, VA on Tuesday, Oct. 26, 2010. Four current NASA leaders and one retiree were recognized for their work by Women in Aerospace. The event celebrates women's professional excellence in aerospace and honors women who have made outstanding contributions to the aerospace community. Photo Credit: (NASA/Bill Ingalls)

  17. Women in Aerospace Awards

    NASA Image and Video Library

    2010-10-26

    NASA's Langley Research Center Lesa Roe speaks after being given the Women in Aerospace's Leadership Award at the organization's annual awards ceremony and banquet held at the Ritz-Carlton Hotel in Arlington, VA on Tuesday, Oct. 26, 2010. Four current NASA leaders and one retiree were recognized for their work by Women in Aerospace. The event celebrates women's professional excellence in aerospace and honors women who have made outstanding contributions to the aerospace community. Photo Credit: (NASA/Bill Ingalls)

  18. Half Wing N219 Aircraft Model Clean Configuration for Flutter Test On Low Speed Wind Tunnel

    NASA Astrophysics Data System (ADS)

    Syamsuar, Sayuti; Sampurno, Budi; Mayang Mahasti, Katia; Bayu Sakti Pratama, Muchamad; Widi Sasongko, Triyono; Kartika, Nina; Suksmono, Adityo; Aji Saputro, Mohamad Ivan; Bahtera Eskayudha, Dimas

    2018-04-01

    Flutter is a rapid self-feeding motion which is caused by the interaction of aerodynamic, structural and inertial forces. Flutter can cause major damage on aircraft structure which can lead to fatal accident in aviation. Several methods have been evolved to avoid the flutter phenomena occur during the flight envelope of aircraft design. On this study, method was developed by Indonesian Aerospace which consist of Finite Element Method (FEM) analysis, Ground Vibration Test (GVT), and Wind Tunnel Flutter Test (WTT). Based on the study, FEM have similar results toward to Wind Tunnel Flutter Test conjunction the clean configuration of N219 aircraft half wing model.

  19. NASA's Aero-Space Technology

    NASA Technical Reports Server (NTRS)

    Milstead, Phil

    2000-01-01

    This presentation reviews the three pillars and the associated goals of NASA's Aero-Space Technology Enterprise. The three pillars for success are: (1) Global Civil Aviation, (2) Revolutionary Technology Leaps, (3) Advanced Space Transportation. The associated goals of the first pillar are to reduce accidents, emissions, and cost, and to increase the aviation system capacity. The goals of the second pillar are to reduce transoceanic travel time, revolutionize general aviation aircraft, and improve development capacity. The goals associated with the third pillar are to reduce the launch cost for low earth orbit and to reduce travel time for planetary missions. In order to meet these goals NASA must provide next-generation design capability for new and or experimental craft which enable a balance between reducing components of the design cycle by up to 50% and or increasing the confidence in design by 50%. These next-generation design tools, concepts, and processes will revolutionize vehicle development. The presentation finally reviews the importance of modeling and simulation in achieving the goals.

  20. Exploratory Analysis of Survey Data for Understanding Adoption of Novel Aerospace Systems

    NASA Astrophysics Data System (ADS)

    Reddy, Lauren M.

    In order to meet the increasing demand for manned and unmanned flight, the air transportation system must constantly evolve. As new technologies or operational procedures are conceived, we must determine their effect on humans in the system. In this research, we introduce a strategy to assess how individuals or organizations would respond to a novel aerospace system. We employ the most appropriate and sophisticated exploratory analysis techniques on the survey data to generate insight and identify significant variables. We employ three different methods for eliciting views from individuals or organizations who are affected by a system: an opinion survey, a stated preference survey, and structured interviews. We conduct an opinion survey of both the general public and stakeholders in the unmanned aircraft industry to assess their knowledge, attitude, and practices regarding unmanned aircraft. We complete a statistical analysis of the multiple-choice questions using multinomial logit and multivariate probit models and conduct qualitative analysis on free-text questions. We next present a stated preference survey of the general public on the use of an unmanned aircraft package delivery service. We complete a statistical analysis of the questions using multinomial logit, ordered probit, linear regression, and negative binomial models. Finally, we discuss structured interviews conducted on stakeholders from ANSPs and airlines operating in the North Atlantic. We describe how these groups may choose to adopt a new technology (space-based ADS-B) or operational procedure (in-trail procedures). We discuss similarities and differences between the stakeholders groups, the benefits and costs of in-trail procedures and space-based ADS-B as reported by the stakeholders, and interdependencies between the groups interviewed. To demonstrate the value of the data we generated, we explore how the findings from the surveys can be used to better characterize uncertainty in the cost

  1. Evaluation of an Aircraft Concept With Over-Wing, Hydrogen-Fueled Engines for Reduced Noise and Emissions

    NASA Technical Reports Server (NTRS)

    Guynn, Mark D.; Olson, Erik D.

    2002-01-01

    This report describes the analytical modeling and evaluation of an unconventional commercial transport aircraft concept designed to address aircraft noise and emission issues. A strut-braced wing configuration with overwing, ultra-high bypass ratio, hydrogen fueled turbofan engines is considered. Estimated noise and emission characteristics are compared to a conventional configuration designed for the same mission and significant benefits are identified. The design challenges and technology issues which would have to be addressed to make the concept a viable alternative to current aircraft designs are discussed. This concept is one of the "Quiet Green Transport" aircraft concepts studied as part of NASA's Revolutionary Aerospace Systems Concepts (RASC) Program. The RASC Program seeks to develop revolutionary concepts that address strategic objectives of the NASA Enterprises, such as reducing aircraft noise and emissions, and to identify enabling advanced technology requirements for the concepts.

  2. Global real-time dose measurements using the Automated Radiation Measurements for Aerospace Safety (ARMAS) system

    NASA Astrophysics Data System (ADS)

    Tobiska, W. Kent; Bouwer, D.; Smart, D.; Shea, M.; Bailey, J.; Didkovsky, L.; Judge, K.; Garrett, H.; Atwell, W.; Gersey, B.; Wilkins, R.; Rice, D.; Schunk, R.; Bell, D.; Mertens, C.; Xu, X.; Wiltberger, M.; Wiley, S.; Teets, E.; Jones, B.; Hong, S.; Yoon, K.

    2016-11-01

    The Automated Radiation Measurements for Aerospace Safety (ARMAS) program has successfully deployed a fleet of six instruments measuring the ambient radiation environment at commercial aircraft altitudes. ARMAS transmits real-time data to the ground and provides quality, tissue-relevant ambient dose equivalent rates with 5 min latency for dose rates on 213 flights up to 17.3 km (56,700 ft). We show five cases from different aircraft; the source particles are dominated by galactic cosmic rays but include particle fluxes for minor radiation periods and geomagnetically disturbed conditions. The measurements from 2013 to 2016 do not cover a period of time to quantify galactic cosmic rays' dependence on solar cycle variation and their effect on aviation radiation. However, we report on small radiation "clouds" in specific magnetic latitude regions and note that active geomagnetic, variable space weather conditions may sufficiently modify the magnetospheric magnetic field that can enhance the radiation environment, particularly at high altitudes and middle to high latitudes. When there is no significant space weather, high-latitude flights produce a dose rate analogous to a chest X-ray every 12.5 h, every 25 h for midlatitudes, and every 100 h for equatorial latitudes at typical commercial flight altitudes of 37,000 ft ( 11 km). The dose rate doubles every 2 km altitude increase, suggesting a radiation event management strategy for pilots or air traffic control; i.e., where event-driven radiation regions can be identified, they can be treated like volcanic ash clouds to achieve radiation safety goals with slightly lower flight altitudes or more equatorial flight paths.

  3. Aerospace medicine at Brooks AFB, TX: hail and farewell.

    PubMed

    Nunneley, Sarah A; Webb, James T

    2011-05-01

    With the impending termination of USAF operations at Brooks Air Force Base (AFB) in San Antonio, TX, it is time to consider its historic role in Aerospace Medicine. The base was established in 1917 as a flight training center for the U.S. Army Air Service and in 1926 became home to its School of Aviation Medicine. The school moved to San Antonio's Randolph Field in 1931, but in 1959 it returned to Brooks where it occupied new facilities to support its role as a national center for U.S. Air Force aerospace medicine, including teaching, clinical medicine, and research. The mission was then expanded to encompass support of U.S. military and civilian space programs. With the abrupt termination of the military space program in 1969, research at Brooks focused on clinical aviation medicine and support of advanced military aircraft while continuing close cooperation with NASA in support of orbital spaceflight and the journey to the Moon. Reorganization in the 1990s assigned all research functions at Brooks to the Human Systems Division and its successors, leaving to USAFSAM the missions related to clinical work and teaching. In 2002 the USAF and the city of San Antonio implemented shared operation of Brooks as a "City-Base" in the hope of deflecting threatened closure. Nevertheless, under continuing pressure to consolidate military facilities in the United States, the 2005 Base Closure and Realignment Commission ordered Brooks closed by 2011, with its aerospace medicine functions relocated to new facilities at Wright-Patterson AFB in Dayton, OH.

  4. Approaching the runway after the first evaluation flight of the Quiet Spike project, NASA's F-15B testbed aircraft cruises over Roger's Dry Lakebed

    NASA Image and Video Library

    2006-08-10

    Approaching the runway after the first evaluation flight of the Quiet Spike project, NASA's F-15B testbed aircraft cruises over Roger's Dry Lakebed near the Dryden Flight Research Center. The Quiet Spike was developed by Gulfstream Aerospace as a means of controlling and reducing the sonic boom caused by an aircraft 'breaking' the sound barrier.

  5. NASA-UVa Light Aerospace Alloy and Structures Technology Program: Aluminum-Based Materials for High Speed Aircraft

    NASA Technical Reports Server (NTRS)

    Starke, E. A., Jr. (Editor)

    1996-01-01

    This report is concerned with 'Aluminum-Based Materials for High Speed Aircraft' which was initiated to identify the technology needs associated with advanced, low-cost aluminum base materials for use as primary structural materials. Using a reference baseline aircraft, these materials concept will be further developed and evaluated both technically and economically to determine the most attractive combinations of designs, materials, and manufacturing techniques for major structural sections of an HSCT. Once this has been accomplished, the baseline aircraft will be resized, if applicable, and performance objectives and economic evaluations made to determine aircraft operating costs. The two primary objectives of this study are: (1) to identify the most promising aluminum-based materials with respect to major structural use on the HSCT and to further develop those materials, and (2) to assess these materials through detailed trade and evaluation studies with respect to their structural efficiency on the HSCT.

  6. Experimental aerothermodynamic research of hypersonic aircraft

    NASA Technical Reports Server (NTRS)

    Cleary, Joseph W.

    1987-01-01

    The 2-D and 3-D advance computer codes being developed for use in the design of such hypersonic aircraft as the National Aero-Space Plane require comparison of the computational results with a broad spectrum of experimental data to fully assess the validity of the codes. This is particularly true for complex flow fields with control surfaces present and for flows with separation, such as leeside flow. Therefore, the objective is to provide a hypersonic experimental data base required for validation of advanced computational fluid dynamics (CFD) computer codes and for development of more thorough understanding of the flow physics necessary for these codes. This is being done by implementing a comprehensive test program for a generic all-body hypersonic aircraft model in the NASA/Ames 3.5 foot Hypersonic Wind Tunnel over a broad range of test conditions to obtain pertinent surface and flowfield data. Results from the flow visualization portion of the investigation are presented.

  7. Impact of Aircraft Emissions on Reactive Nitrogen over the North Atlantic Flight Corridor Region

    NASA Technical Reports Server (NTRS)

    Koike, M.; Kondo, Y.; Ikeda, H.; Gregory, G. L.; Anderson, B. E.; Sachse, G. W.; Blake, D.; Liu, S. C.; Singh, H. B.; Thompson, A.

    1999-01-01

    The impact of aircraft emissions on reactive nitrogen in the upper troposphere (UT) and lowermost stratosphere (LS) was estimated using the NO(y)-O3 correlation obtained during the SASS Ozone and NO(x) Experiment (SONEX) carried out over the US continent and North Atlantic Flight Corridor (NAFC) region in October and November 1997. To evaluate the large scale impact, we made a reference NO(y)-O3 relationship in air masses, upon which aircraft emissions were considered to have little impact. For this purpose, the integrated input of NO(x) from aircraft into an air mass along a 10-d back trajectory (DELTA-NO(y)) was calculated based on the ANCAT/EC2 emission inventory. The excess NO(y) (dNO(y)) was calculated from the observed NO(y) and the reference NO(y)-O3 relationship. As a result, a weak positive correlation was found between the dNO(y) and DELTA-NO(y), and dNO(y) and NO(x)/NO(y) values, while no positive correlation between the dNO(y) and CO values was found, suggesting that dNO(y) values can be used as a measure of the NO(x) input from aircraft emissions. The excess NO(y) values calculated from another NO(y)-O3 reference relationship made using in-situ CN data also agreed with these dNO(y) values, within the uncertainties. At the NAFC region (45 N - 60 N), the median value of dNO(y) in the troposphere increased with altitude above 9 km and reached 70 pptv (20% of NO(y)) at 11 km. The excess NO(x) was estimated to be about half of the dNO(y) values, corresponding to 30% of the observed NO(x) level. Higher dNO(y) values were generally found in air masses where O3 = 75 - 125 ppbv, suggesting a more pronounced effect around the tropopause. The median value of dNO(y) in the stratosphere at the NAFC region at 8.5 - 11.5 km was about 120 pptv. The higher dNO(y) values in the LS were probably due to the accumulated effect of aircraft emissions, given the long residence time of affected air in the LS. Similar dNO(y) values were also obtained in air masses sampled over

  8. Impact of aircraft emissions on reactive nitrogen over the North Atlantic Flight Corridor region

    NASA Astrophysics Data System (ADS)

    Koike, M.; Kondo, Y.; Ikeda, H.; Gregory, G. L.; Anderson, B. E.; Sachse, G. W.; Blake, D. R.; Liu, S. C.; Singh, H. B.; Thompson, A. M.; Kita, K.; Zhao, Y.; Sugita, T.; Shetter, R. E.; Toriyama, N.

    2000-02-01

    The impact of aircraft emissions on reactive nitrogen in the upper troposphere (UT) and lowermost stratosphere (LS) was estimated using the NOy-O3 correlation obtained during the Subsonic Assessment (SASS) Ozone and Nitrogen Oxide Experiment (SONEX) carried out over the U.S. continent and North Atlantic Flight Corridor (NAFC) region in October and November 1997. To evaluate the large-scale impact, we made a reference NOy-O3 relationship in air masses, upon which aircraft emissions were considered to have little impact. For this purpose, the integrated input of NOx from aircraft into an air mass along a 10-day back trajectory (ΔNOy) was calculated based on the Abatement of Nuisance Caused by Air Traffic/European Commission (ANCAT/EC2) emission inventory. The excess NOy (dNOy) was calculated from the observed NOy and the reference NOy-O3 relationship. As a result, a weak positive correlation was found between the dNOy and ΔNOy, and dNOy and NOx/NOy values, while no positive correlation between the dNOy and CO values was found, suggesting that dNOy values can be used as a measure of the NOx input from aircraft emissions. The excess NOy values calculated from another NOy-O3 reference relationship made using in situ condensation nuclei data also agreed with these dNOy values, within the uncertainties. At the NAFC region (45°N-60°N) the median value of dNOy in the troposphere increased with altitude above 9 km and reached 70 parts per trillion by volume (pptv) (20% of NOy) at 11 km. The excess NOx was estimated to be about half of the dNOy values, corresponding to 30% of the observed NOx level. Higher dNOy values were generally found in air masses where O3 = 75-125 ppbv, suggesting a more pronounced effect around the tropopause. The median value of dNOy in the stratosphere at the NAFC region at 8.5-11.5 km was about 120 pptv. The higher dNOy values in the LS were probably due to the accumulated effect of aircraft emissions, given the long residence time of affected

  9. Women in Aerospace Awards

    NASA Image and Video Library

    2010-10-26

    NASA's Associate Administrator of the Science Mission Directorate Dr. Edward J. Weiler presents the Women in Aerospace's Lifetime Achievement Award to retired NASA chief astronomer Nancy Grace Roman at the organization's annual awards ceremony and banquet held at the Ritz-Carlton Hotel in Arlington, VA on Tuesday, Oct. 26, 2010. Four current NASA leaders and one retiree were recognized for their work by Women in Aerospace. The event celebrates women's professional excellence in aerospace and honors women who have made outstanding contributions to the aerospace community. Photo Credit: (NASA/Bill Ingalls)

  10. Comparison and analysis of two modern methods in the structural health monitoring techniques in aerospace

    NASA Astrophysics Data System (ADS)

    Riahi, Mohammad; Ahmadi, Alireza

    2016-04-01

    Role of air transport in the development and expansion of world trade leading to economic growth of different countries is undeniable. Continuing the world's trade sustainability without expansion of aerospace is next to impossible. Based on enormous expenses for design, manufacturing and maintenance of different aerospace structures, correct and timely diagnosis of defects in those structures to provide for maximum safety has the highest importance. Amid all this, manufacturers of commercial and even military aircrafts are after production of less expensive, lighter, higher fuel economy and nonetheless, higher safety. As such, two events has prevailed in the aerospace industries: (1) Utilization of composites for the fuselage as well as other airplane parts, (2) using modern manufacturing methods. Arrival of two these points have created the need for upgrading of the present systems as well as innovating newer methods in diagnosing and detection of defects in aerospace structures. Despite applicability of nondestructive testing (NDT) methods in aerospace for decades, due to some limitations in the defect detection's certainty, particularly for composite material and complex geometries, shadow of doubt has fallen on maintaining complete confidence in using NDT. These days, two principal approach are ahead to tackle the above mentioned problems. First, approach for the short range is the creative and combinational mean to increase the reliability of NDT and for the long run, innovation of new methods on the basis of structural health monitoring (SHM) is in order. This has led to new philosophy in the maintenance area and in some instances; field of design has also been affected by it.

  11. Testing For EM Upsets In Aircraft Control Computers

    NASA Technical Reports Server (NTRS)

    Belcastro, Celeste M.

    1994-01-01

    Effects of transient electrical signals evaluated in laboratory tests. Method of evaluating nominally fault-tolerant, aircraft-type digital-computer-based control system devised. Provides for evaluation of susceptibility of system to upset and evaluation of integrity of control when system subjected to transient electrical signals like those induced by electromagnetic (EM) source, in this case lightning. Beyond aerospace applications, fault-tolerant control systems becoming more wide-spread in industry; such as in automobiles. Method supports practical, systematic tests for evaluation of designs of fault-tolerant control systems.

  12. Flow-Field Survey in the Test Region of the SR-71 Aircraft Test Bed Configuration

    NASA Technical Reports Server (NTRS)

    Mizukami, Masashi; Jones, Daniel; Weinstock, Vladimir D.

    2000-01-01

    A flat plate and faired pod have been mounted on a NASA SR-71A aircraft for use as a supersonic flight experiment test bed. A test article can be placed on the flat plate; the pod can contain supporting systems. A series of test flights has been conducted to validate this test bed configuration. Flight speeds to a maximum of Mach 3.0 have been attained. Steady-state sideslip maneuvers to a maximum of 2 deg have been conducted, and the flow field in the test region has been surveyed. Two total-pressure rakes, each with two flow-angle probes, have been placed in the expected vicinity of an experiment. Static-pressure measurements have been made on the flat plate. At subsonic and low supersonic speeds with no sideslip, the flow in the surveyed region is quite uniform. During sideslip maneuvers, localized flow distortions impinge on the test region. Aircraft sideslip does not produce a uniform sidewash over the test region. At speeds faster than Mach 1.5, variable-pressure distortions were observed in the test region. Boundary-layer thickness on the flat plate at the rake was less than 2.1 in. For future experiments, a more focused and detailed flow-field survey than this one would be desirable.

  13. [Micron]ADS-B Detect and Avoid Flight Tests on Phantom 4 Unmanned Aircraft System

    NASA Technical Reports Server (NTRS)

    Arteaga, Ricardo; Dandachy, Mike; Truong, Hong; Aruljothi, Arun; Vedantam, Mihir; Epperson, Kraettli; McCartney, Reed

    2018-01-01

    Researchers at the National Aeronautics and Space Administration Armstrong Flight Research Center in Edwards, California and Vigilant Aerospace Systems collaborated for the flight-test demonstration of an Automatic Dependent Surveillance-Broadcast based collision avoidance technology on a small unmanned aircraft system equipped with the uAvionix Automatic Dependent Surveillance-Broadcast transponder. The purpose of the testing was to demonstrate that National Aeronautics and Space Administration / Vigilant software and algorithms, commercialized as the FlightHorizon UAS"TM", are compatible with uAvionix hardware systems and the DJI Phantom 4 small unmanned aircraft system. The testing and demonstrations were necessary for both parties to further develop and certify the technology in three key areas: flights beyond visual line of sight, collision avoidance, and autonomous operations. The National Aeronautics and Space Administration and Vigilant Aerospace Systems have developed and successfully flight-tested an Automatic Dependent Surveillance-Broadcast Detect and Avoid system on the Phantom 4 small unmanned aircraft system. The Automatic Dependent Surveillance-Broadcast Detect and Avoid system architecture is especially suited for small unmanned aircraft systems because it integrates: 1) miniaturized Automatic Dependent Surveillance-Broadcast hardware; 2) radio data-link communications; 3) software algorithms for real-time Automatic Dependent Surveillance-Broadcast data integration, conflict detection, and alerting; and 4) a synthetic vision display using a fully-integrated National Aeronautics and Space Administration geobrowser for three dimensional graphical representations for ownship and air traffic situational awareness. The flight-test objectives were to evaluate the performance of Automatic Dependent Surveillance-Broadcast Detect and Avoid collision avoidance technology as installed on two small unmanned aircraft systems. In December 2016, four flight tests

  14. Slush hydrogen quantity gaging and mixing for the National Aerospace Plane

    NASA Astrophysics Data System (ADS)

    Rudland, R. S.; Kroenke, I. M.; Urbach, A. R.

    The National Aerospace Plane (NASP) design team has selected slush hydrogen as the fuel needed to power the high-speed ramjet-scramjet engines. Use of slush hydrogen rather than normal hydrogen provides significant improvements in density and cooling capacity for the aircraft. The loading of slush hydrogen in the NASP tank must be determined accurately to allow the vehicle size and weight to be kept to a minimum. A unique sensor developed at Ball to measure the slush density will be used in each region of the hydrogen tank to accurately determine the total mass of fuel loaded in the vehicle. The design, analysis, and test configuration for the mixing system is described in this paper. The mixing system is used to eliminate large-scale disturbances in the fluid produced by the large heat flux through the wall. The mixer also provides off-bottom suspension of the solids to create a more uniform slush mixture. The mixer design uses a pump to supply flow to an array of jets that produce mixing throughout the tank. Density sensors will be used in the test configuration to evaluate the mixing effectiveness.

  15. ACSYNT - A standards-based system for parametric, computer aided conceptual design of aircraft

    NASA Technical Reports Server (NTRS)

    Jayaram, S.; Myklebust, A.; Gelhausen, P.

    1992-01-01

    A group of eight US aerospace companies together with several NASA and NAVY centers, led by NASA Ames Systems Analysis Branch, and Virginia Tech's CAD Laboratory agreed, through the assistance of Americal Technology Initiative, in 1990 to form the ACSYNT (Aircraft Synthesis) Institute. The Institute is supported by a Joint Sponsored Research Agreement to continue the research and development in computer aided conceptual design of aircraft initiated by NASA Ames Research Center and Virginia Tech's CAD Laboratory. The result of this collaboration, a feature-based, parametric computer aided aircraft conceptual design code called ACSYNT, is described. The code is based on analysis routines begun at NASA Ames in the early 1970's. ACSYNT's CAD system is based entirely on the ISO standard Programmer's Hierarchical Interactive Graphics System and is graphics-device independent. The code includes a highly interactive graphical user interface, automatically generated Hermite and B-Spline surface models, and shaded image displays. Numerous features to enhance aircraft conceptual design are described.

  16. International Access to Aerospace Information.

    DTIC Science & Technology

    1980-04-01

    data that belong into the category ’reproducible" belong here into the category ’conditions controlled by man" " non reproducible data’ belong into the...SESSION IV - NON -LITERATURE DATA IN AEROSPACE RESEARCH AND DEVELOPMENT THE NUMERIC AEROSPACE DATA: PROBLEMS OF EVALUATION, HANDLING AND DISSEMINATION...34. Sessions III and IV, held on 18 October, were entitled "Problems of Utilization of Aerospace Literature" and " Non -Literature Data in Aerospace and

  17. Development of Parametric Mass and Volume Models for an Aerospace SOFC/Gas Turbine Hybrid System

    NASA Technical Reports Server (NTRS)

    Tornabene, Robert; Wang, Xiao-yen; Steffen, Christopher J., Jr.; Freeh, Joshua E.

    2005-01-01

    In aerospace power systems, mass and volume are key considerations to produce a viable design. The utilization of fuel cells is being studied for a commercial aircraft electrical power unit. Based on preliminary analyses, a SOFC/gas turbine system may be a potential solution. This paper describes the parametric mass and volume models that are used to assess an aerospace hybrid system design. The design tool utilizes input from the thermodynamic system model and produces component sizing, performance, and mass estimates. The software is designed such that the thermodynamic model is linked to the mass and volume model to provide immediate feedback during the design process. It allows for automating an optimization process that accounts for mass and volume in its figure of merit. Each component in the system is modeled with a combination of theoretical and empirical approaches. A description of the assumptions and design analyses is presented.

  18. Parallel Aircraft Trajectory Optimization with Analytic Derivatives

    NASA Technical Reports Server (NTRS)

    Falck, Robert D.; Gray, Justin S.; Naylor, Bret

    2016-01-01

    Trajectory optimization is an integral component for the design of aerospace vehicles, but emerging aircraft technologies have introduced new demands on trajectory analysis that current tools are not well suited to address. Designing aircraft with technologies such as hybrid electric propulsion and morphing wings requires consideration of the operational behavior as well as the physical design characteristics of the aircraft. The addition of operational variables can dramatically increase the number of design variables which motivates the use of gradient based optimization with analytic derivatives to solve the larger optimization problems. In this work we develop an aircraft trajectory analysis tool using a Legendre-Gauss-Lobatto based collocation scheme, providing analytic derivatives via the OpenMDAO multidisciplinary optimization framework. This collocation method uses an implicit time integration scheme that provides a high degree of sparsity and thus several potential options for parallelization. The performance of the new implementation was investigated via a series of single and multi-trajectory optimizations using a combination of parallel computing and constraint aggregation. The computational performance results show that in order to take full advantage of the sparsity in the problem it is vital to parallelize both the non-linear analysis evaluations and the derivative computations themselves. The constraint aggregation results showed a significant numerical challenge due to difficulty in achieving tight convergence tolerances. Overall, the results demonstrate the value of applying analytic derivatives to trajectory optimization problems and lay the foundation for future application of this collocation based method to the design of aircraft with where operational scheduling of technologies is key to achieving good performance.

  19. Development Cycle Time Simulation for Civil Aircraft

    NASA Technical Reports Server (NTRS)

    Spitz, William; Berardino, Frank; Golaszewski, Richard; Johnson, Jesse

    2001-01-01

    Cycle Time Reduction (CTR) will be one of the major factors affecting the future of the civil aerospace industry. This focus is the end reflection of the level of competition in the commercial large carrier aircraft industry. Aircraft manufacturer must minimize costs and pass a portion of those savings onto buyers. CTR is one strategy used to move the manufacturing firm down the cost curve. The current NASA Airframe Development Cycle Time Reduction Goal is 50% by year 2022. This goal is not achievable based on the program analysis done by the LMI/GRA team. This may mean that the current roster of NASA CTR programs needs to be reexamined or that the program technology progress factors, as determined by the NASA experts, were understated. Programs that duplicate the reductions of others should be replaced with non-duplicative programs. In addition, new programs targeting a specific part of the cycle can be developed.

  20. An Inverse Interpolation Method Utilizing In-Flight Strain Measurements for Determining Loads and Structural Response of Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Shkarayev, S.; Krashantisa, R.; Tessler, A.

    2004-01-01

    An important and challenging technology aimed at the next generation of aerospace vehicles is that of structural health monitoring. The key problem is to determine accurately, reliably, and in real time the applied loads, stresses, and displacements experienced in flight, with such data establishing an information database for structural health monitoring. The present effort is aimed at developing a finite element-based methodology involving an inverse formulation that employs measured surface strains to recover the applied loads, stresses, and displacements in an aerospace vehicle in real time. The computational procedure uses a standard finite element model (i.e., "direct analysis") of a given airframe, with the subsequent application of the inverse interpolation approach. The inverse interpolation formulation is based on a parametric approximation of the loading and is further constructed through a least-squares minimization of calculated and measured strains. This procedure results in the governing system of linear algebraic equations, providing the unknown coefficients that accurately define the load approximation. Numerical simulations are carried out for problems involving various levels of structural approximation. These include plate-loading examples and an aircraft wing box. Accuracy and computational efficiency of the proposed method are discussed in detail. The experimental validation of the methodology by way of structural testing of an aircraft wing is also discussed.

  1. Environmentally regulated aerospace coatings

    NASA Technical Reports Server (NTRS)

    Morris, Virginia L.

    1995-01-01

    Aerospace coatings represent a complex technology which must meet stringent performance requirements in the protection of aerospace vehicles. Topcoats and primers are used, primarily, to protect the structural elements of the air vehicle from exposure to and subsequent degradation by environmental elements. There are also many coatings which perform special functions, i.e., chafing resistance, rain erosion resistance, radiation and electric effects, fuel tank coatings, maskants, wire and fastener coatings. The scheduled promulgation of federal environmental regulations for aerospace manufacture and rework materials and processes will regulate the emissions of photochemically reactive precursors to smog and air toxics. Aerospace organizations will be required to identify, qualify and implement less polluting materials. The elimination of ozone depleting chemicals (ODC's) and implementation of pollution prevention requirements are added constraints which must be addressed concurrently. The broad categories of operations affected are the manufacture, operation, maintenance, and repair of military, commercial, general aviation, and space vehicles. The federal aerospace regulations were developed around the precept that technology had to be available to support the reduction of organic and air toxic emissions, i.e., the regulations cannot be technology forcing. In many cases, the regulations which are currently in effect in the South Coast Air Quality Management District (SCAQMD), located in Southern California, were used as the baseline for the federal regulations. This paper addresses strategies used by Southern California aerospace organizations to cope with these regulatory impacts on aerospace productions programs. All of these regulatory changes are scheduled for implementation in 1993 and 1994, with varying compliance dates established.

  2. Aerospace Education. NSTA Position Statement

    ERIC Educational Resources Information Center

    National Science Teachers Association (NJ1), 2008

    2008-01-01

    National Science Teachers Association (NSTA) has developed a new position statement, "Aerospace Education." NSTA believes that aerospace education is an important component of comprehensive preK-12 science education programs. This statement highlights key considerations that should be addressed when implementing a high quality aerospace education…

  3. NASA Glenn Research in Controls and Diagnostics for Intelligent Aerospace Propulsion Systems

    NASA Technical Reports Server (NTRS)

    2005-01-01

    With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. Also the propulsion systems required to enable the NASA (National Aeronautics and Space Administration) Vision for Space Exploration in an affordable manner will need to have high reliability, safety and autonomous operation capability. The Controls and Dynamics Branch at NASA Glenn Research Center (GRC) in Cleveland, Ohio, is leading and participating in various projects in partnership with other organizations within GRC and across NASA, the U.S. aerospace industry, and academia to develop advanced controls and health management technologies that will help meet these challenges through the concept of Intelligent Propulsion Systems. The key enabling technologies for an Intelligent Propulsion System are the increased efficiencies of components through active control, advanced diagnostics and prognostics integrated with intelligent engine control to enhance operational reliability and component life, and distributed control with smart sensors and actuators in an adaptive fault tolerant architecture. This paper describes the current activities of the Controls and Dynamics Branch in the areas of active component control and propulsion system intelligent control, and presents some recent analytical and experimental results in these areas.

  4. A Conceptual Aerospace Vehicle Structural System Modeling, Analysis and Design Process

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, Vivek

    2007-01-01

    A process for aerospace structural concept analysis and design is presented, with examples of a blended-wing-body fuselage, a multi-bubble fuselage concept, a notional crew exploration vehicle, and a high altitude long endurance aircraft. Aerospace vehicle structures must withstand all anticipated mission loads, yet must be designed to have optimal structural weight with the required safety margins. For a viable systems study of advanced concepts, these conflicting requirements must be imposed and analyzed early in the conceptual design cycle, preferably with a high degree of fidelity. In this design process, integrated multidisciplinary analysis tools are used in a collaborative engineering environment. First, parametric solid and surface models including the internal structural layout are developed for detailed finite element analyses. Multiple design scenarios are generated for analyzing several structural configurations and material alternatives. The structural stress, deflection, strain, and margins of safety distributions are visualized and the design is improved. Over several design cycles, the refined vehicle parts and assembly models are generated. The accumulated design data is used for the structural mass comparison and concept ranking. The present application focus on the blended-wing-body vehicle structure and advanced composite material are also discussed.

  5. Design and analysis of aerospace structures at elevated temperatures. [aircraft, missiles, and space platforms

    NASA Technical Reports Server (NTRS)

    Chang, C. I.

    1989-01-01

    An account is given of approaches that have emerged as useful in the incorporation of thermal loading considerations into advanced composite materials-based aerospace structural design practices. Sources of structural heating encompass not only propulsion system heat and aerodynamic surface heating at supersonic speeds, but the growing possibility of intense thermal fluxes from directed-energy weapons. The composite materials in question range from intrinsically nonheat-resistant polymer matrix systems to metal-matrix composites, and increasingly to such ceramic-matrix composites as carbon/carbon, which are explicitly intended for elevated temperature operation.

  6. Evaluating the Regional Impact of Aircraft Emissions on Climate

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Wuebbles, D. J.; Khodayari, A.

    2017-12-01

    Unlike other transportation sectors where pollutant emissions usually occur only near the Earth's surface, aviation emissions happen primarily at altitudes of 8-12 km above the surface, impacting the upper troposphere and the lower stratosphere (UTLS). At these altitudes, the pollutants can contribute significantly to greenhouse gas (GHGs) concentration and to the formation of secondary aerosols, which can have an impact on climate change. This study examines the regional effects on climate forcing resulting from aviation emissions. Most previous studies have focused on aviation effects on climate using globally-averaged metric values, which do not give information about the spatial variability of the effects. While aviation emissions have significant spatial variability in the sign and magnitude of response, the strength of regional effects is hidden due to the global averaging of climate change effects. In this study, the chemistry-climate Community Atmosphere Model (CAM-chem5) is used in analyses to examine the regional climate effects based on 4 different latitude bands (90oS-28oS, 28oS-28oN, 28oN-60oN, 60oN-90oN) and 3 regions (contiguous United States, Europe and East Asia). The most regionally important aviation emissions are short-lived species, such as black carbon (BC) and sulfates, emitted from aircraft directly, and O3-short induced by NOx emission indirectly. The regionality of these short-lived impacts are explored and compared to the globally-averaged effects. The results indicate that BC and sulfates have more regionality than O3. The radiative forcings for short-lived agents over the United States, Europe and East Asia are around 2-4 times of their corresponding global values. The results also suggest that the climate forcings will be the most underestimated over the United States when using globally-averaged values without considering regional heterogeneity.

  7. Nitrogen oxides at the UTLS: Combining observations from research aircraft and in-service aircraft

    NASA Astrophysics Data System (ADS)

    Ziereis, Helmut; Stratmann, Greta; Schlager, Hans; Gottschaldt, Klaus-Dirk; Rauthe-Schöch, Armin; Zahn, Andreas; Hoor, Peter; van, Peter

    2016-04-01

    Nitrogen oxides have a decisive influence on the chemistry of the upper troposphere and lower stratosphere. They are key constituents of several reaction chains influencing the production of ozone. They also play an essential role in the cycling of hydroxyl radicals and therefore influence the lifetime of methane. Due to their short lifetime and their variety of sources there is still a high uncertainty about the abundance of nitrogen oxides in the UTLS. Dedicated aircraft campaigns aim to study specific atmospheric questions like lightning, long range transport or aircraft emissions. Usually, within a short time period comprehensive measurements are performed within a more or less restricted region. Therefore, especially trace constituents like nitrogen oxides with short lifetime and a variety of different sources are not represented adequately. On the other hand, routine measurements from in-service aircraft allow observations over longer time periods and larger regions. However, it is nearly impossible to influence the scheduling of in-service aircraft and thereby time and space of the observations. Therefore, the combination of dedicated aircraft campaigns and routine observations might supplement each other. For this study we combine nitrogen oxides data sets obtained with the IAGOS-CARIBIC (Civil Aircraft for the Regular Investigation of the Atmosphere Based on an Instrument Container) flying laboratory and with the German research aircraft HALO (High altitude and long range research aircraft). Data have been acquired within the IAGOS-CARIBIC project on a monthly base using a Lufthansa Airbus A340-600 since December 2004. About four flights are performed each month covering predominantly northern mid-latitudes. Additional flights have been conducted to destinations in South America and South Africa. Since 2012 HALO has been operational. Nitrogen oxides measurements have been performed during six missions covering mid latitudes, tropical as well as Polar

  8. Index of international publications in aerospace medicine.

    DOT National Transportation Integrated Search

    1993-02-01

    The Index of International Publications in Aerospace Medicine is a comprehensive listing of international publications in clinical aerospace medicine, operational aerospace medicine, aerospace physiology, environmental medicine/physiology, diving med...

  9. Index of international publications in aerospace medicine

    DOT National Transportation Integrated Search

    2001-08-01

    The Index of International Publications in Aerospace Medicine is a comprehensive listing of international publications in clinical aerospace medicine, operational aerospace medicine, aerospace physiology, environmental medicine/physiology, diving med...

  10. PLA Aerospace Power: A Primer on Trends in China’s Military Air, Space, and Missile Forces

    DTIC Science & Technology

    2017-10-24

    aircraft carriers in the future.104 China also may be considering offering the J-31 for sale to foreign customers in order to compete with the U.S...variations exist in other services within the PLA, most follow this general pattern of training . Several factors explain the existence of an annual training ...5. PLA Strategic Support Force 31 6. Trends in PLA Aerospace Training and Operational Proficiency 37 7. Outlook 45 Appendix 1: PLA Air Force

  11. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 41: Technical communication practices of Dutch and US aerospace engineers and scientists: International perspective on aerospace

    NASA Technical Reports Server (NTRS)

    Barclay, Rebecca O.; Pinelli, Thomas E.; Kennedy, John M.

    1994-01-01

    As part of Phase 4 of the NASA/DOD Aerospace Knowledge Diffusion Research Project, studies were conducted that investigated the technical communications practices of Dutch and U.S. aerospace engineers and scientists. The studies had the following objectives: (1) to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communication to their professions, (2) to determine the use and production of technical communication by aerospace engineers and scientists, (3) to investigate their use of libraries and technical information centers, (4) to investigate their use of and the importance to them of computer and information technology, (5) to examine their use of electronic networks, and (6) to determine their use of foreign and domestically produced technical reports. Self-administered (mail) questionnaires were distributed to Dutch aerospace engineers and scientists at the National Aerospace Laboratory (NLR) in the Netherlands, the NASA Ames Research Center in the U.S., and the NASA Langley Research Center in the U.S. Responses of the Dutch and U.S. participants to selected questions are presented in this paper.

  12. Future V/STOL Aircraft For The Pacific Basin

    NASA Technical Reports Server (NTRS)

    Albers, James A.; Zuk, John

    1992-01-01

    Report describes geography and transportation needs of Asian Pacific region, and describes aircraft configurations suitable for region and compares performances. Examines applications of high-speed rotorcraft, vertical/short-takeoff-and-landing (V/STOL) aircraft, and short-takeoff-and landing (STOL) aircraft. Configurations benefit commerce, tourism, and development of resources.

  13. Index of international publications in aerospace medicine.

    DOT National Transportation Integrated Search

    2014-05-01

    The 5th edition of the Index of International Publications in Aerospace Medicine is a comprehensive : listing of international publications in clinical aerospace medicine, operational aerospace medicine, : aerospace physiology, environmental medicine...

  14. Index of International Publications in Aerospace Medicine

    DOT National Transportation Integrated Search

    2007-01-01

    The 3rd edition of theIndex of International Publications in Aerospace Medicine is a comprehensive listing of : international publications in clinical aerospace medicine, operational aerospace medicine, aerospace : physiology, environmental medicine/...

  15. Analysis of Aircraft Control Performance using a Fuzzy Rule Base Representation of the Cooper-Harper Aircraft Handling Quality Rating

    NASA Technical Reports Server (NTRS)

    Tseng, Chris; Gupta, Pramod; Schumann, Johann

    2006-01-01

    The Cooper-Harper rating of Aircraft Handling Qualities has been adopted as a standard for measuring the performance of aircraft since it was introduced in 1966. Aircraft performance, ability to control the aircraft, and the degree of pilot compensation needed are three major key factors used in deciding the aircraft handling qualities in the Cooper- Harper rating. We formulate the Cooper-Harper rating scheme as a fuzzy rule-based system and use it to analyze the effectiveness of the aircraft controller. The automatic estimate of the system-level handling quality provides valuable up-to-date information for diagnostics and vehicle health management. Analyzing the performance of a controller requires a set of concise design requirements and performance criteria. Ir, the case of control systems fm a piloted aircraft, generally applicable quantitative design criteria are difficult to obtain. The reason for this is that the ultimate evaluation of a human-operated control system is necessarily subjective and, with aircraft, the pilot evaluates the aircraft in different ways depending on the type of the aircraft and the phase of flight. In most aerospace applications (e.g., for flight control systems), performance assessment is carried out in terms of handling qualities. Handling qualities may be defined as those dynamic and static properties of a vehicle that permit the pilot to fully exploit its performance in a variety of missions and roles. Traditionally, handling quality is measured using the Cooper-Harper rating and done subjectively by the human pilot. In this work, we have formulated the rules of the Cooper-Harper rating scheme as fuzzy rules with performance, control, and compensation as the antecedents, and pilot rating as the consequent. Appropriate direct measurements on the controller are related to the fuzzy Cooper-Harper rating system: a stability measurement like the rate of change of the cost function can be used as an indicator if the aircraft is under

  16. Aerospace Energy Systems Laboratory - Requirements and design approach

    NASA Technical Reports Server (NTRS)

    Glover, Richard D.

    1988-01-01

    The NASA Ames/Dryden Flight Research Facility operates a mixed fleet of research aircraft employing NiCd batteries in a variety of flight-critical applications. Dryden's Battery Systems Laboratory (BSL), a computerized facility for battery maintenance servicing, has evolved over two decades into one of the most advanced facilities of its kind in the world. Recently a major BSL upgrade was initiated with the goal of modernization to provide flexibility in meeting the needs of future advanced projects. The new facility will be called the Aerospace Energy Systems Laboratory (AESL) and will employ distributed processing linked to a centralized data base. AESL will be both a multistation servicing facility and a research laboratory for the advancement of energy storage system maintenance techniques. This paper describes the baseline requirements for the AESL and the design approach being taken for its mechanization.

  17. A survey of autonomous vision-based See and Avoid for Unmanned Aircraft Systems

    NASA Astrophysics Data System (ADS)

    Mcfadyen, Aaron; Mejias, Luis

    2016-01-01

    This paper provides a comprehensive review of the vision-based See and Avoid problem for unmanned aircraft. The unique problem environment and associated constraints are detailed, followed by an in-depth analysis of visual sensing limitations. In light of such detection and estimation constraints, relevant human, aircraft and robot collision avoidance concepts are then compared from a decision and control perspective. Remarks on system evaluation and certification are also included to provide a holistic review approach. The intention of this work is to clarify common misconceptions, realistically bound feasible design expectations and offer new research directions. It is hoped that this paper will help us to unify design efforts across the aerospace and robotics communities.

  18. Studies in automatic speech recognition and its application in aerospace

    NASA Astrophysics Data System (ADS)

    Taylor, Michael Robinson

    Human communication is characterized in terms of the spectral and temporal dimensions of speech waveforms. Electronic speech recognition strategies based on Dynamic Time Warping and Markov Model algorithms are described and typical digit recognition error rates are tabulated. The application of Direct Voice Input (DVI) as an interface between man and machine is explored within the context of civil and military aerospace programmes. Sources of physical and emotional stress affecting speech production within military high performance aircraft are identified. Experimental results are reported which quantify fundamental frequency and coarse temporal dimensions of male speech as a function of the vibration, linear acceleration and noise levels typical of aerospace environments; preliminary indications of acoustic phonetic variability reported by other researchers are summarized. Connected whole-word pattern recognition error rates are presented for digits spoken under controlled Gz sinusoidal whole-body vibration. Correlations are made between significant increases in recognition error rate and resonance of the abdomen-thorax and head subsystems of the body. The phenomenon of vibrato style speech produced under low frequency whole-body Gz vibration is also examined. Interactive DVI system architectures and avionic data bus integration concepts are outlined together with design procedures for the efficient development of pilot-vehicle command and control protocols.

  19. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 39: The role of computer networks in aerospace engineering

    NASA Technical Reports Server (NTRS)

    Bishop, Ann P.; Pinelli, Thomas E.

    1994-01-01

    This paper presents selected results from an empirical investigation into the use of computer networks in aerospace engineering. Such networks allow aerospace engineers to communicate with people and access remote resources through electronic mail, file transfer, and remote log-in. The study drew its subjects from private sector, government and academic organizations in the U.S. aerospace industry. Data presented here were gathered in a mail survey, conducted in Spring 1993, that was distributed to aerospace engineers performing a wide variety of jobs. Results from the mail survey provide a snapshot of the current use of computer networks in the aerospace industry, suggest factors associated with the use of networks, and identify perceived impacts of networks on aerospace engineering work and communication.

  20. The MOYA aircraft campaign: First measurements of methane, ethane and C-13 isotopes from West African biomass burning and other regional sources using the UK FAAM aircraft

    NASA Astrophysics Data System (ADS)

    Allen, Grant; Pitt, Joseph; Lee, James; Hopkins, James; Young, Stuart; Bauguitte, Stéphane; Gallagher, Martin; Fisher, Rebecca; Lowry, David; Nisbet, Euan

    2017-04-01

    Global methane concentrations continue to rise due to an imbalance between sources and sinks. There remains little consensus on the relative components of the manifold source types and their geographical origin. The Global Methane Budget and Yearly Assessments (MOYA) project is tasked with better characterising the global methane budget through an augmented global measurement and modelling programme. As part of MOYA, the UK's Facility for Airborne Atmospheric Measurement (FAAM), will fly four campaigns based out of West Africa and Ascension Island in the period 2017-2019, to focus on the important role of tropical sources. The first of these, to be conducted in late February 2017, will focus on the biomass burning season in West Africa. This paper will present the plan for future FAAM MOYA campaigns and report on our first aircraft data gathered in the West African region. The new addition of an interband cascade laser spectrometer to the FAAM aircraft, flown in this campaign for the first time, promises to provide the first real-time, continuous, and simultaneous, airborne measurements of methane, ethane and methane C-13 isotopologues. Together, these measurements, when interpreted in combination with other trace gases and aerosol measured on the aircraft, will serve as case studies to inform modelling of regional and global fluxes through their isotopic fingerprints.

  1. An overview of Ball Aerospace cryogen storage and delivery systems

    NASA Astrophysics Data System (ADS)

    Marquardt, J.; Keller, J.; Mills, G.; Schmidt, J.

    2015-12-01

    Starting on the Gemini program in the 1960s, Beech Aircraft (now Ball Aerospace) has been designing and manufacturing dewars for a variety of cryogens including liquid hydrogen and oxygen. These dewars flew on the Apollo, Skylab and Space Shuttle spacecraft providing fuel cell reactants resulting in over 150 manned spaceflights. Since Space Shuttle, Ball has also built the liquid hydrogen fuel tanks for the Boeing Phantom Eye unmanned aerial vehicle. Returning back to its fuel cell days, Ball has designed, built and tested a volume-constrained liquid hydrogen and oxygen tank system for reactant delivery to fuel cells on unmanned undersea vehicles (UUVs). Herein past history of Ball technology is described. Testing has been completed on the UUV specific design, which will be described.

  2. Fuzzy Structures Analysis of Aircraft Panels in NASTRAN

    NASA Technical Reports Server (NTRS)

    Sparrow, Victor W.; Buehrle, Ralph D.

    2001-01-01

    This paper concerns an application of the fuzzy structures analysis (FSA) procedures of Soize to prototypical aerospace panels in MSC/NASTRAN, a large commercial finite element program. A brief introduction to the FSA procedures is first provided. The implementation of the FSA methods is then disclosed, and the method is validated by comparison to published results for the forced vibrations of a fuzzy beam. The results of the new implementation show excellent agreement to the benchmark results. The ongoing effort at NASA Langley and Penn State to apply these fuzzy structures analysis procedures to real aircraft panels is then described.

  3. Aerospace engineering educational program

    NASA Technical Reports Server (NTRS)

    Craft, William; Klett, David; Lai, Steven

    1992-01-01

    The principle goal of the educational component of NASA CORE is the creation of aerospace engineering options in the mechanical engineering program at both the undergraduate and graduate levels. To accomplish this goal, a concerted effort during the past year has resulted in detailed plans for the initiation of aerospace options in both the BSME and MSME programs in the fall of 1993. All proposed new courses and the BSME aerospace option curriculum must undergo a lengthy approval process involving two cirriculum oversight committees (School of Engineering and University level) and three levels of general faculty approval. Assuming approval is obtained from all levels, the options will officially take effect in Fall '93. In anticipation of this, certain courses in the proposed curriculum are being offered during the current academic year under special topics headings so that current junior level students may graduate in May '94 under the BSME aerospace option. The proposed undergraduate aerospace option curriculum (along with the regular mechanical engineering curriculum for reference) is attached at the end of this report, and course outlines for the new courses are included in the appendix.

  4. Women in Aerospace Awards

    NASA Image and Video Library

    2010-10-26

    NASA Administrator Charlie Bolden holds up a photograph showing four female Astronauts onboard the Space Station during his presentation at the Women in Aerospace (WIA) organization's annual awards ceremony and banquet at the Ritz-Carlton Hotel in Arlington, VA on Tuesday, Oct. 26, 2010. Bolden presented Women in Aerospace's Outstanding Member Award to NASA Deputy Administrator Lori Garver, noting her ongoing leadership and participation in Women in Aerospace and her passion and dedication to opening the high frontier of space to the everyday person. Photo Credit: (NASA/Bill Ingalls)

  5. Light weight, high-speed, and self-powered wireless fiber optic sensor (WiFOS) structural health monitor system for avionics and aerospace environments

    NASA Astrophysics Data System (ADS)

    Mendoza, Edgar A.; Kempen, Cornelia; Sun, Sunjian; Esterkin, Yan

    2014-09-01

    This paper describes recent progress towards the development of an innovative light weight, high-speed, and selfpowered wireless fiber optic sensor (WiFOS™) structural health monitor system suitable for the onboard and in-flight unattended detection, localization, and classification of load, fatigue, and structural damage in advanced composite materials commonly used in avionics and aerospace systems. The WiFOS™ system is based on ROI's advancements on monolithic photonic integrated circuit microchip technology, integrated with smart power management, on-board data processing, wireless data transmission optoelectronics, and self-power using energy harvesting tools such as solar, vibration, thermoelectric, and magneto-electric. The self-powered, wireless WiFOS™ system offers a versatile and powerful SHM tool to enhance the reliability and safety of avionics platforms, jet fighters, helicopters, commercial aircraft that use lightweight composite material structures, by providing comprehensive information about the structural integrity of the structure from a large number of locations. Immediate SHM applications are found in rotorcraft and aircraft, ships, submarines, and in next generation weapon systems, and in commercial oil and petrochemical, aerospace industries, civil structures, power utilities, portable medical devices, and biotechnology, homeland security and a wide spectrum of other applications.

  6. Lightning Protection Guidelines for Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Goodloe, C. C.

    1999-01-01

    This technical memorandum provides lightning protection engineering guidelines and technical procedures used by the George C. Marshall Space Flight Center (MSFC) Electromagnetics and Aerospace Environments Branch for aerospace vehicles. The overviews illustrate the technical support available to project managers, chief engineers, and design engineers to ensure that aerospace vehicles managed by MSFC are adequately protected from direct and indirect effects of lightning. Generic descriptions of the lightning environment and vehicle protection technical processes are presented. More specific aerospace vehicle requirements for lightning protection design, performance, and interface characteristics are available upon request to the MSFC Electromagnetics and Aerospace Environments Branch, mail code EL23.

  7. A method for scenario-based risk assessment for robust aerospace systems

    NASA Astrophysics Data System (ADS)

    Thomas, Victoria Katherine

    In years past, aircraft conceptual design centered around creating a feasible aircraft that could be built and could fly the required missions. More recently, aircraft viability entered into conceptual design, allowing that the product's potential to be profitable should also be examined early in the design process. While examining an aerospace system's feasibility and viability early in the design process is extremely important, it is also important to examine system risk. In traditional aerospace systems risk analysis, risk is examined from the perspective of performance, schedule, and cost. Recently, safety and reliability analysis have been brought forward in the design process to also be examined during late conceptual and early preliminary design. While these analyses work as designed, existing risk analysis methods and techniques are not designed to examine an aerospace system's external operating environment and the risks present there. A new method has been developed here to examine, during the early part of concept design, the risk associated with not meeting assumptions about the system's external operating environment. The risks are examined in five categories: employment, culture, government and politics, economics, and technology. The risks are examined over a long time-period, up to the system's entire life cycle. The method consists of eight steps over three focus areas. The first focus area is Problem Setup. During problem setup, the problem is defined and understood to the best of the decision maker's ability. There are four steps in this area, in the following order: Establish the Need, Scenario Development, Identify Solution Alternatives, and Uncertainty and Risk Identification. There is significant iteration between steps two through four. Focus area two is Modeling and Simulation. In this area the solution alternatives and risks are modeled, and a numerical value for risk is calculated. A risk mitigation model is also created. The four steps

  8. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 64: Culture and Workplace Communications: A Comparison of the Technical Communications Practices of Japanese and US Aerospace Engineers and Scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Sato, Yuko; Barclay, Rebecca O.; Kennedy, John M.

    1997-01-01

    The advent of global markets elevates the role and importance of culture as a mitigating factor in the diffusion of knowledge and technology and in product and process innovation. This is especially true in the large commercial aircraft (LCA) sector where the production and market aspects are becoming increasingly international. As firms expand beyond their national borders, using such methods as risk-sharing partnerships, joint ventures, outsourcing, and alliances, they have to contend with national and corporate cultures. Our focus is on Japan, a program participant in the production of the Boeing Company's 777. The aspects of Japanese culture and workplace communications will be examined: 1.) the influence of Japanese culture on the diffusion of knowledge and technology in aerospace at the national and international levels; 2.) those cultural determinants-the propensity to work together, a willingness to subsume individual interests to a greater good, and an emphasis on consensual decision making-that have a direct bearing on the ability of Japanese firms to form alliances and compete in international markets; 3.) and those cultural determinants thought to influence the information-seeking behaviors and workplace communication practices of Japanese aerospace engineers and scientists. In this article, we report selective results from a survey of Japanese and U.S. aerospace engineers and scientists that focused on workplace communications. Data are presented for the following topics: importance of and time spent communicating information, collaborative writing, need for an undergraduate course in technical communication, use of libraries, use and importance of electronic (computer) networks, and the use and importance of foreign and domestically produced technical reports.

  9. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 60: Culture and Workplace Communications: A Comparison of the Technical Communications Practices of Japanese and US Aerospace Engineers and Scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Sato, Yuko; Barclay, Rebecca O.; Kennedy, John M.

    1997-01-01

    The advent of global markets elevates the role and importance of culture as a mitigating factor in the diffusion of knowledge and technology and in product and process innovation. This is especially true in the Large Commercial Aircraft (LCA) sector where the production and market aspects are becoming increasingly international. As firms expand beyond their national borders, using such methods as risk- sharing partnerships, joint ventures, outsourcing, and alliances, they have to contend with national and corporate cultures. Our focus is on Japan, a 'program participant' in the production of the Boeing Company's 777; the influence of Japanese culture on the diffusion of knowledge and technology in aerospace at the national and international levels; those cultural determinants-the propensity to work together, a willingness to subsume individual interests to a greater good, and an emphasis on consensual decisionmaking-that have a direct bearing on the ability of Japanese firms to form alliances and compete in international markets; and those cultural determinants thought to influence the information- seeking behaviors and workplace communication practices of Japanese aerospace engineers and scientists. In this paper, we report selective results from a survey of Japanese and U.S. aerospace engineers and scientists that focused on workplace communications. Data are presented for the following topics: importance of and time spent communicating information, collaborative writing, need for an undergraduate course in technical communication, use of libraries, use and importance of electronic (computer) networks, and the use and importance of foreign and domestically produced technical reports.

  10. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 12: The diffusion of federally funded aerospace research and development (R/D) and the information seeking behavior of US aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Kennedy, John M.; Barclay, Rebecca O.

    1991-01-01

    In this paper, the diffusion of federally funded aerospace R&D is explored from the perspective of the information-seeking behavior of U.S. aerospace engineers and scientists. The following three assumptions frame this exploration: (1) knowledge production, transfer, and utilization are equally important components of the aerospace R&D process; (2) the diffusion of knowledge resulting from federally funded aerospace R&D is indispensable for the U.S. to remain a world leader in aerospace; and (3) U.S. government technical reports, produced by NASA and DOD, play an important, but as yet undefined, role in the diffusion of federally funded aerospace R&D. A conceptual model for federally funded aerospace knowledge diffusion, one that emphasizes U.S. goverment technical reports, is presented. Data regarding three research questions concerning the information-seeking behavior of U.S. aerospace engineers and scientists are also presented.

  11. Processing infrared images of aircraft lapjoints

    NASA Technical Reports Server (NTRS)

    Syed, Hazari; Winfree, William P.; Cramer, K. E.

    1992-01-01

    Techniques for processing IR images of aging aircraft lapjoint data are discussed. Attention is given to a technique for detecting disbonds in aircraft lapjoints which clearly delineates the disbonded region from the bonded regions. The technique is weak on unpainted aircraft skin surfaces, but can be overridden by using a self-adhering contact sheet. Neural network analysis on raw temperature data has been shown to be an effective tool for visualization of images. Numerical simulation results show the above processing technique to be an effective tool in delineating the disbonds.

  12. Aircraft to aircraft intercomparison during SEMAPHORE

    NASA Astrophysics Data System (ADS)

    Lambert, Dominique; Durand, Pierre

    1998-10-01

    During the Structure des Echanges Mer-Atmosphère, Propriétés des Hétérogénéités Océaniques: Recherche Expérimentale (SEMAPHORE) experiment, performed in the Azores region in 1993, two French research aircraft were simultaneously used for in situ measurements in the atmospheric boundary layer. We present the results obtained from one intercomparison flight between the two aircraft. The mean parameters generally agree well, although the temperature has to be slightly shifted in order to be in agreement for the two aircraft. A detailed comparison of the turbulence parameters revealed no bias. The agreement is good for variances and is satisfactory for fluxes and skewness. A thorough study of the errors involved in flux computation revealed that the greatest accuracy is obtained for latent heat flux. Errors in sensible heat flux are considerably greater, and the worst results are obtained for momentum flux. The latter parameter, however, is more accurate than expected from previous parameterizations.

  13. Aerospace energy systems laboratory: Requirements and design approach

    NASA Technical Reports Server (NTRS)

    Glover, Richard D.

    1988-01-01

    The NASA Ames-Dryden Flight Research Facility at Edwards, California, operates a mixed fleet of research aircraft employing nickel-cadmium (NiCd) batteries in a variety of flight-critical applications. Dryden's Battery Systems Laboratory (BSL), a computerized facility for battery maintenance servicing, has developed over two decades into one of the most advanced facilities of its kind in the world. Recently a major BSL upgrade was initiated with the goal of modernization to provide flexibility in meeting the needs of future advanced projects. The new facility will be called the Aerospace Energy Systems Laboratory (AESL) and will employ distributed processing linked to a centralized data base. AESL will be both a multistation servicing facility and a research laboratory for the advancement of energy storage system maintenance techniques. This paper describes the baseline requirements for the AESL and the design approach being taken for its mechanization.

  14. Simulation and Flight Evaluation of a Parameter Estimation Input Design Method for Hybrid-Wing-Body Aircraft

    NASA Technical Reports Server (NTRS)

    Taylor, Brian R.; Ratnayake, Nalin A.

    2010-01-01

    As part of an effort to improve emissions, noise, and performance of next generation aircraft, it is expected that future aircraft will make use of distributed, multi-objective control effectors in a closed-loop flight control system. Correlation challenges associated with parameter estimation will arise with this expected aircraft configuration. Research presented in this paper focuses on addressing the correlation problem with an appropriate input design technique and validating this technique through simulation and flight test of the X-48B aircraft. The X-48B aircraft is an 8.5 percent-scale hybrid wing body aircraft demonstrator designed by The Boeing Company (Chicago, Illinois, USA), built by Cranfield Aerospace Limited (Cranfield, Bedford, United Kingdom) and flight tested at the National Aeronautics and Space Administration Dryden Flight Research Center (Edwards, California, USA). Based on data from flight test maneuvers performed at Dryden Flight Research Center, aerodynamic parameter estimation was performed using linear regression and output error techniques. An input design technique that uses temporal separation for de-correlation of control surfaces is proposed, and simulation and flight test results are compared with the aerodynamic database. This paper will present a method to determine individual control surface aerodynamic derivatives.

  15. Welcome to the Ohio Aerospace Institute

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The mission and various programs administered by the Ohio Aerospace Institute, a consortium made up of 9 Ohio Universities, LeRC, and members of the Aerospace Industry are described. The video highlights the following: programs to bring aerospace research to K-12 classrooms; programs to allow graduate students access to laboratory equipment at LeRC; the creation of a statewide television network to link researchers in industry and academia; and focus groups to encourage collaboration between companies in aerospace research.

  16. A measuring stand for a ducted fan aircraft propulsion unit

    NASA Astrophysics Data System (ADS)

    Hlaváček, David

    2014-03-01

    The UL-39 ultra-light aircraft which is being developed by the Department of Aerospace Engineering, Faculty of Mechanical Engineering, Czech Technical University in Prague, is equipped with an unconventional ducted fan propulsion unit. The unit consists of an axial fan driven by a piston engine and placed inside a duct ended with a nozzle. This article describes the arrangement of a modernised measuring stand for this highly specific propulsion unit which will be able to measure the fan pressure ratio and velocity field in front of and behind the fan and its characteristic curve.

  17. Nowcasting Aircraft Icing Conditions in Moscow Region Using Geostationary Meteorological Satellite Data

    NASA Astrophysics Data System (ADS)

    Barabanova, Olga

    2013-04-01

    Nowadays the Main Aviation Meteorological Centre in Moscow (MAMC) provides forecasts of icing conditions in Moscow Region airports using information of surface observation network, weather radars and atmospheric sounding. Unfortunately, satellite information is not used properly in aviation meteorological offices in Moscow Region: weather forecasters deal with satellites images of cloudiness only. The main forecasters of MAMC realise that it is necessary to employ meteorological satellite numerical data from different channels in aviation forecasting and especially in nowcasting. Algorithm of nowcasting aircraft in-flight icing conditions has been developed using data from geostationary meteorological satellites "Meteosat-7" and "Meteosat-9". The algorithm is based on the brightness temperature differences. Calculation of brightness temperature differences help to discriminate clouds with supercooled large drops where severe icing conditions are most likely. Due to the lack of visible channel data, the satellite icing detection methods will be less accurate at night. Besides this method is limited by optically thick ice clouds where it is not possible to determine the extent to which supercooled large drops exists within the underlying clouds. However, we determined that most of the optically thick cases are associated with convection or mid-latitude cyclones and they will nearly always have a layer where which supercooled large drops exists with an icing threat. This product is created hourly for the Moscow Air Space and mark zones with moderate or severe icing hazards. The results were compared with mesoscale numerical atmospheric model COSMO-RU output. Verification of the algorithms results using aircraft pilot reports shows that this algorithm is a good instrument for the operational practise in aviation meteorological offices in Moscow Region. The satellite-based algorithms presented here can be used in real time to diagnose areas of icing for pilots to avoid.

  18. Technical evaluation of the Aerospace Medical Panel Specialists Meeting on Escape Problems and Manoeuvres in Combat Aircraft

    NASA Technical Reports Server (NTRS)

    Jones, W. L.

    1974-01-01

    A technical evaluation of the papers presented at a conference on escape systems for helicopters and V/STOL aircraft was made. The subjects discussed include the following: (1) bioengineering aspects of spinal injury during ejection, (2) aerodynamic forces acting on crewman during escape, (3) operational practicality of fly away ejection seats, (4) helicopter survivability requirements, (5) ejection experience from V/STOL aircraft, and (6) research projects involving escape and retrieval systems.

  19. Investigation on harsh environmental effects on polymer fiber optic link for aircraft systems

    NASA Astrophysics Data System (ADS)

    Cherian, Sandy; Spangenberg, Holger; Caspary, Reinhard

    2014-09-01

    To integrate polymer fiber based physical layer for avionic data network, it is necessary to understand the impact and cause of harsh environments on polymer fiber optic components and harnesses. Since temperature and vibration have a significant influence, we investigate the variation in optical transmittance and monitor the endurance of different types of connector and splices under extreme aircraft environments. Presently, there is no specific aerospace standard for the application of polymer fiber and components in the aircraft data network. Therefore, in the paper we examine and define the thermal cycling and vibration measurement set up and methods to evaluate the performance capability of the physical layer of the data network. Some of the interesting results observed during the measurements are also presented.

  20. Hypersonic aircraft design

    NASA Technical Reports Server (NTRS)

    Alkamhawi, Hani; Greiner, Tom; Fuerst, Gerry; Luich, Shawn; Stonebraker, Bob; Wray, Todd

    1990-01-01

    A hypersonic aircraft is designed which uses scramjets to accelerate from Mach 6 to Mach 10 and sustain that speed for two minutes. Different propulsion systems were considered and it was decided that the aircraft would use one full scale turbofan-ramjet. Two solid rocket boosters were added to save fuel and help the aircraft pass through the transonic region. After considering aerodynamics, aircraft design, stability and control, cooling systems, mission profile, and landing systems, a conventional aircraft configuration was chosen over that of a waverider. The conventional design was chosen due to its landing characteristics and the relative expense compared to the waverider. Fuel requirements and the integration of the engine systems and their inlets are also taken into consideration in the final design. A hypersonic aircraft was designed which uses scramjets to accelerate from Mach 6 to Mach 10 and sustain that speed for two minutes. Different propulsion systems were considered and a full scale turbofan-ramjet was chosen. Two solid rocket boosters were added to save fuel and help the aircraft pass through the transonic reqion. After the aerodynamics, aircraft design, stability and control, cooling systems, mission profile, landing systems, and their physical interactions were considered, a conventional aircraft configuration was chosen over that of a waverider. The conventional design was chosen due to its landing characteristics and the relative expense compared to the waverider. Fuel requirements and the integration of the engine systems and their inlets were also considered in the designing process.

  1. Aircraft conceptual design - an adaptable parametric sizing methodology

    NASA Astrophysics Data System (ADS)

    Coleman, Gary John, Jr.

    Aerospace is a maturing industry with successful and refined baselines which work well for traditional baseline missions, markets and technologies. However, when new markets (space tourism) or new constrains (environmental) or new technologies (composite, natural laminar flow) emerge, the conventional solution is not necessarily best for the new situation. Which begs the question "how does a design team quickly screen and compare novel solutions to conventional solutions for new aerospace challenges?" The answer is rapid and flexible conceptual design Parametric Sizing. In the product design life-cycle, parametric sizing is the first step in screening the total vehicle in terms of mission, configuration and technology to quickly assess first order design and mission sensitivities. During this phase, various missions and technologies are assessed. During this phase, the designer is identifying design solutions of concepts and configurations to meet combinations of mission and technology. This research undertaking contributes the state-of-the-art in aircraft parametric sizing through (1) development of a dedicated conceptual design process and disciplinary methods library, (2) development of a novel and robust parametric sizing process based on 'best-practice' approaches found in the process and disciplinary methods library, and (3) application of the parametric sizing process to a variety of design missions (transonic, supersonic and hypersonic transports), different configurations (tail-aft, blended wing body, strut-braced wing, hypersonic blended bodies, etc.), and different technologies (composite, natural laminar flow, thrust vectored control, etc.), in order to demonstrate the robustness of the methodology and unearth first-order design sensitivities to current and future aerospace design problems. This research undertaking demonstrates the importance of this early design step in selecting the correct combination of mission, technologies and configuration to

  2. Aerospace management techniques: Commercial and governmental applications

    NASA Technical Reports Server (NTRS)

    Milliken, J. G.; Morrison, E. J.

    1971-01-01

    A guidebook for managers and administrators is presented as a source of useful information on new management methods in business, industry, and government. The major topics discussed include: actual and potential applications of aerospace management techniques to commercial and governmental organizations; aerospace management techniques and their use within the aerospace sector; and the aerospace sector's application of innovative management techniques.

  3. Exergy as a useful tool for the performance assessment of aircraft gas turbine engines: A key review

    NASA Astrophysics Data System (ADS)

    Şöhret, Yasin; Ekici, Selcuk; Altuntaş, Önder; Hepbasli, Arif; Karakoç, T. Hikmet

    2016-05-01

    It is known that aircraft gas turbine engines operate according to thermodynamic principles. Exergy is considered a very useful tool for assessing machines working on the basis of thermodynamics. In the current study, exergy-based assessment methodologies are initially explained in detail. A literature overview is then presented. According to the literature overview, turbofans may be described as the most investigated type of aircraft gas turbine engines. The combustion chamber is found to be the most irreversible component, and the gas turbine component needs less exergetic improvement compared to all other components of an aircraft gas turbine engine. Finally, the need for analyses of exergy, exergo-economic, exergo-environmental and exergo-sustainability for aircraft gas turbine engines is emphasized. A lack of agreement on exergy analysis paradigms and assumptions is noted by the authors. Exergy analyses of aircraft gas turbine engines, fed with conventional fuel as well as alternative fuel using advanced exergy analysis methodology to understand the interaction among components, are suggested to those interested in thermal engineering, aerospace engineering and environmental sciences.

  4. Hypersonic transport aircraft

    NASA Technical Reports Server (NTRS)

    1987-01-01

    A hypersonic transport aircraft design project was selected as a result of interactions with NASA Lewis Research Center personnel and fits the Presidential concept of the Orient Express. The Graduate Teaching Assistant (GTA) and an undergraduate student worked at the NASA Lewis Research Center during the 1986 summer conducting a literature survey, and relevant literature and useful software were collected. The computer software was implemented in the Computer Aided Design Laboratory of the Mechanical and Aerospace Engineering Department. In addition to the lectures by the three instructors, a series of guest lectures was conducted. The first of these lectures 'Anywhere in the World in Two Hours' was delivered by R. Luidens of NASA Lewis Center. In addition, videotaped copies of relevant seminars obtained from NASA Lewis were also featured. The first assignment was to individually research and develop the mission requirements and to discuss the findings with the class. The class in consultation with the instructors then developed a set of unified mission requirements. Then the class was divided into three design groups (1) Aerodynamics Group, (2) Propulsion Group, and (3) Structures and Thermal Analyses Group. The groups worked on their respective design areas and interacted with each other to finally come up with an integrated conceptual design. The three faculty members and the GTA acted as the resource persons for the three groups and aided in the integration of the individual group designs into the final design of a hypersonic aircraft.

  5. Application of Smart Solid State Sensor Technology in Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Xu, Jennifer C.; Dungan, L.K.; Makel, D.; Ward, B.; Androjna, D.

    2008-01-01

    Aerospace applications require a range of chemical sensing technologies to monitor conditions in both space vehicles and aircraft operations. One example is the monitoring of oxygen. For example, monitoring of ambient oxygen (O2) levels is critical to ensuring the health, safety, and performance of humans living and working in space. Oxygen sensors can also be incorporated in detection systems to determine if hazardous leaks are occurring in space propulsion systems and storage facilities. In aeronautic applications, O2 detection has been investigated for fuel tank monitoring. However, as noted elsewhere, O2 is not the only species of interest in aerospace applications with a wide range of species of interest being relevant to understand an environmental or vehicle condition. These include combustion products such as CO, HF, HCN, and HCl, which are related to both the presence of a fire and monitoring of post-fire clean-up operations. This paper discusses the development of an electrochemical cell platform based on a polymer electrolyte, NAFION, and a three-electrode configuration. The approach has been to mature this basic platform for a range of applications and to test this system, combined with "Lick and Stick" electronics, for its viability to monitor an environment related to astronaut crew health and safety applications with an understanding that a broad range of applications can be addressed with a core technology.

  6. Design & fabrication of two seated aircraft with an advanced rotating leading edge wing

    NASA Astrophysics Data System (ADS)

    Al Ahmari, Saeed Abdullah Saeed

    The title of this thesis is "Design & Fabrication of two Seated Aircraft with an Advanced Rotating Leading Edge Wing", this gives almost a good description of the work has been done. In this research, the moving surface boundary-layer control (MSBC) concept was investigated and implemented. An experimental model was constructed and tested in wind tunnel to determine the aerodynamic characteristics using the leading edge moving surface of modified semi-symmetric airfoil NACA1214. The moving surface is provided by a high speed rotating cylinder, which replaces the leading edge of the airfoil. The angle of attack, the cylinder surfaces velocity ratio Uc/U, and the flap deflection angle effects on the lift and drag coefficients and the stall angle of attack were investigated. This new technology was applied to a 2-seat light-sport aircraft that is designed and built in the Aerospace Engineering Department at KFUPM. The project team is led by the aerospace department chairman Dr. Ahmed Z. AL-Garni and Dr. Wael G. Abdelrahman and includes graduate and under graduate student. The wing was modified to include a rotating cylinder along the leading edge of the flap portion. This produced very promising results such as the increase of the maximum lift coefficient at Uc/U=3 by 82% when flaps up and 111% when flaps down at 40° and stall was delayed by 8degrees in both cases. The laboratory results also showed that the effective range of the leading-edge rotating cylinder is at low angles of attack which reduce the need for higher angles of attack for STOL aircraft.

  7. Development of a teaching tool to encourage high school students to study aerospace technical subjects

    NASA Technical Reports Server (NTRS)

    Gale, Anita; Edwards, Dick

    1998-01-01

    This report details the efforts to develop a design competition aimed at high school students which will encourage them to study aerospace technical subjects. It has been shown that such competitions - based on an industry simulation game - are valuable ways to energize high school students to study in this area. Under the grant, a new competition scenario was developed, in keeping with NASA-Dryden's mission to develop aircraft and foster knowledge about aeronautics. Included are preliminary background materials and information which, if the grant is continued, would form the basis of a national competition for high school students, wherein they would design an Aerospaceport in a future year, taking into consideration the requirements of aircraft, spacecraft- ground transportation systems, passengers who use the facility, and employees who operate it. Many of the Competition methods were studied and tested during two existing local competitions in the disadvantaged communities of Lancaster and Victorville, California.

  8. Human Behaviour in High Stress Situations in Aerospace Operations Conference Proceedings Held in The Hague, The Netherlands on 24-28 October 1988

    DTIC Science & Technology

    1989-06-01

    Continuously stimulating advances in the aerospace sciences relevant to strengthening the common defence posture; - Improving the co-operation among member...very stimulating symposium. vii KI-1 PREDICTION OF PERSONALITY Harald T. Andersen M.D., Ph.D., D.Sc,D.Av.Med. Director RNoAF Institute of Aviation...audio tape recorder which was connected to the aircraft communication system. This recorder provided a continuous auditory record of each mission so that

  9. Arctic regional methane fluxes by ecotope as derived using eddy covariance from a low-flying aircraft

    NASA Astrophysics Data System (ADS)

    Sayres, David S.; Dobosy, Ronald; Healy, Claire; Dumas, Edward; Kochendorfer, John; Munster, Jason; Wilkerson, Jordan; Baker, Bruce; Anderson, James G.

    2017-07-01

    The Arctic terrestrial and sub-sea permafrost region contains approximately 30 % of the global carbon stock, and therefore understanding Arctic methane emissions and how they might change with a changing climate is important for quantifying the global methane budget and understanding its growth in the atmosphere. Here we present measurements from a new in situ flux observation system designed for use on a small, low-flying aircraft that was deployed over the North Slope of Alaska during August 2013. The system combines a small methane instrument based on integrated cavity output spectroscopy (ICOS) with an air turbulence probe to calculate methane fluxes based on eddy covariance. We group surface fluxes by land class using a map based on LandSat Thematic Mapper (TM) data with 30 m resolution. We find that wet sedge areas dominate the methane fluxes with a mean flux of 2.1 µg m-2 s-1 during the first part of August. Methane emissions from the Sagavanirktok River have the second highest at almost 1 µg m-2 s-1. During the second half of August, after soil temperatures had cooled by 7 °C, methane emissions fell to between 0 and 0.5 µg m-2 s-1 for all areas measured. We compare the aircraft measurements with an eddy covariance flux tower located in a wet sedge area and show that the two measurements agree quantitatively when the footprints of both overlap. However, fluxes from sedge vary at times by a factor of 2 or more even within a few kilometers of the tower demonstrating the importance of making regional measurements to map out methane emissions spatial heterogeneity. Aircraft measurements of surface flux can play an important role in bridging the gap between ground-based measurements and regional measurements from remote sensing instruments and models.

  10. The Space of Aerospace Power: Why and How

    DTIC Science & Technology

    2000-05-01

    Next Fifty Years, discusses it in simple terms: 13 The Earth -Moon System circumscribes four discrete regions: Earth and Atmosphere... System (GPS) fleet of satellites carried out navigation and positioning efforts in the Gulf. This system provided Coalition forces precise three...transportation systems , and key agricultural areas. Strategic aerospace offense may involve projection of power, with limited or massive application

  11. Occupational Contact Dermatitis in the Canadian Aircraft Industry.

    PubMed

    Loranger, Camille; Moreau, Linda; Sasseville, Denis

    Aircraft building exposes workers to irritant and sensitizing products. The aim of this article was to study occupational dermatoses among aircraft workers over 25 years. The files of aerospace workers referred between 1990 and 2015 were extracted from the database of the McGill University Health Centre contact dermatitis clinic. These were subdivided according to demographics, type of work, patch testing results, and final diagnosis. Of 305 workers, 58% were 40 years or younger; one third were women. Onset of dermatitis varied from 2 months to 25 years, but 120 cases (39%) occurred during the first 3 years. Fifty-one percent of the cases involved assemblers, and 27% were composite material technicians, which were overrepresented as they constitute 10% of the workforce. Of the 305 workers, 152 suffered from allergic contact dermatitis, and 96 had irritant contact dermatitis. Of those with allergic contact dermatitis, 124 reacted to epoxy-based workplace products, but only 48 had positive patch tests to commercially available epoxy allergens. More than 60% of the cases of epoxy allergy would have been missed without testing with workplace products.

  12. [NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 7:] The NASA/DOD Aerospace Knowledge Diffusion Research Project: The DOD perspective

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Kennedy, John M.

    1990-01-01

    This project will provide descriptive and analytical data regarding the flow of STI at the individual, organizational, national, and international levels. It will examine both the channels used to communicate information and the social system of the aerospace knowledge diffusion process. Results of the project should provide useful information to R and D managers, information managers, and others concerned with improving access to and use of STI. Objectives include: (1) understanding the aerospace knowledge diffusion process at the individual, organizational, and national levels, placing particular emphasis on the diffusion of Federally funded aerospace STI; (2) understanding the international aerospace knowledge diffusion process at the individual and organizational levels, placing particular emphasis on the systems used to diffuse the results of Federally funded aerospace STI; (3) understanding the roles NASA/DoD technical report and aerospace librarians play in the transfer and use of knowledge derived from Federally funded aerospace R and D; (4) achieving recognition and acceptance within NASA, DoD and throughout the aerospace community that STI is a valuable strategic resource for innovation, problem solving, and productivity; and (5) providing results that can be used to optimize the effectiveness and efficiency of the Federal STI aerospace transfer system and exchange mechanism.

  13. Unification - An international aerospace information issue

    NASA Technical Reports Server (NTRS)

    Cotter, Gladys A.; Lahr, Thomas F.

    1992-01-01

    Scientific and Technical Information (STI) represents the results of large investments in research and development (R&D) and the expertise of a nation and is a valuable resource. For more than four decades, NASA and its predecessor organizations have developed and managed the preeminent aerospace information system. NASA obtains foreign materials through its international exchange relationships, continually increasing the comprehensiveness of the NASA Aerospace Database (NAD). The NAD is de facto the international aerospace database. This paper reviews current NASA goals and activities with a view toward maintaining compatibility among international aerospace information systems, eliminating duplication of effort, and sharing resources through international cooperation wherever possible.

  14. Quantifying emerging local anthropogenic emissions in the Arctic region: the ACCESS aircraft campaign experiment

    NASA Astrophysics Data System (ADS)

    Roiger, Anke; Thomas, Jennie L.; Schlager, Hans; Law, Kathy; Kim, Jin; Reiter, Anja; Schäfler, Andreas; Weinzierl, Bernadett; Rose, Maximilian; Raut, Jean-Christophe; Marelle, Louis

    2014-05-01

    Arctic change has opened the region to new industrial activities, most notably transit shipping and resource extraction. The impacts that Arctic industrialization will have on pollutants and Arctic climate are not well understood. In order to understand how shipping and offshore oil/gas extraction impact on Arctic tropospheric chemistry and composition, we conducted the ACCESS (Arctic Climate Change, Economy, and Society, a European Union Seventh Framework Programme project) aircraft campaign. The campaign was conducted in July 2012 using the DLR Falcon research aircraft, based in Andenes, Norway. The Falcon was equipped with a suite of trace gas and aerosol instruments (black carbon, ozone, as well as other trace species) to characterize these emissions and their atmospheric chemistry. The Falcon performed nine scientific flights to study emissions from different ships (e.g. cargo, passenger, and fishing vessels) and a variety of offshore extraction facilities (e.g. drilling rigs, production and storage platforms) off the Norwegian Coast. Distinct differences in chemical and aerosol composition were found in emissions from these increasing pollution sources. We also studied the composition of biomass burning plumes imported from Siberian wildfires to put the emerging local pollution within a broader context. In addition to our measurements, we used a regional chemical transport model to study the influence of emerging pollution sources on gas and aerosol concentrations in the region. We will present an overview on the measured trace gas and aerosol properties of the different emission sources and discuss the impact of future local anthropogenic activities on the Arctic air composition by combining measurements with model simulations.

  15. 78 FR 72598 - Airworthiness Directives; British Aerospace Regional Aircraft Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-03

    ... product. The MCAI describes the unsafe condition as stress corrosion cracking of the main landing gear.... The subsequent investigation revealed stress corrosion cracking of the MLG yoke pintle housing as a..., consequently, stress corrosion cracking. This condition, if not corrected, could lead to structural failure of...

  16. Influence of computational fluid dynamics on experimental aerospace facilities: A fifteen year projection

    NASA Technical Reports Server (NTRS)

    1983-01-01

    An assessment was made of the impact of developments in computational fluid dynamics (CFD) on the traditional role of aerospace ground test facilities over the next fifteen years. With improvements in CFD and more powerful scientific computers projected over this period it is expected to have the capability to compute the flow over a complete aircraft at a unit cost three orders of magnitude lower than presently possible. Over the same period improvements in ground test facilities will progress by application of computational techniques including CFD to data acquisition, facility operational efficiency, and simulation of the light envelope; however, no dramatic change in unit cost is expected as greater efficiency will be countered by higher energy and labor costs.

  17. 44th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    Boesiger, Edward A. (Compiler)

    2018-01-01

    The Aerospace Mechanisms Symposium (AMS) provides a unique forum for those active in the design, production and use of aerospace mechanisms. A major focus is the reporting of problems and solutions associated with the development and flight certification of new mechanisms.

  18. Aerospace Activities and Language Development

    ERIC Educational Resources Information Center

    Jones, Robert M.; Piper, Martha

    1975-01-01

    Describes how science activities can be used to stimulate language development in the elementary grades. Two aerospace activities are described involving liquid nitrogen and the launching of a weather balloon which integrate aerospace interests into the development of language skills. (BR)

  19. Acting Administrator Lightfoot Visits Ball Aerospace

    NASA Image and Video Library

    2017-04-06

    Acting NASA Deputy Administrator Lesa Roe, second from left, and acting NASA Administrator Robert Lightfoot, second from left, are seen with Mike Gazarik, vice president of Engineering at Ball Aerospace, left and Shawn Conley, test operations manager at Ball Aerospace, left, in front of the large semi-anechoic chamber, Thursday, April 6, 2017 during a visit to Ball Aerospace in Boulder, Colo. Photo Credit: (NASA/Joel Kowsky)

  20. Defense Suppliers: Factors Affecting U.S. Titanium Aircraft Component Manufacturers’ Market Share of DOD Business

    DTIC Science & Technology

    2013-07-01

    countries” currently are exempt from the specialty metals domestic source restriction and are permitted to use non-domestic produced titanium to...industry is the largest consumer of titanium metals in the world. DOD estimates that the aerospace industry accounts for 60 to 75 percent of the U.S...DOD, the specialty metals domestic source restriction limits the U.S. prime contractors’ and aircraft component manufacturers’ purchase of titanium

  1. Optical Autocovariance Wind Lidar (OAWL): aircraft test-flight history and current plans

    NASA Astrophysics Data System (ADS)

    Tucker, Sara C.; Weimer, Carl; Adkins, Mike; Delker, Tom; Gleeson, David; Kaptchen, Paul; Good, Bill; Kaplan, Mike; Applegate, Jeff; Taudien, Glenn

    2015-09-01

    To address mission risk and cost limitations the US has faced in putting a much needed Doppler wind lidar into space, Ball Aerospace and Technologies Corp, with support from NASA's Earth Science Technology Office (ESTO), has developed the Optical Autocovariance Wind Lidar (OAWL), designed to measure winds from aerosol backscatter at the 355 nm or 532 nm wavelengths. Preliminary proof of concept hardware efforts started at Ball back in 2004. From 2008 to 2012, under an ESTO-funded Instrument Incubator Program, Ball incorporated the Optical Autocovariance (OA) interferometer receiver into a prototype breadboard lidar system by adding a laser, telescope, and COTS-based data system for operation at the 355 nm wavelength. In 2011, the prototype system underwent ground-based validation testing, and three months later, after hardware and software modifications to ensure autonomous operation and aircraft safety, it was flown on the NASA WB-57 aircraft. The history of the 2011 test flights are reviewed, including efforts to get the system qualified for aircraft flights, modifications made during the flight test period, and the final flight data results. We also present lessons learned and plans for the new, robust, two-wavelength, aircraft system with flight demonstrations planned for Spring 2016.

  2. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 19: Computer and information technology and aerospace knowledge diffusion

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Kennedy, John M.; Barclay, Rebecca O.; Bishop, Ann P.

    1992-01-01

    To remain a world leader in aerospace, the US must improve and maintain the professional competency of its engineers and scientists, increase the research and development (R&D) knowledge base, improve productivity, and maximize the integration of recent technological developments into the R&D process. How well these objectives are met, and at what cost, depends on a variety of factors, but largely on the ability of US aerospace engineers and scientists to acquire and process the results of federally funded R&D. The Federal Government's commitment to high speed computing and networking systems presupposes that computer and information technology will play a major role in the aerospace knowledge diffusion process. However, we know little about information technology needs, uses, and problems within the aerospace knowledge diffusion process. The use of computer and information technology by US aerospace engineers and scientists in academia, government, and industry is reported.

  3. Multidisciplinary Design Investigation of Truss-Braced Wing Aircraft. Phase 4

    NASA Technical Reports Server (NTRS)

    Grossman, B.; Kapania, R. K.; Mason, W. H.; Schetz, J. A.

    2000-01-01

    The subject grant was in effect from 7/l/99 to 10/31/99. The objective of this grant was to complete a strut-braced wing study which began, which was in effect from 6/27/96 until 9/15/99. While the initial grant was on-going, we were also under subcontract to Lockheed-Martin, Aerospace Systems Division, Marietta, GA to do additional studies related to the strut-braced wing grant "A Structural and Aerodynamic Investigation of a Strut-Braced Wing Transonic Aircraft Concept", 4/l/98-11/15/98. Lockheed-Martin was under contract to NASA Langley. Finally the research under this grant has led to a joint proposal from NASA Langley, Locheed-Martin, Virginia Tech and NASA Dryden to develop a transonic strut-braced wing demonstration aircraft in response to Flight Research for Revolutionary Aeronautical Concepts (REVCON). This final report summarizes the research done, augmented by the additional concommitant research projects mentioned above.

  4. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 45; The Technical Communications Practices of US Aerospace Engineers and Scientists: Results of the Phase 3 US Aerospace Engineering Educators Survey

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1996-01-01

    The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. Little is also known about the intermediary-based system that is used to transfer the results of federally funded R&D to the U.S. aerospace industry. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. In this report, we summarize the literature on technical reports, present a model that depicts the transfer of federally funded aerospace R&D via the U.S. government technical report, and present the results of research that investigated aerospace knowledge diffusion vis-a-vis the technical communication practices of U.S. aerospace engineers and scientists who were members of the American Institute of Aeronautics and Astronautics (AIAA) and identified themselves as educators.

  5. Space weather effects measured in atmospheric radiation on aircraft

    NASA Astrophysics Data System (ADS)

    Tobiska, W. K.; Bouwer, D.; Bailey, J. J.; Didkovsky, L. V.; Judge, K.; Wieman, S. R.; Atwell, W.; Gersey, B.; Wilkins, R.; Rice, D.; Schunk, R. W.; Bell, L. D.; Mertens, C. J.; Xu, X.; Wiltberger, M. J.; Wiley, S.; Teets, E.; Shea, M. A.; Smart, D. F.; Jones, J. B. L.; Crowley, G.; Azeem, S. I.; Halford, A. J.

    2016-12-01

    Space weather's effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun's photons, particles, and fields. Of the domains that are affected by space weather, the coupling between the solar and galactic high-energy particles, the magnetosphere, and atmospheric regions can significantly affect humans and our technology as a result of radiation exposure. Since 2013 Space Environment Technologies (SET) has been conducting observations of the atmospheric radiation environment at aviation altitudes using a small fleet of six instruments. The objective of this work is to improve radiation risk management in air traffic operations. Under the auspices of the Automated Radiation Measurements for Aerospace Safety (ARMAS) and Upper-atmospheric Space and Earth Weather eXperiment (USEWX) projects our team is making dose rate measurements on multiple aircraft flying global routes. Over 174 ARMAS and USEWX flights have successfully demonstrated the operation of a micro dosimeter on commercial aviation altitude aircraft that captures the radiation environment resulting from Galactic Cosmic Rays (GCRs), Solar Energetic Protons (SEPs), and outer radiation belt energetic electrons. The real-time radiation exposure is measured as an absorbed dose rate in silicon and then computed as an ambient dose equivalent rate for reporting dose relevant to radiative-sensitive organs and tissue in units of microsieverts per hour. ARMAS total ionizing absorbed dose is captured on the aircraft, downlinked in real-time, processed on the ground into ambient dose equivalent rates, compared with NASA's Langley Research Center (LaRC) most recent Nowcast of Atmospheric Ionizing Radiation System (NAIRAS) global radiation climatology model runs, and then made available to end users. Dose rates from flight altitudes up to 56,700 ft. are shown for flights across the planet under a variety of space weather conditions. We discuss several space weather

  6. Frontier Aerospace Opportunities

    NASA Technical Reports Server (NTRS)

    Bushnell, Dennis M.

    2014-01-01

    Discussion and suggested applications of the many ongoing technology opportunities for aerospace products and missions, resulting in often revolutionary capabilities. The, at this point largely unexamined, plethora of possibilities going forward, a subset of which is discussed, could literally reinvent aerospace but requires triage of many possibilities. Such initial upfront homework would lengthen the Research and Development (R&D) time frame but could greatly enhance the affordability and performance of the evolved products and capabilities. Structural nanotubes and exotic energetics along with some unique systems approaches are particularly compelling.

  7. Unification: An international aerospace information issue

    NASA Technical Reports Server (NTRS)

    Cotter, Gladys A.; Lahr, Thomas F.

    1991-01-01

    Science and technology projects are becoming more and more international and interdisciplinary. Other parts of the world, notably Europe, are increasingly powerful players in the aerospace business. This change has led to the development of various aerospace information initiatives in other countries. With scarce resources in all areas of government and industry, the NASA STI Program is reviewing its current acquisition and exchange practices and policies to factor in the changing requirements and new opportunities within the international community. Current NASA goals and activities are reviewed with a view toward developing a scenario for establishing an international aerospace data base, maintaining compatibility among national aerospace information systems, eliminating duplication of effort, and sharing resources through international cooperation wherever possible.

  8. Unification - An international aerospace information opportunity

    NASA Technical Reports Server (NTRS)

    Cotter, Gladys A.; Lahr, Thomas F.

    1992-01-01

    Science and technology projects are becoming more and more international and interdisciplinary. Other parts of the world, notably Europe, are increasingly powerful players in the aerospace industry. This change has led to the development of various aerospace information initiatives in other countries. With scarce resources in all areas of government and industry, the NASA STI Program is reviewing its current acquisition and exchange practices and policies to factor in the changing requirements and new opportunities within the international community. Current NASA goals and activities are reviewed with a new view toward developing a scenario for establishing an international aerospace database, maintaining compatibility among national aerospace information systems, eliminating duplication of effort, and sharing resources through international cooperation wherever possible.

  9. Unification: An international aerospace information opportunity

    NASA Technical Reports Server (NTRS)

    Cotter, Gladys A.; Lahr, Thomas F.; Carroll, Bonnie C.

    1992-01-01

    Science and technology projects are becoming more and more international and interdisciplinary. Other parts of the world, notably Europe, are increasingly powerful players in the aerospace industry. This change has led to the development of various aerospace information initiatives in other countries. With scarce resources in all areas of government and industry, the NASA STI Program is reviewing its current acquisition and exchange practices and policies to factor in the changing requirements and new opportunities within the international community. Current NASA goals and activities are reviewed with a new view toward developing a scenario for establishing an international aerospace database, maintaining compatibility among national aerospace information systems, eliminating duplication of effort, and sharing resources through international cooperation wherever possible.

  10. Limitless Horizons: Careers in Aerospace.

    ERIC Educational Resources Information Center

    Lewis, Mary H.

    This is a manual for acquainting students with pertinent information relating to career choices in aerospace science, engineering, and technology. The first chapter presents information about the aerospace industry by describing disciplines typical of this industry. The National Aeronautics and Space Administration's (NASA) classification system…

  11. Mass spectrometry of aerospace materials

    NASA Technical Reports Server (NTRS)

    Colony, J. A.

    1976-01-01

    Mass spectrometry is used for chemical analysis of aerospace materials and contaminants. Years of analytical aerospace experience have resulted in the development of specialized techniques of sampling and analysis which are required in order to optimize results. This work has resulted in the evolution of a hybrid method of indexing mass spectra which include both the largest peaks and the structurally significant peaks in a concise format. With this system, a library of mass spectra of aerospace materials was assembled, including the materials responsible for 80 to 90 percent of the contamination problems at Goddard Space Flight Center during the past several years.

  12. Improved damage imaging in aerospace structures using a piezoceramic hybrid pin-force wave generation model

    NASA Astrophysics Data System (ADS)

    Ostiguy, Pierre-Claude; Quaegebeur, Nicolas; Masson, Patrice

    2014-03-01

    In this study, a correlation-based imaging technique called "Excitelet" is used to monitor an aerospace grade aluminum plate, representative of an aircraft component. The principle is based on ultrasonic guided wave generation and sensing using three piezoceramic (PZT) transducers, and measurement of reflections induced by potential defects. The method uses a propagation model to correlate measured signals with a bank of signals and imaging is performed using a roundrobin procedure (Full-Matrix Capture). The formulation compares two models for the complex transducer dynamics: one where the shear stress at the tip of the PZT is considered to vary as a function of the frequency generated, and one where the PZT is discretized in order to consider the shear distribution under the PZT. This method allows taking into account the transducer dynamics and finite dimensions, multi-modal and dispersive characteristics of the material and complex interactions between guided wave and damages. Experimental validation has been conducted on an aerospace grade aluminum joint instrumented with three circular PZTs of 10 mm diameter. A magnet, acting as a reflector, is used in order to simulate a local reflection in the structure. It is demonstrated that the defect can be accurately detected and localized. The two models proposed are compared to the classical pin-force model, using narrow and broad-band excitations. The results demonstrate the potential of the proposed imaging techniques for damage monitoring of aerospace structures considering improved models for guided wave generation and propagation.

  13. 32 CFR 705.30 - Aerospace Education Workshop.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 5 2012-07-01 2012-07-01 false Aerospace Education Workshop. 705.30 Section 705... REGULATIONS AND OFFICIAL RECORDS PUBLIC AFFAIRS REGULATIONS § 705.30 Aerospace Education Workshop. (a) This... of Naval Operations has cognizance of all assistance provided by the Navy to all Aerospace Education...

  14. 32 CFR 705.30 - Aerospace Education Workshop.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 5 2014-07-01 2014-07-01 false Aerospace Education Workshop. 705.30 Section 705... REGULATIONS AND OFFICIAL RECORDS PUBLIC AFFAIRS REGULATIONS § 705.30 Aerospace Education Workshop. (a) This... of Naval Operations has cognizance of all assistance provided by the Navy to all Aerospace Education...

  15. 32 CFR 705.30 - Aerospace Education Workshop.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 5 2013-07-01 2013-07-01 false Aerospace Education Workshop. 705.30 Section 705... REGULATIONS AND OFFICIAL RECORDS PUBLIC AFFAIRS REGULATIONS § 705.30 Aerospace Education Workshop. (a) This... of Naval Operations has cognizance of all assistance provided by the Navy to all Aerospace Education...

  16. Multidisciplinary Design and Analysis for Commercial Aircraft

    NASA Technical Reports Server (NTRS)

    Cummings, Russell M.; Freeman, H. JoAnne

    1999-01-01

    Multidisciplinary design and analysis (MDA) has become the normal mode of operation within most aerospace companies, but the impact of these changes have largely not been reflected at many universities. On an effort to determine if the emergence of multidisciplinary design concepts should influence engineering curricula, NASA has asked several universities (Virginia Tech, Georgia Tech, Clemson, BYU, and Cal Poly) to investigate the practicality of introducing MDA concepts within their undergraduate curricula. A multidisciplinary team of faculty, students, and industry partners evaluated the aeronautical engineering curriculum at Cal Poly. A variety of ways were found to introduce MDA themes into the curriculum without adding courses or units to the existing program. Both analytic and educational tools for multidisciplinary design of aircraft have been developed and implemented.

  17. Design search and optimization in aerospace engineering.

    PubMed

    Keane, A J; Scanlan, J P

    2007-10-15

    In this paper, we take a design-led perspective on the use of computational tools in the aerospace sector. We briefly review the current state-of-the-art in design search and optimization (DSO) as applied to problems from aerospace engineering, focusing on those problems that make heavy use of computational fluid dynamics (CFD). This ranges over issues of representation, optimization problem formulation and computational modelling. We then follow this with a multi-objective, multi-disciplinary example of DSO applied to civil aircraft wing design, an area where this kind of approach is becoming essential for companies to maintain their competitive edge. Our example considers the structure and weight of a transonic civil transport wing, its aerodynamic performance at cruise speed and its manufacturing costs. The goals are low drag and cost while holding weight and structural performance at acceptable levels. The constraints and performance metrics are modelled by a linked series of analysis codes, the most expensive of which is a CFD analysis of the aerodynamics using an Euler code with coupled boundary layer model. Structural strength and weight are assessed using semi-empirical schemes based on typical airframe company practice. Costing is carried out using a newly developed generative approach based on a hierarchical decomposition of the key structural elements of a typical machined and bolted wing-box assembly. To carry out the DSO process in the face of multiple competing goals, a recently developed multi-objective probability of improvement formulation is invoked along with stochastic process response surface models (Krigs). This approach both mitigates the significant run times involved in CFD computation and also provides an elegant way of balancing competing goals while still allowing the deployment of the whole range of single objective optimizers commonly available to design teams.

  18. Technical communications in aerospace - An analysis of the practices reported by U.S. and European aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.; Glassman, Myron

    1990-01-01

    The flow of scientific and technical information (STI) at the individual, organizational, national, and international levels is studied. The responses of U.S and European aerospace engineers and scientists to questionnaires concerning technical communications in aerospace are examined. Particular attention is given to the means used to communicate information and the social system of the aerospace knowledge diffusion process. Demographic data about the survey respondents are provided. The methods used to communicate technical data and the sources utilized to solve technical problems are described. The importance of technical writing skills and the use of computer technology in the aerospace field are discussed. The derived data are useful for R&D and information managers in order to improve access to and utilization of aerospace STI.

  19. NASA Aerospace Flight Battery Systems Program Update

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle; ODonnell, Patricia

    1997-01-01

    The objectives of NASA's Aerospace Flight Battery Systems Program is to: develop, maintain and provide tools for the validation and assessment of aerospace battery technologies; accelerate the readiness of technology advances and provide infusion paths for emerging technologies; provide NASA projects with the required database and validation guidelines for technology selection of hardware and processes relating to aerospace batteries; disseminate validation and assessment tools, quality assurance, reliability, and availability information to the NASA and aerospace battery communities; and ensure that safe, reliable batteries are available for NASA's future missions.

  20. Assessing the shielding of engine noise by the wings for current aircraft using model predictions and measurements.

    PubMed

    Vieira, Ana; Snellen, Mirjam; Simons, Dick G

    2018-01-01

    Reducing aircraft noise is a major issue to be dealt with by the aerospace industry. In addition to lowering noise emissions from the engine and airframe, also the shielding of engine noise by the aircraft is considered as a promising means for reducing the perceived noise on the ground. In literature, noise shielding predictions indicate significant reductions in received noise levels for blended wing body configurations, but also for conventional aircraft with the engines placed above the wings. Little work has been done in assessing these potential shielding effects for full aircraft under real operational conditions. Therefore, in this work, noise shielding for current aircraft is investigated using both measurements and model predictions. The predictions are based on the Kirchhoff integral theory and the Modified Theory of Physical Optics. For the comparison between the predictions and measurements, Twenty Fokker 70 flyovers are considered. The data analysis approach for the extraction of shielding levels for aircraft under these operational conditions is presented. Directly under the flight path, the simulations predict an engine noise shielding of 6 dB overall sound pressure level. This is confirmed by some of the flyover data. On average, the measurements show somewhat lower shielding levels.

  1. Aerospace Training. Washington's Community and Technical Colleges

    ERIC Educational Resources Information Center

    Washington State Board for Community and Technical Colleges, 2014

    2014-01-01

    Aerospace is an economic powerhouse that generates jobs and fuels our economy. Washington's community and technical colleges produce the world-class employees needed to keep it that way. With about 1,250 aerospace-related firms employing more than 94,000 workers, Washington has the largest concentration of aerospace expertise in the nation. To…

  2. Aerospace Education for the Melting Pot.

    ERIC Educational Resources Information Center

    Joels, Kerry M.

    1979-01-01

    Aerospace education is eminently suited to provide a framework for multicultural education. Effective programs accommodating minorities' frames of reference to the rapidly developing disciplines of aerospace studies have been developed. (RE)

  3. Aerospace Education and the Elementary Teacher

    ERIC Educational Resources Information Center

    Jones, Robert M.

    1978-01-01

    This articles attempts to stimulate otherwise reluctant school teachers to involve aerospace education in their content repertoire. Suggestions are made to aid the teacher in getting started with aerospace education. (MDR)

  4. Back symptoms in aviators flying different aircraft.

    PubMed

    Grossman, Alon; Nakdimon, Idan; Chapnik, Leah; Levy, Yuval

    2012-07-01

    Back pain is a common complaint among military aviators of various aircraft. We attempted to define the epidemiologic characteristics of this complaint in military aviators of the Israeli Air Force. Aviators of various aircraft (fighter, attack helicopter, utility helicopter, and transport and cargo) completed 566 questionnaires. The questionnaires included various demographic variables as well as questions specifically addressing type of aircraft, location, and severity of pain. Questionnaires were analyzed according to aircraft type, weekly and total number of flight hours. Back pain was significantly more common among utility and attack helicopter pilots. Compared with only 64.02% of fighter pilots, 89.38% of utility and 74.55% of attack helicopter pilots reported some degree of back pain. Cervical region pain was more common among fighter pilots (47.2%) and utility helicopter pilots (47.3%) compared with attack helicopter (36.4%) and transport (22.3%) pilots. Cervical region pain of moderate-severe degree was more common among utility helicopter pilots (7.1%). Mid and low back pain at all degrees of severity were more common among helicopter pilots. A significant proportion of subjects suffered from pain in multiple regions, particularly among utility helicopter pilots (32.74%). Severity of pain was graded higher in all three regions (cervical, mid, and lower back) in utility helicopter pilots. Utility helicopter pilots have more prevalent and more severe back pain than pilots of other platforms. Yet, it is difficult to make a clear association between type of aircraft and the region of back pain.

  5. Systems and Technologies for Space Exploration: the regional project STEPS

    NASA Astrophysics Data System (ADS)

    Boggiatto, D.; Moncalvo, D.

    The Aerospace technology network of Piemonte represents ˜25% of the italian capacity and handles a comprehensive spectrum of products (aircraft, propulsion, satellites, space station modules, avionics. components, services...). The cooperation between the Comitato Distretto Aerospaziale Piemonte and the European Regional Development Fund 2007-2013 has enabled Regione Piemonte to launch three regional Projects capable to enhance the synergy and competitiveness of the network, among which: STEPS - Sistemi e Tecnologie per l'EsPlorazione Spaziale, a joint development of technologies for robotic and human Space Exploration by 3 large Industries, 27 SMEs, 3 Universities and one public Research Centre. STEPS develops virtual and hardware demonstrators for a range of technologies to do with a Lander's descent and soft landing, and a Rover's surface mobility, of both robotic and manned equipment on Moon and Mars. It also foresees the development of Teleoperations labs and Virtual Reality environments and physical simulations of Moon and Mars surface conditions and ground. Mid-way along STEPS planned development, initial results in several technology domains are available and are presented in this paper.

  6. Limitless Horizons. Careers in Aerospace

    NASA Technical Reports Server (NTRS)

    Lewis, M. H.

    1980-01-01

    A manual is presented for use by counselors in career guidance programs. Pertinent information is provided on choices open in aerospace sciences, engineering, and technology. Accredited institutions awarding degrees in pertinent areas are listed as well as additional sources of aerospace career information. NASA's role and fields of interest are emphasized.

  7. 76 FR 58776 - U.S. Aerospace Supplier & Investment Mission

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-22

    ... DEPARTMENT OF COMMERCE International Trade Administration U.S. Aerospace Supplier & Investment... organizing a U.S. Aerospace Supplier & Investment Mission to Montreal, Canada, May 6-9, 2012. This aerospace.... Participation Requirements All parties interested in participating in the U.S. aerospace trade and investment...

  8. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 47: The value of computer networks in aerospace

    NASA Technical Reports Server (NTRS)

    Bishop, Ann Peterson; Pinelli, Thomas E.

    1995-01-01

    This paper presents data on the value of computer networks that were obtained from a national survey of 2000 aerospace engineers that was conducted in 1993. Survey respondents reported the extent to which they used computer networks in their work and communication and offered their assessments of the value of various network types and applications. They also provided information about the positive impacts of networks on their work, which presents another perspective on value. Finally, aerospace engineers' recommendations on network implementation present suggestions for increasing the value of computer networks within aerospace organizations.

  9. Atmospheric radiation measurement unmanned aerospace vehicle (ARM-UAV) program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolton, W.R.

    1996-11-01

    ARM-UAV is part of the multi-agency U.S. Global Change Research Program and is addressing the largest source of uncertainty in predicting climatic response: the interaction of clouds and the sun`s energy in the Earth`s atmosphere. An important aspect of the program is the use of unmanned aerospace vehicles (UAVs) as the primary airborne platform. The ARM-UAV Program has completed two major flight series: The first series conducted in April, 1994, using an existing UAV (the General Atomics Gnat 750) consisted of eight highly successful flights at the DOE climate site in Oklahoma. The second series conducted in September/October, 1995, usingmore » two piloted aircraft (Egrett and Twin Otter), featured simultaneous measurements above and below clouds and in clear sky. Additional flight series are planned to continue study of the cloudy and clear sky energy budget in the Spring and Fall of 1996 over the DOE climate site in Oklahoma. 3 refs., 4 figs., 1 tab.« less

  10. Optical Information Processing for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Current research in optical processing is reviewed. Its role in future aerospace systems is determined. The development of optical devices and components demonstrates that system concepts can be implemented in practical aerospace configurations.

  11. Acting Administrator Lightfoot Visits Ball Aerospace

    NASA Image and Video Library

    2017-04-06

    Acting NASA Deputy Administrator Lesa Roe, right, speaks with Rob Strain, president of Ball Aerospace, Thursday, April 6, 2017 during a visit to Ball Aerospace in Boulder, Colo. Photo Credit: (NASA/Joel Kowsky)

  12. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 5: Aerospace librarians and technical information specialists as information intermediaries: A report of phase 2 activities of the NASA/DOD Aerospace Knowledge Diffusion Research Project

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Kennedy, John M.

    1990-01-01

    The objective of the NASA/DOD Aerospace Knowledge Diffusion Research Project is to provide descriptive and analytical data regarding the flow of scientific and technical information (STI) at the individual, organizational, national, and international levels, placing emphasis on the systems used to diffuse the results of federally funded aerospace STI. An overview of project assumptions, objectives, and design is presented and preliminary results of the phase 2 aerospace library survey are summarized. Phase 2 addressed aerospace knowledge transfer and use within the larger social system and focused on the flow of aerospace STI in government and industry and the role of the information intermediary in knowledge transfer.

  13. Civil Air Patrol and Aerospace Education

    ERIC Educational Resources Information Center

    Sorenson, John V.

    1972-01-01

    Aerospace education is a branch of general education concerned with communicating knowledge, imparting skills, and developing attitudes necessary to interpret aerospace activities and the total impact of air and space vehicles upon society. (Author)

  14. 78 FR 1265 - Aerospace Safety Advisory Panel; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-08

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 13-001] Aerospace Safety Advisory Panel... Aeronautics and Space Administration announces a forthcoming meeting of the Aerospace Safety Advisory Panel..., Aerospace Safety Advisory Panel Executive Director, National Aeronautics and Space Administration...

  15. 76 FR 62455 - Aerospace Safety Advisory Panel; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-07

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (11-088)] Aerospace Safety Advisory Panel... Aeronautics and Space Administration announces a forthcoming meeting of the Aerospace Safety Advisory Panel... Burch, Aerospace Safety Advisory Panel Administrative Officer, National Aeronautics and Space...

  16. Strain characterization of embedded aerospace smart materials using shearography

    NASA Astrophysics Data System (ADS)

    Anisimov, Andrei G.; Müller, Bernhard; Sinke, Jos; Groves, Roger M.

    2015-04-01

    The development of smart materials for embedding in aerospace composites provides enhanced functionality for future aircraft structures. Critical flight conditions like icing of the leading edges can affect the aircraft functionality and controllability. Hence, anti-icing and de-icing capabilities are used. In case of leading edges made of fibre metal laminates heater elements can be embedded between composite layers. However this local heating causes strains and stresses in the structure due to the different thermal expansion coefficients of the different laminated materials. In order to characterize the structural behaviour during thermal loading full-field strain and shape measurement can be used. In this research, a shearography instrument with three spatially-distributed shearing cameras is used to measure surface displacement gradients which give a quantitative estimation of the in- and out-of-plane surface strain components. For the experimental part, two GLARE (Glass Laminate Aluminum Reinforced Epoxy) specimens with six different embedded copper heater elements were manufactured: two copper mesh shapes (straight and S-shape), three connection techniques (soldered, spot welded and overlapped) and one straight heater element with delaminations. The surface strain behaviour of the specimens due to thermal loading was measured and analysed. The comparison of the connection techniques of heater element parts showed that the overlapped connection has the smallest effect on the surface strain distribution. Furthermore, the possibility of defect detection and defect depth characterisation close to the heater elements was also investigated.

  17. 75 FR 61219 - Aerospace Safety Advisory Panel; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-04

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-116)] Aerospace Safety Advisory Panel... Aeronautics and Space Administration announces a forthcoming meeting of the Aerospace Safety Advisory Panel... Dakon, Aerospace Safety Advisory Panel Executive Director, National Aeronautics and Space Administration...

  18. 76 FR 19147 - Aerospace Safety Advisory Panel; Meeting.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-06

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (11-030)] Aerospace Safety Advisory Panel... Aeronautics and Space Administration announce a forthcoming meeting of the Aerospace Safety Advisory Panel.... Kathy Dakon, Aerospace Safety Advisory Panel Executive Director, National Aeronautics and Space...

  19. 78 FR 15976 - Aerospace Safety Advisory Panel; Meeting.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-13

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: 13-023] Aerospace Safety Advisory Panel... Aeronautics and Space Administration announce a forthcoming meeting of the Aerospace Safety Advisory Panel... Space Administration, Washington, DC 20546, (202) 358-1857. SUPPLEMENTARY INFORMATION: The Aerospace...

  20. 78 FR 56941 - Aerospace Safety Advisory Panel; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-16

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: 13-114] Aerospace Safety Advisory Panel... Aeronautics and Space Administration announces a forthcoming meeting of the Aerospace Safety Advisory Panel.... Harmony Myers, Aerospace Safety Advisory Panel Executive Director, National Aeronautics and Space...

  1. 77 FR 58413 - Aerospace Safety Advisory Panel; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-20

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 12-074] Aerospace Safety Advisory Panel... Aeronautics and Space Administration announces a forthcoming meeting of the Aerospace Safety Advisory Panel.... Harmony Myers, Aerospace Safety Advisory Panel Executive Director, National Aeronautics and Space...

  2. 77 FR 38090 - Aerospace Safety Advisory Panel; Meeting.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-26

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 12-044] Aerospace Safety Advisory Panel... Aeronautics and Space Administration announces a forthcoming meeting of the Aerospace Safety Advisory Panel.... Harmony Myers, Aerospace Safety Advisory Panel Executive Director, National Aeronautics and Space...

  3. Capital raising of aerospace companies: equities or debts?

    NASA Astrophysics Data System (ADS)

    Hui-Shan, L.; Taw-Onn, Y.; Wai-Mun, H.

    2016-10-01

    Aerospace products enhance national and economic activities, thus maintaining the sustainability of aerospace industry is crucial. One of the perspectives in ensuring sustainability of aerospace companies is expansion of firms by raising funds for research and development in order to provide a reasonable profitability to the firms. This study comprises a sample of 47 aerospace companies from 2009 to 2015 to analyze the impact of raising fund by equities or debts to the profitability of the firms. The result indicates that capital raising through equities is preferable than debts. Moreover, the study also identifies that the profit of aerospace industry is volatile and there is cyclical reduction of the net income in the first quarter of the year. The management needs to make wise decisions in raising fund to ensure a healthy growth of the aerospace company.

  4. Finite element simulation of adaptive aerospace structures with SMA actuators

    NASA Astrophysics Data System (ADS)

    Frautschi, Jason; Seelecke, Stefan

    2003-07-01

    The particular demands of aerospace engineering have spawned many of the developments in the field of adaptive structures. Shape memory alloys are particularly attractive as actuators in these types of structures due to their large strains, high specific work output and potential for structural integration. However, the requisite extensive physical testing has slowed development of potential applications and highlighted the need for a simulation tool for feasibility studies. In this paper we present an implementation of an extended version of the M'ller-Achenbach SMA model into a commercial finite element code suitable for such studies. Interaction between the SMA model and the solution algorithm for the global FE equations is thoroughly investigated with respect to the effect of tolerances and time step size on convergence, computational cost and accuracy. Finally, a simulation of a SMA-actuated flexible trailing edge of an aircraft wing modeled with beam elements is presented.

  5. 60NiTi Intermetallic Material Evaluation for Lightweight and Corrosion Resistant Spherical Sliding Bearings for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher; Jefferson, Michael

    2015-01-01

    NASA Glenn Research Center and the Kamatics subsidiary of the Kaman Corporation conducted the experimental evaluation of spherical sliding bearings made with 60NiTi inner races. The goal of the project was to assess the feasibility of manufacturing lightweight, corrosion resistant bearings utilizing 60NiTi for aerospace and industrial applications. NASA produced the bearings in collaboration with Abbott Ball Corporation and Kamatics fabricated bearing assemblies utilizing their standard reinforced polymer liner material. The assembled bearings were tested in oscillatory motion at a load of 4.54kN (10,000 lb), according to the requirements of the plain bearing specification SAE AS81820. Several test bearings were exposed to hydraulic fluid or aircraft deicing fluid prior to and during testing. The results show that the 60NiTi bearings exhibit tribological performance comparable to conventional stainless steel (440C) bearings. Further, exposure of 60NiTi bearings to the contaminant fluids had no apparent performance effect. It is concluded that 60NiTi is a feasible bearing material for aerospace and industrial spherical bearing applications.

  6. Civil applications of high-speed rotorcraft and powered-lift aircraft configurations

    NASA Technical Reports Server (NTRS)

    Albers, James A.; Zuk, John

    1987-01-01

    Advanced subsonic vertical and short takeoff and landing (V/STOL) aircraft configurations offer new transportation options for civil applications. Described is a range of vehicles from low-disk to high-disk loading aircraft, including high-speed rotorcraft, V/STOL aircraft, and short takeoff and landing (STOL) aircraft. The status and advantages of the various configurations are described. Some of these show promise for relieving congestion in high population-density regions and providing transportation opportunities for low population-density regions.

  7. The 1990 NASA Aerospace Battery Workshop

    NASA Technical Reports Server (NTRS)

    Kennedy, Lewis M. (Compiler)

    1991-01-01

    This document contains the proceedings of the 21st annual NASA Aerospace Battery Workshop, hosted by the Marshall Space Flight Center on December 4-6, 1990. The workshop was attended by scientists and engineers from various agencies of the U.S. Government, aerospace contractors, and battery manufacturers as well as participation in like kind from the European Space Agency member nations. The subjects covered included nickel-cadmium, nickel-hydrogen, silver-zinc, lithium based chemistries, and advanced technologies as they relate to high reliability operations in aerospace applications.

  8. Aerospace applications of magnetic bearings

    NASA Technical Reports Server (NTRS)

    Downer, James; Goldie, James; Gondhalekar, Vijay; Hockney, Richard

    1994-01-01

    Magnetic bearings have traditionally been considered for use in aerospace applications only where performance advantages have been the primary, if not only, consideration. Conventional wisdom has been that magnetic bearings have certain performance advantages which must be traded off against increased weight, volume, electric power consumption, and system complexity. These perceptions have hampered the use of magnetic bearings in many aerospace applications because weight, volume, and power are almost always primary considerations. This paper will review progress on several active aerospace magnetic bearings programs at SatCon Technology Corporation. The magnetic bearing programs at SatCon cover a broad spectrum of applications including: a magnetically-suspended spacecraft integrated power and attitude control system (IPACS), a magnetically-suspended momentum wheel, magnetic bearings for the gas generator rotor of a turboshaft engine, a vibration-attenuating magnetic bearing system for an airborne telescope, and magnetic bearings for the compressor of a space-rated heat pump system. The emphasis of these programs is to develop magnetic bearing technologies to the point where magnetic bearings can be truly useful, reliable, and well tested components for the aerospace community.

  9. Aerospace applications of magnetic bearings

    NASA Astrophysics Data System (ADS)

    Downer, James; Goldie, James; Gondhalekar, Vijay; Hockney, Richard

    1994-05-01

    Magnetic bearings have traditionally been considered for use in aerospace applications only where performance advantages have been the primary, if not only, consideration. Conventional wisdom has been that magnetic bearings have certain performance advantages which must be traded off against increased weight, volume, electric power consumption, and system complexity. These perceptions have hampered the use of magnetic bearings in many aerospace applications because weight, volume, and power are almost always primary considerations. This paper will review progress on several active aerospace magnetic bearings programs at SatCon Technology Corporation. The magnetic bearing programs at SatCon cover a broad spectrum of applications including: a magnetically-suspended spacecraft integrated power and attitude control system (IPACS), a magnetically-suspended momentum wheel, magnetic bearings for the gas generator rotor of a turboshaft engine, a vibration-attenuating magnetic bearing system for an airborne telescope, and magnetic bearings for the compressor of a space-rated heat pump system. The emphasis of these programs is to develop magnetic bearing technologies to the point where magnetic bearings can be truly useful, reliable, and well tested components for the aerospace community.

  10. Lubrication System Failure Baseline Testing on an Aerospace Quality Gear Mesh

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.; Morales, Wilfredo

    2000-01-01

    Aerospace drive systems are required to survive a loss-of-lubrication test for qualification. In many cases emergency lubrication systems need to be designed and utilized to permit the drive system to pass this difficult requirement. The weight of emergency systems can adversely affect the mission capabilities of the aircraft. The possibility to reduce the emergency system weight through the use of mist lubrication will be described. Mist lubrication involves the delivery of a minute amount of an organic liquid as a vapor or fine mist in flowing compressed air to rubbing surfaces. At the rubbing surface, the vapor or mist reacts to form a solid lubricating film. The aim of this study was to establish a baseline for gear behavior under oil depleted conditions. A reactive vapor-mist lubrication method is described and proposed as a candidate emergency lubrication system.

  11. Small Aircraft RF Interference Path Loss

    NASA Technical Reports Server (NTRS)

    Nguyen, Truong X.; Koppen, Sandra V.; Ely, Jay J.; Szatkowski, George N.; Mielnik, John J.; Salud, Maria Theresa P.

    2007-01-01

    Interference to aircraft radio receivers is an increasing concern as more portable electronic devices are allowed onboard. Interference signals are attenuated as they propagate from inside the cabin to aircraft radio antennas mounted on the outside of the aircraft. The attenuation level is referred to as the interference path loss (IPL) value. Significant published IPL data exists for transport and regional category airplanes. This report fills a void by providing data for small business/corporate and general aviation aircraft. In this effort, IPL measurements are performed on ten small aircraft of different designs and manufacturers. Multiple radio systems are addressed. Along with the typical worst-case coupling values, statistical distributions are also reported that could lead to better interference risk assessment.

  12. Using In Situ Eddy Covariance Flux Measurements from a Low Flying Aircraft in the Arctic to Measure Regional Methane Fluxes.

    NASA Astrophysics Data System (ADS)

    Sayres, D. S.; Dobosy, R.; Healy, C. E.; Dumas, E. J.; Kochendorfer, J.; Munster, J. B.; Wilkerson, J.; Baker, B.; Anderson, J. G.

    2016-12-01

    The Arctic terrestrial and subsea permafrost region contains approximately 30% of the global carbon stock and therefore understanding Arctic methane emissions and how they might change with a changing climate is important for quantifying the global methane budget and understanding its growth in the atmosphere. Here we present measurements from a new in situ flux observation system designed for use on a small, low-flying aircraft that flew over the North Slope of Alaska during August of 2013. The system combines a small methane instrument based on Integrated Cavity Output Spectroscopy (ICOS) with an air turbulence probe to calculate methane fluxes based on eddy covariance. Surface fluxes are grouped by ecotope using a map based on LandSat 30 meter resolution data. We find that wet sedge areas dominate the methane fluxes during the first part of August, with methane emissions from the Sagavanirktok river being the second highest. We compare the aircraft measurements with an eddy covariance flux tower located in a wet sedge area and show that the two measurements agree quantitatively when the footprints of both overlap. However, fluxes from sedge vary at times by a factor of two or more even within a few kilometers of the tower demonstrating the importance of making regional measurements to map out methane emission spatial heterogeneity. Aircraft measurements of surface flux can play an important role in bridging the gap between ground-based measurements and regional measurements from remote sensing instruments and models.

  13. Accommodation of Nontraditional Aerospace Degree Aspirants

    ERIC Educational Resources Information Center

    Schukert, Michael A.

    1977-01-01

    Presents results of a national survey of institutions offering college level aerospace studies. Primary survey concern is the availability of nontraditional aerospace education programs; however, information pertaining to institution characteristics, program characteristics, and staffing are also included. (SL)

  14. Aerospace Engineering Systems

    NASA Technical Reports Server (NTRS)

    VanDalsem, William R.; Livingston, Mary E.; Melton, John E.; Torres, Francisco J.; Stremel, Paul M.

    1999-01-01

    Continuous improvement of aerospace product development processes is a driving requirement across much of the aerospace community. As up to 90% of the cost of an aerospace product is committed during the first 10% of the development cycle, there is a strong emphasis on capturing, creating, and communicating better information (both requirements and performance) early in the product development process. The community has responded by pursuing the development of computer-based systems designed to enhance the decision-making capabilities of product development individuals and teams. Recently, the historical foci on sharing the geometrical representation and on configuration management are being augmented: Physics-based analysis tools for filling the design space database; Distributed computational resources to reduce response time and cost; Web-based technologies to relieve machine-dependence; and Artificial intelligence technologies to accelerate processes and reduce process variability. Activities such as the Advanced Design Technologies Testbed (ADTT) project at NASA Ames Research Center study the strengths and weaknesses of the technologies supporting each of these trends, as well as the overall impact of the combination of these trends on a product development event. Lessons learned and recommendations for future activities will be reported.

  15. International Conference on Aerospace Trends...2001 - From Aeroplane to Aerospace Plane, Thiruvananthapuram, India, June 27, 28, 1991, Proceedings

    NASA Astrophysics Data System (ADS)

    1991-08-01

    Consideration is given to operational characteristics of future launch vehicles, trends in propulsion technology, technology challenges in the development of cryogenic propulsion systems for future reusable space-launch vehicles, estimation of the overall drag coefficient of an aerospace plane, and self-reliance in aerospace structures. Attention is also given to basic design concepts for smart actuators for aerospace plane control, a software package for the preliminary design of a helicopter, and multiconstraint wing optimization.

  16. The development of aerospace polyimide adhesives

    NASA Technical Reports Server (NTRS)

    St.clair, A. K.; St.clair, T. L.

    1983-01-01

    Few materials are available which can be used as aerospace adhesives at temperatures in the range of 300 C. The Materials Division at NASA-Langley Research Center developed several high temperature polyimide adhesives to fulfill the stringent needs of current aerospace programs. These adhesives are the result of a decade of basic research studies on the structure property relationships of both linear and addition aromatic polyimides. The development of both in house and commercially available polyimides is reviewed with regards to their potential for use as aerospace adhesives.

  17. Aircraft loss-of-control prevention and recovery: A hybrid control strategy

    NASA Astrophysics Data System (ADS)

    Dongmo, Jean-Etienne Temgoua

    The Complexity of modern commercial and military aircrafts has necessitated better protection and recovery systems. With the tremendous advances in computer technology, control theory and better mathematical models, a number of issues (Prevention, Reconfiguration, Recovery, Operation near critical points, ... etc) moderately addressed in the past have regained interest in the aeronautical industry. Flight envelope is essential in all flying aerospace vehicles. Typically, flying the vehicle means remaining within the flight envelope at all times. Operation outside the normal flight regime is usually subject to failure of components (Actuators, Engines, Deflection Surfaces) , pilots's mistakes, maneuverability near critical points and environmental conditions (crosswinds...) and in general characterized as Loss-Of-Control (LOC) because the aircraft no longer responds to pilot's inputs as expected. For the purpose of this work, (LOC) in aircraft is defined as the departure from the safe set (controlled flight) recognized as the maximum controllable (reachable) set in the initial flight envelope. The LOC can be reached either through failure, unintended maneuvers, evolution near irregular points and disturbances. A coordinated strategy is investigated and designed to ensure that the aircraft can maneuver safely in their constraint domain and can also recover from abnormal regime. The procedure involves the computation of the largest controllable (reachable) set (Safe set) contained in the initial prescribed envelope. The problem is posed as a reachability problem using Hamilton-Jacobi Partial Differential Equation (HJ-PDE) where a cost function is set to he minimized along trajectory departing from the given set. Prevention is then obtained by computing the controller which would allow the flight vehicle to remain in the maximum controlled set in a multi-objective set up. Then the recovery procedure is illustrated with a two-point boundary value problem. Once

  18. Applications of aerospace technology in biology and medicine

    NASA Technical Reports Server (NTRS)

    Bass, B.; Beall, H. C.; Brown, J. N., Jr.; Clingman, W. H.; Eakes, R. E.; Kizakevich, P. N.; Mccartney, M.; Rouse, D. J.

    1982-01-01

    Utilization of National Aeronautics and Space Administration (NASA) technology in medicine is discussed. The objective is best obtained by stimulation of the introduction of new or improved commercially available medical products incorporating aerospace technology. A bipolar donor/recipient model of medical technology transfer is presented to provide a basis for the team's methodology. That methodology is designed to: (1) identify medical problems and NASA technology that, in combination, constitute opportunities for successful medical products; (2) obtain the early participation of industry in the transfer process; and (3) obtain acceptance by the medical community of new medical products based on NASA technology. Two commercial transfers were completed: the Stowaway, a lightweight wheelchair that provides mobility for the disabled and elderly in the cabin of commercial aircraft, and Micromed, a portable medication infusion pump for the reliable, continuous infusion of medications such as heparin or insulin. The marketing and manufacturing factors critical to the commercialization of the lightweight walker incorporating composite materials were studied. Progress was made in the development and commercialization of each of the 18 currently active projects.

  19. Aerospace Technology.

    ERIC Educational Resources Information Center

    Paschke, Jean; And Others

    1991-01-01

    Describes the Sauk Rapids (Minnesota) High School aviation and aerospace curriculum that was developed by Curtis Olson and the space program developed by Gerald Mayall at Philadelphia's Northeast High School. Both were developed in conjunction with NASA. (JOW)

  20. Dryden F-8 Research Aircraft Fleet 1973 in flight, DFBW and SCW

    NASA Technical Reports Server (NTRS)

    1973-01-01

    . Digital-fly-by-wire is more efficient because it is lighter and takes up less space than the hydraulic systems it replaced. This either reduces the fuel required to fly or increases the number of passengers or pounds of cargo the aircraft can carry. Digital fly-by-wire is currently used in a variety of aircraft ranging from F/A-18 fighters to the Boeing 777. The DFBW research program is considered one of the most significant and most successful NASA aeronautical programs since the inception of the agency. F-8 aircraft were built originally for the U.S. Navy by LTV Aerospace of Dallas, Texas. The aircraft had a wingspan of 35 feet, 2 inches; was 54 feet, 6 inches long; and was powered by a Pratt & Whitney J57 turbojet engine. The F-8 Supercritical Wing was a flight research project designed to test a new wing concept designed by Dr. Richard Whitcomb, chief of the Transonic Aerodynamics Branch, Langley Research Center, Hampton, Virginia. Compared to a conventional wing, the supercritical wing (SCW) is flatter on the top and rounder on the bottom with a downward curve at the trailing edge. The Supercritical Wing was designed to delay the formation of and reduce the shock wave over the wing just below and above the speed of sound (transonic region of flight). Delaying the shock wave at these speeds results in less drag. Results of the NASA flight research at the Flight Research Center, Edwards, California, (later renamed the Dryden Flight Research Center) demonstrated that aircraft using the supercritical wing concept would have increased cruising speed, improved fuel efficiency, and greater flight range than those using conventional wings. As a result, supercritical wings are now commonplace on virtually every modern subsonic commercial transport. Results of the NASA project showed the SCW had increased the transonic efficiency of the F-8 as much as 15 percent and proved that passenger transports with supercritical wings, versus conventional wings, could save $78 million (in

  1. The 42nd Aerospace Mechanism Symposium

    NASA Technical Reports Server (NTRS)

    Boesiger, Edward A. (Editor); Hakun, Claef (Editor)

    2014-01-01

    The Aerospace Mechanisms Symposium (AMS) provides a unique forum for those active in the design, production, and use of aerospace mechanisms. A major focus is the reporting of problems and solutions associated with the development, and flight certification of new mechanisms.

  2. Economic interrelationships and impacts of the aviation/aerospace industry in the state of Florida using input-output analysis

    NASA Astrophysics Data System (ADS)

    Whealan George, Kelly

    The study provided a detailed description of the interrelatedness of the aviation and aerospace industry with principal industries in Florida and Volusia County (VC) using Input-Output (IO) analysis. Additionally, this research provided an economic impact analysis of the creation of a university research park in Daytona Beach (DB). The economic impact measures included not only direct economic output and industry employment descriptions but also described the multiplier effects in the form of indirect and induced impacts using data for 2012. This research concluded the average labor income of the aviation and aerospace industry was higher than average labor income in Florida and VC. A substantive difference between the Florida and VC average labor income for the aviation and aerospace industry existed because VC's aerospace sector was only concentrated in the search, detection, and navigation instruments manufacturing sector. VC's transport by air sector was one-fifth the size of Florida's. Differences in the aviation and aerospace industry composition between Florida and VC are important because the economic impacts from a shock to the entire aviation and aerospace industry will be distributed differently. Since the aviation and aerospace average labor income is higher than the average labor income in Florida and VC, it would be a positive move for Florida's economy to attract and grow the aviation and aerospace industry. It would be highly unlikely that the entirety of newly created jobs would be resourced from the local population. Nonetheless, growing the aviation and aerospace industry jobs would have a positive influence on the region's economy and tax revenues. It would be a desirable course of action to spur the growth of this sector, as its direct effect would culminate with additional jobs in Florida that would bring higher wage jobs to the state. The interdependencies of the aviation and aerospace industry in Florida and VC with other industries had a

  3. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 6: Aerospace knowledge diffusion in the academic community: A report of phase 3 activities of the NASA/DOD Aerospace Knowledge Diffusion Research Project

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Kennedy, John M.

    1990-01-01

    Descriptive and analytical data regarding the flow of aerospace-based scientific and technical information (STI) in the academic community are presented. An overview is provided of the Federal Aerospace Knowledge Diffusion Research Project, illustrating a five-year program on aerospace knowledge diffusion. Preliminary results are presented of the project's research concerning the information-seeking habits, practices, and attitudes of U.S. aerospace engineering and science students and faculty. The type and amount of education and training in the use of information sources are examined. The use and importance ascribed to various information products by U.S. aerospace faculty and students including computer and other information technology is assessed. An evaluation of NASA technical reports is presented and it is concluded that NASA technical reports are rated high in terms of quality and comprehensiveness, citing Engineering Index and IAA as the most frequently used materials by faculty and students.

  4. Sealed aerospace metal-hydride batteries

    NASA Technical Reports Server (NTRS)

    Coates, Dwaine

    1992-01-01

    Nickel metal hydride and silver metal hydride batteries are being developed for aerospace applications. There is a growing market for smaller, lower cost satellites which require higher energy density power sources than aerospace nickel-cadmium at a lower cost than space nickel-hydrogen. These include small LEO satellites, tactical military satellites and satellite constellation programs such as Iridium and Brilliant Pebbles. Small satellites typically do not have the spacecraft volume or the budget required for nickel-hydrogen batteries. NiCd's do not have adequate energy density as well as other problems such as overcharge capability and memory effort. Metal hydride batteries provide the ideal solution for these applications. Metal hydride batteries offer a number of advantages over other aerospace battery systems.

  5. Aerospace Measurements: Challenges and Opportunities

    NASA Technical Reports Server (NTRS)

    Conway, Bruce A.

    1992-01-01

    New aerospace research initiatives offer both challenges and opportunities to rapidly-emerging electronics and electro-optics technology. Defining and implementing appropriate measurement technology development programs in response to the aeronautical ground facility research and testing needs of the new initiatives poses some particularly important problems. This paper discusses today's measurement challenges along with some of the technological opportunities which offer some hope for meeting the challenges, and describes measurement technology activities currently underway in the Langley Research Center's Instrument Research Division to address modern aerospace research and design engineering requirements. Projected and realized benefits and payoffs from the ongoing measurement and instrumentation efforts will be emphasized. A discussion of future trends in the aerospace measurement technology field will be included.

  6. Photogrammetric techniques for aerospace applications

    NASA Astrophysics Data System (ADS)

    Liu, Tianshu; Burner, Alpheus W.; Jones, Thomas W.; Barrows, Danny A.

    2012-10-01

    Photogrammetric techniques have been used for measuring the important physical quantities in both ground and flight testing including aeroelastic deformation, attitude, position, shape and dynamics of objects such as wind tunnel models, flight vehicles, rotating blades and large space structures. The distinct advantage of photogrammetric measurement is that it is a non-contact, global measurement technique. Although the general principles of photogrammetry are well known particularly in topographic and aerial survey, photogrammetric techniques require special adaptation for aerospace applications. This review provides a comprehensive and systematic summary of photogrammetric techniques for aerospace applications based on diverse sources. It is useful mainly for aerospace engineers who want to use photogrammetric techniques, but it also gives a general introduction for photogrammetrists and computer vision scientists to new applications.

  7. Acting Administrator Lightfoot Visits Ball Aerospace

    NASA Image and Video Library

    2017-04-06

    Acting NASA Administrator Robert Lightfoot, left, views a clean room with Tim Schoenweis, senior project engineer for the Ozone Mapping Profiler Suite (OMPS) at Ball Aerospace, right, Thursday, April 6, 2017 at Ball Aerospace in Boulder, Colo. Photo Credit: (NASA/Joel Kowsky)

  8. Acting Administrator Lightfoot Visits Ball Aerospace

    NASA Image and Video Library

    2017-04-06

    Acting NASA Deputy Administrator Lesa Roe, center, views a clean room with Tim Schoenweis, senior project engineer for the Ozone Mapping Profiler Suite (OMPS) at Ball Aerospace, left, Thursday, April 6, 2017 at Ball Aerospace in Boulder, Colo. Photo Credit: (NASA/Joel Kowsky)

  9. An outbreak of illness among aerospace workers.

    PubMed Central

    Sparks, P. J.; Simon, G. E.; Katon, W. J.; Altman, L. C.; Ayars, G. H.; Johnson, R. L.

    1990-01-01

    A multispecialty panel of physicians evaluated a case series of 53 composite-materials workers in a large aircraft manufacturing facility who filed workers' compensation claims for illness labeled by the media as the "aerospace syndrome." Possible skin and respiratory tract exposures included formaldehyde, phenol, particulates, epoxy resins, and trace organic solvents, but measured concentrations were well below all regulatory and consensus standards. Most workers had histories of transient skin or respiratory tract irritation consistent with the known potential toxicity of these materials. None of the workers tested had immunoglobulin IgG or IgE antibodies to human serum albumin complexed with formaldehyde. A majority (74%) met DSM-III-R [Diagnostic and Statistical Manual of Mental Disorders, 3rd edition, revised] criteria for major depression, panic disorder, or both. Most of these psychiatric disorders were of a recent onset, correlating in time with the use of phenol- and formaldehyde-impregnated composite material. Psychosocial factors were thought to have played a major role in the high prevalence of illness in this group and should be evaluated directly in well-controlled epidemiologic studies of similar crisis-building situations in the future. PMID:2098006

  10. ASTRYD: A new numerical tool for aircraft cabin and environmental noise prediction

    NASA Astrophysics Data System (ADS)

    Berhault, J.-P.; Venet, G.; Clerc, C.

    ASTRYD is an analytical tool, developed originally for underwater applications, that computes acoustic pressure distribution around three-dimensional bodies in closed spaces like aircraft cabins. The program accepts data from measurements or other simulations, processes them in the time domain, and delivers temporal evolutions of the acoustic pressures and accelerations, as well as the radiated/diffracted pressure at arbitrary points located in the external/internal space. A typical aerospace application is prediction of acoustic load on satellites during the launching phase. An aeronautic application is engine noise distribution on a business jet body for prediction of environmental and cabin noise.

  11. Aerospace engineers: We're tomorrow-minded people

    NASA Technical Reports Server (NTRS)

    Lewis, M. H.

    1981-01-01

    Brief job-related autobiographical sketches of engineers working on NASA aerospace projects are presented. Career and educational guidance is offered to students thinking about entering the aerospace field.

  12. The Need for an Aerospace Pharmacy Residency

    NASA Technical Reports Server (NTRS)

    Bayuse, T.; Schuyler, C.; Bayuse, Tina M.

    2007-01-01

    This viewgraph poster presentation reviews the rationale for a call for a new program in residency for aerospace pharmacy. Aerospace medicine provides a unique twist on traditional medicine, and a specialty has evolved to meet the training for physicians, and it is becoming important to develop such a program for training in pharmacy designed for aerospace. The reasons for this specialist training are outlined and the challenges of developing a program are reviewed.

  13. Hexavalent Chromium Reduction in the Aerospace Industry

    DTIC Science & Technology

    2010-12-01

    1 Hexavalent Chromium Reduction in the Aerospace Industry Unpublished work © 2010 Aerospace Industries Association of America, Inc. Lisa Goldberg...COVERED 00-00-2010 to 00-00-2010 4. TITLE AND SUBTITLE Hexavalent Chromium Reduction in the Aerospace Industry 5a. CONTRACT NUMBER 5b. GRANT...ABSTRACT AIA and its members have a long history in minimizing the use of hexavalent chromium in the manufacture of its products. Included in that history

  14. Supercomputing in Aerospace

    NASA Technical Reports Server (NTRS)

    Kutler, Paul; Yee, Helen

    1987-01-01

    Topics addressed include: numerical aerodynamic simulation; computational mechanics; supercomputers; aerospace propulsion systems; computational modeling in ballistics; turbulence modeling; computational chemistry; computational fluid dynamics; and computational astrophysics.

  15. Modeling Materials: Design for Planetary Entry, Electric Aircraft, and Beyond

    NASA Technical Reports Server (NTRS)

    Thompson, Alexander; Lawson, John W.

    2014-01-01

    NASA missions push the limits of what is possible. The development of high-performance materials must keep pace with the agency's demanding, cutting-edge applications. Researchers at NASA's Ames Research Center are performing multiscale computational modeling to accelerate development times and further the design of next-generation aerospace materials. Multiscale modeling combines several computationally intensive techniques ranging from the atomic level to the macroscale, passing output from one level as input to the next level. These methods are applicable to a wide variety of materials systems. For example: (a) Ultra-high-temperature ceramics for hypersonic aircraft-we utilized the full range of multiscale modeling to characterize thermal protection materials for faster, safer air- and spacecraft, (b) Planetary entry heat shields for space vehicles-we computed thermal and mechanical properties of ablative composites by combining several methods, from atomistic simulations to macroscale computations, (c) Advanced batteries for electric aircraft-we performed large-scale molecular dynamics simulations of advanced electrolytes for ultra-high-energy capacity batteries to enable long-distance electric aircraft service; and (d) Shape-memory alloys for high-efficiency aircraft-we used high-fidelity electronic structure calculations to determine phase diagrams in shape-memory transformations. Advances in high-performance computing have been critical to the development of multiscale materials modeling. We used nearly one million processor hours on NASA's Pleiades supercomputer to characterize electrolytes with a fidelity that would be otherwise impossible. For this and other projects, Pleiades enables us to push the physics and accuracy of our calculations to new levels.

  16. Millimeter-Wave Localizers for Aircraft-to-Aircraft Approach Navigation

    NASA Technical Reports Server (NTRS)

    Tang, Adrian J.

    2013-01-01

    Aerial refueling technology for both manned and unmanned aircraft is critical for operations where extended aircraft flight time is required. Existing refueling assets are typically manned aircraft, which couple to a second aircraft through the use of a refueling boom. Alignment and mating of the two aircraft continues to rely on human control with use of high-resolution cameras. With the recent advances in unmanned aircraft, it would be highly advantageous to remove/reduce human control from the refueling process, simplifying the amount of remote mission management and enabling new operational scenarios. Existing aerial refueling uses a camera, making it non-autonomous and prone to human error. Existing commercial localizer technology has proven robust and reliable, but not suited for aircraft-to-aircraft approaches like in aerial refueling scenarios since the resolution is too coarse (approximately one meter). A localizer approach system for aircraft-to-aircraft docking can be constructed using the same modulation with a millimeterwave carrier to provide high resolution. One technology used to remotely align commercial aircraft on approach to a runway are ILS (instrument landing systems). ILS have been in service within the U.S. for almost 50 years. In a commercial ILS, two partially overlapping beams of UHF (109 to 126 MHz) are broadcast from an antenna array so that their overlapping region defines the centerline of the runway. This is called a localizer system and is responsible for horizontal alignment of the approach. One beam is modulated with a 150-Hz tone, while the other with a 90-Hz tone. Through comparison of the modulation depths of both tones, an autopilot system aligns the approaching aircraft with the runway centerline. A similar system called a glide-slope (GS) exists in the 320-to-330MHz band for vertical alignment of the approach. While this technology has been proven reliable for millions of commercial flights annually, its UHF nature limits

  17. High Flight. Aerospace Activities, K-12.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Education, Oklahoma City.

    Following discussions of Oklahoma aerospace history and the history of flight, interdisciplinary aerospace activities are presented. Each activity includes title, concept fostered, purpose, list of materials needed, and procedure(s). Topics include planets, the solar system, rockets, airplanes, air travel, space exploration, principles of flight,…

  18. A preliminary investigation of the potential applicability of the IPAD system to non-aerospace industry

    NASA Technical Reports Server (NTRS)

    Hulbert, L. E.

    1975-01-01

    A study of the applicability of the planned Integrated Programs for Aerospace-Vehicle Design (IPAD) system to the design activities of non-aerospace industries was carried out. It was determined that IPAD could be of significant benefit to a number of industries, with the most likely users being the heavy construction and automotive industries. Two additional short studies were initiated to investigate the possible impact of IPAD on a national energy program and on urban and regional planning activities of local and state governments. These initial studies indicated the possibility of significant payoff in these areas and the need for further investigations. It was also determined that utilization of IPAD by non-aerospace industries will probably involve a long stepwise process, since these industries maintain a policy of gradual introduction of new technology.

  19. Aerospace Ceramic Materials: Thermal, Environmental Barrier Coatings and SiC/SiC Ceramic Matrix Composites for Turbine Engine Applications

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming

    2018-01-01

    Ceramic materials play increasingly important roles in aerospace applications because ceramics have unique properties, including high temperature capability, high stiffness and strengths, excellent oxidation and corrosion resistance. Ceramic materials also generally have lower densities as compared to metallic materials, making them excellent candidates for light-weight hot-section components of aircraft turbine engines, rocket exhaust nozzles, and thermal protection systems for space vehicles when they are being used for high-temperature and ultra-high temperature ceramics applications. Ceramic matrix composites (CMCs), including non-oxide and oxide CMCs, are also recently being incorporated in gas turbine engines for high pressure and high temperature section components and exhaust nozzles. However, the complexity and variability of aerospace ceramic processing methods, compositions and microstructures, the relatively low fracture toughness of the ceramic materials, still remain the challenging factors for ceramic component design, validation, life prediction, and thus broader applications. This ceramic material section paper presents an overview of aerospace ceramic materials and their characteristics. A particular emphasis has been placed on high technology level (TRL) enabling ceramic systems, that is, turbine engine thermal and environmental barrier coating systems and non-oxide type SiC/SiC CMCs. The current status and future trend of thermal and environmental barrier coatings and SiC/SiC CMC development and applications are described.

  20. High Bandwidth, Multi-Purpose Passive Radar Receiver Design For Aerospace and Geoscience Targets

    NASA Astrophysics Data System (ADS)

    Vertatschitsch, Laura

    Passive radar permits inexpensive and stealthy detection and tracking of aerospace and geoscience targets. Transmitters of opportunity such as commercial FM broadcast, DTV broadcast, and cell phone towers are already illuminating many populated areas with continuous power. Passive radar receivers can be located at a distance from the transmitter, and can sense this direct transmission as well as any reflections from ground clutter, aircraft, ionospheric turbulence and meteor trails. The 100% duty cycle allows for long coherent integration, increasing the sensitivity of these instruments greatly. Traditional radar receivers employ analog front end downconverters to translate the radio frequency spectrum to an intermediate frequency (IF) for sampling and signal processing. Such downconverters limit the spectrum available for study, and can introduce nonlinearities which limit the detectability of weak signals in the presence of strong signals. With suitably fast digitizers one can bypass the downconversion stage completely. Very fast digitizers may have relatively few bits, but precision is recovered in subsequent signal processing. We present a new passive radar receiver designed to utilize a broad spectrum of commercial transmitters without the use of a front end analog downconverter. The receiver centers around a Reconfigurable Open Architecture Computing Hardware (ROACH) board developed by the Collaboration for Astronomy Signal Processing and Electronics Research (CASPER) group. Fast sampling rates (8-bit samples as fast as 3 GSps) combined with 640 multiply/addition operations on the Virtex-5 FPGA centered on the ROACH allows for coherent processing of broad spectrum and dynamic decision-making on one device all while sharing a single front end, putting this device on the cutting edge of wideband receiver technology. The radar is also designed to support mobile operation. It fits within a 19'' rack, it is equipped with solid state hard drives, and can run off an

  1. Aerospace Technicians: We're Tomorrow-Minded People

    NASA Technical Reports Server (NTRS)

    Lewis, M. H.

    1981-01-01

    Brief job-related autobiographical sketches of technicians working on NASA aerospace projects are presented. Career and educational guidance is offered to students thinking about entering the field of aerospace technology.

  2. Stability, Transient Response, Control, and Safety of a High-Power Electric Grid for Turboelectric Propulsion of Aircraft

    NASA Technical Reports Server (NTRS)

    Armstrong, Michael; Ross, Christine; Phillips, Danny; Blackwelder, Mark

    2013-01-01

    This document contains the deliverables for the NASA Research and Technology for Aerospace Propulsion Systems (RTAPS) regarding the stability, transient response, control, and safety study for a high power cryogenic turboelectric distributed propulsion (TeDP) system. The objective of this research effort is to enumerate, characterize, and evaluate the critical issues facing the development of the N3-X concept aircraft. This includes the proposal of electrical grid architecture concepts and an evaluation of any needs for energy storage.

  3. NASA-UVA Light Aerospace Alloy and Structure Technology Program Supplement: Aluminum-Based Materials for High Speed Aircraft

    NASA Technical Reports Server (NTRS)

    Starke, E. A., Jr.

    1997-01-01

    This is the final report of the study "Aluminum-Based Materials for High Speed Aircraft" which had the objectives (1) to identify the most promising aluminum-based materials with respect to major structural use on the HSCT and to further develop those materials and (2) to assess the materials through detailed trade and evaluation studies with respect to their structural efficiency on the HSCT. The research team consisted of ALCOA, Allied-Signal, Boeing, McDonnell Douglas, Reynolds Metals and the University of Virginia. Four classes of aluminum alloys were investigated: (1) I/M 2XXX containing Li and I/M 2XXX without Li, (2) I/M 6XXX, (3) two P/M 2XXX alloys, and (4) two different aluminum-based metal matrix composites (MMC). The I/M alloys were targeted for a Mach 2.0 aircraft and the P/M and MMC alloys were targeted for a Mach 2.4 aircraft. Design studies were conducted using several different concepts including skin/stiffener (baseline), honeycomb sandwich, integrally stiffened and hybrid adaptations (conventionally stiffened thin-sandwich skins). Alloy development included fundamental studies of coarsening behavior, the effect of stress on nucleation and growth of precipitates, and fracture toughness as a function of temperature were an integral part of this program. The details of all phases of the research are described in this final report.

  4. Adaptive Modeling, Engineering Analysis and Design of Advanced Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, Vivek; Hsu, Su-Yuen; Mason, Brian H.; Hicks, Mike D.; Jones, William T.; Sleight, David W.; Chun, Julio; Spangler, Jan L.; Kamhawi, Hilmi; Dahl, Jorgen L.

    2006-01-01

    This paper describes initial progress towards the development and enhancement of a set of software tools for rapid adaptive modeling, and conceptual design of advanced aerospace vehicle concepts. With demanding structural and aerodynamic performance requirements, these high fidelity geometry based modeling tools are essential for rapid and accurate engineering analysis at the early concept development stage. This adaptive modeling tool was used for generating vehicle parametric geometry, outer mold line and detailed internal structural layout of wing, fuselage, skin, spars, ribs, control surfaces, frames, bulkheads, floors, etc., that facilitated rapid finite element analysis, sizing study and weight optimization. The high quality outer mold line enabled rapid aerodynamic analysis in order to provide reliable design data at critical flight conditions. Example application for structural design of a conventional aircraft and a high altitude long endurance vehicle configuration are presented. This work was performed under the Conceptual Design Shop sub-project within the Efficient Aerodynamic Shape and Integration project, under the former Vehicle Systems Program. The project objective was to design and assess unconventional atmospheric vehicle concepts efficiently and confidently. The implementation may also dramatically facilitate physics-based systems analysis for the NASA Fundamental Aeronautics Mission. In addition to providing technology for design and development of unconventional aircraft, the techniques for generation of accurate geometry and internal sub-structure and the automated interface with the high fidelity analysis codes could also be applied towards the design of vehicles for the NASA Exploration and Space Science Mission projects.

  5. NASA-UVa light aerospace alloy and structures technology program

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.; Haviland, John K.; Herakovich, Carl T.; Pilkey, Walter D.; Pindera, Marek-Jerzy; Scully, John R.; Stoner, Glenn E.; Swanson, Robert E.; Thornton, Earl A.; Wawner, Franklin E., Jr.

    1991-01-01

    The general objective of the NASA-UVa Light Aerospace Alloy and Structures Technology Program was to conduct research on the performance of next generation, light weight aerospace alloys, composites, and associated thermal gradient structures. The following research areas were actively investigated: (1) mechanical and environmental degradation mechanisms in advanced light metals and composites; (2) aerospace materials science; (3) mechanics of materials and composites for aerospace structures; and (4) thermal gradient structures.

  6. The 26th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The proceedings of the 26th Aerospace Mechanisms Symposium, which was held at the Goddard Space Flight Center on May 13, 14, and 15, 1992 are reported. Technological areas covered include actuators, aerospace mechanism applications for ground support equipment, lubricants, latches, connectors and other mechanisms for large space structures.

  7. NASA Aerospace Flight Battery Program: Recommendations for Technical Requirements for Inclusion in Aerospace Battery Procurements. Volume 1, Part 2

    NASA Technical Reports Server (NTRS)

    Jung, David S.; Manzo, Michelle A.

    2010-01-01

    This NASA Aerospace Flight Battery Systems Working Group was chartered within the NASA Engineering and Safety Center (NESC). The Battery Working Group was tasked to complete tasks and to propose proactive work to address battery related, agency-wide issues on an annual basis. In its first year of operation, this proactive program addressed various aspects of the validation and verification of aerospace battery systems for NASA missions. Studies were performed, issues were discussed and in many cases, test programs were executed to generate recommendations and guidelines to reduce risk associated with various aspects of implementing battery technology in the aerospace industry. This document contains Part 2 - Volume I: Recommendations for Technical Requirements for Inclusion in Aerospace Battery Procurements of the program's operations.

  8. Representative Stall Model of Regional Aircraft for Simulator Training Using a Spline Shape Prescriptive Modeling Approach

    NASA Astrophysics Data System (ADS)

    Zhang, Tony S.

    Loss-of-control following aerodynamic stall remains the largest contributor to fatal civil aviation accidents. Aerodynamic models past stall are required to train pilots on stall recovery techniques using ground-based simulators, which are safe, inexpensive, and accessible. A methodology for creating representative stall models, which capture essential stall characteristics, is being developed for classes of twin-turboprop commuter and twin-engine regional jet aircraft. Despite having lower fidelity than type specific stall models generated from wind tunnel, flight test, and/or CFD studies data, these models are configuration adjustable and significantly cheaper to construct for high angle-of-attack regimes. Baseline specific stall models are modified to capture changes in aerodynamic coefficients due to configuration variations from a baseline to a target aircraft. A Shape Prescriptive Modeling approach combining existing theory and data using least-squares splines is used to make coefficient change predictions. Initial results are satisfactory and suggest that representative models are suitable for stall training.

  9. Citizen Science: Broadening Access and Engagement Through Community Partnerships, Aerospace Education and Water Quality Research

    NASA Astrophysics Data System (ADS)

    Johnson, M. A.

    2016-12-01

    We applied a new approach to the design and development of citizen science learning opportunities to enhance outreach to diverse student populations, while advancing water quality research and aerospace education. This collaborative approach to informal science, technology, engineering, and math (STEM) and aerospace education required innovative partnerships between private general aviation pilots, researchers, teachers, and students. This research explored the development of active partnerships required to facilitate community engaged science, with an emphasis on increased participation of women and girls and people of color, while creating new exploratory pathways for broadening access to and engagement in STEM learning experiences. We developed an outreach program through collaborative planning with local schools to create new STEM learning experiences based upon basic aerospace education concepts and an existing water quality research project designed to track harmful algal blooms (HAB) that can produce toxins called cyanobacteria, also known as blue-green algae, which can impact drinking, fishing, and recreational waters. General aviation pilots functioning as citizen scientists obtained high-resolution aerial images while flying over potentially impacted waters. Aerial data was made available to teachers and students, as well as researchers participating in the existing water quality program lead by NASA Glenn Research Center. Teachers used the images and results to educate in climate change and the dangers of HAB. Students were able to compare aerial data with their own observations, and also gained experience in aeronautical science through field trips to local airports, hands-on experience with private research aircraft, specialized equipment used for data collection, and advanced ground instruction from research pilots. As a result of reaching out to local educators serving diverse student populations and facilitating collaborative planning, we

  10. The 27th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    Mancini, Ron (Compiler)

    1993-01-01

    The proceedings of the 27th Aerospace Mechanisms Symposium, which was held at ARC, Moffett Field, California, on 12-14 May 1993, are reported. Technological areas covered include the following: actuators, aerospace mechanism applications for ground support equipment, lubricants, latches, connectors, robotic mechanisms, and other mechanisms for large space structures.

  11. 77 FR 74579 - Airworthiness Directives; Gulfstream Aerospace Corporation Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-17

    ... Airworthiness Directives; Gulfstream Aerospace Corporation Airplanes AGENCY: Federal Aviation Administration... directive (AD) for certain Gulfstream Aerospace Corporation Model GIV-X airplanes. This AD requires... Aerospace Corporation, Technical Publications Dept., P.O. Box 2206, Savannah, GA 31402-2206; telephone 800...

  12. B-52 Launch Aircraft in Flight

    NASA Technical Reports Server (NTRS)

    2001-01-01

    NASA's venerable B-52 mothership is seen here photographed from a KC-135 Tanker aircraft. The X-43 adapter is visible attached to the right wing. The B-52, used for launching experimental aircraft and for other flight research projects, has been a familiar sight in the skies over Edwards for more than 40 years and is also both the oldest B-52 still flying and the aircraft with the lowest flight time of any B-52. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported

  13. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 10: The NASA/DOD Aerospace Knowledge Diffusion Research Project

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Kennedy, John M.; Barclay, Rebecca O.

    1991-01-01

    The role of the NASA/DOD Aerospace Knowledge DIffusion Research Project in helping to maintain U.S. competitiveness is addressed. The phases of the project are examined in terms of the focus, emphasis, subjects, methods, and desired outcomes. The importance of the project to aerospace R&D is emphasized.

  14. Small Aircraft RF Interference Path Loss Measurements

    NASA Technical Reports Server (NTRS)

    Nguyen, Truong X.; Koppen, Sandra V.; Ely, Jay J.; Szatkowski, George N.; Mielnik, John J.; Salud, Maria Theresa P.

    2007-01-01

    Interference to aircraft radio receivers is an increasing concern as more portable electronic devices are allowed onboard. Interference signals are attenuated as they propagate from inside the cabin to aircraft radio antennas mounted on the outside of the aircraft. The attenuation level is referred to as the interference path loss (IPL) value. Significant published IPL data exists for transport and regional category airplanes. This report fills a void by providing data for small business/corporate and general aviation aircraft. In this effort, IPL measurements are performed on ten small aircraft of different designs and manufacturers. Multiple radio systems are addressed. Along with the typical worst-case coupling values, statistical distributions are also reported that could lead to more meaningful interference risk assessment.

  15. Compton imaging tomography for nondestructive evaluation of large multilayer aircraft components and structures

    NASA Astrophysics Data System (ADS)

    Romanov, Volodymyr; Grubsky, Victor; Zahiri, Feraidoon

    2017-02-01

    We present a novel NDT/NDE tool for non-contact, single-sided 3D inspection of aerospace components, based on Compton Imaging Tomography (CIT) technique, which is applicable to large, non-uniform, and/or multilayer structures made of composites or lightweight metals. CIT is based on the registration of Compton-scattered X-rays, and permits the reconstruction of the full 3D (tomographic) image of the inspected objects. Unlike conventional computerized tomography (CT), CIT requires only single-sided access to objects, and therefore can be applied to large structures without their disassembly. The developed tool provides accurate detection, identification, and precise 3D localizations and measurements of any possible internal and surface defects (corrosions, cracks, voids, delaminations, porosity, and inclusions), and also disbonds, core and skin defects, and intrusion of foreign fluids (e.g., fresh and salt water, oil) inside of honeycomb sandwich structures. The NDE capabilities of the system were successfully demonstrated on various aerospace structure samples provided by several major aerospace companies. Such a CIT-based tool can detect and localize individual internal defects with dimensions about 1-2 mm3, and honeycomb disbond defects less than 6 mm by 6 mm area with the variations in the thickness of the adhesive by 100 m. Current maximum scanning speed of aircraft/spacecraft structures is about 5-8 min/ft2 (50-80 min/m2).

  16. NASA/DoD aerospace knowledge diffusion research project. VIII - The role of the information intermediary in the diffusion of aerospace knowledge

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Kennedy, John M.; Barclay, Rebecca O.

    1990-01-01

    The U.S. aerospace industry is experiencing profound changes created by a combination of domestic actions and circumstances such as airline deregulation. Other changes result from external trends such as emerging foreign competition. These circumstances intensify the need to understand the production, transfer, and utilization of knowledge as a precursor to the rapid diffusion of technology. This article presents a conceptual framework for understanding the diffusion of aerospace knowledge. The framework focuses on the information channels and members of the social system associated with the aerospace knowledge diffusion process, placing particular emphasis on aerospace librarians as information intermediaries.

  17. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 26: The relationship between technology policy and scientific and technical information within the US and Japanese aerospace industries

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1993-01-01

    Government technology policy has nurtured the growth of the aerospace industry which is vital to both the U.S. and Japanese economies. Japanese technology policy differs significantly from U.S. technology policy, however, particularly with respect to the production, transfer, and use of scientific and technical information (STI). In this paper, we discuss the unique position of the aerospace industry in the U.S. and Japan, U.S. and Japanese aerospace policy, and the role of STI in the process of aerospace innovation. The information-seeking behaviors of U.S. and Japanese aerospace engineers and scientists are compared. The authors advocate the development of innovation-adoption technology and STI policy goals for U.S. aerospace and the inclusion of an aerospace knowledge diffusion transfer system with an 'active' component for scanning and acquiring foreign aerospace technology and STI.

  18. Applications of aerospace technology in biology and medicine

    NASA Technical Reports Server (NTRS)

    Beall, H. C.; Beadles, R. L.; Brown, J. N., Jr.; Clingman, W. H.; Courtney, M. W.; Rouse, D. J.; Scearce, R. W.

    1979-01-01

    Medical products utilizing and incorporating aerospace technology were studied. A bipolar donor-recipient model for medical transfer is presented. The model is designed to: (1) identify medical problems and aerospace technology which constitute opportunities for successful medical products; (2) obtain early participation of industry in the transfer process; and (3) obtain acceptance by medical community of new medical products based on aerospace technology.

  19. Community Noise Exposure Resulting from Aircraft Operations. Volume 3. Acoustic Data on Military Aircraft: Air Force Attack/Fighter Aircraft

    DTIC Science & Technology

    1978-02-01

    i< AEROSPACE MEDICAL RESEARCH LABORATORY AEROSPACE MEDICAL DIVISION AIR FORCE SYSTEMS COMMAND WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433...in any way be related thereto. Please do not request copies of this report from Aerospace Medical Research Laboratory. Additional copies may be...34Guide for the Care and Use of Laboratory Animals," Institute of Laboratory Animal Resources, National Research Council. The voluntary informed

  20. 75 FR 39911 - Aerospace Supplier Development Mission to China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-13

    ... DEPARTMENT OF COMMERCE International Trade Administration Aerospace Supplier Development Mission... Commercial Service (CS) is organizing an Aerospace Supplier Development Mission to China from November 7-17, 2010. The 2010 Aerospace Supplier Development Mission to China is being developed due to a successful...

  1. 78 FR 49908 - Airworthiness Directives; Eclipse Aerospace, Inc. Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-16

    ... Airworthiness Directives; Eclipse Aerospace, Inc. Airplanes AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: We are adopting a new airworthiness directive (AD) for all Eclipse Aerospace... Eclipse Aerospace, Inc., 26 East Palatine Road, Wheeling, Illinois 60090; telephone: (877) 373-7978...

  2. Women, Innovation and Aerospace Event

    NASA Image and Video Library

    2012-03-08

    NASA Deputy Administrator, Lori Garver, gives the keynote address at the Women, Innovation and Aerospace event celebrating Women's History Month at the George Washington University Jack Morton Auditorium, Thursday, March 8, 2012 in Washington. The WIA day-long event will help to foster a discussion for students and early career professionals about how to continue to encourage women to enter and succeed in the field of aerospace. Photo Credit: (NASA/Carla Cioffi)

  3. Women, Innovation and Aerospace Event

    NASA Image and Video Library

    2012-03-08

    NASA Deputy Administrator, Lori Garver, far right, gives the keynote address at the Women, Innovation and Aerospace event celebrating Women's History Month at the George Washington University Jack Morton Auditorium, Thursday, March 8, 2012 in Washington. The WIA day-long event will help to foster a discussion for students and early career professionals about how to continue to encourage women to enter and succeed in the field of aerospace. Photo Credit: (NASA/Carla Cioffi)

  4. Women, Innovation and Aerospace Event

    NASA Image and Video Library

    2012-03-08

    Marcia Smith, President, spacepolicyonline.com, participates in a panel discussion at the Women, Innovation and Aerospace event celebrating Women's History Month at the George Washington University Jack Morton Auditorium, Thursday, March 8, 2012 in Washington. The WIA day-long event will help to foster a discussion for students and early career professionals about how to continue to encourage women to enter and succeed in the field of aerospace. Photo Credit: (NASA/Carla Cioffi)

  5. Polyimides: Thermally stable aerospace polymers

    NASA Technical Reports Server (NTRS)

    St.clair, A. K.

    1980-01-01

    An up to date review of available commercial and experimental high temperature polyimide resins which show potential for aerospace applications is presented. Current government research trends involving the use of polyimides as matrix resins for structural composites are discussed. Both the development of polyimides as adhesives for bonding metals and composites, and as films and coatings for use in an aerospace environment are reviewed. In addition, future trends for polyimides are proposed.

  6. Fiber Optic Experience with the Smart Actuation System on the F-18 Systems Research Aircraft

    NASA Technical Reports Server (NTRS)

    Zavala, Eddie

    1997-01-01

    High bandwidth, immunity to electromagnetic interference, and potential weight savings have led to the development of fiber optic technology for future aerospace vehicle systems. This technology has been incorporated in a new smart actuator as the primary communication interface. The use of fiber optics simplified system integration and significantly reduced wire count. Flight test results showed that fiber optics could be used in aircraft systems and identified critical areas of development of fly-by-light technology. This paper documents the fiber optic experience gained as a result of this program, and identifies general design considerations that could be used in a variety of specific applications of fiber optic technology. Environmental sensitivities of fiber optic system components that significantly contribute to optical power variation are discussed. Although a calibration procedure successfully minimized the effect of fiber optic sensitivities, more standardized calibration methods are needed to ensure system operation and reliability in future aerospace vehicle systems.

  7. Flight control optimization from design to assessment application on the Cessna Citation X business aircraft =

    NASA Astrophysics Data System (ADS)

    Boughari, Yamina

    New methodologies have been developed to optimize the integration, testing and certification of flight control systems, an expensive process in the aerospace industry. This thesis investigates the stability of the Cessna Citation X aircraft without control, and then optimizes two different flight controllers from design to validation. The aircraft's model was obtained from the data provided by the Research Aircraft Flight Simulator (RAFS) of the Cessna Citation business aircraft. To increase the stability and control of aircraft systems, optimizations of two different flight control designs were performed: 1) the Linear Quadratic Regulation and the Proportional Integral controllers were optimized using the Differential Evolution algorithm and the level 1 handling qualities as the objective function. The results were validated for the linear and nonlinear aircraft models, and some of the clearance criteria were investigated; and 2) the Hinfinity control method was applied on the stability and control augmentation systems. To minimize the time required for flight control design and its validation, an optimization of the controllers design was performed using the Differential Evolution (DE), and the Genetic algorithms (GA). The DE algorithm proved to be more efficient than the GA. New tools for visualization of the linear validation process were also developed to reduce the time required for the flight controller assessment. Matlab software was used to validate the different optimization algorithms' results. Research platforms of the aircraft's linear and nonlinear models were developed, and compared with the results of flight tests performed on the Research Aircraft Flight Simulator. Some of the clearance criteria of the optimized H-infinity flight controller were evaluated, including its linear stability, eigenvalues, and handling qualities criteria. Nonlinear simulations of the maneuvers criteria were also investigated during this research to assess the Cessna

  8. iSTEM: The Aerospace Engineering Challenge

    ERIC Educational Resources Information Center

    English, Lyn D.; King, Donna T.; Hudson, Peter; Dawes, Les

    2014-01-01

    The authors developed The Paper Plane Challenge as one of a three-part response to The Aerospace Engineering Challenge. The Aerospace Engineering Challenge was the second of three multi-part activities that they had developed with the teachers during the year. Their aim was to introduce students to the exciting world of engineering, where they…

  9. 76 FR 1600 - U.S. Aerospace Supplier & Investment Mission

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-11

    ... DEPARTMENT OF COMMERCE International Trade Administration U.S. Aerospace Supplier & Investment... Commercial Service is organizing a U.S. Aerospace Supplier & Investment Mission to Montreal, Canada on May 2... parties interested in participating in the U.S. Aerospace Trade and Investment Mission must complete and...

  10. 78 FR 30243 - Airworthiness Directives; Eclipse Aerospace, Inc. Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-22

    ... Airworthiness Directives; Eclipse Aerospace, Inc. Airplanes AGENCY: Federal Aviation Administration (FAA), DOT... (AD) for all Eclipse Aerospace, Inc. Model EA500 airplanes equipped with Avio, Avio with ETT, or Avio... identified in this proposed AD, contact Eclipse Aerospace, Inc. 26 East Palatine Road, Wheeling, Illinois...

  11. Aircraft-type dependency of contrail evolution

    NASA Astrophysics Data System (ADS)

    Unterstrasser, S.; Görsch, N.

    2014-12-01

    The impact of aircraft type on contrail evolution is assessed using a large eddy simulation model with Lagrangian ice microphysics. Six different aircraft ranging from the small regional airliner Bombardier CRJ to the largest aircraft Airbus A380 are taken into account. Differences in wake vortex properties and fuel flow lead to considerable variations in the early contrail geometric depth and ice crystal number. Larger aircraft produce contrails with more ice crystals (assuming that the number of initially generated ice crystals per kilogram fuel is constant). These initial differences are reduced in the first minutes, as the ice crystal loss during the vortex phase is stronger for larger aircraft. In supersaturated air, contrails of large aircraft are much deeper after 5 min than those of small aircraft. A parameterization for the final vertical displacement of the wake vortex system is provided, depending only on the initial vortex circulation and stratification. Cloud resolving simulations are used to examine whether the aircraft-induced initial differences have a long-lasting mark. These simulations suggest that the synoptic scenario controls the contrail cirrus evolution qualitatively. However, quantitative differences between the contrail cirrus properties of the various aircraft remain over the total simulation period of 6 h. The total extinctions of A380-produced contrails are about 1.5 to 2.5 times higher than those from contrails of a Bombardier CRJ.

  12. Progress Towards the Remote Sensing of Aircraft Icing Hazards

    NASA Technical Reports Server (NTRS)

    Reehorst, Andrew; Brinker, David; Politovich, Marcia; Serke, David; Ryerson, Charles; Pazmany, Andrew; Solheim, Fredrick

    2009-01-01

    NASA has teamed with the FAA, DoD, industry, and academia for research into the remote detection and measurement of atmospheric conditions leading to aircraft icing hazards. The ultimate goal of this effort is to provide pilots, controllers, and dispatchers sufficient information to allow aircraft to avoid or minimize their exposure to the hazards of in-flight icing. Since the hazard of in-flight icing is the outcome of aircraft flight through clouds containing supercooled liquid water and strongly influenced by the aircraft s speed and configuration and by the length of exposure, the hazard cannot be directly detected, but must be inferred based upon the measurement of conducive atmospheric conditions. Therefore, icing hazard detection is accomplished through the detection and measurement of liquid water in regions of measured sub-freezing air temperatures. The icing environment is currently remotely measured from the ground with a system fusing radar, lidar, and multifrequency microwave radiometer sensors. Based upon expected ice accretion severity for the measured environment, a resultant aircraft hazard is then calculated. Because of the power, size, weight, and view angle constraints of airborne platforms, the current ground-based solution is not applicable for flight. Two current airborne concepts are based upon the use of either multifrequency radiometers or multifrequency radar. Both ground-based and airborne solutions are required for the future since groundbased systems can provide hazard detection for all aircraft in airport terminal regions while airborne systems will be needed to provide equipped aircraft with flight path coverage between terminal regions.

  13. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 28: The technical communication practices of Russian and US aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Keene, Michael L.; Flammia, Madelyn; Kennedy, John M.

    1993-01-01

    As part of Phase 4 of the NASA/DoD Aerospace Knowledge Diffusion Research Project, two studies were conducted that investigated the technical communication practices of Russian and U.S. aerospace engineers and scientists. Both studies had the same five objectives: first, to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communication to their professions; second, to determine the use and production of technical communication by aerospace engineers and scientists; third, to seek their views about the appropriate content of the undergraduate course in technical communication; fourth, to determine aerospace engineers' and scientists' use of libraries, technical information centers, and on-line databases; and fifth, to determine the use and importance of computer and information technology to them. A self administered questionnaire was distributed to Russian aerospace engineers and scientists at the Central Aero-Hydrodynamic Institute (TsAGI) and to their U.S. counterparts at the NASA Ames Research Center and the NASA Langley Research Center. The completion rates for the Russian and U.S. surveys were 64 and 61 percent, respectively. Responses of the Russian and U.S. participants to selected questions are presented in this paper.

  14. Resilient and Corrosion-Proof Rolling Element Bearings Made from Superelastic Ni-Ti Alloys for Aerospace

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher

    2014-01-01

    Mechanical components (bearings, gears, mechanisms) typically utilize hardened construction materials to minimize wear and attain long life. In such components, loaded contact points (e.g., meshing gear teeth, bearing balls-raceway contacts) experience high contact stresses. The combination of high hardness and high elastic modulus often leads to damaging contact stress and denting, particularly during transient overload events such as shock impacts that occur during the launching of space vehicles or the landing of aircraft. In this webinar, Dr. DellaCorte will introduce the results of a research project that employs a superelastic alloy, Ni-Ti for rolling element bearing applications. Bearings and components made from such alloys can alleviate many problems encountered in advanced aerospace applications and may solve many terrestrial applications as well

  15. 76 FR 55614 - Airworthiness Directives; Pacific Aerospace Limited Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-08

    ...-0971; Directorate Identifier 2011-CE-030-AD] RIN 2120-AA64 Airworthiness Directives; Pacific Aerospace... (AD) for Pacific Aerospace Limited Models FU24-954 and FU24A-954 airplanes modified with an unapproved... INFORMATION CONTACT: Karl Schletzbaum, Aerospace Engineer, FAA, Small Airplane Directorate, 901 Locust, Room...

  16. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 8: The role of the information intermediary in the diffusion of aerospace knowledge

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Kennedy, John M.; Barclay, Rebecca O.

    1990-01-01

    The United States aerospace industry is experiencing profound changes created by a combination of domestic actions and circumstances such as airline deregulation. Other changes result from external trends such as emerging foreign competition. These circumstances intensify the need to understand the production, transfer, and utilization of knowledge as a precursor to the rapid diffusion of technology. Presented here is a conceptual framework for understanding the diffusion of technology. A conceptual framework is given for understanding the diffusion of aerospace knowledge. The framework focuses on the information channels and members of the social system associated with the aerospace knowledge diffusion process, placing particular emphasis on aerospace librarians as information intermediaries.

  17. Robustness of mission plans for unmanned aircraft

    NASA Astrophysics Data System (ADS)

    Niendorf, Moritz

    This thesis studies the robustness of optimal mission plans for unmanned aircraft. Mission planning typically involves tactical planning and path planning. Tactical planning refers to task scheduling and in multi aircraft scenarios also includes establishing a communication topology. Path planning refers to computing a feasible and collision-free trajectory. For a prototypical mission planning problem, the traveling salesman problem on a weighted graph, the robustness of an optimal tour is analyzed with respect to changes to the edge costs. Specifically, the stability region of an optimal tour is obtained, i.e., the set of all edge cost perturbations for which that tour is optimal. The exact stability region of solutions to variants of the traveling salesman problems is obtained from a linear programming relaxation of an auxiliary problem. Edge cost tolerances and edge criticalities are derived from the stability region. For Euclidean traveling salesman problems, robustness with respect to perturbations to vertex locations is considered and safe radii and vertex criticalities are introduced. For weighted-sum multi-objective problems, stability regions with respect to changes in the objectives, weights, and simultaneous changes are given. Most critical weight perturbations are derived. Computing exact stability regions is intractable for large instances. Therefore, tractable approximations are desirable. The stability region of solutions to relaxations of the traveling salesman problem give under approximations and sets of tours give over approximations. The application of these results to the two-neighborhood and the minimum 1-tree relaxation are discussed. Bounds on edge cost tolerances and approximate criticalities are obtainable likewise. A minimum spanning tree is an optimal communication topology for minimizing the cumulative transmission power in multi aircraft missions. The stability region of a minimum spanning tree is given and tolerances, stability balls

  18. 32nd Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    Walker, S. W. (Compiler); Boesiger, Edward A. (Compiler)

    1998-01-01

    The proceedings of the 32nd Aerospace Mechanism Symposium are reported. NASA John F. Kennedy Space Center (KSC) hosted the symposium that was held at the Hilton Oceanfront Hotel in Cocoa Beach, Florida on May 13-15, 1998. The symposium was cosponsored by Lockheed Martin Missiles and Space and the Aerospace Mechanisms Symposium Committee. During these days, 28 papers were presented. Topics included robotics, deployment mechanisms, bearing, actuators, scanners, boom and antenna release, and test equipment.

  19. Women, Innovation and Aerospace Event

    NASA Image and Video Library

    2012-03-08

    Catherine Didion, Senior Fellow, National Academy of Engineering, participates in a panel discussion at the Women, Innovation and Aerospace event celebrating Women's History Month at the George Washington University Jack Morton Auditorium, Thursday, March 8, 2012 in Washington. The WIA day-long event will help to foster a discussion for students and early career professionals about how to continue to encourage women to enter and succeed in the field of aerospace. Photo Credit: (NASA/Carla Cioffi)

  20. Women, Innovation and Aerospace Event

    NASA Image and Video Library

    2012-03-08

    Rebecca Spyke-Keiser, NASA's Associate Deputy Administrator for policy integration, gives opening remarks at the Women, Innovation and Aerospace event celebrating Women's History Month at the George Washington University Jack Morton Auditorium, Thursday, March 8, 2012 in Washington. The WIA day-long event will help to foster a discussion for students and early career professionals about how to continue to encourage women to enter and succeed in the field of aerospace. Photo Credit: (NASA/Carla Cioffi)

  1. Access to Japanese aerospace-related scientific and technical information: The NASA Aerospace Database

    NASA Technical Reports Server (NTRS)

    Hoetker, Glenn P.; Lahr, Thomas F.

    1993-01-01

    With Japan's growing R&D strength in aerospace-related fields, it is increasingly important for U.S. researchers to be aware of Japanese advances. However, several factors make it difficult to do so. After reviewing the diffusion of aerospace STI in Japan, four factors which make it difficult for U.S. researchers to gather this information are discussed: language, the human network, information scatter, and document acquisition. NASA activities to alleviate these difficulties are described, beginning with a general overview of the NASA STI Program. The effects of the new National Level Agreement between NASA and NASDA are discussed.

  2. Aerospace Nickel-cadmium Cell Verification

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.; Strawn, D. Michael; Hall, Stephen W.

    2001-01-01

    During the early years of satellites, NASA successfully flew "NASA-Standard" nickel-cadmium (Ni-Cd) cells manufactured by GE/Gates/SAFF on a variety of spacecraft. In 1992 a NASA Battery Review Board determined that the strategy of a NASA Standard Cell and Battery Specification and the accompanying NASA control of a standard manufacturing control document (MCD) for Ni-Cd cells and batteries was unwarranted. As a result of that determination, standards were abandoned and the use of cells other than the NASA Standard was required. In order to gain insight into the performance and characteristics of the various aerospace Ni-Cd products available, tasks were initiated within the NASA Aerospace Flight Battery Systems Program that involved the procurement and testing of representative aerospace Ni-Cd cell designs. A standard set of test conditions was established in order to provide similar information about the products from various vendors. The objective of this testing was to provide independent verification of representative commercial flight cells available in the marketplace today. This paper will provide a summary of the verification tests run on cells from various manufacturers: Sanyo 35 Ampere-hour (Ali) standard and 35 Ali advanced Ni-Cd cells, SAFr 50 Ah Ni-Cd cells and Eagle-Picher 21 Ali Magnum and 21 Ali Super Ni-CdTM cells from Eagle-Picher were put through a full evaluation. A limited number of 18 and 55 Ali cells from Acme Electric were also tested to provide an initial evaluation of the Acme aerospace cell designs. Additionally, 35 Ali aerospace design Ni-MH cells from Sanyo were evaluated under the standard conditions established for this program. Ile test program is essentially complete. The cell design parameters, the verification test plan and the details of the test result will be discussed.

  3. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 34: How early career-stage US aerospace engineers and scientists produce and use information

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1995-01-01

    The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. In this report, we summarize the literature on technical reports and provide a model that depicts the transfer of federally funded aerospace R&D via the U.S. government technical report. We present results from our investigation of aerospace knowledge diffusion vis-a-vis the U.S. government technical report, and present the results of research that investigated aerospace knowledge diffusion vis-a-vis the production and use of information by U.S. aerospace engineers and scientists who had changed their American Institute of Aeronautics and Astronautics (AIAA) membership from student to professional in the past five years.

  4. An international aerospace information system: A cooperative opportunity

    NASA Technical Reports Server (NTRS)

    Cotter, Gladys A.; Blados, Walter R.

    1992-01-01

    Scientific and technical information (STI) is a valuable resource which represents the results of large investments in research and development (R&D), and the expertise of a nation. NASA and its predecessor organizations have developed and managed the preeminent aerospace information system. We see information and information systems changing and becoming more international in scope. In Europe, consistent with joint R&D programs and a view toward a united Europe, we have seen the emergence of a European Aerospace Database concept. In addition, the development of aeronautics and astronautics in individual nations have also lead to initiatives for national aerospace databases. Considering recent technological developments in information science and technology, as well as the reality of scarce resources in all nations, it is time to reconsider the mutually beneficial possibilities offered by cooperation and international resource sharing. The new possibilities offered through cooperation among the various aerospace database efforts toward an international aerospace database initiative which can optimize the cost/benefit equation for all participants are considered.

  5. Aerospace Technology Careers: The Opportunity To Soar. Information Summaries.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    This document provides guidelines for the preparation of careers in aerospace, whether with the National Aeronautics and Space Administration (NASA) or private industry. The document discusses the following topics: (1) Preparing for an Aerospace Career; (2) Careers in Aerospace; (3) Employment Requirements; and (4) How To Apply. (ZWH)

  6. Neural network application to aircraft control system design

    NASA Technical Reports Server (NTRS)

    Troudet, Terry; Garg, Sanjay; Merrill, Walter C.

    1991-01-01

    The feasibility of using artificial neural networks as control systems for modern, complex aerospace vehicles is investigated via an example aircraft control design study. The problem considered is that of designing a controller for an integrated airframe/propulsion longitudinal dynamics model of a modern fighter aircraft to provide independent control of pitch rate and airspeed responses to pilot command inputs. An explicit model following controller using H infinity control design techniques is first designed to gain insight into the control problem as well as to provide a baseline for evaluation of the neurocontroller. Using the model of the desired dynamics as a command generator, a multilayer feedforward neural network is trained to control the vehicle model within the physical limitations of the actuator dynamics. This is achieved by minimizing an objective function which is a weighted sum of tracking errors and control input commands and rates. To gain insight in the neurocontrol, linearized representations of the nonlinear neurocontroller are analyzed along a commanded trajectory. Linear robustness analysis tools are then applied to the linearized neurocontroller models and to the baseline H infinity based controller. Future areas of research are identified to enhance the practical applicability of neural networks to flight control design.

  7. Neural network application to aircraft control system design

    NASA Technical Reports Server (NTRS)

    Troudet, Terry; Garg, Sanjay; Merrill, Walter C.

    1991-01-01

    The feasibility of using artificial neural network as control systems for modern, complex aerospace vehicles is investigated via an example aircraft control design study. The problem considered is that of designing a controller for an integrated airframe/propulsion longitudinal dynamics model of a modern fighter aircraft to provide independent control of pitch rate and airspeed responses to pilot command inputs. An explicit model following controller using H infinity control design techniques is first designed to gain insight into the control problem as well as to provide a baseline for evaluation of the neurocontroller. Using the model of the desired dynamics as a command generator, a multilayer feedforward neural network is trained to control the vehicle model within the physical limitations of the actuator dynamics. This is achieved by minimizing an objective function which is a weighted sum of tracking errors and control input commands and rates. To gain insight in the neurocontrol, linearized representations of the nonlinear neurocontroller are analyzed along a commanded trajectory. Linear robustness analysis tools are then applied to the linearized neurocontroller models and to the baseline H infinity based controller. Future areas of research identified to enhance the practical applicability of neural networks to flight control design.

  8. NASA/DoD Aerospace Knowledge Diffusion Research Project. Paper 30: The electronic transfer of information and aerospace knowledge diffusion

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Bishop, Ann P.; Barclay, Rebecca O.; Kennedy, John M.

    1992-01-01

    Increasing reliance on and investment in information technology and electronic networking systems presupposes that computing and information technology will play a major role in the diffusion of aerospace knowledge. Little is known, however, about actual information technology needs, uses, and problems within the aerospace knowledge diffusion process. The authors state that the potential contributions of information technology to increased productivity and competitiveness will be diminished unless empirically derived knowledge regarding the information-seeking behavior of the members of the social system - those who are producing, transferring, and using scientific and technical information - is incorporated into a new technology policy framework. Research into the use of information technology and electronic networks by U.S. aerospace engineers and scientists, collected as part of a research project designed to study aerospace knowledge diffusion, is presented in support of this assertion.

  9. Test Facility Simulation Results for Aerospace Loss-of-Lubrication of Spur Gears

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.; Gargano, Lucas J.

    2014-01-01

    Prior to receiving airworthiness certification, extensive testing is required during the development of rotary wing aircraft drive systems. Many of these tests are conducted to demonstrate the drive system's ability to operate at extreme conditions, beyond that called for in the normal to maximum power operating range. One of the most extreme tests is referred to as the loss-of-lubrication or run dry test. During this test, the drive system is expected to last at least 30 min without failure while the primary lubrication system is disabled for predetermined, scripted flight conditions. Failure of this test can lead to a partial redesign of the drive system or the addition of an emergency lubrication system. Either of these solutions can greatly increase the aircraft drive system cost and weight and extend the schedule for obtaining airworthiness certification. Recent work at NASA Glenn Research Center focused on performing tests, in a relevant aerospace environment, to simulate the behavior of spur gears under loss-of-lubrication conditions. Tests were conducted using a test facility that was used in the past for spur gear contact fatigue testing. A loss-oflubrication test is initiated by shutting off the single into mesh lubricating jet. The test proceeds until the gears fail and can no longer deliver the applied torque. The observed failures are typically plastically deformed gear teeth, due to the high tooth temperatures, that are no longer in mesh. The effect of several different variables to gear tooth condition during loss-of-lubrication have been tested such as gear pitch, materials, shrouding, lubrication condition, and emergency supplied mist lubrication in earlier testing at NASA. Recent testing has focused on newer aerospace gear steels and imbedding thermocouples in the shrouding to measure the air-oil temperatures flung off the gear teeth. Along with the instrumented shrouding, an instrumented spur gear was also tested. The instrumented spur gear had

  10. Aerosol Study over the Gulf of Guinea Region during DACCIWA Using a Mini Lidar onboard the French Aircraft ATR42

    NASA Astrophysics Data System (ADS)

    Shang, X.; Chazette, P.; Flamant, C.; Totems, J.; Denjean, C.; Meynadier, R.; Perrin, T.; Laurens, M.

    2016-12-01

    The EU-funded project DACCIWA (Dynamics-Aerosol-Chemistry-Cloud Interactions in West Africa) aims to investigate the relationship between weather, climate and air pollution in southern West Africa. As part of this campaign, three research aircraft based in Lomé (Togo) flew targeted missions over West Africa from 27 June to 16 July 2016. In this area aerosols, having a mixing of natural and anthropogenic sources, exert an important influence on the local weather and climate, mainly due to the aerosol-cloud interactions. A mini backscattered lidar system onboard one research aircraft (the French aircraft ATR42) performed aerosols measurements over the Gulf of Guinea region. The main objective was to study aerosol properties in different chemical landscapes: from the background state over the Gulf of Guinea (marine aerosols or mix between marine aerosols and biomass burning aerosols) to ship/flaring emissions to the coastal strip of polluted megacities to the agricultural areas and forest areas further north, and eventually dust from Sahel/Sahara. Different aerosol origins were identified by using the coupling between the lidar cross-polarized channels and a set of back trajectories analyses. The aircraft conducted flights at low ( 1 km above the mean sea level -amsl) and high altitudes ( 5 km amsl), allowing the coupling of in situ and remote sensing data to assess the properties of the aerosol layers. During several flights, depolarizing aerosol layers from the northeast were observed between 2.5 and 4 km amsl, which highlight the significant contribution of dust-like particles to the aerosol load in the coastal region. The air masses originating from the southeast were loaded with biomass burning aerosols from Central Africa, which seem to be mixed with other aerosol types. The flight sampling strategy and related lidar investigations will be presented. The retrieved aerosol distributions and properties, and the aerosol type identification will be discussed.

  11. NASA/DoD Aerospace Knowledge Diffusion Research Project. XXVI - The relationship between technology policy and scientific and technical information within the U.S. and Japanese aerospace industries

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Lahr, Tom; Hoetker, Glenn

    1993-01-01

    Government technology policy has nurtured the growth of the aerospace industry, which is vital to both the U.S. and Japanese economies. Japanese technology policy differs significantly from U.S. technology policy, however, particularly with respect to the production, transfer, and use of scientific and technical information (STI). In this paper, we discuss the unique position of the aerospace industry in the U.S. and Japan, U.S. and Japanese aerospace policy, and the role of STI in the process of aerospace innovation. The information-seeking behaviors of U.S. and Japanese aerospace engineers and scientists are compared. The authors advocate the development of innovation-adoption technology and STI policy goals for U.S. aerospace and the inclusion of an aerospace knowledge diffusion transfer system with an 'active' component for scanning and acquiring foreign aerospace technology and STI.

  12. Vertical profile of aerosols in the Himalayan region using an ultralight aircraft platform

    NASA Astrophysics Data System (ADS)

    Singh, A.; Mahata, K.; Rupakheti, M.; Lawrence, M. G.; Junkermann, W.

    2017-12-01

    Indo-gangetic plain (IGP) and Himalayan foothills have large spatial and temporal heterogeneity in aerosols characteristics. Regional meteorology around 850-500 mb plays an important role in the transformation and transportation of aerosols from west Asia to IGP, into Himalayan foothill, as well to high-altitude region of the Himalayas. In order to quantify the vertical and horizontal variation of aerosol properties in the Himalayan , an airborne campaign was carried out in the Pokhara Valley/Nepal (83°50'-84°10' E, 25°7'-28°15' N, 815 masl ) in two phases: test flights during May 2016 and an intensive airborne sampling flight in December-January 2017. This paper provides an overview of airborne measurement campaign from the first phase of measurements in May 2016. A two-seater microlight aircraft (IKARUS C 42) was used as the aerial platform. This was deemed the feasible option in Nepal for an aerial campaign; technical specification of the aircraft include an approximately 6 hrs of flying time, short-take off run, > 100 kgs of payload, suitable for spiral upward and downward profiling. The instrument package consist of GRIMM 1.108 for particle size distribution from 0.3 to 20 um at 6 seconds time resolution, and TSI CPC 3375 for total ultrafine particle (UFP) concentration at 1 s. The package also includes a Magee Scientific Aethalometer (AE42) for aerosol absorption at seven different wavelengths. Meteorological parameters include temperature and dew point at a sampling rate of 1 Hz or higher. The paper provides a snapshot of observed vertical profile (from 800 to 4500masl) of aerosols size, number and black carbon over one of populated mountain valley in Nepal during the pre-monsoon season. During the airborne measurement, local fires- mostly agriculture burn were observed, however no large scale forest fire was captured. Sharp morning and afternoon gradients were observed in the vertical profile for aerosol number and size, mostly dominated by <400 nm. The

  13. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 11: The Voice of the User: How US Aerospace Engineers and Scientists View DoD Technical Reports

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Kennedy, John M.

    1991-01-01

    The project examines how the results of NASA/DOD research diffuse into the aerospace R&D process, and empirically analyzes the implications of the aerospace knowledge diffusion process. Specific issues considered are the roles played by government technical reports, the recognition of the value of scientific and technical information (STI), and the optimization of the STI aerospace transfer system. Information-seeking habits are assessed for the U.S. aerospace community, the general community, the academic sector, and the international community. U.S. aerospace engineers and scientists use 65 percent of working time to communicate STI, and prefer 'internal' STI over 'external' STI. The isolation from 'external' information is found to be detrimental to U.S. aerospace R&D in general.

  14. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 14: Engineering work and information use in aerospace: Results of a telephone survey

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Kennedy, John M.; White, Terry F.

    1992-01-01

    A telephone survey of U.S. aerospace engineers and scientists who were on the Society of Automotive Engineers (SAE) mailing list was conducted between August 14-26, 1991. The survey was undertaken to obtain information on the daily work activities of aerospace engineers and scientists, to measure various practices used by aerospace engineers and scientists to obtain STI, and to ask aerospace engineers and scientists about their use of electronic networks. Co-workers were found important sources of information. Co-workers are used to obtain technical information because the information they have is relevant, not because co-workers are accessible. As technical uncertainty increases, so does the need for information internal and external to the organization. Electronic networks enjoy widespread use within the aerospace community. These networks are accessible and they are used to contact people at remote sites. About 80 percent of the respondents used electronic mail, file transfer, and information or data retrieval to commercial or in-house data bases.

  15. Multi-Year Estimates of Regional Alaskan Net CO2 Exchange: Constraining a Remote-Sensing Based Model with Aircraft Observations

    NASA Astrophysics Data System (ADS)

    Lindaas, J.; Commane, R.; Luus, K. A.; Chang, R. Y. W.; Miller, C. E.; Dinardo, S. J.; Henderson, J.; Mountain, M. E.; Karion, A.; Sweeney, C.; Miller, J. B.; Lin, J. C.; Daube, B. C.; Pittman, J. V.; Wofsy, S. C.

    2014-12-01

    The Alaskan region has historically been a sink of atmospheric CO2, but permafrost currently stores large amounts of carbon that are vulnerable to release to the atmosphere as northern high-latitudes continue to warm faster than the global average. We use aircraft CO2 data with a remote-sensing based model driven by MODIS satellite products and validated by CO2 flux tower data to calculate average daily CO2 fluxes for the region of Alaska during the growing seasons of 2012 and 2013. Atmospheric trace gases were measured during CARVE (Carbon in Arctic Reservoirs Vulnerability Experiment) aboard the NASA Sherpa C-23 aircraft. For profiles along the flight track, we couple the Weather Research and Forecasting (WRF) model with the Stochastic Time-Inverted Lagrangian Transport (STILT) model, and convolve these footprints of surface influence with our remote-sensing based model, the Polar Vegetation Photosynthesis Respiration Model (PolarVPRM). We are able to calculate average regional fluxes for each month by minimizing the difference between the data and model column integrals. Our results provide a snapshot of the current state of regional Alaskan growing season net ecosystem exchange (NEE). We are able to begin characterizing the interannual variation in Alaskan NEE and to inform future refinements in process-based modeling that will produce better estimates of past, present, and future pan-Arctic NEE. Understanding if/when/how the Alaskan region transitions from a sink to a source of CO2 is crucial to predicting the trajectory of future climate change.

  16. 78 FR 42415 - Airworthiness Directives; the Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-16

    ... INFORMATION CONTACT: Suzanne Lucier, Aerospace Engineer, Propulsion Branch, ANM-140S, FAA, Seattle Aircraft... Lucier, Aerospace Engineer, Propulsion Branch, ANM-140S, FAA, Seattle Aircraft Certification Office, 1601... 737-28-1286, dated January 10, 2012. (d) Subject Joint Aircraft System Component (JASC)/Air Transport...

  17. The 29th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    Schneider, William C. (Editor)

    1995-01-01

    The proceedings of the 29th Aerospace Mechanisms Symposium, which was hosted by NASA Johnson Space Center and held at the South Shore Harbour Conference Facility on May 17-19, 1995, are reported. Technological areas covered include actuators, aerospace mechanism applications for ground support equipment, lubricants, pointing mechanisms joints, bearings, release devices, booms, robotic mechanisms, and other mechanisms for spacecraft.

  18. The 28th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    Rohn, Douglas A. (Compiler)

    1994-01-01

    The proceedings of the 28th Aerospace Mechanisms Symposium, which was hosted by the NASA Lewis Research Center and held at the Cleveland Marriott Society Center on May 18, 19, and 20, 1994, are reported. Technological areas covered include actuators, aerospace mechanism applications for ground support equipment, lubricants, pointing mechanisms joints, bearings, release devices, booms, robotic mechanisms, and other mechanisms for spacecraft.

  19. Women, Innovation and Aerospace Event

    NASA Image and Video Library

    2012-03-08

    Kathy Sullivan, NOAA (National Oceanic and Atmospheric Administration) Deputy Administrator and former NASA astronaut, participates in a panel discussion at the Women, Innovation and Aerospace event celebrating Women's History Month at the George Washington University Jack Morton Auditorium, Thursday, March 8, 2012 in Washington. The WIA day-long event will help to foster a discussion for students and early career professionals about how to continue to encourage women to enter and succeed in the field of aerospace. Photo Credit: (NASA/Carla Cioffi)

  20. Women, Innovation and Aerospace Event

    NASA Image and Video Library

    2012-03-08

    Veronica Villalobos, Director, Office of Diversity and Inclusion, Office of Personnel Management, participates in a panel discussion at the Women, Innovation and Aerospace event celebrating Women's History Month at the George Washington University Jack Morton Auditorium, Thursday, March 8, 2012 in Washington. The WIA day-long event will help to foster a discussion for students and early career professionals about how to continue to encourage women to enter and succeed in the field of aerospace. Photo Credit: (NASA/Carla Cioffi)

  1. The relationship of document and quantitative literacy with learning styles and selected personal variables for aerospace technology students at Indiana State University

    NASA Astrophysics Data System (ADS)

    Martin, Royce Ann

    The purpose of this study was to determine the extent that student scores on a researcher-constructed quantitative and document literacy test, the Aviation Documents Delineator (ADD), were associated with (a) learning styles (imaginative, analytic, common sense, dynamic, and undetermined), as identified by the Learning Type Measure, (b) program curriculum (aerospace administration, professional pilot, both aerospace administration and professional pilot, other, or undeclared), (c) overall cumulative grade point average at Indiana State University, and (d) year in school (freshman, sophomore, junior, or senior). The Aviation Documents Delineator (ADD) was a three-part, 35 question survey that required students to interpret graphs, tables, and maps. Tasks assessed in the ADD included (a) locating, interpreting, and describing specific data displayed in the document, (b) determining data for a specified point on the table through interpolation, (c) comparing data for a string of variables representing one aspect of aircraft performance to another string of variables representing a different aspect of aircraft performance, (d) interpreting the documents to make decisions regarding emergency situations, and (e) performing single and/or sequential mathematical operations on a specified set of data. The Learning Type Measure (LTM) was a 15 item self-report survey developed by Bernice McCarthy (1995) to profile an individual's processing and perception tendencies in order to reveal different individual approaches to learning. The sample used in this study included 143 students enrolled in Aerospace Technology Department courses at Indiana State University in the fall of 1996. The ADD and the LTM were administered to each subject. Data collected in this investigation were analyzed using a stepwise multiple regression analysis technique. Results of the study revealed that the variables, year in school and GPA, were significant predictors of the criterion variables, document

  2. Wireless Sensing Opportunities for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Wilson, William; Atkinson, Gary

    2007-01-01

    Wireless sensors and sensor networks is an emerging technology area with many applications within the aerospace industry. Integrated vehicle health monitoring (IVHM) of aerospace vehicles is needed to ensure the safety of the crew and the vehicle, yet often high costs, weight, size and other constraints prevent the incorporation of instrumentation onto spacecraft. This paper presents a few of the areas such as IVHM, where new wireless sensing technology is needed on both existing vehicles as well as future spacecraft. From ground tests to inflatable structures to the International Space Station, many applications could receive benefits from small, low power, wireless sensors. This paper also highlights some of the challenges that need to overcome when implementing wireless sensor networks for aerospace vehicles.

  3. Knowledge-based diagnosis for aerospace systems

    NASA Technical Reports Server (NTRS)

    Atkinson, David J.

    1988-01-01

    The need for automated diagnosis in aerospace systems and the approach of using knowledge-based systems are examined. Research issues in knowledge-based diagnosis which are important for aerospace applications are treated along with a review of recent relevant research developments in Artificial Intelligence. The design and operation of some existing knowledge-based diagnosis systems are described. The systems described and compared include the LES expert system for liquid oxygen loading at NASA Kennedy Space Center, the FAITH diagnosis system developed at the Jet Propulsion Laboratory, the PES procedural expert system developed at SRI International, the CSRL approach developed at Ohio State University, the StarPlan system developed by Ford Aerospace, the IDM integrated diagnostic model, and the DRAPhys diagnostic system developed at NASA Langley Research Center.

  4. Conservation of Strategic Aerospace Materials (COSAM)

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.

    1981-01-01

    Research efforts to reduce the dependence of the aerospace industry on strategic metals, such as cobalt (Co), columbium (Cb), tantalum (Ta), and chromium (Cr), by providing the materials technology needed to minimize the strategic metal content of critical aerospace components for gas turbine engines are addressed. Thrusts in three technology areas are identified: near term activities in the area of strategic element substitution; intermediate-range activities in the area of materials processing; and long term, high risk activities in the area of 'new classes' of high temprature metallic materials. Specifically, the role of cobalt in nickel-base and cobalt-base superalloys vital to the aerospace industry is examined along with the mechanical and physical properties of intermetallics that will contain a minimum of the stragetic metals.

  5. Aerospace Environmental Technology Conference

    NASA Technical Reports Server (NTRS)

    Whitaker, A. F. (Editor)

    1995-01-01

    The mandated elimination of CFC's, Halons, TCA, and other ozone depleting chemicals and specific hazardous materials has required changes and new developments in aerospace materials and processes. The aerospace industry has been involved for several years in providing product substitutions, redesigning entire production processes, and developing new materials that minimize or eliminate damage to the environment. These activities emphasize replacement cleaning solvents and their application verifications, compliant coatings including corrosion protection systems, and removal techniques, chemical propulsion effects on the environment, and the initiation of modifications to relevant processing and manufacturing specifications and standards. The Executive Summary of this Conference is published as NASA CP-3297.

  6. Estimating regional-scale methane flux and budgets using CARVE aircraft measurements over Alaska

    NASA Astrophysics Data System (ADS)

    Hartery, Sean; Commane, Róisín; Lindaas, Jakob; Sweeney, Colm; Henderson, John; Mountain, Marikate; Steiner, Nicholas; McDonald, Kyle; Dinardo, Steven J.; Miller, Charles E.; Wofsy, Steven C.; Chang, Rachel Y.-W.

    2018-01-01

    Methane (CH4) is the second most important greenhouse gas but its emissions from northern regions are still poorly constrained. In this study, we analyze a subset of in situ CH4 aircraft observations made over Alaska during the growing seasons of 2012-2014 as part of the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE). Net surface CH4 fluxes are estimated using a Lagrangian particle dispersion model which quantitatively links surface emissions from Alaska and the western Yukon with observations of enhanced CH4 in the mixed layer. We estimate that between May and September, net CH4 emissions from the region of interest were 2.2 ± 0.5 Tg, 1.9 ± 0.4 Tg, and 2.3 ± 0.6 Tg of CH4 for 2012, 2013, and 2014, respectively. If emissions are only attributed to two biogenic eco-regions within our domain, then tundra regions were the predominant source, accounting for over half of the overall budget despite only representing 18 % of the total surface area. Boreal regions, which cover a large part of the study region, accounted for the remainder of the emissions. Simple multiple linear regression analysis revealed that, overall, CH4 fluxes were largely driven by soil temperature and elevation. In regions specifically dominated by wetlands, soil temperature and moisture at 10 cm depth were important explanatory variables while in regions that were not wetlands, soil temperature and moisture at 40 cm depth were more important, suggesting deeper methanogenesis in drier soils. Although similar environmental drivers have been found in the past to control CH4 emissions at local scales, this study shows that they can be used to generate a statistical model to estimate the regional-scale net CH4 budget.

  7. 32 CFR 705.30 - Aerospace Education Workshop.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 5 2011-07-01 2011-07-01 false Aerospace Education Workshop. 705.30 Section 705... REGULATIONS AND OFFICIAL RECORDS PUBLIC AFFAIRS REGULATIONS § 705.30 Aerospace Education Workshop. (a) This... education programs. (b) Appropriate commands are encouraged to provide assistance to educational...

  8. Aerospace Resources for Science and Technology Education.

    ERIC Educational Resources Information Center

    Maley, Donald, Ed.; Smith, Kenneth L., Ed.

    This publication on Aerospace Programs is a special edition of "Technology Education" featuring descriptions of 15 select aerospace education programs from diverse localities spanning the full range of instructional levels. Following introductory material, the monograph contains the following largely unedited program descriptions: (1)…

  9. 32 CFR 705.30 - Aerospace Education Workshop.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 5 2010-07-01 2010-07-01 false Aerospace Education Workshop. 705.30 Section 705... REGULATIONS AND OFFICIAL RECORDS PUBLIC AFFAIRS REGULATIONS § 705.30 Aerospace Education Workshop. (a) This... education programs. (b) Appropriate commands are encouraged to provide assistance to educational...

  10. Post-Optimality Analysis In Aerospace Vehicle Design

    NASA Technical Reports Server (NTRS)

    Braun, Robert D.; Kroo, Ilan M.; Gage, Peter J.

    1993-01-01

    This analysis pertains to the applicability of optimal sensitivity information to aerospace vehicle design. An optimal sensitivity (or post-optimality) analysis refers to computations performed once the initial optimization problem is solved. These computations may be used to characterize the design space about the present solution and infer changes in this solution as a result of constraint or parameter variations, without reoptimizing the entire system. The present analysis demonstrates that post-optimality information generated through first-order computations can be used to accurately predict the effect of constraint and parameter perturbations on the optimal solution. This assessment is based on the solution of an aircraft design problem in which the post-optimality estimates are shown to be within a few percent of the true solution over the practical range of constraint and parameter variations. Through solution of a reusable, single-stage-to-orbit, launch vehicle design problem, this optimal sensitivity information is also shown to improve the efficiency of the design process, For a hierarchically decomposed problem, this computational efficiency is realized by estimating the main-problem objective gradient through optimal sep&ivity calculations, By reducing the need for finite differentiation of a re-optimized subproblem, a significant decrease in the number of objective function evaluations required to reach the optimal solution is obtained.

  11. Quasi-Linear Parameter Varying Representation of General Aircraft Dynamics Over Non-Trim Region

    NASA Technical Reports Server (NTRS)

    Shin, Jong-Yeob

    2007-01-01

    For applying linear parameter varying (LPV) control synthesis and analysis to a nonlinear system, it is required that a nonlinear system be represented in the form of an LPV model. In this paper, a new representation method is developed to construct an LPV model from a nonlinear mathematical model without the restriction that an operating point must be in the neighborhood of equilibrium points. An LPV model constructed by the new method preserves local stabilities of the original nonlinear system at "frozen" scheduling parameters and also represents the original nonlinear dynamics of a system over a non-trim region. An LPV model of the motion of FASER (Free-flying Aircraft for Subscale Experimental Research) is constructed by the new method.

  12. Structural health management of aerospace hotspots under fatigue loading

    NASA Astrophysics Data System (ADS)

    Soni, Sunilkumar

    Sustainability and life-cycle assessments of aerospace systems, such as aircraft structures and propulsion systems, represent growing challenges in engineering. Hence, there has been an increasing demand in using structural health monitoring (SHM) techniques for continuous monitoring of these systems in an effort to improve safety and reduce maintenance costs. The current research is part of an ongoing multidisciplinary effort to develop a robust SHM framework resulting in improved models for damage-state awareness and life prediction, and enhancing capability of future aircraft systems. Lug joints, a typical structural hotspot, were chosen as the test article for the current study. The thesis focuses on integrated SHM techniques for damage detection and characterization in lug joints. Piezoelectric wafer sensors (PZTs) are used to generate guided Lamb waves as they can be easily used for onboard applications. Sensor placement in certain regions of a structural component is not feasible due to the inaccessibility of the area to be monitored. Therefore, a virtual sensing concept is introduced to acquire sensor data from finite element (FE) models. A full three dimensional FE analysis of lug joints with piezoelectric transducers, accounting for piezoelectrical-mechanical coupling, was performed in Abaqus and the sensor signals were simulated. These modeled sensors are called virtual sensors. A combination of real data from PZTs and virtual sensing data from FE analysis is used to monitor and detect fatigue damage in aluminum lug joints. Experiments were conducted on lug joints under fatigue loads and sensor signals collected were used to validate the simulated sensor response. An optimal sensor placement methodology for lug joints is developed based on a detection theory framework to maximize the detection rate and minimize the false alarm rate. The placement technique is such that the sensor features can be directly correlated to damage. The technique accounts for a

  13. Engineering in the 21st century. [aerospace technology prospects

    NASA Technical Reports Server (NTRS)

    Mccarthy, J. F., Jr.

    1978-01-01

    A description is presented of the nature of the aerospace technology system that might be expected by the 21st century from a reasonable evolution of the current resources and capabilities. An aerospace employment outlook is provided. The years 1977 and 1978 seem to be marking the beginning of a period of stability and moderate growth in the aerospace industry. Aerospace research and development employment increased to 70,000 in 1977 and is now occupying a near-constant 18% share of the total research and development work force. The changing job environment is considered along with the future of aerospace education. It is found that one trend is toward a more interdisciplinary education. Most trend setters in engineering education recognize that the really challenging engineering problems invariably require the judicious exercise of several disciplines for their solution. Some future trends in aerospace technology are discussed. By the year 2000 space technology will have achieved major advances in four areas, including management of information, transportation, space structures, and energy.

  14. Design and evaluation of a wireless sensor network based aircraft strength testing system.

    PubMed

    Wu, Jian; Yuan, Shenfang; Zhou, Genyuan; Ji, Sai; Wang, Zilong; Wang, Yang

    2009-01-01

    The verification of aerospace structures, including full-scale fatigue and static test programs, is essential for structure strength design and evaluation. However, the current overall ground strength testing systems employ a large number of wires for communication among sensors and data acquisition facilities. The centralized data processing makes test programs lack efficiency and intelligence. Wireless sensor network (WSN) technology might be expected to address the limitations of cable-based aeronautical ground testing systems. This paper presents a wireless sensor network based aircraft strength testing (AST) system design and its evaluation on a real aircraft specimen. In this paper, a miniature, high-precision, and shock-proof wireless sensor node is designed for multi-channel strain gauge signal conditioning and monitoring. A cluster-star network topology protocol and application layer interface are designed in detail. To verify the functionality of the designed wireless sensor network for strength testing capability, a multi-point WSN based AST system is developed for static testing of a real aircraft undercarriage. Based on the designed wireless sensor nodes, the wireless sensor network is deployed to gather, process, and transmit strain gauge signals and monitor results under different static test loads. This paper shows the efficiency of the wireless sensor network based AST system, compared to a conventional AST system.

  15. Design and Evaluation of a Wireless Sensor Network Based Aircraft Strength Testing System

    PubMed Central

    Wu, Jian; Yuan, Shenfang; Zhou, Genyuan; Ji, Sai; Wang, Zilong; Wang, Yang

    2009-01-01

    The verification of aerospace structures, including full-scale fatigue and static test programs, is essential for structure strength design and evaluation. However, the current overall ground strength testing systems employ a large number of wires for communication among sensors and data acquisition facilities. The centralized data processing makes test programs lack efficiency and intelligence. Wireless sensor network (WSN) technology might be expected to address the limitations of cable-based aeronautical ground testing systems. This paper presents a wireless sensor network based aircraft strength testing (AST) system design and its evaluation on a real aircraft specimen. In this paper, a miniature, high-precision, and shock-proof wireless sensor node is designed for multi-channel strain gauge signal conditioning and monitoring. A cluster-star network topology protocol and application layer interface are designed in detail. To verify the functionality of the designed wireless sensor network for strength testing capability, a multi-point WSN based AST system is developed for static testing of a real aircraft undercarriage. Based on the designed wireless sensor nodes, the wireless sensor network is deployed to gather, process, and transmit strain gauge signals and monitor results under different static test loads. This paper shows the efficiency of the wireless sensor network based AST system, compared to a conventional AST system. PMID:22408521

  16. Research Developments in Nondestructive Evaluation and Structural Health Monitoring for the Sustainment of Composite Aerospace Structures at NASA

    NASA Technical Reports Server (NTRS)

    Cramer, K. Elliott

    2016-01-01

    The use of composite materials continues to increase in the aerospace community due to the potential benefits of reduced weight, increased strength, and manufacturability. Ongoing work at NASA involves the use of the large-scale composite structures for spacecraft (payload shrouds, cryotanks, crew modules, etc). NASA is also working to enable both the use and sustainment of composites in commercial aircraft structures. One key to the sustainment of these large composite structures is the rapid, in-situ characterization of a wide range of potential defects that may occur during the vehicle's life. Additionally, in many applications it is necessary to monitor changes in these materials over their lifetime. Quantitative characterization through Nondestructive Evaluation (NDE) of defects such as reduced bond strength, microcracking, and delamination damage due to impact, are of particular interest. This paper will present an overview of NASA's applications of NDE technologies being developed for the characterization and sustainment of advanced aerospace composites. The approaches presented include investigation of conventional, guided wave, and phase sensitive ultrasonic methods and infrared thermography techniques for NDE. Finally, the use of simulation tools for optimizing and validating these techniques will also be discussed.

  17. Vortex Wakes of Subsonic Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Rossow, Vernon J.; Nixon, David (Technical Monitor)

    1999-01-01

    A historical overview will be presented of the research conducted on the structure and modification of the vortices generated by the lifting surfaces of subsonic transport aircraft. The seminar will describe the three areas of vortex research; namely, the magnitude of the hazard posed, efforts to reduce the hazard to an acceptable level, and efforts to develop a systematic means for avoiding vortex wakes. It is first pointed out that the characteristics of lift-generated vortices are related to the aerodynamic shapes that produce them and that various arrangements of surfaces can be used to produce different vortex structures. The largest portion of the research conducted to date has been directed at finding ways to reduce the hazard potential of lift-generated vortices shed by subsonic transport aircraft in the vicinity of airports during landing and takeoff operations. It is stressed that lift-generated vortex wakes are so complex that progress towards a solution requires application of a combined theoretical and experimental research program because either alone often leads to incorrect conclusions. It is concluded that a satisfactory aerodynamic solution to the wake-vortex problem at airports has not yet been found but a reduction in the impact of the wake-vortex hazard on airport capacity may become available in the foreseeable future through wake-vortex avoidance concepts currently under study. The material to be presented in this overview is drawn from articles published in aerospace journals that are available publicly.

  18. NASA Elementary Aerospace Activities Free to Members

    ERIC Educational Resources Information Center

    Journal of Aerospace Education, 1978

    1978-01-01

    Describes the contents of Elementary School Aerospace Activities: A Resource for Teachers. Activities examine a variety of topics in aerospace education and are intended to be used with children ages 5-11. The book is available from the Government Printing Office (GPO) for $3.00. (CP)

  19. Spectroscopic detection and analysis of atomic emissions during industrial pulsed laser-drilling of structural aerospace alloys

    NASA Astrophysics Data System (ADS)

    Bright, Robin Michael

    The ability to adequately cool internal gas-turbine engine components in next-generation commercial and military aircraft is of extreme importance to the aerospace industry as the demand for high-efficiency engines continues to push operating temperatures higher. Pulsed laser-drilling is rapidly becoming the preferred method of creating cooling holes in high temperature components due a variety of manufacturing advantages of laser-drilling over conventional hole-drilling techniques. As cooling requirements become more demanding, the impact of drilling conditions on material removal behavior and subsequent effects on hole quality becomes critical. In this work, the development of emission spectroscopy as a method to probe the laser-drilling process is presented and subsequently applied to the study of material behavior of various structural aerospace materials during drilling. Specifically, emitted photons associated with energy level transitions within excited neutral atoms in material ejected during drilling were detected and analyzed. Systematic spectroscopic studies indicated that electron energy level populations and calculated electron temperatures within ejected material are dependent on both laser pulse energy and duration. Local thermal conditions detected by the developed method were related to the characteristics of ejected material during drilling and to final hole quality. Finally, methods of utilizing the observed relationships for spectroscopic process monitoring and control were demonstrated.

  20. An international aerospace information system - A cooperative opportunity

    NASA Technical Reports Server (NTRS)

    Blados, Walter R.; Cotter, Gladys A.

    1992-01-01

    This paper presents for consideration new possibilities for uniting the various aerospace database efforts toward a cooperative international aerospace database initiative that can optimize the cost-benefit equation for all members. The development of astronautics and aeronautics in individual nations has led to initiatives for national aerospace databases. Technological developments in information technology and science, as well as the reality of scarce resources, makes it necessary to reconsider the mutually beneficial possibilities offered by cooperation and international resource sharing.

  1. Challenges in aerospace medicine education.

    PubMed

    Grenon, S Marlene; Saary, Joan

    2011-11-01

    Aerospace medicine training and research represents a dream for many and a challenge for most. In Canada, although some opportunities exist for the pursuit of education and research in the aerospace medicine field, they are limited despite the importance of this field for enabling safe human space exploration. In this commentary, we aim to identify some of the challenges facing individuals wishing to get involved in the field as well as the causal factors for these challenges. We also explore strategies to mitigate against these.

  2. Advanced Engineering Environments: Implications for Aerospace Manufacturing

    NASA Technical Reports Server (NTRS)

    Thomas, D.

    2001-01-01

    There are significant challenges facing today's aerospace industry. Global competition, more complex products, geographically-distributed design teams, demands for lower cost, higher reliability and safer vehicles, and the need to incorporate the latest technologies quicker all face the developer of aerospace systems. New information technologies offer promising opportunities to develop advanced engineering environments (AEEs) to meet these challenges. Significant advances in the state-of-the-art of aerospace engineering practice are envisioned in the areas of engineering design and analytical tools, cost and risk tools, collaborative engineering, and high-fidelity simulations early in the development cycle. These advances will enable modeling and simulation of manufacturing methods, which will in turn allow manufacturing considerations to be included much earlier in the system development cycle. Significant cost savings, increased quality, and decreased manufacturing cycle time are expected to result. This paper will give an overview of the NASA's Intelligent Synthesis Environment, the agency initiative to develop an AEE, with a focus on the anticipated benefits in aerospace manufacturing.

  3. Probability and Statistics in Aerospace Engineering

    NASA Technical Reports Server (NTRS)

    Rheinfurth, M. H.; Howell, L. W.

    1998-01-01

    This monograph was prepared to give the practicing engineer a clear understanding of probability and statistics with special consideration to problems frequently encountered in aerospace engineering. It is conceived to be both a desktop reference and a refresher for aerospace engineers in government and industry. It could also be used as a supplement to standard texts for in-house training courses on the subject.

  4. Acting Administrator Lightfoot Visits Ball Aerospace

    NASA Image and Video Library

    2017-04-06

    Michael Dean, senior project engineer for the Joint Polar Satellite System (JPSS) program at Ball Aerospace, right, speaks with acting NASA Deputy Administrator Lesa Roe, second from left, and acting NASA Administrator Robert Lightfoot, center, about the 20ft. by 24 ft. vertical thermal vacuum chamber, Thursday, April 6, 2017 during a visit to Ball Aerospace in Boulder, Colo. Photo Credit: (NASA/Joel Kowsky)

  5. The 2001 NASA Aerospace Battery Workshop

    NASA Technical Reports Server (NTRS)

    Brewer, Jeff C. (Compiler)

    2002-01-01

    This document contains the proceedings of the 34th annual NASA Aerospace Battery Workshop, hosted by the Marshall Space Flight Center, November 27-29, 2001. The workshop was attended by scientists and engineers from various agencies of the US Government, aerospace contractors, and battery manufacturers, as well as international participation in like kind. The subjects covered included nickel-hydrogen, nickel-cadmium, lithium-ion, and silver-zinc technologies.

  6. Aero-space plane figures of merit

    NASA Technical Reports Server (NTRS)

    Hunt, James L.; Martin, John G.

    1992-01-01

    The design environment of the aerospace plane is variable rich, intricately networked and sensitivity intensive. To achieve a viable design necessitates addressing three principal elements: knowledge of the 'figures of merit' and their relationships, the synthesis procedure, and the synergistic integration of advanced technologies across the discipline spectrum. This paper focuses on the 'figures of merit' that create the design of an aerospace plane.

  7. An integrated systems engineering approach to aircraft design

    NASA Astrophysics Data System (ADS)

    Price, M.; Raghunathan, S.; Curran, R.

    2006-06-01

    The challenge in Aerospace Engineering, in the next two decades as set by Vision 2020, is to meet the targets of reduction of nitric oxide emission by 80%, carbon monoxide and carbon dioxide both by 50%, reduce noise by 50% and of course with reduced cost and improved safety. All this must be achieved with expected increase in capacity and demand. Such a challenge has to be in a background where the understanding of physics of flight has changed very little over the years and where industrial growth is driven primarily by cost rather than new technology. The way forward to meet the challenges is to introduce innovative technologies and develop an integrated, effective and efficient process for the life cycle design of aircraft, known as systems engineering (SE). SE is a holistic approach to a product that comprises several components. Customer specifications, conceptual design, risk analysis, functional analysis and architecture, physical architecture, design analysis and synthesis, and trade studies and optimisation, manufacturing, testing validation and verification, delivery, life cycle cost and management. Further, it involves interaction between traditional disciplines such as Aerodynamics, Structures and Flight Mechanics with people- and process-oriented disciplines such as Management, Manufacturing, and Technology Transfer. SE has become the state-of-the-art methodology for organising and managing aerospace production. However, like many well founded methodologies, it is more difficult to embody the core principles into formalised models and tools. The key contribution of the paper will be to review this formalisation and to present the very latest knowledge and technology that facilitates SE theory. Typically, research into SE provides a deeper understanding of the core principles and interactions, and helps one to appreciate the required technical architecture for fully exploiting it as a process, rather than a series of events. There are major issues as

  8. Regional Aerosol Forcing over India: Preliminary Results from the South West Asian Aerosol-Monsoon Interactions (SWAAMI) Aircraft Experiment

    NASA Astrophysics Data System (ADS)

    Morgan, W.; Brooks, J.; Fox, C.; Haslett, S.; Liu, D.; Kompalli, S. K.; Pathak, H.; Manoj, M. R.; Allan, J. D.; Haywood, J. M.; Highwood, E.; Langridge, J.; Nanjundaiah, R. S.; Krishnamoorthy, K.; Babu, S. S.; Satheesh, S. K.; Turner, A. G.; Coe, H.

    2016-12-01

    Aerosol particles from multiple sources across the Indian subcontinent build up to form a dense and extensive haze across the region in advance of the monsoon. These aerosols are thought to perturb the regional radiative balance and hydrological cycle, which may have a significant impact on the monsoon circulation, as well as influencing the associated cloud and rainfall of the system. However the nature and magnitude of such impacts are poorly understood or constrained. Major uncertainties relevant to the regional aerosol burden include its vertical distribution, the relative contribution of different pollution sources and natural emissions and the role of absorbing aerosol species (black carbon and mineral dust). The South West Asian Aerosol-Monsoon Interactions (SWAAMI) project sought to address these major uncertainties by conducting an airborne experiment during June/July 2016 on-board the UK Facility for Airborne Atmospheric Measurement (FAAM) BAe-146 research aircraft. Based out of Lucknow in the), The aircraft conducted multiple flights from Lucknow in the heart of the Indo-Gangetic Plain (IGP) in advance of the monsoon and during the onset phase. The spatial and vertical distribution of aerosol was evaluated across northern India, encompassing drier desert-like regions to the west, heavily populated urban and industrial centres over the IGP and air masses in outflow regions to the south-east towards the Bay of Bengal. Principal measurements included aerosol chemical composition using an Aerodyne Aerosol Mass Spectrometer and a DMT Single Particle Soot Photometer, alongside a Leosphere backscatter LIDAR. Sulphate was a major contributor to the aerosol burden across India, while the organic aerosol was elevated and more dominant over the most polluted regions of the IGP. Substantial aerosol concentrations were frequently observed up to altitudes of approximately 6km, with notable changes in aerosol chemical and physical properties when comparing different

  9. RASC-AL (Revolutionary Aerospace Systems Concepts-Academic Linkage): 2002 Advanced Concept Design Presentation

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Revolutionary Aerospace Systems Concepts-Academic Linkage (RASC-AL) is a program of the Lunar and Planetary Institute (LPI) in collaboration with the Universities Space Research Association's (USRA) ICASE institute through the NASA Langley Research Center. The RASC-AL key objectives are to develop relationships between universities and NASA that lead to opportunities for future NASA research and programs, and to develop aerospace systems concepts and technology requirements to enable future NASA missions. The program seeks to look decades into the future to explore new mission capabilities and discover what's possible. NASA seeks concepts and technologies that can make it possible to go anywhere, at anytime, safely, reliably, and affordably to accomplish strategic goals for science, exploration, and commercialization. University teams were invited to submit research topics from the following themes: Human and Robotic Space Exploration, Orbital Aggregation & Space Infrastructure Systems (OASIS), Zero-Emissions Aircraft, and Remote Sensing. RASC-AL is an outgrowth of the HEDS-UP (University Partners) Program sponsored by the LPI. HEDS-UP was a program of the Lunar and Planetary Institute designed to link universities with NASA's Human Exploration and Development of Space (HEDS) enterprise. The first RASC-AL Forum was held November 5-8, 2002, at the Hilton Cocoa Beach Oceanfront Hotel in Cocoa Beach, Florida. Representatives from 10 university teams presented student research design projects at this year's Forum. Each team contributed a written report and these reports are presented.

  10. Automated Modeling and Simulation Using the Bond Graph Method for the Aerospace Industry

    NASA Technical Reports Server (NTRS)

    Granda, Jose J.; Montgomery, Raymond C.

    2003-01-01

    Bond graph modeling was originally developed in the late 1950s by the late Prof. Henry M. Paynter of M.I.T. Prof. Paynter acted well before his time as the main advantage of his creation, other than the modeling insight that it provides and the ability of effectively dealing with Mechatronics, came into fruition only with the recent advent of modern computer technology and the tools derived as a result of it, including symbolic manipulation, MATLAB, and SIMULINK and the Computer Aided Modeling Program (CAMPG). Thus, only recently have these tools been available allowing one to fully utilize the advantages that the bond graph method has to offer. The purpose of this paper is to help fill the knowledge void concerning its use of bond graphs in the aerospace industry. The paper first presents simple examples to serve as a tutorial on bond graphs for those not familiar with the technique. The reader is given the basic understanding needed to appreciate the applications that follow. After that, several aerospace applications are developed such as modeling of an arresting system for aircraft carrier landings, suspension models used for landing gears and multibody dynamics. The paper presents also an update on NASA's progress in modeling the International Space Station (ISS) using bond graph techniques, and an advanced actuation system utilizing shape memory alloys. The later covers the Mechatronics advantages of the bond graph method, applications that simultaneously involves mechanical, hydraulic, thermal, and electrical subsystem modeling.

  11. Index of aerospace mechanisms symposia proceedings 1-19

    NASA Technical Reports Server (NTRS)

    Rinaldo, A.; Wilson, J.

    1986-01-01

    This index, organized in five sections (by symposium, by title, by author, by subject, and by project), brings together information on the first 19 Aerospace Mechanisms symposia. Key words are included, cross-referencing all the symposia, and the eighteenth and nineteenth symposia are cross-indexed by project. The Aerospace Mechanisms symposia are devoted to discussions of design, fabrication, test, and operational use of aerospace mechanisms; this is the first index that compiles information on symposia held from 1966 through 1985.

  12. Guides to Aerospace Research and Development in NATO Countries.

    DTIC Science & Technology

    1984-01-01

    The directory contains worldwide information Administrations et Services Aeroautiques. Designadores de Empresas Explotadoras about aviation/aerospace...ADVISORY GROUP FOR AEROSPACE RESEARCH AND DEVELOPMENT (ORGANISATION DU TRAITE DE L’ATLANTIQUE NORD) AGARD Report No.7 18 * GUIDES TO AEROSPACE RESEARCH...and transport containing also The Tithe and Keyword Index includes titles of all establishments listed in this highly professional photographs received

  13. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 21: Technological innovation and technical communications: Their place in aerospace engineering curricula. A survey of European, Japanese, and US Aerospace Engineers and Scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Holland, Maurita Peterson; Keene, Michael L.; Kennedy, John M.

    1991-01-01

    Aerospace engineers and scientists from Western Europe, Japan, and the United States were surveyed as part of the NASA/DoD Aerospace Knowledge Diffusion Research Project. Questionnaires were used to solicit their opinions regarding the following: (1) the importance of technical communications to their profession; (2) the use and production of technical communications; and (3) their views about the appropriate content of an undergraduate course in technical communications. The ability to communicate technical information effectively was very important to the aerospace engineers and scientists who participated in the study. A considerable portion of their working week is devoted to using and producing technical information. The types of technical communications used and produced varied within and among the three groups. The type of technical communication product used and produced appears to be related to respondents' professional duties. Respondents from the three groups made similar recommendations regarding the principles, mechanics, and on-the-job communications to be included in an undergraduate technical communications course for aerospace majors.

  14. Common Cause Failure Modeling: Aerospace Versus Nuclear

    NASA Technical Reports Server (NTRS)

    Stott, James E.; Britton, Paul; Ring, Robert W.; Hark, Frank; Hatfield, G. Spencer

    2010-01-01

    Aggregate nuclear plant failure data is used to produce generic common-cause factors that are specifically for use in the common-cause failure models of NUREG/CR-5485. Furthermore, the models presented in NUREG/CR-5485 are specifically designed to incorporate two significantly distinct assumptions about the methods of surveillance testing from whence this aggregate failure data came. What are the implications of using these NUREG generic factors to model the common-cause failures of aerospace systems? Herein, the implications of using the NUREG generic factors in the modeling of aerospace systems are investigated in detail and strong recommendations for modeling the common-cause failures of aerospace systems are given.

  15. Machine intelligence and autonomy for aerospace systems

    NASA Technical Reports Server (NTRS)

    Heer, Ewald (Editor); Lum, Henry (Editor)

    1988-01-01

    The present volume discusses progress toward intelligent robot systems in aerospace applications, NASA Space Program automation and robotics efforts, the supervisory control of telerobotics in space, machine intelligence and crew/vehicle interfaces, expert-system terms and building tools, and knowledge-acquisition for autonomous systems. Also discussed are methods for validation of knowledge-based systems, a design methodology for knowledge-based management systems, knowledge-based simulation for aerospace systems, knowledge-based diagnosis, planning and scheduling methods in AI, the treatment of uncertainty in AI, vision-sensing techniques in aerospace applications, image-understanding techniques, tactile sensing for robots, distributed sensor integration, and the control of articulated and deformable space structures.

  16. Women, Innovation and Aerospace Event

    NASA Image and Video Library

    2012-03-08

    Kathy Sullivan, right, NOAA (National Oceanic and Atmospheric Administration) Deputy Administrator and former NASA astronaut, participates in a panel discussion at the Women, Innovation and Aerospace event celebrating Women's History Month at the George Washington University Jack Morton Auditorium, Thursday, March 8, 2012 in Washington. Sullivan is joined by Catherine Didion, Senior Fellow, National Academy of Engineering. The WIA day-long event will help to foster a discussion for students and early career professionals about how to continue to encourage women to enter and succeed in the field of aerospace. Photo Credit: (NASA/Carla Cioffi)

  17. Second Aerospace Environmental Technology Conference

    NASA Technical Reports Server (NTRS)

    Whitaker, A. F. (Editor); Clark-Ingram, M. (Editor)

    1997-01-01

    The mandated elimination of CFC'S, Halons, TCA, and other ozone depleting chemicals and specific hazardous materials has required changes and new developments in aerospace materials and processes. The aerospace industry has been involved for several years in providing product substitutions, redesigning entire production processes, and developing new materials that minimize or eliminate damage to the environment. These activities emphasize replacement cleaning solvents and their application, verification, compliant coatings including corrosion protection system and removal techniques, chemical propulsion effects on the environment, and the initiation of modifications to relevant processing and manufacturing specifications and standards.

  18. Second Aerospace Environmental Technology Conference

    NASA Technical Reports Server (NTRS)

    Whitaker, A. F.; Clark-Ingram, M.; Hessler, S. L.

    1997-01-01

    The mandated elimination of CFC's, Halons, TCA, and other ozone depleting chemicals and specific hazardous materials has required changes and new developments in aerospace materials and processes. The aerospace industry has been involved for several years in providing product substitutions, redesigning entire production processes, and developing new materials that minimize or eliminate damage to the environment. These activities emphasize replacement cleaning solvents and their application verifications, compliant coatings including corrosion protection systems, and removal techniques, chemical propulsion effects on the environment, and the initiation of modifications to relevant processing and manufacturing specifications and standards.

  19. Activities report in aerospace research, with data concerning the scientific committee NLR-NIVR, international cooperation concerning AGARD, DNW, GARTEUR and cooperation with Indonesia

    NASA Astrophysics Data System (ADS)

    Aerodynamics, flight, structures and materials, space technology and remote sensing, informatics, environment, energy supply, and equipment, were studied. Research for the Fokker-50 and 100 projects and related development of a measuring, recording, and data processing system for aircraft are described. Damage tolerance of aircraft structures and materials such as carbon/epoxy laminates with outer plies of glass, Aramid and carbon fabric, titanium alloys, and carbon fiber composites, were investigated. Fluid physics research, spacecraft attitude control system tests, and thermal vacuum research were carried out. The development of a multispectral CCD scanner, synthetic aperture radar, and side-looking airborne radar, were studied. A program to integrate aerospace informatics disciplines is described. Air traffic noise calculations, and windpower utilization research were executed. A simulation system for the satellite navigation system NAVSAT was developed. A low-speed wind tunnel LST 3x2.25 was commissioned.

  20. Electronic Noses for Composites Surface Contamination Detection in Aerospace Industry

    PubMed Central

    De Vito, Saverio; Miglietta, Maria Lucia; Massera, Ettore; Fattoruso, Grazia; Formisano, Fabrizio; Polichetti, Tiziana; Salvato, Maria; Alfano, Brigida; Esposito, Elena; Di Francia, Girolamo

    2017-01-01

    The full exploitation of Composite Fiber Reinforced Polymers (CFRP) in so-called green aircrafts design is still limited by the lack of adequate quality assurance procedures for checking the adhesive bonding assembly, especially in load-critical primary structures. In this respect, contamination of the CFRP panel surface is of significant concern since it may severely affect the bonding and the mechanical properties of the joint. During the last years, the authors have developed and tested an electronic nose as a non-destructive tool for pre-bonding surface inspection for contaminants detection, identification and quantification. Several sensors and sampling architectures have been screened in view of the high Technology Readiness Level (TRL) scenarios requirements. Ad-hoc pattern recognition systems have also been devised to ensure a fast and reliable assessment of the contamination status, by combining real time classifiers and the implementation of a suitable rejection option. Results show that e-noses could be used as first line low cost Non Destructive Test (NDT) tool in aerospace CFRP assembly and maintenance scenarios. PMID:28368338

  1. Electronic Noses for Composites Surface Contamination Detection in Aerospace Industry.

    PubMed

    Vito, Saverio De; Miglietta, Maria Lucia; Massera, Ettore; Fattoruso, Grazia; Formisano, Fabrizio; Polichetti, Tiziana; Salvato, Maria; Alfano, Brigida; Esposito, Elena; Francia, Girolamo Di

    2017-04-02

    The full exploitation of Composite Fiber Reinforced Polymers (CFRP) in so-called green aircrafts design is still limited by the lack of adequate quality assurance procedures for checking the adhesive bonding assembly, especially in load-critical primary structures. In this respect, contamination of the CFRP panel surface is of significant concern since it may severely affect the bonding and the mechanical properties of the joint. During the last years, the authors have developed and tested an electronic nose as a non-destructive tool for pre-bonding surface inspection for contaminants detection, identification and quantification. Several sensors and sampling architectures have been screened in view of the high Technology Readiness Level (TRL) scenarios requirements. Ad-hoc pattern recognition systems have also been devised to ensure a fast and reliable assessment of the contamination status, by combining real time classifiers and the implementation of a suitable rejection option. Results show that e-noses could be used as first line low cost Non Destructive Test (NDT) tool in aerospace CFRP assembly and maintenance scenarios.

  2. Aerospace Applications of Microprocessors

    NASA Technical Reports Server (NTRS)

    1980-01-01

    An assessment of the state of microprocessor applications is presented. Current and future requirements and associated technological advances which allow effective exploitation in aerospace applications are discussed.

  3. U.S. Aerospace and Aviation Industry: A State-By-State Analysis

    NASA Technical Reports Server (NTRS)

    2002-01-01

    President George W. Bush and the Congress created the Commission on the Future of the United States Aerospace Industry to evaluate the current and future health of the industry as well as the challenges that lie ahead for the U.S. workforce and the economy. To accomplish our mission, we commissioned a study on the economic impact of the aerospace industry nationally and on a state-by-state basis, using the best available U.S. government data. This study sought to define the core of the aerospace industry. The resulting data represents that very core those jobs specifically tied to commercial and civilian aerospace. U.S. Aerospace and Aviation: A State-by-State Analysis examines the civilian and commercial aerospace and aviation industry by employment, wages, payroll, and establishments. The report found that the U.S. civilian and commercial aerospace and aviation industry employed over 2 million workers in 2001.

  4. Ensuring Interoperability between UAS Detect-and-Avoid and Manned Aircraft Collision Avoidance

    NASA Technical Reports Server (NTRS)

    Thipphavong, David; Cone, Andrew; Lee, Seung Man; Santiago, Confesor

    2017-01-01

    The UAS community in the United States has identified the need for a collision avoidance region in which UAS Detect-and-Avoid (DAA) vertical guidance is restricted to preclude interoperability issues with manned aircraft collision avoidance system vertical resolution advisories (RAs). This paper documents the process by which the collision avoidance region was defined. Three candidate definitions were evaluated on 1.3 million simulated pairwise encounters between UAS and manned aircraft covering a wide range of horizontal and vertical closure rates, angles, and miss distances. They were evaluated with regard to UAS DAA interoperability with manned aircraft collision avoidance systems in terms of: 1) the primary objective of restricting DAA vertical guidance before RAs when the aircraft are close, and 2) the secondary objective of avoiding unnecessary restrictions of DAA vertical guidance at a DAA alert when the aircraft are further apart. The collision avoidance region definition that fully achieves the primary objective and best achieves the secondary objective was recommended to and accepted by the UAS community in the United States. By this definition, UAS and manned aircraft are in the collision avoidance region--during which DAA vertical guidance is restricted--when the time to closest point of approach is less than 50 seconds and either the time to co-altitude is less than 50 seconds or the current vertical separation is less than 800 feet.

  5. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 17: A comparison of the technical communication practices of Dutch and US aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Barclay, Rebecca O.; Pinelli, Thomas E.; Kennedy, John M.

    1993-01-01

    As part of Phase 4 of the NASA/DoD Aerospace Knowledge Diffusion Research Project, two studies were conducted that investigated the technical communications practices of Dutch and U.S. aerospace engineers and scientists. Both studies have the same seven objectives: first, to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communications to their profession; second, to determine the use and production of technical communications by aerospace engineers and scientists; third, to seek their views about the appropriate content of an undergraduate course in technical communications; fourth, to determine aerospace engineers' and scientists' use of libraries, technical information centers, and on-line data bases; fifth, to determine the use and importance of computer and information technology to them; sixth, to determine their use of electronic networks; and seventh, to determine their use of foreign and domestically produced technical reports. A self-administered questionnaire was distributed to aerospace engineers and scientists at the National Aerospace Laboratory (NLR), and NASA Ames Research Center, and the NASA Langley Research Center. The completion rates for the Dutch and U.S. surveys were 55 and 61 percent, respectively. Responses of the Dutch and U.S. participants to selected questions are presented.

  6. Aerospace Medicine

    NASA Technical Reports Server (NTRS)

    Davis, Jeffrey R.

    2006-01-01

    This abstract describes the content of a presentation for ground rounds at Mt. Sinai School of Medicine. The presentation contains three sections. The first describes the history of aerospace medicine beginning with early flights with animals. The second section of the presentation describes current programs and planning for future missions. The third section describes the medical challenges of exploration missions.

  7. Meaning and value of cloud manufacturing platform for aerospace enterprises

    NASA Astrophysics Data System (ADS)

    Tang, Wei; Xu, Wei; Xin, Xin

    2017-08-01

    Aerospace manufacturing engineering technology status it is important symbol to measure the comprehensive strength of nation. This paper analyzes the meaning and value of aerospace enterprises, based on the concept of cloud manufacturing to the practical production and application, combined with the characteristics of aerospace enterprises.

  8. The Brazilian research and teaching center in biomedicine and aerospace biomedical engineering.

    PubMed

    Russomano, T; Falcao, P F; Dalmarco, G; Martinelli, L; Cardoso, R; Santos, M A; Sparenberg, A

    2008-08-01

    The recent engagement of Brazil in the construction and utilization of the International Space Station has motivated several Brazilian research institutions and universities to establish study centers related to Space Sciences. The Pontificia Universidade Catolica do Rio Grande do Sul (PUCRS) is no exception. The University initiated in 1993 the first degree course training students to operate commercial aircraft in South America (the School of Aeronautical Sciences. A further step was the decision to build the first Brazilian laboratory dedicated to the conduct of experiments in ground-based microgravity simulation. Established in 1998, the Microgravity Laboratory, which was located in the Instituto de Pesquisas Cientificas e Tecnologicas (IPCT), was supported by the Schools of Medicine, Aeronautical Sciences and Electrical Engineering/Biomedical Engineering. At the end of 2006, the Microgravity Laboratory became a Center and was transferred to the School of Engineering. The principal activities of the Microgravity Centre are the development of research projects related to human physiology before, during and after ground-based microgravity simulation and parabolic flights, to aviation medicine in the 21st century and to aerospace biomedical engineering. The history of Brazilian, and why not say worldwide, space science should unquestionably go through PUCRS. As time passes, the pioneering spirit of our University in the aerospace area has become undeniable. This is due to the group of professionals, students, technicians and staff in general that have once worked or are still working in the Center of Microgravity, a group of faculty and students that excel in their undeniable technical-scientific qualifications.

  9. Aircraft Turbine Engine Control Research at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay

    2014-01-01

    This lecture will provide an overview of the aircraft turbine engine control research at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC). A brief introduction to the engine control problem is first provided with a description of the current state-of-the-art control law structure. A historical aspect of engine control development since the 1940s is then provided with a special emphasis on the contributions of GRC. The traditional engine control problem has been to provide a means to safely transition the engine from one steady-state operating point to another based on the pilot throttle inputs. With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Branch (CDB) at GRC is leading and participating in various projects in partnership with other organizations within GRC and across NASA, other government agencies, the U.S. aerospace industry, and academia to develop advanced propulsion controls and diagnostics technologies that will help meet the challenging goals of NASA programs under the Aeronautics Research Mission. The second part of the lecture provides an overview of the various CDB technology development activities in aircraft engine control and diagnostics, both current and some accomplished in the recent past. The motivation for each of the research efforts, the research approach, technical challenges and the key progress to date are summarized. The technologies to be discussed include system level engine control concepts, gas path diagnostics, active component control, and distributed engine control architecture. The lecture will end with a futuristic perspective of how the various current technology developments will lead to an Intelligent and Autonomous Propulsion System requiring none to very minimum pilot interface

  10. KSC firefighters support recent firefighting efforts with an aircraft rescue firefighting vehicle

    NASA Technical Reports Server (NTRS)

    1998-01-01

    A Kennedy Space Center aircraft rescue firefighting vehicle supports heavy traffic at the Space Coast Regional Airport in Titusville, Florida, where aircraft capable of carrying water were staged during the recent brushfires throughout Florida. Aircraft were supporting firefighting efforts in Brevard, Volusia, and Flagler counties.

  11. Assessing Regional Scale Fluxes of Mass, Momentum, and Energy with Small Environmental Research Aircraft

    NASA Astrophysics Data System (ADS)

    Zulueta, Rommel Callejo

    Natural ecosystems are rarely structurally or functionally homogeneous. This is true for the complex coastal regions of Magdalena Bay, Baja California Sur, Mexico, and the Barrow Peninsula on the Arctic Coastal Plain of Alaska. The coastal region of Magdalena Bay is comprised of the Pacific coastal ocean, eutrophic lagoon, mangroves, and desert ecosystems all adjacent and within a few kilometers, while the Barrow Peninsula is a mosaic of small ponds, thaw lakes, different aged vegetated thaw-lake basins ( VDTLBs ) and interstitial tundra which have been dynamically formed by both short- and long-term processes. We used a combination of tower- and small environmental research aircraft (SERA)-based eddy covariance measurements to characterize the spatial and temporal patterns of CO2, latent, and sensible heat fluxes along with MODIS NDVI, and land surface information, to scale the SERA-based CO2 fluxes up to the regional scale. In the first part of this research, the spatial variability in ecosystem fluxes from the Pacific coastal ocean, eutrophic lagoon, mangroves, and desert areas of northern Magdalena Bay were studied. SERA-derived average midday CO2 fluxes from the desert showed a slight uptake of -1.32 mumol CO2 m-2 s-1, the coastal ocean also showed uptake of -3.48 mumol CO2 m-2 s -1, and the lagoon mangroves showed the highest uptake of -8.11 mumol CO2 m-2 s-1. Additional simultaneous measurements of NDVI allowed simple linear modeling of CO2 flux as a function of NDVI for the mangroves of the Magdalena Bay region. In the second part of this research, the spatial variability of ecosystem fluxes across the 1802 km2 Barrow Peninsula region was studied. During typical 2006 summer conditions, the midday hourly CO2 flux over the region was -2.04 x 105 kgCO2 hr-1. The CO2 fluxes among the interstitial tundra, Ancient and Old VDTLBs, as well as between the Medium and Young VDTLBs were not significantly different. Combined, the interstitial tundra and Old and Ancient

  12. Aerospace bibliography, seventh edition

    NASA Technical Reports Server (NTRS)

    Blashfield, J. F. (Compiler)

    1983-01-01

    Space travel, planetary probes, applications satellites, manned spaceflight, the impacts of space exploration, future space activities, astronomy, exobiology, aeronautics, energy, space and the humanities, and aerospace education are covered.

  13. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 16: A comparison of the technical communications practices of Russian and US aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Kennedy, John M.; Barclay, Rebecca O.

    1993-01-01

    As part of Phase 4 of the NASA/DOD Aerospace Knowledge Diffusion Project, two studies were conducted that investigated the technical communications practices of Russian and U.S. aerospace engineers and scientists. Both studies have the same five objectives: first, to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communications to their profession; second, to determine the use and production of technical communications by aerospace engineers and scientists; third, to seek their views about the appropriate content of an undergraduate course in technical communications; fourth, to determine aerospace engineers' and scientists' use of libraries, technical information centers, and on-line data bases; and fifth, to determine the use and importance of computer and information technology to them. A self-administered questionnaire was distributed to aerospace engineers and scientists at the Central Aero-Hydrodynamic Institute (TsAGI), NASA ARC, and NASA LaRC. The completion rates for the Russian and U.S. surveys were 64 and 61 percent, respectively. The responses of the Russian and U.S. participants, to selected questions, are presented in this report.

  14. NASA Deputy Administrator Tours Bigelow Aerospace

    NASA Image and Video Library

    2011-02-04

    Bigelow Aerospace President Robert Bigelow talks during a press conference shortly after he and NASA Deputy Administrator Lori Garver toured the Bigelow Aerospace facilities on Friday, Feb. 4, 2011, in Las Vegas. NASA has been discussing potential partnership opportunities with Bigelow for its inflatable habitat technologies as part of NASA's goal to develop innovative technologies to ensure that the U.S. remains competitive in future space endeavors. Photo Credit: (NASA/Bill Ingalls)

  15. Aerospace Power Technology for Potential Terrestrial Applications

    NASA Technical Reports Server (NTRS)

    Lyons, Valerie J.

    2012-01-01

    Aerospace technology that is being developed for space and aeronautical applications has great potential for providing technical advances for terrestrial power systems. Some recent accomplishments arising from activities being pursued at the National Aeronautics and Space Administration (NASA) Centers is described in this paper. Possible terrestrial applications of the new aerospace technology are also discussed.

  16. NASA/DoD Aerospace Knowledge Diffusion Research Project. Report Number 14. Engineering Work and Information Use in Aerospace: Results of a Telephone Survey

    DTIC Science & Technology

    1992-10-01

    and superficial. The results of engineering information studies have not accumulated to form a significant body of knowledge that can be used to...Aerospace Kmowledge Diffits1ion. Studies indicate that timely access to STI can increase productivity and innovation and help aerospace engineers and...scientists maintain and improve their professional skills. These same studies demonstrate, however, how little is known about aerospace knowledge diffusion or

  17. Flight testing a propulsion-controlled aircraft emergency flight control system on an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Burcham, F. W., Jr.; Burken, John; Maine, Trindel A.

    1994-01-01

    Flight tests of a propulsion-controlled aircraft (PCA) system on an F-15 airplane have been conducted at the NASA Dryden Flight Research Center. The airplane was flown with all flight control surfaces locked both in the manual throttles-only mode and in an augmented system mode. In the latter mode, pilot thumbwheel commands and aircraft feedback parameters were used to position the throttles. Flight evaluation results showed that the PCA system can be used to land an airplane that has suffered a major flight control system failure safely. The PCA system was used to recover the F-15 airplane from a severe upset condition, descend, and land. Pilots from NASA, U.S. Air Force, U.S. Navy, and McDonnell Douglas Aerospace evaluated the PCA system and were favorably impressed with its capability. Manual throttles-only approaches were unsuccessful. This paper describes the PCA system operation and testing. It also presents flight test results and pilot comments.

  18. In-flight fiber optic acoustic emission sensor (FAESense) system for the real time detection, localization, and classification of damage in composite aircraft structures

    NASA Astrophysics Data System (ADS)

    Mendoza, Edgar; Prohaska, John; Kempen, Connie; Esterkin, Yan; Sun, Sunjian

    2013-05-01

    Acoustic emission sensing is a leading structural health monitoring technique use for the early warning detection of structural damage associated with impacts, cracks, fracture, and delaminations in advanced materials. Current AE systems based on electronic PZT transducers suffer from various limitations that prevent its wide dynamic use in practical avionics and aerospace applications where weight, size and power are critical for operation. This paper describes progress towards the development of a wireless in-flight distributed fiber optic acoustic emission monitoring system (FAESense™) suitable for the onboard-unattended detection, localization, and classification of damage in avionics and aerospace structures. Fiber optic AE sensors offer significant advantages over its counterpart electronic AE sensors by using a high-density array of micron-size AE transducers distributed and multiplex over long lengths of a standard single mode optical fiber. Immediate SHM applications are found in commercial and military aircraft, helicopters, spacecraft, wind mil turbine blades, and in next generation weapon systems, as well as in the petrochemical and aerospace industries, civil structures, power utilities, and a wide spectrum of other applications.

  19. Physician training in aerospace medicine--an historical review in the United States.

    PubMed

    Doarn, Charles R; Mohler, Stanley R

    2013-02-01

    The training of U.S. physicians in aviation medicine closely followed the development of reliable airplanes. This training has matured as aviation and space travel have become more routine over the past several decades. In the U.S., this training began in support of military pilots who were flying increasingly complex aircraft in the early part of the 20th century. As individuals reached into the stratosphere, low Earth orbit, and eventually to the Moon, physicians were trained not only through military efforts but in academic settings as well. This paper provides an historical summary of how physician training in aerospace medicine developed in the U.S., citing both the development of the military activities and, more importantly, the perspectives of the academic programs. This history is important as we move forward in the development of commercial space travel and the needs that such a business model will be required to meet.

  20. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 23: The communications practices of US aerospace engineering faculty and students: Results of the phase 3 survey

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1994-01-01

    The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. In this report, we summarize the literature on technical reports and provide a model that depicts the transfer of federally funded aerospace R&D via the U.S. government technical report. We present results from our investigation of aerospace knowledge diffusion vis-a-vis the U.S. government technical report, and present the results of research that investigated aerospace knowledge diffusion vis-a-vis U.S. aerospace engineering faculty and students.

  1. 76 FR 36937 - Aerospace Safety Advisory Panel; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-23

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (11-055)] Aerospace Safety Advisory Panel; Meeting AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of meeting. SUMMARY... Aeronautics and Space Administration announce a forthcoming meeting of the Aerospace Safety Advisory Panel...

  2. 77 FR 1955 - Aerospace Safety Advisory Panel; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-12

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 12-001] Aerospace Safety Advisory Panel; Meeting AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of meeting. SUMMARY... Aeronautics and Space Administration announce a forthcoming meeting of the Aerospace Safety Advisory Panel...

  3. 78 FR 36793 - Aerospace Safety Advisory Panel; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-19

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 13-068] Aerospace Safety Advisory Panel; Meeting AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of meeting. SUMMARY... Aeronautics and Space Administration announce a forthcoming meeting of the Aerospace Safety Advisory Panel...

  4. 75 FR 36697 - Aerospace Safety Advisory Panel; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-28

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-071)] Aerospace Safety Advisory Panel; Meeting AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of meeting. SUMMARY... Aeronautics and Space Administration announce a forthcoming meeting of the Aerospace Safety Advisory Panel...

  5. 77 FR 25502 - Aerospace Safety Advisory Panel; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-30

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (12-030)] Aerospace Safety Advisory Panel; Meeting AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of meeting. SUMMARY... Aeronautics and Space Administration announce a forthcoming meeting of the Aerospace Safety Advisory Panel...

  6. 75 FR 6407 - Aerospace Safety Advisory Panel; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-09

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10- 020)] Aerospace Safety Advisory Panel; Meeting AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of Meeting. SUMMARY... Aeronautics and Space Administration announce a forthcoming meeting of the Aerospace Safety Advisory Panel...

  7. 76 FR 2923 - Aerospace Safety Advisory Panel; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-18

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (11-004)] Aerospace Safety Advisory Panel; Meeting AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of Meeting. SUMMARY... Aeronautics and Space Administration announce a forthcoming meeting of the Aerospace Safety Advisory Panel...

  8. 75 FR 19662 - Aerospace Safety Advisory Panel; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-15

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-043)] Aerospace Safety Advisory Panel; Meeting AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of meeting. SUMMARY... Aeronautics and Space Administration announce a forthcoming meeting of the Aerospace Safety Advisory Panel...

  9. 75 FR 28547 - Aerospace Supplier Mission to Russia

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-21

    ... DEPARTMENT OF COMMERCE International Trade Administration Aerospace Supplier Mission to Russia...-users in Russia's aerospace market. Participating U.S. companies will receive market intelligence briefings by Russian industry experts, information on how to do business in Russia, networking opportunities...

  10. Advances in Ceramic Matrix Composite Blade Damping Characteristics for Aerospace Turbomachinery Applications

    NASA Technical Reports Server (NTRS)

    Min, James B.; Harris, Donald L.; Ting, J. M.

    2011-01-01

    For advanced aerospace propulsion systems, development of ceramic matrix composite integrally-bladed turbine disk technology is attractive for a number of reasons. The high strength-to-weight ratio of ceramic composites helps to reduce engine weight and the one-piece construction of a blisk will result in fewer parts count, which should translate into reduced operational costs. One shortcoming with blisk construction, however, is that blisks may be prone to high cycle fatigue due to their structural response to high vibration environments. Use of ceramic composites is expected to provide some internal damping to reduce the vibratory stresses encountered due to unsteady flow loads through the bladed turbine regions. A goal of our research was to characterize the vibration viscous damping behavior of C/SiC composites. The vibration damping properties were measured and calculated. Damping appeared to decrease with an increase in the natural frequency. While the critical damping amount of approximately 2% is required for typical aerospace turbomachinery engines, the C/SiC damping at high frequencies was less than 0.2% from our study. The advanced high-performance aerospace propulsion systems almost certainly will require even more damping than what current vehicles require. A purpose of this paper is to review some work on C/SiC vibration damping by the authors for the NASA CMC turbine blisk development program and address an importance of the further investigation of the blade vibration damping characteristics on candidate CMC materials for the NASA s advanced aerospace turbomachinery engine systems.

  11. Novel atmospheric extinction measurement techniques for aerospace laser system applications

    NASA Astrophysics Data System (ADS)

    Sabatini, Roberto; Richardson, Mark

    2013-01-01

    Novel techniques for laser beam atmospheric extinction measurements, suitable for manned and unmanned aerospace vehicle applications, are presented in this paper. Extinction measurements are essential to support the engineering development and the operational employment of a variety of aerospace electro-optical sensor systems, allowing calculation of the range performance attainable with such systems in current and likely future applications. Such applications include ranging, weaponry, Earth remote sensing and possible planetary exploration missions performed by satellites and unmanned flight vehicles. Unlike traditional LIDAR methods, the proposed techniques are based on measurements of the laser energy (intensity and spatial distribution) incident on target surfaces of known geometric and reflective characteristics, by means of infrared detectors and/or infrared cameras calibrated for radiance. Various laser sources can be employed with wavelengths from the visible to the far infrared portions of the spectrum, allowing for data correlation and extended sensitivity. Errors affecting measurements performed using the proposed methods are discussed in the paper and algorithms are proposed that allow a direct determination of the atmospheric transmittance and spatial characteristics of the laser spot. These algorithms take into account a variety of linear and non-linear propagation effects. Finally, results are presented relative to some experimental activities performed to validate the proposed techniques. Particularly, data are presented relative to both ground and flight trials performed with laser systems operating in the near infrared (NIR) at λ = 1064 nm and λ = 1550 nm. This includes ground tests performed with 10 Hz and 20 kHz PRF NIR laser systems in a large variety of atmospheric conditions, and flight trials performed with a 10 Hz airborne NIR laser system installed on a TORNADO aircraft, flying up to altitudes of 22,000 ft.

  12. V/STOL aircraft configurations and opportunities in the Pacific Basin

    NASA Technical Reports Server (NTRS)

    Albers, James A.; Zuk, John

    1987-01-01

    Advanced aircraft configurations offer new transportation options for the Pacific Basin. Described is a range of vehicles from low-disk to high-disk loading aircraft, including high-speed rotorcraft, subsonic vertical and short takeoff and landing (V/STOL) aircraft, and subsonic short takeoff and landing (STOL) aircraft. The status and advantages of the various configurations are described. Some of these show promise for satisfying many of the transportation requirements of the Pacific Basin; as such, they could revolutionize short-haul transportation in that region.

  13. The impact of transition training on adapting to Technically Advanced Aircraft at regional airlines: Perceptions of pilots and instructor pilots

    NASA Astrophysics Data System (ADS)

    di Renzo, John Carl, Jr.

    Scope and method of study. The purpose of this study was to test a hypothesis about pilot and instructor pilot perceptions of how effectively pilots learn and use new technology, found in Technically Advanced Aircraft (TAA), given initial type of instrumentation training. New aviation technologies such as Glass Cockpits in technically advanced aircraft are complex and can be difficult to learn and use. The research questions focused on the type of initial instrumentation training to determine the differences among pilots trained using various types of instrumentation ranging from aircraft equipped with traditional analog instrumentation to aircraft equipped with glass cockpits. A convenience sample of Pilots in Training (PT) and Instructor Pilots (IP) was selected from a regional airline. The research design used a mixed methodology. Pilots in training completed a thirty-two question quantitative questionnaire and instructor pilots completed a five question qualitative questionnaire. Findings and conclusions. This investigation failed to disprove the null hypothesis. The type of instrumentation training has no significant effect on newly trained regional airline pilot perceived ability to adapt to advanced technology cockpits. Therefore, no evidence exists from this investigation to support the early introduction and training of TAA. While the results of this investigation were surprising, they are nonetheless, instructive. Even though it would seem that there would be a relationship between exposure to and use of technically advanced instrumentation, apparently there was no perceived relationship for this group of airline transport pilots. However, a point of interest is that these pilots were almost evenly divided in their opinion of whether or not their previous training had prepared them for transition to TAA. The majority also believed that the type of initial instrumentation training received does make a difference when transitioning to TAA. Pilots believed

  14. NASA Aerospace Flight Battery Program: Recommendations for Technical Requirements for Inclusion in Aerospace Battery Procurements. Volume 2/Part 2

    NASA Technical Reports Server (NTRS)

    Jung, David S.; Manzo, Michelle A.

    2010-01-01

    This NASA Aerospace Flight Battery Systems Working Group was chartered within the NASA Engineering and Safety Center (NESC). The Battery Working Group was tasked to complete tasks and to propose proactive work to address battery related, agency-wide issues on an annual basis. In its first year of operation, this proactive program addressed various aspects of the validation and verification of aerospace battery systems for NASA missions. Studies were performed, issues were discussed and in many cases, test programs were executed to generate recommendations and guidelines to reduce risk associated with various aspects of implementing battery technology in the aerospace industry. This document contains Part 2 - Volume II Appendix A to Part 2 - Volume I.

  15. Advanced Materials and Coatings for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    2004-01-01

    In the application area of aerospace tribology, researchers and developers must guarantee the highest degree of reliability for materials, components, and systems. Even a small tribological failure can lead to catastrophic results. The absence of the required knowledge of tribology, as Professor H.P. Jost has said, can act as a severe brake in aerospace vehicle systems-and indeed has already done so. Materials and coatings must be able to withstand the aerospace environments that they encounter, such as vacuum terrestrial, ascent, and descent environments; be resistant to the degrading effects of air, water vapor, sand, foreign substances, and radiation during a lengthy service; be able to withstand the loads, stresses, and temperatures encountered form acceleration and vibration during operation; and be able to support reliable tribological operations in harsh environments throughout the mission of the vehicle. This presentation id divided into two sections: surface properties and technology practice related to aerospace tribology. The first section is concerned with the fundamental properties of the surfaces of solid-film lubricants and related materials and coatings, including carbon nanotubes. The second is devoted to applications. Case studies are used to review some aspects of real problems related to aerospace systems to help engineers and scientists to understand the tribological issues and failures. The nature of each problem is analyzed, and the tribological properties are examined. All the fundamental studies and case studies were conducted at the NASA Glenn Research Center.

  16. Occupational Contact Dermatitis in the Canadian Aircraft Industry: A 25-Year Retrospective Study.

    PubMed

    Loranger, Camille; Moreau, Linda; Sasseville, Denis

    2018-03-24

    Aircraft building exposes workers to irritant and sensitizing products. The aim of this article was to study occupational dermatoses among aircraft workers over 25 years. The files of aerospace workers referred between 1990 and 2015 were extracted from the database of the McGill University Health Centre contact dermatitis clinic. These were subdivided according to demographics, type of work, patch testing results, and final diagnosis. Of 305 workers, 58% were 40 years or younger; one third were women. Onset of dermatitis varied from 2 months to 25 years, but 120 cases (39%) occurred during the first 3 years. Fifty-one percent of the cases involved assemblers, and 27% were composite material technicians, which were overrepresented as they constitute 10% of the workforce. Of the 305 workers, 152 suffered from allergic contact dermatitis, and 96 had irritant contact dermatitis. Of those with allergic contact dermatitis, 124 reacted to epoxy-based workplace products, but only 48 had positive patch tests to commercially available epoxy allergens. More than 60% of the cases of epoxy allergy would have been missed without testing with workplace products.

  17. A spatial disorientation predictor device to enhance pilot situational awareness regarding aircraft attitude

    NASA Technical Reports Server (NTRS)

    Chelette, T. L.; Repperger, Daniel W.; Albery, W. B.

    1991-01-01

    An effort was initiated at the Armstrong Aerospace Medical Research Laboratory (AAMRL) to investigate the improvement of the situational awareness of a pilot with respect to his aircraft's spatial orientation. The end product of this study is a device to alert a pilot to potentially disorienting situations. Much like a ground collision avoidance system (GCAS) is used in fighter aircraft to alert the pilot to 'pull up' when dangerous flight paths are predicted, this device warns the pilot to put a higher priority on attention to the orientation instrument. A Kalman filter was developed which estimates the pilot's perceived position and orientation. The input to the Kalman filter consists of two classes of data. The first class of data consists of noise parameters (indicating parameter uncertainty), conflict signals (e.g. vestibular and kinesthetic signal disagreement), and some nonlinear effects. The Kalman filter's perceived estimates are now the sum of both Class 1 data (good information) and Class 2 data (distorted information). When the estimated perceived position or orientation is significantly different from the actual position or orientation, the pilot is alerted.

  18. Crew factors in the aerospace workplace

    NASA Technical Reports Server (NTRS)

    Kanki, Barbara G.; Foushee, H. C.

    1990-01-01

    The effects of technological change in the aerospace workplace on pilot performance are discussed. Attention is given to individual and physiological problems, crew and interpersonal problems, environmental and task problems, organization and management problems, training and intervention problems. A philosophy and conceptual framework for conducting research on these problems are presented and two aerospace studies are examined which investigated: (1) the effect of leader personality on crew effectiveness and (2) the working undersea habitat known as Aquarius.

  19. The 1999 NASA Aerospace Battery Workshop

    NASA Technical Reports Server (NTRS)

    Brewer, J. C. (Compiler)

    2000-01-01

    This document contains the proceedings of the 32nd annual NASA Aerospace Battery Workshop, hosted by the Marshall Space Flight Center on November 16-18, 1999. The workshop was attended by scientists and engineers from various agencies of the US Government, aerospace contractors, and battery manufacturers, as well as international participation in like kind from a number of countries around the world. The subjects covered included nickel-hydrogen, nickel-cadmium, lithium-ion, and silver-zinc technologies.

  20. The 2000 NASA Aerospace Battery Workshop

    NASA Technical Reports Server (NTRS)

    Brewer, J. C. (Compiler)

    2001-01-01

    This document contains the proceedings of the 33nd annual NASA Aerospace Battery Workshop, hosted by the Marshall Space Flight Center on November 14-16, 2000. The workshop was attended by scientists and engineers from various agencies of the U.S. Government, aerospace contractors, and battery manufacturers, as well as international participation in like kind from a number of countries around the world. The subjects covered included nickel-hydrogen, lithium-ion, lithium-sulfur, and silver-zinc technologies.