Sample records for aeruginosa enterobacter aerogenes

  1. Enterobacter aerogenes metabolites enhance Microcystis aeruginosa biomass recovery for sustainable bioflocculant and biohydrogen production.

    PubMed

    Xu, Liang; Zhou, Mo; Ju, Hanyu; Zhang, Zhenxing; Zhang, Jiquan; Sun, Caiyun

    2018-09-01

    We report a recycling bioresource involving harvesting of Microcystis aeruginosa using the bioflocculant (MBF-32) produced by Enterobacter aerogenes followed by the recovery of the harvested M. aeruginosa as the main substrate for the sustainable production of MBF-32 and biohydrogen. The experimental results indicate that the efficiency of bioflocculation exceeded 90% under optimal conditions. The harvested M. aeruginosa was further recycled as the main substrate for the supply of necessary elements. The highest yield (3.6±0.1g/L) of MBF-32 could be obtained from 20g/L of wet biomass of M. aeruginosa with an additional 20g/L of glucose as the extra carbon source. The highest yield of biohydrogen was 35mL of H 2 /g (dw) algal biomass, obtained from 20g/L of wet biomass of M. aeruginosa with an additional 10g/L of glycerol. Transcriptome analyses indicated that MBF-32 was mainly composed of polysaccharide and tyrosine/tryptophan proteins. Furthermore, NADH synthase and polysaccharide export-related genes were found to be up-regulated. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Epidemiological typing of Enterobacter aerogenes.

    PubMed Central

    Gaston, M A; Strickland, M A; Ayling-Smith, B A; Pitt, T L

    1989-01-01

    The applicability of Enterobacter cloacae and Klebsiella typing reagents for classifying clinical strains of Enterobacter aerogenes was evaluated. Of 75 strains, none were agglutinated by E. cloacae O antisera or were sensitive to E. cloacae bacteriophages. In contrast, 70 strains reacted with Klebsiella capsular antisera. Two-thirds of the strains were lysed by Klebsiella typing phages. A set of five E. aerogenes bacteriocin producers classified 92% of strains into 15 sensitivity types. In conclusion, E. aerogenes may be typed with Klebsiella reagents, and the simple bacteriocin test provides further discrimination between strains. The limited number of capsular antigens in the species and their apparent similarity to Klebsiella capsular antigens warrant further investigation. PMID:2715326

  3. Purification and antibiofilm activity of AHL-lactonase from endophytic Enterobacter aerogenes VT66.

    PubMed

    Rajesh, P S; Rai, V Ravishankar

    2015-11-01

    The opportunistic pathogen Pseudomonas aeruginosa uses biofilm lifestyle to resist antibiotic treatment. In our study, endophytic bacterium Enterobacter aerogenes VT66 quenched the N-acyl homoserine lactone (AHL) molecules produced by P. aeruginosa PAO1. The quorum quenching activity was attributed to the presence of AHL-lactonase. The AHL-lactonase was purified using column chromatography and purified AHL-lactonase was applied for the control of biofilm formation in P. aeruginosa PAO1. The results showed that purified AHL-lactonase obtained with a molecular weight about 30kDa was able to inhibit more than 70% of biofilm in P. aeruginosa PAO1 (P<0.001). Antibiofilm activity of AHL-lactonase was correlated well with results from staining technique used to determine inhibition of biomass and viable cell activity. Therefore, results unambiguously confirm that the AHL-lactonase from E. aerogenes VT66 could be used as antibiofilm therapeutics in P. aeruginosa associated biomedical applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Enterobacter aerogenes and Enterobacter cloacae; versatile bacterial pathogens confronting antibiotic treatment.

    PubMed

    Davin-Regli, Anne; Pagès, Jean-Marie

    2015-01-01

    Enterobacter aerogenes and E. cloacae have been reported as important opportunistic and multiresistant bacterial pathogens for humans during the last three decades in hospital wards. These Gram-negative bacteria have been largely described during several outbreaks of hospital-acquired infections in Europe and particularly in France. The dissemination of Enterobacter sp. is associated with the presence of redundant regulatory cascades that efficiently control the membrane permeability ensuring the bacterial protection and the expression of detoxifying enzymes involved in antibiotic degradation/inactivation. In addition, these bacterial species are able to acquire numerous genetic mobile elements that strongly contribute to antibiotic resistance. Moreover, this particular fitness help them to colonize several environments and hosts and rapidly and efficiently adapt their metabolism and physiology to external conditions and environmental stresses. Enterobacter is a versatile bacterium able to promptly respond to the antibiotic treatment in the colonized patient. The balance of the prevalence, E. aerogenes versus E. cloacae, in the reported hospital infections during the last period, questions about the horizontal transmission of mobile elements containing antibiotic resistance genes, e.g., the efficacy of the exchange of resistance genes Klebsiella pneumoniae to Enterobacter sp. It is also important to mention the possible role of antibiotic use in the treatment of bacterial infectious diseases in this E. aerogenes/E. cloacae evolution.

  5. Enterobacter aerogenes and Enterobacter cloacae; versatile bacterial pathogens confronting antibiotic treatment

    PubMed Central

    Davin-Regli, Anne; Pagès, Jean-Marie

    2015-01-01

    Enterobacter aerogenes and E. cloacae have been reported as important opportunistic and multiresistant bacterial pathogens for humans during the last three decades in hospital wards. These Gram-negative bacteria have been largely described during several outbreaks of hospital-acquired infections in Europe and particularly in France. The dissemination of Enterobacter sp. is associated with the presence of redundant regulatory cascades that efficiently control the membrane permeability ensuring the bacterial protection and the expression of detoxifying enzymes involved in antibiotic degradation/inactivation. In addition, these bacterial species are able to acquire numerous genetic mobile elements that strongly contribute to antibiotic resistance. Moreover, this particular fitness help them to colonize several environments and hosts and rapidly and efficiently adapt their metabolism and physiology to external conditions and environmental stresses. Enterobacter is a versatile bacterium able to promptly respond to the antibiotic treatment in the colonized patient. The balance of the prevalence, E. aerogenes versus E. cloacae, in the reported hospital infections during the last period, questions about the horizontal transmission of mobile elements containing antibiotic resistance genes, e.g., the efficacy of the exchange of resistance genes Klebsiella pneumoniae to Enterobacter sp. It is also important to mention the possible role of antibiotic use in the treatment of bacterial infectious diseases in this E. aerogenes/E. cloacae evolution. PMID:26042091

  6. Complete genome sequence of Enterobacter aerogenes KCTC 2190.

    PubMed

    Shin, Sang Heum; Kim, Sewhan; Kim, Jae Young; Lee, Soojin; Um, Youngsoon; Oh, Min-Kyu; Kim, Young-Rok; Lee, Jinwon; Yang, Kap-Seok

    2012-05-01

    This is the first complete genome sequence of the Enterobacter aerogenes species. Here we present the genome sequence of E. aerogenes KCTC 2190, which contains 5,280,350 bp with a G + C content of 54.8 mol%, 4,912 protein-coding genes, and 109 structural RNAs.

  7. Transmission of Enterobacter aerogenes septicemia in healthcare workers.

    PubMed

    Jha, Piyush; Kim, Choon-Mee; Kim, Dong-Min; Chung, Jong-Hoon; Yoon, Na-Ra; Jha, Babita; Kim, Seok Won; Jang, Sook Jin; Ahn, Young-Joon; Chung, Jae Keun; Jeon, Doo Young

    2016-01-01

    Enterobacter aerogenes is recognized as an important bacterial pathogen in hospital-acquired infections. This report describes two unusual cases of septicemia caused by E. aerogenes in immunocompetent healthcare workers. E. aerogenes was isolated from blood cultures of the two patients experiencing septicemia. The clinical isolates were initially identified as E. aerogenes using a VITEK II automated system and 16S rRNA sequence analysis, and; both isolates involved in the outbreak shared a common pulse-field gel electrophoresis pattern. The similarities between the two cases included the simultaneous development of gastroenteritis symptoms, severe sepsis and thrombocytopenia after taking intravenous injections of ketorolac tromethamine. A common source of normal saline, a 100 mL bottle, was used for diluting the analgesic in both cases. In addition to the general population, healthcare workers, especially those who are also intravenous drug abusers, should be considered subjects that could cause a transmission of Enterobacter infection.

  8. Genetic characterization of tigecycline resistance in clinical isolates of Enterobacter cloacae and Enterobacter aerogenes.

    PubMed

    Veleba, Mark; De Majumdar, Shyamasree; Hornsey, Michael; Woodford, Neil; Schneiders, Thamarai

    2013-05-01

    The intrinsically encoded ramA gene has been linked to tigecycline resistance through the up-regulation of efflux pump AcrAB in Enterobacter cloacae. The molecular basis for increased ramA expression in E. cloacae and Enterobacter aerogenes, as well as the role of AraC regulator rarA, has not yet been shown. To ascertain the intrinsic molecular mechanism(s) involved in tigecycline resistance in Enterobacter spp., we analysed the expression levels of ramA and rarA and corresponding efflux pump genes acrAB and oqxAB in Enterobacter spp. clinical isolates. The expression levels of ramA, rarA, oqxA and acrA were tested by quantitative real-time RT-PCR. The ramR open reading frames of the ramA-overexpressing strains were sequenced; strains harbouring mutations were transformed with wild-type ramR to study altered ramA expression and tigecycline susceptibility. Tigecycline resistance was mediated primarily by increased ramA expression in E. cloacae and E. aerogenes. Only the ramA-overexpressing E. cloacae isolates showed increased rarA and oqxA expression. Upon complementation with wild-type ramR, all Enterobacter spp. containing ramR mutations exhibited decreased ramA and acrA expression and increased tigecycline susceptibility. Exceptions were one E. cloacae strain and one E. aerogenes strain, where a decrease in ramA levels was not accompanied by lower acrA expression. Increased ramA expression due to ramR deregulation is the primary mediator of tigecycline resistance in clinical isolates of E. cloacae and E. aerogenes. However, some ramA-overexpressing isolates do not show changes in ramR, suggesting alternate pathways of ramA regulation; the rarA regulator and the oqxAB efflux pump may also play a role in tigecycline resistance in E. cloacae.

  9. Bioengineering of the Enterobacter aerogenes strain for biohydrogen production.

    PubMed

    Zhang, Chong; Lv, Feng-Xiang; Xing, Xin-Hui

    2011-09-01

    Enterobacter aerogenes is one of the most widely-studied model strains for fermentative hydrogen production. To improve the hydrogen yield of E. aerogenes, the bioengineering on a biomolecular level and metabolic network level is of importance. In this review, the fermentative technology of E. aerogenes for hydrogen production will be first briefly summarized. And then the bioengineering of E. aerogenes for the improvement of hydrogen yield will be thoroughly reviewed, including the anaerobic metabolic networks for hydrogen evolution in E. aerogenes, metabolic engineering for improving hydrogen production in E. aerogenes and mixed culture of E. aerogenes with other hydrogen-producing bacteria to enhance the overall yield in anaerobic cultivation. Finally, a perspective on E. aerogenes as a hydrogen producer including systems bioengineering approach for improving the hydrogen yield and application of the engineered E. aerogenes in mixed culture will be presented. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Comparison of the clinical and microbiologic characteristics of patients with Enterobacter cloacae and Enterobacter aerogenes bacteremia: a prospective observation study.

    PubMed

    Song, Eun Hee; Park, Ki-Ho; Jang, Eun-Young; Lee, Eun Jung; Chong, Yong Pil; Cho, Oh-Hyun; Kim, Sung-Han; Lee, Sang-Oh; Sung, Heungsup; Kim, Mi-Na; Jeong, Jin-Yong; Kim, Yang Soo; Woo, Jun Hee; Choi, Sang-Ho

    2010-04-01

    We compared the characteristics and outcomes of 172 Enterobacter cloacae bacteremia and 67 Enterobacter aerogenes bacteremia (EAB) cases. Antimicrobial resistance rates to E. cloacae were higher than those to E. aerogenes. However, EAB more frequently presented as septic shock and was associated with poorer outcomes. 2010 Elsevier Inc. All rights reserved.

  11. mar Operon Involved in Multidrug Resistance of Enterobacter aerogenes

    PubMed Central

    Chollet, Renaud; Bollet, Claude; Chevalier, Jacqueline; Malléa, Monique; Pagès, Jean-Marie; Davin-Regli, Anne

    2002-01-01

    We determined the sequence of the entire marRAB operon in Enterobacter aerogenes. It is functionally and structurally analogous to the Escherichia coli operon. The overexpression of E. aerogenes MarA induces a multidrug resistance phenotype in a susceptible strain, demonstrated by a noticeable resistance to various antibiotics, a decrease in immunodetected porins, and active efflux of norfloxacin. PMID:11897595

  12. Single-cell protein from methanol with Enterobacter aerogenes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gnan, S.O.; Abodreheba, A.O.

    1987-02-20

    An identified Enterobacter aerogenes utilizing methanol as a sole carbon source was studied for the optimization of biomass production and the reduction of its nucleic acid content. Results indicated that the highest yield and conversion were obtained at 0.5% methanol. The addition of seawater as a source of trace elements has an adverse effect. However, the addition of urea as source of nitrogen enhanced the growth of E. aerogenes. Heat shock at 60 degrees C for one minute followed by incubation at 50 degrees C for 2 hours caused 72.6% reduction in the nucleic acid. 12 references.

  13. Detection of virulence and β-lactamase encoding genes in Enterobacter aerogenes and Enterobacter cloacae clinical isolates from Brazil.

    PubMed

    Azevedo, Paola Aparecida Alves; Furlan, João Pedro Rueda; Oliveira-Silva, Mariana; Nakamura-Silva, Rafael; Gomes, Carolina Nogueira; Costa, Karen Regina Carim; Stehling, Eliana Guedes; Pitondo-Silva, André

    2018-05-21

    Enterobacter cloacae and E. aerogenes have been increasingly reported as important opportunistic pathogens. In this study, a high prevalence of multi-drug resistant isolates from Brazil, harboring several β-lactamase encoding genes was found. Several virulence genes were observed in E. aerogenes, contrasting with the E. cloacae isolates which presented none. Copyright © 2018 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  14. Irreproducible and uninterpretable Polymyxin B MICs for Enterobacter cloacae and Enterobacter aerogenes.

    PubMed

    Landman, David; Salamera, Julius; Quale, John

    2013-12-01

    Carbapenem-resistant Enterobacter species are emerging nosocomial pathogens. As with most multidrug-resistant Gram-negative pathogens, the polymyxins are often the only therapeutic option. In this study involving clinical isolates of E. cloacae and E. aerogenes, susceptibility testing methods with polymyxin B were analyzed. All isolates underwent testing by the broth microdilution (in duplicate) and agar dilution (in duplicate) methods, and select isolates were examined by the Etest method. Selected isolates were also examined for heteroresistance by population analysis profiling. Using a susceptibility breakpoint of ≤2 μg/ml, categorical agreement by all four dilution tests (two broth microdilution and two agar dilution) was achieved in only 76/114 (67%) of E. cloacae isolates (65 susceptible, 11 resistant). Thirty-eight (33%) had either conflicting or uninterpretable results (multiple skip wells, i.e., wells that exhibit no growth although growth does occur at higher concentrations). Of the 11 consistently resistant isolates, five had susceptible MICs as determined by Etest. Heteroresistant subpopulations were detected in eight of eight isolates tested, with greater percentages in isolates with uninterpretable MICs. For E. aerogenes, categorical agreement between the four dilution tests was obtained in 48/56 (86%), with conflicting and/or uninterpretable results in 8/56 (14%). For polymyxin susceptibility testing of Enterobacter species, close attention must be paid to the presence of multiple skip wells, leading to uninterpretable results. Susceptibility also should not be assumed based on the results of a single test. Until the clinical relevance of skip wells is defined, interpretation of polymyxin susceptibility tests for Enterobacter species should be undertaken with extreme caution.

  15. Genome analysis and identification of gelatinase encoded gene in Enterobacter aerogenes

    NASA Astrophysics Data System (ADS)

    Shahimi, Safiyyah; Mutalib, Sahilah Abdul; Khalid, Rozida Abdul; Repin, Rul Aisyah Mat; Lamri, Mohd Fadly; Bakar, Mohd Faizal Abu; Isa, Mohd Noor Mat

    2016-11-01

    In this study, bioinformatic analysis towards genome sequence of E. aerogenes was done to determine gene encoded for gelatinase. Enterobacter aerogenes was isolated from hot spring water and gelatinase species-specific bacterium to porcine and fish gelatin. This bacterium offers the possibility of enzymes production which is specific to both species gelatine, respectively. Enterobacter aerogenes was partially genome sequenced resulting in 5.0 mega basepair (Mbp) total size of sequence. From pre-process pipeline, 87.6 Mbp of total reads, 68.8 Mbp of total high quality reads and 78.58 percent of high quality percentage was determined. Genome assembly produced 120 contigs with 67.5% of contigs over 1 kilo base pair (kbp), 124856 bp of N50 contig length and 55.17 % of GC base content percentage. About 4705 protein gene was identified from protein prediction analysis. Two candidate genes selected have highest similarity identity percentage against gelatinase enzyme available in Swiss-Prot and NCBI online database. They were NODE_9_length_26866_cov_148.013245_12 containing 1029 base pair (bp) sequence with 342 amino acid sequence and NODE_24_length_155103_cov_177.082458_62 which containing 717 bp sequence with 238 amino acid sequence, respectively. Thus, two paired of primers (forward and reverse) were designed, based on the open reading frame (ORF) of selected genes. Genome analysis of E. aerogenes resulting genes encoded gelatinase were identified.

  16. The differential importance of mutations within AmpD in cephalosporin resistance of Enterobacter aerogenes and Enterobacter cloacae.

    PubMed

    Babouee Flury, Baharak; Ellington, Matthew J; Hopkins, Katie L; Turton, Jane F; Doumith, Michel; Woodford, Neil

    2016-11-01

    Mechanisms leading to carbapenem and cephalosporin resistance were sought in Enterobacter aerogenes isolates that were highly resistant to carbapenems but had no known carbapenemase. Results were compared with recent work examining carbapenem-resistant Enterobacter cloacae. Eighteen carbapenem-resistant E. aerogenes were screened for known β-lactamase and carbapenemase genes, and novel carbapenemases were sought in whole-genome sequencing (WGS) data of the three most resistant isolates. For all isolates, ampC, ampR, ampD and the porin genes omp35 and omp36 were investigated by Sanger sequencing or from available WGS data. Expression of ampC and porin genes was measured in comparison with cephalosporin- and carbapenem-susceptible control strains by reverse transcriptase PCR, with porin translation also detected by SDS-PAGE. Loss of Omp35, primarily due to decreased transcription (up to 250×), was observed in ertapenem-resistant isolates (MICs ≥ 2 mg/L), whereas meropenem resistance (MICs ≥ 4 mg/L) was observed in those isolates also showing decreased or no production of Omp36. Loss of Omp36 was due to combinations of premature translation termination or reduced transcription. In contrast to E. cloacae, cephalosporin resistance in E. aerogenes was not associated with lesions in AmpD. High-level cefepime resistance (MIC = 32 mg/L) was caused by a novel modification in the H-10 helix of AmpC in one isolate. The differential importance of AmpD lesions in cephalosporin resistance in E. cloacae and E. aerogenes underlines the differences between these contrasting members of the Enterobacter genus. Porin loss resulted in high-level carbapenem resistance with gradual loss of Omp36, which led to high-level meropenem resistance. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  17. Irreproducible and Uninterpretable Polymyxin B MICs for Enterobacter cloacae and Enterobacter aerogenes

    PubMed Central

    Landman, David; Salamera, Julius

    2013-01-01

    Carbapenem-resistant Enterobacter species are emerging nosocomial pathogens. As with most multidrug-resistant Gram-negative pathogens, the polymyxins are often the only therapeutic option. In this study involving clinical isolates of E. cloacae and E. aerogenes, susceptibility testing methods with polymyxin B were analyzed. All isolates underwent testing by the broth microdilution (in duplicate) and agar dilution (in duplicate) methods, and select isolates were examined by the Etest method. Selected isolates were also examined for heteroresistance by population analysis profiling. Using a susceptibility breakpoint of ≤2 μg/ml, categorical agreement by all four dilution tests (two broth microdilution and two agar dilution) was achieved in only 76/114 (67%) of E. cloacae isolates (65 susceptible, 11 resistant). Thirty-eight (33%) had either conflicting or uninterpretable results (multiple skip wells, i.e., wells that exhibit no growth although growth does occur at higher concentrations). Of the 11 consistently resistant isolates, five had susceptible MICs as determined by Etest. Heteroresistant subpopulations were detected in eight of eight isolates tested, with greater percentages in isolates with uninterpretable MICs. For E. aerogenes, categorical agreement between the four dilution tests was obtained in 48/56 (86%), with conflicting and/or uninterpretable results in 8/56 (14%). For polymyxin susceptibility testing of Enterobacter species, close attention must be paid to the presence of multiple skip wells, leading to uninterpretable results. Susceptibility also should not be assumed based on the results of a single test. Until the clinical relevance of skip wells is defined, interpretation of polymyxin susceptibility tests for Enterobacter species should be undertaken with extreme caution. PMID:24088860

  18. KPC-producing Enterobacter aerogenes infection.

    PubMed

    Tuon, Felipe F; Scharf, Camila; Rocha, Jaime L; Cieslinsk, Juliette; Becker, Guilherme Nardi; Arend, Lavinia N

    2015-01-01

    Enterobacter is a common nosocomial microorganism and its carbapenem's resistance has increased. The management of these cases is unclear. We evaluated 16 patients with KPC-producing Enterobacter aerogenes infections, detailing the site of infection, therapy, clinical and epidemiological data. A retrospective and descriptive study. Clinical data were revised and KPC-2 detection was by molecular methods. Risk factors associated with mortality were compared using appropriate tests according to variable type with a significance level of 0.05. The 30-day mortality rate was 37.5% with no association with inadequate treatment. Age (p=0.004) and Charlson score of comorbidities (p=0.048) were independent risk factors associated with death in the multivariate analysis. The odds ratio for age >43 years was 3.00 (95% CI: 1.02-9.32) and for Charlson score >3 was 2.00 (95% CI: 1.08-3.71). Five strains were pan-resistant based on automated susceptibility tests. All patients were treated with monotherapy. The clinician should be alert to carbapenem-resistant Enterobacteriaceae infection in older patients with comorbidities. The mortality is high and we believe that prompt and adequate therapy must be employed. Copyright © 2015 Elsevier Editora Ltda. All rights reserved.

  19. Enhanced hydrogen production of Enterobacter aerogenes mutated by nuclear irradiation.

    PubMed

    Cheng, Jun; Liu, Min; Song, Wenlu; Ding, Lingkan; Liu, Jianzhong; Zhang, Li; Cen, Kefa

    2017-03-01

    Nuclear irradiation was used for the first time to generate efficient mutants of hydrogen-producing bacteria Enterobacter aerogenes, which were screened with larger colour circles of more fermentative acid by-products. E. aerogenes cells were mutated by nuclear irradiation of 60 Co γ-rays. The screened E. aerogenes ZJU1 mutant with larger colour circles enhanced the hydrogenase activity from 89.8 of the wild strain to 157.4mLH 2 /(gDWh). The hereditary stability of the E. aerogenes ZJU1 mutant was certified after over ten generations of cultivation. The hydrogen yield of 301mLH 2 /gglucose with the mutant was higher by 81.8% than that of 166mL/gglucose with the wild strain. The peak hydrogen production rate of 27.2mL/(L·h) with the mutant was higher by 40.9% compared with that of 19.3mL/(L·h) with the wild strain. The mutant produced more acetate and butyrate but less ethanol compared with the wild strain during hydrogen fermentation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. TEM Derivative-Producing Enterobacter aerogenes Strains: Dissemination of a Prevalent Clone

    PubMed Central

    Dumarche, P.; De Champs, C.; Sirot, D.; Chanal, C.; Bonnet, R.; Sirot, J.

    2002-01-01

    TEM-24 (CAZ-6) extended-spectrum β-lactamase (ESBL) was detected in 1988 in Clermont-Ferrand, France, in Klebsiella pneumoniae (blaTEM-24) and Enterobacter aerogenes (blaTEM-24b), and since 1994, a TEM-24-producing E. aerogenes clonal strain has been observed elsewhere in the country. To determine if the spread of this clonal strain was restricted to TEM-24-producing E. aerogenes strains, 84 E. aerogenes strains (non-TEM/SHV-producing strains, TEM-1- or -2-producing strains, and different ESBL-producing strains), isolated from 1988 to 1999 in Clermont-Ferrand (n = 59) and in 11 other French hospitals in 1998 (n = 25), were studied. A clonal strain was found for TEM-24- but also for TEM-3- and TEM-1- or 2-producing isolates. This study shows that there is a clonal strain dependent on acquisition of the TEM-type enzyme (TEM-24 and other TEM types). PMID:11897606

  1. Production of L-lactic acid from metabolically engineered strain of Enterobacter aerogenes ATCC 29007.

    PubMed

    Thapa, Laxmi Prasad; Lee, Sang Jun; Park, Chulhwan; Kim, Seung Wook

    2017-07-01

    In this study, L-lactic acid production was investigated from metabolically engineered strain of E. aerogenes ATCC 29007. The engineered strain E. aerogenes SUMI01 (Δpta) was generated by the deletion of phosphate acetyltransferase (pta) gene from the chromosome of E. aerogenes ATCC 29007 and deletion was confirmed by colony PCR. Under the optimized fermentation conditions, at 37°C and pH 6 for 84h, the L-lactic acid produced by engineered strain E. aerogenes SUMI01 (Δpta) in flask fermentation using 100g/L mannitol as the carbon source was 40.05g/L as compared to that of the wild type counterpart 20.70g/L. At the end of the batch fermentation in bioreactor the production of L-lactic acid reached to 46.02g/L and yield was 0.41g/g by utilizing 112.32g/L mannitol. This is the first report regarding the production of L-lactic acid from Enterobacter species. We believe that this result may provide valuable guidelines for further engineering Enterobacter strain for the improvement of L-lactic acid production. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Sepsis resulting from Enterobacter aerogenes resistant to carbapenems after liver transplantation.

    PubMed

    Chen, Hao; Zhang, Ying; Chen, Ya-Gang; Yu, Yun-Song; Zheng, Shu-Sen; Li, Lan-Juan

    2009-06-01

    Sepsis due to Enterobacter aerogenes (E. aerogenes) is rare after liver transplantation but is also a serious infection that may cause liver abscess. The purpose of this case report is to relate an unusual presentation of liver transplantation to show how successive treatment can be an appropriate option in septic patients after liver transplantation. We report on a patient with liver transplantation who developed sepsis due to extended spectrum beta-lactamases and AmpC-producing E. aerogenes. A 39-year-old man had a biliary fistula and then was found to have multiple liver abscesses through abdominal ultrasound and an abdominal computed tomography scan, and carbapenem-sensitive E. aerogenes infection was confirmed. The patient was not successfully treated with conservative treatment consisting of intravenous carbapenems, percutaneous transhepatic cholangial drainage, and biliary stent placement by endoscopic retrograde cholangiopancreatography, so a second liver transplantation followed. Carbapenem-resistant E. aerogenes was detected in bile and blood after a five-week course of carbapenem therapy. The patient developed septic shock and multiple organ dysfunction syndrome. We first report an unusual case of sepsis caused by E. aerogenes after liver transplantation in China. Carbapenem-resistant E. aerogenes finally leads to uncontrolled sepsis with current antibiotics. We hypothesize that the infection developed as a result of biliary fistula and predisposing immunosuppressive agent therapy. Further research is progressing on the aspect of immunomodulation therapy.

  3. Detection of New Delhi Metallo-Beta-Lactamase (Encoded by blaNDM-1 ) in Enterobacter aerogenes in China.

    PubMed

    Shen, Yong; Xiao, Wei-Qiang; Gong, Jiao-Mei; Pan, Jun; Xu, Qing-Xia

    2017-03-01

    The increase in bla NDM -1 in Enterobacteriaceae has become a major concern worldwide. In previous study, we investigated clonal dissemination and mechanisms of resistance to carbapenem in China. We carried out retrospective surveillance for bla NDM -1 among carbapenem-resistant enterobacter strains, which were isolated from patients at our hospital by bacterial strains selection, antimicrobial susceptibility testing, species identification, and molecular detection of resistance gene. We found three bla NDM -1 -positive isolates which were identified as Enterobacter aerogenes in clinical patients in China. The bla NDM -1 -positive Enterobacter aerogenes isolates were first found. It is important to mandate prudent usage of antibiotics and implement infection control measures to control the spread of these resistant bla NDM -1 -positive strains. © 2016 Wiley Periodicals, Inc.

  4. Comparative in vitro activities of ciprofloxacin, clinafloxacin, gatifloxacin, levofloxacin, moxifloxacin, and trovafloxacin against Klebsiella pneumoniae, Klebsiella oxytoca, Enterobacter cloacae, and Enterobacter aerogenes clinical isolates with alterations in GyrA and ParC proteins.

    PubMed

    Brisse, S; Milatovic, D; Fluit, A C; Verhoef, J; Martin, N; Scheuring, S; Köhrer, K; Schmitz, F J

    1999-08-01

    The in vitro activities of ciprofloxacin, clinafloxacin, gatifloxacin, levofloxacin, moxifloxacin, and trovafloxacin were tested against 72 ciprofloxacin-resistant and 28 ciprofloxacin-susceptible isolates of Klebsiella pneumoniae, Klebsiella oxytoca, Enterobacter cloacae, and Enterobacter aerogenes. Irrespective of the alterations in GyrA and ParC proteins, clinafloxacin exhibited greater activity than all other fluoroquinolones tested against K. pneumoniae and E. aerogenes.

  5. The melatonin-sensitive circadian clock of the enteric bacterium Enterobacter aerogenes.

    PubMed

    Paulose, Jiffin K; Cassone, Vincent M

    2016-09-02

    Circadian clocks are fundamental properties of all eukaryotic organisms and at least some prokaryotic organisms. Recent studies in our laboratory have shown that the gastrointestinal system contains a circadian clock that controls many, if not all, aspects of gastrointestinal function. We now report that at least one species of intestinal bacteria, Enterobacter aerogenes, responds to the pineal and gastrointestinal hormone melatonin by an increase in swarming activity. This swarming behavior is expressed rhythmically, with a period of approximately 24 hrs. Transformation of E. aerogenes to express luciferase with a MotA promoter reveals circadian patterns of bioluminescence that are synchronized by melatonin and whose periods are temperature compensated from 26°C to 40°C. Bioinformatics suggest similarities between the E. aerogenes and cyanobacterial clocks, suggesting the circadian clock may have evolved very early in the evolution of life. They also point to a coordination of host circadian clocks with those residing in the microbiota themselves.

  6. Comparative In Vitro Activities of Ciprofloxacin, Clinafloxacin, Gatifloxacin, Levofloxacin, Moxifloxacin, and Trovafloxacin against Klebsiella pneumoniae, Klebsiella oxytoca, Enterobacter cloacae, and Enterobacter aerogenes Clinical Isolates with Alterations in GyrA and ParC Proteins

    PubMed Central

    Brisse, Sylvain; Milatovic, Dana; Fluit, Ad C.; Verhoef, Jan; Martin, Nele; Scheuring, Sybille; Köhrer, Karl; Schmitz, Franz-Josef

    1999-01-01

    The in vitro activities of ciprofloxacin, clinafloxacin, gatifloxacin, levofloxacin, moxifloxacin, and trovafloxacin were tested against 72 ciprofloxacin-resistant and 28 ciprofloxacin-susceptible isolates of Klebsiella pneumoniae, Klebsiella oxytoca, Enterobacter cloacae, and Enterobacter aerogenes. Irrespective of the alterations in GyrA and ParC proteins, clinafloxacin exhibited greater activity than all other fluoroquinolones tested against K. pneumoniae and E. aerogenes. PMID:10428935

  7. Partial purification and characterization of a novel histidine decarboxylase from Enterobacter aerogenes DL-1.

    PubMed

    Zou, Yu; Hu, Wenzhong; Jiang, Aili; Tian, Mixia

    2015-08-18

    Histidine decarboxylase (HDC) from Enterobacter aerogenes DL-1 was purified in a three-step procedure involving ammonium sulfate precipitation, Sephadex G-100, and DEAE-Sepharose column chromatography. The partially purified enzyme showed a single protein band of 52.4 kD on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The optimum pH for HDC activity was 6.5, and the enzyme was stable between pH 4 and 8. Enterobacter aerogenes HDC had optimal activity at 40°C and retained most of its activity between 4 and 50°C. HDC activity was reduced in the presence of numerous tested compounds. Particularly with SDS, it significantly (p < 0.01) inhibited enzyme activity. Conversely, Ca(2+) and Mn(2+) showed prominent activation effects (p < 0.01) with activity increasing to 117.20% and 123.42%, respectively. The Lineweaver-Burk plot showed that K m and V max values of the enzyme for L-histidine were 0.21 mM and 71.39 µmol/min, respectively. In comparison with most HDCs from other microorganisms and animals, HDC from E. aerogenes DL-1 displayed higher affinity and greater reaction velocity toward L-histidine.

  8. Acanthamoeba castellanii of the T4 genotype is a potential environmental host for Enterobacter aerogenes and Aeromonas hydrophila

    PubMed Central

    2013-01-01

    Background Acanthamoeba can interact with a wide range of microorganisms such as viruses, algae, yeasts, protists and bacteria including Legionella pneumophila, Pseudomonas aeruginosa, Vibrio cholerae, Helicobacter pylori, Listeria monocytogenes, Mycobacterium spp., and Escherichia coli. In this capacity, Acanthamoeba has been suggested as a vector in the transmission of bacterial pathogens to the susceptible hosts. Methods Here, we used a keratitis isolate of A. castellanii of the T4 genotype and studied its interactions with two bacterial genera which have not been tested before, Enterobacter aerogenes, and Aeromonas hydrophila, as well as E. coli. Assays were performed to determine bacterial association with and invasion of A. castellanii. Additionally, bacterial survival intracellular of A. castellanii trophozoites as well as cysts was determined. Results All three bacterial isolates tested, associated, invaded, and survived inside A. castellanii trophozoites as well as A. castellanii cysts. However, E. aerogenes and E. coli exhibited significantly reduced association with and invasion of A. castellanii as compared with A. hydrophila (P < 0.01 using paired T-test, one tail distribution). In the long term survival assays, all three bacterial isolates tested remained viable inside A. castellanii trophozoites, while amoeba remained intact; however A. hydrophila exhibited higher survival inside amoebae (14.54 ± 3.3 bacteria:amoeba ratio) compared with E. aerogenes (3.96 ± 0.7 bacteria:amoeba ratio) and E. coli (5.85 ± 1.1 bacteria:amoeba ratio). A. hydrophila, E. coli, and E. aerogenes remained viable during the encystment process and exhibited higher levels of recovery from mature cysts (14.13 ± 0.89 A. hydrophila:amoeba ratio, 10.13 ± 1.17 E. aerogenes:amoeba ratio, and 11.95 ± 0.7 E. coli:amoeba ratio). Conclusions A. hydrophila and E. aerogenes also joined the ranks of other bacteria that could benefit from A. castellanii

  9. Acanthamoeba castellanii of the T4 genotype is a potential environmental host for Enterobacter aerogenes and Aeromonas hydrophila.

    PubMed

    Yousuf, Farzana Abubakar; Siddiqui, Ruqaiyyah; Khan, Naveed Ahmed

    2013-06-07

    Acanthamoeba can interact with a wide range of microorganisms such as viruses, algae, yeasts, protists and bacteria including Legionella pneumophila, Pseudomonas aeruginosa, Vibrio cholerae, Helicobacter pylori, Listeria monocytogenes, Mycobacterium spp., and Escherichia coli. In this capacity, Acanthamoeba has been suggested as a vector in the transmission of bacterial pathogens to the susceptible hosts. Here, we used a keratitis isolate of A. castellanii of the T4 genotype and studied its interactions with two bacterial genera which have not been tested before, Enterobacter aerogenes, and Aeromonas hydrophila, as well as E. coli. Assays were performed to determine bacterial association with and invasion of A. castellanii. Additionally, bacterial survival intracellular of A. castellanii trophozoites as well as cysts was determined. All three bacterial isolates tested, associated, invaded, and survived inside A. castellanii trophozoites as well as A. castellanii cysts. However, E. aerogenes and E. coli exhibited significantly reduced association with and invasion of A. castellanii as compared with A. hydrophila (P < 0.01 using paired T-test, one tail distribution). In the long term survival assays, all three bacterial isolates tested remained viable inside A. castellanii trophozoites, while amoeba remained intact; however A. hydrophila exhibited higher survival inside amoebae (14.54 ± 3.3 bacteria:amoeba ratio) compared with E. aerogenes (3.96 ± 0.7 bacteria:amoeba ratio) and E. coli (5.85 ± 1.1 bacteria:amoeba ratio). A. hydrophila, E. coli, and E. aerogenes remained viable during the encystment process and exhibited higher levels of recovery from mature cysts (14.13 ± 0.89 A. hydrophila:amoeba ratio, 10.13 ± 1.17 E. aerogenes:amoeba ratio, and 11.95 ± 0.7 E. coli:amoeba ratio). A. hydrophila and E. aerogenes also joined the ranks of other bacteria that could benefit from A. castellanii. Because cysts can be airborne, these

  10. Biotransformation of ferulic acid to 4-vinylguaiacol by Enterobacter soli and E. aerogenes.

    PubMed

    Hunter, William J; Manter, Daniel K; van der Lelie, Daniel

    2012-12-01

    We investigated the conversion of ferulic acid to 4-vinylguaiacol (4-VG), vanillin, vanillyl alcohol, and vanillic acid by five Enterobacter strains. These high-value chemicals are usually synthesized by chemical methods but biological synthesis adds market value. Ferulic acid, a relatively inexpensive component of agricultural crops, is plentiful in corn hulls, cereal bran, and sugar-beet pulp. Two Enterobacter strains, E. soli, and E. aerogenes, accumulated 550-600 ppm amounts of 4-VG when grown in media containing 1,000 ppm ferulic acid; no accumulations were observed with the other strains. Decreasing the amount of ferulic acid present in the media increased the conversion efficiency. When ferulic acid was supplied in 500, 250, or 125 ppm amounts E. aerogenes converted ~72 % of the ferulic acid present to 4-VG while E. soli converted ~100 % of the ferulic acid to 4-VG when supplied with 250 or 125 ppm amounts of ferulic acid. Also, lowering the pH improved the conversion efficiency. At pH 5.0 E. aerogenes converted ~84 % and E. soli converted ~100 % of 1,000 ppm ferulic acid to 4-VG. Only small, 1-5 ppm, accumulations of vanillin, vanillyl alcohol, and vanillic acid were observed. E. soli has a putative phenolic acid decarboxylase (PAD) that is 168 amino acids long and is similar to PADs in other enterobacteriales; this protein is likely involved in the bioconversion of ferulic acid to 4-VG. E. soli or E. aerogenes might be useful as a means of biotransforming ferulic acid to 4-VG.

  11. Imipenem Resistance of Enterobacter aerogenes Mediated by Outer Membrane Permeability

    PubMed Central

    Bornet, Charléric; Davin-Regli, Anne; Bosi, Claude; Pages, Jean-Marie; Bollet, Claude

    2000-01-01

    Multidrug-resistant Enterobacter aerogenes strains are increasingly isolated in Europe and especially in France. Treatment leads to imipenem resistance, because of a lack of porin. We studied the evolution of resistance in 29 strains isolated from four patients during their clinical course. These strains belonged to the prevalent epidemiological type observed in France in previous studies (C. Bosi, et al., J. Clin. Microbiol. 37:2165–2169, 1999; A. Davin-Regli et al., J. Clin. Microbiol. 34:1474–1480, 1996). They also harbored a TEM-24 extended-spectrum β-lactamase-coding gene. Thirteen strains were susceptible to gentamicin and resistant to imipenem and cefepime. All of the patients showed E. aerogenes strains with this resistance after an imipenem treatment. One patient showed resistance to imipenem after a treatment with cefpirome. Twelve of these 13 strains showed a lack of porin. Cessation of treatment with imipenem for three patients was followed by reversion of susceptibility to this antibiotic and the reappearance of porins, except in one case. For one patient, we observed three times in the same day the coexistence of resistant strains lacking porin and susceptible strains possessing porin. The emergence of multidrug-resistant E. aerogenes strains is very disquieting. In our study, infection by E. aerogenes increased the severity of the patients' illnesses, causing a 100% fatality rate. PMID:10698994

  12. Emergence of colistin resistance in Enterobacter aerogenes from Croatia.

    PubMed

    Bedenić, Branka; Vranić-Ladavac, Mirna; Venditti, Carolina; Tambić-Andrašević, Arjana; Barišić, Nada; Gužvinec, Marija; Karčić, Natalie; Petrosillo, Nicola; Ladavac, Ranko; di Caro, Antonino

    2018-04-01

    A colistin-resistant Enterobacter aerogenes [study code 12264] was isolated from the tracheal aspirate of a 71-year-old male patient in the General Hospital [GH] in Pula, Croatia. The patient was previously treated in University Hospital Centre in Rijeka with colistin in order to eradicate Acinetobacter baumannii isolate, susceptible only to colistin and tigecycline. Genes encoding ESBLs [bla TEM , bla SHV , bla CTX-M , bla PER-1 ] were screened by PCR. The strain was shown to possess bla CTX-M-15 and bla TEM-1 genes. To asses genes possibly involved in resistance to colistin the chromosomal enconding mgrB gene and the plasmid-mediated mcr-1 and mcr-2 genes were screened as described previously. Mcr-1 and mcr-2 genes were not detected and mgrB gene presented a wild-type sequence. PCR-based Replicon typing method [PBRT] conducted on an E. aerogenes isolate, showed that the strain carried an IncN plasmid. Adaptive mechanisms such as changes of the bacterial cell outer membrane that cause porin decrease or presence of an efflux pump, due to selection pressure exerted by the therapeutic administration of colistin, could be responsible for the development of colistin resistance in our strain, as recently reported in E. aerogenes from France. Due to effective infection control measures, the colistin-resistant strain did not spread to other patients or hospital wards. This is the first report of an ESBL-producing, colistin-resistant E. aerogenes in clinically relevant samples such as endotracheal aspirate and blood culture, showing the presence of this rare resistance profile among Gram-negative bacteria.

  13. Characterization of a novel qepA3 variant in Enterobacter aerogenes.

    PubMed

    Wang, Dongguo; Huang, Xitian; Chen, Jiayu; Mou, Yonghua; Qi, Yongxiao

    2017-04-01

    Five isolates harboring qepA were studied by polymerase chain reaction (PCR) amplification and relevant methods. One was determined to be a novel qepA3 from Enterobacter aerogenes, and four involved three qepA1 and one qepA2 determinants from Escherichia coli; the qepA3 changed five amino acids. These results characterized genetic structures A, B, C, D, and E. Copyright © 2016. Published by Elsevier B.V.

  14. Isolation and characterization of a bacteriophage phiEap-2 infecting multidrug resistant Enterobacter aerogenes

    PubMed Central

    Li, Erna; Wei, Xiao; Ma, Yanyan; Yin, Zhe; Li, Huan; Lin, Weishi; Wang, Xuesong; Li, Chao; Shen, Zhiqiang; Zhao, Ruixiang; Yang, Huiying; Jiang, Aimin; Yang, Wenhui; Yuan, Jing; Zhao, Xiangna

    2016-01-01

    Enterobacter aerogenes (Enterobacteriaceae) is an important opportunistic pathogen that causes hospital-acquired pneumonia, bacteremia, and urinary tract infections. Recently, multidrug-resistant E. aerogenes have been a public health problem. To develop an effective antimicrobial agent, bacteriophage phiEap-2 was isolated from sewage and its genome was sequenced because of its ability to lyse the multidrug-resistant clinical E. aerogenes strain 3-SP. Morphological observations suggested that the phage belongs to the Siphoviridae family. Comparative genome analysis revealed that phage phiEap-2 is related to the Salmonella phage FSL SP-031 (KC139518). All of the structural gene products (except capsid protein) encoded by phiEap-2 had orthologous gene products in FSL SP-031 and Serratia phage Eta (KC460990). Here, we report the complete genome sequence of phiEap-2 and major findings from the genomic analysis. Knowledge of this phage might be helpful for developing therapeutic strategies against E. aerogenes. PMID:27320081

  15. Isolation and characterization of a bacteriophage phiEap-2 infecting multidrug resistant Enterobacter aerogenes.

    PubMed

    Li, Erna; Wei, Xiao; Ma, Yanyan; Yin, Zhe; Li, Huan; Lin, Weishi; Wang, Xuesong; Li, Chao; Shen, Zhiqiang; Zhao, Ruixiang; Yang, Huiying; Jiang, Aimin; Yang, Wenhui; Yuan, Jing; Zhao, Xiangna

    2016-06-20

    Enterobacter aerogenes (Enterobacteriaceae) is an important opportunistic pathogen that causes hospital-acquired pneumonia, bacteremia, and urinary tract infections. Recently, multidrug-resistant E. aerogenes have been a public health problem. To develop an effective antimicrobial agent, bacteriophage phiEap-2 was isolated from sewage and its genome was sequenced because of its ability to lyse the multidrug-resistant clinical E. aerogenes strain 3-SP. Morphological observations suggested that the phage belongs to the Siphoviridae family. Comparative genome analysis revealed that phage phiEap-2 is related to the Salmonella phage FSL SP-031 (KC139518). All of the structural gene products (except capsid protein) encoded by phiEap-2 had orthologous gene products in FSL SP-031 and Serratia phage Eta (KC460990). Here, we report the complete genome sequence of phiEap-2 and major findings from the genomic analysis. Knowledge of this phage might be helpful for developing therapeutic strategies against E. aerogenes.

  16. Screening, nutritional optimization and purification for phytase produced by Enterobacter aerogenes and its role in enhancement of hydrocarbons degradation and biofilm inhibition.

    PubMed

    Muslim, Sahira Nsayef; Mohammed Ali, Alaa Naseer; Al-Kadmy, Israa M S; Khazaal, Saba Saadoon; Ibrahim, Susan A; Al-Saryi, Nadal A; Al-Saadi, Luma Ghaeb; Muslim, Sraa Nsayef; Salman, Batool Kadham; Aziz, Sarah Naji

    2018-02-01

    In this study, a novel isolate of Enterobacter aerogenes isolated from contaminated soils with hydrocarbons had extracellular phytate-degrading activity. Enterobacter aerogenes isolates were identified by biochemical tests and confirmed by16S rRNA gene products (amplified size 211bp) for genotypic detection. The phytase activity was reached to maximum activity when this isolate was cultivated under the optimal conditions which consisted of using minimal salt medium containing 1%(w/v) rice bran as a sole source for carbon and 2% (w/v) yeast extract at pH 5.5 and temperature of 50°C for 48 h. The phytase had purified to homogeneity by 50% ammonium sulphate precipitation, ion exchange and gel filtration chromatography with 75.7 fold of purification and a yield of 30.35%. The purified phytase is a single peptide with approximate molecular mass of 42 kDa as assessed by SDS-PAGE. The highest degradative ability by Enterobacter aerogenes of black oil, white oil and used engine oil had observed after 72 h of incubation. Rapid degradation of black oil and used engine oil had also observed while slow degradation of white oilat all time of incubation. The purified phytase inhibited biofilm formation ability in a dose-dependent manner for all Gram-negative and Gram-positive biofilm-forming bacteria and a significant difference in cell surface hydrophobicity was observed after exposure of planktonic cells to phytase for hour. The hydrolyzing effect of phytase released by Enterobacter aerogenes for complex salts of phosphorus that are insoluble in the soil led to increase of phosphorus concentrations and enhanced the ability of Enterobacter aerogenes to degrade a specific hydrocarbon in contaminated soil so that the phytase has a promising application in bioremediation of contaminated soils with hydrocarbons. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Direct production of L-tagatose from L-psicose by Enterobacter aerogenes 230S.

    PubMed

    Rao, Devendar; Gullapalli, Pushpakiran; Yoshihara, Akihide; Jenkinson, Sarah F; Morimoto, Kenji; Takata, Goro; Akimitsu, Kazuya; Tajima, Shigeyuki; Fleet, George W J; Izumori, Ken

    2008-11-01

    L-tagatose was produced directly from L-psicose by subjecting the same biomass suspension to microbial reduction followed by oxidation using a newly isolated bacteria Enterobacter aerogenes 230S. After various optimizations, it was observed that cells grown on xylitol have the best conversion potential. Moreover, E. aerogenes 230S converted L-psicose to L-tagatose at a faster rate in the presence of polyols such as glycerol, D-sorbitol, ribitol, L-arabitol, D-mannitol and xylitol. At 5% substrate concentration, the conversion ratio of L-psicose to L-tagatose was above 60% in the presence of glycerol. Identity of crystalline L-tagatose was confirmed by HPLC analysis, (13)C-NMR spectra, and optical rotation.

  18. KPC-2 carbapenemase and DHA-1 AmpC determinants carried on the same plasmid in Enterobacter aerogenes.

    PubMed

    Kuai, Shougang; Shao, Haifeng; Huang, Lihua; Pei, Hao; Lu, Zhonghua; Wang, Weiping; Liu, Jun

    2014-03-01

    This study was conducted to analyse the presence of a plasmid-mediated carbapenem resistance mechanism in a clinical Enterobacter aerogenes isolate from a patient from Jiangsu province, People's Republic of China. PCR and sequencing confirmed that the isolate harboured Klebsiella pneumoniae carbapenemase (KPC)-2, DHA-1 and TEM-1 β-lactamase genes. Both the KPC-2 and DHA-1 genes were transferred to Escherichia coli C600 by transconjugation, and Southern blotting confirmed that these two genes were located on the same plasmid, which was of approximately 56 kb in size. The Enterobacter aerogenes isolate was resistant to carbapenems and other tested antimicrobial agents. The Escherichia coli transconjugant showed reduced susceptibility but not resistance to carbapenems and other β-lactams, indicating the presence of another, possibly permeability-related, resistance mechanism in the clinical isolate.

  19. Outbreak of multidrug-resistant acute postoperative endophthalmitis due to Enterobacter aerogenes.

    PubMed

    Bhat, Shailaja S; Undrakonda, Vivekanand; Mukhopadhyay, Chiranjay; Parmar, Prachi Vikramsinh

    2014-04-01

    To report the clinical features, management, and outcome of 7 cases of culture-proven multidrug-resistant Enterobacter postoperative endophthalmitis following cataract surgery. Medical records of 7 cases of acute postoperative endophthalmitis after uneventful cataract surgery were reviewed. Details regarding age, gender, visual acuity and clinical features at presentation, microbiological profile, treatment interventions, and visual acuity and clinical features at 1 week, 1 month, and 3 months follow-up were collected. All patients reported decreased visual acuity and pain as presenting symptoms. All patients were resistant to intravitreal antibiotics such as vancomycin (1 mg/0.1 mL) and ceftazidime (2.25 mg/0.1 mL). Culture of aqueous and vitreous sample was positive for Enterobacter aerogenes and sensitive to co-trimoxazole, cefoperazone-sulbactam, imipenem-meropenem, and piperacillin-tazobactem. Two patients with panophthalmitis and no perception of light underwent evisceration. Three patients had visual acuity of ≥6/24 at the final follow-up. Multidrug-resistant Enterobacter acute postoperative endophthalmitis has a poor prognosis if not intercepted early.

  20. Detection of Extended-Spectrum β-Lactamases in Clinical Isolates of Enterobacter cloacae and Enterobacter aerogenes

    PubMed Central

    Tzelepi, Eva; Giakkoupi, Panagiota; Sofianou, Danai; Loukova, Veneta; Kemeroglou, Anastassia; Tsakris, Athanassios

    2000-01-01

    The aim of the present study was to investigate the frequency of extended-spectrum β-lactamases (ESBLs) in a consecutive collection of clinical isolates of Enterobacter spp. The abilities of various screening methods to detect ESBLs in enterobacters were simultaneously tested. Among the 68 consecutive isolates (56 Enterobacter cloacae and 12 Enterobacter aerogenes isolates) that were analyzed for β-lactamase content, 21 (25 and 58%, respectively) possessed transferable ESBLs with pIs of 8.2 and phenotypic characteristics of SHV-type enzymes, 8 (14.3%) of the E. cloacae isolates produced a previously nondescribed, clavulanate-susceptible ESBL that exhibited a pI of 6.9 and that conferred a ceftazidime resistance phenotype on Escherichia coli transconjugants, and 2 E. cloacae isolates produced both of these enzymes. Among the total of 31 isolates that were considered ESBL producers, the Vitek ESBL detection test was positive for 2 (6.5%) strains, and the conventional double-disk synergy test (DDST) with amoxicillin-clavulanate and with expanded-spectrum cephalosporins and aztreonam was positive for 5 (16%) strains. Modifications of the DDST consisting of closer application of the disks (at 20 instead of 30 mm), the use of cefepime, and the use of both modifications increased the sensitivity of this test to 71, 61, and 90%, respectively. Of the 37 isolates for which isoelectric focusing failed to determine ESBLs, the Vitek test was false positive for 1 isolate and the various forms of DDSTs were false-positive for 3 isolates. PMID:10655342

  1. Most Enterobacter aerogenes Strains in France Belong to a Prevalent Clone

    PubMed Central

    Bosi, Claude; Davin-Regli, Anne; Bornet, Charleric; Mallea, Monique; Pages, Jean-Marie; Bollet, Claude

    1999-01-01

    The aim of this study was to determine the distribution in France of the Enterobacter aerogenes prevalent clone isolated in the hospitals of the Marseille area (A. Davin-Regli, D. Monnet, P. Saux, C. Bosi, R. Charrel, A. Barthelemy, and C. Bollet, J. Clin. Microbiol. 34:1474–1480, 1996). A total of 123 E. aerogenes isolates were collected from 23 hospital laboratories and analyzed by random amplification of polymorphic DNA and enterobacterial repetitive intergenic consensus-PCR to determine their epidemiological relatedness. Molecular typing revealed that 21 of the 23 laboratories had isolated this prevalent clone harboring the plasmid encoding for extended-spectrum β-lactamase of the TEM-24 type. Most isolates were susceptible only to imipenem and gentamicin. Their dissemination seems to be clonal and was probably the result of the general use of broad-spectrum cephalosporins and quinolones. Four isolates showed an alteration of their outer membrane proteins, causing decrease of susceptibility to third-generation cephalosporins and imipenem and leading to the critical situation of having no alternative therapeutic. The large dissemination of the E. aerogenes prevalent clone probably results from its good adaptation to the antibiotics administered in France and the hospital environment, particularly in intensive care units. PMID:10364580

  2. Pathway engineering of Enterobacter aerogenes to improve acetoin production by reducing by-products formation.

    PubMed

    Jang, Ji-Woong; Jung, Hwi-Min; Im, Dae-Kyun; Jung, Moo-Young; Oh, Min-Kyu

    2017-11-01

    Enterobacter aerogenes was metabolically engineered for acetoin production. To remove the pathway enzymes that catalyzed the formation of by-products, the three genes encoding a lactate dehydrogenase (ldhA) and two 2,3-butanediol dehydrogenases (budC, and dhaD), respectively, were deleted from the genome. The acetoin production was higher under highly aerobic conditions. However, an extracellular glucose oxidative pathway in E. aerogenes was activated under the aerobic conditions, resulting in the accumulation of 2-ketogluconate. To decrease the accumulation of this by-product, the gene encoding a glucose dehydrogenase (gcd) was also deleted. The resulting strain did not produce 2-ketogluconate but produced significant amounts of acetoin, with concentration reaching 71.7g/L with 2.87g/L/h productivity in fed-batch fermentation. This result demonstrated the importance of blocking the glucose oxidative pathway under highly aerobic conditions for acetoin production using E. aerogenes. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Occurrence of efflux mechanism and cephalosporinase variant in a population of Enterobacter aerogenes and Klebsiella pneumoniae isolates producing extended-spectrum beta-lactamases.

    PubMed

    Tran, Que-Tien; Dupont, Myrielle; Lavigne, Jean-Philippe; Chevalier, Jacqueline; Pagès, Jean-Marie; Sotto, Albert; Davin-Regli, Anne

    2009-04-01

    We investigated the occurrence of multidrug resistance in 44 Enterobacter aerogenes and Klebsiella pneumoniae clinical isolates. Efflux was involved in resistance in E. aerogenes isolates more frequently than in K. pneumoniae isolates (100 versus 38% of isolates) and was associated with the expression of phenylalanine arginine beta-naphthylamide-susceptible active efflux. AcrA-TolC overproduction in E. aerogenes isolates was noted. An analysis of four E. aerogenes isolates for which cefepime MICs were high revealed no modification in porin expression but a new specific mutation in the AmpC beta-lactamase.

  4. The AcrAB-TolC pump is involved in macrolide resistance but not in telithromycin efflux in Enterobacter aerogenes and Escherichia coli.

    PubMed

    Chollet, Renaud; Chevalier, Jacqueline; Bryskier, André; Pagès, Jean-Marie

    2004-09-01

    The role of the AcrAB-TolC pump in macrolide and ketolide susceptibility in Escherichia coli and Enterobacter aerogenes was studied. Efflux pump inhibitor restored erythromycin, clarithromycin, and telithromycin susceptibilities to multidrug-resistant isolates. No modification of telithromycin accumulation was detected in E. aerogenes acrAB or tolC derivatives compared to that in the parental strain. Two independent efflux pumps, inhibited by phenylalanine arginine beta-naphthylamide, expel macrolides and telithromycin in E. aerogenes.

  5. Cloning and characterization of the ddc homolog encoding L-2,4-diaminobutyrate decarboxylase in Enterobacter aerogenes.

    PubMed

    Yamamoto, S; Mutoh, N; Tsuzuki, D; Ikai, H; Nakao, H; Shinoda, S; Narimatsu, S; Miyoshi, S I

    2000-05-01

    L-2,4-diaminobutyrate decarboxylase (DABA DC) catalyzes the formation of 1,3-diaminopropane (DAP) from DABA. In the present study, the ddc gene encoding DABA DC from Enterobacter aerogenes ATCC 13048 was cloned and characterized. Determination of the nucleotide sequence revealed an open reading frame of 1470 bp encoding a 53659-Da protein of 490 amino acids, whose deduced NH2-terminal sequence was identical to that of purified DABA DC from E. aerogenes. The deduced amino acid sequence was highly similar to those of Acinetobacter baumannii and Haemophilus influenzae DABA DCs encoded by the ddc genes. The lysine-307 of the E. aerogenes DABA DC was identified as the pyridoxal 5'-phosphate binding residue by site-directed mutagenesis. Furthermore, PCR analysis revealed the distribution of E. aerogenes ddc homologs in some other species of Enterobacteriaceae. Such a relatively wide occurrence of the ddc homologs implies biological significance of DABA DC and its product DAP.

  6. Development of Enterobacter aerogenes fuel cells: from in situ biohydrogen oxidization to direct electroactive biofilm.

    PubMed

    Zhuang, Li; Zhou, Shungui; Yuan, Yong; Liu, Tinglin; Wu, Zhifeng; Cheng, Jiong

    2011-01-01

    This study described an Enterobacter aerogenes-catalyzed microbial fuel cell (MFC) with a carbon-based anode that exhibited a maximum power density of 2.51 W/m(3) in the absence of artificial electron mediators. The MFC was started up rapidly, within hours, and the current generation in the early stage was demonstrated to result from in situ oxidation of biohydrogen produced by E. aerogenes during glucose fermentation. Over periodic replacement of substrate, both planktonic biomass in the culture liquid and hydrogen productivity decreased, while increased power density and coulombic efficiency and decreased internal resistance were unexpectedly observed. Using scanning electron microscopy and cyclic voltammetry, it was found that the enhanced MFC performance was associated with the development of electroactive biofilm on the anodic surface, proposed to involve an acclimation and selection process of E. aerogenes cells under electrochemical tension. The significant advantage of rapid start-up and the ability to develop an electroactive biofilm identifies E. aerogenes as a suitable biocatalyst for MFC applications. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Physiological and molecular characteristics of carbapenem resistance in Klebsiella pneumoniae and Enterobacter aerogenes.

    PubMed

    Pereira, Rito Santo; Dias, Vanessa Cordeiro; Ferreira-Machado, Alessandra Barbosa; Resende, Juliana Alves; Bastos, André Netto; Andrade Bastos, Lucas Quinet; Andrade Bastos, Victor Quinet; Bastos, Ricardo Villela; Da Silva, Vânia Lúcia; Diniz, Cláudio Galuppo

    2016-06-30

    Bacterial resistance is a growing concern in the nosocomial environment in which Klebsiella pneumoniae and Enterobacter aerogenes play an important role due to their opportunism and carbapenemase-production. This work aimed to evaluate physiological and molecular characteristics of carbapenem-resistant K. pneumoniae and E. aerogenes isolated in a Brazilian tertiary hospital. In total, 42 carbapenem-resistant bacteria isolated from clinical specimens were included (21 K. pneumoniae and 21 E. aerogenes). Drug-sensitive K. pneumoniae (n = 27) were also included. Antimicrobial susceptibility and biocide tolerance patterns, hemolytic activity, tolerance to oxidative stress, and aggregative ability were assessed. Genetic markers related to carbapenem resistance, or ESBL-production were screened by PCR. Compared to drug-sensitive strains, carbapenem-resistant K. pneumoniae were more tolerant to biocides and to oxidative stress, and they displayed an increase in biofilm formation. The genetic markers blaKPC (95.2%) and blaTEM (90.5%) were the most frequent. Among the carbapenem-resistant E. aerogenes strains, blaKPC, and blaTEM were detected in all bacteria. Drug-sensitive E. aerogenes were not isolated in the same period. blaSHV, blaVIM, and blaCTX markers were also observed among carbapenem-resistant bacteria. Results suggest that carbapenemase-producing enterobacteria might show peculiar characteristics regarding their physiology associated with their environmental persistency, virulence, and multidrug resistance. The observed phenomenon may have implications not only for antimicrobial chemotherapy, but also for the prognosis of infectious diseases and infection control.

  8. Biological Conversion of Glycerol to Ethanol by Enterobacter aerogenes

    NASA Astrophysics Data System (ADS)

    Nwachukwu, Raymond E. S.

    In a search to turn the economically and environmentally non-valuable "waste" streams of biodiesel production into a profitable byproduct, a mutant strain of Enterobacter aerogenes ATCC 13048 was developed by six-tube subculturing technique. This technique is based on the principle of adaptive evolution, and involved subculturing the bacterium in a tryptic soy broth without dextrose (TSB) containing specific glycerol and ethanol concentration for six consecutive times. Then, the six consecutive subculturing was repeated in a fresh TSB of higher glycerol and ethanol concentrations. A new mutant strain, E. aerogenes S012, which could withstand a combination of 200 g/l glycerol and 30 g/l ethanol concentrations, was developed. The wild and mutant strains were used for the fermentation of pure (P-) and recovered (R-) glycerol. Taguchi and full factorial methods of design of experiments were used to screen and optimize the important process factors that influence the microbial production of ethanol. A statistically sound regression model was used to establish the mathematical relationship between the process variables and ethanol production. Temperature of 38°C, agitation speed of 200 rpm, pH of 6.3-6.6, and microaerobic condition were the optimum process conditions. Different pretreatment methods to recover glycerol from the crude glycerol and the subsequent fermentation method showed that direct acidification using 85% H3PO4 was the best. The R-glycerol contained 51% pure glycerol and 21% methanol. The wild strain, E. aerogenes ATCC 13048, produced only 12 g/l and 12.8 g/l ethanol from 20 g/l P- and R-glycerol respectively, and could not utilize higher glycerol concentrations. The mutant, E. aerogenes S012, produced ethanol amount and yield of 43 g/l and 1.12 mol/mol-glycerol from P-glycerol, respectively within 96 h. It also produced ethanol amount and yield of 26.8 g/l and 1.07 mol/mol-glycerol, respectively, from R-glycerol within the same duration. In a

  9. Isolation and characterization of a bacteriophage F20 virulent to Enterobacter aerogenes.

    PubMed

    Mishra, Charitra Kumar; Choi, Tae Jin; Kang, Sun Chul

    2012-10-01

    An aquatic phage, designated F20, was characterized and its physico-chemical characteristics studied. F20 was specifically virulent to only two strains of Enterobacter aerogenes (ATCC 13048 and the multi-drug-resistant strain K113) among other species tested (n = 15). It was classified in the family Siphoviridae of T1-like viruses and contained a linear dsDNA genome estimated to be 51.5 kbp enclosed by an isometric capsid of 50±2 nm in diameter and a tail of 150±3 nm in length. F20 was able to survive in a broad pH range between 4 and 11, showed potential for future animal trials using oral solution and resisted chloroform and ethanol. It exhibited remarkable stability between room temperature and 70 °C for up to 150 min, and even up to 6 months at room temperature. Knowledge of this phage belonging to the widespread T1-like viruses might be helpful for adopting therapeutic strategies against E. aerogenes.

  10. Deletion of lactate dehydrogenase in Enterobacter aerogenes to enhance 2,3-butanediol production.

    PubMed

    Jung, Moo-Young; Ng, Chiam Yu; Song, Hyohak; Lee, Jinwon; Oh, Min-Kyu

    2012-07-01

    2,3-Butanediol is an important bio-based chemical product, because it can be converted into several C4 industrial chemicals. In this study, a lactate dehydrogenase-deleted mutant was constructed to improve 2,3-butanediol productivity in Enterobacter aerogenes. To delete the gene encoding lactate dehydrogenase, λ Red recombination method was successfully adapted for E. aerogenes. The resulting strain produced a very small amount of lactate and 16.7% more 2,3-butanediol than that of the wild-type strain in batch fermentation. The mutant and its parental strain were then cultured with six different carbon sources, and the mutant showed higher carbon source consumption and microbial growth rates in all media. The 2,3-butanediol titer reached 69.5 g/l in 54 h during fed-batch fermentation with the mutant,which was 27.4% higher than that with the parental strain.With further optimization of the medium and aeration conditions,118.05 g/l 2,3-butanediol was produced in 54 h during fed-batch fermentation with the mutant. This is by far the highest titer of 2,3-butanediol with E. aerogenes achieved by metabolic pathway engineering.

  11. National Epidemiologic Surveys of Enterobacter aerogenes in Belgian Hospitals from 1996 to 1998

    PubMed Central

    De Gheldre, Y.; Struelens, M. J.; Glupczynski, Y.; De Mol, P.; Maes, N.; Nonhoff, C.; Chetoui, H.; Sion, C.; Ronveaux, O.; Vaneechoutte, M.

    2001-01-01

    Two national surveys were conducted to describe the incidence and prevalence of Enterobacter aerogenes in 21 Belgian hospitals in 1996 and 1997 and to characterize the genotypic diversity and the antimicrobial resistance profiles of clinical strains of E. aerogenes isolated from hospitalized patients in Belgium in 1997 and 1998. Twenty-nine hospitals collected 10 isolates of E. aerogenes, which were typed by arbitrarily primed PCR (AP-PCR) using two primers and pulsed-field gel electrophoresis. MICs of 10 antimicrobial agents were determined by the agar dilution method. Beta-lactamases were detected by the double-disk diffusion test and characterized by isoelectric point. The median incidence of E. aerogenes colonization or infection increased from 3.3 per 1,000 admissions in 1996 to 4.2 per 1000 admissions in the first half of 1997 (P < 0.01). E. aerogenes strains (n = 260) clustered in 25 AP-PCR types. Two major types, BE1 and BE2, included 36 and 38% of strains and were found in 21 and 25 hospitals, respectively. The BE1 type was indistinguishable from a previously described epidemic strain in France. Half of the strains produced an extended-spectrum beta-lactamase, either TEM-24 (in 86% of the strains) or TEM-3 (in 14% of the strains). Over 75% of the isolates were resistant to ceftazidime, piperacillin-tazobactam, and ciprofloxacin. Over 90% of the strains were susceptible to cefepime, carbapenems, and aminoglycosides. In conclusion, these data suggest a nationwide dissemination of two epidemic multiresistant E. aerogenes strains in Belgian hospitals. TEM-24 beta-lactamase was frequently harbored by one of these epidemic strains, which appeared to be genotypically related to a TEM-24-producing epidemic strain from France, suggesting international dissemination. PMID:11230400

  12. Inactivation of Enterobacter aerogenes in reconstituted skim milk by high- and low-frequency ultrasound.

    PubMed

    Gao, Shengpu; Hemar, Yacine; Lewis, Gillian D; Ashokkumar, Muthupandian

    2014-11-01

    The inactivation of Enterobacter aerogenes in skim milk using low-frequency (20kHz) and high-frequency (850kHz) ultrasonication was investigated. It was found that low-frequency acoustic cavitation resulted in lethal damage to E. aerogenes. The bacteria were more sensitive to ultrasound in water than in reconstituted skim milk having different protein concentrations. However, high-frequency ultrasound was not able to inactivate E. aerogenes in milk even when powers as high as 50W for 60min were used. This study also showed that high-frequency ultrasonication had no influence on the viscosity and particle size of skim milk, whereas low-frequency ultrasonication resulted in the decrease in viscosity and particle size of milk. The decrease in particle size is believed to be due to the breakup of the fat globules, and possibly to the cleavage of the κ-casein present at the surface of the casein micelles. Whey proteins were also found to be slightly affected by low-frequency ultrasound, with the amounts of α-lactalbumin and β-lactoglobulin slightly decreasing. Copyright © 2013. Published by Elsevier B.V.

  13. Enhanced dark hydrogen fermentation by addition of ferric oxide nanoparticles using Enterobacter aerogenes.

    PubMed

    Lin, Richen; Cheng, Jun; Ding, Lingkan; Song, Wenlu; Liu, Min; Zhou, Junhu; Cen, Kefa

    2016-05-01

    Ferric oxide nanoparticles (FONPs) were used to facilitate dark hydrogen fermentation using Enterobacter aerogenes. The hydrogen yield of glucose increased from 164.5±2.29 to 192.4±1.14mL/g when FONPs concentration increased from 0 to 200mg/L. SEM images of E. aerogenes demonstrated the existence of bacterial nanowire among cells, suggesting FONPs served as electron conduits to enhance electron transfer. TEM showed cellular internalization of FONPs, indicating hydrogenase synthesis and activity was potentially promoted due to the released iron element. When further increasing FONPs concentration to 400mg/L, the hydrogen yield of glucose decreased to 147.2±2.54mL/g. Soluble metabolic products revealed FONPs enhanced acetate pathway of hydrogen production, but weakened ethanol pathway. This shift of metabolic pathways allowed more nicotinamide adenine dinucleotide for reducing proton to hydrogen. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Effect of Sodium on the Transport and Utilization of Citric Acid by Aerobacter (Enterobacter) aerogenes

    PubMed Central

    Wilkerson, L. S.; Eagon, R. G.

    1974-01-01

    Sodium inhibited citrate uptake by two of the four strains of Aerobacter (Enterobacter) aerogenes used in these studies, had no effect on one strain, and stimulated citrate uptake by one strain. Two of the four strains grew well anaerobically on citrate in the presence of Na+, one grew poorly, and one grew not at all either in the presence or absence of Na+. Na+ stimulated the aerobic growth of one strain on citrate, increased the total growth but not the rate of growth of one strain, and prolonged the lag phase but not the rate of growth or total growth of two strains. The experimental data reported herein, therefore, indicate that there are appreciable physiological differences among strains of A. aerogenes. PMID:4418533

  15. Draft Genome Assemblies of Enterobacter aerogenes CDC 6003-71, Enterobacter cloacae CDC 442-68, and Pantoea agglomerans UA 0804-01.

    PubMed

    Minogue, T D; Daligault, H E; Davenport, K W; Bishop-Lilly, K A; Bruce, D C; Chain, P S; Coyne, S R; Chertkov, O; Freitas, T; Frey, K G; Jaissle, J; Koroleva, G I; Ladner, J T; Palacios, G F; Redden, C L; Xu, Y; Johnson, S L

    2014-10-23

    The Enterobacteriaceae are environmental and enteric microbes. We sequenced the genomes of two Enterobacter reference strains, E. aerogenes CDC 6003-71 and E. cloacae CDC 442-68, as well as one near neighbor used as an exclusionary reference for diagnostics, Pantoea agglomerans CDC UA0804-01. The genome sizes range from 4.72 to 5.55 Mbp and have G+C contents from 54.6 to 55.1%. Copyright © 2014 Minogue et al.

  16. Molecular Epidemiological Study of Nosocomial Enterobacter aerogenes Isolates in a Belgian Hospital

    PubMed Central

    Jalaluddin, Sheikh; Devaster, Jeanne-Marie; Scheen, Robert; Gerard, Michele; Butzler, Jean-Paul

    1998-01-01

    In 1995, the rate of isolation of Enterobacter aerogenes in the Saint-Pierre University Hospital in Brussels, Belgium, was higher than that in the preceding years. A total of 45 nosocomial E. aerogenes strains were collected from 33 patients of different units during that year, and they were isolated from 19 respiratory specimens, 13 pus specimens, 7 blood specimens, 4 urinary specimens, 1 catheter specimen, and 1 heparin vial. The strains were analyzed to determine their epidemiological relatedness and were characterized by their antibiotic resistance pattern determination, plasmid profiling, and genomic fingerprinting by macrorestriction analysis with pulsed-field gel electrophoresis (PFGE). The majority of the strains (82%) were multiply resistant to different commonly used antibiotics. Two major plasmid profiles were found: most strains (64%) harbored two plasmids of different sizes, whereas the others (20%) contained a single plasmid. PFGE with SpeI and/or XbaI restriction enzymes revealed that a single clone (80%) was responsible for causing infections or colonizations throughout the year, and this result was concordant with those obtained by plasmid profiling, with slight variations. By comparing the results of these three methods, PFGE and plasmid profiling were found to be the techniques best suited for investigating the epidemiological relatedness of E. aerogenes strains, and they are therefore proposed as useful tools for the investigation of nosocomial outbreaks caused by this organism. PMID:9650923

  17. Engineered Enterobacter aerogenes for efficient utilization of sugarcane molasses in 2,3-butanediol production.

    PubMed

    Jung, Moo-Young; Park, Bu-Soo; Lee, Jinwon; Oh, Min-Kyu

    2013-07-01

    Sugarcane molasses is considered to be a good carbon source for biorefinery due to its high sugar content and low price. Sucrose occupies more than half of the sugar in the molasses. Enterobacter aerogenes is a good host strain for 2,3-butanediol production, but its utilization of sucrose is not very efficient. To improve sucrose utilization in E. aerogenes, a sucrose regulator (ScrR) was disrupted from the genomic DNA. The deletion mutation increased the sucrose consumption rate significantly when sucrose or sugarcane molasses was used as a carbon source. The 2,3-butanediol production from sugarcane molasses by the mutant was enhanced by 60% in batch fermentation compared to that by the wild type strain. In fed-batch fermentation, 98.69 g/L of 2,3-butanediol production was achieved at 36 h. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Establishment of a Molecular Serotyping Scheme and a Multiplexed Luminex-Based Array for Enterobacter aerogenes

    PubMed Central

    Guo, Xi; Wang, Min; Wang, Lu; Wang, Yao; Chen, Tingting; Wu, Pan; Chen, Min; Liu, Bin; Feng, Lu

    2018-01-01

    Serotyping based on surface polysaccharide antigens is important for the clinical detection and epidemiological surveillance of pathogens. Polysaccharide gene clusters (PSgcs) are typically responsible for the diversity of bacterial surface polysaccharides. Through whole-genome sequencing and analysis, eight putative PSgc types were identified in 23 Enterobacter aerogenes strains from several geographic areas, allowing us to present the first molecular serotyping system for E. aerogenes. A conventional antigenic scheme was also established and correlated well with the molecular serotyping system that was based on PSgc genetic variation, indicating that PSgc-based molecular typing and immunological serology provide equally valid results. Further, a multiplex Luminex-based array was developed, and a double-blind test was conducted with 97 clinical specimens from Shanghai, China, to validate our array. The results of these analyses indicated that strains containing PSgc4 and PSgc7 comprised the predominant groups. We then examined 86 publicly available E. aerogenes strain genomes and identified an additional seven novel PSgc types, with PSgc10 being the most abundant type. In total, our study identified 15 PSgc types in E. aerogenes, providing the basis for a molecular serotyping scheme. From these results, differing epidemic patterns were identified between strains that were predominant in different regions. Our study highlights the feasibility and reliability of a serotyping system based on PSgc diversity, and for the first time, presents a molecular serotyping system, as well as an antigenic scheme for E. aerogenes, providing the basis for molecular diagnostics and epidemiological surveillance of this important emerging pathogen. PMID:29616012

  19. Establishment of a Molecular Serotyping Scheme and a Multiplexed Luminex-Based Array for Enterobacter aerogenes.

    PubMed

    Guo, Xi; Wang, Min; Wang, Lu; Wang, Yao; Chen, Tingting; Wu, Pan; Chen, Min; Liu, Bin; Feng, Lu

    2018-01-01

    Serotyping based on surface polysaccharide antigens is important for the clinical detection and epidemiological surveillance of pathogens. Polysaccharide gene clusters (PSgcs) are typically responsible for the diversity of bacterial surface polysaccharides. Through whole-genome sequencing and analysis, eight putative PSgc types were identified in 23 Enterobacter aerogenes strains from several geographic areas, allowing us to present the first molecular serotyping system for E. aerogenes . A conventional antigenic scheme was also established and correlated well with the molecular serotyping system that was based on PSgc genetic variation, indicating that PSgc-based molecular typing and immunological serology provide equally valid results. Further, a multiplex Luminex-based array was developed, and a double-blind test was conducted with 97 clinical specimens from Shanghai, China, to validate our array. The results of these analyses indicated that strains containing PSgc4 and PSgc7 comprised the predominant groups. We then examined 86 publicly available E. aerogenes strain genomes and identified an additional seven novel PSgc types, with PSgc10 being the most abundant type. In total, our study identified 15 PSgc types in E. aerogenes , providing the basis for a molecular serotyping scheme. From these results, differing epidemic patterns were identified between strains that were predominant in different regions. Our study highlights the feasibility and reliability of a serotyping system based on PSgc diversity, and for the first time, presents a molecular serotyping system, as well as an antigenic scheme for E. aerogenes , providing the basis for molecular diagnostics and epidemiological surveillance of this important emerging pathogen.

  20. An efficient ribitol-specific dehydrogenase from Enterobacter aerogenes.

    PubMed

    Singh, Ranjitha; Singh, Raushan; Kim, In-Won; Sigdel, Sujan; Kalia, Vipin C; Kang, Yun Chan; Lee, Jung-Kul

    2015-05-01

    An NAD(+)-dependent ribitol dehydrogenase from Enterobacter aerogenes KCTC 2190 (EaRDH) was cloned and successfully expressed in Escherichia coli. The complete 729-bp gene was amplified, cloned, expressed, and subsequently purified in an active soluble form using nickel affinity chromatography. The enzyme had an optimal pH and temperature of 11.0 and 45°C, respectively. Among various polyols, EaRDH exhibited activity only toward ribitol, with Km, Vmax, and kcat/Km values of 10.3mM, 185Umg(-1), and 30.9s(-1)mM(-1), respectively. The enzyme showed strong preference for NAD(+) and displayed no detectable activity with NADP(+). Homology modeling and sequence analysis of EaRDH, along with its biochemical properties, confirmed that EaRDH belongs to the family of NAD(+)-dependent ribitol dehydrogenases, a member of short-chain dehydrogenase/reductase (SCOR) family. EaRDH showed the highest activity and unique substrate specificity among all known RDHs. Homology modeling and docking analysis shed light on the molecular basis of its unusually high activity and substrate specificity. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Clonal spread and accumulation of β-lactam resistance determinants in Enterobacter aerogenes and Enterobacter cloacae complex isolates from infection and colonization in patients at a public hospital in Recife, Pernambuco, Brazil.

    PubMed

    Cabral, Adriane Borges; Maciel, Maria Amélia Vieira; Barros, Josineide Ferreira; Antunes, Marcelo Maranhão; Barbosa de Castro, Célia Maria Machado; Lopes, Ana Catarina Souza

    2017-01-01

    Enterobacter aerogenes and Enterobacter cloacae complex are the two species of this genus most involved in healthcare-associated infections that are ESBL and carbapenemase producers. This study characterized, phenotypically and genotypically, 51 isolates of E. aerogenes and E. cloacae complex originating from infection or colonization in patients admitted to a public hospital in Recife, Pernambuco, Brazil, by antimicrobial susceptibility profile, analysis of β-lactamase genes (blaTEM, blaSHV, blaCTX-M, blaKPC, blaVIM, blaIMP and blaSPM), PCR and DNA sequencing, plasmid profile and ERIC-PCR. In both species, the genes blaTEM, blaCTX-M and blaKPC were detected. The DNA sequencing confirmed the variants blaTEM-1, blaCTX-M-15 and blaKPC-2 in isolates. More than one gene conferring resistance in the isolates, including the detection of the three previously cited genes in strains isolated from infection sites, was observed. The detection of blaCTX-M was more frequent in isolates from infection sites than from colonization. The gene blaKPC predominated in E. cloacae complex isolates obtained from infections; however, in E. aerogenes isolates, it predominated in samples obtained from colonization. A clonal relationship among all of E. aerogenes isolates was detected by ERIC-PCR. The majority of E. cloacae complex isolates presented the same ERIC-PCR pattern. Despite the clonal relation presented by the isolates using ERIC-PCR, different plasmid and resistance profiles and several resistance genes were observed. The clonal dissemination and the accumulation of β-lactam resistance determinants presented by the isolates demonstrated the ability of E. aerogenes and E. cloacae complex, obtained from colonization and infection, to acquire and maintain different resistance genes.

  2. Biodegradation of 2-methylquinoline by Enterobacter aerogenes TJ-D isolated from activated sludge.

    PubMed

    Wang, Lin; Li, Yongmei; Duan, Jingyuan

    2013-07-01

    Bacterial strain Enterobacter aerogenes TJ-D capable of utilizing 2-methylquinoline as the sole carbon and energy source was isolated from acclimated activated sludge under denitrifying conditions. The ability to degrade 2-methylquinoline by E. aerogenes TJ-D was investigated under denitrifying conditions. Under optimal conditions of temperature (35 degrees C) and initial pH 7, 2-methylquinoline of 100 mg/L was degraded within 176 hr. The degradation of 2-methylquinoline by E. aerogenes TJ-D could be well described by the Haldane model (R2 > 0.91). During the degradation period of 2-methylquinoline (initial concentration 100 mg/L), nitrate was almost completely consumed (the removal efficiency was 98.5%), while nitrite remained at low concentration (< 0.62 mg/L) during the whole denitrification period. 1,2,3,4-Tetrahydro-2-methylquinoline, 4-ethyl-benzenamine, N-butyl-benzenamine, N-ethyl-benzenamine and 2,6-diethyl-benzenamine were metabolites produced during the degradation. The degradation pathway of 2-methylquinoline by E. aerogenes TJ-D was proposed. 2-Methylquinoline is initially hydroxylated at C-4 to form 2-methyl-4-hydroxy-quinoline, and then forms 2-methyl-4-quinolinol as a result of tautomerism. Hydrogenation of the heterocyclic ring at positions 2 and 3 produces 2,3-dihydro-2-methyl-4-quinolinol. The carbon-carbon bond at position 2 and 3 in the heterocyclic ring may cleave and form 2-ethyl-N-ethyl-benzenamine. Tautomerism may result in the formation of 2,6-diethyl-benzenamine and N-butyl-benzenamine. 4-Ethyl-benzenamine and N-ethyl-benzenamine were produced as a result of losing one ethyl group from the above molecules.

  3. The purification, crystallization and preliminary diffraction of a glycerophosphodiesterase from Enterobacter aerogenes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, Colin J.; Carr, Paul D.; Kim, Hye-Kyung

    2006-07-01

    The metallo-glycerophosphodiesterase from E. aerogenes (GpdQ) has been cloned, expressed in E. coli and purified. Initial screening of crystallization conditions for this enzyme resulted in the identification of needles from one condition in a sodium malonate grid screen. Removal of the metals from the enzyme and subsequent optimization of these conditions led to crystals. The metallo-glycerophosphodiesterase from Enterobacter aerogenes (GpdQ) has been cloned, expressed in Escherichia coli and purified. Initial screening of crystallization conditions for this enzyme resulted in the identification of needles from one condition in a sodium malonate grid screen. Removal of the metals from the enzyme andmore » subsequent optimization of these conditions led to crystals that diffracted to 2.9 Å and belonged to space group P2{sub 1}3, with unit-cell parameter a = 164.1 Å. Self-rotation function analysis and V{sub M} calculations indicated that the asymmetric unit contains two copies of the monomeric enzyme, corresponding to a solvent content of 79%. It is intended to determine the structure of this protein utilizing SAD phasing from transition metals or molecular replacement.« less

  4. Porin Deficiency in Carbapenem-Resistant Enterobacter aerogenes Strains.

    PubMed

    Hao, Min; Ye, Meiping; Shen, Zhen; Hu, Fupin; Yang, Yang; Wu, Shi; Xu, Xiaogang; Zhu, Sihui; Qin, Xiaohua; Wang, Minggui

    2018-03-13

    The more frequent reports of carbapenem-resistant Enterobacteriaceae have raised the alarm for public health. Apart from the production of carbapenemases, deficiency (decreased or loss of expression) of outer membrane proteins (OMPs) has been proposed as a potentially important mechanism of carbapenem resistance. The aim of the present study was to evaluate the contribution of the major OMPs to carbapenem resistance in Enterobacter aerogenes (CREA) isolates and also investigate the role of small RNAs (sRNAs) in inducing porin-associated permeability defects. The differential expression of OMPs was analyzed in four clinical CREA isolates. omp35 and omp36 genes were further investigated by whole-genome sequencing, induction of meropenem resistance, sRNA overexpression, OMP complementation assays, and reverse transcription-quantitative PCR. All four isolates examined were deficient in omp35 and omp36. Functional restoration of these two genes confirmed their contribution to carbapenem resistance. The meropenem induction assay further revealed that porin deficiency plays a role in carbapenem resistance under antibiotic selection pressure. Single-point mutations in omp36 leading to premature stop codons were detected in two of the isolates. Elevated expression levels of the sRNAs micF and micC were detected in the other two porin-deficient isolates, which were predicted to be potential porin regulators from whole-genome sequencing. Overexpression of micF and micC downregulated the expression of Omp35 and Omp36, respectively. Porin deficiency plays an important role in carbapenem resistance among clinical E. aerogenes isolates under regulation of the sRNAs micC and micF. Furthermore, overexpression of micC and micF had a minor to no impact on carbapenem minimum inhibitory concentrations, and thus, the regulatory mechanism is likely to be complex.

  5. An adaptive response of Enterobacter aerogenes to imipenem: regulation of porin balance in clinical isolates.

    PubMed

    Lavigne, Jean-Philippe; Sotto, Albert; Nicolas-Chanoine, Marie-Hélène; Bouziges, Nicole; Pagès, Jean-Marie; Davin-Regli, Anne

    2013-02-01

    Imipenem (IPM) is a carbapenem antibiotic frequently used in severe hospital infections. Several reports have mentioned the emergence of resistant isolates exhibiting membrane modifications. A study was conducted between September 2005 and August 2007 to survey infections due to Enterobacter aerogenes in patients hospitalised in a French university hospital. Resistant E. aerogenes clinical isolates obtained from patients treated with IPM and collected during the 3 months following initiation of treatment were phenotypically and molecularly characterised for β-lactamases, efflux pumps activity and outer membrane proteins. Among the 339 patients infected with E. aerogenes during the study period, 41 isolates (12.1%) were resistant to extended-spectrum cephalosporins and 17 patients (5.0%) were treated with IPM. The isolates from these 17 patients presented TEM-24 and basal efflux expression. Following IPM treatment, an IPM-intermediate-susceptible (IPM-I) isolate emerged in 11 patients and an IPM-resistant (IPM-R) isolate in 6 patients. A change in the porin balance (Omp35/Omp36) was observed in IPM-I isolates exhibiting ertapenem resistance. Finally, a porin deficiency (Omp35 and Omp36 absence) was detected in IPM-R isolates associated with efflux pump expression. This study indicates that the alteration in porin expression, including the shift of porin expression and lack of porins, contribute to the E. aerogenes adaptive response to IPM treatment. Copyright © 2012 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  6. Extended-Spectrum β-lactamase (ESBL) producing Enterobacter aerogenes phenotypically misidentified as Klebsiella pneumoniae or K. terrigena

    PubMed Central

    Claeys, Geert; De Baere, Thierry; Wauters, Georges; Vandecandelaere, Patricia; Verschraegen, Gerda; Muylaert, An; Vaneechoutte, Mario

    2004-01-01

    Background Enterobacter aerogenes and Klebsiella pneumoniae are common isolates in clinical microbiology and important as producers of extended spectrum β-lactamases (ESBL). The discrimination between both species, which is routinely based on biochemical characteristics, is generally accepted to be straightforward. Here we report that genotypically unrelated strains of E. aerogenes can be misidentified as K. pneumoniae by routine laboratories using standard biochemical identification and using identification automates. Results Ten clinical isolates, identified as K. pneumoniae or K. terrigena with the routinely used biochemical tests and with API-20E, were identified as E. aerogenes by tDNA-PCR – an identification that was confirmed by 16S rRNA gene sequencing for five of these isolates. Misidentification also occurred when using the automated identification systems Vitek 2 and Phoenix, and was due to delayed positivity for ornithine decarboxylase and motility. Subculture and prolonged incubation resulted in positive results for ornithine decarboxylase and for motility. It could be shown by RAPD-analysis that the E. aerogenes strains belonged to different genotypes. Conclusions Clinical E. aerogenes isolates can be easily misidentified as Klebsiella due to delayed positivity for ornithine decarboxylase and motility. The phenomenon may be widespread, since it was shown to occur among genotypically unrelated strains from different hospitals and different isolation dates. A useful clue for correct identification is the presence of an inducible β-lactamase, which is highly unusual for K. pneumoniae. In several instances, the use of genotypic techniques like tDNA-PCR may circumvent problems of phenotypic identification. PMID:15619329

  7. Plasmid-Mediated Resistance to Expanded-Spectrum Cephalosporins among Enterobacter aerogenes Strains

    PubMed Central

    Pitout, Johann D. D.; Thomson, Kenneth S.; Hanson, Nancy D.; Ehrhardt, Anton F.; Coudron, Philip; Sanders, Christine C.

    1998-01-01

    Resistance to expanded-spectrum cephalosporins commonly develops in Enterobacter aerogenes during therapy due to selection of mutants producing high levels of the chromosomal Bush group 1 β-lactamase. Recently, resistant strains producing plasmid-mediated extended-spectrum β-lactamases (ESBLs) have been isolated as well. A study was designed to investigate ESBL production among 31 clinical isolates of E. aerogenes from Richmond, Va., with decreased susceptibility to expanded-spectrum cephalosporins and a positive double-disk potentiation test. Antibiotic susceptibility was determined by standard disk diffusion and agar dilution procedures. β-Lactamases were investigated by an isoelectric focusing overlay technique which simultaneously determined isoelectric points (pIs) and substrate or inhibitor profiles. Decreased susceptibility to cefotaxime, ceftazidime, and aztreonam (MIC range, 1 to 64 μg/ml) was detected and associated with resistance to gentamicin and trimethoprim-sulfamethoxazole. All strains produced an inducible Bush group 1 β-lactamase (pI 8.3). Twenty-nine of the 31 isolates also produced an enzyme similar to SHV-4 (pI 7.8), while 1 isolate each produced an enzyme similar to SHV-3 (pI 6.9) and to SHV-5 (pI 8.2). The three different SHV-derived ESBLs were transferred by transconjugation to Escherichia coli C600N and amplified by PCR. Plasmid profiles of the clinical isolates showed a variety of different large plasmids. Because of the linkage of resistance to aminoglycosides and trimethoprim-sulfamethoxazole with ESBL production, it is possible that the usage of these drugs was responsible for selecting plasmid-mediated resistance to extended-spectrum cephalosporins in E. aerogenes. Furthermore, it is important that strains such as these be recognized, because they can be responsible for institutional spread of resistance genes. PMID:9517938

  8. Failure of the MicroScan WalkAway System To Detect Heteroresistance to Carbapenems in a Patient with Enterobacter aerogenes Bacteremia▿

    PubMed Central

    Gordon, N. C.; Wareham, D. W.

    2009-01-01

    We report the failure of the automated MicroScan WalkAway system to detect carbapenem heteroresistance in Enterobacter aerogenes. Carbapenem resistance has become an increasing concern in recent years, and robust surveillance is required to prevent dissemination of resistant strains. Reliance on automated systems may delay the detection of emerging resistance. PMID:19641071

  9. Isolation of KPC 3-producing Enterobacter aerogenes in a patient colonized by MDR Klebsiella pneumoniae.

    PubMed

    Venditti, Carolina; Villa, Laura; Capone, Alessandro; Fortini, Daniela; D'Arezzo, Silvia; Nisii, Carla; Bordi, Eugenio; Puro, Vincenzo; Antonini, Mario; Carattoli, Alessandra; Cataldo, Maria Adriana; Petrosillo, Nicola; Di Caro, Antonino

    2016-10-01

    We describe the interspecies transmission of the plasmid-mediated blaKPC-3 gene, which confers carbapenem resistance, between clinically relevant gram-negative bacteria in a single patient. A KPC-3 producing Enterobacter aerogenes was isolated from a hospitalized patient previously colonized and then infected by a Klebsiella pneumoniae ST101 carrying the blaKPC-3 gene. The strains showed identical plasmids. Since intense horizontal exchanges among bacteria can occur in the gut, clinicians should be aware that patients colonized by carbapenem-resistant K. pneumoniae could become carriers of other carbapenem-resistant Enterobacteriaceae.

  10. Metabolic engineering of Enterobacter aerogenes for 2,3-butanediol production from sugarcane bagasse hydrolysate.

    PubMed

    Um, Jaeyong; Kim, Duck Gyun; Jung, Moo-Young; Saratale, Ganesh D; Oh, Min-Kyu

    2017-12-01

    The pathway engineering of Enterobacter aerogenes was attempted to improve its production capability of 2,3-butanediol from lignocellulosic biomass. In the medium containing glucose and xylose mixture as carbon sources, the gene deletion of pflB improved 2,3-butanediol carbon yield by 40%, while the deletion of ptsG increased xylose consumption rate significantly, improving the productivity at 12 hr by 70%. The constructed strain, EMY-22-galP, overexpressing glucose transporter (galP) in the triple gene knockout E. aerogenes, ldhA, pflB, and ptsG, provided the highest 2,3-butanediol titer and yield at 12 hr flask cultivation. Sugarcane bagasse was pretreated with green liquor, a solution containing Na 2 CO 3 and Na 2 SO 3 and was hydrolyzed by enzymes. The resulting hydrolysate was used as a carbon source for 2,3-butanediol production. After 72 hr in fermentation, the yield of 0.395g/g sugar was achieved, suggesting an economic production of 2,3-butanediol was possible from lignocellulosic biomass with the metabolically engineered strain. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Isolation of Enterobacter aerogenes carrying blaTEM-1 and blaKPC-3 genes recovered from a hospital Intensive Care Unit.

    PubMed

    Pulcrano, Giovanna; Pignanelli, Salvatore; Vollaro, Adriana; Esposito, Matilde; Iula, Vita Dora; Roscetto, Emanuela; Soriano, Amata Amy; Catania, Maria Rosaria

    2016-06-01

    Enterobacter aerogenes has recently emerged as an important hospital pathogen. In this study, we showed the emergence of E. aerogenes isolates carrying the blaKPC gene in patients colonized by carbapenem-resistant Klebsiella pneumoniae strains. Two multiresistant E. aerogenes isolates were recovered from bronchial aspirates of two patients hospitalized in the Intensive Care Unit at the "Santa Maria della Scaletta" Hospital, Imola. The antimicrobial susceptibility test showed the high resistance to carbapenems and double-disk synergy test confirmed the phenotype of KPC and AmpC production. Other investigation revealed that ESBL and blaKPC genes were carried on the conjugative pKpQIL plasmid. This is a relevant report in Italy that describes a nosocomial infection due to the production of KPC beta-lactamases by an E. aerogenes isolate in patients previously colonized by K. pneumoniae carbapenem-resistant. In conclusion, it's necessary a continuous monitoring of multidrug-resistant strains for the detection of any KPC-producing bacteria that could expand the circulation of carbapenem-resistant pathogens. © 2016 APMIS. Published by John Wiley & Sons Ltd.

  12. Polygalacturonase production by calcium alginate immobilized Enterobacter aerogenes NBO2 cells.

    PubMed

    Darah, I; Nisha, M; Lim, Sheh-Hong

    2015-03-01

    Bacterial cells of Enterobacter aerogenes NBO2 were entrapped in calcium alginate beads in order to enhance polygalacturonase production compared to free cells. The optimized condition of 5 % (w/v) sodium alginate concentration, agitation speed of 250 rpm, and 15 beads of calcium alginate with inoculum size of 4 % (v/v; 5.4 × 10(7) cells/ml) produced 23.48 U/mL of polygalacturonase compared to free cells of 18.54 U/ml. There was about 26.6 % increment in polygalaturonase production. However, in this study, there was 296.6 % of increment in polygalacturonase production after improvement parameters compared to before improvement parameters of calcium alginate bead immobilization cells (5.92 U/ml). This research has indicated that optimized physical parameters of calcium alginate bead immobilization cells have significantly enhanced the production of polygalacturonase.

  13. Enterobacter aerogenes ZDY01 Attenuates Choline-Induced Trimethylamine N-Oxide Levels by Remodeling Gut Microbiota in Mice.

    PubMed

    Qiu, Liang; Yang, Dong; Tao, Xueying; Yu, Jun; Xiong, Hua; Wei, Hua

    2017-08-28

    Trimethylamine N -oxide (TMAO), which is transformed from trimethylamine (TMA) through hepatic flavin-containing monooxygenases, can promote atherosclerosis. TMA is produced from dietary carnitine, phosphatidylcholine, and choline via the gut microbes. Previous works have shown that some small molecules, such as allicin, resveratrol, and 3,3-dimethyl-1-butanol, are used to reduce circulating TMAO levels. However, the use of bacteria as an effective therapy to reduce TMAO levels has not been reported. In the present study, 82 isolates were screened from healthy Chinese fecal samples on a basal salt medium supplemented with TMA as the sole carbon source. The isolates belonged to the family Enterobacteriaceae, particularly to genera Klebsiella, Escherichia, Cronobacter , and Enterobacter . Serum TMAO and cecal TMA levels were significantly decreased in choline-fed mice treated with Enterobacter aerogenes ZDY01 compared with those in choline-fed mice treated with phosphate-buffered saline. The proportions of Bacteroidales family S24-7 were significantly increased, whereas the proportions of Helicobacteraceae and Prevotellaceae were significantly decreased through the administration of E. aerogenes ZDY01. Results indicated that the use of probiotics to act directly on the TMA in the gut might be an alternative approach to reduce serum TMAO levels and to prevent the development of atherosclerosis and "fish odor syndrome" through the effect of TMA on the gut microbiota.

  14. Evaluation of the Rapid Polymyxin NP Test for Polymyxin B Resistance Detection Using Enterobacter cloacae and Enterobacter aerogenes Isolates.

    PubMed

    Simar, Shelby; Sibley, Diane; Ashcraft, Deborah; Pankey, George

    2017-10-01

    Polymyxin resistance is an increasing problem worldwide. Currently, determining susceptibility to polymyxins is problematic and lengthy. Polymyxins diffuse poorly into agar, potentially giving inaccurate disk diffusion and Etest results. A rapid screening test (2 h) for the detection of polymyxin resistance in Enterobacteriaceae , developed by P. Nordmann and L. Poirel (rapid polymyxin NP test) in 2016, detects glucose metabolization in the presence of polymyxin E (PE) and PB via pH-induced color change. The sensitivity and specificity were 99.3 and 95.4%, respectively, with results obtained in ≤2 h. Our goal was to evaluate this test using PB against larger numbers of Enterobacter A total of 143 nonduplicate Enterobacter isolates (102 E. cloacae complex, 41 E. aerogenes ) were tested, including 136 collected from Ochsner Health System patients from March to May 2016 and 7 previously determined PB-resistant E. cloacae isolates from JMI Laboratories. MICs were determined via broth microdilution. For the rapid polymyxin NP test, a color change from orange to yellow is positive; a weak/no color change is deemed negative after 4 h. Of 143 Enterobacter isolates, 25 were determined to be PB resistant by broth microdilution (MIC > 2 μg/ml), including all 7 JMI isolates. Of these 25, 7 were positive by the rapid polymyxin NP test (included 3/7 JMI isolates). All 118 isolates determined to be PB susceptible by broth microdilution were NP test negative. The sensitivity and specificity for the rapid polymyxin NP test were 25 and 100%, respectively, compared to broth microdilution. Although the rapid polymyxin NP test is a much faster method (2 to 4 h) for polymyxin resistance determination compared to broth microdilution (16 to 20 h), our study indicates that it may be subject to limitations when testing Enterobacter . Copyright © 2017 American Society for Microbiology.

  15. Changes in ciprofloxacin resistance levels in Enterobacter aerogenes isolates associated with variable expression of the aac(6')-Ib-cr gene.

    PubMed

    Ruiz, Elena; Ocampo-Sosa, Alain A; Alcoba-Flórez, Julia; Román, Elena; Arlet, Guillaume; Torres, Carmen; Martínez-Martínez, Luis

    2012-02-01

    Two closely related Enterobacter aerogenes isolates presented a new identical aac(6')-Ib-cr genetic environment, including IS26. One isolate showed lower MICs of ciprofloxacin, norfloxacin, tobramycin, and amikacin and decreased expression of aac(6')-Ib-cr, which might be related to a 12-bp deletion causing a displacement of the -10 box upstream of the aac(6')-Ib-cr gene.

  16. Study of the role of anaerobic metabolism in succinate production by Enterobacter aerogenes.

    PubMed

    Tajima, Yoshinori; Kaida, Kenichi; Hayakawa, Atsushi; Fukui, Keita; Nishio, Yousuke; Hashiguchi, Kenichi; Fudou, Ryosuke; Matsui, Kazuhiko; Usuda, Yoshihiro; Sode, Koji

    2014-09-01

    Succinate is a core biochemical building block; optimizing succinate production from biomass by microbial fermentation is a focus of basic and applied biotechnology research. Lowering pH in anaerobic succinate fermentation culture is a cost-effective and environmentally friendly approach to reducing the use of sub-raw materials such as alkali, which are needed for neutralization. To evaluate the potential of bacteria-based succinate fermentation under weak acidic (pH <6.2) and anaerobic conditions, we characterized the anaerobic metabolism of Enterobacter aerogenes AJ110637, which rapidly assimilates glucose at pH 5.0. Based on the profile of anaerobic products, we constructed single-gene knockout mutants to eliminate the main anaerobic metabolic pathways involved in NADH re-oxidation. These single-gene knockout studies showed that the ethanol synthesis pathway serves as the dominant NADH re-oxidation pathway in this organism. To generate a metabolically engineered strain for succinate production, we eliminated ethanol formation and introduced a heterogeneous carboxylation enzyme, yielding E. aerogenes strain ΔadhE/PCK. The strain produced succinate from glucose with a 60.5% yield (grams of succinate produced per gram of glucose consumed) at pH <6.2 and anaerobic conditions. Thus, we showed the potential of bacteria-based succinate fermentation under weak acidic conditions.

  17. Bioconversion of glycerol to ethanol by a mutant Enterobacter aerogenes

    PubMed Central

    2012-01-01

    The main objective of this research is to develop, by adaptive evolution, mutant strains of Enterobacter aerogenes ATCC 13048 that are capable of withstanding high glycerol concentration as well as resisting ethanol-inhibition. The mutant will be used for high ethanol fermentation from glycerol feedstock. Ethanol production from pure (P-) and recovered (R-) glycerol using the stock was evaluated. A six-tube-subculture-generations method was used for developing the mutant. This involved subculturing the organism six consecutive times in tubes containing the same glycerol and ethanol concentrations at the same culture conditions. Then, the glycerol and/or ethanol concentration was increased and the six subculture generations were repeated. A strain capable of growing in 200 g/L glycerol and 30 g/L ethanol was obtained. The ability of this mutant, vis-à-vis the original strain, in utilizing glycerol in a high glycerol containing medium, with the concomitant ethanol yield, was assessed. Tryptic soy broth without dextrose (TSB) was used as the fermentation medium. Fermentation products were analyzed using HPLC. In a 20 g/L glycerol TSB, E. aerogenes ATCC 13048 converted 18.5 g/L P-glycerol and 17.8 g/L R-glycerol into 12 and 12.8 g/L ethanol, respectively. In a 50 g/L P-glycerol TSB, it utilized only 15.6 g/L glycerol; but the new strain used up 39 g/L, yielding 20 g/L ethanol after 120 h, an equivalence of 1.02 mol ethanol/mol-glycerol. This is the highest ethanol yield reported from glycerol bioconversion. The result of this P-glycerol fermentation can be duplicated using the R-glycerol from biodiesel production. PMID:22455837

  18. Co-fermentation of carbon sources by Enterobacter aerogenes ATCC 29007 to enhance the production of bioethanol.

    PubMed

    Thapa, Laxmi Prasad; Lee, Sang Jun; Yang, Xiao Guang; Yoo, Hah Young; Kim, Sung Bong; Park, Chulhwan; Kim, Seung Wook

    2014-06-01

    We investigated the enhancement of bioethanol production in Enterobacter aerogenes ATCC 29007 by co-fermentation of carbon sources such as glycerol, glucose, galactose, sucrose, fructose, xylose, starch, mannitol and citric acid. Biofuel production increases with increasing growth rate of microorganisms; that is why we investigated the optimal growth rate of E. aerogenes ATCC 29007, using mixtures of different carbon sources with glycerol. E. aerogenes ATCC 29007 was incubated in media containing each carbon source and glycerol; growth rate and bioethanol production improved in all cases compared to those in medium containing glycerol alone. The growth rate and bioethanol production were highest with mannitol. Fermentation was carried out at 37 °C for 18 h, pH 7, using 50 mL defined production medium in 100 mL serum bottles at 200 rpm. Bioethanol production under optimized conditions in medium containing 16 g/L mannitol and 20 g/L glycerol increased sixfold (32.10 g/L) than that containing glycerol alone (5.23 g/L) as the carbon source in anaerobic conditions. Similarly, bioethanol production using free cells in continuous co-fermentation also improved (27.28 g/L) when 90.37 % of 16 g/L mannitol and 67.15 % of 20 g/L glycerol were used. Although naturally existing or engineered microorganisms can ferment mixed sugars sequentially, the preferential utilization of glucose to non-glucose sugars often results in lower overall yield and productivity of ethanol. Here, we present new findings in E. aerogenes ATCC 29007 that can be used to improve bioethanol production by simultaneous co-fermentation of glycerol and mannitol.

  19. Draft genome sequence of a multidrug-resistant KPC-2-producing Enterobacter aerogenes isolated from a hospitalised patient in Brazil.

    PubMed

    Moura, Quézia; Fernandes, Miriam R; Cerdeira, Louise; Nhambe, Lúcia F; Ienne, Susan; Souza, Tiago A; Lincopan, Nilton

    2017-09-01

    Multidrug-resistant (MDR) Enterobacter aerogenes strains are frequently associated with nosocomial infections and high mortality rates, representing a serious public health problem. The aim of this study was to present the draft genome sequence of a MDR KPC-2-producing E. aerogenes isolated from a perineal swab of a hospitalised patient in Brazil. Genomic DNA was sequenced using an Illumina MiSeq platform. De novo genome assembly was carried out using the A5-Miseq pipeline, and whole-genome sequence analysis was performed using tools from the Center for Genomic Epidemiology. The strain harboured resistance genes to β-lactams, aminoglycosides, sulphonamides and trimethoprim in addition to genes encoding multidrug efflux system proteins, a quaternary ammonium transporter and heavy metal efflux system proteins. In addition, the strain harboured genes encoding diverse virulence factors. These data might allow a better understanding of the genetic basis of antimicrobial resistance and virulence in E. aerogenes strains. Copyright © 2017 International Society for Chemotherapy of Infection and Cancer. Published by Elsevier Ltd. All rights reserved.

  20. Genetic characterization of an extended-spectrum AmpC cephalosporinase with hydrolysing activity against fourth-generation cephalosporins in a clinical isolate of Enterobacter aerogenes selected in vivo.

    PubMed

    Rodríguez-Martínez, Jose M; Fernández-Echauri, Pedro; Fernández-Cuenca, Felipe; Diaz de Alba, Paula; Briales, Alejandra; Pascual, Alvaro

    2012-01-01

    Extended-spectrum AmpC cephalosporinases (ESACs) have been reported in Enterobacteriaceae, Pseudomonas aeruginosa and Acinetobacter baumannii. Here, we characterize a new AmpC variant presenting a broadened substrate activity towards fourth-generation cephalosporins, selected in vivo following cefepime treatment for Enterobacter aerogenes. Two consecutive clonally related isolates of E. aerogenes were evaluated. Screening for ESAC production was performed using plates containing 200 mg/L cloxacillin. MICs were determined by microdilution (CLSI guidelines). bla(AmpC) genes were cloned into a pCR-Blunt II-TOPO vector and expressed in Escherichia coli. The ampC genes were cloned into vector pGEX-6P-1 for protein purification. Isolate Ea595 was resistant to two fourth-generation cephalosporins, cefepime and cefpirome; using plates containing cloxacillin, susceptibility to ceftazidime and cefepime was restored, suggesting overproduction of the ESAC β-lactamase. Sequencing identified a new AmpC β-lactamase variant presenting one amino acid substitution, Val291Gly, inside the H-10 helix. Recombinant plasmids harbouring this ESAC β-lactamase conferred a broadened resistance profile to cefepime and cefpirome, with resistance levels increasing from 16- to 32-fold in E. coli. AmpC-Ea595 hydrolysed ceftazidime, cefepime and cefpirome at high levels, presenting a lower K(m) and enabling us to classify the enzyme as an ESAC. Homology modelling suggested that the size of the active site could have increased. We characterized an ESAC β-lactamase selected in vivo and conferring a high level of resistance to fourth-generation cephalosporins in E. aerogenes. The broadened spectrum was caused by a new modification to the H-10 helix, which modified the active site.

  1. Identification and evolution of drug efflux pump in clinical Enterobacter aerogenes strains isolated in 1995 and 2003.

    PubMed

    Chevalier, Jacqueline; Mulfinger, Céline; Garnotel, Eric; Nicolas, Pierre; Davin-Régli, Anne; Pagès, Jean-Marie

    2008-09-12

    The high mortality impact of infectious diseases will increase due to accelerated evolution of antibiotic resistance in important human pathogens. Development of antibiotic resistance is a evolutionary process inducing the erosion of the effectiveness of our arsenal of antibiotics. Resistance is not necessarily limited to a single class of antibacterial agents but may affect many unrelated compounds; this is termed 'multidrug resistance' (MDR). The major mechanism of MDR is the active expulsion of drugs by bacterial pumps; the treatment of gram negative bacterial infections is compromised due to resistance mechanisms including the expression of efflux pumps that actively expel various usual antibiotics (beta-lactams, quinolones, ...). Enterobacter aerogenes has emerged among Enterobacteriaceae associated hospital infections during the last twenty years due to its faculty of adaptation to antibiotic stresses. Clinical isolates of E. aerogenes belonging to two strain collections isolated in 1995 and 2003 respectively, were screened to assess the involvement of efflux pumps in antibiotic resistance. Drug susceptibility assays were performed on all bacterial isolates and an efflux pump inhibitor (PAbetaN) previously characterized allowed to decipher the role of efflux in the resistance. Accumulation of labelled chloramphenicol was monitored in the presence of an energy poison to determine the involvement of active efflux on the antibiotic intracellular concentrations. The presence of the PAbetaN-susceptible efflux system was also identified in resistant E. aerogenes strains. For the first time a noticeable increase in clinical isolates containing an efflux mechanism susceptible to pump inhibitor is report within an 8 year period. After the emergence of extended spectrum beta-lactamases in E. aerogenes and the recent characterisation of porin mutations in clinical isolates, this study describing an increase in inhibitor-susceptible efflux throws light on a new step in

  2. Identification and Evolution of Drug Efflux Pump in Clinical Enterobacter aerogenes Strains Isolated in 1995 and 2003

    PubMed Central

    Garnotel, Eric; Nicolas, Pierre; Davin-Régli, Anne; Pagès, Jean-Marie

    2008-01-01

    Background The high mortality impact of infectious diseases will increase due to accelerated evolution of antibiotic resistance in important human pathogens. Development of antibiotic resistance is a evolutionary process inducing the erosion of the effectiveness of our arsenal of antibiotics. Resistance is not necessarily limited to a single class of antibacterial agents but may affect many unrelated compounds; this is termed ‘multidrug resistance’ (MDR). The major mechanism of MDR is the active expulsion of drugs by bacterial pumps; the treatment of Gram negative bacterial infections is compromised due to resistance mechanisms including the expression of efflux pumps that actively expel various usual antibiotics (ß-lactams, quinolones, …). Methodology/Principal Findings Enterobacter aerogenes has emerged among Enterobacteriaceae associated hospital infections during the last twenty years due to its faculty of adaptation to antibiotic stresses. Clinical isolates of E. aerogenes belonging to two strain collections isolated in 1995 and 2003 respectively, were screened to assess the involvement of efflux pumps in antibiotic resistance. Drug susceptibility assays were performed on all bacterial isolates and an efflux pump inhibitor (PAßN) previously characterized allowed to decipher the role of efflux in the resistance. Accumulation of labelled chloramphenicol was monitored in the presence of an energy poison to determine the involvement of active efflux on the antibiotic intracellular concentrations. The presence of the PAßN-susceptible efflux system was also identified in resistant E. aerogenes strains. Conclusions/Significance For the first time a noticeable increase in clinical isolates containing an efflux mechanism susceptible to pump inhibitor is report within an 8 year period. After the emergence of extended spectrum ß-lactamases in E. aerogenes and the recent characterisation of porin mutations in clinical isolates, this study describing an increase

  3. Biohydrogen and polyhydroxyalkanoate co-production by Enterobacter aerogenes and Rhodobacter sphaeroides from Calophyllum inophyllum oil cake.

    PubMed

    Arumugam, A; Sandhya, M; Ponnusami, V

    2014-07-01

    The feasibility of coupled biohydrogen and polyhydroxyalkanoate production by Enterobacter aerogenes and Rhodobacter sphaeroides using Calophyllum inophyllum oil cake was studied under dark and photo fermentation conditions. The utilization of a non-edible acidic oil cake (C. inophyllum), and exploitation of a modified minimal salt media led to reduction in the cost of media. Cost of fermentation is reduced by implementation of alternate dark-photo fermentative periods and through the use of a co-culture consisting of a dark fermentative (E. aerogenes) and a photo fermentative (R. sphaeroides) bacterium. The biohydrogen and polyhydroxyalkanoate produced were 7.95 L H2/L media and 10.73 g/L media, respectively, under alternate dark and photo fermentation and were 3.23 L H2/L media and 5.6g/L media, respectively under complete dark fermentation. The characteristics of the oil cake and alternate dark (16 h) and photo (8h) fermentative conditions were found to be supportive in producing high biohydrogen and polyhydroxyalkanoate (PHA) yield. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Enhancing hydrogen production of Enterobacter aerogenes by heterologous expression of hydrogenase genes originated from Synechocystis sp.

    PubMed

    Song, Wenlu; Cheng, Jun; Zhao, Jinfang; Zhang, Chuanxi; Zhou, Junhu; Cen, Kefa

    2016-09-01

    The hydrogenase genes (hoxEFUYH) of Synechocystis sp. PCC 6803 were cloned and heterologously expressed in Enterobacter aerogenes ATCC13408 for the first time in this study, and the hydrogen yield was significantly enhanced using the recombinant strain. A recombinant plasmid containing the gene in-frame with Glutathione-S-Transferase (GST) gene was transformed into E. aerogenes ATCC13408 to produce a GST-fusion protein. SDS-PAGE and western blot analysis confirm the successful expression of the hox genes. The hydrogenase activity of the recombinant strain is 237.6±9.3ml/(g-DW·h), which is 152% higher than the wild strain. The hydrogen yield of the recombinant strain is 298.3ml/g-glucose, which is 88% higher than the wild strain. During hydrogen fermentation, the recombinant strain produces more acetate and butyrate, but less ethanol. This is corresponding to the NADH metabolism in the cell due to the higher hydrogenase activity with the heterologous expression of hox genes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Bioremediation of chromium by novel strains Enterobacter aerogenes T2 and Acinetobacter sp. PD 12 S2.

    PubMed

    Panda, Jigisha; Sarkar, Priyabrata

    2012-06-01

    This study had an objective to identify the most potent chromium-resistant bacteria isolated from tannery effluent and apply them for bioremediation of chromium in tannery effluents. Two such strains (previously characterized and identified by us)--Enterobacter aerogenes (NCBI GenBank USA Accession no. GU265554) and Acinetobacter sp. PD 12 (NCBI GenBank USA Accession no. GU084179)--showed powerful chromium resistivity and bioremediation capabilities among many stains isolated from tannery waste. Parameters such as pH, concentration of hexavalent chromium or Cr (VI), and inoculum volume were varied to observe optimum bioconversion and bioaccumulation of Cr (VI) when the said strains were grown in M9 minimal salt media. E. aerogenes was used to remediate chromium from tannery effluents in a laboratory level experiment. Observation by Scanning Electron Microscope and chromium peak in Energy Dispersive X-ray Spectroscopic microanalysis revealed that E. aerogenes helped remediate a moderate amount of Cr (VI) (8-16 mg L(-1)) over a wide range of pH values at 35-37°C (within 26.05 h). High inoculum percentage of Acinetobacter sp. PD 12 also enabled bioremediation of 8-16 mg L(-1) of Cr (VI) over a wide range of temperature (25-37°C), mainly at pH 7 (within 63.28 h). The experiment with real tannery effluent gave very encouraging results. The strain E. aerogenes can be used in bioremediation of Cr (VI) since it could work in actual environmental conditions with extraordinarily high capacity.

  6. Physiological characterisation of the efflux pump system of antibiotic-susceptible and multidrug-resistant Enterobacter aerogenes.

    PubMed

    Martins, A; Spengler, G; Martins, M; Rodrigues, L; Viveiros, M; Davin-Regli, A; Chevalier, J; Couto, I; Pagès, J M; Amaral, L

    2010-10-01

    Enterobacter aerogenes predominates amongst Enterobacteriaceae species that are increasingly reported as producers of extended-spectrum beta-lactamases. Although this mechanism of resistance to beta-lactams is important, other mechanisms bestowing a multidrug-resistant (MDR) phenotype in this species are now well documented. Amongst these mechanisms is the overexpression of efflux pumps that extrude structurally unrelated antibiotics prior to their reaching their targets. Interestingly, although knowledge of the genetic background behind efflux pumps is rapidly advancing, few studies assess the physiological nature of the overall efflux pump system of this, or for that matter any other, bacterium. The study reported here evaluates physiologically the efflux pump system of an E. aerogenes ATCC reference as well as two strains whose MDR phenotypes are mediated by overexpressed efflux pumps. The activities of the efflux pumps in these strains are modulated by pH and glucose, although the effects of the latter are essentially restricted to pH 8, suggesting the presence of two general efflux pump systems, i.e. proton-motive force-dependent and ABC transporter types, respectively. Copyright 2010 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  7. Biodegradation of acrylamide by Enterobacter aerogenes isolated from wastewater in Thailand.

    PubMed

    Buranasilp, Kanokhathai; Charoenpanich, Jittima

    2011-01-01

    A widespread use of acrylamide, probably a neurotoxicant and carcinogen, in various industrial processes has led to environmental contamination. Fortunately, some microorganisms are able to derive energy from acrylamide. In the present work, we reported the isolation and characterization of a novel acrylamide-degrading bacterium from domestic wastewater in Chonburi, Thailand. The strain grew well in the presence of acrylamide as 0.5% (W/V), at pH 6.0 to 9.0 and 25 degrees C. Identification based on biochemical characteristics and 16S rRNA gene sequence identified the strain as Enterobacter aerogenes. Degradation of acrylamide to acrylic acid started in the late logarithmic growth phase as a biomass-dependent pattern. Specificity of cell-free supernatant towards amides completely degraded butyramide and urea and 86% of lactamide. Moderate degradation took place in other amides with that by formamide > benzamide > acetamide > cyanoacetamide > propionamide. No degradation was detected in the reactions of N,N-methylene bisacrylamide, sodium azide, thioacetamide, and iodoacetamide. These results highlighted the potential of this bacterium in the cleanup of acrylamide/amide in the environment.

  8. Formate and Nitrate Utilization in Enterobacter aerogenes for Semi-Anaerobic Production of Isobutanol.

    PubMed

    Jung, Hwi-Min; Kim, Yong Hwan; Oh, Min-Kyu

    2017-11-01

    Anaerobic bioprocessing is preferred because of its economic advantages. However, low productivity and decreased growth of the host strain have limited the use of the anaerobic process. Anaerobic respiration can be applied to anoxic processing using formate and nitrate metabolism to improve the productivity of value-added metabolites. A isobutanol-producing strains is constructed using Enterobacter aerogenes as a host strain by metabolic engineering approaches. The byproduct pathway (ldhA, budA, and pflB) is knocked out, and heterologous keto-acid decarboxylase (kivD) and alcohol dehydrogenase (adhA) are expressed along with the L-valine synthesis pathway (ilvCD and budB). The pyruvate formate-lyase mutant shows decreased growth rates when cultivated in semi-anaerobic conditions, which results in a decline in productivity. When formate and nitrate are supplied in the culture medium, the growth rates and amount of isobutanol production is restored (4.4 g L -1 , 0.23 g g -1 glucose, 0.18 g L -1  h -1 ). To determine the function of the formate and nitrate coupling reaction system, the mutant strains that could not utilize formate or nitrate is contructed. Decreased growth and productivity are observed in the nitrate reductase (narG) mutant strain. This is the first report of engineering isobutanol-producing E. aerogenes to increase strain fitness via augmentation of formate and nitrate metabolism during anaerobic cultivation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Histamine production by Enterobacter aerogenes in sailfish and milkfish at various storage temperatures.

    PubMed

    Tsai, Yung-Hsiang; Chang, Shiou-Chung; Kung, Hsien-Feng; Wei, Cheng-I; Hwang, Deng-Fwu

    2005-08-01

    Enterobacter aerogenes was studied for its growth and ability to promote the formation of total volatile base nitrogen (TVBN) and histamine in sailfish (Istiophorus platypterus) and milkfish (Chanos chanos) stored at various temperatures from -20 to 37 degrees C. The optimal temperature for bacterial growth in both fish species was 25 degrees C, whereas the optimal temperature for histamine formation was 37 degrees C. The two fish species inoculated with E. aerogenes, when not properly stored at low temperatures such as 15 degrees C for 36 h, formed histamine at above the U.S. Food and Drug Administration hazardous guideline level of 50 mg/100 g. Milkfish was a better substrate than sailfish for histamine formation by bacterial histidine decarboxylation at elevated temperatures (> 15 degrees C). Although higher contents of TVBN were detected in the spiked sailfish than milkfish during the same storage time at temperatures above 15 degrees C, the use of the 30-mg/100 g level of TVBN as a determination index for fish quality and decomposition was not a good criterion for assessing potential histamine hazard for both fish species. Bacterial growth was controlled by cold storage of the fish at 4 degrees C or below, but histamine formation was stopped only by frozen storage. Once the frozen fish samples were thawed and stored at 25 degrees C, histamine started to accumulate rapidly and reached levels greater than the hazardous action level in 36 h.

  10. Identification of EayjjPB encoding a dicarboxylate transporter important for succinate production under aerobic and anaerobic conditions in Enterobacter aerogenes.

    PubMed

    Fukui, Keita; Nanatani, Kei; Hara, Yoshihiko; Tokura, Mitsunori; Abe, Keietsu

    2018-05-01

    Enterobacter aerogenes, a gram-negative, rod-shaped bacterium, is an effective producer of succinate from glucose via the reductive tricarboxylic acid cycle under anaerobic conditions. However, to date, succinate-exporter genes have not been identified in E. aerogenes, although succinate exporters have a large impact on fermentative succinate production. Recently, we genetically identified yjjP and yjjB, as genes encoding a succinate transporter in Escherichia coli. Evaluation of the yjjPB homologs in E. aerogenes (EayjjPB genes) showed that succinate accumulation increased from 4.1 g L -1 to 9.1 g L -1 when the EayjjPB genes were expressed under aerobic conditions. Under anaerobic conditions, succinate yield increased from 53% to 60% by EayjjPB expression and decreased to 48% by deletion of EayjjPB. Furthermore, the production levels of fumarate and malate, which are intermediates of the succinate-biosynthesis pathway, were also increased by EayjjPB expression. A complementation assay conducted in Corynebacterium glutamicum strain AJ110655ΔsucE1 demonstrated that both EaYjjP and EaYjjB are required for the restoration of succinate production. Taken together, these results suggest that EaYjjPB function as a dicarboxylate transporter in E. aerogenes and that the products of both genes are required for dicarboxylate transport. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  11. Hospital clonal dissemination of Enterobacter aerogenes producing carbapenemase KPC-2 in a Chinese teaching hospital.

    PubMed

    Qin, Xiaohua; Yang, Yang; Hu, Fupin; Zhu, Demei

    2014-02-01

    Carbapenems are first-line agents for the treatment of serious nosocomial infections caused by multidrug-resistant Enterobacteriaceae. However, resistance to carbapenems has increased dramatically among Enterobacteriaceae in our hospital. In this study, we report clonal dissemination caused by carbapenem-resistant Enterobacter aerogenes (CREA). In 2011, CREA was identified from 12 patients admitted to the neurosurgical ward. All 12 clinical isolates were non-susceptible to cefotaxime, ceftazidime, cefoxitin, ertapenem, imipenem or meropenem. All isolates carried the gene encoding Klebsiella pneumoniae carbapenemase-2 (KPC-2), except for the isolate E4. However, a remarkably lower expression level of the porin OmpF was detected in the non-KPC-2-producing isolate E4 on SDS-PAGE compared with the carbapenem-susceptible isolate. Epidemiological and molecular investigations showed that a single E. aerogenes strain (PFGE type A), including seven KPC-2-producing clinical isolates, was primarily responsible for the first isolation and subsequent dissemination. In a case-control study, we identified risk factors for infection/colonization with CREA. Mechanical ventilation, the changing of sickbeds and previous use of broad-spectrum antibiotics were identified as potential risk factors. Our findings suggest that further studies should focus on judicious use of available antibiotics, implementation of active antibiotic resistance surveillance and strict implementation of infection-control measures to avoid the rapid spread or clonal dissemination caused by carbapenem-resistant Enterobacteriaceae in healthcare facilities.

  12. Epidemiology of Extended-Spectrum β-Lactamase-Producing Enterobacter Isolates in a Spanish Hospital during a 12-Year Period

    PubMed Central

    Cantón, Rafael; Oliver, Antonio; Coque, Teresa M.; Varela, María del Carmen; Pérez-Díaz, José Claudio; Baquero, Fernando

    2002-01-01

    Fifteen Enterobacter clinical isolates (11 Enterobacter cloacae isolates, 3 Enterobacter aerogenes isolates, and 1 Enterobacter gergoviae isolate), representing 0.4% of all Enterobacter isolates recovered in our hospital from 1989 to 2000, were suspected of harboring an extended-spectrum β-lactamase (ESBL). These isolates were recovered from 14 different patients. ESBLs were transferred by conjugation into an Escherichia coli recipient strain. Pulsed-field gel electrophoresis (PFGE) revealed a single clone of E. aerogenes and six different clones of E. cloacae. Four of these E. cloacae clonal types were represented by only one isolate each, but the other two were represented by three and four isolates, respectively. Isoelectric focusing, susceptibility phenotyping, PCR analysis, and sequencing demonstrated the presence of three different ESBLs. The most frequent was the recently characterized CTX-M-10 ESBL, which was found in the E. gergoviae isolate and in all but one of the E. cloacae isolates. The remaining E. cloacae isolate harbored a TEM-27 ESBL, and the three E. aerogenes isolates harbored a TEM-24 ESBL. PFGE revealed that our E. aerogenes strain was indistinguishable from the French TEM-24-producing E. aerogenes endemic clone. Although a low prevalence of ESBL-producing Enterobacter isolates was found in our institution over a 12-year period, a diversity of nonepidemic E. cloacae clones was detected, as was the persistence of the CTX-M-10 β-lactamase. The presence of the TEM-24-producing E. aerogenes French clone in our institution also demonstrates the intercountry dissemination of ESBL-producing isolates. PMID:11923338

  13. Optimization of organosolv pretreatment of rice straw for enhanced biohydrogen production using Enterobacter aerogenes.

    PubMed

    Asadi, Nooshin; Zilouei, Hamid

    2017-03-01

    Ethanol organosolv pretreated rice straw was used to produce biohydrogen using Enterobacter aerogenes. The effect of temperature (120-180°C), residence time (30-90min), and ethanol concentration (45-75%v/v) on the hydrogen yield, residual biomass, and lignin recovery was investigated using RSM. In contrast to the residual solid and lignin recovery, no considerable trend could be observed for the changes in the hydrogen yield at different treatment severities. The maximum hydrogen yield of 19.73mlg -1 straw was obtained at the ethanol concentration of 45%v/v and 180°C for 30min. Furthermore, the potential amount of biohydrogen was estimated in the top ten rice producing nations using the experimental results. Approximately 355.8kt of hydrogen and 11.3Mt of lignin could globally be produced. Based on a Monte Carlo analysis, the production of biohydrogen from rice straw has the lowest risk in China and the highest in Japan. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Biohydrogen and Bioethanol Production from Biodiesel-Based Glycerol by Enterobacter aerogenes in a Continuous Stir Tank Reactor

    PubMed Central

    Jitrwung, Rujira; Yargeau, Viviane

    2015-01-01

    Crude glycerol from the biodiesel manufacturing process is being produced in increasing quantities due to the expanding number of biodiesel plants. It has been previously shown that, in batch mode, semi-anaerobic fermentation of crude glycerol by Enterobacter aerogenes can produce biohydrogen and bioethanol simultaneously. The present study demonstrated the possible scaling-up of this process from small batches performed in small bottles to a 3.6-L continuous stir tank reactor (CSTR). Fresh feed rate, liquid recycling, pH, mixing speed, glycerol concentration, and waste recycling were optimized for biohydrogen and bioethanol production. Results confirmed that E. aerogenes uses small amounts of oxygen under semi-anaerobic conditions for growth before using oxygen from decomposable salts, mainly NH4NO3, under anaerobic condition to produce hydrogen and ethanol. The optimal conditions were determined to be 500 rpm, pH 6.4, 18.5 g/L crude glycerol (15 g/L glycerol) and 33% liquid recycling for a fresh feed rate of 0.44 mL/min. Using these optimized conditions, the process ran at a lower media cost than previous studies, was stable after 7 days without further inoculation and resulted in yields of 0.86 mol H2/mol glycerol and 0.75 mol ethanol/mole glycerol. PMID:25970750

  15. Biohydrogen and Bioethanol Production from Biodiesel-Based Glycerol by Enterobacter aerogenes in a Continuous Stir Tank Reactor.

    PubMed

    Jitrwung, Rujira; Yargeau, Viviane

    2015-05-11

    Crude glycerol from the biodiesel manufacturing process is being produced in increasing quantities due to the expanding number of biodiesel plants. It has been previously shown that, in batch mode, semi-anaerobic fermentation of crude glycerol by Enterobacter aerogenes can produce biohydrogen and bioethanol simultaneously. The present study demonstrated the possible scaling-up of this process from small batches performed in small bottles to a 3.6-L continuous stir tank reactor (CSTR). Fresh feed rate, liquid recycling, pH, mixing speed, glycerol concentration, and waste recycling were optimized for biohydrogen and bioethanol production. Results confirmed that E. aerogenes uses small amounts of oxygen under semi-anaerobic conditions for growth before using oxygen from decomposable salts, mainly NH4NO3, under anaerobic condition to produce hydrogen and ethanol. The optimal conditions were determined to be 500 rpm, pH 6.4, 18.5 g/L crude glycerol (15 g/L glycerol) and 33% liquid recycling for a fresh feed rate of 0.44 mL/min. Using these optimized conditions, the process ran at a lower media cost than previous studies, was stable after 7 days without further inoculation and resulted in yields of 0.86 mol H2/mol glycerol and 0.75 mol ethanol/mole glycerol.

  16. Effect of nanocomposite packaging containing ZnO on growth of Bacillus subtilis and Enterobacter aerogenes.

    PubMed

    Esmailzadeh, Hakimeh; Sangpour, Parvaneh; Shahraz, Farzaneh; Hejazi, Jalal; Khaksar, Ramin

    2016-01-01

    Recent advances in nanotechnology have opened new windows in active food packaging. Nano-sized ZnO is an inexpensive material with potential antimicrobial properties. The aim of the present study is to evaluate the antibacterial effect of low density Polyethylene (LDPE) containing ZnO nanoparticles on Bacillus subtilis and Enterobacter aerogenes. ZnO nanoparticles have been synthesized by facil molten salt method and have been characterized by X-ray diffraction (XRD), and scanning electron microscopy (SEM). Nanocomposite films containing 2 and 4 wt.% ZnO nanoparticles were prepared by melt mixing in a twin-screw extruder. The growth of both microorganisms has decreased in the presence of ZnO containing nanocomposites compared with controls. Nanocomposites with 4 wt.% ZnO nanoparticles had stronger antibacterial effect against both bacteria in comparison with the 2 wt.% ZnO containing nanocomposites. B. subtilis as Gram-positive bacteria were more sensitive to ZnO containing nanocomposite films compared with E. aerogenes as Gram-negative bacteria. There were no significant differences between the migration of Zn ions from 2 and 4 wt.% ZnO containing nanocomposites and the released Zn ions were not significantly increased in both groups after 14 days compared with the first. Regarding the considerable antibacterial effects of ZnO nanoparticles, their application in active food packaging can be a suitable solution for extending the shelf life of food. Copyright © 2015. Published by Elsevier B.V.

  17. Effect of crude glycerol-derived inhibitors on ethanol production by Enterobacter aerogenes.

    PubMed

    Lee, Sang Jun; Kim, Sung Bong; Kang, Seong Woo; Han, Sung Ok; Park, Chulhwan; Kim, Seung Wook

    2012-01-01

    In this study, ethanol production from pure and crude glycerol using Enterobacter aerogenes ATCC 29007 was evaluated under anaerobic culture conditions. Inhibitory effects of substrate concentrations, pH, and salt concentrations were investigated based on crude glycerol components. Ethanol production was performed with pure glycerol concentrations ranging from 5 to 30 g/L to evaluate the effects of substrate concentration and osmotic pressure. The consumed glycerol was 5-14.33 g/L, and the yield of ethanol was higher than 0.75 mol ethanol/mol glycerol after 24 h of cultivation. To evaluate the inhibitory effects of salts (NaCl and KCl), experiments were performed with 0-20 g/L of each salt. Inhibitory effects of salts were strongest at high salt concentrations. The inhibitory effect of pH was performed in the pH range 4-10, and cell growth and ethanol production were highest at pH 5-6. Also, ethanol production was slightly inhibited at low concentration of crude glycerol comparison with pure glycerol. However, significant inhibitory effects were not observed at 1.5 and 2% crude glycerol which showed higher ethanol production compared to pure glycerol.

  18. Alleviation of carbon catabolite repression in Enterobacter aerogenes for efficient utilization of sugarcane molasses for 2,3-butanediol production.

    PubMed

    Jung, Moo-Young; Jung, Hwi-Min; Lee, Jinwon; Oh, Min-Kyu

    2015-01-01

    Due to its cost-effectiveness and rich sugar composition, sugarcane molasses is considered to be a promising carbon source for biorefinery. However, the sugar mixture in sugarcane molasses is not consumed as efficiently as glucose in microbial fermentation due to complex interactions among their utilizing pathways, such as carbon catabolite repression (CCR). In this study, 2,3-butanediol-producing Enterobacter aerogenes was engineered to alleviate CCR and improve sugar utilization by modulating its carbon preference. The gene encoding catabolite repressor/activator (Cra) was deleted in the genome of E. aerogenes to increase the fructose consumption rate. However, the deletion mutation repressed sucrose utilization, resulting in the accumulation of sucrose in the fermentation medium. Cra regulation on expression of the scrAB operon involved in sucrose catabolism was verified by reverse transcription and real-time PCR, and the efficiency of sucrose utilization was restored by disrupting the scrR gene and overexpressing the scrAB operon. In addition, overexpression of the ptsG gene involved in glucose utilization enhanced the glucose preference among mixed sugars, which relieved glucose accumulation in fed-batch fermentation. In fed-batch fermentation using sugarcane molasses, the maximum titer of 2,3-butanediol production by the mutant reached 140.0 g/L at 54 h, which was by far the highest titer of 2,3-butanediol with E. aerogenes achieved through genetic engineering. We have developed genetically engineered E. aerogenes as a 2,3-butanediol producer that efficiently utilizes sugarcane molasses. The fermentation efficiency was dramatically improved by the alleviation of CCR and modulation of carbon preference. These results offer a metabolic engineering approach for achieving highly efficient utilization of mixed sugars for the biorefinery industry.

  19. Impact of an energy-conserving strategy on succinate production under weak acidic and anaerobic conditions in Enterobacter aerogenes.

    PubMed

    Tajima, Yoshinori; Yamamoto, Yoko; Fukui, Keita; Nishio, Yousuke; Hashiguchi, Kenichi; Usuda, Yoshihiro; Sode, Koji

    2015-06-11

    Succinate is an important C4 building block chemical, and its production via fermentative processes in bacteria has many practical applications in the biotechnology field. One of the major goals of optimizing the bacterium-based succinate production process is to lower the culture pH from the current neutral conditions, as this would reduce total production costs. In our previous studies, we selected Enterobacter aerogenes, a rapid glucose assimilator at pH 5.0, in order to construct a metabolically engineered strain that could produce succinate under weakly acidic conditions. This engineered strain produced succinate from glucose with a 72.7% (g/g) yield at pH 5.7, with a volumetric productivity of 0.23 g/L/h. Although this demonstrates proof-of-concept that bacterium-based succinate fermentation can be improved under weakly acidic conditions, several parameters still required further optimization. In this study, we genetically modified an E. aerogenes strain previously developed in our laboratory in order to increase the production of ATP during succinate synthesis, as we inferred that this would positively impact succinate biosynthesis. This led to the development of the ES08ΔptsG strain, which contains the following modifications: chromosomally expressed Actinobacillus succinogenes phosphoenolpyruvate carboxykinase, enhanced fumarate reductase, inactivated pyruvate formate lyase, pyruvate oxidase, and glucose-phosphotransferase permease (enzyme IIBC(Glc)). This strain produced 55.4 g/L succinate from glucose, with 1.8 g/L acetate as the major byproduct at pH 5.7 and anaerobic conditions. The succinate yield and volumetric productivity of this strain were 86.8% and 0.92 g/L/h, respectively. Focusing on increasing net ATP production during succinate synthesis leads to increased succinate yield and volumetric productivity in E. aerogenes. We propose that the metabolically engineered E. aerogenes ES08ΔptsG strain, which effectively produces succinate under weakly

  20. Quantitative analysis of the growth of Salmonella stanley during alfalfa sprouting and evaluation of Enterobacter aerogenes as its surrogate.

    PubMed

    Liu, Bin; Schaffner, Donald W

    2007-02-01

    Raw seed sprouts have been implicated in several food poisoning outbreaks in the last 10 years. Few studies have included investigations of factors influencing the effectiveness of testing spent irrigation water, and in no studies to date has a nonpathogenic surrogate been identified as suitable for large-scale irrigation water testing trials. Alfalfa seeds were inoculated with Salmonella Stanley or its presumptive surrogate (nalidixic acid-resistant Enterobacter aerogenes) at three concentrations (-3, -30, and -300 CFU/g) and were then transferred into either flasks or a bench top-scale sprouting chamber. Microbial concentrations were determined in seeds, sprouts, and irrigation water at various times during a 4-day sprouting process. Data were fit to logistic regression models, and growth rates and maximum concentrations were compared using the generalized linear model procedure of SAS. No significant differences in growth rates were observed among samples taken from flasks or the chamber. Microbial concentrations in irrigation water were not significantly different from concentrations in sprout samples obtaihed at the same time. E. aerogenes concentrations were similar to those of Salmonella Stanley at corresponding time points for all three inoculum concentrations. Growth rates were also constant regardless of inoculum concentration or strain, except that lower inoculum concentrations resulted in lower final concentrations proportional to their initial concentrations. This research demonstrated that a nonpathogenic easy-to-isolate surrogate (nalidixic acid-resistant E. aerogenes) provides results similar to those obtained with Salmonella Stanley, supporting the use of this surrogate in future large-scale experiments.

  1. Biosensing and bioremediation of Cr(VI) by cell free extract of Enterobacter aerogenes T2.

    PubMed

    Panda, Jigisha; Sarkar, Priyabrata

    2014-01-01

    Hexavalent chromium or Cr(VI) enters the environment through several anthropogenic activities and it is highly toxic and carcinogenic. Hence it is required to be detected and remediated from the environment. In this study, low-cost and environment-friendly methods of biosensing and bioremediation of Cr(VI) have been proposed. Crude cell free extract (CFE) of previously isolated Enterobacter aerogenes T2 (GU265554; NII 1111) was prepared and exploited to develop a stable biosensor for direct estimation of Cr(VI) in waste water, by using three electrodes via cyclic voltammetry. For bioremediation studies, a homogeneous solution of commercially available sodium alginate and CFE was added dropwise in a continuously stirred calcium chloride solution. Biologically modified calcium alginate beads were produced and these were further utilized for bioremediation studies. The proposed sensor showed linear response in the range of 10-40 μg L(-1) Cr(VI) and the limit of detection was found to be 6.6 μg L(-1) Cr(VI). No interference was observed in presence of metal ions, e.g., lead, cadmium, arsenic, tin etc., except for insignificant interference with molybdenum and manganese. In bioremediation studies, modified calcium alginate beads showed encouraging removal rate 900 mg Cr(VI)/m(3) water per day with a removal efficiency of 90%, much above than reported in literature. The proposed sensing system could be a viable alternative to costly measurement procedures. Calcium alginate beads, modified with CFE of E. aerogenes, could be used in bioremediation of Cr(VI) since it could work in real conditions with extraordinarily high capacity.

  2. Improved hydrogen production under microaerophilic conditions by overexpression of polyphosphate kinase in Enterobacter aerogenes.

    PubMed

    Lu, Yuan; Zhang, Chong; Lai, Qiheng; Zhao, Hongxin; Xing, Xin-Hui

    2011-02-08

    Effects of different microaerophilic conditions on cell growth, glucose consumption, hydrogen production and cellular metabolism of wild Enterobacter aerogenes strain and polyphosphate kinase (PPK) overexpressing strain were systematically studied in this paper, using NaH(2)PO(4) as the phosphate sources. Under different microaerophilic conditions, PPK-overexpressing strain showed better cell growth, glucose consumption and hydrogen production than the wild strain. In the presence of limited oxygen (2.1%) and by PPK overexpression, the hydrogen production per liter of culture, the hydrogen production per cell and the hydrogen yield per mol of glucose increased by 20.1%, 12.3% and 10.8%, respectively, compared with the wild strain under strict anaerobic conditions. Metabolic analysis showed that the increase of the total hydrogen yield was attributed to the improvement of NADH pathway. The result of more reductive cellular oxidation state balance also further demonstrated that, under proper initial microaerophilic conditions and by PPK overexpression, the cell could adjust the cellular redox states and make more energy flow into hydrogen production pathways. Copyright © 2010 Elsevier Inc. All rights reserved.

  3. Improved production of isobutanol in pervaporation-coupled bioreactor using sugarcane bagasse hydrolysate in engineered Enterobacter aerogenes.

    PubMed

    Jung, Hwi-Min; Lee, Ju Yeon; Lee, Jung-Hyun; Oh, Min-Kyu

    2018-07-01

    A process of isobutanol production from sugarcane bagasse hydrolysates in Enterobacter aerogenes was developed here with a pervaporation-integrated procedure. Isobutanol pathway was overexpressed in a mutant strain with eliminated byproduct-forming enzymes (LdhA, BudA, and PflB). A glucose-and-xylose-coconsuming ptsG mutant was constructed for effective utilization of lignocellulosic biomass. Toxic effects of isobutanol were alleviated by in situ recovery via a pervaporation procedure. Compared to single-batch fermentation, cell growth and isobutanol titer were improved by 60% and 100%, respectively, in the pervaporation-integrated fermentation process. A lab-made cross-linked polydimethylsiloxane membrane was cast on polyvinylidene fluoride and used in the pervaporation process. The membrane-penetrating condensate contained 55-226 g m -2  h -1 isobutanol with 6-25 g L -1 ethanol after separation. This study offers improved fermentative production of isobutanol from lignocellulosic biomass with a pervaporation procedure. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Identification of Ideal Multi-targeting Bioactive Compounds Against Mur Ligases of Enterobacter aerogenes and Its Binding Mechanism in Comparison with Chemical Inhibitors.

    PubMed

    Chakkyarath, Vijina; Natarajan, Jeyakumar

    2017-10-31

    Enterobacter aerogenes have been reported as important opportunistic and multi-resistant bacterial pathogens for humans during the last three decades in hospital wards. The emergence of drug-resistant E. aerogenes demands the need for developing new drugs. Peptidoglycan is an important component of the cell wall of bacteria and the peptidoglycan biochemical pathway is considered as the best source of antibacterial targets. Within this pathway, four Mur ligases MurC, MurD, MurE, and MurF are responsible for the successive additions of L-alanine and suitable targets for developing novel antibacterial drugs. As an inference from this fact, we modeled the three-dimensional structure of above Mur ligases using best template structures available in PDB and analyzed its common binding features. Structural refinement and energy minimization of the predicted Mur ligases models is also being done using molecular dynamics studies. The models of Mur ligases were further investigated for in silico docking studies using bioactive plant compounds from the literature. Interestingly, these results indicate that four plant compounds Isojuripidine, Atroviolacegenin, Porrigenin B, and Nummularogenin showing better docking results in terms of binding energy and number of hydrogen bonds. All these four compounds are spirostan-based compounds with differences in side chains and the amino acid such as ASN, LYS, THR, HIS, ARG (polar) and PHE, GLY, VAL, ALA, MET (non-polar) playing active role in binding site of all four Mur ligases. Overall, in the predicted model, the four plant compounds with its binding features could pave way to design novel multi-targeted antibacterial plant-based bioactive compounds specific to Mur ligases for the treatment of Enterobacter infections.

  5. Draft Genome Sequences of blaKPC-Containing Enterobacter aerogenes, Citrobacter freundii, and Citrobacter koseri Strains

    PubMed Central

    Hazen, Tracy H.; Mettus, Roberta T.; McElheny, Christi L.; Bowler, Sarah L.

    2018-01-01

    ABSTRACT We report here the draft genome sequences of four blaKPC-containing bacteria identified as Klebsiella aerogenes, Citrobacter freundii, and Citrobacter koseri. Additionally, we report the draft genome sequence of a K. aerogenes strain that did not contain a blaKPC gene but was isolated from the patient who had the blaKPC-2-containing K. aerogenes strain. PMID:29472325

  6. Draft Genome Sequences of blaKPC-Containing Enterobacter aerogenes, Citrobacter freundii, and Citrobacter koseri Strains.

    PubMed

    Hazen, Tracy H; Mettus, Roberta T; McElheny, Christi L; Bowler, Sarah L; Doi, Yohei; Rasko, David A

    2018-02-22

    We report here the draft genome sequences of four bla KPC -containing bacteria identified as Klebsiella aerogenes , Citrobacter freundii , and Citrobacter koseri Additionally, we report the draft genome sequence of a K. aerogenes strain that did not contain a bla KPC gene but was isolated from the patient who had the bla KPC-2 -containing K. aerogenes strain. Copyright © 2018 Hazen et al.

  7. Risk factors and treatment outcomes of bloodstream infection caused by extended-spectrum cephalosporin-resistant Enterobacter species in adults with cancer.

    PubMed

    Huh, Kyungmin; Kang, Cheol-In; Kim, Jungok; Cho, Sun Young; Ha, Young Eun; Joo, Eun-Jeong; Chung, Doo Ryeon; Lee, Nam Yong; Peck, Kyong Ran; Song, Jae-Hoon

    2014-02-01

    Treatment of Enterobacter infection is complicated due to its intrinsic resistance to cephalosporins. Medical records of 192 adults with cancer who had Enterobacter bacteremia were analyzed retrospectively to evaluate the risk factors for and the treatment outcomes in extended-spectrum cephalosporin (ESC)-resistant Enterobacter bacteremia in adults with cancer. The main outcome measure was 30-day mortality. Of the 192 patients, 53 (27.6%) had bloodstream infections caused by ESC-resistant Enterobacter species. Recent use of a third-generation cephalosporin, older age, tumor progression at last evaluation, recent surgery, and nosocomial acquisition were associated with ESC-resistant Enterobacter bacteremia. The 30-day mortality rate was significantly higher in the resistant group. Multivariate analysis showed that respiratory tract infection, tumor progression, septic shock at presentation, Enterobacter aerogenes as the culprit pathogen, and diabetes mellitus were independent risk factors for mortality. ESC resistance was significantly associated with mortality in patients with E. aerogenes bacteremia, although not in the overall patient population. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Coexistence of SHV-4- and TEM-24-Producing Enterobacter aerogenes Strains before a Large Outbreak of TEM-24-Producing Strains in a French Hospital

    PubMed Central

    Mammeri, H.; Laurans, G.; Eveillard, M.; Castelain, S.; Eb, F.

    2001-01-01

    In 1996, a monitoring program was initiated at the teaching hospital of Amiens, France, and carried out for 3 years. All extended-spectrum β-lactamase (ESBL)-producing Enterobacter aerogenes isolates recovered from clinical specimens were collected for investigation of their epidemiological relatedness by pulsed-field gel electrophoresis and enterobacterial repetitive intergenic consensus PCR (ERIC-PCR) and determination of the type of ESBL harbored by isoelectric focusing and DNA sequencing. Molecular typing revealed the endemic coexistence, during the first 2 years, of two clones expressing, respectively, SHV-4 and TEM-24 ESBLs, while an outbreak of the TEM-24-producing strain raged in the hospital during the third year, causing the infection or colonization of 165 patients. Furthermore, this strain was identified as the prevalent clone responsible for outbreaks in many French hospitals since 1996. This study shows that TEM-24-producing E. aerogenes is an epidemic clone that is well established in the hospital's ecology and able to spread throughout wards. The management of the outbreak at the teaching hospital of Amiens, which included the reinforcement of infection control measures, failed to obtain complete eradication of the clone, which has become an endemic pathogen. PMID:11376055

  9. Quantifying the effect of hand wash duration, soap use, ground beef debris, and drying methods on the removal of Enterobacter aerogenes on hands.

    PubMed

    Jensen, Dane A; Danyluk, Michelle D; Harris, Linda J; Schaffner, Donald W

    2015-04-01

    Hand washing is recognized as a crucial step in preventing foodborne disease transmission by mitigating crosscontamination among hands, surfaces, and foods. This research was undertaken to establish the importance of several keys factors (soap, soil, time, and drying method) in reducing microorganisms during hand washing. A nonpathogenic nalidixic acid-resistant Enterobacter aerogenes surrogate for Salmonella was used to assess the efficacy of using soap or no soap for 5 or 20 s on hands with or without ground beef debris and drying with paper towel or air. Each experiment consisted of 20 replicates, each from a different individual with ∼ 6 log CFU/ml E. aerogenes on their hands. A reduction of 1.0 ± 0.4 and 1.7 ± 0.8 log CFU of E. aerogenes was observed for a 5-s wash with no soap and a 20-s wash with soap, respectively. When there was no debris on the hands, there was no significant difference between washing with and without soap for 20 s (P > 0.05). Likewise, there was no significant difference in the reductions achieved when washing without soap, whether or not debris was on the hands (P > 0.05). A significantly greater reduction (P < 0.05) in E. aerogenes (0.5 log CFU greater reduction) was observed with soap when there was ground beef debris on the hands. The greatest difference (1.1 log CFU greater average reduction) in effectiveness occurred when ground beef debris was on the hands and a 20-s wash with water was compared with a 20-s wash with soap. Significantly greater (P < 0.05) reductions were observed with paper towel drying compared with air (0.5 log CFU greater reductions). Used paper towels may contain high bacterial levels (>4.0 log CFU per towel) when hands are highly contaminated. Our results support future quantitative microbial risk assessments needed to effectively manage risks of foodborne illness in which food workers' hands are a primary cause.

  10. Optimization of cultural conditions for conversion of glycerol to ethanol by Enterobacter aerogenes S012

    PubMed Central

    2013-01-01

    The aim of this research is to optimize the cultural conditions for the conversion of glycerol to ethanol by Enterobacter aerogenes S012. Taguchi method was used to screen the cultural conditions based on their signal to noise ratio (SN). Temperature (°C), agitation speed (rpm) and time (h) were found to have the highest influence on both glycerol utilization and ethanol production by the organism while pH had the lowest. Full factorial design, statistical analysis, and regression model equation were used to optimize the selected cultural parameters for maximum ethanol production. The result showed that fermentation at 38°C and 200 rpm for 48 h would be ideal for the bacteria to produce maximum amount of ethanol from glycerol. At these optimum conditions, ethanol production, yield and productivity were 25.4 g/l, 0.53 g/l/h, and 1.12 mol/mol-glycerol, repectively. Ethanol production increased to 26.5 g/l while yield and productivity decreased to 1.04 mol/mol-glycerol and 0.37 g/l/h, respectively, after 72 h. Analysis of the fermentation products was performed using HPLC, while anaerobic condition was created by purging the fermentation vessel with nitrogen gas. PMID:23388539

  11. Impairment of NADH dehydrogenase and regulation of anaerobic metabolism by the small RNA RyhB and NadE for improved biohydrogen production in Enterobacter aerogenes.

    PubMed

    Wu, Yan; Hao, Yaqiao; Wei, Xuan; Shen, Qi; Ding, Xuanwei; Wang, Liyan; Zhao, Hongxin; Lu, Yuan

    2017-01-01

    Enterobacter aerogenes is a facultative anaerobe and is one of the most widely studied bacterial strains because of its ability to use a variety of substrates, to produce hydrogen at a high rate, and its high growth rate during dark fermentation. However, the rate of hydrogen production has not been optimized. In this present study, three strategies to improve hydrogen production in E. aerogenes , namely the disruption of nuoCDE , overexpression of the small RNA RyhB and of NadE to regulate global anaerobic metabolism, and the redistribution of metabolic flux. The goal of this study was to clarify the effect of nuoCDE , RyhB, and NadE on hydrogen production and how the perturbation of NADH influences the yield of hydrogen gas from E. aerogenes . NADH dehydrogenase activity was impaired by knocking out nuoCD or nuoCDE in E. aerogenes IAM1183 using the CRISPR-Cas9 system to explore the consequent effect on hydrogen production. The hydrogen yields from IAM1183-CD( ∆nuoC / ∆nuoD ) and IAM1183-CDE ( ∆nuoC / ∆nuoD / ∆nuoE ) increased, respectively, by 24.5 and 45.6% in batch culture (100 mL serum bottles). The hydrogen produced via the NADH pathway increased significantly in IAM1183-CDE, suggesting that nuoE plays an important role in regulating NADH concentration in E. aerogenes . Batch-cultivating experiments showed that by the overexpression of NadE (N), the hydrogen yields of IAM1183/N, IAM1183-CD/N, and IAM1183-CDE/N increased 1.06-, 1.35-, and 1.55-folds, respectively, compared with IAM1183. Particularly worth mentioning is that the strain IAM118-CDE/N reached 2.28 mol in H 2 yield, per mole of glucose consumed. IAN1183/R, IAM1183-CD/R, and IAM1183-CDE/R showed increasing H 2 yields in batch culture. Metabolic flux analysis indicated that increased expression of RyhB led to a significant shift in metabolic patterns. We further investigated IAM1183-CDE/N, which had the best hydrogen-producing traits, as a potential candidate for industry applications

  12. Clonality, outer-membrane proteins profile and efflux pump in KPC- producing Enterobacter sp. in Brazil.

    PubMed

    Rosa, Juliana Ferraz; Rizek, Camila; Marchi, Ana Paula; Guimaraes, Thais; Miranda, Lourdes; Carrilho, Claudia; Levin, Anna S; Costa, Silvia F

    2017-03-17

    Carbapenems resistance in Enterobacter spp. has increased in the last decade, few studies, however, described the mechanisms of resistance in this bacterium. This study evaluated clonality and mechanisms of carbapenems resistance in clinical isolates of Enterobacter spp. identified in three hospitals in Brazil (Hospital A, B and C) over 7-year. Antibiotics sensitivity, pulsed-field gel electrophoresis (PFGE), PCR for carbapenemase and efflux pump genes were performed for all carbapenems-resistant isolates. Outer-membrane protein (OMP) was evaluated based on PFGE profile. A total of 130 isolates of Enterobacter spp were analyzed, 44/105 (41, 9%) E. aerogenes and 8/25 (32,0%) E. cloacae were resistant to carbapenems. All isolates were susceptible to fosfomycin, polymyxin B and tigecycline. KPC was present in 88.6% of E. aerogenes and in all E. cloacae resistant to carbapenems. The carbapenems-resistant E. aerogenes identified in hospital A belonged to six clones, however, a predominant clone was identified in this hospital over the study period. There is a predominant clone in Hospital B and Hospital C as well. The mechanisms of resistance to carbapenems differ among subtypes. Most of the isolates co-harbored blaKPC, blaTEM and /or blaCTX associated with decreased or lost of 35-36KDa and or 39 KDa OMP. The efflux pump AcrAB-TolC gene was only identified in carbapenems-resistant E. cloacae. There was a predominant clone in each hospital suggesting that cross-transmission of carbapenems-resistant Enterobacter spp. was frequent. The isolates presented multiple mechanisms of resistance to carbapenems including OMP alteration.

  13. Physiological and biochemical role of the butanediol pathway in Aerobacter (Enterobacter) aerogenes.

    PubMed Central

    Johansen, L; Bryn, K; Stormer, F C

    1975-01-01

    Aerobacter (Enterobacter) aerogenes wild type and three mutants deficient in the formation of acetoin and 2,3-butanediol were grown in a glucose minimal medium. Culture densities, pH, and diacetyl, acetoin, and 2,3-butanediol levels were recorded. The pH in wild-type cultures dropped from 7.0 to 5.8, remained constant while acetoin and 2,3-butanediol were formed, and increased to pH 6.5 after exhaustion of the carbon source. More 2,3-butanediol than acetoin was formed initially, but after glucose exhaustion reoxidation to acetoin occurred. The three mutants differed from the wild type in yielding acid cultures (pH below 4.5). The wild type and one of the mutants were grown exponentially under aerobic and anaerobic conditions with the pH fixed at 7.0, 5.8, and 5.0, respectively. Growth rates decreased with decreasing pH values. Aerobically, this effect was weak, and the two strains were affected to the same degree. Under anaerobic conditions, the growth rates were markedly inhibited at a low pH, and the mutant was slightly more affected than the wild type. Levels of alcohol dehydrogenase were low under all conditions, indicating that the enzyme plays no role during exponential growth. The levels of diacetyl (acetoin) reductase, lactate dehydrogenase, and phosphotransacetylase were independent of the pH during aerobic growth of the two strains. Under anaerobic conditions, the formation of diacetyl (acetoin) reductase was pH dependent, with much higher levels of the enzyme at pH 5.0 than at pH 7.0. Lactate dehydrogenase and phosphotransacetylase revealed the same pattern of pH-dependent formation in the mutant, but not in the wild type. PMID:239921

  14. Ram locus is a key regulator to trigger multidrug resistance in Enterobacter aerogenes.

    PubMed

    Molitor, Alexander; James, Chloë E; Fanning, Séamus; Pagès, Jean-Marie; Davin-Regli, Anne

    2018-02-01

    Several genetic regulators belonging to AraC family are involved in the emergence of MDR isolates of E. aerogenes due to alterations in membrane permeability. Compared with the genetic regulator Mar, RamA may be more relevant towards the emergence of antibiotic resistance. Focusing on the global regulators, Mar and Ram, we compared the amino acid sequences of the Ram repressor in 59 clinical isolates and laboratory strains of E. aerogenes. Sequence types were associated with their corresponding multi-drug resistance phenotypes and membrane protein expression profiles using MIC and immunoblot assays. Quantitative gene expression analysis of the different regulators and their targets (porins and efflux pump components) were performed. In the majority of the MDR isolates tested, ramR and a region upstream of ramA were mutated but marR or marA were unchanged. Expression and cloning experiments highlighted the involvement of the ram locus in the modification of membrane permeability. Overexpression of RamA lead to decreased porin production and increased expression of efflux pump components, whereas overexpression of RamR had the opposite effects. Mutations or deletions in ramR, leading to the overexpression of RamA predominated in clinical MDR E. aerogenes isolates and were associated with a higher-level of expression of efflux pump components. It was hypothesised that mutations in ramR, and the self-regulating region proximal to ramA, probably altered the binding properties of the RamR repressor; thereby producing the MDR phenotype. Consequently, mutability of RamR may play a key role in predisposing E. aerogenes towards the emergence of a MDR phenotype.

  15. [Cloning of Enterobacter aerogenes fh1A gene and overexpression of hydrogen production].

    PubMed

    Zhao, Jinfang; Song, Wenlu; Cheng, Jun; Zhang, Chuanxi

    2010-06-01

    We amplified and overexpressed the FHL activator (fh1A) in E. aerogenes ATCC13408 to enhance hydrogen production. By using universal primers and genome walking, we cloned the full open reading frame (ORF) of fh1A gene. We inserted it into the glutathion S-transferase (GST) fusion expression vector pGEX4T-2-Cat, and transformed the recombinant plasmid into E. aerogenes ATCC13408 via electroporation for expression. Then we measured the hydrogen production of the recombinant strain in a batch culture. We found that the ORF of fh1A was 2073 base pair in length, potential to encode a 690 amino acid peptide (GenBank accession GU188474). The Fh1A protein from E. aerogenes ATCC13408 shared high amino acid identities with those from other bacterial species. By using SDS-PAGE and Western blot analysis, we confirmed that the fh1A gene had successfully expressed in the strain. The hydrogen yield of the recombinant strain was increased from 1.23 to 1.48 mol H2/mol glucose. [ Conclusion ] Enhancement of hydrogen productivity was attained under anaerobic conditions with the recombinant strain.

  16. Phenolic compounds: Strong inhibitors derived from lignocellulosic hydrolysate for 2,3-butanediol production by Enterobacter aerogenes.

    PubMed

    Lee, Sang Jun; Lee, Ju Hun; Yang, Xiaoguang; Kim, Sung Bong; Lee, Ja Hyun; Yoo, Hah Young; Park, Chulhwan; Kim, Seung Wook

    2015-12-01

    Lignocellulosic biomass are attractive feedstocks for 2,3-butanediol production due to their abundant supply and low price. During the hydrolysis of lignocellulosic biomass, various byproducts are formed and their effects on 2,3-butanediol production were not sufficiently studied compared to ethanol production. Therefore, the effects of compounds derived from lignocellulosic biomass (weak acids, furan derivatives and phenolics) on the cell growth, the 2,3-butanediol production and the enzymes activity involved in 2,3-butanediol production were evaluated using Enterobacter aerogenes ATCC 29007. The phenolic compounds showed the most toxic effects on cell growth, 2,3-butanediol production and enzyme activity, followed by furan derivatives and weak acids. The significant effects were not observed in the presence of acetic acid and formic acid. Also, feasibility of 2,3-butanediol production from lignocellulosic biomass was evaluated using Miscanthus as a feedstock. In the fermentation of Miscanthus hydrolysate, 11.00 g/L of 2,3-butanediol was obtained from 34.62 g/L of reducing sugar. However, 2,3-butanediol was not produced when the concentration of total phenolic compounds in the hydrolysate increased to more than 1.5 g/L. The present study provides useful information to develop strategies for biological production of 2,3-butanediol and to establish biorefinery for biochemicals from lignocellulosic biomass. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Enterobacter aerogenes Needle Stick Leads to Improved Biological Management System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johanson, Richard E.

    2004-08-01

    A laboratory worker who received a needle stick from a contaminated needle while working with a culture containing Enterobactor aerogenes developed a laboratory acquired infection. Although this organism has been shown to cause community and nosocomial infections, there have been no documented cases of a laboratory acquired infections. Lessons learned from the event led to corrective actions which included modification of lab procedures, development of a biological inventory tracking and risk identification system and the establishment of an effective biological safety program.

  18. Multidrug resistant bacteria are sensitive to Euphorbia prostrata and six others Cameroonian medicinal plants extracts.

    PubMed

    Voukeng, Igor K; Beng, Veronique P; Kuete, Victor

    2017-07-25

    Multidrug resistant (MDR) bacteria are responsible for therapeutic failure and there is an urgent need for novels compounds efficient on them. Eleven methanol extracts from seven Cameroonian medicinal plants were tested for their antibacterial activity using broth micro-dilution method against 36 MDR bacterial strains including Escherichia coli, Enterobacter aerogenes, Enterobacter cloacae, Klebsiella pneumoniae, Providencia stuartii, Pseudomonas aeruginosa and Staphylococcus aureus. Euphorbia prostrata extract was found active against all the 36 tested bacteria including Gram-negative phenotypes over-expressing efflux pumps such as P. aeruginosa PA124, E. aerogenes CM64 and E. coli AG102. E. prostrata had minimal inhibitory concentrations values between 128 and 256 µg/mL on 55.55% of the studied microorganisms. Other plants extract displayed selective antibacterial activity. Results obtained in this study highlight the antibacterial potential of the tested plants and the possible use of E. prostrata to combat bacterial infections including MDR phenotypes.

  19. The rhizome of the multidrug-resistant Enterobacter aerogenes genome reveals how new "killer bugs" are created because of a sympatric lifestyle.

    PubMed

    Diene, Seydina M; Merhej, Vicky; Henry, Mireille; El Filali, Adil; Roux, Véronique; Robert, Catherine; Azza, Saïd; Gavory, Frederick; Barbe, Valérie; La Scola, Bernard; Raoult, Didier; Rolain, Jean-Marc

    2013-02-01

    Here, we sequenced the 5,419,609 bp circular genome of an Enterobacter aerogenes clinical isolate that killed a patient and was resistant to almost all current antibiotics (except gentamicin) commonly used to treat Enterobacterial infections, including colistin. Genomic and phylogenetic analyses explain the discrepancies of this bacterium and show that its core genome originates from another genus, Klebsiella. Atypical characteristics of this bacterium (i.e., motility, presence of ornithine decarboxylase, and lack of urease activity) are attributed to genomic mosaicism, by acquisition of additional genes, such as the complete 60,582 bp flagellar assembly operon acquired "en bloc" from the genus Serratia. The genealogic tree of the 162,202 bp multidrug-resistant conjugative plasmid shows that it is a chimera of transposons and integrative conjugative elements from various bacterial origins, resembling a rhizome. Moreover, we demonstrate biologically that a G53S mutation in the pmrA gene results in colistin resistance. E. aerogenes has a large RNA population comprising 8 rRNA operons and 87 cognate tRNAs that have the ability to translate transferred genes that use different codons, as exemplified by the significantly different codon usage between genes from the core genome and the "mobilome." On the basis of our findings, the evolution of this bacterium to become a "killer bug" with new genomic repertoires was from three criteria that are "opportunity, power, and usage" to indicate a sympatric lifestyle: "opportunity" to meet other bacteria and exchange foreign sequences since this bacteria was similar to sympatric bacteria; "power" to integrate these foreign sequences such as the acquisition of several mobile genetic elements (plasmids, integrative conjugative element, prophages, transposons, flagellar assembly system, etc.) found in his genome; and "usage" to have the ability to translate these sequences including those from rare codons to serve as a translator of

  20. Disruption of lactate dehydrogenase and alcohol dehydrogenase for increased hydrogen production and its effect on metabolic flux in Enterobacter aerogenes.

    PubMed

    Zhao, Hongxin; Lu, Yuan; Wang, Liyan; Zhang, Chong; Yang, Cheng; Xing, Xinhui

    2015-10-01

    Hydrogen production by Enterobacter aerogenes from glucose was enhanced by deleting the targeted ldhA and adh genes responsible for two NADH-consuming pathways which consume most NADH generated from glycolysis. Compared with the wild-type, the hydrogen yield of IAM1183-ΔldhA increased 1.5 fold. Metabolic flux analysis showed both IAM1183-ΔldhA and IAM1183-Δadh exhibited significant changes in flux, including enhanced flux towards the hydrogen generation. The lactate production of IAM1183-ΔldhA significantly decreased by 91.42%, while the alcohol yield of IAM1183-Δadh decreased to 30%. The mutant IAM1183-ΔldhA with better hydrogen-producing performance was selected for further investigation in a 5-L fermentor. The hydrogen production of IAM1183-ΔldhA was 2.3 times higher than the wild-type. Further results from the fermentation process showed that the pH decreased to 5.39 levels, then gradually increased to 5.96, indicating that some acidic metabolites might be degraded or uptaken by cells. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. NDM-1 encoded by a pNDM-BJ01-like plasmid p3SP-NDM in clinical Enterobacter aerogenes

    PubMed Central

    Chen, Zhenhong; Li, Hongxia; Feng, Jiao; Li, Yuxue; Chen, Xin; Guo, Xuemin; Chen, Weijun; Wang, Li; Lin, Lei; Yang, Huiying; Yang, Wenhui; Wang, Jie; Zhou, Dongsheng; Liu, Changting; Yin, Zhe

    2015-01-01

    A carbapenem-nonsusceptible Enterobacter aerogenes strain named 3-SP was isolated from a human case of pneumonia in a Chinese teaching hospital. NDM-1 carbapenemase is produced by a pNDM-BJ01-like conjugative plasmid designated p3SP-NDM to account for carbapenem resistance of 3-SP. p3SP-NDM was fully sequenced and compared with all publically available pNDM-BJ01-like plasmids. The genetic differences between p3SP-NDM and pNDM-BJ01 include only 18 single nucleotide polymorphisms, a 1 bp deletion and a 706 bp deletion. p3SP-NDM and pNDM-BJ01 harbor an identical Tn125 element organized as ISAba125, blaNDM−1, bleMBL, ΔtrpF, dsbC, cutA, ΔgroES, groEL, ISCR27, and ISAba125. The blaNDM−1 surrounding regions in these pNDM-BJ01-like plasmids have a conserved linear organization ISAba14-aphA6-Tn125-unknown IS, with considerable genetic differences identified within or immediately downstream of Tn125. All reported pNDM-BJ01-like plasmids are exclusively found in Acinetobacter, whereas this is the first report of identification of a pNDM-BJ01-like plasmid in Enterobacteriaceae. PMID:25926823

  2. NDM-1 encoded by a pNDM-BJ01-like plasmid p3SP-NDM in clinical Enterobacter aerogenes.

    PubMed

    Chen, Zhenhong; Li, Hongxia; Feng, Jiao; Li, Yuxue; Chen, Xin; Guo, Xuemin; Chen, Weijun; Wang, Li; Lin, Lei; Yang, Huiying; Yang, Wenhui; Wang, Jie; Zhou, Dongsheng; Liu, Changting; Yin, Zhe

    2015-01-01

    A carbapenem-nonsusceptible Enterobacter aerogenes strain named 3-SP was isolated from a human case of pneumonia in a Chinese teaching hospital. NDM-1 carbapenemase is produced by a pNDM-BJ01-like conjugative plasmid designated p3SP-NDM to account for carbapenem resistance of 3-SP. p3SP-NDM was fully sequenced and compared with all publically available pNDM-BJ01-like plasmids. The genetic differences between p3SP-NDM and pNDM-BJ01 include only 18 single nucleotide polymorphisms, a 1 bp deletion and a 706 bp deletion. p3SP-NDM and pNDM-BJ01 harbor an identical Tn125 element organized as ISAba125, bla NDM-1, ble MBL, ΔtrpF, dsbC, cutA, ΔgroES, groEL, ISCR27, and ISAba125. The bla NDM-1 surrounding regions in these pNDM-BJ01-like plasmids have a conserved linear organization ISAba14-aphA6-Tn125-unknown IS, with considerable genetic differences identified within or immediately downstream of Tn125. All reported pNDM-BJ01-like plasmids are exclusively found in Acinetobacter, whereas this is the first report of identification of a pNDM-BJ01-like plasmid in Enterobacteriaceae.

  3. Detection of New Delhi Metallo-β-Lactamase Variants NDM-4, NDM-5, and NDM-7 in Enterobacter aerogenes Isolated from a Neonatal Intensive Care Unit of a North India Hospital: A First Report.

    PubMed

    Ahmad, Nayeem; Ali, Syed Manazir; Khan, Asad U

    2018-03-01

    A total 402 Enterobacteriaceae isolates were recovered from blood and rectal swabs of 1,000 infants admitted to the Neonatal Intensive Care Unit (NICU) of the Jawaharlal Medical College and Hospital Aligarh, India. Carbapenamase producers were determined by Carba NP phenotype biochemical assay. Out of 402 isolates, it was the first time three of the isolates were identified as Enterobacter aerogenes carrying bla NDM-4, bla NDM-5, and bla NDM-7 genes. These genes were identified by polymerase chain reaction (PCR) and sequence analysis. The isolates were further characterized to know the plasmid type and genetic environment features, including integron and IS elements. All the three E. aerogenes isolates (AK-93, AK-95, and AK-96) were resistant to all β-lactams, including carbapenems. The β-lactamase genes bla OXA-1 , bla OXA-9, bla SHV-1 , and bla VIM-2 were also found to be coassociated with bla NDM-4 in AK-93, bla OXA-1 , bla OXA-9, and bla CMY-149 were found to be coexisted with bla NDM-5 in AK-95, and bla OXA-1; bla OXA-9, and bla CMY-145 were also found to be coassociated with bla NDM-7 in AK-96, identified by PCR analysis. Plasmid-based replicon typing revealed plasmids of different incompatibility in E. aerogenes in each of the isolates, AK-93 AK-95, and AK-96, respectively. ERIC-PCR was performed for the analysis of genetic relatedness of the strains. We found bla NDM-4 , bla NDM-5, and bla NDM-7 producing three E. aerogenes strains, which were not clonally related. Genetic environment analysis revealed the presence of bleomycin resistance gene (ble MBL ) to downstream of bla NDM and complete ISAba125 sequence were found upstream of bla NDM in all the three variants of these isolates. This is the first time we have identified bla NDM-4 , bla NDM-5, and bla NDM-7 in E. aerogenes species, isolated from the NICU of a tertiary care hospital in India.

  4. Epidemiology and molecular characterization of extended-spectrum beta-lactamase-producing Enterobacter spp., Pantoea agglomerans, and Serratia marcescens isolates from a Bulgarian hospital.

    PubMed

    Markovska, Rumyana Donkova; Stoeva, Temenuga Jekova; Bojkova, Kalina Dineva; Mitov, Ivan Gergov

    2014-04-01

    Forty-two extended-spectrum beta-lactamase (ESBL)-producing isolates of Enterobacter aerogenes, Enterobacter cloacae, Pantoea agglomerans, and Serratia marcescens, collected consecutively during the period January-November 2011 from the University Hospital in Varna, Bulgaria, were studied to characterize their ESBLs by isoelectric focusing, group-specific PCR, and sequencing. The epidemiological relationship was evaluated by random amplified polymorphic DNA analysis (RAPD). Transferability of ESBL genes was determined by conjugation experiments. Plasmid analysis was done by replicon typing and PstI fingerprinting. The overall rate of ESBL production was 20%. The most widespread enzyme was CTX-M-3, found in 64%. It was dominant in E. aerogenes (100%) and S. marcescens (83%). SHV-12, CTX-M-3, and CTX-M-15 were found among E. cloacae isolates in 50%, 35%, and 45%, respectively. Three main CTX-M-3-producing epidemic clones of E. aerogenes and S. marcescens have been detected. Among E. cloacae isolates, six different RAPD profiles were discerned. The plasmids harboring blaCTX-M-3 belonged to IncL/M type and demonstrated similar PstI fingerprinting profiles. IncFII plasmids were detected in two CTX-M-15-producing E. cloacae isolates. Our results demonstrate wide intrahospital dissemination of clonal E. aerogenes and S. marcescens isolates, carrying IncL/M conjugative plasmids.

  5. FIRST REPORT OF METALLO-β-LACTAMASES PRODUCING Enterobacter spp. STRAINS FROM VENEZUELA

    PubMed Central

    Martínez, Dianny; Rodulfo, Hectorina E.; Rodríguez, Lucy; Caña, Luisa E.; Medina, Belkis; Guzman, Militza; Carreño, Numirin; Marcano, Daniel; Donato, Marcos De

    2014-01-01

    Clinical strains of Enterobacter were isolated from Cumana's Central Hospital in Venezuela, and classified as E. cloacae (21), E. aerogenes (7), E. intermedium (1), E. sakazakii (1) and three unclassified. The strains showed high levels of resistance, especially to SXT (58.1%), CRO (48.8%), CAZ (46.6%), PIP (46.4%), CIP (45.2%) and ATM (43.3%). This is the first report for South America of bla VIM-2 in two E. cloacae and one Enterobacter sp., which also showed multiple mechanisms of resistance. Both E. cloacae showed bla TEM-1, but only one showed bla CTX-M-15 gene, while no bla SHV was detected. PMID:24553611

  6. Occurrence and analysis of irp2 virulence gene in isolates of Klebsiella pneumoniae and Enterobacter spp. from microbiota and hospital and community-acquired infections.

    PubMed

    Souza Lopes, Ana Catarina; Rodrigues, Juliana Falcão; Cabral, Adriane Borges; da Silva, Maíra Espíndola; Leal, Nilma Cintra; da Silveira, Vera Magalhães; de Morais Júnior, Marcos Antônio

    2016-07-01

    Eighty-five isolates of Klebsiella pneumoniae and Enterobacter spp., originating from hospital- and community-acquired infections and from oropharyngeal and faecal microbiota from patients in Recife-PE, Brazil, were analyzed regarding the presence of irp2 gene. This is a Yersinia typical gene involved in the synthesis of siderophore yersiniabactin. DNA sequencing confirmed the identity of irp2 gene in five K. pneumoniae, five Enterobacter aerogenes and one Enterobacter amnigenus isolates. To our knowledge in the current literature, this is the first report of the irp2 gene in E. amnigenus, a species considered an unusual human pathogen, and in K. pneumoniae and E. aerogenes isolates from the normal microbiota and from community infections, respectively. Additionally, the analyses of nucleotide and amino acid sequences suggest the irp2 genes derived from isolates used in this study are more closely related to that of Yersinia pestis P.CE882 than to that of Yersinia enterocolitica 8081. These data demonstrated that K. pneumoniae and Enterobacter spp. from normal microbiota and from community- and hospital-acquired infections possess virulence factors important for the establishment of extra-intestinal infections. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Alleviation of phytotoxic effects of cadmium on rice seedlings by cadmium resistant PGPR strain Enterobacter aerogenes MCC 3092.

    PubMed

    Pramanik, Krishnendu; Mitra, Soumik; Sarkar, Anumita; Maiti, Tushar Kanti

    2018-06-05

    Heavy metal resistant PGPR mediated bioremediation, phytostimulation and stress alleviation is an eco-friendly method for sustainable agriculture in the metal contaminated soil. The isolation of such PGPR is highly demanding to reduce heavy metals in contaminated cultivated fields for agricultural benefit. The present study was successful to isolate a potent multi-heavy metal resistant PGPR strain, identified as Enterobacter aerogenes strain K6 based on MALDI-TOF MS, FAME analysis and 16S rDNA sequence homology, from rice rhizosphere contaminated with a variety of heavy metals/metalloid near industrial area. The strain exhibited high degree of resistance to Cd 2+ , Pb 2+ and As 3+ upto 4000 μg/mL, 3800 μg/mL and 1500 μg/mL respectively. Intracellular Cd accumulation of this strain was evidenced by AAS-SEM-TEM-EDX-XRF studies. Moreover, it showed several important PGP traits like IAA production, nitrogen fixation, phosphate solubilization, ACC deaminase activity even under high Cd stress (upto 3000 μg/mL). The combined effect of Cd resistance and PGP activities of this strain was manifested to the significant (p < 0.05) growth promotion of rice seedling under Cd stress by reducing oxidative stress (through antioxidants), stress ethylene and Cd uptake in seedlings. Thus K6 strain conferred Cd-tolerance in rice seedlings and could be applied as PGPR in contaminated fields. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Mutational analysis of the hyc-operon determining the relationship between hydrogenase-3 and NADH pathway in Enterobacter aerogenes.

    PubMed

    Pi, Jian; Jawed, Muhammad; Wang, Jun; Xu, Li; Yan, Yunjun

    2016-01-01

    In this study, the hydrogenase-3 gene cluster (hycDEFGH) was isolated and identified from Enterobacter aerogenes CCTCC AB91102. All gene products were highly homologous to the reported bacterial hydrogenase-3 (Hyd-3) proteins. The genes hycE, hycF, hycG encoding the subunits of hydrogenase-3 were targeted for genetic knockout to inhibit the FHL hydrogen production pathway via the Red recombination system, generating three mutant strains AB91102-E (ΔhycE), AB91102-F (ΔhycF) and AB91102-G (ΔhycG). Deletion of the three genes affected the integrity of hydrogenase-3. The hydrogen production experiments with the mutant strains showed that no hydrogen was detected compared with the wild type (0.886 mol/mol glucose), demonstrating that knocking out any of the three genes could inhibit NADH hydrogen production pathway. Meanwhile, the metabolites of the mutant strains were significantly changed in comparison with the wild type, indicating corresponding changes in metabolic flux by mutation. Additionally, the activity of NADH-mediated hydrogenase was found to be nil in the mutant strains. The chemostat experiments showed that the NADH/NAD(+) ratio of the mutant strains increased nearly 1.4-fold compared with the wild type. The NADH-mediated hydrogenase activity and NADH/NAD(+) ratio analysis both suggested that NADH pathway required the involvement of the electron transport chain of hydrogenase-3. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Malonate-bound structure of the glycerophosphodiesterase from Enterobacter aerogenes (GpdQ) and characterization of the native Fe[superscript 2+] metal-ion preference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, Colin J.; Hadler, Kieran S.; Carr, Paul D.

    2011-09-28

    The structure of a malonate-bound form of the glycerophosphodiesterase from Enterobacter aerogenes, GpdQ, has been refined at a resolution of 2.2 {angstrom} to a final R factor of 17.1%. The structure was originally solved to 2.9 {angstrom} resolution using SAD phases from Zn{sup 2+} metal ions introduced into the active site of the apoenzyme [Jackson et al. (2007), J. Mol. Biol. 367, 1047-1062]. However, the 2.9 {angstrom} resolution was insufficient to discern significant details of the architecture of the binuclear metal centre that constitutes the active site. Furthermore, kinetic analysis revealed that the enzyme lost a significant amount of activitymore » in the presence of Zn2+, suggesting that it is unlikely to be a catalytically relevant metal ion. In this communication, a higher resolution structure of GpdQ is presented in which malonate is visibly coordinated in the active site and analysis of the native metal-ion preference is presented using atomic absorption spectroscopy and anomalous scattering. Catalytic implications of the structure and its Fe{sup 2+} metal-ion preference are discussed.« less

  10. Malonate-bound structure of the glycerophosphodiesterase from Enterobacter aerogenes (GpdQ) and characterization of the native Fe[supscript 2+] metal-ion preference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, Colin J.; Hadler, Kieran S.; Carr, Paul D.

    2010-09-20

    The structure of a malonate-bound form of the glycerophosphodiesterase from Enterobacter aerogenes, GpdQ, has been refined at a resolution of 2.2 {angstrom} to a final R factor of 17.1%. The structure was originally solved to 2.9 {angstrom} resolution using SAD phases from Zn{sup 2+} metal ions introduced into the active site of the apoenzyme [Jackson et al. (2007), J. Mol. Biol. 367, 1047-1062]. However, the 2.9 {angstrom} resolution was insufficient to discern significant details of the architecture of the binuclear metal centre that constitutes the active site. Furthermore, kinetic analysis revealed that the enzyme lost a significant amount of activitymore » in the presence of Zn{sup 2+}, suggesting that it is unlikely to be a catalytically relevant metal ion. In this communication, a higher resolution structure of GpdQ is presented in which malonate is visibly coordinated in the active site and analysis of the native metal-ion preference is presented using atomic absorption spectroscopy and anomalous scattering. Catalytic implications of the structure and its Fe{sup 2+} metal-ion preference are discussed.« less

  11. In Vivo Evolution of Bacterial Resistance in Two Cases of Enterobacter aerogenes Infections during Treatment with Imipenem

    PubMed Central

    Santini, Sébastien; Pinet, Elizabeth; Claverie, Jean-Michel; Davin-Régli, Anne-Véronique; Pagès, Jean-Marie; Masi, Muriel

    2015-01-01

    Infections caused by multidrug resistant (MDR) bacteria are a major concern worldwide. Changes in membrane permeability, including decreased influx and/or increased efflux of antibiotics, are known as key contributors of bacterial MDR. Therefore, it is of critical importance to understand molecular mechanisms that link membrane permeability to MDR in order to design new antimicrobial strategies. In this work, we describe genotype-phenotype correlations in Enterobacter aerogenes, a clinically problematic and antibiotic resistant bacterium. To do this, series of clinical isolates have been periodically collected from two patients during chemotherapy with imipenem. The isolates exhibited different levels of resistance towards multiple classes of antibiotics, consistently with the presence or the absence of porins and efflux pumps. Transport assays were used to characterize membrane permeability defects. Simultaneous genome-wide analysis allowed the identification of putative mutations responsible for MDR. The genome of the imipenem-susceptible isolate G7 was sequenced to closure and used as a reference for comparative genomics. This approach uncovered several loci that were specifically mutated in MDR isolates and whose products are known to control membrane permeability. These were omp35 and omp36, encoding the two major porins; rob, encoding a global AraC-type transcriptional activator; cpxA, phoQ and pmrB, encoding sensor kinases of the CpxRA, PhoPQ and PmrAB two-component regulatory systems, respectively. This report provides a comprehensive analysis of membrane alterations relative to mutational steps in the evolution of MDR of a recognized nosocomial pathogen. PMID:26398358

  12. In Vivo Evolution of Bacterial Resistance in Two Cases of Enterobacter aerogenes Infections during Treatment with Imipenem.

    PubMed

    Philippe, Nadège; Maigre, Laure; Santini, Sébastien; Pinet, Elizabeth; Claverie, Jean-Michel; Davin-Régli, Anne-Véronique; Pagès, Jean-Marie; Masi, Muriel

    2015-01-01

    Infections caused by multidrug resistant (MDR) bacteria are a major concern worldwide. Changes in membrane permeability, including decreased influx and/or increased efflux of antibiotics, are known as key contributors of bacterial MDR. Therefore, it is of critical importance to understand molecular mechanisms that link membrane permeability to MDR in order to design new antimicrobial strategies. In this work, we describe genotype-phenotype correlations in Enterobacter aerogenes, a clinically problematic and antibiotic resistant bacterium. To do this, series of clinical isolates have been periodically collected from two patients during chemotherapy with imipenem. The isolates exhibited different levels of resistance towards multiple classes of antibiotics, consistently with the presence or the absence of porins and efflux pumps. Transport assays were used to characterize membrane permeability defects. Simultaneous genome-wide analysis allowed the identification of putative mutations responsible for MDR. The genome of the imipenem-susceptible isolate G7 was sequenced to closure and used as a reference for comparative genomics. This approach uncovered several loci that were specifically mutated in MDR isolates and whose products are known to control membrane permeability. These were omp35 and omp36, encoding the two major porins; rob, encoding a global AraC-type transcriptional activator; cpxA, phoQ and pmrB, encoding sensor kinases of the CpxRA, PhoPQ and PmrAB two-component regulatory systems, respectively. This report provides a comprehensive analysis of membrane alterations relative to mutational steps in the evolution of MDR of a recognized nosocomial pathogen.

  13. Biosurfactant-enhanced hydrogen production from organic fraction of municipal solid waste using co-culture of E. coli and Enterobacter aerogenes.

    PubMed

    Sharma, Preeti; Melkania, Uma

    2017-11-01

    The effect of biosurfactants (surfactin and saponin) on the hydrogen production from organic fraction of municipal solid waste (OFMSW) was investigated using co-culture of facultative anaerobes Enterobacter aerogenes and E. coli. The biosurfactants were applied in the concentration ranges of 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5 and 5.0% each. Cumulative hydrogen production (P), maximum hydrogen production rate (Rmax) and lag phases (λ) were analyzed using modified Gompertz model. Results revealed that both the biosurfactants were effective in hydrogen production enhancement. The maximum cumulative hydrogen production of 743.5±14.4ml and 675.6±12.1ml and volumetric hydrogen production of 2.12L H2 /L substrate and 1.93L H2 /L substrate was recorded at 3.5% surfactin and 3.0% saponin respectively. Corresponding highest hydrogen yields were 79.2mlH 2 /gCarbo initial and 72.0mlH 2 /gCarbo initial respectively. Lag phase decreased from 12.5±2.0h at control to a minimum of 9.0±2.8h and 9.5±2.1h at 3.5% surfactin and 3.0% saponin respectively. Volatile fatty acid generation was increased with biosurfactants addition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. [Phenotypic and genotypic characterization of resistance to third-generation cephalosporins in Enterobacter spp].

    PubMed

    Bertona, E; Radice, M; Rodríguez, C H; Barberis, C; Vay, C; Famiglietti, A; Gutkind, G

    2005-01-01

    Enterobacter spp. are becoming increasingly frequent nosocomial pathogens with multiple resistance mechanism to beta-lactam antibiotics. We carried out the phenotypic and genotypic characterization of beta-lactamases in 27 Enterobacter spp. (25 Enterobacter cloacae y 2 Enterobacter aerogenes), as well as the ability of different extended spectrum-lactamase (ESBL) screening methods. Resistance to third generation cephalosporins was observed in 15/27 (63%) isolates. Twelve resistant isolates produced high level chromosomal encoded AmpC beta-lactamase; 6 of them were also producers of PER-2. Resistance to third generation cephalosporins in the remaining 3 isolates was due to the presence of ESBLs, PER-2 in 2 cases, and CTX-M-2 in the other. Only CTX-M-2 production was detected with all tested cephalosporins using difusion synergy tests, while cefepime improved ESBLs detection in 7/8 PER-2 producers, 4/8 in the inhibitor approximation test and 7/8 with double disk test using cefepime containing disk with and without clavulanic acid. Dilution method, including cephalosporins with and without the inhibitor detected 1/9 ESBLs producers.

  15. Geraniol Restores Antibiotic Activities against Multidrug-Resistant Isolates from Gram-Negative Species▿ †

    PubMed Central

    Lorenzi, Vannina; Muselli, Alain; Bernardini, Antoine François; Berti, Liliane; Pagès, Jean-Marie; Amaral, Leonard; Bolla, Jean-Michel

    2009-01-01

    The essential oil of Helichrysum italicum significantly reduces the multidrug resistance of Enterobacter aerogenes, Escherichia coli, Pseudomonas aeruginosa, and Acinetobacter baumannii. Combinations of the two most active fractions of the essential oil with each other or with phenylalanine arginine β-naphthylamide yield synergistic activity. Geraniol, a component of one fraction, significantly increased the efficacy of β-lactams, quinolones, and chloramphenicol. PMID:19258278

  16. Impact of furan derivatives and phenolic compounds on hydrogen production from organic fraction of municipal solid waste using co-culture of Enterobacter aerogenes and E. coli.

    PubMed

    Sharma, Preeti; Melkania, Uma

    2017-09-01

    In the present study, the effect of furan derivatives (furfural and 5-hydroxymethylfurfural) and phenolic compounds (vanillin and syringaldehyde) on hydrogen production from organic fraction of municipal solid waste (OFMSW) was investigated using co-culture of facultative anaerobes Enterobacter aerogenes and E. coli. The inhibitors were applied in the concentration ranges of 0.25, 0.5, 1, 2 and 5g/L each. Inhibition coefficients of phenolic compounds were higher than those of furan derivatives and vanillin exhibited maximum inhibition coefficients correspondingly lowest hydrogen yield among all inhibitors. Furfural and 5-hydroxymethylfurfural addition resulted in an average decrease of 26.99% and 37.16% in hydrogen yield respectively, while vanillin and syringaldehyde resulted in 49.40% and 42.26% average decrease in hydrogen yield respectively. Further analysis revealed that Furfural and 5-hydroxymethylfurfural were completely degraded up to concentrations of 1g/L, while vanillin and syringaldehyde were degraded completely up to the concentration of 0.5g/L. Volatile fatty acid generation decreased with inhibitors addition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. A biological method for in-situ synthesis of hydroxyapatite-coated magnetite nanoparticles using Enterobacter aerogenes: Characterization and acute toxicity assessments.

    PubMed

    Ahmadzadeh, Elham; Talebnia Rowshan, Farid; Hosseini, Morteza

    2017-04-01

    Hydroxyapatite (HA)-coated magnetite nanoparticles (MNPs) are being widely investigated for various applications in medical engineering and wastewater treatment. In this work, the MNPs were thoroughly coated by bacterial synthesized HA nanoparticles during biomineralization process using Enterobacter aerogenes. The resulting bacterial-induced precipitate was then calcined at 600°C and investigated with respect to structural characteristics, particle size and magnetic strength by XRD, FT-IR, SEM, EDS, TEM and VSM analyses. The effects of MNPs and HA-coated MNPs (HA-MNPs) on the viability of human MCF-7 cell lines were also investigated via mitochondrial activity test (MTT) and lactate dehydrogenase (LDH) assays. The powder characterization results showed appropriate structural properties for HA-MNPs samples. The particles diameter size of the MNPs and HA-MNPs were in the range of 3-25nm and 20-80nm, respectively. The biologically-synthesized HA-MNPs formed a stable suspension in water while keeping their magnetic property. The saturation magnetization (Ms) of HA-MNPs was measured at ~10emug -1 which was in good agreement with the structural composition of this sample. Finally, the results of the cell lines viability indicated that coating of toxic MNPs via biomineralization was a promising approach in order to synthesize bio-compatible magnetic nanoparticles with suitable physical and chemical structural characteristics. The toxicity level of MNPs was reduced by 10 fold when coated by bacterial-synthesized HA. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Effects of Eliminating Pyruvate Node Pathways and of Coexpression of Heterogeneous Carboxylation Enzymes on Succinate Production by Enterobacter aerogenes

    PubMed Central

    Yamamoto, Yoko; Fukui, Keita; Nishio, Yousuke; Hashiguchi, Kenichi; Usuda, Yoshihiro; Sode, Koji

    2014-01-01

    Lowering the pH in bacterium-based succinate fermentation is considered a feasible approach to reduce total production costs. Newly isolated Enterobacter aerogenes strain AJ110637, a rapid carbon source assimilator under weakly acidic (pH 5.0) conditions, was selected as a platform for succinate production. Our previous work showed that the ΔadhE/PCK strain, developed from AJ110637 with inactivated ethanol dehydrogenase and introduced Actinobacillus succinogenes phosphoenolpyruvate carboxykinase (PCK), generated succinate as a major product of anaerobic mixed-acid fermentation from glucose under weakly acidic conditions (pH <6.2). To further improve the production of succinate by the ΔadhE/PCK strain, metabolically engineered strains were designed based on the elimination of pathways that produced undesirable products and the introduction of two carboxylation pathways from phosphoenolpyruvate and pyruvate to oxaloacetate. The highest production of succinate was observed with strain ES04/PCK+PYC, which had inactivated ethanol, lactate, acetate, and 2,3-butanediol pathways and coexpressed PCK and Corynebacterium glutamicum pyruvate carboxylase (PYC). This strain produced succinate from glucose with over 70% yield (gram per gram) without any measurable formation of ethanol, lactate, or 2,3-butanediol under weakly acidic conditions. The impact of lowering the pH from 7.0 to 5.5 on succinate production in this strain was evaluated under pH-controlled batch culture conditions and showed that the lower pH decreased the succinate titer but increased its yield. These findings can be applied to identify additional engineering targets to increase succinate production. PMID:25416770

  19. High prevalence of non-clonal imipenem-nonsusceptible Enterobacter spp. isolates in Korea and their association with porin down-regulation.

    PubMed

    Lee, Ji-Young; Hong, Yoon-Kyoung; Lee, Haejeong; Ko, Kwan Soo

    2017-01-01

    We investigated the prevalence and clonal distribution of imipenem-nonsusceptible Enterobacter clinical isolates from hospitals in Korea and the contributions of various mechanisms to imipenem nonsusceptibility. The in vitro antimicrobial susceptibility to imipenem of 357 non-duplicated Enterobacter isolates obtained from eight geographically distant tertiary care hospitals in Korea was evaluated. Imipenem-nonsusceptible Enterobacter isolates were genotyped. Additionally, β-lactamase genes were screened using PCR, and the expression of efflux pump and porin genes was investigated using quantitative RT-PCR. A total of 31 isolates (8.7%) were not susceptible to imipenem. Clonal diversity of 17 imipenem-nonsusceptible E. cloacae isolates was demonstrated by multilocus sequence typing. Fourteen imipenem-nonsusceptible E. aerogenes isolates were found to be distantly genetically related by an ERIC-PCR analysis. Expression levels of porin ompD and ompK35 genes were decreased in all imipenem-nonsusceptible E. cloacae and E. aerogenes isolates. However, only two isolates were found positive for bla IMP and bla VIM genes, and expression of the efflux pump gene, acrB, was not associated with reduced imipenem susceptibility. Imipenem resistance seems to have occurred independently in most of the imipenem-nonsusceptible isolates in this study, and decreased porin expression was found to be the main mechanism underlying this reduced susceptibility to imipenem. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Membrane permeability, a pivotal function involved in antibiotic resistance and virulence in Enterobacter aerogenes clinical isolates.

    PubMed

    Lavigne, J-P; Sotto, A; Nicolas-Chanoine, M-H; Bouziges, N; Bourg, G; Davin-Regli, A; Pagès, J-M

    2012-06-01

    Imipenem-susceptible E. aerogenes isolates exhibiting extended spectrum β-lactamases, target mutations and a basal efflux expression, were identified in five patients. After imipenem treatment, imipenem-intermediate susceptible (IMI-I) or resistant (IMI-R) isolates emerged in these patients. Alteration in porin synthesis and increase in efflux expression were observed in the IMI-I isolates whereas complete loss of the porins, LPS alteration and efflux overexpression were observed in the IMI-R isolates. Bacterial virulence of the strains was investigated by the Caenorhabditis elegans model. The IMI-R isolates were shown to be significantly less virulent than the IMI-susceptible or IMI-I isolates. The pleiotropic membrane alteration and its associated fitness burden exhibited by E. aerogenes isolates influence their antibiotic resistance and their virulence behaviour. These findings highlight the balance between the low permeability-related resistance and virulence and their relationships with the treatment of resistant pathogens. © 2011 The Authors. Clinical Microbiology and Infection © 2011 European Society of Clinical Microbiology and Infectious Diseases.

  1. Biotransformation of Ferulic acid to 4-Vinylguaiacol by Enterobacter soli and E. aerogenes

    USDA-ARS?s Scientific Manuscript database

    We investigated the conversion of ferulic acid to 4-vinylguaiacol (4-VG), vanillin, vanillyl alcohol and vanillic acid by five Enterobacter strains. These high-value chemicals are usually synthesized using chemical methods but biological synthesis adds value. Ferulic acid, a relatively inexpensive...

  2. Early Limnology of Dworshak Reservoir. Part 1. Limnology. Part 2. Impact of Log Leachates on Phytoplankton. Part 3. Fate of Phytoplankton and Zooplankton Dynamics. Part 4. Bacteriology.

    DTIC Science & Technology

    1977-01-01

    Streptococcus faecalis var. liquefaciens, Enterobacter aerogenes , and a Salmonella sp. in filtered Dworshak water, 3 August 1973...4-52 * 35, Survival of Escherichia coli, Streptococcus faecalis ./ var. liquefaciens, Enterobacter aerogenes , and a_ _.__ _ _, Salmonella...after appropriate enrich- ment. The organisms and enrichments used were as follows: Escherichia coli, Enterobacter aerogenes and Salmonella; brain heart

  3. Molecular identification of aiiA homologous gene from endophytic Enterobacter species and in silico analysis of putative tertiary structure of AHL-lactonase.

    PubMed

    Rajesh, P S; Rai, V Ravishankar

    2014-01-03

    The aiiA homologous gene known to encode AHL- lactonase enzyme which hydrolyze the N-acylhomoserine lactone (AHL) quorum sensing signaling molecules produced by Gram negative bacteria. In this study, the degradation of AHL molecules was determined by cell-free lysate of endophytic Enterobacter species. The percentage of quorum quenching was confirmed and quantified by HPLC method (p<0.0001). Amplification and sequence BLAST analysis showed the presence of aiiA homologous gene in endophytic Enterobacter asburiae VT65, Enterobacter aerogenes VT66 and Enterobacter ludwigii VT70 strains. Sequence alignment analysis revealed the presence of two zinc binding sites, "HXHXDH" motif as well as tyrosine residue at the position 194. Based on known template available at Swiss-Model, putative tertiary structure of AHL-lactonase was constructed. The result showed that novel endophytic strains of Enterobacter genera encode the novel aiiA homologous gene and its structural importance for future study. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Effects of eliminating pyruvate node pathways and of coexpression of heterogeneous carboxylation enzymes on succinate production by Enterobacter aerogenes.

    PubMed

    Tajima, Yoshinori; Yamamoto, Yoko; Fukui, Keita; Nishio, Yousuke; Hashiguchi, Kenichi; Usuda, Yoshihiro; Sode, Koji

    2015-02-01

    Lowering the pH in bacterium-based succinate fermentation is considered a feasible approach to reduce total production costs. Newly isolated Enterobacter aerogenes strain AJ110637, a rapid carbon source assimilator under weakly acidic (pH 5.0) conditions, was selected as a platform for succinate production. Our previous work showed that the ΔadhE/PCK strain, developed from AJ110637 with inactivated ethanol dehydrogenase and introduced Actinobacillus succinogenes phosphoenolpyruvate carboxykinase (PCK), generated succinate as a major product of anaerobic mixed-acid fermentation from glucose under weakly acidic conditions (pH <6.2). To further improve the production of succinate by the ΔadhE/PCK strain, metabolically engineered strains were designed based on the elimination of pathways that produced undesirable products and the introduction of two carboxylation pathways from phosphoenolpyruvate and pyruvate to oxaloacetate. The highest production of succinate was observed with strain ES04/PCK+PYC, which had inactivated ethanol, lactate, acetate, and 2,3-butanediol pathways and coexpressed PCK and Corynebacterium glutamicum pyruvate carboxylase (PYC). This strain produced succinate from glucose with over 70% yield (gram per gram) without any measurable formation of ethanol, lactate, or 2,3-butanediol under weakly acidic conditions. The impact of lowering the pH from 7.0 to 5.5 on succinate production in this strain was evaluated under pH-controlled batch culture conditions and showed that the lower pH decreased the succinate titer but increased its yield. These findings can be applied to identify additional engineering targets to increase succinate production. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  5. Molecular characteristics of extended-spectrum beta-lactamases and qnr determinants in Enterobacter species from Japan.

    PubMed

    Kanamori, Hajime; Yano, Hisakazu; Hirakata, Yoichi; Hirotani, Ayako; Arai, Kazuaki; Endo, Shiro; Ichimura, Sadahiro; Ogawa, Miho; Shimojima, Masahiro; Aoyagi, Tetsuji; Hatta, Masumitsu; Yamada, Mitsuhiro; Gu, Yoshiaki; Tokuda, Koichi; Kunishima, Hiroyuki; Kitagawa, Miho; Kaku, Mitsuo

    2012-01-01

    The incidence of extended-spectrum β-lactamases (ESBLs) has been increasing worldwide, but screening criteria for detection of ESBLs are not standardized for AmpC-producing Enterobacteriaceae such as Enterobacter species. In this study, we investigated the prevalence of ESBLs and/or AmpC β-lactamases in Japanese clinical isolates of Enterobacter spp. and the association of plasmid-mediated quinolone resistance (PMQR) determinants with ESBL producers. A total of 364 clinical isolates of Enterobacter spp. collected throughout Japan between November 2009 and January 2010 were studied. ESBL-producing strains were assessed by the CLSI confirmatory test and the boronic acid disk test. PCR and sequencing were performed to detect CTX-M, TEM, and SHV type ESBLs and PMQR determinants. For ESBL-producing Enterobacter spp., pulsed-field gel electrophoresis (PFGE) was performed using XbaI restriction enzyme. Of the 364 isolates, 22 (6.0%) were ESBL producers. Seven isolates of Enterobacter cloacae produced CTX-M-3, followed by two isolates producing SHV-12. Two isolates of Enterobacter aerogenes produced CTX-M-2. Of the 22 ESBL producers, 21 had the AmpC enzyme, and six met the criteria for ESBL production in the boronic acid test. We found a significant association of qnrS with CTX-M-3-producing E. cloacae. The 11 ESBL-producing Enterobacter spp. possessing bla(CTX-M), bla(SHV), or bla(TEM) were divided into six unique PFGE types. This is the first report about the prevalence of qnr determinants among ESBL-producing Enterobacter spp. from Japan. Our results suggest that ESBL-producing Enterobacter spp. with qnr determinants are spreading in Japan.

  6. Molecular Characteristics of Extended-Spectrum Beta-Lactamases and qnr Determinants in Enterobacter Species from Japan

    PubMed Central

    Hirakata, Yoichi; Hirotani, Ayako; Arai, Kazuaki; Endo, Shiro; Ichimura, Sadahiro; Ogawa, Miho; Shimojima, Masahiro; Aoyagi, Tetsuji; Hatta, Masumitsu; Yamada, Mitsuhiro; Gu, Yoshiaki; Tokuda, Koichi; Kunishima, Hiroyuki; Kitagawa, Miho; Kaku, Mitsuo

    2012-01-01

    The incidence of extended-spectrum β-lactamases (ESBLs) has been increasing worldwide, but screening criteria for detection of ESBLs are not standardized for AmpC-producing Enterobacteriaceae such as Enterobacter species. In this study, we investigated the prevalence of ESBLs and/or AmpC β-lactamases in Japanese clinical isolates of Enterobacter spp. and the association of plasmid-mediated quinolone resistance (PMQR) determinants with ESBL producers. A total of 364 clinical isolates of Enterobacter spp. collected throughout Japan between November 2009 and January 2010 were studied. ESBL-producing strains were assessed by the CLSI confirmatory test and the boronic acid disk test. PCR and sequencing were performed to detect CTX-M, TEM, and SHV type ESBLs and PMQR determinants. For ESBL-producing Enterobacter spp., pulsed-field gel electrophoresis (PFGE) was performed using XbaI restriction enzyme. Of the 364 isolates, 22 (6.0%) were ESBL producers. Seven isolates of Enterobacter cloacae produced CTX-M-3, followed by two isolates producing SHV-12. Two isolates of Enterobacter aerogenes produced CTX-M-2. Of the 22 ESBL producers, 21 had the AmpC enzyme, and six met the criteria for ESBL production in the boronic acid test. We found a significant association of qnrS with CTX-M-3-producing E. cloacae. The 11 ESBL-producing Enterobacter spp. possessing bla CTX-M, bla SHV, or bla TEM were divided into six unique PFGE types. This is the first report about the prevalence of qnr determinants among ESBL-producing Enterobacter spp. from Japan. Our results suggest that ESBL-producing Enterobacter spp. with qnr determinants are spreading in Japan. PMID:22719857

  7. Computational-based structural, functional and phylogenetic analysis of Enterobacter phytases.

    PubMed

    Pramanik, Krishnendu; Kundu, Shreyasi; Banerjee, Sandipan; Ghosh, Pallab Kumar; Maiti, Tushar Kanti

    2018-06-01

    Myo-inositol hexakisphosphate phosphohydrolases (i.e., phytases) are known to be a very important enzyme responsible for solubilization of insoluble phosphates. In the present study, Enterobacter phytases have characterized by different phylogenetic, structural and functional parameters using some standard bio-computational tools. Results showed that majority of the Enterobacter phytases are acidic in nature as most of the isoelectric points were under 7.0. The aliphatic indices predicted for the selected proteins were below 40 indicating their thermostable nature. The average molecular weight of the proteins was 48 kDa. The lower values of GRAVY of the said proteins implied that they have better interactions with water. Secondary structure prediction revealed that alpha-helical content was highest among the other forms such as sheets, coils, etc. Moreover, the predicted 3D structure of Enterobacter phytases divulged that the proteins consisted of four monomeric polypeptide chains i.e., it was a tetrameric protein. The predicted tertiary model of E. aerogenes (A0A0M3HCJ2) was deposited in Protein Model Database (Acc. No.: PM0080561) for further utilization after a thorough quality check from QMEAN and SAVES server. Functional analysis supported their classification as histidine acid phosphatases. Besides, multiple sequence alignment revealed that "DG-DP-LG" was the most highly conserved residues within the Enterobacter phytases. Thus, the present study will be useful in selecting suitable phytase-producing microbe exclusively for using in the animal food industry as a food additive.

  8. Impact of heavy metals on hydrogen production from organic fraction of municipal solid waste using co-culture of Enterobacter aerogenes and E. Coli.

    PubMed

    Sharma, Preeti; Melkania, Uma

    2018-05-01

    In the present study, the effect of heavy metals (lead, mercury, copper, and chromium) on the hydrogen production from the organic fraction of municipal solid waste (OFMSW) was investigated using co-culture of facultative anaerobes Enterobacter aerogenes and E. coli. Heavy metals were applied at concentration range of 0.5, 1, 2, 5, 10, 20, 50 and 100 mg/L. The results revealed that lead, mercury, and chromium negatively affected hydrogen production for the range of concentrations applied. Application of copper slightly enhanced hydrogen production at low concentration and resulted in the hydrogen yield of 36.0 mLH 2 /gCarbo initial with 10 mg/L copper supplementation as compared to 24.2 mLH 2 /gCarbo initial in control. However, the higher concentration of copper (>10 mg/L) declined hydrogen production. Hydrogen production inhibition potential of heavy metals can be arranged in the following increasing order: Cu 2+  < Cr 6+  < Pb 2+  < Hg 2+ . COD removal rate and volatile fatty acid generation efficiencies were also significantly affected by heavy metal addition. Thus, the present study reveals that the presence of heavy metals in the feedstock is detrimental for the hydrogen production. Therefore, it is essential to remove the toxic heavy metals prior to anaerobic digestion. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Characterization of In40 of Enterobacter aerogenes BM2688, a Class 1 Integron with Two New Gene Cassettes, cmlA2 and qacF

    PubMed Central

    Ploy, Marie-Cécile; Courvalin, Patrice; Lambert, Thierry

    1998-01-01

    Enterobacter aerogenes BM2688, which is resistant to multiple antibiotics, and its aminoglycoside-susceptible derivative BM2688-1 were isolated from the same clinical sample. Strain BM2688 harbored plasmid pIP833, which carries a class 1 integron, In40, containing (in addition to qacEΔ1 and sul1, which are characteristic of class 1 integrons) four gene cassettes: aac(6′)-Ib, qacF, cmlA2, and oxa-9. The cmlA2 gene had 83.7% identity with the previously described nonenzymatic chloramphenicol resistance cmlA1 gene. The qacF gene conferred resistance to quaternary ammonium compounds and displayed a high degree of similarity with qacE (67.8% identity) which, however, has been found as part of a cassette with a very different 59-base element. The oxa-9 gene was not expressed due to a lack of promoter sequences. Study of the antibiotic-susceptible derivative BM2688-1 indicated that a 3,148-bp deletion between the 3′ end of the aac(6′)-Ib gene and the 3′ conserved segment of In40 was responsible for the loss of resistance. The occurrence of this DNA rearrangement, which did not involve homologous sequences, suggests that the In40 integrase could promote recombination at secondary sites. PMID:9756755

  10. Longer Contact Times Increase Cross-Contamination of Enterobacter aerogenes from Surfaces to Food.

    PubMed

    Miranda, Robyn C; Schaffner, Donald W

    2016-11-01

    Bacterial cross-contamination from surfaces to food can contribute to foodborne disease. The cross-contamination rate of Enterobacter aerogenes on household surfaces was evaluated by using scenarios that differed by surface type, food type, contact time (<1, 5, 30, and 300 s), and inoculum matrix (tryptic soy broth or peptone buffer). The surfaces used were stainless steel, tile, wood, and carpet. The food types were watermelon, bread, bread with butter, and gummy candy. Surfaces (25 cm 2 ) were spot inoculated with 1 ml of inoculum and allowed to dry for 5 h, yielding an approximate concentration of 10 7 CFU/surface. Foods (with a 16-cm 2 contact area) were dropped onto the surfaces from a height of 12.5 cm and left to rest as appropriate. Posttransfer, surfaces and foods were placed in sterile filter bags and homogenized or massaged, diluted, and plated on tryptic soy agar. The transfer rate was quantified as the log percent transfer from the surface to the food. Contact time, food, and surface type all had highly significant effects (P < 0.000001) on the log percent transfer of bacteria. The inoculum matrix (tryptic soy broth or peptone buffer) also had a significant effect on transfer (P = 0.013), and most interaction terms were significant. More bacteria transferred to watermelon (∼0.2 to 97%) than to any other food, while the least bacteria transferred to gummy candy (∼0.1 to 62%). Transfer of bacteria to bread (∼0.02 to 94%) was similar to transfer of bacteria to bread with butter (∼0.02 to 82%), and these transfer rates under a given set of conditions were more variable than with watermelon and gummy candy. The popular notion of the "five-second rule" is that food dropped on the floor and left there for <5 s is "safe" because bacteria need time to transfer. The rule has been explored by a single study in the published literature and on at least two television shows. Results from two academic laboratories have been shared through press releases but

  11. Longer Contact Times Increase Cross-Contamination of Enterobacter aerogenes from Surfaces to Food

    PubMed Central

    Miranda, Robyn C.

    2016-01-01

    ABSTRACT Bacterial cross-contamination from surfaces to food can contribute to foodborne disease. The cross-contamination rate of Enterobacter aerogenes on household surfaces was evaluated by using scenarios that differed by surface type, food type, contact time (<1, 5, 30, and 300 s), and inoculum matrix (tryptic soy broth or peptone buffer). The surfaces used were stainless steel, tile, wood, and carpet. The food types were watermelon, bread, bread with butter, and gummy candy. Surfaces (25 cm2) were spot inoculated with 1 ml of inoculum and allowed to dry for 5 h, yielding an approximate concentration of 107 CFU/surface. Foods (with a 16-cm2 contact area) were dropped onto the surfaces from a height of 12.5 cm and left to rest as appropriate. Posttransfer, surfaces and foods were placed in sterile filter bags and homogenized or massaged, diluted, and plated on tryptic soy agar. The transfer rate was quantified as the log percent transfer from the surface to the food. Contact time, food, and surface type all had highly significant effects (P < 0.000001) on the log percent transfer of bacteria. The inoculum matrix (tryptic soy broth or peptone buffer) also had a significant effect on transfer (P = 0.013), and most interaction terms were significant. More bacteria transferred to watermelon (∼0.2 to 97%) than to any other food, while the least bacteria transferred to gummy candy (∼0.1 to 62%). Transfer of bacteria to bread (∼0.02 to 94%) was similar to transfer of bacteria to bread with butter (∼0.02 to 82%), and these transfer rates under a given set of conditions were more variable than with watermelon and gummy candy. IMPORTANCE The popular notion of the “five-second rule” is that food dropped on the floor and left there for <5 s is “safe” because bacteria need time to transfer. The rule has been explored by a single study in the published literature and on at least two television shows. Results from two academic laboratories have been shared

  12. Draft Genome Sequences of Pseudomonas aeruginosa Isolates from Wounded Military Personnel.

    PubMed

    Arivett, Brock A; Ream, Dave C; Fiester, Steven E; Kidane, Destaalem; Actis, Luis A

    2016-08-11

    Pseudomonas aeruginosa, a Gram-negative bacterium that causes severe hospital-acquired infections, is grouped as an ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogen because of its extensive drug resistance phenotypes and effects on human health worldwide. Five multidrug resistant P. aeruginosa strains isolated from wounded military personnel were sequenced and annotated in this work. Copyright © 2016 Arivett et al.

  13. Optimization of L-asparaginase production from novel Enterobacter sp., by submerged fermentation using response surface methodology.

    PubMed

    Erva, Rajeswara Reddy; Goswami, Ajgebi Nath; Suman, Priyanka; Vedanabhatla, Ravali; Rajulapati, Satish Babu

    2017-03-16

    The culture conditions and nutritional rations influencing the production of extra cellular antileukemic enzyme by novel Enterobacter aerogenes KCTC2190/MTCC111 were optimized in shake-flask culture. Process variables like pH, temperature, incubation time, carbon and nitrogen sources, inducer concentration, and inoculum size were taken into account. In the present study, finest enzyme activity achieved by traditional one variable at a time method was 7.6 IU/mL which was a 2.6-fold increase compared to the initial value. Further, the L-asparaginase production was optimized using response surface methodology, and validated experimental result at optimized process variables gave 18.35 IU/mL of L-asparaginase activity, which is 2.4-times higher than the traditional optimization approach. The study explored the E. aerogenes MTCC111 as a potent and potential bacterial source for high yield of antileukemic drug.

  14. Mechanistic Insight from Calorimetric Measurements of the Assembly of the Binuclear Metal Active Site of Glycerophosphodiesterase (GpdQ) from Enterobacter aerogenes.

    PubMed

    Pedroso, Marcelo M; Ely, Fernanda; Carpenter, Margaret C; Mitić, Nataša; Gahan, Lawrence R; Ollis, David L; Wilcox, Dean E; Schenk, Gerhard

    2017-07-05

    Glycerophosphodiesterase (GpdQ) from Enterobacter aerogenes is a binuclear metallohydrolase with a high affinity for metal ions at its α site but a lower affinity at its β site in the absence of a substrate. Isothermal titration calorimetry (ITC) has been used to quantify the Co(II) and Mn(II) binding affinities and thermodynamics of the two sites in wild-type GpdQ and two mutants, both in the absence and in the presence of phosphate. Metal ions bind to the six-coordinate α site in an entropically driven process with loss of a proton, while binding at the β site is not detected by ITC. Phosphate enhances the metal affinity of the α site by increasing the binding entropy and the metal affinity of the β site by enthalpic (Co) or entropic (Mn) contributions, but no additional loss of protons. Mutations of first- and second-coordination sphere residues at the β site increase the metal affinity of both sites by enhancing the binding enthalpy. In particular, loss of the hydrogen bond from second-sphere Ser127 to the metal-coordinating Asn80 has a significant effect on the metal binding thermodynamics that result in a resting binuclear active site with high catalytic activity. While structural and spectroscopic data with excess metal ions have indicated a bridging hydroxide in the binuclear GpdQ site, analysis of ITC data here reveals the loss of a single proton in the assembly of this site, indicating that the metal-bound hydroxide nucleophile is formed in the resting inactive mononuclear form, which becomes catalytically competent upon binding the second metal ion.

  15. Development and Evaluation of Integrity Assessment Tests for Polymeric Hermetic Seals

    DTIC Science & Technology

    2006-02-19

    Knoxville, the wires were pulled from the seals and then the packages were dipped in the microorganism Enterobacter aerogene . The polytrays were exposed for...inoculated) 5 samples Total Polytrays 80 Microorganism Washes 1. Prepare Cultures of Enterobacter aerogenes a. 5 tubes (10 mL each) in...initial number – 6 log CFU/mL a. Add two tubes (20 mL) of Enterobacter aerogenes culture to 5 gallons of water with sodium thiosulfate b. Ca. 9 log CFU

  16. Emergence of extended-spectrum β-lactamase producing Enterobacter spp. in patients with bacteremia in a tertiary hospital in southern Brazil.

    PubMed

    Nogueira, Keite da Silva; Paganini, Maria Cristina; Conte, Andréia; Cogo, Laura Lúcia; Taborda de Messias Reason, Iara; da Silva, Márcio José; Dalla-Costa, Libera Maria

    2014-02-01

    Extended-spectrum β-lactamases (ESBLs) are increasingly prevalent in Enterobacter spp., posing a challenge to the treatment of infections caused by this microorganism. The purpose of this retrospective study was to evaluate the prevalence, risk factors, and clinical outcomes of inpatients with bacteremia caused by ESBL and non ESBL-producing Enterobacter spp. in a tertiary hospital over the period 2004-2008. The presence of blaCTX-M, blaTEM, blaSHV, and blaPER genes was detected by polymerase chain reaction (PCR) and nucleotide sequence analysis. Genetic similarity between strains was defined by pulsed-field gel electrophoresis (PFGE). Enterobacter spp. was identified in 205 of 4907 of the patients who had positive blood cultures during hospitalization. Of those cases, 41 (20%) were ESBL-producing Enterobacter spp. Nosocomial pneumonia was the main source of bacteremia caused by ESBL-producing Enterobacter spp. The presence of this microorganism was associated with longer hospital stays. The ESBL genes detected were: CTX-M-2 (23), CTX-M-59 (10), CTX-M-15 (1), SHV-12 (5), and PER-2 (2). While Enterobacter aerogenes strains showed mainly a clonal profile, Enterobacter cloacae strains were polyclonal. Although no difference in clinical outcomes was observed between patients with infections by ESBL-producing and non-ESBL-producing strains, the detection of ESBL in Enterobacter spp. resulted in the change of antimicrobials in 75% of cases, having important implications in the decision-making regarding adequate antimicrobial therapy. Copyright © 2012 Elsevier España, S.L. All rights reserved.

  17. Deletions in the tetracycline resistance determinant reduce the thermosensitivity of a trfA(Ts) derivative of plasmid RP1 in Pseudomonas aeruginosa.

    PubMed

    Rella, M; Watson, J M; Thomas, C M; Haas, D

    1987-01-01

    A derivative of the broad-host-range plasmid RP1, pME301, was temperature-sensitive (Ts) at 43 degrees C for maintenance in Pseudomonas aeruginosa, P. mendocina, Klebsiella aerogenes and Escherichia coli. In E. coli, the Ts defect of pME301 could be complemented in trans by the cloned trfA gene, which is known to be essential for RP1 replication in E. coli and P. aeruginosa. Because pME301 expressed a Ts phenotype in P. mendocina and K. aerogenes, we assume that the trfA function is also vital in these organisms. When plasmid-encoded carbenicillin resistance (on transposon Tn801) was selected at non-permissive temperatures in P. aeruginosa strain PAO carrying pME301, we obtained either Tn801 insertions into the chromosome or pME301 derivatives having a deletion (or point mutation) in their tet genes, which determine resistance to tetracycline and are not transposable. From cloning experiments, we infer that the tet gene product(s) destabilize the pME301 replicon in P. aeruginosa at 40-43 degrees C.

  18. The spread of bla OXA-48 and bla OXA-244 carbapenemase genes among Klebsiella pneumoniae, Proteus mirabilis and Enterobacter spp. isolated in Moscow, Russia.

    PubMed

    Fursova, Nadezhda K; Astashkin, Eugeny I; Knyazeva, Anastasia I; Kartsev, Nikolay N; Leonova, Ekaterina S; Ershova, Olga N; Alexandrova, Irina A; Kurdyumova, Natalia V; Sazikina, Svetlana Yu; Volozhantsev, Nikolay V; Svetoch, Edward A; Dyatlov, Ivan A

    2015-11-02

    The spread of carbapenemase-producing Enterobacteriaceae (CPE) is a great problem of healthcare worldwide. Study of the spread for bla OXA-48-like genes coding epidemically significant carbapenemases among hospital pathogens is important for the regional and global epidemiology of antimicrobial resistance. Antibacterial resistant isolates of Klebsiella pneumoniae (n = 95) from 54 patients, P. mirabilis (n = 32) from 20 patients, Enterobacter aerogenes (n = 6) from four patients, and Enterobacter cloacae (n = 4) from four patients were collected from January, 2013 to October, 2014 in neurosurgical intensive care unit (ICU) of the Burdenko Neurosurgery Institute, Moscow. Characteristics of the isolates were done using susceptibility tests, PCR detection of the resistance genes, genotyping, conjugation, DNA sequencing, and bioinformatic analysis. Major strains under study were multi drug resistant (MDR), resistant to three or more functional classes of drugs simultaneously-98.9 % K. pneumoniae, 100 % P. mirabilis, one E. aerogenes isolate, and one E. cloacae isolate. Molecular-genetic mechanism of MDR in K. pneumoniae and P. mirabilis isolates were based on carrying of epidemic extended-spectrum beta-lactamase bla CTX-M-15 gene (87.2 and 90.6 % accordingly), carbapenemase bla OXA-48-like gene (55.3 and 23.3 % accordingly), and class 1 (54.8 and 31.3 % accordingly) and class 2 (90.6 % P. mirabilis) integrons. The bla OXA-48-like-positive K. pneumoniae were collected during whole two-year surveillance period, while P. mirabilis and Enterobacter spp. carrying bla OXA-48-like genes were detected only after four and 18 months after the research start, respectively. The bla OXA-48-like gene acquisition was shown for P. mirabilis isolates collected from five patients and for E. cloacae isolate collected from one patient during their stay in the ICU, presumably from bla OXA-48-like-positive K. pneumoniae. The source of the bla OXA-244 gene acquired by E. aerogenes

  19. In Vitro antibacterial efficacy of 21 Indian timber-yielding plants against multidrug-resistant bacteria causing urinary tract infection.

    PubMed

    Mishra, Monali P; Padhy, Rabindra N

    2013-12-01

    To screen methanolic leaf extracts of 21 timber-yielding plants for antibacterial activity against nine species of uropathogenic bacteria isolated from clinical samples of a hospital (Enterococcus faecalis, Staphylococcus aureus, Acinetobacter baumannii, Citrobacter freundii, Enterobacter aerogenes, Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, and Pseudomonas aeruginosa). Bacterial strains were subjected to antibiotic sensitivity tests by the Kirby-Bauer's disc diffusion method. The antibacterial potentiality of leaf extracts was monitored by the agar-well diffusion method with multidrug-resistant (MDR) strains of nine uropathogens. Two Gram-positive isolates, E. faecalis and S. aureus, were resistant to 14 of the 18 antibiotics used. Gram-negative isolates A. baumannii, C. freundii, E. aerogenes, E. coli, K. pneumoniae, P. mirabilis, and P. aeruginosa were resistant to 10, 12, 9, 11, 11, 10, and 11 antibiotics, respectively, of the 14 antibiotics used. Methanolic leaf extracts of Anogeissus acuminata had the maximum zone of inhibition size-29 mm against S. aureus and 28 mm against E. faecalis and P. aeruginosa. Cassia tora had 29 mm as the zone of inhibition size for E. faecalis, E. aerogenes, and P. aeruginosa. Based on the minimum inhibitory concentration and minimum bactericidal concentration values, the most effective 10 plants against uropathogens could be arranged in decreasing order as follows: C. tora > A. acuminata > Schleichera oleosa > Pterocarpus santalinus > Eugenia jambolana > Bridelia retusa > Mimusops elengi > Stereospermum kunthianum > Tectona grandis > Anthocephalus cadamba. The following eight plants had moderate control capacity: Artocarpus heterophyllus, Azadirachta indica, Dalbergia latifolia, Eucalyptus citriodora, Gmelina arborea, Pongamia pinnata, Pterocarpus marsupium, and Shorea robusta. E. coli, followed by A. baumannii, C. freundii, E. aerogenes, P. mirabilis, and P. aeruginosa were controlled by

  20. In Vitro Antibacterial Efficacy of 21 Indian Timber-Yielding Plants Against Multidrug-Resistant Bacteria Causing Urinary Tract Infection

    PubMed Central

    Mishra, Monali P.; Padhy, Rabindra N.

    2013-01-01

    Objectives To screen methanolic leaf extracts of 21 timber-yielding plants for antibacterial activity against nine species of uropathogenic bacteria isolated from clinical samples of a hospital (Enterococcus faecalis, Staphylococcus aureus, Acinetobacter baumannii, Citrobacter freundii, Enterobacter aerogenes, Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, and Pseudomonas aeruginosa). Methods Bacterial strains were subjected to antibiotic sensitivity tests by the Kirby–Bauer's disc diffusion method. The antibacterial potentiality of leaf extracts was monitored by the agar-well diffusion method with multidrug-resistant (MDR) strains of nine uropathogens. Results Two Gram-positive isolates, E. faecalis and S. aureus, were resistant to 14 of the 18 antibiotics used. Gram-negative isolates A. baumannii, C. freundii, E. aerogenes, E. coli, K. pneumoniae, P. mirabilis, and P. aeruginosa were resistant to 10, 12, 9, 11, 11, 10, and 11 antibiotics, respectively, of the 14 antibiotics used. Methanolic leaf extracts of Anogeissus acuminata had the maximum zone of inhibition size—29 mm against S. aureus and 28 mm against E. faecalis and P. aeruginosa. Cassia tora had 29 mm as the zone of inhibition size for E. faecalis, E. aerogenes, and P. aeruginosa. Based on the minimum inhibitory concentration and minimum bactericidal concentration values, the most effective 10 plants against uropathogens could be arranged in decreasing order as follows: C. tora > A. acuminata > Schleichera oleosa > Pterocarpus santalinus > Eugenia jambolana > Bridelia retusa > Mimusops elengi > Stereospermum kunthianum > Tectona grandis > Anthocephalus cadamba. The following eight plants had moderate control capacity: Artocarpus heterophyllus, Azadirachta indica, Dalbergia latifolia, Eucalyptus citriodora, Gmelina arborea, Pongamia pinnata, Pterocarpus marsupium, and Shorea robusta. E. coli, followed by A. baumannii, C. freundii, E. aerogenes, P. mirabilis, and P

  1. Detection of Staphylococcus Aureus Enterotoxin A and B Genes with PCR-EIA and a Hand-Held Electrochemical Sensor

    DTIC Science & Technology

    2004-06-11

    Streptococcus pneumoniae 33400 Enterobacter cloaceae 49141 S. pyogenes 19615 E. aerogenes m10822 Vibrio cholerae N16961 Enterococcus durans 6056 Yersinia...identified. Thus the sensitivity for both assays was 100%. Of the 56 samples that lacked sea or seb genes, two false positives ( Enterobacter aerogenes ...Comanonas, Enterobacter , Enterococcus, Escherichia, Francisella, Haemophilus, Klebsiella, Listeria, Moraxella, Neisseria, Proteus, Pseudomonas, Salmonella

  2. Comprehensive Genome Analysis of Carbapenemase-Producing Enterobacter spp.: New Insights into Phylogeny, Population Structure, and Resistance Mechanisms

    PubMed Central

    Chavda, Kalyan D.; Chen, Liang; Fouts, Derrick E.; Sutton, Granger; Brinkac, Lauren; Jenkins, Stephen G.; Bonomo, Robert A.

    2016-01-01

    ABSTRACT Knowledge regarding the genomic structure of Enterobacter spp., the second most prevalent carbapenemase-producing Enterobacteriaceae, remains limited. Here we sequenced 97 clinical Enterobacter species isolates that were both carbapenem susceptible and resistant from various geographic regions to decipher the molecular origins of carbapenem resistance and to understand the changing phylogeny of these emerging and drug-resistant pathogens. Of the carbapenem-resistant isolates, 30 possessed blaKPC-2, 40 had blaKPC-3, 2 had blaKPC-4, and 2 had blaNDM-1. Twenty-three isolates were carbapenem susceptible. Six genomes were sequenced to completion, and their sizes ranged from 4.6 to 5.1 Mbp. Phylogenomic analysis placed 96 of these genomes, 351 additional Enterobacter genomes downloaded from NCBI GenBank, and six newly sequenced type strains into 19 phylogenomic groups—18 groups (A to R) in the Enterobacter cloacae complex and Enterobacter aerogenes. Diverse mechanisms underlying the molecular evolutionary trajectory of these drug-resistant Enterobacter spp. were revealed, including the acquisition of an antibiotic resistance plasmid, followed by clonal spread, horizontal transfer of blaKPC-harboring plasmids between different phylogenomic groups, and repeated transposition of the blaKPC gene among different plasmid backbones. Group A, which comprises multilocus sequence type 171 (ST171), was the most commonly identified (23% of isolates). Genomic analysis showed that ST171 isolates evolved from a common ancestor and formed two different major clusters; each acquiring unique blaKPC-harboring plasmids, followed by clonal expansion. The data presented here represent the first comprehensive study of phylogenomic interrogation and the relationship between antibiotic resistance and plasmid discrimination among carbapenem-resistant Enterobacter spp., demonstrating the genetic diversity and complexity of the molecular mechanisms driving antibiotic resistance in this

  3. The Feasibility of Using Pyrolysis-Mass Spectrometry and Pyrolysis-MS/MS with Pattern Recognition for the Identification of Biological Materials.

    DTIC Science & Technology

    1987-01-07

    Bacillus subtilis (2) (3) Enterobacter aerogenes (3) (3) Providencia alcalifaciens (3) (3) Streptococcus faecalis (0) (3) Streptococcus salivarius (0) (3...licheniformis i 5 10. Enterobacter aerogenes j 5 S 11. Streptococcus lactis k 5 12. Providencia alcalifaciens 1 5 13. Streptococcus faecalis m 5 14. Streptococcus...exclusively. In a study of killing methods, four species of bacteria, P. vulgaris, P. fluorescens, E. coli and E. aerogenes , were each subjected to five

  4. Evaluation of High-Resolution Melting Curve Analysis of Ligation-Mediated Real-Time PCR, a Rapid Method for Epidemiological Typing of ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter Species) Pathogens

    PubMed Central

    Ryberg, Anna; Billström, Hanna; Hällgren, Anita; Nilsson, Lennart E.; Marklund, Britt-Inger; Olsson-Liljequist, Barbro; Schön, Thomas

    2014-01-01

    A single-tube method, ligation-mediated real-time PCR high-resolution melt analysis (LMqPCR HRMA), was modified for the rapid typing of Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp. (ESKAPE) pathogens. A 97% agreement (60/62 isolates) was achieved in comparison to pulsed-field gel electrophoresis (PFGE) results, which indicates that LMqPCR HRMA is a rapid and accurate screening tool for monitoring nosocomial outbreaks. PMID:25232168

  5. Enterobacter aerogenes Hormaeche and Edwards 1960 (Approved Lists 1980) and Klebsiella mobilis Bascomb et al. 1971 (Approved Lists 1980) share the same nomenclatural type (ATCC 13048) on the Approved Lists and are homotypic synonyms, with consequences for the name Klebsiella mobilis Bascomb et al. 1971 (Approved Lists 1980).

    PubMed

    Tindall, B J; Sutton, G; Garrity, G M

    2017-02-01

    Enterobacter aerogenes Hormaeche and Edwards 1960 (Approved Lists 1980) and Klebsiella mobilis Bascomb et al. 1971 (Approved Lists 1980) were placed on the Approved Lists of Bacterial Names and were based on the same nomenclatural type, ATCC 13048. Consequently they are to be treated as homotypic synonyms. However, the names of homotypic synonyms at the rank of species normally are based on the same epithet. Examination of the Rules of the International Code of Nomenclature of Bacteria in force at the time indicates that the epithet mobilis in Klebsiella mobilis Bascomb et al. 1971 (Approved Lists 1980) was illegitimate at the time the Approved Lists were published and according to the Rules of the current International Code of Nomenclature of Prokaryotes continues to be illegitimate.

  6. Assessment of Environmental Effects of Ordnance Compounds and their Transformation Products in Coastal Ecosystems

    DTIC Science & Technology

    2003-12-01

    common sediment bacteria Enterobacter aerogenes, Pseudomonas fluorescens, Escherichia coli, Klebsiella sp. and Aeromonas sp. before and after... Pseudomonas fluorescens, Enterobacter aerogenes, Escherichia coli, Klebsiella sp. and Aeromonas sp. are known important decomposers in sediments and...including some compounds of environmental concern such as substituted azobenzenes or phenazines (Haderlein and Schwarzenbach 1995). Aminonitrotoluenes

  7. Prevalence and Antibiotic Resistance of Gram-Negative Pathogenic Bacteria Species Isolated from Periplaneta americana and Blattella germanica in Varanasi, India

    PubMed Central

    Wannigama, D Leshan; Dwivedi, Rishabh; Zahraei-Ramazani, Alireza

    2014-01-01

    Background Cockroaches are among the medically important pests found within the human habitations that cause serious public health problems. They may harbor a number of pathogenic bacteria on the external surface with antibiotic resistance. Hence, they are regarded as major microbial vectors. This study investigates the prevalence and antibiotic resistance of Gram-negative pathogenic bacteria species isolated from Periplaneta americana and Blattella germanica in Varanasi, India. Methods: Totally, 203 adult cockroaches were collected form 44 households and 52 food-handling establishments by trapping. Bacteriological examination of external surfaces of Pe. americana and Bl. germanica were carried out using standard method and antibiotics susceptibility profiles of the isolates were determined using Kirby-Bauer disc diffusion methods. Results: Among the places, we found that 54% had cockroache infestation in households and 77% in food- handling establishments. There was no significant different between the overall bacteria load of the external surface in Pe. americana (64.04%) and Bl. germanica (35.96%). However the predominant bacteria on cockroaches were Klebsiella pneumonia, Escherichia coli, Enterobacter aerogenes, and Pseudomonas aeruginosa. However, Kl. pneumoniae and Ps. aeruginosa were the most prevalent, drug-resistant strains were isolated from the cockroaches with 100% resistance to sulfamethoxazole/trimethoprim and ampicillin. For individual strains of bacteria, Escherichia coli was found to have multi-resistance to four antibiotic tested, Citrobacter freundii four, Enterobacter aerogenes and Proteus mirabilis to three. Conclusion: Cockroaches are uniformly distributed in domestic environment, which can be a possible vector for transmission of drug-resistant bacteria and food-borne diseases. PMID:25629061

  8. Evaluation of high-resolution melting curve analysis of ligation-mediated real-time PCR, a rapid method for epidemiological typing of ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter Species) pathogens.

    PubMed

    Woksepp, Hanna; Ryberg, Anna; Billström, Hanna; Hällgren, Anita; Nilsson, Lennart E; Marklund, Britt-Inger; Olsson-Liljequist, Barbro; Schön, Thomas

    2014-12-01

    A single-tube method, ligation-mediated real-time PCR high-resolution melt analysis (LMqPCR HRMA), was modified for the rapid typing of Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp. (ESKAPE) pathogens. A 97% agreement (60/62 isolates) was achieved in comparison to pulsed-field gel electrophoresis (PFGE) results, which indicates that LMqPCR HRMA is a rapid and accurate screening tool for monitoring nosocomial outbreaks. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  9. Thin-layer chromatographic technique for rapid detection of bacterial phospholipases.

    PubMed

    Legakis, N J; Papavassiliou, J

    1975-11-01

    Silica gel thin-layer chromatography was employed to detect lecithinase activity induced from bacterial resting cell preparations induced from bacterial resting cell preparations incubated at 37 C for 4 h in the presence of purified egg yolk lecithin. Bacillus subtilis, Bacillus cereus, Serratia marcescens, and Pseudomonas aeruginosa hydrolyzed lecithin with the formation of free fatty acids as the sole lipid-soluble product. In none of the Escherichia coli and Citrobacter freundii strains tested could lecithinase activity be detected. Four among eight strains of Enterobacter aerogenes and one among 12 strains of Proteus tested produced negligible amounts of free fatty acid.

  10. Antimicrobial activity of essential oil from Schinus molle Linn.

    PubMed

    Gundidza, M

    1993-11-01

    The essential oil from the fresh leaves of Schinus molle isolated by hydrodistillation was tested for antibacterial activity using the hole plate diffusion method and for antifungal activity using the mycelium or single cell growth inhibition method. Results obtained showed that the volatile oil exhibited significant activity against the following bacterial species: Klebsiella pneumoniae, Alcaligenes faecalis, Pseudomonas aeruginosa, Leuconostoc cremoris, Enterobacter aerogenes, Proteus vulgaris, Clostridium sporogenes, Acinetobacter calcoacetica, Escherichia coli, Beneckea natriegens, Citrobacter freundii, Serratia marcescens, Bacillus subtilis and Brochothrix thermosphacata. The fungal species Aspergillus ochraceus, Aspergillus parasiticus, Fusarium culmorum and Alternaria alternata exhibited significant sensitivity to the volatile oil.

  11. Comprehensive Genome Analysis of Carbapenemase-Producing Enterobacter spp.: New Insights into Phylogeny, Population Structure, and Resistance Mechanisms.

    PubMed

    Chavda, Kalyan D; Chen, Liang; Fouts, Derrick E; Sutton, Granger; Brinkac, Lauren; Jenkins, Stephen G; Bonomo, Robert A; Adams, Mark D; Kreiswirth, Barry N

    2016-12-13

    Knowledge regarding the genomic structure of Enterobacter spp., the second most prevalent carbapenemase-producing Enterobacteriaceae, remains limited. Here we sequenced 97 clinical Enterobacter species isolates that were both carbapenem susceptible and resistant from various geographic regions to decipher the molecular origins of carbapenem resistance and to understand the changing phylogeny of these emerging and drug-resistant pathogens. Of the carbapenem-resistant isolates, 30 possessed bla KPC-2 , 40 had bla KPC-3 , 2 had bla KPC-4 , and 2 had bla NDM-1 Twenty-three isolates were carbapenem susceptible. Six genomes were sequenced to completion, and their sizes ranged from 4.6 to 5.1 Mbp. Phylogenomic analysis placed 96 of these genomes, 351 additional Enterobacter genomes downloaded from NCBI GenBank, and six newly sequenced type strains into 19 phylogenomic groups-18 groups (A to R) in the Enterobacter cloacae complex and Enterobacter aerogenes Diverse mechanisms underlying the molecular evolutionary trajectory of these drug-resistant Enterobacter spp. were revealed, including the acquisition of an antibiotic resistance plasmid, followed by clonal spread, horizontal transfer of bla KPC -harboring plasmids between different phylogenomic groups, and repeated transposition of the bla KPC gene among different plasmid backbones. Group A, which comprises multilocus sequence type 171 (ST171), was the most commonly identified (23% of isolates). Genomic analysis showed that ST171 isolates evolved from a common ancestor and formed two different major clusters; each acquiring unique bla KPC -harboring plasmids, followed by clonal expansion. The data presented here represent the first comprehensive study of phylogenomic interrogation and the relationship between antibiotic resistance and plasmid discrimination among carbapenem-resistant Enterobacter spp., demonstrating the genetic diversity and complexity of the molecular mechanisms driving antibiotic resistance in this

  12. In vitro activity and beta-lactamase stability of a new difluoro oxacephem, 6315-S.

    PubMed Central

    Neu, H C; Chin, N X

    1986-01-01

    6315-S, a novel difluoromethyl thioacetamido oxacephem, had in vitro activity comparable to that of cefotaxime and moxalactam against Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Klebsiella oxytoca, Citrobacter diversus, Salmonella spp., and Shigella spp., inhibiting 90% at less than or equal to 0.25 microgram/ml. It inhibited piperacillin- and cefoperazone-resistant isolates in these species. 6315-S did not inhibit cefotaxime- or moxalactam-resistant Citrobacter freundii, Enterobacter aerogenes, or Enterobacter cloacae (MICs for 90% of the strains tested were greater than or equal to 16 micrograms/ml). Proteus vulgaris resistant to cefotaxime was inhibited. Pseudomonas species and Acinetobacter species were resistant (MICs greater than 64 micrograms/ml). MICs for 90% of the Staphylococcus aureus and S. epidermidis isolates were 4 micrograms/ml. 6315-S was highly active against anaerobic species of Clostridium, Fusobacterium, Bacteroides, and peptostreptococci and was superior to other agents against these organisms. 6315-S was not hydrolyzed by the major plasmid and chromosomal beta-lactamases, but it induced chromosomal beta-lactamases in Enterobacter cloacae and Pseudomonas aeruginosa. PMID:3492172

  13. Mathematical modeling and assessment of microbial migration during the sprouting of alfalfa in trays in a nonuniformly contaminated seed batch using Enterobacter aerogenes as a surrogate for Salmonella Stanley.

    PubMed

    Liu, Bin; Schaffner, Donald W

    2007-11-01

    Raw seed sprouts have been implicated in several food poisoning outbreaks in the past 10 years. The U.S. Food and Drug Administration recommends that sprout growers use interventions (such as testing of spent irrigation water) to control the presence of pathogens in the finished product. During the sprouting process, initially low concentrations of pathogen may increase, and contamination may spread within a batch of sprouting seeds. A model of pathogen growth as a function of time and distance from the contamination spot during the sprouting of alfalfa in trays has been developed with Enterobacter aerogenes. The probability of detecting contamination was assessed by logistic regression at various time points and distances by sampling from sprouts or irrigation water. Our results demonstrate that microbial populations and possibility of detection were greatly reduced at distances of > or = 20 cm from the point of contamination in a seed batch during tray sprouting; however, the probability of detecting microbial contamination at distances less than 10 cm from the point of inoculation was almost 100% at the end of the sprouting process. Our results also show that sampling irrigation water, especially large volumes of water, is highly effective at detecting contamination: by collecting 100 ml of irrigation water for membrane filtration, the probability of detection was increased by three to four times during the first 6 h of seed germination. Our findings have quantified the degree to which a small level of contamination will spread throughout a tray of sprouting alfalfa seeds and subsequently be detected by either sprout or irrigation water sampling.

  14. Antibacterial Activity of 1-[(2,4-Dichlorophenethyl)amino]-3-Phenoxypropan-2-ol against Antibiotic-Resistant Strains of Diverse Bacterial Pathogens, Biofilms and in Pre-clinical Infection Models.

    PubMed

    Defraine, Valerie; Verstraete, Laure; Van Bambeke, Françoise; Anantharajah, Ahalieyah; Townsend, Eleanor M; Ramage, Gordon; Corbau, Romu; Marchand, Arnaud; Chaltin, Patrick; Fauvart, Maarten; Michiels, Jan

    2017-01-01

    We recently described the novel anti-persister compound 1-[(2,4-dichlorophenethyl)amino]-3-phenoxypropan-2-ol (SPI009), capable of directly killing persister cells of the Gram-negative pathogen Pseudomonas aeruginosa . This compound also shows antibacterial effects against non-persister cells, suggesting that SPI009 could be used as an adjuvant for antibacterial combination therapy. Here, we demonstrate the broad-spectrum activity of SPI009, combined with different classes of antibiotics, against the clinically relevant ESKAPE pathogens Enterobacter aerogenes, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, P. aeruginosa, Enterococcus faecium and Burkholderia cenocepacia and Escherichia coli . Importantly, SPI009 re-enabled killing of antibiotic-resistant strains and effectively lowered the required antibiotic concentrations. The clinical potential was further confirmed in biofilm models of P. aeruginosa and S. aureus where SPI009 exhibited effective biofilm inhibition and eradication. Caenorhabditis elegans infected with P. aeruginosa also showed a significant improvement in survival when SPI009 was added to conventional antibiotic treatment. Overall, we demonstrate that SPI009, initially discovered as an anti-persister molecule in P. aeruginosa , possesses broad-spectrum activity and is highly suitable for the development of antibacterial combination therapies in the fight against chronic infections.

  15. Antibacterial Activity of 1-[(2,4-Dichlorophenethyl)amino]-3-Phenoxypropan-2-ol against Antibiotic-Resistant Strains of Diverse Bacterial Pathogens, Biofilms and in Pre-clinical Infection Models

    PubMed Central

    Defraine, Valerie; Verstraete, Laure; Van Bambeke, Françoise; Anantharajah, Ahalieyah; Townsend, Eleanor M.; Ramage, Gordon; Corbau, Romu; Marchand, Arnaud; Chaltin, Patrick; Fauvart, Maarten; Michiels, Jan

    2017-01-01

    We recently described the novel anti-persister compound 1-[(2,4-dichlorophenethyl)amino]-3-phenoxypropan-2-ol (SPI009), capable of directly killing persister cells of the Gram-negative pathogen Pseudomonas aeruginosa. This compound also shows antibacterial effects against non-persister cells, suggesting that SPI009 could be used as an adjuvant for antibacterial combination therapy. Here, we demonstrate the broad-spectrum activity of SPI009, combined with different classes of antibiotics, against the clinically relevant ESKAPE pathogens Enterobacter aerogenes, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, P. aeruginosa, Enterococcus faecium and Burkholderia cenocepacia and Escherichia coli. Importantly, SPI009 re-enabled killing of antibiotic-resistant strains and effectively lowered the required antibiotic concentrations. The clinical potential was further confirmed in biofilm models of P. aeruginosa and S. aureus where SPI009 exhibited effective biofilm inhibition and eradication. Caenorhabditis elegans infected with P. aeruginosa also showed a significant improvement in survival when SPI009 was added to conventional antibiotic treatment. Overall, we demonstrate that SPI009, initially discovered as an anti-persister molecule in P. aeruginosa, possesses broad-spectrum activity and is highly suitable for the development of antibacterial combination therapies in the fight against chronic infections. PMID:29312259

  16. Phagocytic and chemiluminescent responses of mouse peritoneal macrophages to living and killed Salmonella typhimurium and other bacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomita, T.; Blumenstock, E.; Kanegasaki, S.

    1981-06-01

    In the presence of luminol, resident as well as thioglycolate-induced and immunized macrophages emitted chemiluminescence more efficiently when the cells were exposed to living Salmonella typhimurium than when they were exposed to the same bacterium killed by ultraviolet light or heat. This phenomenon was observed whether or not the bacterium was opsonized. The different response to living and killed bacteria was also found with Escherichia coli, Pseudomonas aeruginosa, Proteus morganii, and Enterobacter aerogenes, but not with Shigella sonnei, Klebsiella pneumoniae, and Propionibacterium acnes. The results suggest that macrophages respond better to living, motile bacteria than to nonmotile or killed bacteria.more » The experimental results obtained with motility mutants of S. typhimurium, E. coli, and P. aeruginosa confirm that macrophages exposed to the motile bacteria emit chemiluminescence more efficiently and ingest the motile bacteria at a much faster rate than the nonmotile bacteria.« less

  17. Characterization of the Origin of DNA Replication of the Coxiella burnetii Chromosome

    DTIC Science & Technology

    1990-01-26

    chromosomal DNAs (FIG. IB): the 19.4-kb EcoR I fragment of Salmonella typhimurium DNA (lane 4),9 the 17.5-kb Sal I fragment of Enterobacter aerogenes ...IacZYA-argF) U 1694680d IacZAM15 Salmonella typhimurium Wild type WVUd Kiebsiella pneumoniae Wild type WVUd Enterobacter aero genes Wild type WVUd... aerogenes and K. pneumoniae were digested with appropriate restriction enzymes. The restriction fragments were separated on a 0.9% agarose gel, transferred to

  18. TD/GC-MS analysis of volatile markers emitted from mono- and co-cultures of Enterobacter cloacae and Pseudomonas aeruginosa in artificial sputum.

    PubMed

    Lawal, Oluwasola; Knobel, Hugo; Weda, Hans; Nijsen, Tamara M E; Goodacre, Royston; Fowler, Stephen J

    2018-01-01

    Infections such as ventilator-associated pneumonia (VAP) can be caused by one or more pathogens. Current methods for identifying these pathogenic microbes often require invasive sampling, and can be time consuming, due to the requirement for prolonged cultural enrichment along with selective and differential plating steps. This results in delays in diagnosis which in such critically ill patients can have potentially life-threatening consequences. Therefore, a non-invasive and timely diagnostic method is required. Detection of microbial volatile organic compounds (VOCs) in exhaled breath is proposed as an alternative method for identifying these pathogens and may distinguish between mono- and poly-microbial infections. To investigate volatile metabolites that discriminate between bacterial mono- and co-cultures. VAP-associated pathogens Enterobacter cloacae and Pseudomonas aeruginosa were cultured individually and together in artificial sputum medium for 24 h and their headspace was analysed for potential discriminatory VOCs by thermal desorption gas chromatography-mass spectrometry. Of the 70 VOCs putatively identified, 23 were found to significantly increase during bacterial culture (i.e. likely to be released during metabolism) and 13 decreased (i.e. likely consumed during metabolism). The other VOCs showed no transformation (similar concentrations observed as in the medium). Bacteria-specific VOCs including 2-methyl-1-propanol, 2-phenylethanol, and 3-methyl-1-butanol were observed in the headspace of axenic cultures of E. cloacae , and methyl 2-ethylhexanoate in the headspace of P. aeruginosa cultures which is novel to this investigation. Previously reported VOCs 1-undecene and pyrrole were also detected. The metabolites 2-methylbutyl acetate and methyl 2-methylbutyrate, which are reported to exhibit antimicrobial activity, were elevated in co-culture only. The observed VOCs were able to differentiate axenic and co-cultures. Validation of these markers in

  19. Phenotypic and molecular characterization of antimicrobial resistance in Enterobacter spp. isolates from companion animals in Japan

    PubMed Central

    Harada, Kazuki; Shimizu, Takae; Mukai, Yujiro; Kuwajima, Ken; Sato, Tomomi; Kajino, Akari; Usui, Masaru; Tamura, Yutaka; Kimura, Yui; Miyamoto, Tadashi; Tsuyuki, Yuzo; Ohki, Asami; Kataoka, Yasushi

    2017-01-01

    The emergence of antimicrobial resistance among Enterobacter spp., including resistance to extended-spectrum cephalosporins (ESC), is of great concern in both human and veterinary medicine. In this study, we investigated the prevalence of antimicrobial resistance among 60 isolates of Enterobacter spp., including E. cloacae (n = 44), E. aerogenes (n = 10), and E. asburiae (n = 6), from clinical specimens of dogs and cats from 15 prefectures in Japan. Furthermore, we characterized the resistance mechanisms harbored by these isolates, including extended-spectrum β-lactamases (ESBLs) and plasmid-mediated quinolone resistance (PMQR); and assessed the genetic relatedness of ESC-resistant Enterobacter spp. strains by multilocus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE). Antimicrobial susceptibility testing demonstrated the resistance rates to ampicillin (93.3%), amoxicillin-clavulanic acid (93.3%), cefmetazole (93.3%), chloramphenicol (46.7%), ciprofloxacin (43.3%), tetracycline (40.0%), ceftazidime (33.3%), cefotaxime (33.3%), trimethoprim/sulfamethoxazole (28.3%), gentamicin (23.3%), and meropenem (0%). Phenotypic testing detected ESBLs in 16 of 18 ESC-resistant E. cloacae isolates but not in the other species. The most frequent ESBL was CTX-M-15 (n = 8), followed by SHV-12 (n = 7), and CTX-M-3 (n = 1). As for AmpC β-lactamases, CMY-2 (n = 2) and DHA-1 (n = 2) were identified in ESC-resistant E. cloacae strains with or without ESBLs. All of the ESC-resistant E. cloacae strains also harbored one or two PMQRs, including qnrB (n = 15), aac(6’)-Ib-cr (n = 8), and qnrS (n = 2). Based on MLST and PFGE analysis, E. cloacae clones of ST591-SHV-12, ST171-CTX-M-15, and ST121-CTX-M-15 were detected in one or several hospitals. These results suggested intra- and inter-hospital dissemination of E. cloacae clones co-harboring ESBLs and PMQRs among companion animals. This is the first report on the large-scale monitoring of antimicrobial-resistant isolates

  20. Phenotypic and molecular characterization of antimicrobial resistance in Enterobacter spp. isolates from companion animals in Japan.

    PubMed

    Harada, Kazuki; Shimizu, Takae; Mukai, Yujiro; Kuwajima, Ken; Sato, Tomomi; Kajino, Akari; Usui, Masaru; Tamura, Yutaka; Kimura, Yui; Miyamoto, Tadashi; Tsuyuki, Yuzo; Ohki, Asami; Kataoka, Yasushi

    2017-01-01

    The emergence of antimicrobial resistance among Enterobacter spp., including resistance to extended-spectrum cephalosporins (ESC), is of great concern in both human and veterinary medicine. In this study, we investigated the prevalence of antimicrobial resistance among 60 isolates of Enterobacter spp., including E. cloacae (n = 44), E. aerogenes (n = 10), and E. asburiae (n = 6), from clinical specimens of dogs and cats from 15 prefectures in Japan. Furthermore, we characterized the resistance mechanisms harbored by these isolates, including extended-spectrum β-lactamases (ESBLs) and plasmid-mediated quinolone resistance (PMQR); and assessed the genetic relatedness of ESC-resistant Enterobacter spp. strains by multilocus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE). Antimicrobial susceptibility testing demonstrated the resistance rates to ampicillin (93.3%), amoxicillin-clavulanic acid (93.3%), cefmetazole (93.3%), chloramphenicol (46.7%), ciprofloxacin (43.3%), tetracycline (40.0%), ceftazidime (33.3%), cefotaxime (33.3%), trimethoprim/sulfamethoxazole (28.3%), gentamicin (23.3%), and meropenem (0%). Phenotypic testing detected ESBLs in 16 of 18 ESC-resistant E. cloacae isolates but not in the other species. The most frequent ESBL was CTX-M-15 (n = 8), followed by SHV-12 (n = 7), and CTX-M-3 (n = 1). As for AmpC β-lactamases, CMY-2 (n = 2) and DHA-1 (n = 2) were identified in ESC-resistant E. cloacae strains with or without ESBLs. All of the ESC-resistant E. cloacae strains also harbored one or two PMQRs, including qnrB (n = 15), aac(6')-Ib-cr (n = 8), and qnrS (n = 2). Based on MLST and PFGE analysis, E. cloacae clones of ST591-SHV-12, ST171-CTX-M-15, and ST121-CTX-M-15 were detected in one or several hospitals. These results suggested intra- and inter-hospital dissemination of E. cloacae clones co-harboring ESBLs and PMQRs among companion animals. This is the first report on the large-scale monitoring of antimicrobial-resistant isolates

  1. Screening of antibacterial potentials of some medicinal plants from Melghat forest in India.

    PubMed

    Tambekar, D H; Khante, B S; Chandak, B R; Titare, A S; Boralkar, S S; Aghadte, S N

    2009-05-07

    Cyperus rotundus, Caesalpinia bonducella, Tinospora cordifolia, Gardenia gummifera, Ailanthus excelsa, Acacia arabica, Embelia ribes and Ventilago maderspatana from Melghat forest were screened for their antibacterial potential against Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae, Proteus vulgaris, Salmonella typhi, Shigella flexneri, Salmonella paratyphi, Salmonella typhimurium, Pseudomonas aeruginosa, Enterobacter aerogenes by disc diffusion method. Out of these medicinal plants Caesalpinia bonducella, Gardenia gummifera and Acacia arabica showed remarkable antibacterial potential. The phytochemical analysis had showed the presence of Cardiac glycosides in all extracts (aqueous, acetone, ethanol and methanol) of Acacia arabica, Gardenia gummifera and ethanol, methanol extracts of Caesalpinia bonducella. Flavonoids were present in Gardenia gummifera, Ailanthus excelsa and acetone, methanol extracts of Acacia Arabica. Tannins and phenolic were present in Cyperus rotundus, Embelia ribes, and organic extracts of Ventilago maderspatana.

  2. Enterobacter Strains Might Promote Colon Cancer.

    PubMed

    Yurdakul, Dilşad; Yazgan-Karataş, Ayten; Şahin, Fikrettin

    2015-09-01

    Many studies have been performed to determine the interaction between bacterial species and cancer. However, there has been no attempts to demonstrate a possible relationship between Enterobacter spp. and colon cancer so far. Therefore, in the present study, it is aimed to investigate the effects of Enterobacter strains on colon cancer. Bacterial proteins were isolated from 11 Enterobacter spp., one Morganella morganii, and one Escherichia coli strains, and applied onto NCM460 (Incell) and CRL1790 (ATCC) cell lines. Cell viability and proliferation were determined in MTS assay. Flow Cytometry was used to detect CD24 level and apoptosis. Real-Time PCR studies were performed to determine NFKB and Bcl2 expression. Graphpad Software was used for statistical analysis. The results showed that proteins, isolated from the Enterobacter spp., have significantly increased cell viability and proliferation, while decreasing the apoptosis of the cell lines tested. The data in the present study indicated that Enterobacter strains might promote colon cancer. Moreover, Enterobacter spp. could be a clinically important factor for colon cancer initiation and progression. Studies can be extended on animal models in order to develop new strategies for treatment.

  3. Enterobacter and Klebsiella species isolated from fresh vegetables marketed in Valencia (Spain) and their clinically relevant resistances to chemotherapeutic agents.

    PubMed

    Falomir, María Pilar; Rico, Hortensia; Gozalbo, Daniel

    2013-12-01

    Occurrence of antibiotic-resistant pathogenic or commensal enterobacteria in marketed agricultural foodstuffs may contribute to their incorporation into the food chain and constitutes an additional food safety concern. In this work, we have determined the clinically relevant resistances to 11 common chemotherapeutic agents in Enterobacter and Klebsiella isolates from fresh vegetables from various sources (supermarkets and greengrocers' shops in Valencia, Spain). A total of 96 isolates were obtained from 160 vegetables analyzed (50% positive samples): 68 Enterobacter isolates (59 E. cloacae, two E. aerogenes, two E. cancerogenus, one E. gergoviae, and four E. sakazakii, currently Cronobacter spp.), and 28 Klebsiella isolates (19 K. oxytoca and 9 K. pneumoniae). Only seven isolates were susceptible to all agents tested, and no resistances to ceftazidime, ciprofloxacin, gentamicin, and chloramphenicol were detected. Most isolates were resistant to amoxicillin/clavulanic acid (74 [58 Enterobacter and 16 Klebsiella]) or to ampicillin (80 [55/25]). Other resistances were less frequent: nitrofurantoin (13 isolates [12/1]), tetracycline (6 [5/1]), co-trimoxazole (3 [3/0]), cefotaxime (1 [1/0]), and streptomycin (2 [1/1]). Multiresistant isolates to two (56 [41/15]), three (10 E. cloacae isolates), four (one E. cloacae and one K. pneumoniae isolate), and five (two E. cloacae isolates) chemotherapeutic agents were also detected. The presence of potential pathogens points to marketed fresh produce, which often is eaten raw, as a risk factor for consumer health. In addition, these results support the usefulness of these bacterial species as indicators of the spreading of antibiotic resistances into the environment, particularly in the food chain, and suggest their role as carriers of resistance determinants from farms to consumers, which may constitute an additional "silent" food safety concern. Therefore, there is a need to improve the hygienic quality of marketed fresh

  4. Boosting mediated electron transfer in bioelectrochemical systems with tailored defined microbial cocultures.

    PubMed

    Schmitz, Simone; Rosenbaum, Miriam A

    2018-05-19

    Bioelectrochemical systems (BES) hold great promise for sustainable energy generation via a microbial catalyst from organic matter, for example, from wastewater. To improve current generation in BES, understanding the underlying microbiology of the electrode community is essential. Electron mediator producing microorganism like Pseudomonas aeruginosa play an essential role in efficient electricity generation in BES. These microbes enable even nonelectroactive microorganism like Enterobacter aerogenes to contribute to current production. Together they form a synergistic coculture, where both contribute to community welfare. To use microbial co-operation in BES, the physical and chemical environments provided in the natural habitats of the coculture play a crucial role. Here, we show that synergistic effects in defined cocultures of P. aeruginosa and E. aerogenes can be strongly enhanced toward high current production by adapting process parameters, like pH, temperature, oxygen demand, and substrate requirements. Especially, oxygen was identified as a major factor influencing coculture behavior and optimization of its supply could enhance electric current production over 400%. Furthermore, operating the coculture in fed-batch mode enabled us to obtain very high current densities and to harvest electrical energy for 1 month. In this optimized condition, the coulombic efficiency of the process was boosted to 20%, which is outstanding for mediator-based electron transfer. This study lays the foundation for a rationally designed utilization of cocultures in BES for bioenergy generation from specific wastewaters or for bioprocess sensing and for benefiting from their synergistic effects under controlled bioprocess condition. © 2018 Wiley Periodicals, Inc.

  5. The Disinfecting Potential of Contact Lens Soutions used by Sultan Qaboos University Students

    PubMed Central

    Nzeako, B. C.; Al-Sumri, Sara H.

    2011-01-01

    Objectives: This study aimed to determine the disinfecting potential of some contact lens solutions used by some university students in Oman. Methods: This work was carried out from January to June 2010 in the Department of Microbiology & Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, Oman. Fifty disinfecting solutions, in which contact lenses were disinfected according to the manufacturers’ instructions, were collected from the students and plated on various microbiological culture media. Bacterial isolates were identified by API-20E, API-20NE and Phoenix automated systems while fungi were identified by their cultural characteristics and biochemistry. Results: From 98 isolates, Pseudomonas aeruginosa was 23.5%; Penicillium, 13%; Candida species, 9.2%; coagulase negative staphylococci, 9.2%; Serratia marcescens, 6.1%; Bacillus, 5.1%; Aspergillus flavus, 5.1%; Serratia liquefaciens, Pseudomonas fluorescens, Enterobacter cloacae and Aspergillus niger, 4.1% each; Chryseomonas luteola and Chryseomonas indologenes, 3.1% each; Stenotrophomonas maltophilia, Serratia odorifera, 2.0% each; Enterobacter aerogenes and Klebsiella pneumoniae, 1% each. Most isolates (65%) came from polyhexanide containing solutions. Conclusion: Contact lens disinfecting solutions with the same formulations, but manufactured by different companies, possessed different disinfecting potentials. PMID:21969898

  6. Detection of Plasmid-Mediated Quinolone Resistance Genes in Clinical Isolates of Enterobacter spp. in Spain ▿

    PubMed Central

    Cano, M. E.; Rodríguez-Martínez, J. M.; Agüero, J.; Pascual, A.; Calvo, J.; García-Lobo, J. M.; Velasco, C.; Francia, M. V.; Martínez-Martínez, L.

    2009-01-01

    We have studied by PCR and DNA sequencing the presence of the qnrA, qnrB, qnrS, aac(6′)-Ib-cr, qepA, intI1, and ISCR1 genes in 200 clinical isolates of Enterobacter cloacae (n = 153) and E. aerogenes (n = 47) consecutively collected between January 2004 and October 2005 in two hospitals located in Santander (northern Spain) and Seville (southern Spain). Mutations in the quinolone resistance-determining region of gyrA and parC also were investigated in organisms containing plasmid-mediated quinolone resistance genes. The isolates had different resistant phenotypes, including AmpC hyperproduction, extended-spectrum β-lactamase production, resistance or decreased susceptibility to quinolones, and/or resistance to aminoglycosides. Among the 116 E. cloacae isolates from Santander, qnrS1, qnrB5, qnrB2, and aac(6′)-Ib-cr were detected in 22 (19%), 1 (0.9%), 1 (0.9%), and 3 (2.6%) isolates, respectively. Twenty-one, 17, and 2 qnrS1-positive isolates also contained blaLAP-1, intI1, and ISCR1, respectively. A qnrB7-like gene was detected in one E. aerogenes isolate from Santander. No plasmid-mediated quinolone resistance gene was detected in the isolates from Seville. The qnrS1-containing isolates corresponded to four pulsed-field gel electrophoresis patterns and showed various levels of resistance to quinolones. Six isolates were susceptible to nalidixic acid and presented reduced susceptibility to ciprofloxacin. The qnrS1 gene was contained in a conjugative plasmid of ca. 110 kb, and when the plasmid was transferred to recipient strains that did not have a specific mechanism of quinolone resistance, the ciprofloxacin MICs ranged from 0.047 to 0.125 μg/ml. PMID:19386836

  7. [Post-marketing surveillance of antibacterial activities of cefozopran against various clinical isolates--II. Gram-negative bacteria].

    PubMed

    Igari, Jun; Oguri, Toyoko; Hiramatsu, Nobuyoshi; Akiyama, Kazumitsu; Koyama, Tsuneo

    2002-02-01

    As a post-marketing surveillance, the in vitro antibacterial activities of cefozopran (CZOP), an agent of cephems, against various clinical isolates were yearly evaluated and compared with those of other cephems, oxacephems, penicillins, monobactams, and carbapenems. Changes in CZOP susceptibility for the bacteria were also evaluated with the bacterial resistance ratio calculated with the breakpoint MIC. Twenty-five species (3,362 strains) of Gram-negative bacteria were isolated from the clinical materials annually collected from 1996 to 2000, and consisted of Moraxella (Branhamella) catarrhalis (n = 136), Haemophilus influenzae (n = 289), Escherichia coli (n = 276), Klebsiella pneumoniae (n = 192), Klebsiella oxytoca (n = 157), Enterobacter cloacae (n = 189), Enterobacter aerogenes (n = 93), Serratia marcescens (n = 172), Serratia liquefaciens (n = 24), Citrobacter freundii (n = 177), Citrobacter koseri (n = 70), Proteus mirabilis (n = 113), Proteus vulgaris (n = 89), Morganella morganii (n = 116), Providencia spp. (n = 41), Pseudomonas aeruginosa (n = 290), Pseudomonas fluorescens (n = 56), Pseudomonas putida (n = 63), Acinetobacter baumannii (n = 146), Acinetobacter lwoffii (n = 34), Burkholderia cepacia (n = 101), Stenotrophomonas maltophilia (n = 169), Bacteroides fragilis group (n = 196), and Prevotella/Porphyromonas (n = 173). An antibacterial activity of CZOP against E. coli, K. pneumoniae, K. oxytoca, and S. marcescens was potent and consistent with or more preferable than the study results obtained until the new drug application approval. MIC90 of CZOP against M.(B.) catarrhalis, C. koseri, and P. aeruginosa was not considerably changed and consistent with the study results obtained until the new drug application approval. MIC90 of CZOP against E. cloacae, E. aerogenes, and P. mirabilis increased year by year. The increase in MIC90 of CZOP against E. aerogenes and P. mirabilis, however, was not considered to be an obvious decline in susceptibility. In

  8. Enterobacter cloacae complex: clinical impact and emerging antibiotic resistance.

    PubMed

    Mezzatesta, Maria Lina; Gona, Floriana; Stefani, Stefania

    2012-07-01

    Species of the Enterobacter cloacae complex are widely encountered in nature, but they can act as pathogens. The biochemical and molecular studies on E. cloacae have shown genomic heterogeneity, comprising six species: Enterobacter cloacae, Enterobacter asburiae, Enterobacter hormaechei, Enterobacter kobei, Enterobacter ludwigii and Enterobacter nimipressuralis, E. cloacae and E. hormaechei are the most frequently isolated in human clinical specimens. Phenotypic identification of all species belonging to this taxon is usually difficult and not always reliable; therefore, molecular methods are often used. Although the E. cloacae complex strains are among the most common Enterobacter spp. causing nosocomial bloodstream infections in the last decade, little is known about their virulence-associated properties. By contrast, much has been published on the antibiotic-resistance features of these microorganisms. In fact, they are capable of overproducing AmpC β-lactamases by derepression of a chromosomal gene or by the acquisition of a transferable ampC gene on plasmids conferring the antibiotic resistance. Many other resistance determinants that are able to render ineffective almost all antibiotic families have been recently acquired. Most studies on antimicrobial susceptibility are focused on E. cloacae, E. hormaechei and E. asburiae; these studies reported small variations between the species, and the only significant differences had no discriminating features.

  9. Multidrug-Resistant CTX-M-(15, 9, 2)- and KPC-2-Producing Enterobacter hormaechei and Enterobacter asburiae Isolates Possessed a Set of Acquired Heavy Metal Tolerance Genes Including a Chromosomal sil Operon (for Acquired Silver Resistance).

    PubMed

    Andrade, Leonardo N; Siqueira, Thiago E S; Martinez, Roberto; Darini, Ana Lucia C

    2018-01-01

    Bacterial resistance to antibiotics is concern in healthcare-associated infections. On the other hand, bacterial tolerance to other antimicrobials, like heavy metals, has been neglected and underestimated in hospital pathogens. Silver has long been used as an antimicrobial agent and it seems to be an important indicator of heavy metal tolerance. To explore this perspective, we searched for the presence of acquired silver resistance genes ( sil operon: silE, silS, silR, silC, silF, silB, silA , and silP ) and acquired extended-spectrum cephalosporin and carbapenem resistance genes ( bla CTX-M and bla KPC ) in Enterobacter cloacae Complex (EcC) ( n = 27) and Enterobacter aerogenes ( n = 8) isolated from inpatients at a general hospital. Moreover, the genetic background of the silA (silver-efflux pump) and the presence of other acquired heavy metal tolerance genes, pcoD (copper-efflux pump), arsB (arsenite-efflux pump), terF (tellurite resistance protein), and merA (mercuric reductase) were also investigated. Outstandingly, 21/27 (78%) EcC isolates harbored silA gene located in the chromosome. Complete sil operon was found in 19/21 silA -positive EcC isolates. Interestingly, 8/20 (40%) E. hormaechei and 5/6 (83%) E. asburiae co-harbored silA/pcoD genes and bla CTX-M-(15,2,or9) and/or bla KPC-2 genes. Frequent occurrences of arsB, terF , and merA genes were detected, especially in silA/pcoD -positive, multidrug-resistant (MDR) and/or CTX-M-producing isolates. Our study showed co-presence of antibiotic and heavy metal tolerance genes in MDR EcC isolates. In our viewpoint, there are few studies regarding to bacterial heavy metal tolerance and we call attention for more investigations and discussion about this issue in different hospital pathogens.

  10. Multidrug-Resistant CTX-M-(15, 9, 2)- and KPC-2-Producing Enterobacter hormaechei and Enterobacter asburiae Isolates Possessed a Set of Acquired Heavy Metal Tolerance Genes Including a Chromosomal sil Operon (for Acquired Silver Resistance)

    PubMed Central

    Andrade, Leonardo N.; Siqueira, Thiago E. S.; Martinez, Roberto; Darini, Ana Lucia C.

    2018-01-01

    Bacterial resistance to antibiotics is concern in healthcare-associated infections. On the other hand, bacterial tolerance to other antimicrobials, like heavy metals, has been neglected and underestimated in hospital pathogens. Silver has long been used as an antimicrobial agent and it seems to be an important indicator of heavy metal tolerance. To explore this perspective, we searched for the presence of acquired silver resistance genes (sil operon: silE, silS, silR, silC, silF, silB, silA, and silP) and acquired extended-spectrum cephalosporin and carbapenem resistance genes (blaCTX−M and blaKPC) in Enterobacter cloacae Complex (EcC) (n = 27) and Enterobacter aerogenes (n = 8) isolated from inpatients at a general hospital. Moreover, the genetic background of the silA (silver-efflux pump) and the presence of other acquired heavy metal tolerance genes, pcoD (copper-efflux pump), arsB (arsenite-efflux pump), terF (tellurite resistance protein), and merA (mercuric reductase) were also investigated. Outstandingly, 21/27 (78%) EcC isolates harbored silA gene located in the chromosome. Complete sil operon was found in 19/21 silA-positive EcC isolates. Interestingly, 8/20 (40%) E. hormaechei and 5/6 (83%) E. asburiae co-harbored silA/pcoD genes and blaCTX−M−(15,2,or9) and/or blaKPC−2 genes. Frequent occurrences of arsB, terF, and merA genes were detected, especially in silA/pcoD-positive, multidrug-resistant (MDR) and/or CTX-M-producing isolates. Our study showed co-presence of antibiotic and heavy metal tolerance genes in MDR EcC isolates. In our viewpoint, there are few studies regarding to bacterial heavy metal tolerance and we call attention for more investigations and discussion about this issue in different hospital pathogens. PMID:29628916

  11. The new species Enterobacter oryziphilus sp. nov. and Enterobacter oryzendophyticus sp. nov. are key inhabitants of the endosphere of rice

    PubMed Central

    2013-01-01

    Background Six independent Gram-negative, facultatively anaerobic, non-spore-forming, nitrogen-fixing rod-shaped isolates were obtained from the root endosphere of rice grown at the International Rice Research Institute (IRRI) and investigated in a polyphasic taxonomic study. Results The strains produced fatty acid patterns typical for members of the family Enterobacteriaceae. Comparative sequence analyses of the 16S rRNA as well as rpoB genes allocated the strains to two well-defined groups within the genus Enterobacter, family Enterobacteriaceae. The analyses indicated Enterobacter radicincitans, Enterobacter arachidis and Enterobacter oryzae to be the closest related species. An RpoB (translated) protein comparison supported the placement in the genus Enterobacter and the relatedness of our isolates to the aforementioned species. Genomic DNA:DNA hybridization analyses and biochemical analyses provided further evidence that the novel strains belong to two new species within the genus Enterobacter. The two species can be differentiated from each other and from existing enteric species by acid production from L-rhamnose and D-melibiose, decarboxylation of ornithine and utilization of D-alanine, D-raffinose L-proline and L-aspartic acid, among other characteristics. Members of both species revealed capacities to colonise rice roots, including plant-growth-promoting capabilities such as an active supply of fixed nitrogen to the plant and solubilisation of inorganic phosphorus, next to traits allowing adaptation to the plant. Conclusions Two novel proposed enterobacterial species, denominated Enterobacter oryziphilus sp. nov. (type strain REICA_142T=LMG 26429T=NCCB 100393T) and Enterobacter oryzendophyticus sp. nov. (type strain REICA_082T=LMG 26432T =NCCB 100390T) were isolated from rice roots. Both species are capable of promoting rice growth by supplying nitrogen and phosphorus. PMID:23865888

  12. Spondylodiscitis Caused by Enterobacter agglomerans

    PubMed Central

    Kothalawala, Mahen; Devakanthan, Balachandran; Arunan, Sinnappoo; Galgamuwa, Dinithi; Rathnayake, Manori

    2016-01-01

    All over the globe, the incidence of vertebral infection is rising. Nowadays, compared to tuberculous variety, pyogenic spondylodiscitis incidence is high. The increase in the susceptible population and improved diagnostics summatively contributed to this. In clinical grounds, differentiation of pyogenic and tuberculous spondylodiscitis is well defined. Enterobacter agglomerans is a hospital contaminant and associated with infections in immunocompromised individuals and intravenous lines. It causes a wide array of infections. Enterobacter agglomerans spondylodiscitis is unusual and there are, around the globe, only less than 31 suspected cases that have been previously reported. Enterobacter agglomerans histology mimics tuberculous rather than pyogenic spondylodiscitis. A 65-year-old farming lady, while being in hospital, developed sudden onset spastic paraparesis with hyperreflexia. Later blood culture revealed Enterobacter agglomerans with 41-hour incubation in 99.9% probability from Ramel identification system. Her initial ESR was 120 mm/first hour. Isolate was susceptible to ciprofloxacin and intravenous followed with oral therapy shows a drastic ESR fall and improved clinical response. Differentiation of tuberculous and pyogenic spondylodiscitis is very much important in management point of view. Therefore, blood culture has a role in diagnosis of spondylodiscitis. ESR can be used as important inflammatory marker in monitoring the response to treatment. Retrospectively, ESR would aid in reaching a definitive diagnosis. PMID:28127480

  13. Carbene-aerogen bonds: an ab initio study

    NASA Astrophysics Data System (ADS)

    Esrafili, Mehdi D.; Sabouri, Ayda

    2017-04-01

    Through the use of ab initio calculations, the possibility of formation of σ-hole interaction between ZO3 (Z = Ar, Kr and Xe) and carbene species is investigated. Since singlet carbenes show a negative electrostatic potential on their divalent carbon atom, they can favourably interact with the positive electrostatic potential generated by the σ-hole of Z atom of ZO3. The characteristic of this interaction, termed as 'carbene-aerogen' bond, is analysed in terms of geometric, interaction energies and electronic features. The energy decomposition analysis indicates that for all complexes analysed here, the electrostatic energy is more negative than the polarisation or dispersion energy term. According to the electron density analysis, some partial covalent character can be ascribed to XeṡṡṡC interactions. In addition, the carbene-aerogen bond exhibits cooperative effects with the HṡṡṡO hydrogen-bonding interaction in ternary complexes where both interactions coexist. For a given carbene, the amount of these cooperative effects increases with the size of the Z atom. The results obtained in this work may be helpful for the extension and future application of σ-hole intermolecular interactions as well as coordination chemistry.

  14. Antimicrobial activity of honokiol and magnolol isolated from Magnolia officinalis.

    PubMed

    Ho, K Y; Tsai, C C; Chen, C P; Huang, J S; Lin, C C

    2001-03-01

    The antimicrobial activity of honokiol and magnolol, the main constituents of Magnolia officinalis was investigated. The antimicrobial activity was assayed by the agar dilution method using brain heart infusion medium and the minimum inhibitory concentration (MIC) were determined for each compound using a twofold serial dilution assay. The results showed that honokiol and magnolol have a marked antimicrobial effect (MIC = 25 microg/mL) against Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis, Prevotella intermedia, Micrococcus luteus and Bacillus subtilis, but did not show antimicrobial activity (MIC > or = 100 microg/mL) for Shigella flexneii, Staphylococcus epidermidis, Enterobacter aerogenes, Proteus vulgaris, Escherichia coli and Pseudomonas aeruginosa. Our results indicate that honokiol and magnolol, although less potent than tetracycline, show a significant antimicrobial activity for periodontal pathogens. Hence we suggest that honokiol and magnolol might have the potential to be an adjunct in the treatment of periodontitis. Copyright 2001 John Wiley & Sons, Ltd.

  15. Biological properties of the Chilean native moss Sphagnum magellanicum.

    PubMed

    Montenegro, Gloria; Portaluppi, Mariana C; Salas, Francisco A; Díaz, María F

    2009-01-01

    An ethanol extract prepared from the gametophyte Chilean native moss Sphagnum magellanicum was dried out, weighed and dissolved in distilled water. This extract was then assayed for its antibacterial activity against the G(-) bacteria Azotobacter vinelandii, Erwinia carotovora subsp. carotovora, Enterobacter aerogenes, Escherichia coli, Pseudomonas aeruginosa, Salmonella typhi, Vibrio cholerae, and the G(+) bacteria Staphylococcus aureus subsp. aureus, and Streptococcus type beta. The growth of the cultures of E. carotovora subsp. carotovora, and V. cholerae was inhibited at a concentration of 581 microg/ml of extract, while the cultures of E. coli, S. typhi and Streptococcus type beta were inhibited at a concentration of 1.16 microg/mL of extract. The concentration of phenolic compounds was 4.294 mg/mL; the presence of vanillic, chlorogenic, syringic, caffeic, gallic, 3-4 hydrozybenzoic, p-coumaric and salicylic acids was identified using RP- High Pressure Liquid Chromatography.

  16. Antibacterial activity of BMS-180680, a new catechol-containing monobactam.

    PubMed Central

    Fung-Tomc, J; Bush, K; Minassian, B; Kolek, B; Flamm, R; Gradelski, E; Bonner, D

    1997-01-01

    The in vitro activities of a new catechol-containing monobactam, BMS-180680 (SQ 84,100), were compared to those of aztreonam, ceftazidime, imipenem, piperacillin-tazobactam, ciprofloxacin, amikacin, and trimethoprim-sulfamethoxazole. BMS-180680 was often the most active compound against many species of the family Enterobacteriaceae, with MICs at which 90% of the isolates were inhibited (MIC90s) of < or = 0.5 microg/ml for Escherichia coli, Klebsiella spp., Citrobacter diversus, Enterobacter aerogenes, Serratia marcescens, Proteus spp., and Providencia spp. BMS-180680 had moderate activities (MIC90s of 2 to 8 microg/ml) against Citrobacter freundii, Morganella morganii, Shigella spp., and non-E. aerogenes Enterobacter spp. BMS-180680 was the only antibiotic evaluated that was active against >90% of the Pseudomonas aeruginosa (MIC90, 0.25 microg/ml), Burkholderia cepacia, and Stenotrophomonas maltophilia (MIC90s, 1 microg/ml) strains tested. BMS-180680 was inactive against most strains of Pseudomonas fluorescens, Pseudomonas stutzeri, Pseudomonas diminuta, and Burkholderia pickettii. BMS-180680 was moderately active (MIC90s of 4 to 8 microg/ml) against Alcaligenes spp. and Acinetobacter lwoffii and less active (MIC90, 16 microg/ml) against Acinetobacter calcoaceticus-Acinetobacter baumanii complex. BMS-180680 lacked activity against gram-positive bacteria and anaerobic bacteria. Both tonB and cir fiu double mutants of E. coli had greatly decreased susceptibility to BMS-180680. Of the TEM, PSE, and chromosomal-encoded beta-lactamases tested, only the K1 enzyme hydrolyzed BMS-180680 to any measurable extent. Like aztreonam, BMS-180680 bound preferentially to penicillin-binding protein 3. The MICs of BMS-180680 were not influenced by the presence of hematin or 5% sheep blood in the test medium or with incubation in an atmosphere containing 5% CO2. BMS-180680 MICs obtained under strict anaerobic conditions were significantly higher than those obtained in ambient air

  17. Microbial Colonization in a New Intensive Care Burn Unit. A Prospective Cohort Study

    DTIC Science & Technology

    1985-02-01

    after transfer to the convalescent ward were added to the Total 0 1 ICU patients and presented as a total. Analysis of fre- Enterobacter aerogenes ...ProvIdencia stuartil 0 4 ICU 4 4 Enterobacter agglomerons 3 0 Total 7 9• "•"".’-,••Pseudomonas putida 0 3 t’•••P*ICU indicates Intensive care unit...Staphylococcus aureus Klebsiela pneumonias 1 2 ICU 14 19 Total 18 20 Enterobacter cloacae 0 2 nt.c ussce- Streptococcus pneurnonlae 0 2"".Enterococcus peciesi

  18. Oxidation/Biodegradation of Solid Propellants Used in Legacy Chemical Rounds

    DTIC Science & Technology

    2007-08-01

    Bioreactor Sample Source Sample Number Similarity Index Genus Species ICB M28-1 Sample 1A 0.771 Kluyvera cryocrescenes 0.704 Enterobacter cloacae...0.678 Photorhabdus luminencent 0.676 Entrobacter aerogenes Sample 1B 0.901 Alcaligenes faecalis Sample 2 0.894 Pseudomonas stutzeri 0.807 Pseudomonas...et. al. 13 has also described the role of Enterobacter cloacae NADH in the degradation of nitro aromatic compounds. Paracoccus denitrificans, commonly

  19. Reclassification of Enterobacter oryziphilus and Enterobacter oryzendophyticus as Kosakonia oryziphila comb. nov. and Kosakonia oryzendophytica comb. nov.

    PubMed

    Li, Chun Yan; Zhou, Yuan Liang; Ji, Jing; Gu, Chun Tao

    2016-08-01

    The taxonomic positions of Enterobacter oryziphilus and Enterobacter oryzendophyticus were re-examined on the basis of concatenated partial rpoB, atpD, gyrB and infB gene sequence analysis. The reconstructed phylogenetic tree based upon concatenated partial rpoB, atpD, gyrB and infB gene sequences clearly showed that E. oryziphilus and E. oryzendophyticus and all defined species of the genus Kosakonia form a clade separate from other genera of the family Enterobacteriaceae, and, therefore, these species of the genus Enterobacter should be transferred to the genus Kosakonia. E. oryziphilus and E. oryzendophyticus are reclassified as K. oryziphila comb. nov. (type strain REICA_142T=LMG 26429T=NCCB 100393T) and K. oryzendophytica comb. nov. (type strain REICA_082T=LMG 26432T=NCCB 100390T), respectively.

  20. Discovery and biological characterization of geranylated RNA in bacteria.

    PubMed

    Dumelin, Christoph E; Chen, Yiyun; Leconte, Aaron M; Chen, Y Grace; Liu, David R

    2012-11-01

    A general MS-based screen for unusually hydrophobic cellular small molecule-RNA conjugates revealed geranylated RNA in Escherichia coli, Enterobacter aerogenes, Pseudomonas aeruginosa and Salmonella enterica var. Typhimurium. The geranyl group is conjugated to the sulfur atom in two 5-methylaminomethyl-2-thiouridine nucleotides. These geranylated nucleotides occur in the first anticodon position of tRNA(Glu)(UUC), tRNA(Lys)(UUU) and tRNA(Gln)(UUG) at a frequency of up to 6.7% (~400 geranylated nucleotides per cell). RNA geranylation can be increased or abolished by mutation or deletion of the selU (ybbB) gene in E. coli, and purified SelU protein in the presence of geranyl pyrophosphate and tRNA can produce geranylated tRNA. The presence or absence of the geranyl group in tRNA(Glu)(UUC), tRNA(Lys)(UUU) and tRNA(Gln)(UUG) affects codon bias and frameshifting during translation. These RNAs represent the first reported examples of oligoisoprenylated cellular nucleic acids.

  1. Non-thiolate ligation of nickel by nucleotide-free UreG of Klebsiella aerogenes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin-Diaconescu, Vlad; Joseph, Crisjoe A.; Boer, Jodi L.

    Nickel-dependent ureases are activated by a multiprotein complex that includes the GTPase UreG. Prior studies showed that nucleotide-free UreG from Klebsiella aerogenes is monomeric and binds one nickel or zinc ion with near-equivalent affinity using an undefined binding site, whereas nucleotide-free UreG from Helicobacter pylori selectively binds one zinc ion per dimer via a universally conserved Cys-Pro-His motif in each protomer. Iodoacetamide-treated K. aerogenes UreG was nearly unaffected in nickel binding compared to non-treated sample, suggesting the absence of thiolate ligands to the metal. X-ray absorption spectroscopy of nickel-bound UreG showed the metal possessed four-coordinate geometry with all O/N donormore » ligands including one imidazole, thus confirming the absence of thiolate ligation. The nickel site in Strep-tag II-modified protein possessed six-coordinate geometry, again with all O/N donor ligands, but now including two or three imidazoles. An identical site was noted for the Strep-tag II-modified H74A variant, substituted in the Cys-Pro-His motif, ruling out coordination by this His residue. These results are consistent with metal binding to both His6 and a His residue of the fusion peptide in Strep-tagged K. aerogenes UreG. We conclude that the nickel- and zinc-binding site in nucleotide-free K. aerogenes UreG is distinct from that of nucleotide-free H. pylori UreG and does not involve the Cys-Pro-His motif. Further, we show the Strep-tag II can perturb metal coordination of this protein.« less

  2. Enterobacter xiangfangensis sp. nov., isolated from Chinese traditional sourdough, and reclassification of Enterobacter sacchari Zhu et al. 2013 as Kosakonia sacchari comb. nov.

    PubMed

    Gu, Chun Tao; Li, Chun Yan; Yang, Li Jie; Huo, Gui Cheng

    2014-08-01

    A Gram-stain-negative bacterial strain, 10-17(T), was isolated from traditional sourdough in Heilongjiang Province, China. The bacterium was characterized by a polyphasic approach, including 16S rRNA gene sequence analysis, RNA polymerase β subunit (rpoB) gene sequence analysis, DNA gyrase (gyrB) gene sequence analysis, initiation translation factor 2 (infB) gene sequence analysis, ATP synthase β subunit (atpD) gene sequence analysis, fatty acid methyl ester analysis, determination of DNA G+C content, DNA-DNA hybridization and an analysis of phenotypic features. Strain 10-17(T) was phylogenetically related to Enterobacter hormaechei CIP 103441(T), Enterobacter cancerogenus LMG 2693(T), Enterobacter asburiae JCM 6051(T), Enterobacter mori LMG 25706(T), Enterobacter ludwigii EN-119(T) and Leclercia adecarboxylata LMG 2803(T), having 99.5%, 99.3%, 98.7%, 98.5%, 98.4% and 98.4% 16S rRNA gene sequence similarity, respectively. On the basis of polyphasic characterization data obtained in the present study, a novel species, Enterobacter xiangfangensis sp. nov., is proposed and the type strain is 10-17(T) ( = LMG 27195(T) = NCIMB 14836(T) = CCUG 62994(T)). Enterobacter sacchari Zhu et al. 2013 was reclassified as Kosakonia sacchari comb. nov. on the basis of 16S rRNA, rpoB, gyrB, infB and atpD gene sequence analysis and the type strain is strain SP1(T)( = CGMCC 1.12102(T) = LMG 26783(T)). © 2014 IUMS.

  3. A Simple Alternative to the IMViC Test in Microbiology.

    ERIC Educational Resources Information Center

    Benathen, Isaiah A.

    1992-01-01

    Presents a singular alternative to the Indole Methyl-red Voges-Proskauer Citrate (IMViC) test that uses bile-esculin agar to distinguish between the Escherichia coli and Enterobacter aerogenes bacteria. Includes materials and methods, results, and conclusions for the test. (MDH)

  4. Re-examination of the taxonomic status of Enterobacter helveticus, Enterobacter pulveris and Enterobacter turicensis as members of the genus Cronobacter and their reclassification in the genera Franconibacter gen. nov. and Siccibacter gen. nov. as Franconibacter helveticus comb. nov., Franconibacter pulveris comb. nov. and Siccibacter turicensis comb. nov., respectively.

    PubMed

    Stephan, Roger; Grim, Christopher J; Gopinath, Gopal R; Mammel, Mark K; Sathyamoorthy, Venugopal; Trach, Larisa H; Chase, Hannah R; Fanning, Séamus; Tall, Ben D

    2014-10-01

    Recently, a taxonomical re-evaluation of the genus Enterobacter, based on multi-locus sequence typing (MLST) analysis, has led to the proposal that the species Enterobacter pulveris, Enterobacter helveticus and Enterobacter turicensis should be reclassified as novel species of the genus Cronobacter. In the present work, new genome-scale analyses, including average nucleotide identity, genome-scale phylogeny and k-mer analysis, coupled with previously reported DNA-DNA hybridization values and biochemical characterization strongly indicate that these three species of the genus Enterobacter are not members of the genus Cronobacter, nor do they belong to the re-evaluated genus Enterobacter. Furthermore, data from this polyphasic study indicated that all three species constitute two new genera. We propose reclassifying Enterobacter pulveris and Enterobacter helveticus in the genus Franconibacter gen. nov. as Franconibacter pulveris comb. nov. (type strain 601/05(T) = LMG 24057(T) = DSM 19144(T)) and Franconibacter helveticus comb. nov. (type strain 513/05(T) = LMG 23732(T) = DSM 18396(T)), respectively, and Enterobacter turicensis in the genus Siccibacter gen. nov. as Siccibacter turicensis comb. nov. (type strain 508/05(T) = LMG 23730(T) = DSM 18397(T)).

  5. Re-examination of the taxonomic status of Enterobacter helveticus, Enterobacter pulveris and Enterobacter turicensis as members of the genus Cronobacter and their reclassification in the genera Franconibacter gen. nov. and Siccibacter gen. nov. as Franconibacter helveticus comb. nov., Franconibacter pulveris comb. nov. and Siccibacter turicensis comb. nov., respectively

    PubMed Central

    Grim, Christopher J.; Gopinath, Gopal R.; Mammel, Mark K.; Sathyamoorthy, Venugopal; Trach, Larisa H.; Chase, Hannah R.; Fanning, Séamus; Tall, Ben D.

    2014-01-01

    Recently, a taxonomical re-evaluation of the genus Enterobacter, based on multi-locus sequence typing (MLST) analysis, has led to the proposal that the species Enterobacter pulveris, Enterobacter helveticus and Enterobacter turicensis should be reclassified as novel species of the genus Cronobacter. In the present work, new genome-scale analyses, including average nucleotide identity, genome-scale phylogeny and k-mer analysis, coupled with previously reported DNA–DNA hybridization values and biochemical characterization strongly indicate that these three species of the genus Enterobacter are not members of the genus Cronobacter, nor do they belong to the re-evaluated genus Enterobacter. Furthermore, data from this polyphasic study indicated that all three species constitute two new genera. We propose reclassifying Enterobacter pulveris and Enterobacter helveticus in the genus Franconibacter gen. nov. as Franconibacter pulveris comb. nov. (type strain 601/05T = LMG 24057T = DSM 19144T) and Franconibacter helveticus comb. nov. (type strain 513/05T = LMG 23732T = DSM 18396T), respectively, and Enterobacter turicensis in the genus Siccibacter gen. nov. as Siccibacter turicensis comb. nov. (type strain 508/05T = LMG 23730T = DSM 18397T). PMID:25028159

  6. Enterobacter muelleri sp. nov., isolated from the rhizosphere of Zea mays.

    PubMed

    Kämpfer, Peter; McInroy, John A; Glaeser, Stefanie P

    2015-11-01

    A beige-pigmented, oxidase-negative bacterial strain (JM-458T), isolated from a rhizosphere sample, was studied using a polyphasic taxonomic approach. Cells of the isolate were rod-shaped and stained Gram-negative. A comparison of the 16S rRNA gene sequence of strain JM-458T with sequences of the type strains of closely related species of the genus Enterobacter showed that it shared highest sequence similarity with Enterobacter mori (98.7 %), Enterobacter hormaechei (98.3 %), Enterobacter cloacae subsp. dissolvens, Enterobacter ludwigii and Enterobacter asburiae (all 98.2 %). 16S rRNA gene sequence similarities to all other Enterobacter species were below 98 %. Multilocus sequence analysis based on concatenated partial rpoB, gyrB, infB and atpD gene sequences showed a clear distinction of strain JM-458T from its closest related type strains. The fatty acid profile of the strain consisted of C16 : 0, C17 : 0 cyclo, iso-C15 : 0 2-OH/C16 : 1ω7c and C18 : 1ω7c as major components. DNA-DNA hybridizations between strain JM-458T and the type strains of E. mori, E. hormaechei and E. ludwigii resulted in relatedness values of 29 % (reciprocal 25 %), 24 % (reciprocal 43 %) and 16 % (reciprocal 17 %), respectively. DNA-DNA hybridization results together with multilocus sequence analysis results and differential biochemical and chemotaxonomic properties showed that strain JM-458T represents a novel species of the genus Enterobacter, for which the name Enterobacter muelleri sp. nov. is proposed. The type strain is JM-458T ( = DSM 29346T = CIP 110826T = LMG 28480T = CCM 8546T).

  7. Integration of Pseudomonas aeruginosa and Legionella pneumophila in drinking water biofilms grown on domestic plumbing materials.

    PubMed

    Moritz, Miriam M; Flemming, Hans-Curt; Wingender, Jost

    2010-06-01

    Drinking water biofilms were grown on coupons of plumbing materials, including ethylene-propylene-diene-monomer (EPDM) rubber, silane cross-linked polyethylene (PE-X b), electron-ray cross-linked PE (PE-X c) and copper under constant flow-through of cold tap water. After 14 days, the biofilms were spiked with Pseudomonas aeruginosa, Legionella pneumophila and Enterobacter nimipressuralis (10(6) cells/mL each). The test bacteria were environmental isolates from contamination events in drinking water systems. After static incubation for 24 h, water flow was resumed and continued for 4 weeks. Total cell count and heterotrophic plate count (HPC) of biofilms were monitored, and P. aeruginosa, L. pneumophila and E. nimipressuralis were quantified, using standard culture-based methods or culture-independent fluorescence in situ hybridization (FISH). After 14 days total cell counts and HPC values were highest on EPDM followed by the plastic materials and copper. P. aeruginosa and L. pneumophila became incorporated into drinking water biofilms and were capable to persist in biofilms on EPDM and PE-X materials for several weeks, while copper biofilms were colonized only by L. pneumophila in low culturable numbers. E. nimipressuralis was not detected in any of the biofilms. Application of the FISH method often yielded orders of magnitude higher levels of P. aeruginosa and L. pneumophila than culture methods. These observations indicate that drinking water biofilms grown under cold water conditions on domestic plumbing materials, especially EPDM and PE-X in the present study, can be a reservoir for P. aeruginosa and L. pneumophila that persist in these habitats mostly in a viable but non-culturable state.

  8. Enterobacter nimipressuralis as a cause of pseudobacteremia

    PubMed Central

    2010-01-01

    Background The clinical significance of the Enterobacter nimipressuralis as human pathogens remains unclear. Case presentations The microbiologic culture monitoring system of sterile body fluids revealed on an episode of Enterobacter cloacae and Enterobacter amnigenus in blood culture results on the same day; the antibiotic sensitivity and MIC were nearly the same for both species. First patient was a healthy woman with postmenopausal syndrome, while second patient with herpes zoster. Both patients had febrile sensations without signs of bacteremia. E. amnigenus was also cultured from the unused package of salined cotton in the container through epidemiologic investigation. The cultured Enterobacter species were all identified as E. nimipressuralis through hsp60 gene sequencing and infrequent-restriction-site PCR (IRS-PCR). Conclusion When an unusual microorganisms such as E. nimipressuralis is isolated from blood of a patient with no clinical signs of sepsis, a pseudobacteremia should be suspected. When the antibiogram and MIC test results of bacterial cultures from two or more patients are nearly the same, although the species involved may appear different, it may be necessary to prove that they are the same species through molecular methods. The microbiologic cultures monitoring system will probably help to detect pseudobacteremia and other pseudo infections through reliable and fast identification. PMID:21029473

  9. Inorganic phosphate accumulation and cadmium detoxification in Klebsiella aerogenes NCTC 418 growing in continuous culture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aiking, H.; Stijnman, A.; van Garderen, C.

    1984-02-01

    Klebsiella aerogenes NCTC-418, growing in the presence of cadmium under glucose-, sulfate-, or phosphate-limited conditions in continuous culture, exhibits two different cadmium detoxifying mechanisms. In addition to sulfide formation, increased accumulation of P/sub i/ is demonstrated as a novel mechanism. Intracellular cadmium is always quantitatively counterbalanced by a concerted increase in both inorganic sulfide and P/sub i/ contents of the cells. This led to the conclusion that production of sulfide and accumulation of P/sub i/ are detoxification mechanisms present in K. aerogenes but that their relative importance is crucially dependent on the strain and the growth conditions employed.

  10. Pneumonia due to Enterobacter cancerogenus infection.

    PubMed

    Demir, Tülin; Baran, Gamze; Buyukguclu, Tuncay; Sezgin, Fikriye Milletli; Kaymaz, Haci

    2014-11-01

    Enterobacter cancerogenus (formerly known as CDC Enteric Group 19; synonym with Enterobacter taylorae) has rarely been associated with human infections, and little is known regarding the epidemiology and clinical significance of this organism. We describe a community-acquired pneumonia case in a 44-year-old female due to E. cancerogenus. Identification and antimicrobial susceptibility of the microorganism was performed by the automatized VITEK 2 Compact system (bioMerieux, France). The clinical case suggests that E. cancerogenus is a potentially pathogenic microorganism in determined circumstances; underlying diseases such as bronchial asthma, empiric antibiotic treatment, wounds, diagnostic, or therapeutic instruments.

  11. Temporal Trends in Enterobacter Species Bloodstream Infection: A Population-Based Study, 1998-2007

    PubMed Central

    Al-Hasan, Majdi N.; Lahr, Brian D.; Eckel-Passow, Jeanette E.; Baddour, Larry M.

    2010-01-01

    Enterobacter species are the fourth most common cause of gram-negative bloodstream infection (BSI). We examined temporal changes and seasonal variation in the incidence rate of Enterobacter spp. BSI, estimated 28-day and 1-year mortality, and determined in vitro antimicrobial resistance rates of Enterobacter spp. bloodstream isolates in Olmsted County, Minnesota, from 1/1/1998 to 12/31/2007. Multivariable Poisson regression was used to examine temporal changes and seasonal variation in incidence rate and Kaplan-Meier method to estimate 28-day and 1-year mortality. The median age of patients with Enterobacter spp. BSI was 58 years and 53% were female. The overall age- and gender-adjusted incidence rate of Enterobacter spp. BSI was 3.3/100,000 person-years (95% confidence interval [CI]: 2.3-4.4). There was a linear trend of increasing incidence rate from 0.8 (95% CI: 0-1.9) to 6.2 (95% CI: 3.0-9.3) per 100,000 person-years between 1998 and 2007 (p=0.002). There was no significant difference in the incidence rate of Enterobacter spp. BSI during the warmest four months compared to the remainder of the year (incidence rate ratio 1.06 [95% CI: 0.47-2.01]). The overall 28-day and 1-year mortality rates of Enterobacter spp. BSI were 21% (95% CI: 8-34%) and 38% (95% CI: 22-53%), respectively. Up to 13% of Enterobacter spp. bloodstream isolates were resistant to third-generation cephalosporins. To our knowledge, this is the first population-based study to describe the epidemiology and outcome of Enterobacter spp. BSI. The increase in incidence rate of Enterobacter spp. BSI over the past decade, coupled with its associated antimicrobial resistance, dictate more investigation of this syndrome. PMID:20518795

  12. Regulation of tyramine oxidase synthesis in Klebsiella aerogenes.

    PubMed Central

    Okamura, H; Murooka, Y; Harada, T

    1976-01-01

    Tyramine oxidase in Klebsiella aerogenes is highly specific for tyramine, dopamine, octopamine, and norepinephrine, and its synthesis is induced specifically by these compounds. The enzyme is present in a membrane-bound form. The Km value for tyramine is 9 X 10(-4) M. Tyramine oxidase synthesis was subjected to catabolite repression by glucose in the presence of ammonium salts. Addition of cyclic adenosine 3',5'-monophosphate (cAMP) overcame the catabolite repression. A mutant strain, K711, which can produce a high level of beta-galactosidase in the presence of glucose and ammonium chloride, can also synthesize tyramine oxidase and histidase in the presence of inducer in glucose ammonium medium. Catabolite repression of tyramine oxidase synthesis was relieved when the cells were grown under conditions of nitrogen limitation, whereas beta-galactosidase was strongly repressed under these conditions. A cAMP-requiring mutant, MK54, synthesized tyramine oxidase rapidly when tyramine was used as the sole source of nitrogen in the absence of cAMP. However, a glutamine synthetase-constitutive mutant, MK94, failed to synthesize tyramine oxidase in the presence of glucose and ammonium chloride, although it synthesized histidase rapidly under these conditions. These results suggest that catabolite repression of tyramine oxidase synthesis in K. aerogenes is regulated by the intracellular level of cAMP and an unknown cytoplasmic factor that acts independently of cAMP and is formed under conditions of nitrogen limitation. PMID:179974

  13. Synthesis and characterization of 3-aminoquinoline derivatives and studies of photophysicochemical behaviour and antimicrobial activities

    NASA Astrophysics Data System (ADS)

    Zengin, Gulay; Nafea Al Kawaz, Ali Muayad; Zengin, Huseyin; Mert, Adem; Kucuk, Bedia

    2016-01-01

    A series of 3-aminoquinoline derivatives were synthesized, where their chemical structures were confirmed by various analytical techniques, such as, Elemental Analysis, Nuclear Magnetic Resonance Spectroscopy (1H and 13C NMR), Liquid Chromatography-Mass-Mass Spectroscopy (LC-MS-MS), Ultraviolet-Visible Spectroscopy (UV-Vis), Fourier Transform Infrared Spectroscopy (FTIR) and Photoluminescence (PL). The quinoline ring core, typical of aminoquinolines, and a naphthalene group was combined to devise (4-alkyl-1-naphthyl)-quinolin-3-ylamide derivatives. These derivatives were designed and synthesized in light of the chemical and biological profiles of these important subunits. All the compounds were evaluated for their in vitro antibacterial and antifungal activities by the paper disc diffusion method with Gram-positive Bacillus subtilis, Bacillus megaterium and Staphylococcus aureus, Gram-negative Enterobacter aerogenes, Eschericha coli, Klebsiella pneumoniae and Pseudomonas aeruginosa and yeasts Candida albicans, Saccharomyces cerevisiae and Yarrovia lipolytica. These compounds showed antimicrobial activities against Gram-positive and Gram-negative bacteria and several yeasts, and thus their activity was not restricted to any particular type of microorganism.

  14. Physiological responses of Microcystis aeruginosa against the algicidal bacterium Pseudomonas aeruginosa.

    PubMed

    Zhou, Su; Yin, Hua; Tang, Shaoyu; Peng, Hui; Yin, Donggao; Yang, Yixuan; Liu, Zehua; Dang, Zhi

    2016-05-01

    Proliferation of cyanobacteria in aquatic ecosystems has caused water security problems throughout the world. Our preliminary study has showed that Pseudomonas aeruginosa can inhibit the growth of cyanobacterium, Microcystis aeruginosa. In order to explore the inhibitory mechanism of P. aeruginosa on the cell growth and synthesis of intracellular substances of M. aeruginosa, concentrations of Chlorophyll-a, intracellular protein, carbohydrate, enzyme activities and ion metabolism of M. aeruginosa, were investigated. The results indicated that 83.84% algicidal efficiency of P. aeruginosa was achieved after treatment for 7 days. The strain inhibited the reproduction of M. aeruginosa by impeding the synthesis of intracellular protein and carbohydrate of cyanobacterium, and only a very small part of intracellular protein and carbohydrate was detected after exposure to P. aeruginosa for 5 days. P. aeruginosa caused the alteration of intracellular antioxidant enzyme activity of M. aeruginosa, such as catalase, peroxidase. The accumulation of malondialdehyde aggravated membrane injury after treatment for 3 days. P. aeruginosa also affected the ion metabolism of cyanobacteria. The release of Na(+) and Cl(-) was significantly enhanced while the uptake of K(+), Ca(2+), Mg(2+), NO3(-) and SO4(2)(-) decreased. Surface morphology and intracellular structure of cyanobacteria and bacterial cells changed dramatically over time as evidenced by electron microscope (SEM) and transmission electron microscope (TEM) analysis. These results revealed that the algicidal activity of P. aeruginosa was primarily due to the fermentation liquid of P. aeruginosa that impeded the synthesis of intracellular protein and carbohydrate, and damaged the cell membrane through membrane lipid peroxidation. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Biochemical basis of mercury remediation and bioaccumulation by Enterobacter sp. EMB21.

    PubMed

    Sinha, Arvind; Kumar, Sumit; Khare, Sunil Kumar

    2013-01-01

    The aims of this study were to isolate metal bioaccumulating bacterial strains and to study their applications in removal of environmental problematic heavy metals like mercury. Five bacterial strains belonging to genera Enterobacter, Bacillus, and Pseudomonas were isolated from oil-spilled soil. Among these, one of the strains Enterobacter sp. EMB21 showed mercury bioaccumulation inside the cells simultaneous to its bioremediation. The bioaccumulation of remediated mercury was confirmed by transmission electron microscopy and energy dispersive X-ray. The mercury-resistant loci in the Enterobacter sp. EMB21 cells were plasmid-mediated as confirmed by transformation of mercury-sensitive Escherichia coli DH5α by Enterobacter sp. EMB21 plasmid. Effect of different culture parameters viz-a-viz inoculum size, pH, carbon, and nitrogen source revealed that alkaline pH and presence of dextrose and yeast extract favored better remediation. The results indicated the usefulness of Enterobacter sp. EMB21 for the effective remediation of mercury in bioaccumulated form. The Enterobacter sp. EMB21 seems promising for heavy metal remediation wherein the remediated metal can be trapped inside the cells. The process can further be developed for the synthesis of valuable high-end functional alloy, nanoparticles, or metal conjugates from the metal being remediated.

  16. Rapid identification of Enterobacter hormaechei and Enterobacter cloacae genetic cluster III.

    PubMed

    Ohad, S; Block, C; Kravitz, V; Farber, A; Pilo, S; Breuer, R; Rorman, E

    2014-05-01

    Enterobacter cloacae complex bacteria are of both clinical and environmental importance. Phenotypic methods are unable to distinguish between some of the species in this complex, which often renders their identification incomplete. The goal of this study was to develop molecular assays to identify Enterobacter hormaechei and Ent. cloacae genetic cluster III which are relatively frequently encountered in clinical material. The molecular assays developed in this study are qPCR technology based and served to identify both Ent. hormaechei and Ent. cloacae genetic cluster III. qPCR results were compared to hsp60 sequence analysis. Most clinical isolates were assigned to Ent. hormaechei subsp. steigerwaltii and Ent. cloacae genetic cluster III. The latter was proportionately more frequently isolated from bloodstream infections than from other material (P < 0·05). The qPCR assays detecting Ent. hormaechei and Ent. cloacae genetic cluster III demonstrated high sensitivity and specificity. The presented qPCR assays allow accurate and rapid identification of clinical isolates of the Ent. cloacae complex. The improved identifications obtained can specifically assist analysis of Ent. hormaechei and Ent. cloacae genetic cluster III in nosocomial outbreaks and can promote rapid environmental monitoring. An association was observed between Ent. cloacae cluster III and systemic infection that deserves further attention. © 2014 The Society for Applied Microbiology.

  17. An Enterobacter plasmid as a new genetic background for the transposon Tn1331

    PubMed Central

    Alavi, Mohammad R; Antonic, Vlado; Ravizee, Adrien; Weina, Peter J; Izadjoo, Mina; Stojadinovic, Alexander

    2011-01-01

    Background Genus Enterobacter includes important opportunistic nosocomial pathogens that could infect complex wounds. The presence of antibiotic resistance genes in these microorganisms represents a challenging clinical problem in the treatment of these wounds. In the authors’ screening of antibiotic-resistant bacteria from complex wounds, an Enterobacter species was isolated that harbors antibiotic-resistant plasmids conferring resistance to Escherichia coli. The aim of this study was to identify the resistance genes carried by one of these plasmids. Methods The plasmids from the Enterobacter isolate were propagated in E. coli and one of the plasmids, designated as pR23, was sequenced by the Sanger method using fluorescent dyeterminator chemistry on a genetic analyzer. The assembled sequence was annotated by search of the GenBank database. Results Plasmid pR23 is composed of the transposon Tn1331 and a backbone plasmid that is identical to the plasmid pPIGDM1 from Enterobacter agglomerans. The multidrug-resistance transposon Tn1331, which confers resistance to aminoglycoside and beta lactam antibiotics, has been previously isolated only from Klebsiella. The Enterobacter plasmid pPIGDM1, which carries a ColE1-like origin of replication and has no apparent selective marker, appears to provide a backbone for propagation of Tn1331 in Enterobacter. The recognition sequence of Tn1331 transposase for insertion into pPIGDM1 is the pentanucleotide TATTA, which occurs only once throughout the length of this plasmid. Conclusion Transposition of Tn1331 into the Enterobacter plasmid pPIGDM1 enables this transposon to propagate in this Enterobacter. Since Tn1331 was previously isolated only from Klebsiella, this report suggests horizontal transfer of this transposon between the two bacterial genera. PMID:22259249

  18. Effect of Several Clay Minerals and Humic Acid on the Survival of Klebsiella aerogenes Exposed to Ultraviolet Irradiation1

    PubMed Central

    Bitton, Gabriel; Henis, Y.; Lahav, N.

    1972-01-01

    The effect of various clay minerals and humic acid on the survival of Klebsiella aerogenes exposed to ultraviolet (UV) irradiation was investigated. A protective effect was observed and found to depend on the specific light absorption and light scattering properties of the clay minerals and the humic acid used. The higher the specific absorption, the better was the survival of K. aerogenes after UV irradiation. Bacterial survival was lower in clays saturated with divalent cations (Ca, Zn) than in those homoionic to monovalent cations (K). PMID:5031559

  19. Treatment outcomes in patients with third-generation cephalosporin-resistant Enterobacter bacteremia.

    PubMed

    O'Neal, Catherine S; O'Neal, Hollis R; Daniels, Titus L; Talbot, Thomas R

    2012-10-01

    Infections with resistant Enterobacter spp. are increasingly described, yet data on outcomes associated with these infections are limited. A retrospective cohort study was conducted to investigate outcomes of hospitalized patients with third-generation cephalosporin-resistant (CR) Enterobacter bacteremia. Cephalosporin resistance was detected using cefotaxime and cefpodoxime. Patients with Enterobacter spp. bacteremia from January 2006 through February 2008 defined the population. We defined cases as those with CR isolates; controls were patients with bacteremia due to non-CR isolates. Treatment failure was defined as persistence of the presenting signs of infection 72 h after initial culture collection. Of the 95 Enterobacter cases identified, 31 (33%) were CR. CR cases were significantly associated with treatment failure (odds ratio (OR) 2.81, 95% confidence interval (CI) 1.14-6.94). This association was not seen after adjustment for age, simplified acute physiology score (SAPS II), and inappropriate empiric antibiotic therapy. Inappropriate empiric therapy (adjusted OR 3.86, 95% CI 1.32-11.31) and SAPS II score (adjusted OR 1.09, 95% CI 1.02-1.16) were significantly associated with treatment failure in the multivariate analysis. Third-generation cephalosporin-resistant Enterobacter bacteremia is associated with treatment failure due to receipt of inappropriate empiric antibiotic therapy and severity of illness.

  20. Enterobacter tabaci sp. nov., a novel member of the genus Enterobacter isolated from a tobacco stem.

    PubMed

    Duan, Yan-Qing; Zhou, Xing-Kui; Di-Yan, Li; Li, Qing-Qing; Dang, Li-Zhi; Zhang, Yong-Guang; Qiu, Li-Hong; Nimaichand, Salam; Li, Wen-Jun

    2015-11-01

    A Gram-stain negative, motile, rod-shaped bacterium, designated strain YIM Hb-3(T), was isolated from the stem of a tobacco plant. The strain was observed to form convex, circular and yellow-colored colonies. The predominant respiratory quinone was identified as Q-8. The major fatty acids (>5%) detected were C(16:1)ω7c and/or C(16:1)ω6c (summed feature 3), C(16:0), C(17:0)cyclo, C(18:1)ω7c and/or C(18:1)ω6c (summed feature 8), C(14:0)3-OH and/or iso-C(16:1)I (summed feature 2), C(14:0) and C(12:0). The genomic DNA G+C content was determined to be 54.8 mol%. Phylogenetic trees based on 16S rRNA gene sequences and multilocus sequence analysis showed that strain YIM Hb-3(T) had the closest phylogenetic relationship with Enterobacter mori LMG 25706(T). DNA-DNA relatedness value between strain YIM Hb-3(T) and E. mori LMG 25706(T) was 46.9 ± 3.8%. On the basis of phenotypic and chemotaxonomic data, phylogenetic analysis, and DNA-DNA relatedness value, strain YIM Hb-3(T) is considered to represent a novel species of the genus Enterobacter, for which the name Enterobacter tabaci sp. nov. is proposed. The type strain is YIM Hb-3(T) (=KACC 17832(T) =KCTC 42694(T)).

  1. Infection rate in adult patients with open fractures treated at the emergency hospital and at the ULBRA university hospital in Canoas, Rio Grande do Sul, Brazil.

    PubMed

    Guerra, Marcelo Teodoro Ezequiel; Gregio, Fernando Machado; Bernardi, Adriane; Castro, Cyntia Cordeiro de

    2017-01-01

    To identify the infection rate in adult patients with open fractures treated at two tertiary hospitals in the city of Canoas, Rio Grande do Sul, Brazil. This quantitative descriptive study was conducted at Hospital de Pronto Socorro de Canoas. Eligible participants were adults aged 18-60 years with open fractures who were admitted to the orthopedic trauma service from January to May 2014 and followed-up for one year. A total of 133 patients with open fractures were included; most were men (92.48%), with a mean age of 36 years. There was a predominance of Gustilo-Anderson type III fractures. The infection rate was 18.80%, being more frequent in Gustilo-Anderson type III fractures (72.00%). The most commonly observed bacteria were Staphylococcus aureus and Enterobacter aerogenes . The infection rate in open fractures of patients initially treated at the emergency department of HPSC was 18.8%. The infections occurred predominantly in Gustilo-Anderson type III fractures. The bacteria with the highest incidence in infections were Staphylococcus aureus and Enterobacter aerogenes .

  2. Biohydrogen production by dark fermentation of glycerol using Enterobacter and Citrobacter Sp.

    PubMed

    Maru, Biniam T; Constanti, Magda; Stchigel, Alberto M; Medina, Francesc; Sueiras, Jesus E

    2013-01-01

    Glycerol is an attractive substrate for biohydrogen production because, in theory, it can produce 3 mol of hydrogen per mol of glycerol. Moreover, glycerol is produced in substantial amounts as a byproduct of producing biodiesel, the demand for which has increased in recent years. Therefore, hydrogen production from glycerol was studied by dark fermentation using three strains of bacteria: namely, Enterobacter spH1, Enterobacter spH2, and Citrobacter freundii H3 and a mixture thereof (1:1:1). It was found that, when an initial concentration of 20 g/L of glycerol was used, all three strains and their mixture produced substantial amounts of hydrogen ranging from 2400 to 3500 mL/L, being highest for C. freundii H3 (3547 mL/L) and Enterobacter spH1 (3506 mL/L). The main nongaseous fermentation products were ethanol and acetate, albeit in different ratios. For Enterobacter spH1, Enterobacter spH2, C. freundii H3, and the mixture (1:1:1), the ethanol yields (in mol EtOH/mol glycerol consumed) were 0.96, 0.67, 0.31, and 0.66, respectively. Compared to the individual strains, the mixture (1:1:1) did not show a significantly higher hydrogen level, indicating that there was no synergistic effect. Enterobacter spH1 was selected for further investigation because of its higher yield of hydrogen and ethanol. Copyright © 2012 American Institute of Chemical Engineers (AIChE).

  3. Microbiological Features of KPC-Producing Enterobacter Isolates Identified in a U.S. Hospital System

    PubMed Central

    Ahn, Chulsoo; Syed, Alveena; Hu, Fupin; O’Hara, Jessica A.; Rivera, Jesabel I.; Doi, Yohei

    2014-01-01

    Microbiological data regarding KPC-producing Enterobacter spp. are scarce. In this study, 11 unique KPC-producing Enterobacter isolates were identified among 44 ertapenem-non-susceptible Enterobacter isolates collected between 2009 and 2013 at a hospital system in Western Pennsylvania. All cases were healthcare-associated and occurred in medically complex patients. While pulsed-field gel electrophoresis (PFGE) showed diverse restriction patterns overall, multilocus sequence typing (MLST) identified Enterobacter cloacae isolates with sequence types (STs) 93 and 171 from two hospitals each. The levels of carbapenem minimum inhibitory concentrations were highly variable. All isolates remained susceptible to colistin, tigecycline, and the majority to amikacin and doxycycline. A blaKPC-carrying IncN plasmid conferring trimethoprim-sulfamethoxazole resistance was identified in three of the isolates. Spread of blaKPC in Enterobacter spp. appears to be due to a combination of plasmid-mediated and clonal processes. PMID:25053203

  4. Prevalence and characterization of multidrug-resistant zoonotic Enterobacter spp. in poultry of Bangladesh.

    PubMed

    Nandi, Shuvro Prokash; Sultana, Munawar; Hossain, M Anwar

    2013-05-01

    Poultry and poultry products are major contributors of zoonotic pathogens. Limited data are available on Enterobacter spp. as a potent zoonotic pathogen in poultry. The present study is a first endeavor on the emergence of multidrug-resistant zoonotic Enterobacter spp. and its prevalence arising from poultry in Bangladesh. Cloacal swabs from poultry samples of five different farms at Savar, Dhaka, Bangladesh were collected and from 106 isolates, 18 presumptive Enterobacter spp. were obtained. Antibiogram using 19 used antibiotics belonging to 15 major groups revealed that all of the 18 isolates were completely resistant to penicillin and rifampicin, but differed in their drug resistance pattern against ampicillin (94.4%), clindamycin (94.4%), erythromycin (94.4%), vancomycin (88.9%), sulfonamides (72.2%), imipenem (66.6%), streptomycin (55.6%), nitrofurantoin (33.3%), doxycycline (33.3%), tetracyclines (33.3%), cefepime (11.1%), and gentamicin (5.6%). All Enterobacter spp. were found to be plasmid free, implying that multidrug-resistant properties are chromosomal borne. The vanA and sulI were detected by polymerase chain reaction assay in 17 and 13 isolates, respectively. Amplified ribosomal DNA restriction analysis and randomly amplified polymorphic DNA distributed the 18 multidrug-resistant Enterobacter spp. into three genotypes. Phylogenetic analysis of the representatives of the three genotypes using partial 16S rRNA gene sequence (approximately 900 bp) showed that the genotypically diverse groups belonged to Enterobacter hormaechei, E. cloacae, and E. cancerogenus, respectively. The clinical significance of the close relative Enterobacter spp. is indicative of their zoonotic potential. Therefore, urgent intervention is required to limit the emergence and spread of these bacteria in poultry feed as well as prudent use of antibiotics among poultry farmers in Bangladesh.

  5. Isolation, identification, characterization, and evaluation of cadmium removal capacity of Enterobacter species.

    PubMed

    Abbas, Syed Zaghum; Rafatullah, Mohd; Ismail, Norli; Lalung, Japareng

    2014-12-01

    This study focused on the isolation and characterization of high cadmium-resistant bacterial strains, possible exploitation of its cadmium-accumulation and cadmium-induced proteins. Cadmium-resistant bacterial strains designated as RZ1 and RZ2 were isolated from industrial wastewater of Penang, Malaysia. These isolates were identified as Enterobacter mori and Enterobacter sp. WS12 on the basis of phenotypic, biochemical and 16S rDNA sequence based molecular phylogenetic characteristics. Both isolates were Gram negative, cocci, and growing well in Lauria-Bertani broth medium at 35 °C temperature and pH 7.0. Results also indicated that Enterobacter mori and Enterobacter sp. WS12are capable to remove 87.75 and 85.11% of the cadmium from 100 µg ml(-1) concentration, respectively. This study indicates that these strains can be useful as an inexpensive and efficient bioremediation technology to remove and recover the cadmium from wastewater. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Evaluation of the MicroScan ESBL plus confirmation panel for detection of extended-spectrum beta-lactamases in clinical isolates of oxyimino-cephalosporin-resistant Gram-negative bacteria.

    PubMed

    Stürenburg, Enno; Lang, Melanie; Horstkotte, Matthias A; Laufs, Rainer; Mack, Dietrich

    2004-11-01

    We aimed to assess the performance of the MicroScan ESBL plus confirmation panel using a series of 87 oxyimino-cephalosporin-resistant Gram-negative bacilli of various species. Organisms tested included 57 extended-spectrum beta-lactamase (ESBL) strains comprising Enterobacter aerogenes (3), Enterobacter cloacae (10), Escherichia coli (11), Klebsiella pneumoniae (26), Klebsiella oxytoca (3) and Proteus mirabilis (4). Also included were 30 strains resistant to oxyimino cephalosporins but lacking ESBLs, which were characterized with other resistance mechanisms, such as inherent clavulanate susceptibility in Acinetobacter spp. (4), hyperproduction of AmpC enzyme in Citrobacter freundii (2), E. aerogenes (3), E. cloacae (3), E. coli (4), Hafnia alvei (1) and Morganella morganii (1), production of plasmid-mediated AmpC beta-lactamase in K. pneumoniae (3) and E. coli (3) or hyperproduction of K1 enzyme in K. oxytoca (6). The MicroScan MIC-based clavulanate synergy correctly classified 50 of 57 ESBL strains as ESBL-positive and 23 of 30 non-ESBL strains as ESBL-negative (yielding a sensitivity of 88% and a specificity of 76.7%, respectively). False negatives among ESBL producers were highest with Enterobacter spp. due to masking interactions between ESBL and AmpC beta-lactamases. False-positive classifications occurred in two Acinetobacter spp., one E. coli producing plasmid-mediated AmpC beta-lactamase and two K. oxytoca hyperproducing their chromosomal K1 beta-lactamase. The MicroScan clavulanate synergy test proved to be a valuable tool for ESBL confirmation. However, this test has limitations in detecting ESBLs in Enterobacter spp. and in discriminating ESBL-related resistance from the K1 enzyme and from inherent clavulanate susceptibility in Acinetobacter spp.

  7. Enterobacter mori sp. nov., associated with bacterial wilt on Morus alba L.

    PubMed

    Zhu, Bo; Lou, Miao-Miao; Xie, Guan-Lin; Wang, Guo-Fen; Zhou, Qin; Wang, Fang; Fang, Yuan; Su, Ting; Li, Bin; Duan, Yong-Pin

    2011-11-01

    Two isolates of mulberry-pathogenic bacteria isolated from diseased mulberry roots were investigated in a polyphasic taxonomic study. Comparative 16S rRNA gene sequence analysis combined with rpoB gene sequence analysis allocated strains R18-2(T) and R3-3 to the genus Enterobacter, with Enterobacter asburiae, E. amnigenus, E. cancerogenus, E. cloacae subsp. cloacae, E. cloacae subsp. dissolvens and E. nimipressuralis as their closest relatives. Cells of the isolates were Gram-negative, facultatively anaerobic rods, 0.3-1.0 µm wide and 0.8-2.0 µm long, with peritrichous flagella, showing a DNA G+C content of 55.1 ± 0.5 mol%. Calculation of a similarity index based on phenotypic features and fatty acid methyl ester (FAME) analysis suggested that these isolates are members of E. cancerogenus or E. asburiae or a closely related species. Biochemical data revealed that the isolates could be differentiated from their nearest neighbours by the presence of lysine decarboxylase activity and their ability to utilize d-arabitol. DNA-DNA relatedness also distinguished the two isolates from phylogenetically closely related Enterobacter strains. Based on these data, it is proposed that the isolates represent a novel species of the genus Enterobacter, named Enterobacter mori sp. nov. The type strain is R18-2(T) ( = CGMCC 1.10322(T) = LMG 25706(T)).

  8. Enterobacter siamensis sp. nov., a transglutaminase-producing bacterium isolated from seafood processing wastewater in Thailand.

    PubMed

    Khunthongpan, Suwannee; Bourneow, Chaiwut; H-Kittikun, Aran; Tanasupawat, Somboon; Benjakul, Soottawat; Sumpavapol, Punnanee

    2013-01-01

    A novel strain of Enterobacter, C2361(T), a Gram-negative, non-spore-forming, rod-shaped and facultative anaerobic bacterium with the capability to produce transglutaminase, was isolated from seafood processing wastewater collected from a treatment pond of a seafood factory in Songkhla Province, Thailand. Phylogenetic analyses and phenotypic characteristics, including chemotaxonomic characteristics, showed that the strain was a member of the genus Enterobacter. The 16S rRNA gene sequence similarities between strain C2361(T) and Enterobacter cloacae subsp. cloacae ATCC 13047(T) and Enterobacter cloacae subsp. dissolvens LMG 2683(T) were 97.5 and 97.5%, respectively. Strain C2361(T) showed a low DNA-DNA relatedness with the above-mentioned species. The major fatty acids were C16:0, C17:0cyclo and C14:0. The DNA G+C content was 53.0 mol%. On the basis of the polyphasic evidence gathered in this study, it should be classified as a novel species of the genus Enterobacter for which the name Enterobacter siamensis sp. nov. is proposed. The type strain is C2361(T) (= KCTC 23282(T) = NBRC 107138(T)).

  9. Comparative study of thermostability and ester synthesis ability of free and immobilized lipases on cross linked silica gel.

    PubMed

    Kumari, Annapurna; Mahapatra, Paramita; Kumar, Garlapati Vijay; Banerjee, Rintu

    2008-06-01

    A novel support has been utilized for immobilization of lipase, which was prepared by amination of silica with ethanolamine followed by cross linking with glutaraldehyde. Lipases from Rhizopus oryzae 3562 and Enterobacter aerogenes were immobilized on activated silica gel, where they retained 60 and 50% of respective original activity. The thermal stability of the immobilized lipases was significantly improved in comparison to the free forms while the pH stability remained unchanged. E. aerogenes and R. oryzae 3562 lipases retained 75 and 97% of respective initial activity on incubation at 90 degrees C, whereas both the free forms became inactive at this temperature. The conversion yield of isoamyl acetate was found to be higher with the immobilized fungal (90 vs. 21%) and bacterial lipases (64 vs. 18%) than the respective free forms. Immobilized R. oryzae 3562 lipases retained 50% activity for isoamyl acetate synthesis up to ten cycles whereas it was eight cycles for E. aerogenes.

  10. Antimicrobial isothiocyanates from the seeds of Moringa oleifera Lam.

    PubMed

    Padla, Eleanor P; Solis, Ludivina T; Levida, Ruel M; Shen, Chien-Chang; Ragasa, Consolacion Y

    2012-01-01

    4-(alpha-L-Rhamnosyloxy)benzyl isothiocyanate (1) and 4-(4'-O-acetyl-alpha-L-rhamnosyloxy)-benzyl isothiocyanate (2) isolated from Moringa oleifera seeds were screened for their antibacterial activities against Staphylococcus aureus, Staphylococcus epidermidis, Bacillus subtilis, Escherichia coli, Enterobacter aerogenes, Klebsiella pneumoniae, and Pseudomonas aeruginosa, and for their antifungal activities against Candida albicans, Trichophyton rubrum, and Epidermophyton floccosum using the disk diffusion method. Isothiocyanates 1 and 2 were found active at the lowest inhibitory concentration of 1 mg/ml against all Gram-positive bacteria tested (S. aureus, S. epidermidis, B. subtilis) and against the dermatophytic fungi E. floccosum and T. rubrum. Statistically significant differences were found between the mean inhibition zones (IZ) of 1 and 2 and the standard drugs, ofloxacin and clotrimazole. The minimum inhibitory concentration (MIC) values confirmed the good antimicrobial activity of 1 and 2 against S. aureus, good to moderate activity against S. epidermidis, moderate activity against B. subtilis, and weak activity against E. floccosum and T. rubrum. The in vitro bactericidal effect of 1 and 2 against the Gram-positive bacterial strains tested is suggested by MBC:MIC ratios of 2:1.

  11. Antibacterial, anti-inflammatory and probiotic potential of Enterococcus hirae isolated from the rumen of Bos primigenius.

    PubMed

    Arokiyaraj, Selvaraj; Hairul Islam, Villianur Ibrahim; Bharanidharan, R; Raveendar, Sebastian; Lee, Jinwook; Kim, Do Hyung; Oh, Young Kyoon; Kim, Eun-Kyung; Kim, Kyoung Hoon

    2014-07-01

    In the present study bacterial strains were isolated from the rumen fluids of Bos primigenius and investigated their in vitro probiotic properties with potent antibacterial activity and anti-inflammatory effects. 9 g positive bacterial isolates were obtained and three isolates could able to tolerate gastric conditions, high bile salt concentrations and exhibited significant bactericidal effect against the enteric pathogens Vibrio cholera, Enterococcus faecalis, Enterobacter aerogens, Pseudomonas aeruginosa, Escherichia coli and Salmonella typhi. Moreover it showed above 70% cell surface hydrophobicity, significant low-invasion ability and potential adherence capacity in Caco-2 cells when compared with the control. The proinflammatory cytokines (TNF-α) was greatly reduced in rumen bacteria treatment and ARBS-1 modulate the immune response by activating the IL-4 secretion in parallel to TNF-α suppression. The 16s rRNA gene sequence of the active isolates were identified as Enterococcus hirae (ARBS-1), Pediococcus acidilactici (ARBS-4) and Bacillus licheniformis (ARBS-7). This study revealed the probiotic bactericidal properties of E. hirae obtained from the rumen of B. primigenius with potential antibacterial and anti-inflammatory effects. Future studies with the strains may yield some novel probiotic product for livestock's.

  12. Bacterial cellulose synthesis mechanism of facultative anaerobe Enterobacter sp. FY-07.

    PubMed

    Ji, Kaihua; Wang, Wei; Zeng, Bing; Chen, Sibin; Zhao, Qianqian; Chen, Yueqing; Li, Guoqiang; Ma, Ting

    2016-02-25

    Enterobacter sp. FY-07 can produce bacterial cellulose (BC) under aerobic and anaerobic conditions. Three potential BC synthesis gene clusters (bcsI, bcsII and bcsIII) of Enterobacter sp. FY-07 have been predicted using genome sequencing and comparative genome analysis, in which bcsIII was confirmed as the main contributor to BC synthesis by gene knockout and functional reconstitution methods. Protein homology, gene arrangement and gene constitution analysis indicated that bcsIII had high identity to the bcsI operon of Enterobacter sp. 638; however, its arrangement and composition were same as those of BC synthesizing operon of G. xylinum ATCC53582 except for the flanking sequences. According to the BC biosynthesizing process, oxygen is not directly involved in the reactions of BC synthesis, however, energy is required to activate intermediate metabolites and synthesize the activator, c-di-GMP. Comparative transcriptome and metabolite quantitative analysis demonstrated that under anaerobic conditions genes involved in the TCA cycle were downregulated, however, genes in the nitrate reduction and gluconeogenesis pathways were upregulated, especially, genes in three pyruvate metabolism pathways. These results suggested that Enterobacter sp. FY-07 could produce energy efficiently under anaerobic conditions to meet the requirement of BC biosynthesis.

  13. Bacterial cellulose synthesis mechanism of facultative anaerobe Enterobacter sp. FY-07

    PubMed Central

    Ji, Kaihua; Wang, Wei; Zeng, Bing; Chen, Sibin; Zhao, Qianqian; Chen, Yueqing; Li, Guoqiang; Ma, Ting

    2016-01-01

    Enterobacter sp. FY-07 can produce bacterial cellulose (BC) under aerobic and anaerobic conditions. Three potential BC synthesis gene clusters (bcsI, bcsII and bcsIII) of Enterobacter sp. FY-07 have been predicted using genome sequencing and comparative genome analysis, in which bcsIII was confirmed as the main contributor to BC synthesis by gene knockout and functional reconstitution methods. Protein homology, gene arrangement and gene constitution analysis indicated that bcsIII had high identity to the bcsI operon of Enterobacter sp. 638; however, its arrangement and composition were same as those of BC synthesizing operon of G. xylinum ATCC53582 except for the flanking sequences. According to the BC biosynthesizing process, oxygen is not directly involved in the reactions of BC synthesis, however, energy is required to activate intermediate metabolites and synthesize the activator, c-di-GMP. Comparative transcriptome and metabolite quantitative analysis demonstrated that under anaerobic conditions genes involved in the TCA cycle were downregulated, however, genes in the nitrate reduction and gluconeogenesis pathways were upregulated, especially, genes in three pyruvate metabolism pathways. These results suggested that Enterobacter sp. FY-07 could produce energy efficiently under anaerobic conditions to meet the requirement of BC biosynthesis. PMID:26911736

  14. Long Chain N-acyl Homoserine Lactone Production by Enterobacter sp. Isolated from Human Tongue Surfaces

    PubMed Central

    Yin, Wai-Fong; Purmal, Kathiravan; Chin, Shenyang; Chan, Xin-Yue; Chan, Kok-Gan

    2012-01-01

    We report the isolation of N-acyl homoserine lactone-producing Enterobacter sp. isolate T1-1 from the posterior dorsal surfaces of the tongue of a healthy individual. Spent supernatants extract from Enterobacter sp. isolate T1-1 activated the biosensor Agrobacterium tumefaciens NTL4(pZLR4), suggesting production of long chain AHLs by these isolates. High resolution mass spectrometry analysis of these extracts confirmed that Enterobacter sp. isolate T1-1 produced a long chain N-acyl homoserine lactone, namely N-dodecanoyl-homoserine lactone (C12-HSL). To the best of our knowledge, this is the first isolation of Enterobacter sp., strain T1-1 from the posterior dorsal surface of the human tongue and N-acyl homoserine lactones production by this bacterium. PMID:23202161

  15. Kinetic model for microbial growth and desulphurisation with Enterobacter sp.

    PubMed

    Liu, Long; Guo, Zhiguo; Lu, Jianjiang; Xu, Xiaolin

    2015-02-01

    Biodesulphurisation was investigated by using Enterobacter sp. D4, which can selectively desulphurise and convert dibenzothiophene into 2-hydroxybiphenyl (2-HBP). The experimental values of growth, substrate consumption and product generation were obtained at 95 % confidence level of the fitted values using three models: Hinshelwood equation, Luedeking-Piret and Luedeking-Piret-like equations. The average error values between experimental values and fitted values were less than 10 %. These kinetic models describe all the experimental data with good statistical parameters. The production of 2-HBP in Enterobacter sp. was by "coupled growth".

  16. Eight-Year Surveillance of Antimicrobial Resistance among Enterobacter Cloacae Isolated in the First Bethune Hospital

    NASA Astrophysics Data System (ADS)

    Zhou, Qi; Zhang, Man; Wang, Ailin; Xu, Jiancheng; Yuan, Ye

    This study was to investigate the antimicrobial resistance of Enterobacter cloacae isolated in 8 consecutive years in the First Bethune Hospital. Disk diffusion test was used to study the antimicrobial resistance. The data were analyzed by WHONET 5 software according to Clinical and Laboratory Standards Institute (CLSI). Most of 683 strains of Enterobacter cloacae were collected from sputum 410 (60.0%), secretions and pus 105 (15.4%), urine 69 (10.1%) during the past 8 years. No Enterobacter cloacae was resistant to imipenem and meropenem in the First Bethune Hospital. The antimicrobial resistance of Enterobacter cloacae had increased in recent 8 years. The change of the antimicrobial resistance should be investigated in order to direct rational drug usage in the clinic and prevent bacterial strain of drug resistance from b eing transmitted.

  17. Aerogenic Vaccination With a Burkholderia mallei Auxotroph Protects Against Aerosol-Initiated Glanders in Mice

    DTIC Science & Technology

    2005-03-14

    Vaccine 23 (2005) 1986–1992 Aerogenic vaccination with a Burkholderia mallei auxotroph protects against aerosol-initiated glanders in mice Ricky L...October 2004 Available online 11 November 2004 Abstract Burkholderia mallei is an obligate mammalian pathogen that causes the zoonotic disease glanders ... Burkholderia mallei , the causative agent of glanders , is gram-negative bacillus. It is a highly adapted parasite of quines and cannot persist in nature

  18. Pasteurella aerogenes as an Asymptomatic Bacteriuria Agent.

    PubMed

    Alaygut, Demet; Engin, Aynur

    2018-02-01

    'Asymptomatic bacteriuria' (ASB) is isolation of a specified quantitative count of bacteria in an appropriately collected urine specimen obtained from a person without symptoms or signs referable to urinary infection. Catheterized specimens are less likely to be contaminated compared with voided specimens; therefore, positive cultures of catheterized specimens are more likely to reflect true bladder bacteriuria even with low colony counts. The common pathogens for ASB are Escherichia coli, Klebsiella and Streptococcus spp. Pasteurella spp. was not previously reported as an ASB agent. ASB is important for pregnant women, children, individuals with obstructive uropathy, chronic renal failure and neutropenia, before the urologic procedures and after renal transplantation. Treatment of ASB is required for above situations. We report an 11-year-old-girl with neurogenic bladder who made clean intermittent catheterization and had Pasteurella aerogenes as an ASB agent. © The Author [2017]. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Clinical analysis of Enterobacter bacteremia in pediatric patients: a 10-year study.

    PubMed

    Chen, Hui-Lan; Lu, Jen-Her; Wang, Hsin-Hui; Chen, Shu-Jen; Chen, Chun-Jen; Wu, Keh-Gong; Tang, Ren-Bin

    2014-10-01

    Enterobacter species has emerged as an important pathogen of nosocomial bacteremia. The purpose of this study is to review the clinical characteristics of bacteremia in pediatric patients. We reviewed retrospectively the medical records of patients (under the age of 18 years) having Enterobacter bacteremia who were treated at Taipei the Veterans General Hospital from January 2001 to June 2011. In total, 853 positive blood cultures were obtained from 620 patients during the study period. Among them, 96 episodes of Enterobacter bacteremia were found in 83 patients, accounting for 11.3% of all bacteremia. Eighty-two cases (98.8%) were nosocomial infections. Most of the cases were neonates (62 cases, 74.7%) and premature infants (51 cases, 61.5%). The common sources of bacteremia were the respiratory tract (53.0%), followed by intravascular catheter (10.8%), multiple sources (10.8%), and the gastrointestinal tract (8.4%). The overall case fatality rate was 18.1%, with the highest rate being reported among premature infants. The factors responsible for the deaths were leukocytosis and a higher median number of underlying diseases. Based on the findings of the present study, it can be concluded that Enterobacter species are probably an important pathogen of nosocomial bacteremia in premature neonates. The number of underlying diseases should be considered a major factor influencing the prognosis. Copyright © 2013. Published by Elsevier B.V.

  20. Detection of extended-spectrum β-lactamase in Enterobacter spp.--evaluation of six phenotypic tests.

    PubMed

    Nogueira-Miranda, Keite da Silva; Palmeiro, Jussara Kasuko; Conte, Danieli; Maia, Fernanda Valverde; Reason, Iara Taborda de Messias; Monteiro, Cristina Leise; Dalla-Costa, Libera Maria

    2012-02-01

    Extended-spectrum β-lactamases (ESBL) are plasmid-mediated enzymes that hydrolyze cephalosporins and monobactams. The lack of a standard method to detect ESBL in Enterobacter spp. has led to underestimating its frequency. The aim of this study was to evaluate ESBL detection in Enterobacter spp. By the double-disk synergy test (DDST) and combined disk test (CDT) assay using cefepime, cefotaxime, and ceftazime as substrates for ESBL, plus AmpC inhibitors in different associations. A total of 83 Enterobacter spp. ESBL and 31 non-ESBL Enterobacter spp. were tested, and a cutoff point ≥3 mm was defined using a receiver operating characteristic (ROC) curve for combined disc methods. All tests showed 100% specificity. The sensitivity was 89.2% for DDST and CDT without AmpC inibitor, 90.4% in the combined disc test in Mueller-Hinton agar containing phenylboronic acid (CDT-PBAA), and 94% in the combined disc test in Mueller-Hinton agar containing cloxacillin (CDT-CLXA). Cefepime was the best substrate, mainly when AmpC inhibitors were not used. However, superior results were achieved when all cephalosporins were evaluated together. In conclusion, to improve ESBL detection in Enterobacter spp., some modifications in phenotypic tests are needed, such as to reduce the distance between the discs to 20 mm in DDST, to use a cutoff point for ≥3 mm on the CDT, and to include a cefepime disk or an inhibitor of AmpC in all tests.

  1. In vitro activity and stability against novel beta-lactamases of investigational beta-lactams (cefepime, cefpirome, flomoxef, SCE2787 and piperacillin plus tazobactam) in comparison with established compounds (cefotaxime, latamoxef and piperacillin).

    PubMed

    Bauernfeind, A; Schweighart, S; Eberlein, E; Jungwirth, R

    1991-01-01

    The therapeutic perspectives of flomoxef, SCE 2787, cefpirome, cefepime, latamoxef, cefotaxime and of piperacillin plus tazobactam were comparatively evaluated by their in vitro activity against 1119 clinical isolates of 83 bacterial species. Escherichia coli, Klebsiella spp. Enterobacter sakazakii, Proteus spp. and Shigella spp. were about equally susceptible to the cephalosporins (MIC90: 0.06 to 0.5 mg/l), while the MIC90 for piperacillin plus tazobactam was between 2 and 16 mg/l. Enterobacter cloacae, Enterobacter aerogenes and Serratia spp. were most susceptible to SCE 2787, cefpirome and cefepime (MIC90: 0.06 to 2 mg/l) followed by latamoxef, cefotaxime, flomoxef and piperacillin plus tazobactam. For Citrobacter spp., Providencia spp. and Yersinia enterocolitica MIC90 were between 0.06 and 0.5 mg/l. Flomoxef was between 2 to 4 log2 less active against these species but more active than piperacillin plus tazobactam (MIC90: 2 and 8 mg/l). Morganella morganii and Hafnia alvei were most susceptible to cefepime, cefpirome and latamoxef (MIC90: 0.13 to 0.5 mg/l) while cefotaxime (MIC90: 8 mg/l) and piperacillin plus tazobactam (MIC90: 8 and greater than 64 mg/l) were the least active compounds. SCE 2787, cefepime and cefpirome were the most potent beta-lactams against the majority of the 13 species of non-fermentative bacilli (NFB) investigated (MIC90: 0.5 to 16 mg/l). The oxacephems were the least active compounds against NFB. Cefepime was the most active of the compounds included against Pseudomonas aeruginosa (MIC90: 16 mg/l). Haemophilus spp., Neisseria gonorrhoeae and Bordetella pertussis were most susceptible to cefotaxime (MIC90: 0.03 to 0.06 mg/l). Latamoxef had the lowest activity of all compounds against gram-positive cocci. Flomoxef was the most active compound against penicillinase producing Staphylococcus aureus and about equally active as the other betalactams against methicillin susceptible staphylococci of other staphylococcal species

  2. Incidence of multiple antibiotic resistant Gram-negative bacteria isolated from surface and underground water sources in south western region of Nigeria.

    PubMed

    Oluyege, J O; Dada, A C; Odeyemi, A T

    2009-01-01

    In most rural and urban settlements, particularly in Nigeria, wells, spring, streams or rivers and lakes serves as major sources of water supply for drinking and other domestic purposes. Unfortunately, many of the available water sources are not potable without some form of treatment which is seldom available in most settings. The use of untreated surface water sources for drinking and for domestic purposes remains a major threat to public health as these could serve as reservoirs the for transfer of antibiotic resistant pathogens. The incidence of resistant bacteria isolated from surface and underground water in six rural settlements in Ekiti State Nigeria was thus investigated. Gram-negative bacteria were isolated from wells, streams and boreholes in six rural settlements in Ekiti State Nigeria between January and April, 2006 and the prevalence of organisms exhibiting multiple antibiotic resistance to tetracycline, amoxicillin, cotrimoxazole, nitofurantoin, gentamicin, nalidixic acid and ofloxacin was observed. Gram-negative bacterial isolates comprised Escherichia coli (22.7%), Enterobacter aerogenes (2.5%), Salmonella spp. (13.3%), Shigella spp. (19.3%), Proteus spp. (18.5%), Klebsiella spp. (19.3%) and Pseudomonas aeruginosa (4.2%). Over 10% of the bacteria were resistant to four or more antibiotic. Antibiotic resistance was highest in members of the genera Enterobacter, Pseudomonas, and Proteus. Given the prevalence of appalling sanitary facilities and inappropriate public antibiotic use, the possibility of antibiotic resistance selection, faecal dissemination and subsequent contamination of local water sources available for rural residents of the developing world is highlighted. The implication for clinical practice of infections caused by antibiotic resistant strains especially among immunodeficient individuals is also discussed.

  3. Genome Sequence of the Plant Growth Promoting Endophytic Bacterium Enterobacter sp. 638

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taghavi, S.; van der Lelie, D.; Hoffman, A.

    2010-05-13

    Enterobacter sp. 638 is an endophytic plant growth promoting gamma-proteobacterium that was isolated from the stem of poplar (Populus trichocarpa x deltoides cv. H11-11), a potentially important biofuel feed stock plant. The Enterobacter sp. 638 genome sequence reveals the presence of a 4,518,712 bp chromosome and a 157,749 bp plasmid (pENT638-1). Genome annotation and comparative genomics allowed the identification of an extended set of genes specific to the plant niche adaptation of this bacterium. This includes genes that code for putative proteins involved in survival in the rhizosphere (to cope with oxidative stress or uptake of nutrients released by plantmore » roots), root adhesion (pili, adhesion, hemagglutinin, cellulose biosynthesis), colonization/establishment inside the plant (chemiotaxis, flagella, cellobiose phosphorylase), plant protection against fungal and bacterial infections (siderophore production and synthesis of the antimicrobial compounds 4-hydroxybenzoate and 2-phenylethanol), and improved poplar growth and development through the production of the phytohormones indole acetic acid, acetoin, and 2,3-butanediol. Metabolite analysis confirmed by quantitative RT-PCR showed that, the production of acetoin and 2,3-butanediol is induced by the presence of sucrose in the growth medium. Interestingly, both the genetic determinants required for sucrose metabolism and the synthesis of acetoin and 2,3-butanediol are clustered on a genomic island. These findings point to a close interaction between Enterobacter sp. 638 and its poplar host, where the availability of sucrose, a major plant sugar, affects the synthesis of plant growth promoting phytohormones by the endophytic bacterium. The availability of the genome sequence, combined with metabolome and transcriptome analysis, will provide a better understanding of the synergistic interactions between poplar and its growth promoting endophyte Enterobacter sp. 638. This information can be further

  4. Risk Factors for Emergence of Resistance to Broad-Spectrum Cephalosporins among Enterobacter spp.

    PubMed Central

    Kaye, Keith S.; Cosgrove, Sara; Harris, Anthony; Eliopoulos, George M.; Carmeli, Yehuda

    2001-01-01

    Among 477 patients with susceptible Enterobacter spp., 49 subsequently harbored third-generation cephalosporin-resistant Enterobacter spp. Broad-spectrum cephalosporins were independent risk factors for resistance (relative risk [OR] = 2.3, P = 0.01); quinolone therapy was protective (OR = 0.4, P = 0.03). There were trends toward decreased risk for resistance among patients receiving broad-spectrum cephalosporins and either aminoglycosides or imipenem. Of the patients receiving broad-spectrum cephalosporins, 19% developed resistance. PMID:11502540

  5. An Enterobacter Plasmid as a New Genetic Background for the Transposon Tn1331

    DTIC Science & Technology

    2011-11-25

    determined to be 99% similar to E. cloacae by both 16S rDNA and Phoenix analysis and was designated Enterobacter sp W001. Enterobacter sp W001 was...adolescents. JAMA. 2002;287(23):3096–3102. 9. Foster TJ. Plasmid- determined resistance to antimicrobial drugs and toxic metal ions in bacteria. Microbiol...mediated type II dihydrofolate reductase gene among trimethoprim -resistant urinary pathogens in Greek hospitals. J Antimicrob Chemother. 1992;29

  6. Fermentation of polysaccharides by Klebsiella and other facultative bacilli

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ochuba, G.U.; Von Riesen, V.L.

    1980-05-01

    Fermentations of 10 polysaccharides by species of the family Enterobacteriaceae were examined. Algin, guar, karaya, xanthan, and xylan were not fermented by any of the strains tested. Most of the activity was found in the tribe Klebsielleae. Klebseilla oxytoca fermented amylopectin (97% of the strains studied), carrageenan (100%), inulin (68%), polypectate (100%), and tragacanth (100%). Klebsiella pneumoniae fermented amylopectin (91%), carrageenan (100%), and tragacanth (86%). Carraggeenan was also fermented by Enterobacter aerogenes (100%), Enterobacter agglomerans (63%), Enterobacter cloacae (95%), and pectobacterium (38%). pectobacterium shared polypectate fermentation (100%) with K. oxytoca. With one exception, Serratia strains were negative on all polysaccharides.more » These results, along with other evidence, indicate that (i) the genus Klebsiella is biochemically the most versatile genus of the tribe, (ii) because of its distinct characteristics, K. oxytoca warrants species designation separate from K. pneumoniae, and (iii) some food additives generally considered indigestible can be metabolized by a few species of facultative bacilli, whereas others appear to be resistant.« less

  7. Black Zira essential oil: Chemical compositions and antimicrobial activity against the growth of some pathogenic strain causing infection.

    PubMed

    Noshad, Mohammad; Hojjati, Mohammad; Alizadeh Behbahani, Behrooz

    2018-03-01

    The aim of this study was to perform chemical compositions and phytochemical analysis of Black Zira essential oil and other goal of this research was to investigate the antimicrobial effects of Black Zira essential oil against Enterobacter aerogenes, Pseudomonas aeruginosa, Escherichia coli, Shigella flexneri, Staphylococcus epidermidis, Streptococcus pyogenes and Candida albicans. Black Zira essential oil was extracted by hydrodistillation method using clevenger apparatus. Black Zira essential oil chemical composition was identified through gas chromatography/mass spectrometry. γ-terpinene with a percentage of 24.8% was the major compound of Black Zira essential oil. The antimicrobial effect Black Zira essential oil was evaluated by several qualitative and quantitative methods (disk diffusion, well diffusion, microdilution broth, agar dilution and minimum bactericidal/fungicidal concentration). Phytochemical analysis Black Zira essential oil were appraised based on qualitative methods. Antioxidant activity (2,2-diphenyl-1-picrylhydrazyl and β-carotene/linoleic acid inhibition) and total phenolic content (Folin-Ciocalteu) were examined. The results of phytochemical analysis of Black Zira essential oil showed the existence of phenolic, flavonoids, saponins, alkaloids and tannins. The total phenolic content and antioxidant activity (reported as IC 50 ) of Black Zira essential oil were equal to 120.50 ± 0.50 mg GAE/g and 11.55 ± 0.25 μg/ml, respectively. The MIC of the Black Zira essential oil ranged from 1 mg/ml to 8 mg/ml, while its MBC and MFC ranged from 1 mg/ml to 16 mg/ml. The results presented that the longest and the shortest inhibition zone diameter at the concentration of 8 mg/ml pertained to C. albicans and E. aerogenes, respectively. Copyright © 2018. Published by Elsevier Ltd.

  8. Antibacterial potential of silver nanoparticles against isolated urinary tract infectious bacterial pathogens

    NASA Astrophysics Data System (ADS)

    Jacob Inbaneson, Samuel; Ravikumar, Sundaram; Manikandan, Nachiappan

    2011-12-01

    The silver nanoparticles were synthesized by chemical reduction method and the nanoparticles were characterized using ultraviolet-visible (UV-Vis) absorption spectroscopy and X-ray diffraction (XRD) studies. The synthesized silver nanoparticles were investigated to evaluate the antibacterial activity against urinary tract infectious (UTIs) bacterial pathogens. Thirty-two bacteria were isolated from mid urine samples of 25 male and 25 female patients from Thondi, Ramanathapuram District, Tamil Nadu, India and identified by conventional methods. Escherichia coli was predominant (47%) followed by Pseudomonas aeruginosa (22%), Klebsiella pneumoniae (19%), Enterobacter sp. (6%), Proteus morganii (3%) and Staphylococcus aureus (3%). The antibacterial activity of silver nanoparticles was evaluated by disc diffusion assay. P. aeruginosa showed maximum sensitivity (11 ± 0.58 mm) followed by Enterobacter sp. (8 ± 0.49 mm) at a concentration of 20 μg disc-1 and the sensitivity was highly comparable with the positive control kanamycin and tetracycline. K. pneumoniae, E. coli, P. morganii and S. aureus showed no sensitivity against all the tested concentrations of silver nanoparticles. The results provided evidence that, the silver nanoparticles might indeed be the potential sources to treat urinary tract infections caused by P. aeruginosa and Enterobacter sp.

  9. Plant growth promoting potential and phylogenetic characteristics of a lichenized nitrogen fixing bacterium, Enterobacter cloacae.

    PubMed

    Swamy, Chidanandamurthy Thippeswamy; Gayathri, Devaraja; Devaraja, Thimmalapura Neelakantaiah; Bandekar, Mandar; D'Souza, Stecy Elvira; Meena, Ram Murti; Ramaiah, Nagappa

    2016-12-01

    Lichens are complex symbiotic association of mycobionts, photobionts, and bacteriobionts, including chemolithotropic bacteria. In the present study, 46 lichenized bacteria were isolated by conventional and enrichment culture methods on nitrogen-free bromothymol blue (NFb) medium. Only 11 of the 46 isolates fixed nitrogen on NFb and had reduced acetylene. All these 11 isolates had also produced siderophore and 10 of them the IAA. Further, ammonia production was recorded from nine of these nitrogen fixers (NF). On molecular characterization, 16 S rRNA sequencing recorded that, nine NF belonged to Proteobacteria, within Gammaproteobacteria, and were closely related to Enterobacter sp. with a maximum similarity to Enterobacter cloacae. Each one of our NF isolates was aligned closely to Enterobacter pulveris strain E443, Cronobacter sakazakii strain PNP8 and Providencia rettgeri strain ALK058. Notably, a few strains we examined found to possess plant growth promoting properties. This is the first report of Enterobacter sp. from lichens which may be inhabit lichen thalli extrinsically or intrinsically. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Antimicrobial, wound healing and antioxidant activity of Plagiochasma appendiculatum Lehm. et Lind.

    PubMed

    Singh, Meenakshi; Govindarajan, Raghavan; Nath, Virendra; Rawat, Ajay Kumar Singh; Mehrotra, Shanta

    2006-08-11

    Plagiochasma appendiculatum (Aytoniaceae) of the order Marchantiales is widely used in the form of paste ethnomedicinally by Gaddi tribe in Kangra valley for treating skin diseases. In this context, antimicrobical potential of Plagiochasma appendiculatum against a wide range of microorganisms was studied. To validate the ethnotherapeutic claims of the plant in skin diseases, wound healing activity was studied, besides antioxidant activity to understand the mechanism of wound healing activity. The plant (alchoholic and aqueous extract) showed significant antibacterial and antifungal activity against almost all the organisms: Micrococcus luteus, Bacillus subtilis, Bacillus cereus, Staphylococcus aureus, Streptococcus pneumoniae, Enterobacter aerogenes, Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Pseudomonas aeruginosa, Salmonella typhimurium, and eight fungi Candida albicans and Cryptococcus albidus-dimorphic fungi, Trichophyton rubrum-dermatophyte fungi, Aspergillus niger, Aspergillus flavus, Aspergillus spinulosus, Aspergillus terreus and Aspergillus nidulans-systemic fungi, with especially good activity against the dermatophyte (Trichophyton rubrum) and some infectious bacteria (Escherichia coli, Proteus mirabilis and Salmonella typhimurium) with an MIC of 2.5 microg/disc. The results show that Plagiochasma appendiculatum extract has potent wound healing capacity as evident from the wound contraction and increased tensile strength. The results also indicated that Plagiochasma appendiculatum extract possesses potent antioxidant activity by inhibiting lipid peroxidation and increase in the superoxide dismutase (SOD) and Catalase activity.

  11. Determination of Antibacterial and Antioxidant Potential of Some Medicinal Plants from Saurashtra Region, India

    PubMed Central

    Kaneria, M.; Baravalia, Y.; Vaghasiya, Y.; Chanda, S.

    2009-01-01

    Many plants used in Saurashtra folk medicine have been reported to exhibit high antibacterial and antioxidant activities. In the present study, some parts of five plants, Guazuma ulmifolia L., Manilkara zapota L., Melia azedarach L., Syzygium cumini L. and Wrightia tomentosa R.& S., were evaluated for their antibacterial activity, total phenol content, flavonoid content, 2,2-diphenyl-1-picrylhydrazyl free radical scavenging activity and phytochemical analysis, using successive extraction by cold percolation method with petroleum ether, ethyl acetate, methanol and water. In vitro antibacterial activity was evaluated against five bacterial strains viz. Bacillus subtilis, Staphylococcus aureus, Pseudomonas aeruginosa, Salmonella typhimurium and Enterobacter aerogenes by agar well diffusion method. Among the plants screened, W. tomentosa leaf and fruit showed the best antibacterial activity. The Gram-positive bacteria were more susceptible than Gram-negative bacteria. Methanol extract of M. zapota showed the best 2,2-diphenyl-1-picrylhydrazyl free radical scavenging activity. Highest total phenol content was shown by M. zapota and S. cumini in methanol extract, while highest flavonoid content was shown by W. tomentosa stem in petroleum ether extract and ethyl acetate extract. In all the plants, cardiac glycosides and triterpenes were more as compared to other phytoconstituents. PMID:20502546

  12. A computational study on the strength and nature of bifurcated aerogen bonds

    NASA Astrophysics Data System (ADS)

    Esrafili, Mehdi D.; Sadr-Mousavi, Asma

    2018-04-01

    A quantum chemical study is performed to unveil the strength and bonding properties of bifurcated aerogen-bonding (BAB) interactions in complexes formed between ZO3 molecules (Z = Ar, Kr and Xe) and 1,2-dihydroxybenzene derivatives. The interaction energies of the resulting complexes are between -7.70 and -15.59 kcal/mol. The nature of BAB interactions is identified by the molecular electrostatic potential, quantum theory of atoms in molecules, noncovalent interaction index and natural bond orbital analyses. The mutual influence between the BAB and a halogen, chalcogen, pnicogen or tetrel bonding interaction is also studied in systems where these interactions coexist.

  13. The Complex Epidemiology of Carbapenem-Resistant Enterobacter Infections: A Multicenter Descriptive Analysis.

    PubMed

    Lazarovitch, Tsilia; Amity, Keren; Coyle, Joseph R; Ackerman, Benjamin; Tal-Jasper, Ruthy; Ofer-Friedman, Hadas; Hayakawa, Kayoko; Bogan, Christopher; Lephart, Paul R; Kaplansky, Tamir; Maskit, Moran; Azouri, Tal; Zaidenstein, Ronit; Perez, Federico; Bonomo, Robert A; Kaye, Keith S; Marchaim, Dror

    2015-11-01

    The pandemic of carbapenem-resistant Enterobacteriaceae (CRE) was primarily due to clonal spread of bla KPC producing Klebsiella pneumoniae. Thus, thoroughly studied CRE cohorts have consisted mostly of K. pneumoniae. To conduct an extensive epidemiologic analysis of carbapenem-resistant Enterobacter spp. (CREn) from 2 endemic and geographically distinct centers. CREn were investigated at an Israeli center (Assaf Harofeh Medical Center, January 2007 to July 2012) and at a US center (Detroit Medical Center, September 2008 to September 2009). bla KPC genes were queried by polymerase chain reaction. Repetitive extragenic palindromic polymerase chain reaction and pulsed-field gel electrophoresis were used to determine genetic relatedness. In this analysis, 68 unique patients with CREn were enrolled. Sixteen isolates (24%) were from wounds, and 33 (48%) represented colonization only. All isolates exhibited a positive Modified Hodge Test, but only 93% (27 of 29) contained bla KPC. Forty-three isolates (63%) were from elderly adults, and 5 (7.4%) were from neonates. Twenty-seven patients died in hospital (40.3% of infected patients). Enterobacter strains consisted of 4 separate clones from Assaf Harofeh Medical Center and of 4 distinct clones from Detroit Medical Center. In this study conducted at 2 distinct CRE endemic regions, there were unique epidemiologic features to CREn: (i) polyclonality, (ii) neonates accounting for more than 7% of cohort, and (iii) high rate of colonization (almost one-half of all cases represented colonization). Since false-positive Modified Hodge Tests in Enterobacter spp. are common, close monitoring of carbapenem resistance mechanisms (particularly carbapenemase production) among Enterobacter spp. is important.

  14. Biodegradation of dichlorodiphenyltrichloroethane: intermediates in dichlorodiphenylacetic acid metabolism by aerobacter aerogenes

    USGS Publications Warehouse

    Wedemeyer, Gary

    1967-01-01

    The final product of dichlorodiphenyltrichloroethane (DDT) degradation by vertebrates is commonly considered to be dichlorodiphenylacetic acid, DDA. Recently, certain organisms have been found to degrade further DDA to dichlorobenzophenone (DBP), but the possibility that such degradation was due to microbial action could not be excluded. Significantly, dichlorobenzhydrol (DBH), dichlorophenylmethane (DPM), and dichlorodiphenylethylene (DDE) have been tentatively identified in rats fed DDA. Since DDA as well as DDT is degraded by the ubiquitous microorganism Aerobacter aerogenes, it seemed reasonable that the intestinal microflora might be involved in DBP formation, DPM and DBH being intermediates in its pathway from DDA. Since DDA is a (3,y-unsaturated acid, ketone formation via an alkene and an alcohol would be expected.

  15. [Expression and characterization of a neutral Enterobacter cloacae GX-3 invertase].

    PubMed

    Zhao, Yingli; Wu, Qianqian; Zhang, Zhikai; Wang, Zilong; Wei, Yutuo; Huang, Ribo; Du, Liqin

    2015-04-04

    To characterize a neutral invertase from Enterobacter cloacae GX-3. By searching GenBank database, we found the genes encoding invertase from the same genus Enterobacter. These sequences were aligned and analyzed. Then, a gene encoding neutral invertase was amplified by PCR. The recombinant plasmid pQE-Einv was constructed. We purified the expressed protein Einv with nickel-nitrilotriacetic acid chromatography. At last, the characterics of the recombinant protein Einv were studied in detail. A gene encoding neutral invertase was discovered and cloned from E. cloacae GX-3. The recombinant enzyme Einv was characterized. Einv had an optimum pH of 6.5 and an optimum temperature of 40 degrees C. The results of sodium dodecyl sulfate polyacrylamide gel electropheresis (SDS-PAGE) and gel permeation chromatography ( GPC) showed that Einv was a homo-dimer protein. Einv retained 80% activity at sucrose concentrations up to 1170 mmol/L. But, Einv had no transglycosylation activity at high sucrose concentration. It could hydrolyze raffinose, 1-kestose, nystose, fructofuranosylnystose and stachyose. It is first reported that an invertase from Enterobacter cloacae is a beta-fructofuranosidase at neutral pH range. It only has hydrolysis activity without tranglycosylation activity. These characteristics indicate that the neutral invertase Einv has important applications in food industry.

  16. Volatiles produced by soil-borne endophytic bacteria increase plant pathogen resistance and affect tritrophic interactions

    PubMed Central

    Ton, Jurriaan; Brandenburg, Anna; Karlen, Danielle; Zopfi, Jakob; Turlings, Ted C. J.

    2014-01-01

    Volatile organic compounds (VOCs) released by soil microorganisms influence plant growth and pathogen resistance. Yet, very little is known about their influence on herbivores and higher trophic levels. We studied the origin and role of a major bacterial VOC, 2,3-butanediol (2,3-BD), on plant growth, pathogen and herbivore resistance, and the attraction of natural enemies in maize. One of the major contributors to 2,3-BD in the headspace of soil-grown maize seedlings was identified as Enterobacter aerogenes, an endophytic bacterium that colonizes the plants. The production of 2,3-BD by E. aerogenes rendered maize plants more resistant against the Northern corn leaf blight fungus Setosphaeria turcica. On the contrary, E. aerogenes-inoculated plants were less resistant against the caterpillar Spodoptera littoralis. The effect of 2,3-BD on the attraction of the parasitoid Cotesia marginiventris was more variable: 2,3-BD application to the headspace of the plants had no effect on the parasitoids, but application to the soil increased parasitoid attraction. Furthermore, inoculation of seeds with E. aerogenes decreased plant attractiveness, whereas inoculation of soil with a total extract of soil microbes increased parasitoid attraction, suggesting that the effect of 2,3-BD on the parasitoid is indirect and depends on the composition of the microbial community. PMID:24127750

  17. In vitro activity of imipenem/relebactam against Gram-negative ESKAPE pathogens isolated in 17 European countries: 2015 SMART surveillance programme.

    PubMed

    Karlowsky, James A; Lob, Sibylle H; Kazmierczak, Krystyna M; Hawser, Stephen P; Magnet, Sophie; Young, Katherine; Motyl, Mary R; Sahm, Daniel F

    2018-04-11

    Relebactam is an inhibitor of class A β-lactamases, including KPC β-lactamases, and class C β-lactamases, and is currently under clinical development in combination with imipenem. The objective of the current study was to evaluate the in vitro activity of imipenem/relebactam against Gram-negative ESKAPE pathogens (Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter spp.) submitted by clinical laboratories in 17 European countries to the Study for Monitoring Antimicrobial Resistance Trends (SMART) global surveillance programme in 2015. MICs were determined using the CLSI standard broth microdilution method and interpreted using EUCAST clinical breakpoints. Relebactam was tested at a fixed concentration of 4 mg/L in combination with doubling dilutions of imipenem. Imipenem/relebactam MICs were interpreted using breakpoints for imipenem. Rates of susceptibility to imipenem and imipenem/relebactam for isolates of P. aeruginosa (n = 1705), K. pneumoniae (n = 1591) and Enterobacter spp. (n = 772) were 72.0/94.7%, 88.7/94.8% and 95.6/96.8%, respectively. Relebactam restored imipenem susceptibility to 81.1%, 54.2% and 26.5% of imipenem-non-susceptible isolates of P. aeruginosa (n = 477), K. pneumoniae (n = 179) and Enterobacter spp. (n = 34). Most imipenem/relebactam-non-susceptible isolates carried MBLs, OXA-48 or GES carbapenemases. Relebactam did not increase the number of isolates of A. baumannii (n = 486) susceptible to imipenem. Relebactam restored susceptibility to imipenem for the majority of imipenem-non-susceptible isolates of P. aeruginosa and K. pneumoniae tested as well as some isolates of imipenem-non-susceptible Enterobacter spp. Based on our results, imipenem/relebactam appears to be a promising therapeutic option for treating patients with infections caused by antimicrobial-resistant Gram-negative bacilli.

  18. Cefepime vs other antibacterial agents for the treatment of Enterobacter species bacteremia.

    PubMed

    Siedner, Mark J; Galar, Alicia; Guzmán-Suarez, Belisa B; Kubiak, David W; Baghdady, Nour; Ferraro, Mary Jane; Hooper, David C; O'Brien, Thomas F; Marty, Francisco M

    2014-06-01

    Carbapenems are recommended for treatment of Enterobacter infections with AmpC phenotypes. Although isolates are typically susceptible to cefepime in vitro, there are few data supporting its clinical efficacy. We reviewed all cases of Enterobacter species bacteremia at 2 academic hospitals from 2005 to 2011. Outcomes of interest were (1) persistent bacteremia ≥1 calendar day and (2) in-hospital mortality. We fit logistic regression models, adjusting for clinical risk factors and Pitt bacteremia score and performed propensity score analyses to compare the efficacy of cefepime and carbapenems. Three hundred sixty-eight patients experienced Enterobacter species bacteremia and received at least 1 antimicrobial agent, of whom 52 (14%) died during hospitalization. Median age was 59 years; 19% were neutropenic, and 22% were in an intensive care unit on the day of bacteremia. Twenty-nine (11%) patients had persistent bacteremia for ≥1 day after antibacterial initiation. None of the 36 patients who received single-agent cefepime (0%) had persistent bacteremia, as opposed to 4 of 16 (25%) of those who received single-agent carbapenem (P < .01). In multivariable models, there was no association between carbapenem use and persistent bacteremia (adjusted odds ratio [aOR], 1.52; 95% CI, .58-3.98; P = .39), and a nonsignificant lower odds ratio with cefepime use (aOR, 0.52; 95% CI, .19-1.40; P = .19). In-hospital mortality was similar for use of cefepime and carbapenems in adjusted regression models and propensity-score matched analyses. Cefepime has a similar efficacy as carbapenems for the treatment of Enterobacter species bacteremia. Its use should be further explored as a carbapenem-sparing agent in this clinical scenario.

  19. The status of the species Enterobacter siamensisKhunthongpan et al. 2014. Request for an Opinion.

    PubMed

    Kämpfer, Peter; Doijad, Swapnil; Chakraborty, Trinad; Glaeser, Stefanie P

    2016-01-01

    In the course of a taxonomic study describing novel species of the genus Enterobacter it was found that the 16S rRNA gene sequence of the type strain of Enterobacter siamensis, obtained both directly from the authors of the publication on Enterobacter siamensis and from the Korean Collection for Type Cultures (C2361T and KCTC 23282T, respectively), was not congruent with the 16S rRNA gene sequence deposited in the GenBank database under the accession number HQ888848, which was applied for phylogenetic analysis in the species proposal. The remaining deposit in the Japanese type culture collection, NBRC 107138T, showed an identical 16S rRNA gene sequence to the other two cultures and overall, this sequence differed at 35 positions in comparison with the 1429 bp sequence published under the accession number HQ888848.Therefore, the type strain of this species cannot be included in any further scientific comparative study. It is proposed that the Judicial Commission of the International Committee on Systematics of Prokaryotes place the name Enterobacter siamensis on the list of rejected names, if a suitable replacement for the type strain is not found or a neotype strain is not proposed within two years following the publication of this Request for an Opinion.

  20. Studies of the Acetate Kinase-Phosphotransacetylase and the Butanediol-Forming Systems in Aerobacter aerogenes

    PubMed Central

    Brown, T. D. K.; Pereira, C. R. S.; Størmer, F. C.

    1972-01-01

    Mutants of Aerobacter aerogenes devoid of acetate kinase and phosphotransacetylase activities were isolated by selection for resistance to fluoroacetate on lactate medium. The mutants were used to study the role of the acetate kinase-phosphotransacetylase system in growth on acetate and glucose. Acetate kinase-negative and phosphotransacetylase-negative mutants were unable to grow on acetate minimal medium. Their growth rates on glucose minimal medium were identical with that of the parent strain under aerobic conditions, but lower growth rates were observed in the mutant strains during anaerobic growth on glucose medium. The mutants were unable to incorporate [2-14C]-acetate rapidly while growing on glycerol. Variations in acetate kinase and phosphotransacetylase levels during growth on glucose were studied. The specific activities of the enzymes increased approximately fivefold during aerobic growth on glucose in batch culture. The enzyme levels were also studied during anaerobic growth on glucose at constant pH (pH 5.8 and 7.0). Smaller increases in specific activities were found under these conditions. The role of acetate in the induction of the diacetyl (acetoin) reductase was investigated using a mutant deficient in both acetate kinase and phosphotransacetylase. The effect of pH on the induction of this enzyme during growth on glucose under anaerobic conditions was tested. The data support the idea that free acetic acid is the inducer for the enzymes of the butanediol-forming pathway in A. aerogenes. PMID:4640502

  1. Rapid identification of ESKAPE bacterial strains using an autonomous microfluidic device.

    PubMed

    Ho, Jack Y; Cira, Nate J; Crooks, John A; Baeza, Josue; Weibel, Douglas B

    2012-01-01

    This article describes Bacteria ID Chips ('BacChips'): an inexpensive, portable, and autonomous microfluidic platform for identifying pathogenic strains of bacteria. BacChips consist of a set of microchambers and channels molded in the elastomeric polymer, poly(dimethylsiloxane) (PDMS). Each microchamber is preloaded with mono-, di-, or trisaccharides and dried. Pressing the layer of PDMS into contact with a glass coverslip forms the device; the footprint of the device in this article is ∼6 cm(2). After assembly, BacChips are degased under large negative pressure and are stored in vacuum-sealed plastic bags. To use the device, the bag is opened, a sample containing bacteria is introduced at the inlet of the device, and the degased PDMS draws the sample into the central channel and chambers. After the liquid at the inlet is consumed, air is drawn into the BacChip via the inlet and provides a physical barrier that separates the liquid samples in adjacent microchambers. A pH indicator is admixed with the samples prior to their loading, enabling the metabolism of the dissolved saccharides in the microchambers to be visualized. Importantly, BacChips operate without external equipment or instruments. By visually detecting the growth of bacteria using ambient light after ∼4 h, we demonstrate that BacChips with ten microchambers containing different saccharides can reproducibly detect the ESKAPE panel of pathogens, including strains of: Enterococcus faecalis, Enteroccocus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter aerogenes, and Enterobacter cloacae. This article describes a BacChip for point-of-care detection of ESKAPE pathogens and a starting point for designing multiplexed assays that identify bacterial strains from clinical samples and simultaneously determine their susceptibility to antibiotics.

  2. Rapid Identification of ESKAPE Bacterial Strains Using an Autonomous Microfluidic Device

    PubMed Central

    Ho, Jack Y.; Cira, Nate J.; Crooks, John A.; Baeza, Josue; Weibel, Douglas B.

    2012-01-01

    This article describes Bacteria ID Chips (‘BacChips’): an inexpensive, portable, and autonomous microfluidic platform for identifying pathogenic strains of bacteria. BacChips consist of a set of microchambers and channels molded in the elastomeric polymer, poly(dimethylsiloxane) (PDMS). Each microchamber is preloaded with mono-, di-, or trisaccharides and dried. Pressing the layer of PDMS into contact with a glass coverslip forms the device; the footprint of the device in this article is ∼6 cm2. After assembly, BacChips are degased under large negative pressure and are stored in vacuum-sealed plastic bags. To use the device, the bag is opened, a sample containing bacteria is introduced at the inlet of the device, and the degased PDMS draws the sample into the central channel and chambers. After the liquid at the inlet is consumed, air is drawn into the BacChip via the inlet and provides a physical barrier that separates the liquid samples in adjacent microchambers. A pH indicator is admixed with the samples prior to their loading, enabling the metabolism of the dissolved saccharides in the microchambers to be visualized. Importantly, BacChips operate without external equipment or instruments. By visually detecting the growth of bacteria using ambient light after ∼4 h, we demonstrate that BacChips with ten microchambers containing different saccharides can reproducibly detect the ESKAPE panel of pathogens, including strains of: Enterococcus faecalis, Enteroccocus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter aerogenes, and Enterobacter cloacae. This article describes a BacChip for point-of-care detection of ESKAPE pathogens and a starting point for designing multiplexed assays that identify bacterial strains from clinical samples and simultaneously determine their susceptibility to antibiotics. PMID:22848451

  3. Intraoperative vancomycin use in spinal surgery: single institution experience and microbial trends.

    PubMed

    Ghobrial, George M; Thakkar, Vismay; Andrews, Edward; Lang, Michael; Chitale, Ameet; Oppenlander, Mark E; Maulucci, Christopher M; Sharan, Ashwini D; Heller, Joshua; Harrop, James S; Jallo, Jack; Prasad, Srinivas

    2014-04-01

    Retrospective case series. To demonstrate the microbial trends of spinal surgical site infections in patients who had previously received crystallized vancomycin in the operative bed. Prior large, case control series demonstrate the significant decrease in surgical site infection with the administration of vancomycin in the wound bed. A single institution, electronic database search was conducted for all patients who underwent spinal surgery who had received prophylactic crystalline vancomycin powder in the wound bed. Patients with a prior history of wound infection, intrathecal pumps, or spinal stimulators were excluded. A total of 981 consecutive patients (494 males, 487 females; mean age, 59.4 yr; range, 16-95 yr) were identified from January 2011 to June 2013. The average dose of vancomycin powder was 1.13 g (range, 1-6 g). Sixty-six patients (6.71%) were diagnosed with a surgical site infection, of which 51 patients had positive wound cultures (5.2%). Of the 51 positive cultures, the most common organism was Staphylococcus aureus. The average dose of vancomycin was 1.3 g in the 38 cases where a gram-positive organism was cultured. A number of gram-negative infections were encountered such as Serratia marcescens, Enterobacter aerogenes, Bacteroides fragilis, Enterobacter cloacae, Citrobacter koseri, and Pseudomonas aeruginosa. The average dose of vancomycin was 1.2 g in 23 cases where a gram-negative infection was cultured. Fifteen of the 51 positive cultures (29.4%) were polymicrobial. Eight (53%) of these 15 polymicrobial cultures contained 3 or more distinct organisms. Prophylactic intraoperative vancomycin use in the wound bed in spinal surgery may increase the incidence of gram-negative or polymicrobial spinal infections. The use of intraoperative vancomycin may correlate with postoperative seromas, due to the high incidence of nonpositive cultures. Large, randomized, prospective trials are needed to demonstrate causation and dose-response relationship.

  4. Structure of the exopolysaccharide produced by Enterobacter amnigenus.

    PubMed

    Cescutti, Paola; Kallioinen, Anne; Impallomeni, Giuseppe; Toffanin, Renato; Pollesello, Piero; Leisola, Matti; Eerikäinen, Tero

    2005-02-28

    The bacterial species Enterobacter amnigenus was isolated from sugar beets harvested in Finland. It produced an exopolysaccharide rich in l-fucose, which gave viscous water solutions. Its primary structure was determined mainly by NMR spectroscopy and ESIMS of oligosaccharides and a polysaccharide with decreased molecular weight, obtained by Smith degradation of the O-deacetylated native polymer [carbohydrate structure: see text

  5. Confirmation of aerogenic strains of Shigella boydii 13 and further study of Shigella serotypes by DNA relatedness.

    PubMed Central

    Brenner, D J; Steigerwalt, A G; Wathen, H G; Gross, R J; Rowe, B

    1982-01-01

    Shigella boydii 13 strains are separable from other Shigella and Escherichia coli strains on the basis of DNA relatedness. From this observation, it was possible to confirm the existence of aerogenic S. boydii 13 strains. DNA relatedness studies also showed that strains of E. coli and strains representing all other serotypes of Shigella, including provisional strains, belong to the same genetic species. PMID:6752183

  6. Stereoselective synthesis, spectral and antimicrobial studies of some cyanoacetyl hydrazones of 3-alkyl-2,6-diarylpiperidin-4-ones

    NASA Astrophysics Data System (ADS)

    Velayutham Pillai, M.; Rajeswari, K.; Vidhyasagar, T.

    2014-11-01

    A series of novel cyanoacetyl hydrazones of 3-alkyl-2,6-diarylpiperidin-4-ones were synthesized stereoselectively and characterized by IR, Mass, 1H NMR, 13C NMR, 1H-1H COSY and 1H-13C COSY spectra. The stereochemistry of the synthesized compounds was established using NMR spectra. Antimicrobial screening of the synthesized compounds revealed their antibacterial and antifungal potencies. Growth inhibition of Enterobacter Aerogenes by compound 15 was found to be superior to the standard drug.

  7. Cefepime vs Other Antibacterial Agents for the Treatment of Enterobacter Species Bacteremia

    PubMed Central

    Siedner, Mark J.; Galar, Alicia; Guzmán-Suarez, Belisa B.; Kubiak, David W.; Baghdady, Nour; Ferraro, Mary Jane; Hooper, David C.; O'Brien, Thomas F.; Marty, Francisco M.

    2014-01-01

    Background. Carbapenems are recommended for treatment of Enterobacter infections with AmpC phenotypes. Although isolates are typically susceptible to cefepime in vitro, there are few data supporting its clinical efficacy. Methods. We reviewed all cases of Enterobacter species bacteremia at 2 academic hospitals from 2005 to 2011. Outcomes of interest were (1) persistent bacteremia ≥1 calendar day and (2) in-hospital mortality. We fit logistic regression models, adjusting for clinical risk factors and Pitt bacteremia score and performed propensity score analyses to compare the efficacy of cefepime and carbapenems. Results. Three hundred sixty-eight patients experienced Enterobacter species bacteremia and received at least 1 antimicrobial agent, of whom 52 (14%) died during hospitalization. Median age was 59 years; 19% were neutropenic, and 22% were in an intensive care unit on the day of bacteremia. Twenty-nine (11%) patients had persistent bacteremia for ≥1 day after antibacterial initiation. None of the 36 patients who received single-agent cefepime (0%) had persistent bacteremia, as opposed to 4 of 16 (25%) of those who received single-agent carbapenem (P < .01). In multivariable models, there was no association between carbapenem use and persistent bacteremia (adjusted odds ratio [aOR], 1.52; 95% CI, .58–3.98; P = .39), and a nonsignificant lower odds ratio with cefepime use (aOR, 0.52; 95% CI, .19–1.40; P = .19). In-hospital mortality was similar for use of cefepime and carbapenems in adjusted regression models and propensity-score matched analyses. Conclusions. Cefepime has a similar efficacy as carbapenems for the treatment of Enterobacter species bacteremia. Its use should be further explored as a carbapenem-sparing agent in this clinical scenario. PMID:24647022

  8. Genetic characterisation of tigecycline-resistant Enterobacter spp. in blood isolates causing bacteraemia.

    PubMed

    Cha, Min Kyeong; Kang, Cheol-In; Park, Ga Eun; Kim, So Hyun; Chung, Doo Ryeon; Peck, Kyong Ran; Song, Jae-Hoon

    2018-01-05

    Tigecycline (TIG) is one of the most important antimicrobial agents used to treat infections by multidrug-resistant bacteria. However, rates of TIG-resistant pathogens have increased recently. This study was conducted to identify the antimicrobial susceptibility profiles and to investigate the role of efflux pumps in high-level TIG-resistant Enterobacter spp. isolates causing bacteraemia. A total of 323 Enterobacter spp. causing bacteraemia were collected from eight hospitals in various regions of South Korea. Minimum inhibitory concentrations (MICs) were determined by the broth microdilution method and Etest. Expression levels of the efflux pump gene acrA and its regulators (ramA and rarA) were examined by quantitative real-time PCR. Isolate relatedness was determined by multilocus sequence typing (MLST). Among the 323 clinical isolates included in this study, 37 (11.5%) were TIG-non-susceptible, of which 8 isolates were highly resistant to TIG with MICs of 8mg/L (4 isolates) or 16mg/L (4 isolates). All high-level TIG-resistant isolates showed increased expression of acrA (0.93-13.3-fold) and ramA (1.4-8.2-fold). Isolates with a tigecycline MIC of 16mg/L also showed overexpression of rarA compared with TIG-susceptible isolates. In this study, overexpression of acrA, ramA and rarA was observed in high-level TIG-resistant Enterobacter spp. isolates. We suggest that rarA might be involved in the regulation of acrA overexpression in high-level TIG-resistant Enterobacter spp. isolates. Efflux pump-mediated resistance should be closely monitored because it could be indirectly attributed to the use of other antibiotics transported by the same efflux pump. Copyright © 2017. Published by Elsevier Ltd.

  9. Pseudomonas aeruginosa Trent and zinc homeostasis.

    PubMed

    Davies, Corey B; Harrison, Mark D; Huygens, Flavia

    2017-09-01

    Pseudomonas aeruginosa is a Gram-negative pathogen and the major cause of mortality in patients with cystic fibrosis. The mechanisms that P. aeruginosa strains use to regulate intracellular zinc have an effect on infection, antibiotic resistance and the propensity to form biofilms. However, zinc homeostasis in P. aeruginosa strains of variable infectivity has not been compared. In this study, zinc homeostasis in P. aeruginosa Trent, a highly infectious clinical strain, was compared to that of a laboratory P. aeruginosa strain, ATCC27853. Trent was able to tolerate higher concentrations of additional zinc in rich media than ATCC27853. Further, pre-adaptation to additional zinc enhanced the growth of Trent at non-inhibitory concentrations but the impact of pre-adaption on the growth of ATCC27853 under the same conditions was minimal. The results establish clear differences in zinc-induced responses in Trent and ATCC27853, and how zinc homeostasis can be a promising target for the development of novel antimicrobial strategies for P. aeruginosa infection in cystic fibrosis patients. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Inoculation of hybrid poplar with the endophytic bacterium Enterobacter sp. 638 increases biomass but does not impact leaf level physiology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, A.; McDonald, K.; Muehlbauer, M. F.

    Endophytic bacteria have been shown to provide several advantages to their host, including enhanced growth. Inoculating biofuel species with endophytic bacteria is therefore an attractive option to increase the productivity of biofuel feedstocks. Here, we investigated the effect of inoculating hard wood cuttings of Populus deltoides Bartr. x Populus. nigra L. clone OP367 with Enterobacter sp. 638. After 17 weeks, plants inoculated with Enterobacter sp. 638 had 55% greater total biomass than un-inoculated control plants. Study of gas exchange and fluorescence in developing and mature leaves over a diurnal cycle and over a 5 week measurement campaign revealed no effectsmore » of inoculation on photosynthesis, stomatal conductance, photosynthetic water use efficiency or the maximum and operating efficiency of photosystem II. However, plants inoculated with Enterobacter sp. 638 had a canopy that was 39% larger than control plants indicating that the enhanced growth was fueled by increased leaf area, not by improved physiology. Leaf nitrogen content was determined at two stages over the 5 week measurement period. No effect of Enterobacter sp. 638 on leaf nitrogen content was found indicating that the larger plants were acquiring sufficient nitrogen. Enterobacter sp. 638 lacks the genes for N{sub 2} fixation, therefore the increased availability of nitrogen likely resulted from enhanced nitrogen acquisition by the 84% larger root system. These data show that Enterobacter sp. 638 has the potential to dramatically increase productivity in poplar. If fully realized in the production environment, these results indicate that an increase in the environmental and economic viability of poplar as a biofuel feedstock is possible when inoculated with endophytic bacteria like Enterobacter sp. 638.« less

  11. Validation of the Accuracy and Reliability of Culturing Intravascular Catheter Segments

    DTIC Science & Technology

    1992-11-24

    Pseudomonas aeruginosa 2 2 - Staphylococcus haemolyticus 2 2 - Other:(Bacillus spp.(1), 7 4 - Enterobacter Cloacae(l), Beta-strep(2), Staph spp.(3) (not further identified)) 20 ...tabulation, each organism from multiply colonized catheters was designated separately. Coagulase negative staphylococcus was the most commonly isolated... staphylococcus (10 of 21 organisms). Bedside plated cultures identified infection with yeast (2), pseudomonas aeruginosa (2), staphylococcus aureus

  12. Genome Sequence of the Enterobacter mori Type Strain, LMG 25706, a Pathogenic Bacterium of Morus alba L. ▿

    PubMed Central

    Zhu, Bo; Zhang, Guo-Qing; Lou, Miao-Miao; Tian, Wen-Xiao; Li, Bin; Zhou, Xue-Ping; Wang, Guo-Feng; Liu, He; Xie, Guan-Lin; Jin, Gu-Lei

    2011-01-01

    Enterobacter mori is a plant-pathogenic enterobacterium responsible for the bacterial wilt of Morus alba L. Here we present the draft genome sequence of the type strain, LMG 25706. To the best of our knowledge, this is the first genome sequence of a plant-pathogenic bacterium in the genus Enterobacter. PMID:21602328

  13. Partial hydrolysis of dieldrin by Aerobacter aerogenes

    USGS Publications Warehouse

    Wedemeyer, Gary

    1968-01-01

    Although dieldrin (1,2,3,4,10,10-hexachloro- 6,7-epoxy-1 ,4 ,4a ,5 ,6 ,7 ,8, 8a-octahydro-1 ,4-endo, exo-5, 8-dimethanonaphthalene) metabolism by mammals (F. Korte and H. Arent, Life Sci. 4:2017, 1965) and insects (D. F. Heath and M. Vanderkar, Brit. J. Ind. Med. 21:269, 1964) has been reported, little is known about the degradation of this important pesticide by microorganisms. Korte et al. (Ann. Chem. Liebigs 656:135, 1962) and Chacko et al. (Science 154: 893, 1966) reported that a number of ubiquitous microorganisms were incapable of degrading dieldrin; however, more recently Matsumura and Boush (Science 156:959, 1967) isolated several species of Pseudomonas and Bacillus which could degrade dieldrin, from a number of soil samples having similar activity. They did not specifically attempt to identify the dieldrin metabolites formed, but they did suggest, on the basis of an identical RF value with an authentic control that 6,7-trans-dihydroxydihydroaldrin (aldrin diol) might be a major product. Work carried out concurrently in this laboratory has shown that another ubiquitous bacterium, Aerobacter aerogenes, converts dieldrin in vitro to a compound chromatographically similar to 6,7-trans-dihydroxydihydroaldrin.

  14. Clinical and molecular epidemiology of chromosome-mediated resistance to third-generation cephalosporins in Enterobacter isolates in eastern France.

    PubMed

    Talon, D; Bailly, P; Bertrand, X; Thouverez, M; Mulin, B

    2000-07-01

    To determine both the prevalence of group I beta-lactamase-related resistance and the clinical setting in which resistance to expanded-spectrum cephalosporins occurs. Isolates of Enterobacter spp. were sensitivity tested to a range of antibiotics, and selected isolates were DNA fingerprinted by pulsed-field gel electrophoresis. The medical records of all patients with positive cultures for Enterobacter spp. were reviewed to determine the effect of previous antibiotic treatment on the susceptibility profile of these organisms. The crude incidence of colonization/infection (n = 315) was 0.51 per 100 patients and 0.73 per 1000 days of hospitalization. The 4-day and 7-day Kaplan-Meier rates of colonization/infection with Enterobacter were estimated to be 7.57% (standard deviation (SD = 3.26%) and 4.16% (SD = 2.88%)), respectively. The time lag to colonization/infection with isolates producing large amounts of Bush group 1 beta-lactamase (HLBL) (27.35 +/- 27.30 days) was significantly different from that to colonization/infection with wild-type isolates (13.59 +/- 17.93 days) (P = 0.036). Ninety-six isolates (30.5%) demonstrated acquired resistance to expanded-spectrum cephalosporins: 34 isolates (10.8%) produced extended-spectrum beta-lactamase, and 62 isolates (19.7%) produced HLBL. The 89 Enterobacter isolates susceptible to third-generation cephalosporins yielded 84 major DNA patterns, and the 45 HLBL isolates yielded 38 major DNA patterns. The risk of colonization/infection with HLBL-producing Enterobacter was higher in cases of antimicrobial treatment with third-generation cephalosporins or a fluoroquinolone, and in cases of urinary tract colonization/infection. The judicious use in hospitals of both expanded-spectrum cephalosporins and other antibiotics such as fluoroquinolones is necessary to curtail the emergence of resistance in Enterobacter spp.

  15. Genomic Epidemiology of Global Carbapenemase-Producing Enterobacter spp., 2008-2014.

    PubMed

    Peirano, Gisele; Matsumura, Yasufumi; Adams, Mark D; Bradford, Patricia; Motyl, Mary; Chen, Liang; Kreiswirth, Barry N; Pitout, Johann D D

    2018-06-01

    We performed whole-genome sequencing on 170 clinical carbapenemase-producing Enterobacter spp. isolates collected globally during 2008-2014. The most common carbapenemase was VIM, followed by New Delhi metallo-β-lactamase (NDM), Klebsiella pneumoniae carbapenemase, oxacillin 48, and IMP. The isolates were of predominantly 2 species (E. xiangfangensis and E. hormaechei subsp. steigerwaltii) and 4 global clones (sequence type [ST] 114, ST93, ST90, and ST78) with different clades within ST114 and ST90. Particular genetic structures surrounding carbapenemase genes were circulating locally in various institutions within the same or between different STs in Greece, Guatemala, Italy, Spain, Serbia, and Vietnam. We found a common NDM genetic structure (NDM-GE-U.S.), previously described on pNDM-U.S. from Klebsiella pneumoniae ATCC BAA-214, in 14 different clones obtained from 6 countries spanning 4 continents. Our study highlights the importance of surveillance programs using whole-genome sequencing in providing insight into the molecular epidemiology of carbapenemase-producing Enterobacter spp.

  16. Multiyear, Multinational Survey of the Incidence and Global Distribution of Metallo-β-Lactamase-Producing Enterobacteriaceae and Pseudomonas aeruginosa.

    PubMed

    Kazmierczak, Krystyna M; Rabine, Sharon; Hackel, Meredith; McLaughlin, Robert E; Biedenbach, Douglas J; Bouchillon, Samuel K; Sahm, Daniel F; Bradford, Patricia A

    2016-02-01

    Metallo-β-lactamases (MBLs) hydrolyze all classes of β-lactams except monobactams and are not inhibited by classic serine β-lactamase inhibitors. Gram-negative pathogens isolated from patient infections were collected from 202 medical centers in 40 countries as part of a global surveillance study from 2012 to 2014. Carbapenem-nonsusceptible Enterobacteriaceae and Pseudomonas aeruginosa were characterized for bla genes encoding VIM, IMP, NDM, SPM, and GIM variants using PCR and sequencing. A total of 471 MBL-positive isolates included the following species (numbers of isolates are in parentheses): P. aeruginosa (308), Klebsiella spp. (85), Enterobacter spp. (39), Proteeae (16), Citrobacter freundii (12), Escherichia coli (6), and Serratia marcescens (5) and were submitted by sites from 34 countries. Of these, 69.6% were collected in 9 countries (numbers of isolates are in parentheses): Russia (72), Greece (61), Philippines (54), Venezuela (29), and Kuwait, Nigeria, Romania, South Africa, and Thailand (20 to 25 isolates each). Thirty-two different MBL variants were detected (14 VIM, 14 IMP, and 4 NDM enzymes). Seven novel MBL variants were encountered in the study, each differing from a previously reported variant by one amino acid substitution: VIM-42 (VIM-1 [V223I]), VIM-43 (VIM-4 [A24V]), VIM-44 (VIM-2 [K257N]), VIM-45 (VIM-2 [T35I]), IMP-48 (IMP-14 [I69T]), IMP-49 (IMP-18 [V49F]), and NDM-16 (NDM-1 [R264H]). The in vitro activities of all tested antibiotics against MBL-positive Enterobacteriaceae were significantly reduced with the exception of that of aztreonam-avibactam (MIC90, 0.5 to 1 μg/ml), whereas colistin was the most effective agent against MBL-positive P. aeruginosa isolates (>97% susceptible). Although the global percentage of isolates encoding MBLs remains relatively low, their detection in 12 species, 34 countries, and all regions participating in this surveillance study is concerning. Copyright © 2016, American Society for Microbiology. All

  17. Multiyear, Multinational Survey of the Incidence and Global Distribution of Metallo-β-Lactamase-Producing Enterobacteriaceae and Pseudomonas aeruginosa

    PubMed Central

    Rabine, Sharon; Hackel, Meredith; McLaughlin, Robert E.; Biedenbach, Douglas J.; Bouchillon, Samuel K.; Sahm, Daniel F.; Bradford, Patricia A.

    2015-01-01

    Metallo-β-lactamases (MBLs) hydrolyze all classes of β-lactams except monobactams and are not inhibited by classic serine β-lactamase inhibitors. Gram-negative pathogens isolated from patient infections were collected from 202 medical centers in 40 countries as part of a global surveillance study from 2012 to 2014. Carbapenem-nonsusceptible Enterobacteriaceae and Pseudomonas aeruginosa were characterized for bla genes encoding VIM, IMP, NDM, SPM, and GIM variants using PCR and sequencing. A total of 471 MBL-positive isolates included the following species (numbers of isolates are in parentheses): P. aeruginosa (308), Klebsiella spp. (85), Enterobacter spp. (39), Proteeae (16), Citrobacter freundii (12), Escherichia coli (6), and Serratia marcescens (5) and were submitted by sites from 34 countries. Of these, 69.6% were collected in 9 countries (numbers of isolates are in parentheses): Russia (72), Greece (61), Philippines (54), Venezuela (29), and Kuwait, Nigeria, Romania, South Africa, and Thailand (20 to 25 isolates each). Thirty-two different MBL variants were detected (14 VIM, 14 IMP, and 4 NDM enzymes). Seven novel MBL variants were encountered in the study, each differing from a previously reported variant by one amino acid substitution: VIM-42 (VIM-1 [V223I]), VIM-43 (VIM-4 [A24V]), VIM-44 (VIM-2 [K257N]), VIM-45 (VIM-2 [T35I]), IMP-48 (IMP-14 [I69T]), IMP-49 (IMP-18 [V49F]), and NDM-16 (NDM-1 [R264H]). The in vitro activities of all tested antibiotics against MBL-positive Enterobacteriaceae were significantly reduced with the exception of that of aztreonam-avibactam (MIC90, 0.5 to 1 μg/ml), whereas colistin was the most effective agent against MBL-positive P. aeruginosa isolates (>97% susceptible). Although the global percentage of isolates encoding MBLs remains relatively low, their detection in 12 species, 34 countries, and all regions participating in this surveillance study is concerning. PMID:26643349

  18. In vitro susceptibility and resistance phenotypes in contemporary Enterobacter isolates in a university hospital in Crete, Greece.

    PubMed

    Maraki, Sofia; Vardakas, Konstantinos Z; Samonis, George; Perdikis, Dimitrios; Mavromanolaki, Viktoria Eirini; Kofteridis, Diamantis P; Falagas, Matthew E

    2017-06-01

    To study the evolution in the susceptibility of Enterobacter spp. in Crete, Greece from 2010 to 2015. Non-duplicate isolates were studied using automated systems. Phenotypic confirmatory tests were applied. A total of 939 Enterobacter isolates were included. Colistin was the most active antibiotic (97.9%) followed by imipenem (96.1%), gentamicin (95.7%), tigecycline (91.8%), cefepime (89.4%), chloramphenicol (85.8%), fosfomycin (85.5%), trimethoprim/sulfamethoxazole (83.3%) and piperacillin/tazobactam (73.3%). Antibiotic resistance did not increase during the study period for most antibiotics. Lower susceptibility was observed among multidrug-resistant strains and carbapenem-nonsusceptible isolates. AmpC was the most common resistant mechanism (21%); carbapenemases (3.7%) and aminoglycoside-modifying enzymes (6.5%) were also detected. A significant proportion of Enterobacter spp. was resistant to several antibiotics, most notably β-lactams.

  19. Integrated evaluation of aerogenic pollution by air-transported heavy metals (Pb, Cd, Ni, Zn, Mn and Cu) in the analysis of the main deposit media.

    PubMed

    Baltrėnaitė, Edita; Baltrėnas, Pranas; Lietuvninkas, Arvydas; Serevičienė, Vaida; Zuokaitė, Eglė

    2014-01-01

    The composition of the ambient air is constantly changing; therefore, the monitoring of ambient air quality to detect the changes caused by aerogenic pollutants makes the essential part of general environmental monitoring. To achieve more effective improvement of the ambient air quality, the Directive 2008/50/EC on 'Ambient Air Quality and Cleaner Air for Europe' was adopted by the European Parliament and the European Council. It informed the public and enterprises about a negative effect of pollution on humans, animals and plants, as well as about the need for monitoring aerogenic pollutants not only at the continuous monitoring stations but also by using indicator methods, i.e. by analysing natural deposit media. The problem of determining the relationship between the accumulation level of pollutants by a deposit medium and the level of air pollution and its risks is constantly growing in importance. The paper presents a comprehensive analysis of the response of the main four deposit media, i.e. snow cover, soil, pine bark and epigeic mosses, to the long-term pollution by aerogenic pollutants which can be observed in the area of oil refinery influence. Based on the quantitative expressions of the amounts of the accumulated pollutants in the deposit media, the territory of the oil refinery investigated in this paper has been referred to the areas of mild or moderate pollution.

  20. Improvement of cadmium phytoremediation by Centella asiatica L. after soil inoculation with cadmium-resistant Enterobacter sp. FM-1.

    PubMed

    Li, Yi; Liu, Kehui; Wang, Yang; Zhou, Zhenming; Chen, Chaoshu; Ye, Panhua; Yu, Fangming

    2018-07-01

    This study examined the potential of a cadmium-resistant Enterobacter sp. FM-1 to promote plant growth and assist in cadmium accumulation in both mine-type C. asiatica L. and non-mine type C. asiatica L. tissues in highly cadmium-polluted soils. The results indicated that Enterobacter sp. FM-1 significantly promoted growth and alleviated metal toxicity in both types of C. asiatica L. Meanwhile, inoculation with Enterobacter sp. FM-1 in contaminated soil can increased cadmium bioavailability in soil. Furthermore, it will increase plant uptake and the accumulation of cadmium in C. asiatica L. leaves, stems and roots compared to that in an uninoculated plant. However, mine-type C. asiatica L. had better cadmium tolerance than the non mine-type C. asiatica L. Because of its native metal-tolerant ability, which could easily grow and proliferate, and had a better performance under cadmium-contamination conditions. Additionally, inoculation with Enterobacter sp. FM-1 significantly enhanced the bioaccumulation factor (BAF) and the translocation factor (TF) values in both types of C. asiatica L. even under high cadmium concentration soil condition. Hence, based on higher BAF and TF values and strong cadmium accumulation in the leaves and stems, we concluded that inoculation with Enterobacter sp. FM-1 is potentially useful for the phytoremediation of cadmium-contaminated sites by Centella asiatica L. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Microarray-based Comparative Genomic Indexing of the Cronobacter genus (Enterobacter sakazakii)

    USDA-ARS?s Scientific Manuscript database

    Cronobacter is a recently defined genus synonymous with Enterobacter sakazakii. This new genus currently comprises 6 genomospecies. To extend our understanding of the genetic relationship between Cronobacter sakazakii BAA-894 and the other species of this genus, microarray-based comparative genomi...

  2. Synthesis, base pairing and structure studies of geranylated RNA

    PubMed Central

    Wang, Rui; Vangaveti, Sweta; Ranganathan, Srivathsan V.; Basanta-Sanchez, Maria; Haruehanroengra, Phensinee; Chen, Alan; Sheng, Jia

    2016-01-01

    Natural RNAs utilize extensive chemical modifications to diversify their structures and functions. 2-Thiouridine geranylation is a special hydrophobic tRNA modification that has been discovered very recently in several bacteria, such as Escherichia coli, Enterobacter aerogenes, Pseudomonas aeruginosa and Salmonella Typhimurium. The geranylated residues are located in the first anticodon position of tRNAs specific for lysine, glutamine and glutamic acid. This big hydrophobic terpene functional group affects the codon recognition patterns and reduces frameshifting errors during translation. We aimed to systematically study the structure, function and biosynthesis mechanism of this geranylation pathway, as well as answer the question of why nature uses such a hydrophobic modification in hydrophilic RNA systems. Recently, we have synthesized the deoxy-analog of S-geranyluridine and showed the geranylated T-G pair is much stronger than the geranylated T-A pair and other mismatched pairs in the B-form DNA duplex context, which is consistent with the observation that the geranylated tRNAGluUUC recognizes GAG more efficiently than GAA. In this manuscript we report the synthesis and base pairing specificity studies of geranylated RNA oligos. We also report extensive molecular simulation studies to explore the structural features of the geranyl group in the context of A-form RNA and its effect on codon–anticodon interaction during ribosome binding. PMID:27307604

  3. Comparative evaluation of chromogenic agar CM1046 and mFC agar for detection of E. coli and thermotolerant coliform bacteria from water samples.

    PubMed

    Wohlsen, T D

    2011-08-01

    The equivalence of Oxoid (CM 1046) Brilliance((TM)) E. coli/coliform selective agar to mFC agar, as used in the Australian/New Zealand Standard Method to detect thermotolerant coliforms and Escherichia coli in water samples, was assessed. A total of 244 water samples were analysed in parallel over a 5-month period. Sewage effluent samples (n = 131, sites = 43), freshwater (n = 62, sites = 18) and marine/brackish water samples (n = 51, sites = 23) were analysed. The Wilcoxon matched-pairs signed-ranks test showed a varying degree of statistical difference between the two methods. All matrices had a higher recovery in the trial method. Enterococci faecalis, Aeromonas spp. and Vibrio spp. did not grow on the CM1046 agar, and Pseudomonas aeruginosa and Enterobacter aerogenes were inhibited. The use of CM 1046 for the detection and enumeration of E. coli and thermotolerant coliforms in water samples is a suitable alternative to the AS/NZS Standard Method. The use of CM1046 agar was less labour intensive and time consuming, as no secondary confirmation steps were required. Confirmed results could be reported within 24 h of sample analysis, as compared to 48 h with the reference method. Public health concerns can be addressed in a more efficient manner. © 2011 Unitywater. Letters in Applied Microbiology © 2011 The Society for Applied Microbiology.

  4. Synthesis and spectral studies on metal complexes of s-triazine based ligand and non linear optical properties

    NASA Astrophysics Data System (ADS)

    Shanmugakala, R.; Tharmaraj, P.; Sheela, C. D.

    2014-11-01

    A series of transition metal complexes of type [ML] and [ML2]Cl2 (where M = Cu(II), Ni(II), Co(II) have synthesized from 2-phenylamino-4,6-dichloro-s-triazine and 3,5-dimethyl pyrazole; their characteristics have been investigated by means of elemental analyses, magnetic susceptibility, molar conductance, IR, UV-Vis, Mass, NMR and ESR spectra. The electrochemical behavior of copper(II) complexes we have studied, by using cyclic voltammetry. The ESR spectra of copper(II) complexes are recorded at 300 K and 77 K and their salient features are appropriately reported. Spectral datas, we found, show that the ligand acts as a neutral tridentate, and coordinates through the triazine ring nitrogen and pyrazolyl ring nitrogen atoms to the metal ion. Evident from our findings, the metal(II) complexes of [ML] type exhibit square pyramidal geometry, and that of [ML2]Cl2 exhibit octahedral geometry. The in vitro antimicrobial activities of the ligand and its complexes are evaluated against Bacillus subtilis, Micrococcus luteus, Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus mutans, Escherichia coli, Enterobacter aerogenes, Klebsiella pneumoniae, Proteus vulgaris, Cryptococcus neoformans, Pseudomonas aeruginosa, Salmonella typhi, Serratia marcescens, Shigella flexneri, Vibrio cholera, Vibris parahaemolyticus, Aspergillus niger, Candida albicans and Penicillium oxalicum by well-diffusion method. The second harmonic generation efficiency of the ligand and its complexes are determined and compared with urea and KDP.

  5. Enterobacter sp. LU1 as a novel succinic acid producer - co-utilization of glycerol and lactose.

    PubMed

    Podleśny, Marcin; Jarocki, Piotr; Wyrostek, Jakub; Czernecki, Tomasz; Kucharska, Jagoda; Nowak, Anna; Targoński, Zdzisław

    2017-03-01

    Succinic acid is an important C4-building chemical platform for many applications. A novel succinic acid-producing bacterial strain was isolated from goat rumen. Phylogenetic analysis based on the 16S rRNA sequence and physiological analysis indicated that the strain belongs to the genus Enterobacter. This is the first report of a wild bacterial strain from the genus Enterobacter that is capable of efficient succinic acid production. Co-fermentation of glycerol and lactose significantly improved glycerol utilization under anaerobic conditions, debottlenecking the utilization pathway of this valuable biodiesel waste product. Succinic acid production reached 35 g l -1 when Enterobacter sp. LU1 was cultured in medium containing 50 g l -1 of glycerol and 25 g l -1 of lactose as carbon sources. © 2016 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  6. Aerobic and heterotrophic nitrogen removal by Enterobacter cloacae CF-S27 with efficient utilization of hydroxylamine.

    PubMed

    Padhi, Soumesh Kumar; Tripathy, Swetaleena; Mohanty, Sriprakash; Maiti, Nikhil Kumar

    2017-05-01

    Heterotrophic bacterium, Enterobacter cloacae CF-S27 exhibited simultaneous nitrification and aerobic denitrification in presence of high concentration of hydroxylamine. With the initial nitrogen concentration of 100mgL -1 h -1 , ammonium, nitrate and nitrite removal efficiencies were 81%, 99.9% and 92.8%, while the corresponding maximum removal rates reached as high as 11.6, 15.1 and 11.2mgL -1 h -1 respectively. Quantitative amplification by real time PCR and enzyme assay demonstrated that hydroxylamine reductase gene (hao) is actively involved in hetrotrophic nitrification and aerobic denitrification process of Enterobacter cloacae CF-S27. PCR primers were designed targeting amplification of hao gene from diversified environmental soil DNA. The strain Enterobacter cloacae CF-S27 significantly maintained the undetectable amount of dissolved nitrogen throughout 60days of zero water exchange fish culture experiment in domestic wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Clinical characteristics and outcomes of spontaneous bacterial peritonitis caused by Enterobacter species versus Escherichia coli: a matched case-control study.

    PubMed

    Bae, Seongman; Kim, Taeeun; Kim, Min-Chul; Chong, Yong Pil; Kim, Sung-Han; Sung, Heungsup; Lim, Young-Suk; Lee, Sang-Oh; Kim, Mi-Na; Kim, Yang Soo; Woo, Jun Hee; Choi, Sang-Ho

    2016-06-07

    Enterobacter species are important nosocomial pathogens, and there is growing concern about their ability to develop resistance during antimicrobial therapy. However, few data are available on the clinical characteristics and outcomes of Enterobacter spontaneous bacterial peritonitis (SBP). We retrospectively identified all patients with SBP caused by Enterobacter species admitted to a tertiary care hospital between January 1997 and December 2013. Each case was age- and sex-matched with four patients with Escherichia coli SBP. A total of 32 cases with Enterobacter SBP and 128 controls with E. coli SBP were included. Twenty-one (65.6 %) cases and 111 (86.7 %) controls had Child-Pugh class C (P = 0.006). Cases were significantly more likely to have hepatocellular carcinoma (65.6 % vs. 37.5 %, P = 0.004) and upper gastrointestinal bleeding (28.1 % vs. 9.4 %, P = 0.005). The initial response to empirical therapy (81.3 % vs. 81.2 %, P = 0.995) and the 30-day mortality (37.5 % vs. 28.9 %, P = 0.35) were not significantly different between the groups. Drug resistance emerged in one case and in no controls (4.3 % [1/23] vs. 0 % [0/98], P = 0.19). Compared with E. coli SBP, patients with Enterobacter SBP more frequently had hepatocellular carcinoma and upper gastrointestinal bleeding, yet clinical outcomes were comparable. Development of resistance during third-generation cephalosporin therapy was infrequent in patients with Enterobacter SBP.

  8. KPC and VIM producing Enterobacter cloacae strain from a hospital in northeastern Venezuela.

    PubMed

    Martínez, Dianny; Marcano, Daniel; Rodulfo, Hectorina; Salgado, Nurys; Cuaical, Nirvia; Rodriguez, Lucy; Caña, Luisa; Medina, Belkis; Guzman, Militza; De Donato, Marcos

    2015-06-01

    An 83-year-old male patient is admitted to the central hospital in Cumana, Venezuela with severe urinary infection, history of hospitalizaions and prolonged antimicrobial treatments. A strain of Enterobacter cloacae was isolated showing resistance to multiple types of antibiotics (only sensitive to gentamicin), with phenotype of serine- and metallo-carbapenemases. Both, bla(VIM-2) and bla(KPC) genes were detected in the isolate. This is the first report of an Enterobacteriaceae species producing both KPC carbapenemase and VIM metallo carbapenemase in Venezuela. This finding has a great clinical and epidemiological impact in the region, because of the feasibility of transferring these genes, through mobile elements to other strains of Enterobacter and to other infection-causing species of bacteria.

  9. Genome Sequence of the Plant Growth Promoting Endophytic Bacterium Enterobacter sp. 638

    PubMed Central

    Taghavi, Safiyh; van der Lelie, Daniel; Hoffman, Adam; Zhang, Yian-Biao; Walla, Michael D.; Vangronsveld, Jaco; Newman, Lee; Monchy, Sébastien

    2010-01-01

    Enterobacter sp. 638 is an endophytic plant growth promoting gamma-proteobacterium that was isolated from the stem of poplar (Populus trichocarpa×deltoides cv. H11-11), a potentially important biofuel feed stock plant. The Enterobacter sp. 638 genome sequence reveals the presence of a 4,518,712 bp chromosome and a 157,749 bp plasmid (pENT638-1). Genome annotation and comparative genomics allowed the identification of an extended set of genes specific to the plant niche adaptation of this bacterium. This includes genes that code for putative proteins involved in survival in the rhizosphere (to cope with oxidative stress or uptake of nutrients released by plant roots), root adhesion (pili, adhesion, hemagglutinin, cellulose biosynthesis), colonization/establishment inside the plant (chemiotaxis, flagella, cellobiose phosphorylase), plant protection against fungal and bacterial infections (siderophore production and synthesis of the antimicrobial compounds 4-hydroxybenzoate and 2-phenylethanol), and improved poplar growth and development through the production of the phytohormones indole acetic acid, acetoin, and 2,3-butanediol. Metabolite analysis confirmed by quantitative RT–PCR showed that, the production of acetoin and 2,3-butanediol is induced by the presence of sucrose in the growth medium. Interestingly, both the genetic determinants required for sucrose metabolism and the synthesis of acetoin and 2,3-butanediol are clustered on a genomic island. These findings point to a close interaction between Enterobacter sp. 638 and its poplar host, where the availability of sucrose, a major plant sugar, affects the synthesis of plant growth promoting phytohormones by the endophytic bacterium. The availability of the genome sequence, combined with metabolome and transcriptome analysis, will provide a better understanding of the synergistic interactions between poplar and its growth promoting endophyte Enterobacter sp. 638. This information can be further exploited to

  10. Meningoencephalitis and Compartmentalization of the Cerebral Ventricles Caused by Enterobacter sakazakii

    PubMed Central

    Kleiman, Martin B.; Allen, Stephen D.; Neal, Patricia; Reynolds, Janet

    1981-01-01

    A necrotizing meningoencephalitis complicated by ventricular compartmentalization and abscess formation caused by Enterobacter sakazakii in a previously healthy 5-week-old female is described. A detailed description of the isolate is presented. This communication firmly establishes the pathogenicity of E. sakazakii. PMID:7287892

  11. Kinetics of biological decolorisation of anthraquinone based Reactive Blue 19 using an isolated strain of Enterobacter sp.F NCIM 5545.

    PubMed

    Holkar, Chandrakant R; Pandit, Aniruddha B; Pinjari, Dipak V

    2014-12-01

    In the present study, an attempt was made to evaluate the bacterial decolorisation of Reactive Blue 19 by an Enterobacter sp.F which was isolated from a mixed culture from anaerobic digester for biogas production. Phenotypic characterization and phylogenetic analysis based on DNA sequencing comparisons indicate that Enterobacter sp.F was 99.7% similar to Enterobacter cloacae ATCC13047. The kinetics of Reactive Blue 19 dye decolorisation by bacterium had been estimated. Effects of substrate concentration, oxygen, temperature, pH, glucose and glucose to microbe weight ratio on the rate of decolorisation were investigated to understand key factor that determines the performance of dye decolorisation. The maximum decolorisation efficiency of Reactive Blue 19 was 90% over period of 24 h for optimized parameter. To the best of our knowledge, this research study is the report where Enterobacter sp.F has been reported with about 90% decolorizing ability against anthraquinone based Reactive Blue 19 dye. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Impact of glycerol and nitrogen concentration on Enterobacter A47 growth and exopolysaccharide production.

    PubMed

    Torres, Cristiana A V; Marques, Rodolfo; Ferreira, Ana R V; Antunes, Sílvia; Grandfils, Christian; Freitas, Filomena; Reis, Maria A M

    2014-11-01

    Enterobacter A47 produces a fucose-containing exopolysaccharide (EPS) by cultivation in mineral medium supplemented with glycerol. EPS synthesis by Enterobacter A47 was shown to be influenced by both the initial glycerol and nitrogen concentrations and by the nutrients' feeding rate during the fed-batch phase. Initial nitrogen concentrations above 1.05g/L were detrimental for EPS synthesis: the productivity was reduced to 0.35-0.62g/Ld (compared to 1.89-2.04g/Ld under lower nitrogen concentrations) and the polymer had lower fucose content (14-17%mol, compared to 36-38%mol under lower nitrogen concentrations). On the other hand, EPS productivity was improved to 5.66g/Ld by increasing the glycerol and nitrogen feeding rates during the fed-batch phase. However, the EPS thus obtained had lower fucose (26%mol) and higher galactose (34%mol) contents, as well as lower average molecular weight (7.2×10(5)). The ability of Enterobacter A47 to synthesize EPS with different physico-chemical characteristics may be useful for the generation of biopolymers with distinct functional properties suitable for different applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Acid Pretreatment of Sago Wastewater for Biohydrogen Production

    NASA Astrophysics Data System (ADS)

    Illi Mohamad Puad, Noor; Rahim, Nurainin Farhan Abd; Suhaida Azmi, Azlin

    2018-03-01

    Biohydrogen has been recognized to be one of the future renewable energy sources and has the potential in solving the greenhouse effects. In this study, Enterobacter aerogenes (E. aerogenes) was used as the biohydrogen producer via dark fermentation process using sago wastewater as the substrate. However, pretreatment of sago wastewater is required since it consists of complex sugars that cannot be utilized directly by the bacteria. This study aimed to use acid pretreatment method to produce high amount of glucose from sago wastewater. Three different types of acid: sulfuric acid (H2SO4); hydrochloric acid (HCl) and nitric acid (HNO3) were screened for the best acid in producing a maximum amount of glucose. H2SO4 gave the highest amount of glucose which was 9.406 g/L. Design of experiment was done using Face-centred Central Composite Design (FCCCD) tool under Response Surface Methodology (RSM) in Design Expert 9 software. The maximum glucose (9.138 g/L) was recorded using 1 M H2SO4 at 100 °C for 60 min. A batch dark fermentation using E. aerogenes was carried out and it was found that pretreated sago wastewater gave a higher hydrogen concentration (1700 ppm) compared to the raw wastewater (410 ppm).

  14. Multiresistant Enterobacter cloacae outbreak in an intensive care unit associated with therapeutic beds

    PubMed Central

    van der Mee-Marquet, Nathalie; Girard, Sophie; Lagarrigue, François; Leroux, Isabelle; Voyer, Isabelle; Bloc, Daniel; Besnier, Jean-Marc; Quentin, Roland

    2006-01-01

    We report a multiresistant Enterobacter cloacae outbreak in an intensive care unit, associated with mattresses and with antibacterial-treated and vapour-permeable polyurethane synthetic mattress covers of therapeutic beds. PMID:16542475

  15. Pseudomonas aeruginosa in premise plumbing of large buildings.

    PubMed

    Bédard, Emilie; Prévost, Michèle; Déziel, Eric

    2016-12-01

    Pseudomonas aeruginosa is an opportunistic bacterial pathogen that is widely occurring in the environment and is recognized for its capacity to form or join biofilms. The present review consolidates current knowledge on P. aeruginosa ecology and its implication in healthcare facilities premise plumbing. The adaptability of P. aeruginosa and its capacity to integrate the biofilm from the faucet and the drain highlight the role premise plumbing devices can play in promoting growth and persistence. A meta-analysis of P. aeruginosa prevalence in faucets (manual and electronic) and drains reveals the large variation in device positivity reported and suggest the high variability in the sampling approach and context as the main reason for this variation. The effects of the operating conditions that prevail within water distribution systems (disinfection, temperature, and hydraulic regime) on the persistence of P. aeruginosa are summarized. As a result from the review, recommendations for proactive control measures of water contamination by P. aeruginosa are presented. A better understanding of the ecology of P. aeruginosa and key influencing factors in premise plumbing are essential to identify culprit areas and implement effective control measures. © 2016 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  16. Method for Phenotypic Detection of Extended-Spectrum Beta-Lactamases in Enterobacter Species in the Routine Clinical Setting ▿

    PubMed Central

    Stuart, James Cohen; Diederen, Bram; al Naiemi, Nashwan; Fluit, Ad; Arents, Niek; Thijsen, Steven; Vlaminckx, Bart; Mouton, Johan W.; Leverstein-van Hall, Maurine

    2011-01-01

    In 271 Enterobacter blood culture isolates from 12 hospitals, extended-spectrum beta-lactamase (ESBL) prevalence varied between 0% and 30% per hospital. High prevalence was associated with dissemination, indicating the potential relevance of infection control measures. Screening with cefepime or Vitek 2, followed by a cefepime/cefepime-clavulanate Etest, was an accurate strategy for ESBL detection in Enterobacter isolates (positive predictive value, 100%; negative predictive value, 99%). PMID:21562100

  17. Chemical composition and antibacterial activity of Lavandula coronopifolia essential oil against antibiotic-resistant bacteria.

    PubMed

    Ait Said, L; Zahlane, K; Ghalbane, I; El Messoussi, S; Romane, A; Cavaleiro, C; Salgueiro, L

    2015-01-01

    The aim of this study was to analyse the composition of the essential oil (EO) of Lavandula coronopifolia from Morocco and to evaluate its in vitro antibacterial activity against antibiotic-resistant bacteria isolated from clinical infections. The antimicrobial activity was assessed by a broth micro-well dilution method using multiresistant clinical isolates of 11 pathogenic bacteria: Klebsiella pneumoniae subsp. pneumoniae, Klebsiella ornithinolytica, Escherichia coli, Enterobacter cloacae, Enterobacter aerogenes, Providencia rettgeri, Citrobacter freundii, Hafnia alvei, Salmonella spp., Acinetobacter baumannii and methicillin-resistant Staphylococcus aureus. The main compounds of the oil were carvacrol (48.9%), E-caryophyllene (10.8%) and caryophyllene oxide (7.7%). The oil showed activity against all tested strains with minimal inhibitory concentration (MIC) values ranging between 1% and 4%. For most of the strains, the MIC value was equivalent to the minimal bactericidal concentration value, indicating a clear bactericidal effect of L. coronopifolia EO.

  18. Q-PCR Based Culture-Independent Enumeration and Detection of Enterobacter: An Emerging Environmental Human Pathogen in Riverine Systems and Potable Water

    PubMed Central

    Patel, Chandra B.; Shanker, Rishi; Gupta, Vijai K.; Upadhyay, Ram S.

    2016-01-01

    The availability of safe and pristine water is a global challenge when large numbers of natural and anthropogenic water resources are being depleted with faster rate. The remaining water resources are severely contaminated with various kinds of contaminants including microorganisms. Enterobacter is one of the fecal coliform bacteria of family Enterobacteriaceae. Enterobacter was earlier used as an indicator bacterium along with other fecal Coliforms namely Escherichia coli, Citrobacter, and Klebsiella, but it is now known to cause various diseases in human beings. In this study, we have collected 55 samples from potable water and riverine system and proved their presence using their conserved sequences of 16S rRNA and 23S rRNA genes with the help of SYBR green real-time PCR, which showed very high specificity for the detection of Enterobacter. The Enterobacter counts in potable water were found to 1290 ± 32.89 to 1460 ± 39.42 cfu/100 ml. The Enterobacter levels in surface water were 1.76 × 104 ± 492, 1.33 × 104 ± 334, 1.15 × 104 ± 308, 2.56 × 104 ± 802, 2.89 × 104 ± 962, 8.16 × 104 ± 3443 cfu/100 ml; the levels of Enterobacter contamination associated with hydrophytes were 4.80 × 104 ± 1804, 3.48 × 104 ± 856, 8.50 × 104 ± 2074, 8.09 × 104 ± 1724, 6.30 × 104 ± 1738, 3.68 × 104 ± 949 cfu/10 g and the Enterobacter counts in sediments of the river, were 2.36 × 104 ± 703, 1.98 × 104 ± 530, 9.92 × 104 ± 3839, 6.80 × 104 ± 2230, 8.76 × 104 ± 3066 and 2.34 × 104 ± 732 cfu/10 g at the sampling Site #1, Site #2, Site #3, Site #4, Site #5, and Site #6, respectively. The assay could be used for the regular monitoring of potable water and other water reservoirs to check waterborne outbreaks. PMID:26925044

  19. Emergence and Spread of Epidemic Multidrug-Resistant Pseudomonas aeruginosa.

    PubMed

    Miyoshi-Akiyama, Tohru; Tada, Tatsuya; Ohmagari, Norio; Viet Hung, Nguyen; Tharavichitkul, Prasit; Pokhrel, Bharat Mani; Gniadkowski, Marek; Shimojima, Masahiro; Kirikae, Teruo

    2017-12-01

    Pseudomonas aeruginosa (P. aeruginosa) is one of the most common nosocomial pathogens worldwide. Although the emergence of multidrug-resistant (MDR) P. aeruginosa is a critical problem in medical practice, the key features involved in the emergence and spread of MDR P. aeruginosa remain unknown. This study utilized whole genome sequence (WGS) analyses to define the population structure of 185 P. aeruginosa clinical isolates from several countries. Of these 185 isolates, 136 were categorized into sequence type (ST) 235, one of the most common types worldwide. Phylogenetic analysis showed that these isolates fell within seven subclades. Each subclade harbors characteristic drug resistance genes and a characteristic genetic background confined to a geographic location, suggesting that clonal expansion following antibiotic exposure is the driving force in generating the population structure of MDR P. aeruginosa. WGS analyses also showed that the substitution rate was markedly higher in ST235 MDR P. aeruginosa than in other strains. Notably, almost all ST235 isolates harbor the specific type IV secretion system and very few or none harbor the CRISPR/CAS system. These findings may help explain the mechanism underlying the emergence and spread of ST235 P. aeruginosa as the predominant MDR lineage. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  20. NDM-1 encoded by a pNDM-HN380-like plasmid pNDM-BJ03 in clinical Enterobacter cloacae.

    PubMed

    Lü, Yang; Liu, Wei; Liang, Hui; Zhao, Shulong; Zhang, Wei; Liu, Jia; Jin, Cheng; Hu, Hongyan

    2018-02-01

    A carbapenemase-producing Enterobacter cloacae hhy03 with a bla NDM-1 and bla SHV-12 -coharboring plasmid was isolated from a sputum specimen of a patient. This is the third nucleotide sequence report of bla NDM-1 -harboring plasmid from Enterobacter cloacae that have caused lethal infections in China, indicating the spread of NDM-1 by IncX3 plasmid between Enterobacteriaceae. Copyright © 2017. Published by Elsevier Inc.

  1. Pseudomonas aeruginosa Promotes Escherichia coli Biofilm Formation in Nutrient-Limited Medium

    PubMed Central

    Culotti, Alessandro; Packman, Aaron I.

    2014-01-01

    Biofilms have been implicated as an important reservoir for pathogens and commensal enteric bacteria such as Escherichia coli in natural and engineered water systems. However, the processes that regulate the survival of E. coli in aquatic biofilms have not been thoroughly studied. We examined the effects of hydrodynamic shear and nutrient concentrations on E. coli colonization of pre-established Pseudomonas aeruginosa biofilms, co-inoculation of E. coli and P. aeruginosa biofilms, and P. aeruginosa colonization of pre-established E. coli biofilms. In nutritionally-limited R2A medium, E. coli dominated biofilms when co-inoculated with P. aeruginosa, and successfully colonized and overgrew pre-established P. aeruginosa biofilms. In more enriched media, P. aeruginosa formed larger clusters, but E. coli still extensively overgrew and colonized the interior of P. aeruginosa clusters. In mono-culture, E. coli formed sparse and discontinuous biofilms. After P. aeruginosa was introduced to these biofilms, E. coli growth increased substantially, resulting in patterns of biofilm colonization similar to those observed under other sequences of organism introduction, i.e., E. coli overgrew P. aeruginosa and colonized the interior of P. aeruginosa clusters. These results demonstrate that E. coli not only persists in aquatic biofilms under depleted nutritional conditions, but interactions with P. aeruginosa can greatly increase E. coli growth in biofilms under these experimental conditions. PMID:25198725

  2. Reduction of selenite to elemental selenium by Enterobacter cloacae SLD1a-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dungan, R.S.; Frankenberger, W.T. Jr.

    1998-11-01

    The facultative anaerobic bacterium Enterobacter cloacae strain SLD1a-1 was studied in washed cell suspensions to assess optimal conditions required for the reduction of selenite (SeO{sub 3}{sup 2{minus}}) to elemental selenium (Se{sup 0}). Enterobacter cloacae using glucose (1.4 mM) as an electron donor removed 79% of the added SeO{sub 3}{sup 2{minus}} from solution in 2.5 h. Optimal SeO{sub 3}{sup 2{minus}} reduction occurred at a pH of 6.5 and a temperature of 40 C. Carbohydrate sources arabinose, xylose, and sorbose were found to significantly enhance SeO{sub 3}{sup 2{minus}} reduction over that of glucose. The reduction of SeO{sub 3}{sup 2{minus}} at 7.9 {micro}Mmore » was inhibited by nitrate of levels 1 to 100 times greater, nitrite at levels 5 and 10 times greater, while sulfite at levels of two to four times greater was found to stimulate the reduction of SeO{sub 3}{sup 2{minus}}. Enterobacter cloacae grows on anaerobically incubated plates containing NO{sub 3}{sup {minus}} as the sole terminal electron acceptor and acetate as the electron donor. Use of SeO{sub 3}{sup 2{minus}} as the terminal electron acceptor during anaerobic respiration did not support growth and could only be reduced to Se{sup 0} when NO{sub 3}{sup {minus}} was present.« less

  3. Isolation of the opdE gene that encodes for a new hydrolase of Enterobacter sp. capable of degrading organophosphorus pesticides.

    PubMed

    Chino-Flores, Concepción; Dantán-González, Edgar; Vázquez-Ramos, Alejandra; Tinoco-Valencia, Raunel; Díaz-Méndez, Rafael; Sánchez-Salinas, Enrique; Castrejón-Godínez, Maria Luisa; Ramos-Quintana, Fernando; Ortiz-Hernández, Maria Laura

    2012-06-01

    Microbial enzymes that can hydrolyze organophosphorus compounds have been isolated, identified and characterized from different microbial species in order to use them in biodegradation of organophosphorus compounds. We isolated a bacterial strain Cons002 from an agricultural soil bacterial consortium, which can hydrolyze methyl-parathion (MP) and other organophosphate pesticides. HPLC analysis showed that strain Cons002 is capable of degrading pesticides MP, parathion and phorate. Pulsed-field gel electrophoresis and 16S rRNA amplification were performed for strain characterization and identification, respectively, showing that the strain Cons002 is related to the genus Enterobacter sp. which has a single chromosome of 4.6 Mb and has no plasmids. Genomic library was constructed from DNA of Enterobacter sp. Cons002. A gene called opdE (Organophosphate Degradation from Enterobacter) consists of 753 bp and encodes a protein of 25 kDa, which was isolated using activity methods. This gene opdE had no similarity to any genes reported to degrade organophosphates. When kanamycin-resistance cassette was placed in the gene opdE, hydrolase activity was suppressed and Enterobacter sp. Cons002 had no growth with MP as a nutrients source.

  4. Comparison of Chromogenic Selective Media for the Detection of Cronobacter spp. (Enterobacter sakazakii).

    PubMed

    Teramura, Hajime; Fukuda, Noriko; Okada, Yumiko; Ogihara, Hirokazu

    2018-01-01

     The four types of chromogenic selective media that are commercially available in Japan were compared for establishing a Japanese standard method for detecting Cronobacter spp. based on ISO/TS 22964:2006. When assessed using 9 standard Cronobacter spp. strains and 29 non-Cronobacter strains, Enterobacter sakazakii isolation agar, Chromocult TM Enterobacter sakazakii agar, CHROMagar TM E. sakazakii, and XM-sakazakii agar demonstrated excellent inclusivity and exclusivity. Using the ISO/TS 22964:2006 method, the recovered numbers of 38 Cronobacter spp. strains, including 29 C. sakazakii isolates obtained from each medium, were equivalent, indicating that there was no significant difference (p > 0.05) among the four types of chromogenic selective media. Thus, we demonstrated that these four chromogenic selective media are suitable alternatives when using the standard method for detecting Cronobacter spp. in Japan, based on the ISO/TS 22964:2006.

  5. [Effect of Pseudomonas aeruginosa melanin on antibiotic activity].

    PubMed

    Rozhavin, M A

    1978-08-01

    The properties of microbial melanines are very diverse. Melanine of P. aeruginosa is little studied. The pigment was isolated from a strain of P. aeruginosa possessing all characteristic properties of the species. Interaction of P. aeruginosa melanine with various antibiotics was determined by the method of serial dilutions in beaf-peptone broth, using Staph. aureus 209 as a test-microbe, which was added to the medium in an amount of 10(6) cells to each tube. It was found that P. aeruginosa melanine differed from DOPA-melanine in a concentration of 1 mg/ml and did not change the activity of penicillin, tetracycline, oleandomycin, kanamycin and gentamicin with respect to Staph. aureus.

  6. Cellulose synthesized by Enterobacter sp. FY-07 under aerobic and anaerobic conditions.

    PubMed

    Ma, Ting; Ji, Kaihua; Wang, Wei; Wang, Jinghong; Li, Zhaoyu; Ran, Haitao; Liu, Bin; Li, Guoqiang

    2012-12-01

    Enterobacter sp. FY-07 can produce bacterial cellulose (BC) under aerobic and anaerobic conditions. In static cultivation at 30 °C for 72 h under anoxic, oxygen-limited and aerated conditions, cellulose production exceeded 5 g/l, which indicated that oxygen was not essential for production of BC by Enterobacter sp. FY-07. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM) analysis showed that the microstructure of the BC was similar to that produced by aerobic bacteria such as Gluconacetobacter xylinum BCRC12335 and Acetobacter sp. V6. The crystallinity index of the BC was 63.3%. Water-holding capacity (approximately 11000%) and rehydration ratio (24.4%) were superior to those reported for BC produced by the aerobic bacteria G. xylinum BCRC12335 and Acetobacter sp. V6. These results will facilitate static submerged fermentation for the production of BC. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Risk assessment of Pseudomonas aeruginosa in water.

    PubMed

    Mena, Kristina D; Gerba, Charles P

    2009-01-01

    P. aeruginosa is part of a large group of free-living bacteria that are ubiquitous in the environment. This organism is often found in natural waters such as lakes and rivers in concentrations of 10/100 mL to >1,000/100 mL. However, it is not often found in drinking water. Usually it is found in 2% of samples, or less, and at concentrations up to 2,300 mL(-1) (Allen and Geldreich 1975) or more often at 3-4 CFU/mL. Its occurrence in drinking water is probably related more to its ability to colonize biofilms in plumbing fixtures (i.e., faucets, showerheads, etc.) than its presence in the distribution system or treated drinking water. P. aeruginosa can survive in deionized or distilled water (van der Jooij et al. 1982; Warburton et al. 1994). Hence, it may be found in low nutrient or oligotrophic environments, as well as in high nutrient environments such as in sewage and in the human body. P. aeruginosa can cause a wide range of infections, and is a leading cause of illness in immunocompromised individuals. In particular, it can be a serious pathogen in hospitals (Dembry et al. 1998). It can cause endocarditis, osteomyelitis, pneumonia, urinary tract infections, gastrointestinal infections, and meningitis, and is a leading cause of septicemia. P. aeruginosa is also a major cause of folliculitis and ear infections acquired by exposure to recreational waters containing the bacterium. In addition, it has been recognized as a serious cause of keratitis, especially in patients wearing contact lenses. P. aeruginosa is also a major pathogen in burn and cystic fibrosis (CF) patients and causes a high mortality rate in both populations (MOlina et al. 1991; Pollack 1995). P. aeruginosa is frequently found in whirlpools and hot tubs, sometimes in 94-100% of those tested at concenrations of <1 to 2,400 CFU/mL. The high concentrations found probably result from the relatively high temperatures of whirlpools, which favor the growth of P. aeruginosa, and the aeration which also

  8. Pseudomonas aeruginosa inhibits the growth of Cryptococcus species.

    PubMed

    Rella, Antonella; Yang, Mo Wei; Gruber, Jordon; Montagna, Maria Teresa; Luberto, Chiara; Zhang, Yong-Mei; Del Poeta, Maurizio

    2012-06-01

    Pseudomonas aeruginosa is a ubiquitous and opportunistic bacterium that inhibits the growth of different microorganisms, including Gram-positive bacteria and fungi such as Candida spp. and Aspergillus fumigatus. In this study, we investigated the interaction between P. aeruginosa and Cryptococcus spp. We found that P. aeruginosa PA14 and, to a lesser extent, PAO1 significantly inhibited the growth of Cryptococcus spp. The inhibition of growth was observed on solid medium by the visualization of a zone of inhibition of yeast growth and in liquid culture by viable cell counting. Interestingly, such inhibition was only observed when P. aeruginosa and Cryptococcus were co-cultured. Minimal inhibition was observed when cell-cell contact was prevented using a separation membrane, suggesting that cell contact is required for inhibition. Using mutant strains of Pseudomonas quinoline signaling, we showed that P. aeruginosa inhibited the growth of Cryptococcus spp. by producing antifungal molecules pyocyanin, a redox-active phenazine, and 2-heptyl-3,4-dihydroxyquinoline (PQS), an extracellular quorum-sensing signal. Because both P. aeruginosa and Cryptococcus neoformans are commonly found in lung infections of immunocompromised patients, this study may have important implication for the interaction of these microbes in both an ecological and a clinical point of view.

  9. Introduction of Pseudomonas aeruginosa into a Hospital via Vegetables

    PubMed Central

    Kominos, Spyros D.; Copeland, Charles E.; Grosiak, Barbara; Postic, Bosko

    1972-01-01

    Pseudomonas aeruginosa was isolated from tomatoes, radishes, celery, carrots, endive, cabbage, cucumbers, onions, and lettuce obtained from the kitchen of a general hospital, with tomatoes yielding both highest frequencies of isolation and highest counts. Presence of P. aeruginosa on the hands of kitchen personnel and cutting boards and knives which they used suggests acquisition of the organism through contact with these vegetables. It is estimated that a patient consuming an average portion of tomato salad might ingest as many as 5 × 103 colony-forming units of P. aeruginosa. Pyocine types of P. aeruginosa isolated from clinical specimens were frequently identical to those recovered from vegetables, thus implicating tomatoes and other vegetables as an important source and vehicle by which P. aeruginosa colonizes the intestinal tract of patients. PMID:4628795

  10. In Vitro Activity of Imipenem-Relebactam against Gram-Negative ESKAPE Pathogens Isolated by Clinical Laboratories in the United States in 2015 (Results from the SMART Global Surveillance Program).

    PubMed

    Lob, Sibylle H; Hackel, Meredith A; Kazmierczak, Krystyna M; Young, Katherine; Motyl, Mary R; Karlowsky, James A; Sahm, Daniel F

    2017-06-01

    Relebactam (formerly MK-7655) is an inhibitor of class A and C β-lactamases, including Klebsiella pneumoniae carbapenemase (KPC), and is currently in clinical development in combination with imipenem-cilastatin. Using Clinical and Laboratory Standards Institute (CLSI)-defined broth microdilution methodology, we evaluated the in vitro activities of imipenem-relebactam, imipenem, and seven routinely tested parenteral antimicrobial agents against Gram-negative ESKAPE pathogens (including Klebsiella pneumoniae , n = 689; Acinetobacter baumannii , n = 72; Pseudomonas aeruginosa , n = 845; and Enterobacter spp., n = 399) submitted by 21 clinical laboratories in the United States in 2015 as part of the SMART (Study for Monitoring Antimicrobial Resistance Trends) global surveillance program. Relebactam was tested at a fixed concentration of 4 μg/ml in combination with doubling dilutions of imipenem. Imipenem-relebactam MICs were interpreted using CLSI imipenem breakpoints. The respective rates of susceptibility to imipenem-relebactam and imipenem were 94.2% (796/845) and 70.3% (594/845) for P. aeruginosa , 99.0% (682/689) and 96.1% (662/689) for K. pneumoniae , and 100% (399/399) and 98.0% (391/399) for Enterobacter spp. Relebactam restored imipenem susceptibility to 80.5% (202/251), 74.1% (20/27), and 100% (8/8) of isolates of imipenem-nonsusceptible P. aeruginosa , K. pneumoniae , and Enterobacter spp. Relebactam did not increase the number of isolates of Acinetobacter spp. susceptible to imipenem, and the rates of resistance to all of the agents tested against this pathogen were >30%. Further development of imipenem-relebactam is warranted given the demonstrated ability of relebactam to restore the activity of imipenem against current clinical isolates of Enterobacteriaceae and P. aeruginosa that are nonsusceptible to carbapenems and its potential as a therapy for treating patients with antimicrobial-resistant Gram-negative infections. Copyright © 2017 American

  11. In Vitro Activity of Imipenem-Relebactam against Gram-Negative ESKAPE Pathogens Isolated by Clinical Laboratories in the United States in 2015 (Results from the SMART Global Surveillance Program)

    PubMed Central

    Hackel, Meredith A.; Kazmierczak, Krystyna M.; Young, Katherine; Motyl, Mary R.; Karlowsky, James A.; Sahm, Daniel F.

    2017-01-01

    ABSTRACT Relebactam (formerly MK-7655) is an inhibitor of class A and C β-lactamases, including Klebsiella pneumoniae carbapenemase (KPC), and is currently in clinical development in combination with imipenem-cilastatin. Using Clinical and Laboratory Standards Institute (CLSI)-defined broth microdilution methodology, we evaluated the in vitro activities of imipenem-relebactam, imipenem, and seven routinely tested parenteral antimicrobial agents against Gram-negative ESKAPE pathogens (including Klebsiella pneumoniae, n = 689; Acinetobacter baumannii, n = 72; Pseudomonas aeruginosa, n = 845; and Enterobacter spp., n = 399) submitted by 21 clinical laboratories in the United States in 2015 as part of the SMART (Study for Monitoring Antimicrobial Resistance Trends) global surveillance program. Relebactam was tested at a fixed concentration of 4 μg/ml in combination with doubling dilutions of imipenem. Imipenem-relebactam MICs were interpreted using CLSI imipenem breakpoints. The respective rates of susceptibility to imipenem-relebactam and imipenem were 94.2% (796/845) and 70.3% (594/845) for P. aeruginosa, 99.0% (682/689) and 96.1% (662/689) for K. pneumoniae, and 100% (399/399) and 98.0% (391/399) for Enterobacter spp. Relebactam restored imipenem susceptibility to 80.5% (202/251), 74.1% (20/27), and 100% (8/8) of isolates of imipenem-nonsusceptible P. aeruginosa, K. pneumoniae, and Enterobacter spp. Relebactam did not increase the number of isolates of Acinetobacter spp. susceptible to imipenem, and the rates of resistance to all of the agents tested against this pathogen were >30%. Further development of imipenem-relebactam is warranted given the demonstrated ability of relebactam to restore the activity of imipenem against current clinical isolates of Enterobacteriaceae and P. aeruginosa that are nonsusceptible to carbapenems and its potential as a therapy for treating patients with antimicrobial-resistant Gram-negative infections. PMID:28320716

  12. Pseudomonas aeruginosa essentials: an update on investigation of essential genes.

    PubMed

    Juhas, Mario

    2015-11-01

    Pseudomonas aeruginosa is the leading cause of nosocomial infections, particularly in immunocompromised, cancer, burn and cystic fibrosis patients. Development of novel antimicrobials against P. aeruginosa is therefore of the highest importance. Although the first reports on P. aeruginosa essential genes date back to the early 2000s, a number of more sensitive genomic approaches have been used recently to better define essential genes in this organism. These analyses highlight the evolution of the definition of an 'essential' gene from the traditional to the context-dependent. Essential genes, particularly those indispensable under the clinically relevant conditions, are considered to be promising targets of novel antibiotics against P. aeruginosa. This review provides an update on the investigation of P. aeruginosa essential genes. Special focus is on recently identified P. aeruginosa essential genes and their exploitation for the development of antimicrobials.

  13. Pseudomonas aeruginosa facilitates Campylobacter jejuni growth in biofilms under oxic flow conditions.

    PubMed

    Culotti, Alessandro; Packman, Aaron I

    2015-12-01

    We investigated the growth of Campylobacter jejuni in biofilms with Pseudomonas aeruginosa under oxic flow conditions. We observed the growth of C. jejuni in mono-culture, deposited on pre-established P. aeruginosa biofilms, and co-inoculated with P. aeruginosa. In mono-culture, C. jejuni was unable to form biofilms. However, deposited C. jejuni continuously grew on pre-established P. aeruginosa biofilms for a period of 3 days. The growth of scattered C. jejuni clusters was strictly limited to the P. aeruginosa biofilm surface, and no intergrowth was observed. Co-culturing of C. jejuni and P. aeruginosa also enabled the growth of both organisms in biofilms, with C. jejuni clusters developing on the surface of the P. aeruginosa biofilm. Dissolved oxygen (DO) measurements in the medium showed that P. aeruginosa biofilms depleted the effluent DO from 9.0 to 0.5 mg L(-1) 24 hours after inoculation. The localized microaerophilic environment generated by P. aeruginosa promoted the persistence and growth of C. jejuni. Our findings show that P. aeruginosa not only prolongs the survival of C. jejuni under oxic conditions, but also enables the growth of C. jejuni on the surface of P. aeruginosa biofilms. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Evolution of granulomas in lungs of mice infected aerogenically with Mycobacterium tuberculosis.

    PubMed

    Cardona, P J; Llatjós, R; Gordillo, S; Díaz, J; Ojanguren, I; Ariza, A; Ausina, V

    2000-08-01

    Aerogenous infection of C57Bl/6 mice with a virulent strain of Mycobacterium tuberculosis (CL 511) leads to the formation of primary granulomas in the lung where neutrophils, macrophages and subsequently, lymphocytes accumulate progressively around an initial cluster of infected macrophages. The spread of infection through the lung parenchyma gives rise to secondary granulomas featuring numerous lymphocytes that surround a small number of infected macrophages. Afterwards, foamy macrophages add an outer layer to the granulomas, which characteristically respect the pulmonary interstitium and remain confined within the alveolar spaces. This feature, in conjunction with the constant presence of M. tuberculosis in the products of broncho-alveolar lavage, suggests that the upward bronchial migration of infected macrophages may contribute significantly to pulmonary dissemination of mycobacterial infection. The latter would be in agreement with the persistence of chronic pulmonary infection in spite of a concomitant strong T helper 1 cell response.

  15. Identification of Human Intestinal Bacteria that Promote or Inhibit Inflammation

    DTIC Science & Technology

    2012-11-01

    Lactobacillus "acidophilus" Lactobacillus " plantarum " ProvidenCa"sp." Enterobacter"aerogenes" Lactobacillus "paraalimentarius" Salmonella"typhi...8217 indica3ve’of’the’poten3al’of’these’microbes’to’induce’intes3nal’inflamma3on.’ 0" 5" 10" 15" 20" 25" 30" 35" 40" 45" 50" no"bacteria" Lactobacillus "brevis" Escherichea"coli"(DH5a)" Klebsiella"pneumonia" Salmonella...only

  16. Bioethanol production from mannitol by a newly isolated bacterium, Enterobacter sp. JMP3.

    PubMed

    Wang, Jing; Kim, Young Mi; Rhee, Hong Soon; Lee, Min Woo; Park, Jong Moon

    2013-05-01

    In this study a new bacterium capable of growing on brown seaweed Laminaria japonica, Enterobacter sp. JMP3 was isolated from the gut of turban shell, Batillus cornutus. In anaerobic condition, it produced high yields of ethanol (1.15 mol-EtOH mol-mannitol(-1)) as well as organic acids from mannitol, the major carbohydrate component of L. japonica. Based on carbon distribution and metabolic flux analysis, it was revealed that mannitol was more favorable than glucose for ethanol production due to their different redox states. This indicates that L. japonica is one of the promising feedstock for bioethanol production. Additionally, the mannitol dehydrogenation pathway in Enterobacter sp. JMP3 was examined and verified. Finally, an attempt was made to explore the possibility of controlling ethanol production by altering the redox potential via addition of external NADH in mannitol fermentation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Pseudomonas aeruginosa infections of intact skin.

    PubMed

    Agger, W A; Mardan, A

    1995-02-01

    Pseudomonas aeruginosa infections of healthy skin are uncommon. We report four cases of P. aeruginosa infections of intact skin. These cases illustrate the clinical spectrum of these cutaneous infections: localized, mild epidermal infections (the green nail syndrome and webbed space infections), moderately serious infections (cutaneous folliculitis and otitis externa), and, in immunocompromised patients, extremely serious infections (malignant otitis externa, perirectal infection, and ecthyma gangrenosum).

  18. Plant growth promotion and root colonization by EPS producing Enterobacter sp. RZS5 under heavy metal contaminated soil.

    PubMed

    Sayyed, R Z; Patel, P R; Shaikh, S S

    2015-02-01

    The heavy metal resistant bacterium isolated from field soil and identified as Enterobacter sp. RZS5 tolerates a high concentration (100-2000 μM) of various heavy metal ions such as Mn2+, Ni2+, Zn2+, Cu2+, CO2+ and Fe2+ when grown in such environment and produces exopolysaccharides (EPS). Here, we have demonstrated EPS production by Enterobacter sp. RZS5 during 60 h of growth in yeast extract mannitol broth (YEMB). The yield increased by two fold after the addition of 60 μM of Ca2+; 50 μM of Fe2+ and 60 μM of Mg2+ ions in YEMB, and the optimization of physico-chemical parameters. EPS was extracted with 30% (v/v) of isopropanol as against the commonly used 50% (v/v) isopropanol method. EPS-rich broth promoted seed germination, shoot height, root length, number of leaves and chlorophyll content of wheat (Triticum aestivum) seed and peanut (Arachis hypogaea) seed. The higher colony-forming unit of Enterobacter sp. in soil inoculated with EPS rich broth of Enterobacter sp. indicated the root colonizing potential and rhizosphere competence of the isolate. The FTIR spectra of the EPS extract confirmed the presence of the functional group characteristics of EPS known to exhibit a high binding affinity towards certain metal ions. This overall growth and vigour in plants along with the effective root colonization, reflected the potential of the isolate as an efficient bio-inoculant in bioremediation.

  19. Gallium-Protoporphyrin IX Inhibits Pseudomonas aeruginosa Growth by Targeting Cytochromes.

    PubMed

    Hijazi, Sarah; Visca, Paolo; Frangipani, Emanuela

    2017-01-01

    Pseudomonas aeruginosa is a challenging pathogen due to both innate and acquired resistance to antibiotics. It is capable of causing a variety of infections, including chronic lung infection in cystic fibrosis (CF) patients. Given the importance of iron in bacterial physiology and pathogenicity, iron-uptake and metabolism have become attractive targets for the development of new antibacterial compounds. P. aeruginosa can acquire iron from a variety of sources to fulfill its nutritional requirements both in the environment and in the infected host. The adaptation of P. aeruginosa to heme iron acquisition in the CF lung makes heme utilization pathways a promising target for the development of new anti- Pseudomonas drugs. Gallium [Ga(III)] is an iron mimetic metal which inhibits P. aeruginosa growth by interfering with iron-dependent metabolism. The Ga(III) complex of the heme precursor protoporphyrin IX (GaPPIX) showed enhanced antibacterial activity against several bacterial species, although no inhibitory effect has been reported on P. aeruginosa . Here, we demonstrate that GaPPIX is indeed capable of inhibiting the growth of clinical P. aeruginosa strains under iron-deplete conditions, as those encountered by bacteria during infection, and that GaPPIX inhibition is reversed by iron. Using P. aeruginosa PAO1 as model organism, we show that GaPPIX enters cells through both the heme-uptake systems has and phu , primarily via the PhuR receptor which plays a crucial role in P. aeruginosa adaptation to the CF lung. We also demonstrate that intracellular GaPPIX inhibits the aerobic growth of P. aeruginosa by targeting cytochromes, thus interfering with cellular respiration.

  20. Detection of Metallo-Beta Lactamases Among Carbapenem-Resistant Pseudomonas aeruginosa.

    PubMed

    Farajzadeh Sheikh, Ahmad; Rostami, Soodabeh; Jolodar, Abbas; Tabatabaiefar, Mohammad Amin; Khorvash, Farzin; Saki, Azadeh; Shoja, Saeed; Sheikhi, Raheleh

    2014-11-01

    Carbapenems are important drugs used for the treatment of Pseudomonas aeruginosa infections, however metallo-β-lactamases (MBL) are able to efficiently hydrolyze these classes of drugs. Immediate detection of the MBL-producing P. aeruginosa is necessary in order to accurately treat infections caused by this organism. To determine the prevalence of MBL producing P. aeruginosa in burn and non-burn patients by two phenotypic tests and polymerase chain reaction (PCR) and to compare phenotypic tests with PCR. A total of 223 non-duplicate strains of P. aeruginosa were collected from three teaching hospitals of Ahvaz, Iran. Antimicrobial susceptibility and minimum inhibitory concentrations (MICs) of carbapenems (imipenem, meropenem, doripenem and ertapenem) were determined by the Kirby-Bauer and E-test methods. Combined disk (CD) test, MBL E-test and PCR were performed for carbapenem-resistant P. aeruginosa isolates. Amongst all the P. aeruginosa isolates, 58.7% were resistant to imipenem while 31.8%, 13.5% and 74.4% were resistant to meropenem, doripenem and ertapenem, respectively. Amongst all the P. aeruginosa isolates, 44.4% were multidrug resistant and 13.45% were resistant to all of the carbapenems. The CD test with doripenem disk / 750 μg ethylene diamine tetra acetic acid (EDTA) had the highest efficiency compared to the other phenotypic tests. bla IMP and bla VIM genes were detected in 11.7% and 0.4% of isolates, respectively. bla SPM and bla NDM genes were not observed. Epidemiological and regional evaluation of MBL-producing P. aeruginosa through simple and inexpensive methods should be considered for effective treatment of carbapenem-resistant P. aeruginosa infections.

  1. Synthesis, base pairing and structure studies of geranylated RNA.

    PubMed

    Wang, Rui; Vangaveti, Sweta; Ranganathan, Srivathsan V; Basanta-Sanchez, Maria; Haruehanroengra, Phensinee; Chen, Alan; Sheng, Jia

    2016-07-27

    Natural RNAs utilize extensive chemical modifications to diversify their structures and functions. 2-Thiouridine geranylation is a special hydrophobic tRNA modification that has been discovered very recently in several bacteria, such as Escherichia coli, Enterobacter aerogenes, Pseudomonas aeruginosa and Salmonella Typhimurium The geranylated residues are located in the first anticodon position of tRNAs specific for lysine, glutamine and glutamic acid. This big hydrophobic terpene functional group affects the codon recognition patterns and reduces frameshifting errors during translation. We aimed to systematically study the structure, function and biosynthesis mechanism of this geranylation pathway, as well as answer the question of why nature uses such a hydrophobic modification in hydrophilic RNA systems. Recently, we have synthesized the deoxy-analog of S-geranyluridine and showed the geranylated T-G pair is much stronger than the geranylated T-A pair and other mismatched pairs in the B-form DNA duplex context, which is consistent with the observation that the geranylated tRNA(Glu) UUC recognizes GAG more efficiently than GAA. In this manuscript we report the synthesis and base pairing specificity studies of geranylated RNA oligos. We also report extensive molecular simulation studies to explore the structural features of the geranyl group in the context of A-form RNA and its effect on codon-anticodon interaction during ribosome binding. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. Surveillance of multidrug resistant uropathogenic bacteria in hospitalized patients in Indian

    PubMed Central

    Mishra, Monali Priyadarsini; Debata, Nagen Kumar; Padhy, Rabindra Nath

    2013-01-01

    Objective To record surveillance, antibiotic resistance of uropathogens of hospitalized patients over a period of 18 months. Methods Urine samples from wards and cabins were used for isolating urinary tract infection (UTI)-causing bacteria that were cultured on suitable selective media and identified by biochemical tests; and their antibiograms were ascertained by Kirby-Bauer's disc diffusion method, in each 6-month interval of the study period, using 18 antibiotics of five different classes. Results From wards and cabins, 1 245 samples were collected, from which 996 strains of bacteria belonging to 11 species were isolated, during April 2011 to September 2012. Two Gram-positive, Staphylococcus aureus (S. aureus) and Enterococcus faecalis (E. faecalis), and nine Gram-negative bacteria, Acinetobacter baumannii, Citrobacter sp., Escherichia coli, Enterobacter aerogenes, Klebsiella pneumoniae, Klebsiella oxytoca, Proteus mirabilis, Proteus vulgaris and Pseudomonas aeruginosa were isolated. Both S. aureus and E. faecalis were vancomycin resistant, and resistant-strains of all pathogens increased in each 6-month period of study. Particularly, all Gram-negatives were resistant to nitrofurantoin and co-trimoxazole, the most preferred antibiotics of empiric therapy for UTI. Conclusions Antibiograms of 11 UTI-causing bacteria recorded in this study indicated moderately higher numbers of strains resistant to each antibiotic studied, generating the fear of precipitating fervent episodes in public health particularly with bacteria, Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae and S. aureus. Moreover, vancomycin resistance in strains of S. aureus and E. faecalis is a matter of concern. PMID:23620859

  3. Antibacterial Activity of Ethyl Acetate the Extract of Noni Fruit (Morinda citrifolia L.) Against Bacterial Spoilage in Fish

    NASA Astrophysics Data System (ADS)

    Nugraheni, E. R.; Adriani, G. R.; Munawaroh, H.

    2017-04-01

    Noni fruit (Morinda citrifolia L.) contains compounds that have potential as antibacterial agent. Antibacterial compounds produced noni fruit (M. citrifolia L.) can inhibit bacterial growth. This study was conducted to test the antibacterial activity of ethyl acetate extract of noni fruit (M. citrifolia L.) against spoilage bacterial in fish. Pseudomonas aeruginosa, Bacillus cereus, Escherichia coli, Klebsiella oxytoca, and Enterobacter aerogenes isolates and examine antibacterial phytochemical profile. Extraction of noni compounds was done by maceration, followed by partition with ethyl acetate to obtain the soluble and insoluble ethyl acetate fraction. Previews result show that the ethyl acetate extract had very strong activity. Extraction process continued by separation and isolation used preparative thin layer chromatography method, so that obtained five isolates and mark them as A, B, C, D and E. Antibacterial activity assay performed on isolates A, B, C, D, and E with 20 and 30% concentration. The test results showed that isolates A could not be inhibit the growth of bacteria, isolates B, C, D, and E has antibacterial activity with weak to strong inhibition. Isolate B had the greatest inhibition activity against the B. cereus, whereas isolates E had the greatest inhibition activity against P. aeroginosa. MIC (Minimum Inhibitor Concentration) and MBC (Minimum Bactericidal Concentration) test result showed that MIC and MBC values could not be determined. Analysis of compounds by TLC showed that isolate B suspected contains coumarin or flavonoids compounds that have antibacterial activity.

  4. Mechanisms of phagocytosis and host clearance of Pseudomonas aeruginosa

    PubMed Central

    Lovewell, Rustin R.; Patankar, Yash R.

    2014-01-01

    Pseudomonas aeruginosa is an opportunistic bacterial pathogen responsible for a high incidence of acute and chronic pulmonary infection. These infections are particularly prevalent in patients with chronic obstructive pulmonary disease and cystic fibrosis: much of the morbidity and pathophysiology associated with these diseases is due to a hypersusceptibility to bacterial infection. Innate immunity, primarily through inflammatory cytokine production, cellular recruitment, and phagocytic clearance by neutrophils and macrophages, is the key to endogenous control of P. aeruginosa infection. In this review, we highlight recent advances toward understanding the innate immune response to P. aeruginosa, with a focus on the role of phagocytes in control of P. aeruginosa infection. Specifically, we summarize the cellular and molecular mechanisms of phagocytic recognition and uptake of P. aeruginosa, and how current animal models of P. aeruginosa infection reflect clinical observations in the context of phagocytic clearance of the bacteria. Several notable phenotypic changes to the bacteria are consistently observed during chronic pulmonary infections, including changes to mucoidy and flagellar motility, that likely enable or reflect their ability to persist. These traits are likewise examined in the context of how the bacteria avoid phagocytic clearance, inflammation, and sterilizing immunity. PMID:24464809

  5. Mechanisms of phagocytosis and host clearance of Pseudomonas aeruginosa.

    PubMed

    Lovewell, Rustin R; Patankar, Yash R; Berwin, Brent

    2014-04-01

    Pseudomonas aeruginosa is an opportunistic bacterial pathogen responsible for a high incidence of acute and chronic pulmonary infection. These infections are particularly prevalent in patients with chronic obstructive pulmonary disease and cystic fibrosis: much of the morbidity and pathophysiology associated with these diseases is due to a hypersusceptibility to bacterial infection. Innate immunity, primarily through inflammatory cytokine production, cellular recruitment, and phagocytic clearance by neutrophils and macrophages, is the key to endogenous control of P. aeruginosa infection. In this review, we highlight recent advances toward understanding the innate immune response to P. aeruginosa, with a focus on the role of phagocytes in control of P. aeruginosa infection. Specifically, we summarize the cellular and molecular mechanisms of phagocytic recognition and uptake of P. aeruginosa, and how current animal models of P. aeruginosa infection reflect clinical observations in the context of phagocytic clearance of the bacteria. Several notable phenotypic changes to the bacteria are consistently observed during chronic pulmonary infections, including changes to mucoidy and flagellar motility, that likely enable or reflect their ability to persist. These traits are likewise examined in the context of how the bacteria avoid phagocytic clearance, inflammation, and sterilizing immunity.

  6. Increased cefepime MIC for enterobacteriacae clinical isolates.

    PubMed

    Najafi, Narges; Alikhani, Ahmad; Babamahmoudi, Farhang; Davoudi, Alireza; Ghasemiyan, Roya; Aliyan, Shahriar; Shoujaiifar, Arman

    2013-01-01

    Background : Cefepime was used as empirical treatment in ventilator-associated pneumonia (VAP) induced by gram-negative and gram-positive bacteria. This study aimed to determine the antimicrobial susceptibility pattern of cefepime against microorganism causing VAP in Mazandaran, North of Iran. This study was performed on VAP patients diagnosed with clinical pulmonary infection score (CPIS) scores in ICU of two hospitals. For each patient suspected of having VAP, quantitative culture of endotracheal aspiration (QEA) was performed and MIC was determined by micro dilution test. Data were collected and analyzed. Thirty- five cases of enterobacteriaceae were isolated orderly including E coli 13, P. aeruginosa 11, Enterobacter 7 and K. pneumonia 4 cases. All the isolated E. coli, Enterobacter and Klebsiella, 54.5% of P. aeruginosa isolated were fully resistant to cefepime. The results of this study show that cefepime is not a reasonable choice for empirical treatment of nosocomial pneumonia and VAP.

  7. Analysis of etiology and drug resistance of biliary infections.

    PubMed

    Wang, Xin; Li, Qiu; Zou, Shengquan; Sun, Ziyong; Zhu, Feng

    2004-01-01

    The bile was collected from fro patients with biliary infections, with the bacterium isolated to study the sensitivity of each kind of the bacterium to several antibiotics in common use. Except G- bacterium, we also found some kinds of G+ bacterium in infection bile. G- bacterium were not sensitive to Clindamycin, G+ bacterium were sensitive to Ciprofloxacin. Escherichia coli, Xanthomonas maltophilia, Enterobacter cloacae, Pseudomonas aeruginosa were sensitive to Ampicillin. G+ bacterium were not sensitive to Azactam. Enterococcus faecalis, Enterococcus faecium, Enterobacter cloacae were not sensitive to Ceftazidime. Enterococcus faecalis, Staphylococcus coagulase negative, Staphylococcus epidermidis, Pseudomonas aeruginosa were not sensitive to Ceftriaxone Sodium. We didn't found any bacterium resistance Imipenem. The possibility of the existence of G+ bacterium as well as drug resistance should be considered n patients with biliary infections. The value of susceptibility test should be respected to avoid drug abuse of antibiotics.

  8. [Prostate histopathology of NIH category IV prostatitis detected by sextant prostate needle biopsy from the patients with high prostatic specific antigen].

    PubMed

    Shimomura, Tatsuya; Kiyota, Hiroshi; Takahashi, Hiroyuki; Madarame, Jun; Kimura, Takahiro; Onodera, Shouichi

    2003-08-01

    Asymptomatic prostatitis is classified as category IV in NIH classification of prostatitis syndrome (1999). No report concerning this category has been present. We investigated this category histopathologically and clinically, in order to clarify the histopathological distribution and its correlation to the clinical features, in this study. Among 785 patients who were suspected prostate cancer because of their high prostatic specific antigen (PSA) values and to have a sextant prostate needle biopsy was performed between January, 1996 and December, 2000, 88 patients (11.2%) were diagnosed as NIH category IV prostatitis (asymptomatic prostatitis). We observed all pathological specimens stained with Hematoxylin-Eosine, and classified them into subtypes according to the classification criteria for prostatitis defined by True et al. (1999). We also investigated the relationship between histopathological distribution and clinical features such as PSA values, PSA density, the incidence of pyuria or bacteriuria. In the histopathological study, grade distributions were 12.5% (11/88) in mild, 71.6% (63/88) in moderate, and 15.9% (14/88) in severe. Location distributions were 2.3% (2/88) in glandular, 68.2% (60/88) in periglandular, and 29.5% (26/88) in stromal. No relationship between these subtypes and clinical features was recognized statistically. However, 7 patients (7.95%) were diagnosed as prostate cancers, later. Pyuria was found in 29.1% (23/79). Bacteriuria was present in 14.3% (11/77). Isolated bacteria were 4 strains of Enterococcus faccalis, 2 strains of each of Pseudomonas aeruginosa and Staphylococcus aureus, and one strain of each of Escherichia coli, Klebsiella oxytoca, Enterobacter cloacae, Enterobacter aerogenes, Staphylococcus haemolyticus, and Staphylococcus epidermidis. Gram positive rod, and Candida sp. No relationship between these subtypes and bacterial species was recognized. These results indicated that the incidence of NIII category IV prostatits

  9. Comparison of UVB and UVC irradiation disinfection efficacies on Pseudomonas Aeruginosa (P. aeruginosa) biofilm

    NASA Astrophysics Data System (ADS)

    Argyraki, A.; Markvart, M.; Nielsen, Anne; Bjarnsholt, T.; Bjørndal, L.; Petersen, P. M.

    2016-04-01

    Disinfection routines are important in all clinical applications. The uprising problem of antibiotic resistance has driven major research efforts towards alternative disinfection approaches, involving light-based solutions. Pseudomonas aeruginosa (P. aeruginosa) is a common bacterium that can cause skin, soft tissue, lungs, kidney and urinary tract infections. Moreover, it can be found on and in medical equipment causing often cross infections in hospitals. The objective of this study was to test the efficiency, of two different light-based disinfection treatments, namely UVB and UVC irradiation, on P. aeruginosa biofilms at different growth stages. In our experiments a new type of UV light emitting diodes (LEDs) were used to deliver UV irradiation on the biofilms, in the UVB (296nm) and UVC (266nm) region. The killing rate was studied as a function of dose for 24h grown biofilms. The dose was ramped from 72J/m2 to 10000J/m2. It was shown that UVB irradiation was more effective than UVC irradiation in inactivating P. aeruginosa biofilms. No colony forming units (CFU) were observed for the UVB treated biofilms when the dose was 10000 J/m2 (CFU in control sample: 7.5 x 104). UVB irradiation at a dose of 20000J/m2 on mature biofilms (72h grown) resulted in a 3.9 log killing efficacy. The fact that the wavelength of 296nm exists in daylight and has such disinfection ability on biofilms gives new perspectives for applications within disinfection at hospitals.

  10. T lymphocyte-mediated protection against Pseudomonas aeruginosa infection in granulocytopenic mice.

    PubMed Central

    Powderly, W G; Pier, G B; Markham, R B

    1986-01-01

    BALB/c mice immunized with Pseudomonas aeruginosa immunotype 1 polysaccharide develop protective T cell immunity to bacterial challenge. In vitro, T cells from immunized mice kill P. aeruginosa by production of a bactericidal lymphokine. The present study demonstrates that adoptive transfer of T cells from immunized BALB/c mice to granulocytopenic mice resulted in 97% survival on challenge with P. aeruginosa, compared with 17% survival with adoptive transfer of T cells from nonimmune BALB/c mice. This protection is specifically elicited by reexposure to the original immunizing antigen; adoptive recipients cannot withstand challenge with immunotype 3 P. aeruginosa. However, the adoptive recipients do survive simultaneous infection with both P. aeruginosa immunotypes 1 and 3. Adoptive transfer of T cells from the congenic CB.20 mice, which are unable to kill P. aeruginosa in vitro, provides only 20% protection to granulocytopenic mice. These studies indicate that transfer of specific immune T lymphocytes can significantly enhance the resistance to P. aeruginosa infection in granulocytopenic mice. PMID:2426306

  11. Current therapies for pseudomonas aeruginosa.

    PubMed

    Giamarellou, Helen; Kanellakopoulou, Kyriaki

    2008-04-01

    Based on the worldwide prevalence of multidrug-resistant strains of Pseudomas aeruginosa and the fact that no newer antipseudomonal agents are available, this article aims to investigate therapeutic solutions for combating infections caused by P aeruginosa, including multidrug-resistant strains. The article focuses mainly on colistin, the re-emerging old antibiotic that possesses prominent antipseudomonal activity in vitro and on doripenem, a newer carbapenem that seems to be close to its global marketing. Regarding older antipseudomonal antibiotics that have been reviewed extensively, only newer aspects on their use are considered in this article.

  12. Dissecting the machinery that introduces disulfide bonds in Pseudomonas aeruginosa.

    PubMed

    Arts, Isabelle S; Ball, Geneviève; Leverrier, Pauline; Garvis, Steven; Nicolaes, Valérie; Vertommen, Didier; Ize, Bérengère; Tamu Dufe, Veronica; Messens, Joris; Voulhoux, Romé; Collet, Jean-François

    2013-12-10

    Disulfide bond formation is required for the folding of many bacterial virulence factors. However, whereas the Escherichia coli disulfide bond-forming system is well characterized, not much is known on the pathways that oxidatively fold proteins in pathogenic bacteria. Here, we report the detailed unraveling of the pathway that introduces disulfide bonds in the periplasm of the human pathogen Pseudomonas aeruginosa. The genome of P. aeruginosa uniquely encodes two DsbA proteins (P. aeruginosa DsbA1 [PaDsbA1] and PaDsbA2) and two DsbB proteins (PaDsbB1 and PaDsbB2). We found that PaDsbA1, the primary donor of disulfide bonds to secreted proteins, is maintained oxidized in vivo by both PaDsbB1 and PaDsbB2. In vitro reconstitution of the pathway confirms that both PaDsbB1 and PaDsbB2 shuttle electrons from PaDsbA1 to membrane-bound quinones. Accordingly, deletion of both P. aeruginosa dsbB1 (PadsbB1) and PadsbB2 is required to prevent the folding of several P. aeruginosa virulence factors and to lead to a significant decrease in pathogenicity. Using a high-throughput proteomic approach, we also analyzed the impact of PadsbA1 deletion on the global periplasmic proteome of P. aeruginosa, which allowed us to identify more than 20 new potential substrates of this major oxidoreductase. Finally, we report the biochemical and structural characterization of PaDsbA2, a highly oxidizing oxidoreductase, which seems to be expressed under specific conditions. By fully dissecting the machinery that introduces disulfide bonds in P. aeruginosa, our work opens the way to the design of novel antibacterial molecules able to disarm this pathogen by preventing the proper assembly of its arsenal of virulence factors. The human pathogen Pseudomonas aeruginosa causes life-threatening infections in immunodepressed and cystic fibrosis patients. The emergence of P. aeruginosa strains resistant to all of the available antibacterial agents calls for the urgent development of new antibiotics

  13. Gallium-Protoporphyrin IX Inhibits Pseudomonas aeruginosa Growth by Targeting Cytochromes

    PubMed Central

    Hijazi, Sarah; Visca, Paolo; Frangipani, Emanuela

    2017-01-01

    Pseudomonas aeruginosa is a challenging pathogen due to both innate and acquired resistance to antibiotics. It is capable of causing a variety of infections, including chronic lung infection in cystic fibrosis (CF) patients. Given the importance of iron in bacterial physiology and pathogenicity, iron-uptake and metabolism have become attractive targets for the development of new antibacterial compounds. P. aeruginosa can acquire iron from a variety of sources to fulfill its nutritional requirements both in the environment and in the infected host. The adaptation of P. aeruginosa to heme iron acquisition in the CF lung makes heme utilization pathways a promising target for the development of new anti-Pseudomonas drugs. Gallium [Ga(III)] is an iron mimetic metal which inhibits P. aeruginosa growth by interfering with iron-dependent metabolism. The Ga(III) complex of the heme precursor protoporphyrin IX (GaPPIX) showed enhanced antibacterial activity against several bacterial species, although no inhibitory effect has been reported on P. aeruginosa. Here, we demonstrate that GaPPIX is indeed capable of inhibiting the growth of clinical P. aeruginosa strains under iron-deplete conditions, as those encountered by bacteria during infection, and that GaPPIX inhibition is reversed by iron. Using P. aeruginosa PAO1 as model organism, we show that GaPPIX enters cells through both the heme-uptake systems has and phu, primarily via the PhuR receptor which plays a crucial role in P. aeruginosa adaptation to the CF lung. We also demonstrate that intracellular GaPPIX inhibits the aerobic growth of P. aeruginosa by targeting cytochromes, thus interfering with cellular respiration. PMID:28184354

  14. Pseudomonas aeruginosa Population Structure Revisited

    PubMed Central

    Pirnay, Jean-Paul; Bilocq, Florence; Pot, Bruno; Cornelis, Pierre; Zizi, Martin; Van Eldere, Johan; Deschaght, Pieter; Vaneechoutte, Mario; Jennes, Serge; Pitt, Tyrone; De Vos, Daniel

    2009-01-01

    At present there are strong indications that Pseudomonas aeruginosa exhibits an epidemic population structure; clinical isolates are indistinguishable from environmental isolates, and they do not exhibit a specific (disease) habitat selection. However, some important issues, such as the worldwide emergence of highly transmissible P. aeruginosa clones among cystic fibrosis (CF) patients and the spread and persistence of multidrug resistant (MDR) strains in hospital wards with high antibiotic pressure, remain contentious. To further investigate the population structure of P. aeruginosa, eight parameters were analyzed and combined for 328 unrelated isolates, collected over the last 125 years from 69 localities in 30 countries on five continents, from diverse clinical (human and animal) and environmental habitats. The analysed parameters were: i) O serotype, ii) Fluorescent Amplified-Fragment Length Polymorphism (FALFP) pattern, nucleotide sequences of outer membrane protein genes, iii) oprI, iv) oprL, v) oprD, vi) pyoverdine receptor gene profile (fpvA type and fpvB prevalence), and prevalence of vii) exoenzyme genes exoS and exoU and viii) group I pilin glycosyltransferase gene tfpO. These traits were combined and analysed using biological data analysis software and visualized in the form of a minimum spanning tree (MST). We revealed a network of relationships between all analyzed parameters and non-congruence between experiments. At the same time we observed several conserved clones, characterized by an almost identical data set. These observations confirm the nonclonal epidemic population structure of P. aeruginosa, a superficially clonal structure with frequent recombinations, in which occasionally highly successful epidemic clones arise. One of these clones is the renown and widespread MDR serotype O12 clone. On the other hand, we found no evidence for a widespread CF transmissible clone. All but one of the 43 analysed CF strains belonged to a ubiquitous P

  15. Pseudomonas aeruginosa Dose-Response and Bathing Water Infection

    EPA Science Inventory

    Pseudomonas aeruginosa is the most commonly identified opportunistic pathogen associated with pool acquired bather disease. To better understand why this microorganism poses this protracted problem we recently appraised P. aeruginosa pool risk management. Much is known about the ...

  16. Alterations in the response of pigs to Salmonella typhimurium when provided Enterobacter cloacae

    USDA-ARS?s Scientific Manuscript database

    Weanling pigs are at risk of succumbing to illness due to an immature immune system and insufficient supply of available energy at the time of weaning. Recent evidence has suggested that providing pigs with Enterobacter cloacae can increase the concentration of circulating triglycerides (TAGs) and t...

  17. Sanitary and bacteriological aspects of sewage treatment.

    PubMed

    Filipkowska, Zofia

    2003-01-01

    A study into the removal of contamination load and indicator bacteria was carried out in 1992-1996 in the mechanical, biological and chemical waste-water treatment plant WTP in Lezany, in the County of Reszel, in the Province of Warmia and Mazury in Poland. The results of chemical analyses found a high efficiency of removal of carbon compounds, COD (90%) and BOD (98%), in the process of purification of household sewage. In addition, a high effectiveness of total nitrogen, on average 71%, and unsatisfactory removal of ammonia nitrogen and phosphorus compounds were found. The results of microbiological analyses confirmed the high efficiency of removal of indicator bacteria in the process of sewage treatment from 94 to 97%. In the sewage after the final phase of purification in stabilization ponds, the following pathogenic bacteria were identified with the use of the EPL 21tests: Escherichia coli, Enterobacter agglomerans, Enterobacter aerogenes, Enterobacter cloacae, Enterobacter georgoriae, Citrobacter freundii, Klebsiella pnemoniae, Klebsiella oxytoca, Klebsiella ozaenae, Ervinia herbicola, Edwardsiella tarda, Serratia odoriefra, Serratia marcescens, Providencia alcalifaciens, Hafnia alvei, Yersina pestis, Yersina pseudotuberculosis, Yersinia fredericksenii, Salmonella spp., Shigella dysenteriae, Aeromons hydrophila, Pseudomonas aerulginosa. The obtained results show that although the sewage purification system is efficient and reduces the contamination load to the level required by the regulations (Ministry of Environmental Protection, Natural Resources and Forestry from 20 September 1991) and removes a great percentage of indicator bacteria, the purified sewage may be a source of pathogenic bacteria in inland waters.

  18. [Application of recombinase polymerase amplification in the detection of Pseudomonas aeruginosa].

    PubMed

    Jin, X J; Gong, Y L; Yang, L; Mo, B H; Peng, Y Z; He, P; Zhao, J N; Li, X L

    2018-04-20

    Objective: To establish an optimized method of recombinase polymerase amplification (RPA) to rapidly detect Pseudomonas aeruginosa in clinic. Methods: (1) The DNA templates of one standard Pseudomonas aeruginosa strain was extracted and detected by polymerase chain reaction (PCR), real-time fluorescence quantitative PCR and RPA. Time of sample loading, time of amplification, and time of detection of the three methods were recorded. (2) One standard Pseudomonas aeruginosa strain was diluted in 7 concentrations of 1×10(7,) 1×10(6,) 1×10(5,) 1×10(4,) 1×10(3,) 1×10(2,) and 1×10(1) colony forming unit (CFU)/mL after recovery and cultivation. The DNA templates of Pseudomonas aeruginosa and negative control strain Pseudomonas putida were extracted and detected by PCR, real-time fluorescence quantitative PCR, and RPA separately. The sensitivity of the three methods in detecting Pseudomonas aeruginosa was analyzed. (3) The DNA templates of one standard Pseudomonas aeruginosa strain and four negative control strains ( Staphylococcus aureus, Acinetobacter baumanii, Candida albicans, and Pseudomonas putida ) were extracted separately, and then they were detected by PCR, real-time fluorescence quantitative PCR, and RPA. The specificity of the three methods in detecting Pseudomonas aeruginosa was analyzed. (4) The DNA templates of 28 clinical strains of Pseudomonas aeruginosa preserved in glycerin, 1 clinical strain of which was taken by cotton swab, and negative control strain Pseudomonas putida were extracted separately, and then they were detected by RPA. Positive amplification signals of the clinical strains were observed, and the detection rate was calculated. All experiments were repeated for 3 times. Sensitivity results were analyzed by GraphPad Prism 5.01 statistical software. Results: (1) The loading time of RPA, PCR, and real-time fluorescence quantitative PCR for detecting Pseudomonas aeruginosa were all 20 minutes. In PCR, time of amplification was 98 minutes

  19. Quorum quenching activity in cell-free lysate of endophytic bacteria isolated from Pterocarpus santalinus Linn., and its effect on quorum sensing regulated biofilm in Pseudomonas aeruginosa PAO1.

    PubMed

    Rajesh, P S; Ravishankar Rai, V

    2014-01-01

    Quorum sensing mechanism allows the microorganisms to resist the antibiotic treatment by forming biofilms. Quorum quenching is one of the mechanisms to control the development of drug resistance in microbes. Endophyte bacteria are beneficial to plant growth as they support the immune system against the pathogen attack. The endophytic bacteria present in Pterocarpus santalinus were screened for the presence of N-acyl homoserine lactones (AHLs) degrading bacteria using biosensor strains and further confirmed by quantifying the violacein production. Cell-free lysate of endophytic bacteria, Bacillus firmus PT18 and Enterobacter asburiae PT39 exhibited potent AHL degrading ability by inhibiting about 80% violacein production in biosensor strain. Furthermore, when the cell-free lysate was applied to Pseudomonas aeruginosa PAO1 and PAO1-JP2 biofilm it resulted in significant (p<0.01) inhibition of biofilm formation. The biofilm inhibition was confirmed by visualization of biofilm slides under fluorescence microscopy, which showed decrease in total biomass formation in treated slides. Isolation and amplification of the gene (aiiA) indicated that the presence of AHL lactonase in cell-free lysate and sequence alignment indicated that AiiA contains a "HXHXDH" zinc-binding motif that is being conserved in several groups of metallohydrolases. Therefore, the study shows the potential of AHLs degradation by AHL lactonase present in cell-free lysate of isolated endophytic bacteria and inhibition of quorum sensing regulated biofilm formation in P. aeruginosa PAO1. Copyright © 2013 Elsevier GmbH. All rights reserved.

  20. Phenotypic changes contributing to Enterobacter gergoviae biocide resistance.

    PubMed

    Périamé, M; Philippe, N; Condell, O; Fanning, S; Pagès, J-M; Davin-Regli, A

    2015-08-01

    Enterobacter gergoviae is a recurrent contaminant of cosmetic and hygiene products. To understand how this bacterium adapts to biocides, we studied Ent. gergoviae CIP 76.01 and its triclosan and Methylisothiazolinone-chloromethylisothiazolinone (MIT-CMIT) tolerant isogenic mutants. They were compared with others also isolated from contaminated cosmetics. Phenotypic differences were noted and these included changes in the bacterial envelope and flagella along with differences in motility, and biofilm growth rates. Triclosan and MIT-CMIT derivatives expressed flagella and other MIT-CMIT derivatives exhibited some external appendages. Those bacteria expressing a high-level minimal inhibitory concentration to MIT-CMIT, expressed a strong biofilm formation. No differential phenotypes were noted for carbon source utilisation. Enterobacter gergoviae demonstrated a diverse response to both of these preservatives contained in cosmetic preparations, depending on their concentrations. Interestingly, this adaptive response is associated with modifications of filament structure-related proteins contributing to increase the organism motility and the production of biofilm. Recurrent contaminations of cosmetics products by Ent. gergoviae, needed a better understanding concerning the bacterial adaptation to preservative agents, with particular concern to triclosan and MIT-CMIT. We demonstrated that bacteria response is associated to various mechanisms represented by expression of external appendages (pili or fimbriae) that control cell motility and biofilm formation and evolving as the concentration of biocides adaptation increased. Such mechanisms which are not chemical specific can also promote a cross-resistance to other biocidal agents. The characterization of Ent. gergoviae adaptability to biocides allows industry to adjust the ranges of concentrations and composition of preservatives in formula. © 2015 The Society for Applied Microbiology.

  1. Evaluating Hawaii-Grown Papaya for Resistance to Internal Yellowing Disease Caused by Enterobacter cloacae

    USDA-ARS?s Scientific Manuscript database

    Papaya (Carica papaya L.) cultivars and breeding lines were evaluated for resistance to Enterobacter cloacae (Jordan) Hormaeche & Edwards, the bacterial causal agent of internal yellowing disease (IY), using a range of concentrations of the bacterium. Linear regression analysis was performed and IY ...

  2. Genetic and Functional Diversity of Pseudomonas aeruginosa Lipopolysaccharide

    PubMed Central

    Lam, Joseph S.; Taylor, Véronique L.; Islam, Salim T.; Hao, Youai; Kocíncová, Dana

    2011-01-01

    Lipopolysccharide (LPS) is an integral component of the Pseudomonas aeruginosa cell envelope, occupying the outer leaflet of the outer membrane in this Gram-negative opportunistic pathogen. It is important for bacterium–host interactions and has been shown to be a major virulence factor for this organism. Structurally, P. aeruginosa LPS is composed of three domains, namely, lipid A, core oligosaccharide, and the distal O antigen (O-Ag). Most P. aeruginosa strains produce two distinct forms of O-Ag, one a homopolymer of D-rhamnose that is a common polysaccharide antigen (CPA, formerly termed A band), and the other a heteropolymer of three to five distinct (and often unique dideoxy) sugars in its repeat units, known as O-specific antigen (OSA, formerly termed B band). Compositional differences in the O units among the OSA from different strains form the basis of the International Antigenic Typing Scheme for classification via serotyping of different strains of P. aeruginosa. The focus of this review is to provide state-of-the-art knowledge on the genetic and resultant functional diversity of LPS produced by P. aeruginosa. The underlying factors contributing to this diversity will be thoroughly discussed and presented in the context of its contributions to host–pathogen interactions and the control/prevention of infection. PMID:21687428

  3. [Post-marketing surveillance of antibacterial activities of cefozopran against various clinical isolates--II. Gram-negative bacteria].

    PubMed

    Igari, Jun; Oguri, Toyoko; Hiramatsu, Nobuyoshi; Akiyama, Kazumitsu; Koyama, Tsuneo

    2003-10-01

    As a post-marketing surveillance, the in vitro antibacterial activities of cefozopran (CZOP), an agent of cephems, against various clinical isolates were yearly evaluated and compared with those of other cephems, oxacephems, carbapenems, monobactams, and penicillins. Changes in CZOP susceptibility among bacteria were also evaluated with the bacterial resistance ratio calculated from the breakpoint MIC. Twenty-five species (4,154 strains) of Gram-negative bacteria were isolated from the clinical materials annually collected from 1996 to 2001, and consisted of Moraxella (Branhamella) catarrhalis, Haemophilus influenzae, Escherichia coli, Klebsiella pneumoniae, Klebsiella oxytoca, Enterobacter cloacae, Enterobacter aerogenes, Serratia marcescens, Serratia liquefaciens, Citrobacter freundii, Citrobacter koseri, Proteus mirabilis, Proteus vulgaris, Morganella morganii, Providencia spp., Pseudomonas aeruginosa, Pseudomonas fluorescens, Pseudomonas putida, Acinetobacter baumannii, Acinetobacter Iwoffii, Burkholderia cepacia, Stenotrophomonas maltophilia, Bacteroides fragilis group, and Prevotella/Porphyromonas. CZOP preserved its antibacterial activity against M. (B.) catarrhalis (MIC90: 4 micrograms/mL) and showed comparable activity to carbapenems against H. influenzae (MIC90: 1 microgram/mL). The antibacterial activity of CZOP against E. coli was preferable (MIC90: 0.125 microgram/mL) and comparable to those of cefpirome (CPR), cefepime (CFPM), and imipenem (IPM). The MIC90 of CZOP against K. pneumoniae and K. oxytoca was 1 and 0.25 microgram/mL, respectively. The MIC90 of CZOP against E. cloacae increased during 6 years (32 to 128 micrograms/mL). The antibacterial activity of CZOP against E. aerogenes was preferable (MIC90: 1 microgram/mL). The antibacterial activities of CZOP against S. marcescens and S. liquefaciens were relatively potent (MIC90: 0.5 and 0.25 microgram/mL) and comparable to those of CPR, CFPM, and carumonam. CZOP preserved comparable antibacterial

  4. Pseudomonas Aeruginosa: Resistance to the Max

    PubMed Central

    Poole, Keith

    2011-01-01

    Pseudomonas aeruginosa is intrinsically resistant to a variety of antimicrobials and can develop resistance during anti-pseudomonal chemotherapy both of which compromise treatment of infections caused by this organism. Resistance to multiple classes of antimicrobials (multidrug resistance) in particular is increasingly common in P. aeruginosa, with a number of reports of pan-resistant isolates treatable with a single agent, colistin. Acquired resistance in this organism is multifactorial and attributable to chromosomal mutations and the acquisition of resistance genes via horizontal gene transfer. Mutational changes impacting resistance include upregulation of multidrug efflux systems to promote antimicrobial expulsion, derepression of ampC, AmpC alterations that expand the enzyme's substrate specificity (i.e., extended-spectrum AmpC), alterations to outer membrane permeability to limit antimicrobial entry and alterations to antimicrobial targets. Acquired mechanisms contributing to resistance in P. aeruginosa include β-lactamases, notably the extended-spectrum β-lactamases and the carbapenemases that hydrolyze most β-lactams, aminoglycoside-modifying enzymes, and 16S rRNA methylases that provide high-level pan-aminoglycoside resistance. The organism's propensity to grow in vivo as antimicrobial-tolerant biofilms and the occurrence of hypermutator strains that yield antimicrobial resistant mutants at higher frequency also compromise anti-pseudomonal chemotherapy. With limited therapeutic options and increasing resistance will the untreatable P. aeruginosa infection soon be upon us? PMID:21747788

  5. My 40-Year History with Cronobacter/Enterobacter sakazakii – Lessons Learned, Myths Debunked, and Recommendations

    PubMed Central

    Farmer, John J.

    2015-01-01

    Much has been learned about organism in the Cronobacter/Enterobacter sakazakii complex since I first named and described Enterobacter sakazakii in 1980. However, there are still wide knowledge gaps. One of the most serious is that are still many uncertainties associated with assessing the public health risk posed by these bacteria, particularly in neonatal meningitis. Over the last few decades, Cronobacter contamination of commercial powdered infant formula products has apparently been reduced, but it is still an ongoing problem. The powdered infant formula industry still cannot produce powdered formula that is free of bacterial contamination with Cronobacter, other Enterobacteriaceae, other pathogenic bacteria, and other microorganisms. Until this happens, infants and other will be at risk of becoming infected when they ingest contaminated formula. PMID:26640778

  6. Exopolysaccharide produced by Enterobacter sp. YG4 reduces uranium induced nephrotoxicity.

    PubMed

    K, Nagaraj; Devasya, Rekha Punchapady; Bhagwath, Arun Ananthapadmanabha

    2016-01-01

    Uranium nephrotoxicity is a health concern with very few treatment options. Bacterial exopolysaccharides (EPS) possess multiple biological activities and appear as prospective candidates for treating uranium nephrotoxicity. This study focuses on the ability of an EPS produced by a bacterial strain Enterobacter sp. YG4 to reduce uranium nephrotoxicity in vivo. This bacterium was isolated from the gut contents of a slug Laevicaulis alte (Férussac). Based on the aniline blue staining reaction and infrared spectral analysis, the EPS was identified as β-glucan and its molecular weight was 11.99×10(6)Da. The EPS showed hydroxyl radical scavenging ability and total antioxidant capacity in vitro. To assess the protection provided by the EPS against uranium nephrotoxicity, a single dose of 2mg/kg uranyl nitrate was injected intraperitoneally to albino Wistar rats. As intervention, the EPS was administered orally (100mg/kg/day) for 4 consecutive days. The rats were sacrificed on the fifth day and analyses were conducted. Increased serum creatinine and urea nitrogen levels and histopathological alterations in kidneys were observed in uranyl nitrate treated animals. All these alterations were reduced with the administration of Enterobacter sp. YG4 EPS, emphasizing a novel approach in treating uranium nephrotoxicity. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Entericidin is required for a probiotic treatment (Enterobacter sp. strain C6-6) to protect trout from cold-water disease challenge.

    PubMed

    Schubiger, Carla B; Orfe, Lisa H; Sudheesh, Ponnerassery S; Cain, Kenneth D; Shah, Devendra H; Call, Douglas R

    2015-01-01

    Flavobacterium psychrophilum causes bacterial cold-water disease in multiple fish species, including salmonids. An autochthonous Enterobacter strain (C6-6) inhibits the in vitro growth of F. psychrophilum, and when ingested as a putative probiotic, it provides protection against injection challenge with F. psychrophilum in rainbow trout. In this study, low-molecular-mass (≤3 kDa) fractions from both Enterobacter C6-6 and Escherichia coli K-12 culture supernatants inhibited the growth of F. psychrophilum. The ≤3-kDa fraction from Enterobacter C6-6 was analyzed by SDS-PAGE, and subsequent tandem mass spectroscopy identified EcnB, which is a small membrane lipoprotein that is a putative pore-forming toxin. Agar plate diffusion assays demonstrated that ecnAB knockout strains of both Enterobacter C6-6 and E. coli K-12 no longer inhibited F. psychrophilum (P < 0.001), while ecnAB-complemented knockout strains recovered the inhibitory phenotype (P < 0.001). In fish experiments, the engineered strains (C6-6 ΔecnAB and C6-6 ΔecnAB) and the wild-type strain (C6-6) were added to the fish diet every day for 38 days. On day 11, the fish were challenged by injection with a virulent strain of F. psychrophilum (CSF 259-93). Fish that were fed C6-6 had significantly longer survival than fish fed the ecnAB knockout strain (P < 0.0001), while fish fed the complemented knockout strain recovered the probiotic phenotype (P = 0.61). This entericidin is responsible for the probiotic activity of Enterobacter C6-6, and it may present new opportunities for therapeutic and prophylactic treatments against similarly susceptible pathogens. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  8. Entericidin Is Required for a Probiotic Treatment (Enterobacter sp. Strain C6-6) To Protect Trout from Cold-Water Disease Challenge

    PubMed Central

    Schubiger, Carla B.; Orfe, Lisa H.; Sudheesh, Ponnerassery S.; Cain, Kenneth D.; Shah, Devendra H.

    2014-01-01

    Flavobacterium psychrophilum causes bacterial cold-water disease in multiple fish species, including salmonids. An autochthonous Enterobacter strain (C6-6) inhibits the in vitro growth of F. psychrophilum, and when ingested as a putative probiotic, it provides protection against injection challenge with F. psychrophilum in rainbow trout. In this study, low-molecular-mass (≤3 kDa) fractions from both Enterobacter C6-6 and Escherichia coli K-12 culture supernatants inhibited the growth of F. psychrophilum. The ≤3-kDa fraction from Enterobacter C6-6 was analyzed by SDS-PAGE, and subsequent tandem mass spectroscopy identified EcnB, which is a small membrane lipoprotein that is a putative pore-forming toxin. Agar plate diffusion assays demonstrated that ecnAB knockout strains of both Enterobacter C6-6 and E. coli K-12 no longer inhibited F. psychrophilum (P < 0.001), while ecnAB-complemented knockout strains recovered the inhibitory phenotype (P < 0.001). In fish experiments, the engineered strains (C6-6 ΔecnAB and C6-6 ΔecnAB) and the wild-type strain (C6-6) were added to the fish diet every day for 38 days. On day 11, the fish were challenged by injection with a virulent strain of F. psychrophilum (CSF 259-93). Fish that were fed C6-6 had significantly longer survival than fish fed the ecnAB knockout strain (P < 0.0001), while fish fed the complemented knockout strain recovered the probiotic phenotype (P = 0.61). This entericidin is responsible for the probiotic activity of Enterobacter C6-6, and it may present new opportunities for therapeutic and prophylactic treatments against similarly susceptible pathogens. PMID:25381243

  9. Carbapenem Susceptibility and Multidrug-Resistance in Pseudomonas aeruginosa Isolates in Egypt

    PubMed Central

    Hashem, Hany; Hanora, Amro; Abdalla, Salah; Shawky, Alaa; Saad, Alaa

    2016-01-01

    Background Resistant Pseudomonas aeruginosa is a serious concern for antimicrobial therapy, as the common isolates exhibit variable grades of resistance, involving beta-lactamase enzymes, beside native defense mechanisms. Objectives The present study was designed to determine the occurrence of Metallo-β- Lactamases (MBL) and Amp C harboring P. aeruginosa isolates from Suez Canal university hospital in Ismailia, Egypt. Methods A total of 147 P. aeruginosa isolates, recovered from 311 patients during a 10-month period, were collected between May 2013 and February 2014; the isolates were collected from urine, wound and sputum. Minimum inhibitory concentration (MIC) determined by agar dilution methods was ≥2 μg/mL for meropenem and imipenem. Identification of P. aeruginosa was confirmed using API 20NE. Metallo-β- Lactamases and Amp C were detected based on different phenotypic methods. Results Overall, 26.5% of P. aeruginosa isolates (39/147) were carbapenem resistant isolates. Furthermore, 64.1% (25/39) were MBL producers, these isolates were screened by the combined disc and disc diffusion methods to determine the ability of MBL production. Both MBL and Amp C harbored P. aeruginosa isolates were 28% (7/25). Sixty-four percent of P. aeruginosa isolates were multidrug resistant (MDR) (16/25). The sensitivity toward polymyxin, imipenem, norfloxacin, piperacillin-tazobactam and gentamicin was 99%, 91%, 88%, 82% and 78%, respectively. The resistance rate towards cefotaxime, ceftazidime, cefepime, aztreonam and meropenem was 98.6%, 86%, 71.4%, 34% and 30%, respectively. Conclusions Multidrug resistance was significantly associated with MBL production in P. aeruginosa. Early detection of MBL-producing P. aeruginosa and hospital antibiotic policy prescription helps proper antimicrobial therapy and avoidance of dissemination of these multidrug resistance isolates. PMID:28138370

  10. Carbapenem Susceptibility and Multidrug-Resistance in Pseudomonas aeruginosa Isolates in Egypt.

    PubMed

    Hashem, Hany; Hanora, Amro; Abdalla, Salah; Shawky, Alaa; Saad, Alaa

    2016-11-01

    Resistant Pseudomonas aeruginosa is a serious concern for antimicrobial therapy, as the common isolates exhibit variable grades of resistance, involving beta-lactamase enzymes, beside native defense mechanisms. The present study was designed to determine the occurrence of Metallo-β- Lactamases (MBL) and Amp C harboring P. aeruginosa isolates from Suez Canal university hospital in Ismailia, Egypt. A total of 147 P. aeruginosa isolates, recovered from 311 patients during a 10-month period, were collected between May 2013 and February 2014; the isolates were collected from urine, wound and sputum. Minimum inhibitory concentration (MIC) determined by agar dilution methods was ≥2 μg/mL for meropenem and imipenem. Identification of P. aeruginosa was confirmed using API 20NE. Metallo-β- Lactamases and Amp C were detected based on different phenotypic methods. Overall, 26.5% of P. aeruginosa isolates (39/147) were carbapenem resistant isolates. Furthermore, 64.1% (25/39) were MBL producers, these isolates were screened by the combined disc and disc diffusion methods to determine the ability of MBL production. Both MBL and Amp C harbored P. aeruginosa isolates were 28% (7/25). Sixty-four percent of P. aeruginosa isolates were multidrug resistant (MDR) (16/25). The sensitivity toward polymyxin, imipenem, norfloxacin, piperacillin-tazobactam and gentamicin was 99%, 91%, 88%, 82% and 78%, respectively. The resistance rate towards cefotaxime, ceftazidime, cefepime, aztreonam and meropenem was 98.6%, 86%, 71.4%, 34% and 30%, respectively. Multidrug resistance was significantly associated with MBL production in P. aeruginosa . Early detection of MBL-producing P. aeruginosa and hospital antibiotic policy prescription helps proper antimicrobial therapy and avoidance of dissemination of these multidrug resistance isolates.

  11. Stimulation of the growth of Jatropha curcas by the plant growth promoting bacterium Enterobacter cancerogenus MSA2.

    PubMed

    Jha, Chaitanya Kumar; Patel, Baldev; Saraf, Meenu

    2012-03-01

    A novel Enterobacter cancerogenus MSA2 is a plant growth promoting gamma-proteobacterium that was isolated from the rhizosphere of Jatropha cucas a potentially important biofuel feed stock plant. Based on phenotypic, physiological, biochemical and phylogenetic studies, strain MSA2 could be classified as a member of E. cancerogenus. However, comparisons of characteristics with other known species of the genus Enterobacter suggested that strain MSA2 could be a novel PGPB strain. In vitro studies were carried for the plant growth promoting attribute of this culture. It tested positive for ACC (1-aminocyclopropane-1-carboxylic acid) deaminase production, phytase, phosphate solubilization, IAA (Indole acetic acid) production, siderophore, and ammonia production. The isolate was then used as a inoculant for the vegetative study of Jatropha curcas plant. Enterobacter cancerogenus MSA2 supplemented with 1% carboxymethylcellulose showed overall plant growth promotion effect resulting in enhanced root length (124.14%), fresh root mass (81%), fresh shoot mass (120.02%), dry root mass (124%), dry shoot mass (105.54%), number of leaf (30.72%), chlorophyll content (50.41%), and biomass (87.20%) over control under the days of experimental observation. This study was designed for 120 days and was in triplicate and the data was collected at every 30 days.

  12. Prevalence and impact of extended-spectrum β-lactamase production on clinical outcomes in cancer patients with Enterobacter species bacteremia

    PubMed Central

    Kim, Sun Jong; Park, Ki-Ho; Chung, Jin-Won; Sung, Heungsup; Choi, Sang-Ho

    2014-01-01

    Background/Aims We examined the prevalence of extended-spectrum β-lactamase (ESBL) production and the impact of ESBL on clinical outcomes in cancer patients with Enterobacter spp. bacteremia. Methods Using prospective cohort data on Enterobacter bacteremia obtained between January 2005 and November 2008 from a tertiary care center, the prevalence and clinical impact of ESBL production were evaluated. Results Two-hundred and three episodes of Enterobacter spp. bacteremia were identified. Thirty-one blood isolates (15.3%, 31/203) scored positive by the double-disk synergy test. Among 17 isolates in which ESBL genes were detected by polymerase chain reaction and sequencing, CTX-M (n = 12), SHV-12 (n = 11), and TEM (n = 4) were the most prevalent ESBL types. Prior usage of antimicrobial agents (77.4% vs. 54.0%, p = 0.02) and inappropriate empirical antimicrobial therapy (22.6% vs. 3.0%, p < 0.001) were more commonly encountered in the ESBL-positive group than in the extended-spectrum cephalosporin-susceptible ESBL-negative group, respectively. Clinical outcomes did not differ significantly between the two groups (30-day mortality rate, 19.4% vs. 17.0%, p = 0.76; median length of hospital stay, 24.0 days vs. 30.5 days, p = 0.97). Initial presentation of severe sepsis/septic shock, pneumonia, and intra-abdominal infection were independently associated with 30-day mortality. Conclusions The prevalence of ESBL-producing isolates was 15.3% in cancer patients with Enterobacter bacteremia. Although inappropriate empirical therapy was more common in the ESBL-positive group, ESBL production was not associated with poorer outcomes. PMID:25228840

  13. Prevalence and impact of extended-spectrum β-lactamase production on clinical outcomes in cancer patients with Enterobacter species bacteremia.

    PubMed

    Kim, Sun Jong; Park, Ki-Ho; Chung, Jin-Won; Sung, Heungsup; Choi, Seong-Ho; Choi, Sang-Ho

    2014-09-01

    We examined the prevalence of extended-spectrum β-lactamase (ESBL) production and the impact of ESBL on clinical outcomes in cancer patients with Enterobacter spp. bacteremia. Using prospective cohort data on Enterobacter bacteremia obtained between January 2005 and November 2008 from a tertiary care center, the prevalence and clinical impact of ESBL production were evaluated. Two-hundred and three episodes of Enterobacter spp. bacteremia were identified. Thirty-one blood isolates (15.3%, 31/203) scored positive by the double-disk synergy test. Among 17 isolates in which ESBL genes were detected by polymerase chain reaction and sequencing, CTX-M (n = 12), SHV-12 (n = 11), and TEM (n = 4) were the most prevalent ESBL types. Prior usage of antimicrobial agents (77.4% vs. 54.0%, p = 0.02) and inappropriate empirical antimicrobial therapy (22.6% vs. 3.0%, p < 0.001) were more commonly encountered in the ESBL-positive group than in the extended-spectrum cephalosporin-susceptible ESBL-negative group, respectively. Clinical outcomes did not differ significantly between the two groups (30-day mortality rate, 19.4% vs. 17.0%, p = 0.76; median length of hospital stay, 24.0 days vs. 30.5 days, p = 0.97). Initial presentation of severe sepsis/septic shock, pneumonia, and intra-abdominal infection were independently associated with 30-day mortality. The prevalence of ESBL-producing isolates was 15.3% in cancer patients with Enterobacter bacteremia. Although inappropriate empirical therapy was more common in the ESBL-positive group, ESBL production was not associated with poorer outcomes.

  14. Why Does the Healthy Cornea Resist Pseudomonas aeruginosa Infection?

    PubMed Central

    Evans, David J.; Fleiszig, Suzanne M. J.

    2013-01-01

    Purpose To provide our perspective on why the cornea is resistant to infection based on our research results with Pseudomonas aeruginosa. Perspective We focus on our current understanding of the interplay between bacteria, tear fluid and the corneal epithelium that determine health as the usual outcome, and propose a theoretical model for how contact lens wear might change those interactions to enable susceptibility to P. aeruginosa infection. Methods Use of “null-infection” in vivo models, cultured human corneal epithelial cells, contact lens-wearing animal models, and bacterial genetics help to elucidate mechanisms by which P. aeruginosa survive at the ocular surface, adheres, and traverses multilayered corneal epithelia. These models also help elucidate the molecular mechanisms of corneal epithelial innate defense. Results and Discussion Tear fluid and the corneal epithelium combine to make a formidable defense against P. aeruginosa infection of the cornea. Part of that defense involves the expression of antimicrobials such as β-defensins, the cathelicidin LL-37, cytokeratin-derived antimicrobial peptides, and RNase7. Immunomodulators such as SP-D and ST2 also contribute. Innate defenses of the cornea depend in part on MyD88, a key adaptor protein of TLR and IL-1R signaling, but the basal lamina represents the final barrier to bacterial penetration. Overcoming these defenses involves P. aeruginosa adaptation, expression of the type three secretion system, proteases, and P. aeruginosa biofilm formation on contact lenses. Conclusion After more than two decades of research focused on understanding how contact lens wear predisposes to P. aeruginosa infection, our working hypothesis places blame for microbial keratitis on bacterial adaptation to ocular surface defenses, combined with changes to the biochemistry of the corneal surface caused by trapping bacteria and tear fluid against the cornea under the lens. PMID:23601656

  15. Chromosomally Encoded mcr-5 in Colistin non-susceptible Pseudomonas aeruginosa.

    PubMed

    Snesrud, Erik; Maybank, Rosslyn; Kwak, Yoon I; Jones, Anthony R; Hinkle, Mary K; Mc Gann, Patrick

    2018-05-29

    Whole genome sequencing (WGS) of historical Pseudomonas aeruginosa clinical isolates identified a chromosomal copy of mcr-5 within a Tn 3 -like transposon in P. aeruginosa MRSN 12280. The isolate was non-susceptible to colistin by broth microdilution and genome analysis revealed no mutations known to confer colistin resistance. To the best of our knowledge, this is the first report of mcr in colistin non-susceptible P. aeruginosa .

  16. The Genomic Basis of Evolutionary Innovation in Pseudomonas aeruginosa

    PubMed Central

    Wagner, Andreas; MacLean, R. Craig

    2016-01-01

    Novel traits play a key role in evolution, but their origins remain poorly understood. Here we address this problem by using experimental evolution to study bacterial innovation in real time. We allowed 380 populations of Pseudomonas aeruginosa to adapt to 95 different carbon sources that challenged bacteria with either evolving novel metabolic traits or optimizing existing traits. Whole genome sequencing of more than 80 clones revealed profound differences in the genetic basis of innovation and optimization. Innovation was associated with the rapid acquisition of mutations in genes involved in transcription and metabolism. Mutations in pre-existing duplicate genes in the P. aeruginosa genome were common during innovation, but not optimization. These duplicate genes may have been acquired by P. aeruginosa due to either spontaneous gene amplification or horizontal gene transfer. High throughput phenotype assays revealed that novelty was associated with increased pleiotropic costs that are likely to constrain innovation. However, mutations in duplicate genes with close homologs in the P. aeruginosa genome were associated with low pleiotropic costs compared to mutations in duplicate genes with distant homologs in the P. aeruginosa genome, suggesting that functional redundancy between duplicates facilitates innovation by buffering pleiotropic costs. PMID:27149698

  17. [Inhibition effects of Houttuynia cordata Thunb. on Microcystis aeruginosa].

    PubMed

    Liu, Lu; Li, Cheng; Xia, Wentong; Yang, Xiaohui; Zhang, Tingting

    2014-05-01

    To research the inhibitory effect of Houttuynia cordata Thunb. on Microcystis aeruginosa. M. aeruginosat were treated respectively by H. cordata leaching solution or H. cordata extracts. H. cordata leaching solution extracted by water and the H. cordata extracts extracted by organic solvent (acetone, ethyl acetate, petroleum ether and ethanol, respectively). The inhibition ratios were calculated according to the M. aeruginosa densities, and the allelochemicals of the extract that had the best inhibitiory effect on M. aeruginosa were identified by GC-MS analysis. It was proved that leaching solution of H. cordata and four crude extracts had good inhibitory effect on M. aeruginosa. The inhibitory effects of the four crude extracts were the fraction extracted by ethyl acetate, the fraction extracted by ethanol, the fraction extracted by acetone and the fraction extracted by petroleum ether form strong to weak in turn. Then, the allelochemicals of the fraction extracted by ethyl acetate were indentified, mainly including acetonyldimethylcarbinol, 2,2-dimethyl-3-hexanone, 6-chlorohexanoic and 4-cyanophenyl ester. H. cordata has strong inhibitory effect on water-blooming cyanobacteria and the potential to develop into an ecological M. aeruginosa inhibiting agent.

  18. Chronic Pseudomonas aeruginosa infection and respiratory muscle impairment in cystic fibrosis.

    PubMed

    Dassios, Theodore G; Katelari, Anna; Doudounakis, Stavros; Dimitriou, Gabriel

    2014-03-01

    Chronic infection with Pseudomonas aeruginosa in patients with cystic fibrosis (CF) is associated with increased morbidity. Chronic infection can cause limb and respiratory muscle compromise. Respiratory muscle function can be assessed via maximal inspiratory pressure (PImax), maximal expiratory pressure (PEmax), and the pressure-time index of the respiratory muscles (PTImus). We studied the effect of chronic P. aeruginosa infection on respiratory muscle function in patients with CF. This cross-sectional study assessed PImax, PEmax, PTImus, FEV1, FVC, maximum expiratory flow during the middle half of the FVC maneuver, body mass index, and upper arm muscle area in 122 subjects with CF, in 4 subgroups matched for age and sex at different stages of P. aeruginosa infection, according to the Leeds criteria. We compared respiratory muscle function in the subgroups according to P. aeruginosa infection state. Median PImax was significantly lower in CF subjects with chronic P. aeruginosa infection (PImax = 62 cm H2O), compared to subjects who were never infected (PImax = 86 cm H2O, P = .02), free of infection (PImax = 74 cm H2O, P = .01), or intermittently infected (PImax = 72 cm H2O, P = .02). Median PTImus was significantly increased in CF subjects with chronic P. aeruginosa infection (PTImus = .142), compared to subjects who were free of infection (PTImus = .102, P = .006). Median upper-arm muscle area was significantly lower in CF subjects with chronic P. aeruginosa infection (upper-arm muscle area = 2,219 mm(2)), compared to subjects who were never infected (2,754 mm(2), P = .03), free of infection (2,678 mm(2), P = .01), or intermittently infected (2,603 mm(2), P = .04). Multivariate logistic regression revealed P. aeruginosa state of infection as a significant determinant of PTImus (P = .03) independently of sex, upper-arm muscle area, and FEV1. CF subjects with chronic P. aeruginosa infection exhibited impaired respiratory muscle function and decreased inspiratory

  19. Interspecific reconstitution of maltose transport and chemotaxis in Escherichia coli with maltose-binding protein from various enteric bacteria.

    PubMed Central

    Dahl, M K; Manson, M D

    1985-01-01

    In Escherichia coli, the periplasmic maltose-binding protein (MBP), the product of the malE gene, is the primary recognition component of the transport system for maltose and maltodextrins. It is also the maltose chemoreceptor, in which capacity it interacts with the signal transducer Tar (taxis to aspartate and some repellents). In studies of the maltose system in other members of the family Enterobacteriaceae, we found that MBP is produced by Salmonella typhimurium, Klebsiella pneumoniae, Enterobacter aerogenes, and Serratia marcescens. MBP from all of these species cross-reacted with antibody against the E. coli protein and had a similar molecular weight (about 40,000). The Shigella flexneri and Proteus mirabilis strains we examined did not synthesize MBP. The isoelectric points of MBP from different species varied from the acid extreme of E. coli (4.8) to the basic extreme of E. aerogenes (8.9). All species with MBP transported maltose with high affinity, although the Vmax for K. pneumoniae was severalfold lower than that for the other species. Maltose chemotaxis was observed only in E. coli and E. aerogenes. In S. typhimurium LT2, Tar was completely inactive in maltose taxis, although it signaled normally in response to aspartate. MBP isolated from all five species could be used to reconstitute maltose transport and taxis in a delta malE strain of E. coli after permeabilization of the outer membrane with calcium. Images PMID:3905762

  20. Network-assisted investigation of virulence and antibiotic-resistance systems in Pseudomonas aeruginosa

    NASA Astrophysics Data System (ADS)

    Hwang, Sohyun; Kim, Chan Yeong; Ji, Sun-Gou; Go, Junhyeok; Kim, Hanhae; Yang, Sunmo; Kim, Hye Jin; Cho, Ara; Yoon, Sang Sun; Lee, Insuk

    2016-05-01

    Pseudomonas aeruginosa is a Gram-negative bacterium of clinical significance. Although the genome of PAO1, a prototype strain of P. aeruginosa, has been extensively studied, approximately one-third of the functional genome remains unknown. With the emergence of antibiotic-resistant strains of P. aeruginosa, there is an urgent need to develop novel antibiotic and anti-virulence strategies, which may be facilitated by an approach that explores P. aeruginosa gene function in systems-level models. Here, we present a genome-wide functional network of P. aeruginosa genes, PseudomonasNet, which covers 98% of the coding genome, and a companion web server to generate functional hypotheses using various network-search algorithms. We demonstrate that PseudomonasNet-assisted predictions can effectively identify novel genes involved in virulence and antibiotic resistance. Moreover, an antibiotic-resistance network based on PseudomonasNet reveals that P. aeruginosa has common modular genetic organisations that confer increased or decreased resistance to diverse antibiotics, which accounts for the pervasiveness of cross-resistance across multiple drugs. The same network also suggests that P. aeruginosa has developed mechanism of trade-off in resistance across drugs by altering genetic interactions. Taken together, these results clearly demonstrate the usefulness of a genome-scale functional network to investigate pathogenic systems in P. aeruginosa.

  1. Expansion of Antibacterial Spectrum of Muraymycins toward Pseudomonas aeruginosa.

    PubMed

    Takeoka, Yusuke; Tanino, Tetsuya; Sekiguchi, Mitsuaki; Yonezawa, Shuji; Sakagami, Masahiro; Takahashi, Fumiyo; Togame, Hiroko; Tanaka, Yoshikazu; Takemoto, Hiroshi; Ichikawa, Satoshi; Matsuda, Akira

    2014-05-08

    It is urgent to develop novel anti-Pseudomonas agents that should also be active against multidrug resistant P. aeruginosa. Expanding the antibacterial spectrum of muraymycins toward P. aeruginosa was investigated by the systematic structure-activity relationship study. It was revealed that two functional groups, a lipophilic side chain and a guanidino group, at the accessory moiety of muraymycins were important for the anti-Pseudomonas activity, and analogue 29 exhibited antibacterial activity against a range of P. aeruginosa strains with the minimum inhibitory concentration values of 4-8 μg/mL.

  2. Expansion of Antibacterial Spectrum of Muraymycins toward Pseudomonas aeruginosa

    PubMed Central

    2014-01-01

    It is urgent to develop novel anti-Pseudomonas agents that should also be active against multidrug resistant P. aeruginosa. Expanding the antibacterial spectrum of muraymycins toward P. aeruginosa was investigated by the systematic structure–activity relationship study. It was revealed that two functional groups, a lipophilic side chain and a guanidino group, at the accessory moiety of muraymycins were important for the anti-Pseudomonas activity, and analogue 29 exhibited antibacterial activity against a range of P. aeruginosa strains with the minimum inhibitory concentration values of 4–8 μg/mL. PMID:24900879

  3. Cadmium and zinc sensitivity and tolerance in Klebsiella (aerobacter) aerogenes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pickett, A.W.; Dean, A.C.R.

    1976-01-01

    The resistance of strains of K. aerogenes NCIB 418 'trained' to Cd/sup 2 +/ or Zn/sup 2 +/ in liquid medium is graded to the training concentration. Training to Cd/sup 2 +/ increased the sensitivity to Zn/sup 2 +/ but training to Zn/sup 2 +/ reduced the sensitivity to Cd/sup 2 +/. The trained organisms, particularly those trained to Cd/sup 2 +/, grow slowly in medium containing the metals and the growth rates after 20 and 200 subcultures were not significantly different. The survival of untrained organisms on Cd/sup 2 +/ agar decreased progressively as the Cd/sup 2 +/ concentrationmore » was increased, but a threshold concentration of Zn/sup 2 +/ was necessary before any decrease set in. Very low concentrations of Zn/sup 2 +/ potentiated the lethal action of Cd/sup 2 +/ and vice versa, whereas chelating the metal ions with citrate, aspartate or gluconate eliminated it. Nutrient-limitation, as might occur in natural environments, also had a profound effect. Mg/sup 2 +/-limited organisms were particularly resistant to both metals whereas glucose-, NH/sub 4//sup +/ and PO/sub 4//sup 3 -/-limited organisms were very sensitive to Cd/sup 2 +/, and glucose- and K/sup +/-limited organisms to Zn/sup 2 +/.« less

  4. Geographical differences in first acquisition of Pseudomonas aeruginosa in cystic fibrosis.

    PubMed

    Ranganathan, Sarath C; Skoric, Billy; Ramsay, Kay A; Carzino, Rosemary; Gibson, Anne-Marie; Hart, Emily; Harrison, Jo; Bell, Scott C; Kidd, Timothy J

    2013-04-01

    Risk of infection with Pseudomonas aeruginosa in cystic fibrosis (CF) may be associated with environmental factors. To determine whether residential location is associated with risk of first acquisition of P. aeruginosa. We performed bronchoalveolar lavage and upper airway cultures in children newly diagnosed with CF to identify infection with P. aeruginosa during infancy and early childhood. Children were assessed according to their residence in a regional or metropolitan area. Multilocus sequence typing was used to determine P. aeruginosa genotype. An environmental questionnaire was also administered. A total of 105 of 120 (87.5%) infants diagnosed with CF were included in this study. Diagnosis in 65 infants (61.9%) followed newborn screening at mean age of 4.6 weeks. Sixty subjects (57.1%) were homozygous ΔF508, and 47 (44.8%) were female. Fifty-five (52.3%) infants were regional, of whom 26 (47.3%), compared with 9 of 50 (18.0%) metropolitan children, acquired infection with P. aeruginosa (odds ratio, 4.084; 95% confidence interval, 1.55-11.30). Age at acquisition was similar (regional: median, 2.31 yr; range, 0.27-5.96 yr; metropolitan: median, 3.10 yr, range, 0.89-3.70 yr). Strain typing identified P. aeruginosa genotypes often encountered in different ecological settings and little evidence of cross-infection. Ninety questionnaires (85.7%) were completed. Those who acquired P. aeruginosa were more likely to be living in a household that used water sprinkler systems (P = 0.032), but no differences were identified to explain increased risk of acquisition of P. aeruginosa in regional children. Geographical difference in residence of children with CF was associated with increased risk of first acquisition of P. aeruginosa, usually with strains associated with the environment rather than with cross-infection.

  5. Relevance of multidrug-resistant Pseudomonas aeruginosa infections in cystic fibrosis.

    PubMed

    Stefani, S; Campana, S; Cariani, L; Carnovale, V; Colombo, C; Lleo, M M; Iula, V D; Minicucci, L; Morelli, P; Pizzamiglio, G; Taccetti, G

    2017-09-01

    Multidrug-resistant (MDR) Pseudomonas aeruginosa is an important issue for physicians who take care of patients with cystic fibrosis (CF). Here, we review the latest research on how P. aeruginosa infection causes lung function to decline and how several factors contribute to the emergence of antibiotic resistance in P. aeruginosa strains and influence the course of the infection course. However, many aspects of the practical management of patients with CF infected with MDR P. aeruginosa are still to be established. Less is known about the exact role of susceptibility testing in clinical strategies for dealing with resistant infections, and there is an urgent need to find a tool to assist in choosing the best therapeutic strategy for MDR P. aeruginosa infection. One current perception is that the selection of antibiotic therapy according to antibiogram results is an important component of the decision-making process, but other patient factors, such as previous infection history and antibiotic courses, also need to be evaluated. On the basis of the known issues and the best current data on respiratory infections caused by MDR P. aeruginosa, this review provides practical suggestions to optimize the diagnostic and therapeutic management of patients with CF who are infected with these pathogens. Copyright © 2017 Elsevier GmbH. All rights reserved.

  6. High frequency of silver resistance genes in invasive isolates of Enterobacter and Klebsiella species.

    PubMed

    Sütterlin, S; Dahlö, M; Tellgren-Roth, C; Schaal, W; Melhus, Å

    2017-07-01

    Silver-based products have been marketed as an alternative to antibiotics, and their consumption has increased. Bacteria may, however, develop resistance to silver. To study the presence of genes encoding silver resistance (silE, silP, silS) over time in three clinically important Enterobacteriaceae genera. Using polymerase chain reaction (PCR), 752 bloodstream isolates from the years 1990-2010 were investigated. Age, gender, and ward of patients were registered, and the susceptibility to antibiotics and silver nitrate was tested. Clonality and single nucleotide polymorphism were assessed with repetitive element sequence-based PCR, multi-locus sequence typing, and whole-genome sequencing. Genes encoding silver resistance were detected most frequently in Enterobacter spp. (48%), followed by Klebsiella spp. (41%) and Escherichia coli 4%. Phenotypical resistance to silver nitrate was found in Enterobacter (13%) and Klebsiella (3%) isolates. The lowest carriage rate of sil genes was observed in blood isolates from the neonatology ward (24%), and the highest in blood isolates from the oncology/haematology wards (66%). Presence of sil genes was observed in international high-risk clones. Sequences of the sil and pco clusters indicated that a single mutational event in the silS gene could have caused the phenotypic resistance. Despite a restricted consumption of silver-based products in Swedish health care, silver resistance genes are widely represented in clinical isolates of Enterobacter and Klebsiella species. To avoid further selection and spread of silver-resistant bacteria with a high potential for healthcare-associated infections, the use of silver-based products needs to be controlled and the silver resistance monitored. Copyright © 2017 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  7. Engineering waterborne Pseudomonas aeruginosa out of a critical care unit.

    PubMed

    Garvey, Mark I; Bradley, Craig W; Wilkinson, Martyn A C; Bradley, Christina; Holden, Elisabeth

    2017-08-01

    To describe engineering and holistic interventions on water outlets contaminated with Pseudomonas aeruginosa and the observed impact on clinical P. aeruginosa patient isolates in a large Intensive Care Unit (ICU). Descriptive study. Queen Elizabeth Hospital Birmingham (QEHB), part of University Hospitals Birmingham (UHB) NHS Foundation Trust is a tertiary referral teaching hospital in Birmingham, UK and provides clinical services to nearly 1 million patients every year. Breakpoint models were used to detect any significant changes in the cumulative yearly rates of clinical P. aeruginosa patient isolates from August 2013-December 2016 across QEHB. Water sampling undertaken on the ICU indicated 30% of the outlets were positive for P. aeruginosa at any one time. Molecular typing of patient and water isolates via Pulsed Field Gel Electrophoresis suggested there was a 30% transmission rate of P. aeruginosa from the water to patients on the ICU. From, February 2014, QEHB implemented engineering interventions, consisting of new tap outlets and PALL point-of-use filters; as well as holistic measures, from February 2016 including a revised tap cleaning method and appropriate disposal of patient waste water. Breakpoint models indicated the engineering and holistic interventions resulted in a significant (p<0.001) 50% reduction in the number of P. aeruginosa clinical patient isolates over a year. Here we demonstrate that the role of waterborne transmission of P. aeruginosa in an ICU cannot be overlooked. We suggest both holistic and environmental factors are important in reducing transmission. Copyright © 2017 Elsevier GmbH. All rights reserved.

  8. Transferable Drug Resistance in Pseudomonas aeruginosa1

    PubMed Central

    Bryan, L. E.; Elzen, H. M. Van Den; Tseng, Jui Teng

    1972-01-01

    Three strains of Pseudomonas aeruginosa were demonstrated to transfer double-drug resistance by conjugation to a P. aeruginosa recipient at frequencies of 10−4 to 10−2 per recipient cell. Two of the three strains also transferred to Escherichia coli at frequencies which were 103- to 105-fold lower, but the third strain could not be demonstrated to do so. The latter strain, however, conferred maleness on the Pseudomonas recipient. The transfer of streptomycin resistance was associated with the acquisition of streptomycin phosphorylase by both P. aeruginosa and E. coli recipients. Maximal broth mating frequencies were obtained with nonagitated cultures less than 1 mm in depth. A pyocine selection system based on donor sensitivity and recipient resistance is described and appears to have future value as a generalized selective device for use after matings. PMID:4207756

  9. Antibacterial activity of Zuccagnia punctata Cav. ethanolic extracts.

    PubMed

    Zampini, Iris C; Vattuone, Marta A; Isla, Maria I

    2005-12-01

    The present study was conducted to investigate antibacterial activity of Zuccagnia punctata ethanolic extract against 47 strains of antibiotic-resistant Gram-negative bacteria and to identify bioactive compounds. Inhibition of bacterial growth was investigated using agar diffusion, agar macrodilution, broth microdilution and bioautographic methods. Zuccagnia punctata extract was active against all assayed bacteria (Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Enterobacter cloacae, Serratia marcescens, Morganella morganii, Acinetobacter baumannii, Pseudomonas aeruginosa, Stenotrophomonas maltophilia) with minimal inhibitory concentration (MIC) values ranging from 25 to 200 microg/mL. Minimal bactericidal concentration (MBC) values were identical or two-fold higher than the corresponding MIC values. Contact bioautography, indicated that Zuccagnia punctata extracts possess one major antibacterial component against Pseudomonas aeruginosa and at least three components against. Klebsiella pneumoniae and Escherichia coli. Activity-guided fractionation of 1he ethanol extract on a silica gel column yielded a compound (2',4'-dihydroxychalcone), which exhibited strong antibacterial activity with MIC values between 0.10 and 1.00 microg/mL for Proteus mirabilis, Enterobacter cloacae, Serratia marcescens, Morganella morganii, Acinetobacter baumannii, Pseudomonas aeruginosa, Stenotrophomonas maltophilia. These values are lower than imipenem (0.25-16 microg/mL). Zuccagnia punctata might provide promising therapeutic agents against infections with multi-resistant Gram-negative bacteria.

  10. Pseudomonas aeruginosa Genotype Prevalence in Dutch Cystic Fibrosis Patients and Age Dependency of Colonization by Various P. aeruginosa Sequence Types ▿

    PubMed Central

    van Mansfeld, Rosa; Willems, Rob; Brimicombe, Roland; Heijerman, Harry; van Berkhout, Ferdinand Teding; Wolfs, Tom; van der Ent, Cornelis; Bonten, Marc

    2009-01-01

    The patient-to-patient transmission of highly prevalent Pseudomonas aeruginosa clones which are associated with enhanced disease progression has led to strict segregation policies for cystic fibrosis (CF) patients in many countries. However, little is known about the population structure of P. aeruginosa among CF patients. The aim of the present cross-sectional study was to determine the prevalence and genetic relatedness of P. aeruginosa isolates from CF patients who visited two major CF centers in The Netherlands in 2007 and 2008. These patients represented 45% of the Dutch CF population. P. aeruginosa carriage in the respiratory tract was determined by standard microbiological culture techniques, and all phenotypically different isolates in the first specimens recovered in 2007 and 2008 were genotyped by multilocus sequence typing. A total of 313 (57%) of 551 patients whose samples were cultured carried P. aeruginosa. Two sequence types (STs), ST406 and ST497, were found in 15% and 5% of the patients, respectively, and 60% of the patients harbored a strain that was also found in at least two other patients. The risk ratios for carrying ST406 and ST497 were 17.8 (95% confidence interval [CI], 7.2 to 43.6) for those aged between 15 and 24 years and 6 (95% CI, 1.4 to 26.1) for those aged >25 years. ST406 and ST497 were not genetically linked to previously described epidemic clones, which were also not found in this CF population. The population structure of P. aeruginosa in Dutch CF patients is characterized by the presence of two prevalent STs that are associated with certain age groups and that are not genetically linked to previously described epidemic clones. PMID:19828746

  11. [Risk factors for Pseudomonas aeruginosa infections, resistant to carbapenem].

    PubMed

    Ghibu, Laura; Miftode, Egidia; Teodor, Andra; Bejan, Codrina; Dorobăţ, Carmen Mihaela

    2010-01-01

    Since their introduction in clinical practice,carbapenems have been among the most powerful antibiotics for treating serious infections cased by Gram-negative nosocomial pathogens, including Pseudomonas aeruginosa. The emergence of betalactamases with carbapenem-hydrolyzing activity is of major clinical concern. Pseudomonas aeruginosa is a leading cause of nosocomial infection. Risk factors for colonization with carbapenems-resistant Pseudomonas in hospital are: history of P. aeruginosa infection or colonization within the previous year, (length of hospital stay, being bedridden or in the ICU, mechanical ventilation, malignant disease, and history of chronic obstructive pulmonary disease have all been identified as independent risk factors for MDR P. aeruginosa infection. Long-term-care facilities are also reservoirs of resistant bacteria. Risk factors for colonization of LTCF residents with resistant bacteria included age > 86 years, antibiotic treatment in the previous 3 months, indwelling devices, chronic obstructive pulmonary disease, physical disability, and the particular LTCF unit.

  12. Probiotic potential of lactobacillus strains isolated from sorghum-based traditional fermented food.

    PubMed

    Rao, K Poornachandra; Chennappa, G; Suraj, U; Nagaraja, H; Raj, A P Charith; Sreenivasa, M Y

    2015-06-01

    Sorghum-based traditional fermented food was screened for potential probiotic lactic acid bacteria. The isolates were identified by biochemical, physiological and genetic methods. Species identification was done by 16s rRNA sequence analysis. The functional probiotic potential of the two Lactobacillus species viz., Lactobacillus plantarum (Lact. plantarum) and Lactobacillus pentosus (Lact. pentosus) was assessed by different standard parameters. The strains were tolerant to pH 2 for 1 h and resistant to methicillin, kanamycin, vancomycin and norfloxacin. Two (Lact. plantarum COORG-3 and Lact. pentosus COORG-8) out of eight isolates recorded the cell surface hydrophobicity to be 59.12 and 64.06%, respectively. All the strains showed tolerance to artificial duodenum juice (pH 2) for 3 h, positive for bile salt hydrolase test and negative for haemolytic test. The neutralized cell-free supernatant of the strains Lact. pentosus COORG-4, Lact. plantarum COORG-1, Lact. plantarum COORG-7, Lact. pentosus COORG-8 and Lact. plantarum COORG-3 showed good antibiofilm activity. Lact. pentosus COORG-8 exhibited 74% activity against Pseudomonas aeruginosa-MTCC 7903 and Lact. plantarum COORG-7 showed 68% inhibition of biofilm against Klebsiella pneumonia MTCC 7407. Three (Lact. plantarum COORG-7, Lact. pentosus COORG-5 and Lact. pentosus COORG 8) out of eight isolates exhibited a good antimicrobial activity against Listeria monocytogenes and five isolates (Lact. pentosus COORG 2, Lact. plantarum COORG 1, Lact. plantarum COORG 4, Lact. pentosus COORG 3 and Lact. plantarum COORG 6) are active against Escherichia coli, Bacillus subtilis, Pseudomonas aeruginosa, Enterobacter aerogenes, Klebsiella pneumonia, Enterococcus faecalis. The study also evaluated the cholesterol lowering property of the Lactobacillus strains using hen egg yolk as the cholesterol source. The cholesterol in hen egg yolk was assimilated by 74.12 and 68.26% by Lact. plantarum COORG 4 and Lact. pentosus COORG 7

  13. Pseudomonas aeruginosa uses T3SS to inhibit diabetic wound healing.

    PubMed

    Goldufsky, Josef; Wood, Stephen J; Jayaraman, Vijayakumar; Majdobeh, Omar; Chen, Lin; Qin, Shanshan; Zhang, Chunxiang; DiPietro, Luisa A; Shafikhani, Sasha H

    2015-01-01

    Diabetic foot ulcers are responsible for more hospitalizations than any other complication of diabetes. Bacterial infection is recognized as an important factor associated with impaired healing in diabetic ulcers. Pseudomonas aeruginosa is the most frequently detected Gram-negative pathogen in diabetic ulcers. P. aeruginosa infection has been shown to impair healing in diabetic wounds in a manner that correlates with its ability to form biofilm. While the majority of infections in diabetic ulcers are biofilm associated, 33% of infections are nonbiofilm in nature. P. aeruginosa is the most prevalent Gram-negative pathogen in all diabetic wound types, which suggests that the deleterious impact of P. aeruginosa on healing in diabetic wounds goes beyond its ability to form biofilm and likely involves other factors. The Type III Secretion System (T3SS) virulence structure is required for the pathogenesis of all P. aeruginosa clinical isolates, suggesting that it may also play a role in the inhibition of wound repair in diabetic skin ulcers. We evaluated the role of T3SS in mediating P. aeruginosa-induced tissue damage in the wounds of diabetic mice. Our data demonstrate that P. aeruginosa establishes a robust and persistent infection in diabetic wounds independent of its ability to form biofilm and causes severe wound damage in a manner that primarily depends on its T3SS. © 2015 by the Wound Healing Society.

  14. Bacteriophage Infectivity Against Pseudomonas aeruginosa in Saline Conditions

    PubMed Central

    Scarascia, Giantommaso; Yap, Scott A.; Kaksonen, Anna H.; Hong, Pei-Ying

    2018-01-01

    Pseudomonas aeruginosa is a ubiquitous member of marine biofilm, and reduces thiosulfate to produce toxic hydrogen sulfide gas. In this study, lytic bacteriophages were isolated and applied to inhibit the growth of P. aeruginosa in planktonic mode at different temperature, pH, and salinity. Bacteriophages showed optimal infectivity at a multiplicity of infection of 10 in saline conditions, and demonstrated lytic abilities over all tested temperature (25, 30, 37, and 45°C) and pH 6–9. Planktonic P. aeruginosa exhibited significantly longer lag phase and lower specific growth rates upon exposure to bacteriophages. Bacteriophages were subsequently applied to P. aeruginosa-enriched biofilm and were determined to lower the relative abundance of Pseudomonas-related taxa from 0.17 to 5.58% in controls to 0.01–0.61% in treated microbial communities. The relative abundance of Alphaproteobacteria, Pseudoalteromonas, and Planococcaceae decreased, possibly due to the phage-induced disruption of the biofilm matrix. Lastly, when applied to mitigate biofouling of ultrafiltration membranes, bacteriophages were determined to reduce the transmembrane pressure increase by 18% when utilized alone, and by 49% when used in combination with citric acid. The combined treatment was more effective compared with the citric acid treatment alone, which reported ca. 30% transmembrane pressure reduction. Collectively, the findings demonstrated that bacteriophages can be used as a biocidal agent to mitigate undesirable P. aeruginosa-associated problems in seawater applications. PMID:29770130

  15. [Susceptibility and resistence of Pseudomonas aeruginosa to antimicrobial agents].

    PubMed

    Gamero Delgado, M C; García-Mayorgas, A D; Rodríguez, F; Ibarra, A; Casal, M

    2007-06-01

    Pseudomonas aeruginosa is an opportunistic microorganism that is frequently the cause of nosocomial infections. Multiple mechanisms are involved in its natural and acquired resistance to many of the antimicrobial agents commonly used in clinical practice. The objective of this study was to assess the susceptibility and resistance patterns of P. aeruginosa strains isolated in Hospital Reina Sofia between 2000 and 2005, as well as to analyze the differences between intrahospital and extrahospital isolates in 2005 and to compare the results with those obtained in other studies. A total of 3,019 strains of P. aeruginosa from different hospitals and nonhospital settings were evaluated, taking into consideration their degree of sensitivity to different antibiotics. The MICs were determined by means of the Wider I automated system (Soria Melguizo), taking into consideration the criteria of susceptibility and resistance recommended by MENSURA. Results of the analysis showed that P. aeruginosa maintained similar levels of antimicrobial susceptibility during the period 2000-2005, with increased susceptibility to amikacin, gentamicin and tobramycin. There were also important differences in the degree of susceptibility between intrahospital and extrahospital strains, except for imipenem and fosfomycin. The intrahospital difference in susceptibility was also evaluated, emphasizing the importance of periodically studying susceptibility and resistance patterns of P. aeruginosa in each setting in order to evaluate different therapeutic guidelines, as it is not always advisable to extrapolate data from different regions. These differences can be explained by the different use of antibiotics in each center and the geographic variations of the resistance mechanisms of P. aeruginosa.

  16. Molecular epidemiology of Pseudomonas aeruginosa.

    PubMed

    Speert, David P

    2002-10-01

    Pseudomonas aeruginosa is a serious opportunistic pathogen in certain compromised hosts, such as those with cystic fibrosis, thermal burns and cancer. It also causes less severe noninvasive disease, such as otitis externa and hot tub folliculitis, in normal hosts. P. aeruginosa is phenotypically very unstable, particularly in patients with chronic infection. Phenotypic typing techniques are useful for understanding the epidemiology of acute infections, but they are limited by their discriminatory power and by their inability to group isolates that are phenotypically unrelated but genetically homologous. Molecular typing techniques, developed over the past decade, are highly discriminatory and are useful for typing strains from patients with chronic infection where the bacterial phenotype is unstable; this is particularly true in cystic fibrosis, where patients often are infected with the same strain for several decades, but the bacteria undergo phenotypic alteration. Molecular typing techniques, which have proven useful in typing P. aeruginosa for epidemiological purposes, include pulsed field gel electrophoresis, restriction fragment length polymorphic DNA analysis, random amplified polymorphic DNA analysis, repetitive extrapalindromic PCR analysis, and multilocus sequence typing. These methods are generally only available in specialized laboratories, but they should be used when data from phenotypic typing analysis are ambiguous or when phenotypic methods are unreliable, such as in cystic fibrosis.

  17. [In vitro indirect pathogenesis of Pseudomonas aeruginosa against anti MRSA chemotherapy].

    PubMed

    Satoh, Naotake; Kondo, Shigemi; Yamada, Toshihiko; Saionji, Katsu; Oguri, Toyoko; Igari, Jun

    2004-09-01

    In the patient with a chronic respiratory disease, both Pseudomonas aeruginosa and methicillin-resistant Staphylococcus aureus (MRSA) are frequently detected from expectoration. Vancomycin (VCM) and arbekacin (ABK) are both recommended for the chemotherapy of MRSA infection in Japan. Minocycline (MINO) is also selected for the treatment of MRSA infection. While rifampicin (RFP) and a trimetoprim-sulfamethoxazole combination (ST) are also recommended in Europe and USA but not recommended in Japan for the chemotherapy of MRSA infection. It is pointed out that coexistence bacteria affect chemotherapy as an indirect pathogen. Not only an antibacterial action but the immunological action or the metabolic effect against chronic P. aeruginosa infection such as DPB is known by the administration of 14-membered ring macrolides including erythromycin (EM). We considered the influence of P. aeruginosa isolated with MRSA on the activity against anti-MRSA agents by the disk diffusion method with bilayer flat agar in vitro. Moreover, we also examined the influence of EM against the activity of the anti-MRSA agents when P. aeruginosa was coexistence. One strain of MRSA as an indicator strain and 100 strains of P. aeruginosa as test strains, which were obtained from clinical materials, were used for the following experiment. P. aeruginosa was streaked on to the Mueller-Hinton agar culture medium (MHA), and they incubated at 35 degrees C for 24 hours. Then, the blood agar plate was piled up, MRSA was streaked on the blood agar surface, the susceptibility test disks (VCM, ABK, MINO, RFP, ST) were put on it, and incubated at 35 degrees C for a further 24 hours. The diameter of the zone of inhibition around the susceptibility disks against MRSA was measured and compared with P. aeruginosa free experiments. The anti-MRSA activity of MINO, ST and ABK was reduced by coexistence of P. aeruginosa. In RFP and VCM, the anti-MRSA activity was reinforced by coexistence of P. aeruginosa

  18. [Combined effect of sulbactam/cefoperazone and other antibiotics against clinical isolates of multi-resistant strains. II. In vitro combined effects of sulbactam/cefoperazone with imipenem/cilastatin, cefuzonam, flomoxef, amikacin or tobramycin].

    PubMed

    Kouda, M; Kumagai, I; Kobayashi, J; Sugai, R; Matsuzaki, H

    1991-02-01

    We evaluated combined effects of sulbactam/cefoperazone (SBT/CPZ) with each of imipenem/cilastatin (IPM), cefuzonam, flomoxef, amikacin (AMK) and tobramycin (TOB) against 324 clinical strains. Through this study, we obtained the following results. 1. Against Serratia marcescens and Enterobacter cloacae, good synergism was obtained by combining SBT/CPZ with IPM, AMK, or TOB. 2. Against Pseudomonas aeruginosa, good synergism was obtained by combining SBT/CPZ with AMK or TOB. 3. When SBT/CPZ was used in combination with IPM, antagonism was observed among about 45% of strains of P. aeruginosa.

  19. Activity of Imipenem with Relebactam against Gram-Negative Pathogens from New York City

    PubMed Central

    Lapuebla, Amabel; Abdallah, Marie; Olafisoye, Olawole; Cortes, Christopher; Urban, Carl; Landman, David

    2015-01-01

    Imipenem with relebactam was active against Escherichia coli, Klebsiella pneumoniae, and Enterobacter spp., including K. pneumoniae carbapenemase (KPC)-producing isolates. Loss of OmpK36 in KPC-producing K. pneumoniae isolates affected the susceptibility of this combination. Enhanced activity was evident against Pseudomonas aeruginosa, including isolates with depressed oprD and increased ampC expression. However, the addition of relebactam to imipenem did not provide added benefit against Acinetobacter baumannii. The combination of imipenem with relebactam demonstrated activity against KPC-producing Enterobacteriaceae and multidrug-resistant P. aeruginosa. PMID:26014931

  20. Use of bile-esculin agar for rapid differentiation of Enterobacteriaceae.

    PubMed Central

    Lindell, S S; Quinn, P

    1975-01-01

    Bile-esculin agar has been used for several years for the presumptive identification of group D streptococci. All members of the Enterobacteriaceae family will also grow on this medium, but only certain ones can hydrolyze esculin to 6,7-dihydroxycoumarin, which reacts with iron to produce a characteristic blackening of the medium. One thousand and six cultures from clinical specimens representing 20 genera were isolated and identified. Heavy inocula from fresh pure culture isolates on heart infusion agar were placed on bile-esculin agar slants and incubated at 35 C. The slants were examined at 4 h and again at 18 h for esculin hydrolysis. Shigella, Salmonella, Arizona, Proteus mirabilis, Proteus morganii, Providencia alcalifaciens, and Providencia stuartii all produced negative results. Klebsiella pneumoniae, Enterobacter aerogenes, Serratia marcescens, and Serratia rubidaea produced a positive reaction in 4 h. The other remaining eight genera exhibited varying results. The use of this medium in conjunction with triple sugar iron-lysine iron agar has been of great value in differentiating the Klebsiella-Enterobacter-Serratia group from other Enterobacteriaceae. PMID:1176613

  1. Production of hydrogen and volatile fatty acid by Enterobacter sp. T4384 using organic waste materials.

    PubMed

    Kim, Byung-Chun; Deshpande, Tushar R; Chun, Jongsik; Yi, Sung Chul; Kim, Hyunook; Um, Youngsoon; Sang, Byoung-In

    2013-02-01

    In a study of hydrogen-producing bacteria, strain T4384 was isolated from rice field samples in the Republic of Korea. The isolate was identified as Enterobacter sp. T4384 by phylogenetic analysis of 16S rRNA and rpoB gene sequences. Enterobacter sp. T4384 grew at a temperature range of 10-45 degrees C and at an initial pH range of 4.5-9.5. Strain T4384 produced hydrogen at 0-6% NaCl by using glucose, fructose, and mannose. In serum bottle cultures using a complete medium, Enterobacter sp. T4384 produced 1,098 ml/l H2, 4.0 g/l ethanol, and 1.0 g/l acetic acid. In a pH-regulated jar fermenter culture with the biogas removed, 2,202 ml/l H2, 6.2 g/l ethanol, and 1.0 g/l acetic acid were produced, and the lag-phase time was 4.8 h. Strain T4384 metabolized the hydrolysate of organic waste for the production of hydrogen and volatile fatty acid. The strain T4384 produced 947 ml/l H2, 3.2 g/l ethanol, and 0.2 g/l acetic acid from 6% (w/v) food waste hydrolysate; 738 ml/l H2, 4.2 g/l ethanol, and 0.8 g/l acetic acid from Miscanthus sinensis hydrolysate; and 805 ml/l H2, 5.0 g/l ethanol, and 0.7 g/l acetic acid from Sorghum bicolor hydrolysate.

  2. Acute ileitis facilitates infection with multidrug resistant Pseudomonas aeruginosa in human microbiota-associated mice.

    PubMed

    von Klitzing, Eliane; Ekmekciu, Ira; Bereswill, Stefan; Heimesaat, Markus M

    2017-01-01

    The rising incidence of multidrug resistant (MDR) Gram-negative bacteria including Pseudomonas aeruginosa has become a serious issue in prevention of its spread particularly among hospitalized patients. It is, however, unclear whether distinct conditions such as acute intestinal inflammation facilitate P. aeruginosa infection of vertebrate hosts. To address this, we analysed P. aeruginosa infection in human microbiota-associated (hma) mice with acute ileitis induced by peroral Toxoplasma gondii challenge. When perorally infected with P. aeruginosa at day 3 post ileitis induction, hma mice displayed higher intestinal P. aeruginosa loads as compared to hma mice without ileitis. However, the overall intestinal microbiota composition was not disturbed by P. aeruginosa (except for lowered bifidobacterial populations), and the infection did not further enhance ileal immune cell responses. Pro-inflammatory cytokines including IFN-γ and IL-12p70 were similarly increased in ileum and mesenteric lymph nodes of P. aeruginosa infected and uninfected hma mice with ileitis. The anti-inflammatory cytokine IL-10 increased multifold upon ileitis induction, but interestingly more distinctly in P. aeruginosa infected as compared to uninfected controls. Immune responses were not restricted to the intestines as indicated by elevated pro-inflammatory cytokine levels in liver and kidney upon ileitis induction. However, except for hepatic TNF-α levels, P. aeruginosa infection did not result in more distinct pro-inflammatory cytokine secretion in liver and kidney of hma mice with ileitis. Whereas viable intestinal bacteria were more frequently detected in systemic compartments such as spleen and cardiac blood of P. aeruginosa infected than uninfected mice at day 7 following ileitis induction, P. aeruginosa infection did not exacerbate systemic pro-inflammatory sequelae, but resulted in lower IL-10 serum levels. Acute intestinal inflammation facilitates infection of the vertebrate host

  3. [Nosocomial infection caused by Pseudomonas aeruginosa in intensive care unit].

    PubMed

    Wu, Yu-Qi; Shan, Hong-Wei; Zhao, Xian-Yu; Yang, Xing-Yi

    2011-02-01

    To investigate the risk factors of nosocomial infection caused by Pseudomonas aeruginosa in intensive care unit (ICU), in order to provide reference for an effective measure of infection control. A retrospective study of cases of Pseudomonas aeruginosa infection occurring in ICU was made with multivariable Logistic regression analysis. The clinical data of 1 950 cases admitted from January 2002 to December 2006 were found to have nosocomial infection caused by Pseudomonas aeruginosa were analyzed in order to identify its independent risk factors. Sixty-four out of 1 950 patients were found to suffer from nosocomial infection caused by Pseudomonas aeruginosa, the morbidity rate was 3.3%. At the same time, and in the same department, 37 patients suffering from infection caused by Escherichia coli, served as control group. Univariate analysis showed that the risk factors for nosocomial infection caused by Pseudomonas aeruginosa were the use of corticosteroid, unconsciousness or craniocerebral trauma, abdominal surgery, thorax/abdomen drainage tube, mechanical ventilation, and tracheostomy [the use of corticosteroid: odds ratio (OR)=3.364, 95% confidence interval (95%CI) 1.445-7.830; unconsciousness or craniocerebral trauma: OR=4.026, 95%CI 1.545-10.490; abdominal surgery: OR=0.166, 95%CI 0.068-0.403; thorax/abdomen drainage tube: OR=0.350, 95%CI 0.150-0.818; tracheostomy: OR=4.095, 95%CI 1.638-10.740]. Multivariate analysis showed that the independent risk factors of nosocomial infection caused by Pseudomonas aeruginosa in ICU were: the use of corticosteroid and mechanical ventilation [the use of corticosteroid: OR=3.143, 95%CI 1.115-8.856; mechanical ventilation: OR=3.195, 95%CI 1.607-6.353, P<0.05 and P<0.01]. The independent risk factors of nosocomial infection caused by Pseudomonas aeruginosa in ICU are the use of corticosteroid and mechanical ventilation. Measures should be taken to take care of the risk factors in order to prevent nosocomial infection caused by

  4. PAMDB: a comprehensive Pseudomonas aeruginosa metabolome database.

    PubMed

    Huang, Weiliang; Brewer, Luke K; Jones, Jace W; Nguyen, Angela T; Marcu, Ana; Wishart, David S; Oglesby-Sherrouse, Amanda G; Kane, Maureen A; Wilks, Angela

    2018-01-04

    The Pseudomonas aeruginosaMetabolome Database (PAMDB, http://pseudomonas.umaryland.edu) is a searchable, richly annotated metabolite database specific to P. aeruginosa. P. aeruginosa is a soil organism and significant opportunistic pathogen that adapts to its environment through a versatile energy metabolism network. Furthermore, P. aeruginosa is a model organism for the study of biofilm formation, quorum sensing, and bioremediation processes, each of which are dependent on unique pathways and metabolites. The PAMDB is modelled on the Escherichia coli (ECMDB), yeast (YMDB) and human (HMDB) metabolome databases and contains >4370 metabolites and 938 pathways with links to over 1260 genes and proteins. The database information was compiled from electronic databases, journal articles and mass spectrometry (MS) metabolomic data obtained in our laboratories. For each metabolite entered, we provide detailed compound descriptions, names and synonyms, structural and physiochemical information, nuclear magnetic resonance (NMR) and MS spectra, enzymes and pathway information, as well as gene and protein sequences. The database allows extensive searching via chemical names, structure and molecular weight, together with gene, protein and pathway relationships. The PAMBD and its future iterations will provide a valuable resource to biologists, natural product chemists and clinicians in identifying active compounds, potential biomarkers and clinical diagnostics. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. Managing Pseudomonas aeruginosa respiratory infections in cystic fibrosis.

    PubMed

    Langan, Katherine M; Kotsimbos, Tom; Peleg, Anton Y

    2015-12-01

    The current guidelines and recent clinical research in the management of Pseudomonas aeruginosa respiratory infections in cystic fibrosis (CF) are reviewed. Areas where further research is required will also be highlighted. P. aeruginosa is a key respiratory pathogen in CF. Inhaled tobramycin or colistin is recommended for early eradication to prevent establishment of chronic infection. Other antibiotic options are currently being investigated. The long-term success of eradication strategies is also now being assessed. The use of inhaled antibiotics in the management of chronic P. aeruginosa infection is an area of active investigation. Acute pulmonary exacerbations are still a major cause of morbidity and mortality. Guidelines continue to recommend combination intravenous therapy but further research is required to clarify the advantage of this approach. Multidrug resistance is common and potentially more effective antipseudomonal antibiotics may soon become available. The management of P. aeruginosa respiratory infection in CF remains a challenging area, especially in the setting of multidrug resistance. The role of inhaled antibiotics continues to be expanded. Further research is required in the key areas of eradication and management of chronic infection and acute pulmonary exacerbations to identify those treatments that optimize long-term, clinical benefits.

  6. Diversity of microflora in the gut and casts of tropical composting earthworms reared on different substrates.

    PubMed

    Parthasarathi, K; Ranganathan, L S; Anandi, V; Zeyer, Josef

    2007-01-01

    The diversity of fungi, bacteria, yeast, actinomycetes and protozoa were analysed in the gut and casts of Eudrilus eugeniae, Lampito mauritii, Eisenia fetida and Perionyx excavatus, both qualitatively and quantitatively as influenced by different feed substrates like clay loam soil, cowdung and pressmud. While actinomycetes (Streptomyces albus, S. somaliensis, Nocardia asteroides, N. caviae and Saccharomonosporia) were not digested by any of these species of worms, protozoa (Amoeba proteus, A. terricola, Paramecium trichium, Euglena viridis, E. orientalis, Vorticella picta and Trichomonas hominis) and yeast (Candida tropicalis, C. krusei C. albicans and Cryptococcus neoformans) were totally digested. Certain species of fungi (Saksenae vasiformis, Mucor plumbeus, Cladosporium carrionii, C. herbacium, Alternaria sp., Cunninghamella echinulata, Mycetia sterila, Syncephalostrum racemosum, Curvalaria lunata, C. geniculata and Geotrichum candidum) and bacteria (Pseudomonas aeruginosa, Bacterium antitratum, Mima polymorpha, Enterobacter aerogenes, E. cloacae, Proteus vulgaris, P. mirabilis, P. rettgeri, Escherichia coli, Staphylococus citreus, Bacillus subtilis, B. cereus, Enterococci and Micrococci) were completely digested. Certain other species were not digested fungi like Aspergillus fumigatus, A. flavus, A. ochraceous, Trichoderma koningii (except by Eeugeniae), Fusarium moniliforme (except by E. eugeniae) and Rhizopus sp., and bacteria like Klebsiella pneumoniae and Morganella morganii) and these were multiplied during the transit of the organic residues through the gut of worms. The microbial proliferation was more in the casts, due to the environment prevailing--rich in nutrient supply and large surface area available for growth and reproduction of the microbes that lead to enhanced microbial activity and humic acid contents in the casts.

  7. Antibacterial and antifungal activities from Siamese crocodile blood.

    PubMed

    Leelawongtawon, Ratree; Siruntawineti, Jindawan; Chaeychomsri, Win; Sattaponpan, Chisanucha

    2010-12-01

    To evaluate the in vitro antimicrobial activity of the Siamese crocodile blood against bacteria and fungi. Thirty Siamese crocodile blood samples including freeze dried whole blood (FDWB), fresh serum (FS), and freeze dried serum (FDS) were evaluated for antimicrobial susceptibility and MIC values against ATCC-registered strains of nine bacterial species and two fungal species and one fungus isolated from a clinical specimen, by using the standard broth microdilution method and a modified resazurin microtiter plate assay. The result showed that FS (80 mg/ml) and FDS (100 mg/ml) inhibited Gram negative bacteria including Enterobacter aerogenes ATCC 13048, Escherichia coli ATCC 25922, Klebsiella pneumoniae ATCC 27736, Salmonella typhimurium ATCC 13311 and Pseudomonas aeruginosa ATCC 27853 with the susceptibility rate at 23.30%, 10.00%, 40.00%, 70.00%, and 86.67%, respectively for FS, and 30.00%, 10.00%, 43.33%, 76.67% and 90.00%, respectively for FDS. The MIC and MBC were in the range of 12.50-100.00 mg/ml and 25.00-100.00 mg/m1 respectively. FS and FDS also inhibited Cryptococcus neoformans 250309 and Aspergillus niger with the susceptibility rate at 90.00% and 80.00%, respectively for FS and 100.00% and 83.33%, respectively for FDS. The MIC was in the range of 25.00-100.00 mg/ml. However, FS and FDS did not inhibit Gram positive bacteria and did not kill fungi. FDWB (100 mg/ml) could neither inhibit bacteria nor fungi. FS and FDS from Siamese crocodile exhibited potential antibacterial and antifungal activities.

  8. Assessment of microbiological quality of sachet-packaged drinking water in Western Nigeria and its public health significance.

    PubMed

    Olaoye, O A; Onilude, A A

    2009-11-01

    To assess the microbiological quality of sachet-packaged drinking water in Western Nigeria and its impact on public health. Cross-sectional microbiological testing. Ninety-two sachet-packaged water samples were analysed for microbiological and metal qualities. Total bacterial and coliform counts were determined, and the presence of Escherichia coli, an important water quality indicator, was tested. The level of conformity of the water processors with the guidelines of Nigeria's quality regulatory agency was also determined. Varying levels of microbial contamination were recorded in samples from the different sampling locations. The total bacteria count ranged between 2.86 and 3.45log colony-forming units (cfu)/ml. The highest coliform count recorded was 1.62log cfu/ml. Faecal coliform E. coli was detected in one sample from Oke-Iho and one sample from Okaka, representing 2.2% of total samples. Lead and manganese were not found in any of the samples. However, iron was detected and the highest iron concentration (0.10mg/l) was detected in samples from Ikorodu. The bacteria that were identified from the water samples included E. coli, Pseudomonas aeruginosa, Enterobacter aerogenes, Klebsiella sp., Proteus vulgaris, Alcaligenes faecalis, Bacillus cereus, Staphylococcus aureus, Streptococcus lactis, Aeromonas sp. and Micrococcus luteum. Many of the water processors did not comply with the guidelines of the quality regulatory agency. Some of the sachet-packaged samples of drinking water were of poor quality. The results indicate a need for Nigeria's quality regulatory agency to take appropriate measures in safeguarding public health.

  9. Effectiveness of a model constructed wetland system containing Cyperus papyrus in degrading diesel oil

    NASA Astrophysics Data System (ADS)

    Harbowo, Danni Gathot; Choesin, Devi Nandita

    2014-03-01

    Synergism between wetland systems and the provision of degrading bacterial inoculum is now being developed for the recovery of areas polluted waters of pollutants. In connection with the frequent cases of diesel oil pollution in the waters of Indonesia, we need a way of water treatment as an efficient. In this study conducted a series of tests to develop an construcred wetland design that can effectively degrade diesel oil. Tested five systems: blanko (A), substrated, without bacterial inoculums, and vegetation (B); with the addition of inoculum (C); subsrated and vegetated (D); substrated and vegetated with the addition of inoculum (E). Vegetation used in this study is Cyperus papyrus because it has the ability to absorb pollutants. Inoculum used was Pseudomonas aeruginosa and Enterobacter aerogenes which is a bacteria degrading organic compounds commonly found in water. To measure the effectiveness of the system, use several indicators to see the degradation of pollutants, namely changes in viscosity, surface tension of pollutants, and the emergence of compound degradation. Based on the results of the study can be determined that the substrated and vegetated system with Cyperus papyrus inoculum (E) was considered the most capable of degrading diesel oil due to the large changes in all parameters. In the system E, 40.6% increase viscosity, surface tension decreased 32.7%, the appearance of degradation compounds with relatively 3614.7 points, and increased to 227.8% TDS. In addition the environmental conditions in the system E also supports the growth of vegetation and degrading microbes.

  10. Evaluation of wound healing, anti-microbial and antioxidant potential of Pongamia pinnata in wistar rats.

    PubMed

    Dwivedi, Deepak; Dwivedi, Mona; Malviya, Sourabh; Singh, Vinod

    2017-01-01

    To investigate wound healing, antimicrobial and antioxidant activity of leaf extract of Pongamia Pinnata . Methanolic extracts of P. pinnata leaf were studied for wound healing efficiency, and was assessed by the rate of wound contraction, tensile strength, breaking strength, hydroxyproline and hexosamine content, along with its effect on pro-inflammatory and anti-inflammatory cytokines was assessed using excision and incision model of wound repair in Wistar rats. Antimicrobial activity against ten microorganisms was also assessed. In vivo antioxidant activity was performed to understand the mechanism of wound healing potency. The results indicated that P. pinnata extract has potent wound healing capacity as evident from the wound contraction and increased tensile strength. Hydroxyproline and hexosamine expression were also well correlated with the healing pattern observed. extract exhibited significant antimicrobial activity, Staphylococcus aureus, Staphylococcus pyogenes, Staphylococcus epidermidis, Escherichia coli, Micrococcus luteus, Enterobacter aerogenes, Salmonella typhi, Pseudomonas aeruginosa, Candida albicans, Aspergillus niger also indicate that P. pinnata posses potent antioxidant activity by inhibition lipid peroxidation, reduce glutathione, superoxide dismutase level and increases catalase activity. During early wound healing phase TNF-α and IL-6 level were found to be up-regulated by P. pinnata treatment. Increased wound contraction and tensile strength, augmented hydroxyproline and hexosamine content, antioxidative activity and moderate antimicrobial activity support the early wound healing exhibited by P. pinnata . Induction in cytokine production may be one of the mechanisms in accelerating the wound healing. Results suggest that P. pinnata may be useful in tropical management of wound healing.

  11. Quorum-sensing inhibition abrogates the deleterious impact of Pseudomonas aeruginosa on airway epithelial repair.

    PubMed

    Ruffin, Manon; Bilodeau, Claudia; Maillé, Émilie; LaFayette, Shantelle L; McKay, Geoffrey A; Trinh, Nguyen Thu Ngan; Beaudoin, Trevor; Desrosiers, Martin-Yvon; Rousseau, Simon; Nguyen, Dao; Brochiero, Emmanuelle

    2016-09-01

    Chronic Pseudomonas aeruginosa lung infections are associated with progressive epithelial damage and lung function decline. In addition to its role in tissue injury, the persistent presence of P. aeruginosa-secreted products may also affect epithelial repair ability, raising the need for new antivirulence therapies. The purpose of our study was to better understand the outcomes of P. aeruginosa exoproducts exposure on airway epithelial repair processes to identify a strategy to counteract their deleterious effect. We found that P. aeruginosa exoproducts significantly decreased wound healing, migration, and proliferation rates, and impaired the ability of directional migration of primary non-cystic fibrosis (CF) human airway epithelial cells. Impact of exoproducts was inhibited after mutations in P. aeruginosa genes that encoded for the quorum-sensing (QS) transcriptional regulator, LasR, and the elastase, LasB, whereas impact was restored by LasB induction in ΔlasR mutants. P. aeruginosa purified elastase also induced a significant decrease in non-CF epithelial repair, whereas protease inhibition with phosphoramidon prevented the effect of P. aeruginosa exoproducts. Furthermore, treatment of P. aeruginosa cultures with 4-hydroxy-2,5-dimethyl-3(2H)-furanone, a QS inhibitor, abrogated the negative impact of P. aeruginosa exoproducts on airway epithelial repair. Finally, we confirmed our findings in human airway epithelial cells from patients with CF, a disease featuring P. aeruginosa chronic respiratory infection. These data demonstrate that secreted proteases under the control of the LasR QS system impair airway epithelial repair and that QS inhibitors could be of benefit to counteract the deleterious effect of P. aeruginosa in infected patients.-Ruffin, M., Bilodeau, C., Maillé, É., LaFayette, S. L., McKay, G. A., Trinh, N. T. N., Beaudoin, T., Desrosiers, M.-Y., Rousseau, S., Nguyen, D., Brochiero, E. Quorum-sensing inhibition abrogates the deleterious impact

  12. A Carbon-Neutral Photosynthetic Microbial Fuel Cell Powered by Microcystis aeruginosa.

    PubMed

    Ma, Meirong; Cao, Limin; Chen, Li; Ying, Xiaofang; Deng, Zongwu

    2015-07-01

    A photosynthetic microbial fuel cell (m-PMFC) is developed for generating electricity by harnessing solar energy using Microcystis aeruginosa. In this m-PMFC, commensal bacteria can consume the nutrients that Microcystis aeruginosa produces to generate electricity so that no net CO₂production occurs. A b-MFC is constructed to confirm the role of commensal bacteria in electric generation. An s-PMFC is constructed to confirm the contribution of Microcystis aeruginosa as substrates. The power outputs of m-PMFCs exhibit no significant difference in terms of different inoculation amount of Microcystis aeruginosa or light/dark cycles. The power density of m-PMFC exhibits similar response to bubbling of N₂and O₂as that of b-MFC, as confirmed by cyclic voltammetry analysis of m-PMFC and b-MFC. Scanning electron microscope images demonstrate that the biofilm of m-PMFC consists mainly of commensal bacteria. These results suggest that commensal bacteria act as the main biocatalysts and Microcystis aeruginosa as the anode substrates in the m-PMFC.

  13. Hybrid modeling of microbial exopolysaccharide (EPS) production: The case of Enterobacter A47.

    PubMed

    Marques, Rodolfo; von Stosch, Moritz; Portela, Rui M C; Torres, Cristiana A V; Antunes, Sílvia; Freitas, Filomena; Reis, Maria A M; Oliveira, Rui

    2017-03-20

    Enterobacter A47 is a bacterium that produces high amounts of a fucose-rich exopolysaccharide (EPS) from glycerol residue of the biodiesel industry. The fed-batch process is characterized by complex non-linear dynamics with highly viscous pseudo-plastic rheology due to the accumulation of EPS in the culture medium. In this paper, we study hybrid modeling as a methodology to increase the predictive power of models for EPS production optimization. We compare six hybrid structures that explore different levels of knowledge-based and machine-learning model components. Knowledge-based components consist of macroscopic material balances, Monod type kinetics, cardinal temperature and pH (CTP) dependency and power-law viscosity models. Unknown dependencies are set to be identified by a feedforward artificial neural network (ANN). A semiparametric identification schema is applied resorting to a data set of 13 independent fed-batch experiments. A parsimonious hybrid model was identified that describes the dynamics of the 13 experiments with the same parameterization. The final model is specific to Enterobacter A47 but can be easily extended to other microbial EPS processes. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Mercury bioremediation by mercury accumulating Enterobacter sp. cells and its alginate immobilized application.

    PubMed

    Sinha, Arvind; Khare, Sunil Kumar

    2012-02-01

    The effective microbial remediation of the mercury necessitates the mercury to be trapped within the cells without being recycled back to the environment. The study describes a mercury bioaccumulating strain of Enterobacter sp., which remediated mercury from the medium simultaneous to its growth. The transmission electron micrographs and electron dispersive X-ray analysis revealed the accumulation of remediated mercury as nano-size particles in the cytoplasm as well as on the cell wall. The Enterobacter sp. in the present work was able to accumulate mercury, without being engineered in its native form. The possibility of recovering the accumulated mercury from the cells is also indicated. The applicability of the alginate immobilized cells in removing mercury from synthetic and complex industrial effluent in a batch mode was amply demonstrated. The initial load of 7.3 mg l(-1) mercury in the industrial effluent was completely removed in 72 h. The cells immobilized in calcium alginate were similarly effective in the complete removal of 5 mg l(-1) HgCl(2) of mercury from the synthetic effluent in less than 72 h. The immobilized cells could be reused for multiple cycles.

  15. Occurrence of Enterobacter hormaechei carrying blaNDM-1 and blaKPC-2 in China.

    PubMed

    Yang, Biwei; Feng, Yu; McNally, Alan; Zong, Zhiyong

    2018-02-01

    Three carbapenem-resistant clinical isolates of the Enterobacter cloacae complex (ECC) were recovered from different patients in a hospital. All 3 isolates carried 2 carbapenemase genes bla KPC-2 and bla NDM-1 . A study was performed to characterize their relatedness and to investigate possible links among the patients. Whole genome sequencing revealed that the isolates were Enterobacter hormaechei and belonged to ST177 of the ECC. There were 19-142 single nucleotide polymorphisms (SNPs) between the isolates, suggesting that the isolates were likely from a central reservoir, which might have existed for some time. bla KPC-2 and bla NDM-1 were carried on 2 different IncF-type plasmids in the isolates. The 3 bla NDM-1 -carrying plasmids were almost identical and were self-transmissible, while the bla KPC-2 -carrying plasmids were only transmissible in the presence of the bla NDM-1 -carrying plasmid. The source of and direct links among them were not identified, suggesting a hospital transmission of a common multidrug resistant strain. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Formation of methyl mercury by bacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamdy, M.K.; Noyes, O.R.

    1975-09-01

    Twenty-three Hg/sup 2 +/-resistant cultures were isolated from sediment of the Savannah River in Georgia; of these, 14 were gram-negative short rods belonging to the genera Escherichia and Enterobacter, six were gram-positive cocci (three Staphylococcus sp. and three Streptococcus sp.) and three were Bacillus sp. All the Escherichia, Enterobacter, and the Bacillus strain were more resistant to Hg/sup 2 +/ than the strains of staphylococci and streptococci. Adaptation using serial dilutions and concentration gradient agar plant techniques showed that it was possible to select a Hg/sup 2 +/-resistant strain from a parent culture identified as Enterobacter aerogenes. This culture resistedmore » 1200 ..mu..g of Hg/sup 2 +/ per ml of medium and produced methyl mercury from HgCl/sub 2/, but was unable to convert Hg/sup 2 +/ to volatile elemental mercury (Hg/sup 0/). Under constant aeration (i.e., submerged culture), slightly more methyl mercury was formed than in the absence of aeration. Production of methyl mercury was cyclic in nature and slightly decreased if DL-homocysteine was present in media, but increased with methylcobalamine. It is concluded that the bacterial production of methyl mercury may be a means of resistance and detoxification against mercurials in which inorganic Hg/sup 2 +/ is converted to organic form and secreted into the environment. 39 references, 5 figures, 3 tables.« less

  17. Formation of methyl mercury by bacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamdy, M.K.; Noyes, O.R.

    1975-09-01

    Twenty-three Hg/sup 2 +/-resistant cultures were isolated from sediment of the Savannah River in Georgia; of these, 14 were gram-negative short rods belonging to the genera Escherichia and Enterobacter, six were gram-positive cocci (three Staphylococcus sp. and three Streptococcus sp.) and three were Bacillus sp. All the Escherichia, Enterobacter, and the Bacillus strain were more resistant to Hg/sup 2 +/ than the strains of staphylococci and streptococci. Adaptation using serial dilutions and concentration gradient agar plate techniques showed that it was possible to select a Hg/sup 2 +/-resistant strain from a parent culture identified as Enterobacter aerogenes. This culture resistedmore » 1,200 ..mu..g of Hg/sup 2 +/ per ml of medium and produced methyl mercury from HgCl/sub 2/, but was unable to convert Hg/sup 2 +/ to volatile elemental mercury (Hg/sup 0/). Under constant aeration (i.e., submerged culture), slightly more methyl mercury was formed than in the absence of aeration. Production of methyl mercury was cycle in nature and slightly decreased if DL-homocysteine was present in media, but increased with methylcobalamine. It is concluded that the bacterial production of methyl mercury may be a means of resistance and detoxification against mercurials in which inorganic Hg/sup 2 +/ is converted to organic form and secreted into the environment.« less

  18. Bioprospecting of lipolytic microorganisms obtained from industrial effluents.

    PubMed

    Peil, Greice H S; Kuss, Anelise V; Rave, Andrés F G; Villarreal, José P V; Hernandes, Yohana M L; Nascente, Patrícia S

    2016-01-01

    The lipases have ability to catalyze diverse reactions and are important in different biotechnological applications. The aim of this work was to isolate and characterize microorganisms that produce lipases, from different food industry effluents localized in Pelotas, RS/Brazil. Bacteria were identified using Gram stain and biochemical tests (Vitek 2(r)). Fungi were identified according to macro and micromorphology characteristics. The extracellular lipase production was evaluated using the Rhodamine B test and the enzymatic activity by titration. Twenty-one bacteria were isolated and identified as Klebsiella pneumoniae ssp. pneumoniae, Serratia marcescens, Enterobacter aerogenes, Raoultella ornithinolytica and Raoultella planticola. Were characterized isolated filamentous fungi by the following genera: Alternaria sp., Fusarium sp., Geotrichum sp., Gliocladium sp., Mucor sp., Paecilomyces sp. and Trichoderma sp. Extracellular lipase production was observed in 71.43% of the bacteria and 57.14% of the fungi. The bacterium that presented better promising enzymatic activity was E. aerogenes (1.54 U/ml) however between fungi there was not significant difference between the four isolates. This study indicated that microorganisms lipase producers are present in the industrial effluents, as well as these enzymes have potential of biodegradation of lipid compounds.

  19. Pseudomonas aeruginosa Lifestyle: A Paradigm for Adaptation, Survival, and Persistence

    PubMed Central

    Moradali, M. Fata; Ghods, Shirin; Rehm, Bernd H. A.

    2017-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen affecting immunocompromised patients. It is known as the leading cause of morbidity and mortality in cystic fibrosis (CF) patients and as one of the leading causes of nosocomial infections. Due to a range of mechanisms for adaptation, survival and resistance to multiple classes of antibiotics, infections by P. aeruginosa strains can be life-threatening and it is emerging worldwide as public health threat. This review highlights the diversity of mechanisms by which P. aeruginosa promotes its survival and persistence in various environments and particularly at different stages of pathogenesis. We will review the importance and complexity of regulatory networks and genotypic-phenotypic variations known as adaptive radiation by which P. aeruginosa adjusts physiological processes for adaptation and survival in response to environmental cues and stresses. Accordingly, we will review the central regulatory role of quorum sensing and signaling systems by nucleotide-based second messengers resulting in different lifestyles of P. aeruginosa. Furthermore, various regulatory proteins will be discussed which form a plethora of controlling systems acting at transcriptional level for timely expression of genes enabling rapid responses to external stimuli and unfavorable conditions. Antibiotic resistance is a natural trait for P. aeruginosa and multiple mechanisms underlying different forms of antibiotic resistance will be discussed here. The importance of each mechanism in conferring resistance to various antipseudomonal antibiotics and their prevalence in clinical strains will be described. The underlying principles for acquiring resistance leading pan-drug resistant strains will be summarized. A future outlook emphasizes the need for collaborative international multidisciplinary efforts to translate current knowledge into strategies to prevent and treat P. aeruginosa infections while reducing the rate of antibiotic resistance

  20. Effect of novel antibacterial gallium-carboxymethyl cellulose on Pseudomonas aeruginosa.

    PubMed

    Valappil, Sabeel P; Yiu, Humphrey H P; Bouffier, Laurent; Hope, Christopher K; Evans, Gary; Claridge, John B; Higham, Susan M; Rosseinsky, Matthew J

    2013-02-07

    Gallium has emerged as a new therapeutic agent due partly to the scarcity in development of new antibiotics. In this study, a novel antibacterial gallium exchanged carboxymethyl cellulose (Ga-CMC) has been developed and tested for the susceptibility on a common bacteria, Pseudomonas aeruginosa. The results show that an increase in average molecular weight (MW) from 90 k, 250 k to 700 k of Ga-CMC caused a decrease in antimicrobial activity against planktonic P. aeruginosa. Gallium loading of the Ga-CMC (250 k) samples was altered by varying the amount of functionality (0.7, 0.9 and 1.2 acid groups per mole of carbohydrate) which affected also its antimicrobial activity against planktonic P. aeruginosa. Further, the ability to prevent the growth of biofilms of P. aeruginosa was tested on MW = 250 k samples with 0.9 acid groups per mole of carbohydrate as this sample showed the most promising activity against planktonic P. aeruginosa. Gallium was found to reduce biofilm growth of P. aeruginosa with a maximum effect (0.85 log(10) CFU reduction compared to sodium-carboxymethyl cellulose, Na-CMC) after 24 h. Results of the solubility and ion exchange studies show that this compound is suitable for the controlled release of Ga(3+) upon their breakdown in the presence of bacteria. SEM EDX analysis confirmed that Ga(3+) ions are evenly exchanged on the cellulose surface and systematic controls were carried out to ensure that antibacterial activity is solely due to the presence of gallium as samples intrinsic acidity or nature of counterion did not affect the activity. The results presented here highlight that Ga-CMC may be useful in controlled drug delivery applications, to deliver gallium ions in order to prevent infections due to P. aeruginosa biofilms.

  1. Inhibition of Pseudomonas aeruginosa biofilm formation by 2,2'-bipyridyl, lipoic, kojic and picolinic acids.

    PubMed

    Çevik, Kübra; Ulusoy, Seyhan

    2015-08-01

    The inhibitory effects of iron chelators, and FeCl3 chelation on biofilm formation and swarming motility were investigated against an opportunistic human pathogen Pseudomonas aeruginosa. The inhibitory activity of 2,2'-bipyridyl, lipoic acid, kojic acid and picolinic acid on biofilm formation of P. aeruginosa strain PAO1 and three clinical isolates (P. aeruginosa PAK01, P. aeruginosa PAK02 and P. aeruginosa PAK03) were investigated, based on crystal violet assay, and swarming motility test. The kojic, lipoic and picolinic acid inhibited biofilm formation by 5-33% in all tested P. aeruginosa isolates. When chelated iron was added, biofilm inhibition rates were determined to be 39-57%. Among the tested chelators against P. aeruginosa, lipoic acid (84%) and kojic acid (68%) presented the highest inhibition of swarming motility. This is the first study to report the inhibitory effect of lipoic acid on biofilm formation and swarming motility of P. aeruginosa. It is considered that lipoic and picolinic acids can serve as alternatives for the treatment of the P. aeruginosa infections by inhibiting biofilm formation.

  2. Transcriptional Responses to Sucrose Mimic the Plant-Associated Life Style of the Plant Growth Promoting Endophyte Enterobacter sp. 638

    DOE PAGES

    Taghavi, Safiyh; Wu, Xiao; Ouyang, Liming; ...

    2015-01-21

    Growth in sucrose medium was previously found to trigger the expression of functions involved in the plant associated life style of the endophytic bacterium Enterobacter sp. 638. Therefore, comparative transcriptome analysis between cultures grown in sucrose or lactate medium was used to gain insights in the expression levels of bacterial functions involved in the endophytic life style of strain 638. Growth on sucrose as a carbon source resulted in major changes in cell physiology, including a shift from a planktonic life style to the formation of bacterial aggregates. This shift was accompanied by a decrease in transcription of genes involvedmore » in motility (e.g. flagella biosynthesis) and an increase in the transcription of genes involved in colonization, adhesion and biofilm formation. The transcription levels of functions previously suggested as being involved in endophytic behavior and functions responsible for plant growth promoting properties, including the synthesis of indole-acetic acid, acetoin and 2,3-butanediol, also increased significantly for cultures grown in sucrose medium. Interestingly, despite an abundance of essential nutrients transcription levels of functions related to uptake and processing of nitrogen and iron became increased for cultures grown on sucrose as sole carbon source. Transcriptome data were also used to analyze putative regulatory relationships. In addition to the small RNA csrABCD regulon, which seems to play a role in the physiological adaptation and possibly the shift between free-living and plant-associated endophytic life style of Enterobacter sp. 638, our results also pointed to the involvement of rcsAB in controlling responses by Enterobacter sp. 638 to a plant-associated life style. Lastly, targeted mutagenesis was used to confirm this role and showed that compared to wild-type Enterobacter sp. 638 a ΔrcsB mutant was affected in its plant growth promoting ability.« less

  3. Transcriptional Responses to Sucrose Mimic the Plant-Associated Life Style of the Plant Growth Promoting Endophyte Enterobacter sp. 638

    PubMed Central

    Taghavi, Safiyh; Wu, Xiao; Ouyang, Liming; Stadler, Andrea; McCorkle, Sean; Zhu, Wei; Maslov, Sergei; van der Lelie, Daniel

    2015-01-01

    Growth in sucrose medium was previously found to trigger the expression of functions involved in the plant associated life style of the endophytic bacterium Enterobacter sp. 638. Therefore, comparative transcriptome analysis between cultures grown in sucrose or lactate medium was used to gain insights in the expression levels of bacterial functions involved in the endophytic life style of strain 638. Growth on sucrose as a carbon source resulted in major changes in cell physiology, including a shift from a planktonic life style to the formation of bacterial aggregates. This shift was accompanied by a decrease in transcription of genes involved in motility (e.g. flagella biosynthesis) and an increase in the transcription of genes involved in colonization, adhesion and biofilm formation. The transcription levels of functions previously suggested as being involved in endophytic behavior and functions responsible for plant growth promoting properties, including the synthesis of indole-acetic acid, acetoin and 2,3-butanediol, also increased significantly for cultures grown in sucrose medium. Interestingly, despite an abundance of essential nutrients transcription levels of functions related to uptake and processing of nitrogen and iron became increased for cultures grown on sucrose as sole carbon source. Transcriptome data were also used to analyze putative regulatory relationships. In addition to the small RNA csrABCD regulon, which seems to play a role in the physiological adaptation and possibly the shift between free-living and plant-associated endophytic life style of Enterobacter sp. 638, our results also pointed to the involvement of rcsAB in controlling responses by Enterobacter sp. 638 to a plant-associated life style. Targeted mutagenesis was used to confirm this role and showed that compared to wild-type Enterobacter sp. 638 a ΔrcsB mutant was affected in its plant growth promoting ability. PMID:25607953

  4. Transcriptional responses to sucrose mimic the plant-associated life style of the plant growth promoting endophyte Enterobacter sp. 638.

    PubMed

    Taghavi, Safiyh; Wu, Xiao; Ouyang, Liming; Zhang, Yian Biao; Stadler, Andrea; McCorkle, Sean; Zhu, Wei; Maslov, Sergei; van der Lelie, Daniel

    2015-01-01

    Growth in sucrose medium was previously found to trigger the expression of functions involved in the plant associated life style of the endophytic bacterium Enterobacter sp. 638. Therefore, comparative transcriptome analysis between cultures grown in sucrose or lactate medium was used to gain insights in the expression levels of bacterial functions involved in the endophytic life style of strain 638. Growth on sucrose as a carbon source resulted in major changes in cell physiology, including a shift from a planktonic life style to the formation of bacterial aggregates. This shift was accompanied by a decrease in transcription of genes involved in motility (e.g., flagella biosynthesis) and an increase in the transcription of genes involved in colonization, adhesion and biofilm formation. The transcription levels of functions previously suggested as being involved in endophytic behavior and functions responsible for plant growth promoting properties, including the synthesis of indole-acetic acid, acetoin and 2,3-butanediol, also increased significantly for cultures grown in sucrose medium. Interestingly, despite an abundance of essential nutrients transcription levels of functions related to uptake and processing of nitrogen and iron became increased for cultures grown on sucrose as sole carbon source. Transcriptome data were also used to analyze putative regulatory relationships. In addition to the small RNA csrABCD regulon, which seems to play a role in the physiological adaptation and possibly the shift between free-living and plant-associated endophytic life style of Enterobacter sp. 638, our results also pointed to the involvement of rcsAB in controlling responses by Enterobacter sp. 638 to a plant-associated life style. Targeted mutagenesis was used to confirm this role and showed that compared to wild-type Enterobacter sp. 638 a ΔrcsB mutant was affected in its plant growth promoting ability.

  5. Transcriptional Responses to Sucrose Mimic the Plant-Associated Life Style of the Plant Growth Promoting Endophyte Enterobacter sp. 638

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taghavi, Safiyh; Wu, Xiao; Ouyang, Liming

    Growth in sucrose medium was previously found to trigger the expression of functions involved in the plant associated life style of the endophytic bacterium Enterobacter sp. 638. Therefore, comparative transcriptome analysis between cultures grown in sucrose or lactate medium was used to gain insights in the expression levels of bacterial functions involved in the endophytic life style of strain 638. Growth on sucrose as a carbon source resulted in major changes in cell physiology, including a shift from a planktonic life style to the formation of bacterial aggregates. This shift was accompanied by a decrease in transcription of genes involvedmore » in motility (e.g. flagella biosynthesis) and an increase in the transcription of genes involved in colonization, adhesion and biofilm formation. The transcription levels of functions previously suggested as being involved in endophytic behavior and functions responsible for plant growth promoting properties, including the synthesis of indole-acetic acid, acetoin and 2,3-butanediol, also increased significantly for cultures grown in sucrose medium. Interestingly, despite an abundance of essential nutrients transcription levels of functions related to uptake and processing of nitrogen and iron became increased for cultures grown on sucrose as sole carbon source. Transcriptome data were also used to analyze putative regulatory relationships. In addition to the small RNA csrABCD regulon, which seems to play a role in the physiological adaptation and possibly the shift between free-living and plant-associated endophytic life style of Enterobacter sp. 638, our results also pointed to the involvement of rcsAB in controlling responses by Enterobacter sp. 638 to a plant-associated life style. Lastly, targeted mutagenesis was used to confirm this role and showed that compared to wild-type Enterobacter sp. 638 a ΔrcsB mutant was affected in its plant growth promoting ability.« less

  6. Establishing the diagnosis of chronic colonization with Pseudomonas aeruginosa of cystic fibrosis patients: Comparison of the European consensus criteria with genotyping of P. aeruginosa isolates.

    PubMed

    Jonckheere, Leander; Schelstraete, Petra; Van Simaey, Leen; Van Braeckel, Eva; Willekens, Julie; Van Daele, Sabine; De Baets, Frans; Vaneechoutte, Mario

    2018-04-11

    After antibiotic eradication treatment for a first ever Pseudomonas aeruginosa isolation, the European consensus criteria (ECC) are widely used to assess colonization status with P. aeruginosa in CF-patients. We evaluated to what extent genotyping (GT) of subsequent P. aeruginosa isolates could predict/assess chronic colonization (CC), in comparison with the ECC. Over a 14-year period, sputa were cultured from 80 CF-patients (age range: 2-51 years), from a first ever isolation of P. aeruginosa onwards. Patients with a positive culture for P. aeruginosa received antibiotic eradication treatment. For the 40 patients for whom three or more P. aeruginosa isolates were available, these isolates were genotyped. According to the ECC, 27 out of the 40 patients (67.5%) became CC during the study period (ECC-positive patients). Genotyping confirmed persistence of the same genotype for 25 of these ECC-positive patients. Genotyping indicated persistence of the same genotype for at least two subsequent isolates for 5 out of 13 ECC-negative patients. Culture-positivity characteristics of the 27 ECC-positive patients corresponded well to those of the 30 GT-positive patients, with an overall higher number of positive cultures as well as a shorter interval in between first and second isolate compared to ECC-negative and GT-negative patients. Genotyping indicated persistence of the same genotype on average 9.3 months earlier than CC according to the ECC (P < 0.01). Genotyping of P. aeruginosa isolates confirmed CC for 25 out of 27 ECC-positive patients (92.6% specificity) and predicted CC 9.3 months earlier than the ECC. Copyright © 2018 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.

  7. The Effect of Strict Segregation on Pseudomonas aeruginosa in Cystic Fibrosis Patients

    PubMed Central

    van Mansfeld, Rosa; de Vrankrijker, Angelica; Brimicombe, Roland; Heijerman, Harry; Teding van Berkhout, Ferdinand; Spitoni, Cristian; Grave, Sanne; van der Ent, Cornelis; Wolfs, Tom; Willems, Rob; Bonten, Marc

    2016-01-01

    Introduction Segregation of patients with cystic fibrosis (CF) was implemented to prevent chronic infection with epidemic Pseudomonas aeruginosa strains with presumed detrimental clinical effects, but its effectiveness has not been carefully evaluated. Methods The effect of strict segregation on the incidence of P. aeruginosa infection in CF patients was investigated through longitudinal protocolized follow-up of respiratory tract infection before and after segregation. In two nested cross-sectional studies in 2007 and 2011 the P. aeruginosa population structure was investigated and clinical parameters were determined in patients with and without infection with the Dutch epidemic P. aeruginosa clone (ST406). Results Of 784 included patients 315 and 382 were at risk for acquiring chronic P. aeruginosa infection before and after segregation. Acquisition rates were, respectively, 0.14 and 0.05 per 1,000 days at risk (HR: 0.66, 95% CI [0.2548–1.541]; p = 0.28). An exploratory subgroup analysis indicated lower acquisition after segregation in children < 15 years of age (HR: 0.43, 95% CI[0.21–0.95]; p = 0.04). P. aeruginosa population structure did not change after segregation and ST406 was not associated with lung function decline, death or lung transplantation. Conclusions Strict segregation was not associated with a statistically significant lower acquisition of chronic P. aeruginosa infection and ST406 was not associated with adverse clinical outcome. After segregation there were no new acquisitions of ST406. In an unplanned exploratory analysis chronic acquisition of P. aeruginosa was lower after implementation of segregation in patients under 15 years of age. PMID:27280467

  8. Pseudomonas aeruginosa isolates in severe chronic obstructive pulmonary disease: characterization and risk factors

    PubMed Central

    2014-01-01

    Background Patients with severe chronic obstructive pulmonary disease (COPD) are at increased risk of infection by P. aeruginosa. The specific role of bronchiectasis in both infection and chronic colonization by this microorganism in COPD, however, remains ill defined. To evaluate the prevalence and risk factors for P. aeruginosa recovery from sputum in outpatients with severe COPD, characterizing P. aeruginosa isolates by pulsed-field gel electrophoresis (PFGE) and focusing on the influence of bronchiectasis on chronic colonization in these patients. Methods A case-cohort study of 118 patients with severe COPD attended at a Respiratory Day Unit for an acute infectious exacerbation and followed up over one year. High-resolution CT scans were performed during stability for bronchiectasis assessment and sputum cultures were obtained during exacerbation and stability in all patients. P. aeruginosa isolates were genotyped by PFGE. Determinants of the recovery of P. aeruginosa in sputum and chronic colonization by this microorganism were assessed by multivariate analysis. Results P. aeruginosa was isolated from 41 of the 118 patients studied (34.7%). Five of these 41 patients (12.2%) with P. aeruginosa recovery fulfilled criteria for chronic colonization. In the multivariate analysis, the extent of bronchiectasis (OR 9.8, 95% CI: 1.7 to 54.8) and the number of antibiotic courses (OR 1.7, 95% CI: 1.1 to 2.5) were independently associated with an increased risk of P. aeruginosa isolation. Chronic colonization was unrelated to the presence of bronchiectasis (p=0.75). In patients with chronic colonization the isolates of P. aeruginosa retrieved corresponded to the same clones during the follow-up, and most of the multidrug resistant isolates (19/21) were harbored by these patients. Conclusions The main risk factors for P. aeruginosa isolation in severe COPD were the extent of bronchiectasis and exposure to antibiotics. Over 10% of these patients fulfilled criteria for

  9. Reduction of virulence factor pyocyanin production in multidrug-resistant Pseudomonas aeruginosa.

    PubMed

    Fuse, Katsuhiro; Fujimura, Shigeru; Kikuchi, Toshiaki; Gomi, Kazunori; Iida, Yasuhiro; Nukiwa, Toshihiro; Watanabe, Akira

    2013-02-01

    Nosocomial infections caused by metallo-β-lactamase (MBL)-producing multidrug-resistant (MDR) Pseudomonas aeruginosa have become a worldwide problem. Pyocyanin, a representative pigment produced by P. aeruginosa, is the major virulence factor of this organismThe aim of this study was to investigate the pyocyanin-producing ability of MBL-producing MDR P. aeruginosa. A total of 50 clinical isolates of P. aeruginosa, including 20 MDR strains, were collected at 18 general hospitals in Japan. The chromaticity and luminosity produced by pyocyanin in each isolate were measured. The quantity of pyocyanin and the expression of the phzM and phzS genes coding a pyocyanin synthesis enzyme were measured. MDR strains showed a bright yellow-green, while non-MDR strains tended to show a dark blue-green. The quantities of pyocyanin in MBL-producing strains and non-producing strains were 0.015 ± 0.002 and 0.41 ± 0.10 μg, respectively. The expression of the phzM and phzS genes in the MDR strains was 11 and 14 %, respectively, of the expression in the non-MDR strains. When the MBL gene was transduced into P. aeruginosa and it acquired multidrug resistance, it was shown that the pyocyanin-producing ability decreased. The pathogenicity of MBL-producing MDR P. aeruginosa may be lower than that of non-MDR strains. These MBL-producing MDR strains may be less pathogenic than non-MDR strains. This may explain why MDR-P. aeruginosa is unlikely to cause infection but, rather, causes subclinical colonization only.

  10. Candida albicans Inhibits Pseudomonas aeruginosa Virulence through Suppression of Pyochelin and Pyoverdine Biosynthesis

    PubMed Central

    Lopez-Medina, Eduardo; Fan, Di; Coughlin, Laura A.; Ho, Evi X.; Lamont, Iain L.; Reimmann, Cornelia; Hooper, Lora V.; Koh, Andrew Y.

    2015-01-01

    Bacterial-fungal interactions have important physiologic and medical ramifications, but the mechanisms of these interactions are poorly understood. The gut is host to trillions of microorganisms, and bacterial-fungal interactions are likely to be important. Using a neutropenic mouse model of microbial gastrointestinal colonization and dissemination, we show that the fungus Candida albicans inhibits the virulence of the bacterium Pseudomonas aeruginosa by inhibiting P. aeruginosa pyochelin and pyoverdine gene expression, which plays a critical role in iron acquisition and virulence. Accordingly, deletion of both P. aeruginosa pyochelin and pyoverdine genes attenuates P. aeruginosa virulence. Heat-killed C. albicans has no effect on P. aeruginosa, whereas C. albicans secreted proteins directly suppress P. aeruginosa pyoverdine and pyochelin expression and inhibit P. aeruginosa virulence in mice. Interestingly, suppression or deletion of pyochelin and pyoverdine genes has no effect on P. aeruginosa’s ability to colonize the GI tract but does decrease P. aeruginosa’s cytotoxic effect on cultured colonocytes. Finally, oral iron supplementation restores P. aeruginosa virulence in P. aeruginosa and C. albicans colonized mice. Together, our findings provide insight into how a bacterial-fungal interaction can modulate bacterial virulence in the intestine. Previously described bacterial-fungal antagonistic interactions have focused on growth inhibition or colonization inhibition/modulation, yet here we describe a novel observation of fungal-inhibition of bacterial effectors critical for virulence but not important for colonization. These findings validate the use of a mammalian model system to explore the complexities of polymicrobial, polykingdom infections in order to identify new therapeutic targets for preventing microbial disease. PMID:26313907

  11. Pseudomonas aeruginosa keratitis: outcomes and response to corticosteroid treatment.

    PubMed

    Sy, Aileen; Srinivasan, Muthiah; Mascarenhas, Jeena; Lalitha, Prajna; Rajaraman, Revathi; Ravindran, Meenakshi; Oldenburg, Catherine E; Ray, Kathryn J; Glidden, David; Zegans, Michael E; McLeod, Stephen D; Lietman, Thomas M; Acharya, Nisha R

    2012-01-25

    To compare the clinical course and effect of adjunctive corticosteroid therapy in Pseudomonas aeruginosa with those of all other strains of bacterial keratitis. Subanalyses were performed on data collected in the Steroids for Corneal Ulcers Trial (SCUT), a large randomized controlled trial in which patients were treated with moxifloxacin and were randomly assigned to 1 of 2 adjunctive treatment arms: corticosteroid or placebo (4 times a day with subsequent reduction). Multivariate analysis was used to determine the effect of predictors, organism, and treatment on outcomes, 3-month best-spectacle-corrected visual acuity (BSCVA), and infiltrate/scar size. The incidence of adverse events over a 3-month follow-up period was compared using Fisher's exact test. SCUT enrolled 500 patients. One hundred ten patients had P. aeruginosa ulcers; 99 of 110 (90%) enrolled patients returned for follow-up at 3 months. Patients with P. aeruginosa ulcers had significantly worse visual acuities than patients with other bacterial ulcers (P = 0.001) but showed significantly more improvement in 3-month BSCVA than those with other bacterial ulcers, adjusting for baseline characteristics (-0.14 logMAR; 95% confidence interval, -0.23 to -0.04; P = 0.004). There was no significant difference in adverse events between P. aeruginosa and other bacterial ulcers. There were no significant differences in BSCVA (P = 0.69), infiltrate/scar size (P = 0.17), and incidence of adverse events between patients with P. aeruginosa ulcers treated with adjunctive corticosteroids and patients given placebo. Although P. aeruginosa corneal ulcers have a more severe presentation, they appear to respond better to treatment than other bacterial ulcers. The authors did not find a significant benefit with corticosteroid treatment, but they also did not find any increase in adverse events. (ClinicalTrials.gov number, NCT00324168.).

  12. Pseudomonas aeruginosa Keratitis: Outcomes and Response to Corticosteroid Treatment

    PubMed Central

    Sy, Aileen; Srinivasan, Muthiah; Mascarenhas, Jeena; Lalitha, Prajna; Rajaraman, Revathi; Ravindran, Meenakshi; Oldenburg, Catherine E.; Ray, Kathryn J.; Glidden, David; Zegans, Michael E.; McLeod, Stephen D.; Lietman, Thomas M.

    2012-01-01

    Purpose. To compare the clinical course and effect of adjunctive corticosteroid therapy in Pseudomonas aeruginosa with those of all other strains of bacterial keratitis. Methods. Subanalyses were performed on data collected in the Steroids for Corneal Ulcers Trial (SCUT), a large randomized controlled trial in which patients were treated with moxifloxacin and were randomly assigned to 1 of 2 adjunctive treatment arms: corticosteroid or placebo (4 times a day with subsequent reduction). Multivariate analysis was used to determine the effect of predictors, organism, and treatment on outcomes, 3-month best-spectacle-corrected visual acuity (BSCVA), and infiltrate/scar size. The incidence of adverse events over a 3-month follow-up period was compared using Fisher's exact test. Results. SCUT enrolled 500 patients. One hundred ten patients had P. aeruginosa ulcers; 99 of 110 (90%) enrolled patients returned for follow-up at 3 months. Patients with P. aeruginosa ulcers had significantly worse visual acuities than patients with other bacterial ulcers (P = 0.001) but showed significantly more improvement in 3-month BSCVA than those with other bacterial ulcers, adjusting for baseline characteristics (−0.14 logMAR; 95% confidence interval, −0.23 to −0.04; P = 0.004). There was no significant difference in adverse events between P. aeruginosa and other bacterial ulcers. There were no significant differences in BSCVA (P = 0.69), infiltrate/scar size (P = 0.17), and incidence of adverse events between patients with P. aeruginosa ulcers treated with adjunctive corticosteroids and patients given placebo. Conclusions. Although P. aeruginosa corneal ulcers have a more severe presentation, they appear to respond better to treatment than other bacterial ulcers. The authors did not find a significant benefit with corticosteroid treatment, but they also did not find any increase in adverse events. (ClinicalTrials.gov number, NCT00324168.) PMID:22159005

  13. Aerogenic vaccination with a Burkholderia mallei auxotroph protects against aerosol-initiated glanders in mice.

    PubMed

    Ulrich, Ricky L; Amemiya, Kei; Waag, David M; Roy, Chad J; DeShazer, David

    2005-03-14

    Burkholderia mallei is an obligate mammalian pathogen that causes the zoonotic disease glanders. Two live attenuated B. mallei strains, a capsule mutant and a branched-chain amino acid auxotroph, were evaluated for use as vaccines against aerosol-initiated glanders in mice. Animals were aerogenically vaccinated and serum samples were obtained before aerosol challenge with a high-dose (>300 times the LD50) of B. mallei ATCC 23344. Mice vaccinated with the capsule mutant developed a Th2-like Ig subclass antibody response and none survived beyond 5 days. In comparison, the auxotrophic mutant elicited a Th1-like Ig subclass antibody response and 25% of the animals survived for 1 month postchallenge. After a low-dose (5 times the LD50) aerosol challenge, the survival rates of auxotroph-vaccinated and unvaccinated animals were 50 and 0%, respectively. Thus, live attenuated strains that promote a Th1-like Ig response may serve as promising vaccine candidates against aerosol infection with B. mallei.

  14. Digestion of rice straw and oil palm fronds by microflora from rumen and termite bacteria, in vitro.

    PubMed

    Ramin, M; Alimon, A R; Panandam, J M; Sijam, K; Javanmard, A; Abdullah, N

    2008-02-15

    The digestion and Volatile Fatty Acid (VFA) production from rice straw and oil palm fronds by cellulolytic bacteria isolated from the termite Coptotermes curvignathus were investigated. The bacteria were Acinetobacter strain Raminalimon, Enterobacter aerogenes strain Razmin C, Enterobacter cloacae strain Razmin B, Bacillus cereus strain Razmin A and Chryseobacterium kwangyangense strain Cb. Acinetobacter strain Raminalimon is an aerobic bacterium, while the other species are facultative anaerobes. There were significant differences (p<0.05) among the bacteria for Dry Matter (DM) lost and acetic acid production from rice straw and Acinetobacter strain Raminalimon showed the highest activity. The facultative bacteria C. kwangyangense strain Cb (cfu mL(-1) 231 x 10(-6), OD: 0.5), E. cloacae (cfu mL(-1) 68 x 10(-7), OD: 0.5) and E. aerogenes (cfu mL(-1) 33 x 10(-7), OD: 0.5) were used for digestion study with the rumen fluid microflora. The in vitro gas production technique was applied for the comparative study and the parameters measured were pH, gas (volume), dry matter lost, acetic acid, propionic acid and butyric acid concentrations. pH was not significantly (p<0.05) different among the five treatments. The bacterium C. kwangyangense strain Cb showed the highest activity (p<0.05) for DM lost, acetic acid, propionic acid and butyric acid production from rice straw when compared to the other bacterial activities. There was no significance (p<0.05) difference between the three bacteria for the dry matter lost of oil palm fronds but the production of Volatile Fatty Acids (VFA) was significantly (p<0.05) high in the treatment which was inoculated with C. kwangyangense strain Cb. The Gen Bank NCBI/EMBL accession numbers for the bacterial strains are EU332791, EU305608, EU305609, EU294508 and EU169201.

  15. Intestinal bacteria in bioaerosols and factors affecting their survival in two oxidation ditch process municipal wastewater treatment plants located in different regions.

    PubMed

    Wang, Yanjie; Li, Lin; Han, Yunping; Liu, Junxin; Yang, Kaixiong

    2018-06-15

    Samples from two oxidation ditch process municipal wastewater treatment plants (MWTPs) (HJK and GXQ) in two regions of China were analysed for bacteria, particles, total organic carbon, and water-soluble ions in bioaerosols. Diversity and potential pathogen populations were evaluated by high-throughput sequencing. Bioaerosol sources, factors affecting intestinal bacterial survival, and the relationship between bioaerosols and water were analysed by Source tracker and partial least squares-discriminant, principal component, and canonical correspondence analyses. Culturable bacteria concentrations were 110-846 and 27-579 CFU/m 3 at HJK and GXQ, respectively. Intestinal bacteria constituted 6-33% of bacteria. Biochemical reaction tank, sludge dewatering house (SDH), and fine screen samples showed the greatest contribution to bioaerosol contamination. Enterobacter aerogenes was the main intestinal bacteria (> 99.5%) in HJK and detected at each sampling site. Enterobacter aerogenes (98.67% in SDH), Aeromonas sp. (76.3% in biochemical reaction tank), and Acinetobacter baumannii (99.89% in fine screens) were the main intestinal bacteria in GXQ. Total suspended particulate masses in SDH were 229.46 and 141.6 μg/m 3 in HJK and GXQ, respectively. Percentages of insoluble compounds in total suspended particulates decreased as height increased. The main soluble ions in bioaerosols were Ca 2+ , Na + , Cl - , and SO 4 2- , which ranged from 3.8 to 27.55 μg/m 3 in the MWTPs. Water was a main source of intestinal bacteria in bioaerosols from the MWTPs. Bioaerosols in HJK but not in GXQ were closely related. Relative humidity and some ions positively influenced intestinal bacteria in bioaerosols, while wind speed and solar illumination had a negative influence. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Enumeration of Enterobacter cloacae after chloramine exposure.

    PubMed Central

    Watters, S K; Pyle, B H; LeChevallier, M W; McFeters, G A

    1989-01-01

    Growth of Enterobacter cloacae on various media was compared after disinfection. This was done to examine the effects of monochloramine and chlorine on the enumeration of coliforms. The media used were TLY (nonselective; 5.5% tryptic soy broth, 0.3% yeast extract, 1.0% lactose, and 1.5% Bacto-Agar), m-T7 (selective; developed to recover injured coliforms), m-Endo (selective; contains sodium sulfite), TLYS (TLY with sodium sulfite), and m-T7S (m-T7 with sodium sulfite). Sodium sulfite in any medium improved the recovery of chloramine-treated E. cloacae. However, sodium sulfite in TLYS and m-T7S did not significantly improve the detection of chlorine-treated E. cloacae, and m-Endo was the least effective medium for recovering chlorinated bacteria. Differences in recovery of chlorine- and chloramine-treated E. cloacae are consistent with mechanistic differences between the disinfectants. PMID:2619309

  17. Bispecific antibody targets multiple Pseudomonas aeruginosa evasion mechanisms in the lung vasculature.

    PubMed

    Thanabalasuriar, Ajitha; Surewaard, Bas Gj; Willson, Michelle E; Neupane, Arpan S; Stover, Charles K; Warrener, Paul; Wilson, George; Keller, Ashley E; Sellman, Bret R; DiGiandomenico, Antonio; Kubes, Paul

    2017-06-01

    Pseudomonas aeruginosa is a major cause of severe infections that lead to bacteremia and high patient mortality. P. aeruginosa has evolved numerous evasion and subversion mechanisms that work in concert to overcome immune recognition and effector functions in hospitalized and immunosuppressed individuals. Here, we have used multilaser spinning-disk intravital microscopy to monitor the blood-borne stage in a murine bacteremic model of P. aeruginosa infection. P. aeruginosa adhered avidly to lung vasculature, where patrolling neutrophils and other immune cells were virtually blind to the pathogen's presence. This cloaking phenomenon was attributed to expression of Psl exopolysaccharide. Although an anti-Psl mAb activated complement and enhanced neutrophil recognition of P. aeruginosa, neutrophil-mediated clearance of the pathogen was suboptimal owing to a second subversion mechanism, namely the type 3 secretion (T3S) injectisome. Indeed, T3S prevented phagosome acidification and resisted killing inside these compartments. Antibody-mediated inhibition of the T3S protein PcrV did not enhance bacterial phagocytosis but did enhance killing of the few bacteria ingested by neutrophils. A bispecific mAb targeting both Psl and PcrV enhanced neutrophil uptake of P. aeruginosa and also greatly increased inhibition of T3S function, allowing for phagosome acidification and bacterial killing. These data highlight the need to block multiple evasion and subversion mechanisms in tandem to kill P. aeruginosa.

  18. Isolation of an iron-binding compound from Pseudomonas aeruginosa.

    PubMed Central

    Cox, C D; Graham, R

    1979-01-01

    An iron-binding compound was isolated from ethyl acetate extracts of culture supernatant fluids of Pseudomonas aeruginosa and was purified by successive paper and thin-layer chromatographic procedures. The purified compound was characterized by UV, visible, infrared, and fluorescence spectroscopy. The compound possesses phenolic characteristics, with little or no similarity to dihydroxybenzoates and no indication of a hydroxamate group. P. aeruginosa synthesized the compound during active growth in culture media containing less than 5 X 10(-6) M added FeCl3. When added to iron-poor cultures of P. aeruginosa, the compound promoted the growth of the bacterium and also reversed growth inhibition by the iron chelator ethylenediamine-di-(o-hydroxyphenylacetic acid). PMID:104968

  19. Activation of the lectin pathway of complement in experimental human keratitis with Pseudomonas aeruginosa.

    PubMed

    Osthoff, Michael; Brown, Karl D; Kong, David C M; Daniell, Mark; Eisen, Damon P

    2014-01-01

    Pseudomonas aeruginosa (P. aeruginosa) microbial keratitis (MK) is a sight-threatening disease. Previous animal studies have identified an important contribution of the complement system to the clearance of P. aeruginosa infection of the cornea. Mannose-binding lectin (MBL), a pattern recognition receptor of the lectin pathway of complement, has been implicated in the host defense against P. aeruginosa. However, studies addressing the role of the lectin pathway in P. aeruginosa MK are lacking. Hence, we sought to determine the activity of the lectin pathway in human MK caused by P. aeruginosa. Primary human corneal epithelial cells (HCECs) from cadaveric donors were exposed to two different P. aeruginosa strains. Gene expression of interleukin (IL)-6, IL-8, MBL, and other complement proteins was determined by reverse transcription-polymerase chain reaction (RT-PCR) and MBL synthesis by enzyme-linked immunosorbent assay and intracellular flow cytometry. MBL gene expression was not detected in unchallenged HCECs. Exposure of HCECs to P. aeruginosa resulted in rapid induction of the transcriptional expression of MBL, IL-6, and IL-8. In addition, expression of several complement proteins of the classical and lectin pathways, but not the alternative pathway, were upregulated after 5 h of challenge, including MBL-associated serine protease 1. However, MBL protein secretion was not detectable 18 h after challenge with P. aeruginosa. MK due to P. aeruginosa triggers activation of MBL and the lectin pathway of complement. However, the physiologic relevance of this finding is unclear, as corresponding MBL oligomer production was not observed.

  20. Activation of the lectin pathway of complement in experimental human keratitis with Pseudomonas aeruginosa

    PubMed Central

    Osthoff, Michael; Brown, Karl D.; Kong, David C.M.; Daniell, Mark

    2014-01-01

    Purpose Pseudomonas aeruginosa (P. aeruginosa) microbial keratitis (MK) is a sight-threatening disease. Previous animal studies have identified an important contribution of the complement system to the clearance of P. aeruginosa infection of the cornea. Mannose-binding lectin (MBL), a pattern recognition receptor of the lectin pathway of complement, has been implicated in the host defense against P. aeruginosa. However, studies addressing the role of the lectin pathway in P. aeruginosa MK are lacking. Hence, we sought to determine the activity of the lectin pathway in human MK caused by P. aeruginosa. Methods Primary human corneal epithelial cells (HCECs) from cadaveric donors were exposed to two different P. aeruginosa strains. Gene expression of interleukin (IL)-6, IL-8, MBL, and other complement proteins was determined by reverse transcription-polymerase chain reaction (RT–PCR) and MBL synthesis by enzyme-linked immunosorbent assay and intracellular flow cytometry. Results MBL gene expression was not detected in unchallenged HCECs. Exposure of HCECs to P. aeruginosa resulted in rapid induction of the transcriptional expression of MBL, IL-6, and IL-8. In addition, expression of several complement proteins of the classical and lectin pathways, but not the alternative pathway, were upregulated after 5 h of challenge, including MBL-associated serine protease 1. However, MBL protein secretion was not detectable 18 h after challenge with P. aeruginosa. Conclusions MK due to P. aeruginosa triggers activation of MBL and the lectin pathway of complement. However, the physiologic relevance of this finding is unclear, as corresponding MBL oligomer production was not observed. PMID:24426774

  1. Physiological effects of the herbicide glyphosate on the cyanobacterium Microcystis aeruginosa.

    PubMed

    Wu, Liang; Qiu, Zhihao; Zhou, Ya; Du, Yuping; Liu, Chaonan; Ye, Jing; Hu, Xiaojun

    2016-09-01

    Glyphosate has been used extensively for weed control in agriculture in many countries. However, glyphosate can be transported into the aquatic environment and might cause adverse effects on aquatic life. This study investigated the physiological characteristics of cyanobacteria Microcystis aeruginosa (M. aeruginosa) after exposure to glyphosate, and the results showed that changes in cell density production, chlorophyll a and protein content are consistent. In M. aeruginosa, oxidative stress caused by glyphosate indicated that 48h of exposure increased the concentration of malondialdehyde (MDA) and enhanced the activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD). To further investigate the toxicity of glyphosate on M. aeruginosa, the viability of treated cells was monitored and the toxin release was determined. The results indicated that glyphosate induced apoptosis of and triggered toxin release in M. aeruginosa. These results are helpful for understanding the toxic effects of glyphosate on cyanobacteria, which is important for environmental assessment and protection. These results are also useful for guidance on the application of this type of herbicide in agricultural settings. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Inhibition of Biofilm Formation by Esomeprazole in Pseudomonas aeruginosa and Staphylococcus aureus

    PubMed Central

    Singh, Vandana; Arora, Vaneet; Alam, M. Jahangir

    2012-01-01

    Staphylococcus aureus and Pseudomonas aeruginosa are common nosocomial pathogens responsible for biofilm-associated infections. Proton pump inhibitors (PPI), such as esomeprazole, may have novel antimicrobial properties. The objective of this study was to assess whether esomeprazole prevents sessile bacterial growth and biofilm formation and whether it may have synergistic killing effects with standard antibiotics. The antibiofilm activity of esomeprazole at 0.25 mM was tested against two strains each of S. aureus and P. aeruginosa. Bacterial biofilms were prepared using a commercially available 96-peg-plate Calgary biofilm device. Sessile bacterial CFU counts and biomass were assessed during 72 hours of esomeprazole exposure. The killing activities after an additional 24 hours of vancomycin (against S. aureus) and meropenem (against P. aeruginosa) treatment with or without preexposure to esomeprazole were also assessed by CFU and biomass analyses. P. aeruginosa and S. aureus strains exposed to esomeprazole displayed decreased sessile bacterial growth and biomass (P < 0.001, each parameter). After 72 h of exposure, there was a 1-log10 decrease in the CFU/ml of esomeprazole-exposed P. aeruginosa and S. aureus strains compared to controls (P < 0.001). After 72 h of exposure, measured absorbance was 100% greater in P. aeruginosa control strains than in esomeprazole-exposed strains (P < 0.001). Increased killing and decreased biomass were observed for esomeprazole-treated bacteria compared to untreated controls exposed to conventional antibiotics (P < 0.001, each parameter). Reduced biofilm growth after 24 h was visibly apparent by light micrographs for P. aeruginosa and S. aureus isolates exposed to esomeprazole compared to untreated controls. In conclusion, esomeprazole demonstrated an antibiofilm effect against biofilm-producing S. aureus and P. aeruginosa. PMID:22664967

  3. A network biology approach to denitrification in Pseudomonas aeruginosa

    DOE PAGES

    Arat, Seda; Bullerjahn, George S.; Laubenbacher, Reinhard

    2015-02-23

    Pseudomonas aeruginosa is a metabolically flexible member of the Gammaproteobacteria. Under anaerobic conditions and the presence of nitrate, P. aeruginosa can perform (complete) denitrification, a respiratory process of dissimilatory nitrate reduction to nitrogen gas via nitrite (NO₂), nitric oxide (NO) and nitrous oxide (N₂O). This study focuses on understanding the influence of environmental conditions on bacterial denitrification performance, using a mathematical model of a metabolic network in P. aeruginosa. To our knowledge, this is the first mathematical model of denitrification for this bacterium. Analysis of the long-term behavior of the network under changing concentration levels of oxygen (O₂), nitrate (NO₃),more » and phosphate (PO₄) suggests that PO₄ concentration strongly affects denitrification performance. The model provides three predictions on denitrification activity of P. aeruginosa under various environmental conditions, and these predictions are either experimentally validated or supported by pertinent biological literature. One motivation for this study is to capture the effect of PO₄ on a denitrification metabolic network of P. aeruginosa in order to shed light on mechanisms for greenhouse gas N₂O accumulation during seasonal oxygen depletion in aquatic environments such as Lake Erie (Laurentian Great Lakes, USA). Simulating the microbial production of greenhouse gases in anaerobic aquatic systems such as Lake Erie allows a deeper understanding of the contributing environmental effects that will inform studies on, and remediation strategies for, other hypoxic sites worldwide.« less

  4. Arsenate biotransformation by Microcystis aeruginosa under different nitrogen and phosphorus levels.

    PubMed

    Che, Feifei; Du, Miaomiao; Yan, Changzhou

    2018-04-01

    The arsenate (As(V)) biotransformation by Microcystis aeruginosa in a medium with different concentrations of nitrogen (N) and phosphorus (P) has been studied under laboratory conditions. When 15μg/L As(V) was added, N and P in the medium showed effective regulation on arsenic (As) metabolism in M. aeruginosa, resulting in significant differences in the algal growth among different N and P treatments. Under 0.2mg/L P treatment, increases in N concentration (4-20mg/L) significantly stimulated the cell growth and therefore indirectly enhanced the production of dimethylarsinic acid (DMA), the main As metabolite, accounting for 71%-79% of the total As in the medium. Meanwhile, 10-20mg/L N treatments accelerated the ability of As metabolization by M. aeruginosa, leading to higher contents of DMA per cell. However, As(V) uptake by M. aeruginosa was significantly impeded by 0.5-1.0mg/L P treatment, resulting in smaller rates of As transformation in M. aeruginosa as well as lower contents of As metabolites in the medium. Our data demonstrated that As(V) transformation by M. aeruginosa was significantly accelerated by increasing N levels, while it was inhibited by increasing P levels. Overall, both P and N play key roles in As(V) biotransformation processes. Copyright © 2017. Published by Elsevier B.V.

  5. Pseudomonas aeruginosa uses T3SS to inhibit diabetic wound healing

    PubMed Central

    Goldufsky, Josef; Wood, Stephen J.; Jayaraman, Vijayakumar; Majdobeh, Omar; Chen, Lin; Qin, Shanshan; Zhang, Chunxiang; DiPietro, Luisa A.; Shafikhani, Sasha H.

    2015-01-01

    Diabetic foot ulcers are responsible for more hospitalizations than any other complication of diabetes. Bacterial infection is recognized as an important factor associated with impaired healing in diabetic ulcers. Pseudomonas aeruginosa is the most frequently detected Gram-negative pathogen in diabetic ulcers. P. aeruginosa infection has been shown to impair healing in diabetic wounds in a manner that correlates with its ability to form biofilm. While the majority of infections in diabetic ulcers are biofilm associated, 33% of infections are nonbiofilm in nature. P. aeruginosa is the most prevalent Gram-negative pathogen in all diabetic wound types, which suggests that the deleterious impact of P. aeruginosa on healing in diabetic wounds goes beyond its ability to form biofilm and likely involves other factors. The Type III Secretion System (T3SS) virulence structure is required for the pathogenesis of all P. aeruginosa clinical isolates, suggesting that it may also play a role in the inhibition of wound repair in diabetic skin ulcers. We evaluated the role of T3SS in mediating P. aeruginosa–induced tissue damage in the wounds of diabetic mice. Our data demonstrate that P. aeruginosa establishes a robust and persistent infection in diabetic wounds independent of its ability to form biofilm and causes severe wound damage in a manner that primarily depends on its T3SS. PMID:25912785

  6. Metallo-Beta-Lactamase Producing Pseudomonas aeruginosa in a Healthcare Setting in Alexandria, Egypt.

    PubMed

    Abaza, Amani F; El Shazly, Soraya A; Selim, Heba S A; Aly, Gehan S A

    2017-09-27

    Pseudomonas aeruginosa has emerged as a major healthcare associated pathogen that creates a serious public health disaster in both developing and developed countries. In this work we aimed at studying the occurrence of metallo-beta-lactamase (MBL) producing P. aeruginosa in a healthcare setting in Alexandria, Egypt. This cross sectional study included 1583 clinical samples that were collected from patients admitted to Alexandria University Students' Hospital. P. aeruginosa isolates were identified using standard microbiological methods and were tested for their antimicrobial susceptibility patterns using single disc diffusion method according to the Clinical and Laboratory Standards Institute recommendations. Thirty P. aeruginosa isolates were randomly selected and tested for their MBL production by both phenotypic and genotypic methods. Diagnostic Epsilometer test was done to detect metallo-beta-lactamase enzyme producers and polymerase chain reaction test was done to detect imipenemase (IMP), Verona integron-encoded (VIM) and Sao Paulo metallo-beta-lactamase (IMP) encoding genes. Of the 1583 clinical samples, 175 (11.3%) P. aeruginosa isolates were identified. All the 30 (100%) selected P. aeruginosa isolates that were tested for MBL production by Epsilometer test were found to be positive; where 19 (63.3%) revealed blaSPM gene and 11 (36.7%) had blaIMP gene. blaVIM gene was not detected in any of the tested isolates. Isolates of MBL producing P. aeruginosa were highly susceptible to polymyxin B 26 (86.7%) and highly resistant to amikacin 26 (86.7%). MBL producers were detected phenotypically by Epsilometer test in both carbapenem susceptible and resistant P. aeruginosa isolates. blaSPM was the most commonly detected MBL gene in P. aeruginosa isolates.

  7. Motuporamine Derivatives as Antimicrobial Agents and Antibiotic Enhancers against Resistant Gram-Negative Bacteria.

    PubMed

    Borselli, Diane; Blanchet, Marine; Bolla, Jean-Michel; Muth, Aaron; Skruber, Kristen; Phanstiel, Otto; Brunel, Jean Michel

    2017-02-01

    Dihydromotuporamine C and its derivatives were evaluated for their in vitro antimicrobial activities and antibiotic enhancement properties against Gram-negative bacteria and clinical isolates. The mechanism of action of one of these derivatives, MOTU-N44, was investigated against Enterobacter aerogenes by using fluorescent dyes to evaluate outer-membrane depolarization and permeabilization. Its efficiency correlated with inhibition of dye transport, thus suggesting that these molecules inhibit drug transporters by de-energization of the efflux pump rather than by direct interaction of the molecule with the pump. This suggests that depowering the efflux pump provides another strategy to address antibiotic resistance. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  8. Synthesis and antimicrobial evaluation of ester-linked 1,4-disubstituted 1,2,3-triazoles with a furyl/thienyl moiety.

    PubMed

    Kaushik, C P; Luxmi, Raj; Singh, Dharmendra; Kumar, Ashwani

    2017-02-01

    Twenty ester-linked 1,4-disubstituted 1,2,3-triazoles having a furyl/thienyl moiety have been synthesized from heteroaryl prop-2-yn-1-yl carboxylate and aromatic azides via a Cu(I) catalyzed 1,3-dipolar cycloaddition. All the synthesized compounds were characterized by FTIR, [Formula: see text]H NMR, [Formula: see text]C NMR spectroscopy and HRMS. Synthesized triazoles were tested in vitro for antimicrobial evaluation against Gram-negative bacteria-Escherichia coli, Enterobacter aerogenes and Klebsiella pneumoniae; Gram-positive bacteria-Staphylococcus aureus and two fungal strains-Candida albicans and Aspergillus niger, reflecting moderate to good activity. The structure of compound 6f was also confirmed by X-ray crystallography (CCDC 1469326).

  9. Dechlorination of 1,1,1-Trichloro-2,2-bis(p-chlorophenyl)ethane by Aerobacter aerogenes

    USGS Publications Warehouse

    Wedemeyer, Gary

    1967-01-01

    Whole cells or cell-free extracts of Aerobacter aerogenes catalyze the degradation of 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT) in vitro to at least seven metabolites: 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene (DDE); 1,1-dichloro-2,2-bis(p-chlorophenyl)ethane (DDD); 1-chloro-2,2-bis(p-chlorophenyl)ethylene (DDMU); 1-chloro-2,2-bis(p-chlorophenyl)ethane (DDMS); unsym-bis(p-chlorophenyl)ethylene (DDNU); 2,2-bis(p-chlorophenyl)acetate (DDA); and 4,4′-dichlorobenzophenone (DBP). The use of metabolic inhibitors together with pH and temperature studies indicated that discrete enzymes are involved. By use of the technique of sequential analysis, the metabolic pathway was shown to be: DDT → DDD →DDMU →DDMS → DDNU → DDA → DBP, or DDT → DDE. Dechlorination was marginally enhanced by light-activated flavin mononucleotide.

  10. Effects of sulfate on microcystin production, photosynthesis, and oxidative stress in Microcystis aeruginosa.

    PubMed

    Chen, Lei; Gin, Karina Y H; He, Yiliang

    2016-02-01

    Increasing sulfate in freshwater systems, caused by human activities and climate change, may have negative effects on aquatic organisms. Microcystis aeruginosa (M. aeruginosa) is both a major primary producer and a common toxic cyanobacterium, playing an important role in the aquatic environment. This study first investigated the effects of sulfate on M. aeruginosa. The experiment presented here aims at analyzing the effects of sulfate on physiological indices, molecular levels, and its influencing mechanism. The results of our experiment showed that sulfate (at 40, 80, and 300 mg L(-1)) inhibited M. aeruginosa growth, increased both intracellular and extracellular toxin contents, and enhanced the mcyD transcript level. Sulfate inhibited the photosynthesis of M. aeruginosa, based on the decrease in pigment content and the down-regulation of photosynthesis-related genes after sulfate exposure. Furthermore, sulfate decreased the maximum electron transport rate, causing the cell to accumulate surplus electrons and form reactive oxygen species (ROS). Sulfate also increased the malondialdehyde (MDA) content, which showed that sulfate damaged the cytomembrane. This damage contributed to the release of intracellular toxin to the culture medium. Although sulfate increased superoxide dismutase (SOD) activities, expression of sod, and total antioxidant capacity in M. aeruginosa, it still overwhelmed the antioxidant system since the ROS level simultaneously increased, and finally caused oxidative stress. Our results indicate that sulfate has direct effects on M. aeruginosa, inhibits photosynthesis, causes oxidative stress, increases toxin production, and affects the related genes expression in M. aeruginosa.

  11. Toxicogenomic response of Pseudomonas aeruginosa to ortho-phenylphenol

    PubMed Central

    Nde, Chantal W; Jang, Hyeung-Jin; Toghrol, Freshteh; Bentley, William E

    2008-01-01

    Background Pseudomonas aeruginosa (P. aeruginosa) is the most common opportunistic pathogen implicated in nosocomial infections and in chronic lung infections in cystic fibrosis patients. Ortho-phenylphenol (OPP) is an antimicrobial agent used as an active ingredient in several EPA registered disinfectants. Despite its widespread use, there is a paucity of information on its target molecular pathways and the cellular responses that it elucidates in bacteria in general and in P. aeruginosa in particular. An understanding of the OPP-driven gene regulation and cellular response it elicits will facilitate more effective utilization of this antimicrobial and possibly lead to the development of more effective disinfectant treatments. Results Herein, we performed a genome-wide transcriptome analysis of the cellular responses of P. aeruginosa exposed to 0.82 mM OPP for 20 and 60 minutes. Our data indicated that OPP upregulated the transcription of genes encoding ribosomal, virulence and membrane transport proteins after both treatment times. After 20 minutes of exposure to 0.82 mM OPP, genes involved in the exhibition of swarming motility and anaerobic respiration were upregulated. After 60 minutes of OPP treatment, the transcription of genes involved in amino acid and lipopolysaccharide biosynthesis were upregulated. Further, the transcription of the ribosome modulation factor (rmf) and an alternative sigma factor (rpoS) of RNA polymerase were downregulated after both treatment times. Conclusion Results from this study indicate that after 20 minutes of exposure to OPP, genes that have been linked to the exhibition of anaerobic respiration and swarming motility were upregulated. This study also suggests that the downregulation of the rmf and rpoS genes may be indicative of the mechanism by which OPP causes decreases in cell viability in P. aeruginosa. Consequently, a protective response involving the upregulation of translation leading to the increased synthesis of

  12. [Antiseptic sensitivity of clinical strains of Pseudomonas aeruginosa].

    PubMed

    Adarchenko, A A; Krasil'nikov, A P; Sobeshchuk, O P

    1989-12-01

    MICs, the frequency of clinical and statistic resistance and the antiseptic activity index were studied in complex on out-of-hospital and hospital ecovars of P. aeruginosa. The forms resistant to a number of antiseptics, i.e. chloramine B, chlorhexidine, decamethoxine and dioxidine whose frequency eventually increased were shown to be widely distributed. The antiseptic sensitivity spectrum was more narrow and more heterogeneous than that of other bacteria, the heterogeneity level being dependent on the antiseptic type and bacterial ecovar. The activity of pervomur, phenol, resorcin and boric acid was higher against the clinical strains of P. aeruginosa while iodopyrin, sulfacetamide sodium and dioxidine were less active. The P. aeruginosa strains had natural resistance to cetylpyridinium chloride, rokkal, ethonium, sodium laurate and laurylsulfate and rivanol. It was recommended to assay antiseptic sensitivity of agents causing purulent inflammatory infections and to control circulation of antiseptic resistant variants of bacteria in hospitals.

  13. Activity of Imipenem with Relebactam against Gram-Negative Pathogens from New York City.

    PubMed

    Lapuebla, Amabel; Abdallah, Marie; Olafisoye, Olawole; Cortes, Christopher; Urban, Carl; Landman, David; Quale, John

    2015-08-01

    Imipenem with relebactam was active against Escherichia coli, Klebsiella pneumoniae, and Enterobacter spp., including K. pneumoniae carbapenemase (KPC)-producing isolates. Loss of OmpK36 in KPC-producing K. pneumoniae isolates affected the susceptibility of this combination. Enhanced activity was evident against Pseudomonas aeruginosa, including isolates with depressed oprD and increased ampC expression. However, the addition of relebactam to imipenem did not provide added benefit against Acinetobacter baumannii. The combination of imipenem with relebactam demonstrated activity against KPC-producing Enterobacteriaceae and multidrug-resistant P. aeruginosa. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  14. Kinetic characterization of a novel acid ectophosphatase from Enterobacter asburiae.

    PubMed

    Sato, Vanessa Sayuri; Galdiano Júnior, Renato F; Rodrigues, Gisele Regina; Lemos, Eliana G M; Pizauro Junior, João Martins

    2016-02-01

    Expression of acid ectophosphatase by Enterobacter asburiae, isolated from Cattleya walkeriana (Orchidaceae) roots and identified by the 16S rRNA gene sequencing analysis, was strictly regulated by phosphorus ions, with its optimal activity being observed at an inorganic phosphate concentration of 7 mM. At the optimum pH 3.5, intact cells released p-nitrophenol at a rate of 350.76 ± 13.53 nmol of p-nitrophenolate (pNP)/min/10(8) cells. The membrane-bound enzyme was obtained by centrifugation at 100,000 × g for 1 h at 4 °C. p-Nitrophenylphosphate (pNPP) hydrolysis by the enzyme follows "Michaelis-Menten" kinetics with V = 61.2 U/mg and K0.5 = 60 μM, while ATP hydrolysis showed V = 19.7 U/mg, K0.5 = 110 μM, and nH = 1.6 and pyrophosphate hydrolysis showed V = 29.7 U/mg, K0.5 = 84 μM, and nH = 2.3. Arsenate and phosphate were competitive inhibitors with K i = 0.6 mM and K i = 1.8 mM, respectively. p-Nitrophenyl phosphatase (pNPPase) activity was inhibited by vanadate, while p-hydroxymercuribenzoate, EDTA, calcium, copper, and cobalt had no inhibitory effects. Magnesium ions were stimulatory (K0.5 = 2.2 mM and nH = 0.5). Production of an acid ectophosphatase can be a mechanism for the solubilization of mineral phosphates by microorganisms such as Enterobacter asburiae that are versatile in the solubilization of insoluble minerals, which, in turn, increases the availability of nutrients for plants, particularly in soils that are poor in phosphorus.

  15. Enterobacter cloacae Complex Isolates Harboring blaNMC-A or blaIMI-Type Class A Carbapenemase Genes on Novel Chromosomal Integrative Elements and Plasmids

    PubMed Central

    Boyd, David A.; Mataseje, Laura F.; Davidson, Ross; Delport, Johannes A.; Fuller, Jeff; Hoang, Linda; Lefebvre, Brigitte; Levett, Paul N.; Roscoe, Diane L.; Willey, Barbara M.

    2017-01-01

    ABSTRACT Carbapenem-resistant Enterobacter cloacae complex isolates submitted to a reference laboratory from 2010 to 2015 were screened by PCR for seven common carbapenemase gene groups, namely, KPC, NDM, OXA-48, VIM, IMP, GES, and NMC-A/IMI. Nineteen of the submitted isolates (1.7%) were found to harbor Ambler class A blaNMC-A or blaIMI-type carbapenemases. All 19 isolates were resistant to at least one carbapenem but susceptible to aminoglycosides, trimethoprim-sulfamethoxazole, tigecycline, and ciprofloxacin. Most isolates (17/19) gave positive results with the Carba-NP test for phenotypic carbapenemase detection. Isolates were genetically diverse by pulsed-field gel electrophoresis macrorestriction analysis, multilocus sequence typing, and hsp60 gene analysis. The genes were found in various Enterobacter cloacae complex species; however, blaNMC-A was highly associated with Enterobacter ludwigii. Whole-genome sequencing and bioinformatics analysis revealed that all NMC-A (n = 10), IMI-1 (n = 5), and IMI-9 (n = 2) producers harbored the carbapenemase gene on EludIMEX-1-like integrative mobile elements (EcloIMEXs) located in the identical chromosomal locus. Two novel genes, blaIMI-5 and blaIMI-6, were harbored on different IncFII-type plasmids. Enterobacter cloacae complex isolates harboring blaNMC-A/IMI-type carbapenemases are relatively rare in Canada. Though mostly found integrated into the chromosome, some variants are located on plasmids that may enhance their mobility potential. PMID:28223374

  16. Enterobacter cloacae Complex Isolates Harboring blaNMC-A or blaIMI-Type Class A Carbapenemase Genes on Novel Chromosomal Integrative Elements and Plasmids.

    PubMed

    Boyd, David A; Mataseje, Laura F; Davidson, Ross; Delport, Johannes A; Fuller, Jeff; Hoang, Linda; Lefebvre, Brigitte; Levett, Paul N; Roscoe, Diane L; Willey, Barbara M; Mulvey, Michael R

    2017-05-01

    Carbapenem-resistant Enterobacter cloacae complex isolates submitted to a reference laboratory from 2010 to 2015 were screened by PCR for seven common carbapenemase gene groups, namely, KPC, NDM, OXA-48, VIM, IMP, GES, and NMC-A/IMI. Nineteen of the submitted isolates (1.7%) were found to harbor Ambler class A bla NMC-A or bla IMI -type carbapenemases. All 19 isolates were resistant to at least one carbapenem but susceptible to aminoglycosides, trimethoprim-sulfamethoxazole, tigecycline, and ciprofloxacin. Most isolates (17/19) gave positive results with the Carba-NP test for phenotypic carbapenemase detection. Isolates were genetically diverse by pulsed-field gel electrophoresis macrorestriction analysis, multilocus sequence typing, and hsp60 gene analysis. The genes were found in various Enterobacter cloacae complex species; however, bla NMC-A was highly associated with Enterobacter ludwigii Whole-genome sequencing and bioinformatics analysis revealed that all NMC-A ( n = 10), IMI-1 ( n = 5), and IMI-9 ( n = 2) producers harbored the carbapenemase gene on EludIMEX-1-like integrative mobile elements (EcloIMEXs) located in the identical chromosomal locus. Two novel genes, bla IMI-5 and bla IMI-6 , were harbored on different IncFII-type plasmids. Enterobacter cloacae complex isolates harboring bla NMC-A/IMI -type carbapenemases are relatively rare in Canada. Though mostly found integrated into the chromosome, some variants are located on plasmids that may enhance their mobility potential. © Crown copyright 2017.

  17. RAPD- and ERIC-Based Typing of Clinical and Environmental Pseudomonas aeruginosa Isolates.

    PubMed

    Auda, Ibtesam Ghadban; Al-Kadmy, Israa M S; Kareem, Sawsan Mohammed; Lafta, Aliaa Khyuon; A'Affus, Mustafa Hussein Obeid; Khit, Ibrahim Abd Aloahd; Al Kheraif, Abdulaziz Abdullah; Divakar, Darshan Devang; Ramakrishnaiah, Ravikumar

    2017-03-01

    Pseudomonas aeruginosa is a major cause of nosocomial infection in children and adults, resulting in significant morbidity and mortality due to its ability to acquire drug resistance. The ability of P. aeruginosa in the environment to cause infection in individuals has been reported previously; henceforth, surveillance of the emergence and transmission of P. aeruginosa strains among patients is important for infection control in a clinical setup. Various gene-typing methods have been used for epidemiological typing of P. aeruginosa isolates for the purpose of surveillance. In this work, the suitability and comparability of two typing methods, enterobacterial repetitive intergenic consensus (ERIC)-PCR and random amplification of polymorphic DNA (RAPD)-PCR fingerprinting, were studied to characterize P. aeruginosa strains isolated from clinical and environmental sources. Forty-four clinical and environmental bacterial isolates of P. aeruginosa were collected between October 2015 and January 2016. DNA extraction, ERIC-PCR and RAPD-PCR, agarose gel electrophoresis, and phylogenetic analyses were carried using the unweighted pair-group method with mean. RAPD typing revealed less clonality among clinical isolates, whereas the ERIC method showed greater similarity in comparison with RAPD. Environmental isolates, however, showed greater similarity using RAPD compared with ERIC typing. With only a few exceptions, most clinical isolates were distinct from environmental isolates, irrespective of the typing method. In conclusion, both the RAPD and ERIC typing methods proved to be good tools in understanding clonal diversity. The results also suggest that there is no relationship between clinical and environmental isolates. The absence of clonality among the clinical isolates may indicate that most P. aeruginosa infection cases could be endemic and not epidemic and that endemic infections may be due to nonclonal strains of P. aeruginosa.

  18. Enterobactin-mediated iron transport in Pseudomonas aeruginosa.

    PubMed Central

    Poole, K; Young, L; Neshat, S

    1990-01-01

    A pyoverdine-deficient strain of Pseudomonas aeruginosa was unable to grow in an iron-deficient minimal medium in the presence of the nonmetabolizable iron chelator ethylene diamine-di(omega-hydroxyphenol acetic acid) (EDDHA), although addition of enterobactin to EDDHA-containing minimal media did restore growth of the pyoverdine-deficient P. aeruginosa. Consistent with the apparent ability of enterobactin to provide iron to P. aeruginosa, enterobactin-dependent 55Fe3+ uptake was observed in cells of P. aeruginosa previously grown in an iron-deficient medium containing enterobactin (or enterobactin-containing Escherichia coli culture supernatant). This uptake was energy dependent, was observable at low concentrations (60 nM) of FeCl3, and was absent in cells cultured without enterobactin. A novel protein with a molecular weight of approximately 80,000 was identified in the outer membranes of cells grown in iron-deficient minimal medium containing enterobactin, concomitant with the induction of enterobactin-dependent iron uptake. A Tn501 insertion mutant lacking this protein was isolated and shown to be deficient in enterobactin-mediated iron transport at 60 nM FeCl3, although it still exhibited enterobactin-dependent growth in iron-deficient medium containing EDDHA. It was subsequently observed that the mutant was, however, capable of enterobactin-mediated iron transport at much higher concentrations (600 nM) of FeCl3. Indeed, enterobactin-dependent iron uptake at this concentration of iron was observed in both the mutant and parent strains irrespective of whether they had been cultured in the presence of enterobactin.(ABSTRACT TRUNCATED AT 250 WORDS) Images PMID:2174865

  19. Occurrence of Pseudomonas aeruginosa in waters: implications for patients with cystic fibrosis (CF).

    PubMed

    Caskey, S; Stirling, J; Moore, J E; Rendall, J C

    2018-06-01

    Chronic Pseudomonas aeruginosa infection is associated with increased morbidity and mortality in patients with cystic fibrosis (CF). Current understanding of risk factors for acquisition is limited and so the aim of this study was to examine a large sample of environmental waters from diverse sources. Environmental water samples (n = 7904) from jacuzzis, hydrants, swimming pools, hot tubs, plunge pools, bottled natural mineral water, taps, springs, ice machines, water coolers, bores and showers were examined for the presence of P. aeruginosa. Pseudomonas aeruginosa was detected in 524/7904 (6·6%) waters examined. Hot tubs (51/243; 20·9%), tap water (3/40; 8%) and jacuzzis (432/5811; 7·4%) were the most likely environments where P. aeruginosa was isolated. Pseudomonas aeruginosa was isolated from bottled water (2/67; 3%). Our study highlights the ubiquitous nature of P. aeruginosa in the environment. Given CF patients are frequently counselled to make lifestyle changes to minimize P. aeruginosa exposure, these results have important implications. In particular, the occurrence of P. aeruginosa in tap water highlights the need to disinfect the CF patients' nebulizer after each use. This study examined a large number of water sources (n = 7904) over a 9-year period for the presence of Pseudomonas aeruginosa. The study highlighted that jacuzzis (n = 5811; 7% positive) and hot tubs had the highest occurrence of this organism (n = 243, 21% positive). Patients with cystic fibrosis (CF) are interested in knowing what water environments are likely to be contaminated with this organism, as this bacterium is an important cause of increased morbidity and mortality in such patients. With such information, CF patients and parents may make informed decisions about lifestyle choice and water environment avoidance. © 2018 The Society for Applied Microbiology.

  20. Dose-response algorithms for water-borne Pseudomonas aeruginosa folliculitis.

    PubMed

    Roser, D J; Van Den Akker, B; Boase, S; Haas, C N; Ashbolt, N J; Rice, S A

    2015-05-01

    We developed two dose-response algorithms for P. aeruginosa pool folliculitis using bacterial and lesion density estimates, associated with undetectable, significant, and almost certain folliculitis. Literature data were fitted to Furumoto & Mickey's equations, developed for plant epidermis-invading pathogens: N l = A ln(1 + BC) (log-linear model); P inf = 1-e(-r c C) (exponential model), where A and B are 2.51644 × 107 lesions/m2 and 2.28011 × 10-11 c.f.u./ml P. aeruginosa, respectively; C = pathogen density (c.f.u./ml), N l = folliculitis lesions/m2, P inf = probability of infection, and r C = 4·3 × 10-7 c.f.u./ml P. aeruginosa. Outbreak data indicates these algorithms apply to exposure durations of 41 ± 25 min. Typical water quality benchmarks (≈10-2 c.f.u./ml) appear conservative but still useful as the literature indicated repeated detection likely implies unstable control barriers and bacterial bloom potential. In future, culture-based outbreak testing should be supplemented with quantitative polymerase chain reaction and organic carbon assays, and quantification of folliculitis aetiology to better understand P. aeruginosa risks.

  1. Effects of the culture media optimization on pectinase production by Enterobacter sp. PSTB-1.

    PubMed

    Reddy, M Purna Chandra; Saritha, K V

    2016-12-01

    In the present study, media composition for high production of pectinase by Enterobacter sp. PSTB-1 in submerged fermentation was optimized using response surface methodology (RSM). Mango fruit processing industrial waste (MIW) was used as substrate (carbon source) as it contains high amount of pectin. Enterobacter sp. PSTB-1 used in present study has given pectin clear zone (PCZ) of 34 mm is higher than other isolates. The experimental results made by statistical design for high pectinase production revealed that the suitable media components: NaNO 3 2.0 g/l, KCl 0.50 g/l, KH 2 PO 4 1.0 g/l, MgSO 4 ·7H 2 O 0.50 g/l, Yeast extract 1.0 g/l, mango industrial waste powder 5.0 g/l. The actual pectinase activity was 75.23 % correlated with the predicted pectinase activity where the model (CCD) was significant. Response surface modelling applied effectively to optimize the production of pectinase in submerged fermentation to make the process low cost-effective by using powdered mango industrial waste as substrate.

  2. Enhancement of the catalytic activity of ferulic acid decarboxylase from Enterobacter sp. Px6-4 through random and site-directed mutagenesis.

    PubMed

    Lee, Hyunji; Park, Jiyoung; Jung, Chaewon; Han, Dongfei; Seo, Jiyoung; Ahn, Joong-Hoon; Chong, Youhoon; Hur, Hor-Gil

    2015-11-01

    The enzyme ferulic acid decarboxylase (FADase) from Enterobacter sp. Px6-4 catalyzes the decarboxylation reaction of lignin monomers and phenolic compounds such as p-coumaric acid, caffeic acid, and ferulic acid into their corresponding 4-vinyl derivatives, that is, 4-vinylphenol, 4-vinylcatechol, and 4-vinylguaiacol, respectively. Among various ferulic acid decarboxylase enzymes, we chose the FADase from Enterobacter sp. Px6-4, whose crystal structure is known, and produced mutants to enhance its catalytic activity by random and site-directed mutagenesis. After three rounds of sequential mutations, FADase(F95L/D112N/V151I) showed approximately 34-fold higher catalytic activity than wild-type for the production of 4-vinylguaiacol from ferulic acid. Docking analyses suggested that the increased activity of FADase(F95L/D112N/V151I) could be due to formation of compact active site compared with that of the wild-type FADase. Considering the amount of phenolic compounds such as lignin monomers in the biomass components, successfully bioengineered FADase(F95L/D112N/V151I) from Enterobacter sp. Px6-4 could provide an ecofriendly biocatalytic tool for producing diverse styrene derivatives from biomass.

  3. Molecular Characterization of OXA-198 Carbapenemase-Producing Pseudomonas aeruginosa Clinical Isolates.

    PubMed

    Bonnin, Rémy A; Bogaerts, Pierre; Girlich, Delphine; Huang, Te-Din; Dortet, Laurent; Glupczynski, Youri; Naas, Thierry

    2018-06-01

    Carbapenemase-producing Pseudomonadaceae have increasingly been reported worldwide, with an ever-increasing heterogeneity of carbapenem resistance mechanisms, depending on the bacterial species and the geographical location. OXA-198 is a plasmid-encoded class D β-lactamase involved in carbapenem resistance in one Pseudomonas aeruginosa isolate from Belgium. In the setting of a multicenter survey of carbapenem resistance in P. aeruginosa strains in Belgian hospitals in 2013, three additional OXA-198-producing P. aeruginosa isolates originating from patients hospitalized in one hospital were detected. To reveal the molecular mechanism underlying the reduced susceptibility to carbapenems, MIC determinations, whole-genome sequencing, and PCR analyses to confirm the genetic organization were performed. The plasmid harboring the bla OXA-198 gene was characterized, along with the genetic relatedness of the four P. aeruginosa isolates. The bla OXA-198 gene was harbored on a class 1 integron carried by an ∼49-kb IncP-type plasmid proposed as IncP-11. The same plasmid was present in all four P. aeruginosa isolates. Multilocus sequence typing revealed that the isolates all belonged to sequence type 446, and single-nucleotide polymorphism analysis revealed only a few differences between the isolates. This report describes the structure of a 49-kb plasmid harboring the bla OXA-198 gene and presents the first description of OXA-198-producing P. aeruginosa isolates associated with a hospital-associated cluster episode. Copyright © 2018 American Society for Microbiology.

  4. Investigation of a pseudo-outbreak of orthopedic infections caused by Pseudomonas aeruginosa.

    PubMed

    Forman, W; Axelrod, P; St John, K; Kostman, J; Khater, C; Woodwell, J; Vitagliano, R; Truant, A; Satishchandran, V; Fekete, T

    1994-10-01

    To report a pseudoepidemic of Pseudomonas aeruginosa infections discovered during an investigation of postoperative joint infections. A retrospective review of case patients' hospital charts, operative reports, and laboratory data, as well as environmental culturing, polymerase chain reaction (PCR) ribotyping of outbreak isolates, and in vitro analysis of P aeruginosa growth characteristics. A 510-bed, university-affiliated adult tertiary care hospital. Between October 1 and December 1, 1992, seven postsurgical joint infections were diagnosed, including four caused by P aeruginosa. A bottle of "sterile" saline used to process tissue specimens was found to be contaminated with P aeruginosa. Further investigation revealed that P aeruginosa had grown from seven additional tissue cultures, all of which had been processed with the contaminated saline. PCR ribotypes of the contaminant matched those of the clinical isolates. In vitro, P aeruginosa strains were viable in commercial nonbacteriostatic saline, but never caused visible turbidity. Six patients received antibiotics for their presumed infections; four patients had peripherally inserted central catheters placed, and one experienced severe anaphylactic reactions to several antibiotics. Pseudoepidemics due to common organisms are often difficult to detect, and delayed recognition can result in substantial morbidity. This outbreak investigation illustrates the potential for contamination of diluents in the microbiology laboratory and emphasizes the need for meticulous quality control.

  5. Anaerobic Corrosion of 304 Stainless Steel Caused by the Pseudomonas aeruginosa Biofilm

    PubMed Central

    Jia, Ru; Yang, Dongqing; Xu, Dake; Gu, Tingyue

    2017-01-01

    Pseudomonas aeruginosa is a ubiquitous bacterium capable of forming problematic biofilms in many environments. They cause biocorrosion of medical implants and industrial equipment and infrastructure. Aerobic corrosion of P. aeruginosa against stainless steels has been reported by some researchers while there is a lack of reports on anaerobic P. aeruginosa corrosion in the literature. In this work, the corrosion by a wild-type P. aeruginosa (strain PAO1) biofilm against 304 stainless steel (304 SS) was investigated under strictly anaerobic condition for up to 14 days. The anaerobic corrosion of 304 SS by P. aeruginosa was reported for the first time. Results showed that the average sessile cell counts on 304 SS coupons after 7- and 14-day incubations were 4.8 × 107 and 6.2 × 107 cells/cm2, respectively. Scanning electron microscopy and confocal laser scanning microscopy corroborated the sessile cell counts. The X-ray diffraction analysis identified the corrosion product as iron nitride, confirming that the corrosion was caused by the nitrate reducing biofilm. The largest pit depths on 304 SS surfaces after the 7- and 14-day incubations with P. aeruginosa were 3.9 and 7.4 μm, respectively. Electrochemical tests corroborated the pitting data. PMID:29230206

  6. The Pseudomonas aeruginosa AlgZR two-component system coordinates multiple phenotypes

    PubMed Central

    Okkotsu, Yuta; Little, Alexander S.; Schurr, Michael J.

    2014-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen that causes a multitude of infections. These infections can occur at almost any site in the body and are usually associated with a breach of the innate immune system. One of the prominent sites where P. aeruginosa causes chronic infections is within the lungs of cystic fibrosis patients. P. aeruginosa uses two-component systems that sense environmental changes to differentially express virulence factors that cause both acute and chronic infections. The P. aeruginosa AlgZR two component system is one of its global regulatory systems that affects the organism's fitness in a broad manner. This two-component system is absolutely required for two P. aeruginosa phenotypes: twitching motility and alginate production, indicating its importance in both chronic and acute infections. Additionally, global transcriptome analyses indicate that it regulates the expression of many different genes, including those associated with quorum sensing, type IV pili, type III secretion system, anaerobic metabolism, cyanide and rhamnolipid production. This review examines the complex AlgZR regulatory network, what is known about the structure and function of each protein, and how it relates to the organism's ability to cause infections. PMID:24999454

  7. Accelerated corrosion of 2205 duplex stainless steel caused by marine aerobic Pseudomonas aeruginosa biofilm.

    PubMed

    Xu, Dake; Xia, Jin; Zhou, Enze; Zhang, Dawei; Li, Huabing; Yang, Chunguang; Li, Qi; Lin, Hai; Li, Xiaogang; Yang, Ke

    2017-02-01

    Microbiologically influenced corrosion (MIC) of 2205 duplex stainless steel (DSS) in the presence of Pseudomonas aeruginosa was investigated through electrochemical and surface analyses. The electrochemical results showed that P. aeruginosa significantly reduced the corrosion resistance of 2205 DSS. Confocal laser scanning microscopy (CLSM) images showed that the depths of the largest pits on 2205 DSS with and without P. aeruginosa were 14.0 and 4.9μm, respectively, indicating that the pitting corrosion was accelerated by P. aeruginosa. X-ray photoelectron spectroscopy (XPS) results revealed that CrO 3 and CrN formed on the 2205 DSS surface in the presence of P. aeruginosa. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. [The description of an esculin-positive biovar of Pseudomonas aeruginosa].

    PubMed

    Sivolodskiĭ, E P

    2000-01-01

    In the study of 280 P. aeruginosa strains isolated in different hospitals of St. Petersburg for the first time 48 strains capable of hydrolyzing esculin have been detected. The hydrolysis of esculin is determined in plates with the use of the microvolume techniques the results were evaluated after 3-hour incubation at 37 degrees C. The data confirming the existence of the exculin-positive biovar of P. aeruginosa have been obtained; these data show the wide spread of esculin-positive strains in hospitals of different specialization (17.1 +/- 5.1% of P. aeruginosa strains), the characteristic combination of the sign of esculin hydrolysis with such signs as the absence of the smell of trimethylamine and the phenomenon of "iridescent lysis" of the colonies, the stability of the sign of esculin hydrolysis in strains, repeatedly isolated from patients, after the storage of the cultures and their treatment with plasmid-eliminating preparation. The name "esculinolytica" has been proposed for this biovar. The typing strain of biovar esculinolytica has been deposited in the culture collection of the Russian Research Institute of Agricultural Microbiology as P. aeruginosa ARRIAM 64-A. This biovar been found to be most widely spread in urological hospitals, where esculin-positive strains are isolated 3 times more frequently (32.2 +/- 5.1% of P. aeruginosa strains) than in surgical hospitals (10.7 +/- 2.2%).

  9. Phosphatase synthesis in Klebsiella (Aerobacter) aerogenes growing in continuous culture

    PubMed Central

    Bolton, P. G.; Dean, A. C. R.

    1972-01-01

    1. Phosphatase synthesis was studied in Klebsiella aerogenes grown in a wide range of continuous-culture systems. 2. Maximum acid phosphatase synthesis was associated with nutrient-limited, particularly carbohydrate-limited, growth at a relatively low rate, glucose-limited cells exhibiting the highest activity. Compared with glucose as the carbon-limiting growth material, other sugars not only altered the activity but also changed the pH–activity profile of the enzyme(s). 3. The affinity of the acid phosphatase in glucose-limited cells towards p-nitrophenyl phosphate (Km 0.25–0.43mm) was similar to that of staphylococcal acid phosphatase but was ten times greater than that of the Escherichia coli enzyme. 4. PO43−-limitation derepressed alkaline phosphatase synthesis but the amounts of activity were largely independent of the carbon source used for growth. 5. The enzymes were further differentiated by the effect of adding inhibitors (F−, PO43−) and sugars to the reaction mixture during the assays. In particular, it was shown that adding glucose, but not other sugars, stimulated the rate of hydrolysis of p-nitrophenyl phosphate by the acid phosphatase in carbohydrate-limited cells at low pH values (<4.6) but inhibited it at high pH values (>4.6). Alkaline phosphatase activity was unaffected. 6. The function of phosphatases in general is discussed and possible mechanisms for the glucose effect are outlined. PMID:4342213

  10. Cloning and characterization of EF-Tu and EF-Ts from Pseudomonas aeruginosa.

    PubMed

    Palmer, Stephanie O; Rangel, Edna Y; Montalvo, Alberto E; Tran, Alexis T; Ferguson, Kate C; Bullard, James M

    2013-01-01

    We have cloned genes encoding elongation factors EF-Tu and EF-Ts from Pseudomonas aeruginosa and expressed and purified the proteins to greater than 95% homogeneity. Sequence analysis indicated that P. aeruginosa EF-Tu and EF-Ts are 84% and 55% identical to E. coli counterparts, respectively. P. aeruginosa EF-Tu was active when assayed in GDP exchange assays. Kinetic parameters for the interaction of EF-Tu with GDP in the absence of EF-Ts were observed to be K M = 33 μM, k cat (obs) = 0.003 s(-1), and the specificity constant k cat (obs)/K M was 0.1 × 10(-3) s(-1) μM(-1). In the presence of EF-Ts, these values were shifted to K M = 2 μM, k cat (obs) = 0.005 s(-1), and the specificity constant k(cat)(obs)/K M was 2.5 × 10(-3) s(-1) μM(-1). The equilibrium dissociation constants governing the binding of EF-Tu to GDP (K GDP) were 30-75 nM and to GTP (K GTP) were 125-200 nM. EF-Ts stimulated the exchange of GDP by EF-Tu 10-fold. P. aeruginosa EF-Tu was active in forming a ternary complex with GTP and aminoacylated tRNA and was functional in poly(U)-dependent binding of Phe-tRNA(Phe) at the A-site of P. aeruginosa ribosomes. P. aeruginosa EF-Tu was active in poly(U)-programmed polyphenylalanine protein synthesis system composed of all P. aeruginosa components.

  11. Inhibition of Pseudomonas aeruginosa biofilm formation by 2,2’-bipyridyl, lipoic, kojic and picolinic acids

    PubMed Central

    Çevik, Kübra; Ulusoy, Seyhan

    2015-01-01

    Objective(s): The inhibitory effects of iron chelators, and FeCl3 chelation on biofilm formation and swarming motility were investigated against an opportunistic human pathogen Pseudomonas aeruginosa. Materials and Methods: The inhibitory activity of 2,2’-bipyridyl, lipoic acid, kojic acid and picolinic acid on biofilm formation of P. aeruginosa strain PAO1 and three clinical isolates (P. aeruginosa PAK01, P. aeruginosa PAK02 and P. aeruginosa PAK03) were investigated, based on crystal violet assay, and swarming motility test. Results: The kojic, lipoic and picolinic acid inhibited biofilm formation by 5-33% in all tested P. aeruginosa isolates. When chelated iron was added, biofilm inhibition rates were determined to be 39-57%. Among the tested chelators against P. aeruginosa, lipoic acid (84%) and kojic acid (68%) presented the highest inhibition of swarming motility. This is the first study to report the inhibitory effect of lipoic acid on biofilm formation and swarming motility of P. aeruginosa. Conclusion: It is considered that lipoic and picolinic acids can serve as alternatives for the treatment of the P. aeruginosa infections by inhibiting biofilm formation. PMID:26557964

  12. Anti-Pseudomonas aeruginosa IgY antibodies augment bacterial clearance in a murine pneumonia model.

    PubMed

    Thomsen, K; Christophersen, L; Bjarnsholt, T; Jensen, P Ø; Moser, C; Høiby, N

    2016-03-01

    Oral prophylactic therapy by gargling with pathogen-specific egg yolk immunoglobulins (IgY) may reduce the initial airway colonization with Pseudomonas aeruginosa in cystic fibrosis (CF) patients. IgY antibodies impart passive immunization and we investigated the effects of anti-P. aeruginosa IgY antibodies on bacterial eradication in a murine pneumonia model. P. aeruginosa pneumonia was established in Balb/c mice and the effects of prophylactic IgY administration on lung bacteriology, clinical parameters and subsequent inflammation were compared to controls. Prophylactic administration of IgY antibodies targeting P. aeruginosa significantly reduced the bacterial burden by 2-log 24h post-infection compared to controls and was accompanied by significantly reduced clinical symptom scores and successive inflammatory cytokine profile indicative of diminished lung inflammation. Passive immunization by anti-P. aeruginosa IgY therapy facilitates promptly bacterial clearance and moderates inflammation in P. aeruginosa lung infection and may serve as an adjunct to antibiotics in reducing early colonization. Copyright © 2015. Published by Elsevier B.V.

  13. Glycolipid-Dependent, Protease Sensitive Internalization of Pseudomonas aeruginosa Into Cultured Human Respiratory Epithelial Cells

    PubMed Central

    Emam, Aufaugh; Carter, William G; Lingwood, Clifford

    2010-01-01

    Internalization of PAK strain Pseudomonas aeruginosa into human respiratory epithelial cell lines and HeLa cervical cancer cells in vitro was readily demonstrable via a gentamycin protection assay. Depletion of target cell glycosphingolipids (GSLs) using a glucosyl ceramide synthase inhibitor, P4, completely prevented P. aeruginosa internalization. In contrast, P4 treatment had no effect on the internalization of Salmonella typhimurium into HeLa cells. Internalized P. aeruginosa were within membrane vacuoles, often containing microvesicles, between the bacterium and the limiting membrane. P. aeruginosa internalization was markedly enhanced by target cell pretreatment with the exogenous GSL, deacetyl gangliotetraosyl ceramide (Gg4). Gg4 binds the lipid raft marker, GM1 ganglioside. Target cell pretreatment with TLCK, but not other (serine) protease inhibitors, prevented both P. aeruginosa host cell binding and internalization. NFkB inhibition also prevented internalization. A GSL-containing lipid-raft model of P. aeruginosa host cell binding/internalization is proposed PMID:21270937

  14. Effects of hyperbaric oxygen on Pseudomonas aeruginosa susceptibility to imipenem and macrophages.

    PubMed

    Lima, Flavia Luna; Joazeiro, Paulo Pinto; Lancellotti, Marcelo; de Hollanda, Luciana Maria; de Araújo Lima, Bruna; Linares, Edlaine; Augusto, Ohara; Brocchi, Marcelo; Giorgio, Selma

    2015-01-01

    The seriousness to treat burn wounds infected with Pseudomonas aeruginosa led us to examine whether the effect of the carbapenem antibiotic imipenem is enhanced by hyperbaric oxygen (HBO). The effects of HBO (100% O2, 3 ATA, 5 h) in combination with imipenen on bacterial counts of six isolates of P. aeruginosa and bacterial ultrastructure were investigated. Infected macrophages were exposed to HBO (100% O2, 3 ATA, 90 min) and the production of reactive oxygen species monitored. HBO enhanced the effects of imipenen. HBO increased superoxide anion production by macrophages and likely kills bacteria by oxidative mechanisms. HBO in combination with imipenem can be used to kill P. aeruginosa in vitro and such treatment may be beneficial for the patients with injuries containing the P. aeruginosa.

  15. Phylogenetic Distribution of CRISPR-Cas Systems in Antibiotic-Resistant Pseudomonas aeruginosa.

    PubMed

    van Belkum, Alex; Soriaga, Leah B; LaFave, Matthew C; Akella, Srividya; Veyrieras, Jean-Baptiste; Barbu, E Magda; Shortridge, Dee; Blanc, Bernadette; Hannum, Gregory; Zambardi, Gilles; Miller, Kristofer; Enright, Mark C; Mugnier, Nathalie; Brami, Daniel; Schicklin, Stéphane; Felderman, Martina; Schwartz, Ariel S; Richardson, Toby H; Peterson, Todd C; Hubby, Bolyn; Cady, Kyle C

    2015-11-24

    Pseudomonas aeruginosa is an antibiotic-refractory pathogen with a large genome and extensive genotypic diversity. Historically, P. aeruginosa has been a major model system for understanding the molecular mechanisms underlying type I clustered regularly interspaced short palindromic repeat (CRISPR) and CRISPR-associated protein (CRISPR-Cas)-based bacterial immune system function. However, little information on the phylogenetic distribution and potential role of these CRISPR-Cas systems in molding the P. aeruginosa accessory genome and antibiotic resistance elements is known. Computational approaches were used to identify and characterize CRISPR-Cas systems within 672 genomes, and in the process, we identified a previously unreported and putatively mobile type I-C P. aeruginosa CRISPR-Cas system. Furthermore, genomes harboring noninhibited type I-F and I-E CRISPR-Cas systems were on average ~300 kb smaller than those without a CRISPR-Cas system. In silico analysis demonstrated that the accessory genome (n = 22,036 genes) harbored the majority of identified CRISPR-Cas targets. We also assembled a global spacer library that aided the identification of difficult-to-characterize mobile genetic elements within next-generation sequencing (NGS) data and allowed CRISPR typing of a majority of P. aeruginosa strains. In summary, our analysis demonstrated that CRISPR-Cas systems play an important role in shaping the accessory genomes of globally distributed P. aeruginosa isolates. P. aeruginosa is both an antibiotic-refractory pathogen and an important model system for type I CRISPR-Cas bacterial immune systems. By combining the genome sequences of 672 newly and previously sequenced genomes, we were able to provide a global view of the phylogenetic distribution, conservation, and potential targets of these systems. This analysis identified a new and putatively mobile P. aeruginosa CRISPR-Cas subtype, characterized the diverse distribution of known CRISPR-inhibiting genes, and

  16. Aspergillus fumigatus enhances elastase production in Pseudomonas aeruginosa co-cultures.

    PubMed

    Smith, Karen; Rajendran, Ranjith; Kerr, Stephen; Lappin, David F; Mackay, William G; Williams, Craig; Ramage, Gordon

    2015-09-01

    In the cystic fibrosis (CF) lung the presence of bacteria and fungi in the airways promotes an inflammatory response causing progressive lung damage, ultimately leading to high rates of morbidity and mortality. We hypothesized that polymicrobial interactions play an important role in promoting airway pathogenesis. We therefore examined the interplay between the most commonly isolated bacterial CF pathogen, Pseudomonas aeruginosa, and the most prevalent filamentous fungi, Aspergillus fumigatus, to test this. Co-culture experiments showed that in the presence of A. fumigatus the production of P. aeruginosa elastase was enhanced. This was confirmed by the presence of zones of clearance on Elastin-Congo Red (ECR) agar, which was identified as elastase by mass spectrometry. When P. aeruginosa were grown in a co-culture model with mature A. fumigatus biofilms, 60% of isolates produced significantly more elastase in the presence of the filamentous fungi than in its absence (P < .05). The expression of lasB also increased when P. aeruginosa isolates PA01 and PA14 were grown in co-culture with A. fumigatus. Supernatants from co-culture experiments were also significantly toxic to a human lung epithelial cell line (19-38% cell cytotoxicity) in comparison to supernatants from P. aeruginosa only cultures (P < .0001). Here we report that P. aeruginosa cytotoxic elastase is enhanced in the presence of the filamentous fungi A. fumigatus, suggesting that this may have a role to play in the damaging pathology associated with the lung tissue in this disease. This indicates that patients who have a co-colonisation with these two organisms may have a poorer prognosis. © The Author 2015. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Pseudomonas aeruginosa infection in cystic fibrosis: pathophysiological mechanisms and therapeutic approaches.

    PubMed

    Lund-Palau, Helena; Turnbull, Andrew R; Bush, Andrew; Bardin, Emmanuelle; Cameron, Loren; Soren, Odel; Wierre-Gore, Natasha; Alton, Eric W F W; Bundy, Jacob G; Connett, Gary; Faust, Saul N; Filloux, Alain; Freemont, Paul; Jones, Andy; Khoo, Valerie; Morales, Sandra; Murphy, Ronan; Pabary, Rishi; Simbo, Ameze; Schelenz, Silke; Takats, Zoltan; Webb, Jeremy; Williams, Huw D; Davies, Jane C

    2016-06-01

    Pseudomonas aeruginosa is a remarkably versatile environmental bacterium with an extraordinary capacity to infect the cystic fibrosis (CF) lung. Infection with P. aeruginosa occurs early, and although eradication can be achieved following early detection, chronic infection occurs in over 60% of adults with CF. Chronic infection is associated with accelerated disease progression and increased mortality. Extensive research has revealed complex mechanisms by which P. aeruginosa adapts to and persists within the CF airway. Yet knowledge gaps remain, and prevention and treatment strategies are limited by the lack of sensitive detection methods and by a narrow armoury of antibiotics. Further developments in this field are urgently needed in order to improve morbidity and mortality in people with CF. Here, we summarize current knowledge of pathophysiological mechanisms underlying P. aeruginosa infection in CF. Established treatments are discussed, and an overview is offered of novel detection methods and therapeutic strategies in development.

  18. Genotypic and Phenotypic Detection of AmpC β-lactamases in Enterobacter spp. Isolated from a Teaching Hospital in Malaysia.

    PubMed

    Mohd Khari, Fatin Izzati; Karunakaran, Rina; Rosli, Roshalina; Tee Tay, Sun

    2016-01-01

    The objective of this study was to determine the occurrence of chromosomal and plasmid-mediated β-lactamases (AmpC) genes in a collection of Malaysian isolates of Enterobacter species. Several phenotypic tests for detection of AmpC production of Enterobacter spp. were evaluated and the agreements between tests were determined. Antimicrobial susceptibility profiles for 117 Enterobacter clinical isolates obtained from the Medical Microbiology Diagnostic Laboratory, University Malaya Medical Centre, Malaysia, from November 2012-February 2014 were determined in accordance to CLSI guidelines. AmpC genes were detected using a multiplex PCR assay targeting the MIR/ACT gene (closely related to chromosomal EBC family gene) and other plasmid-mediated genes, including DHA, MOX, CMY, ACC, and FOX. The AmpC β-lactamase production of the isolates was assessed using cefoxitin disk screening test, D69C AmpC detection set, cefoxitin-cloxacillin double disk synergy test (CC-DDS) and AmpC induction test. Among the Enterobacter isolates in this study, 39.3% were resistant to cefotaxime and ceftriaxone and 23.9% were resistant to ceftazidime. Ten (8.5%) of the isolates were resistant to cefepime, and one isolate was resistant to meropenem. Chromosomal EBC family gene was amplified from 36 (47.4%) E. cloacae and three (25%) E. asburiae. A novel blaDHA type plasmid-mediated AmpC gene was identified for the first time from an E. cloacae isolate. AmpC β-lactamase production was detected in 99 (89.2%) of 111 potential AmpC β-lactamase producers (positive in cefoxitin disk screening) using D69C AmpC detection set. The detection rates were lower with CC-DDS (80.2%) and AmpC induction tests (50.5%). There was low agreement between the D69C AmpC detection set and the other two phenotypic tests. Of the 40 isolates with AmpC genes detected in this study, 87.5%, 77.5% and 50.0% of these isolates were positive by the D69C AmpC detection set, CC-DDS and AmpC induction tests, respectively

  19. Genotypic and Phenotypic Detection of AmpC β-lactamases in Enterobacter spp. Isolated from a Teaching Hospital in Malaysia

    PubMed Central

    Mohd Khari, Fatin Izzati; Karunakaran, Rina; Rosli, Roshalina; Tee Tay, Sun

    2016-01-01

    Objectives The objective of this study was to determine the occurrence of chromosomal and plasmid-mediated β-lactamases (AmpC) genes in a collection of Malaysian isolates of Enterobacter species. Several phenotypic tests for detection of AmpC production of Enterobacter spp. were evaluated and the agreements between tests were determined. Methods Antimicrobial susceptibility profiles for 117 Enterobacter clinical isolates obtained from the Medical Microbiology Diagnostic Laboratory, University Malaya Medical Centre, Malaysia, from November 2012—February 2014 were determined in accordance to CLSI guidelines. AmpC genes were detected using a multiplex PCR assay targeting the MIR/ACT gene (closely related to chromosomal EBC family gene) and other plasmid-mediated genes, including DHA, MOX, CMY, ACC, and FOX. The AmpC β-lactamase production of the isolates was assessed using cefoxitin disk screening test, D69C AmpC detection set, cefoxitin-cloxacillin double disk synergy test (CC-DDS) and AmpC induction test. Results Among the Enterobacter isolates in this study, 39.3% were resistant to cefotaxime and ceftriaxone and 23.9% were resistant to ceftazidime. Ten (8.5%) of the isolates were resistant to cefepime, and one isolate was resistant to meropenem. Chromosomal EBC family gene was amplified from 36 (47.4%) E. cloacae and three (25%) E. asburiae. A novel blaDHA type plasmid-mediated AmpC gene was identified for the first time from an E. cloacae isolate. AmpC β-lactamase production was detected in 99 (89.2%) of 111 potential AmpC β-lactamase producers (positive in cefoxitin disk screening) using D69C AmpC detection set. The detection rates were lower with CC-DDS (80.2%) and AmpC induction tests (50.5%). There was low agreement between the D69C AmpC detection set and the other two phenotypic tests. Of the 40 isolates with AmpC genes detected in this study, 87.5%, 77.5% and 50.0% of these isolates were positive by the D69C AmpC detection set, CC-DDS and Amp

  20. Trehalose 6-phosphate phosphatases of Pseudomonas aeruginosa.

    PubMed

    Cross, Megan; Biberacher, Sonja; Park, Suk-Youl; Rajan, Siji; Korhonen, Pasi; Gasser, Robin B; Kim, Jeong-Sun; Coster, Mark J; Hofmann, Andreas

    2018-04-24

    The opportunistic bacterium Pseudomonas aeruginosa has been recognized as an important pathogen of clinical relevance and is a leading cause of hospital-acquired infections. The presence of a glycolytic enzyme in Pseudomonas, which is known to be inhibited by trehalose 6-phosphate (T6P) in other organisms, suggests that these bacteria may be vulnerable to the detrimental effects of intracellular T6P accumulation. In the present study, we explored the structural and functional properties of trehalose 6-phosphate phosphatase (TPP) in P. aeruginosa in support of future target-based drug discovery. A survey of genomes revealed the existence of 2 TPP genes with either chromosomal or extrachromosomal location. Both TPPs were produced as recombinant proteins, and characterization of their enzymatic properties confirmed specific, magnesium-dependent catalytic hydrolysis of T6P. The 3-dimensional crystal structure of the chromosomal TPP revealed a protein dimer arising through β-sheet expansion of the individual monomers, which possess the overall fold of halo-acid dehydrogenases.-Cross, M., Biberacher, S., Park, S.-Y., Rajan, S., Korhonen, P., Gasser, R. B., Kim, J.-S., Coster, M. J., Hofmann, A. Trehalose 6-phosphate phosphatases of Pseudomonas aeruginosa.

  1. Pseudomonas aeruginosa quorum sensing molecules correlate with clinical status in cystic fibrosis.

    PubMed

    Barr, Helen L; Halliday, Nigel; Cámara, Miguel; Barrett, David A; Williams, Paul; Forrester, Douglas L; Simms, Rebecca; Smyth, Alan R; Honeybourne, David; Whitehouse, Joanna L; Nash, Edward F; Dewar, Jane; Clayton, Andrew; Knox, Alan J; Fogarty, Andrew W

    2015-10-01

    Pseudomonas aeruginosa produces quorum sensing signal molecules that are potential biomarkers for infection.A prospective study of 60 cystic fibrosis patients with chronic P. aeruginosa, who required intravenous antibiotics for pulmonary exacerbations, was undertaken. Clinical measurements and biological samples were obtained at the start and end of the treatment period. Additional data were available for 29 of these patients when they were clinically stable.Cross-sectionally, quorum sensing signal molecules were detectable in the sputum, plasma and urine of 86%, 75% and 83% patients, respectively. They were positively correlated between the three biofluids. Positive correlations were observed for most quorum sensing signal molecules in sputum, plasma and urine, with quantitative measures of pulmonary P. aeruginosa load at the start of a pulmonary exacerbation. Plasma concentrations of 2-nonyl-4-hydroxy-quinoline (NHQ) were significantly higher at the start of a pulmonary exacerbation compared to clinical stability (p<0.01). Following the administration of systemic antibiotics, plasma 2-heptyl-4-hydroxyquinoline (p=0.02) and NHQ concentrations (p<0.01) decreased significantly.In conclusion, quorum sensing signal molecules are detectable in cystic fibrosis patients with pulmonary P. aeruginosa infection and are positively correlated with quantitative measures of P. aeruginosa. NHQ correlates with clinical status and has potential as a novel biomarker for P. aeruginosa infection. Copyright ©ERS 2015.

  2. Interactions between Microcystis aeruginosa and coexisting amoxicillin contaminant at different phosphorus levels.

    PubMed

    Liu, Ying; Chen, Shi; Chen, Xiao; Zhang, Jian; Gao, Baoyu

    2015-10-30

    Microcystis aeruginosa was cultured with 0.05-5 mg L(-1) of phosphorus and exposed to 200-500 ng L(-1) of amoxicillin for seven days. Amoxicillin presented no significant effect (p>0.05) on the growth of M. aeruginosa at phosphorus levels of 0.05 and 0.2 mg L(-1), but stimulated algal growth as a hormesis effect at phosphorus levels of 1 and 5 mg L(-1). Phosphorus and amoxicillin affected the contents of chlorophyll-a, adenosine triphosphate (ATP) and malondialdehyde, the expression of psbA and rbcL, as well as the activities of adenosinetriphosphatase and glutathione S-transferase in similar manners, but regulated the production and release of microcystins and the activities of superoxide dismutase and peroxidase in different ways. Increased photosynthesis activity was related with the ATP consumption for the stress response to amoxicillin, and the stress response was enhanced as the phosphorus concentration increased. The biodegradation of amoxicillin by M. aeruginosa increased from 11.5% to 28.2% as the phosphorus concentration increased. Coexisting amoxicillin aggravated M. aeruginosa pollution by increasing cell density and concentration of microcystins, while M. aeruginosa alleviated amoxicillin pollution via biodegradation. The interactions between M. aeruginosa and amoxicillin were significantly regulated by phosphorus (p<0.05) and led to a complicated situation of combined pollution. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Pseudomonas aeruginosa quorum sensing molecules correlate with clinical status in cystic fibrosis

    PubMed Central

    Halliday, Nigel; Cámara, Miguel; Barrett, David A.; Williams, Paul; Forrester, Douglas L.; Simms, Rebecca; Smyth, Alan R.; Honeybourne, David; Whitehouse, Joanna L.; Nash, Edward F.; Dewar, Jane; Clayton, Andrew; Knox, Alan J.; Fogarty, Andrew W.

    2015-01-01

    Pseudomonas aeruginosa produces quorum sensing signal molecules that are potential biomarkers for infection. A prospective study of 60 cystic fibrosis patients with chronic P. aeruginosa, who required intravenous antibiotics for pulmonary exacerbations, was undertaken. Clinical measurements and biological samples were obtained at the start and end of the treatment period. Additional data were available for 29 of these patients when they were clinically stable. Cross-sectionally, quorum sensing signal molecules were detectable in the sputum, plasma and urine of 86%, 75% and 83% patients, respectively. They were positively correlated between the three biofluids. Positive correlations were observed for most quorum sensing signal molecules in sputum, plasma and urine, with quantitative measures of pulmonary P. aeruginosa load at the start of a pulmonary exacerbation. Plasma concentrations of 2-nonyl-4-hydroxy-quinoline (NHQ) were significantly higher at the start of a pulmonary exacerbation compared to clinical stability (p<0.01). Following the administration of systemic antibiotics, plasma 2-heptyl-4-hydroxyquinoline (p=0.02) and NHQ concentrations (p<0.01) decreased significantly. In conclusion, quorum sensing signal molecules are detectable in cystic fibrosis patients with pulmonary P. aeruginosa infection and are positively correlated with quantitative measures of P. aeruginosa. NHQ correlates with clinical status and has potential as a novel biomarker for P. aeruginosa infection. PMID:26022946

  4. Phylogenetic Distribution of CRISPR-Cas Systems in Antibiotic-Resistant Pseudomonas aeruginosa

    PubMed Central

    van Belkum, Alex; Soriaga, Leah B.; LaFave, Matthew C.; Akella, Srividya; Veyrieras, Jean-Baptiste; Barbu, E. Magda; Shortridge, Dee; Blanc, Bernadette; Hannum, Gregory; Zambardi, Gilles; Miller, Kristofer; Enright, Mark C.; Mugnier, Nathalie; Brami, Daniel; Schicklin, Stéphane; Felderman, Martina; Schwartz, Ariel S.; Richardson, Toby H.; Peterson, Todd C.; Hubby, Bolyn

    2015-01-01

    ABSTRACT Pseudomonas aeruginosa is an antibiotic-refractory pathogen with a large genome and extensive genotypic diversity. Historically, P. aeruginosa has been a major model system for understanding the molecular mechanisms underlying type I clustered regularly interspaced short palindromic repeat (CRISPR) and CRISPR-associated protein (CRISPR-Cas)-based bacterial immune system function. However, little information on the phylogenetic distribution and potential role of these CRISPR-Cas systems in molding the P. aeruginosa accessory genome and antibiotic resistance elements is known. Computational approaches were used to identify and characterize CRISPR-Cas systems within 672 genomes, and in the process, we identified a previously unreported and putatively mobile type I-C P. aeruginosa CRISPR-Cas system. Furthermore, genomes harboring noninhibited type I-F and I-E CRISPR-Cas systems were on average ~300 kb smaller than those without a CRISPR-Cas system. In silico analysis demonstrated that the accessory genome (n = 22,036 genes) harbored the majority of identified CRISPR-Cas targets. We also assembled a global spacer library that aided the identification of difficult-to-characterize mobile genetic elements within next-generation sequencing (NGS) data and allowed CRISPR typing of a majority of P. aeruginosa strains. In summary, our analysis demonstrated that CRISPR-Cas systems play an important role in shaping the accessory genomes of globally distributed P. aeruginosa isolates. PMID:26604259

  5. Photodynamic antimicrobial therapy to inhibit pseudomonas aeruginosa of corneal isolates (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Durkee, Heather A.; Relhan, Nidhi; Arboleda, Alejandro; Halili, Francisco; De Freitas, Carolina; Alawa, Karam; Aguilar, Mariela C.; Amescua, Guillermo; Miller, Darlene; Parel, Jean-Marie

    2016-03-01

    Keratitis associated with Pseudomonas aeruginosa is difficult to manage. Treatment includes antibiotic eye drops, however, some strains of Pseudomonas aeruginosa are resistant. Current research efforts are focused on finding alternative and adjunct therapies to treat multi-drug resistant bacteria. One promising alternate technique is photodynamic therapy (PDT). The purpose of this study was to evaluate the effect of riboflavin- and rose bengal-mediated PDT on Pseudomonas aeruginosa keratitis isolates in vitro. Two isolates (S+U- and S-U+) of Pseudomonas aeruginosa were derived from keratitis patients and exposed to five experimental groups: (1) Control (dark, UV-A irradiation, 525nm irradiation); (2) 0.1% riboflavin (dark, UV-A irradiation); and (3) 0.1% rose bengal, (4) 0.05% rose bengal and (5) 0.01% rose bengal (dark, 525nm irradiation). Three days after treatment, in dark conditions of all concentration of riboflavin and rose bengal showed no inhibition in both S+U- and S-U+ strains of Pseudomonas aeruginosa. In 0.1% and 0.05% rose bengal irradiated groups, for both S+U- and S-U+ strains, there was complete inhibition of bacterial growth in the central 50mm zone corresponding to the diameter of the green light source. These in vitro results suggest that rose bengal photodynamic therapy may be an effective adjunct treatment for Pseudomonas aeruginosa keratitis.

  6. Coexistence of metallo-beta-lactamase-encoding genes in Pseudomonas aeruginosa.

    PubMed

    Mohanam, Lavanya; Menon, Thangam

    2017-07-01

    The emergence and rapid spread of carbapenem resistance mediated by metallo-beta-lactamase (MBL) in Pseudomonas aeruginosa is of major concern due to limited therapeutic options. This study was aimed at detecting the presence of MBL and its association with integrons in imipenem-resistant P. aeruginosa isolates and to determine their genetic relatedness. A total of 213 P. aeruginosa isolates were collected from two tertiary care centres and tested against anti-pseudomonal antibiotics by antimicrobial susceptibility testing, followed by the detection of MBL production by combined disk method. Minimum inhibitory concentration (MIC) of meropenem was determined by E-test. Multiplex polymerase chain reaction (PCR) was performed for the detection of blaSPM, blaIMP, blaVIM, blaNDM, blaGIM and blaSIM. PCR was carried out to characterize the variable region of class 1 integron. Transcongujation assay was carried out for the confirmation of plasmid-mediated resistance. Enterobacterial repetitive intergenic consensus sequence (ERIC)-PCR was performed for determining the genetic relatedness among P. aeruginosa isolates. Of the 213 P. aeruginosa isolates, 22 (10%) were found to be carbapenem resistant and these were from pus 18 (82%), urine 2 (9%), sputum 1 (5%) and tracheal wash 1 (5%). Among 22 isolates, 18 (81.8%) were found to be MBL producers by phenotypic method and MIC range of meropenem was 8 to >32 μg/ml. PCR amplification showed that 20 (91%) isolates carried any one of the MBL genes tested: blaVIM and blaNDM in seven (32%) and six (27%) isolates, respectively; blaVIM and blaNDMin three (14%); blaIMP and blaNDM in two (9%); blaVIM and blaIMP in one (5%) isolate. The blaVIM, blaIMP and blaNDM were found to co-exist in one isolate. None of the isolates were positive for blaSPM, blaSIM and blaGIM. All 22 isolates carried class I integron. Of the 20 MBL-positive isolates, transconjugants were obtained for 15 isolates. ERIC-PCR analysis showed all isolates to be clonally

  7. [The effect of biyuanshu oral liquid on the formation of Pseudomonas aeruginosa biofilms in vitro].

    PubMed

    Liu, Xiang; Chen, Haihong; Wang, Shengqing

    2012-07-01

    To observe the effect of biyuanshu oral liquid on the formation of pseudomonas aeruginosa biofilms in vitro. Pseudomonas aeruginosa biofilm was established by plate culture and detected by Scanning electron microscopy and AgNO3 staining. After treated with different dosages of biyuanshu oral liquid and erythromycin, the pseudomonas aeruginosa biofilms were observed by AgNO3 staining and the number of viable bacteria were measured by serial dilution. The pseudomonas aeruginosa biofilms could be detected by SEM at the seventh culture day and it was consistent with the detection of AgNO3 staining. The biyuanshu oral liquid and erythromycin have the effect on inhibiting the formation of pseudomonas aeruginosa biofilms. But with the already formed pseudomonas aeruginosa biofilms the inhibition was not significant. The serial dilution method showed that the viable counts of bacteria of biyuanshu oral liquid and erythromycin treated groups were significantly lower than those untreated groups (P < 0.05). The biyuanshu oral liquid and erythromycin can inhibit the formation of pseudomonas aeruginosa biofilms in vitro.

  8. Application of bacteriophages to selectively remove Pseudomonas aeruginosa in water and wastewater filtration systems.

    PubMed

    Zhang, Yanyan; Hunt, Heather K; Hu, Zhiqiang

    2013-09-01

    Water and wastewater filtration systems often house pathogenic bacteria, which must be removed to ensure clean, safe water. Here, we determine the persistence of the model bacterium Pseudomonas aeruginosa in two types of filtration systems, and use P. aeruginosa bacteriophages to determine their ability to selectively remove P. aeruginosa. These systems used beds of either anthracite or granular activated carbon (GAC), which were operated at an empty bed contact time (EBCT) of 45 min. The clean bed filtration systems were loaded with an instantaneous dose of P. aeruginosa at a total cell number of 2.3 (± 0.1 [standard deviation]) × 10(7) cells. An immediate dose of P. aeruginosa phages (1 mL of phage stock at the concentration of 2.7 × 10(7) PFU (Plaque Forming Units)/mL) resulted in a reduction of 50% (± 9%) and >99.9% in the effluent P. aeruginosa concentrations in the clean anthracite and GAC filters, respectively. To further evaluate the effects of P. aeruginosa phages, synthetic stormwater was run through anthracite and GAC biofilters where mixed-culture biofilms were present. Eighty five days after an instantaneous dose of P. aeruginosa (2.3 × 10(7) cells per filter) on day 1, 7.5 (± 2.8) × 10(7) and 1.1 (± 0.5) × 10(7) P. aeruginosa cells/g filter media were detected in the top layer (close to the influent port) of the anthracite and GAC biofilters, respectively, demonstrating the growth and persistence of pathogenic bacteria in the biofilters. A subsequent 1-h dose of phages, at the concentration of 5.1 × 10(6) PFU/mL and flow rate of 1.6 mL/min, removed the P. aeruginosa inside the GAC biofilters and the anthracite biofilters by 70% (± 5%) and 56% (± 1%), respectively, with no P. aeruginosa detected in the effluent, while not affecting ammonia oxidation or the ammonia-oxidizing bacterial community inside the biofilters. These results suggest that phage treatment can selectively remove pathogenic bacteria with minimal impact on beneficial

  9. Pseudomonas aeruginosa isolation in patients with non-cystic fibrosis bronchiectasis: a retrospective study.

    PubMed

    Wang, Hong; Ji, Xiao-Bin; Mao, Bei; Li, Cheng-Wei; Lu, Hai-Wen; Xu, Jin-Fu

    2018-03-14

    Pseudomonas aeruginosa (P. aeruginosa) occupies an important niche in the pathogenic microbiome of bronchiectasis. The objective of this study is to evaluate the clinical characteristics and prognostic value of P. aeruginosa in Chinese adult patients with bronchiectasis. This retrospective and follow-up study enrolled 1188 patients diagnosed with bronchiectasis at Shanghai Pulmonary Hospital between January 2011 and December 2012. The patients' clinical data including anthropometry, clinical symptoms, serum biomarkers, radiographic manifestations and lung function indices were reviewed. The median follow-up duration (IQR) was 44 (40-54) months, during which 289 patients were lost to follow-up. Data from 899 patients were collected and analysed for the outcomes of mortality, annual exacerbation frequency and health-related quality of life. P. aeruginosa was isolated from 232 patients, alongside other pathogens such as Aspergillus (n=75) and Candida albicans (n=72). There were 74 deaths (12% of patients with P. aeruginosa , 7.3% of those without) over the course of the follow-up. The isolation of P. aeruginosa was a risk factor for all-cause mortality (HR, 3.07; 95% CI 1.32 to 7.15) and was associated with high rates of exacerbations (ie, ≥3 exacerbations per year of follow-up) (HR, 2.40; 95% CI 1.20 to 4.79). Patients with P. aeruginosa also had worse scores on the Hospital Anxiety and Depression Scale (anxiety, p=0.005; depression, p<0.001), the Leicester Cough Questionnaire (p=0.033) and the modified Medical Research Council scale (p=0.001) compared with those without P. aeruginosa . Isolation of P. aeruginosa in patients with bronchiectasis is a significant prognostic indicator and should be a major factor in the clinical management of the disease. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  10. Strain- and Substrate-Dependent Redox Mediator and Electricity Production by Pseudomonas aeruginosa

    PubMed Central

    Bosire, Erick M.; Blank, Lars M.

    2016-01-01

    ABSTRACT Pseudomonas aeruginosa is an important, thriving member of microbial communities of microbial bioelectrochemical systems (BES) through the production of versatile phenazine redox mediators. Pure culture experiments with a model strain revealed synergistic interactions of P. aeruginosa with fermenting microorganisms whereby the synergism was mediated through the shared fermentation product 2,3-butanediol. Our work here shows that the behavior and efficiency of P. aeruginosa in mediated current production is strongly dependent on the strain of P. aeruginosa. We compared levels of phenazine production by the previously investigated model strain P. aeruginosa PA14, the alternative model strain P. aeruginosa PAO1, and the BES isolate Pseudomonas sp. strain KRP1 with glucose and the fermentation products 2,3-butanediol and ethanol as carbon substrates. We found significant differences in substrate-dependent phenazine production and resulting anodic current generation for the three strains, with the BES isolate KRP1 being overall the best current producer and showing the highest electrochemical activity with glucose as a substrate (19 μA cm−2 with ∼150 μg ml−1 phenazine carboxylic acid as a redox mediator). Surprisingly, P. aeruginosa PAO1 showed very low phenazine production and electrochemical activity under all tested conditions. IMPORTANCE Microbial fuel cells and other microbial bioelectrochemical systems hold great promise for environmental technologies such as wastewater treatment and bioremediation. While there is much emphasis on the development of materials and devices to realize such systems, the investigation and a deeper understanding of the underlying microbiology and ecology are lagging behind. Physiological investigations focus on microorganisms exhibiting direct electron transfer in pure culture systems. Meanwhile, mediated electron transfer with natural redox compounds produced by, for example, Pseudomonas aeruginosa might enable an

  11. Evidence supporting dissimilatory and assimilatory lignin degradation in Enterobacter lignolyticus SCF1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeAngelis, Kristen M.; Sharma, Deepak; Varney, Rebecca

    2013-08-29

    The anaerobic isolate Enterobacter lignolyticus SCF1 was initially cultivated based on anaerobic growth on lignin as sole carbon source. The source of the isolated bacteria was from tropical forest soils that decompose litter rapidly with low and fluctuating redox potentials, making it likely that bacteria using oxygen-independent enzymes play an important role in decomposition. We have examined differential expression of the anaerobic isolate Enterobacter lignolyticus SCF1 during growth on lignin. After 48 hours of growth, we used transcriptomics and proteomics to define the enzymes and other regulatory machinery that these organisms use to degrade lignin, as well as metabolomics tomore » measure lignin degradation and monitor the use of lignin and iron as terminal electron acceptors that facilitate more efficient use of carbon. Proteomics revealed accelerated xylose uptake and metabolism under lignin-amended growth, and lignin degradation via the 4-hydroxyphenylacetate degradation pathway, catalase/peroxidase enzymes, and the glutathione biosynthesis and glutathione S-transferase proteins. We also observed increased production of NADH-quinone oxidoreductase, other electron transport chain proteins, and ATP synthase and ATP-binding cassette (ABC) transporters. Our data shows the advantages of a multi-omics approach, where incomplete pathways identified by genomics were completed, and new observations made on coping with poor carbon availability. The fast growth, high efficiency and specificity of enzymes employed in bacterial anaerobic litter deconstruction makes these soils useful templates for improving biofuel production.« less

  12. Growth and heavy metal removal by Klebsiella aerogenes at different pH and temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Shahwani, M.F.; Jazrawi, S.F.; Al-Rawi, E.H.

    1984-01-01

    A strain of Klebsiella aerogenes isolated from Rustamiyah Station for treatment of wastewater was examined for its ability to grow in a media supplemented with maximum tolerance concentrations of Pb/sup + +/, Zn/sup + +/, Ni/sup + +/, and Cd/sup + +/, separately, at different temperatures and initial pH. The results indicated that at 28/sup 0/C during the first 24 hr, Pb/sup + +/ and Ni/sup + +/ had no effect on the growth of the bacteria, while the presence of Zn/sup + +/ and Cd/sup + +/ decreased the cell count. The growth reached a maximum level after themore » second day and started to decrease gradually. The bacterial count at 37/sup 0/C was less than that at 28/sup 0/C. No bacterial multiplication occurred at 44/sup 0/C. There was little difference between heavy metal removal at 28 and 37/sup 0/C. At 44/sup 0/C, little removal took place. In general, slightly acidic or neutral medium was better for both bacterial growth and metal removal.« less

  13. Strong incidence of Pseudomonas aeruginosa on bacterial rrs and ITS genetic structures of cystic fibrosis sputa

    PubMed Central

    Pages-Monteiro, Laurence; Marti, Romain; Commun, Carine; Alliot, Nolwenn; Bardel, Claire; Meugnier, Helene; Perouse-de-Montclos, Michele; Reix, Philippe; Durieu, Isabelle; Durupt, Stephane; Vandenesch, Francois; Freney, Jean; Cournoyer, Benoit; Doleans-Jordheim, Anne

    2017-01-01

    Cystic fibrosis (CF) lungs harbor a complex community of interacting microbes, including pathogens like Pseudomonas aeruginosa. Meta-taxogenomic analysis based on V5-V6 rrs PCR products of 52 P. aeruginosa-positive (Pp) and 52 P. aeruginosa-negative (Pn) pooled DNA extracts from CF sputa suggested positive associations between P. aeruginosa and Stenotrophomonas and Prevotella, but negative ones with Haemophilus, Neisseria and Burkholderia. Internal Transcribed Spacer analyses (RISA) from individual DNA extracts identified three significant genetic structures within the CF cohorts, and indicated an impact of P. aeruginosa. RISA clusters Ip and IIIp contained CF sputa with a P. aeruginosa prevalence above 93%, and of 24.2% in cluster IIp. Clusters Ip and IIIp showed lower RISA genetic diversity and richness than IIp. Highly similar cluster IIp RISA profiles were obtained from two patients harboring isolates of a same P. aeruginosa clone, suggesting convergent evolution in the structure of their microbiota. CF patients of cluster IIp had received significantly less antibiotics than patients of clusters Ip and IIIp but harbored the most resistant P. aeruginosa strains. Patients of cluster IIIp were older than those of Ip. The effects of P. aeruginosa on the RISA structures could not be fully dissociated from the above two confounding factors but several trends in these datasets support the conclusion of a strong incidence of P. aeruginosa on the genetic structure of CF lung microbiota. PMID:28282386

  14. Pseudomonas aeruginosa adapts its iron uptake strategies in function of the type of infections

    PubMed Central

    Cornelis, Pierre; Dingemans, Jozef

    2013-01-01

    Pseudomonas aeruginosa is a Gram-negative γ-Proteobacterium which is known for its capacity to colonize various niches, including some invertebrate and vertebrate hosts, making it one of the most frequent bacteria causing opportunistic infections. P. aeruginosa is able to cause acute as well as chronic infections and it uses different colonization and virulence factors to do so. Infections range from septicemia, urinary infections, burn wound colonization, and chronic colonization of the lungs of cystic fibrosis patients. Like the vast majority of organisms, P. aeruginosa needs iron to sustain growth. P. aeruginosa utilizes different strategies to take up iron, depending on the type of infection it causes. Two siderophores are produced by this bacterium, pyoverdine and pyochelin, characterized by high and low affinities for iron respectively. P. aeruginosa is also able to utilize different siderophores from other microorganisms (siderophore piracy). It can also take up heme from hemoproteins via two different systems. Under microaerobic or anaerobic conditions, P. aeruginosa is also able to take up ferrous iron via its Feo system using redox-cycling phenazines. Depending on the type of infection, P. aeruginosa can therefore adapt by switching from one iron uptake system to another as we will describe in this short review. PMID:24294593

  15. Swimming Motility Mediates the Formation of Neutrophil Extracellular Traps Induced by Flagellated Pseudomonas aeruginosa

    PubMed Central

    Sil, Payel; Chassaing, Benoit; Yoo, Dae-goon; Gewirtz, Andrew T.; Goldberg, Joanna B.; McCarter, Linda L.; Rada, Balázs

    2016-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen causing severe infections often characterized by robust neutrophilic infiltration. Neutrophils provide the first line of defense against P. aeruginosa. Aside from their defense conferred by phagocytic activity, neutrophils also release neutrophil extracellular traps (NETs) to immobilize bacteria. Although NET formation is an important antimicrobial process, the details of its mechanism are largely unknown. The identity of the main components of P. aeruginosa responsible for triggering NET formation is unclear. In this study, our focus was to identify the main bacterial factors mediating NET formation and to gain insight into the underlying mechanism. We found that P. aeruginosa in its exponential growth phase promoted strong NET formation in human neutrophils while its NET-inducing ability dramatically decreased at later stages of bacterial growth. We identified the flagellum as the primary component of P. aeruginosa responsible for inducing NET extrusion as flagellum-deficient bacteria remained seriously impaired in triggering NET formation. Purified P. aeruginosa flagellin, the monomeric component of the flagellum, does not stimulate NET formation in human neutrophils. P. aeruginosa-induced NET formation is independent of the flagellum-sensing receptors TLR5 and NLRC4 in both human and mouse neutrophils. Interestingly, we found that flagellar motility, not flagellum binding to neutrophils per se, mediates NET release induced by flagellated bacteria. Immotile, flagellar motor-deficient bacterial strains producing paralyzed flagella did not induce NET formation. Forced contact between immotile P. aeruginosa and neutrophils restored their NET-inducing ability. Both the motAB and motCD genetic loci encoding flagellar motor genes contribute to maximal NET release; however the motCD genes play a more important role. Phagocytosis of P. aeruginosa and superoxide production by neutrophils were also largely dependent upon

  16. Biodegradation of ichlorodiphenyltrichloroe-thane: Intermediates in dichlorodiphenylacetic acid metabolism by Aerobacter aerogenes

    USGS Publications Warehouse

    1967-01-01

    The final product of dichlorodiphenyltrichloroethane (DDT) degradation by vertebrates is commonly considered to be dichlorodiphenylacetic acid, DDA (J. E. Peterson and W. H. Robison, Toxicol. Appl. Pharmacol. 6:321, 1964). Recently, certain organisms (A. S. Perry, S. Miller, and A. J. Buckner. J. Agr. Food Chem. 11:457, 1963; J. D. Pinto, M. N. Comien, and M. S. Dunn. J. Biol. Chem. 240:2148, 1965) have been found to degrade further DDA to dichlorobenzophenone (DBP), but the possibility that such degradation was due to microbial action could not be excluded. Significantly, dichlorobenzhydrol (DBH), dichlorophenylmethane (DPM), and dichlorodiphenylethylene (DDE) have been tentatively identified in rats fed DDA (Pinto et al., J. Biol. Chem. 240:2148, 1965). Since DDA as well as DDT is degraded by the ubiquitous microorganism Aerobacter aerogenes (G. Wedemeyer, Appl. Microbiol. 15:569, 1967; J. L. Mendel, and M. S. Walton, Science 151:1527, 1966), it seemed reasonable that the intestinal microflora might be involved in DBP formation, DPM and DBH being intermediates in its pathway from DDA. Since DDA is a (3,y-unsaturated acid, ketone formation via an alkene and an alcohol would be expected (S. G. Waley, Mechanisms of Organic and Enzymatic Reactions, Oxford University Press, London, England 1962).

  17. Solar Disinfection of Pseudomonas aeruginosa in Harvested Rainwater: A Step towards Potability of Rainwater

    PubMed Central

    Amin, Muhammad T.; Nawaz, Mohsin; Amin, Muhammad N.; Han, Mooyoung

    2014-01-01

    Efficiency of solar based disinfection of Pseudomonas aeruginosa (P. aeruginosa) in rooftop harvested rainwater was evaluated aiming the potability of rainwater. The rainwater samples were exposed to direct sunlight for about 8–9 hours and the effects of water temperature (°C), sunlight irradiance (W/m2), different rear surfaces of polyethylene terephthalate bottles, variable microbial concentrations, pH and turbidity were observed on P. aeruginosa inactivation at different weathers. In simple solar disinfection (SODIS), the complete inactivation of P. aeruginosa was obtained only under sunny weather conditions (>50°C and >700 W/m2) with absorptive rear surface. Solar collector disinfection (SOCODIS) system, used to improve the efficiency of simple SODIS under mild and weak weather, completely inactivated the P. aeruginosa by enhancing the disinfection efficiency of about 20% only at mild weather. Both SODIS and SOCODIS systems, however, were found inefficient at weak weather. Different initial concentrations of P. aeruginosa and/or Escherichia coli had little effects on the disinfection efficiency except for the SODIS with highest initial concentrations. The inactivation of P. aeruginosa increased by about 10–15% by lowering the initial pH values from 10 to 3. A high initial turbidity, adjusted by adding kaolin, adversely affected the efficiency of both systems and a decrease, about 15–25%; in inactivation of P. aeruginosa was observed. The kinetics of this study was investigated by Geeraerd Model for highlighting the best disinfection system based on reaction rate constant. The unique detailed investigation of P. aeruginosa disinfection with sunlight based disinfection systems under different weather conditions and variable parameters will help researchers to understand and further improve the newly invented SOCODIS system. PMID:24595188

  18. Anti-Quorum Sensing Activity of Forsythia suspense on Chromobacterium violaceum and Pseudomonas aeruginosa.

    PubMed

    Zhang, An; Chu, Wei-Hua

    2017-01-01

    Quorum sensing (QS) plays an important role in the production of virulence factors and pathogenicity in Pseudomonas aeruginosa , and the interruption of QS will be a hopeful pathway to combat bacterial infection. In this study, we selected Forsythia suspense (Thunb.) Vahl from traditional Chinese herbal medicines for its anti-QS activity. Anti-QS of F. suspense extracts (FSE) was monitored using the Chromobacterium violaceum 12472 bioassay. Standard methods were used to investigate the effects of FSE on QS-controlled virulence factors production, swimming motility, and biofilm establishment in P. aeruginosa PAO1. FSE could obviously inhibit the violacein production in C. violaceum 12472 and also could inhibit quorum sensing-regulated virulence factors production and biofilm formation in P. aeruginosa in a concentration-dependent manner. The elastase activity and pyocyanin production were inhibited at a maximum of 40.97 and 47.58% when P. aeruginosa was grown in the presence of 0.25 g/mL FSE, which can also inhibit swimming motility of P. aeruginosa . The biofilm formation ability was decreased about 72.45% when in PAO1 cultured with the 0.25 g/mL FSE. The results suggested that FSE may be used as an alternative drug to control and handle harmful infections caused by bacterial pathogens based on QS inhibition. Forsythia suspense water extract could obviously inhibit the purple pigment production in C. violaceum 12472 Forsythia suspense water extract could inhibit QS-regulated virulence factors production and biofilm formation in P. aeruginosa . Abbreviations used: QS: Quorum sensing, Pseudomonas aeruginosa P. aeruginosa , Forsythia suspense F. suspense , FSE: F. suspense extracts, Chromobacterium violaceum 12472 C. violaceum 12472, AIs: autoinducers, AHLs: N -acyl-homoserinelactones, LB: Luria-Bertani, MICs: Minimum inhibitory concentrations, CFU: Colony-Forming Units, ATCC: American Type Culture Collection, PBS: phosphate buffered saline.

  19. Anti-Quorum Sensing Activity of Forsythia suspense on Chromobacterium violaceum and Pseudomonas aeruginosa

    PubMed Central

    Zhang, An; Chu, Wei-Hua

    2017-01-01

    Background: Quorum sensing (QS) plays an important role in the production of virulence factors and pathogenicity in Pseudomonas aeruginosa, and the interruption of QS will be a hopeful pathway to combat bacterial infection. Objective: In this study, we selected Forsythia suspense (Thunb.) Vahl from traditional Chinese herbal medicines for its anti-QS activity. Materials and Methods: Anti-QS of F. suspense extracts (FSE) was monitored using the Chromobacterium violaceum 12472 bioassay. Standard methods were used to investigate the effects of FSE on QS-controlled virulence factors production, swimming motility, and biofilm establishment in P. aeruginosa PAO1. Results: FSE could obviously inhibit the violacein production in C. violaceum 12472 and also could inhibit quorum sensing–regulated virulence factors production and biofilm formation in P. aeruginosa in a concentration-dependent manner. The elastase activity and pyocyanin production were inhibited at a maximum of 40.97 and 47.58% when P. aeruginosa was grown in the presence of 0.25 g/mL FSE, which can also inhibit swimming motility of P. aeruginosa. The biofilm formation ability was decreased about 72.45% when in PAO1 cultured with the 0.25 g/mL FSE. The results suggested that FSE may be used as an alternative drug to control and handle harmful infections caused by bacterial pathogens based on QS inhibition. SUMMARY Forsythia suspense water extract could obviously inhibit the purple pigment production in C. violaceum 12472Forsythia suspense water extract could inhibit QS-regulated virulence factors production and biofilm formation in P. aeruginosa. Abbreviations used: QS: Quorum sensing, Pseudomonas aeruginosa P. aeruginosa, Forsythia suspense F. suspense, FSE: F. suspense extracts, Chromobacterium violaceum 12472 C. violaceum 12472, AIs: autoinducers, AHLs: N-acyl-homoserinelactones, LB: Luria-Bertani, MICs: Minimum inhibitory concentrations, CFU: Colony-Forming Units, ATCC: American Type Culture Collection

  20. 2-Aminoacetophenone as a potential breath biomarker for Pseudomonas aeruginosa in the cystic fibrosis lung

    PubMed Central

    2010-01-01

    Background Pseudomonas aeruginosa infections are associated with progressive life threatening decline of lung function in cystic fibrosis sufferers. Growth of Ps. aeruginosa releases a "grape-like" odour that has been identified as the microbial volatile organic compound 2-aminoacetophenone (2-AA). Methods We investigated 2-AA for its specificity to Ps. aeruginosa and its suitability as a potential breath biomarker of colonisation or infection by Solid Phase Micro Extraction and Gas Chromatography-Mass Spectrometry (GC/MS). Results Cultures of 20 clinical strains of Ps. aeruginosa but not other respiratory pathogens had high concentrations of 2-AA in the head space of in vitro cultures when analysed by GC/MS. 2-AA was stable for 6 hours in deactivated glass sampling bulbs but was not stable in Tedlar® bags. Optimisation of GC/MS allowed detection levels of 2-AA to low pico mol/mol range in breath. The 2-AA was detected in a significantly higher proportion of subjects colonised with Ps. aeruginosa 15/16 (93.7%) than both the healthy controls 5/17 (29%) (p < 0.0002) and CF patients not colonised with Ps. aeruginosa 4/13(30.7%) (p < 0.001). The sensitivity and specificity of the 2-AA breath test compared to isolation of Ps. aeruginosa in sputum and/or BALF was 93.8% (95% CI, 67-99) and 69.2% (95% CI, 38-89) respectively. The peak integration values for 2-AA analysis in the breath samples were significantly higher in Ps. aeruginosa colonised subjects (median 242, range 0-1243) than the healthy controls (median 0, range 0-161; p < 0.001) and CF subjects not colonised with Ps. aeruginosa (median 0, range 0-287; p < 0.003) Conclusions Our results report 2-AA as a promising breath biomarker for the detection of Ps. aeruginosa infections in the cystic fibrosis lung. PMID:21054900

  1. Heat Resistance of Histidine Decarboxylase from Gram-Negative Histamine-Producing Bacteria in Seafood.

    PubMed

    Bjornsdottir-Butler, K; Bencsath, F A; McCarthy, S; Benner, R A

    2017-08-01

    Precooking of tuna is a potential critical control point (CCP) in the commercial manufacturing of canned tuna. To assess the efficacy of precooking as a CCP, an understanding of the thermal properties of histamine-producing bacteria (HPB) and their histidine decarboxylase (HDC) enzymes is required. The thermal properties of many HPB have been determined, but the thermal resistances of the HDC enzymes are unknown. The purpose of this study was to determine the D- and z-values of selected HDC enzymes to evaluate the CCP of precooking during the canning process and provide scientific data to support U.S. Food and Drug Administration guidelines. HDC (hdc) genes from three strains each of Morganella morganii, Enterobacter aerogenes, Raoultella planticola, and Photobacterium damselae were cloned, expressed, and purified using the Champion pET Directional TOPO Expression System, pET100 cloning vector, and HisPur Cobalt resin. The heat resistances of all enzymes were compared at 50°C, and the D- and z-values from one strain of each HPB were determined at 50 to 60°C. To evaluate the heat inactivation of HDC enzymes during canned tuna processing, tuna tissue was inoculated with HDCs and heated to 60°C in a water bath set at 65 and 100°C. The D-values for the HDC enzymes from M. morganii, E. aerogenes, R. planticola, and P. damselae ranged from 1.6 to 4.1, 1.6 to 6.3, 1.9 to 4.3, and 1.6 to 2.9 min, respectively, at 50 to 60°C. The z-values for M. morganii, E. aerogenes, R. planticola, and P. damselae were 19.2, 18.0, 22.0, and 13.3°C, respectively. The HDCs from all HPB except E. aerogenes showed no significant activity after being heated to 60°C. The data generated in this study will help refine current guidelines for the thermal destruction of the HDC enzymes.

  2. The algicidal mechanism of prodigiosin from Hahella sp. KA22 against Microcystis aeruginosa.

    PubMed

    Yang, Ke; Chen, Qiuliang; Zhang, Danyang; Zhang, Huajun; Lei, Xueqian; Chen, Zhangran; Li, Yi; Hong, Yaling; Ma, Xiaohong; Zheng, Wei; Tian, Yun; Zheng, Tianling; Xu, Hong

    2017-08-10

    In recent years, Microcystis aeruginosa blooms have occurred throughout the world, causing huge economic losses and destroying aquatic ecosystems. It is necessary to develop effective and ecofriendly methods to control M. aeruginosa blooms. Here, we report a high algicidal activity of prodigiosin (PG) against M. aeruginosa as well as the algicidal mechanism. PG showed high algicidal activity against M. aeruginosa, with a 50% lethal dose (LD 50 ) of 5.87 μg/mL in 72 h. A combination of methods, including propidium iodide and Annexin V-fluorescein staining assays and light and electron microscopy indicated the existence of two modes of cell death with features similar to those in eukaryotic programmed cell death: necrotic-like and apoptotic-like. Biochemical and physiological analyses showed that PG generates reactive oxygen species (ROS), which induce lipid peroxidation, damage the membrane system and destroy the function of the photosystem. A proteomics analysis revealed that many proteins were differentially expressed in response to PG stress and that most of these proteins were involved in important metabolic processes, which may trigger necrotic-like or apoptotic-like cell death. The present study sheds light on the multiple toxicity mechanisms of PG on M. aeruginosa and its potential for controlling the occurrence of M. aeruginosa blooms in lakes.

  3. [Effect of Pseudomonas aeruginosa exometabolites on planktonic and biofilm cultures of Escherichia coli].

    PubMed

    Kuznetsova, M V; Karpunina, T I; Maslennikova, I L; Nesterova, L Iu; Demakov, V A

    2012-01-01

    Study the effect of P. aeruginosa exometabolites on planktonic and biofilm cultures of bioluminescent E. coli strain. E. coli K12 TG1 (pF1 lux+ Ap(r)) recombinant bioluminescent strain, P. aeruginosa ATCC 27853 reference strain and 2 nosocomial isolates were used. Pyocyanin and pyoverdin content in supernatant of P. aeruginosa over-night cultures was evaluated according to E. Deziel et al. (2001). Planktonic and biofilm cultures of E. coli were obtained in 96-well plates (LB, statically, 37 degrees C), optical density of plankton, film biomass (OD600, OD580) and bioluminescence in plankton and biofilm were evaluated in microplate reader Infiniti M200 (Tecan, Austria). P. aeruginosa exometabolites increased the duration of lag-phase in E. coli, and short term exposition inhibited luminescence of planktonic cells. These effects are determined by bactericidal action ofpyocyanin and pyoverdin. Supernatants ofover-night cultures of P. aeruginosa inhibit formation of biofilm and disrupt the formed biofilm of E. coli. Effect of pyocyanin and pyoverdin on these processes is not established, other factors may have higher significance. Bioluminescence of E. coli K12 TGI that reflects the energetic status of the cell allows to evaluate and prognose the character of coexistence of P. aeruginosa in combined with E. coli planktonic and biofilm culture.

  4. Current and future therapies for Pseudomonas aeruginosa infection in patients with cystic fibrosis.

    PubMed

    Smith, Wynne D; Bardin, Emmanuelle; Cameron, Loren; Edmondson, Claire L; Farrant, Katie V; Martin, Isaac; Murphy, Ronan A; Soren, Odel; Turnbull, Andrew R; Wierre-Gore, Natasha; Alton, Eric W; Bundy, Jacob G; Bush, Andrew; Connett, Gary J; Faust, Saul N; Filloux, Alain; Freemont, Paul S; Jones, Andrew L; Takats, Zoltan; Webb, Jeremy S; Williams, Huw D; Davies, Jane C

    2017-08-01

    Pseudomonas aeruginosa opportunistically infects the airways of patients with cystic fibrosis and causes significant morbidity and mortality. Initial infection can often be eradicated though requires prompt detection and adequate treatment. Intermittent and then chronic infection occurs in the majority of patients. Better detection of P. aeruginosa infection using biomarkers may enable more successful eradication before chronic infection is established. In chronic infection P. aeruginosa adapts to avoid immune clearance and resist antibiotics via efflux pumps, β-lactamase expression, reduced porins and switching to a biofilm lifestyle. The optimal treatment strategies for P. aeruginosa infection are still being established, and new antibiotic formulations such as liposomal amikacin, fosfomycin in combination with tobramycin and inhaled levofloxacin are being explored. Novel agents such as the alginate oligosaccharide OligoG, cysteamine, bacteriophage, nitric oxide, garlic oil and gallium may be useful as anti-pseudomonal strategies, and immunotherapy to prevent infection may have a role in the future. New treatments that target the primary defect in cystic fibrosis, recently licensed for use, have been associated with a fall in P. aeruginosa infection prevalence. Understanding the mechanisms for this could add further strategies for treating P. aeruginosa in future. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Role of Iron Uptake Systems in Pseudomonas aeruginosa Virulence and Airway Infection

    PubMed Central

    Minandri, Fabrizia; Imperi, Francesco; Frangipani, Emanuela; Bonchi, Carlo; Visaggio, Daniela; Facchini, Marcella; Pasquali, Paolo; Bragonzi, Alessandra

    2016-01-01

    Pseudomonas aeruginosa is a leading cause of hospital-acquired pneumonia and chronic lung infections in cystic fibrosis patients. Iron is essential for bacterial growth, and P. aeruginosa expresses multiple iron uptake systems, whose role in lung infection deserves further investigation. P. aeruginosa Fe3+ uptake systems include the pyoverdine and pyochelin siderophores and two systems for heme uptake, all of which are dependent on the TonB energy transducer. P. aeruginosa also has the FeoB transporter for Fe2+ acquisition. To assess the roles of individual iron uptake systems in P. aeruginosa lung infection, single and double deletion mutants were generated in P. aeruginosa PAO1 and characterized in vitro, using iron-poor media and human serum, and in vivo, using a mouse model of lung infection. The iron uptake-null mutant (tonB1 feoB) and the Fe3+ transport mutant (tonB1) did not grow aerobically under low-iron conditions and were avirulent in the mouse model. Conversely, the wild type and the feoB, hasR phuR (heme uptake), and pchD (pyochelin) mutants grew in vitro and caused 60 to 90% mortality in mice. The pyoverdine mutant (pvdA) and the siderophore-null mutant (pvdA pchD) grew aerobically in iron-poor media but not in human serum, and they caused low mortality in mice (10 to 20%). To differentiate the roles of pyoverdine in iron uptake and virulence regulation, a pvdA fpvR double mutant defective in pyoverdine production but expressing wild-type levels of pyoverdine-regulated virulence factors was generated. Deletion of fpvR in the pvdA background partially restored the lethal phenotype, indicating that pyoverdine contributes to the pathogenesis of P. aeruginosa lung infection by combining iron transport and virulence-inducing capabilities. PMID:27271740

  6. Pseudomonas aeruginosa ExoU augments neutrophil transepithelial migration.

    PubMed

    Pazos, Michael A; Lanter, Bernard B; Yonker, Lael M; Eaton, Alex D; Pirzai, Waheed; Gronert, Karsten; Bonventre, Joseph V; Hurley, Bryan P

    2017-08-01

    Excessive neutrophil infiltration of the lungs is a common contributor to immune-related pathology in many pulmonary disease states. In response to pathogenic infection, airway epithelial cells produce hepoxilin A3 (HXA3), initiating neutrophil transepithelial migration. Migrated neutrophils amplify this recruitment by producing a secondary gradient of leukotriene B4 (LTB4). We sought to determine whether this two-step eicosanoid chemoattractant mechanism could be exploited by the pathogen Pseudomonas aeruginosa. ExoU, a P. aeruginosa cytotoxin, exhibits phospholipase A2 (PLA2) activity in eukaryotic hosts, an enzyme critical for generation of certain eicosanoids. Using in vitro and in vivo models of neutrophil transepithelial migration, we evaluated the impact of ExoU expression on eicosanoid generation and function. We conclude that ExoU, by virtue of its PLA2 activity, augments and compensates for endogenous host neutrophil cPLA2α function, leading to enhanced transepithelial migration. This suggests that ExoU expression in P. aeruginosa can circumvent immune regulation at key signaling checkpoints in the neutrophil, resulting in exacerbated neutrophil recruitment.

  7. CHANGES IN THE MORPHOLOGY AND POLYSACCHARIDE CONTENT OF MICROCYSTIS AERUGINOSA (CYANOBACTERIA) DURING FLAGELLATE GRAZING(1).

    PubMed

    Yang, Zhou; Kong, Fanxiang; Shi, Xiaoli; Zhang, Min; Xing, Peng; Cao, Huansheng

    2008-06-01

    To investigate the changes in the morphology and polysaccharide content of Microcystis aeruginosa (Kütz.) Kütz. during flagellate grazing, cultures of M. aeruginosa were exposed to grazing Ochromonas sp. for a period of 9 d under controlled laboratory conditions. M. aeruginosa responded actively to flagellate grazing and formed colonies, most of which were made up of several or dozens of cells, suggesting that flagellate grazing may be one of the biotic factors responsible for colony formation in M. aeruginosa. When colonies were formed, the cell surface ultrastructure changed, and the polysaccharide layer on the surface of the cell wall became thicker. This change indicated that synthesis and secretion of extracellular polysaccharide (EPS) of M. aeruginosa cells increased under flagellate grazing pressure. The contents of soluble extracellular polysaccharide (sEPS), bound extracellular polysaccharide (bEPS), and total polysaccharide (TPS) in colonial cells of M. aeruginosa increased significantly compared with those in single cells. This finding suggested that the increased amount of EPS on the cell surface may play a role in keeping M. aeruginosa cells together to form colonies. © 2008 Phycological Society of America.

  8. Direct evaluation of Pseudomonas aeruginosa biofilm mediators in a chronic infection model.

    PubMed

    Byrd, Matthew S; Pang, Bing; Hong, Wenzhou; Waligora, Elizabeth A; Juneau, Richard A; Armbruster, Chelsie E; Weimer, Kristen E D; Murrah, Kyle; Mann, Ethan E; Lu, Haiping; Sprinkle, April; Parsek, Matthew R; Kock, Nancy D; Wozniak, Daniel J; Swords, W Edward

    2011-08-01

    Biofilms contribute to Pseudomonas aeruginosa persistence in a variety of diseases, including cystic fibrosis, burn wounds, and chronic suppurative otitis media. However, few studies have directly addressed P. aeruginosa biofilms in vivo. We used a chinchilla model of otitis media, which has previously been used to study persistent Streptococcus pneumoniae and Haemophilus influenzae infections, to show that structures formed in vivo are biofilms of bacterial and host origin within a matrix that includes Psl, a P. aeruginosa biofilm polysaccharide. We evaluated three biofilm and/or virulence mediators of P. aeruginosa known to affect biofilm formation in vitro and pathogenesis in vivo--bis-(3',5')-cyclic dimeric GMP (c-di-GMP), flagella, and quorum sensing--in a chinchilla model. We show that c-di-GMP overproduction has a positive impact on bacterial persistence, while quorum sensing increases virulence. We found no difference in persistence attributed to flagella. We conclude from these studies that a chinchilla otitis media model provides a means to evaluate pathogenic mediators of P. aeruginosa and that in vitro phenotypes should be examined in multiple infection systems to fully understand their role in disease.

  9. Pseudomonas aeruginosa Biofilm, a Programmed Bacterial Life for Fitness.

    PubMed

    Lee, Keehoon; Yoon, Sang Sun

    2017-06-28

    A biofilm is a community of microbes that typically inhabit on surfaces and are encased in an extracellular matrix. Biofilms display very dissimilar characteristics to their planktonic counterparts. Biofilms are ubiquitous in the environment and influence our lives tremendously in both positive and negative ways. Pseudomonas aeruginosa is a bacterium known to produce robust biofilms. P. aeruginosa biofilms cause severe problems in immunocompromised patients, including those with cystic fibrosis or wound infection. Moreover, the unique biofilm properties further complicate the eradication of the biofilm infection, leading to the development of chronic infections. In this review, we discuss the history of biofilm research and general characteristics of bacterial biofilms. Then, distinct features pertaining to each stage of P. aeruginosa biofilm development are highlighted. Furthermore, infections caused by biofilms on their own or in association with other bacterial species ( i.e. , multispecies biofilms) are discussed in detail.

  10. Pseudomonas aeruginosa Airway Infection Recruits and Modulates Neutrophilic Myeloid-Derived Suppressor Cells

    PubMed Central

    Öz, Hasan H.; Zhou, Benyuan; Voss, Pina; Carevic, Melanie; Schroth, Carolin; Frey, Nina; Rieber, Nikolaus; Hector, Andreas; Hartl, Dominik

    2016-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen that causes infections mainly in patients with cystic fibrosis (CF) lung disease. Despite innate and adaptive immune responses upon infection, P. aeruginosa is capable of efficiently escaping host defenses, but the underlying immune mechanisms remain poorly understood. Myeloid-derived suppressor cells (MDSCs) are innate immune cells that are functionally characterized by their potential to suppress T- and natural killer (NK)-cell responses. Here we demonstrate, using an airway in vivo infection model, that P. aeruginosa recruits and activates neutrophilic MDSCs, which functionally suppress T-cell responses. We further show that the CF gene defect (CF transmembrane conductance regulator, CFTR) modulates the functionality, but not the recruitment or generation of neutrophilic MDSCs. Collectively, we define a mechanism by which P. aeruginosa airway infection undermines host immunity by modulating neutrophilic MDSCs in vivo. PMID:27965936

  11. Sepsis associated with hematological malignancies: prophylaxis of Pseudomonas aeruginosa sepsis.

    PubMed

    Sakamoto, M; Saruta, K; Nakazawa, Y; Shindo, N; Maezawa, H; Yoshikawa, K; Yoshida, M; Shiba, K; Sakai, O; Saito, A

    1996-02-01

    Underlying diseases, pathogenic bacteria, clinical background and outcome were studied during 91 febrile episodes complicated by sepsis in 55 patients with hematological malignancies, who had been admitted to our hospital (Jikei University Kashiwa Hospital) between January 1990 and December 1994. Particularly in patients with P. aeruginosa sepsis, we compared the prophylactic effect of ciprofloxacin (CPFX) alone with that of the combination of polymyxin B (PL-B) plus kanamycin (KM). The major underlying diseases were acute myelocytic leukemia and malignant lymphoma, followed by myelodysplastic syndrome, acute lymphocytic leukemia and chronic myelocytic leukemia. Nearly two-thirds of the pathogenic microorganisms isolated were gram-positive bacteria (including coagulase-negative staphylococci and Staphylococcus aureus); approximately one-quarter were gram-negative bacteria (such as Pseudomonas aeruginosa), and the remainder were fungi. These microorganisms usually induced sepsis when granulocyte counts were decreased. Sepsis was a direct cause of death in about 60% of the patients and P. aeruginosa sepsis had the worst outcome. Oral administration of CPFX was more effective than PL-B plus KM in preventing P. aeruginosa sepsis. The difference in effectiveness might depend on the absorption profile of the drugs.

  12. Extracellular DNA Acidifies Biofilms and Induces Aminoglycoside Resistance in Pseudomonas aeruginosa.

    PubMed

    Wilton, Mike; Charron-Mazenod, Laetitia; Moore, Richard; Lewenza, Shawn

    2016-01-01

    Biofilms consist of surface-adhered bacterial communities encased in an extracellular matrix composed of DNA, exopolysaccharides, and proteins. Extracellular DNA (eDNA) has a structural role in the formation of biofilms, can bind and shield biofilms from aminoglycosides, and induces antimicrobial peptide resistance mechanisms. Here, we provide evidence that eDNA is responsible for the acidification of Pseudomonas aeruginosa planktonic cultures and biofilms. Further, we show that acidic pH and acidification via eDNA constitute a signal that is perceived by P. aeruginosa to induce the expression of genes regulated by the PhoPQ and PmrAB two-component regulatory systems. Planktonic P. aeruginosa cultured in exogenous 0.2% DNA or under acidic conditions demonstrates a 2- to 8-fold increase in aminoglycoside resistance. This resistance phenotype requires the aminoarabinose modification of lipid A and the production of spermidine on the bacterial outer membrane, which likely reduce the entry of aminoglycosides. Interestingly, the additions of the basic amino acid L-arginine and sodium bicarbonate neutralize the pH and restore P. aeruginosa susceptibility to aminoglycosides, even in the presence of eDNA. These data illustrate that the accumulation of eDNA in biofilms and infection sites can acidify the local environment and that acidic pH promotes the P. aeruginosa antibiotic resistance phenotype. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  13. Repurposing Salicylanilide Anthelmintic Drugs to Combat Drug Resistant Staphylococcus aureus

    PubMed Central

    Rajamuthiah, Rajmohan; Fuchs, Beth Burgwyn; Conery, Annie L.; Kim, Wooseong; Jayamani, Elamparithi; Kwon, Bumsup; Ausubel, Frederick M.; Mylonakis, Eleftherios

    2015-01-01

    Staphylococcus aureus is a Gram-positive bacterium that has become the leading cause of hospital acquired infections in the US. Repurposing Food and Drug Administration (FDA) approved drugs for antimicrobial therapy involves lower risks and costs compared to de novo development of novel antimicrobial agents. In this study, we examined the antimicrobial properties of two commercially available anthelmintic drugs. The FDA approved drug niclosamide and the veterinary drug oxyclozanide displayed strong in vivo and in vitro activity against methicillin resistant S. aureus (minimum inhibitory concentration (MIC): 0.125 and 0.5 μg/ml respectively; minimum effective concentration: ≤ 0.78 μg/ml for both drugs). The two drugs were also effective against another Gram-positive bacteria Enterococcus faecium (MIC 0.25 and 2 μg/ml respectively), but not against the Gram-negative species Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter aerogenes. The in vitro antimicrobial activity of niclosamide and oxyclozanide were determined against methicillin, vancomycin, linezolid or daptomycin resistant S. aureus clinical isolates, with MICs at 0.0625-0.5 and 0.125-2 μg/ml for niclosamide and oxyclozanide respectively. A time-kill study demonstrated that niclosamide is bacteriostatic, whereas oxyclozanide is bactericidal. Interestingly, oxyclozanide permeabilized the bacterial membrane but neither of the anthelmintic drugs exhibited demonstrable toxicity to sheep erythrocytes. Oxyclozanide was non-toxic to HepG2 human liver carcinoma cells within the range of its in vitro MICs but niclosamide displayed toxicity even at low concentrations. These data show that the salicylanilide anthelmintic drugs niclosamide and oxyclozanide are suitable candidates for mechanism of action studies and further clinical evaluation for treatment of staphylococcal infections. PMID:25897961

  14. Enterobacter sp. I-3, a bio-herbicide inhibits gibberellins biosynthetic pathway and regulates abscisic acid and amino acids synthesis to control plant growth.

    PubMed

    Radhakrishnan, Ramalingam; Park, Jae-Man; Lee, In-Jung

    2016-12-01

    Very few bacterial species were identified as bio-herbicides for weed control. The present research was focused to elucidate the plant growth retardant properties of Enterobacter sp. I-3 during their interaction by determining the changes in endogenous photosynthetic pigments, plant hormones and amino acids. The two bacterial isolates I-4-5 and I-3 were used to select the superior bacterium for controlling weed seeds (Echinochloa crus-galli L. and Portulaca oleracea L.) germination. The post-inoculation of I-3 (Enterobacter sp. I-3) significantly inhibited the weeds seed germination than their controls. The mechanism of bacterium induced plant growth reduction was identified in lettuce treated with I-3 bacterium and compared their effects with known chemical herbicide, trinexapac-ethyl (TE). The treatment of I-3 and TE showed a significant inhibitory effect on shoot length, leaf number, leaf length, leaf width, shoot weight, root weight and chlorophyll content in lettuce seedlings. The endogenous gibberellins (GAs) and abscisic acid (ABA) analysis showed that Enterobacter sp. I-3 treated plants had lower levels of GAs (GA 12 , GA 19 , GA 20 and GA 8 ) and GAs/ABA ratio and then, the higher level of ABA when compared to their controls. Indeed, the individual amino acids ie., aspartic acid, glutamic acid, glycine, threonine, alanine, serine, leucine, isoleucine and tyrosine were declined in TE and I-3 exposed plants. Our results suggest that the utilization of Enterobacter sp. I-3 inhibits the GAs pathway and amino acids synthesis in weeds to control their growth can be an alternative to chemical herbicides. Copyright © 2016 Elsevier GmbH. All rights reserved.

  15. Outbreak of a novel Enterobacter sp. carrying blaCTX-M-15 in a neonatal unit of a tertiary care hospital in Tanzania.

    PubMed

    Mshana, Stephen E; Gerwing, Lisa; Minde, Mercy; Hain, Torsten; Domann, Eugen; Lyamuya, Eligius; Chakraborty, Trinad; Imirzalioglu, Can

    2011-09-01

    Enterobacter hormaechei and Cronobacter sakazakii are amongst the most important causes of outbreaks of neonatal sepsis associated with powdered milk. In this study, we report for the first time an outbreak of a novel Enterobacter sp. harbouring bla(CTX-M-15) in a neonatal unit in Tanzania. Seventeen Gram-negative enteric isolates from neonatal blood cultures were studied. Antibiotic susceptibility was assessed by disc diffusion testing, and the presence of the bla(CTX-M-15) gene was established by polymerase chain reaction (PCR) and sequencing. Isolates were typed by pulsed-field gel electrophoresis (PFGE). Identification by biochemical profiling was followed by nucleotide sequencing of 16S ribosomal DNA (rDNA), rpoB and hsp60 alleles. Environmental sampling was done and control measures were established. Isolates were initially misidentified based on their fermentation characteristics and agglutination as Salmonella enterica serotype Paratyphi. All isolates were resistant to multiple antibiotics, except for ciprofloxacin and carbapenems, and were found to harbour bla(CTX-M-15) on a 291-kb narrow-range plasmid. PFGE analysis indicated the clonal outbreak of a single strain, infecting 17 neonates with a case fatality rate of 35%. The same strain was isolated from a milk bucket. Phylogenetic analysis using 16S rDNA, rpoB and hsp60 sequences permitted no definitive identification, clustering the strains in the Enterobacter cloacae complex with similarities of 92-98.8%. The data describe an outbreak of a novel bla(CTX-M-15)-positive, multiresistant Enterobacter strain in an African neonatal unit that can easily be misidentified taxonomically. These data highlight the need for constant surveillance of bacteria harbouring extended-spectrum β-lactamases as well as improvements in hygiene measures in developing countries. Copyright © 2011 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  16. Pseudomonas aeruginosa ventilator-associated pneumonia management.

    PubMed

    Ramírez-Estrada, Sergio; Borgatta, Bárbara; Rello, Jordi

    2016-01-01

    Ventilator-associated pneumonia is the most common infection in intensive care unit patients associated with high morbidity rates and elevated economic costs; Pseudomonas aeruginosa is one of the most frequent bacteria linked with this entity, with a high attributable mortality despite adequate treatment that is increased in the presence of multiresistant strains, a situation that is becoming more common in intensive care units. In this manuscript, we review the current management of ventilator-associated pneumonia due to P. aeruginosa, the most recent antipseudomonal agents, and new adjunctive therapies that are shifting the way we treat these infections. We support early initiation of broad-spectrum antipseudomonal antibiotics in present, followed by culture-guided monotherapy de-escalation when susceptibilities are available. Future management should be directed at blocking virulence; the role of alternative strategies such as new antibiotics, nebulized treatments, and vaccines is promising.

  17. Tolerance of Pseudomonas aeruginosa in in-vitro biofilms to high-level peracetic acid disinfection.

    PubMed

    Akinbobola, A B; Sherry, L; Mckay, W G; Ramage, G; Williams, C

    2017-10-01

    Biofilm has been suggested as a cause of disinfection failures in flexible endoscopes where no lapses in the decontamination procedure can be identified. To test this theory, the activity of peracetic acid, one of the widely used disinfectants in the reprocessing of flexible endoscopes, was evaluated against both planktonic and sessile communities of Pseudomonas aeruginosa. To investigate the ability of P. aeruginosa biofilm to survive high-level peracetic acid disinfection. The susceptibility of planktonic cells of P. aeruginosa and biofilms aged 24, 48, 96, and 192 h to peracetic acid was evaluated by estimating their viability using resazurin viability and plate count methods. The biomass of the P. aeruginosa biofilms was also quantified using Crystal Violet assay. Planktonic cells of P. aeruginosa were treated with 5-30 ppm concentration of peracetic acid in the presence of 3.0 g/L of bovine serum albumin (BSA) for 5 min. Biofilms of P. aeruginosa were also treated with various peracetic acid concentrations (100-3000 ppm) for 5 min. Planktonic cells of P. aeruginosa were eradicated by 20 ppm of peracetic acid, whereas biofilms showed an age-dependent tolerance to peracetic acid, and 96 h biofilm was only eradicated at peracetic acid concentration of 2500 ppm. Ninety-six-hour P. aeruginosa biofilm survives 5 min treatment with 2000 ppm of peracetic acid, which is the working concentration used in some endoscope washer-disinfectors. This implies that disinfection failure of flexible endoscopes might occur when biofilms build up in the lumens of endoscopes. Copyright © 2017. Published by Elsevier Ltd.

  18. Emergence of Carbapenem-Resistant Pseudomonas aeruginosa and Acinetobacter baumannii Clinical Isolates Collected from Some Libyan Hospitals.

    PubMed

    Mathlouthi, Najla; Areig, Zaynab; Al Bayssari, Charbel; Bakour, Sofiane; Ali El Salabi, Allaaeddin; Ben Gwierif, Salha; Zorgani, Abdulaziz A; Ben Slama, Karim; Chouchani, Chedly; Rolain, Jean-Marc

    2015-06-01

    The aim of the present study was to investigate the molecular mechanism of carbapenem resistance in Pseudomonas aeruginosa and Acinetobacter baumannii clinical isolates recovered from Libyan hospitals between April 2013 and April 2014. In total, 49 strains (24 P. aeruginosa and 25 A. baumannii) were isolated, including 21 P. aeruginosa and 22 A. baumannii isolates (87.75%) resistant to imipenem (minimum inhibitory concentrations ≥16 μg/ml). The blaVIM-2 gene was detected in 19 P. aeruginosa isolates. All imipenem-resistant P. aeruginosa isolates showed the presence of OprD mutations. Acquired OXA-carbapenemase-encoding genes were present in all A. baumannii isolates: blaOXA-23 (n=19) and blaOXA-24 (n=3). Finally, a total of 13 and 17 different sequence types were assigned to the 21 P. aeruginosa and the 22 A. baumannii carbapenem-resistant isolates, respectively. This study is the first report describing imipenem-resistant P. aeruginosa and A. baumannii isolated from patients in Libya. We report the first case of co-occurrence of blaVIM-2 with oprD porin loss in identical isolates of P. aeruginosa in Libya and demonstrate that these oprD mutations can be used as a tool to study the clonality in P. aeruginosa isolates. We also report the first identification of multidrug-resistant A. baumannii isolates harboring blaOXA-23-like, blaOXA-24-like, and blaOXA-48-like genes in Libya.

  19. Strain- and Substrate-Dependent Redox Mediator and Electricity Production by Pseudomonas aeruginosa.

    PubMed

    Bosire, Erick M; Blank, Lars M; Rosenbaum, Miriam A

    2016-08-15

    Pseudomonas aeruginosa is an important, thriving member of microbial communities of microbial bioelectrochemical systems (BES) through the production of versatile phenazine redox mediators. Pure culture experiments with a model strain revealed synergistic interactions of P. aeruginosa with fermenting microorganisms whereby the synergism was mediated through the shared fermentation product 2,3-butanediol. Our work here shows that the behavior and efficiency of P. aeruginosa in mediated current production is strongly dependent on the strain of P. aeruginosa We compared levels of phenazine production by the previously investigated model strain P. aeruginosa PA14, the alternative model strain P. aeruginosa PAO1, and the BES isolate Pseudomonas sp. strain KRP1 with glucose and the fermentation products 2,3-butanediol and ethanol as carbon substrates. We found significant differences in substrate-dependent phenazine production and resulting anodic current generation for the three strains, with the BES isolate KRP1 being overall the best current producer and showing the highest electrochemical activity with glucose as a substrate (19 μA cm(-2) with ∼150 μg ml(-1) phenazine carboxylic acid as a redox mediator). Surprisingly, P. aeruginosa PAO1 showed very low phenazine production and electrochemical activity under all tested conditions. Microbial fuel cells and other microbial bioelectrochemical systems hold great promise for environmental technologies such as wastewater treatment and bioremediation. While there is much emphasis on the development of materials and devices to realize such systems, the investigation and a deeper understanding of the underlying microbiology and ecology are lagging behind. Physiological investigations focus on microorganisms exhibiting direct electron transfer in pure culture systems. Meanwhile, mediated electron transfer with natural redox compounds produced by, for example, Pseudomonas aeruginosa might enable an entire microbial

  20. Glycan involvement in the adhesion of Pseudomonas aeruginosa to tears.

    PubMed

    Kautto, Liisa; Nguyen-Khuong, Terry; Everest-Dass, Arun; Leong, Andrea; Zhao, Zhenjun; Willcox, Mark D P; Packer, Nicolle H; Peterson, Robyn

    2016-04-01

    The human eye is constantly bathed by tears, which protect the ocular surface via a variety of mechanisms. The O-linked glycans of tear mucins have long been considered to play a role in binding to pathogens and facilitating their removal in the tear flow. Other conjugated glycans in tears could similarly contribute to pathogen binding and removal but have received less attention. In the work presented here we assessed the contribution of glycan moieties, in particular the protein attached N-glycans, presented by the broad complement of tear proteins to the adhesion of the opportunistic pathogen Pseudomonas aeruginosa, a leading cause of microbial keratitis and ulceration of the cornea. Our adhesion assay involved immobilising the macromolecular components of tears into the wells of a polyvinyl difluoride (PVDF) microtitre filter plate and probing the binding of fluorescently labelled bacteria. Three P. aeruginosa strains were studied: a cytotoxic strain (6206) and an invasive strain (6294) from eye infections, and an invasive strain (320) from a urinary tract infection (UTI). The ocular isolates adhered two to three times more to human tears than to human saliva or porcine gastric mucin, suggesting ocular niche-specific adaptation. Support for the role of the N-glycans carried by human tear proteins in the binding and removal of P. aeruginosa from the eye was shown by: 1) pre-incubation of the bacteria with free component sugars, galactose, mannose, fucose and sialyl lactose (or combination thereof) inhibiting adhesion of all the P. aeruginosa strains to the immobilised tear proteins, with the greatest inhibition of binding of the ocular cytotoxic 6206 and least for the invasive 6294 strain; 2) pre-incubation of the bacteria with N-glycans released from the commercially available human milk lactoferrin, an abundant protein that carries N-linked glycans in tears, inhibiting the adhesion to tears of the ocular bacteria by up to 70%, which was significantly more