Science.gov

Sample records for aes-2006 protective envelope

  1. Envelope Protection for In-Flight Ice Contamination

    NASA Technical Reports Server (NTRS)

    Gingras, David R.; Barnhart, Billy P.; Ranaudo, Richard J.; Ratvasky, Thomas P.; Morelli, Eugene A.

    2010-01-01

    Fatal loss-of-control (LOC) accidents have been directly related to in-flight airframe icing. The prototype system presented in this paper directly addresses the need for real-time onboard envelope protection in icing conditions. The combinations of a-priori information and realtime aerodynamic estimations are shown to provide sufficient input for determining safe limits of the flight envelope during in-flight icing encounters. The Icing Contamination Envelope Protection (ICEPro) system has been designed and implemented to identify degradations in airplane performance and flying qualities resulting from ice contamination and provide safe flight-envelope cues to the pilot. Components of ICEPro are described and results from preliminary tests are presented.

  2. Reducing systems protecting the bacterial cell envelope from oxidative damage.

    PubMed

    Arts, Isabelle S; Gennaris, Alexandra; Collet, Jean-François

    2015-06-22

    Exposure of cells to elevated levels of reactive oxygen species (ROS) damages DNA, membrane lipids and proteins, which can potentially lead to cell death. In proteins, the sulfur-containing residues cysteine and methionine are particularly sensitive to oxidation, forming sulfenic acids and methionine sulfoxides, respectively. The presence of protection mechanisms to scavenge ROS and repair damaged cellular components is therefore essential for cell survival. The bacterial cell envelope, which constitutes the first protection barrier from the extracellular environment, is particularly exposed to the oxidizing molecules generated by the host cells to kill invading microorganisms. Therefore, the presence of oxidative stress defense mechanisms in that compartment is crucial for cell survival. Here, we review recent findings that led to the identification of several reducing pathways protecting the cell envelope from oxidative damage. We focus in particular on the mechanisms that repair envelope proteins with oxidized cysteine and methionine residues and we discuss the major questions that remain to be solved. PMID:25957772

  3. Methodologies for Adaptive Flight Envelope Estimation and Protection

    NASA Technical Reports Server (NTRS)

    Tang, Liang; Roemer, Michael; Ge, Jianhua; Crassidis, Agamemnon; Prasad, J. V. R.; Belcastro, Christine

    2009-01-01

    This paper reports the latest development of several techniques for adaptive flight envelope estimation and protection system for aircraft under damage upset conditions. Through the integration of advanced fault detection algorithms, real-time system identification of the damage/faulted aircraft and flight envelop estimation, real-time decision support can be executed autonomously for improving damage tolerance and flight recoverability. Particularly, a bank of adaptive nonlinear fault detection and isolation estimators were developed for flight control actuator faults; a real-time system identification method was developed for assessing the dynamics and performance limitation of impaired aircraft; online learning neural networks were used to approximate selected aircraft dynamics which were then inverted to estimate command margins. As off-line training of network weights is not required, the method has the advantage of adapting to varying flight conditions and different vehicle configurations. The key benefit of the envelope estimation and protection system is that it allows the aircraft to fly close to its limit boundary by constantly updating the controller command limits during flight. The developed techniques were demonstrated on NASA s Generic Transport Model (GTM) simulation environments with simulated actuator faults. Simulation results and remarks on future work are presented.

  4. Flight envelope protection of aircraft using adaptive neural network and online linearisation

    NASA Astrophysics Data System (ADS)

    Shin, Hohyun; Kim, Youdan

    2016-03-01

    Flight envelope protection algorithm is proposed to improve the safety of an aircraft. Flight envelope protection systems find the control inputs to prevent an aircraft from exceeding structure/aerodynamic limits and maximum control surface deflections. The future values of state variables are predicted using the current states and control inputs based on linearised aircraft model. To apply the envelope protection algorithm for the wide envelope of the aircraft, online linearisation is adopted. Finally, the flight envelope protection system is designed using adaptive neural network and least-squares method. Numerical simulations are conducted to verify the performance of the proposed scheme.

  5. Development and Implementation of a Model-Driven Envelope Protection System for In-Flight Ice Contamination

    NASA Technical Reports Server (NTRS)

    Gingras, David R.; Barnhart, Billy P.; Martos, Borja; Ratvasky, Thomas P.; Morelli, Eugene

    2011-01-01

    Fatal loss-of-control (LOC) accidents have been directly related to in-flight airframe icing. The prototype system presented in this paper directly addresses the need for real-time onboard envelope protection in icing conditions. The combinations of a-priori information and realtime aerodynamic estimations are shown to provide sufficient input for determining safe limits of the flight envelope during in-flight icing encounters. The Icing Contamination Envelope Protection (ICEPro) system has been designed and implemented to identify degradations in airplane performance and flying qualities resulting from ice contamination and provide safe flight-envelope cues to the pilot. Components of ICEPro are described and results from preliminary tests are presented.

  6. Protective efficacy of centralized and polyvalent envelope immunogens in an attenuated equine lentivirus vaccine.

    PubMed

    Craigo, Jodi K; Ezzelarab, Corin; Cook, Sheila J; Liu, Chong; Horohov, David; Issel, Charles J; Montelaro, Ronald C

    2015-01-01

    Lentiviral Envelope (Env) antigenic variation and related immune evasion present major hurdles to effective vaccine development. Centralized Env immunogens that minimize the genetic distance between vaccine proteins and circulating viral isolates are an area of increasing study in HIV vaccinology. To date, the efficacy of centralized immunogens has not been evaluated in the context of an animal model that could provide both immunogenicity and protective efficacy data. We previously reported on a live-attenuated (attenuated) equine infectious anemia (EIAV) virus vaccine, which provides 100% protection from disease after virulent, homologous, virus challenge. Further, protective efficacy demonstrated a significant, inverse, linear relationship between EIAV Env divergence and protection from disease when vaccinates were challenged with viral strains of increasing Env divergence from the vaccine strain Env. Here, we sought to comprehensively examine the protective efficacy of centralized immunogens in our attenuated vaccine platform. We developed, constructed, and extensively tested a consensus Env, which in a virulent proviral backbone generated a fully replication-competent pathogenic virus, and compared this consensus Env to an ancestral Env in our attenuated proviral backbone. A polyvalent attenuated vaccine was established for comparison to the centralized vaccines. Additionally, an engineered quasispecies challenge model was created for rigorous assessment of protective efficacy. Twenty-four EIAV-naïve animals were vaccinated and challenged along with six-control animals six months post-second inoculation. Pre-challenge data indicated the consensus Env was more broadly immunogenic than the Env of the other attenuated vaccines. However, challenge data demonstrated a significant increase in protective efficacy of the polyvalent vaccine. These findings reveal, for the first time, a consensus Env immunogen that generated a fully-functional, replication

  7. Vaccinia Virus Extracellular Enveloped Virion Neutralization In Vitro and Protection In Vivo Depend on Complement▿

    PubMed Central

    Benhnia, Mohammed Rafii-El-Idrissi; McCausland, Megan M.; Moyron, Juan; Laudenslager, John; Granger, Steven; Rickert, Sandra; Koriazova, Lilia; Kubo, Ralph; Kato, Shinichiro; Crotty, Shane

    2009-01-01

    Antibody neutralization is an important component of protective immunity against vaccinia virus (VACV). Two distinct virion forms, mature virion and enveloped virion (MV and EV, respectively), possess separate functions and nonoverlapping immunological properties. In this study we examined the mechanics of EV neutralization, focusing on EV protein B5 (also called B5R). We show that neutralization of EV is predominantly complement dependent. From a panel of high-affinity anti-B5 monoclonal antibodies (MAbs), the only potent neutralizer in vitro (90% at 535 ng/ml) was an immunoglobulin G2a (IgG2a), and neutralization was complement mediated. This MAb was the most protective in vivo against lethal intranasal VACV challenge. Further studies demonstrated that in vivo depletion of complement caused a >50% loss of anti-B5 IgG2a protection, directly establishing the importance of complement for protection against the EV form. However, the mechanism of protection is not sterilizing immunity via elimination of the inoculum as the viral inoculum consisted of a purified MV form. The prevention of illness in vivo indicated rapid control of infection. We further demonstrate that antibody-mediated killing of VACV-infected cells expressing surface B5 is a second protective mechanism provided by complement-fixing anti-B5 IgG. Cell killing was very efficient, and this effector function was highly isotype specific. These results indicate that anti-B5 antibody-directed cell lysis via complement is a powerful mechanism for clearance of infected cells, keeping poxvirus-infected cells from being invisible to humoral immune responses. These findings highlight the importance of multiple mechanisms of antibody-mediated protection against VACV and point to key immunobiological differences between MVs and EVs that impact the outcome of infection. PMID:19019965

  8. 78 FR 76249 - Special Conditions: Airbus, Model A350-900 Series Airplane; Flight Envelope Protection: Normal...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-17

    ... be found in the Federal Register published on April 11, 2000 (65 FR 19477-19478), as well as at http...; Flight Envelope Protection: Normal Load Factor (g) Limiting AGENCY: Federal Aviation Administration (FAA... feature(s) associated with a flight control system that prevents the pilot from inadvertently...

  9. 78 FR 5148 - Special Conditions: Embraer S.A., Model EMB-550 Airplanes; Flight Envelope Protection: General...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-24

    ... April 11, 2000 (65 FR 19477-19478), as well as at http://DocketsInfo.dot.gov/ . Docket: Background...; Flight Envelope Protection: General Limiting Requirements AGENCY: Federal Aviation Administration (FAA...(s), specifically new control architecture and a full digital flight control system which...

  10. 78 FR 31838 - Special Conditions: Embraer S.A., Model EMB-550 Airplanes; Flight Envelope Protection: General...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-28

    ... published in the Federal Register on January 24, 2013 (78 FR 5148). No comments were received, and the...; Flight Envelope Protection: General Limiting Requirements AGENCY: Federal Aviation Administration (FAA... new control architecture and a full digital flight control system which provides flight...

  11. 77 FR 69569 - Special Conditions: Embraer S.A., Model EMB-550 Airplanes; Flight Envelope Protection: Pitch and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-20

    ... Statement can be found in the Federal Register published on April 11, 2000 (65 FR 19477-19478), as well as... system which contains fly-by- wire control laws, including envelope protections. The applicable... takeoff. The primary flight controls consist of hydraulically powered fly-by-wire elevators, aileron...

  12. 78 FR 11562 - Special Conditions: Embraer S.A., Model EMB-550 Airplanes; Flight Envelope Protection: High Speed...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-19

    ... Embraer S.A. Model EMB-550 airplanes was published in the Federal Register on November 20, 2012 (77 FR... electronic flight control system which contains fly-by-wire control laws, including envelope protections, for... controls consist of hydraulically powered fly-by-wire elevators, aileron and rudder, controlled by...

  13. 78 FR 14005 - Special Conditions: Embraer S.A., Model EMB-550 Airplanes; Flight Envelope Protection: Pitch and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-04

    ... was published in the Federal Register on November 20, 2012 (77 FR 69569). We received one comment from... fly-by-wire control laws, including envelope protections. The applicable airworthiness regulations do... controls consist of hydraulically powered fly-by-wire elevators, aileron and rudder, controlled by...

  14. A recombinant pseudotyped lentivirus expressing the envelope glycoprotein of Hantaan virus induced protective immunity in mice

    PubMed Central

    2013-01-01

    Background Hantaviruses cause acute hemorrhagic fever with renal syndrome (HFRS). Currently, several types of inactivated HFRS vaccines are widely used, however the limited ability of these immunogen to elicit neutralizing antibodies restricts vaccine efficacy. Development of an effective vaccine to overcome this weakness is must. Methods In the present study, a recombinant pseudotyped lentivirus bearing the hantaan virus (HTNV) envelope glycoproteins (GP), rLV-M, was constructed. C57BL/6 mice were immunized with the rLV-M and a series of immunological assays were conducted to determine the immunogenicity of the recombinant pseudotyped lentivirus. The humoral and cell-mediated immune responses induced by rLV-M were compared with those of the inactivated HFRS vaccine. Results Indirect immunofluorescence assay (IFA) showed the rLV-M expressed target proteins in HEK-293cells. In mice, the rLV-M efficiently induced GP-specific humoral responses and protection against HTNV infection. Furthermore, the rLV-M induced higher neutralizing antibody titers than the inactivated HFRS vaccine control. Conclusions The results indicated the potential of using a pseudotyped lentivirus as a delivery vector for a hantavirus vaccine immunogen. PMID:24093752

  15. Structural Organization of Baculovirus Occlusion Bodies and Protective Role of Multilayered Polyhedron Envelope Protein.

    PubMed

    Sajjan, Dayanand B; Hinchigeri, Shivayogeppa B

    2016-03-01

    Baculoviruses are the ingenious insect pathogens. Outside the host, baculovirus occlusion bodies (OB) provide stability to occlusion-derived viruses (ODV) embedded within. The OB is an organized structure, chiefly composed of proteins namely polyhedrin, polyhedron envelope protein (PEP) and P10. Currently, the structural organization of OB is poorly understood and the role of OB proteins in conferring the stability to ODV is unknown. Here we have shown that the assembly of polyhedrin unit cells into an OB is a rapid process; the PEP forms in multiple layers; the PEP layers predominantly contribute to ODV viability. Full-grown OBs (n = 36) were found to be 4.0 ± 1.0 µm in diameter and possessed a peculiar geometry of a truncated rhombic dodecahedron. The atomic force microscopy (AFM) study on the structure of OBs at different stages of growth in insect cells revealed polyhedrin assembly and thickness of PEP layers. The thickness of PEP layers at 53 h post-transfection (hpt) ranged from 56 to 80 nm. Mature PEP layers filled up approximately one third of the OB volume. The size of ODV nucleocapsid was found to be 433 ± 10 nm in length. The zeta potential and particle size distribution study of viruses revealed the protective role of PEP layers. The presence of a multilayered PEP confers a viable advantage to the baculoviruses compared to single-layered PEP. Thus, these findings may help in developing PEP layer-based biopolymers for protein-based nanodevices, nanoelectrodes and more stable biopesticides. PMID:26787118

  16. Chimeric porcine reproductive and respiratory syndrome virus containing shuffled multiple envelope genes confers cross-protection in pigs.

    PubMed

    Tian, Debin; Ni, Yan-Yan; Zhou, Lei; Opriessnig, Tanja; Cao, Dianjun; Piñeyro, Pablo; Yugo, Danielle M; Overend, Christopher; Cao, Qian; Lynn Heffron, C; Halbur, Patrick G; Pearce, Douglas S; Calvert, Jay G; Meng, Xiang-Jin

    2015-11-01

    The extensive genetic diversity of porcine reproductive and respiratory syndrome virus (PRRSV) strains is a major obstacle for vaccine development. We previously demonstrated that chimeric PRRSVs in which a single envelope gene (ORF3, ORF4, ORF5 or ORF6) was shuffled via DNA shuffling had an improved heterologous cross-neutralizing ability. In this study, we incorporate all of the individually-shuffled envelope genes together in different combinations into an infectious clone backbone of PRRSV MLV Fostera(®) PRRS. Five viable progeny chimeric viruses were rescued, and their growth characteristics were characterized in vitro. In a pilot pig study, two chimeric viruses (FV-SPDS-VR2,FV-SPDS-VR5) were found to induce cross-neutralizing antibodies against heterologous strains. A subsequent vaccination/challenge study in 72 pigs revealed that chimeric virus FV-SPDS-VR2 and parental virus conferred partial cross-protection when challenged with heterologous strains NADC20 or MN184B. The results have important implications for future development of an effective PRRSV vaccine that confers heterologous protection. PMID:26342466

  17. Piloted Simulation to Evaluate the Utility of a Real Time Envelope Protection System for Mitigating In-Flight Icing Hazards

    NASA Technical Reports Server (NTRS)

    Ranaudo, Richard J.; Martos, Borja; Norton, Bill W.; Gingras, David R.; Barnhart, Billy P.; Ratvasky, Thomas P.; Morelli, Eugene

    2011-01-01

    The utility of the Icing Contamination Envelope Protection (ICEPro) system for mitigating a potentially hazardous icing condition was evaluated by 29 pilots using the NASA Ice Contamination Effects Flight Training Device (ICEFTD). ICEPro provides real time envelope protection cues and alerting messages on pilot displays. The pilots participating in this test were divided into two groups; a control group using baseline displays without ICEPro, and an experimental group using ICEPro driven display cueing. Each group flew identical precision approach and missed approach procedures with a simulated failure case icing condition. Pilot performance, workload, and survey questionnaires were collected for both groups of pilots. Results showed that real time assessment cues were effective in reducing the number of potentially hazardous upset events and in lessening exposure to loss of control following an incipient upset condition. Pilot workload with the added ICEPro displays was not measurably affected, but pilot opinion surveys showed that real time cueing greatly improved their situation awareness of a hazardous aircraft state.

  18. Dengue-4 envelope domain III fused twice within the meningococcal P64k protein carrier induces partial protection in mice.

    PubMed

    Lazo, Laura; Zulueta, Aída; Hermida, Lisset; Blanco, Aracelys; Sánchez, Jorge; Valdés, Iris; Gil, Lázaro; López, Carlos; Romero, Yaremis; Guzmán, María G; Guillén, Gerardo

    2009-04-01

    A vaccine against dengue virus must be able to induce an effective and equivalent immune response to the four viral serotypes; however, some studies have revealed that DEN4 (dengue-virus serotype 4) induces a weaker immune response than the others in quadrivalent (tetravalent') formulations. We have previously reported the protective capacity, in a viral encephalitis murine model, of fusion protein P64k-envelope domain III of DEN1, DEN2 and DEN3. We also reported that the P64k protein can be used as a carrier in two different positions: the insertion following the first 45 amino acids and the fusion at the C-terminus. Considering the low immunogenicity described for DEN4, in the present study we obtained a novel chimaeric protein by inserting two dengue-4 envelope domains III in both sites of P64k (PD24), and hence increasing the presence of the virus in the final construct. After expression in Escherichia coli and semipurification, the protein exhibited a pattern of high molecular mass and was well recognized by human and murine polyclonal antibodies. The protein was finally evaluated in mice, Al(OH)(3) being employed as the adjuvant. Even though the animals exhibited low levels of antiviral antibodies, the recombinant protein induced significant protection against lethal challenge with dengue-4 virus. PMID:18636968

  19. Immunogenicity and protective efficacy of recombinant Modified Vaccinia virus Ankara candidate vaccines delivering West Nile virus envelope antigens.

    PubMed

    Volz, Asisa; Lim, Stephanie; Kaserer, Martina; Lülf, Anna; Marr, Lisa; Jany, Sylvia; Deeg, Cornelia A; Pijlman, Gorben P; Koraka, Penelope; Osterhaus, Albert D M E; Martina, Byron E; Sutter, Gerd

    2016-04-01

    West Nile virus (WNV) cycles between insects and wild birds, and is transmitted via mosquito vectors to horses and humans, potentially causing severe neuroinvasive disease. Modified Vaccinia virus Ankara (MVA) is an advanced viral vector for developing new recombinant vaccines against infectious diseases and cancer. Here, we generated and evaluated recombinant MVA candidate vaccines that deliver WNV envelope (E) antigens and fulfil all the requirements to proceed to clinical testing in humans. Infections of human and equine cell cultures with recombinant MVA demonstrated efficient synthesis and secretion of WNV envelope proteins in mammalian cells non-permissive for MVA replication. Prime-boost immunizations in BALB/c mice readily induced circulating serum antibodies binding to recombinant WNV E protein and neutralizing WNV in tissue culture infections. Vaccinations in HLA-A2.1-/HLA-DR1-transgenic H-2 class I-/class II-knockout mice elicited WNV E-specific CD8+ T cell responses. Moreover, the MVA-WNV candidate vaccines protected C57BL/6 mice against lineage 1 and lineage 2 WNV infection and induced heterologous neutralizing antibodies. Thus, further studies are warranted to evaluate these recombinant MVA-WNV vaccines in other preclinical models and use them as candidate vaccine in humans. PMID:26939903

  20. Rhesus macaques vaccinated with consensus envelopes elicit partially protective immune responses against SHIV SF162p4 challenge

    PubMed Central

    2013-01-01

    The development of a preventative HIV/AIDS vaccine is challenging due to the diversity of viral genome sequences, especially in the viral envelope (Env160). Since it is not possible to directly match the vaccine strain to the vast number of circulating HIV-1 strains, it is necessary to develop an HIV-1 vaccine that can protect against a heterologous viral challenge. Previous studies from our group demonstrated that a mixture of wild type clade B Envgp160s were able to protect against a heterologous clade B challenge more effectively than a consensus clade B Envgp160 vaccine. In order to broaden the immune response to other clades of HIV, in this study rhesus macaques were vaccinated with a polyvalent mixture of purified HIV-1 trimerized consensus Envgp140 proteins representing clades A, B, C, and E. The elicited immune responses were compared to a single consensus Envgp140 representing all isolates in group M (Con M). Both vaccines elicited anti- Envgp140 IgG antibodies that bound an equal number of HIV-1 Envgp160 proteins representing clades A, B and C. In addition, both vaccines elicited antibodies that neutralized the HIV-1SF162 isolate. However, the vaccinated monkeys were not protected against SHIVSF162p4 challenge. These results indicate that consensus Envgp160 vaccines, administered as purified Envgp140 trimers, elicit antibodies that bind to Envgp160s from strains representing multiple clades of HIV-1, but these vaccines did not protect against heterologous SHIV challenge. PMID:23548077

  1. Immunogenicity and protective efficacy of the E. coli-expressed domain III of Japanese encephalitis virus envelope protein in mice.

    PubMed

    Alka; Bharati, Kaushik; Malik, Y P S; Vrati, Sudhanshu

    2007-12-01

    Domain III of Japanese encephalitis virus (JEV) envelope protein (E-DIII) was synthesized in E. coli as a fusion protein containing maltose-binding protein (MBP-E-DIII) or six contiguous histidine residues (His-E-DIII) at its N-terminus. MBP-E-DIII was found both in the soluble as well as the insoluble fraction of the bacterial lysate, while His-E-DIII was found exclusively in the inclusion bodies. These purified proteins were examined in mice for their immunogenicity in presence of an aluminium hydroxide based-adjuvant Alhydrogel and Freund's adjuvant. While both proteins generated anti-JEV antibodies that neutralized JEV activity in vitro, His-E-DIII generated higher antibody titers than MBP-E-DIII. Mice immunized with His-E-DIII in presence of Alhydrogel generated antibody titers similar to those induced by the commercial vaccine and protected mice against lethal JEV challenge. PMID:17377815

  2. Structures of the Zika Virus Envelope Protein and Its Complex with a Flavivirus Broadly Protective Antibody.

    PubMed

    Dai, Lianpan; Song, Jian; Lu, Xishan; Deng, Yong-Qiang; Musyoki, Abednego Moki; Cheng, Huijun; Zhang, Yanfang; Yuan, Yuan; Song, Hao; Haywood, Joel; Xiao, Haixia; Yan, Jinghua; Shi, Yi; Qin, Cheng-Feng; Qi, Jianxun; Gao, George F

    2016-05-11

    Zika virus (ZIKV), a mosquito-borne flavivirus, is a current global public health concern. The flavivirus envelope (E) glycoprotein is responsible for virus entry and represents a major target of neutralizing antibodies for other flaviviruses. Here, we report the structures of ZIKV E protein at 2.0 Å and in complex with a flavivirus broadly neutralizing murine antibody 2A10G6 at 3.0 Å. ZIKV-E resembles all the known flavivirus E structures but contains a unique, positively charged patch adjacent to the fusion loop region of the juxtaposed monomer, which may influence host attachment. The ZIKV-E-2A10G6 complex structure reveals antibody recognition of a highly conserved fusion loop. 2A10G6 binds to ZIKV-E with high affinity in vitro and neutralizes currently circulating ZIKV strains in vitro and in mice. The E protein fusion loop epitope represents a potential candidate for therapeutic antibodies against ZIKV. PMID:27158114

  3. 78 FR 6195 - Special Conditions: Embraer S.A., Model EMB-550 Airplanes; Flight Envelope Protection...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-30

    ... Embraer S.A. Model EMB-550 airplanes was published in the Federal Register on November 9, 2012, (77 FR... Protection: Performance Credit for Automatic Takeoff Thrust Control System (ATTCS) During Go-Around AGENCY... design feature associated with the use of an Automatic Takeoff Thrust Control System (ATTCS) during...

  4. Induction of protective antibodies against dengue virus by tetravalent DNA immunization of mice with domain III of the envelope protein.

    PubMed

    Mota, Javier; Acosta, Maribel; Argotte, Rocio; Figueroa, Raymunda; Méndez, Armando; Ramos, Celso

    2005-05-16

    Dengue fever is a growing public health concern around the world and despite vaccine development efforts, there are currently no effective dengue vaccines. In the present study we report the induction of protective antibodies against dengue virus by DNA immunization with domain III (DIII) region of the envelope protein (E) in a mouse model. The DIII region of all four dengue virus serotypes were cloned separately into pcDNA 3 plasmid. Protein expression was tested in COS-7 cells. Each plasmid, or a tetravalent combination, were used to immunize BALB/c mice by intramuscular route. Presence of specific antibodies was evaluated by ELISA, and neutralizing antibodies were tested using a cytopathogenic effect (CPE) inhibition assay in BHK-21 cells, as well as in newborn mice challenged intracranially with dengue 2 virus. Mice immunized with individual DIII constructs or the tetravalent formulation developed antibodies against each corresponding dengue serotype. Antibody titers by ELISA were similar for all serotypes and no significant differences were observed when boosters were administered, although antibody responses were dose-dependent. CPE inhibition assays using Den-2 virus showed neutralization titers of 1:10 in mice immunized with individual DIII plasmid or those immunized with the tetravalent formulations. 43% of newborn mice challenged with Den-2 in combination with sera from mice immunized with Den-2 DIII plasmid were protected, whereas sera from mice immunized with the tetravalent formulation conferred 87% protection. Our results suggest that DIII can be used as a tetravalent DNA formulation to induce neutralizing and protective antibodies against dengue virus. PMID:15837370

  5. Dengue Virus Envelope Dimer Epitope Monoclonal Antibodies Isolated from Dengue Patients Are Protective against Zika Virus

    PubMed Central

    Swanstrom, J. A.; Plante, J. A.; Plante, K. S.; Young, E. F.; McGowan, E.; Gallichotte, E. N.; Widman, D. G.; Heise, M. T.; de Silva, A. M.

    2016-01-01

    ABSTRACT Zika virus (ZIKV) is a mosquito-borne flavivirus responsible for thousands of cases of severe fetal malformations and neurological disease since its introduction to Brazil in 2013. Antibodies to flaviviruses can be protective, resulting in lifelong immunity to reinfection by homologous virus. However, cross-reactive antibodies can complicate flavivirus diagnostics and promote more severe disease, as noted after serial dengue virus (DENV) infections. The endemic circulation of DENV in South America and elsewhere raises concerns that preexisting flavivirus immunity may modulate ZIKV disease and transmission potential. Here, we report on the ability of human monoclonal antibodies and immune sera derived from dengue patients to neutralize contemporary epidemic ZIKV strains. We demonstrate that a class of human monoclonal antibodies isolated from DENV patients neutralizes ZIKV in cell culture and is protective in a lethal murine model. We also tested a large panel of convalescent-phase immune sera from humans exposed to primary and repeat DENV infection. Although ZIKV is most closely related to DENV compared to other human-pathogenic flaviviruses, most DENV immune sera (73%) failed to neutralize ZIKV, while others had low (50% effective concentration [EC50], <1:100 serum dilution; 18%) or moderate to high (EC50, >1:100 serum dilution; 9%) levels of cross-neutralizing antibodies. Our results establish that ZIKV and DENV share epitopes that are targeted by neutralizing, protective human antibodies. The availability of potently neutralizing human monoclonal antibodies provides an immunotherapeutic approach to control life-threatening ZIKV infection and also points to the possibility of repurposing DENV vaccines to induce cross-protective immunity to ZIKV. PMID:27435464

  6. Envelope Glycoprotein Internalization Protects Human and Simian Immunodeficiency Virus-Infected Cells from Antibody-Dependent Cell-Mediated Cytotoxicity

    PubMed Central

    von Bredow, Benjamin; Arias, Juan F.; Heyer, Lisa N.; Gardner, Matthew R.; Farzan, Michael; Rakasz, Eva G.

    2015-01-01

    ABSTRACT The cytoplasmic tails of human and simian immunodeficiency virus (HIV and SIV, respectively) envelope glycoproteins contain a highly conserved, membrane-proximal endocytosis motif that prevents the accumulation of Env on the surface of infected cells prior to virus assembly. Using an assay designed to measure the killing of virus-infected cells by antibody-dependent cell-mediated cytotoxicity (ADCC), we show that substitutions in this motif increase the susceptibility of HIV-1- and SIV-infected cells to ADCC in a manner that directly correlates with elevated Env levels on the surface of virus-infected cells. In the case of HIV-1, this effect is additive with a deletion in vpu recently shown to enhance the susceptibility of HIV-1-infected cells to ADCC as a result of tetherin-mediated retention of budding virions on the cell surface. These results reveal a previously unappreciated role for the membrane-proximal endocytosis motif of gp41 in protecting HIV-1- and SIV-infected cells from antibody responses by regulating the amount of Env present on the cell surface. IMPORTANCE This study reveals an unappreciated role for the membrane-proximal endocytosis motif of gp41 in protecting HIV-1- and SIV-infected cells from elimination by Env-specific antibodies. Thus, strategies designed to interfere with this mechanism of Env internalization may improve the efficacy of antibody-based vaccines and antiretroviral therapies designed to enhance the immunological control of HIV-1 replication in chronically infected individuals. PMID:26269175

  7. Envelope protein of parasitic wasp symbiont virus, polydnavirus, protects the wasp eggs from cellular immune reactions by the host insect.

    PubMed

    Hayakawa, Y; Yazaki, K

    1997-06-15

    Cotesia kariyai polydnavirus (CkPDV) virions are present in the oviducts of C. kariyai wasp and are injected with eggs into the hemocoel of the host armyworm Pseudaletia separata larvae during parasitization. Evidence that the presence of polydnavirus particles on the surface of the wasp eggs may be essential for prevention of cellular immune reactions by the host hemocytes was obtained by isolating an immunoevasive factor from CkPDV virions. The purified proteinaceous factor protects foreign materials from adhesion and encapsulation by hemocytes of the host P. separata larvae but not by those of common cutworm Spodoptera litura larvae which is an incompatible host for the C. kariyai wasp. Purification procedures consisted of extraction with ethanol/trifluoroacetic acid and reverse-phase high performance liquid chromatography. A factor with a molecular mass of approximately 50 kDa is demonstrated to be present on the envelope of CkPDV virion by immunoelectronmicroscopic observations. Furthermore, immunoreactive proteins are found in plasma of the armyworm larvae but not in the common cutworm larvae, indicating that only the natural host of C. kariyai wasp shares a similar epitope with CkPDV. The sequence of 23 amino acid residues at the amino terminus of the factor was determined to be Ile-Ser-Val-Glu-Asn-Val-Xaa-Thr-Thr-Gly-Ile-Phe-Leu-Asp-Ser-Gly-Glu-Xaa- Val- Pro-Tyr-Ala-Thr-Lys-Pro. PMID:9219544

  8. Immunogenicity and protective efficacy of recombinant major envelope protein (rH3L) of buffalopox virus in animal models.

    PubMed

    Kumar, Amit; Yogisharadhya, Revanaiah; Venkatesan, Gnanavel; Bhanuprakash, Veerakyathappa; Shivachandra, Sathish Bhadravati

    2016-02-01

    Buffalopox virus, a zoonotic Indian vaccinia-like virus, is responsible for contagious disease affecting mainly buffaloes, cattle and humans. H3L gene, encoding for an immunodominant major envelope protein of intracellular mature virion of orthopoxviruses, is highly conserved and found to elicit neutralizing antibodies. Therefore in the present study, the immunogenicity and protective efficacy of the recombinant H3L protein of buffalopox virus in laboratory animal models has been evaluated. A partial H3L gene encoding for the C-terminal truncated ectodomain of H3L protein (1M to I280) of BPXV-Vij/96 strain was cloned, over-expressed and purified as histidine-tagged fusion protein (50 kDa) from Escherichia coli using Ni-NTA affinity chromatography. The purified rH3L protein was further used for active immunization of guinea pig (250 μg/dose) and adult mice (10 μg and 50 μg/dose) with or without adjuvants (alum, Freund's Complete Adjuvant and CpG). Subsequently, a gradual increase in antigen specific serum IgG as well as neutralizing antibody titres measured by using indirect-ELISA and serum neutralization test respectively, was noted in both guinea pigs and mouse models. Suckling mice immunized passively with anti-H3L serum showed 80% pre-exposure prophylaxis upon challenge with virulent buffalopox virus strain. An indirect-ELISA based on rH3L protein showed no cross-reactivity with hyperimmune sera against sheeppox virus (SPPV), goatpox virus (GTPV), orf virus (ORFV), foot- and- mouth disease virus (FMDV), peste des petits ruminants virus (PPRV) and bluetongue virus (BTV) during the course of study. The study highlights the potential utility of rH3L protein as a safer prophylactic and diagnostic reagent for buffalopox. PMID:26723250

  9. 77 FR 69572 - Special Conditions: Embraer S.A., Model EMB-550 Airplanes; Flight Envelope Protection: High Speed...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-20

    ... be found in the Federal Register published on April 11, 2000 (65 FR 19477-19478), as well as at http..., specifically an electronic flight control system which contains fly-by-wire control laws, including envelope... controls consist of hydraulically powered fly-by-wire elevators, aileron and rudder, controlled by...

  10. BaeSR, involved in envelope stress response, protects against lysogenic conversion by Shiga toxin 2-encoding phages.

    PubMed

    Imamovic, Lejla; Martínez-Castillo, Alexandre; Benavides, Carmen; Muniesa, Maite

    2015-04-01

    Infection and lysogenic conversion with Shiga toxin-encoding bacteriophages (Stx phages) drive the emergence of new Shiga toxin-producing Escherichia coli strains. Phage attachment to the bacterial surface is the first stage of phage infection. Envelope perturbation causes activation of envelope stress responses in bacterial cells. Although many external factors are known to activate envelope stress responses, the role of these responses in the phage-bacterium interaction remains unexplored. Here, we investigate the link between three envelope signaling systems in E. coli (RcsBC, CpxAR, and BaeSR) and Stx2 phage infection by determining the success of bacterial lysogenic conversion. For this purpose, E. coli DH5α wild-type (WT) and mutant strains lacking RcsBC, CpxAR, or BaeSR signaling systems were incubated with a recombinant Stx2 phage (933W). Notably, the number of lysogens obtained with the BaeSR mutant was 5 log10 units higher than with the WT, and the same differences were observed when using 7 different Stx2 phages. To assess whether the membrane receptor used by Stx phages, BamA, was involved in the differences observed, bamA gene expression was monitored by reverse transcription-quantitative PCR (RT-qPCR) in all host strains. A 4-fold-higher bamA expression level was observed in the BaeSR mutant than in the WT strain, suggesting that differential expression of the receptor used by Stx phages accounted for the increase in the number of lysogenization events. Establishing the link between the role of stress responses and phage infection has important implications for understanding the factors affecting lysogenic conversion, which drives the emergence of new pathogenic clones. PMID:25624356

  11. Targeting Nuclear Envelope Repair.

    PubMed

    2016-06-01

    Migrating cancer cells undergo repeated rupture of the protective nuclear envelope as they squeeze through small spaces in the surrounding tissue, compromising genomic integrity. Inhibiting both general DNA repair and the mechanism that seals these tears may enhance cell death and curb metastasis. PMID:27130435

  12. Evaluation of protection induced by a dengue virus serotype 2 envelope domain III protein scaffold/DNA vaccine in non-human primates.

    PubMed

    McBurney, Sean P; Sunshine, Justine E; Gabriel, Sarah; Huynh, Jeremy P; Sutton, William F; Fuller, Deborah H; Haigwood, Nancy L; Messer, William B

    2016-06-24

    We describe the preclinical development of a dengue virus vaccine targeting the dengue virus serotype 2 (DENV2) envelope domain III (EDIII). This study provides proof-of-principle that a dengue EDIII protein scaffold/DNA vaccine can protect against dengue challenge. The dengue vaccine (EDIII-E2) is composed of both a protein particle and a DNA expression plasmid delivered simultaneously via intramuscular injection (protein) and gene gun (DNA) into rhesus macaques. The protein component can contain a maximum of 60 copies of EDIII presented on a multimeric scaffold of Geobacillus stearothermophilus E2 proteins. The DNA component is composed of the EDIII portion of the envelope gene cloned into an expression plasmid. The EDIII-E2 vaccine elicited robust antibody responses to DENV2, with neutralizing antibody responses detectable following the first boost and reaching titers of greater than 1:100,000 following the second and final boost. Vaccinated and naïve groups of macaques were challenged with DENV2. All vaccinated macaques were protected from detectable viremia by infectious assay, while naïve animals had detectable viremia for 2-7 days post-challenge. All naïve macaques had detectable viral RNA from day 2-10 post-challenge. In the EDIII-E2 group, three macaques were negative for viral RNA and three were found to have detectable viral RNA post challenge. Viremia onset was delayed and the duration was shortened relative to naïve controls. The presence of viral RNA post-challenge corresponded to a 10-30-fold boost in neutralization titers 28 days post challenge, whereas no boost was observed in the fully protected animals. Based on these results, we determine that pre-challenge 50% neutralization titers of >1:6000 correlated with sterilizing protection against DENV2 challenge in EDIII-E2 vaccinated macaques. Identification of the critical correlate of protection for the EDIII-E2 platform in the robust non-human primate model lays the groundwork for further

  13. SAFEGUARDS ENVELOPE

    SciTech Connect

    Duc Cao; Richard Metcalf

    2010-07-01

    The Safeguards Envelope is a strategy to determine a set of specific operating parameters within which nuclear facilities may operate to maximize safeguards effectiveness without sacrificing safety or plant efficiency. This paper details advanced statistical techniques that will be applied to real plant process monitoring (PM) data from the Idaho Chemical Processing Plant (ICPP). In a simulation based on this data, multi-tank and multi-attribute correlations were tested against synthetic diversion scenarios. Kernel regression smoothing was used to fit a curve to the historical data, and multivariable, residual analysis and cumulative sum techniques set parameters for operating conditions. Diversion scenarios were created and tested, showing improved results when compared with a previous study utilizing only one-variable Z-testing. A brief analysis of the impact of the safeguards optimization on the rest of plant efficiency, criticality concerns, and overall requirements is presented.

  14. The Immunodominance Change and Protection of CD4+ T-Cell Responses Elicited by an Envelope Protein Domain III-Based Tetravalent Dengue Vaccine in Mice

    PubMed Central

    Wu, Szu-Hsien; Chiang, Chen-Yi; Hsiao, Yu-Ju; Wu, Chia-Kai; Hsieh, Chun-Hsiang; Chung, Han-Hsuan; Chong, Pele; Leng, Chih-Hsiang; Pan, Chien-Hsiung

    2015-01-01

    Dengue is the leading cause of mosquito-borne viral infections and no vaccine is available now. Envelope protein domain III (ED3) is the major target for the binding of dengue virus neutralizing antibodies; however, the ED3-specifc T-cell response is less well understood. To investigate the T-cell responses to four serotypes of dengue virus (DENV-1 to 4), we immunized mice using either a tetravalent ED3-based DNA or protein vaccine, or combined both as a DNA prime-protein boost strategy (prime-boost). A significant serotype-dependent IFN-γ or IL-4 response was observed in mice immunized with either the DNA or protein vaccine. The IFN-γ response was dominant to DENV-1 to 3, whereas the IL-4 response was dominant to DENV-4. Although the similar IgG titers for the four serotypes were observed in mice immunized with the tetravalent vaccines, the neutralizing antibody titers varied and followed the order of 2 = 3>1>4. Interestingly, the lower IFN-γ response to DENV-4 is attributable to the immunodominance change between two CD4+ T-cell epitopes; one T-cell epitope located at E349-363 of DENV-1 to 3 was more immunogenic than the DENV-4 epitope E313-327. Despite DENV-4 specific IFN-γ responses were suppressed by immunodominance change, either DENV-4-specific IFN-γ or neutralizing antibody responses were still recalled after DENV-4 challenge and contributed to virus clearance. Immunization with the prime-boost elicited both IFN-γ and neutralizing antibody responses and provided better protection than either DNA or protein immunization. Our findings shed light on how ED3-based tetravalent dengue vaccines sharpen host CD4 T-cell responses and contribute to protection against dengue virus. PMID:26714037

  15. Development, Implementation, and Pilot Evaluation of a Model-Driven Envelope Protection System to Mitigate the Hazard of In-Flight Ice Contamination on a Twin-Engine Commuter Aircraft

    NASA Technical Reports Server (NTRS)

    Martos, Borja; Ranaudo, Richard; Norton, Billy; Gingras, David; Barnhart, Billy

    2014-01-01

    Fatal loss-of-control accidents have been directly related to in-flight airframe icing. The prototype system presented in this report directly addresses the need for real-time onboard envelope protection in icing conditions. The combination of prior information and real-time aerodynamic parameter estimations are shown to provide sufficient information for determining safe limits of the flight envelope during inflight icing encounters. The Icing Contamination Envelope Protection (ICEPro) system was designed and implemented to identify degradations in airplane performance and flying qualities resulting from ice contamination and provide safe flight-envelope cues to the pilot. The utility of the ICEPro system for mitigating a potentially hazardous icing condition was evaluated by 29 pilots using the NASA Ice Contamination Effects Flight Training Device. Results showed that real time assessment cues were effective in reducing the number of potentially hazardous upset events and in lessening exposure to loss of control following an incipient upset condition. Pilot workload with the added ICEPro displays was not measurably affected, but pilot opinion surveys showed that real time cueing greatly improved their awareness of a hazardous aircraft state. The performance of ICEPro system was further evaluated by various levels of sensor noise and atmospheric turbulence.

  16. Expression and characterization of genetically engineered human immunodeficiency virus-like particles containing modified envelope glycoproteins: implications for development of a cross-protective AIDS vaccine.

    PubMed

    Rovinski, B; Haynes, J R; Cao, S X; James, O; Sia, C; Zolla-Pazner, S; Matthews, T J; Klein, M H

    1992-07-01

    Noninfectious human immunodeficiency virus type 1 (HIV-1) viruslike particles containing chimeric envelope glycoproteins were expressed in mammalian cells by using inducible promoters. We engineered four expression vectors in which a synthetic oligomer encoding gp120 residues 306 to 328 (amino acids YNKRKRIHIGP GRAFYTTKNIIG) from the V3 loop of the MN viral isolate was inserted at various positions within the endogenous HIV-1LAI env gene. Expression studies revealed that insertion of the heterologous V3(MN) loop segment at two different locations within the conserved region 2 (C2) of gp120, either 173 or 242 residues away from the N terminus of the mature subunit, resulted in the secretion of fully assembled HIV-like particles containing chimeric LAI/MN envelope glycoproteins. Both V3 loop epitopes were recognized by loop-specific neutralizing antibodies. However, insertion of the V3(MN) loop segment into other regions of gp120 led to the production of envelope-deficient viruslike particles. Immunization with HIV-like particles containing chimeric envelope proteins induced specific antibody responses against both the autologous and heterologous V3 loop epitopes, including cross-neutralizing antibodies against the HIV-1LAI and HIV-1MN isolates. This study, therefore, demonstrates the feasibility of genetically engineering optimized HIV-like particles capable of eliciting cross-neutralizing antibodies. PMID:1602531

  17. 40 CFR 426.120 - Applicability; description of the incandescent lamp envelope manufacturing subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... incandescent lamp envelope manufacturing subcategory. 426.120 Section 426.120 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) GLASS MANUFACTURING POINT SOURCE CATEGORY Incandescent Lamp Envelope Manufacturing Subcategory § 426.120...

  18. 40 CFR 426.120 - Applicability; description of the incandescent lamp envelope manufacturing subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... incandescent lamp envelope manufacturing subcategory. 426.120 Section 426.120 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) GLASS MANUFACTURING POINT SOURCE CATEGORY Incandescent Lamp Envelope Manufacturing Subcategory § 426.120...

  19. 40 CFR 426.120 - Applicability; description of the incandescent lamp envelope manufacturing subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... incandescent lamp envelope manufacturing subcategory. 426.120 Section 426.120 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GLASS MANUFACTURING POINT SOURCE CATEGORY Incandescent Lamp Envelope Manufacturing Subcategory § 426.120 Applicability; description of...

  20. 40 CFR 426.120 - Applicability; description of the incandescent lamp envelope manufacturing subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... incandescent lamp envelope manufacturing subcategory. 426.120 Section 426.120 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) GLASS MANUFACTURING POINT SOURCE CATEGORY Incandescent Lamp Envelope Manufacturing Subcategory § 426.120...

  1. 40 CFR 426.110 - Applicability; description of the television picture tube envelope manufacturing subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... television picture tube envelope manufacturing subcategory. 426.110 Section 426.110 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) GLASS MANUFACTURING POINT SOURCE CATEGORY Television Picture Tube Envelope Manufacturing Subcategory § 426.110...

  2. 40 CFR 426.110 - Applicability; description of the television picture tube envelope manufacturing subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... television picture tube envelope manufacturing subcategory. 426.110 Section 426.110 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) GLASS MANUFACTURING POINT SOURCE CATEGORY Television Picture Tube Envelope Manufacturing Subcategory § 426.110...

  3. 40 CFR 426.110 - Applicability; description of the television picture tube envelope manufacturing subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... television picture tube envelope manufacturing subcategory. 426.110 Section 426.110 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) GLASS MANUFACTURING POINT SOURCE CATEGORY Television Picture Tube Envelope Manufacturing Subcategory § 426.110...

  4. 40 CFR 426.120 - Applicability; description of the incandescent lamp envelope manufacturing subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... incandescent lamp envelope manufacturing subcategory. 426.120 Section 426.120 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GLASS MANUFACTURING POINT SOURCE CATEGORY Incandescent Lamp Envelope Manufacturing Subcategory § 426.120 Applicability; description of...

  5. Stereopsis from contrast envelopes.

    PubMed

    Langley, K; Fleet, D J; Hibbard, P B

    1999-07-01

    We report two experiments concerning the site of the principal nonlinearity in second-order stereopsis. The first exploits the asymmetry in perceiving transparency with second-order stimuli found by Langley et al. (1998) (Proceedings of the Royal Society of London B, 265, 1837-1845) i.e. the product of a positive-valued contrast envelope and a mean-zero carrier grating can be seen transparently only when the disparities are consistent with the envelope appearing in front of the carrier. We measured the energy at the envelope frequencies that must be added in order to negate this asymmetry. We report that this amplitude can be predicted from the envelope sidebands and not from the magnitude of compressive pre-cortical nonlinearities measured by other researchers. In the second experiment, contrast threshold elevations were measured for the discrimination of envelope disparities following adaptation to sinusoidal gratings. It is reported that perception of the envelope's depth was affected most when the adapting grating was similar (in orientation and frequency) to the carrier, rather than to the contrast envelope. These results suggest that the principal nonlinearity in second-order stereopsis is cortical, occurring after orientation- and frequency-selective linear filtering. PMID:10367053

  6. Complete Protection of Mice against Lethal Murine Cytomegalovirus Challenge by Immunization with DNA Vaccines Encoding Envelope Glycoprotein Complex III Antigens gH, gL and gO

    PubMed Central

    Wang, Huadong; Huang, Chaoyang; Dong, Jinrong; Yao, Yanfeng; Xie, Zhenyuan; Liu, Xueying; Zhang, Wenjie; Fang, Fang; Chen, Ze

    2015-01-01

    Human cytomegalovirus infects the majority of humanity which may lead to severe morbidity and mortality in newborns and immunocompromised adults. Humoral and cellular immunity are critical for controlling CMV infection. HCMV envelope glycoprotein complexes (gC I, II, III) represent major antigenic targets of antiviral immune responses. The gCIII complex is comprised of three glycoproteins, gH, gL, and gO. In the present study, DNA vaccines expressing the murine cytomegalovirus homologs of the gH, gL, and gO proteins were evaluated for protection against lethal MCMV infection in the mouse model. The results demonstrated that gH, gL, or gO single gene immunization could not yet offer good protection, whereas co-vaccination strategy apparently showed effects superior to separate immunization. Twice immunization with gH/gL/gO pDNAs could provide mice complete protection against lethal salivary gland-derived MCMV (SG-MCMV) challenge, while thrice immunization with pgH/pgL, pgH/pgO or pgL/pgO could not provide full protection. Co-vaccination with gH, gL and gO pDNAs elicited robust neutralizing antibody and cellular immune responses. Moreover, full protection was also achieved by simply passive immunization with anti-gH/gL/gO sera. These data demonstrated that gCIII complex antigens had fine immunogenicity and might be a promising candidate for the development of HCMV vaccines. PMID:25803721

  7. The solar envelope

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.

    1971-01-01

    Processes which occur within the region between approximately 2 solar radii and 25 solar radii, which is called the solar envelope and the effect on the solar wind as seen at 1 AU are discussed. In the envelope the wind speed becomes supersonic and super-Alfvenic, the magnetic energy density is larger than the flow energy density, and the magnetic energy density is much larger than the thermal energy density. Large azimuthal gradients in the bulk speed are expected in the envelope, but the stream interactions near the outer edge of the envelope are probably relatively small. Cosmic ray observations suggest the presence of hydromagnetic waves in the envelope. The collisionless damping of such waves could heat protons out to approximately 25 solar radii and thereby cause an increase in V and T sub p consistent with the observed T sub p -V relation. A mechanism which couples protons and electrons would also heat and accelerate the wind. Alfven waves can accelerate the wind in the envelope without necessarily causing heating of protons; the Lorentz force might have a similar effect.

  8. Protective efficacy of a human endogenous retrovirus envelope-coated, nonreplicable, baculovirus-based hemagglutin vaccine against pandemic influenza H1N1 2009.

    PubMed

    Choi, Jae-Yoo; Gwon, Yong-Dae; Kim, Jeong-Ki; Cho, Yeon-Dong; Heo, Yoon-Ki; Cho, Han-Sam; Choi, Tae-Jin; Poo, Ha-Ryoung; Oh, Yu-Kyoung; Kim, Young Bong

    2013-01-01

    Despite the advantages of DNA vaccines, overcoming their lower efficacy relative to that of conventional vaccines remains a challenge. Here, we constructed a human endogenous retrovirus (HERV) envelope-coated, nonreplicable, baculovirus-based HA vaccine against swine influenza A/California/04/2009(H1N1) hemagglutin (HA) (AcHERV-sH1N1-HA) as an alternative to conventional vaccines and evaluated its efficacy in two strains of mice, BALB/c and C57BL/6. A commercially available, killed virus vaccine was used as a positive control. Mice were intramuscularly administered AcHERV-sH1N1-HA or the commercial vaccine and subsequently given two booster injections. Compared with the commercial vaccine, AcHERV-sH1N1-HA induced significantly higher levels of cellular immune responses in both BALB/c and C57BL/6 mice. Unlike cellular immune responses, humoral immune responses depended on the strain of mice. Following immunization with AcHERV-sH1N1-HA, C57BL/6 mice showed HA-specific IgG titers 10- to 100-fold lower than those of BALB/c mice. In line with the different levels of humoral immune responses, the survival of immunized mice after intranasal challenge with sH1N1 virus (A/California/04/2009) depended on the strain. After challenge with 10-times the median lethal dose (MLD50) of sH1N1 virus, 100% of BALB/c mice immunized with the commercial vaccine or AcHERV-sH1N1-HA survived. In contrast, C57BL/6 mice immunized with AcHERV-sH1N1-HA or the commercial vaccine showed 60% and 70% survival respectively, after challenge with sH1N1 virus. In all mice, virus titers and results of histological analyses of lung tissues were consistent with the survival data. Our results indicate the importance of humoral immune response as a major defense system against influenza viral infection. Moreover, the complete survival of BALB/c mice immunized with AcHERV-sH1N1-HA after challenge with sH1N1 virus suggests the potential of baculoviral vector-based vaccines to achieve an efficacy comparable to

  9. FRACTIONAL CRYSTALLIZATION FEED ENVELOPE

    SciTech Connect

    HERTING DL

    2008-03-19

    Laboratory work was completed on a set of evaporation tests designed to establish a feed envelope for the fractional crystallization process. The feed envelope defines chemical concentration limits within which the process can be operated successfully. All 38 runs in the half-factorial design matrix were completed successfully, based on the qualitative definition of success. There is no feed composition likely to be derived from saltcake dissolution that would cause the fractional crystallization process to not meet acceptable performance requirements. However, some compositions clearly would provide more successful operation than other compositions.

  10. Jacketed lamp bulb envelope

    DOEpatents

    MacLennan, Donald A.; Turner, Brian P.; Gitsevich, Aleksandr; Bass, Gary K.; Dolan, James T.; Kipling, Kent; Kirkpatrick, Douglas A.; Leng, Yongzhang; Levin, Izrail; Roy, Robert J.; Shanks, Bruce; Smith, Malcolm; Trimble, William C.; Tsai, Peter

    2001-01-01

    A jacketed lamp bulb envelope includes a ceramic cup having an open end and a partially closed end, the partially closed end defining an aperture, a lamp bulb positioned inside the ceramic cup abutting the aperture, and a reflective ceramic material at least partially covering a portion of the bulb not abutting the aperture. The reflective ceramic material may substantially fill an interior volume of the ceramic cup not occupied by the bulb. The ceramic cup may include a structural feature for aiding in alignment of the jacketed lamp bulb envelope in a lamp. The ceramic cup may include an external flange about a periphery thereof. One example of a jacketed lamp bulb envelope includes a ceramic cup having an open end and a closed end, a ceramic washer covering the open end of the ceramic cup, the washer defining an aperture therethrough, a lamp bulb positioned inside the ceramic cup abutting the aperture, and a reflective ceramic material filling an interior volume of the ceramic cup not occupied by the bulb. A method of packing a jacketed lamp bulb envelope of the type comprising a ceramic cup with a lamp bulb disposed therein includes the steps of filling the ceramic cup with a flowable slurry of reflective material, and applying centrifugal force to the cup to pack the reflective material therein.

  11. COMMON ENVELOPE: ENTHALPY CONSIDERATION

    SciTech Connect

    Ivanova, N.; Chaichenets, S.

    2011-04-20

    In this Letter, we discuss a modification to the criterion for the common envelope (CE) event to result in envelope dispersion. We emphasize that the current energy criterion for the CE phase is not sufficient for an instability of the CE, nor for an ejection. However, in some cases, stellar envelopes undergo stationary mass outflows, which are likely to occur during the slow spiral-in stage of the CE event. We propose the condition for such outflows, in a manner similar to the currently standard {alpha}{sub CE}{lambda}-prescription but with an addition of P/{rho} term in the energy balance equation, accounting therefore for the enthalpy of the envelope rather than merely the gas internal energy. This produces a significant correction, which might help to dispense with an unphysically high value of energy efficiency parameter during the CE phase, currently required in the binary population synthesis studies to make the production of low-mass X-ray binaries with a black hole companion to match the observations.

  12. DNA vaccines encoding the envelope protein of West Nile virus lineages 1 or 2 administered intramuscularly, via electroporation and with recombinant virus protein induce partial protection in large falcons (Falco spp.).

    PubMed

    Fischer, Dominik; Angenvoort, Joke; Ziegler, Ute; Fast, Christine; Maier, Kristina; Chabierski, Stefan; Eiden, Martin; Ulbert, Sebastian; Groschup, Martin H; Lierz, Michael

    2015-01-01

    As West Nile virus (WNV) can cause lethal diseases in raptors, a vaccination prophylaxis of free-living and captive populations is desirable. In the absence of vaccines approved for birds, equine vaccines have been used in falcons, but full protection against WNV infection was not achieved. Therefore, two DNA vaccines encoding the ectodomain of the envelope protein of WNV lineages 1 and 2, respectively, were evaluated in 28 large falcons. Four different vaccination protocols were used, including electroporation and booster-injections of recombinant WNV domain III protein, before challenge with the live WNV lineage 1 strain NY99. Drug safety, plasmid shedding and antibody production were monitored during the vaccination period. Serological, virological, histological, immunohistochemical and molecular biological investigations were performed during the challenge trials. Antibody response following vaccination was low overall and lasted for a maximum of three weeks. Plasmid shedding was not detected at any time. Viremia, mortality and levels, but not duration, of oral virus shedding were reduced in all of the groups during the challenge trial compared to the non-vaccinated control group. Likewise, clinical scoring, levels of cloacal virus shedding and viral load in organs were significantly reduced in three vaccination groups. Histopathological findings associated with WNV infections (meningo-encephalitis, myocarditis, and arteritis) were present in all groups, but immunohistochemical detection of the viral antigen was reduced. In conclusion, the vaccines can be used safely in falcons to reduce mortality and clinical signs and to lower the risk of virus transmission due to decreased levels of virus shedding and viremia, but full protection was not achieved in all groups. PMID:26282836

  13. STS-8 postal Stamp envelope

    NASA Technical Reports Server (NTRS)

    1983-01-01

    STS-8 postal Stamp envelope with Challenger insignia, USA eagle stamp, 25th NASA anniversary stamp. The envelope is stamped with various postmarks, one saying Kennedy Space Center, Fl., another saying 'Returned to earth, Edwards AFB, CA'.

  14. Model scattering envelopes of young stellar objects. II - Infalling envelopes

    NASA Technical Reports Server (NTRS)

    Whitney, Barbara A.; Hartmann, Lee

    1993-01-01

    We present scattered light images for models of young stellar objects surrounded by dusty envelopes. The envelopes are assumed to have finite angular momentum and are falling in steady flow onto a disk. The model envelopes include holes, such as might be created by energetic bipolar flows. We calculate images using the Monte Carlo method to follow the light scattered in the dusty envelope and circumstellar disk, assuming that the photons originate from the central source. Adopting typical interstellar medium dust opacities and expected mass infall rates for protostars of about 10 exp -6 solar mass/yr, we find that detectable amounts of optical radiation can escape from envelopes falling into a disk as small as about 10-100 AU, depending upon the viewing angle and the size of the bipolar flow cavity. We suggest that the extended optical and near-IR light observed around several young stars is scattered by dusty infalling envelopes rather than disks.

  15. Refrigerated cryogenic envelope

    DOEpatents

    Loudon, John D.

    1976-11-16

    An elongated cryogenic envelope including an outer tube and an inner tube coaxially spaced within said inner tube so that the space therebetween forms a vacuum chamber for holding a vacuum. The inner and outer tubes are provided with means for expanding or contracting during thermal changes. A shield is located in the vacuum chamber intermediate the inner and outer tubes; and, a refrigeration tube for directing refrigeration to the shield is coiled about at least a portion of the inner tube within the vacuum chamber to permit the refrigeration tube to expand or contract along its length during thermal changes within said vacuum chamber.

  16. Antiviral Activity of Graphene-Silver Nanocomposites against Non-Enveloped and Enveloped Viruses.

    PubMed

    Chen, Yi-Ning; Hsueh, Yi-Huang; Hsieh, Chien-Te; Tzou, Dong-Ying; Chang, Pai-Ling

    2016-01-01

    The discovery of novel antiviral materials is important because many infectious diseases are caused by viruses. Silver nanoparticles have demonstrated strong antiviral activity, and graphene is a potential antimicrobial material due to its large surface area, high carrier mobility, and biocompatibility. No studies on the antiviral activity of nanomaterials on non-enveloped viruses have been reported. To investigate the antiviral activity of graphene oxide (GO) sheets and GO sheets with silver particles (GO-Ag) against enveloped and non-enveloped viruses, feline coronavirus (FCoV) with an envelope and infectious bursal disease virus (IBDV) without an envelope were chosen. The morphology and sizes of GO and GO-Ag were characterized by transmission, scanning electron microscopy, and X-ray diffraction. A virus inhibition assay was used to identify the antiviral activity of GO and GO-Ag. Go-Ag inhibited 25% of infection by FCoV and 23% by IBDV, whereas GO only inhibited 16% of infection by FCoV but showed no antiviral activity against the infection by IBDV. Further application of GO and GO-Ag can be considered for personal protection equipment to decrease the transmission of viruses. PMID:27104546

  17. Antiviral Activity of Graphene–Silver Nanocomposites against Non-Enveloped and Enveloped Viruses

    PubMed Central

    Chen, Yi-Ning; Hsueh, Yi-Huang; Hsieh, Chien-Te; Tzou, Dong-Ying; Chang, Pai-Ling

    2016-01-01

    The discovery of novel antiviral materials is important because many infectious diseases are caused by viruses. Silver nanoparticles have demonstrated strong antiviral activity, and graphene is a potential antimicrobial material due to its large surface area, high carrier mobility, and biocompatibility. No studies on the antiviral activity of nanomaterials on non-enveloped viruses have been reported. To investigate the antiviral activity of graphene oxide (GO) sheets and GO sheets with silver particles (GO-Ag) against enveloped and non-enveloped viruses, feline coronavirus (FCoV) with an envelope and infectious bursal disease virus (IBDV) without an envelope were chosen. The morphology and sizes of GO and GO-Ag were characterized by transmission, scanning electron microscopy, and X-ray diffraction. A virus inhibition assay was used to identify the antiviral activity of GO and GO-Ag. Go-Ag inhibited 25% of infection by FCoV and 23% by IBDV, whereas GO only inhibited 16% of infection by FCoV but showed no antiviral activity against the infection by IBDV. Further application of GO and GO-Ag can be considered for personal protection equipment to decrease the transmission of viruses. PMID:27104546

  18. 40 CFR 426.110 - Applicability; description of the television picture tube envelope manufacturing subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... television picture tube envelope manufacturing subcategory. 426.110 Section 426.110 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GLASS MANUFACTURING POINT SOURCE CATEGORY Television Picture Tube Envelope Manufacturing Subcategory § 426.110 Applicability; description...

  19. 40 CFR 426.110 - Applicability; description of the television picture tube envelope manufacturing subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... television picture tube envelope manufacturing subcategory. 426.110 Section 426.110 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GLASS MANUFACTURING POINT SOURCE CATEGORY Television Picture Tube Envelope Manufacturing Subcategory § 426.110 Applicability; description...

  20. Development of High Specific Strength Envelope Materials

    NASA Astrophysics Data System (ADS)

    Komatsu, Keiji; Sano, Masa-Aki; Kakuta, Yoshiaki

    Progress in materials technology has produced a much more durable synthetic fabric envelope for the non-rigid airship. Flexible materials are required to form airship envelopes, ballonets, load curtains, gas bags and covering rigid structures. Polybenzoxazole fiber (Zylon) and polyalirate fiber (Vectran) show high specific tensile strength, so that we developed membrane using these high specific tensile strength fibers as a load carrier. The main material developed is a Zylon or Vectran load carrier sealed internally with a polyurethane bonded inner gas retention film (EVOH). The external surface provides weather protecting with, for instance, a titanium oxide integrated polyurethane or Tedlar film. The mechanical test results show that tensile strength 1,000 N/cm is attained with weight less than 230g/m2. In addition to the mechanical properties, temperature dependence of the joint strength and solar absorptivity and emissivity of the surface are measured. 

  1. Anisotropic charged core envelope star

    NASA Astrophysics Data System (ADS)

    Mafa Takisa, P.; Maharaj, S. D.

    2016-08-01

    We study a charged compact object with anisotropic pressures in a core envelope setting. The equation of state is quadratic in the core and linear in the envelope. There is smooth matching between the three regions: the core, envelope and the Reissner-Nordström exterior. We show that the presence of the electric field affects the masses, radii and compactification factors of stellar objects with values which are in agreement with previous studies. We investigate in particular the effect of electric field on the physical features of the pulsar PSR J1614-2230 in the core envelope model. The gravitational potentials and the matter variables are well behaved within the stellar object. We demonstrate that the radius of the core and the envelope can vary by changing the parameters in the speed of sound.

  2. Border Safety: Quality Control at the Nuclear Envelope.

    PubMed

    Webster, Brant M; Lusk, C Patrick

    2016-01-01

    The unique biochemical identity of the nuclear envelope confers its capacity to establish a barrier that protects the nuclear compartment and directly contributes to nuclear function. Recent work uncovered quality control mechanisms employing the endosomal sorting complexes required for transport (ESCRT) machinery and a new arm of endoplasmic reticulum-associated protein degradation (ERAD) to counteract the unfolding, damage, or misassembly of nuclear envelope proteins and ensure the integrity of the nuclear envelope membranes. Moreover, cells have the capacity to recognize and triage defective nuclear pore complexes to prevent their inheritance and preserve the longevity of progeny. These mechanisms serve to highlight the diverse strategies used by cells to maintain nuclear compartmentalization; we suggest they mitigate the progression and severity of diseases associated with nuclear envelope malfunction such as the laminopathies. PMID:26437591

  3. Multifamily Envelope Leakage Model

    SciTech Connect

    Faakye, Omari; Griffiths, Dianne

    2015-05-08

    “The cost for blower testing is high, because it is labor intensive, and it may disrupt occupants in multiple units. This high cost and disruption deter program participants, and dissuade them from pursuing energy improvements that would trigger air leakage testing, such as improvements to the building envelope.” This statement found in a 2012 report by Heschong Mahone Group for several California interests emphasizes the importance of reducing the cost and complexity of blower testing in multifamily buildings. Energy efficiency opportunities are being bypassed. The cost of single blower testing is on the order of $300. The cost for guarded blower door testing—the more appropriate test for assessing energy savings opportunities—could easily be six times that, and that’s only if you have the equipment and simultaneous access to multiple apartments. Thus, the proper test is simply not performed. This research seeks to provide an algorithm for predicting the guarded blower door test result based upon a single, total blower door test.

  4. Digital image envelope: method and evaluation

    NASA Astrophysics Data System (ADS)

    Huang, H. K.; Cao, Fei; Zhou, Michael Z.; Mogel, Greg T.; Liu, Brent J.; Zhou, Xiaoqiang

    2003-05-01

    Health data security, characterized in terms of data privacy, authenticity, and integrity, is a vital issue when digital images and other patient information are transmitted through public networks in telehealth applications such as teleradiology. Mandates for ensuring health data security have been extensively discussed (for example The Health Insurance Portability and Accountability Act, HIPAA) and health informatics guidelines (such as the DICOM standard) are beginning to focus on issues of data continue to be published by organizing bodies in healthcare; however, there has not been a systematic method developed to ensure data security in medical imaging Because data privacy and authenticity are often managed primarily with firewall and password protection, we have focused our research and development on data integrity. We have developed a systematic method of ensuring medical image data integrity across public networks using the concept of the digital envelope. When a medical image is generated regardless of the modality, three processes are performed: the image signature is obtained, the DICOM image header is encrypted, and a digital envelope is formed by combining the signature and the encrypted header. The envelope is encrypted and embedded in the original image. This assures the security of both the image and the patient ID. The embedded image is encrypted again and transmitted across the network. The reverse process is performed at the receiving site. The result is two digital signatures, one from the original image before transmission, and second from the image after transmission. If the signatures are identical, there has been no alteration of the image. This paper concentrates in the method and evaluation of the digital image envelope.

  5. Selective induction of cell-mediated immunity and protection of rhesus macaques from chronic SHIV{sub KU2} infection by prophylactic vaccination with a conserved HIV-1 envelope peptide-cocktail

    SciTech Connect

    Nehete, Pramod N.; Nehete, Bharti P.; Hill, Lori; Manuri, Pallavi R.; Baladandayuthapani, Veerabhadran; Feng Lei; Simmons, Johnny; Sastry, K. Jagannadha

    2008-01-05

    Infection of Indian-origin rhesus macaques by the simian human immunodeficiency virus (SHIV) is considered to be a suitable preclinical model for directly testing efficacy of vaccine candidates based on the HIV-1 envelope. We used this model for prophylactic vaccination with a peptide-cocktail comprised of highly conserved HIV-1 envelope sequences immunogenic/antigenic in macaques and humans. Separate groups of macaques were immunized with the peptide-cocktail by intravenous and subcutaneous routes using autologous dendritic cells (DC) and Freund's adjuvant, respectively. The vaccine elicited antigen specific IFN-{gamma}-producing cells and T-cell proliferation, but not HIV-neutralizing antibodies. The vaccinated animals also exhibited efficient cross-clade cytolytic activity against target cells expressing envelope proteins corresponding to HIV-1 strains representative of multiple clades that increased after intravenous challenge with pathogenic SHIV{sub KU2}. Virus-neutralizing antibodies were either undetectable or present only transiently at low levels in the control as well as vaccinated monkeys after infection. Significant control of plasma viremia leading to undetectable levels was achieved in majority of vaccinated monkeys compared to mock-vaccinated controls. Monkeys vaccinated with the peptide-cocktail using autologous DC, compared to Freund's adjuvant, and the mock-vaccinated animals, showed significantly higher IFN-{gamma} production, higher levels of vaccine-specific IFN-{gamma} producing CD4{sup +} cells and significant control of plasma viremia. These results support DC-based vaccine delivery and the utility of the conserved HIV-1 envelope peptide-cocktail, capable of priming strong cell-mediated immunity, for potential inclusion in HIV vaccination strategies.

  6. Regulation of bacterial virulence gene expression by cell envelope stress responses

    PubMed Central

    Flores-Kim, Josué; Darwin, Andrew J

    2014-01-01

    The bacterial cytoplasm lies within a multilayered envelope that must be protected from internal and external hazards. This protection is provided by cell envelope stress responses (ESRs), which detect threats and reprogram gene expression to ensure survival. Pathogens frequently need these ESRs to survive inside the host, where their envelopes face dangerous environmental changes and attack from antimicrobial molecules. In addition, some virulence genes have become integrated into ESR regulons. This might be because these genes can protect the cell envelope from damage by host molecules, or it might help ESRs to reduce stress by moderating the assembly of virulence factors within the envelope. Alternatively, it could simply be a mechanism to coordinate the induction of virulence gene expression with entry into the host. Here, we briefly describe some of the bacterial ESRs, followed by examples where they control virulence gene expression in both Gram-negative and Gram-positive pathogens. PMID:25603429

  7. Enhancing the Envelope

    ERIC Educational Resources Information Center

    Kennedy, Mike

    2005-01-01

    With energy prices escalating, schools and universities have enormous incentive to control heating and cooling costs. And, as concerns about campus security and student safety continue to be paramount, education administrators have a duty to make sure their facilities are protected from intruders, vandals or other criminals. At the same time,…

  8. Heat Recovery in Building Envelopes

    SciTech Connect

    Sherman, Max H.; Walker, Iain S.

    2001-01-01

    Infiltration has traditionally been assumed to contribute to the energy load of a building by an amount equal to the product of the infiltration flow rate and the enthalpy difference between inside and outside. Application of such a simple formula may produce an unreasonably high contribution because of heat recovery within the building envelope. Previous laboratory and simulation research has indicated that such heat transfer between the infiltrating air and walls may be substantial. In this study, Computational Fluid Dynamics was used to simulate sensible heat transfer in typical envelope constructions. The results show that the traditional method may over-predict the infiltration energy load by up to 95 percent at low leakage rates. A simplified physical model has been developed and used to predict the infiltration heat recovery based on the Peclet number of the flow and the fraction of the building envelope active in infiltration heat recovery.

  9. Envelope Inflation or Stellar Wind?

    NASA Astrophysics Data System (ADS)

    Ro, S.; Matzner, C. D.

    We an optically-thick, transonic, steady wind model for a H-free Wolf-Rayet star. A bifurcation is found across a critical mass loss rate Mb. Slower winds M < Mb extend by several hydrostatic stellar radii, reproduce features of envelope in ation from Petrovic et al. (2006) and Gräfener et al. (2012), and are energetically unbound. This work is of particular interest for extended envelopes and winds, radiative hydrodynamic instabilities (eg. wind stagnation, clumping, etc.), and NLTE atmospheric models.

  10. Carbon chemistry of circumstellar envelopes

    NASA Technical Reports Server (NTRS)

    Bieging, John H.

    1990-01-01

    The chemical composition of envelopes surrounding cool evolved stars, as determined from microwave spectroscopic observations, is reviewed. Emphasis is placed on recent observations with the new large mm-wavelength telescopes and interferometer arrays, and on new theoretical work, especially concerning ion-molecule chemistry of carbon-bearing in these envelopes. Thermal (as opposed to maser) emission lines are discussed. Much progress has been made in the past few years in the theoretical understanding of these objects. It is already clear, however, that observations with the new generation of mm-telescopes will require substantial improvements in the theoretical models to achieve a thorough understanding of the data now becoming available.

  11. Structure and biological properties of solubilized envelope proteins of Bordetella pertussis.

    PubMed Central

    Robinson, A; Hawkins, D C

    1983-01-01

    The structure and biological properties of solubilized envelope proteins of Bordetella pertussis have been examined. Several envelope proteins were found to be specific for phase I strains of B. pertussis and could be isolated by selective detergent extraction. These proteins had molecular weights of 90,000, 86,000, 81,000, 33,000, 31,000, and 30,000 and were reduced or absent in envelope preparations from Bordetella bronchiseptica, Bordetella parapertussis, or phase IV strains of B. pertussis. When the envelope preparations from phase I B. pertussis were assayed in the mouse intracerebral protection test they were found to be highly protective, and there was a strong correlation between the protective potency and the lymphocytosis-promoting factor (LPF) content of different preparations. Treatment with glutaraldehyde reduced the LPF activity, toxicity, and protective potency of the envelope extracts. Similarly affinity chromatography of envelope proteins on columns of haptoglobin coupled to Sepharose 4B reduced both the LPF content and the protective potency. The addition of a small amount of purified LPF to the haptoglobin-treated proteins restored the protective potency. The LPF by itself was nonprotective, indicating a potentiating role of LPF in the mouse intracerebral challenge test. Images PMID:6299946

  12. Using a down-scaled bioclimate envelope model to determine long-term temporal connectivity of Garry oak (Quercus garryana) habitat in western North America: implications for protected area planning.

    PubMed

    Pellatt, Marlow G; Goring, Simon J; Bodtker, Karin M; Cannon, Alex J

    2012-04-01

    Under the Canadian Species at Risk Act (SARA), Garry oak (Quercus garryana) ecosystems are listed as "at-risk" and act as an umbrella for over one hundred species that are endangered to some degree. Understanding Garry oak responses to future climate scenarios at scales relevant to protected area managers is essential to effectively manage existing protected area networks and to guide the selection of temporally connected migration corridors, additional protected areas, and to maintain Garry oak populations over the next century. We present Garry oak distribution scenarios using two random forest models calibrated with down-scaled bioclimatic data for British Columbia, Washington, and Oregon based on 1961-1990 climate normals. The suitability models are calibrated using either both precipitation and temperature variables or using only temperature variables. We compare suitability predictions from four General Circulation Models (GCMs) and present CGCM2 model results under two emissions scenarios. For each GCM and emissions scenario we apply the two Garry oak suitability models and use the suitability models to determine the extent and temporal connectivity of climatically suitable Garry oak habitat within protected areas from 2010 to 2099. The suitability models indicate that while 164 km(2) of the total protected area network in the region (47,990 km(2)) contains recorded Garry oak presence, 1635 and 1680 km(2) of climatically suitable Garry oak habitat is currently under some form of protection. Of this suitable protected area, only between 6.6 and 7.3% will be "temporally connected" between 2010 and 2099 based on the CGCM2 model. These results highlight the need for public and private protected area organizations to work cooperatively in the development of corridors to maintain temporal connectivity in climatically suitable areas for the future of Garry oak ecosystems. PMID:22350431

  13. Safeguards Envelope Progress FY08

    SciTech Connect

    Robert Bean; Richard Metcalf; Aaron Bevill

    2008-09-01

    The Safeguards Envelope Project met its milestones by creating a rudimentary safeguards envelope, proving the value of the approach on a small scale, and determining the most appropriate path forward. The Idaho Chemical Processing Plant’s large cache of reprocessing process monitoring data, dubbed UBER Data, was recovered and used in the analysis. A probabilistic Z test was used on a Markov Monte Carlo simulation of expected diversion data when compared with normal operating data. The data regarding a fully transient event in a tank was used to create a simple requirement, representative of a safeguards envelope, whose impact was a decrease in operating efficiency by 1.3% but an increase in material balance period of 26%. This approach is operator, state, and international safeguards friendly and should be applied to future reprocessing plants. Future requirements include tank-to-tank correlations in reprocessing facilities, detailed operations impact studies, simulation inclusion, automated optimization, advanced statistics analysis, and multi-attribute utility analysis.

  14. The structure of common-envelope remnants

    NASA Astrophysics Data System (ADS)

    Hall, Philip D.

    2015-05-01

    We investigate the structure and evolution of the remnants of common-envelope evolution in binary star systems. In a common-envelope phase, two stars become engulfed in a gaseous envelope and, under the influence of drag forces, spiral to smaller separations. They may merge to form a single star or the envelope may be ejected to leave the stars in a shorter period orbit. This process explains the short orbital periods of many observed binary systems, such as cataclysmic variables and low-mass X-ray binary systems. Despite the importance of these systems, and of common-envelope evolution to their formation, it remains poorly understood. Specifically, we are unable to confidently predict the outcome of a common-envelope phase from the properties at its onset. After presenting a review of work on stellar evolution, binary systems, common-envelope evolution and the computer programs used, we describe the results of three computational projects on common-envelope evolution. Our work specifically relates to the methods and prescriptions which are used for predicting the outcome. We use the Cambridge stellar-evolution code STARS to produce detailed models of the structure and evolution of remnants of common-envelope evolution. We compare different assumptions about the uncertain end-of-common envelope structure and envelope mass of remnants which successfully eject their common envelopes. In the first project, we use detailed remnant models to investigate whether planetary nebulae are predicted after common-envelope phases initiated by low-mass red giants. We focus on the requirement that a remnant evolves rapidly enough to photoionize the nebula and compare the predictions for different ideas about the structure at the end of a common-envelope phase. We find that planetary nebulae are possible for some prescriptions for the end-of-common envelope structure. In our second contribution, we compute a large set of single-star models and fit new formulae to the core radii of

  15. Diversity in the fertilization envelopes of echinoderms

    PubMed Central

    Oulhen, Nathalie; Reich, Adrian; Wong, Julian L.; Wessel, Gary M.

    2013-01-01

    Cell surface changes in an egg at fertilization are essential to begin development and for protecting the zygote. Most fertilized eggs construct a barrier around themselves by modifying their original extracellular matrix. This construction usually results from calcium induced exocytosis of cortical granules, the contents of which in sea urchins function to form the fertilization envelope (FE), an extracellular matrix of cortical granule contents built upon a vitelline layer scaffold. Here we examined the molecular mechanism of this process in sea stars, a close relative of the sea urchins, and analyze the evolutionary changes that likely occurred in the functionality of this structure between these two organisms. We find that the FE of sea stars is more permeable than in sea urchins, allowing diffusion of molecules in excess of 2 megadaltons. Through a proteomic and transcriptomic approach, we find that most, but not all of the proteins present in the sea urchin envelope are present in sea stars, including SFE9, proteoliaisin, rendezvin, and ovoperoxidase. The mRNAs encoding these FE proteins accumulated most densely in early oocytes, and then beginning with vitellogenesis, these mRNAs deceased in abundance to levels nearly undetectable in eggs. Antibodies to the SFE9 protein of sea stars showed that the cortical granules in sea star also accumulated most significantly in early oocytes, and different from sea urchins, they translocated to the cortex of the oocytes well before meiotic initiation. These results suggest that the preparation of the cell surface changes in sea urchins has been shifted to later in oogenesis and perhaps reflects the meiotic differences among the species–sea star oocytes are stored in prophase of meiosis and fertilized during the meiotic divisions, as in most animals, whereas sea urchins are one of the few taxa in which eggs have completed meiosis prior to fertilization. PMID:23331915

  16. Enveloped virus flocculation and removal in osmolyte solutions.

    PubMed

    Gencoglu, Maria F; Heldt, Caryn L

    2015-07-20

    Our ability to reduce infectious disease burden throughout the world has been greatly improved by the creation of vaccines. However, worldwide immunization rates are low. The two most likely reasons are the lack of sufficient distribution in underdeveloped countries and the high cost of vaccine products. The high costs are due to the difficulties of manufacturing individual vaccine products with specialized purification trains. In this study, we propose to use virus flocculation in osmolytes, followed by microfiltration, as an alternative vaccine purification operation. In our previous work, we demonstrated that osmolytes preferentially flocculate a non-enveloped virus, porcine parvovirus (PPV). In this work we show that osmolytes flocculate the enveloped virus, Sindbis virus heat resistant strain (SVHR), and demonstrate a >80% removal with a 0.2 μm microfilter membrane while leaving proteins in solution. The best osmolytes were tested for their ability to flocculate SVHR at different concentrations, pH and ionic strengths. Our best removal was 98% of SVHR in 0.3M mannitol at a pH of 5. We propose that osmolytes are able to flocculate hydrophobic non-enveloped and enveloped virus particles by the reduction of the hydration layer around the particles, which stimulates virus aggregation. Now that we have demonstrated that protecting osmolytes flocculate viruses, this method has the potential to be a future platform purification process for vaccines. PMID:25865274

  17. Solar envelope zoning: application to the city planning process. Los Angeles case study

    SciTech Connect

    Not Available

    1980-06-01

    Solar envelope zoning represents a promising approach to solar access protection. A solar envelope defines the volume within which a building will not shade adjacent lots or buildings. Other solar access protection techniques, such as privately negotiated easements, continue to be tested and implemented but none offer the degree of comprehensiveness evident in this approach. Here, the City of Los Angeles, through the Mayor's Energy Office, the City Planning Department, and the City Attorney's Office, examine the feasibility of translating the concept of solar envelopes into zoning techniques. They concluded that envelope zoning is a fair and consistent method of guaranteeing solar access, but problems of complexity and uncertainty may limit its usefulness. Envelope zoning may be inappropriate for the development of high density centers and for more restrictive community plans. Aids or tools to administer envelope zoning need to be developed. Finally, some combination of approaches, including publicly recorded easements, subdivision approval and envelope zoning, need to be adopted to encourage solar use in cities. (MHR)

  18. Isolating The Building Thermal Envelope

    NASA Astrophysics Data System (ADS)

    Harrje, D. T.; Dutt, G. S.; Gadsby, K. J.

    1981-01-01

    The evaluation of the thermal integrity of building envelopes by infrared scanning tech-niques is often hampered in mild weather because temperature differentials across the envelope are small. Combining the infrared scanning with positive or negative building pressures, induced by a "blower door" or the building ventilation system, considerably extends the periods during which meaningful diagnostics can be conducted. Although missing or poorly installed insulation may lead to a substantial energy penalty, it is the search for air leakage sites that often has the largest potential for energy savings. Infrared inspection of the attic floor with air forced from the occupied space through ceiling by-passes, and inspecting the interior of the building when outside air is being sucked through the envelope reveals unexpected leakage sites. Portability of the diagnostic equipment is essential in these surveys which may include access into some tight spaces. A catalog of bypass heat losses that have been detected in residential housing using the combined infrared pressure differential technique is included to point out the wide variety of leakage sites which may compromise the benefits of thermal insulation and allow excessive air infiltration. Detection and suppression of such leaks should be key items in any building energy audit program. Where a calibrated blower door is used to pressurize or evacuate the house, the leakage rate can be quantified and an excessively tight house recognized. Houses that are too tight may be improved with a minimal energy penalty by forced ventilation,preferably with a heat recuperator and/or by providing combustion air directly to the furnace.

  19. Flexible Envelope Request Notation (FERN)

    NASA Technical Reports Server (NTRS)

    Zoch, David R.; Lavallee, David; Weinstein, Stuart

    1991-01-01

    The following topics are presented in view graph form and include the following: scheduling application; the motivation for the Flexible Envelope Request Notation (FERN); characteristics of FERN; types of information needed in requests; where information is stored in requests; FERN structures; generic requests; resource availability for pooled resources; expressive notation; temporal constraints; time formats; changes to FERN; sample FERN requests; the temporal relationship between two steps; maximum activity length to limit step delays; alternative requests; the temporal relationship between two activities; and idle resource usage between steps.

  20. The psychic envelopes in psychoanalytic theories of infancy

    PubMed Central

    Mellier, Denis

    2014-01-01

    This paper aims to review the topic of psychic envelopes and to sketch the main outlines of this concept in infancy. We first explore the origins of the concept in Freud's “protective shield” and then its development in adult psychoanalysis before going on to see how this fits in infancy with post-Bionian psychoanalysis and development. Four central notions guide this review: (1) Freud's “protective shield” describes a barrier to protect the psychic apparatus against potentially overflowing trauma. It is a core notion which highlights a serious clinical challenge for patients for whom the shield is damaged or faulty: the risk of confusion of borders between the internal/external world, conscious/unconscious, mind/body, or self-conservation/sexuality. (2) Anzieu's “Skin-Ego” is defined by the different senses of the body. The different layers of experienced sensation, of this body-ego, go on to form the psychic envelope. This theory contributes to our understanding of how early trauma, due to the failures of maternal care, can continue to have an impact in adult life. (3) Bick's “psychic skin” establishes the concept in relation to infancy. The mother's containing functions allow a first psychic skin to develop, which then defines an infant's psychic space and affords the infant a degree of self-containment. Houzel then conceptualized this process as a stabilization of drive forces. (4) Stern's “narrative envelope” derives from the intersection between psychoanalysis and neuroscience. It gives us another way to conceptualize the development of pre-verbal communication. It may also pave the way for a finer distinction of different types of envelopes. Ultimately, in this review we find that psychic envelopes in infancy can be viewed from four different perspectives (economic, topographical, dynamic, and genetic) and recommend further investigation. PMID:25076924

  1. Circumplanetary disc or circumplanetary envelope?

    NASA Astrophysics Data System (ADS)

    Szulágyi, J.; Masset, F.; Lega, E.; Crida, A.; Morbidelli, A.; Guillot, T.

    2016-08-01

    We present three-dimensional simulations with nested meshes of the dynamics of the gas around a Jupiter mass planet with the JUPITER and FARGOCA codes. We implemented a radiative transfer module into the JUPITER code to account for realistic heating and cooling of the gas. We focus on the circumplanetary gas flow, determining its characteristics at very high resolution (80 per cent of Jupiter's diameter). In our nominal simulation where the temperature evolves freely by the radiative module and reaches 13000 K at the planet, a circumplanetary envelope was formed filling the entire Roche lobe. Because of our equation of state is simplified and probably overestimates the temperature, we also performed simulations with limited maximal temperatures in the planet region (1000, 1500, and 2000 K). In these fixed temperature cases circumplanetary discs (CPDs) were formed. This suggests that the capability to form a CPD is not simply linked to the mass of the planet and its ability to open a gap. Instead, the gas temperature at the planet's location, which depends on its accretion history, plays also fundamental role. The CPDs in the simulations are hot and cooling very slowly, they have very steep temperature and density profiles, and are strongly sub-Keplerian. Moreover, the CPDs are fed by a strong vertical influx, which shocks on the CPD surfaces creating a hot and luminous shock-front. In contrast, the pressure supported circumplanetary envelope is characterized by internal convection and almost stalled rotation.

  2. Safeguards Envelope Progress FY10

    SciTech Connect

    Richard Metcalf

    2010-10-01

    The Safeguards Envelope is a strategy to determine a set of specific operating parameters within which nuclear facilities may operate to maximize safeguards effectiveness without sacrificing safety or plant efficiency. This paper details the additions to the advanced operating techniques that will be applied to real plant process monitoring (PM) data from the Idaho Chemical Processing Plant (ICPP). Research this year focused on combining disparate pieces of data together to maximize operating time with minimal downtime due to safeguards. A Chi-Square and Croiser's cumulative sum were both included as part of the new analysis. Because of a major issue with the original data, the implementation of the two new tests did not add to the existing set of tests, though limited one-variable optimization made a small increase in detection probability. Additional analysis was performed to determine if prior analysis would have caused a major security or safety operating envelope issue. It was determined that a safety issue would have resulted from the prior research, but that the security may have been increased under certain conditions.

  3. Nuclear envelope: positioning nuclei and organizing synapses

    PubMed Central

    Razafsky, David; Hodzic, Didier

    2015-01-01

    The nuclear envelope plays an essential role in nuclear positioning within cells and tissues. This review highlights advances in understanding the mechanisms of nuclear positioning during skeletal muscle and central nervous system development. New findings, particularly about Atype lamins and Nesprin1, may link nuclear envelope integrity to synaptic integrity. Thus synaptic defects, rather than nuclear mispositioning, may underlie human pathologies associated with mutations of nuclear envelope proteins. PMID:26079712

  4. An Accurate In Vitro Model of the E. coli Envelope

    PubMed Central

    Clifton, Luke A; Holt, Stephen A; Hughes, Arwel V; Daulton, Emma L; Arunmanee, Wanatchaporn; Heinrich, Frank; Khalid, Syma; Jefferies, Damien; Charlton, Timothy R; Webster, John R P; Kinane, Christian J; Lakey, Jeremy H

    2015-01-01

    Gram-negative bacteria are an increasingly serious source of antibiotic-resistant infections, partly owing to their characteristic protective envelope. This complex, 20 nm thick barrier includes a highly impermeable, asymmetric bilayer outer membrane (OM), which plays a pivotal role in resisting antibacterial chemotherapy. Nevertheless, the OM molecular structure and its dynamics are poorly understood because the structure is difficult to recreate or study in vitro. The successful formation and characterization of a fully asymmetric model envelope using Langmuir–Blodgett and Langmuir–Schaefer methods is now reported. Neutron reflectivity and isotopic labeling confirmed the expected structure and asymmetry and showed that experiments with antibacterial proteins reproduced published in vivo behavior. By closely recreating natural OM behavior, this model provides a much needed robust system for antibiotic development. PMID:26331292

  5. Structural basis for membrane anchoring of HIV-1 envelope spike.

    PubMed

    Dev, Jyoti; Park, Donghyun; Fu, Qingshan; Chen, Jia; Ha, Heather Jiwon; Ghantous, Fadi; Herrmann, Tobias; Chang, Weiting; Liu, Zhijun; Frey, Gary; Seaman, Michael S; Chen, Bing; Chou, James J

    2016-07-01

    HIV-1 envelope spike (Env) is a type I membrane protein that mediates viral entry. We used nuclear magnetic resonance to determine an atomic structure of the transmembrane (TM) domain of HIV-1 Env reconstituted in bicelles that mimic a lipid bilayer. The TM forms a well-ordered trimer that protects a conserved membrane-embedded arginine. An amino-terminal coiled-coil and a carboxyl-terminal hydrophilic core stabilize the trimer. Individual mutations of conserved residues did not disrupt the TM trimer and minimally affected membrane fusion and infectivity. Major changes in the hydrophilic core, however, altered the antibody sensitivity of Env. These results show how a TM domain anchors, stabilizes, and modulates a viral envelope spike and suggest that its influence on Env conformation is an important consideration for HIV-1 immunogen design. PMID:27338706

  6. Envelope glycoproteins of human immunodeficiency virus type 1: profound influences on immune functions.

    PubMed Central

    Chirmule, N; Pahwa, S

    1996-01-01

    Infection by human immunodeficiency virus type 1 (HIV-1) leads to progressive destruction of the CD4+ T-cell subset, resulting in immune deficiency and AIDS. The specific binding of the viral external envelope glycoprotein of HIV-1, gp120, to the CD4 molecules initiates viral entry. In the past few years, several studies have indicated that the interaction of HIV-1 envelope glycoprotein with cells and molecules of the immune system leads to pleiotropic biological effects on immune functions, which include effects on differentiation of CD34+ lymphoid progenitor cells and thymocytes, aberrant activation and cytokine secretion patterns of mature T cells, induction of apoptosis, B-cell hyperactivity, inhibition of T-cell dependent B-cell differentiation, modulation of macrophage functions, interactions with components of complement, and effects on neuronal cells. The amino acid sequence homologies of the envelope glycoproteins with several cellular proteins have suggested that molecular mimicry may play a role in the pathogenesis of the disease. This review summarizes work done by several investigators demonstrating the profound biological effects of envelope glycoproteins of HIV-1 on immune system cells. Extensive studies have also been done on interactions of the viral envelope proteins with components of the immune system which may be important for eliciting a "protective immune response." Understanding the influences of HIV-1 envelope glycoproteins on the immune system may provide valuable insights into HIV-1 disease pathogenesis and carries implications for the trials of HIV-1 envelope protein vaccines and immunotherapeutics. PMID:8801439

  7. 14 CFR 23.333 - Flight envelope.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Flight envelope. 23.333 Section 23.333... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Structure Flight Loads § 23.333 Flight envelope. (a) General. Compliance with the strength requirements of this subpart must be shown...

  8. The theoretical polarization of pure scattering axisymmetric circumstellar envelopes

    NASA Technical Reports Server (NTRS)

    Fox, G. K.

    1994-01-01

    The Sobolev approach to the scattering of starlight through a pure scattering circumstellar envelope is developed. The theoretical polarization due to electron scattering in Be star envelopes is calculated for two geometries (an equatorially enhanced envelope and a spheroidal envelope). Only the disk-type envelope is found to yield a maximum polarization consistent with the observed range for Be stars. A lower limit, analytical approximation to the theoretical polarization from a pure scattering envelope is obtained.

  9. Safeguards Envelope Progress FY09

    SciTech Connect

    Richard Metcalf; Robert Bean

    2009-09-01

    The Safeguards Envelope is a strategy to determine a set of specific operating parameters which nuclear facilities may operate within to maximize safeguards effectiveness without sacrificing safety or plant efficiency. This paper details advanced statistical techniques will be applied to real plant process monitoring (PM) data from the Idaho Chemical Processing Plant (ICPP). As a result of the U.S. having no operating nuclear chemical reprocessing plants, there has been a strong interest in obtaining process monitoring data from the ICPP. The ICPP was shut down in 1996 and a recent effort has been made to retrieve the PM data from storage in a data mining effort. In a simulation based on this data, multi-tank and multi-attribute correlations were tested against synthetic diversion scenarios. Kernel regression smoothing was used to fit a curve to the historical data, and multivariable, residual analysis and cumulative sum techniques set parameters for operating conditions. Diversion scenarios were created and tested, showing improved results when compared with a previous study utilizing only one-variable Z- testing7.

  10. Personnel occupied woven envelope robot

    NASA Technical Reports Server (NTRS)

    Wessling, Francis; Teoh, William; Ziemke, M. Carl

    1988-01-01

    The Personnel Occupied Woven Envelope Robot (POWER) provides an alternative to extravehicular activity (EVA) of space suited astronauts and/or use of long slender manipulator arms such as are used in the Shuttle Remote Manipulator System. POWER provides the capability for a shirt sleeved astronaut to perform such work by entering a control pod through air locks at both ends of an inflated flexible bellows (access tunnel). The exoskeleton of the tunnel is a series of six degrees of freedom (Six-DOF) articulated links compressible to 1/6 of their fully extended length. The operator can maneuver the control pod to almost any location within about 50 m of the base attachment to the space station. POWER can be envisioned as a series of hollow Six-DOF manipulator segments or arms wherein each arm grasps the shoulder of the next arm. Inside the hollow arms ia a bellow-type access tunnel. The control pod is the fist of the series of linked hollow arms. The fingers of the fist are conventional manipulator arms under direct visual control of the nearby operator in the pod. The applications and progress to date of the POWER system is given.

  11. Resource envelope concepts for mission planning

    NASA Technical Reports Server (NTRS)

    Ibrahim, K. Y.; Weiler, J. D.; Tokaz, J. C.

    1991-01-01

    Seven proposed methods for creating resource envelopes for Space Station Freedom mission planning are detailed. Four reference science activity models are used to illustrate the effect of adding operational flexibility to mission timelines. For each method, a brief explanation is given along with graphs to illustrate the application of the envelopes to the power and crew resources. The benefits and costs of each method are analyzed in terms of resource utilization. In addition to the effect on individual activities, resource envelopes are analyzed at the experiment level.

  12. Personnel occupied woven envelope robot power

    NASA Technical Reports Server (NTRS)

    Wessling, F. C.

    1988-01-01

    The Personnel Occupied Woven Envelope Robot (POWER) concept has evolved over the course of the study. The goal of the project was the development of methods and algorithms for solid modeling for the flexible robot arm.

  13. Solar envelope concepts: moderate density building applications

    NASA Astrophysics Data System (ADS)

    Knowles, R. L.; Berry, R. D.

    1980-04-01

    The public policy mechanism for guaranteeing solar access is conceptualized as a solar zoning envelope that allows the largest possible building bulk on a land parcel without shadowing neighboring properties during specified times. Step-by-step methods for generating solar envelopes are described with extensive drawings, showing a variety of urban platting and lot configurations. Development and design possibilities are examined on a selected set of Los Angeles sites with typically diverse urban characteristics. Envelope attributes suitable for encouraging moderate-density commercial and residential building are examined in the context of two hypothetical but realistic development programs: one for speculative office buildings and one for condominium housing. Numerous illustrations of envelope forms and prototypical building designs are provided.

  14. Survival of an Enveloped Virus on Toys.

    PubMed

    Bearden, Richard L; Casanova, Lisa M

    2016-08-01

    Children's toys may carry respiratory viruses. Inactivation of a lipid-enveloped bacteriophage, Φ6, was measured on a nonporous toy at indoor temperature and relative humidity (RH). Inactivation was approximately 2log10 after 24 hours at 60% RH and 6.8log10 at 10 hours at 40% RH. Enveloped viruses can potentially survive on toys long enough to result in exposures. PMID:27144972

  15. Creating a Lunar EVA Work Envelope

    NASA Technical Reports Server (NTRS)

    Griffin, Brand N.; Howard, Robert; Rajulu, Sudhakar; Smitherman, David

    2009-01-01

    A work envelope has been defined for weightless Extravehicular Activity (EVA) based on the Space Shuttle Extravehicular Mobility Unit (EMU), but there is no equivalent for planetary operations. The weightless work envelope is essential for planning all EVA tasks because it determines the location of removable parts, making sure they are within reach and visibility of the suited crew member. In addition, using the envelope positions the structural hard points for foot restraints that allow placing both hands on the job and provides a load path for reacting forces. EVA operations are always constrained by time. Tasks are carefully planned to ensure the crew has enough breathing oxygen, cooling water, and battery power. Planning first involves computers using a virtual work envelope to model tasks, next suited crew members in a simulated environment refine the tasks. For weightless operations, this process is well developed, but planetary EVA is different and no work envelope has been defined. The primary difference between weightless and planetary work envelopes is gravity. It influences anthropometry, horizontal and vertical mobility, and reaction load paths and introduces effort into doing "overhead" work. Additionally, the use of spacesuits other than the EMU, and their impacts on range of motion, must be taken into account. This paper presents the analysis leading to a concept for a planetary EVA work envelope with emphasis on lunar operations. There is some urgency in creating this concept because NASA has begun building and testing development hardware for the lunar surface, including rovers, habitats and cargo off-loading equipment. Just as with microgravity operations, a lunar EVA work envelope is needed to guide designers in the formative stages of the program with the objective of avoiding difficult and costly rework.

  16. Genetic diversity of koala retroviral envelopes.

    PubMed

    Xu, Wenqin; Gorman, Kristen; Santiago, Jan Clement; Kluska, Kristen; Eiden, Maribeth V

    2015-03-01

    Genetic diversity, attributable to the low fidelity of reverse transcription, recombination and mutation, is an important feature of infectious retroviruses. Under selective pressure, such as that imposed by superinfection interference, gammaretroviruses commonly adapt their envelope proteins to use alternative receptors to overcome this entry block. The first characterized koala retroviruses KoRV subgroup A (KoRV-A) were remarkable in their absence of envelope genetic variability. Once it was determined that KoRV-A was present in all koalas in US zoos, regardless of their disease status, we sought to isolate a KoRV variant whose presence correlated with neoplastic malignancies. More than a decade after the identification of KoRV-A, we isolated a second subgroup of KoRV, KoRV-B from koalas with lymphomas. The envelope proteins of KoRV-A and KoRV-B are sufficiently divergent to confer the ability to bind and employ distinct receptors for infection. We have now obtained a number of additional KoRV envelope variants. In the present studies we report these variants, and show that they differ from KoRV-A and KoRV-B envelopes in their host range and superinfection interference properties. Thus, there appears to be considerable variation among KoRVs envelope genes suggesting genetic diversity is a factor following the KoRV-A infection process. PMID:25789509

  17. Cooling of neutron stars with diffusive envelopes

    NASA Astrophysics Data System (ADS)

    Beznogov, M. V.; Fortin, M.; Haensel, P.; Yakovlev, D. G.; Zdunik, J. L.

    2016-08-01

    We study the effects of heat blanketing envelopes of neutron stars on their cooling. To this aim, we perform cooling simulations using newly constructed models of the envelopes composed of binary ion mixtures (H-He, He-C, C-Fe) varying the mass of lighter ions (H, He or C) in the envelope. The results are compared with those calculated using the standard models of the envelopes which contain the layers of lighter (accreted) elements (H, He and C) on top of the Fe layer, varying the mass of accreted elements. The main effect is that the chemical composition of the envelopes influences their thermal conductivity and, hence, thermal insulation of the star. For illustration, we apply these results to estimate the internal temperature of the Vela pulsar and to study the cooling of neutron stars of ages of 105 - 106 yr at the photon cooling stage. The uncertainties of the cooling models associated with our poor knowledge of chemical composition of the heat insulating envelopes strongly complicate theoretical reconstruction of the internal structure of cooling neutron stars from observations of their thermal surface emission.

  18. The joke envelope: a neglected precursor of the psychic envelope concept in Freud's writing.

    PubMed

    Spero, Moshe Halevi

    2009-01-01

    The concepts of the primeval skin ego, psychic envelope, and related pre-ego containing and wrapping functions elaborated respectively by Esther Bick, Didier Anzieu, and Francis Tustin occupy an important position in contemporary psychoanalytic theory and clinical practice. The psychic envelope begins as a virtual mental protostructure ("proto" because it is not yet based on fully symbolized representations) that holds the budding mind together pending further developments. With maturity, the enveloping functions adopt symbolized, metaphoric form (for example, the aesthetic use of cloth, the analytic framework), but can regress to more concrete and pathological forms. The aforementioned authors based their ideas on a cluster of specific allusions to the idea of a psychic covering, barrier, or envelope in Freud's work. Yet they neglected one reference, hidden in Freud's analysis of the structure ofjokes and humor: the 'joke envelope"--die witzige Einkleidung. The present essay explores Freud's use of the term Einkleidung, including his intriguing idea that a joke requires three people whereas a dream does not and the fact that Freud nowhere speaks of a "dream envelope. "I take the "joke envelope" beyond its original context and posit a relationship between laughter and the early, normative traumas of breathing, crying, and loss, and the dawn of rhythmic envelopes that enable mentalization. Jokes and joking symbolically repeat the early rupture and rapture of breathing and self-other differentiation and the internalization of maternal containing and envelopment. PMID:20578439

  19. Human pDCs preferentially sense enveloped hepatitis A virions.

    PubMed

    Feng, Zongdi; Li, You; McKnight, Kevin L; Hensley, Lucinda; Lanford, Robert E; Walker, Christopher M; Lemon, Stanley M

    2015-01-01

    Unlike other picornaviruses, hepatitis A virus (HAV) is cloaked in host membranes when released from cells, providing protection from neutralizing antibodies and facilitating spread in the liver. Acute HAV infection is typified by minimal type I IFN responses; therefore, we questioned whether plasmacytoid dendritic cells (pDCs), which produce IFN when activated, are capable of sensing enveloped virions (eHAV). Although concentrated nonenveloped virus failed to activate freshly isolated human pDCs, these cells produced substantial amounts of IFN-α via TLR7 signaling when cocultured with infected cells. pDCs required either close contact with infected cells or exposure to concentrated culture supernatants for IFN-α production. In isopycnic and rate-zonal gradients, pDC-activating material cosedimented with eHAV but not membrane-bound acetylcholinesterase, suggesting that eHAV, and not viral RNA exosomes, is responsible for IFN-α induction. pDC activation did not require virus replication and was associated with efficient eHAV uptake, which was facilitated by phosphatidylserine receptors on pDCs. In chimpanzees, pDCs were transiently recruited to the liver early in infection, during or shortly before maximal intrahepatic IFN-stimulated gene expression, but disappeared prior to inflammation onset. Our data reveal that, while membrane envelopment protects HAV against neutralizing antibody, it also facilitates an early but limited detection of HAV infection by pDCs. PMID:25415438

  20. Envelope Variants Circulating as Initial Neutralization Breadth Developed in Two HIV-Infected Subjects Stimulate Multiclade Neutralizing Antibodies in Rabbits

    PubMed Central

    Malherbe, Delphine C.; Pissani, Franco; Sather, D. Noah; Guo, Biwei; Pandey, Shilpi; Sutton, William F.; Stuart, Andrew B.; Robins, Harlan; Park, Byung; Krebs, Shelly J.; Schuman, Jason T.; Kalams, Spyros; Hessell, Ann J.

    2014-01-01

    ABSTRACT Identifying characteristics of the human immunodeficiency virus type 1 (HIV-1) envelope that are effective in generating broad, protective antibodies remains a hurdle to HIV vaccine design. Emerging evidence of the development of broad and potent neutralizing antibodies in HIV-infected subjects suggests that founder and subsequent progeny viruses may express unique antigenic motifs that contribute to this developmental pathway. We hypothesize that over the course of natural infection, B cells are programmed to develop broad antibodies by exposure to select populations of emerging envelope quasispecies variants. To test this hypothesis, we identified two unrelated subjects whose antibodies demonstrated increasing neutralization breadth against a panel of HIV-1 isolates over time. Full-length functional env genes were cloned longitudinally from these subjects from months after infection through 2.6 to 5.8 years of infection. Motifs associated with the development of breadth in published, cross-sectional studies were found in both subjects. We compared the immunogenicity of envelope vaccines derived from time points obtained during and after broadening of neutralization activity within these subjects. Rabbits were coimmunized four times with selected multiple gp160 DNAs and gp140-trimeric envelope proteins. The affinity of the polyclonal response increased as a function of boosting. The most rapid and persistent neutralization of multiclade tier 1 viruses was elicited by envelopes that were circulating in plasma at time points prior to the development of 50% neutralization breadth in both human subjects. The breadth elicited in rabbits was not improved by exposure to later envelope variants. These data have implications for vaccine development in describing a target time point to identify optimal envelope immunogens. IMPORTANCE Vaccine protection against viral infections correlates with the presence of neutralizing antibodies; thus, vaccine components capable

  1. Simulating Convection in Stellar Envelopes

    NASA Astrophysics Data System (ADS)

    Tanner, Joel

    Understanding convection in stellar envelopes, and providing a mathematical description of it, would represent a substantial advance in stellar astrophysics. As one of the largest sources of uncertainty in stellar models, existing treatments of convection fail to account for many of the dynamical effects of convection, such as turbulent pressure and asymmetry in the velocity field. To better understand stellar convection, we must be able to study and examine it in detail, and one of the best tools for doing so is numerical simulation. Near the stellar surface, both convective and radiative process play a critical role in determining the structure and gas dynamics. By following these processes from first principles, convection can be simulated self-consistently and accurately, even in regions of inefficient energy transport where existing descriptions of convection fail. Our simulation code includes two radiative transfer solvers that are based on different assumptions and approximations. By comparing simulations that differ only in their respective radiative transfer methods, we are able to isolate the effect that radiative efficiency has on the structure of the superadiabatic layer. We find the simulations to be in good general agreement, but they show distinct differences in the thermal structure in the superadiabatic layer and atmosphere. Using the code to construct a grid of three-dimensional radiation hydrodynamic simulations, we investigate the link between convection and various chemical compositions. The stellar parameters correspond to main-sequence stars at several surface gravities, and span a range in effective temperatures (4500 < Teff < 6400). Different chemical compositions include four metallicities (Z = 0.040, 0.020, 0.010, 0.001), three helium abundances (Y = 0.1, 0.2, 0.3) and several levels of alpha-element enhancement. Our grid of simulations shows that various convective properties, such as velocity and the degree of superadiabaticity, are

  2. Featured Image: Orbiting Stars Share an Envelope

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-03-01

    This beautiful series of snapshots from a simulation (click for a better look!) shows what happens when two stars in a binary system become enclosed in the same stellar envelope. In this binary system, one of the stars has exhausted its hydrogen fuel and become a red giant, complete with an expanding stellar envelope composed of hydrogen and helium. Eventually, the envelope expands so much that the companion star falls into it, where it releases gravitational potential energy into the common envelope. A team led by Sebastian Ohlmann (Heidelberg Institute for Theoretical Studies and University of Wrzburg) recently performed hydrodynamic simulations of this process. Ohlmann and collaborators discovered that the energy release eventually triggers large-scale flow instabilities, which leads to turbulence within the envelope. This process has important consequences for how these systems next evolve (for instance, determining whether or not a supernova occurs!). You can check out the authors video of their simulated stellar inspiral below, or see their paper for more images and results from their study.CitationSebastian T. Ohlmann et al 2016 ApJ 816 L9. doi:10.3847/2041-8205/816/1/L9

  3. The cell envelope proteome of Aggregatibacter actinomycetemcomitans

    PubMed Central

    Smith, Kenneth P.; Fields, Julia G.; Voogt, Richard D.; Deng, Bin; Lam, Ying-Wai; Mintz, Keith P.

    2014-01-01

    Summary The cell envelope of Gram-negative bacteria serves a critical role in maintenance of cellular homeostasis, resistance to external stress, and host-pathogen interactions. Envelope protein composition is influenced by the physiological and environmental demands placed on the bacterium. In this study, we report a comprehensive compilation of cell envelope proteins from the periodontal and systemic pathogen Aggregatibacter actinomycetemcomitans VT1169, an afimbriated serotype b strain. The urea-extracted membrane proteins were identified by mass spectrometry-based shotgun proteomics. The membrane proteome, isolated from actively growing bacteria under normal laboratory conditions, included 648 proteins representing 28% of the predicted ORFs in the genome. Bioinformatic analyses were used to annotate and predict the cellular location and function of the proteins. Surface adhesins, porins, lipoproteins, numerous influx and efflux pumps, multiple sugar, amino acid and iron transporters, and components of the type I, II and V secretion systems were identified. Periplasmic space and cytoplasmic proteins with chaperone function were also identified. 107 proteins with unknown function were associated with the cell envelope. Orthologs of a subset of these uncharacterized proteins are present in other bacterial genomes, while others are found exclusively in A. actinomycetemcomitans. This knowledge will contribute to elucidating the role of cell envelope proteins in bacterial growth and survival in the oral cavity. PMID:25055881

  4. Mixing Envelope D Sludge with LAW Intermediate Products with and without Glass Formers

    SciTech Connect

    Hansen, E.K.

    2001-09-21

    The Department of Energy (DOE) Office of River Protection is in the process of designing a waste treatment system to process the Hanford Reservation High Level Waste (HLW). Envelope D sludge slurries will be blended with the concentrated Cs/Ts eluates, and the Sr/TRU intermediates separated from Envelope A, B, and C feeds. This study produced two washed simulated sludges (representing tanks 241-AZ-101 and 241-AZ-102 sludge), a Sr/TRU washed precipitate produced from tank 241-AN-107 simulant, and a concentrated blended eluate simulant based upon eluates from processing 241-AZ-102 supernate.

  5. Self-contained clothing system provides protection against hazardous environments

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Self-contained clothing system protects personnel against hazardous environments. The clothing has an environmental control system and a complete protection envelope consisting of an outer garment, inner garment, underwear, boots, gloves, and helmet.

  6. An unresolved LINC in the nuclear envelope

    PubMed Central

    Torbati, Mehdi; Lele, Tanmay P; Agrawal, Ashutosh

    2016-01-01

    The nuclear envelope segregates the nucleoplasm from the cytoplasm and is a key feature of eukaryotic cells. Nuclear envelope architecture is comprised of two concentric membrane shells which fuse at multiple sites and yet maintain a uniform separation of 30–50 nm over the rest of the membrane. Studies have revealed the roles for numerous nuclear proteins in forming and maintaining the architecture of the nuclear envelope. However, there is a lack of consensus on the fundamental forces and physical mechanisms that establish the geometry. The objective of this review is to discuss recent findings in the context of membrane mechanics in an effort to define open questions and possible answers. PMID:27330571

  7. Envelope Solitons in Acoustically Dispersive Vitreous Silica

    NASA Technical Reports Server (NTRS)

    Cantrell, John H.; Yost, William T.

    2012-01-01

    Acoustic radiation-induced static strains, displacements, and stresses are manifested as rectified or dc waveforms linked to the energy density of an acoustic wave or vibrational mode via the mode nonlinearity parameter of the material. An analytical model is developed for acoustically dispersive media that predicts the evolution of the energy density of an initial waveform into a series of energy solitons that generates a corresponding series of radiation-induced static strains (envelope solitons). The evolutionary characteristics of the envelope solitons are confirmed experimentally in Suprasil W1 vitreous silica. The value (-11.9 plus or minus 1.43) for the nonlinearity parameter, determined from displacement measurements of the envelope solitons via a capacitive transducer, is in good agreement with the value (-11.6 plus or minus 1.16) obtained independently from acoustic harmonic generation measurements. The agreement provides strong, quantitative evidence for the validity of the model.

  8. Common Envelope and the Binding Energy Consideration

    NASA Astrophysics Data System (ADS)

    Irawati, P.; Mahasena, P.

    2014-08-01

    We report the results of our study on the common-envelope phase of the cataclysmic variables. We are investigating the role of additional energies, such as recombination energy and internal energy, in expelling the envelope of the primary star. In this work, we use the TWIN stellar evolution code which can evolve both stars in binary simultaneously. We analysed the energies involved by considering the binding energy of the core at the onset of the common envelope phase. The core of the primary is calculated using the hydrogen-exhausted layer with 10% hydrogen fraction. Our preliminary result shows that the internal energy plays a significant role while the recombination energy has only a small contribution to the energy budget of the cataclysmic variable evolution.

  9. Drug design from the cryptic inhibitor envelope

    PubMed Central

    Lee, Chul-Jin; Liang, Xiaofei; Wu, Qinglin; Najeeb, Javaria; Zhao, Jinshi; Gopalaswamy, Ramesh; Titecat, Marie; Sebbane, Florent; Lemaitre, Nadine; Toone, Eric J.; Zhou, Pei

    2016-01-01

    Conformational dynamics plays an important role in enzyme catalysis, allosteric regulation of protein functions and assembly of macromolecular complexes. Despite these well-established roles, such information has yet to be exploited for drug design. Here we show by nuclear magnetic resonance spectroscopy that inhibitors of LpxC—an essential enzyme of the lipid A biosynthetic pathway in Gram-negative bacteria and a validated novel antibiotic target—access alternative, minor population states in solution in addition to the ligand conformation observed in crystal structures. These conformations collectively delineate an inhibitor envelope that is invisible to crystallography, but is dynamically accessible by small molecules in solution. Drug design exploiting such a hidden inhibitor envelope has led to the development of potent antibiotics with inhibition constants in the single-digit picomolar range. The principle of the cryptic inhibitor envelope approach may be broadly applicable to other lead optimization campaigns to yield improved therapeutics. PMID:26912110

  10. Perception and coding of envelopes in weakly electric fishes.

    PubMed

    Stamper, Sarah A; Fortune, Eric S; Chacron, Maurice J

    2013-07-01

    Natural sensory stimuli have a rich spatiotemporal structure and can often be characterized as a high frequency signal that is independently modulated at lower frequencies. This lower frequency modulation is known as the envelope. Envelopes are commonly found in a variety of sensory signals, such as contrast modulations of visual stimuli and amplitude modulations of auditory stimuli. While psychophysical studies have shown that envelopes can carry information that is essential for perception, how envelope information is processed in the brain is poorly understood. Here we review the behavioral salience and neural mechanisms for the processing of envelopes in the electrosensory system of wave-type gymnotiform weakly electric fishes. These fish can generate envelope signals through movement, interactions of their electric fields in social groups or communication signals. The envelopes that result from the first two behavioral contexts differ in their frequency content, with movement envelopes typically being of lower frequency. Recent behavioral evidence has shown that weakly electric fish respond in robust and stereotypical ways to social envelopes to increase the envelope frequency. Finally, neurophysiological results show how envelopes are processed by peripheral and central electrosensory neurons. Peripheral electrosensory neurons respond to both stimulus and envelope signals. Neurons in the primary hindbrain recipient of these afferents, the electrosensory lateral line lobe (ELL), exhibit heterogeneities in their responses to stimulus and envelope signals. Complete segregation of stimulus and envelope information is achieved in neurons in the target of ELL efferents, the midbrain torus semicircularis (Ts). PMID:23761464

  11. Structural changes of envelope proteins during alphavirus fusion

    SciTech Connect

    Li, Long; Jose, Joyce; Xiang, Ye; Kuhn, Richard J.; Rossmann, Michael G.

    2010-12-08

    Alphaviruses are enveloped RNA viruses that have a diameter of about 700 {angstrom} and can be lethal human pathogens. Entry of virus into host cells by endocytosis is controlled by two envelope glycoproteins, E1 and E2. The E2-E1 heterodimers form 80 trimeric spikes on the icosahedral virus surface, 60 with quasi-three-fold symmetry and 20 coincident with the icosahedral three-fold axes arranged with T = 4 quasi-symmetry. The E1 glycoprotein has a hydrophobic fusion loop at one end and is responsible for membrane fusion. The E2 protein is responsible for receptor binding and protects the fusion loop at neutral pH. The lower pH in the endosome induces the virions to undergo an irreversible conformational change in which E2 and E1 dissociate and E1 forms homotrimers, triggering fusion of the viral membrane with the endosomal membrane and then releasing the viral genome into the cytoplasm. Here we report the structure of an alphavirus spike, crystallized at low pH, representing an intermediate in the fusion process and clarifying the maturation process. The trimer of E2-E1 in the crystal structure is similar to the spikes in the neutral pH virus except that the E2 middle region is disordered, exposing the fusion loop. The amino- and carboxy-terminal domains of E2 each form immunoglobulin-like folds, consistent with the receptor attachment properties of E2.

  12. SAFEGUARDS ENVELOPE: PREVIOUS WORK AND EXAMPLES

    SciTech Connect

    Richard Metcalf; Aaron Bevill; William Charlton; Robert Bean

    2008-07-01

    The future expansion of nuclear power will require not just electricity production but fuel cycle facilities such as fuel fabrication and reprocessing plants. As large reprocessing facilities are built in various states, they must be built and operated in a manner to minimize the risk of nuclear proliferation. Process monitoring has returned to the spotlight as an added measure that can increase confidence in the safeguards of special nuclear material (SNM). Process monitoring can be demonstrated to lengthen the allowable inventory period by reducing accountancy requirements, and to reduce the false positive indications. The next logical step is the creation of a Safeguards Envelope, a set of operational parameters and models to maximize anomaly detection and inventory period by process monitoring while minimizing operator impact and false positive rates. A brief example of a rudimentary Safeguards Envelope is presented, and shown to detect synthetic diversions overlaying a measured processing plant data set. This demonstration Safeguards Envelope is shown to increase the confidence that no SNM has been diverted with minimal operator impact, even though it is based on an information sparse environment. While the foundation on which a full Safeguards Envelope can be built has been presented in historical demonstrations of process monitoring, several requirements remain yet unfulfilled. Future work will require reprocessing plant transient models, inclusion of “non-traditional” operating data, and exploration of new methods of identifying subtle events in transient processes.

  13. Diffusive heat blanketing envelopes of neutron stars

    NASA Astrophysics Data System (ADS)

    Beznogov, M. V.; Potekhin, A. Y.; Yakovlev, D. G.

    2016-06-01

    We construct new models of outer heat blanketing envelopes of neutron stars composed of binary ion mixtures (H-He, He-C, C-Fe) in and out of diffusive equilibrium. To this aim, we generalize our previous work on diffusion of ions in isothermal gaseous or Coulomb liquid plasmas to handle non-isothermal systems. We calculate the relations between the effective surface temperature Ts and the temperature Tb at the bottom of heat blanketing envelopes (at a density ρb ˜ 108 - 1010 g cm-3) for diffusively equilibrated and non-equilibrated distributions of ion species at different masses ΔM of lighter ions in the envelope. Our principal result is that the Ts-Tb relations are fairly insensitive to detailed distribution of ion fractions over the envelope (diffusively equilibrated or not) and depend almost solely on ΔM. The obtained relations are approximated by analytic expressions which are convenient for modelling the evolution of neutron stars.

  14. Thermal Damage to Chloroplast Envelope Membranes 1

    PubMed Central

    McCain, Douglas C.; Croxdale, Judith; Markley, John L.

    1989-01-01

    Nuclear magnetic resonance was used to detect thermal injury to chloroplasts in vivo. A lesion occurs in the chloroplast envelope membrane at temperatures between 53°C and 57°C, depending on species, leaf condition, and heating rate. The injury is associated with a sudden loss of water from the chloroplast. PMID:16666815

  15. Discriminating Dysarthria Type from Envelope Modulation Spectra

    ERIC Educational Resources Information Center

    Liss, Julie M.; LeGendre, Sue; Lotto, Andrew J.

    2010-01-01

    Purpose: Previous research demonstrated the ability of temporally based rhythm metrics to distinguish among dysarthrias with different prosodic deficit profiles (J. M. Liss et al., 2009). The authors examined whether comparable results could be obtained by an automated analysis of speech envelope modulation spectra (EMS), which quantifies the…

  16. Tegument Assembly and Secondary Envelopment of Alphaherpesviruses

    PubMed Central

    Owen, Danielle J.; Crump, Colin M.; Graham, Stephen C.

    2015-01-01

    Alphaherpesviruses like herpes simplex virus are large DNA viruses characterized by their ability to establish lifelong latent infection in neurons. As for all herpesviruses, alphaherpesvirus virions contain a protein-rich layer called “tegument” that links the DNA-containing capsid to the glycoprotein-studded membrane envelope. Tegument proteins mediate a diverse range of functions during the virus lifecycle, including modulation of the host-cell environment immediately after entry, transport of virus capsids to the nucleus during infection, and wrapping of cytoplasmic capsids with membranes (secondary envelopment) during virion assembly. Eleven tegument proteins that are conserved across alphaherpesviruses have been implicated in the formation of the tegument layer or in secondary envelopment. Tegument is assembled via a dense network of interactions between tegument proteins, with the redundancy of these interactions making it challenging to determine the precise function of any specific tegument protein. However, recent studies have made great headway in defining the interactions between tegument proteins, conserved across alphaherpesviruses, which facilitate tegument assembly and secondary envelopment. We summarize these recent advances and review what remains to be learned about the molecular interactions required to assemble mature alphaherpesvirus virions following the release of capsids from infected cell nuclei. PMID:26393641

  17. The Methodology of Data Envelopment Analysis.

    ERIC Educational Resources Information Center

    Sexton, Thomas R.

    1986-01-01

    The methodology of data envelopment analysis, (DEA) a linear programming-based method, is described. Other procedures often used for measuring relative productive efficiency are discussed in relation to DEA, including ratio analysis and multiple regression analysis. The DEA technique is graphically illustrated for only two inputs and one output.…

  18. Ozone Reductions Using Residential Building Envelopes

    SciTech Connect

    Walker, Iain S.; Sherman, Max; Nazaroff, William W.

    2009-02-01

    Ozone is an air pollutant with that can have significant health effects and a significant source of ozone in some regions of California is outdoor air. Because people spend the vast majority of their time indoors, reduction in indoor levels of ozone could lead to improved health for many California residents. Ozone is removed from indoor air by surface reactions and can also be filtered by building envelopes. The magnitude of the envelope impact depends on the specific building materials that the air flows over and the geometry of the air flow paths through the envelope that can be changes by mechanical ventilation operation. The 2008 Residential Building Standards in California include minimum requirements for mechanical ventilation by referencing ASHRAE Standard 62.2. This study examines the changes in indoor ozone depending on the mechanical ventilation system selected to meet these requirements. This study used detailed simulations of ventilation in a house to examine the impacts of different ventilation systems on indoor ozone concentrations. The simulation results showed that staying indoors reduces exposure to ozone by 80percent to 90percent, that exhaust ventilation systems lead to lower indoor ozone concentrations, that opening of windows should be avoided at times of high outdoor ozone, and that changing the time at which mechanical ventilation occurs has the ability to halve exposure to ozone. Future work should focus on the products of ozone reactions in the building envelope and the fate of these products with respect to indoor exposures.

  19. Trumpet synthesis using context-dependent envelopes

    NASA Astrophysics Data System (ADS)

    Dannenberg, Roger B.

    2002-05-01

    Synthesizing trumpet music in a natural-sounding way requires careful control. Even when synthesis is achieved by splicing together actual recorded trumpet tones, the result can sound artificial and unnatural. This is because natural notes are not played in isolation and are therefore influenced by neighboring notes and the musical context. In fact, a succession of notes played on the trumpet is likely to be a continuous sound with no separating silences. Improved synthesis can be obtained by calculating amplitude and frequency control envelopes that take context into consideration. In the combined spectral interpolation synthesis (CSIS) method, the spectrum is controlled by instantaneous frequency and rms amplitude. These, in turn, are controlled by envelopes computed by a rule-based system. To reduce the high dimensionality of envelopes (typically a vector of 200 samples per second), envelopes are specified by about ten parameters. This reduced set of parameters is computed from note attributes, most importantly, the duration and pitches of the current and preceding notes, and whether or not the notes are tongued or slurred. This procedure is described in detail, and synthesis results will be demonstrated.

  20. The Arabidopsis Nuclear Pore and Nuclear Envelope

    PubMed Central

    Meier, Iris; Brkljacic, Jelena

    2010-01-01

    The nuclear envelope is a double membrane structure that separates the eukaryotic cytoplasm from the nucleoplasm. The nuclear pores embedded in the nuclear envelope are the sole gateways for macromolecular trafficking in and out of the nucleus. The nuclear pore complexes assembled at the nuclear pores are large protein conglomerates composed of multiple units of about 30 different nucleoporins. Proteins and RNAs traffic through the nuclear pore complexes, enabled by the interacting activities of nuclear transport receptors, nucleoporins, and elements of the Ran GTPase cycle. In addition to directional and possibly selective protein and RNA nuclear import and export, the nuclear pore gains increasing prominence as a spatial organizer of cellular processes, such as sumoylation and desumoylation. Individual nucleoporins and whole nuclear pore subcomplexes traffic to specific mitotic locations and have mitotic functions, for example at the kinetochores, in spindle assembly, and in conjunction with the checkpoints. Mutants of nucleoporin genes and genes of nuclear transport components lead to a wide array of defects from human diseases to compromised plant defense responses. The nuclear envelope acts as a repository of calcium, and its inner membrane is populated by functionally unique proteins connected to both chromatin and—through the nuclear envelope lumen—the cytoplasmic cytoskeleton. Plant nuclear pore and nuclear envelope research—predominantly focusing on Arabidopsis as a model—is discovering both similarities and surprisingly unique aspects compared to the more mature model systems. This chapter gives an overview of our current knowledge in the field and of exciting areas awaiting further exploration. PMID:22303264

  1. 48 CFR 14.202-3 - Bid envelopes.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... AND CONTRACT TYPES SEALED BIDDING Solicitation of Bids 14.202-3 Bid envelopes. (a) Postage or envelopes bearing Postage and Fees Paid indicia shall not be distributed with the invitation for bids...

  2. 48 CFR 14.202-3 - Bid envelopes.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... AND CONTRACT TYPES SEALED BIDDING Solicitation of Bids 14.202-3 Bid envelopes. (a) Postage or envelopes bearing Postage and Fees Paid indicia shall not be distributed with the invitation for bids...

  3. B epitopes and selection pressures in feline immunodeficiency virus envelope glycoproteins.

    PubMed Central

    Pancino, G; Chappey, C; Saurin, W; Sonigo, P

    1993-01-01

    In order to map linear B epitopes in feline immunodeficiency virus (FIV) envelope glycoproteins (Env), a random library of FIV Env polypeptides fused to beta-galactosidase and expressed in Escherichia coli was screened by using sera from experimentally FIV-infected cats. We mapped five antibody-binding domains in the surface envelope glycoprotein (SU1 to SU5) and four in the transmembrane envelope glycoprotein (TM1 to TM4). Immunological analysis with 48 serum samples from naturally or experimentally infected cats of diverse origins revealed a broad group reactivity for epitopes SU2, TM2, and TM3, whereas SU3 appeared as strictly type specific. To study selection pressures acting on the identified immunogenic domains, we analyzed structural constraints and distribution of synonymous and nonsynonymous mutations (amino acids unchanged or changed). Two linear B epitopes (SU3 and TM4) appeared to be submitted to positive selection for change, a pattern of evolution predicting their possible involvement in antiviral protection. These experiments provide a pertinent choice of oligopeptides for further analysis of the protective response against FIV envelope glycoproteins, as a model to understand the role of antibody escape in lentiviral persistence and to design feline AIDS vaccines. Images PMID:7678301

  4. The protective antigens of equine herpesvirus type 1.

    PubMed

    Papp-Vid, G; Derbyshire, J B

    1978-04-01

    Equine herpesvirus type 1 was cultivated in swine testis cell cultures and partially purified by differential centrifugation and centrifugation in a linear sucrose density gradient. The viral envelope was separated from the nucleocapsid by treatment with Rexol 25J followed by sucrose gradient centrifugation. The envelope and nucleocapsid preparations were then electrophoresed in polyacrylamide gel after solubilization with sodium dodecyl sulphate. Hamsters were immunized with various preparations of the partially purified virus, including live or inactivated equine herpesvirus type 1 and viral envelope and nucleocapsid, all derived from the Kentucky D strain of the virus. Challenge of the immunized hamsters, with a hamster-adapted strain of equine herpesvirus type 1 demonstrated protection only in those animals which had been vaccinated with envelope-containing materials. When vaccination was carried out with fractions of electrophoresed envelope or nucleocapsid, protection was induced only by polypeptides of high molecular weight containing a glycoprotein component of the envelope of equine herpesvirus type 1. PMID:208736

  5. Solar Effective Envelope Design Advisor (SEEDA)

    NASA Astrophysics Data System (ADS)

    Mahaek, Ekkachai

    The lack of effort by mainstream architects in integrating energy-efficient strategies in architectural designing is due to the complexity in a building's energy conscious concepts and theories, the difficulties to visualize and quantify energy consumption, and the late implementing of energy consumption analysis in the conventional design process. This task would be accomplishing by a building system's engineer where results might be determined only after the basic architectural design has been completed. An effective simple tool and method should then be available to assist architects in building's energy-efficient designing at the beginning of the design. The building's energy consumption is directly and mainly influenced by the relationship of the sun, site, and its building configuration. The solar radiations will first impact on the building's envelope, which will have a direct effect on the amount of energy a building will consume. If an architect can define or map the intensity of solar energy on the site's buildable volume, and use this information to determine the levels of solar insolation, a more energy efficient building form can be proposed. This research hypothesis has shared the fundamental techniques of the Solar Envelope projection by Professor Ralph Knowles [Knowles, 1981] of the University of Southern California. However a different approach is taken by including the influence of regional restrictions and the surrounding buildings' shadows when projecting of solar volumes and solar envelope. The research methodology will discuss the development of a computer-based approach to develop a three-dimensional architectural form based on an insolation map related to the design site. The prototype computer program is referred as the Solar Effective Envelope Design Advisor (SEEDA). The solar insolation volume of the site is determined by integrating three types of computer-generated models include the Buildable Volume model based on design constraints

  6. Application of the Envelope Difference Index to Spectrally Sparse Speech

    ERIC Educational Resources Information Center

    Souza, Pamela; Hoover, Eric; Gallun, Frederick

    2012-01-01

    Purpose: Amplitude compression is a common hearing aid processing strategy that can improve speech audibility and loudness comfort but also has the potential to alter important cues carried by the speech envelope. In previous work, a measure of envelope change, the Envelope Difference Index (EDI; Fortune, Woodruff, & Preves, 1994), was moderately…

  7. 200 Area Deactivation Project Facilities Authorization Envelope Document

    SciTech Connect

    DODD, E.N.

    2000-03-28

    Project facilities as required by HNF-PRO-2701, Authorization Envelope and Authorization Agreement. The Authorization Agreements (AA's) do not identify the specific set of environmental safety and health requirements that are applicable to the facility. Therefore, the facility Authorization Envelopes are defined here to identify the applicable requirements. This document identifies the authorization envelopes for the 200 Area Deactivation.

  8. Analysis of Building Envelope Construction in 2003 CBECS

    SciTech Connect

    Winiarski, David W.; Halverson, Mark A.; Jiang, Wei

    2007-06-01

    The purpose of this analysis is to determine "typical" building envelope characteristics for buildings built after 1980. We address three envelope components in this paper - roofs, walls, and window area. These typical building envelope characteristics were used in the development of DOE’s Reference Buildings .

  9. Discontinuous envelope function in semiconductor heterostructures

    NASA Astrophysics Data System (ADS)

    Drouhin, Henri-Jean; Bottegoni, Federico; Nguyen, T. L. Hoai; Wegrowe, Jean-Eric; Fishman, Guy

    2013-09-01

    Based on a proper definition of the current operators for non-quadratic Hamiltonians, we derive the expression for the transport current which involves the derivative of the imaginary part of the free-electron current, highlighting peculiarities of the extra terms. The expression of the probability current, when Spin-Orbit Interaction (SOI) is taken into account, requires a reformulation of the boudary conditions. This is especially important for tunnel heterojunctions made of non-centrosymmetric semiconductors. Therefore, we consider a model case: tunneling of conduction electrons through a [110]-oriented GaAs barrier. The new boundary conditions are reduced to two set of equations: the first one expresses the discontinuity of the envelope function at the interface while the other one expresses the discontinuity of the derivative of the envelope function.

  10. Fluorescence molecular painting of enveloped viruses.

    PubMed

    Metzner, Christoph; Kochan, Feliks; Dangerfield, John A

    2013-01-01

    In this study, we describe a versatile, flexible, and quick method to label different families of enveloped viruses with glycosylphosphatidylinositol-modified green fluorescent protein, termed fluorescence molecular painting (FMP). As an example for a potential application, we investigated virus attachment by means of flow cytometry to determine if viral binding behavior may be analyzed after FMP of enveloped viruses. Virus attachment was inhibited by using either dextran sulfate or by blocking attachment sites with virus pre-treatment. Results from the FMP-flow cytometry approach were verified by immunoblotting and enzyme-linked immunosorbent assay. Since the modification strategy is applicable to a broad range of proteins and viruses, variations of this method may be useful in a range of research and applied applications from bio-distribution studies to vaccine development and targeted infection for gene delivery. PMID:23104232

  11. Formaldehyde in envelopes of interstellar dark clouds

    NASA Technical Reports Server (NTRS)

    Federman, S. R.; Allen, M.

    1991-01-01

    Observed formaldehyde column densities of 1 x 10 to the 12th - 3 x 10 to the 13th/sq cm in cloud envelopes along lines of sight with A(V) = 1-4 mag can not be explained with the current understanding of interstellar gas phase chemistry. However, these column densities can be reproduced by a simple time-dependent model in which H2CO is supplied to the gas phase by the erosion of icy grain mantles. The release of H2CO from the grain mantles must occur on time scales comparable to the time scales for mixing from the cloud interior to the cloud envelope. Thus, in low-density regions of clouds, it appears that formaldehyde is the second molecule whose gas phase source is primarily ejection from grains. This simple model suggests understanding gas phase steady state in clouds on macroscopic, rather than microscopic, spatial scales.

  12. A Linkage between SmeIJK Efflux Pump, Cell Envelope Integrity, and σE-Mediated Envelope Stress Response in Stenotrophomonas maltophilia

    PubMed Central

    Huang, Yi-Wei; Liou, Rung-Shiuan; Lin, Yi-Tsung; Huang, Hsin-Hui; Yang, Tsuey-Ching

    2014-01-01

    Resistance nodulation division (RND) efflux pumps, such as the SmeIJK pump of Stenotrophomonas maltophilia, are known to contribute to the multidrug resistance in Gram-negative bacteria. However, some RND pumps are constitutively expressed even though no antimicrobial stresses occur, implying that there should be some physical implications for these RND pumps. In this study, the role of SmeIJK in antimicrobials resistance, envelope integrity, and σE-mediated envelope stress response (ESR) of S. maltophilia was assessed. SmeIJK was involved in the intrinsic resistance of S. maltophilia KJ to aminoglycosides and leucomycin. Compared with the wild-type KJ, the smeIJK deletion mutant exhibited growth retardation in the MH medium, an increased sensitivity to membrane-damaging agents (MDAs), as well as activation of an σE-mediated ESR. Moreover, the expression of smeIJK was further induced by sub-lethal concentrations of MDAs or surfactants in an σE-dependent manner. These data collectively suggested an alternative physiological role of smeIJK in cell envelope integrity maintenance and σE-mediated ESR beyond the efflux of antibiotics. Because of the necessity of the physiological role of SmeIJK in protecting S. maltophilia from the envelope stress, smeIJK is constitutively expressed, which, in turn, contributes the intrinsic resistance to aminoglycoside and leucomycin. This is the first demonstration of the linkage among RND-type efflux pump, cell envelope integrity, and σE-mediated ESR in S. maltophilia. PMID:25390933

  13. A linkage between SmeIJK efflux pump, cell envelope integrity, and σE-mediated envelope stress response in Stenotrophomonas maltophilia.

    PubMed

    Huang, Yi-Wei; Liou, Rung-Shiuan; Lin, Yi-Tsung; Huang, Hsin-Hui; Yang, Tsuey-Ching

    2014-01-01

    Resistance nodulation division (RND) efflux pumps, such as the SmeIJK pump of Stenotrophomonas maltophilia, are known to contribute to the multidrug resistance in Gram-negative bacteria. However, some RND pumps are constitutively expressed even though no antimicrobial stresses occur, implying that there should be some physical implications for these RND pumps. In this study, the role of SmeIJK in antimicrobials resistance, envelope integrity, and σE-mediated envelope stress response (ESR) of S. maltophilia was assessed. SmeIJK was involved in the intrinsic resistance of S. maltophilia KJ to aminoglycosides and leucomycin. Compared with the wild-type KJ, the smeIJK deletion mutant exhibited growth retardation in the MH medium, an increased sensitivity to membrane-damaging agents (MDAs), as well as activation of an σE-mediated ESR. Moreover, the expression of smeIJK was further induced by sub-lethal concentrations of MDAs or surfactants in an σE-dependent manner. These data collectively suggested an alternative physiological role of smeIJK in cell envelope integrity maintenance and σE-mediated ESR beyond the efflux of antibiotics. Because of the necessity of the physiological role of SmeIJK in protecting S. maltophilia from the envelope stress, smeIJK is constitutively expressed, which, in turn, contributes the intrinsic resistance to aminoglycoside and leucomycin. This is the first demonstration of the linkage among RND-type efflux pump, cell envelope integrity, and σE-mediated ESR in S. maltophilia. PMID:25390933

  14. On the hybrid localization/envelopment problem

    SciTech Connect

    Chu, Y.X.; Gou, J.B.; Li, Z.X.

    1999-05-01

    The problem of aligning the CAD model of a workpiece such that all points measured on the finished surfaces of the workpiece match closely to corresponding surfaces on the model while all unmachined surfaces lie outside the model is referred to as the hybrid localization/envelopment problem. The hybrid problem has important applications in setting up for machining of partially finished workpieces. This paper gives a formulation of the hybrid localization/envelopment problem, and presents a simple algorithm for computing its solutions. First, the authors show that when the finished surfaces of a workpiece are inadequate to fully constrain the rigid motions of the workpiece, then the set of free motions remaining must form a subgroup G{sub 0} of the Euclidean group SE(3). This allows the authors to decompose the hybrid problem into a (symmetric) localization problem on G{sub 0}. While the symmetric localization problem is solved using the fast symmetric localization (FSL) algorithm developed in one of the earlier papers, the envelopment problem is solved by computing the solutions of a sequence of linear programming (LP) problems. The authors derive explicitly the LP problems, and apply standard linear programming techniques to solve the LP problems. They present simulation results to demonstrate the effectiveness of the method for the hybrid problem.

  15. Spectral envelope sensitivity of musical instrument sounds.

    PubMed

    Gunawan, David; Sen, D

    2008-01-01

    It is well known that the spectral envelope is a perceptually salient attribute in musical instrument timbre perception. While a number of studies have explored discrimination thresholds for changes to the spectral envelope, the question of how sensitivity varies as a function of center frequency and bandwidth for musical instruments has yet to be addressed. In this paper a two-alternative forced-choice experiment was conducted to observe perceptual sensitivity to modifications made on trumpet, clarinet and viola sounds. The experiment involved attenuating 14 frequency bands for each instrument in order to determine discrimination thresholds as a function of center frequency and bandwidth. The results indicate that perceptual sensitivity is governed by the first few harmonics and sensitivity does not improve when extending the bandwidth any higher. However, sensitivity was found to decrease if changes were made only to the higher frequencies and continued to decrease as the distorted bandwidth was widened. The results are analyzed and discussed with respect to two other spectral envelope discrimination studies in the literature as well as what is predicted from a psychoacoustic model. PMID:18177177

  16. Fusion of Enveloped Viruses in Endosomes.

    PubMed

    White, Judith M; Whittaker, Gary R

    2016-06-01

    Ari Helenius launched the field of enveloped virus fusion in endosomes with a seminal paper in the Journal of Cell Biology in 1980. In the intervening years, a great deal has been learned about the structures and mechanisms of viral membrane fusion proteins as well as about the endosomes in which different enveloped viruses fuse and the endosomal cues that trigger fusion. We now recognize three classes of viral membrane fusion proteins based on structural criteria and four mechanisms of fusion triggering. After reviewing general features of viral membrane fusion proteins and viral fusion in endosomes, we delve into three characterized mechanisms for viral fusion triggering in endosomes: by low pH, by receptor binding plus low pH and by receptor binding plus the action of a protease. We end with a discussion of viruses that may employ novel endosomal fusion-triggering mechanisms. A key take-home message is that enveloped viruses that enter cells by fusing in endosomes traverse the endocytic pathway until they reach an endosome that has all of the environmental conditions (pH, proteases, ions, intracellular receptors and lipid composition) to (if needed) prime and (in all cases) trigger the fusion protein and to support membrane fusion. PMID:26935856

  17. The cell envelope glycoconjugates of Mycobacterium tuberculosis

    PubMed Central

    Angala, Shiva Kumar; Belardinelli, Juan Manuel; Huc-Claustre, Emilie; Wheat, William H.; Jackson, Mary

    2015-01-01

    Tuberculosis (TB) remains the second most common cause of death due to a single infectious agent. The cell envelope of Mycobacterium tuberculosis (Mtb), the causative agent of the disease in humans, is a source of unique glycoconjugates and the most distinctive feature of the biology of this organism. It is the basis of much of Mtb pathogenesis and one of the major causes of its intrinsic resistance to chemotherapeutic agents. At the same time, the unique structures of Mtb cell envelope glycoconjugates, their antigenicity and essentiality for mycobacterial growth provide opportunities for drug, vaccine, diagnostic and biomarker development, as clearly illustrated by recent advances in all of these translational aspects. This review focuses on our current understanding of the structure and biogenesis of Mtb glycoconjugates with particular emphasis on one of most intriguing and least understood aspect of the physiology of mycobacteria: the translocation of these complex macromolecules across the different layers of the cell envelope. It further reviews the rather impressive progress made in the last ten years in the discovery and development of novel inhibitors targeting their biogenesis. PMID:24915502

  18. Multiscale envelope manifold for enhanced fault diagnosis of rotating machines

    NASA Astrophysics Data System (ADS)

    Wang, Jun; He, Qingbo; Kong, Fanrang

    2015-02-01

    The wavelet transform has been widely used in the field of machinery fault diagnosis for its good property of band-pass filtering. However, the filtered signal still faces the contamination of in-band noise. This paper focuses on wavelet enveloping, and proposes a new method, called multiscale envelope manifold (MEM), to extract the envelope information of fault impacts with in-band noise suppression. The MEM addresses manifold learning on the wavelet envelopes at multiple scales. Specifically, the proposed method is conducted by three following steps. First, the continuous wavelet transform (CWT) with complex Morlet wavelet base is introduced to obtain the wavelet envelopes at all scales. Second, the wavelet envelopes are restricted in one or more narrow scale bands to simply include the envelope information of fault impacts. The scale band is determined through a smoothness index-based (SI-based) selection method by considering the impulsiveness inside the power spectrum. Third, the manifold learning algorithm is conducted on the wavelet envelopes at selected scales to extract the intrinsic envelope manifold of fault-related impulses. The MEM combines the envelope information at multiple scales in a nonlinear approach, and may thus preserve the factual envelope structure of machinery fault. Simulation studies and experimental verifications confirm that the new method is effective for enhanced fault diagnosis of rotating machines.

  19. Masses and Envelope Binding Energies of Primary Stars at the Onset of a Common Envelope

    NASA Astrophysics Data System (ADS)

    van der Sluys, Marc; Politano, Michael; Taam, Ronald E.

    2010-12-01

    We present basic properties of primary stars that initiate a common envelope (CE) in a binary, while on the giant branch. We use the population-synthesis code described in Politano et al. [1] and follow the evolution of a population of binary stars up to the point where the primary fills its Roche lobe and initiates a CE. We then collect the properties of each system, in particular the donor mass and the binding energy of the donor's envelope, which are important for the treatment of a CE. We find that for most CEs, the donor mass is sufficiently low to define the core-envelope boundary reasonably well. We compute the envelope-structure parameter λenv from the binding energy and compare its distribution to typical assumptions that are made in population-synthesis codes. We conclude that λenv varies appreciably and that the assumption of a constant value for this parameter results in typical errors of 20-50%. In addition, such an assumption may well result in the implicit assumption of unintended and/or unphysical values for the CE parameter αCE. Finally, we discuss accurate existing analytic fits for the envelope binding energy, which make these oversimplified assumptions for λenv, and the use of λenv in general, unnecessary.

  20. Envelope tracking CMOS power amplifier with high-speed CMOS envelope amplifier for mobile handsets

    NASA Astrophysics Data System (ADS)

    Yoshida, Eiji; Sakai, Yasufumi; Oishi, Kazuaki; Yamazaki, Hiroshi; Mori, Toshihiko; Yamaura, Shinji; Suto, Kazuo; Tanaka, Tetsu

    2014-01-01

    A high-efficiency CMOS power amplifier (PA) based on envelope tracking (ET) has been reported for a wideband code division multiple access (W-CDMA) and long term evolution (LTE) application. By adopting a high-speed CMOS envelope amplifier with current direction sensing, a 5% improvement in total power-added efficiency (PAE) and a 11 dB decrease in adjacent channel leakage ratio (ACLR) are achieved with a W-CDMA signal. Moreover, the proposed PA achieves a PAE of 25.4% for a 10 MHz LTE signal at an output power (Pout) of 25.6 dBm and a gain of 24 dB.

  1. Envelope surface ultrastructure and specific gravity of artificially fertilized Pacific cod Gadus macrocephalus eggs.

    PubMed

    Bian, X; Zhang, X; Sakurai, Y; Jin, X; Gao, T; Wan, R; Yamamoto, J

    2014-02-01

    The envelope surface ultrastructure and specific gravity of artificially fertilized eggs of the Pacific cod Gadus macrocephalus were examined. The unfertilized, demersal and slightly adhesive eggs of G. macrocephalus were almost spherical and had no oil globules. Wrinkled envelope surface with elaborated hexagonal reticulated patterns and type I micropyle were observed under a scanning electron microscope. The adhesiveness of the eggs was lost at the blastodermal-cap stage after fertilization. The micropylar canal was sealed by secretion of the perivitelline fluid, and the entire surface became rough. Numerous bacilli were deposited at the micropyle and the outer envelope surface at the late germ-ring stage and at the embryo five-eighths around the yolk stage. The micropyle was completely deformed at the embryo seven-eighths around the yolk stage. The specific gravity of the fertilized G. macrocephalus eggs ranged from c. 1·0316 to 1·0454. These values, however, sharply decreased towards the end stages of egg development to produce pelagic larvae. The ultrastructural changes in the micropyle and envelope surface of the G. macrocephalus eggs protected the embryo from microorganism infections and mechanical stress during the long incubation period. The adhesiveness and specific gravity of the eggs influenced their dispersion potential. PMID:24417391

  2. Modeling pollutant penetration across building envelopes

    SciTech Connect

    Liu, De-Ling; Nazaroff, William W.

    2001-04-01

    As air infiltrates through unintentional openings in building envelopes, pollutants may interact with adjacent surfaces. Such interactions can alter human exposure to air pollutants of outdoor origin. We present modeling explorations of the proportion of particles and reactive gases (e.g., ozone) that penetrate building envelopes as air enters through cracks and wall cavities. Calculations were performed for idealized rectangular cracks, assuming regular geometry, smooth inner crack surface and steady airflow. Particles of 0.1-1.0 {micro}m diameter are predicted to have the highest penetration efficiency, nearly unity for crack heights of 0.25 mm or larger, assuming a pressure difference of 4 Pa or greater and a flow path length of 3 cm or less. Supermicron and ultrafine particles are significantly removed by means of gravitational settling and Brownian diffusion, respectively. In addition to crack geometry, ozone penetration depends on its reactivity with crack surfaces, as parameterized by the reaction probability. For reaction probabilities less than {approx}10{sup -5}, penetration is complete for cracks heights greater than 1 mm. However, penetration through mm scale cracks is small if the reaction probability is {approx}10{sup -4} or greater. For wall cavities, fiberglass insulation is an efficient particle filter, but particles would penetrate efficiently through uninsulated wall cavities or through insulated cavities with significant airflow bypass. The ozone reaction probability on fiberglass fibers was measured to be 10{sup -7} for fibers previously exposed to high ozone levels and 6 x 10{sup -6} for unexposed fibers. Over this range, ozone penetration through fiberglass insulation would vary from >90% to {approx}10-40%. Thus, under many conditions penetration is high; however, there are realistic circumstances in which building envelopes can provide substantial pollutant removal. Not enough is yet known about the detailed nature of pollutant penetration

  3. Antireflection pyrex envelopes for parabolic solar collectors

    SciTech Connect

    McCollister, H.L.; Pettit, R.B.

    1983-01-01

    Parabolic trough solar collectors utilize glass envelopes around the receiver tube in order to reduce thermal losses. Antireflective (AR) coatings applied to the envelope can potentially increase the solar transmittance by 0.07. An excellent AR surface can be formed on Pyrex (Corning Code 7740 glass) by first heat treating the glass to cause a compositional phase separation. After heat treating, a surface layer is removed using a pre-etch solution of aqueous ammonium bifluoride. Finally the AR layer is formed by etching in a solution containing hydrofluorosilic and ammonium bifluoride acid. Processing parameters studied included the phase separation temperature and heat treatment time, the pre-etch time, and the etching bath temperature and time. AR-coated samples with solar transmittance values >0.97, as compared to a value of 0.91 in untreated samples, were obtained for a range of heat treatment temperatures from 560 to 630/sup 0/C. The phase separation time and temperature interact so that at 630/sup 0/C short times are required (3 hours) while at 560/sup 0/C longer times are necessary (24 hours). Optimum values for the other processing parameters are 12 to 18 minutes in the pre-etching bath, and 5 to 10 minutes in the film forming bath when maintained between 35 and 45/sup 0/C. Application of this process to full scale 3 m long x 6 cm diameter Pyrex envelopes was successful in producing solar transmittance values greater than or equal to 0.97.

  4. Antireflection Pyrex envelopes for parabolic solar collectors

    SciTech Connect

    McCollister, H.L.; Pettit, R.B.

    1983-11-01

    Parabolic trough solar collectors utilize glass envelopes around the receiver tube in order to reduce thermal losses. Antireflective (AR) coatings applied to the envelope can potentially increase the solar transmittance by 7 percent. An excellent AR surface can be formed on Pyrex (Corning Code 7740 glass) by first heat treating the glass to cause a compositional phase separation. After heat treating, a surface layer is removed using a pre-etch solution of aqueous ammonium bifluoride. Finally, the AR layer is formed by etching in a solution containing hydrofluorosilic and ammonium bifluoride acid. Processing parameters studied included the phase separation temperature and heat treatment time, the pre-etch time, and the etching bath temperature and time. AR-coated samples with solar transmittance values > 0.97, as compared to a value of 0.91 in untreated samples, were obtained for a range of heat treatment temperatures from 560-630/sup 0/C. The phase separation time and temperature interact so that at 630/sup 0/C short times are required (3 hrs) while at 560/sup 0/C longer times are necessary (24 hrs). Optimum values for the other processing parameters are 12-18 min in the pre-etching bath, and 5-10 min in the film forming bath when maintained between 35-45/sup 0/C. Application of this process to full scale 3-m-long X 6-cm dia Pyrex envelopes was successful in producing solar transmittance values greater than or equal to 0.97.

  5. Closing a gap in the nuclear envelope.

    PubMed

    Vietri, Marina; Stenmark, Harald; Campsteijn, Coen

    2016-06-01

    The nuclear envelope (NE) ensures nucleo-cytoplasmic compartmentalization, with trafficking of macromolecules across this double membrane controlled by embedded nuclear pore complexes (NPCs). The NE and associated proteins are dismantled during open mitosis and reestablishment of this barrier during mitotic exit requires dynamic remodeling of endoplasmic reticulum (ER) membranes and coordination with NPC reformation, with NPC deposition continuing during subsequent interphase. In this review, we discuss recent progress in our understanding of NE reformation and nuclear pore complex generation, with special focus on work implicating the endosomal sorting complex required for transport (ESCRT) membrane remodeling machinery in these events. PMID:27016712

  6. Snell Envelope with Small Probability Criteria

    SciTech Connect

    Del Moral, Pierre Hu, Peng; Oudjane, Nadia

    2012-12-15

    We present a new algorithm to compute the Snell envelope in the specific case where the criteria to optimize is associated with a small probability or a rare event. This new approach combines the Stochastic Mesh approach of Broadie and Glasserman with a particle approximation scheme based on a specific change of measure designed to concentrate the computational effort in regions pointed out by the criteria. The theoretical analysis of this new algorithm provides non asymptotic convergence estimates. Finally, the numerical tests confirm the practical interest of this approach.

  7. Low heat-leak cryogenic envelope

    DOEpatents

    DeHaan, James R.

    1976-10-19

    A plurality of cryogenic envelope sections are joined together to form a power transmission line. Each of the sections is comprised of inner and outer tubes having multilayer metalized plastic spirally wrapped within a vacuum chamber formed between the inner and outer tubes. A refrigeration tube traverses the vacuum chamber, but exits one section and enters another through thermal standoffs for reducing heat-leak from the outer tube to the refrigeration tube. The refrigeration tube passes through a spirally wrapped shield within each section's vacuum chamber in a manner so that the refrigeration tube is in close thermal contact with the shield, but is nevertheless slideable with respect thereto.

  8. Surface area coefficients for airship envelopes

    NASA Technical Reports Server (NTRS)

    Diehl, W S

    1922-01-01

    In naval architecture, it is customary to determine the wetted surface of a ship by means of some formula which involves the principal dimensions of the design and suitable constants. These formulas of naval architecture may be extended and applied to the calculation of the surface area of airship envelopes by the use of new values of the constants determined for this purpose. Surface area coefficients were calculated from the actual dimensions, surfaces, and volumes of 52 streamline bodies, which form a series covering the entire range of shapes used in the present aeronautical practice.

  9. Fine-Tuning of the Cpx Envelope Stress Response Is Required for Cell Wall Homeostasis in Escherichia coli

    PubMed Central

    Delhaye, Antoine; Collet, Jean-François

    2016-01-01

    ABSTRACT The envelope of Gram-negative bacteria is an essential compartment that constitutes a protective and permeability barrier between the cell and its environment. The envelope also hosts the cell wall, a mesh-like structure made of peptidoglycan (PG) that determines cell shape and provides osmotic protection. Since the PG must grow and divide in a cell-cycle-synchronized manner, its synthesis and remodeling are tightly regulated. Here, we discovered that PG homeostasis is intimately linked to the levels of activation of the Cpx system, an envelope stress response system traditionally viewed as being involved in protein quality control in the envelope. We first show that Cpx is activated when PG integrity is challenged and that this activation provides protection to cells exposed to antibiotics inhibiting PG synthesis. By rerouting the outer membrane lipoprotein NlpE, a known Cpx activator, to a different envelope subcompartment, we managed to manipulate Cpx activation levels. We found that Cpx overactivation leads to aberrant cellular morphologies, to an increased sensitivity to β-lactams, and to dramatic division and growth defects, consistent with a loss of PG homeostasis. Remarkably, these phenotypes were largely abrogated by the deletion of ldtD, a Cpx-induced gene involved in noncanonical PG cross-linkage, suggesting that this transpeptidase is an important link between PG homeostasis and the Cpx system. Altogether our data show that fine-tuning of an envelope quality control system constitutes an important layer of regulation of the highly organized cell wall structure. PMID:26908573

  10. 10 CFR 13.24 - Protective order.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Protective order. 13.24 Section 13.24 Energy NUCLEAR REGULATORY COMMISSION PROGRAM FRAUD CIVIL REMEDIES § 13.24 Protective order. (a) A party or a prospective... information enclosed in sealed envelopes to be opened as directed by the ALJ....

  11. Protective tubes for sodium heated water tubes

    DOEpatents

    Essebaggers, Jan

    1979-01-01

    A heat exchanger in which water tubes are heated by liquid sodium which minimizes the results of accidental contact between the water and the sodium caused by failure of one or more of the water tubes. A cylindrical protective tube envelopes each water tube and the sodium flows axially in the annular spaces between the protective tubes and the water tubes.

  12. Envelope as Climate Negotiator: Evaluating adaptive building envelope's capacity to moderate indoor climate and energy

    NASA Astrophysics Data System (ADS)

    Erickson, James

    Through manipulation of adaptable opportunities available within a given environment, individuals become active participants in managing personal comfort requirements, by exercising control over their comfort without the assistance of mechanical heating and cooling systems. Similarly, continuous manipulation of a building skin's form, insulation, porosity, and transmissivity qualities exerts control over the energy exchanged between indoor and outdoor environments. This research uses four adaptive response variables in a modified software algorithm to explore an adaptive building skin's potential in reacting to environmental stimuli with the purpose of minimizing energy use without sacrificing occupant comfort. Results illustrate that significant energy savings can be realized with adaptive envelopes over static building envelopes even under extreme summer and winter climate conditions; that the magnitude of these savings are dependent on climate and orientation; and that occupant thermal comfort can be improved consistently over comfort levels achieved by optimized static building envelopes. The resulting adaptive envelope's unique climate-specific behavior could inform designers in creating an intelligent kinetic aesthetic that helps facilitate adaptability and resiliency in architecture.

  13. Tissue specificity in the nuclear envelope supports its functional complexity

    PubMed Central

    de las Heras, Jose I; Meinke, Peter; Batrakou, Dzmitry G; Srsen, Vlastimil; Zuleger, Nikolaj; Kerr, Alastair RW; Schirmer, Eric C

    2013-01-01

    Nuclear envelope links to inherited disease gave the conundrum of how mutations in near-ubiquitous proteins can yield many distinct pathologies, each focused in different tissues. One conundrum-resolving hypothesis is that tissue-specific partner proteins mediate these pathologies. Such partner proteins may have now been identified with recent proteome studies determining nuclear envelope composition in different tissues. These studies revealed that the majority of the total nuclear envelope proteins are tissue restricted in their expression. Moreover, functions have been found for a number these tissue-restricted nuclear envelope proteins that fit with mechanisms proposed to explain how the nuclear envelope could mediate disease, including defects in mechanical stability, cell cycle regulation, signaling, genome organization, gene expression, nucleocytoplasmic transport, and differentiation. The wide range of functions to which these proteins contribute is consistent with not only their involvement in tissue-specific nuclear envelope disease pathologies, but also tissue evolution. PMID:24213376

  14. On-Line Safe Flight Envelope Determination for Impaired Aircraft

    NASA Technical Reports Server (NTRS)

    Lombaerts, Thomas; Schuet, Stefan; Acosta, Diana; Kaneshige, John

    2015-01-01

    The design and simulation of an on-line algorithm which estimates the safe maneuvering envelope of aircraft is discussed in this paper. The trim envelope is estimated using probabilistic methods and efficient high-fidelity model based computations of attainable equilibrium sets. From this trim envelope, a robust reachability analysis provides the maneuverability limitations of the aircraft through an optimal control formulation. Both envelope limits are presented to the flight crew on the primary flight display. In the results section, scenarios are considered where this adaptive algorithm is capable of computing online changes to the maneuvering envelope due to impairment. Furthermore, corresponding updates to display features on the primary flight display are provided to potentially inform the flight crew of safety critical envelope alterations caused by the impairment.

  15. Groupwise Dimension Reduction via Envelope Method

    PubMed Central

    Guo, Zifang; Li, Lexin; Lu, Wenbin; Li, Bing

    2016-01-01

    The family of sufficient dimension reduction (SDR) methods that produce informative combinations of predictors, or indices, are particularly useful for high dimensional regression analysis. In many such analyses, it becomes increasingly common that there is available a priori subject knowledge of the predictors; e.g., they belong to different groups. While many recent SDR proposals have greatly expanded the scope of the methods’ applicability, how to effectively incorporate the prior predictor structure information remains a challenge. In this article, we aim at dimension reduction that recovers full regression information while preserving the predictor group structure. Built upon a new concept of the direct sum envelope, we introduce a systematic way to incorporate the group information in most existing SDR estimators. As a result, the reduction outcomes are much easier to interpret. Moreover, the envelope method provides a principled way to build a variety of prior structures into dimension reduction analysis. Both simulations and real data analysis demonstrate the competent numerical performance of the new method. PMID:26973362

  16. Transparent Helium in Stripped Envelope Supernovae

    NASA Astrophysics Data System (ADS)

    Piro, Anthony L.; Morozova, Viktoriya S.

    2014-09-01

    Using simple arguments based on photometric light curves and velocity evolution, we propose that some stripped envelope supernovae (SNe) show signs that a significant fraction of their helium is effectively transparent. The main pieces of evidence are the relatively low velocities with little velocity evolution, as are expected deep inside an exploding star, along with temperatures that are too low to ionize helium. This means that the helium should not contribute to the shaping of the main SN light curve, and thus the total helium mass may be difficult to measure from simple light curve modeling. Conversely, such modeling may be more useful for constraining the mass of the carbon/oxygen core of the SN progenitor. Other stripped envelope SNe show higher velocities and larger velocity gradients, which require an additional opacity source (perhaps the mixing of heavier elements or radioactive nickel) to prevent the helium from being transparent. We discuss ways in which similar analysis can provide insights into the differences and similarities between SNe Ib and Ic, which will lead to a better understanding of their respective formation mechanisms.

  17. Sensitivity to changes in amplitude envelope

    NASA Astrophysics Data System (ADS)

    Gallun, Erick; Hafter, Ervin R.; Bonnel, Anne-Marie

    2002-05-01

    Detection of a brief increment in a tonal pedestal is less well predicted by energy-detection (e.g., Macmillan, 1973; Bonnel and Hafter, 1997) than by sensitivity to changes in the stimulus envelope. As this implies a mechanism similar to an envelope extractor (Viemeister, 1979), sinusoidal amplitude modulation was used to mask a single ramped increment (10, 45, or 70 ms) added to a 1000-ms pedestal with carrier frequency (cf)=477 Hz. As in informational masking (Neff, 1994) and ``modulation-detection interference'' (Yost and Sheft, 1989), interference occurred with masker cfs of 477 and 2013 Hz. While slight masking was found with modulation frequencies (mfs) from 16 to 96 Hz, masking grew inversely with still lower mfs, being greatest for mf=4 Hz. This division is reminiscent of that said to separate sensations of ``roughness'' and ``beats,'' respectively (Terhardt, 1974), with the latter also being related to durations associated with auditory groupings in music and speech. Importantly, this result held for all of the signal durations and onset-offset ramps tested, suggesting that an increment on a pedestal is treated as a single auditory object whose detection is most difficult in the presence of other objects (in this case, ``beats'').

  18. Solution of K-V envelope equations

    SciTech Connect

    Anderson, O.A.

    1995-04-01

    The envelope equations for a KV beam with space charge have been analyzed systematically by an e expansion followed by integrations. The focusing profile as a function of axial length is assumed to be symmetric but otherwise arbitrary. Given the bean current, emittance, and peak focusing field, we find the envelopes a(s) and b(s) and obtain , a{sub max}, {sigma}, and {sigma}{sub 0}. Explicit results are presented for various truncations of the expansion. The zeroth order results correspond to those from the well-known smooth approximation; the same convenient format is retained for the higher order cases. The first order results, involving single correction terms, give 3--10 times better accuracy and are good to {approximately}1% at {sigma}{sub 0} = 70{degree}. Third order gives a factor of 10--30 improvement over the smooth approximation and derived quantities accurate to {approximately}1% at {sigma}{sub 0} = 112 {degree}. The first order expressions are convenient design tools. They lend themselves to variable energy problems and have been applied to the design, construction, and testing of ESQ accelerators at LBL.

  19. TRANSPARENT HELIUM IN STRIPPED ENVELOPE SUPERNOVAE

    SciTech Connect

    Piro, Anthony L.; Morozova, Viktoriya S.

    2014-09-01

    Using simple arguments based on photometric light curves and velocity evolution, we propose that some stripped envelope supernovae (SNe) show signs that a significant fraction of their helium is effectively transparent. The main pieces of evidence are the relatively low velocities with little velocity evolution, as are expected deep inside an exploding star, along with temperatures that are too low to ionize helium. This means that the helium should not contribute to the shaping of the main SN light curve, and thus the total helium mass may be difficult to measure from simple light curve modeling. Conversely, such modeling may be more useful for constraining the mass of the carbon/oxygen core of the SN progenitor. Other stripped envelope SNe show higher velocities and larger velocity gradients, which require an additional opacity source (perhaps the mixing of heavier elements or radioactive nickel) to prevent the helium from being transparent. We discuss ways in which similar analysis can provide insights into the differences and similarities between SNe Ib and Ic, which will lead to a better understanding of their respective formation mechanisms.

  20. Precision envelope detector and linear rectifier circuitry

    DOEpatents

    Davis, Thomas J.

    1980-01-01

    Disclosed is a method and apparatus for the precise linear rectification and envelope detection of oscillatory signals. The signal is applied to a voltage-to-current converter which supplies current to a constant current sink. The connection between the converter and the sink is also applied through a diode and an output load resistor to a ground connection. The connection is also connected to ground through a second diode of opposite polarity from the diode in series with the load resistor. Very small amplitude voltage signals applied to the converter will cause a small change in the output current of the converter, and the difference between the output current and the constant current sink will be applied either directly to ground through the single diode, or across the output load resistor, dependent upon the polarity. Disclosed also is a full-wave rectifier utilizing constant current sinks and voltage-to-current converters. Additionally, disclosed is a combination of the voltage-to-current converters with differential integrated circuit preamplifiers to boost the initial signal amplitude, and with low pass filtering applied so as to obtain a video or signal envelope output.

  1. Glycolate transporter of the pea chloroplast envelope

    SciTech Connect

    Howitz, K.T.

    1985-01-01

    The discovery of a glycolate transporter in the pea (Pisum sativum) chloroplast envelope is described. Several novel silicone oil centrifugation methods were developed to resolve the initial rate kinetics of (/sup 14/C)glycolate transport by isolated, intact pea chloroplasts. Chloroplast glycolate transport was found to be carrier mediated. Transport rates saturated with increasing glycolate concentration. N-Ethylmaleimide (NEM) pretreatment of chloroplasts inhibited transport, an inhibition prevented by glycolate. Glycolate distributed across the envelope in a way which equalized stromal and medium glycolic acid concentrations, limiting possible transport mechanisms to facilitated glycolic acid diffusion, proton symport or hydroxyl antiport. The effects of stomal and medium pH's on the K/sub m/ and V/sub max/ fit the predictions of mobile carrier kinetic models of hydroxyl antiport or proton symport (H/sup +/ binds first). The carrier mediated transport was fast enough to be consistent with in vivo rates of photorespiration. The 2-hydroxymonocarboxylates, glycerate, lactate and glyoxylate are competitive inhibitors of chloroplast glycolate uptake. Glyoxylate, D-lactate and D-glycerate cause glycolate counterflow, indicating that they are also substrates of the glycolate carrier. This finding was confirmed for D-glycerate by studies on glycolate effects on (1-/sup 14/C)D-glycerate transport.

  2. Coat as a Dagger: The Use of Capsid Proteins to Perforate Membranes during Non-Enveloped DNA Viruses Trafficking

    PubMed Central

    Bilkova, Eva; Forstova, Jitka; Abrahamyan, Levon

    2014-01-01

    To get access to the replication site, small non-enveloped DNA viruses have to cross the cell membrane using a limited number of capsid proteins, which also protect the viral genome in the extracellular environment. Most of DNA viruses have to reach the nucleus to replicate. The capsid proteins involved in transmembrane penetration are exposed or released during endosomal trafficking of the virus. Subsequently, the conserved domains of capsid proteins interact with cellular membranes and ensure their efficient permeabilization. This review summarizes our current knowledge concerning the role of capsid proteins of small non-enveloped DNA viruses in intracellular membrane perturbation in the early stages of infection. PMID:25055856

  3. An Accurate In Vitro Model of the E. coli Envelope

    PubMed Central

    Clifton, Luke A.; Holt, Stephen A.; Hughes, Arwel V.; Daulton, Emma L.; Arunmanee, Wanatchaporn; Heinrich, Frank; Khalid, Syma; Jefferies, Damien; Charlton, Timothy R.; Webster, John R. P.; Kinane, Christian J.

    2015-01-01

    Abstract Gram‐negative bacteria are an increasingly serious source of antibiotic‐resistant infections, partly owing to their characteristic protective envelope. This complex, 20 nm thick barrier includes a highly impermeable, asymmetric bilayer outer membrane (OM), which plays a pivotal role in resisting antibacterial chemotherapy. Nevertheless, the OM molecular structure and its dynamics are poorly understood because the structure is difficult to recreate or study in vitro. The successful formation and characterization of a fully asymmetric model envelope using Langmuir–Blodgett and Langmuir–Schaefer methods is now reported. Neutron reflectivity and isotopic labeling confirmed the expected structure and asymmetry and showed that experiments with antibacterial proteins reproduced published in vivo behavior. By closely recreating natural OM behavior, this model provides a much needed robust system for antibiotic development. PMID:27346898

  4. An accurate in vitro model of the E. coli envelope.

    PubMed

    Clifton, Luke A; Holt, Stephen A; Hughes, Arwel V; Daulton, Emma L; Arunmanee, Wanatchaporn; Heinrich, Frank; Khalid, Syma; Jefferies, Damien; Charlton, Timothy R; Webster, John R P; Kinane, Christian J; Lakey, Jeremy H

    2015-10-01

    Gram-negative bacteria are an increasingly serious source of antibiotic-resistant infections, partly owing to their characteristic protective envelope. This complex, 20 nm thick barrier includes a highly impermeable, asymmetric bilayer outer membrane (OM), which plays a pivotal role in resisting antibacterial chemotherapy. Nevertheless, the OM molecular structure and its dynamics are poorly understood because the structure is difficult to recreate or study in vitro. The successful formation and characterization of a fully asymmetric model envelope using Langmuir-Blodgett and Langmuir-Schaefer methods is now reported. Neutron reflectivity and isotopic labeling confirmed the expected structure and asymmetry and showed that experiments with antibacterial proteins reproduced published in vivo behavior. By closely recreating natural OM behavior, this model provides a much needed robust system for antibiotic development. PMID:26331292

  5. Human immunodeficiency virus type 1 infection despite prior immunization with a recombinant envelope vaccine regimen.

    PubMed Central

    McElrath, M J; Corey, L; Greenberg, P D; Matthews, T J; Montefiori, D C; Rowen, L; Hood, L; Mullins, J I

    1996-01-01

    With efforts underway to develop a preventive human immunodeficiency virus type 1 (HIV-1) vaccine, it remains unclear which immune responses are sufficient to protect against infection and whether prior HIV-1 immunity can alter the subsequent course of HIV-1 infection. We investigated these issues in the context of a volunteer who received six HIV-1LAI envelope immunizations and 10 weeks thereafter acquired HIV-1 infection through a high-risk sexual exposure. In contrast to nonvaccinated acutely infected individuals, anamnestic HIV-1-specific B- and T-cell responses appeared within 3 weeks in this individual, and neutralizing antibody preceded CD8+ cytotoxic responses. Despite an asymptomatic course and an initial low level of detectable infectious virus, a progressive CD4+ cell decline and dysfunction occurred within 2 years. Although vaccination elicited immunity to HIV-1 envelope, which was recalled upon HIV-1 exposure, it was insufficient to prevent infection and subsequent immunodeficiency. Images Fig. 2 PMID:8633000

  6. Defining the Core Proteome of the Chloroplast Envelope Membranes

    PubMed Central

    Simm, Stefan; Papasotiriou, Dimitrios G.; Ibrahim, Mohamed; Leisegang, Matthias S.; Müller, Bernd; Schorge, Tobias; Karas, Michael; Mirus, Oliver; Sommer, Maik S.; Schleiff, Enrico

    2013-01-01

    High-throughput protein localization studies require multiple strategies. Mass spectrometric analysis of defined cellular fractions is one of the complementary approaches to a diverse array of cell biological methods. In recent years, the protein content of different cellular (sub-)compartments was approached. Despite of all the efforts made, the analysis of membrane fractions remains difficult, in that the dissection of the proteomes of the envelope membranes of chloroplasts or mitochondria is often not reliable because sample purity is not always warranted. Moreover, proteomic studies are often restricted to single (model) species, and therefore limited in respect to differential individual evolution. In this study we analyzed the chloroplast envelope proteomes of different plant species, namely, the individual proteomes of inner and outer envelope (OE) membrane of Pisum sativum and the mixed envelope proteomes of Arabidopsis thaliana and Medicago sativa. The analysis of all three species yielded 341 identified proteins in total, 247 of them being unique. 39 proteins were genuine envelope proteins found in at least two species. Based on this and previous envelope studies we defined the core envelope proteome of chloroplasts. Comparing the general overlap of the available six independent studies (including ours) revealed only a number of 27 envelope proteins. Depending on the stringency of applied selection criteria we found 231 envelope proteins, while less stringent criteria increases this number to 649 putative envelope proteins. Based on the latter we provide a map of the outer and inner envelope core proteome, which includes many yet uncharacterized proteins predicted to be involved in transport, signaling, and response. Furthermore, a foundation for the functional characterization of yet unidentified functions of the inner and OE for further analyses is provided. PMID:23390424

  7. Fullerenes and fulleranes in circumstellar envelopes

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Kwok, Sun; Sadjadi, SeyedAbdolreza

    2016-07-01

    Three decades of search have recently led to convincing discoveries of cosmic fullerenes. The presence of C60 and C+ 60 in both circumstellar and interstellar environments suggests that these molecules and their derivatives can be efficiently formed in circumstellar envelopes and survive in harsh conditions. Detailed analysis of the infrared bands from fullerenes and their connections with the local properties can provide valuable information on the physical conditions and chemical processes that occurred in the late stages of stellar evolution. The identification of C+ 60 as the carrier of four diffuse interstellar bands (DIBs) suggests that fullerene- related compounds are abundant in interstellar space and are essential for resolving the DIB mystery. Experiments have revealed a high hydrogenation rate when C60 is exposed to atomic hydrogen, motivating the attempt to search for cosmic fulleranes. In this paper, we present a short review of current knowledge of cosmic fullerenes and fulleranes and briefly discuss the implications on circumstellar chemistry.

  8. SO2 and SO in circumstellar envelopes

    NASA Astrophysics Data System (ADS)

    Guilloteau, S.; Lucas, R.; Omont, A.; Nguyen-Q-Rieu

    1986-09-01

    After its first detection in circumstellar envelopes (Lucas et al. 1986) SO2 has been systematically searched for with the IRAM 30-m telescope. It has been found in 3 new stars, with very strong lines in OH 231.8+4.2 (TA* ≈ 0.7 - 1.4K, Trot ≈ 25K, Δv ≈ 80 km s-1, TA*(SO2) > TA*(CO) ) and relatively strong ones in OH 26.5+0.6. SO has been detected for the first time in a circumstellar shell, in OH 231.8+4.2. H13CN has been observed in the same star, suggesting a very large abundance of 13C.

  9. Pushing the Envelope of Extreme Space Weather

    NASA Astrophysics Data System (ADS)

    Pesnell, W. D.

    2014-12-01

    Extreme Space Weather events are large solar flares or geomagnetic storms, which can cost billions of dollars to recover from. We have few examples of such events; the Carrington Event (the solar superstorm) is one of the few that had superlatives in three categories: size of solar flare, drop in Dst, and amplitude of aa. Kepler observations show that stars similar to the Sun can have flares releasing millions of times more energy than an X-class flare. These flares and the accompanying coronal mass ejections could strongly affect the atmosphere surrounding a planet. What level of solar activity would be necessary to strongly affect the atmosphere of the Earth? Can we map out the envelope of space weather along the evolution of the Sun? What would space weather look like if the Sun stopped producing a magnetic field? To what extreme should Space Weather go? These are the extremes of Space Weather explored in this talk.

  10. Cricket team selection using data envelopment analysis.

    PubMed

    Amin, Gholam R; Sharma, Sujeet Kumar

    2014-01-01

    This paper suggests a new method for cricket team selection using data envelopment analysis (DEA). We propose a DEA formulation for evaluation of cricket players in different capabilities using multiple outputs. This evaluation determines efficient and inefficient cricket players and ranks them on the basis of DEA scores. The ranking can be used to choose the required number of players for a cricket team in each cricketing capability. A real dataset, Indian Premier League 4 (IPL 2011), cricket players having various capabilities is used to choose the best cricket team. The proposed method has the advantage of considering multiple factors related to the performance of players in multiple capabilities collected from IPL 4 and aggregates their scores using a linear programming DEA model. This DEA Aggregation gives the scores of players objectively instead of using subjective computations. The proposed DEA method can be used to form a national cricket team from several clubs or a team of top cricketers. PMID:24444231

  11. LINCing complex functions at the nuclear envelope

    PubMed Central

    Rothballer, Andrea; Schwartz, Thomas U.; Kutay, Ulrike

    2013-01-01

    Linker of nucleoskeleton and cytoskeleton (LINC) complexes span the double membrane of the nuclear envelope (NE) and physically connect nuclear structures to cytoskeletal elements. LINC complexes are envisioned as force transducers in the NE, which facilitate processes like nuclear anchorage and migration, or chromosome movements. The complexes are built from members of two evolutionary conserved families of transmembrane (TM) proteins, the SUN (Sad1/UNC-84) domain proteins in the inner nuclear membrane (INM) and the KASH (Klarsicht/ANC-1/SYNE homology) domain proteins in the outer nuclear membrane (ONM). In the lumen of the NE, the SUN and KASH domains engage in an intimate assembly to jointly form a NE bridge. Detailed insights into the molecular architecture and atomic structure of LINC complexes have recently revealed the molecular basis of nucleo-cytoskeletal coupling. They bear important implications for LINC complex function and suggest new potential and as yet unexplored roles, which the complexes may play in the cell. PMID:23324460

  12. Antireflection Pyrex envelopes for parabolic solar collectors

    NASA Astrophysics Data System (ADS)

    McCollister, H. L.; Pettit, R. B.

    1983-11-01

    Antireflective (AR) coatings, applied to the glass envelopes used in parabolic trough solar collectors around the receiver tube in order to reduce thermal losses, can increase solar transmittance by 7 percent. An AR surface has been formed on Pyrex by first heat treating the glass to cause a compositional phase separation, removing a surface layer after heat treatment through the use of a preetching solution, and finally etching in a solution that contains hydrofluorosilic and ammonium bifluoride acids. AR-coated samples with solar transmittance values of more than 0.97, by comparison to an untreated sample value of 0.91, have been obtained for the 560-630 C range of heat treatment temperatures. Optimum values have also been determined for the other processing parameters.

  13. Asymmetric Accretion Flows within a Common Envelope

    NASA Astrophysics Data System (ADS)

    MacLeod, Morgan; Ramirez-Ruiz, Enrico

    2015-04-01

    This paper examines flows in the immediate vicinity of stars and compact objects dynamically inspiralling within a common envelope (CE). Flow in the vicinity of the embedded object is gravitationally focused, leading to drag and potentially to gas accretion. This process has been studied numerically and analytically in the context of Hoyle-Lyttleton accretion (HLA). Yet, within a CE, accretion structures may span a large fraction of the envelope radius, and in so doing sweep across a substantial radial gradient of density. We quantify these gradients using detailed stellar evolution models for a range of CE encounters. We provide estimates of typical scales in CE encounters that involve main sequence stars, white dwarfs, neutron stars, and black holes with giant-branch companions of a wide range of masses. We apply these typical scales to hydrodynamic simulations of three-dimensional HLA with an upstream density gradient. This density gradient breaks the symmetry that defines HLA flow, and imposes an angular momentum barrier to accretion. Material that is focused into the vicinity of the embedded object thus may not be able to accrete. As a result, accretion rates drop dramatically, by one to two orders of magnitude, while drag rates are only mildly affected. We provide fitting formulae to the numerically derived rates of drag and accretion as a function of the density gradient. The reduced ratio of accretion to drag suggests that objects that can efficiently gain mass during CE evolution, such as black holes and neutron stars, may grow less than implied by the HLA formalism.

  14. New developments in an old strategy: heterologous vector primes and envelope protein boosts in HIV vaccine design.

    PubMed

    Musich, Thomas; Robert-Guroff, Marjorie

    2016-08-01

    Prime/boost vaccination strategies for HIV/SIV vaccine development have been used since the early 1990s and have become an established method for eliciting cell and antibody mediated immunity. Here we focus on induction of protective antibodies, both broadly neutralizing and non-neutralizing, with the viral envelope being the key target antigen. Prime/boost approaches are complicated by the diversity of autologous and heterologous priming vectors, and by various forms of envelope booster immunogens, many still in development as structural studies aim to design stable constructs with exposure of critical epitopes for protective antibody elicitation. This review discusses individual vaccine components, reviews recent prime/boost strategies and their outcomes, and highlights complicating factors arising as greater knowledge concerning induction of adaptive, protective immunity is acquired. PMID:26910195

  15. Rolling bearing feature frequency extraction using extreme average envelope decomposition

    NASA Astrophysics Data System (ADS)

    Shi, Kunju; Liu, Shulin; Jiang, Chao; Zhang, Hongli

    2015-12-01

    The vibration signal contains a wealth of sensitive information which reflects the running status of the equipment. It is one of the most important steps for precise diagnosis to decompose the signal and extracts the effective information properly. The traditional classical adaptive signal decomposition method, such as EMD, exists the problems of mode mixing, low decomposition accuracy etc. Aiming at those problems, EAED(extreme average envelope decomposition) method is presented based on EMD. EAED method has three advantages. Firstly, it is completed through midpoint envelopment method rather than using maximum and minimum envelopment respectively as used in EMD. Therefore, the average variability of the signal can be described accurately. Secondly, in order to reduce the envelope errors during the signal decomposition, replacing two envelopes with one envelope strategy is presented. Thirdly, the similar triangle principle is utilized to calculate the time of extreme average points accurately. Thus, the influence of sampling frequency on the calculation results can be significantly reduced. Experimental results show that EAED could separate out single frequency components from a complex signal gradually. EAED could not only isolate three kinds of typical bearing fault characteristic of vibration frequency components but also has fewer decomposition layers. EAED replaces quadratic enveloping to an envelope which ensuring to isolate the fault characteristic frequency under the condition of less decomposition layers. Therefore, the precision of signal decomposition is improved.

  16. Data Envelopment Analysis: Measurement of Educational Efficiency in Texas

    ERIC Educational Resources Information Center

    Carter, Lacy

    2012-01-01

    The purpose of this study was to examine the efficiency of Texas public school districts through Data Envelopment Analysis. The Data Envelopment Analysis estimation method calculated and assigned efficiency scores to each of the 931 school districts considered in the study. The efficiency scores were utilized in two phases. First, the school…

  17. Stochastic averaging of energy envelope of Preisach hysteretic systems

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Ying, Z. G.; Zhu, W. Q.

    2009-04-01

    A new stochastic averaging technique for analyzing the response of a single-degree-of-freedom Preisach hysteretic system with nonlocal memory under stationary Gaussian stochastic excitation is proposed. An equivalent nonhysteretic nonlinear system with amplitude-envelope-dependent damping and stiffness is firstly obtained from the given system by using the generalized harmonic balance technique. The relationship between the amplitude envelope and the energy envelope is then established, and the equivalent damping and stiffness coefficients are expressed as functions of the energy envelope. The available range of the yielding force of the system is extended and also the strong nonlinear stiffness of the system is incorporated so as to improve the response prediction. Finally, an averaged Itô stochastic differential equation for the energy envelope of the system as one-dimensional diffusion process is derived by using the stochastic averaging method of energy envelope, and the Fokker-Planck-Kolmogorov equation associated with the averaged Itô equation is solved to obtain stationary probability densities of the energy envelope and amplitude envelope. The approximate solutions are validated by using the Monte Carlo simulation.

  18. 14 CFR 29.87 - Height-velocity envelope.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Height-velocity envelope. 29.87 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Flight Performance § 29.87 Height-velocity envelope. (a) If there is any combination of height and forward velocity (including hover) under which a...

  19. 14 CFR 29.1517 - Limiting height-speed envelope.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Limiting height-speed envelope. 29.1517... Operating Limitations § 29.1517 Limiting height-speed envelope. For Category A rotorcraft, if a range of heights exists at any speed, including zero, within which it is not possible to make a safe...

  20. 14 CFR 29.87 - Height-velocity envelope.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Height-velocity envelope. 29.87 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Flight Performance § 29.87 Height-velocity envelope. (a) If there is any combination of height and forward velocity (including hover) under which a...

  1. 14 CFR 29.1517 - Limiting height-speed envelope.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Limiting height-speed envelope. 29.1517... Operating Limitations § 29.1517 Limiting height-speed envelope. For Category A rotorcraft, if a range of heights exists at any speed, including zero, within which it is not possible to make a safe...

  2. 14 CFR 29.1517 - Limiting height-speed envelope.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Limiting height-speed envelope. 29.1517... Operating Limitations § 29.1517 Limiting height-speed envelope. For Category A rotorcraft, if a range of heights exists at any speed, including zero, within which it is not possible to make a safe...

  3. 14 CFR 29.87 - Height-velocity envelope.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Height-velocity envelope. 29.87 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Flight Performance § 29.87 Height-velocity envelope. (a) If there is any combination of height and forward velocity (including hover) under which a...

  4. 14 CFR 29.87 - Height-velocity envelope.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Height-velocity envelope. 29.87 Section 29.87 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Flight Performance § 29.87 Height-velocity envelope. (a) If there is any combination of height...

  5. Nuclear Envelopes Properties and Physical Interactions with Nucleoplasm

    NASA Astrophysics Data System (ADS)

    Discher, Dennis; Dahl, Kris; Wilson, Kathy

    2004-03-01

    Given the stresses imposed on a cell and its organelles and the nuclear envelope's important role as a barrier between cytoplasm and nucleoplasm, we sought to measure and model mechanical properties of isolated nuclear envelopes. Xenopus laevis oocyte (XO) nuclei are primarily used since they have been widely studied in many fields as model systems for nuclear structure and function. We manipulate the nuclear envelope by both osmotic swelling and micromanipulation to determine an effective elastic modulus. We show the envelope properties are independent of the effects of the nucleoplasm. Micropipette aspiration of XO nuclei gives an effective elastic modulus of the nuclear envelope of 250 mN/m with similar results obtained from isotropic swelling of XO nuclear envelopes. The results suggest that these nuclear envelopes have relatively homogeneous properties and are highly elastic, sustaining strains of 50-100Square-net simulations and comparisons to polymer network models suggests that XO nuclear envelope physical properties are dominated by the lamin network. If applicable to nuclei in other cells, a "pre-compressed" state envisioned here would allow for significant shear flexibility, especially important for motile cells whose nuclei need to rapidly deform.

  6. 14 CFR 27.87 - Height-speed envelope.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Height-speed envelope. 27.87 Section 27.87... STANDARDS: NORMAL CATEGORY ROTORCRAFT Flight Performance § 27.87 Height-speed envelope. (a) If there is any combination of height and forward speed (including hover) under which a safe landing cannot be made under...

  7. 14 CFR 29.1517 - Limiting height-speed envelope.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Limiting height-speed envelope. 29.1517... Operating Limitations § 29.1517 Limiting height-speed envelope. For Category A rotorcraft, if a range of heights exists at any speed, including zero, within which it is not possible to make a safe...

  8. 14 CFR 29.1517 - Limiting height-speed envelope.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Limiting height-speed envelope. 29.1517... Operating Limitations § 29.1517 Limiting height-speed envelope. For Category A rotorcraft, if a range of heights exists at any speed, including zero, within which it is not possible to make a safe...

  9. Endocytosis in Saccharomyces cerevisiae: internalization of enveloped viruses into spheroplasts.

    PubMed Central

    Makarow, M

    1985-01-01

    When vesicular stomatitis virus was incubated with Saccharomyces cerevisiae spheroplasts at 37 degrees C, part of the virus was internalized by the spheroplasts as shown by the following criteria. (i) The spheroplast-associated virus was protected from proteinase K digestion, which releases surface-bound virus by degrading the envelope glycoproteins. (ii) The spheroplast-associated virus was resistant to mild Triton X-100 treatment, which readily solubilizes the virus. The same results were obtained with Semliki Forest virus. Internalization of the two viruses followed linear kinetics up to 90 min at 37 degrees C. Internalization was concentration- and temperature-dependent. At 11 degrees C no uptake could be detected for at least 2 h. Homogenization and organelle fractionation protocols were designed for the S. cerevisiae spheroplasts to study the compartments into which the virions were internalized. Three compartments containing both marker viruses could be separated in density gradients. One coincided with vacuole markers, one banded at a slightly higher and one at a similar density to the plasma membrane markers. Thus, S. cerevisiae spheroplasts appear to have the capability of endocytosing particulate markers like viruses. The companion paper describes internalization of two soluble macromolecules, alpha-amylase and fluorescent dextran, into intact cells. Images Fig. 2. Fig. 4. PMID:2992948

  10. Envelope enhancement increases cortical sensitivity to interaural envelope delays with acoustic and electric hearing.

    PubMed

    Hartley, Douglas E H; Isaiah, Amal

    2014-01-01

    Evidence from human psychophysical and animal electrophysiological studies suggests that sensitivity to interaural time delay (ITD) in the modulating envelope of a high-frequency carrier can be enhanced using half-wave rectified stimuli. Recent evidence has shown potential benefits of equivalent electrical stimuli to deaf individuals with bilateral cochlear implants (CIs). In the current study we assessed the effects of envelope shape on ITD sensitivity in the primary auditory cortex of normal-hearing ferrets, and profoundly-deaf animals with bilateral CIs. In normal-hearing animals, cortical sensitivity to ITDs (±1 ms in 0.1-ms steps) was assessed in response to dichotically-presented i) sinusoidal amplitude-modulated (SAM) and ii) half-wave rectified (HWR) tones (100-ms duration; 70 dB SPL) presented at the best-frequency of the unit over a range of modulation frequencies. In separate experiments, adult ferrets were deafened with neomycin administration and bilaterally-implanted with intra-cochlear electrode arrays. Electrically-evoked auditory brainstem responses (EABRs) were recorded in response to bipolar electrical stimulation of the apical pair of electrodes with singe biphasic current pulses (40 µs per phase) over a range of current levels to measure hearing thresholds. Subsequently, we recorded cortical sensitivity to ITDs (±800 µs in 80-µs steps) within the envelope of SAM and HWR biphasic-pulse trains (40 µs per phase; 6000 pulses per second, 100-ms duration) over a range of modulation frequencies. In normal-hearing animals, nearly a third of cortical neurons were sensitive to envelope-ITDs in response to SAM tones. In deaf animals with bilateral CI, the proportion of ITD-sensitive cortical neurons was approximately a fifth in response to SAM pulse trains. In normal-hearing and deaf animals with bilateral CI the proportion of ITD sensitive units and neural sensitivity to ITDs increased in response to HWR, compared with SAM stimuli. Consequently

  11. Laboratory tests of short intense envelope solitons

    NASA Astrophysics Data System (ADS)

    Slunyaev, A.; Clauss, G. F.; Klein, M.; Onorato, M.

    2012-04-01

    Stability of short intense nonlinear wave groups propagating over deep water is tested in laboratory runs which are performed in the facility of the Technical University of Berlin. The strongly nonlinear simulation of quasi-steady nonlinear wave groups within the framework of the Euler equations is used to generate the surface elevation time series at a border of the water tank. Besides, the exact analytic solution of the nonlinear Schrodinger equation is used for this purpose. The time series is then transformed to a wave maker signal with use of a designed transfer algorithm. Wave group propagation along the tank was recorded by 4 distant gauges and by an array of 6 densely situated gauges. This setup allows to consider the wave evolution from 10 to 85 m from the wave maker, and to obtain the wave envelope shape directly from the instrumental data. In the experiments wave groups were characterized by the steepness values up to kAcr < 0.32 and kAtr < 0.24, where k is the mean wavenumber, Acr is the crest amplitude, and Atr is the trough amplitude; and the maximum local wave slope was up to 0.34. Wave breaking phenomenon was not observed in the experiments. Different mean wave numbers and wave groups of different intensities were considered. In some cases the wave groups exhibit noticeable radiation in the course of propagation, though the groups are not dispersed fully. The effect of finite water depth is found to be significant on the wave group stability. Intense wave groups have shorter time of adjustment, what in some sense may help them to manifest their individuality clearer. The experimental tests confirm recent numerical simulations of fully nonlinear equations, where very steep stable single and interacting nonlinear wave groups were reported [1-3]. The quasi-stationary wave groups observed in numerical and laboratory experiments are strongly nonlinear analogues of the nonlinear Schrodinger envelope solitons. The results emphasize the importance of long

  12. Vitelline envelope, chorion, and micropyle of Fundulus heteroclitus eggs

    SciTech Connect

    Dumont, J.N.; Brummet, A.R.

    1980-01-01

    The architecture and transformation of the vitelline envelope of the developing oocyte into the chorion of the mature egg of Fundulus heteroclitus have been examined by scanning and transmission electron microscopy. The mature vitelline envelope is structurally complex and consists of about nine strata. The envelope is penetrated by pore canals that contain microvilli arising from the oocyte and macrovilli from follicle cells. During the envelope's transformation into the chorion, the pore canals are lost and the envelope becomes more fibrous and compact and its stratified nature less apparent. The micropyle, or pore, through which the sperm gains access to the enclosed egg is located at the bottom of a small funnel-shaped depression in the envelope. Internally, the micropyle opens on the apex of a cone-like elevation of the chorion. During the development of the envelope, structured chorionic fibrils, the components of which are presumed to be synthesized by the follicle cells, become attached to its surface. These chorionic fibrils are thought to aid in the attachment of the egg to the substratum and perhaps to help prevent water loss during low tides when the egg may be exposed.

  13. Close Stellar Binary Systems by Grazing Envelope Evolution

    NASA Astrophysics Data System (ADS)

    Soker, Noam

    2015-02-01

    I suggest a spiral-in process in which a stellar companion grazes the envelope of a giant star while both the orbital separation and the giant radius shrink simultaneously, forming a close binary system. The binary system might be viewed as evolving in a constant state of "just entering a common envelope (CE) phase." In cases where this process takes place, it can be an alternative to CE evolution where the secondary star is immersed in the giant's envelope. Grazing envelope evolution (GEE) is made possible only if the companion manages to accrete mass at a high rate and launches jets that remove the outskirts of the giant envelope, hence preventing the formation of a CE. The high accretion rate is made possible by the accretion disk launching jets which efficiently carry the excess angular momentum and energy from the accreted mass. The orbital decay itself is caused by the gravitational interaction of the secondary star with the envelope inward of its orbit, i.e., dynamical friction (gravitational tide). Mass loss through the second Lagrangian point can carry additional angular momentum and envelope mass. The GEE lasts for tens to hundreds of years. The high accretion rate, with peaks lasting from months to years, might lead to a bright object referred to as the intermediate luminosity optical transient (Red Novae; Red Transients). A bipolar nebula and/or equatorial ring are formed around the binary remnant.

  14. The Shaping of Circumstellar Envelopes by Outflow and Infall Motions

    NASA Astrophysics Data System (ADS)

    Arce, H. G.; Calvet, N.; Sargent, A.

    2004-12-01

    In this study, we combine the complementary information obtained from Owens Valley Radio Observatory (OVRO) millimeter array observations of molecular gas around protostars and HST (WFPC2 and NICMOS) archival images of reflection nebulae to obtain the best information available on the physical and dynamical properties of infalling circumstellar envelopes and the outflow-envelope interaction. The HST images of protostellar nebulae probe the dust component of the envelope, and are the best tracers of the geometry of the cavities in the envelope down to regions very close to the central source. The interferometric molecular line observations from OVRO probe the gas component, which constitutes most of the mass, and provide kinematic information that directly reflects the energetics and directions of the outflows, and the distribution of the infalling gas. We plan to analyze the information provided by these two sets of data using scattered light models of protostellar envelopes of different geometries in which cavities due to infall and/or winds with different morphologies and strength have been carved. Preliminary results show that the cavities traced by nebular emission are most likely produced by the interaction of wide-angle protostellar winds and the stellar envelope, rather than by infall of the envelope material onto the forming star. Support for this study is provided in part by an STScI HST Archival grant (HST-AR-09909.01-A). HGA is supported by an NSF Astronomy and Astrophysics Postdoctoral Fellowship under award AST-0401568.

  15. Aeroelastic Model Structure Computation for Envelope Expansion

    NASA Technical Reports Server (NTRS)

    Kukreja, Sunil L.

    2007-01-01

    Structure detection is a procedure for selecting a subset of candidate terms, from a full model description, that best describes the observed output. This is a necessary procedure to compute an efficient system description which may afford greater insight into the functionality of the system or a simpler controller design. Structure computation as a tool for black-box modelling may be of critical importance in the development of robust, parsimonious models for the flight-test community. Moreover, this approach may lead to efficient strategies for rapid envelope expansion which may save significant development time and costs. In this study, a least absolute shrinkage and selection operator (LASSO) technique is investigated for computing efficient model descriptions of nonlinear aeroelastic systems. The LASSO minimises the residual sum of squares by the addition of an l(sub 1) penalty term on the parameter vector of the traditional 2 minimisation problem. Its use for structure detection is a natural extension of this constrained minimisation approach to pseudolinear regression problems which produces some model parameters that are exactly zero and, therefore, yields a parsimonious system description. Applicability of this technique for model structure computation for the F/A-18 Active Aeroelastic Wing using flight test data is shown for several flight conditions (Mach numbers) by identifying a parsimonious system description with a high percent fit for cross-validated data.

  16. Aeroelastic Model Structure Computation for Envelope Expansion

    NASA Technical Reports Server (NTRS)

    Kukreja, Sunil L.

    2007-01-01

    Structure detection is a procedure for selecting a subset of candidate terms, from a full model description, that best describes the observed output. This is a necessary procedure to compute an efficient system description which may afford greater insight into the functionality of the system or a simpler controller design. Structure computation as a tool for black-box modeling may be of critical importance in the development of robust, parsimonious models for the flight-test community. Moreover, this approach may lead to efficient strategies for rapid envelope expansion that may save significant development time and costs. In this study, a least absolute shrinkage and selection operator (LASSO) technique is investigated for computing efficient model descriptions of non-linear aeroelastic systems. The LASSO minimises the residual sum of squares with the addition of an l(Sub 1) penalty term on the parameter vector of the traditional l(sub 2) minimisation problem. Its use for structure detection is a natural extension of this constrained minimisation approach to pseudo-linear regression problems which produces some model parameters that are exactly zero and, therefore, yields a parsimonious system description. Applicability of this technique for model structure computation for the F/A-18 (McDonnell Douglas, now The Boeing Company, Chicago, Illinois) Active Aeroelastic Wing project using flight test data is shown for several flight conditions (Mach numbers) by identifying a parsimonious system description with a high percent fit for cross-validated data.

  17. Real-Time Flight Envelope Monitoring System

    NASA Technical Reports Server (NTRS)

    Kerho, Michael; Bragg, Michael B.; Ansell, Phillip J.

    2012-01-01

    The objective of this effort was to show that real-time aircraft control-surface hinge-moment information could be used to provide a robust and reliable prediction of vehicle performance and control authority degradation. For a given airfoil section with a control surface -- be it a wing with an aileron, rudder, or elevator -- the control-surface hinge moment is sensitive to the aerodynamic characteristics of the section. As a result, changes in the aerodynamics of the section due to angle-of-attack or environmental effects such as icing, heavy rain, surface contaminants, bird strikes, or battle damage will affect the control surface hinge moment. These changes include both the magnitude of the hinge moment and its sign in a time-averaged sense, and the variation of the hinge moment with time. The current program attempts to take the real-time hinge moment information from the aircraft control surfaces and develop a system to predict aircraft envelope boundaries across a range of conditions, alerting the flight crew to reductions in aircraft controllability and flight boundaries.

  18. Critical point analysis of phase envelope diagram

    SciTech Connect

    Soetikno, Darmadi; Siagian, Ucok W. R.; Kusdiantara, Rudy Puspita, Dila Sidarto, Kuntjoro A. Soewono, Edy; Gunawan, Agus Y.

    2014-03-24

    Phase diagram or phase envelope is a relation between temperature and pressure that shows the condition of equilibria between the different phases of chemical compounds, mixture of compounds, and solutions. Phase diagram is an important issue in chemical thermodynamics and hydrocarbon reservoir. It is very useful for process simulation, hydrocarbon reactor design, and petroleum engineering studies. It is constructed from the bubble line, dew line, and critical point. Bubble line and dew line are composed of bubble points and dew points, respectively. Bubble point is the first point at which the gas is formed when a liquid is heated. Meanwhile, dew point is the first point where the liquid is formed when the gas is cooled. Critical point is the point where all of the properties of gases and liquids are equal, such as temperature, pressure, amount of substance, and others. Critical point is very useful in fuel processing and dissolution of certain chemicals. Here in this paper, we will show the critical point analytically. Then, it will be compared with numerical calculations of Peng-Robinson equation by using Newton-Raphson method. As case studies, several hydrocarbon mixtures are simulated using by Matlab.

  19. The progenitors of stripped-envelope supernovae

    NASA Astrophysics Data System (ADS)

    Elias-Rosa, N.

    2013-05-01

    The type Ib/c SNe are those explosions which come from massive star populations, but lack hydrogen and helium. These have been proposed to originate in the explosions of massive Wolf-Rayet stars, and we should easily be able to detect the very luminous, young progenitors if they exist. However, there has not been any detection of progenitors so far. I present the study of two extinguished Type Ic SNe 2003jg and 2004cc. In both cases there is no clear evidence of a direct detection of their progenitors in deep pre-explosion images. Upper limits derived by inserting artificial stars of known brightness at random positions around the progenitor positions (M_v>-8.8 and M_v>-9 magnitudes for the progenitors of SN 2003jg and SN 2004cc, respectively) are brighter than those expected for a massive WC (Wolf-Rayet, carbon-rich) or WO (Wolf-Rayet, oxygen-rich) (e.g., approximately between -3 and -6 in the LMC). Therefore, this is perhaps further evidence that the most massive stars may give rise to black-holes forming SNe, or it is an undetected, compact massive star hidden by a thick dust lane. However the extinction toward these SNe is currently one of the largest known. Even if these results do not directly reveal the nature of the type Ic SN progenitors, they can help to characterize the dusty environment which surrounded the progenitor of the stripped-envelope CC-SNe.

  20. Discriminating Dysarthria Type From Envelope Modulation Spectra

    PubMed Central

    Liss, Julie M.; LeGendre, Sue; Lotto, Andrew J.

    2013-01-01

    Purpose Previous research demonstrated the ability of temporally based rhythm metrics to distinguish among dysarthrias with different prosodic deficit profiles (J. M. Liss et al., 2009). The authors examined whether comparable results could be obtained by an automated analysis of speech envelope modulation spectra (EMS), which quantifies the rhythmicity of speech within specified frequency bands. Method EMS was conducted on sentences produced by 43 speakers with 1 of 4 types of dysarthria and healthy controls. The EMS consisted of the spectra of the slow-rate (up to 10 Hz) amplitude modulations of the full signal and 7 octave bands ranging in center frequency from 125 to 8000 Hz. Six variables were calculated for each band relating to peak frequency and amplitude and relative energy above, below, and in the region of 4 Hz. Discriminant function analyses (DFA) determined which sets of predictor variables best discriminated between and among groups. Results Each of 6 DFAs identified 2–6 of the 48 predictor variables. These variables achieved 84%–100% classification accuracy for group membership. Conclusions Dysarthrias can be characterized by quantifiable temporal patterns in acoustic output. Because EMS analysis is automated and requires no editing or linguistic assumptions, it shows promise as a clinical and research tool. PMID:20643800

  1. Critical point analysis of phase envelope diagram

    NASA Astrophysics Data System (ADS)

    Soetikno, Darmadi; Kusdiantara, Rudy; Puspita, Dila; Sidarto, Kuntjoro A.; Siagian, Ucok W. R.; Soewono, Edy; Gunawan, Agus Y.

    2014-03-01

    Phase diagram or phase envelope is a relation between temperature and pressure that shows the condition of equilibria between the different phases of chemical compounds, mixture of compounds, and solutions. Phase diagram is an important issue in chemical thermodynamics and hydrocarbon reservoir. It is very useful for process simulation, hydrocarbon reactor design, and petroleum engineering studies. It is constructed from the bubble line, dew line, and critical point. Bubble line and dew line are composed of bubble points and dew points, respectively. Bubble point is the first point at which the gas is formed when a liquid is heated. Meanwhile, dew point is the first point where the liquid is formed when the gas is cooled. Critical point is the point where all of the properties of gases and liquids are equal, such as temperature, pressure, amount of substance, and others. Critical point is very useful in fuel processing and dissolution of certain chemicals. Here in this paper, we will show the critical point analytically. Then, it will be compared with numerical calculations of Peng-Robinson equation by using Newton-Raphson method. As case studies, several hydrocarbon mixtures are simulated using by Matlab.

  2. Carrier-envelope-phase stabilization via dual wavelength pumping.

    PubMed

    Seidel, Marcus; Brons, Jonathan; Lücking, Fabian; Pervak, Vladimir; Apolonski, Alexander; Udem, Thomas; Pronin, Oleg

    2016-04-15

    A power-scalable concept for carrier-envelope-phase stabilization is presented. It takes advantage of simultaneous pumping of the zero- and first-phonon absorption line of Yb:YAG at 969 and 940 nm. The concept was implemented to lock the carrier-envelope-offset frequency of a 45 W average power Kerr-lens mode-locked thin-disk oscillator. The lock performance is compared to previous experiments where carrier-envelope-stabilization was realized by means of cavity loss modulation. PMID:27082362

  3. Revisiting the envelope approximation: Gravitational waves from bubble collisions

    NASA Astrophysics Data System (ADS)

    Weir, David J.

    2016-06-01

    We study the envelope approximation and its applicability to first-order phase transitions in the early Universe. We demonstrate that the power laws seen in previous studies exist independently of the nucleation rate. We also compare the envelope approximation prediction to results from large-scale phase transition simulations. For phase transitions where the contribution to gravitational waves from scalar fields dominates over that from the coupled plasma of light particles, the envelope approximation is in agreement, giving a power spectrum of the same form and order of magnitude. In all other cases the form and amplitude of the gravitational wave power spectrum is markedly different and new techniques are required.

  4. Inactivation of enveloped viruses and killing of cells by fatty acids and monoglycerides.

    PubMed Central

    Thormar, H; Isaacs, C E; Brown, H R; Barshatzky, M R; Pessolano, T

    1987-01-01

    Lipids in fresh human milk do not inactivate viruses but become antiviral after storage of the milk for a few days at 4 or 23 degrees C. The appearance of antiviral activity depends on active milk lipases and correlates with the release of free fatty acids in the milk. A number of fatty acids which are normal components of milk lipids were tested against enveloped viruses, i.e., vesicular stomatitis virus, herpes simplex virus, and visna virus, and against a nonenveloped virus, poliovirus. Short-chain and long-chain saturated fatty acids had no or a very small antiviral effect at the highest concentrations tested. Medium-chain saturated and long-chain unsaturated fatty acids, on the other hand, were all highly active against the enveloped viruses, although the fatty acid concentration required for maximum viral inactivation varied by as much as 20-fold. Monoglycerides of these fatty acids were also highly antiviral, in some instances at a concentration 10 times lower than that of the free fatty acids. None of the fatty acids inactivated poliovirus. Antiviral fatty acids were found to affect the viral envelope, causing leakage and at higher concentrations, a complete disintegration of the envelope and the viral particles. They also caused disintegration of the plasma membranes of tissue culture cells resulting in cell lysis and death. The same phenomenon occurred in cell cultures incubated with stored antiviral human milk. The antimicrobial effect of human milk lipids in vitro is therefore most likely caused by disintegration of cellular and viral membranes by fatty acids. Studies are needed to establish whether human milk lipids have an antimicrobial effect in the stomach and intestines of infants and to determine what role, if any, they play in protecting infants against gastrointestinal infections. Images PMID:3032090

  5. Envelope gene evolution and HIV-1 neuropathogenesis

    PubMed Central

    Vázquez-Santiago, Fabián J.; Rivera-Amill, Vanessa

    2016-01-01

    In the era of combined antiretroviral therapy (cART), HIV-associated neurocognitive disorders (HAND) account for 40 to 56% of all HIV+ cases. During the acute stage of HIV-1 infection (<6 months), the virus invades and replicates within the central nervous system (CNS). Compared to peripheral tissues, the local CNS cell population expresses distinct levels of chemokine receptors, which levels exert selective pressure on the invading virus. HIV-1 envelope (env) sequences recovered from the brains and cerebrospinal fluid (CSF) of neurocognitively impaired HIV+ subjects often display higher nucleotide variability as compared to non-impaired HIV+ subjects. Specifically, env evolution provides HIV-1 with the strategies to evade host immune response, to reduce chemokine receptor dependence, to increase co-receptor binding efficiency, and to potentiate neurotoxicity. The evolution of env within the CNS leads to changes that may result in the emergence of novel isolates with neurotoxic and neurovirulent features. However, whether specific factors of HIV-1 evolution lead to the emergence of neurovirulent and neurotropic isolates remains ill-defined. HIV-1 env evolution is an ongoing phenomenon that occurs independently of neurological and neurocognitive disease severity; thus HIV env evolution may play a pivotal and reciprocal role in the etiology of HAND. Despite the use of cART, the reactivation of latent viral reservoirs represents a clinical challenge because of the replenishment of the viral pool that may subsequently lead to persistent infection. Therefore, gaining a more complete understanding of how HIV-1 env evolves over the course of the disease should be considered for the development of future therapies aimed at controlling CNS burden, diminishing persistent viremia, and eradicating viral reservoirs. Here we review the current literature on the role of HIV-1 env evolution in the setting of HAND disease progression and on the impact of cART on the dynamics of

  6. Opacities in the massive stellar envelopes

    NASA Astrophysics Data System (ADS)

    Le Pennec, Maëlle; TURCK-CHIEZE, Sylvaine; SALMON, Sébastien; CONSORTIUM, OPAC

    2015-08-01

    Helio and asteroseismology (SoHo, CoRoT, KEPLER...) have produced observed acoustic oscillations of thousands of stars. The characteristics of these oscillations are deeply linked to the transport of radiation inside the stars. However, the comparisons of seismic data of Sun and stars with model predictions have led to significant discrepancies, which could be due to a bad knowledge of production and transport of energy.We will focus here on the case of β-Cephei.β-Cephei are pulsating stars, progenitor of supernovae and thus deeply linked to our understanding of stellar medium enrichment. Their study has shown some difficulty to predict the observed oscillation modes, which are directly linked to a bump of the opacity of the elements of the iron group (Cr, Fe, Ni) at log T=5.25 through their pulsating mechanism called the κ-mechanism. We will show that the different parameters of the stars (mass, age, metallicity) have a great influence on the amplitude of the bump, and then on the structure of the considered star.The mastery of the κ-mechanism that produces the pulsation of these stars supposes a fine determination of the peak opacity of the iron group in their envelope. We will present the final results of an experiment conducted at LULI 2000 in 2011 on Cr, Fe and Ni and compare them to OP and ATOMIC, SCO-RCG codes. We will show how to improve the opacity in the range of temperature around log T= 5.3.

  7. Testing Common Envelopes on Double White Dwarf Binaries

    NASA Astrophysics Data System (ADS)

    Nandez, Jose L. A.; Ivanova, Natalia; Lombardi, James C., Jr.

    2015-06-01

    The formation of a double white dwarf binary likely involves a common envelope (CE) event between a red giant and a white dwarf (WD) during the most recent episode of Roche lobe overflow mass transfer. We study the role of recombination energy with hydrodynamic simulations of such stellar interactions. We find that the recombination energy helps to expel the common envelope entirely, while if recombination energy is not taken into account, a significant fraction of the common envelope remains bound. We apply our numerical methods to constrain the progenitor system for WD 1101+364 - a double WD binary that has well-measured mass ratio of q=0.87±0.03 and an orbital period of 0.145 days. Our best-fit progenitor for the pre-common envelope donor is a 1.5 ⊙ red giant.

  8. Periodic envelopes of waves over non-uniform depth

    NASA Astrophysics Data System (ADS)

    Rajan, Girish K.; Bayram, Saziye; Henderson, Diane M.

    2016-04-01

    The envelope of narrow-banded, periodic, surface-gravity waves propagating in one dimension over water of finite, non-uniform depth may be modeled by the Djordjević and Redekopp ["On the development of packets of surface gravity waves moving over an uneven bottom," Z. Angew. Math. Phys. 29, 950-962 (1978)] equation (DRE). Here we find five approximate solutions of the DRE that are in the form of Jacobi-elliptic functions and discuss them within the framework of ocean swell. We find that in all cases, the maximum envelope-amplitude decreases/increases when the wave group propagates on water of decreasing/increasing depth. In the limit of the elliptic modulus approaching one, three of the solutions reduce to the envelope soliton solution. In the limit of the elliptic modulus approaching zero, two of the solutions reduce to an envelope-amplitude that is uniform in an appropriate reference frame.

  9. Solubilization and reconstitution of vesicular stomatitis virus envelope using octylglucoside.

    PubMed Central

    Paternostre, M; Viard, M; Meyer, O; Ghanam, M; Ollivon, M; Blumenthal, R

    1997-01-01

    Reconstituted vesicular stomatitis virus envelopes or virosomes are formed by detergent removal from solubilized intact virus. We have monitored the solubilization process of the intact vesicular stomatitis virus by the nonionic surfactant octylglucoside at various initial virus concentrations by employing turbidity measurements. This allowed us to determine the phase boundaries between the membrane and the mixed micelles domains. We have also characterized the lipid and protein content of the solubilized material and of the reconstituted envelope. Both G and M proteins and all of the lipids of the envelope were extracted by octylglucoside and recovered in the reconstituted envelope. Fusion activity of the virosomes tested either on Vero cells or on liposomes showed kinetics and pH dependence similar to those of the intact virus. Images FIGURE 4 PMID:9083672

  10. A New Model for Nuclear Envelope BreakdownV⃞

    PubMed Central

    Terasaki, Mark; Campagnola, Paul; Rolls, Melissa M.; Stein, Pascal A.; Ellenberg, Jan; Hinkle, Beth; Slepchenko, Boris

    2001-01-01

    Nuclear envelope breakdown was investigated during meiotic maturation of starfish oocytes. Fluorescent 70-kDa dextran entry, as monitored by confocal microscopy, consists of two phases, a slow uniform increase and then a massive wave. From quantitative analysis of the first phase of dextran entry, and from imaging of green fluorescent protein chimeras, we conclude that nuclear pore disassembly begins several minutes before nuclear envelope breakdown. The best fit for the second phase of entry is with a spreading disruption of the membrane permeability barrier determined by three-dimensional computer simulations of diffusion. We propose a new model for the mechanism of nuclear envelope breakdown in which disassembly of the nuclear pores leads to a fenestration of the nuclear envelope double membrane. PMID:11179431

  11. Beam envelope calculations in general linear coupled lattices

    NASA Astrophysics Data System (ADS)

    Chung, Moses; Qin, Hong; Groening, Lars; Davidson, Ronald C.; Xiao, Chen

    2015-01-01

    The envelope equations and Twiss parameters (β and α) provide important bases for uncoupled linear beam dynamics. For sophisticated beam manipulations, however, coupling elements between two transverse planes are intentionally introduced. The recently developed generalized Courant-Snyder theory offers an effective way of describing the linear beam dynamics in such coupled systems with a remarkably similar mathematical structure to the original Courant-Snyder theory. In this work, we present numerical solutions to the symmetrized matrix envelope equation for β which removes the gauge freedom in the matrix envelope equation for w. Furthermore, we construct the transfer and beam matrices in terms of the generalized Twiss parameters, which enables calculation of the beam envelopes in arbitrary linear coupled systems.

  12. Beam envelope calculations in general linear coupled lattices

    SciTech Connect

    Chung, Moses; Qin, Hong; Groening, Lars; Xiao, Chen; Davidson, Ronald C.

    2015-01-15

    The envelope equations and Twiss parameters (β and α) provide important bases for uncoupled linear beam dynamics. For sophisticated beam manipulations, however, coupling elements between two transverse planes are intentionally introduced. The recently developed generalized Courant-Snyder theory offers an effective way of describing the linear beam dynamics in such coupled systems with a remarkably similar mathematical structure to the original Courant-Snyder theory. In this work, we present numerical solutions to the symmetrized matrix envelope equation for β which removes the gauge freedom in the matrix envelope equation for w. Furthermore, we construct the transfer and beam matrices in terms of the generalized Twiss parameters, which enables calculation of the beam envelopes in arbitrary linear coupled systems.

  13. 14 CFR 29.87 - Height-velocity envelope.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Category A engine isolation requirements, the height-velocity envelope for complete power failure must be... landing cannot be made after failure of the critical engine and with the remaining engines...

  14. Evolution of Space Shuttle Range Safety Ascent Flight Envelope Design

    NASA Technical Reports Server (NTRS)

    Brewer, Joan; Davis, Jerel; Glenn, Christopher

    2011-01-01

    For every space vehicle launch from the Eastern Range in Florida, the range user must provide specific Range Safety (RS) data products to the Air Force's 45th Space Wing in order to obtain flight plan approval. One of these data products is a set of RS ascent flight envelope trajectories that define the normal operating region of the vehicle during powered flight. With the Shuttle Program launching 135 manned missions over a 30-year period, 135 envelope sets were delivered to the range. During this time, the envelope methodology and design process evolved to support mission changes, maintain high data quality, and reduce costs. The purpose of this document is to outline the shuttle envelope design evolution and capture the lessons learned that could apply to future spaceflight endeavors.

  15. Transport of Ions Across the Inner Envelope Membrane of Chloroplasts

    SciTech Connect

    McCarty, R. E.

    2004-06-02

    The technical report outlines the results of nine years of research on how ions cross the inner envelope membrane of chloroplasts. The ions include protons, nitrite, calcium and ferrous iron. Bicarbonate transport was also studied.

  16. Universal enveloping crossed module of Leibniz crossed modules and representations

    NASA Astrophysics Data System (ADS)

    Casado, Rafael F.; García-Martínez, Xabier; Ladra, Manuel

    2016-03-01

    The universal enveloping algebra functor UL: Lb → Alg, defined by Loday and Pirashvili [1], is extended to crossed modules. Then we construct an isomorphism between the category of representations of a Leibniz crossed module and the category of left modules over its universal enveloping crossed module of algebras. Note that the procedure followed in the proof for the Lie case cannot be adapted, since the actor in the category of Leibniz crossed modules does not always exist.

  17. RMS ENVELOPE BACK-PROPAGATION IN THE XAL ONLINE MODEL

    SciTech Connect

    Allen, Christopher K; Sako, Hiroyuki; Ikegami, Masanori

    2009-01-01

    The ability to back-propagate RMS envelopes was added to the J-PARC XAL online model. Specifically, given an arbitrary downstream location, the online model can propagate the RMS envelopes backward to an arbitrary upstream location. This feature provides support for algorithms estimating upstream conditions from downstream data. The upgrade required significant refactoring, which we outline. We also show simulations using the new feature.

  18. 300 Area Liquid Effluent Facilities (LEF) Authorization Envelope

    SciTech Connect

    WRIGHT, E.J.; STORDEUR, R.T.

    2000-04-07

    The purpose of this document is to establish the facility Authorization Envelope (AE) for the 300 Liquid Effluent Facilities (LEP )Project and identify the requirements related to the maintenance of the AE as Specified in HNF-PRO-2701, Authorization Envelope and Authorization Agreement. The 300 LEF Project consists of two separate facilities operating under one management organization. They are the 310 Facility and the 340 Facility. The AE documents the limits of operations for all 300 LEF Project activities.

  19. Advances in Understanding Durability of the Building Envelope: ORNL Research

    SciTech Connect

    Kehrer, Manfred; Desjarlais, Andre Omer

    2013-01-01

    Moisture, and its accompanying outriders things like mold, corrosion, freeze damage, and decay present powerful threats to the durability and long-term performance of a building envelope. Miscalculating the impact of environmental factors like rain, solar radiation, temperature, humidity, and indoor sources of moisture can cause significant damage to many types of building envelope components and materials, and also can lead to unhealthy indoor living environments.

  20. Preserving Envelope Efficiency in Performance Based Code Compliance

    SciTech Connect

    Thornton, Brian A.; Sullivan, Greg P.; Rosenberg, Michael I.; Baechler, Michael C.

    2015-06-20

    The City of Seattle 2012 Energy Code (Seattle 2014), one of the most progressive in the country, is under revision for its 2015 edition. Additionally, city personnel participate in the development of the next generation of the Washington State Energy Code and the International Energy Code. Seattle has pledged carbon neutrality by 2050 including buildings, transportation and other sectors. The United States Department of Energy (DOE), through Pacific Northwest National Laboratory (PNNL) provided technical assistance to Seattle in order to understand the implications of one potential direction for its code development, limiting trade-offs of long-lived building envelope components less stringent than the prescriptive code envelope requirements by using better-than-code but shorter-lived lighting and heating, ventilation, and air-conditioning (HVAC) components through the total building performance modeled energy compliance path. Weaker building envelopes can permanently limit building energy performance even as lighting and HVAC components are upgraded over time, because retrofitting the envelope is less likely and more expensive. Weaker building envelopes may also increase the required size, cost and complexity of HVAC systems and may adversely affect occupant comfort. This report presents the results of this technical assistance. The use of modeled energy code compliance to trade-off envelope components with shorter-lived building components is not unique to Seattle and the lessons and possible solutions described in this report have implications for other jurisdictions and energy codes.

  1. Disassembly of the cystovirus ϕ6 envelope by montmorillonite clay.

    PubMed

    Block, Karin A; Trusiak, Adrianna; Katz, Al; Gottlieb, Paul; Alimova, Alexandra; Wei, Hui; Morales, Jorge; Rice, William J; Steiner, Jeffrey C

    2014-02-01

    Prior studies of clay-virus interactions have focused on the stability and infectivity of nonenveloped viruses, yielding contradictory results. We hypothesize that the surface charge distribution of the clay and virus envelope dictates how the components react and affect aggregation, viral stability, and infectivity. The bacteriophage Cystoviridae species φ6 used in this study is a good model for enveloped pathogens. The interaction between φ6 and montmorillonite (MMT) clay (the primary component of bentonite) is explored by transmission electron microscopy. The analyses show that MMT-φ6 mixtures undergo heteroaggregation, forming structures in which virtually all the virions are either sequestered between MMT platelet layers or attached to platelet edges. The virions swell and undergo disassembly resulting in partial or total envelope loss. Edge-attached viral envelopes distort to increase contact area with the positively charged platelet edges indicating that the virion surface is negatively charged. The nucleocapsid (NCs) remaining after envelope removal also exhibit distortion, in contrast to detergent-produced NCs which exhibit no distortion. This visually discernible disassembly is a mechanism for loss of infectivity previously unreported by studies of nonenveloped viruses. The MMT-mediated sequestration and disassembly result in reduced infectivity, suggesting that clays may reduce infectivity of enveloped pathogenic viruses in soils and sediments. PMID:24357622

  2. Across-frequency envelope correlation discrimination and masked signal detection

    PubMed Central

    Grose, John H.; Buss, Emily; Porter, Heather L.; Hall, Joseph W.

    2013-01-01

    This study compared the dependence of comodulation masking release (CMR) and monaural envelope correlation perception (MECP) on the degree of envelope correlation for the same narrowband noise stimuli. Envelope correlation across noise bands was systematically varied by mixing independent bands with a base set of comodulated bands. The magnitude of CMR fell monotonically with reductions in envelope correlation, and CMR varied over a range of envelope correlations that were not discriminable from each other in the MECP paradigm. For complexes of 100-Hz-wide noise bands, discrimination thresholds in the MECP task were similar whether the standard was a comodulated set of noise bands or a completely independent set of noise bands. This was not the case for 25-Hz-wide noise bands. Although the data demonstrate that CMR and MECP exhibit different dependencies on the degree of envelope correlation, some commonality across the two phenomena was observed. Specifically, for 25-Hz-wide bands of noise, there was a robust relationship between individual listeners' sensitivity to decorrelation from an otherwise comodulated set of noise bands and the magnitude of CMR measured for those same comodulated noise bands. PMID:23927119

  3. Disassembly of the cystovirus ϕ6 envelope by montmorillonite clay

    PubMed Central

    Block, Karin A; Trusiak, Adrianna; Katz, Al; Gottlieb, Paul; Alimova, Alexandra; Wei, Hui; Morales, Jorge; Rice, William J; Steiner, Jeffrey C

    2014-01-01

    Prior studies of clay–virus interactions have focused on the stability and infectivity of nonenveloped viruses, yielding contradictory results. We hypothesize that the surface charge distribution of the clay and virus envelope dictates how the components react and affect aggregation, viral stability, and infectivity. The bacteriophage Cystoviridae species φ6 used in this study is a good model for enveloped pathogens. The interaction between φ6 and montmorillonite (MMT) clay (the primary component of bentonite) is explored by transmission electron microscopy. The analyses show that MMT–φ6 mixtures undergo heteroaggregation, forming structures in which virtually all the virions are either sequestered between MMT platelet layers or attached to platelet edges. The virions swell and undergo disassembly resulting in partial or total envelope loss. Edge-attached viral envelopes distort to increase contact area with the positively charged platelet edges indicating that the virion surface is negatively charged. The nucleocapsid (NCs) remaining after envelope removal also exhibit distortion, in contrast to detergent-produced NCs which exhibit no distortion. This visually discernible disassembly is a mechanism for loss of infectivity previously unreported by studies of nonenveloped viruses. The MMT-mediated sequestration and disassembly result in reduced infectivity, suggesting that clays may reduce infectivity of enveloped pathogenic viruses in soils and sediments. PMID:24357622

  4. Phenylalanines at positions 88 and 159 of Ebolavirus envelope glycoprotein differentially impact envelope function

    SciTech Connect

    Ou Wu; King, Harlan; Delisle, Josie; Shi Dashuang; Wilson, Carolyn A.

    2010-01-05

    The envelope glycoprotein (GP) of Ebolavirus (EBOV) mediates viral entry into host cells. Through mutagenesis, we and other groups reported that two phenylalanines at positions 88 and 159 of GP are critical for viral entry. However, it remains elusive which steps of viral entry are impaired by F88 or F159 mutations and how. In this study, we further characterized these two phenylalanines through mutagenesis and examined the impact on GP expression, function, and structure. Our data suggest that F159 plays an indirect role in viral entry by maintaining EBOV GP's overall structure. In contrast, we did not detect any evidence for conformational differences in GP with F88 mutations. The data suggest that F88 influences viral entry during a step after cathepsin processing, presumably impacting viral fusion.

  5. Sensitivity to Envelope Interaural Time Differences at High Modulation Rates

    PubMed Central

    Bleeck, Stefan; McAlpine, David

    2015-01-01

    Sensitivity to interaural time differences (ITDs) conveyed in the temporal fine structure of low-frequency tones and the modulated envelopes of high-frequency sounds are considered comparable, particularly for envelopes shaped to transmit similar fidelity of temporal information normally present for low-frequency sounds. Nevertheless, discrimination performance for envelope modulation rates above a few hundred Hertz is reported to be poor—to the point of discrimination thresholds being unattainable—compared with the much higher (>1,000 Hz) limit for low-frequency ITD sensitivity, suggesting the presence of a low-pass filter in the envelope domain. Further, performance for identical modulation rates appears to decline with increasing carrier frequency, supporting the view that the low-pass characteristics observed for envelope ITD processing is carrier-frequency dependent. Here, we assessed listeners’ sensitivity to ITDs conveyed in pure tones and in the modulated envelopes of high-frequency tones. ITD discrimination for the modulated high-frequency tones was measured as a function of both modulation rate and carrier frequency. Some well-trained listeners appear able to discriminate ITDs extremely well, even at modulation rates well beyond 500 Hz, for 4-kHz carriers. For one listener, thresholds were even obtained for a modulation rate of 800 Hz. The highest modulation rate for which thresholds could be obtained declined with increasing carrier frequency for all listeners. At 10 kHz, the highest modulation rate at which thresholds could be obtained was 600 Hz. The upper limit of sensitivity to ITDs conveyed in the envelope of high-frequency modulated sounds appears to be higher than previously considered. PMID:26721926

  6. Dynamics of a supernova envelope in a cloudy interstellar medium

    NASA Astrophysics Data System (ADS)

    Korolev, V. V.; Vasiliev, E. O.; Kovalenko, I. G.; Shchekinov, Yu. A.

    2015-07-01

    The evolution of a supernova remnant in a cloudy medium as a function of the volume filling factor of the clouds is studied in a three-dimensional axially symmetrical model. The model includes the mixing of heavy elements (metals) ejected by the supernova and their contribution to radiative losses. The interaction of the supernova envelope with the cloudy phase of the interstellar medium leads to nonsimultaneous, and on average earlier, onsets of the radiative phase in different parts of the supernova envelope. Growth in the volume filling factor f leads to a decrease in the time for the transition of the envelope to the radiative phase and a decrease in the envelope's mean radius, due to the increased energy losses by the envelope in the cloudy medium. When the development of hydrodynamical instabilities in the supernova envelope is efficient, the thermal energy falls as E t ~ t -2.3, for the propagation of the supernova remnant through either a homogeneous or a cloudy medium. When the volume filling factor is f ≳ 0.1, a layer with excess kinetic energy andmomentumforms far behind the global shock front from the supernova, which traps the hot gas of the cavity in the central part of the supernova remnant. Metals ejected by the supernova are also enclosed in the central region of the remnant, where the initial (high) metallicity is essentially preserved. Thus, the interaction of the supernova envelope with the cloudy interstellar medium appreciably changes the dynamics and structure of the distribution of the gas in the remnant. This affects the observational characteristics of the remnant, in particularly, leading to substantial fluctuations of the emissionmeasure of the gas with T > 105 K and the velocity dispersion of the ionized gas.

  7. A quantitative test to estimate neutralizing antibodies to the hepatitis C virus: cytofluorimetric assessment of envelope glycoprotein 2 binding to target cells.

    PubMed Central

    Rosa, D; Campagnoli, S; Moretto, C; Guenzi, E; Cousens, L; Chin, M; Dong, C; Weiner, A J; Lau, J Y; Choo, Q L; Chien, D; Pileri, P; Houghton, M; Abrignani, S

    1996-01-01

    Hepatitis C virus (HCV) is a major cause of chronic hepatitis. The virus does not replicate efficiently in cell cultures, and it is therefore difficult to assess infection-neutralizing antibodies and to evaluate protective immunity in vitro. To study the binding of the HCV envelope to cell-surface receptors, we developed an assay to assess specific binding of recombinant envelope proteins to human cells and neutralization thereof. HCV recombinant envelope proteins expressed in various systems were incubated with human cells, and binding was assessed by flow cytometry using anti-envelope antibodies. Envelope glycoprotein 2 (E2) expressed in mammalian cells, but not in yeast or insect cells, binds human cells with high affinity (Kd approximately 10(-8) M). We then assessed antibodies able to neutralize E2 binding in the sera of both vaccinated and carrier chimpanzees, as well as in the sera of humans infected with various HCV genotypes. Vaccination with recombinant envelope proteins expressed in mammalian cells elicited high titers of neutralizing antibodies that correlated with protection from HCV challenge. HCV infection does not elicit neutralizing antibodies in most chimpanzees and humans, although low titers of neutralizing antibodies were detectable in a minority of infections. The ability to neutralize binding of E2 derived from the HCV-1 genotype was equally distributed among sera from patients infected with HCV genotypes 1, 2, and 3, demonstrating that binding of E2 is partly independent of E2 hypervariable regions. However, a mouse monoclonal antibody raised against the E2 hypervariable region 1 can partially neutralize binding of E2, indicating that at least two neutralizing epitopes, one of which is hypervariable, should exist on the E2 protein. The neutralization-of-binding assay described will be useful to study protective immunity to HCV infection and for vaccine development. PMID:8700831

  8. Solar envelope concepts: moderate density building applications. Final report

    SciTech Connect

    Knowles, R.L.; Berry, R.D.

    1980-04-01

    Solar energy utilization in urban areas requires public guarantees that all property owners have direct access to the sun. The study examines the implications of this premise in relation to the need for cities to also encourage or accommodate rebuilding and future development. The public policy mechanism for guaranteeing solar access is conceptualized as a solar zoning envelope that allows the largest possible building bulk on a land parcel without shadowing neighboring properties during specified times. Step-by-step methods for generating solar envelopes are described with extensive drawings, showing a variety of urban platting and lot configurations. Development and design possibilities are examined on a selected set of Los Angeles sites with typically diverse urban characteristics. Envelope attributes suitable for encouraging moderate-density commercial and residential building are examined in the context of two hypothetical but realistic development programs: one for speculative office buildings and one for condominium housing. Numerous illustrations of envelope forms and prototypical building designs are provided. The results of development simulation studies on all test sites are tabulated to show building bulk, density, land-coverage and open space characteristics obtainable under the hypothesized envelopes.

  9. Characterization of a chloroplast inner envelope K+ channel.

    PubMed Central

    Mi, F; Peters, J S; Berkowitz, G A

    1994-01-01

    A K(+)-conducting protein of the chloroplast inner envelope was characterized as a K+ channel. Studies of this transport protein in the native membrane documented its sensitivity to K+ channel blockers. Further studies of native membranes demonstrated a sensitivity of K+ conductance to divalent cations such as Mg2+, which modulate ion conduction through interaction with negative surface charges on the inner-envelope membrane. Purified chloroplast inner-envelope vesicles were fused into an artificial planar lipid bilayer to facilitate recording of single-channel K+ currents. These single-channel K+ currents had a slope conductance of 160 picosiemens. Antibodies generated against the conserved amino acid sequence that serves as a selectivity filter in the pore of K+ channels immunoreacted with a 62-kD polypeptide derived from the chloroplast inner envelope. This polypeptide was fractionated using density gradient centrifugation. Comigration of this immunoreactive polypeptide and K+ channel activity in sucrose density gradients further suggested that this polypeptide is the protein facilitating K+ conductance across the chloroplast inner envelope. PMID:8058841

  10. An adaptive envelope spectrum technique for bearing fault detection

    NASA Astrophysics Data System (ADS)

    Sui, Wentao; Osman, Shazali; Wang, Wilson

    2014-09-01

    In this work, an adaptive envelope spectrum (AES) technique is proposed for bearing fault detection, especially for analyzing signals with transient events. The proposed AES technique first modulates the signal using the empirical mode decomposition to formulate the representative intrinsic mode functions (IMF), and then a novel IMF reconstruction method is proposed based on a correlation analysis of the envelope spectra. The reconstructed signal is post-processed by using an adaptive filter to enhance impulsive signatures, where the filter length is optimized by the proposed sparsity analysis technique. Bearing health conditions are diagnosed by examining bearing characteristic frequency information on the envelope power spectrum. The effectiveness of the proposed fault detection technique is verified by a series of experimental tests corresponding to different bearing conditions.

  11. Method and apparatus for controlling carrier envelope phase

    DOEpatents

    Chang, Zenghu; Li, Chengquan; Moon, Eric

    2011-12-06

    A chirped pulse amplification laser system. The system generally comprises a laser source, a pulse modification apparatus including first and second pulse modification elements separated by a separation distance, a positioning element, a measurement device, and a feedback controller. The laser source is operable to generate a laser pulse and the pulse modification apparatus operable to modify at least a portion of the laser pulse. The positioning element is operable to reposition at least a portion of the pulse modification apparatus to vary the separation distance. The measurement device is operable to measure the carrier envelope phase of the generated laser pulse and the feedback controller is operable to control the positioning element based on the measured carrier envelope phase to vary the separation distance of the pulse modification elements and control the carrier envelope phase of laser pulses generated by the laser source.

  12. Photochemistry and molecular ions in carbon-rich circumstellar envelopes

    NASA Technical Reports Server (NTRS)

    Glassgold, A. E.; Mamon, G. A.; Omont, A.; Lucas, R.

    1987-01-01

    An earlier theory of ionization of C-rich circumstellar envelopes based on the photochemical model is extended to include the temperature dependence of ion-molecule reactions with polar molecules, particularly HCN, and line self-shielding of CO dissociating radiation. The results are applied to the abundances of HCO(+) and HNC in C-rich circumstellar envelopes. With standard parameters for IRC + 10216, the model is found to be consistent with the new upper limit to the antenna temperature of the J = 1-0 line of HCO(+) obtained with the IRAM 30-m telescope. The photochemical model provides a natural explanation of the relatively large ratio of HCN to HNC observed for C-rich circumstellar envelopes, and good agreement is obtained for the H(C-13)N/HNC antenna temperature ratio measured for IRC + 10216.

  13. Intermediate luminosity optical transients during the grazing envelope evolution (GEE)

    NASA Astrophysics Data System (ADS)

    Soker, Noam

    2016-08-01

    By comparing photon diffusion time with gas outflow time, I argue that a large fraction of the energy carried by the jets during the grazing envelope evolution (GEE) might end in radiation, hence leading to an intermediate luminosity optical transient (ILOT). In the GEE a companion orbiting near the outskirts of the larger primary star accretes mass through an accretion disk, and launches jets that efficiently remove the envelope gas from the vicinity of the secondary star. In cases of high mass accretion rates onto the stellar companion the energy carried by the jets surpass the recombination energy from the ejected mass, and when the primary star is a giant this energy surpasses also the gravitational binding energy of the binary system. Some future ILOTs of giant stars might be better explained by the GEE than by merger and common envelope evolution without jets.

  14. Small non-spherical grains in envelopes of M giants

    NASA Astrophysics Data System (ADS)

    Il'In, V. B.

    1994-01-01

    The drift of spheroidal and spherical grains in the envelopes of M giants is considered. It is found that for small metallic grains, the velocity relative to the gas should strongly depend on the grain shape. For example, the velocity of a dirty iron spheroid with a semiaxes ratio of 2-4 is about 1.5-3 times larger than the velocity of an equal volume sphere, the difference of the velocities being as large as a 1 km/s. Probably, a dependence of the velocity on grain shape also occurs for normal size silicate grains. Thus, in modeling the dynamics of the envelopes, one should bear in mind the possibility of a much more efficient interaction of radiation with dust than usually proposed due to a deviation of grains' shape from a spherical one. The same effect could occur in the envelopes of carbon-rich giants and protostars.

  15. Enveloped particles in the serum of chronic hepatitis C patients

    SciTech Connect

    Petit, Marie-Anne . E-mail: petit@lyon.inserm.fr; Lievre, Marjory . E-mail: marjory.lievre@free.fr; Peyrol, Simone . E-mail: peyrol@laennec.univ-lyon1.fr; De Sequeira, Sylvie . E-mail: desequeira@lyon.inserm.fr; Berthillon, Pascale . E-mail: berthillon@lyon.inserm.fr; Ruigrok, Rob W.H. . E-mail: ruigrok@embl-grenoble.fr; Trepo, Christian . E-mail: trepo@lyon.inserm.fr

    2005-06-05

    HCV particles were isolated from the plasma of chronically infected patients. The virus was analysed by sucrose density gradient centrifugation. The fractions were tested for viral RNA, core antigen and envelope proteins by using a monoclonal antibody directed against the natural E1E2 complex (D32.10). Two populations of particles containing RNA plus core antigen were separated: the first with a density of 1.06-1.08 g/ml did not contain the envelope proteins; the second with a density between 1.17 and 1.21 g/ml expressed both E1 and E2 glycoproteins. Electron microscopy of the enveloped population after immunoprecipitation with D32.10 showed spherical particles with a rather featureless surface and with a diameter around 40 nm. Immuno-gold staining gave evidence that the E1E2 complex was indeed positioned at the surface of these particles.

  16. An envelope function formalism for lattice-matched heterostructures

    NASA Astrophysics Data System (ADS)

    Van de Put, Maarten L.; Vandenberghe, William G.; Magnus, Wim; Sorée, Bart

    2015-08-01

    The envelope function method traditionally employs a single basis set which, in practice, relates to a single material because the k · p matrix elements are generally only known in a particular basis. In this work, we defined a basis function transformation to alleviate this restriction. The transformation is completely described by the known inter-band momentum matrix elements. The resulting envelope function equation can solve the electronic structure in lattice matched heterostructures without resorting to boundary conditions at the interface between materials, while all unit-cell averaged observables can be calculated as with the standard envelope function formalism. In the case of two coupled bands, this heterostructure formalism is equivalent to the standard formalism while taking position dependent matrix elements.

  17. Generation of transversal envelope soliton in polymeric and wooden rods.

    PubMed

    de Billy, M; Hladky-Hennion, A C

    2014-07-01

    This paper is concerned with the probing of the transversal envelope solitons propagation in circular waveguides when a set of requirements (non-linearity and dispersion) are fulfilled in the waveguide and balanced. The basic idea is to analyze the shape of an acoustic pulse after it has traveled one or few trips through samples constituted of a rod and two ended beads. The dispersive behavior is associated to the bounded medium (rod) and the contacts between the elements of the specimens are assumed being described by non-linear Hertz' law type. The experimental data are obviously material dependent and have pointed out the existence of common properties on the formation and propagation properties of the envelope solitons whatever is the material (polymers, carbon fibers and wood) of the rods and spheres. Peculiar behaviors were also observed for specific material (woods) probably caused by the anisotropy of this kind of rod material leading to a double envelope soliton. PMID:24576600

  18. The binding energy parameter for common envelope evolution

    NASA Astrophysics Data System (ADS)

    Wang, Chen; Jia, Kun; Li, Xiang-Dong

    2016-08-01

    The binding energy parameter λ plays a vital role in common envelope evolution. Though it is well known that λ takes different values for stars with different masses and varies during stellar evolution, it has been erroneously adopted as a constant in most population synthesis calculations. We have systematically calculated the values of λ for stars of masses 1 – 60 M ⊙ by use of an updated stellar evolution code, taking into account the contribution from both gravitational energy and internal energy to the binding energy of the envelope. We adopt the criterion for the core-envelope boundary advocated by Ivanova. A new kind of λ with an enthalpy prescription is also investigated. We present fitting formulae for the calculated values of various kinds of λ, which can be used in future population synthesis studies.

  19. Structure of Phage P22 Cell Envelope-Penetrating Needle

    SciTech Connect

    Olia,A.; Casjens, S.; Cingolani, G.

    2007-01-01

    Bacteriophage P22 infects Salmonella enterica by injecting its genetic material through the cell envelope. During infection, a specialized tail needle, gp26, is injected into the host, likely piercing a hole in the host cell envelope. The 2.1-Angstroms crystal structure of gp26 reveals a 240-Angstroms elongated protein fiber formed by two trimeric coiled-coil domains interrupted by a triple beta-helix. The N terminus of gp26 plugs the portal protein channel, retaining the genetic material inside the virion. The C-terminal tip of the fiber exposes beta-hairpins with hydrophobic tips similar to those seen in class II fusion peptides. The alpha-helical core connecting these two functionally polarized tips presents four trimerization octads with consensus sequence IXXLXXXV. The slender conformation of the gp26 fiber minimizes the surface exposed to solvent, which is consistent with the idea that gp26 traverses the cell envelope lipid bilayers.

  20. Structure of Phage P22 Cell Envelope-Penetrating Needle

    SciTech Connect

    Olia, A.S.; Casjens, S.; Cingolani, G.

    2009-06-02

    Bacteriophage P22 infects Salmonella enterica by injecting its genetic material through the cell envelope. During infection, a specialized tail needle, gp26, is injected into the host, likely piercing a hole in the host cell envelope. The 2.1-{angstrom} crystal structure of gp26 reveals a 240-{angstrom} elongated protein fiber formed by two trimeric coiled-coil domains interrupted by a triple {beta}-helix. The N terminus of gp26 plugs the portal protein channel, retaining the genetic material inside the virion. The C-terminal tip of the fiber exposes {beta}-hairpins with hydrophobic tips similar to those seen in class II fusion peptides. The {alpha}-helical core connecting these two functionally polarized tips presents four trimerization octads with consensus sequence IXXLXXXV. The slender conformation of the gp26 fiber minimizes the surface exposed to solvent, which is consistent with the idea that gp26 traverses the cell envelope lipid bilayers.

  1. Reduction of Influenza Virus Envelope's Fusogenicity by Viral Fusion Inhibitors.

    PubMed

    Rowse, Michael; Qiu, Shihong; Tsao, Jun; Yamauchi, Yohei; Wang, Guoxin; Luo, Ming

    2016-01-01

    During cell entry of an enveloped virus, the viral membrane must be fused with the cellular membrane. The virus envelope has a unique structure consisting of viral proteins and a virus-specific lipid composition, whereas the host membrane has its own structure with host membrane proteins. Compound 136 was previously found to bind in close proximity to the viral envelope and inhibit influenza virus entry. We showed here that the 136-treated influenza virus still caused hemolysis. When liposomes were used as the target membrane for 136-treated viruses, aberrant fusion occurred; few liposomes fused per virion, and glycoproteins were not distributed evenly across fusion complexes. Additionally, large fusion aggregates did not form, and in some instances, neck-like structures were found. Based on previous results and hemolysis, fusion inhibition by 136 occurs post-scission but prior to lipid mixing. PMID:27622947

  2. Efficiency of Planetesimal Ablation in Giant Planetary Envelopes

    NASA Astrophysics Data System (ADS)

    Pinhas, Arazi; Madhusudhan, Nikku; Clarke, Cathie

    2016-09-01

    Observations of exoplanetary spectra are leading to unprecedented constraints on their atmospheric elemental abundances, particularly O/H, C/H, and C/O ratios. Recent studies suggest that elemental ratios could provide important constraints on formation and migration mechanisms of giant exoplanets. A fundamental assumption in such studies is that the chemical composition of the planetary envelope represents the sum-total of compositions of the accreted gas and solids during the formation history of the planet. We investigate the efficiency with which accreted planetesimals ablate in a giant planetary envelope thereby contributing to its composition rather than sinking to the core. From considerations of aerodynamic drag causing `frictional ablation' and the envelope temperature structure causing `thermal ablation', we compute mass ablations for impacting planetesimals of radii 30 m to 1 km for different compositions (ice to iron) and a wide range of velocities and impact angles, assuming spherical symmetry. Icy impactors are fully ablated in the outer envelope for a wide range of parameters. Even for Fe impactors substantial ablation occurs in the envelope for a wide range of sizes and velocities. For example, iron impactors of sizes below ˜0.5 km and velocities above ˜30 km/s are found to ablate by ˜ 60-80% within the outer envelope at pressures below 103 bar due to frictional ablation alone. For deeper pressures (˜107 bar), substantial ablation happens over a wider range of parameters. Therefore, our exploratory study suggests that atmospheric abundances of volatile elements in giant planets reflect their accretion history during formation.

  3. A Phase-Change Composite for Use in Building Envelopes

    SciTech Connect

    Graves, Ron S.

    1992-06-15

    The objective of this project is to develop composite thermal insulations containing phase-change materials for use in the building envelope. The use of a phase-change insulation composite in the building envelope could result in a significant increase in energy efficiency. PhD Research provided candidate phase-change composites, and ORNL performed analytical and experimental evaluations of their thermal performance. The thermal resistance of the prototype panels was somewhat less than that of commercial products, although their thermal capacity was greater. Using these results, PhD Research has been working to modify the design and to produce practical building elements that incorporate phase-change material.

  4. Photochemistry and molecular ions in oxygen-rich circumstellar envelopes

    NASA Technical Reports Server (NTRS)

    Mamon, G. A.; Glassgold, A. E.; Omont, A.

    1987-01-01

    A theory for the ionization of the circumstellar envelopes around O-rich red giants is developed from the photochemical model. The main source of ionization is photoionization of H2O, OH, and C by the interstellar UV radiation field, supplemented by cosmic-ray ionization of hydrogen. Significant amounts of H3O(+) and HCO(+) are produced, with peak abundances of about 10 to the -7th at intermediate distances from the star. Although H3O(+) may be difficult to detect with current instrumentation, HCO(+) is probably detectable in nearby O-rich envelopes with large millimeter-wave telescopes.

  5. Role of Envelopment in the HEV Life Cycle.

    PubMed

    Yin, Xin; Li, Xinlei; Feng, Zongdi

    2016-01-01

    Hepatitis E virus (HEV), an enterically transmitted hepatotropic virus, was thought to be non-enveloped for decades. However, recent studies have revealed that the virus circulating in the patient's blood is completely cloaked in host membranes and resistant to neutralizing antibodies. The discovery of this novel enveloped form of HEV has raised a series of questions about the fundamental biology of HEV and the way this virus, which has been understudied in the past, interacts with its host. Here, we review recent advances towards understanding this phenomenon and discuss its potential impact on various aspects of the HEV life cycle and immunity. PMID:27548201

  6. Formation of Jupiter's Core and Early Stages of Envelope Accretion

    NASA Astrophysics Data System (ADS)

    D'Angelo, G.; Weidenschilling, S.; Lissauer, J. J.; Bodenheimer, P.; Hubickyj, O.

    2012-12-01

    We are performing calculations of the formation of Jupiter via core nucleated accretion and gas capture. The core starts as a seed body of a few hundred kilometers in radius and orbits within a swarm of planetesimals whose initial size distribution ranges from ~10 m to ~100 km. The planetesimals are immersed in a gaseous disk, representative of an early solar nebula. The evolution of the swarm of planetesimals accounts for collisions and gravitational stirring due to mutual interactions among bodies, and for migration and velocity damping due to interactions with the nebula gas. Collisions among planetesimals lead to growth and/or fragmentation, altering the size distribution of the swarm over time. Collisions of planetesimals with the seed body lead to its growth, resulting in the formation of a planetary core. Gas capture by the core leads to the accumulation of a tenuous atmosphere, which later becomes a massive envelope, increasing the size-dependent effective cross-section of the planet for planetesimals' accretion. Planetesimals that travel through the core's envelope release energy, affecting the thermal budget of the envelope, and deliver mass, affecting the opacity of the envelope. The calculation of dust opacity, which is especially important for envelope contraction, is performed self-consistently, accounting for coagulation and sedimentation of dust and small particles that are released in the envelope as passing planetesimals are ablated. We find that, in a disk of planetesimals with a surface density of about 10 g/cm2 at 5.2 AU, a one Earth mass core accumulates in less than 1e5 years, and that it takes over 1.5e6 years to accumulate a core of 3 Earth masses, when the core's geometrical cross-section is used for the accretion of planetesimals. Gas drag in the core's envelope increases the ability of the planet to accrete planetesimals. Smaller planetesimals are affected to a greater extent than are larger planetesimals. We find that the effective

  7. Serial femtosecond X-ray diffraction of enveloped virus microcrystals

    DOE PAGESBeta

    Lawrence, Robert M.; Conrad, Chelsie E.; Zatsepin, Nadia A.; Grant, Thomas D.; Liu, Haiguang; James, Daniel; Nelson, Garrett; Subramanian, Ganesh; Aquila, Andrew; Hunter, Mark S.; et al

    2015-08-20

    Serial femtosecond crystallography (SFX) using X-ray free-electron lasers has produced high-resolution, room temperature, time-resolved protein structures. We report preliminary SFX of Sindbis virus, an enveloped icosahedral RNA virus with ~700 Å diameter. Microcrystals delivered in viscous agarose medium diffracted to ~40 Å resolution. Small-angle diffuse X-ray scattering overlaid Bragg peaks and analysis suggests this results from molecular transforms of individual particles. Viral proteins undergo structural changes during entry and infection, which could, in principle, be studied with SFX. This is a pertinent step toward determining room temperature structures from virus microcrystals that may enable time-resolved studies of enveloped viruses.

  8. Role of Envelopment in the HEV Life Cycle

    PubMed Central

    Yin, Xin; Li, Xinlei; Feng, Zongdi

    2016-01-01

    Hepatitis E virus (HEV), an enterically transmitted hepatotropic virus, was thought to be non-enveloped for decades. However, recent studies have revealed that the virus circulating in the patient’s blood is completely cloaked in host membranes and resistant to neutralizing antibodies. The discovery of this novel enveloped form of HEV has raised a series of questions about the fundamental biology of HEV and the way this virus, which has been understudied in the past, interacts with its host. Here, we review recent advances towards understanding this phenomenon and discuss its potential impact on various aspects of the HEV life cycle and immunity. PMID:27548201

  9. Envelope, phase, and narrow-band models of sea waves

    SciTech Connect

    Tayfun, A. ); Lo, J.M. )

    1989-09-01

    Two alternate sets of definitions for the wave envelope and phase which follow from a representation of random wave forms are compared. Theoretical constraints implied by these representations, criteria regarding the selection of certain characteristic frequencies, and whether such representations permit generalization to nonlinear models of sea waves are examined in detail. In particular, the possibility of extending the representation to nonlinear waves is explored in terms of a simple conceptual model, which can be used to predict some specific effects of nonlinearities on the wave envelope and phase.

  10. Archaeal viruses at the cell envelope: entry and egress

    PubMed Central

    Quemin, Emmanuelle R. J.; Quax, Tessa E. F.

    2015-01-01

    The cell envelope represents the main line of host defense that viruses encounter on their way from one cell to another. The cytoplasmic membrane in general is a physical barrier that needs to be crossed both upon viral entry and exit. Therefore, viruses from the three domains of life employ a wide range of strategies for perforation of the cell membrane, each adapted to the cell surface environment of their host. Here, we review recent insights on entry and egress mechanisms of viruses infecting archaea. Due to the unique nature of the archaeal cell envelope, these particular viruses exhibit novel and unexpected mechanisms to traverse the cellular membrane. PMID:26097469