Sample records for affect calcium homeostasis

  1. Diuretics and disorders of calcium homeostasis.

    PubMed

    Grieff, Marvin; Bushinsky, David A

    2011-11-01

    Diuretics commonly are administered in disorders of sodium balance. Loop diuretics inhibit the Na-K-2Cl transporter and also increase calcium excretion. They are often used in the treatment of hypercalcemia. Thiazide diuretics block the thiazide-sensitive NaCl transporter in the distal convoluted tubule, and can decrease calcium excretion. They are often used in the treatment of nephrolithiasis. Carbonic anhydrase inhibitors decrease bicarbonate absorption and the resultant metabolic acidosis can increase calcium excretion. Their use can promote nephrocalcinosis and nephrolithiasis. This review will address the use of diuretics on disorders of calcium homeostasis. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Exposure to lithium through drinking water and calcium homeostasis during pregnancy: A longitudinal study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harari, Florencia; Åkesson, Agneta; Casimiro, Esperanza

    a Li-exposed population-based mother-child cohort in northern Argentina. • Li exposure during pregnancy affected maternal calcium homeostasis. • Blood Li was consistently inversely associated with maternal plasma vitamin D{sub 3}. • Associations were independent of season of sampling and lifestyle.« less

  3. Targeting Cellular Calcium Homeostasis to Prevent Cytokine-Mediated Beta Cell Death.

    PubMed

    Clark, Amy L; Kanekura, Kohsuke; Lavagnino, Zeno; Spears, Larry D; Abreu, Damien; Mahadevan, Jana; Yagi, Takuya; Semenkovich, Clay F; Piston, David W; Urano, Fumihiko

    2017-07-17

    Pro-inflammatory cytokines are important mediators of islet inflammation, leading to beta cell death in type 1 diabetes. Although alterations in both endoplasmic reticulum (ER) and cytosolic free calcium levels are known to play a role in cytokine-mediated beta cell death, there are currently no treatments targeting cellular calcium homeostasis to combat type 1 diabetes. Here we show that modulation of cellular calcium homeostasis can mitigate cytokine- and ER stress-mediated beta cell death. The calcium modulating compounds, dantrolene and sitagliptin, both prevent cytokine and ER stress-induced activation of the pro-apoptotic calcium-dependent enzyme, calpain, and partly suppress beta cell death in INS1E cells and human primary islets. These agents are also able to restore cytokine-mediated suppression of functional ER calcium release. In addition, sitagliptin preserves function of the ER calcium pump, sarco-endoplasmic reticulum Ca 2+ -ATPase (SERCA), and decreases levels of the pro-apoptotic protein thioredoxin-interacting protein (TXNIP). Supporting the role of TXNIP in cytokine-mediated cell death, knock down of TXNIP in INS1-E cells prevents cytokine-mediated beta cell death. Our findings demonstrate that modulation of dynamic cellular calcium homeostasis and TXNIP suppression present viable pharmacologic targets to prevent cytokine-mediated beta cell loss in diabetes.

  4. m-AAA proteases, mitochondrial calcium homeostasis and neurodegeneration

    PubMed Central

    Patron, Maria; Sprenger, Hans-Georg; Langer, Thomas

    2018-01-01

    The function of mitochondria depends on ubiquitously expressed and evolutionary conserved m-AAA proteases in the inner membrane. These ATP-dependent peptidases form hexameric complexes built up of homologous subunits. AFG3L2 subunits assemble either into homo-oligomeric isoenzymes or with SPG7 (paraplegin) subunits into hetero-oligomeric proteolytic complexes. Mutations in AFG3L2 are associated with dominant spinocerebellar ataxia (SCA28) characterized by the loss of Purkinje cells, whereas mutations in SPG7 cause a recessive form of hereditary spastic paraplegia (HSP7) with motor neurons of the cortico-spinal tract being predominantly affected. Pleiotropic functions have been assigned to m-AAA proteases, which act as quality control and regulatory enzymes in mitochondria. Loss of m-AAA proteases affects mitochondrial protein synthesis and respiration and leads to mitochondrial fragmentation and deficiencies in the axonal transport of mitochondria. Moreover m-AAA proteases regulate the assembly of the mitochondrial calcium uniporter (MCU) complex. Impaired degradation of the MCU subunit EMRE in AFG3L2-deficient mitochondria results in the formation of deregulated MCU complexes, increased mitochondrial calcium uptake and increased vulnerability of neurons for calcium-induced cell death. A reduction of calcium influx into the cytosol of Purkinje cells rescues ataxia in an AFG3L2-deficient mouse model. In this review, we discuss the relationship between the m-AAA protease and mitochondrial calcium homeostasis and its relevance for neurodegeneration and describe a novel mouse model lacking MCU specifically in Purkinje cells. Our results pledge for a novel view on m-AAA proteases that integrates their pleiotropic functions in mitochondria to explain the pathogenesis of associated neurodegenerative disorders. PMID:29451229

  5. m-AAA proteases, mitochondrial calcium homeostasis and neurodegeneration.

    PubMed

    Patron, Maria; Sprenger, Hans-Georg; Langer, Thomas

    2018-03-01

    The function of mitochondria depends on ubiquitously expressed and evolutionary conserved m-AAA proteases in the inner membrane. These ATP-dependent peptidases form hexameric complexes built up of homologous subunits. AFG3L2 subunits assemble either into homo-oligomeric isoenzymes or with SPG7 (paraplegin) subunits into hetero-oligomeric proteolytic complexes. Mutations in AFG3L2 are associated with dominant spinocerebellar ataxia (SCA28) characterized by the loss of Purkinje cells, whereas mutations in SPG7 cause a recessive form of hereditary spastic paraplegia (HSP7) with motor neurons of the cortico-spinal tract being predominantly affected. Pleiotropic functions have been assigned to m-AAA proteases, which act as quality control and regulatory enzymes in mitochondria. Loss of m-AAA proteases affects mitochondrial protein synthesis and respiration and leads to mitochondrial fragmentation and deficiencies in the axonal transport of mitochondria. Moreover m-AAA proteases regulate the assembly of the mitochondrial calcium uniporter (MCU) complex. Impaired degradation of the MCU subunit EMRE in AFG3L2-deficient mitochondria results in the formation of deregulated MCU complexes, increased mitochondrial calcium uptake and increased vulnerability of neurons for calcium-induced cell death. A reduction of calcium influx into the cytosol of Purkinje cells rescues ataxia in an AFG3L2-deficient mouse model. In this review, we discuss the relationship between the m-AAA protease and mitochondrial calcium homeostasis and its relevance for neurodegeneration and describe a novel mouse model lacking MCU specifically in Purkinje cells. Our results pledge for a novel view on m-AAA proteases that integrates their pleiotropic functions in mitochondria to explain the pathogenesis of associated neurodegenerative disorders.

  6. Pharmacological modulation of mitochondrial calcium homeostasis.

    PubMed

    Arduino, Daniela M; Perocchi, Fabiana

    2018-01-10

    Mitochondria are pivotal organelles in calcium (Ca 2+ ) handling and signalling, constituting intracellular checkpoints for numerous processes that are vital for cell life. Alterations in mitochondrial Ca 2+ homeostasis have been linked to a variety of pathological conditions and are critical in the aetiology of several human diseases. Efforts have been taken to harness mitochondrial Ca 2+ transport mechanisms for therapeutic intervention, but pharmacological compounds that direct and selectively modulate mitochondrial Ca 2+ homeostasis are currently lacking. New avenues have, however, emerged with the breakthrough discoveries on the genetic identification of the main players involved in mitochondrial Ca 2+ influx and efflux pathways and with recent hints towards a deep understanding of the function of these molecular systems. Here, we review the current advances in the understanding of the mechanisms and regulation of mitochondrial Ca 2+ homeostasis and its contribution to physiology and human disease. We also introduce and comment on the recent progress towards a systems-level pharmacological targeting of mitochondrial Ca 2+ homeostasis. © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.

  7. Disruption of Calcium Homeostasis During Exercise as a Mediator of Bone Metabolism

    DTIC Science & Technology

    2015-10-01

    Meeting of the American College of Sports Medicine (Appendix A). 15. SUBJECT TERMS calcium homeostasis, exercise, bone resorption, parathyroid hormone ... hormone (PTH). PTH can defend serum Ca by reducing urinary Ca excretion, increasing intestinal Ca absorption, and increasing mobilization of skeletal Ca...certain conditions. It is our contention that disruptions in calcium homeostasis during exercise lead to increases in parathyroid hormone (PTH) and

  8. Influence of whole-body irradiation on calcium and phosphate homeostasis in the rat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pento, J.T.; Kenny, A.D.

    1975-09-01

    Previous irradiation studies have revealed marked alterations in calcium metabolism. Moreover, the maintenance of calcium homeostasis with parathyroid hormone or calcium salts has been reported to reduce radiation lethality. Therefore, the present study was designed to evaluate the influence of irradiation on calcium homeostasis in the rat. Nine hundred rad of whole-body irradiation produced a significant depression of both plasma calcium and phosphate at 4 days postirradiation. This effect of irradiation was observed to be dose-dependent over a range of 600 to 1200 rad, and possibly related to irradiation-induced anorexia. The physiological significance of these observations is discussed. (auth)

  9. Lactate calcium salt affects the viability of colorectal cancer cells via betaine homeostasis.

    PubMed

    Jang, Yeong-Su; Jo, Young-Kwon; Sim, Jae Jun; Ji, Eunhee; Jeong, Keun-Yeong; Kim, Hwan Mook

    2016-02-15

    Betaine plays an important role in cellular homeostasis. However, the physiological roles of betaine-γ-aminobutyric acid (GABA) transporter (BGT-1) are still being disputed in cancer. In this study, we tried to find the possibility of the antitumor effect on colorectal cancer (CRC) cell via lactate calcium salt (CaLa)-induced BGT-1 downregulation. The CRC cell viability and clonogenic assay was performed using different doses of BGT-1 inhibitor. The expression level of BGT-1 was measured following the treatment of 2.5mM CaLa. Betaine was treated to confirm the resistance of the antitumor activity by CaLa. Tumor growth was also measured using a xenograft animal model. Long-term exposure of 2.5mM CaLa clearly decreased the expression of BGT-1 in the CRC cells. As a result of the downregulation of BGT-1 expression, the clonogenic ability of CRC cells was also decreased in the 2.5mM CaLa-treated group. Reversely, the number of colonies and cell viability was increased by combination treatment with betaine and 2.5mM CaLa, as compared with a single treatment of 2.5mM CaLa. Tumor growth was significantly inhibited in the xenograft model depending on BGT-1 downregulation by 2.5mM CaLa treatment. These results support the idea that long-lasting calcium supplementation via CaLa contributes to disruption of betaine homeostasis in the CRC cells and is hypothesized to reduce the risk of CRC. In addition, it indicates the possibility of CaLa being a potential incorporating agent with existing therapeutics against CRC. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Zinc oxide nanoparticles decrease the expression and activity of plasma membrane calcium ATPase, disrupt the intracellular calcium homeostasis in rat retinal ganglion cells.

    PubMed

    Guo, Dadong; Bi, Hongsheng; Wang, Daoguang; Wu, Qiuxin

    2013-08-01

    Zinc oxide nanoparticle is one of the most important materials with diverse applications. However, it has been reported that zinc oxide nanoparticles are toxic to organisms, and that oxidative stress is often hypothesized to be an important factor in cytotoxicity mediated by zinc oxide nanoparticles. Nevertheless, the mechanism of toxicity of zinc oxide nanoparticles has not been completely understood. In this study, we investigated the cytotoxic effect of zinc oxide nanoparticles and the possible molecular mechanism involved in calcium homeostasis mediated by plasma membrane calcium ATPase in rat retinal ganglion cells. Real-time cell electronic sensing assay showed that zinc oxide nanoparticles could exert cytotoxic effect on rat retinal ganglion cells in a concentration-dependent manner; flow cytometric analysis indicated that zinc oxide nanoparticles could lead to cell damage by inducing the overproduction of reactive oxygen species. Furthermore, zinc oxide nanoparticles could also apparently decrease the expression level and their activity of plasma membrane calcium ATPase, which finally disrupt the intracellular calcium homeostasis and result in cell death. Taken together, zinc oxide nanoparticles could apparently decrease the plasma membrane calcium ATPase expression, inhibit their activity, cause the elevated intracellular calcium ion level and disrupt the intracellular calcium homeostasis. Further, the disrupted calcium homeostasis will trigger mitochondrial dysfunction, generate excessive reactive oxygen species, and finally initiate cell death. Thus, the disrupted calcium homeostasis is involved in the zinc oxide nanoparticle-induced rat retinal ganglion cell death. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Growth hormone secretagogues prevent dysregulation of skeletal muscle calcium homeostasis in a rat model of cisplatin‐induced cachexia

    PubMed Central

    Conte, Elena; Camerino, Giulia Maria; Mele, Antonietta; De Bellis, Michela; Pierno, Sabata; Rana, Francesco; Fonzino, Adriano; Caloiero, Roberta; Rizzi, Laura; Bresciani, Elena; Ben Haj Salah, Khoubaib; Fehrentz, Jean‐Alain; Martinez, Jean; Giustino, Arcangela; Mariggiò, Maria Addolorata; Coluccia, Mauro; Tricarico, Domenico; Lograno, Marcello Diego; De Luca, Annamaria; Torsello, Antonio; Conte, Diana

    2017-01-01

    Abstract Background Cachexia is a wasting condition associated with cancer types and, at the same time, is a serious and dose‐limiting side effect of cancer chemotherapy. Skeletal muscle loss is one of the main characteristics of cachexia that significantly contributes to the functional muscle impairment. Calcium‐dependent signaling pathways are believed to play an important role in skeletal muscle decline observed in cachexia, but whether intracellular calcium homeostasis is affected in this situation remains uncertain. Growth hormone secretagogues (GHS), a family of synthetic agonists of ghrelin receptor (GHS‐R1a), are being developed as a therapeutic option for cancer cachexia syndrome; however, the exact mechanism by which GHS interfere with skeletal muscle is not fully understood. Methods By a multidisciplinary approach ranging from cytofluorometry and electrophysiology to gene expression and histology, we characterized the calcium homeostasis in fast‐twitch extensor digitorum longus (EDL) muscle of adult rats with cisplatin‐induced cachexia and established the potential beneficial effects of two GHS (hexarelin and JMV2894) at this level. Additionally, in vivo measures of grip strength and of ultrasonography recordings allowed us to evaluate the functional impact of GHS therapeutic intervention. Results Cisplatin‐treated EDL muscle fibres were characterized by a ~18% significant reduction of the muscle weight and fibre diameter together with an up‐regulation of atrogin1/Murf‐1 genes and a down‐regulation of Pgc1‐a gene, all indexes of muscle atrophy, and by a two‐fold increase in resting intracellular calcium, [Ca2+]i, compared with control rats. Moreover, the amplitude of the calcium transient induced by caffeine or depolarizing high potassium solution as well as the store‐operated calcium entry were ~50% significantly reduced in cisplatin‐treated rats. Calcium homeostasis dysregulation parallels with changes of functional ex vivo

  12. Growth hormone secretagogues prevent dysregulation of skeletal muscle calcium homeostasis in a rat model of cisplatin-induced cachexia.

    PubMed

    Conte, Elena; Camerino, Giulia Maria; Mele, Antonietta; De Bellis, Michela; Pierno, Sabata; Rana, Francesco; Fonzino, Adriano; Caloiero, Roberta; Rizzi, Laura; Bresciani, Elena; Ben Haj Salah, Khoubaib; Fehrentz, Jean-Alain; Martinez, Jean; Giustino, Arcangela; Mariggiò, Maria Addolorata; Coluccia, Mauro; Tricarico, Domenico; Lograno, Marcello Diego; De Luca, Annamaria; Torsello, Antonio; Conte, Diana; Liantonio, Antonella

    2017-06-01

    Cachexia is a wasting condition associated with cancer types and, at the same time, is a serious and dose-limiting side effect of cancer chemotherapy. Skeletal muscle loss is one of the main characteristics of cachexia that significantly contributes to the functional muscle impairment. Calcium-dependent signaling pathways are believed to play an important role in skeletal muscle decline observed in cachexia, but whether intracellular calcium homeostasis is affected in this situation remains uncertain. Growth hormone secretagogues (GHS), a family of synthetic agonists of ghrelin receptor (GHS-R1a), are being developed as a therapeutic option for cancer cachexia syndrome; however, the exact mechanism by which GHS interfere with skeletal muscle is not fully understood. By a multidisciplinary approach ranging from cytofluorometry and electrophysiology to gene expression and histology, we characterized the calcium homeostasis in fast-twitch extensor digitorum longus (EDL) muscle of adult rats with cisplatin-induced cachexia and established the potential beneficial effects of two GHS (hexarelin and JMV2894) at this level. Additionally, in vivo measures of grip strength and of ultrasonography recordings allowed us to evaluate the functional impact of GHS therapeutic intervention. Cisplatin-treated EDL muscle fibres were characterized by a ~18% significant reduction of the muscle weight and fibre diameter together with an up-regulation of atrogin1/Murf-1 genes and a down-regulation of Pgc1-a gene, all indexes of muscle atrophy, and by a two-fold increase in resting intracellular calcium, [Ca 2+ ] i , compared with control rats. Moreover, the amplitude of the calcium transient induced by caffeine or depolarizing high potassium solution as well as the store-operated calcium entry were ~50% significantly reduced in cisplatin-treated rats. Calcium homeostasis dysregulation parallels with changes of functional ex vivo (excitability and resting macroscopic conductance) and in

  13. Calcium Homeostasis and Cone Signaling Are Regulated by Interactions between Calcium Stores and Plasma Membrane Ion Channels

    PubMed Central

    Bartoletti, Theodore M.; Huang, Wei; Akopian, Abram; Thoreson, Wallace B.; Krizaj, David

    2009-01-01

    Calcium is a messenger ion that controls all aspects of cone photoreceptor function, including synaptic release. The dynamic range of the cone output extends beyond the activation threshold for voltage-operated calcium entry, suggesting another calcium influx mechanism operates in cones hyperpolarized by light. We have used optical imaging and whole-cell voltage clamp to measure the contribution of store-operated Ca2+ entry (SOCE) to Ca2+ homeostasis and its role in regulation of neurotransmission at cone synapses. Mn2+ quenching of Fura-2 revealed sustained divalent cation entry in hyperpolarized cones. Ca2+ influx into cone inner segments was potentiated by hyperpolarization, facilitated by depletion of intracellular Ca2+ stores, unaffected by pharmacological manipulation of voltage-operated or cyclic nucleotide-gated Ca2+ channels and suppressed by lanthanides, 2-APB, MRS 1845 and SKF 96365. However, cation influx through store-operated channels crossed the threshold for activation of voltage-operated Ca2+ entry in a subset of cones, indicating that the operating range of inner segment signals is set by interactions between store- and voltage-operated Ca2+ channels. Exposure to MRS 1845 resulted in ∼40% reduction of light-evoked postsynaptic currents in photopic horizontal cells without affecting the light responses or voltage-operated Ca2+ currents in simultaneously recorded cones. The spatial pattern of store-operated calcium entry in cones matched immunolocalization of the store-operated sensor STIM1. These findings show that store-operated channels regulate spatial and temporal properties of Ca2+ homeostasis in vertebrate cones and demonstrate their role in generation of sustained excitatory signals across the first retinal synapse. PMID:19696927

  14. Dysregulation of cellular calcium homeostasis in Alzheimer's disease: bad genes and bad habits.

    PubMed

    Mattson, M P; Chan, S L

    2001-10-01

    Calcium is one of the most important intracellular messengers in the brain, being essential for neuronal development, synaptic transmission and plasticity, and the regulation of various metabolic pathways. The findings reviewed in the present article suggest that calcium also plays a prominent role in the pathogenesis of Alzheimer's disease (AD). Associations between the pathological hallmarks ofAD (neurofibrillary tangles [NFT] and amyloid plaques) and perturbed cellular calcium homeostasis have been established in studies of patients, and in animal and cell culture models of AD. Studies of the effects of mutations in the beta-amyloid precursor protein (APP) and presenilins on neuronal plasticity and survival have provided insight into the molecular cascades that result in synaptic dysfunction and neuronal degeneration in AD. Central to the neurodegenerative process is the inability of neurons to properly regulate intracellular calcium levels. Increased levels of amyloid beta-peptide (Abeta) induce oxidative stress, which impairs cellular ion homeostasis and energy metabolism and renders neurons vulnerable to apoptosis and excitotoxicity. Subtoxic levels of Abeta may induce synaptic dysfunction by impairing multiple signal transduction pathways. Presenilin mutations perturb calcium homeostasis in the endoplasmic reticulum in a way that sensitizes neurons to apoptosis and excitotoxicity; links between aberrant calcium regulation and altered APP processing are emerging. Environmental risk factors for AD are being identified and may include high calorie diets, folic acid insufficiency, and a low level of intellectual activity (bad habits); in each case, the environmental factor impacts on neuronal calcium homeostasis. Low calorie diets and intellectual activity may guard against AD by stimulating production of neurotrophic factors and chaperone proteins. The emerging picture of the cell and molecular biology of AD is revealing novel preventative and therapeutic

  15. Renal Control of Calcium, Phosphate, and Magnesium Homeostasis

    PubMed Central

    Chonchol, Michel; Levi, Moshe

    2015-01-01

    Calcium, phosphate, and magnesium are multivalent cations that are important for many biologic and cellular functions. The kidneys play a central role in the homeostasis of these ions. Gastrointestinal absorption is balanced by renal excretion. When body stores of these ions decline significantly, gastrointestinal absorption, bone resorption, and renal tubular reabsorption increase to normalize their levels. Renal regulation of these ions occurs through glomerular filtration and tubular reabsorption and/or secretion and is therefore an important determinant of plasma ion concentration. Under physiologic conditions, the whole body balance of calcium, phosphate, and magnesium is maintained by fine adjustments of urinary excretion to equal the net intake. This review discusses how calcium, phosphate, and magnesium are handled by the kidneys. PMID:25287933

  16. Glutathione homeostasis as an important and novel factor controlling blossom-end rot development in calcium-deficient tomato fruits.

    PubMed

    Mestre, Teresa C; Garcia-Sanchez, Francisco; Rubio, Francisco; Martinez, Vicente; Rivero, Rosa M

    2012-11-15

    Based on previous results in which oxidative metabolism was suggested as a possible inducer of blossom-end rot (BER), the main questions addressed here were whether calcium deficiency is the main factor that induces BER or whether this physiological disorder a general stress-related phenomenon? Tomato plants were grown under optimal or deficient calcium concentrations. Only the application of 0.1mM calcium resulted in BER induction, although only half of the fruits grown under this treatment had this disorder. Having fruits showing or not showing BER in the same plant and treatment provided us with a powerful tool that we used to investigate whether calcium deficiency operates alongside another mechanism in the induction of BER. Whether or not this other mechanism was the one controlling BER incidence was also investigated. We performed a complete study of the oxidative metabolism in the pericarp of healthy fruits and in the healthy portion of BER-affected fruits. Calcium deficiency led to an induction of NADPH oxidase, superoxide dismutase, dehydro- and monodehydroascorbate reductase, and to an inhibition of catalase, ascorbate peroxidase and glutathione reductase, with a concomitant accumulation of hydrogen peroxide and an increase in lipid peroxidation. While the ascorbate redox state was not affected by calcium deficiency, the glutathione redox state was markedly reduced. We conclude that calcium deficiency fundamentally affected the activity of the ascorbate-glutathione enzymes, with special importance to the inhibition of GR, which lead to a reduction of the glutathione redox state. This could cause the breakdown of cellular homeostasis, the inhibition of other enzymes responsible for H(2)O(2) detoxification, and ultimately an increase of lipid peroxidation. Therefore, BER is defined here as the visual symptom of a massive lipid peroxidation event caused by the breakdown of cellular glutathione homeostasis. Copyright © 2012 Elsevier GmbH. All rights reserved.

  17. Chemistry Misconceptions Associated with Understanding Calcium and Phosphate Homeostasis

    ERIC Educational Resources Information Center

    Cliff, William H.

    2009-01-01

    Successful learning of many aspects in physiology depends on a meaningful understanding of fundamental chemistry concepts. Two conceptual diagnostic questions measured student understanding of the chemical equilibrium underlying calcium and phosphate homeostasis. One question assessed the ability to predict the change in phosphate concentration…

  18. Renal control of calcium, phosphate, and magnesium homeostasis.

    PubMed

    Blaine, Judith; Chonchol, Michel; Levi, Moshe

    2015-07-07

    Calcium, phosphate, and magnesium are multivalent cations that are important for many biologic and cellular functions. The kidneys play a central role in the homeostasis of these ions. Gastrointestinal absorption is balanced by renal excretion. When body stores of these ions decline significantly, gastrointestinal absorption, bone resorption, and renal tubular reabsorption increase to normalize their levels. Renal regulation of these ions occurs through glomerular filtration and tubular reabsorption and/or secretion and is therefore an important determinant of plasma ion concentration. Under physiologic conditions, the whole body balance of calcium, phosphate, and magnesium is maintained by fine adjustments of urinary excretion to equal the net intake. This review discusses how calcium, phosphate, and magnesium are handled by the kidneys. Copyright © 2015 by the American Society of Nephrology.

  19. Exposure to lithium through drinking water and calcium homeostasis during pregnancy: A longitudinal study.

    PubMed

    Harari, Florencia; Åkesson, Agneta; Casimiro, Esperanza; Lu, Ying; Vahter, Marie

    2016-05-01

    There is increasing evidence of adverse health effects due to elevated lithium exposure through drinking water but the impact on calcium homeostasis is unknown. This study aimed at elucidating if lithium exposure through drinking water during pregnancy may impair the maternal calcium homeostasis. In a population-based mother-child cohort in the Argentinean Andes (n=178), with elevated lithium concentrations in the drinking water (5-1660μg/L), blood lithium concentrations (correlating significantly with lithium in water, urine and plasma) were measured repeatedly during pregnancy by inductively coupled plasma mass spectrometry and used as exposure biomarker. Markers of calcium homeostasis included: plasma 25-hydroxyvitamin D3, serum parathyroid hormone (PTH), and calcium, phosphorus and magnesium concentrations in serum and urine. The median maternal blood lithium concentration was 25μg/L (range 1.9-145). In multivariable-adjusted mixed-effects linear regression models, blood lithium was inversely associated with 25-hydroxyvitamin D3 (-6.1nmol/L [95%CI -9.5; -2.6] for a 25μg/L increment in blood lithium). The estimate increased markedly with increasing percentiles of 25-hydroxyvitamin D3. In multivariable-adjusted mixed-effects logistic regression models, the odds ratio of having 25-hydroxyvitamin D3<30nmol/L (19% of the women) was 4.6 (95%CI 1.1; 19.3) for a 25μg/L increment in blood lithium. Blood lithium was also positively associated with serum magnesium, but not with serum calcium and PTH, and inversely associated with urinary calcium and magnesium. In conclusion, our study suggests that lithium exposure through drinking water during pregnancy may impair the calcium homeostasis, particularly vitamin D. The results reinforce the need for better control of lithium in drinking water, including bottled water. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  20. TMEM203 Is a Novel Regulator of Intracellular Calcium Homeostasis and Is Required for Spermatogenesis

    PubMed Central

    Shambharkar, Prashant B.; Bittinger, Mark; Latario, Brian; Xiong, ZhaoHui; Bandyopadhyay, Somnath; Davis, Vanessa; Lin, Victor; Yang, Yi; Valdez, Reginald; Labow, Mark A.

    2015-01-01

    Intracellular calcium signaling is critical for initiating and sustaining diverse cellular functions including transcription, synaptic signaling, muscle contraction, apoptosis and fertilization. Trans-membrane 203 (TMEM203) was identified here in cDNA overexpression screens for proteins capable of modulating intracellular calcium levels using activation of a calcium/calcineurin regulated transcription factor as an indicator. Overexpression of TMEM203 resulted in a reduction of Endoplasmic Reticulum (ER) calcium stores and elevation in basal cytoplasmic calcium levels. TMEM203 protein was localized to the ER and found associated with a number of ER proteins which regulate ER calcium entry and efflux. Mouse Embryonic Fibroblasts (MEFs) derived from Tmem203 deficient mice had reduced ER calcium stores and altered calcium homeostasis. Tmem203 deficient mice were viable though male knockout mice were infertile and exhibited a severe block in spermiogenesis and spermiation. Expression profiling studies showed significant alternations in expression of calcium channels and pumps in testes and concurrently Tmem203 deficient spermatocytes demonstrated significantly altered calcium handling. Thus Tmem203 is an evolutionarily conserved regulator of cellular calcium homeostasis, is required for spermatogenesis and provides a causal link between intracellular calcium regulation and spermiogenesis. PMID:25996873

  1. Calcium, Synaptic Plasticity and Intrinsic Homeostasis in Purkinje Neuron Models

    PubMed Central

    Achard, Pablo; De Schutter, Erik

    2008-01-01

    We recently reproduced the complex electrical activity of a Purkinje cell (PC) with very different combinations of ionic channel maximum conductances, suggesting that a large parameter space is available to homeostatic mechanisms. It has been hypothesized that cytoplasmic calcium concentrations control the homeostatic activity sensors. This raises many questions for PCs since in these neurons calcium plays an important role in the induction of synaptic plasticity. To address this question, we generated 148 new PC models. In these models the somatic membrane voltages are stable, but the somatic calcium dynamics are very variable, in agreement with experimental results. Conversely, the calcium signal in spiny dendrites shows only small variability. We demonstrate that this localized control of calcium conductances preserves the induction of long-term depression for all models. We conclude that calcium is unlikely to be the sole activity-sensor in this cell but that there is a strong relationship between activity homeostasis and synaptic plasticity. PMID:19129937

  2. Calcium homeostasis and bone metabolic responses to high-protein diets during energy deficit in healthy young adults: a randomized control trial

    USDA-ARS?s Scientific Manuscript database

    Although consuming dietary protein above current recommendations during energy deficit enhances blood lipid profiles and preserves lean body mass, concerns have been raised regarding effects of high-protein diets on bone health. To determine whether calcium homeostasis and bone turnover are affected...

  3. Oral calcium carbonate affects calcium but not phosphorus balance in stage 3–4 chronic kidney disease

    PubMed Central

    Hill, Kathleen M.; Martin, Berdine R.; Wastney, Meryl; McCabe, George P.; Moe, Sharon M.; Weaver, Connie M.; Peacock, Munro

    2014-01-01

    Chronic kidney disease (CKD) patients are given calcium carbonate to bind dietary phosphorus and reduce phosphorus retention, and to prevent negative calcium balance. Data are limited on calcium and phosphorus balance in CKD to support this. The aim of this study was to determine calcium and phosphorus balance and calcium kinetics with and without calcium carbonate in CKD patients. Eight stage 3/4 CKD patients, eGFR 36 mL/min, participated in two 3-week balances in a randomized placebo-controlled cross-over study of calcium carbonate (1500 mg/d calcium). Calcium and phosphorus balance were determined on a controlled diet. Oral and intravenous 45calcium with blood sampling and urine and fecal collections were used for calcium kinetics. Fasting blood and urine were collected at baseline and end of each week of each balance period for biochemical analyses. Results showed that patients were in neutral calcium and phosphorus balance while on placebo. Calcium carbonate produced positive calcium balance, did not affect phosphorus balance, and produced only a modest reduction in urine phosphorus excretion compared with placebo. Calcium kinetics demonstrated positive net bone balance but less than overall calcium balance suggesting tissue deposition. Fasting biochemistries of calcium and phosphate homeostasis were unaffected by calcium carbonate. If they can be extrapolated to effects of chronic therapy, these data caution against the use of calcium carbonate as a phosphate binder. PMID:23254903

  4. Calcium homeostasis during oral glucose load in healthy women.

    PubMed

    D'Erasmo, E; Pisani, D; Ragno, A; Raejntroph, N; Vecci, E; Acca, M

    1999-04-01

    It has been demonstrated that in healthy subjects during oral glucose tolerance test, serum calcium declines, while urinary calcium excretion increases, even if there is not a general agreement in this regard. The study was carried out in order to evaluate the effects of glucose oral load on calcium homeostasis in eight healthy adult women, also considering ionized calcium, plasma insulin and parathyroid hormone changes. The results showed a decline of total and ionized serum calcium (p < 0.05 and p < 0.01, respectively; maximum of the decrease at time 120'), in parallel with the increase of urinary calcium/ creatinine ratio (p < 0.05). Serum glucose and insulin increase (p < 0.0001 and p < 0.0005 respectively; maximum value at time 60'), while the parathyroid hormone level decreases (maximum decline at time 120', p < 0.01). No changes were observed in fasting control subjects for all parameters considered. The changes of these parameters with time suggest that the effects of glucose oral load on calcium metabolism in healthy adult women may be the consequence of parathyroid hormone suppression induced by acute hyperglycemia/hyperinsulinemia. The results confirm in vivo the PTH behaviour in vitro, on cultured bovine parathyroid cells, with high glucose concentration.

  5. Oral calcium carbonate affects calcium but not phosphorus balance in stage 3-4 chronic kidney disease.

    PubMed

    Hill, Kathleen M; Martin, Berdine R; Wastney, Meryl E; McCabe, George P; Moe, Sharon M; Weaver, Connie M; Peacock, Munro

    2013-05-01

    Patients with chronic kidney disease (CKD) are given calcium carbonate to bind dietary phosphorus, reduce phosphorus retention, and prevent negative calcium balance; however, data are limited on calcium and phosphorus balance during CKD to support this. Here, we studied eight patients with stage 3 or 4 CKD (mean estimated glomerular filtration rate 36 ml/min) who received a controlled diet with or without a calcium carbonate supplement (1500 mg/day calcium) during two 3-week balance periods in a randomized placebo-controlled cross-over design. All feces and urine were collected during weeks 2 and 3 of each balance period and fasting blood, and urine was collected at baseline and at the end of each week. Calcium kinetics were determined using oral and intravenous (45)calcium. Patients were found to be in neutral calcium and phosphorus balance while on the placebo. Calcium carbonate supplementation produced positive calcium balance, did not affect phosphorus balance, and produced only a modest reduction in urine phosphorus excretion compared with placebo. Calcium kinetics demonstrated positive net bone balance but less than overall calcium balance, suggesting soft-tissue deposition. Fasting blood and urine biochemistries of calcium and phosphate homeostasis were unaffected by calcium carbonate. Thus, the positive calcium balance produced by calcium carbonate treatment within 3 weeks cautions against its use as a phosphate binder in patients with stage 3 or 4 CKD, if these findings can be extrapolated to long-term therapy.

  6. Mitochondrial protein Fus1/Tusc2 in premature aging and age-related pathologies: critical roles of calcium and energy homeostasis.

    PubMed

    Uzhachenko, Roman; Boyd, Kelli; Olivares-Villagomez, Danyvid; Zhu, Yueming; Goodwin, J Shawn; Rana, Tanu; Shanker, Anil; Tan, Winston J T; Bondar, Tanya; Medzhitov, Ruslan; Ivanova, Alla V

    2017-03-26

    Decreased energy production and increased oxidative stress are considered to be major contributors to aging and aging-associated pathologies. The role of mitochondrial calcium homeostasis has also been highlighted as an important factor affecting different pathological conditions. Here, we present evidence that loss of a small mitochondrial protein Fus1 that maintains mitochondrial homeostasis results in premature aging, aging-associated pathologies, and decreased survival. We showed that Fus1KO mice develop multiple early aging signs including lordokyphosis, lack of vigor, inability to accumulate fat, reduced ability to tolerate stress, and premature death. Other prominent pathological changes included low sperm counts, compromised ability of adult stem cells to repopulate tissues, and chronic inflammation. At the molecular level, we demonstrated that mitochondria of Fus1 KO cells have low reserve respiratory capacity (the ability to produce extra energy during sudden energy demanding situations), and show significantly altered dynamics of cellular calcium response.Our recent studies on early hearing and memory loss in Fus1 KO mice combined with the new data presented here suggest that calcium and energy homeostasis controlled by Fus1 may be at the core of its aging-regulating activities. Thus, Fus1 protein and Fus1-dependent pathways and processes may represent new tools and targets for anti-aging strategies.

  7. Mitochondrial protein Fus1/Tusc2 in premature aging and age-related pathologies: critical roles of calcium and energy homeostasis

    PubMed Central

    Uzhachenko, Roman; Boyd, Kelli; Olivares-Villagomez, Danyvid; Zhu, Yueming; Goodwin, J. Shawn; Rana, Tanu; Shanker, Anil; Tan, Winston J.T.; Bondar, Tanya; Medzhitov, Ruslan; Ivanova, Alla V.

    2017-01-01

    Decreased energy production and increased oxidative stress are considered to be major contributors to aging and aging-associated pathologies. The role of mitochondrial calcium homeostasis has also been highlighted as an important factor affecting different pathological conditions. Here, we present evidence that loss of a small mitochondrial protein Fus1 that maintains mitochondrial homeostasis results in premature aging, aging-associated pathologies, and decreased survival. We showed that Fus1KO mice develop multiple early aging signs including lordokyphosis, lack of vigor, inability to accumulate fat, reduced ability to tolerate stress, and premature death. Other prominent pathological changes included low sperm counts, compromised ability of adult stem cells to repopulate tissues, and chronic inflammation. At the molecular level, we demonstrated that mitochondria of Fus1 KO cells have low reserve respiratory capacity (the ability to produce extra energy during sudden energy demanding situations), and show significantly altered dynamics of cellular calcium response. Our recent studies on early hearing and memory loss in Fus1 KO mice combined with the new data presented here suggest that calcium and energy homeostasis controlled by Fus1 may be at the core of its aging-regulating activities. Thus, Fus1 protein and Fus1-dependent pathways and processes may represent new tools and targets for anti-aging strategies. PMID:28351997

  8. Hydrogen peroxide homeostasis: activation of plant catalase by calcium/calmodulin

    NASA Technical Reports Server (NTRS)

    Yang, T.; Poovaiah, B. W.

    2002-01-01

    Environmental stimuli such as UV, pathogen attack, and gravity can induce rapid changes in hydrogen peroxide (H(2)O(2)) levels, leading to a variety of physiological responses in plants. Catalase, which is involved in the degradation of H(2)O(2) into water and oxygen, is the major H(2)O(2)-scavenging enzyme in all aerobic organisms. A close interaction exists between intracellular H(2)O(2) and cytosolic calcium in response to biotic and abiotic stresses. Studies indicate that an increase in cytosolic calcium boosts the generation of H(2)O(2). Here we report that calmodulin (CaM), a ubiquitous calcium-binding protein, binds to and activates some plant catalases in the presence of calcium, but calcium/CaM does not have any effect on bacterial, fungal, bovine, or human catalase. These results document that calcium/CaM can down-regulate H(2)O(2) levels in plants by stimulating the catalytic activity of plant catalase. Furthermore, these results provide evidence indicating that calcium has dual functions in regulating H(2)O(2) homeostasis, which in turn influences redox signaling in response to environmental signals in plants.

  9. CaSR-mediated interactions between calcium and magnesium homeostasis in mice.

    PubMed

    Quinn, Stephen J; Thomsen, Alex R B; Egbuna, Ogo; Pang, Jian; Baxi, Khanjan; Goltzman, David; Pollak, Martin; Brown, Edward M

    2013-04-01

    Calcium (Ca) and magnesium (Mg) homeostasis are interrelated and share common regulatory hormones, including parathyroid hormone (PTH) and vitamin D. However, the role of the calcium-sensing receptor (CaSR) in Mg homeostasis in vivo is not well understood. We sought to investigate the interactions between Mg and Ca homeostasis using genetic mouse models with targeted inactivation of PTH (PTH KO) or both PTH and the calcium-sensing receptor (CaSR) (double knockout, DKO). Serum Mg is lower in PTH KO and DKO mice than in WT mice on standard chow, whereas supplemental dietary Ca leads to equivalent Mg levels for all three genotypes. Mg loading increases serum Mg in all genotypes; however, the increase in serum Mg is most pronounced in the DKO mice. Serum Ca is increased with Mg loading in the PTH KO and DKO mice but not in the WT mice. Here, too, the hypercalcemia is much greater in the DKO mice. Serum and especially urinary phosphate are reduced during Mg loading, which is likely due to intestinal chelation of phosphate by Mg. Mg loading decreases serum PTH in WT mice and increases serum calcitonin in both WT and PTH KO mice but not DKO mice. Furthermore, Mg loading elevates serum 1,25-dihydroxyvitamin D in all genotypes, with greater effects in PTH KO and DKO mice, possibly due to reduced levels of serum phosphorus and FGF23. These hormonal responses to Mg loading and the CaSR's role in regulating renal function may help to explain changes in serum Mg and Ca found during Mg loading.

  10. Calcium as a cardiovascular toxin in CKD-MBD.

    PubMed

    Moe, Sharon M

    2017-07-01

    Disordered calcium balance and homeostasis are common in patients with chronic kidney disease. Such alterations are commonly associated with abnormal bone remodeling, directly and indirectly. Similarly, positive calcium balance may also be a factor in the pathogenesis of extra skeletal soft tissue and arterial calcification. Calcium may directly affect cardiac structure and function through direct effects to alter cell signaling due to abnormal intracellular calcium homeostasis 2) extra-skeletal deposition of calcium and phosphate in the myocardium and small cardiac arterioles, 3) inducing cardiomyocyte hypertrophy through calcium and hormone activation of NFAT signaling mechanisms, and 4) increased aorta calcification resulting in chronic increased afterload leading to hypertrophy. Similarly, calcium may alter vascular smooth muscle cell function and affect cell signaling which may predispose to a proliferative phenotype important in arteriosclerosis and arterial calcification. Thus, disorders of calcium balance and homeostasis due to CKD-MBD may play a role in the high cardiovascular burden observed in patients with CKD. Published by Elsevier Inc.

  11. Involvement of the cervical sympathetic nervous system in the changes of calcium homeostasis during turpentine oil-induced stress in rats.

    PubMed

    Stern, J E; Ladizesky, M G; Keller Sarmiento, M I; Cardinali, D P

    1993-03-01

    Hypocalcemia is a common finding during stress. The objective of this study was to examine: (a) the changes in circulating calcium, parathyroid hormone (PTH) and calcitonin (CT) concentration in rats stressed by being given a subcutaneous injection of turpentine oil, and (b) the involvement of the sympathetic cervical pathway in stress-induced changes of calcium homeostasis. Four hours after receiving turpentine oil or vehicle, rats were subjected either to hypocalcemia, by being given EDTA intraperitoneally, or to hypercalcemia, by being injected CaCl2 intraperitoneally. Significant changes in serum calcium (10% decrease), serum PTH (28% increase) and CT levels (40% decrease) were observed in stressed rats. EDTA administration brought about a significantly greater hypocalcemia, and a higher PTH secretory response in turpentine oil-stressed rats. During stress, the increase of serum calcium after CaCl2 was significantly smaller, and the rise of CT was greater than in controls. In the case of CT the changes were still observed in rats subjected to superior cervical ganglionectomy (SCGx) 14 days earlier. In the case of PTH, the increase found in stressed rats, but not the augmented response after EDTA, was blunted by SCGx. The potentiation of hypocalcemia brought about by turpentine oil was no longer observed in SCGx rats. In vehicle-treated controls, SCGx delayed PTH response to hypocalcemia, but did not affect the increased response of CT to CaCl2 challenge. The results indicate that a number of changes in calcium homeostasis arise during turpentine oil stress in rats. SCGx was effective to modify the set point for PTH release, but played a minor role in affecting the augmentation of CT release during stress.

  12. FGF-23 dysregulates calcium homeostasis and electrophysiological properties in HL-1 atrial cells.

    PubMed

    Kao, Yu-Hsun; Chen, Yao-Chang; Lin, Yung-Kuo; Shiu, Rong-Jie; Chao, Tze-Fan; Chen, Shih-Ann; Chen, Yi-Jen

    2014-08-01

    Fibroblast growth factor (FGF)-23 is a key regulator of phosphate homeostasis. Higher FGF-23 levels are correlated with poor outcomes in cardiovascular diseases. FGF-23 can produce cardiac hypertrophy and increase intracellular calcium, which can change cardiac electrical activity. However, it is not clear whether FGF-23 possesses arrhythmogenic potential through calcium dysregulation. Therefore, the purposes of this study were to evaluate the electrophysiological effects of FGF-23 and identify the underlying mechanisms. Patch clamp, confocal microscope with Fluo-4 fluorescence, and Western blot analyses were used to evaluate the electrophysiological characteristics, calcium homeostasis and calcium regulatory proteins in HL-1 atrial myocytes with and without FGF-23 (10 and 25 ng/mL) incubation for 24 h. FGF-23 (25 ng/mL) increased L-type calcium currents, calcium transient and sarcoplasmic reticulum Ca(2+) contents in HL-1 cells. FGF-23 (25 ng/mL)-treated cells (n = 14) had greater incidences (57%, 17% and 15%, P < 0·05) of delayed afterdepolarizations than control (n = 12) and FGF-23 (10 ng/mL)-treated cells (n = 13). Compared with control cells, FGF-23 (25 ng/mL)-treated cells (n = 14) exhibited increased phosphorylation of calcium/calmodulin-dependent protein kinase IIδ and phospholamban (PLB) at threonine 17 but had similar phosphorylation extents of PLB at serine 16, total PLB and sarcoplasmic reticulum Ca(2+) -ATPase protein. Moreover, the FGF receptor inhibitor (PD173074, 10 nM), calmodulin inhibitor (W7, 5 μM) and phospholipase C inhibitor (U73122, 1 μM) attenuated the effects of FGF-23 on calcium/calmodulin-dependent protein kinase II phosphorylation. FGF-23 increases HL-1 cells arrhythmogenesis with calcium dysregulation through modulating calcium-handling proteins. © 2014 Stichting European Society for Clinical Investigation Journal Foundation.

  13. Feline chronic renal failure: calcium homeostasis in 80 cases diagnosed between 1992 and 1995.

    PubMed

    Barber, P J; Elliott, J

    1998-03-01

    Eighty cats with chronic renal failure (CRF) were evaluated in a prospective study to investigate the prevalence and aetiopathogenesis of renal secondary hyperparathyroidism (RHPTH), using routine plasma biochemistry and assays of parathyroid hormone (PTH), blood ionised calcium and 1,25 dihydroxycholecalciferol (1,25[OH]2D3). Hyperparathyroidism was a frequent sequela of CRF, affecting 84 per cent of cats with CRF, the severity and prevalence of RHPTH increasing with the degree of renal dysfunction. Compared with an age-matched control population, plasma concentrations of phosphate and PTH were significantly higher and 1,25(OH)2D3 concentrations were significantly lower in the two groups of cats presenting with clinical signs of CRF. Significant ionised hypocalcaemia was present only in cats with end-stage renal failure. However, a number of cats were hyperparathyroid in the absence of abnormalities in the parameters of calcium homeostasis measured in this study. There was a significant correlation between plasma phosphate and PTH concentrations.

  14. Effects of zearalenone on calcium homeostasis of splenic lymphocytes of chickens in vitro.

    PubMed

    Wang, Y C; Deng, J L; Xu, S W; Peng, X; Zuo, Z C; Cui, H M; Wang, Y; Ren, Z H

    2012-08-01

    Zearalenone (ZEA) is an estrogenic mycotoxin. It is produced by several Fusarium species and can contaminate food and feed. To investigate the role of calcium homeostasis in ZEA-induced toxicity of poultry and elucidate its cytotoxic mechanism, splenic lymphocytes isolated from chickens were exposed to ZEA (0-25 μg/mL) for 48 h. The intracellular calcium concentration ([Ca2+]i), pH, calmodulin (CaM) mRNA levels, and Na+/K+-ATPase activities and Ca2+-ATPase activities were detected by the fluorescent dyes Fluo-3/AM and BCECF/AM, quantitative real-time PCR, and chromatometry. Supernatant CaM concentrations were simultaneously detected by ELISA. As the ZEA exposure concentration increased, the [Ca2+]i and CaM mRNA levels gradually increased, while intracellular pH, CaM concentrations of supernatants, and intracellular Na+,K+-ATPase and Ca2+-ATPase activities gradually decreased in a dose-dependent manner. There were significant differences (P<0.05 or P<0.01) between the treatment groups and the control group. These results indicate that ZEA cytotoxicity arises by causing an imbalance in calcium homeostasis and intracellular acidification in lymphocytes.

  15. Calcium Kinetics During Space Flight

    NASA Technical Reports Server (NTRS)

    Smith, Scott M.; Wastney, Meryl E.; OBrien, Kimberly O.; Lane, Helen W.

    1999-01-01

    Bone loss is one of the most detrimental effects of space flight, threatening to limit the duration of human space missions. The ability to understand and counteract this loss will be critical for crew health and safety during and after extended-duration missions. The hypotheses to be tested in this project are that space flight alters calcium homeostasis and bone mineral metabolism, and that calcium homeostasis and bone mineral metabolism will return to baseline within days to weeks of return to Earth. These hypotheses will be evidenced by elevated rates of bone mineral resorption and decreased bone mineral deposition, decreased absorption of dietary calcium, altered calcitropic endocrine profiles, elevated excretion of calcium in urine and feces, and elevated excretion of markers of bone resorption. The second hypothesis will be evidenced by return of indices of calcium homeostasis and bone metabolism to preflight levels within days to weeks of return to Earth. Studies will be conducted on International Space Station astronauts before, during, and after extended-duration flights. Measurements of calcium kinetics, bone mass, and endocrine/biochemical markers of bone and calcium homeostasis will be conducted. Kinetic studies utilizing dual isotope tracer kinetic studies and mathematical modeling techniques will allow for determination of bone calcium deposition, bone calcium resorption, dietary calcium absorption and calcium excretion (both urinary and endogenous fecal excretion). These studies will build upon preliminary work conducted on the Russian Mir space station. The results from this project will be critical for clarifying how microgravity affects bone and calcium homeostasis, and will provide an important control point for assessment of countermeasure efficacy. These results are expected to aid in developing countermeasures for bone loss, both for space crews and for individuals on Earth who have metabolic bone diseases.

  16. Calcium homeostasis and vitamin D metabolism and expression in strongly calcifying laying birds.

    PubMed

    Bar, Arie

    2008-12-01

    Egg laying and shell calcification impose severe extra demands on ionic calcium (Ca2+) homeostasis; especially in birds characterized by their long clutches (series of eggs laid sequentially before a "pause day"). These demands induce vitamin D metabolism and expression. The metabolism of vitamin D is also altered indirectly, by other processes associated with increased demands for calcium, such as growth, bone formation and egg production. A series of intestinal, renal or bone proteins are consequently expressed in the target organs via mechanisms involving a vitamin D receptor. Some of these proteins (carbonic anhydrase, calbindin and calcium-ATPase) are also found in the uterus (eggshell gland) or are believed to be involved in calcium transport in the intestine or kidney (calcium channels). The present review deals with vitamin D metabolism and the expression of the above-mentioned proteins in birds, with special attention to the strongly calcifying laying bird.

  17. Effects of draught load exercise and training on calcium homeostasis in horses.

    PubMed

    Vervuert, I; Coenen, M; Zamhöfer, J

    2005-01-01

    This study was conducted to investigate the effects of draught load exercise on calcium (Ca) homeostasis in young horses. Five 2-year-old untrained Standardbred horses were studied in a 4-month training programme. All exercise workouts were performed on a treadmill at a 6% incline and with a constant draught load of 40 kg (0.44 kN). The training programme started with a standardized exercise test (SET 1; six incremental steps of 5 min duration each, first step 1.38 m/s, stepwise increase by 0.56 m/s). A training programme was then initiated which consisted of low-speed exercise sessions (LSE; constant velocity at 1.67 m/s for 60 min, 48 training sessions in total). After the 16th and 48th LSE sessions, SETs (SET 2: middle of training period, SET 3: finishing training period) were performed again under the identical test protocol of SET 1. Blood samples for blood lactate, plasma total Ca, blood ionized calcium (Ca(2+)), blood pH, plasma inorganic phosphorus (P(i)) and plasma intact parathyroid hormone (PTH) were collected before, during and after SETs, and before and after the first, 16th, 32nd and 48th LSE sessions. During SETs there was a decrease in ionized Ca(2+) and a rise in lactate, P(i) and intact PTH. The LSEs resulted in an increase in pH and P(i), whereas lactate, ionized Ca(2+), total Ca and intact PTH were not affected. No changes in Ca metabolism were detected in the course of training. Results of this study suggest that the type of exercise influences Ca homeostasis and intact PTH response, but that these effects are not influenced in the course of the training period.

  18. Calcium and Bone Homeostasis During 4-6 Months Space Flight

    NASA Technical Reports Server (NTRS)

    Smith, Scott M.; OBrien, K.; Wastney, M.; Morukov, B.; Larina, I.; Abrams, S.; Lane, H.; Nillen, J.; Davis-Street, J.; Paloski, W. H. (Technical Monitor)

    2000-01-01

    Bone and calcium homeostasis are altered by weightlessness. We previously reported calcium studies on three subjects from the first joint US/Russian mission to Mir. We report here data on an additional three male subjects, whose stays on Mir were 4 (n= 1) and 6 (n=2) mos. Data were collected before, during, and after the missions. Inflight studies were conducted at 2-3 mos. Endocrine and biochemical indices were measured, along with 3-wk calcium tracer studies. Percent differences are reported compared to preflight. Ionized calcium was unchanged (2.8 +/-2.1 %) during flight. Calcium absorption was variable inflight, but was decreased after landing. Vitamin D stores were decreased 35 +/-24% inflight, similar to previous reports. Serum PTH was decreased 59 +/-9% during flight (greater than we previously reported), while 1,25(OH)(sub 2)-Vitamin D was decreased in 2 of 3 subjects. Markers of bone resorption (e.g., crosslinks) were increased in all subjects. Bone-specific alkaline phosphatase was decreased (n=1) or unchanged (n=2), while osteocalcin was decreased 34 +/-23%. Previously presented data showed that inflight bone loss is associated with increased resorption and unchanged/decreased formation. The data reported here support these earlier findings. These studies will help to extend our understanding of space flight-induced bone loss, and of bone loss associated with diseases such as osteoporosis or paralysis.

  19. Letrozole induced low estrogen levels affected the expressions of duodenal and renal calcium-processing gene in laying hens.

    PubMed

    Li, Qiao; Zhao, Xingkai; Wang, Shujie; Zhou, Zhenlei

    2018-01-01

    Estrogen regulates the calcium homeostasis in hens, but the mechanisms involved are still unclear fully. In this study, we investigated whether letrozole (LZ) induced low estrogen levels affected the calcium absorption and transport in layers. In the duodenum, we observed a significant decrease of mRNA expressions of Calbindin-28k (CaBP-28k) and plasma membrane Ca 2+ -ATPase (PMCA 1b) while CaBP-28k protein expression was declined in birds with LZ treatment, and the mRNA levels of duodenal transient receptor potential vanilloid 6 (TRPV6) and Na + /Ca 2+ exchanger 1 (NCX1) were not affected. Interestingly, we observed the different changes in the kidney. The renal mRNA expressions of TRPV6 and NCX1 were unregulated while the PMCA1b was down-regulated in low estrogen layers, however, the CaBP-28k gene and protein expressions were no changed in the kidney. Furthermore, it showed that the duodenal estradiol receptor 2 (ESR2) transcripts rather than parathyroid hormone 1 receptor (PTH1R) and calcitonin receptor (CALCR) played key roles to down-regulate calcium transport in LZ-treated birds. In conclusion, CaBP-28k, PMCA 1b and ESR2 genes in the duodenum may be primary targets for estrogen regulation in order to control calcium homeostasis in hens. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Dietary protein, calcium metabolism, and skeletal homeostasis revisited.

    PubMed

    Kerstetter, Jane E; O'Brien, Kimberly O; Insogna, Karl L

    2003-09-01

    High dietary protein intakes are known to increase urinary calcium excretion and, if maintained, will result in sustained hypercalciuria. To date, the majority of calcium balance studies in humans have not detected an effect of dietary protein on intestinal calcium absorption or serum parathyroid hormone. Therefore, it is commonly concluded that the source of the excess urinary calcium is increased bone resorption. Recent studies from our laboratory indicate that alterations in dietary protein can, in fact, profoundly affect intestinal calcium absorption. In short-term dietary trials in healthy adults, we fixed calcium intake at 20 mmol/d while dietary protein was increased from 0.7 to 2.1 g/kg. Increasing dietary protein induced hypercalciuria in 20 women [from 3.4 +/- 0.3 ( +/- SE) during the low-protein to 5.4 +/- 0.4 mmol/d during the high-protein diet]. The increased dietary protein was accompanied by a significant increase in intestinal calcium absorption from 18.4 +/- 1.3% to 26.3 +/- 1.5% (as determined by dual stable isotopic methodology). Dietary protein intakes at and below 0.8 g/kg were associated with a probable reduction in intestinal calcium absorption sufficient to cause secondary hyperparathyroidism. The long-term consequences of these low-protein diet-induced changes in mineral metabolism are not known, but the diet could be detrimental to skeletal health. Of concern are several recent epidemiologic studies that demonstrate reduced bone density and increased rates of bone loss in individuals habitually consuming low-protein diets. Studies are needed to determine whether low protein intakes directly affect rates of bone resorption, bone formation, or both.

  1. Mechanisms of intracellular calcium homeostasis in developing and mature bovine corpora lutea.

    PubMed

    Wright, Marietta F; Bowdridge, Elizabeth; McDermott, Erica L; Richardson, Samuel; Scheidler, James; Syed, Qaisar; Bush, Taylor; Inskeep, E Keith; Flores, Jorge A

    2014-03-01

    Although calcium (Ca(2+)) is accepted as an intracellular mediator of prostaglandin F2 alpha (PGF2alpha) actions on luteal cells, studies defining mechanisms of Ca(2+) homeostasis in bovine corpora lutea (CL) are lacking. The increase in intracellular Ca(2+) concentration ([Ca(2+)]i) induced by PGF2alpha in steroidogenic cells from mature CL is greater than in those isolated from developing CL. Our hypothesis is that differences in signal transduction associated with developing and mature CL contribute to the increased efficacy of PGF2alpha to induce a Ca(2+) signal capable of inducing regression in mature CL. To test this hypothesis, major genes participating in Ca(2+) homeostasis in the bovine CL were identified, and expression of mRNA, protein, or activity, in the case of phospholipase Cbeta (PLCbeta), in developing and mature bovine CL was compared. In addition, we examined the contribution of external and internal Ca(2+) to the PGF2alpha stimulated rise in [Ca(2+)]i in LLCs isolated from developing and mature bovine CL. Three differences were identified in mechanisms of calcium homeostasis between developing and mature CL, which could account for the lesser increase in [Ca(2+)]i in response to PGF2alpha in developing than in mature CL. First, there were lower concentrations of inositol 1,4,5-trisphosphate (IP3) after similar PGF2alpha challenge, indicating reduced phospholipase C beta (PLCbeta) activity, in developing than mature CL. Second, there was an increased expression of sorcin (SRI) in developing than in mature CL. This cytoplasmic Ca(2+) binding protein modulates the endoplasmic reticulum (ER) Ca(2+) release channel, ryanodine receptor (RyR), to be in the closed configuration. Third, there was greater expression of ATP2A2 or SERCA, which causes calcium reuptake into the ER, in developing than in mature CL. Developmental differences in expression detected in whole CL were confirmed by Western blots using protein samples from steroidogenic cells

  2. Influence of the autonomic nervous system on calcium homeostasis in the rat.

    PubMed

    Stern, J E; Cardinali, D P

    1994-01-01

    The local surgical manipulation of sympathetic and parasympathetic nerves innervating the thyroid-parathyroid territory was employed to search for the existence of a peripheral neuroendocrine link controlling parathyroid hormone (PTH) and calcitonin (CT) release. From 8 to 24 h after superior cervical ganglionectomy (SCGx), at the time of wallerian degeneration of thyroid-parathyroid sympathetic nerve terminals, an alpha-adrenergic inhibition, together with a minor beta-adrenergic stimulation, of hypercalcemia-induced CT release, and an alpha-adrenoceptor inhibition of hypocalcemia-induced PTH release were found. In chronically SCGx rats PTH response to EDTA was slower, and after CaCl2 injection, serum calcium attained higher levels in face of normal CT levels. SCGx blocked the PTH increase found in sham-operated rats stressed by a subcutaneous injection of turpentine oil, but did not affect the greater response to EDTA. The higher hypocalcemia seen after turpentine oil was no longer observed in SCGx rats. The effects of turpentine oil stress on calcium and CT responses to a bolus injection of CaCl2 persisted in rats subjected to SCGx 14 days earlier. Interruption of thyroid-parathyroid parasympathetic input conveyed by the thyroid nerves (TN) and the inferior laryngeal nerves (ILN) caused a fall in total serum calcium, an increase of PTH levels and a decrease of CT levels, when measured 10 days after surgery. Greater responses of serum CT and PTH were detected in TN-sectioned, and in TN- or ILN-sectioned rats, respectively. Physiological concentrations of CT decreased, and those of PTH increased, in vitro cholinergic activity in rat SCG, measured as specific choline uptake, and acetylcholine synthesis and release. The results indicate that cervical autonomic nerves constitute a pathway through which the brain modulates calcium homeostasis.

  3. Effects of deoxynivalenol on calcium homeostasis of concanavalin A--Stimulated splenic lymphocytes of chickens in vitro.

    PubMed

    Ren, Zhihua; Wang, Yachao; Deng, Huidan; Deng, Youtian; Deng, Junliang; Zuo, Zhicai; Wang, Ya; Peng, Xi; Cui, Hengmin; Shen, Liuhong; Yu, Shumin; Cao, Suizhong

    2016-04-01

    In this study, the in vitro effects of the treatment of concanavalin A (Con A)--stimulated splenic lymphocytes with DON were examined. Splenic lymphocytes isolated from chickens were stimulated with 12.5 μg/mL Con A and exposed to deoxynivalenol (DON) (0-50 μg/mL) for 48 h. The intracellular calcium concentration ([Ca(2+)]i), pH, calmodulin (CaM) mRNA levels, and Na(+),K(+)-ATPase and Ca(2+)-ATPase activities were detected. With the DON exposure concentrations increased, the [Ca(2+)]i and CaM mRNA levels gradually increased in a dose-dependent manner, and all the evaluated conconcentrations affected ATPase activity to the same extent. There were significant differences (P<0.05 or P<0.01) between the treatment groups and the control group. These results indicate that an imbalance in calcium homeostasis and intracellular acidification are components of DON cytotoxicity in chicken lymphocytes. Copyright © 2016 Elsevier GmbH. All rights reserved.

  4. Neuronal calcium sensor synaptotagmin-9 is not involved in the regulation of glucose homeostasis or insulin secretion.

    PubMed

    Gustavsson, Natalia; Wang, Xiaorui; Wang, Yue; Seah, Tingting; Xu, Jun; Radda, George K; Südhof, Thomas C; Han, Weiping

    2010-11-09

    Insulin secretion is a complex and highly regulated process. It is well established that cytoplasmic calcium is a key regulator of insulin secretion, but how elevated intracellular calcium triggers insulin granule exocytosis remains unclear, and we have only begun to define the identities of proteins that are responsible for sensing calcium changes and for transmitting the calcium signal to release machineries. Synaptotagmins are primarily expressed in brain and endocrine cells and exhibit diverse calcium binding properties. Synaptotagmin-1, -2 and -9 are calcium sensors for fast neurotransmitter release in respective brain regions, while synaptotagmin-7 is a positive regulator of calcium-dependent insulin release. Unlike the three neuronal calcium sensors, whose deletion abolished fast neurotransmitter release, synaptotagmin-7 deletion resulted in only partial loss of calcium-dependent insulin secretion, thus suggesting that other calcium-sensors must participate in the regulation of insulin secretion. Of the other synaptotagmin isoforms that are present in pancreatic islets, the neuronal calcium sensor synaptotagmin-9 is expressed at the highest level after synaptotagmin-7. In this study we tested whether synaptotagmin-9 participates in the regulation of glucose-stimulated insulin release by using pancreas-specific synaptotagmin-9 knockout (p-S9X) mice. Deletion of synaptotagmin-9 in the pancreas resulted in no changes in glucose homeostasis or body weight. Glucose tolerance, and insulin secretion in vivo and from isolated islets were not affected in the p-S9X mice. Single-cell capacitance measurements showed no difference in insulin granule exocytosis between p-S9X and control mice. Thus, synaptotagmin-9, although a major calcium sensor in the brain, is not involved in the regulation of glucose-stimulated insulin release from pancreatic β-cells.

  5. Increased serum serotonin improves parturient calcium homeostasis in dairy cows.

    PubMed

    Hernández-Castellano, Lorenzo E; Hernandez, Laura L; Weaver, Samantha; Bruckmaier, Rupert M

    2017-02-01

    Hypocalcemia in dairy cows is caused by the sudden increase in calcium demand by the mammary gland for milk production at the onset of lactation. Serotonin (5-HT) is a key factor for calcium homeostasis, modulating calcium concentration in blood. Therefore, it is hypothesized that administration of 5-hydroxy-l-tryptophan (5-HTP), a 5-HT precursor, can increase 5-HT concentrations in blood and, in turn, induce an increase in blood calcium concentration. In this study, 20 Holstein dairy cows were randomly assigned to 2 experimental groups. Both groups received a daily i.v. infusion of 1 L of either 0.9% NaCl (C group; n = 10) or 0.9% NaCl containing 1 mg of 5-HTP/kg of BW (5-HTP group, n = 10). Infusions started d 10 before the estimated parturition and ceased the day of parturition, resulting in at least 4 d of infusion (8.37 ± 0.74 d of infusion). Until parturition, blood samples were collected every morning before the infusions, after parturition samples were taken daily until d 7, and a final sample was collected on d 30. Milk yield was recorded during this period. No differences between groups were observed for blood glucose, magnesium, and β-hydroxybutyrate. Cows receiving the 5-HTP infusion showed an increase in fatty acid concentrations from d -3 to -1 before parturition. Serum 5-HT concentrations were increased at d -4 related to parturition until d 5 postpartum in the 5-HTP group compared with the C group. In addition, cows from the 5-HTP group had increased 5-HT concentrations in colostrum, but not in mature milk, on d 7 postpartum. Serum calcium concentrations decreased in both groups around parturition; however, calcium remained higher in the 5-HTP group than in controls, with a significant difference between groups on d 1 (1.62 ± 0.08 vs. 1.93 ± 0.09 mmol/L in control and 5-HTP groups, respectively) and d 2 (1.83 ± 0.06 vs. 2.07 ± 0.07 mmol/L in control and 5-HTP groups, respectively). Additionally, colostrum yield (first milking) was lower in the

  6. Effect of neurotrophin-3 precursor on glutamate-induced calcium homeostasis deregulation in rat cerebellum granule cells.

    PubMed

    Safina, Dina R; Surin, Alexander M; Pinelis, Vsevolod G; Kostrov, Sergey V

    2015-12-01

    Neurotrophin-3 (NT-3) belongs to the family of highly conserved dimeric growth factors that controls the differentiation and activity of various neuronal populations. Mammals contain both the mature (NT-3) and the precursor (pro-NT-3) forms of neurotrophin. Members of the neurotrophin family are involved in the regulation of calcium homeostasis in neurons; however, the role of NT-3 and pro-NT-3 in this process remains unclear. The current study explores the effects of NT-3 and pro-NT-3 on disturbed calcium homeostasis and decline of mitochondrial potential induced by a neurotoxic concentration of glutamate (Glu; 100 µM) in the primary culture of rat cerebellar granule cells. In this Glu excitotoxicity model, mature NT-3 had no effect on the induced changes in Ca²⁺ homeostasis. In contrast, pro-NT-3 decreased the period of delayed calcium deregulation (DCD) and concurrent strong mitochondrial depolarization. According to the amplitude of the increase in the intracellular free Ca²⁺ concentration ([Ca²⁺]i ) and Fura-2 fluorescence quenching by Mn²⁺ within the first 20 sec of exposure to Glu, pro-NT-3 had no effect on the initial rate of Ca²⁺ entry into neurons. During the lag period preceding DCD, the mean amplitude of [Ca²⁺]i rise was 1.2-fold greater in the presence of pro-NT-3 than in the presence of Glu alone (1.67 ±  0.07 and 1.39 ± 0.04, respectively, P < 0.05). The Glu-induced changes in Са²⁺ homeostasis in the presence of pro-NT-3 likely are due to the decreased rate of Са²⁺ removal from the cytosol during the DCD latency period. © 2015 Wiley Periodicals, Inc.

  7. [Classical actions of vitamin D: insights from human genetics and from mouse models on calcium and phosphate homeostasis].

    PubMed

    Jehan, Frédéric; Voloc, Alexandru

    2014-01-01

    At the beginning of the 20th century, the discovery of vitamin D by Sir EV McCollum allowed a better comprehension of its origin and its role, and made it possible to cure rickets, a largely prevalent disease at that time. The main role of vitamin D3 is to maintain calcium and phosphate homeostasis through the action of 1,25-dihydroxyvitamin D3, its active form. This underlies physiological functions related to calcium and phosphate, such as bone mineralization or muscle function. Progress in basic research for the last 40 years led to the discovery of the main hydroxylation steps that produce and catabolize the active form of vitamin D. It also uncovered the molecular aspects of vitamin D action, from its nuclear receptor, VDR, to the various target genes of this hormone. Recent progress in human genetics pointed out mutations in genes involved in vitamin D metabolism and 1,25-dihydroxyvitamin D3 actions. It also helped to understand the role of the major actors that control vitamin D production and effects, through 1,25-dihydroxyvitamin D3 actions on phosphate and calcium homeostasis, and on bone biology. Genetical engineering targeting the whole animal or defined tissues or cell types have yielded many mouse models in the past decades. When targeted to tissues important for vitamin D metabolism and activity, these models allowed a more detailed comprehension of vitamin effects on calcium and phosphorus homeostasis. © Société de Biologie, 2014.

  8. Redox and Activation of Protein Kinase A Dysregulates Calcium Homeostasis in Pulmonary Vein Cardiomyocytes of Chronic Kidney Disease.

    PubMed

    Huang, Shih-Yu; Chen, Yao-Chang; Kao, Yu-Hsun; Hsieh, Ming-Hsiung; Lin, Yung-Kuo; Chen, Shih-Ann; Chen, Yi-Jen

    2017-07-12

    Chronic kidney disease (CKD) increases the occurrence of atrial fibrillation and pulmonary vein (PV) arrhythmogenesis. Calcium dysregulation and reactive oxygen species (ROS) enhance PV arrhythmogenic activity. The purposes of this study were to investigate whether CKD modulates PV electrical activity through dysregulation of calcium homeostasis and ROS. Biochemical and electrocardiographic studies were conducted in rabbits with and without CKD (induced by 150 mg/kg per day neomycin sulfate and 500 mg/kg per day cefazolin). Confocal microscopy with fluorescence and a whole-cell patch clamp were applied to study calcium homeostasis and electrical activities in control and CKD isolated single PV cardiomyocytes with or without treatment with H89 (1 μmol/L, a protein kinase A inhibitor) and MPG (N-[2-mercaptopropionyl]glycine; 100 μmol/L, a ROS scavenger). The ROS in mitochondria and cytosol were evaluated via intracellular dye fluorescence and lipid peroxidation. CKD rabbits had excessive atrial premature captures over those of control rabbits. Compared with the control, CKD PV cardiomyocytes had a faster beating rate and larger calcium transient amplitudes, sarcoplasmic reticulum calcium contents, sodium/calcium exchanger currents, and late sodium currents but smaller L-type calcium current densities. CKD PV cardiomyocytes had a higher frequency and longer duration of calcium sparks and more ROS in the mitochondria and cytosol than did controls. Moreover, H89 suppressed all calcium sparks in CKD PV cardiomyocytes, and H89- and MPG-treated CKD PV cardiomyocytes had similar calcium transients compared with control PV cardiomyocytes. CKD increases PV arrhythmogenesis with enhanced calcium-handling abnormalities through activation of protein kinase A and ROS. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  9. Minireview: The Intimate Link Between Calcium Sensing Receptor Trafficking and Signaling: Implications for Disorders of Calcium Homeostasis

    PubMed Central

    2012-01-01

    The calcium-sensing receptor (CaSR) regulates organismal Ca2+ homeostasis. Dysregulation of CaSR expression or mutations in the CASR gene cause disorders of Ca2+ homeostasis and contribute to the progression or severity of cancers and cardiovascular disease. This brief review highlights recent findings that define the CaSR life cycle, which controls the cellular abundance of CaSR and CaSR signaling. A novel mechanism, termed agonist-driven insertional signaling (ADIS), contributes to the unique hallmarks of CaSR signaling, including the high degree of cooperativity and the lack of functional desensitization. Agonist-mediated activation of plasma membrane-localized CaSR increases the rate of insertion of CaSR at the plasma membrane without altering the constitutive endocytosis rate, thereby acutely increasing the maximum signaling response. Prolonged CaSR signaling requires a large intracellular ADIS-mobilizable pool of CaSR, which is maintained by signaling-mediated increases in biosynthesis. This model provides a rational framework for characterizing the defects caused by CaSR mutations and the altered functional expression of wild-type CaSR in disease states. Mechanistic dissection of ADIS of CaSR should lead to optimized pharmacological approaches to normalize CaSR signaling in disorders of Ca2+ homeostasis. PMID:22745192

  10. Skin Barrier and Calcium.

    PubMed

    Lee, Sang Eun; Lee, Seung Hun

    2018-06-01

    Epidermal barrier formation and the maintenance of barrier homeostasis are essential to protect us from the external environments and organisms. Moreover, impaired keratinocytes differentiation and dysfunctional skin barrier can be the primary causes or aggravating factors for many inflammatory skin diseases including atopic dermatitis and psoriasis. Therefore, understanding the regulation mechanisms of keratinocytes differentiation and skin barrier homeostasis is important to understand many skin diseases and establish an effective treatment strategy. Calcium ions (Ca 2+ ) and their concentration gradient in the epidermis are essential in regulating many skin functions, including keratinocyte differentiation, skin barrier formation, and permeability barrier homeostasis. Recent studies have suggested that the intracellular Ca 2+ stores such as the endoplasmic reticulum (ER) are the major components that form the epidermal calcium gradient and the ER calcium homeostasis is crucial for regulating keratinocytes differentiation, intercellular junction formation, antimicrobial barrier, and permeability barrier homeostasis. Thus, both Ca 2+ release from intracellular stores, such as the ER and Ca 2+ influx mechanisms are important in skin barrier. In addition, growing evidences identified the functional existence and the role of many types of calcium channels which mediate calcium flux in keratinocytes. In this review, the origin of epidermal calcium gradient and their role in the formation and regulation of skin barrier are focused. We also focus on the role of ER calcium homeostasis in skin barrier. Furthermore, the distribution and role of epidermal calcium channels, including transient receptor potential channels, store-operated calcium entry channel Orai1, and voltage-gated calcium channels in skin barrier are discussed.

  11. Bone turnover, calcium homeostasis, and vitamin D status in Danish vegans.

    PubMed

    Hansen, Tue H; Madsen, Marie T B; Jørgensen, Niklas R; Cohen, Arieh S; Hansen, Torben; Vestergaard, Henrik; Pedersen, Oluf; Allin, Kristine H

    2018-01-23

    A vegan diet has been associated with increased bone fracture risk, but the physiology linking nutritional exposure to bone metabolism has only been partially elucidated. This study investigated whether a vegan diet is associated with increased bone turnover and altered calcium homeostasis due to insufficient intake of calcium and vitamin D. Fractionated and total 25-hydroxyvitamin D (25(OH)-D), parathyroid hormone (PTH), calcium, and four bone turnover markers (osteocalcin, N-terminal propeptide of type I procollagen (PINP), bone-specific alkaline phosphatase (BAP), and C-terminal telopeptide of type I collagen (CTX)) were measured in serum from 78 vegans and 77 omnivores. When adjusting for seasonality and constitutional covariates (age, sex, and body fat percentage) vegans had higher concentrations of PINP (32 [95% CI: 7, 64]%, P = 0.01) and BAP (58 [95% CI: 27, 97]%, P < 0.001) compared to omnivores, whereas CTX (30 [95% CI: -1, 72]%, P = 0.06) and osteocalcin (21.8 [95% CI: -9.3, 63.7]%, P = 0.2) concentrations did not differ between the two groups. Vegans had higher serum PTH concentration (38 [95% CI: 19, 60]%; P < 0.001) and lower 25(OH)-D serum concentration (-33 [95% CI: -45, -19]%; P < 0.001), but similar serum calcium concentration (-1 [95% CI: -3, 1]%, P = 0.18 compared to omnivores. Vegans have higher levels of circulating bone turnover markers compared to omnivores, which may in the long-term lead to poorer bone health. Differences in dietary habits including intake of vitamin D and calcium may, at least partly, explain the observed differences.

  12. Mechanisms of Intracellular Calcium Homeostasis in MC3T3-E1 Cells and Bone Tissues of Sprague-Dawley Rats Exposed to Fluoride.

    PubMed

    Duan, Xiao-qin; Li, Yan-hui; Zhang, Xiu-yun; Zhao, Zhi-tao; Wang, Ying; Wang, Huan; Li, Guang-sheng; Jing, Ling

    2016-04-01

    Calcium homeostasis of osteoblasts (OBs) has an important role in the physiology and pathology of bone tissue. In order to study the mechanisms of intracellular calcium homeostasis, MC3T3-E1 cells and Sprague-Dawley rats were treated with different concentrations of fluoride. Then, we examined intracellular-free calcium ion ([Ca(2+)]i) in MC3T3-E1 cells as well as mRNA and protein levels of Cav1.2, the main subunit of L-type voltage-dependent calcium channels (VDCCs), Na(+)/Ca(2+) exchange carriers (NCS), and plasma membrane Ca(2+)-ATPase (PMCA), inositol 1,4,5-trisphosphate receptor (IP3R) channels, sarco/endoplasmic reticulum calcium ATPase 2b (SERCA2b)/ATP2A2 in vitro, and rat bone tissues in vivo. Our results showed that [Ca(2+)]i of fluoride-treated OBs increased in a concentration-dependent manner with an increase in the concentration of fluoride. We also found that the low dose of fluoride led to high expression levels of Cav1.2, NCS-1, and PMCA and low expression levels of IP3R and SERCA2b/ATP2A2, while the high dose of fluoride induced an increase in SERCA2b/ATP2A2 levels and decrease in Cav1.2, PMCA, NCS-1, and IP3R levels. These results demonstrate that calcium channels and calcium pumps of plasma and endoplasmic reticulum (ER) membranes keep intracellular calcium homeostasis by regulating Cav1.2, NCS-1, PMCA, IP3R, and SERCA2b/ATP2A2 expression.

  13. Canonical Transient Receptor Potential Channel 2 (TRPC2) as a Major Regulator of Calcium Homeostasis in Rat Thyroid FRTL-5 Cells

    PubMed Central

    Sukumaran, Pramod; Löf, Christoffer; Kemppainen, Kati; Kankaanpää, Pasi; Pulli, Ilari; Näsman, Johnny; Viitanen, Tero; Törnquist, Kid

    2012-01-01

    Mammalian non-selective transient receptor potential cation channels (TRPCs) are important in the regulation of cellular calcium homeostasis. In thyroid cells, including rat thyroid FRTL-5 cells, calcium regulates a multitude of processes. RT-PCR screening of FRTL-5 cells revealed the presence of TRPC2 channels only. Knockdown of TRPC2 using shRNA (shTRPC2) resulted in decreased ATP-evoked calcium peak amplitude and inward current. In calcium-free buffer, there was no difference in the ATP-evoked calcium peak amplitude between control cells and shTRPC2 cells. Store-operated calcium entry was indistinguishable between the two cell lines. Basal calcium entry was enhanced in shTRPC2 cells, whereas the level of PKCβ1 and PKCδ, the activity of sarco/endoplasmic reticulum Ca2+-ATPase, and the calcium content in the endoplasmic reticulum were decreased. Stromal interaction molecule (STIM) 2, but not STIM1, was arranged in puncta in resting shTRPC2 cells but not in control cells. Phosphorylation site Orai1 S27A/S30A mutant and non-functional Orai1 R91W attenuated basal calcium entry in shTRPC2 cells. Knockdown of PKCδ with siRNA increased STIM2 punctum formation and enhanced basal calcium entry but decreased sarco/endoplasmic reticulum Ca2+-ATPase activity in wild-type cells. Transfection of a truncated, non-conducting mutant of TRPC2 evoked similar results. Thus, TRPC2 functions as a major regulator of calcium homeostasis in rat thyroid cells. PMID:23144458

  14. Calcium homeostasis in intraerythrocytic malaria parasites.

    PubMed

    Garcia, C R; Dluzewski, A R; Catalani, L H; Burting, R; Hoyland, J; Mason, W T

    1996-12-01

    The fluorescent indicator, fura-2, AM, was used to measure free calcium concentrations in the intraerythrocytic malaria parasites of Plasmodium chabaudi and Plasmodium falciparum. In both species the free cytosolic calcium concentration was maintained at low levels (between 40 and 100 nM throughout the maturation process. Digital image analysis of the indicator fluorescence was performed on parasites and evaluated with the aid of a calibration of the calcium response, based on permeabilized parasites, exposed to calcium buffers. This again revealed that free calcium concentrations in the intact parasite are maintained at a predetermined level, regardless of the free calcium in the surrounding milieu. Both species of parasites are thus capable of regulating their internal free calcium levels with high precision, presumably by means of calcium pump ATPases. A small but significant elevation of the cytosolic free calcium concentration by the tumor promoter, thapsigargin, may be taken to reflect the presence of calcium stores in the endoplasmic reticulum in P. falciparum.

  15. The structural alteration and aggregation propensity of glycated lens crystallins in the presence of calcium: Importance of lens calcium homeostasis in development of diabetic cataracts

    NASA Astrophysics Data System (ADS)

    ZM, Sara Zafaranchi; Khoshaman, Kazem; Masoudi, Raheleh; Hemmateenejad, Bahram; Yousefi, Reza

    2017-01-01

    The imbalance of the calcium homeostasis in the lenticular tissues of diabetic patients is an important risk factor for development of cataract diseases. In the current study, the impact of elevated levels of calcium ions were investigated on structure and aggregation propensity of glycated lens crystallins using gel electrophoresis and spectroscopic assessments. The glycated proteins indicated significant resistance against calcium-induced structural insults and aggregation. While, glycated crystallins revealed an increased conformational stability; a slight instability was observed for these proteins upon interaction with calcium ions. Also, in the presence of calcium, the proteolytic pattern of native crystallins was altered and that of glycated protein counterparts remained almost unchanged. According to results of this study it is suggested that the structural alteration of lens crystallins upon glycation may significantly reduce their calcium buffering capacity in eye lenses. Therefore, under chronic hyperglycemia accumulation of this cataractogenic metal ion in the lenticular tissues may subsequently culminate in activation of different pathogenic pathways, leading to development of lens opacity and cataract diseases.

  16. Calcium metabolism in health and disease.

    PubMed

    Peacock, Munro

    2010-01-01

    This brief review focuses on calcium balance and homeostasis and their relationship to dietary calcium intake and calcium supplementation in healthy subjects and patients with chronic kidney disease and mineral bone disorders (CKD-MBD). Calcium balance refers to the state of the calcium body stores, primarily in bone, which are largely a function of dietary intake, intestinal absorption, renal excretion, and bone remodeling. Bone calcium balance can be positive, neutral, or negative, depending on a number of factors, including growth, aging, and acquired or inherited disorders. Calcium homeostasis refers to the hormonal regulation of serum ionized calcium by parathyroid hormone, 1,25-dihydroxyvitamin D, and serum ionized calcium itself, which together regulate calcium transport at the gut, kidney, and bone. Hypercalcemia and hypocalcemia indicate serious disruption of calcium homeostasis but do not reflect calcium balance on their own. Calcium balance studies have determined the dietary and supplemental calcium requirements needed to optimize bone mass in healthy subjects. However, similar studies are needed in CKD-MBD, which disrupts both calcium balance and homeostasis, because these data in healthy subjects may not be generalizable to this patient group. Importantly, increasing evidence suggests that calcium supplementation may enhance soft tissue calcification and cardiovascular disease in CKD-MBD. Further research is needed to elucidate the risks and mechanisms of soft tissue calcification with calcium supplementation in both healthy subjects and CKD-MBD patients.

  17. Atxn2 Knockout and CAG42-Knock-in Cerebellum Shows Similarly Dysregulated Expression in Calcium Homeostasis Pathway.

    PubMed

    Halbach, Melanie Vanessa; Gispert, Suzana; Stehning, Tanja; Damrath, Ewa; Walter, Michael; Auburger, Georg

    2017-02-01

    Spinocerebellar ataxia type 2 (SCA2) is an autosomal dominantly inherited neurodegenerative disorder with preferential affection of Purkinje neurons, which are known as integrators of calcium currents. The expansion of a polyglutamine (polyQ) domain in the RNA-binding protein ataxin-2 (ATXN2) is responsible for this disease, but the causal roles of deficient ATXN2 functions versus aggregation toxicity are still under debate. Here, we studied mouse mutants with Atxn2 knockout (KO) regarding their cerebellar global transcriptome by microarray and RT-qPCR, in comparison with data from Atxn2-CAG42-knock-in (KIN) mouse cerebellum. Global expression downregulations involved lipid and growth signaling pathways in good agreement with previous data. As a novel effect, downregulations of key factors in calcium homeostasis pathways (the transcription factor Rora, transporters Itpr1 and Atp2a2, as well as regulator Inpp5a) were observed in the KO cerebellum, and some of them also occurred subtly early in KIN cerebellum. The ITPR1 protein levels were depleted from soluble fractions of cerebellum in both mutants, but accumulated in its membrane-associated form only in the SCA2 model. Coimmunoprecipitation demonstrated no association of ITPR1 with Q42-expanded or with wild-type ATXN2. These findings provide evidence that the physiological functions and protein interactions of ATXN2 are relevant for calcium-mediated excitation of Purkinje cells as well as for ATXN2-triggered neurotoxicity. These insights may help to understand pathogenesis and tissue specificity in SCA2 and other polyQ ataxias like SCA1, where inositol regulation of calcium flux and RORalpha play a role.

  18. Calcium homeostasis in diabetes mellitus.

    PubMed

    Ahn, Changhwan; Kang, Ji-Houn; Jeung, Eui-Bae

    2017-09-30

    Diabetes mellitus (DM) is becoming a lifestyle-related pandemic disease. Diabetic patients frequently develop electrolyte disorders, especially diabetic ketoacidosis or nonketotic hyperglycemic hyperosmolar syndrome. Such patients show characteristic potassium, magnesium, phosphate, and calcium depletion. In this review, we discuss a homeostatic mechanism that links calcium and DM. We also provide a synthesis of the evidence in favor or against this linking mechanism by presenting recent clinical indications, mainly from veterinary research. There are consistent results supporting the use of calcium and vitamin D supplementation to reduce the risk of DM. Clinical trials support a marginal reduction in circulating lipids, and some meta-analyses support an increase in insulin sensitivity, following vitamin D supplementation. This review provides an overview of the calcium and vitamin D disturbances occurring in DM and describes the underlying mechanisms. Such elucidation will help indicate potential pathophysiology-based precautionary and therapeutic approaches and contribute to lowering the incidence of DM.

  19. Restoring the impaired cardiac calcium homeostasis and cardiac function in iron overload rats by the combined deferiprone and N-acetyl cysteine

    PubMed Central

    Wongjaikam, Suwakon; Kumfu, Sirinart; Khamseekaew, Juthamas; Chattipakorn, Siriporn C.; Chattipakorn, Nipon

    2017-01-01

    Intracellular calcium [Ca2+]i dysregulation plays an important role in the pathophysiology of iron overload cardiomyopathy. Although either iron chelators or antioxidants provide cardioprotection, a comparison of the efficacy of deferoxamine (DFO), deferiprone (DFP), deferasirox (DFX), N-acetyl cysteine (NAC) or a combination of DFP plus NAC on cardiac [Ca2+]i homeostasis in chronic iron overload has never been investigated. Male Wistar rats were fed with either a normal diet or a high iron (HFe) diet for 4 months. At 2 months, HFe rats were divided into 6 groups and treated with either a vehicle, DFO (25 mg/kg/day), DFP (75 mg/kg/day), DFX (20 mg/kg/day), NAC (100 mg/kg/day), or combined DFP plus NAC. At 4 months, the number of cardiac T-type calcium channels was increased, whereas cardiac sarcoplasmic-endoplasmic reticulum Ca2+ ATPase (SERCA) was decreased, leading to cardiac iron overload and impaired cardiac [Ca2+]i homeostasis. All pharmacological interventions restored SERCA levels. Although DFO, DFP, DFX or NAC alone shared similar efficacy in improving cardiac [Ca2+]i homeostasis, only DFP + NAC restored cardiac [Ca2+]i homeostasis, leading to restoring left ventricular function in the HFe-fed rats. Thus, the combined DFP + NAC was more effective than any monotherapy in restoring cardiac [Ca2+]i homeostasis, leading to restored myocardial contractility in iron-overloaded rats. PMID:28287621

  20. Rapid Electrical Stimulation Increased Cardiac Apoptosis Through Disturbance of Calcium Homeostasis and Mitochondrial Dysfunction in Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes.

    PubMed

    Geng, Le; Wang, Zidun; Cui, Chang; Zhu, Yue; Shi, Jiaojiao; Wang, Jiaxian; Chen, Minglong

    2018-06-15

    Heart failure induced by tachycardia, the most common arrhythmia, is frequently observed in clinical practice. This study was designed to investigate the underlying mechanisms. Rapid electrical stimulation (RES) at a frequency of 3 Hz was applied on human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) for 7 days, with 8 h/day and 24 h/day set to represent short-term and long-term tachycardia, respectively. Age-matched hiPSC-CMs without electrical stimulation or with slow electrical stimulation (1 Hz) were set as no electrical stimulation (NES) control or low-frequency electrical stimulation (LES) control. Following stimulation, JC-1 staining flow cytometry analysis was performed to examine mitochondrial conditions. Apoptosis in hiPSC-CMs was evaluated using Hoechst staining and Annexin V/propidium iodide (AV/PI) staining flow cytometry analysis. Calcium transients and L-type calcium currents were recorded to evaluate calcium homeostasis. Western blotting and qPCR were performed to evaluate the protein and mRNA expression levels of apoptosis-related genes and calcium homeostasis-regulated genes. Compared to the controls, hiPSC-CMs following RES presented mitochondrial dysfunction and an increased apoptotic percentage. Amplitudes of calcium transients and L-type calcium currents were significantly decreased in hiPSC-CMs with RES. Molecular analysis demonstrated upregulated expression of Caspase3 and increased Bax/Bcl-2 ratio. Genes related to calcium re-sequence were downregulated, while phosphorylated Ca2+/calmodulin-dependent protein kinase II (CaMKII) was significantly upregulated following RES. There was no significant difference between the NES control and LES control groups in these aspects. Inhibition of CaMKII with 1 µM KN93 partly reversed these adverse effects of RES. RES on hiPSC-CMs disturbed calcium homeostasis, which led to mitochondrial stress, promoted cell apoptosis and caused electrophysiological remodeling in a time

  1. Longitudinal monitoring of Gaussia and Nano luciferase activities to concurrently assess ER calcium homeostasis and ER stress in vivo.

    PubMed

    Wires, Emily S; Henderson, Mark J; Yan, Xiaokang; Bäck, Susanne; Trychta, Kathleen A; Lutrey, Molly H; Harvey, Brandon K

    2017-01-01

    The endoplasmic reticulum (ER) is essential to many cellular processes including protein processing, lipid metabolism and calcium storage. The ability to longitudinally monitor ER homeostasis in the same organism would offer insight into progressive molecular and cellular adaptations to physiologic or pathologic states, but has been challenging. We recently described the creation of a Gaussia luciferase (GLuc)-based secreted ER calcium-modulated protein (SERCaMP or GLuc-SERCaMP) to longitudinally monitor ER calcium homeostasis. Here we describe a complementary tool to measure the unfolded protein response (UPR), utilizing a UPRE-driven secreted Nano luciferase (UPRE-secNLuc) to examine the activating transcription factor-6 (ATF6) and inositol-requiring enzyme 1 (IRE1) pathways of the UPR. We observed an upregulation of endogenous ATF6- and XBP1-regulated genes following pharmacologically-induced ER stress that was consistent with responsiveness of the UPRE sensor. Both GLuc and NLuc-based reporters have favorable properties for in vivo studies, however, they are not easily used in combination due to overlapping substrate activities. We describe a method to measure the enzymatic activities of both reporters from a single sample and validated the approach using culture medium and rat blood samples to measure GLuc-SERCaMP and UPRE-secNLuc. Measuring GLuc and NLuc activities from the same sample allows for the robust and quantitative measurement of two cellular events or cell populations from a single biological sample. This study is the first to describe the in vivo measurement of UPRE activation by sampling blood, using an approach that allows concurrent interrogation of two components of ER homeostasis.

  2. Bone Is a Major Target of PTH/PTHrP Receptor Signaling in Regulation of Fetal Blood Calcium Homeostasis

    PubMed Central

    Hirai, Takao; Kobayashi, Tatsuya; Nishimori, Shigeki; Karaplis, Andrew C.; Goltzman, David

    2015-01-01

    The blood calcium concentration during fetal life is tightly regulated within a narrow range by highly interactive homeostatic mechanisms that include transport of calcium across the placenta and fluxes in and out of bone; the mechanisms of this regulation are poorly understood. Our findings that endochondral bone-specific PTH/PTHrP receptor (PPR) knockout (KO) mice showed significant reduction of fetal blood calcium concentration compared with that of control littermates at embryonic day 18.5 led us to focus on bone as a possibly major determinant of fetal calcium homeostasis. We found that the fetal calcium concentration of Runx2 KO mice was significantly higher than that of control littermates, suggesting that calcium flux into bone had a considerable influence on the circulating calcium concentration. Moreover, Runx2:PTH double mutant fetuses showed calcium levels similar to those of Runx2 KO mice, suggesting that part of the fetal hypocalcemia in PTH KO mice was caused by the increment of the mineralized bone mass allowed by the formation of osteoblasts. Finally, Rank:PTH double mutant mice had a blood calcium concentration even lower than that of the either Rank KO or PTH KO mice alone at embryonic day 18.5. These observations in our genetic models suggest that PTH/PTHrP receptor signaling in bones has a significant role of the regulation of fetal blood calcium concentration and that both placental transport and osteoclast activation contribute to PTH's hypercalcemic action. They also show that PTH-independent deposition of calcium in bone is the major controller of fetal blood calcium level. PMID:26052897

  3. Serotonin and calcium homeostasis during the transition period.

    PubMed

    Weaver, S R; Laporta, J; Moore, S A E; Hernandez, L L

    2016-07-01

    , preliminary data suggest that manipulation of the serotonergic axis precalving may positively affect postcalving calcium dynamics. Combined, our research suggests a potential mechanism by which serotonin acts on the mammary gland to maintain circulating maternal calcium concentrations. Further research into serotonin's potential as a therapeutic target could contribute significantly as a preventive strategy against hypocalcemia in early lactation dairy cows. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Coupling between phosphate and calcium homeostasis: a mathematical model.

    PubMed

    Granjon, David; Bonny, Olivier; Edwards, Aurélie

    2017-12-01

    We developed a mathematical model of calcium (Ca) and phosphate (PO 4 ) homeostasis in the rat to elucidate the hormonal mechanisms that underlie the regulation of Ca and PO 4 balance. The model represents the exchanges of Ca and PO 4 between the intestine, plasma, kidneys, bone, and the intracellular compartment, and the formation of Ca-PO 4 -fetuin-A complexes. It accounts for the regulation of these fluxes by parathyroid hormone (PTH), vitamin D 3 , fibroblast growth factor 23, and Ca 2+ -sensing receptors. Our results suggest that the Ca and PO 4 homeostatic systems are robust enough to handle small perturbations in the production rate of either PTH or vitamin D 3 The model predicts that large perturbations in PTH or vitamin D 3 synthesis have a greater impact on the plasma concentration of Ca 2+ ([Ca 2+ ] p ) than on that of PO 4 ([PO 4 ] p ); due to negative feedback loops, [PO 4 ] p does not consistently increase when the production rate of PTH or vitamin D 3 is decreased. Our results also suggest that, following a large PO 4 infusion, the rapidly exchangeable pool in bone acts as a fast, transient storage PO 4 compartment (on the order of minutes), whereas the intracellular pool is able to store greater amounts of PO 4 over several hours. Moreover, a large PO 4 infusion rapidly lowers [Ca 2+ ] p owing to the formation of CaPO 4 complexes. A large Ca infusion, however, has a small impact on [PO 4 ] p , since a significant fraction of Ca binds to albumin. This mathematical model is the first to include all major regulatory factors of Ca and PO 4 homeostasis. Copyright © 2017 the American Physiological Society.

  5. Putative Nanobacteria Represent Physiological Remnants and Culture By-Products of Normal Calcium Homeostasis

    PubMed Central

    Young, John D.; Young, Lena; Wu, Cheng-Yeu; Young, Andrew

    2009-01-01

    described earlier as NB may thus represent remnants and by-products of physiological mechanisms used for calcium homeostasis, a concept which explains the vast body of NB literature as well as explains the true origin of NB as lifeless protein-mineralo entities with questionable role in pathogenesis. PMID:19198665

  6. The Roles of Fibroblast Growth Factor (FGF)-23, α-Klotho and Furin Protease in Calcium and Phosphate Homeostasis : A Mini-Review.

    PubMed

    Mattoo, Roshan L

    2014-01-01

    The roles of calcitonin, parathormone and calcitriol in the regulation of plasma calcium and phosphate are well-established. However, in autosomal-dominant hypophosphatemic rickety patients, studies have revealed normal plasma levels of calcium, associated with normal thyroid and parathyroid functions, but decreased levels of phosphate and calcitriol despite adequate reserves of vitamin D. Also, in tumoral calcinosis, persistent hyperphosphatemia with increased levels of 1,25(OH)2D3 have been observed. These studies indicate the involvement of factors other than the ones already known. The first decade of this century/millennium has led to the discovery of the involvement of fibroblast growth factor-23, furin protease and α-klotho in the homeostasis of calcium and phosphate, which is the subject of this mini-review.

  7. The oxidative damage and disbalance of calcium homeostasis in brain of chicken induced by selenium deficiency.

    PubMed

    Xu, Shi-Wen; Yao, Hai-Dong; Zhang, Jian; Zhang, Zi-Wei; Wang, Jin-Tao; Zhang, Jiu-Li; Jiang, Zhi-Hui

    2013-02-01

    Dietary selenium (Se) deficiency can influence the function of the brain. Our objective was to investigate the effects of Se deficiency on oxidative damage and calcium (Ca) homeostasis in brain of chicken. In the present study, 1-day-old chickens were fed either a commercial diet (as control group) with 0.15 mg/kg Se or a Se-deficient diet (as L group) with 0.033 mg/kg Se for 75 days. Then, brain injury biomarkers were examined, including histological analysis, ultrastructure assay, and apoptosis assay. We also examined the effect of Se deficiency on the Se-containing antioxidative enzyme glutathione peroxidase (GSH-Px), the level of glutathione (GSH), and the Ca homeostasis in brain of chicken. The results showed that the levels of Se and GSH and activity of GSH-Px are seriously reduced by 33.8-96 % (P < 0.001), 24.51-27.84 % (P < 0.001), and 20.70-64.24 % (P < 0.01), respectively. In the present study, we also perform histological analysis and ultrastructure assay and find that Se deficiency caused disorganized histological structure, damage to the mitochondria, fusion of nuclear membrane and nucleus shrinkage, higher apoptosis rate (P < 0.001), and increase of Ca homeostasis (P < 0.05 or P < 0.01 or P < 0.001) in the brain of chicken. In conclusion, the results demonstrated that Se deficiency induced oxidative damage and disbalance of Ca homeostasis in the brain of chicken. Similar to mammals, chickens brain is also extremely susceptible to oxidative damage and selenium deficiency.

  8. Calcium Dysregulation and Homeostasis of Neural Calcium in the Molecular Mechanisms of Neurodegenerative Diseases Provide Multiple Targets for Neuroprotection

    PubMed Central

    Zündorf, Gregor

    2011-01-01

    Abstract The intracellular free calcium concentration subserves complex signaling roles in brain. Calcium cations (Ca2+) regulate neuronal plasticity underlying learning and memory and neuronal survival. Homo- and heterocellular control of Ca2+ homeostasis supports brain physiology maintaining neural integrity. Ca2+ fluxes across the plasma membrane and between intracellular organelles and compartments integrate diverse cellular functions. A vast array of checkpoints controls Ca2+, like G protein-coupled receptors, ion channels, Ca2+ binding proteins, transcriptional networks, and ion exchangers, in both the plasma membrane and the membranes of mitochondria and endoplasmic reticulum. Interactions between Ca2+ and reactive oxygen species signaling coordinate signaling, which can be either beneficial or detrimental. In neurodegenerative disorders, cellular Ca2+-regulating systems are compromised. Oxidative stress, perturbed energy metabolism, and alterations of disease-related proteins result in Ca2+-dependent synaptic dysfunction, impaired plasticity, and neuronal demise. We review Ca2+ control processes relevant for physiological and pathophysiological conditions in brain tissue. Dysregulation of Ca2+ is decisive for brain cell death and degeneration after ischemic stroke, long-term neurodegeneration in Alzheimer's disease, Parkinson's disease, Huntington's disease, inflammatory processes, such as in multiple sclerosis, epileptic sclerosis, and leucodystrophies. Understanding the underlying molecular processes is of critical importance for the development of novel therapeutic strategies to prevent neurodegeneration and confer neuroprotection. Antioxid. Redox Signal. 14, 1275–1288. PMID:20615073

  9. Calcium homeostasis in crustacea: the evolving role of branchial, renal, digestive and hypodermal epithelia.

    PubMed

    Wheatly, M G

    1999-06-01

    Crustaceans serve as an ideal model for the study of calcium homeostasis due to their natural molting cycle. Demineralization and remineralization of the calcified cuticle is accompanied by bidirectional Ca transfer across the primary Ca transporting epithelia: gills, antennal gland (kidney), digestive system, and cuticular hypodermis. The review will demonstrate how a continuum of crustaceans can be used as a paradigm for the evolution of Ca transport mechanisms. Generally speaking, aquatic crustaceans rely primarily on branchial Ca uptake and accordingly are affected by water Ca content; terrestrial crustaceans rely on intake of dietary Ca across the digestive epithelium. Synchrony of mineralization at the cuticle vs. storage sites will be presented Physiological and behavioral adaptations have evolved to optimize Ca balance during the molting cycle in different Ca environments. Intracellular Ca regulation reveals common mechanisms of apical and basolateral membrane transport as well as intracellular sequestration. Regulation of cell Ca concentration will be discussed in intermolt and during periods of the molting cycle when transepithelial Ca flux is significantly elevated. Molecular characterization of the sarco-/endoplasmic reticular Ca pump in aquatic species reveals the presence of two isoforms that originate from a single gene. This gene is differentially expressed during the molting cycle. Gene expression may be regulated by a suite of hormones including ecdysone, calcitonin, and vitamin D. Perspectives for future research are presented.

  10. Calcium carbonate does not affect imatinib pharmacokinetics in healthy volunteers.

    PubMed

    Tawbi, Hussein; Christner, Susan M; Lin, Yan; Johnson, Matthew; Mowrey, Emily T; Cherrin, Craig; Chu, Edward; Lee, James J; Puhalla, Shannon; Stoller, Ronald; Appleman, Leonard R; Miller, Brian M; Beumer, Jan H

    2014-01-01

    Imatinib mesylate (Gleevec(®)/Glivec(®)) has revolutionized the treatment of chronic myeloid leukemias and gastrointestinal stromal tumors, and there is evidence for an exposure response relationship. Calcium carbonate is increasingly used as a calcium supplement and in the setting of gastric upset associated with imatinib therapy. Calcium carbonate could conceivably elevate gastric pH and complex imatinib, thereby influencing imatinib absorption and exposure. We aimed to evaluate whether use of calcium carbonate has a significant effect on imatinib pharmacokinetics. Eleven healthy subjects were enrolled in a 2-period, open-label, single-institution, randomized crossover, fixed-schedule study. In one period, each subject received 400 mg of imatinib p.o. In the other period, 4,000 mg calcium carbonate (Tums Ultra(®)) was administered p.o. 15 min before 400 mg of imatinib. Plasma concentrations of imatinib and its active N-desmethyl metabolite CGP74588 were assayed by LC-MS; data were analyzed non-compartmentally and compared after log transformation. Calcium carbonate administration did not significantly affect the imatinib area under the plasma concentration versus time curve (AUC) (41.2 μg/mL h alone vs. 40.8 μg/mL h with calcium carbonate, P = 0.99), maximum plasma concentration (C(max)) (2.35 μg/mL alone vs. 2.39 μg/mL with calcium carbonate, P = 0.89). Our results indicate that the use of calcium carbonate does not significantly affect imatinib pharmacokinetics.

  11. Angiotensin II modulates mouse skeletal muscle resting conductance to chloride and potassium ions and calcium homeostasis via the AT1 receptor and NADPH oxidase

    PubMed Central

    Cozzoli, Anna; Liantonio, Antonella; Conte, Elena; Cannone, Maria; Massari, Ada Maria; Giustino, Arcangela; Scaramuzzi, Antonia; Pierno, Sabata; Mantuano, Paola; Capogrosso, Roberta Francesca; Camerino, Giulia Maria

    2014-01-01

    Angiotensin II (ANG II) plays a role in muscle wasting and remodeling; however, little evidence shows its direct effects on specific muscle functions. We presently investigated the acute in vitro effects of ANG II on resting ionic conductance and calcium homeostasis of mouse extensor digitorum longus (EDL) muscle fibers, based on previous findings that in vivo inhibition of ANG II counteracts the impairment of macroscopic ClC-1 chloride channel conductance (gCl) in the mdx mouse model of muscular dystrophy. By means of intracellular microelectrode recordings we found that ANG II reduced gCl in the nanomolar range and in a concentration-dependent manner (EC50 = 0.06 μM) meanwhile increasing potassium conductance (gK). Both effects were inhibited by the ANG II receptors type 1 (AT1)-receptor antagonist losartan and the protein kinase C inhibitor chelerythrine; no antagonism was observed with the AT2 antagonist PD123,319. The scavenger of reactive oxygen species (ROS) N-acetyl cysteine and the NADPH-oxidase (NOX) inhibitor apocynin also antagonized ANG II effects on resting ionic conductances; the ANG II-dependent gK increase was blocked by iberiotoxin, an inhibitor of calcium-activated potassium channels. ANG II also lowered the threshold for myofiber and muscle contraction. Both ANG II and the AT1 agonist L162,313 increased the intracellular calcium transients, measured by fura-2, with a two-step pattern. These latter effects were not observed in the presence of losartan and of the phospholipase C inhibitor U73122 and the in absence of extracellular calcium, disclosing a Gq-mediated calcium entry mechanism. The data show for the first time that the AT1-mediated ANG II pathway, also involving NOX and ROS, directly modulates ion channels and calcium homeostasis in adult myofibers. PMID:25080489

  12. Angiotensin II modulates mouse skeletal muscle resting conductance to chloride and potassium ions and calcium homeostasis via the AT1 receptor and NADPH oxidase.

    PubMed

    Cozzoli, Anna; Liantonio, Antonella; Conte, Elena; Cannone, Maria; Massari, Ada Maria; Giustino, Arcangela; Scaramuzzi, Antonia; Pierno, Sabata; Mantuano, Paola; Capogrosso, Roberta Francesca; Camerino, Giulia Maria; De Luca, Annamaria

    2014-10-01

    Angiotensin II (ANG II) plays a role in muscle wasting and remodeling; however, little evidence shows its direct effects on specific muscle functions. We presently investigated the acute in vitro effects of ANG II on resting ionic conductance and calcium homeostasis of mouse extensor digitorum longus (EDL) muscle fibers, based on previous findings that in vivo inhibition of ANG II counteracts the impairment of macroscopic ClC-1 chloride channel conductance (gCl) in the mdx mouse model of muscular dystrophy. By means of intracellular microelectrode recordings we found that ANG II reduced gCl in the nanomolar range and in a concentration-dependent manner (EC50 = 0.06 μM) meanwhile increasing potassium conductance (gK). Both effects were inhibited by the ANG II receptors type 1 (AT1)-receptor antagonist losartan and the protein kinase C inhibitor chelerythrine; no antagonism was observed with the AT2 antagonist PD123,319. The scavenger of reactive oxygen species (ROS) N-acetyl cysteine and the NADPH-oxidase (NOX) inhibitor apocynin also antagonized ANG II effects on resting ionic conductances; the ANG II-dependent gK increase was blocked by iberiotoxin, an inhibitor of calcium-activated potassium channels. ANG II also lowered the threshold for myofiber and muscle contraction. Both ANG II and the AT1 agonist L162,313 increased the intracellular calcium transients, measured by fura-2, with a two-step pattern. These latter effects were not observed in the presence of losartan and of the phospholipase C inhibitor U73122 and the in absence of extracellular calcium, disclosing a Gq-mediated calcium entry mechanism. The data show for the first time that the AT1-mediated ANG II pathway, also involving NOX and ROS, directly modulates ion channels and calcium homeostasis in adult myofibers. Copyright © 2014 the American Physiological Society.

  13. Calcium carbonate does not affect nilotinib pharmacokinetics in healthy volunteers.

    PubMed

    Tawbi, Hussein A; Tran, An L; Christner, Susan M; Lin, Yan; Johnson, Matthew; Mowrey, Emily; Appleman, Leonard R; Stoller, Ronald; Miller, Brian M; Egorin, Merrill J; Beumer, Jan H

    2013-11-01

    Gastric upset is a common side effect of nilotinib therapy, and calcium carbonate is frequently used concomitantly, either as antacid or as calcium supplementation. With the increasing number of oral agents in cancer therapy, oral drug-drug interactions are becoming more relevant. Nilotinib has already been shown to be absorbed to a much lesser extent when co-administered with proton pump inhibitors. Because exposure to sub-therapeutic concentrations of anticancer drugs such as nilotinib may result in selection of resistant clones and ultimately relapse, we studied the effect of a calcium carbonate supplement (Tums Ultra 1000®) on nilotinib pharmacokinetics. Calcium carbonate may be co-administered with nilotinib without significantly affecting the pharmacokinetics of nilotinib and potentially impacting efficacy. Nilotinib is a second-generation oral tyrosine kinase inhibitor with superior efficacy compared with imatinib mesylate in the treatment for chronic phase chronic myelogenous leukemia. Calcium carbonate is commonly used as a source of calcium supplementation or as antacid to ameliorate the gastrointestinal side effects associated with nilotinib, which could have unknown effects on nilotinib absorption. The purpose of this study was to provide information on the effect of calcium carbonate on the PK of nilotinib in healthy volunteers. Healthy subjects were enrolled in a two-period, open-label, single-institution, randomized, cross-over, fixed-schedule study. In one period, each subject received 400 mg of nilotinib p.o. In the other period, 4,000 mg of calcium carbonate (4 X Tums Ultra 1000®) was administered p.o. 15 min prior to the nilotinib dose. Plasma samples were collected at specified timepoints, concentrations of nilotinib were quantitated by LC-MS, and data were analyzed non-compartmentally. Eleven subjects were evaluable. Calcium supplementation did not significantly affect nilotinib pharmacokinetic parameters including area under the plasma

  14. Global Identification of Genes Affecting Iron-Sulfur Cluster Biogenesis and Iron Homeostasis

    PubMed Central

    Hidese, Ryota; Kurihara, Tatsuo; Esaki, Nobuyoshi

    2014-01-01

    Iron-sulfur (Fe-S) clusters are ubiquitous cofactors that are crucial for many physiological processes in all organisms. In Escherichia coli, assembly of Fe-S clusters depends on the activity of the iron-sulfur cluster (ISC) assembly and sulfur mobilization (SUF) apparatus. However, the underlying molecular mechanisms and the mechanisms that control Fe-S cluster biogenesis and iron homeostasis are still poorly defined. In this study, we performed a global screen to identify the factors affecting Fe-S cluster biogenesis and iron homeostasis using the Keio collection, which is a library of 3,815 single-gene E. coli knockout mutants. The approach was based on radiolabeling of the cells with [2-14C]dihydrouracil, which entirely depends on the activity of an Fe-S enzyme, dihydropyrimidine dehydrogenase. We identified 49 genes affecting Fe-S cluster biogenesis and/or iron homeostasis, including 23 genes important only under microaerobic/anaerobic conditions. This study defines key proteins associated with Fe-S cluster biogenesis and iron homeostasis, which will aid further understanding of the cellular mechanisms that coordinate the processes. In addition, we applied the [2-14C]dihydrouracil-labeling method to analyze the role of amino acid residues of an Fe-S cluster assembly scaffold (IscU) as a model of the Fe-S cluster assembly apparatus. The analysis showed that Cys37, Cys63, His105, and Cys106 are essential for the function of IscU in vivo, demonstrating the potential of the method to investigate in vivo function of proteins involved in Fe-S cluster assembly. PMID:24415728

  15. The Plasma Membrane Calcium Pump

    NASA Technical Reports Server (NTRS)

    Rasmussen, H.

    1983-01-01

    Three aspect of cellular calcium metabolism in animal cells was discussed including the importance of the plasma membrane in calcium homeostasis, experiments dealing with the actual mechanism of the calcium pump, and the function of the pump in relationship to the mitochondria and to the function of calmodulin in the intact cell.

  16. Effects of intermittent pressure imitating rolling manipulation on calcium ion homeostasis in human skeletal muscle cells.

    PubMed

    Zhang, Hong; Liu, Howe; Lin, Qing; Zhang, Guohui; Mason, David C

    2016-08-26

    Homeostasis imbalance of intracellular Ca(2+) is one of the key pathophysiological factors in skeletal muscle injuries. Such imbalance can cause significant change in the metabolism of Ca(2+)-related biomarkers in skeletal muscle, such as superoxide dismutase (SOD), malondialdehyde (MDA) and creatine kinase (CK). Measurements of these biomarkers can be used to evaluate the degree of damage to human skeletal muscle cells (HSKMCs) injury. Rolling manipulation is the most popular myofascial release technique in Traditional Chinese Medicine. The mechanism of how this technique works in ameliorating muscle injury is unknown. This study aimed to investigate the possible Ca(2+) mediated effects of intermittent pressure imitating rolling manipulation (IPIRM) of Traditional Chinese Medicine in the injured HSKMCs. The normal HSKMCs was used as control normal group (CNG), while the injured HSKMCs were further divided into five different groups: control injured group (CIG), Rolling manipulation group (RMG), Rolling manipulation-Verapamil group (RMVG), static pressure group (SPG) and static pressure-Verapamil group (SPVG). RMG and RMVG cells were cyclically exposed to 9.5-12.5 N/cm(2) of IPIRM at a frequency of 1.0 Hz for 10 min. SPG and SPVG were loaded to a continuous pressure of 12.5 N/cm(2) for 10 min. Verapamil, a calcium antagonist, was added into the culture mediums of both RMVG and SPVG groups to block the influx of calcium ion. Compared with the CNG (normal cells), SOD activity was remarkably decreased while both MDA content and CK activity were significantly increased in the CIG (injured cells). When the injured cells were treated with the intermittent rolling manipulation pressure (RMG), the SOD activity was significantly increased and MDA content and CK activity were remarkably decreased. These effects were suppressed by adding the calcium antagonist Verapamil into the culture medium in RMVG. On the other hand, exposure to static pressure in SPG and SPVG

  17. Increased LDL electronegativity in chronic kidney disease disrupts calcium homeostasis resulting in cardiac dysfunction.

    PubMed

    Chang, Kuan-Cheng; Lee, An-Sheng; Chen, Wei-Yu; Lin, Yen-Nien; Hsu, Jing-Fang; Chan, Hua-Chen; Chang, Chia-Ming; Chang, Shih-Sheng; Pan, Chia-Chi; Sawamura, Tatsuya; Chang, Chi-Tzong; Su, Ming-Jai; Chen, Chu-Huang

    2015-07-01

    Chronic kidney disease (CKD), an independent risk factor for cardiovascular disease, is associated with abnormal lipoprotein metabolism. We examined whether electronegative low-density lipoprotein (LDL) is mechanistically linked to cardiac dysfunction in patients with early CKD. We compared echocardiographic parameters between patients with stage 2 CKD (n = 88) and normal controls (n = 89) and found that impaired relaxation was more common in CKD patients. Reduction in estimated glomerular filtration rate was an independent predictor of left ventricular relaxation dysfunction. We then examined cardiac function in a rat model of early CKD induced by unilateral nephrectomy (UNx) by analyzing pressure-volume loop data. The time constant of isovolumic pressure decay was longer and the maximal velocity of pressure fall was slower in UNx rats than in controls. When we investigated the mechanisms underlying relaxation dysfunction, we found that LDL from CKD patients and UNx rats was more electronegative than LDL from their respective controls and that LDL from UNx rats induced intracellular calcium overload in H9c2 cardiomyocytes in vitro. Furthermore, chronic administration of electronegative LDL, which signals through lectin-like oxidized LDL receptor-1 (LOX-1), induced relaxation dysfunction in wild-type but not LOX-1(-/-) mice. In in vitro and in vivo experiments, impaired cardiac relaxation was associated with increased calcium transient resulting from nitric oxide (NO)-dependent nitrosylation of SERCA2a due to increases in inducible NO synthase expression and endothelial NO synthase uncoupling. In conclusion, LDL becomes more electronegative in early CKD. This change disrupts SERCA2a-regulated calcium homeostasis, which may be the mechanism underlying cardiorenal syndrome. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. TRIENNIAL LACTATION SYMPOSIUM/BOLFA: Serotonin and the regulation of calcium transport in dairy cows.

    PubMed

    Hernandez, L L

    2017-12-01

    The mammary gland regulates maternal metabolism during lactation. Numerous factors within the tissue send signals to shift nutrients to the mammary gland for milk synthesis. Serotonin is a monoamine that has been well documented to regulate several aspects of lactation among species. Maintenance of maternal calcium homeostasis during lactation is a highly evolved process that is elegantly regulated by the interaction of the mammary gland with the bone, gut, and kidney tissues. It is well documented that dietary calcium is insufficient to maintain maternal calcium concentrations during lactation, and mammals must rely on bone resorption to maintain normocalcemia. Our recent work focused on the ability of the mammary gland to function as an accessory parathyroid gland during lactation. It was demonstrated that serotonin acts to stimulate parathyroid hormone-related protein (PTHrP) in the mammary gland during lactation. The main role of mammary-derived PTHrP during mammalian lactation is to stimulate bone resorption to maintain maternal calcium homeostasis during lactation. In addition to regulating PTHrP, it was shown that serotonin appears to directly affect calcium transporters and pumps in the mammary gland. Our current working hypothesis regarding the control of calcium during lactation is as follows: serotonin directly stimulates PTHrP production in the mammary gland through interaction with the sonic hedgehog signaling pathway. Simultaneously, serotonin directly increases calcium movement into the mammary gland and, subsequently, milk. These 2 direct actions of serotonin combine to induce a transient maternal hypocalcemia required to further stimulate PTHrP production and calcium mobilization from bone. Through these 2 routes, serotonin is able to improve maternal calcium concentrations. Furthermore, we have shown that Holstein and Jersey cows appear to regulate calcium in different manners and also respond differently to serotonergic stimulation of the calcium

  19. Interaction of Mitochondria with the Endoplasmic Reticulum and Plasma Membrane in Calcium Homeostasis, Lipid Trafficking and Mitochondrial Structure.

    PubMed

    Szymański, Jędrzej; Janikiewicz, Justyna; Michalska, Bernadeta; Patalas-Krawczyk, Paulina; Perrone, Mariasole; Ziółkowski, Wiesław; Duszyński, Jerzy; Pinton, Paolo; Dobrzyń, Agnieszka; Więckowski, Mariusz R

    2017-07-20

    Studying organelles in isolation has been proven to be indispensable for deciphering the underlying mechanisms of molecular cell biology. However, observing organelles in intact cells with the use of microscopic techniques reveals a new set of different junctions and contact sites between them that contribute to the control and regulation of various cellular processes, such as calcium and lipid exchange or structural reorganization of the mitochondrial network. In recent years, many studies focused their attention on the structure and function of contacts between mitochondria and other organelles. From these studies, findings emerged showing that these contacts are involved in various processes, such as lipid synthesis and trafficking, modulation of mitochondrial morphology, endoplasmic reticulum (ER) stress, apoptosis, autophagy, inflammation and Ca 2 + handling. In this review, we focused on the physical interactions of mitochondria with the endoplasmic reticulum and plasma membrane and summarized present knowledge regarding the role of mitochondria-associated membranes in calcium homeostasis and lipid metabolism.

  20. Oocyte cryopreservation and in vitro culture affect calcium signalling during human fertilization.

    PubMed

    Nikiforaki, D; Vanden Meerschaut, F; Qian, C; De Croo, I; Lu, Y; Deroo, T; Van den Abbeel, E; Heindryckx, B; De Sutter, P

    2014-01-01

    What are the precise patterns of calcium oscillations during the fertilization of human oocytes matured either in vivo or in vitro or aged in vitro and what is the effect of cryopreservation? Human oocytes matured in vivo exhibit a specific pattern of calcium oscillations, which is affected by in vitro maturation, in vitro ageing and cryopreservation. Oscillations in cytoplasmic calcium concentration are crucial for oocyte activation and further embryonic development. While several studies have described in detail the calcium oscillation pattern during fertilization in animal models, studies with human oocytes are scarce. This was a laboratory-based study using human MII oocytes matured in vivo or in vitro either fresh or after cryopreservation with slow freezing or vitrification. Altogether, 205 human oocytes were included in the analysis. In vivo and in vitro matured human oocytes were used for this research either fresh or following vitrification/warming (V/W) and slow freezing/thawing (F/T). Human oocytes were obtained following written informed consent from patients undergoing ovarian hyperstimulation. For the calcium pattern analysis, oocytes were loaded with the ratiometric calcium indicator fluorescent dye Fura-2. Following ICSI using sperm from a single donor, intracellular calcium was measured for 16 h at 37°C under 6% CO(2). The calcium oscillation parameters were calculated for all intact oocytes that showed calcium oscillations and were analyzed using the Mann-Whitney U-test. Human in vivo MII oocytes display a specific pattern of calcium oscillations following ICSI. This pattern is significantly affected by in vitro ageing, with the calcium oscillations occurring over a longer period of time and with a lower frequency, shorter duration and higher amplitude (P < 0.05). In vitro matured oocytes from the GV and MI stage exhibit a different pattern of calcium oscillations with calcium transients being of lower frequency and shorter duration compared with

  1. A molecular signaling model of platelet phosphoinositide and calcium regulation during homeostasis and P2Y1 activation.

    PubMed

    Purvis, Jeremy E; Chatterjee, Manash S; Brass, Lawrence F; Diamond, Scott L

    2008-11-15

    To quantify how various molecular mechanisms are integrated to maintain platelet homeostasis and allow responsiveness to adenosine diphosphate (ADP), we developed a computational model of the human platelet. Existing kinetic information for 77 reactions, 132 fixed kinetic rate constants, and 70 species was combined with electrochemical calculations, measurements of platelet ultrastructure, novel experimental results, and published single-cell data. The model accurately predicted: (1) steady-state resting concentrations for intracellular calcium, inositol 1,4,5-trisphosphate, diacylglycerol, phosphatidic acid, phosphatidylinositol, phosphatidylinositol phosphate, and phosphatidylinositol 4,5-bisphosphate; (2) transient increases in intracellular calcium, inositol 1,4,5-trisphosphate, and G(q)-GTP in response to ADP; and (3) the volume of the platelet dense tubular system. A more stringent test of the model involved stochastic simulation of individual platelets, which display an asynchronous calcium spiking behavior in response to ADP. Simulations accurately reproduced the broad frequency distribution of measured spiking events and demonstrated that asynchronous spiking was a consequence of stochastic fluctuations resulting from the small volume of the platelet. The model also provided insights into possible mechanisms of negative-feedback signaling, the relative potency of platelet agonists, and cell-to-cell variation across platelet populations. This integrative approach to platelet biology offers a novel and complementary strategy to traditional reductionist methods.

  2. The common inhaled anesthetic isoflurane increases aggregation of huntingtin and alters calcium homeostasis in a cell model of Huntington's disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Qiujun; Department of Anesthesiology, The Third Clinical Hospital, Hebei Medical University, Shijiazhuang, Hebei 050051; Liang Ge

    2011-02-01

    Isoflurane is known to increase {beta}-amyloid aggregation and neuronal damage. We hypothesized that isoflurane will have similar effects on the polyglutamine huntingtin protein and will cause alterations in intracellular calcium homeostasis. We tested this hypothesis in striatal cells from the expanded glutamine huntingtin knock-in mouse (STHdh{sup Q111/Q111}) and wild type (STHdh{sup Q7/Q7}) striatal neurons. The primary cultured neurons were exposed for 24 h to equipotent concentrations of isoflurane, sevoflurane, and desflurane in the presence or absence of extracellular calcium and with or without xestospongin C, a potent endoplasmic reticulum inositol 1,4,5-trisphosphate (InsP{sub 3}) receptor antagonist. Aggregation of huntingtin protein, cellmore » viability, and calcium concentrations were measured. Isoflurane, sevoflurane, and desflurane all increased the aggregation of huntingtin in STHdh{sup Q111/Q111} cells, with isoflurane having the largest effect. Isoflurane induced greater calcium release from the ER and relatively more cell damage in the STHdh{sup Q111/Q111} huntingtin cells than in the wild type STHdh{sup Q7/Q7} striatal cells. However, sevoflurane and desflurane caused less calcium release from the ER and less cell damage. Xestospongin C inhibited the isoflurane-induced calcium release from the ER, aggregation of huntingtin, and cell damage in the STHdh{sup Q111/Q111} cells. In summary, the Q111 form of huntingtin increases the vulnerability of striatal neurons to isoflurane neurotoxicity through combined actions on the ER IP{sub 3} receptors. Calcium release from the ER contributes to the anesthetic induced huntingtin aggregation in STHdh{sup Q111/Q111} striatal cells.« less

  3. Perturbation of Serotonin Homeostasis during Adulthood Affects Serotonergic Neuronal Circuitry.

    PubMed

    Pratelli, Marta; Migliarini, Sara; Pelosi, Barbara; Napolitano, Francesco; Usiello, Alessandro; Pasqualetti, Massimo

    2017-01-01

    Growing evidence shows that the neurotransmitter serotonin (5-HT) modulates the fine-tuning of neuron development and the establishment of wiring patterns in the brain. However, whether serotonin is involved in the maintenance of neuronal circuitry in the adult brain remains elusive. Here, we use a Tph2 fl ° x conditional knockout (cKO) mouse line to assess the impact of serotonin depletion during adulthood on serotonergic system organization. Data show that the density of serotonergic fibers is increased in the hippocampus and decreased in the thalamic paraventricular nucleus (PVN) as a consequence of brain serotonin depletion. Strikingly, these defects are rescued following reestablishment of brain 5-HT signaling via administration of the serotonin precursor 5-hydroxytryptophan (5-HTP). Finally, 3D reconstruction of serotonergic fibers reveals that changes in serotonin homeostasis affect axonal branching complexity. These data demonstrate that maintaining proper serotonin homeostasis in the adult brain is crucial to preserve the correct serotonergic axonal wiring.

  4. Hydrogen peroxide-mediated oxidative stress disrupts calcium binding on calmodulin: More evidence for oxidative stress in vitiligo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schallreuter, K.U.; Gibbons, N.C.J.; Zothner, C.

    Patients with acute vitiligo have low epidermal catalase expression/activities and accumulate 10{sup -3} M H{sub 2}O{sub 2}. One consequence of this severe oxidative stress is an altered calcium homeostasis in epidermal keratinocytes and melanocytes. Here, we show decreased epidermal calmodulin expression in acute vitiligo. Since 10{sup -3}M H{sub 2}O{sub 2} oxidises methionine and tryptophan residues in proteins, we examined calcium binding to calmodulin in the presence and absence of H{sub 2}O{sub 2} utilising {sup 45}calcium. The results showed that all four calcium atoms exchanged per molecule of calmodulin. Since oxidised calmodulin looses its ability to activate calcium ATPase, enzyme activitiesmore » were followed in full skin biopsies from lesional skin of patients with acute vitiligo (n = 6) and healthy controls (n = 6). The results yielded a 4-fold decrease of ATPase activities in the patients. Computer simulation of native and oxidised calmodulin confirmed the loss of all four calcium ions from their specific EF-hand domains. Taken together H{sub 2}O{sub 2}-mediated oxidation affects calcium binding in calmodulin leading to perturbed calcium homeostasis and perturbed L-phenylalanine-uptake in the epidermis of acute vitiligo.« less

  5. Calcium signaling through CaMKII regulates hepatic glucose production in fasting and obesity.

    PubMed

    Ozcan, Lale; Wong, Catherine C L; Li, Gang; Xu, Tao; Pajvani, Utpal; Park, Sung Kyu Robin; Wronska, Anetta; Chen, Bi-Xing; Marks, Andrew R; Fukamizu, Akiyoshi; Backs, Johannes; Singer, Harold A; Yates, John R; Accili, Domenico; Tabas, Ira

    2012-05-02

    Hepatic glucose production (HGP) is crucial for glucose homeostasis, but the underlying mechanisms have not been fully elucidated. Here, we show that a calcium-sensing enzyme, CaMKII, is activated in a calcium- and IP3R-dependent manner by cAMP and glucagon in primary hepatocytes and by glucagon and fasting in vivo. Genetic deficiency or inhibition of CaMKII blocks nuclear translocation of FoxO1 by affecting its phosphorylation, impairs fasting- and glucagon/cAMP-induced glycogenolysis and gluconeogenesis, and lowers blood glucose levels, while constitutively active CaMKII has the opposite effects. Importantly, the suppressive effect of CaMKII deficiency on glucose metabolism is abrogated by transduction with constitutively nuclear FoxO1, indicating that the effect of CaMKII deficiency requires nuclear exclusion of FoxO1. This same pathway is also involved in excessive HGP in the setting of obesity. These results reveal a calcium-mediated signaling pathway involved in FoxO1 nuclear localization and hepatic glucose homeostasis. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Calcium signaling through CaMKII regulates hepatic glucose production in fasting and obesity

    PubMed Central

    Ozcan, Lale; Wong, Catherine C.L.; Li, Gang; Xu, Tao; Pajvani, Utpal; Park, Sung Kyu Robin; Wronska, Anetta; Chen, Bi-Xing; Marks, Andrew R.; Fukamizu, Akiyoshi; Backs, Johannes; Singer, Harold A.; Yates, John R.; Accili, Domenico; Tabas, Ira

    2012-01-01

    SUMMARY Hepatic glucose production (HGP) is crucial for glucose homeostasis, but the underlying mechanisms have not been fully elucidated. Here we show that a calcium-sensing enzyme, CaMKII, is activated in a calcium- and IP3R-dependent manner by cAMP and glucagon in primary HCs and by glucagon and fasting in vivo. Genetic deficiency or inhibition of CaMKII blocks nuclear translocation of FoxO1 by affecting its phosphorylation, impairs fasting- and glucagon/cAMP-induced glycogenolysis and gluconeogenesis, and lowers blood glucose levels, while constitutively active CaMKII has the opposite effects. Importantly, the suppressive effect of CaMKII deficiency on glucose metabolism is abrogated by transduction with constitutively nuclear FoxO1, indicating that the effect of CaMKII deficiency requires nuclear exclusion of FoxO1. This same pathway is also involved in excessive HGP in the setting of obesity. These results reveal a calcium-mediated signaling pathway involved in FoxO1 nuclear localization and hepatic glucose homeostasis. PMID:22503562

  7. Monitoring Endoplasmic Reticulum Calcium Homeostasis Using a Gaussia Luciferase SERCaMP.

    PubMed

    Henderson, Mark J; Wires, Emily S; Trychta, Kathleen A; Yan, Xiaokang; Harvey, Brandon K

    2015-09-06

    The endoplasmic reticulum (ER) contains the highest level of intracellular calcium, with concentrations approximately 5,000-fold greater than cytoplasmic levels. Tight control over ER calcium is imperative for protein folding, modification and trafficking. Perturbations to ER calcium can result in the activation of the unfolded protein response, a three-prong ER stress response mechanism, and contribute to pathogenesis in a variety of diseases. The ability to monitor ER calcium alterations during disease onset and progression is important in principle, yet challenging in practice. Currently available methods for monitoring ER calcium, such as calcium-dependent fluorescent dyes and proteins, have provided insight into ER calcium dynamics in cells, however these tools are not well suited for in vivo studies. Our lab has demonstrated that a modification to the carboxy-terminus of Gaussia luciferase confers secretion of the reporter in response to ER calcium depletion. The methods for using a luciferase based, secreted ER calcium monitoring protein (SERCaMP) for in vitro and in vivo applications are described herein. This video highlights hepatic injections, pharmacological manipulation of GLuc-SERCaMP, blood collection and processing, and assay parameters for longitudinal monitoring of ER calcium.

  8. A voltage-gated calcium channel regulates lysosomal fusion with endosomes and autophagosomes and is required for neuronal homeostasis.

    PubMed

    Tian, Xuejun; Gala, Upasana; Zhang, Yongping; Shang, Weina; Nagarkar Jaiswal, Sonal; di Ronza, Alberto; Jaiswal, Manish; Yamamoto, Shinya; Sandoval, Hector; Duraine, Lita; Sardiello, Marco; Sillitoe, Roy V; Venkatachalam, Kartik; Fan, Hengyu; Bellen, Hugo J; Tong, Chao

    2015-03-01

    Autophagy helps deliver sequestered intracellular cargo to lysosomes for proteolytic degradation and thereby maintains cellular homeostasis by preventing accumulation of toxic substances in cells. In a forward mosaic screen in Drosophila designed to identify genes required for neuronal function and maintenance, we identified multiple cacophony (cac) mutant alleles. They exhibit an age-dependent accumulation of autophagic vacuoles (AVs) in photoreceptor terminals and eventually a degeneration of the terminals and surrounding glia. cac encodes an α1 subunit of a Drosophila voltage-gated calcium channel (VGCC) that is required for synaptic vesicle fusion with the plasma membrane and neurotransmitter release. Here, we show that cac mutant photoreceptor terminals accumulate AV-lysosomal fusion intermediates, suggesting that Cac is necessary for the fusion of AVs with lysosomes, a poorly defined process. Loss of another subunit of the VGCC, α2δ or straightjacket (stj), causes phenotypes very similar to those caused by the loss of cac, indicating that the VGCC is required for AV-lysosomal fusion. The role of VGCC in AV-lysosomal fusion is evolutionarily conserved, as the loss of the mouse homologues, Cacna1a and Cacna2d2, also leads to autophagic defects in mice. Moreover, we find that CACNA1A is localized to the lysosomes and that loss of lysosomal Cacna1a in cerebellar cultured neurons leads to a failure of lysosomes to fuse with endosomes and autophagosomes. Finally, we show that the lysosomal CACNA1A but not the plasma-membrane resident CACNA1A is required for lysosomal fusion. In summary, we present a model in which the VGCC plays a role in autophagy by regulating the fusion of AVs with lysosomes through its calcium channel activity and hence functions in maintaining neuronal homeostasis.

  9. Calcium oxalate druses affect leaf optical properties in selenium-treated Fagopyrum tataricum.

    PubMed

    Golob, Aleksandra; Stibilj, Vekoslava; Nečemer, Marijan; Kump, Peter; Kreft, Ivan; Hočevar, Anja; Gaberščik, Alenka; Germ, Mateja

    2018-03-01

    Plants of the genus Fagopyrum contain high levels of crystalline calcium oxalate (CaOx) deposits, or druses, that can affect the leaf optical properties. As selenium has been shown to modify the uptake and accumulation of metabolically important elements such as calcium, we hypothesised that the numbers of druses can be altered by selenium treatment, and this would affect the leaf optical properties. Tartary buckwheat (Fagopyrum tataricum Gaertn.) was grown outdoors in an experimental field. At the beginning of flowering, plants were foliarly sprayed with sodium selenate solution at 10 mg selenium L -1 or only with water. Plant morphological, biochemical, physiological and optical properties were examined, along with leaf elemental composition and content. Se spraying did not affect leaf biochemical and functional properties. However, it increased leaf thickness and the contents of Se in the leaves, and decreased the density of calcium oxalate druses in the leaves. Except Se content, Se spraying did not affect contents of other elements in leaves, including total calcium per dry mass of leaf tissue. Redundancy analysis showed that of all parameters tested, only the calcium oxalate druses parameters were significant in explaining the variability of the leaf reflectance and transmittance spectra. The density of CaOx druses positively correlated with the reflectance in the blue, green, yellow and UV-B regions of the spectrum, while the area of CaOx druses per mm 2 of leaf transection area positively correlated with the transmittance in the green and yellow regions of the spectrum. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Calcium metabolism in birds.

    PubMed

    de Matos, Ricardo

    2008-01-01

    Calcium is one of the most important plasma constituents in mammals and birds. It provides structural strength and support (bones and eggshell) and plays vital roles in many of the biochemical reactions in the body. The control of calcium metabolism in birds is highly efficient and closely regulated in a number of tissues, primarily parathyroid gland, intestine, kidney, and bone. The hormones with the greatest involvement in calcium regulation in birds are parathyroid hormone, 1,25-dihydroxyvitamin D(3) (calcitriol), and estrogen, with calcitonin playing a minor and uncertain role. The special characteristics of calcium metabolism in birds, mainly associated with egg production, are discussed, along with common clinical disorders secondary to derangements in calcium homeostasis.

  11. Calcium and Bone Metabolism Indices.

    PubMed

    Song, Lu

    2017-01-01

    Calcium and inorganic phosphate are of critical importance for many body functions, thus the regulations of their plasma concentrations are tightly controlled by the concerted actions of reabsorption/excretion in the kidney, absorption in the intestines, and exchange from bone, the major reservoir for calcium and phosphate in the body. Parathyroid hormone (PTH) and 1,25-dihydroxyvitamin D (1,25(OH) 2 D) control calcium homeostasis, whereas PTH, 1,25(OH) 2 D, and bone-derived fibroblast growth factor 23 (FGF 23) control phosphate homeostasis. Hypoparathyroidism can cause hypocalcemia and hyperphosphatemia, whereas deficient vitamin D actions can cause osteomalacia in adults and rickets in children. Hyperparathyroidism, alternatively, can cause hypercalcemia and hypophosphatemia. Laboratory tests of calcium, phosphate, PTH, and 25-hydroxyvitamin D are very useful in the diagnosis of abnormalities associated with calcium and/or phosphate metabolisms. Bone is constantly remodeled throughout life in response to mechanical stress and a need for calcium in extracellular fluids. Metabolic bone diseases such as osteoporosis, osteomalacia in adults or rickets in children, and renal osteodystrophy develop when bone resorption exceeds bone formation. Bone turnover markers (BTM) such as serum N-terminal propeptide of type I procollagen (P1NP) and C-terminal collagen cross-link (CTX) may be useful in predicting future fracture risk or monitoring the response to anti-resorptive therapy. There is a need to standardize sample collection protocols because certain BTMs exhibit large circadian variations and tend to be influenced by food intakes. In the United States, a project to standardize BTM sample collection protocols and to establish the reference intervals for serum P1NP and serum CTX is ongoing. We anticipate the outcome of this project to shine lights on the standardization of BTM assays, sample collection protocols, reference intervals in relation to age, sex, and ethnic

  12. The effect of enriched chicory inulin on liver enzymes, calcium homeostasis and hematological parameters in patients with type 2 diabetes mellitus: A randomized placebo-controlled trial.

    PubMed

    Farhangi, Mahdieh Abbasalizad; Javid, Ahmad Zare; Dehghan, Parvin

    2016-08-01

    Type 2 diabetic mellitus (T2DM) as one of the main causes of morbidity and mortality is associated with immune system disturbances and metabolic abnormalities. In the current study we aimed to evaluate the effects of enriched chicory inulin supplementation on liver enzymes, serum calcium and phosphorous concentrations and hematological parameters in patients with T2DM. Forty-six diabetic females patients were randomly allocated into intervention (n=27) and control (n=22) groups. Subjects in the intervention group received a daily dose of 10g of chicory and subjects in control group received a placebo for two months. Anthropometric variables, glucose homeostasis, hematological parameters and metabolic indices including serum alanine aminotransfersae (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), calcium and phosphorous as well as creatinine concentrations, glomerular filtration rate (GFR) and blood pressure were assessed at the beginning and end of the trial. Significant reductions in fasting serum glucose (FSG), Hb A1C, AST and ALP concentrations were observed in chicory-treated group. Systolic and diastolic blood pressures were also reduced in chicory-treated group. Serum calcium significantly increased after chicory supplementation but no change in placebo treated group has been occurred (P=0.014). Supplementation with enriched chicory for two months significantly reduced hematocrit and mean corpuscular volume (MCV) values (P<0.05). Changes in serum insulin, creatinine and GFR were not significant. The present study showed beneficial effects of oligofructose-enriched chicory on the improvement of the glucose and calcium homeostasis, liver function tests, blood pressure and reduction in hematologic risk factors of diabetes in female patients with T2DM. Further studies in both genders are needed to generalize these findings to total population. Copyright © 2016 Primary Care Diabetes Europe. Published by Elsevier Ltd. All rights reserved.

  13. [Calcium and vitamin D in bone metabolism: Clinical importance for fracture treatment].

    PubMed

    Amling, M

    2015-12-01

    A balanced calcium homeostasis is of critical importance not only for bone remodeling, the physiological process of bone resorption and bone formation that constantly renews bone throughout life but also for normal fracture healing. Given that disturbances of calcium homeostasis are present in 50 % of the German population and that this might result in delayed fracture healing after correct surgical treatment, this paper focusses on calcium and vitamin D in the daily practice in orthopedics and trauma surgery. To ensure the required enteral calcium uptake the following three conditions are required: (1) sufficient calcium intake via the nutrition, (2) a 25-hydroxyvitamin D serum level > 30 µg/l and (3) the presence of sufficient gastric acidification. Given the endemic vitamin D deficiency in Germany as well as the constantly increasing number of people using proton pump inhibitors on a regular basis, it is necessary to closely connect trauma orthopedic surgery and osteological treatment. The first issue to be dealt with is to control and if needed normalize calcium homeostasis in order to allow a normal undisturbed fracture healing process after both conservative as well as operative treatment of fractures.

  14. Depletion of calcium stores regulates calcium influx and signal transmission in rod photoreceptors

    PubMed Central

    Szikra, Tamas; Cusato, Karen; Thoreson, Wallace B; Barabas, Peter; Bartoletti, Theodore M; Krizaj, David

    2008-01-01

    Tonic synapses are specialized for sustained calcium entry and transmitter release, allowing them to operate in a graded fashion over a wide dynamic range. We identified a novel plasma membrane calcium entry mechanism that extends the range of rod photoreceptor signalling into light-adapted conditions. The mechanism, which shares molecular and physiological characteristics with store-operated calcium entry (SOCE), is required to maintain baseline [Ca2+]i in rod inner segments and synaptic terminals. Sustained Ca2+ entry into rod cytosol is augmented by store depletion, blocked by La3+ and Gd3+ and suppressed by organic antagonists MRS-1845 and SKF-96365. Store depletion and the subsequent Ca2+ influx directly stimulated exocytosis in terminals of light-adapted rods loaded with the activity-dependent dye FM1–43. Moreover, SOCE blockers suppressed rod-mediated synaptic inputs to horizontal cells without affecting presynaptic voltage-operated Ca2+ entry. Silencing of TRPC1 expression with small interference RNA disrupted SOCE in rods, but had no effect on cone Ca2+ signalling. Rods were immunopositive for TRPC1 whereas cone inner segments immunostained with TRPC6 channel antibodies. Thus, SOCE modulates Ca2+ homeostasis and light-evoked neurotransmission at the rod photoreceptor synapse mediated by TRPC1. PMID:18755743

  15. High butyric acid amounts induce oxidative stress, alter calcium homeostasis, and cause neurite retraction in nerve growth factor-treated PC12 cells.

    PubMed

    Cueno, Marni E; Kamio, Noriaki; Seki, Keisuke; Kurita-Ochiai, Tomoko; Ochiai, Kuniyasu

    2015-07-01

    Butyric acid (BA) is a common secondary metabolite by-product produced by oral pathogenic bacteria and is detected in high amounts in the gingival tissue of patients with periodontal disease. Previous works have demonstrated that BA can cause oxidative stress in various cell types; however, this was never explored using neuronal cells. Here, we exposed nerve growth factor (NGF)-treated PC1(2) cells to varying BA concentrations (0.5, 1.0, 5.0 mM). We measured total heme, H(2)O(2), catalase, and calcium levels through biochemical assays and visualized the neurite outgrowth after BA treatment. Similarly, we determined the effects of other common periodontal short-chain fatty acids (SCFAs) on neurite outgrowth for comparison. We found that high (1.0 and 5.0 mM) BA concentrations induced oxidative stress and altered calcium homeostasis, whereas low (0.5 mM) BA concentration had no significant effect. Moreover, compared to other SCFAs, we established that only BA was able to induce neurite retraction.

  16. Physical contact between human vascular endothelial and smooth muscle cells modulates cytosolic and nuclear calcium homeostasis.

    PubMed

    Hassan, Ghada S; Jacques, Danielle; D'Orléans-Juste, Pedro; Magder, Sheldon; Bkaily, Ghassan

    2018-05-14

    The interaction between vascular endothelial cells (VECs) and vascular smooth muscle cells (VSMCs) plays an important role in the modulation of vascular tone. There is, however, no information on whether direct physical communication regulates the intracellular calcium levels of human VECs (hVECs) and (or) human VSMCs (hVSMCs). Thus, the objective of the study is to verify whether co-culture of hVECs and hVSMCs modulates cytosolic ([Ca 2+ ] c ) and nuclear calcium ([Ca 2+ ] n ) levels via physical contact and (or) factors released by both cell types. Quantitative 3D confocal microscopy for [Ca 2+ ] c and [Ca 2+ ] n measurement was performed in cultured hVECs or hVSMCs or in co-culture of hVECs-hVSMCs. Our results show that: (1) physical contact between hVECs-hVECs or hVSMCs-hVSMCs does not affect [Ca 2+ ] c and [Ca 2+ ] n in these 2 cell types; (2) physical contact between hVECs and hVSMCs induces a significant increase only of [Ca 2+ ] n of hVECs without affecting the level of [Ca 2+ ] c and [Ca 2+ ] n of hVSMCs; and (3) preconditioned culture medium of hVECs or hVSMCs does not affect [Ca 2+ ] c and [Ca 2+ ] n of both types of cells. We concluded that physical contact between hVECs and hVSMCs only modulates [Ca 2+ ] n in hVECs. The increase of [Ca 2+ ] n in hVECs may modulate nuclear functions that are calcium dependent.

  17. Calcium homeostasis and bone metabolic responses to protein diets and energy restriction: a randomized control trial

    USDA-ARS?s Scientific Manuscript database

    Despite some beneficial effects on bone, high protein diets are conventionally considered a primary dietary risk factor for osteoporosis and bone fracture due to the acid load associated with protein catabolism. To test the hypothesis that high dietary protein diets do not negatively affect calcium ...

  18. Fluconazole affects the alkali-metal-cation homeostasis and susceptibility to cationic toxic compounds of Candida glabrata.

    PubMed

    Elicharova, Hana; Sychrova, Hana

    2014-08-01

    Candida glabrata is a salt-tolerant and fluconazole (FLC)-resistant yeast species. Here, we analyse the contribution of plasma-membrane alkali-metal-cation exporters, a cation/proton antiporter and a cation ATPase to cation homeostasis and the maintenance of membrane potential (ΔΨ). Using a series of single and double mutants lacking CNH1 and/or ENA1 genes we show that the inability to export potassium and toxic alkali-metal cations leads to a slight hyperpolarization of the plasma membrane of C. glabrata cells; this hyperpolarization drives more cations into the cells and affects cation homeostasis. Surprisingly, a much higher hyperpolarization of C. glabrata plasma membrane was produced by incubating cells with subinhibitory concentrations of FLC. FLC treatment resulted in a substantially increased sensitivity of cells to various cationic drugs and toxic cations that are driven into the cell by negative-inside plasma-membrane potential. The effect of the combination of FLC plus cationic drug treatment was enhanced by the malfunction of alkali-metal-cation transporters that contribute to the regulation of membrane potential and cation homeostasis. In summary, we show that the combination of subinhibitory concentrations of FLC and cationic drugs strongly affects the growth of C. glabrata cells. © 2014 The Authors.

  19. Adjustment of ionized calcium concentration for serum pH is not a valid marker of calcium homeostasis: implications for identifying individuals at risk of calcium metabolic disorders.

    PubMed

    Lam, Virginie; Dhaliwal, Satvinder S; Mamo, John C

    2013-05-01

    Ionized calcium (iCa) is the biologically active form of this micronutrient. Serum determination of iCa is measured via ion-electrode potentiometry (IEP) and reporting iCa relative to pH 7.4 is normally utilized to avoid the potential confounding effects of ex vivo changes to serum pH. Adjustment of iCa for pH has not been adequately justified. In this study, utilizing carefully standardized protocols for blood collection, the preparation of serum and controlling time of collection-to-analysis, we determined serum iCa and pH utilizing an IEP-analyser hosted at an accredited diagnostic laboratory. Regression analysis of unadjusted-iCa (iCa(raw)) concentration versus pH was described by linear regression and accounted for 37% of serum iCa(raw) variability. iCa(raw) was then expressed at pH 7.4 by either adjusting iCa(raw) based on the linear regression equation describing the association of iCa with serum pH (iCa(regr)) or using IEP coded published normative equations (iCa(pub)). iCa(regr) was comparable to iCa(raw), indicating that blood collection and processing methodologies were sound. However, iCa(pub) yielded values that were significantly lower than iCa(raw). iCa(pub) did not identify 15% subjects who had greater than desirable serum concentration of iCa based on iCa(raw). Sixty percent of subjects with low levels of iCa(raw) were also not detected by iCa(pub). Determination of the kappa value measure of agreement for iCa(raw) versus iCa(pub) showed relatively poor concordance (κ = 0.42). With simple protocols that avoid sampling artefacts, expressing iCa(raw) is likely to be a more valid and physiologically relevant marker of calcium homeostasis than is iCa(pub).

  20. Structural and Functional Similarities of Calcium Homeostasis Modulator 1 (CALHM1) Ion Channel with Connexins, Pannexins, and Innexins*

    PubMed Central

    Siebert, Adam P.; Ma, Zhongming; Grevet, Jeremy D.; Demuro, Angelo; Parker, Ian; Foskett, J. Kevin

    2013-01-01

    CALHM1 (calcium homeostasis modulator 1) forms a plasma membrane ion channel that mediates neuronal excitability in response to changes in extracellular Ca2+ concentration. Six human CALHM homologs exist with no homology to other proteins, although CALHM1 is conserved across >20 species. Here we demonstrate that CALHM1 shares functional and quaternary and secondary structural similarities with connexins and evolutionarily distinct innexins and their vertebrate pannexin homologs. A CALHM1 channel is a hexamer, comprised of six monomers, each of which possesses four transmembrane domains, cytoplasmic amino and carboxyl termini, an amino-terminal helix, and conserved extracellular cysteines. The estimated pore diameter of the CALHM1 channel is ∼14 Å, enabling permeation of large charged molecules. Thus, CALHMs, connexins, and pannexins and innexins are structurally related protein families with shared and distinct functional properties. PMID:23300080

  1. Calcium Signaling in Taste Cells

    PubMed Central

    Medler, Kathryn F.

    2014-01-01

    The sense of taste is a common ability shared by all organisms and is used to detect nutrients as well as potentially harmful compounds. Thus taste is critical to survival. Despite its importance, surprisingly little is known about the mechanisms generating and regulating responses to taste stimuli. All taste responses depend on calcium signals to generate appropriate responses which are relayed to the brain. Some taste cells have conventional synapses and rely on calcium influx through voltage-gated calcium channels. Other taste cells lack these synapses and depend on calcium release to formulate an output signal through a hemichannel. Beyond establishing these characteristics, few studies have focused on understanding how these calcium signals are formed. We identified multiple calcium clearance mechanisms that regulate calcium levels in taste cells as well as a calcium influx that contributes to maintaining appropriate calcium homeostasis in these cells. Multiple factors regulate the evoked taste signals with varying roles in different cell populations. Clearly, calcium signaling is a dynamic process in taste cells and is more complex than has previously been appreciated. PMID:25450977

  2. Snapshot: implications for melatonin in endoplasmic reticulum homeostasis

    PubMed Central

    Hu, Wei; Ma, Zhiqiang; Di, Shouyin; Jiang, Shuai; Li, Yue; Fan, Chongxi

    2016-01-01

    The endoplasmic reticulum (ER) is an important intracellular membranous organelle. Previous studies have demonstrated that the ER is responsible for protein folding and trafficking, lipid synthesis and the maintenance of calcium homeostasis. Interestingly, the morphology and structure of the ER were recently found to be important. Melatonin is a hormone that anticipates the daily onset of darkness in mammals, and it is well known that melatonin acts as an antioxidant by scavenging free radicals and increasing the activity of antioxidant enzymes in the body. Notably, the existing evidence demonstrates that melatonin is involved in ER homeostasis, particularly in the morphology of the ER, indicating a potential protective role of melatonin. This review discusses the existing knowledge regarding the implications for the involvement of melatonin in ER homeostasis. PMID:27759160

  3. Effects of chronic administration of clenbuterol on contractile properties and calcium homeostasis in rat extensor digitorum longus muscle.

    PubMed

    Sirvent, Pascal; Douillard, Aymerick; Galbes, Olivier; Ramonatxo, Christelle; Py, Guillaume; Candau, Robin; Lacampagne, Alain

    2014-01-01

    Clenbuterol, a β2-agonist, induces skeletal muscle hypertrophy and a shift from slow-oxidative to fast-glycolytic muscle fiber type profile. However, the cellular mechanisms of the effects of chronic clenbuterol administration on skeletal muscle are not completely understood. As the intracellular Ca2+ concentration must be finely regulated in many cellular processes, the aim of this study was to investigate the effects of chronic clenbuterol treatment on force, fatigue, intracellular calcium (Ca2+) homeostasis and Ca2+-dependent proteolysis in fast-twitch skeletal muscles (the extensor digitorum longus, EDL, muscle), as they are more sensitive to clenbuterol-induced hypertrophy. Male Wistar rats were chronically treated with 4 mg.kg-1 clenbuterol or saline vehicle (controls) for 21 days. Confocal microscopy was used to evaluate sarcoplasmic reticulum Ca2+ load, Ca2+-transient amplitude and Ca2+ spark properties. EDL muscles from clenbuterol-treated animals displayed hypertrophy, a shift from slow to fast fiber type profile and increased absolute force, while the relative force remained unchanged and resistance to fatigue decreased compared to control muscles from rats treated with saline vehicle. Compared to control animals, clenbuterol treatment decreased Ca2+-transient amplitude, Ca2+ spark amplitude and frequency and the sarcoplasmic reticulum Ca2+ load was markedly reduced. Conversely, calpain activity was increased by clenbuterol chronic treatment. These results indicate that chronic treatment with clenbuterol impairs Ca2+ homeostasis and this could contribute to the remodeling and functional impairment of fast-twitch skeletal muscle.

  4. Cadmium-induced apoptosis of Siberian tiger fibroblasts via disrupted intracellular homeostasis.

    PubMed

    Wang, Hui; Liu, Zheng; Zhang, Wenxiu; Yuan, Ziao; Yuan, Hongyi; Liu, Xueting; Yang, Chunwen; Guan, Weijun

    2016-10-24

    Heavy metals can cause great harm to Siberian tigers in the natural environment. Cadmium (Cd 2+ ) is an environmental contaminant that affects multiple cellular processes, including cell proliferation, differentiation, and survival. It has been shown to induce apoptosis in a variety of cell types and tissues. We investigated the apoptotic effects of Cd 2+ on Siberian tiger fibroblasts in vitro. Our research revealed the typical signs of apoptosis after Cd 2+ exposure. Apoptosis was dose- (0-4.8 μM) and duration-dependent (12-48 h), and proliferation was strongly inhibited. Cd 2+ increased the activity of caspase-3, -8, and -9 and disrupted calcium homeostasis by causing oxidative stress and mitochondrial dysfunction. It also increased K + efflux and altered the mRNA levels of Bax, Bcl-2, caspase-3, caspase-8, Fas, and p53. Our results suggest that Cd 2+ triggers the apoptosis of Siberian tiger fibroblasts by disturbing intracellular homeostasis. These results will aid in our understanding of the effects of Cd 2+ on Siberian tigers and in developing interventions to treat and prevent cadmium poisoning.

  5. PRESENILIN-NULL CELLS HAVE ALTERED TWO-PORE CALCIUM CHANNEL EXPRESSION AND LYSOSOMAL CALCIUM; IMPLICATIONS FOR LYSOSOMAL FUNCTION

    PubMed Central

    Kayala, Kara M Neely; Dickinson, George D; Minassian, Anet; Walls, Ken C; Green, Kim N; LaFerla, Frank M

    2012-01-01

    Presenilins are necessary for calcium homeostasis and also for efficient proteolysis through the autophagy/lysosome system. Presenilin regulates both endoplasmic reticulum calcium stores and autophagic proteolysis in a γ-secretase independent fashion. The endo-lysosome system can also act as a calcium store, with calcium efflux channels being recently identified as two-pore channels 1 and 2. Here we investigated lysosomal calcium content and the channels that mediate calcium release from these acidic stores in presenilin knockout cells. We report that presenilin loss leads to a lower total lysosomal calcium store despite the buildup of lysosomes found in these cells. Additionally, we find alterations in two-pore calcium channel protein expression, with loss of presenilin preventing the formation of a high molecular weight species of TPC1 and TPC2. Finally, we find that treatments that disturb lysosomal calcium release lead to a reduction in autophagy function yet lysosomal inhibitors do not alter two-pore calcium channel expression. These data indicate that alterations in lysosomal calcium in the absence of presenilins might be leading to disruptions in autophagy. PMID:23103503

  6. Physical exercise in aging human skeletal muscle increases mitochondrial calcium uniporter expression levels and affects mitochondria dynamics.

    PubMed

    Zampieri, Sandra; Mammucari, Cristina; Romanello, Vanina; Barberi, Laura; Pietrangelo, Laura; Fusella, Aurora; Mosole, Simone; Gherardi, Gaia; Höfer, Christian; Löfler, Stefan; Sarabon, Nejc; Cvecka, Jan; Krenn, Matthias; Carraro, Ugo; Kern, Helmut; Protasi, Feliciano; Musarò, Antonio; Sandri, Marco; Rizzuto, Rosario

    2016-12-01

    Age-related sarcopenia is characterized by a progressive loss of muscle mass with decline in specific force, having dramatic consequences on mobility and quality of life in seniors. The etiology of sarcopenia is multifactorial and underlying mechanisms are currently not fully elucidated. Physical exercise is known to have beneficial effects on muscle trophism and force production. Alterations of mitochondrial Ca 2+ homeostasis regulated by mitochondrial calcium uniporter (MCU) have been recently shown to affect muscle trophism in vivo in mice. To understand the relevance of MCU-dependent mitochondrial Ca 2+ uptake in aging and to investigate the effect of physical exercise on MCU expression and mitochondria dynamics, we analyzed skeletal muscle biopsies from 70-year-old subjects 9 weeks trained with either neuromuscular electrical stimulation (ES) or leg press. Here, we demonstrate that improved muscle function and structure induced by both trainings are linked to increased protein levels of MCU Ultrastructural analyses by electron microscopy showed remodeling of mitochondrial apparatus in ES-trained muscles that is consistent with an adaptation to physical exercise, a response likely mediated by an increased expression of mitochondrial fusion protein OPA1. Altogether these results indicate that the ES-dependent physiological effects on skeletal muscle size and force are associated with changes in mitochondrial-related proteins involved in Ca 2+ homeostasis and mitochondrial shape. These original findings in aging human skeletal muscle confirm the data obtained in mice and propose MCU and mitochondria-related proteins as potential pharmacological targets to counteract age-related muscle loss. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  7. Cadmium and calcium uptake in the mollusc donax rugosus and effect of a calcium channel blocker

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sidoumou, Z.; Gnassia-Barelli, M.; Romeo, M.

    Donax rugosus, a common bivalve mollusc in the coastal waters of Mauritania, has been studied for trace metal concentrations as a function of sampling site (from South of Mauritania to the North of this country) and of season. In this paper, the uptake of cadmium was experimentally studied in the different organs of D. rugosus. Since metals such as cadmium, copper and mercury may alter calcium homeostasis, calcium uptake was also studied in the animals treated with cadmium. Since calcium is taken up through specific channels, it appears that metals inhibit Ca uptake by interacting with these channels in themore » plasma membrane. Cadmium and calcium have very similar atomic radii, thus cadmium may be taken up through the calcium channels, particularly through voltage-dependent channels. The uptake of cadmium and calcium by D. Rugosus was therefore also studied in the presence of the calcium channel blocker verapamil. 13 refs., 3 figs., 1 tab.« less

  8. Particle size of calcium carbonate does not affect apparent and standardized total tract digestibility of calcium, retention of calcium, or growth performance of growing pigs.

    PubMed

    Merriman, L A; Stein, H H

    2016-09-01

    Two experiments were conducted to evaluate particle size of calcium carbonate used in diets fed to growing pigs. Experiment 1 was conducted to determine apparent total tract digestibility (ATTD), standardized total tract digestibility (STTD), and retention of Ca among diets containing calcium carbonate produced to different particle sizes, and Exp. 2 was conducted to determine if growth performance of weanling pigs is affected by particle size of calcium carbonate. In Exp. 1, 4 diets based on corn and potato protein isolate were formulated to contain 0.70% Ca and 0.33% standardized total tract digestible P, but the calcium carbonate used in the diets was ground to 4 different particle sizes (200, 500, 700, or 1,125 μm). A Ca-free diet was formulated to determine basal endogenous losses of Ca. In Exp. 2, 4 diets were based on corn and soybean meal and the only difference among diets was that each diet contained calcium carbonate ground to the 4 particle sizes used in Exp. 1. In Exp. 1, 40 barrows (15.42 ± 0.70 kg initial BW) were allotted to the 5 diets with 8 replicate pigs per diet using a randomized complete block design, and in Exp. 2, 128 pigs with an initial BW of 9.61 ± 0.09 kg were randomly allotted to 4 experimental diets. Results of Exp. 1 indicated that basal endogenous losses of Ca were 0.329 g/kg DMI. The ATTD of Ca was 70.0 ± 3.2, 74.3 ± 2.7, 70.0 ± 2.9, and 72.1 ± 2.7 and the STTD of Ca was 74.2 ± 3.2, 78.5 ± 2.7, 74.1 ± 2.9, and 76.2 ± 2.7 for calcium carbonate ground to 200, 500, 700, or 1,125 μm, respectively. Retention of Ca was 67.4 ± 3.1, 70.4 ± 2.6, 63.9 ± 2.8, and 67.2 ± 2.2 for diets containing calcium carbonate ground to 200, 500, 700, or 1,125 μm, respectively. There were no differences among diets for ATTD of Ca, STTD of Ca, or retention of Ca. The ATTD of P was 64.5 ± 1.7, 66.8 ± 2.6, 64.2 ± 3.0, and 63.2 ± 1.7% and retention of P was 61.4 ± 1.4, 63.8 ± 2.8, 61.9 ± 2.8, and 60.9 ± 1.5 for diets containing calcium

  9. Intracellular sphingosine releases calcium from lysosomes.

    PubMed

    Höglinger, Doris; Haberkant, Per; Aguilera-Romero, Auxiliadora; Riezman, Howard; Porter, Forbes D; Platt, Frances M; Galione, Antony; Schultz, Carsten

    2015-11-27

    To elucidate new functions of sphingosine (Sph), we demonstrate that the spontaneous elevation of intracellular Sph levels via caged Sph leads to a significant and transient calcium release from acidic stores that is independent of sphingosine 1-phosphate, extracellular and ER calcium levels. This photo-induced Sph-driven calcium release requires the two-pore channel 1 (TPC1) residing on endosomes and lysosomes. Further, uncaging of Sph leads to the translocation of the autophagy-relevant transcription factor EB (TFEB) to the nucleus specifically after lysosomal calcium release. We confirm that Sph accumulates in late endosomes and lysosomes of cells derived from Niemann-Pick disease type C (NPC) patients and demonstrate a greatly reduced calcium release upon Sph uncaging. We conclude that sphingosine is a positive regulator of calcium release from acidic stores and that understanding the interplay between Sph homeostasis, calcium signaling and autophagy will be crucial in developing new therapies for lipid storage disorders such as NPC.

  10. Calcium signaling in taste cells: regulation required.

    PubMed

    Medler, Kathryn F

    2010-11-01

    Peripheral taste receptor cells depend on distinct calcium signals to generate appropriate cellular responses that relay taste information to the central nervous system. Some taste cells have conventional chemical synapses and rely on calcium influx through voltage-gated calcium channels. Other taste cells lack these synapses and depend on calcium release from stores to formulate an output signal through a hemichannel. Despite the importance of calcium signaling in taste cells, little is known about how these signals are regulated. This review summarizes recent studies that have identified 2 calcium clearance mechanisms expressed in taste cells, including mitochondrial calcium uptake and sodium/calcium exchangers (NCXs). These studies identified a unique constitutive calcium influx that contributes to maintaining appropriate calcium homeostasis in taste cells and the role of the mitochondria and exchangers in this process. The additional role of NCXs in the regulation of evoked calcium responses is also discussed. Clearly, calcium signaling is a dynamic process in taste cells and appears to be more complex than has previously been appreciated.

  11. Calcium homeostasis and protein kinase/phosphatase balance participate in nicotine-induced memory improvement in passive avoidance task in mice.

    PubMed

    Michalak, Agnieszka; Biala, Grazyna

    2017-01-15

    Long-term potentiation (LTP) and long-term depression (LTD) depend on specific postsynaptic Ca 2+ /calmodulin concentration. LTP results from Ca 2+ influx through the activated NMDA receptors or voltage-gated calcium channels (VGCCs) and is linked with activation of protein kinases including mitogen-activated protein kinase (MAPK). Weaker synaptic stimulation, as a result of low Ca 2+ influx, leads to activation of Ca 2+ /calmodulin-dependent phosphatase (calcineurin - CaN) and triggers LTD. Interestingly, both memory formation and drug addiction share similar neuroplastic changes. Nicotine, which is one of the most common addictive drugs, manifests its memory effects through nicotinic acetylcholine receptors (nAChRs). Because nAChRs may also gate Ca 2+ , it is suggested that calcium signaling pathways are involved in nicotine-induced memory effects. Within the scope of the study was to evaluate the importance of calcium homeostasis and protein kinase/phosphatase balance in nicotine-induced short- and long-term memory effects. To assess memory function in mice passive avoidance test was used. The presented results confirm that acute nicotine (0.1mg/kg) improves short- and long-term memory. Pretreatment with L-type VGCC blockers (amlodipine, nicardipine verapamil) increased nicotine-induced memory improvement in the context of short- and long-term memory. Pretreatment with FK-506 (a potent CaN inhibitor) enhanced short- but not long-term memory effects of nicotine, while SL-327 (a selective MAPK/ERK kinase inhibitor) attenuated both nicotine-induced short- and long-term memory improvement. Acute nicotine enhances both types of memory via L-type VGCC blockade and via ERK1/2 activation. Only short- but not long-term memory enhancement induced by nicotine is dependent on CaN inhibition. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Neurotransmitter Release Can Be Stabilized by a Mechanism That Prevents Voltage Changes Near the End of Action Potentials from Affecting Calcium Currents

    PubMed Central

    Clarke, Stephen G.; Scarnati, Matthew S.

    2016-01-01

    At chemical synapses, presynaptic action potentials (APs) activate voltage-gated calcium channels, allowing calcium to enter and trigger neurotransmitter release. The duration, peak amplitude, and shape of the AP falling phase alter calcium entry, which can affect neurotransmitter release significantly. In many neurons, APs do not immediately return to the resting potential, but instead exhibit a period of depolarization or hyperpolarization referred to as an afterpotential. We hypothesized that presynaptic afterpotentials should alter neurotransmitter release by affecting the electrical driving force for calcium entry and calcium channel gating. In support of this, presynaptic calcium entry is affected by afterpotentials after standard instant voltage jumps. Here, we used the mouse calyx of Held synapse, which allows simultaneous presynaptic and postsynaptic patch-clamp recording, to show that the postsynaptic response is affected significantly by presynaptic afterpotentials after voltage jumps. We therefore tested the effects of presynaptic afterpotentials using simultaneous presynaptic and postsynaptic recordings and AP waveforms or real APs. Surprisingly, presynaptic afterpotentials after AP stimuli did not alter calcium channel responses or neurotransmitter release appreciably. We show that the AP repolarization time course causes afterpotential-induced changes in calcium driving force and changes in calcium channel gating to effectively cancel each other out. This mechanism, in which electrical driving force is balanced by channel gating, prevents changes in calcium influx from occurring at the end of the AP and therefore acts to stabilize synaptic transmission. In addition, this mechanism can act to stabilize neurotransmitter release when the presynaptic resting potential changes. SIGNIFICANCE STATEMENT The shape of presynaptic action potentials (APs), particularly the falling phase, affects calcium entry and small changes in calcium influx can produce large

  13. [The peculiarities of calcium metabolism regulation in different periods of growth and development].

    PubMed

    Moĭsa, S S; Nozdrachev, A D

    2014-01-01

    The review contains literature data about calcium metabolism regulation in different periods of growth and development. The analyses of retrospective and current sources of information about the regulation of calcium homeostasis under the theory of functional systems, the regulation of calcium metabolism in prenatal and postnatal periods of the development, the significance of calcium metabolism disturbances in the development of pathological conditions were showed.

  14. C-Terminal Truncation of α-COP Affects Functioning of Secretory Organelles and Calcium Homeostasis in Hansenula polymorpha

    PubMed Central

    Chechenova, Maria B.; Romanova, Nina V.; Deev, Alexander V.; Packeiser, Anna N.; Smirnov, Vladimir N.; Agaphonov, Michael O.; Ter-Avanesyan, Michael D.

    2004-01-01

    In eukaryotic cells, COPI vesicles retrieve resident proteins to the endoplasmic reticulum and mediate intra-Golgi transport. Here, we studied the Hansenula polymorpha homologue of the Saccharomyces cerevisiae RET1 gene, encoding α-COP, a subunit of the COPI protein complex. H. polymorpha ret1 mutants, which expressed truncated α-COP lacking more than 300 C-terminal amino acids, manifested an enhanced ability to secrete human urokinase-type plasminogen activator (uPA) and an inability to grow with a shortage of Ca2+ ions, whereas a lack of α-COP expression was lethal. The α-COP defect also caused alteration of intracellular transport of the glycosylphosphatidylinositol-anchored protein Gas1p, secretion of abnormal uPA forms, and reductions in the levels of Pmr1p, a Golgi Ca2+-ATPase. Overexpression of Pmr1p suppressed some ret1 mutant phenotypes, namely, Ca2+ dependence and enhanced uPA secretion. The role of COPI-dependent vesicular transport in cellular Ca2+ homeostasis is discussed. PMID:14871936

  15. Serum 1,25-dihydroxyvitamin D and calcium intake affect rates of bone calcium deposition during pregnancy and the early postpartum period123

    PubMed Central

    O'Brien, Kimberly O; Donangelo, Carmen M; Ritchie, Lorrene D; Gildengorin, Ginny; Abrams, Steve

    2012-01-01

    Background: Factors affecting bone calcium deposition across pregnancy and lactation are not well characterized. Objective: The impact of maternal age, calcium intake, race-ethnicity, and vitamin D status on the rate of bone calcium deposition (VO+) was assessed across pregnancy and lactation. Design: Stable calcium isotopes were given to 46 women at pre- or early pregnancy (trimester 1), late pregnancy (trimester 3), and 3–10 wk postpartum. Three cohorts were included: 23 adolescents from Baltimore (MD), aged 16.5 ± 1.4 y (mean ± SD; Baltimore cohort); 13 adults from California, aged 29.5 ± 2.6 y (California cohort); and 10 adults from Brazil, aged 30.4 ± 4.0 y (Brazil cohort). The total exchangeable calcium pool, VO+, 25-hydroxyvitamin D, 1,25-dihydroxyvitamin D [1,25(OH)2D], parathyroid hormone, and calcium intake were evaluated. Results: At trimester 3, inverse associations between 1,25(OH)2D and VO+ were evident in the Baltimore (P = 0.059) and Brazil (P = 0.008) cohorts and in the whole group (P = 0.029); calcium intake was not a significant determinant of VO+ in any group during pregnancy. At postpartum, a significant positive association was evident between VO+ and calcium intake (P ≤ 0.002) and between VO+ and African ethnicity (P ≤ 0.004) in the whole group and within the Baltimore and Brazil cohorts. Conclusions: Elevated 1,25(OH)2D was associated with decreased rates of bone calcium deposition during late pregnancy, a finding that was particularly evident in pregnant adolescents and adult women with low calcium intakes. Higher dietary calcium intakes and African ethnicity were associated with elevated rates of bone calcium deposition in the postpartum period. PMID:22648718

  16. The Function of the Mitochondrial Calcium Uniporter in Neurodegenerative Disorders

    PubMed Central

    Liao, Yajin; Dong, Yuan; Cheng, Jinbo

    2017-01-01

    The mitochondrial calcium uniporter (MCU)—a calcium uniporter on the inner membrane of mitochondria—controls the mitochondrial calcium uptake in normal and abnormal situations. Mitochondrial calcium is essential for the production of adenosine triphosphate (ATP); however, excessive calcium will induce mitochondrial dysfunction. Calcium homeostasis disruption and mitochondrial dysfunction is observed in many neurodegenerative disorders. However, the role and regulatory mechanism of the MCU in the development of these diseases are obscure. In this review, we summarize the role of the MCU in controlling oxidative stress-elevated mitochondrial calcium and its function in neurodegenerative disorders. Inhibition of the MCU signaling pathway might be a new target for the treatment of neurodegenerative disorders. PMID:28208618

  17. Newly identified protein Imi1 affects mitochondrial integrity and glutathione homeostasis in Saccharomyces cerevisiae.

    PubMed

    Kowalec, Piotr; Grynberg, Marcin; Pająk, Beata; Socha, Anna; Winiarska, Katarzyna; Fronk, Jan; Kurlandzka, Anna

    2015-09-01

    Glutathione homeostasis is crucial for cell functioning. We describe a novel Imi1 protein of Saccharomyces cerevisiae affecting mitochondrial integrity and involved in controlling glutathione level. Imi1 is cytoplasmic and, except for its N-terminal Flo11 domain, has a distinct solenoid structure. A lack of Imi1 leads to mitochondrial lesions comprising aberrant morphology of cristae and multifarious mtDNA rearrangements and impaired respiration. The mitochondrial malfunctioning is coupled to significantly decrease the level of intracellular reduced glutathione without affecting oxidized glutathione, which decreases the reduced/oxidized glutathione ratio. These defects are accompanied by decreased cadmium sensitivity and increased phytochelatin-2 level. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Neurotransmitter Release Can Be Stabilized by a Mechanism That Prevents Voltage Changes Near the End of Action Potentials from Affecting Calcium Currents.

    PubMed

    Clarke, Stephen G; Scarnati, Matthew S; Paradiso, Kenneth G

    2016-11-09

    At chemical synapses, presynaptic action potentials (APs) activate voltage-gated calcium channels, allowing calcium to enter and trigger neurotransmitter release. The duration, peak amplitude, and shape of the AP falling phase alter calcium entry, which can affect neurotransmitter release significantly. In many neurons, APs do not immediately return to the resting potential, but instead exhibit a period of depolarization or hyperpolarization referred to as an afterpotential. We hypothesized that presynaptic afterpotentials should alter neurotransmitter release by affecting the electrical driving force for calcium entry and calcium channel gating. In support of this, presynaptic calcium entry is affected by afterpotentials after standard instant voltage jumps. Here, we used the mouse calyx of Held synapse, which allows simultaneous presynaptic and postsynaptic patch-clamp recording, to show that the postsynaptic response is affected significantly by presynaptic afterpotentials after voltage jumps. We therefore tested the effects of presynaptic afterpotentials using simultaneous presynaptic and postsynaptic recordings and AP waveforms or real APs. Surprisingly, presynaptic afterpotentials after AP stimuli did not alter calcium channel responses or neurotransmitter release appreciably. We show that the AP repolarization time course causes afterpotential-induced changes in calcium driving force and changes in calcium channel gating to effectively cancel each other out. This mechanism, in which electrical driving force is balanced by channel gating, prevents changes in calcium influx from occurring at the end of the AP and therefore acts to stabilize synaptic transmission. In addition, this mechanism can act to stabilize neurotransmitter release when the presynaptic resting potential changes. The shape of presynaptic action potentials (APs), particularly the falling phase, affects calcium entry and small changes in calcium influx can produce large changes in

  19. Muscle mitochondrial metabolism and calcium signaling impairment in patients treated with statins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sirvent, P., E-mail: pascal.sirvent@univ-bpclermont.fr; CHRU Montpellier, 34295 Montpellier; Clermont Université, Université Blaise Pascal, EA 3533, Laboratoire des Adaptations Métaboliques à l'Exercice en conditions Physiologiques et Pathologiques

    2012-03-01

    The most common and problematic side effect of statins is myopathy. To date, the patho-physiological mechanisms of statin myotoxicity are still not clearly understood. In previous studies, we showed that acute application in vitro of simvastatin caused impairment of mitochondrial function and dysfunction of calcium homeostasis in human and rat healthy muscle samples. We thus evaluated in the present study, mitochondrial function and calcium signaling in muscles of patients treated with statins, who present or not muscle symptoms, by oxygraphy and recording of calcium sparks, respectively. Patients treated with statins showed impairment of mitochondrial respiration that involved mainly the complexmore » I of the respiratory chain and altered frequency and amplitude of calcium sparks. The muscle problems observed in statin-treated patients appear thus to be related to impairment of mitochondrial function and muscle calcium homeostasis, confirming the results we previously reported in vitro. -- Highlights: ► The most common and problematic side effect of statins is myopathy. ► Patients treated with statins showed impairment of mitochondrial respiration. ► Statins-treated patients showed altered frequency and amplitude of calcium sparks.« less

  20. PCV2 induces apoptosis and modulates calcium homeostasis in piglet lymphocytes in vitro.

    PubMed

    Lv, Yingjun; Dai, Lei; Han, Huili; Zhang, Shuxia

    2012-12-01

    This study investigated the process of PCV2-induced apoptosis and the effect of PCV2 inoculation on calcium homeostasis in piglet lymphocytes in vitro. PCV2-inoculated lymphocytes exhibited chromatin condensation, chromatin segregation, the appearance of membrane-enclosed apoptotic bodies, and DNA fragmentation. Moreover, the proportion of apoptotic cells increased significantly in PCV2-inoculated lymphocytes compared with controls. These results demonstrate that PCV2 induces lymphocyte apoptosis. Some evidence suggests that an alteration in the intracellular free Ca2+ concentration ([Ca2+]i) could cause apoptosis. We measured elevated [Ca2+]i in PCV2-inoculated lymphocytes for 12 or 24 h compared with controls. Our results support that PCV2-induced apoptosis may be relative to [Ca2+]i. In addition, calmodulin (CaM) was increased in PCV2-inoculated lymphocytes for 12 h compared with controls. The amount of CaM-dependent protein kinase II (CaMKII) did not change with PCV2 inoculation. We infer that the increased [Ca2+]i can bind CaM protein, but functions independently of CaMKII. Inositol 1,4,5-trisphosphate receptor (IP3R)-1 mRNA expression increased with PCV2 inoculation, whereas plasma Ca2+-ATP4 mRNA expression decreased. A decreased Ca2+-ATP4 level may inhibit Ca2+ efflux, and the increased IP3R-1 may trigger Ca2+ release from the endoplasmic reticulum. Both of these changes may contribute to increased [Ca2+]i. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Intracellular sphingosine releases calcium from lysosomes

    PubMed Central

    Höglinger, Doris; Haberkant, Per; Aguilera-Romero, Auxiliadora; Riezman, Howard; Porter, Forbes D; Platt, Frances M; Galione, Antony; Schultz, Carsten

    2015-01-01

    To elucidate new functions of sphingosine (Sph), we demonstrate that the spontaneous elevation of intracellular Sph levels via caged Sph leads to a significant and transient calcium release from acidic stores that is independent of sphingosine 1-phosphate, extracellular and ER calcium levels. This photo-induced Sph-driven calcium release requires the two-pore channel 1 (TPC1) residing on endosomes and lysosomes. Further, uncaging of Sph leads to the translocation of the autophagy-relevant transcription factor EB (TFEB) to the nucleus specifically after lysosomal calcium release. We confirm that Sph accumulates in late endosomes and lysosomes of cells derived from Niemann-Pick disease type C (NPC) patients and demonstrate a greatly reduced calcium release upon Sph uncaging. We conclude that sphingosine is a positive regulator of calcium release from acidic stores and that understanding the interplay between Sph homeostasis, calcium signaling and autophagy will be crucial in developing new therapies for lipid storage disorders such as NPC. DOI: http://dx.doi.org/10.7554/eLife.10616.001 PMID:26613410

  2. Calcitonin control of calcium metabolism during weightlessness

    NASA Technical Reports Server (NTRS)

    Soliman, Karam F. A.

    1993-01-01

    The main objective of this proposal is to elucidate calcitonin role in calcium homeostasis during weightlessness. In this investigation our objectives are to study: the effect of weightlessness on thyroid and serum calcitonin, the effect of weightlessness on the circadian variation of calcitonin in serum and the thyroid gland, the role of light as zeitgeber for calcitonin circadian rhythm, the circadian pattern of thyroid sensitivity to release calcitonin in response to calcium load, and the role of serotonin and norepinephrine in the control of calcitonin release. The main objective of this research/proposal is to establish the role of calcitonin in calcium metabolism during weightlessness condition. Understanding the mechanism of these abnormalities will help in developing therapeutic means to counter calcium imbalance in spaceflights.

  3. Heat stress responses modulate calcium regulations and electrophysiological characteristics in atrial myocytes.

    PubMed

    Chen, Yao-Chang; Kao, Yu-Hsun; Huang, Chun-Feng; Cheng, Chen-Chuan; Chen, Yi-Jen; Chen, Shih-Ann

    2010-04-01

    Heat stress-induced responses change the ionic currents and calcium homeostasis. However, the molecular insights into the heat stress responses on calcium homeostasis remain unclear. The purposes of this study were to examine the mechanisms of heat stress responses on calcium handling and electrophysiological characteristics in atrial myocytes. We used indo-1 fluorimetric ratio technique and whole-cell patch clamp to investigate the intracellular calcium, action potentials, and ionic currents in isolated rabbit single atrial cardiomyocytes with or without (control) exposure to heat stress (43 degrees C, 15 min) 5+/-1 h before experiments. The expressions of sarcoplasmic reticulum ATPase (SERCA2a), and Na(+)-Ca(2+) exchanger (NCX) in the control and heat stress-treated atrial myocytes were evaluated by Western blot and real-time PCR. As compared with control myocytes, the heat stress-treated myocytes had larger sarcoplasmic reticulum calcium content and larger intracellular calcium transient with a shorter decay portion. Heat stress-treated myocytes also had larger L-type calcium currents, transient outward potassium currents, but smaller NCX currents. Heat stress responses increased the protein expressions, SERCA2a, NCX, and heat shock protein. However, heat stress responses did not change the RNA expression of SERCA2a and NCX. In conclusion, heat stress responses change calcium handling through protein but not RNA regulation. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  4. The elementome of calcium-based urinary stones and its role in urolithiasis

    PubMed Central

    Ramaswamy, Krishna; Killilea, David W.; Kapahi, Pankaj; Kahn, Arnold J.; Chi, Thomas; Stoller, Marshall L.

    2016-01-01

    Urolithiasis affects around 10% of the US population with an increasing rate of prevalence, recurrence and penetrance. The causes for the formation of most urinary calculi remain poorly understood, but obtaining the chemical composition of these stones might help identify key aspects of this process and new targets for treatment. The majority of urinary stones are composed of calcium that is complexed in a crystalline matrix with organic and inorganic components. Surprisingly, mitigation of urolithiasis risk by altering calcium homeostasis has not been very effective. Thus, studies to identify other therapeutic stone-specific targets, using proteomics, metabolomics and microscopy techniques, have been conducted, revealing a high level of complexity. The data suggest that numerous metals other than calcium and many nonmetals are present within calculi at measurable levels and several have distinct distribution patterns. Manipulation of the levels of some of these elemental components of calcium-based stones has resulted in clinically beneficial changes in stone chemistry and rate of stone formation. The elementome—the full spectrum of elemental content—of calcium-based urinary calculi is emerging as a new concept in stone research that continues to provide important insights for improved understanding and prevention of urinary stone disease. PMID:26334088

  5. Calcium Homeostasis and Muscle Energy Metabolism Are Modified in HspB1-Null Mice.

    PubMed

    Picard, Brigitte; Kammoun, Malek; Gagaoua, Mohammed; Barboiron, Christiane; Meunier, Bruno; Chambon, Christophe; Cassar-Malek, Isabelle

    2016-05-04

    Hsp27-encoded by HspB1- is a member of the small heat shock proteins (sHsp, 12-43 kDa (kilodalton)) family. This protein is constitutively present in a wide variety of tissues and in many cell lines. The abundance of Hsp27 is highest in skeletal muscle, indicating a crucial role for muscle physiology. The protein identified as a beef tenderness biomarker was found at a crucial hub in a functional network involved in beef tenderness. The aim of this study was to analyze the proteins impacted by the targeted invalidation of HspB1 in the Tibialis anterior muscle of the mouse . Comparative proteomics using two-dimensional gel electrophoresis revealed 22 spots that were differentially abundant between HspB1 -null mice and their controls that could be identified by mass spectrometry. Eighteen spots were more abundant in the muscle of the mutant mice, and four were less abundant. The proteins impacted by the absence of Hsp27 belonged mainly to calcium homeostasis (Srl and Calsq1), contraction (TnnT3), energy metabolism (Tpi1, Mdh1, PdhB, Ckm, Pygm, ApoA1) and the Hsp proteins family (HspA9). These data suggest a crucial role for these proteins in meat tenderization. The information gained by this study could also be helpful to predict the side effects of Hsp27 depletion in muscle development and pathologies linked to small Hsps.

  6. Calcium Homeostasis and Muscle Energy Metabolism Are Modified in HspB1-Null Mice

    PubMed Central

    Picard, Brigitte; Kammoun, Malek; Gagaoua, Mohammed; Barboiron, Christiane; Meunier, Bruno; Chambon, Christophe; Cassar-Malek, Isabelle

    2016-01-01

    Hsp27—encoded by HspB1—is a member of the small heat shock proteins (sHsp, 12–43 kDa (kilodalton)) family. This protein is constitutively present in a wide variety of tissues and in many cell lines. The abundance of Hsp27 is highest in skeletal muscle, indicating a crucial role for muscle physiology. The protein identified as a beef tenderness biomarker was found at a crucial hub in a functional network involved in beef tenderness. The aim of this study was to analyze the proteins impacted by the targeted invalidation of HspB1 in the Tibialis anterior muscle of the mouse. Comparative proteomics using two-dimensional gel electrophoresis revealed 22 spots that were differentially abundant between HspB1-null mice and their controls that could be identified by mass spectrometry. Eighteen spots were more abundant in the muscle of the mutant mice, and four were less abundant. The proteins impacted by the absence of Hsp27 belonged mainly to calcium homeostasis (Srl and Calsq1), contraction (TnnT3), energy metabolism (Tpi1, Mdh1, PdhB, Ckm, Pygm, ApoA1) and the Hsp proteins family (HspA9). These data suggest a crucial role for these proteins in meat tenderization. The information gained by this study could also be helpful to predict the side effects of Hsp27 depletion in muscle development and pathologies linked to small Hsps. PMID:28248227

  7. Cardioprotection Via Modulation of Calcium Homeostasis by Thiopental in Hypoxia-Reoxygenated Neonatal Rat Cardiomyocytes

    PubMed Central

    Kim, Hyun-Soo; Hwang, Ki-Chul

    2010-01-01

    Purpose Ca2+ homeostasis plays an important role in myocardial cell injury induced by hypoxia-reoxygenation, and prevention of intracellular Ca2+ overload is key to cardioprotection. Even though thiopental is a frequently used anesthetic agent, little is known about its cardioprotective effects, particulary in association with Ca2+ homeostasis. We investigated whether thiopental protects cardiomyocytes against hypoxia-reoxygenation injury by regulating Ca2+ homeostasis. Materials and Methods Neonatal rat cardiomyocytes were isolated. Cardiomyocytes were exposed to different concentrations of thiopental and immediately replaced in the hypoxic chamber to maintain hypoxia. After 1 hour of exposure, a culture dish was transferred to the CO2 incubator and cells were incubated at 37℃ for 5 hours. At the end of the experiments, the authors assessed cell protection using immunoblot analysis and caspase activity. The mRNA of genes involved in Ca2+ homeostasis, mitochondrial membrane potential, and cellular Ca2+ levels were examined. Results In thiopental-treated cardiomyocytes, there was a decrease in expression of the proapoptotic protein Bax, caspase-3 activation, and intracellular Ca2+ content. In addition, both enhancement of anti-apoptotic protein Bcl-2 and activation of Erk concerned with survival were shown. Furthermore, thiopental attenuated alterations of genes involving Ca2+ regulation and significantly modulated abnormal changes of NCX and SERCA2a genes in hypoxia-reoxygenated neonatal cardiomyocytes. Thiopental suppressed disruption of mitochondrial membrane potential (ΔΨm) induced by hypoxia-reoxygenation. Conclusion Thiopental is likely to modulate expression of genes that regulate Ca2+ homeostasis, which reduces apoptotic cell death and results in cardioprotection. PMID:20191008

  8. Use of Genetically-encoded Calcium Indicators for Live Cell Calcium Imaging and Localization in Virus-infected Cells

    PubMed Central

    Perry, Jacob L.; Ramachandran, Nina K.; Utama, Budi; Hyser, Joseph M.

    2015-01-01

    Calcium signaling is a ubiquitous and versatile process involved in nearly every cellular process, and exploitation of host calcium signals is a common strategy used by viruses to facilitate replication and cause disease. Small molecule fluorescent calcium dyes have been used by many to examine changes in host cell calcium signaling and calcium channel activation during virus infections, but disadvantages of these dyes, including poor loading and poor long-term retention, complicate analysis of calcium imaging in virus-infected cells due to changes in cell physiology and membrane integrity. The recent expansion of genetically-encoded calcium indicators (GECIs), including blue and red-shifted color variants and variants with calcium affinities appropriate for calcium storage organelles like the endoplasmic reticulum (ER), make the use of GECIs an attractive alternative for calcium imaging in the context of virus infections. Here we describe the development and testing of cell lines stably expressing both green cytoplasmic (GCaMP5G and GCaMP6s) and red ER-targeted (RCEPIAer) GECIs. Using three viruses (rotavirus, poliovirus and respiratory syncytial virus) previously shown to disrupt host calcium homeostasis, we show the GECI cell lines can be used to detect simultaneous cytoplasmic and ER calcium signals. Further, we demonstrate the GECI expression has sufficient stability to enable long-term confocal imaging of both cytoplasmic and ER calcium during the course of virus infections. PMID:26344758

  9. The Effect of Moderate Dietary Protein and Phosphate Restriction on Calcium-Phosphate Homeostasis in Healthy Older Cats.

    PubMed

    Geddes, R F; Biourge, V; Chang, Y; Syme, H M; Elliott, J

    2016-09-01

    Dietary phosphate and protein restriction decreases plasma PTH and FGF-23 concentrations and improves survival time in azotemic cats, but has not been examined in cats that are not azotemic. Feeding a moderately protein- and phosphate-restricted diet decreases PTH and FGF-23 in healthy older cats and thereby slows progression to azotemic CKD. A total of 54 healthy, client-owned cats (≥ 9 years). Prospective double-blinded randomized placebo-controlled trial. Cats were assigned to test diet (protein 76 g/Mcal and phosphate 1.6 g/Mcal) or control diet (protein 86 g/Mcal and phosphate 2.6 g/Mcal) and monitored for 18 months. Changes in variables over time and effect of diet were assessed by linear mixed models. A total of 26 cats ate test diet and 28 cats ate control diet. There was a significant effect of diet on urinary fractional excretion of phosphate (P = 0.045), plasma PTH (P = 0.005), and ionized calcium concentrations (P = 0.018), but not plasma phosphate, FGF-23, or creatinine concentrations. Plasma PTH concentrations did not significantly change in cats fed the test diet (P = 0.62) but increased over time in cats fed the control diet (P = 0.001). There was no significant treatment effect of the test diet on development of azotemic CKD (3 of 26 (12%) test versus 3 of 28 (11%) control, odds ratio 1.09 (95% CI 0.13-8.94), P = 0.92). Feeding a moderately protein- and phosphate-restricted diet has effects on calcium-phosphate homeostasis in healthy older cats and is well tolerated. This might have an impact on renal function and could be useful in early chronic kidney disease. Copyright © 2016 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  10. TRPV4 and AQP4 Channels Synergistically Regulate Cell Volume and Calcium Homeostasis in Retinal Müller Glia

    PubMed Central

    Jo, Andrew O.; Phuong, Tam T.T.; Verkman, Alan S.; Yarishkin, Oleg; MacAulay, Nanna

    2015-01-01

    fine-tunes astroglial volume regulation by integrating osmosensing, calcium signaling, and water transport and, when overactivated, triggers pathological swelling. SIGNIFICANCE STATEMENT We characterize the physiological features of interactions between the astroglial swelling sensor transient receptor potential isoform 4 (TRPV4) and the aquaporin 4 (AQP4) water channel in retinal Müller cells. Our data reveal an elegant and complex set of mechanisms involving reciprocal interactions at the level of glial gene expression, calcium homeostasis, swelling, and volume regulation. Specifically, water influx through AQP4 drives calcium influx via TRPV4 in the glial end foot, which regulates expression of Aqp4 and Kir4.1 genes and facilitates the time course and amplitude of hypotonicity-induced swelling and regulatory volume decrease. We confirm the crucial facets of the signaling mechanism in heterologously expressing oocytes. These results identify the molecular mechanism that contributes to dynamic regulation of glial volume but also provide new insights into the pathophysiology of glial reactivity and edema formation. PMID:26424896

  11. Curcumin induces endoplasmic reticulum stress-associated apoptosis in human papillary thyroid carcinoma BCPAP cells via disruption of intracellular calcium homeostasis.

    PubMed

    Zhang, Li; Cheng, Xian; Xu, Shichen; Bao, Jiandong; Yu, Huixin

    2018-06-01

    MKII) signaling, leading to mitochondrial apoptosis pathway activation. Ca chelator BAPTA partially reversed curcumin-induced ER stress and growth suppression, confirming the possible involvement of calcium homeostasis disruption in this response. Curcumin inhibits thyroid cancer cell growth, at least partially, through ER stress-associated apoptosis. Our observations provoked that ER stress activation may be a promising therapeutic target for thyroid cancer treatment.(Figure is included in full-text article.).

  12. Nitrite-cured color and phosphate-mediated water binding of pork muscle proteins as affected by calcium in the curing solution.

    PubMed

    Zhao, Jing; Xiong, Youling L

    2012-07-01

    Calcium is a mineral naturally present in water and may be included into meat products during processing thereby influencing meat quality. Phosphates improve myofibril swelling and meat water-holding capacity (WHC) but can be sensitive to calcium precipitation. In this study, pork shoulder meat was used to investigate the impact of calcium at 0, 250, and 500 ppm and phosphate type [sodium pyrophosphate (PP), tripolyphosphate (TPP), and hexametaphopshate (HMP)] at 10 mM on nitrite-cured protein extract color at various pH levels (5.5, 6.0, and 6.5) and crude myofibril WHC at pH 6.0. Neither calcium nor phosphates present in the curing brines significantly affected the cured color. Increasing the pH tended to promote the formation of metmyoglobin instead of nitrosylmyoglobin. The ability of PP to enhance myofibril WHC was hampered (P < 0.05) by increasing the calcium concentration due to PP precipitation. Calcium also decreased the solubility of TPP but did not influence its enhancement of WHC. On the other hand, HMP was more tolerant of calcium but the soluble Ca-HMP complex was less effective than free HMP to promote water binding by myofibrils. The depressed muscle fiber swelling responding to added calcium as evidenced by phase contrast microscopy substantiated, to a certain extent, the deleterious effect of calcium, suggesting that hardness of curing water can significantly affect the quality of cured meat products. Although not affecting nitrite-cured color, calcium hampers the efficacy of phosphates to promote water binding by muscle proteins, underscoring the importance of water quality for brine-enhanced meat products. © 2012 Institute of Food Technologists®

  13. Effects of microgravity on bone and calcium homeostasis

    NASA Astrophysics Data System (ADS)

    Zérath, E.

    Mechanical function is known to be of crucial importance for the maintenance of bone tissue. Gravity on one hand and muscular effort on the other hand are required for normal skeletal structure. It has been shown by numerous experimental studies that loss of total-body calcium, and marked skeletal changes occur in people who have flown in space. However, most of the pertinent investigations have been conducted on animal models, including rats and non-human primates, and a reasonably clear picture of bone response to spaceflight has emerged during the past few years. Osteopenia induced by microgravity was found to be associated with reduction in both cortical and trabecular bone formation, alteration in mineralization patterns, and disorganization of collagen, and non-collagenous protein metabolism. Recently, cell-culture techniques have offered a direct approach of altered gravity effects at the osteoblastic-cell level. But the fundamental mechanisms by which bone and calcium are lost during spaceflight are not yet fully known. Infrequenccy and high financial cost of flights have created the necessity to develop on-Earth models designed to mimic weightlessness effects. Antiorthostatic suspension devices are now commonly used to obtain hindlimb unloading in rats, with skeletal effects similar to those observed after spaceflight. Therefore, actual and ``simulated'' spaceflights, with investigations conducted at whole body and cellular levels, are needed to elucidate pathogeny of bone loss in space, to develop effective countermeasures, and to study recovery processes of bone changes after return to Earth.

  14. Atorvastatin affects negatively respiratory function of isolated endothelial mitochondria.

    PubMed

    Broniarek, Izabela; Jarmuszkiewicz, Wieslawa

    2018-01-01

    The purpose of this research was to elucidate the direct effects of two popular blood cholesterol-lowering drugs used to treat cardiovascular diseases, atorvastatin and pravastatin, on respiratory function, membrane potential, and reactive oxygen species formation in mitochondria isolated from human umbilical vein endothelial cells (EA.hy926 cell line). Hydrophilic pravastatin did not significantly affect endothelial mitochondria function. In contrast, hydrophobic calcium-containing atorvastatin induced a loss of outer mitochondrial membrane integrity, an increase in hydrogen peroxide formation, and reductions in maximal (phosphorylating or uncoupled) respiratory rate, membrane potential and oxidative phosphorylation efficiency. The atorvastatin-induced changes indicate an impairment of mitochondrial function at the level of ATP synthesis and at the level of the respiratory chain, likely at complex I and complex III. The atorvastatin action on endothelial mitochondria was highly dependent on calcium ions and led to a disturbance in mitochondrial calcium homeostasis. Uptake of calcium ions included in atorvastatin molecule induced mitochondrial uncoupling that enhanced the inhibition of the mitochondrial respiratory chain by atorvastatin. Our results indicate that hydrophobic calcium-containing atorvastatin, widely used as anti-atherosclerotic agent, has a direct negative action on isolated endothelial mitochondria. Copyright © 2017. Published by Elsevier Inc.

  15. Calcium homeostasis in identified rat gonadotrophs.

    PubMed Central

    Tse, A; Tse, F W; Hille, B

    1994-01-01

    1. Whole-cell voltage clamp was used in conjunction with the fluorescent Ca2+ indicator indo-1 to measure extracellular Ca2+ entry and intracellular Ca2+ concentrations ([Ca2+]i) in rat gonadotrophs identified with the reverse haemolytic plaque assay. 2. Depolarizations to potentials more positive than -40 mV elicited inward Ca2+ current (ICa) and transient elevations of [Ca2+]i. 3. The relationship between [Ca2+]i elevations and Ca2+ entry with different Ca2+ buffer concentrations in the pipette showed that endogenous Ca2+ buffers normally bind approximately 99% of the Ca2+ entering the cell. 4. With [Ca2+]i elevations less than 500 nM, decay of [Ca2+]i could be approximated by an exponential whose time constant increased with the concentration of exogenous Ca2+ buffers. 5. Inhibitors of intracellular Ca(2+)-ATPases, thapsigargin, cyclopiazonic acid (CPA) and 2,5-di-(tert-butyl)-1,4-benzohydroquinone (BHQ), caused [Ca2+]i to rise. Application of BHQ during [Ca2+]i oscillations induced by gonadotrophin-releasing hormone (GnRH) terminated the oscillation in a slowly decaying elevation. BHQ slowed the decay of depolarization-induced [Ca2+]i elevations about 3-fold. 6. Taking into account the Ca2+ buffering properties of the cytoplasm permitted estimation of the fluxes and rate constants for Ca2+ movements in gonadotrophs. The intracellular store is a major determinant of Ca2+ homeostasis in gonadotrophs. PMID:7932239

  16. Calcium and ER stress mediate hepatic apoptosis after burn injury

    PubMed Central

    Gauglitz, Gerd G.; Song, Juquan; Kulp, Gabriela A.; Finnerty, Celeste C.; Cox, Robert A.; Barral, José M.; Herndon, David N.; Boehning, Darren

    2009-01-01

    Abstract A hallmark of the disease state following severe burn injury is decreased liver function, which results in gross metabolic derangements that compromise patient survival. The underlying mechanisms leading to hepatocyte dysfunction after burn are essentially unknown. The aim of the present study was to determine the underlying mechanisms leading to hepatocyte dysfunction and apoptosis after burn. Rats were randomized to either control (no burn) or burn (60% total body surface area burn) and sacrificed at various time‐points. Liver was either perfused to isolate primary rat hepatocytes, which were used for in vitro calcium imaging, or liver was harvested and processed for immunohistology, transmission electron microscopy, mitochondrial isolation, mass spectroscopy or Western blotting to determine the hepatic response to burn injury in vivo. We found that thermal injury leads to severely depleted endoplasmic reticulum (ER) calcium stores and consequent elevated cytosolic calcium concentrations in primary hepatocytes in vitro. Burn‐induced ER calcium depletion caused depressed hepatocyte responsiveness to signalling molecules that regulate hepatic homeostasis, such as vasopressin and the purinergic agonist ATP. In vivo, thermal injury resulted in activation of the ER stress response and major alterations in mitochondrial structure and function – effects which may be mediated by increased calcium release by inositol 1,4,5‐trisphosphate receptors. Our results reveal that thermal injury leads to dramatic hepatic disturbances in calcium homeostasis and resultant ER stress leading to mitochondrial abnormalities contributing to hepatic dysfunction and apoptosis after burn injury. PMID:20141609

  17. Autosomal dominant hypocalcemia with Bartter syndrome due to a novel activating mutation of calcium sensing receptor, Y829C.

    PubMed

    Choi, Keun Hee; Shin, Choong Ho; Yang, Sei Won; Cheong, Hae Il

    2015-04-01

    The calcium sensing receptor (CaSR) plays an important role in calcium homeostasis. Activating mutations of CaSR cause autosomal dominant hypocalcemia by affecting parathyroid hormone secretion in parathyroid gland and calcium resorption in kidney. They can also cause a type 5 Bartter syndrome by inhibiting the apical potassium channel in the thick ascending limb of the loop of Henle in the kidney. This study presents a patient who had autosomal dominant hypocalcemia with Bartter syndrome due to an activating mutation Y829C in the transmembrane domain of the CaSR. Symptoms of hypocalcemia occurred 12 days after birth and medication was started immediately. Medullary nephrocalcinosis and basal ganglia calcification were found at 7 years old and at 17 years old. Three hypercalcemic episodes occurred, one at 14 years old and two at 17 years old. The Bartter syndrome was not severe while the serum calcium concentration was controlled, but during hypercalcemic periods, the symptoms of Bartter syndrome were aggravated.

  18. Autosomal dominant hypocalcemia with Bartter syndrome due to a novel activating mutation of calcium sensing receptor, Y829C

    PubMed Central

    Choi, Keun Hee; Yang, Sei Won; Cheong, Hae Il

    2015-01-01

    The calcium sensing receptor (CaSR) plays an important role in calcium homeostasis. Activating mutations of CaSR cause autosomal dominant hypocalcemia by affecting parathyroid hormone secretion in parathyroid gland and calcium resorption in kidney. They can also cause a type 5 Bartter syndrome by inhibiting the apical potassium channel in the thick ascending limb of the loop of Henle in the kidney. This study presents a patient who had autosomal dominant hypocalcemia with Bartter syndrome due to an activating mutation Y829C in the transmembrane domain of the CaSR. Symptoms of hypocalcemia occurred 12 days after birth and medication was started immediately. Medullary nephrocalcinosis and basal ganglia calcification were found at 7 years old and at 17 years old. Three hypercalcemic episodes occurred, one at 14 years old and two at 17 years old. The Bartter syndrome was not severe while the serum calcium concentration was controlled, but during hypercalcemic periods, the symptoms of Bartter syndrome were aggravated. PMID:25932037

  19. The Allelochemical MDCA Inhibits Lignification and Affects Auxin Homeostasis1[OPEN

    PubMed Central

    Steenackers, Ward; Corneillie, Sander; Van de Wouwer, Dorien; Zažímalová, Eva

    2016-01-01

    The phenylpropanoid 3,4-(methylenedioxy)cinnamic acid (MDCA) is a plant-derived compound first extracted from roots of Asparagus officinalis and further characterized as an allelochemical. Later on, MDCA was identified as an efficient inhibitor of 4-COUMARATE-CoA LIGASE (4CL), a key enzyme of the general phenylpropanoid pathway. By blocking 4CL, MDCA affects the biosynthesis of many important metabolites, which might explain its phytotoxicity. To decipher the molecular basis of the allelochemical activity of MDCA, we evaluated the effect of this compound on Arabidopsis thaliana seedlings. Metabolic profiling revealed that MDCA is converted in planta into piperonylic acid (PA), an inhibitor of CINNAMATE-4-HYDROXYLASE (C4H), the enzyme directly upstream of 4CL. The inhibition of C4H was also reflected in the phenolic profile of MDCA-treated plants. Treatment of in vitro grown plants resulted in an inhibition of primary root growth and a proliferation of lateral and adventitious roots. These observed growth defects were not the consequence of lignin perturbation, but rather the result of disturbing auxin homeostasis. Based on DII-VENUS quantification and direct measurement of cellular auxin transport, we concluded that MDCA disturbs auxin gradients by interfering with auxin efflux. In addition, mass spectrometry was used to show that MDCA triggers auxin biosynthesis, conjugation, and catabolism. A similar shift in auxin homeostasis was found in the c4h mutant ref3-2, indicating that MDCA triggers a cross talk between the phenylpropanoid and auxin biosynthetic pathways independent from the observed auxin efflux inhibition. Altogether, our data provide, to our knowledge, a novel molecular explanation for the phytotoxic properties of MDCA. PMID:27506238

  20. Genetic deletion of the EGFR ligand epigen does not affect mouse embryonic development and tissue homeostasis.

    PubMed

    Dahlhoff, Maik; Schäfer, Matthias; Wolf, Eckhard; Schneider, Marlon R

    2013-02-15

    The epidermal growth factor receptor (EGFR) is a tyrosine kinase receptor with manifold functions during development, tissue homeostasis and disease. EGFR activation, the formation of homodimers or heterodimers (with the related ERBB2-4 receptors) and downstream signaling is initiated by the binding of a family of structurally related growth factors, the EGFR ligands. Genetic deletion experiments clarified the biological function of all family members except for the last characterized ligand, epigen. We employed gene targeting in mouse embryonic stem cells to generate mice lacking epigen expression. Loss of epigen did not affect mouse development, fertility, or organ physiology. Quantitative RT-PCR analysis revealed increased expression of betacellulin and EGF in a few organs of epigen-deficient mice, suggesting a functional compensation by these ligands. In conclusion, we completed the genetic analysis of EGFR ligands and show that epigen has non-essential functions or functions that can be compensated by other EGFR ligands during growth and tissue homeostasis. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Subchronic arsenic exposure through drinking water alters vascular redox homeostasis and affects physical health in rats.

    PubMed

    Waghe, Prashantkumar; Sarath, Thengumpallil Sasindran; Gupta, Priyanka; Kutty, Harikumar Sankaran; Kandasamy, Kannan; Mishra, Santosh Kumar; Sarkar, Souvendra Nath

    2014-12-01

    We evaluated whether arsenic can alter vascular redox homeostasis and modulate antioxidant status, taking rat thoracic aorta as a model vascular tissue. In addition, we evaluated whether the altered vascular biochemical homeostasis could be associated with alterations in the physical indicators of toxicity development. Rats were exposed to arsenic as 25, 50, and 100 ppm of sodium arsenite through drinking water for 90 consecutive days. Body weight, food intake, and water consumption were recorded weekly. On the 91st day, rats were sacrificed; vital organs and thoracic aorta were collected. Lipid peroxidation, reactive oxygen species generation, and antioxidants were assessed in the thoracic aorta. Arsenic increased aortic lipid peroxidation and hydrogen peroxide generation while decreased reduced glutathione content in a dose-dependent manner. The activities of the enzymatic antioxidants superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase were decreased. Further, arsenic at 100 ppm decreased feed intake, water consumption, and body weight from the 11th week onward. At this concentration, arsenic increased the relative weights of the liver and kidney. The results suggest that arsenic causes dose-dependent oxidative stress, reduction in antioxidative defense systems, and body weight loss with alteration in hepato-renal organosomatic indices. Overall, subchronic arsenic exposure through drinking water causes alteration in vascular redox homeostasis and at high concentration affects physical health.

  2. Modification of the N-Terminus of a Calcium Carbonate Precipitating Peptide Affects Calcium Carbonate Mineralization.

    PubMed

    Usui, Kenji; Yokota, Shin-Ichiro; Ozaki, Makoto; Sakashita, Shungo; Imai, Takahito; Tomizaki, Kin-Ya

    2018-01-01

    A core sequence (the 9 C-terminal residues) of calcification-associated peptide (CAP- 1) isolated from the exoskeleton of the red swamp crayfish was previously shown to control calcium carbonate precipitation with chitin. In addition, a modified core sequence in which the phosphorylated serine at the N terminus is replaced with serine exhibits was also previously shown to alter precipitation characteristics with chitin. We focused on calcium carbonate precipitation and attempted to elucidate aspects of the mechanism underlying mineralization. We attempted to evaluate in detail the effects of modifying the N-terminus in the core sequence on calcium carbonate mineralization without chitin. The peptide modifications included phosphorylation, dephosphorylation, and a free or acetylated Nterminus. The peptides were synthesized manually on Wang resin using the DIPCI-DMAP method for the first residue, and Fmoc solid phase peptide synthesis with HBTU-HOBt for the subsequent residues. Prior to calcium carbonate precipitation, calcium carbonate was suspended in MilliQ water. Carbon dioxide gas was bubbled into the stirred suspension, then the remaining solid CaCO3 was removed by filtration. The concentration of calcium ions in the solution was determined by standard titration with ethylenediaminetetraacetate. Calcium carbonate precipitation was conducted in a micro tube for 3 h at 37°C. We used the micro-scale techniques AFM (atomic force microscopy) and TEM (transmission electron microscopy), and the macro-scale techniques chelate titration, HPLC, gel filtration, CD (circular dichroism) and DLS (dynamic light scattering). We determined the morphologies of the calcium carbonate deposits using AFM and TEM. The pS peptide provided the best control of the shape and size of the calcium carbonate round particles. The acetylated peptides (Ac-S and Ac-pS) provided bigger particles with various shapes. S peptide provided a mixture of bigger particles and amorphous particles. We

  3. Mechanism of cytotoxic action of perfluorinated acids. III. Disturbance in Ca{sup 2+} homeostasis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kleszczynski, Konrad; Skladanowski, Andrzej C., E-mail: acskla@gumed.edu.pl

    The global distribution of perfluorinated acids (PFAs) in industry and in household is well known. Their increasing environmental occurrence and biomagnification in the living organisms have drawn growing interests in efforts to describe precisely the mechanisms of action in vitro and in vivo. Our previous investigations widely described lipophilicity-dependent cytotoxicity of PFAs as well as the effect of perfluorination of carbon chain on depolarization of plasma membrane potential, acidification or mitochondrial dysfunctions. In this study we presented in dose- and time-dependent manner the impact of PFAs on calcium homeostasis in HCT116 cells. Comparative analysis of cytosolic [Ca{sup 2+}]{sub c} andmore » mitochondrial calcium [Ca{sup 2+}]{sub m} carried out by flow cytometry revealed distinct uptake of calcium into mitochondria in correlation to increasing lipophilicity of PFAs. Massive accumulation of [Ca{sup 2+}]{sub m} was not accompanied by equivalent loss of [Ca{sup 2+}]{sub c}. Indeed, moderate changes of [Ca{sup 2+}]{sub c} were observed after incubation with 400 {mu}M PFDoDA reaching 29.83% and 49.17% decrease at 4th and 72nd hour, respectively. At the same time, mitochondrial calcium uptake increased from 2- to more than 4-fold comparing with non-treated cells. Incubation with non-fluorinated decanoic acid (DA) did not cause any changes in calcium homeostasis. Presented data show that PFAs-induced perturbations in calcium distribution seem to be a missing link related to mitochondria dysfunction playing a crucial role in determination of apoptotic cell death. Complete scheme for the mechanism of cytotoxic action of PFAs has been included.« less

  4. Kit W-sh Mutation Prevents Cancellous Bone Loss during Calcium Deprivation.

    PubMed

    Lotinun, Sutada; Suwanwela, Jaijam; Poolthong, Suchit; Baron, Roland

    2018-01-01

    Calcium is essential for normal bone growth and development. Inadequate calcium intake increases the risk of osteoporosis and fractures. Kit ligand/c-Kit signaling plays an important role in regulating bone homeostasis. Mice with c-Kit mutations are osteopenic. The present study aimed to investigate whether impairment of or reduction in c-Kit signaling affects bone turnover during calcium deprivation. Three-week-old male WBB6F1/J-Kit W /Kit W-v /J (W/W v ) mice with c-Kit point mutation, Kit W-sh /HNihrJaeBsmJ (W sh /W sh ) mice with an inversion mutation in the regulatory elements upstream of the c-Kit promoter region, and their wild-type controls (WT) were fed either a normal (0.6% calcium) or a low calcium diet (0.02% calcium) for 3 weeks. μCT analysis indicated that both mutants fed normal calcium diet had significantly decreased cortical thickness and cancellous bone volume compared to WT. The low calcium diet resulted in a comparable reduction in cortical bone volume and cortical thickness in the W/W v and W sh /W sh mice, and their corresponding controls. As expected, the low calcium diet induced cancellous bone loss in the W/W v mice. In contrast, W sh /W sh cancellous bone did not respond to this diet. This c-Kit mutation prevented cancellous bone loss by antagonizing the low calcium diet-induced increase in osteoblast and osteoclast numbers in the W sh /W sh mice. Gene expression profiling showed that calcium deficiency increased Osx, Ocn, Alp, type I collagen, c-Fms, M-CSF, and RANKL/OPG mRNA expression in controls; however, the W sh mutation suppressed these effects. Our findings indicate that although calcium restriction increased bone turnover, leading to osteopenia, the decreased c-Kit expression levels in the W sh /W sh mice prevented the low calcium diet-induced increase in cancellous bone turnover and bone loss but not the cortical bone loss.

  5. Space medicine considerations: Skeletal and calcium homeostasis

    NASA Technical Reports Server (NTRS)

    Schneider, Victor B.

    1989-01-01

    Based on the information obtained from space missions, particularly Skylab and the longer Salyut missions, it is clear that bone and mineral metabolism is substantially altered during space flight. Calcium balance becomes increasingly more negative throughout the flight, and the bone mineral content of the os calcis declines. The major health hazards associated with skeletal changes include the signs and symptoms of hypercalcemia with rapid bone turnover, the risk of kidney stones because of hypercalciuria, the lengthy recovery of lost bone mass after flight, the possibility of irreversible bone loss (particularly the trabecular bone), the possible effects of metastated calcification in the soft tissues, and the possible increase in fracture potential. For these reasons, major efforts need to be directed toward elucidating the fundamental mechanisms by which bone is lost in space and developing more effective countermeasures to prevent both short-term and long-term complications.

  6. [Aging and homeostasis. Management of disorders in bone and calcium metabolism associated with ageing.

    PubMed

    Takeuchi, Yasuhiro

    Disorders in bone and calcium metabolism associated with aging are based on secondary hyperparathyroidism due to impaired intestinal calcium absorption caused by insufficient vitamin D actions and augmented bone resorption due to sex hormone deficiency. Both of them are involved in the development of osteoporosis that increases risk of fractures. Therefore, the most important thing for management of disorders in bone and calcium metabolism associated with aging is to prevent fractures with appropriate drugs for osteoporosis.

  7. Transgenic plants with increased calcium stores

    NASA Technical Reports Server (NTRS)

    Robertson, Dominique (Inventor); Wyatt, Sarah (Inventor); Tsou, Pei-Lan (Inventor); Boss, Wendy (Inventor)

    2004-01-01

    The present invention provides transgenic plants over-expressing a transgene encoding a calcium-binding protein or peptide (CaBP). Preferably, the CaBP is a calcium storage protein and over-expression thereof does not have undue adverse effects on calcium homeostasis or biochemical pathways that are regulated by calcium. In preferred embodiments, the CaBP is calreticulin (CRT) or calsequestrin. In more preferred embodiments, the CaBP is the C-domain of CRT, a fragment of the C-domain, or multimers of the foregoing. In other preferred embodiments, the CaBP is localized to the endoplasmic reticulum by operatively associating the transgene encoding the CaBP with an endoplasmic reticulum localization peptide. Alternatively, the CaBP is targeted to any other sub-cellular compartment that permits the calcium to be stored in a form that is biologically available to the plant. Also provided are methods of producing plants with desirable phenotypic traits by transformation of the plant with a transgene encoding a CaBP. Such phenotypic traits include increased calcium storage, enhanced resistance to calcium-limiting conditions, enhanced growth and viability, increased disease and stress resistance, enhanced flower and fruit production, reduced senescence, and a decreased need for fertilizer production. Further provided are plants with enhanced nutritional value as human food or animal feed.

  8. Defects in the calcium-binding region drastically affect the cadherin-like domains of RET tyrosine kinase.

    PubMed

    Gao, Chunxia; Grøtli, Morten; Eriksson, Leif A

    2016-03-28

    Mutations in the rearranged during transfection (RET) tyrosine kinase gene leading to gain or loss of function have been associated with the development of several human cancers and Hirschsprung's disease (HSCR). However, to what extent these mutations affect individual bio-molecular functions remains unclear. In this article, the functionally significant mutations in the RET CLD1-4 calcium-binding site which lead to HSCR, and depletion of calcium ions in the RET CLD1-4 calcium binding site, were investigated by molecular dynamics simulations--to understand the mechanistic action of the mutations or loss of calcium ions in altering the protein kinase structure, dynamics, and stability. The mutations or loss of calcium ions change the local conformation and change the free energy landscape. Specifically, the mutations and loss of calcium ions decrease the radius of gyration of the whole structure, leading to improper protein folding and GFL-GFRα contact site reduction. Furthermore, based on the most populated conformation in the wildtype MD simulations, a pharmacophore was generated by fragment docking to identify key features of the possible inhibitors targeting the calcium binding site. Overall, the findings may provide useful structural insights into the molecular mechanism underlying RET calcium-binding site mutations and assist in development of novel drugs targeting the extracellular ligand contact site of wildtype RET.

  9. [The functions of calcium-sensing receptor in regulating mineral metabolism.

    PubMed

    Kinoshita, Yuka

    Calcium-sensing receptor(CaSR)which belongs to a G protein-coupled receptor family is one of the key elements in regulating calcium homeostasis. CaSR has been identified as a receptor to control parathyroid hormone(PTH)secretion in parathyroid glands according to serum calcium ion(Ca2+)levels. It has also been shown that CaSR controls reabsorption of water and several cations including Ca2+and magnesium ion(Mg2+)in renal tubular cells. This review summarizes the functions and roles of CaSR in mineral metabolism that are exerted in parathyroid glands, kidney, and intestine.

  10. NO3-/NH4+ ratios affect nutritional homeostasis and production of Tanzania guinea grass under Cu toxicity.

    PubMed

    de Souza Junior, João Cardoso; Nogueirol, Roberta Corrêa; Monteiro, Francisco Antonio

    2018-05-01

    Nitrogen (N) can alleviate metal toxicity. However, as of yet, there have been no studies showing the efficacy of NO 3 - /NH 4 + in mitigating Cu toxicity. The objective of this study was to evaluate the Cu toxicity on the nutritional and productive attributes of Panicum maximum cv. Tanzania as well as the role of NO 3 - and NH 4 + ratios in nutritional homeostasis. The experiment was conducted using 3 × 4 factorial treatments arranged in a randomized complete block design with three replicates. The treatments were three NO 3 - /NH 4 + ratios (100/0, 70/30, and 50/50) and four Cu rates (0.3, 250, 500, and 1000 μmol L -1 ) in nutrient solution. Copper concentrations in the diagnostic leaves (DL) were highest in plants grown under 70/30 NO 3 - /NH 4 + ratios and a Cu rate of 1000 μmol L -1 . In this combination, it was observed that DL had higher concentrations of NH 4 + , greater glutamine synthetase activity, lower chlorophyll concentration (SPAD value), and lower shoot dry mass, suggesting high disorders of nutritional homeostasis. Plants receiving N in the form of NO 3 - and 1000 Cu μmol L -1 showed that DL had lower concentrations of Cu, higher concentration of chlorophyll, higher NO 3 - concentration, higher nitrate reductase activity, and higher NO 3 - accumulation in the roots, suggesting a reduction in disorders of nutritional homeostasis. The disorders on mineral uptake, N assimilation, and biomass production caused by Cu toxicity are shown to be affected by NO 3 - /NH 4 + ratios, and N supply via NO 3 - allowed for better homeostasis of the forage grass.

  11. Deletion of Mid1, a putative stretch-activated calcium channel in Claviceps purpurea, affects vegetative growth, cell wall synthesis and virulence.

    PubMed

    Bormann, Jörg; Tudzynski, Paul

    2009-12-01

    The putative Claviceps purpurea homologue of the Saccharomyces cerevisiae stretch-activated calcium ion channel Mid1 was investigated for its role in vegetative growth, differentiation and pathogenicity on rye (Secale cereale). Gene replacement mutants of Cl. purpurea mid1 were not affected in polar growth and branching in axenic culture but showed a significantly reduced growth rate. The growth defect could not be complemented by Ca(2+) supplementation, in contrast to mid1 mutants in yeast, but the altered sensitivity of the mutants to changes in external and internal Ca(2+) concentrations indicates some role of Mid1 in Ca(2+) homeostasis. The major effect of mid1 deletion, however, was the complete loss of virulence: infected rye plants showed no disease symptoms at all. Detailed analyses of in vitro-infected rye ovaries demonstrated that the Deltamid1 mutants had multiple apical branches and were unable to infect the host tissue, suggesting that Mid1 is essential for generating the necessary mechanical force for penetration. This is believed to be the first report of an essential role for a Mid1 homologue in the virulence of a plant-pathogenic fungus.

  12. Vitamin profiles in two free-living passerine birds under a metal pollution gradient - A calcium supplementation experiment.

    PubMed

    Ruiz, Sandra R; Espín, Silvia; Sánchez-Virosta, Pablo; Salminen, Juha-Pekka; Lilley, Thomas M; Eeva, Tapio

    2017-04-01

    Vitamin and carotenoid deficiency may impair development in free-living vertebrates, because of the importance of these micronutrients to growth, antioxidant defense and calcium regulation. Micronutrient and calcium insufficiency can be intensified by metal pollution which can interfere with nutrient homeostasis or indirectly reduce food availability. Furthermore, absorption of dietary heavy metals is dependent on food calcium and vitamin levels. We investigated the effect of calcium on plasma vitamin and carotenoid profiles and how these affected growth and survival in two passerine birds with different calcium turnover living along a metal pollution gradient. Vitamins (A, D 3 and E) and carotenoids were quantified from blood plasma of great tit (Parus major) and pied flycatcher (Ficedula hypoleuca) nestlings. Metal concentrations in soil and in feces from the same nestlings were used to assess the exposure to air pollution. Additionally, we examined the vitamin level variation between developmental stages (eggs and nestlings within the same brood). Our results showed that generally higher concentrations of vitamins and carotenoids circulate in blood of great tits than in pied flycatchers. In general, birds inhabiting the polluted zone presented lower concentrations of the studied micronutrients. Calcium supplementation and metal pollution decreased vitamin A concentration in pied flycatcher, but not in great tit, while vitamin A affected growth and survival in great tit and pied flycatcher respectively. Our results suggest that populations under exposure to metal pollution may experience increased vitamin A deficiency, and that the two passerine species, while obtaining similar micronutrients in food, respond differently to environmental disturbance of nutrients. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Brain-lung crosstalk in critical care: how protective mechanical ventilation can affect the brain homeostasis.

    PubMed

    Mazzeo, A T; Fanelli, V; Mascia, L

    2013-03-01

    The maintenance of brain homeostasis against multiple internal and external challenges occurring during the acute phase of acute brain injury may be influenced by critical care management, especially in its respiratory, hemodynamic and metabolic components. The occurrence of acute lung injury represents the most frequent extracranial complication after brain injury and deserves special attention in daily practice as optimal ventilatory strategy for patients with acute brain and lung injury are potentially in conflict. Protecting the lung while protecting the brain is thus a new target in the modern neurointensive care. This article discusses the essentials of brain-lung crosstalk and focuses on how mechanical ventilation may exert an active role in the process of maintaining or treatening brain homeostasis after acute brain injury, highlighting the following points: 1) the role of inflammation as common pathomechanism of both acute lung and brain injury; 2) the recognition of ventilatory induced lung injury as determinant of systemic inflammation affecting distal organs, included the brain; 3) the possible implication of protective mechanical ventilation strategy on the patient with an acute brain injury as an undiscovered area of research in both experimental and clinical settings.

  14. Contribution of TRPC3 to store-operated calcium entry and inflammatory transductions in primary nociceptors

    PubMed Central

    2014-01-01

    Background Prolonged intracellular calcium elevation contributes to sensitization of nociceptors and chronic pain in inflammatory conditions. The underlying molecular mechanisms remain unknown but store-operated calcium entry (SOCE) components participate in calcium homeostasis, potentially playing a significant role in chronic pain pathologies. Most G protein-coupled receptors activated by inflammatory mediators trigger calcium-dependent signaling pathways and stimulate SOCE in primary afferents. The aim of the present study was to investigate the role of TRPC3, a calcium-permeable non-selective cation channel coupled to phospholipase C and highly expressed in DRG, as a link between activation of pro-inflammatory metabotropic receptors and SOCE in nociceptive pathways. Results Using in situ hybridization, we determined that TRPC3 and TRPC1 constitute the major TRPC subunits expressed in adult rat DRG. TRPC3 was found localized exclusively in small and medium diameter sensory neurons. Heterologous overexpression of TRPC3 channel subunits in cultured primary DRG neurons evoked a significant increase of Gd3+-sensitive SOCE following thapsigargin-induced calcium store depletion. Conversely, using the same calcium add-back protocol, knockdown of endogenous TRPC3 with shRNA-mediated interference or pharmacological inhibition with the selective TRPC3 antagonist Pyr10 induced a substantial decrease of SOCE, indicating a significant role of TRPC3 in SOCE in DRG nociceptors. Activation of P2Y2 purinoceptors or PAR2 protease receptors triggered a strong increase in intracellular calcium in conditions of TRPC3 overexpression. Additionally, knockdown of native TRPC3 or its selective pharmacological blockade suppressed UTP- or PAR2 agonist-evoked calcium responses as well as sensitization of DRG neurons. These data show a robust link between activation of pro-inflammatory receptors and calcium homeostasis through TRPC3-containing channels operating both in receptor- and store

  15. A novel network analysis approach reveals DNA damage, oxidative stress and calcium/cAMP homeostasis-associated biomarkers in frontotemporal dementia

    PubMed Central

    Ferrari, Raffaele; Graziano, Francesca; Novelli, Valeria; Rossi, Giacomina; Galimberti, Daniela; Rainero, Innocenzo; Benussi, Luisa; Nacmias, Benedetta; Bruni, Amalia C.; Cusi, Daniele; Salvi, Erika; Borroni, Barbara; Grassi, Mario

    2017-01-01

    Frontotemporal Dementia (FTD) is the form of neurodegenerative dementia with the highest prevalence after Alzheimer’s disease, equally distributed in men and women. It includes several variants, generally characterized by behavioural instability and language impairments. Although few mendelian genes (MAPT, GRN, and C9orf72) have been associated to the FTD phenotype, in most cases there is only evidence of multiple risk loci with relatively small effect size. To date, there are no comprehensive studies describing FTD at molecular level, highlighting possible genetic interactions and signalling pathways at the origin FTD-associated neurodegeneration. In this study, we designed a broad FTD genetic interaction map of the Italian population, through a novel network-based approach modelled on the concepts of disease-relevance and interaction perturbation, combining Steiner tree search and Structural Equation Model (SEM) analysis. Our results show a strong connection between Calcium/cAMP metabolism, oxidative stress-induced Serine/Threonine kinases activation, and postsynaptic membrane potentiation, suggesting a possible combination of neuronal damage and loss of neuroprotection, leading to cell death. In our model, Calcium/cAMP homeostasis and energetic metabolism impairments are primary causes of loss of neuroprotection and neural cell damage, respectively. Secondly, the altered postsynaptic membrane potentiation, due to the activation of stress-induced Serine/Threonine kinases, leads to neurodegeneration. Our study investigates the molecular underpinnings of these processes, evidencing key genes and gene interactions that may account for a significant fraction of unexplained FTD aetiology. We emphasized the key molecular actors in these processes, proposing them as novel FTD biomarkers that could be crucial for further epidemiological and molecular studies. PMID:29020091

  16. Absence of the ER Cation Channel TMEM38B/TRIC-B Disrupts Intracellular Calcium Homeostasis and Dysregulates Collagen Synthesis in Recessive Osteogenesis Imperfecta

    PubMed Central

    Cabral, Wayne A.; Ishikawa, Masaki; Garten, Matthias; Makareeva, Elena N.; Sargent, Brandi M.; Weis, MaryAnn; Barnes, Aileen M.; Webb, Emma A.; Shaw, Nicholas J.; Ala-Kokko, Leena; Lacbawan, Felicitas L.; Högler, Wolfgang; Leikin, Sergey; Blank, Paul S.; Zimmerberg, Joshua; Eyre, David R.; Yamada, Yoshihiko; Marini, Joan C.

    2016-01-01

    Recessive osteogenesis imperfecta (OI) is caused by defects in proteins involved in post-translational interactions with type I collagen. Recently, a novel form of moderately severe OI caused by null mutations in TMEM38B was identified. TMEM38B encodes the ER membrane monovalent cation channel, TRIC-B, proposed to counterbalance IP3R-mediated Ca2+ release from intracellular stores. The molecular mechanisms by which TMEM38B mutations cause OI are unknown. We identified 3 probands with recessive defects in TMEM38B. TRIC-B protein is undetectable in proband fibroblasts and osteoblasts, although reduced TMEM38B transcripts are present. TRIC-B deficiency causes impaired release of ER luminal Ca2+, associated with deficient store-operated calcium entry, although SERCA and IP3R have normal stability. Notably, steady state ER Ca2+ is unchanged in TRIC-B deficiency, supporting a role for TRIC-B in the kinetics of ER calcium depletion and recovery. The disturbed Ca2+ flux causes ER stress and increased BiP, and dysregulates synthesis of proband type I collagen at multiple steps. Collagen helical lysine hydroxylation is reduced, while telopeptide hydroxylation is increased, despite increased LH1 and decreased Ca2+-dependent FKBP65, respectively. Although PDI levels are maintained, procollagen chain assembly is delayed in proband cells. The resulting misfolded collagen is substantially retained in TRIC-B null cells, consistent with a 50–70% reduction in secreted collagen. Lower-stability forms of collagen that elude proteasomal degradation are not incorporated into extracellular matrix, which contains only normal stability collagen, resulting in matrix insufficiency. These data support a role for TRIC-B in intracellular Ca2+ homeostasis, and demonstrate that absence of TMEM38B causes OI by dysregulation of calcium flux kinetics in the ER, impacting multiple collagen-specific chaperones and modifying enzymes. PMID:27441836

  17. The bacterial secondary metabolite 2,4-diacetylphloroglucinol impairs mitochondrial function and affects calcium homeostasis in Neurospora crassa.

    PubMed

    Troppens, Danielle M; Chu, Meiling; Holcombe, Lucy J; Gleeson, Olive; O'Gara, Fergal; Read, Nick D; Morrissey, John P

    2013-07-01

    The bacterial secondary metabolite 2,4-diacetylphloroglucinol (DAPG) is of interest as an active ingredient of biological control strains of Pseudomonas fluorescens and as a potential lead pharmaceutical molecule because of its capacity to inhibit growth of diverse microbial and non-microbial cells. The mechanism by which this occurs is unknown and in this study the filamentous fungus Neurospora crassa was used as a model to investigate the effects of DAPG on a eukaryotic cell. Colony growth, conidial germination and cell fusion assays confirmed the inhibitory nature of DAPG towards N. crassa. A number of different fluorescent dyes and fluorescent protein reporters were used to assess the effects of DAPG treatment on mitochondrial and other cellular functions. DAPG treatment led to changes in mitochondrial morphology, and rapid loss of mitochondrial membrane potential. These effects are likely to be responsible for the toxicity of DAPG. It was also found that DAPG treatment caused extracellular calcium to be taken up by conidial germlings leading to a transient increase in cytosolic free Ca(2+) with a distinct concentration dependent Ca(2+) signature. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Calcium Blood Test

    MedlinePlus

    ... Your health care provider may order a calcium test if you have a pre-existing condition that may affect your calcium levels. These include: Kidney disease Thyroid disease Malnutrition Certain types of cancer What happens during a calcium blood test? A health care professional will take a blood ...

  19. Calreticulin is required for calcium homeostasis and proper pollen tube tip growth in Petunia.

    PubMed

    Suwińska, Anna; Wasąg, Piotr; Zakrzewski, Przemysław; Lenartowska, Marta; Lenartowski, Robert

    2017-05-01

    Calreticulin is involved in stabilization of the tip-focused Ca 2+ gradient and the actin cytoskeleton arrangement and function that is required for several key processes driving Petunia pollen tube tip growth. Although the precise mechanism is unclear, stabilization of a tip-focused calcium (Ca 2+ ) gradient seems to be critical for pollen germination and pollen tube growth. We hypothesize that calreticulin (CRT), a Ca 2+ -binding/buffering chaperone typically residing in the lumen of the endoplasmic reticulum (ER) of eukaryotic cells, is an excellent candidate to fulfill this role. We previously showed that in Petunia pollen tubes growing in vitro, CRT is translated on ER membrane-bound ribosomes that are abundant in the subapical zone of the tube, where CRT's Ca 2+ -buffering and chaperone activities might be particularly required. Here, we sought to determine the function of CRT using small interfering RNA (siRNA) to, for the first time in pollen tubes growing in vitro, knockdown expression of a gene. We demonstrate that siRNA-mediated post-transcriptional silencing of Petunia hybrida CRT gene (PhCRT) expression strongly impairs pollen tube growth, cytoplasmic zonation, actin cytoskeleton organization, and the tip-focused Ca 2+ gradient. Moreover, reduction of CRT alters the localization and disturbs the structure of the ER in abnormally elongating pollen tubes. Finally, cytoplasmic streaming is inhibited, and most of the pollen tubes rupture. Our data clearly show an interplay between CRT, Ca 2+ gradient, actin-dependent cytoplasmic streaming, organelle positioning, and vesicle trafficking during pollen tube elongation. Thus, we suggest that CRT functions in Petunia pollen tube growth by stabilizing Ca 2+ homeostasis and acting as a chaperone to assure quality control of glycoproteins passing through the ER.

  20. Treatment of mcf-7 breast cancer cells with a red grape wine polyphenol fraction results in disruption of calcium homeostasis and cell cycle arrest causing selective cytotoxicity.

    PubMed

    Hakimuddin, Fatima; Paliyath, Gopinadhan; Meckling, Kelly

    2006-10-04

    Food components influence the physiology by modulating gene expression and biochemical pathways within the human body. The disease-preventive roles of several fruit and vegetable components have been related to such properties. Polyphenolic components such as flavonoids are strong antioxidants and induce the expression of several xenobiotic-detoxifying enzymes. The mechanism of selective cytotoxicity induced by red grape wine polyphenols against MCF-7 breast cancer cells was investigated in relation to their interference with calcium homeostasis. MCF-7 cells showed an increase in cytosolic calcium levels within 10 min of treatment with the polyphenols. Immunohistochemical localization of calmodulin with secondary gold-labeled antibodies showed similar levels of gold labeling in both MCF-7 cells and the spontaneously immortalized, normal MCF-10A cell line. MCF-7 cells treated with the red wine polyphenol fraction (RWPF) showed swelling of endoplasmic reticulum, dissolution of the nucleus, and loss of plasma membrane integrity as well as reduced mitochondrial membrane potential. These cells were arrested at the G2/M interphase. By contrast, MCF-10A cells did not show such changes after RWPF treatment. The results suggest that polyphenol-induced calcium release may disrupt mitochondrial function and cause membrane damage, resulting in selective cytotoxicity toward MCF-7 cells. This property could further be developed toward breast cancer prevention strategies either independently or in conjunction with conventional prevention therapies where a positive drug-nutrient interaction can be demonstrated.

  1. Basic Fibroblast Growth Factor Influences Epidermal Homeostasis of Living Skin Equivalents through Affecting Fibroblast Phenotypes and Functions.

    PubMed

    Yang, Lujun; Zhang, Dangui; Wu, Hongjuan; Xie, Sitian; Zhang, Mingjun; Zhang, Bingna; Tang, Shijie

    2018-05-30

    To elucidate the possible mechanisms of how basic fibroblast growth factor (bFGF) influences epidermal homeostasis in a living skin equivalent (LSE) model. Several wound healing-related growth factors were analyzed at protein and mRNA levels for dermal fibroblasts of induced alpha-smooth muscle actin (α-SMA)-positive or α-SMA-negative phenotypes. During culturing an LSE model by seeding normal human keratinocytes on a fibroblast-populated type I collagen gel, bFGF or neutralizing antibody for keratinocyte growth factor (KGF) was added to investigate its effects on fibroblast phenotypes and, subsequently, epidermal homeostasis by histology and immunohistochemistry. The α-SMA-positive phenotype of fibroblasts induced by transforming growth factor beta-1 (TGF-β1) markedly suppressed the expression of KGF and hepatocyte growth factor (HGF), and slightly upregulated vascular endothelial growth factor (VEGF) and TGF-β1 at mRNA and protein levels, compared with α-SMA-negative fibroblasts treated with bFGF. α-SMA expression of fibroblasts at the epidermal-mesenchymal junction of the LSEs was suppressed by the addition of bFGF, and a better-differentiated epidermis was presented. The abrogation of KGF from fibroblasts by the addition of the KGF neutralizing antibody disenabled the LSE culturing system to develop an epidermis. bFGF, through affecting the phenotypes and functions of fibroblasts, especially KGF expression, influenced epidermal homeostasis in an LSE model. © 2018 S. Karger AG, Basel.

  2. Endocrine and metabolic changes in transition dairy cows are affected by prepartum infusions of a serotonin precursor.

    PubMed

    Hernández-Castellano, Lorenzo E; Hernandez, Laura L; Sauerwein, Helga; Bruckmaier, Rupert M

    2017-06-01

    Serotonin (5-HT) has been shown to be involved in calcium homeostasis, modulating calcium concentration in blood. In addition, 5-HT participates in a variety of metabolic pathways, mainly through the modulation of glucose and lipid metabolism. The hypothesis of the present study was that the prepartum administration of 5-hydroxy-l-tryptophan (5-HTP), a 5-HT precursor, would affect endocrine systems related to calcium homeostasis, and interact with other endocrine and metabolic pathways during the transition period. In this study, 20 Holstein dairy cows were randomly assigned to 2 experimental groups. Both groups received a daily i.v. infusion of 1 L of either 0.9% NaCl (control group; n = 10) or 0.9% NaCl containing 1 mg of 5-HTP/kg of BW (5-HTP group, n = 10). Infusions started d 10 before estimated parturition date and ended the day of parturition, resulting in a minimum of 4 d of infusion (8.4 ± 0.7 d of infusion). Until parturition, blood samples were collected before the daily infusions, and postpartum daily until d 7, and on d 30. Plasma concentrations of parathyroid hormone (PTH) were transiently increased at parturition and on d 1 in control cows. In the 5-HTP group PTH remained unchanged. The concentration of pyridinoline (PYD), an established marker for calcium release from the bone to the bloodstream, increased on d 1 postpartum only in the 5-HTP group. In control cows, PYD concentrations did not change on d 1 postpartum. Melatonin concentrations were slightly but significantly increased in the 5-HTP group compared with the control group. Insulin concentrations decreased in both groups postpartum. Before parturition, leptin concentrations decreased in both groups and remained at this level until d 30 postpartum. Plasma IgG concentrations decreased in both groups on d -1 postpartum. Haptoglobin increased in both groups on d -1 and remained at this level until d 7 postpartum. No differences between groups were observed for insulin, glucagon, IgG, leptin

  3. Proteomic analysis of human bladder epithelial cells by 2D blue native SDS-PAGE reveals TCDD-induced alterations of calcium and iron homeostasis possibly mediated by nitric oxide.

    PubMed

    Verma, Nisha; Pink, Mario; Petrat, Frank; Rettenmeier, Albert W; Schmitz-Spanke, Simone

    2015-01-02

    A proteomic analysis of the interaction among multiprotein complexes involved in 2,3,7,8-dibenzo-p-dioxin (TCDD)-mediated toxicity in urinary bladder epithelial RT4 cells was performed using two-dimensional blue native SDS-PAGE (2D BN/SDS-PAGE). To enrich the protein complexes, unexposed and TCDD-exposed cells were fractionated. BN/SDS-PAGE of the resulting fractions led to an effective separation of proteins and protein complexes of various origins, including cell membrane, mitochondria, and other intracellular compartments. Major differences between the proteome of control and exposed cells involved the alteration of many calcium-regulated proteins (calmodulin, protein S100-A2, annexin A5, annexin A10, gelsolin isoform b) and iron-regulated proteins (ferritin, heme-binding protein 2, transferrin). On the basis of these findings, the intracellular calcium concentration was determined, revealing a significant increase after 24 h of exposure to TCDD. Moreover, the concentration of the labile iron pool (LIP) was also significantly elevated in TCDD-exposed cells. This increase was strongly inhibited by the calmodulin (CaM) antagonist W-7, which pointed toward a possible interaction between iron and calcium signaling. Because nitric oxide (NO) production was significantly enhanced in TCDD-exposed cells and was also inhibited by W-7, we hypothesize that alterations in calcium and iron homeostasis upon exposure to TCDD may be linked through NO generated by CaM-activated nitric oxide synthase. In our model, we propose that NO produced upon TCDD exposure interacts with the iron centers of iron-regulatory proteins (IRPs) that modulate the alteration of ferritin and transferrin, resulting in an augmented cellular LIP and, hence, increased toxicity.

  4. The effects of twelve weeks of bed rest on bone histology, biochemical markers of bone turnover, and calcium homeostasis in eleven normal subjects

    NASA Technical Reports Server (NTRS)

    Zerwekh, J. E.; Ruml, L. A.; Gottschalk, F.; Pak, C. Y.; Blomqvist, C. G. (Principal Investigator)

    1998-01-01

    This study was undertaken to examine the effects of 12 weeks of skeletal unloading on parameters of calcium homeostasis, calcitropic hormones, bone histology, and biochemical markers of bone turnover in 11 normal subjects (9 men, 2 women; 34 +/- 11 years of age). Following an ambulatory control evaluation, all subjects underwent 12 weeks of bed rest. An additional metabolic evaluation was performed after 12 days of reambulation. Bone mineral density declined at the spine (-2.9%, p = 0.092) and at the hip (-3.8%, p = 0.002 for the trochanter). Bed rest prompted a rapid, sustained, significant increase in urinary calcium and phosphorus as well as a significant increase in serum calcium. Urinary calcium increased from a pre-bed rest value of 5.3 mmol/day to values as high as 73 mmol/day during bed rest. Immunoreactive parathyroid hormone and serum 1,25-dihydroxyvitamin D declined significantly during bed rest, although the mean values remained within normal limits. Significant changes in bone histology included a suppression of osteoblastic surface for cancellous bone (3.1 +/- 1.3% to 1.9 +/- 1.5%, p = 0.0142) and increased bone resorption for both cancellous and cortical bone. Cortical eroded surface increased from 3.5 +/- 1.1% to 7.3 +/- 4.0% (p = 0.018) as did active osteoclastic surface (0.2 +/- 0.3% to 0.7 +/- 0.7%, p = 0.021). Cancellous eroded surface increased from 2.1 +/- 1.1% to 4.7 +/- 2.2% (p = 0.002), while mean active osteoclastic surface doubled (0.2 +/- 0.2% to 0.4 +/- 0.3%, p = 0.020). Serum biochemical markers of bone formation (osteocalcin, bone-specific alkaline phosphatase, and type I procollagen extension peptide) did not change significantly during bed rest. Urinary biochemical markers of bone resorption (hydroxyproline, deoxypyridinoline, and N-telopeptide of type I collagen) as well as a serum marker of bone resorption (type I collagen carboxytelopeptide) all demonstrated significant increases during bed rest which declined toward normal

  5. Multiple, disparate roles for calcium signaling in apoptosis of human prostate and cervical cancer cells exposed to diindolylmethane.

    PubMed

    Savino, John A; Evans, Jodi F; Rabinowitz, Dorianne; Auborn, Karen J; Carter, Timothy H

    2006-03-01

    Diindolylmethane (DIM), derived from indole-3-carbinol in cruciferous vegetables, causes growth arrest and apoptosis of cancer cells in vitro. DIM also induces endoplasmic reticulum (ER) stress, and thapsigargin, a specific inhibitor of the sarcoplasmic reticulum/ER calcium-dependent ATPase, enhances this effect. We asked whether elevated cytosolic free calcium [Ca2+]i is required for cytotoxicity of DIM and thapsigargin in two cancer cells lines (C33A, from cervix, and DU145, from prostate). [Ca2+]i was measured in real-time by FURA-2 fluorescence. We tested whether DIM, thapsigargin, and DIM + thapsigargin cause apoptosis, measured by nucleosome release, under conditions that prevented elevation of [Ca2+]i, using both cell-permeable and cell-impermeable forms of the specific calcium chelator BAPTA. DIM, like thapsigargin, rapidly mobilized ER calcium. C33A and DU145 responded differently to perturbations in Ca2+ homeostasis, suggesting that DIM induces apoptosis by different mechanisms in these two cell lines and/or that calcium mobilization also activates different survival pathways in C33A and DU145. Apoptosis in C33A was independent of increased [Ca2+]i, suggesting that depletion of ER Ca2+ stores may be sufficient for cell killing, whereas apoptosis in DU145 required elevated [Ca2+]i for full response. Inhibitor studies using cyclosporin A and KN93 showed that Ca2+ signaling is important for cell survival but the characteristics of this response also differed in the two cell lines. Our results underscore the complex and variable nature of cellular responses to disrupted Ca2+ homeostasis and suggest that alteration Ca2+ homeostasis in the ER can induce cellular apoptosis by both calcium-dependent and calcium-independent mechanisms.

  6. Altered sarco(endo)plasmic reticulum calcium adenosine triphosphatase 2a content: Targets for heart failure therapy.

    PubMed

    Liu, Gang; Li, Si Qi; Hu, Ping Ping; Tong, Xiao Yong

    2018-05-01

    Sarco(endo)plasmic reticulum calcium adenosine triphosphatase is responsible for transporting cytosolic calcium into the sarcoplasmic reticulum and endoplasmic reticulum to maintain calcium homeostasis. Sarco(endo)plasmic reticulum calcium adenosine triphosphatase is the dominant isoform expressed in cardiac tissue, which is regulated by endogenous protein inhibitors, post-translational modifications, hormones as well as microRNAs. Dysfunction of sarco(endo)plasmic reticulum calcium adenosine triphosphatase is associated with heart failure, which makes sarco(endo)plasmic reticulum calcium adenosine triphosphatase a promising target for heart failure therapy. This review summarizes current approaches to ameliorate sarco(endo)plasmic reticulum calcium adenosine triphosphatase function and focuses on phospholamban, an endogenous inhibitor of sarco(endo)plasmic reticulum calcium adenosine triphosphatase, pharmacological tools and gene therapies.

  7. Homeostasis and secretion of calcium in the oviductal mucosa of toad Rhinella arenarum.

    PubMed

    Crespo, Claudia A; Medina, Marcela F; Ramos, Inés; Fernández, Silvia N

    2014-10-01

    The presence of a calcium pump, calbindin D-28KD, and calmodulin in the secretory cells (SC) of the oviductal pars convoluta (PC) of Rhinella arenarum was established for the first time in amphibians using immunohistochemical techniques. Marked variations were observed in the localization and degree of expression of these proteins according to the duct segment and the period of the sexual cycle analyzed. During the preovulatory and ovulatory periods the calcium pump colocalized with calbindin D-28KD can be seen mainly in the apical border of the SC, which are located in the first zones of PC and synthesize and secrete the components of the inner jelly coat layers. These envelopes, which surround the oocytes, contain the molecules indispensable for fertilization, probably inducing the sperm acrosome reaction (AR). Our results suggest that calmodulin, colocalized with the calcium pump at the SC cytoplasmic level, would be involved in the active transport of the cation inside the secretory granules, maintaining adequate levels of intracellular Ca(2+) . During the postreproductive period, a calcium pump colocalized with calbindin D-28KD appears for the first time in the cycle in the basal zones of the SC. This system may be related to the replenishing of intracellular Ca(2+) stores. In contrast, in R. arenarum the Ca(2+) present in the jelly coats that surround the oocytes participates in the AR during fertilization, suggesting that this secretion system of the cation provided by the oviductal mucosa is functionally more active during the reproductive period of this species. © 2014 Wiley Periodicals, Inc.

  8. Crystal structure of the epithelial calcium channel TRPV6.

    PubMed

    Saotome, Kei; Singh, Appu K; Yelshanskaya, Maria V; Sobolevsky, Alexander I

    2016-06-23

    Precise regulation of calcium homeostasis is essential for many physiological functions. The Ca(2+)-selective transient receptor potential (TRP) channels TRPV5 and TRPV6 play vital roles in calcium homeostasis as Ca(2+) uptake channels in epithelial tissues. Detailed structural bases for their assembly and Ca(2+) permeation remain obscure. Here we report the crystal structure of rat TRPV6 at 3.25 Å resolution. The overall architecture of TRPV6 reveals shared and unique features compared with other TRP channels. Intracellular domains engage in extensive interactions to form an intracellular 'skirt' involved in allosteric modulation. In the K(+) channel-like transmembrane domain, Ca(2+) selectivity is determined by direct coordination of Ca(2+) by a ring of aspartate side chains in the selectivity filter. On the basis of crystallographically identified cation-binding sites at the pore axis and extracellular vestibule, we propose a Ca(2+) permeation mechanism. Our results provide a structural foundation for understanding the regulation of epithelial Ca(2+) uptake and its role in pathophysiology.

  9. Calcium Signaling during Salt Stress and in the Regulation of Ion Homeostasis.

    PubMed

    Manishankar, P; Wang, N; Köster, P; Alatar, A A; Kudla, J

    2018-05-24

    Soil composition largely defines the living conditions of plants and represents one of their most relevant, dynamic and complex environmental cues. The effective concentrations of many either tolerated or essential ions and compounds in the soil usually differ from the optimum that would be most suitable for plants. In this regard, salinity - caused by excess of NaCl - represents a widespread adverse growth condition but also shortage of ions like K+, NO3- and Fe2+ restrains plant growth. During the past years many components and mechanisms that function in the sensing and establishment of ion homeostasis have been identified and characterized. Here, we reflect on recent insights that extended our understanding of components and mechanisms, which govern and fine-tune plant salt stress tolerance and ion homeostasis. We put special emphasis on mechanisms that allow for interconnection of the salt overly sensitivity pathway with plant development and discuss newly emerging functions of Ca2+ signaling in salinity tolerance. Moreover, we review and discuss accumulating evidence for a central and unifying role of Ca2+ signaling and Ca2+ dependent protein phosphorylation in regulating sensing, uptake, transport and storage processes of various ions. Finally, based on this cross-field inventory, we deduce emerging concepts and arising questions for future research.

  10. Homeostasis in a feed forward loop gene regulatory motif.

    PubMed

    Antoneli, Fernando; Golubitsky, Martin; Stewart, Ian

    2018-05-14

    The internal state of a cell is affected by inputs from the extra-cellular environment such as external temperature. If some output, such as the concentration of a target protein, remains approximately constant as inputs vary, the system exhibits homeostasis. Special sub-networks called motifs are unusually common in gene regulatory networks (GRNs), suggesting that they may have a significant biological function. Potentially, one such function is homeostasis. In support of this hypothesis, we show that the feed-forward loop GRN produces homeostasis. Here the inputs are subsumed into a single parameter that affects only the first node in the motif, and the output is the concentration of a target protein. The analysis uses the notion of infinitesimal homeostasis, which occurs when the input-output map has a critical point (zero derivative). In model equations such points can be located using implicit differentiation. If the second derivative of the input-output map also vanishes, the critical point is a chair: the output rises roughly linearly, then flattens out (the homeostasis region or plateau), and then starts to rise again. Chair points are a common cause of homeostasis. In more complicated equations or networks, numerical exploration would have to augment analysis. Thus, in terms of finding chairs, this paper presents a proof of concept. We apply this method to a standard family of differential equations modeling the feed-forward loop GRN, and deduce that chair points occur. This function determines the production of a particular mRNA and the resulting chair points are found analytically. The same method can potentially be used to find homeostasis regions in other GRNs. In the discussion and conclusion section, we also discuss why homeostasis in the motif may persist even when the rest of the network is taken into account. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Calcium regulation of oxidative phosphorylation in rat skeletal muscle mitochondria.

    PubMed

    Kavanagh, N I; Ainscow, E K; Brand, M D

    2000-02-24

    Activation of oxidative phosphorylation by physiological levels of calcium in mitochondria from rat skeletal muscle was analysed using top-down elasticity and regulation analysis. Oxidative phosphorylation was conceptually divided into three subsystems (substrate oxidation, proton leak and phosphorylation) connected by the membrane potential or the protonmotive force. Calcium directly activated the phosphorylation subsystem and (with sub-saturating 2-oxoglutarate) the substrate oxidation subsystem but had no effect on the proton leak kinetics. The response of mitochondria respiring on 2-oxoglutarate at two physiological concentrations of free calcium was quantified using control and regulation analysis. The partial integrated response coefficients showed that direct stimulation of substrate oxidation contributed 86% of the effect of calcium on state 3 oxygen consumption, and direct activation of the phosphorylation reactions caused 37% of the increase in phosphorylation flux. Calcium directly activated phosphorylation more strongly than substrate oxidation (78% compared to 45%) to achieve homeostasis of mitochondrial membrane potential during large increases in flux.

  12. Oral calcium supplements do not affect the progression of aortic valve calcification or coronary artery calcification.

    PubMed

    Bhakta, Mayurkumar; Bruce, Charles; Messika-Zeitoun, David; Bielak, Lawrence; Sheedy, Patrick F; Peyser, Patricia; Sarano, Maurice

    2009-01-01

    The use of oral calcium supplementation among the elderly for prevention and treatment of osteoporosis and osteopenia is increasing. The incidence of aortic valve disease and coronary artery disease also is increasing. No study thus far has been done to demonstrate whether this affects the progression of calcification in both the valves and vasculature. We sought to determine whether ingestion of oral calcium supplementation has an effect on aortic valve calcification (AVC) and coronary artery calcification (CAC). We performed an independent assessment of AVC, CAC, and calcium supplementation among patients enrolled in the Epidemiology of Coronary Artery Calcification study who were >60 years of age and had baseline and 4-year follow-up AVC data. In this population-based study of Olmsted County (Minnesota) residents, AVC and CAC scores were determined prospectively by electron beam computed tomography. We evaluated baseline demographic data and analyzed whether those patients using calcium supplementation had a higher rate of progression of both AVC and CAC. We identified 257 patients (mean age, 67.8+/-5.2 years), 144 of whom were women. Twenty-five patients (all women) reported using calcium supplements. Analysis of the 144 women (25 taking calcium supplementation) showed there was no difference in the progression of AVC (mean difference in baseline and follow-up AVC score; no supplement versus supplement, 30+/-9 vs 39+/-28; P=.73) or CAC (mean difference in baseline and follow-up CAC score; no supplement vs supplement, 47+/-15 vs 112+/-22; P=.154). There were no significant differences between the 2 groups with regard to baseline AVC, serum calcium, renal function, diabetes, hypertension, cholesterol, or body mass index. In this community-based observational study with a 4-year follow-up, no significant increased progression of AVC or CAC was found in women taking oral calcium supplementation. Larger prospective, randomized studies are needed to confirm these

  13. Expression of voltage-activated calcium channels in the early zebrafish embryo.

    PubMed

    Sanhueza, Dayán; Montoya, Andro; Sierralta, Jimena; Kukuljan, Manuel

    2009-05-01

    Increases in cytosolic calcium concentrations regulate many cellular processes, including aspects of early development. Calcium release from intracellular stores and calcium entry through non-voltage-gated channels account for signalling in non-excitable cells, whereas voltage-gated calcium channels (CaV) are important in excitable cells. We report the expression of multiple transcripts of CaV, identified by its homology to other species, in the early embryo of the zebrafish, Danio rerio, at stages prior to the differentiation of excitable cells. CaV mRNAs and proteins were detected as early as the 2-cell stages, which indicate that they arise from both maternal and zygotic transcription. Exposure of embryos to pharmacological blockers of CaV does not perturb early development significantly, although late effects are appreciable. These results suggest that CaV may have a role in calcium homeostasis and control of cellular process during early embryonic development.

  14. Endoplasmic Reticulum Stress and Homeostasis in Reproductive Physiology and Pathology.

    PubMed

    Guzel, Elif; Arlier, Sefa; Guzeloglu-Kayisli, Ozlem; Tabak, Mehmet Selcuk; Ekiz, Tugba; Semerci, Nihan; Larsen, Kellie; Schatz, Frederick; Lockwood, Charles Joseph; Kayisli, Umit Ali

    2017-04-08

    The endoplasmic reticulum (ER), comprises 60% of the total cell membrane and interacts directly or indirectly with several cell organelles i.e., Golgi bodies, mitochondria and proteasomes. The ER is usually associated with large numbers of attached ribosomes. During evolution, ER developed as the specific cellular site of synthesis, folding, modification and trafficking of secretory and cell-surface proteins. The ER is also the major intracellular calcium storage compartment that maintains cellular calcium homeostasis. During the production of functionally effective proteins, several ER-specific molecular steps sense quantity and quality of synthesized proteins as well as proper folding into their native structures. During this process, excess accumulation of unfolded/misfolded proteins in the ER lumen results in ER stress, the homeostatic coping mechanism that activates an ER-specific adaptation program, (the unfolded protein response; UPR) to increase ER-associated degradation of structurally and/or functionally defective proteins, thus sustaining ER homeostasis. Impaired ER homeostasis results in aberrant cellular responses, contributing to the pathogenesis of various diseases. Both female and male reproductive tissues undergo highly dynamic cellular, molecular and genetic changes such as oogenesis and spermatogenesis starting in prenatal life, mainly controlled by sex-steroids but also cytokines and growth factors throughout reproductive life. These reproductive changes require ER to provide extensive protein synthesis, folding, maturation and then their trafficking to appropriate cellular location as well as destroying unfolded/misfolded proteins via activating ER-associated degradation mediated proteasomes. Many studies have now shown roles for ER stress/UPR signaling cascades in the endometrial menstrual cycle, ovarian folliculogenesis and oocyte maturation, spermatogenesis, fertilization, pre-implantation embryo development and pregnancy and parturition

  15. Endoplasmic Reticulum Stress and Homeostasis in Reproductive Physiology and Pathology

    PubMed Central

    Guzel, Elif; Arlier, Sefa; Guzeloglu-Kayisli, Ozlem; Tabak, Mehmet Selcuk; Ekiz, Tugba; Semerci, Nihan; Larsen, Kellie; Schatz, Frederick; Lockwood, Charles Joseph; Kayisli, Umit Ali

    2017-01-01

    The endoplasmic reticulum (ER), comprises 60% of the total cell membrane and interacts directly or indirectly with several cell organelles i.e., Golgi bodies, mitochondria and proteasomes. The ER is usually associated with large numbers of attached ribosomes. During evolution, ER developed as the specific cellular site of synthesis, folding, modification and trafficking of secretory and cell-surface proteins. The ER is also the major intracellular calcium storage compartment that maintains cellular calcium homeostasis. During the production of functionally effective proteins, several ER-specific molecular steps sense quantity and quality of synthesized proteins as well as proper folding into their native structures. During this process, excess accumulation of unfolded/misfolded proteins in the ER lumen results in ER stress, the homeostatic coping mechanism that activates an ER-specific adaptation program, (the unfolded protein response; UPR) to increase ER-associated degradation of structurally and/or functionally defective proteins, thus sustaining ER homeostasis. Impaired ER homeostasis results in aberrant cellular responses, contributing to the pathogenesis of various diseases. Both female and male reproductive tissues undergo highly dynamic cellular, molecular and genetic changes such as oogenesis and spermatogenesis starting in prenatal life, mainly controlled by sex-steroids but also cytokines and growth factors throughout reproductive life. These reproductive changes require ER to provide extensive protein synthesis, folding, maturation and then their trafficking to appropriate cellular location as well as destroying unfolded/misfolded proteins via activating ER-associated degradation mediated proteasomes. Many studies have now shown roles for ER stress/UPR signaling cascades in the endometrial menstrual cycle, ovarian folliculogenesis and oocyte maturation, spermatogenesis, fertilization, pre-implantation embryo development and pregnancy and parturition

  16. Changes of cytosolic calcium and contractility of young rat vas deferens by acute treatment with amphetamine, fluoxetine or sibutramine.

    PubMed

    Jurkiewicz, Neide Hyppolito; da Silva Júnior, Edilson Dantas; de Souza, Bruno Palmieri; Ferreira Verde, Luciana; Drawanz Pereira, Janaina; Mendes Sobrinho, Cairo; Soubhi Smaili, Soraya; Caricati-Neto, Afonso; Miranda-Ferreira, Regiane; Jurkiewicz, Aron

    2012-09-15

    Previous studies conducted in our laboratory indicated that administration of amphetamine, fluoxetine or sibutramine affects the sympathetic nervous system of the rat vas deferens. Therefore, our goal was to verify the role of calcium in vasa deferentia from young rats pretreated with a single dose of these drugs. Young 40-day-old male Wistar rats were pretreated with amphetamine 3 mg/kg, fluoxetine 10 mg/kg or sibutramine 6 mg/kg for 4 h before the experiments. CaCl(2) (10 mM) was used to induce contraction through time-effect curves in calcium-free solution to measure phasic and tonic components. We also evaluated the calcium-induced fluorescence of vas deferens cut into thin slices. In rats pretreated with amphetamine, we found an increase of the tonic contraction component which was reduced by verapamil. The phasic and tonic responses were increased in the group treated with fluoxetine, but only the tonic response was more sensitive to the antagonism by verapamil. The group treated with sibutramine showed an increase of phasic response whereas the tonic component was decreased. In this group an increase of the affinity for verapamil antagonism was found. In the calcium fluorescence study it was observed that the group treated with amphetamine, fluoxetine or sibutramine showed higher basal Ca(2+) fluorescence after stimulus with KCl (70 mM), noradrenaline (10(-4)M) or acetylcholine (10(-4)M). In all pretreated groups the calcium fluorescence was diminished by nifedipine 10(-7)M. Therefore, the pretreatment with amphetamine, fluoxetine or sibutramine seems to affect the calcium contractility and homeostasis in young rat vas deferens. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. The Different Facets of Extracellular Calcium Sensors: Old and New Concepts in Calcium-Sensing Receptor Signalling and Pharmacology

    PubMed Central

    2018-01-01

    The current interest of the scientific community for research in the field of calcium sensing in general and on the calcium-sensing Receptor (CaR) in particular is demonstrated by the still increasing number of papers published on this topic. The extracellular calcium-sensing receptor is the best-known G-protein-coupled receptor (GPCR) able to sense external Ca2+ changes. Widely recognized as a fundamental player in systemic Ca2+ homeostasis, the CaR is ubiquitously expressed in the human body where it activates multiple signalling pathways. In this review, old and new notions regarding the mechanisms by which extracellular Ca2+ microdomains are created and the tools available to measure them are analyzed. After a survey of the main signalling pathways triggered by the CaR, a special attention is reserved for the emerging concepts regarding CaR function in the heart, CaR trafficking and pharmacology. Finally, an overview on other Ca2+ sensors is provided. PMID:29584660

  18. Sphingomyelin-induced inhibition of the plasma membrane calcium ATPase causes neurodegeneration in type A Niemann-Pick disease.

    PubMed

    Pérez-Cañamás, A; Benvegnù, S; Rueda, C B; Rábano, A; Satrústegui, J; Ledesma, M D

    2017-05-01

    Niemann-Pick disease type A (NPA) is a rare lysosomal storage disorder characterized by severe neurological alterations that leads to death in childhood. Loss-of-function mutations in the acid sphingomyelinase (ASM) gene cause NPA, and result in the accumulation of sphingomyelin (SM) in lysosomes and plasma membrane of neurons. Using ASM knockout (ASMko) mice as a NPA disease model, we investigated how high SM levels contribute to neural pathology in NPA. We found high levels of oxidative stress both in neurons from these mice and a NPA patient. Impaired activity of the plasma membrane calcium ATPase (PMCA) increases intracellular calcium. SM induces PMCA decreased activity, which causes oxidative stress. Incubating ASMko-cultured neurons in the histone deacetylase inhibitor, SAHA, restores PMCA activity and calcium homeostasis and, consequently, reduces the increased levels of oxidative stress. No recovery occurs when PMCA activity is pharmacologically impaired or genetically inhibited in vitro. Oral administration of SAHA prevents oxidative stress and neurodegeneration, and improves behavioral performance in ASMko mice. These results demonstrate a critical role for plasma membrane SM in neuronal calcium regulation. Thus, we identify changes in PMCA-triggered calcium homeostasis as an upstream mediator for NPA pathology. These findings can stimulate new approaches for pharmacological remediation in a disease with no current clinical treatments.

  19. A ‘calcium capacitor’ shapes cholinergic inhibition of cochlear hair cells

    PubMed Central

    Fuchs, Paul Albert

    2014-01-01

    Efferent cholinergic neurons project from the brainstem to inhibit sensory hair cells of the vertebrate inner ear. This inhibitory synapse combines the activity of an unusual class of ionotropic cholinergic receptor with that of nearby calcium-dependent potassium channels to shunt and hyperpolarize the hair cell. Postsynaptic calcium signalling is constrained by a thin near-membrane cistern that is co-extensive with the efferent terminal contacts. The postsynaptic cistern may play an essential role in calcium homeostasis, serving as sink or source, depending on ongoing activity and the degree of buffer saturation. Release of calcium from postsynaptic stores leads to a process of retrograde facilitation via the synthesis of nitric oxide in the hair cell. Activity-dependent synaptic modification may contribute to changes in hair cell innervation that occur during development, and in the aged or damaged cochlea. PMID:24566542

  20. Generation of a Homozygous Transgenic Rat Strain Stably Expressing a Calcium Sensor Protein for Direct Examination of Calcium Signaling.

    PubMed

    Szebényi, Kornélia; Füredi, András; Kolacsek, Orsolya; Pergel, Enikő; Bősze, Zsuzsanna; Bender, Balázs; Vajdovich, Péter; Tóvári, József; Homolya, László; Szakács, Gergely; Héja, László; Enyedi, Ágnes; Sarkadi, Balázs; Apáti, Ágota; Orbán, Tamás I

    2015-08-03

    In drug discovery, prediction of selectivity and toxicity require the evaluation of cellular calcium homeostasis. The rat is a preferred laboratory animal for pharmacology and toxicology studies, while currently no calcium indicator protein expressing rat model is available. We established a transgenic rat strain stably expressing the GCaMP2 fluorescent calcium sensor by a transposon-based methodology. Zygotes were co-injected with mRNA of transposase and a CAG-GCaMP2 expressing construct, and animals with one transgene copy were pre-selected by measuring fluorescence in blood cells. A homozygous rat strain was generated with high sensor protein expression in the heart, kidney, liver, and blood cells. No pathological alterations were found in these animals, and fluorescence measurements in cardiac tissue slices and primary cultures demonstrated the applicability of this system for studying calcium signaling. We show here that the GCaMP2 expressing rat cardiomyocytes allow the prediction of cardiotoxic drug side-effects, and provide evidence for the role of Na(+)/Ca(2+) exchanger and its beneficial pharmacological modulation in cardiac reperfusion. Our data indicate that drug-induced alterations and pathological processes can be followed by using this rat model, suggesting that transgenic rats expressing a calcium-sensitive protein provide a valuable system for pharmacological and toxicological studies.

  1. Generation of a Homozygous Transgenic Rat Strain Stably Expressing a Calcium Sensor Protein for Direct Examination of Calcium Signaling

    PubMed Central

    Szebényi, Kornélia; Füredi, András; Kolacsek, Orsolya; Pergel, Enikő; Bősze, Zsuzsanna; Bender, Balázs; Vajdovich, Péter; Tóvári, József; Homolya, László; Szakács, Gergely; Héja, László; Enyedi, Ágnes; Sarkadi, Balázs; Apáti, Ágota; Orbán, Tamás I.

    2015-01-01

    In drug discovery, prediction of selectivity and toxicity require the evaluation of cellular calcium homeostasis. The rat is a preferred laboratory animal for pharmacology and toxicology studies, while currently no calcium indicator protein expressing rat model is available. We established a transgenic rat strain stably expressing the GCaMP2 fluorescent calcium sensor by a transposon-based methodology. Zygotes were co-injected with mRNA of transposase and a CAG-GCaMP2 expressing construct, and animals with one transgene copy were pre-selected by measuring fluorescence in blood cells. A homozygous rat strain was generated with high sensor protein expression in the heart, kidney, liver, and blood cells. No pathological alterations were found in these animals, and fluorescence measurements in cardiac tissue slices and primary cultures demonstrated the applicability of this system for studying calcium signaling. We show here that the GCaMP2 expressing rat cardiomyocytes allow the prediction of cardiotoxic drug side-effects, and provide evidence for the role of Na+/Ca2+ exchanger and its beneficial pharmacological modulation in cardiac reperfusion. Our data indicate that drug-induced alterations and pathological processes can be followed by using this rat model, suggesting that transgenic rats expressing a calcium-sensitive protein provide a valuable system for pharmacological and toxicological studies. PMID:26234466

  2. The redox-sensing gene Nrf2 affects intestinal homeostasis, insecticide resistance, and Zika virus susceptibility in the mosquito Aedes aegypti.

    PubMed

    Bottino-Rojas, Vanessa; Talyuli, Octavio A C; Carrara, Luana; Martins, Ademir J; James, Anthony A; Oliveira, Pedro L; Paiva-Silva, Gabriela O

    2018-06-08

    Production and degradation of reactive oxygen species (ROS) are extensively regulated to ensure proper cellular responses to various environmental stimuli and stresses. Moreover, physiologically generated ROS function as secondary messengers that can influence tissue homeostasis. The cap'n'collar transcription factor known as nuclear factor erythroid-derived factor 2 (Nrf2) coordinates an evolutionarily conserved transcriptional activation pathway that mediates antioxidant and detoxification responses in many animal species, including insects and mammals. Here, we show that Nrf2-mediated signaling affects embryo survival, midgut homeostasis, and redox biology in Aedes aegypti , a mosquito species vector of dengue, Zika, and other disease-causing viruses. We observed that AeNrf2 silencing increases ROS levels and stimulates intestinal stem cell proliferation. Because ROS production is a major aspect of innate immunity in mosquito gut, we found that a decrease in Nrf2 signaling results in reduced microbiota growth and Zika virus infection. Moreover, we provide evidence that AeNrf2 signaling also controls transcriptional adaptation of A. aegypti to insecticide challenge. Therefore, we conclude that Nrf2-mediated response regulates assorted gene clusters in A. aegypti that determine cellular and midgut redox balance, affecting overall xenobiotic resistance and vectorial adaptation of the mosquito. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Association of calcium sensing receptor polymorphisms at rs1801725 with circulating calcium in breast cancer patients.

    PubMed

    Wang, Li; Widatalla, Sarrah E; Whalen, Diva S; Ochieng, Josiah; Sakwe, Amos M

    2017-08-02

    Breast cancer (BC) patients with late-stage and/or rapidly growing tumors are prone to develop high serum calcium levels which have been shown to be associated with larger and aggressive breast tumors in post and premenopausal women respectively. Given the pivotal role of the calcium sensing receptor (CaSR) in calcium homeostasis, we evaluated whether polymorphisms of the CASR gene at rs1801725 and rs1801726 SNPs in exon 7, are associated with circulating calcium levels in African American and Caucasian control subjects and BC cases. In this retrospective case-control study, we assessed the mean circulating calcium levels, the distribution of two inactivating CaSR SNPs at rs1801725 and rs1801726 in 199 cases and 384 age-matched controls, and used multivariable regression analysis to determine whether these SNPs are associated with circulating calcium in control subjects and BC cases. We found that the mean circulating calcium levels in African American subjects were higher than those in Caucasian subjects (p < 0.001). As expected, the mean calcium levels were higher in BC cases compared to control subjects (p < 0.001), but the calcium levels in BC patients were independent of race. We also show that in BC cases and control subjects, the major alleles at rs1801725 (G/T, A986S) and at rs1801726 (C/G, Q1011E) were common among Caucasians and African Americans respectively. Compared to the wild type alleles, polymorphisms at the rs1801725 SNP were associated with higher calcium levels (p = 0.006) while those at rs1801726 were not. Using multivariable linear mixed-effects models and adjusting for age and race, we show that circulating calcium levels in BC cases were associated with tumor grade (p = 0.009), clinical stage (p = 0.003) and more importantly, with inactivating mutations of the CASR at the rs1801725 SNP (p = 0.038). These data suggest that decreased sensitivity of the CaSR to calcium due to inactivating polymorphisms at rs1801725, may predispose

  4. Disruption of the IS6-AID linker affects voltage-gated calcium channel inactivation and facilitation.

    PubMed

    Findeisen, Felix; Minor, Daniel L

    2009-03-01

    Two processes dominate voltage-gated calcium channel (Ca(V)) inactivation: voltage-dependent inactivation (VDI) and calcium-dependent inactivation (CDI). The Ca(V)beta/Ca(V)alpha(1)-I-II loop and Ca(2+)/calmodulin (CaM)/Ca(V)alpha(1)-C-terminal tail complexes have been shown to modulate each, respectively. Nevertheless, how each complex couples to the pore and whether each affects inactivation independently have remained unresolved. Here, we demonstrate that the IS6-alpha-interaction domain (AID) linker provides a rigid connection between the pore and Ca(V)beta/I-II loop complex by showing that IS6-AID linker polyglycine mutations accelerate Ca(V)1.2 (L-type) and Ca(V)2.1 (P/Q-type) VDI. Remarkably, mutations that either break the rigid IS6-AID linker connection or disrupt Ca(V)beta/I-II association sharply decelerate CDI and reduce a second Ca(2+)/CaM/Ca(V)alpha(1)-C-terminal-mediated process known as calcium-dependent facilitation. Collectively, the data strongly suggest that components traditionally associated solely with VDI, Ca(V)beta and the IS6-AID linker, are essential for calcium-dependent modulation, and that both Ca(V)beta-dependent and CaM-dependent components couple to the pore by a common mechanism requiring Ca(V)beta and an intact IS6-AID linker.

  5. Disruption of the IS6-AID Linker Affects Voltage-gated Calcium Channel Inactivation and Facilitation

    PubMed Central

    Findeisen, Felix

    2009-01-01

    Two processes dominate voltage-gated calcium channel (CaV) inactivation: voltage-dependent inactivation (VDI) and calcium-dependent inactivation (CDI). The CaVβ/CaVα1-I-II loop and Ca2+/calmodulin (CaM)/CaVα1–C-terminal tail complexes have been shown to modulate each, respectively. Nevertheless, how each complex couples to the pore and whether each affects inactivation independently have remained unresolved. Here, we demonstrate that the IS6–α-interaction domain (AID) linker provides a rigid connection between the pore and CaVβ/I-II loop complex by showing that IS6-AID linker polyglycine mutations accelerate CaV1.2 (L-type) and CaV2.1 (P/Q-type) VDI. Remarkably, mutations that either break the rigid IS6-AID linker connection or disrupt CaVβ/I-II association sharply decelerate CDI and reduce a second Ca2+/CaM/CaVα1–C-terminal–mediated process known as calcium-dependent facilitation. Collectively, the data strongly suggest that components traditionally associated solely with VDI, CaVβ and the IS6-AID linker, are essential for calcium-dependent modulation, and that both CaVβ-dependent and CaM-dependent components couple to the pore by a common mechanism requiring CaVβ and an intact IS6-AID linker. PMID:19237593

  6. Three-component homeostasis control

    NASA Astrophysics Data System (ADS)

    Xu, Jin; Hong, Hyunsuk; Jo, Junghyo

    2014-03-01

    Two reciprocal components seem to be sufficient to maintain a control variable constant. However, pancreatic islets adapt three components to control glucose homeostasis. They are α (secreting glucagon), β (insulin), and δ (somatostatin) cells. Glucagon and insulin are the reciprocal hormones for increasing and decreasing blood glucose levels, while the role of somatostatin is unknown. However, it has been known how each hormone affects other cell types. Based on the pulsatile hormone secretion and the cellular interactions, this system can be described as coupled oscillators. In particular, we used the Landau-Stuart model to consider both amplitudes and phases of hormone oscillations. We found that the presence of the third component, δ cell, was effective to resist under glucose perturbations, and to quickly return to the normal glucose level once perturbed. Our analysis suggested that three components are necessary for advanced homeostasis control.

  7. Cardiotoxic Effects of Short-Term Doxorubicin Administration: Involvement of Connexin 43 in Calcium Impairment.

    PubMed

    Pecoraro, Michela; Rodríguez-Sinovas, Antonio; Marzocco, Stefania; Ciccarelli, Michele; Iaccarino, Guido; Pinto, Aldo; Popolo, Ada

    2017-10-11

    The use of Doxorubicin (DOXO), a potent antineoplastic agent, is limited by the development of cardiotoxicity. DOXO-induced cardiotoxicity is multifactorial, although alterations in calcium homeostasis, seem to be involved. Since even the Connexin43 (Cx43) plays a pivotal role in these two phenomena, in this study we have analyzed the effects of DOXO on Cx43 expression and localization. Damage caused by anthracyclines on cardiomyocytes is immediate after each injection, in the present study we used a short-term model of DOXO-induced cardiomyopathy. C57BL/6j female mice were randomly divided in groups and injected with DOXO (2 or 10 mg/kg i.p.) for 1-3 or 7 days once every other day. Cardiac function was assessed by Echocardiography. Sarco/endoplasmic reticulum Ca 2+ -ATPase (SERCAII) and phospholamban (PLB) expression were assessed by Western blot analysis, intracellular [Ca 2+ ] were detected spectrofluorometrically by means of Fura-2 pentakis (acetoxymethyl) ester (FURA-2AM), and Cx43 and pCx43 expression and localization was analyzed by Western blot and confirmed by immunofluorescence analysis. DOXO induces impairment in Ca 2+ homeostasis, already evident after a single administration, and affects Cx43 expression and localization. Our data suggest that DOXO-induced alterations in Ca 2+ homeostasis causes in the cells the induction of compensatory mechanisms until a certain threshold, above which cardiac injury is triggered.

  8. Neonatal hypothyroidism affects testicular glucose homeostasis through increased oxidative stress in prepubertal mice: effects on GLUT3, GLUT8 and Cx43.

    PubMed

    Sarkar, D; Singh, S K

    2017-07-01

    Thyroid hormones (THs) play an important role in maintaining the link between metabolism and reproduction and the altered THs status is associated with induction of oxidative stress in various organs like brain, heart, liver and testis. Further, reactive oxygen species play a pivotal role in regulation of glucose homeostasis in several organs, and glucose utilization by Leydig cells is essential for testosterone biosynthesis and thus is largely dependent on glucose transporter 8 (GLUT8). Glucose uptake by Sertoli cells is mediated through glucose transporter 3 (GLUT3) under the influence of THs to meet energy requirement of developing germ cells. THs also modulate level of gap junctional protein such as connexin 43 (Cx43), a potential regulator of cell proliferation and apoptosis in the seminiferous epithelium. Although the role of transient neonatal hypothyroidism in adult testis in terms of testosterone production is well documented, the effect of THs deficiency in early developmental period and its role in testicular glucose homeostasis and oxidative stress with reference to Cx43 in immature mice remain unknown. Therefore, the present study was conducted to evaluate the effect of neonatal hypothyroidism on testicular glucose homeostasis and oxidative stress at postnatal days (PND) 21 and 28 in relation to GLUT3, GLUT8 and Cx43. Hypothyroidism induced by 6-propyl-2-thiouracil (PTU) markedly decreased testicular glucose level with considerable reduction in expression level of GLUT3 and GLUT8. Likewise, lactate dehydrogenase (LDH) activity and intratesticular concentration of lactate were also decreased in hypothyroid mice. There was also a rise in germ cell apoptosis with increased expression of caspase-3 in PTU-treated mice. Further, neonatal hypothyroidism affected germ cell proliferation with decreased expression of proliferating cell nuclear antigen (PCNA) and Cx43. In conclusion, our results suggest that neonatal hypothyroidism alters testicular glucose

  9. [Acid-base homeostasis and the thyro-parathyroid glands].

    PubMed

    Cuisinier-Gleizes, P; George, A; Thomasset, M; Mathieu, H

    1975-05-12

    Chronic metabolic acidosis entails hyperparathyroidism and osteopathy. In order to elucidate the role of the thyroparathyroids in this bone lesion production the effects of acidic diet for 7 weeks were studied in parathyroidectomized (PTX), thyroparathyroidectomized (TPTX) and shamoperated (Sh-O) growing rats. In all animals urinary excretion of calcium, phosphate, ammonium and titrable acidity was similarly increased. The rise in hydroxyproline excretion and urinary 85-sr (that was injected previous to acidic feeding) was more marked in PTX and TPTX rats. Moreover, in these animals the serum calcium level was increased, the blood pH was decreased. According to these data, an acidic diet intake that is not sufficient to elicit a fall in blood pH of normal young rats can induce severe acidosis in chronically parathyroidectomized or thyroparathyroidectomized animals; moreover the bone resorption appears more marked. It is concluded that parathyroids are involved in the extra-cellular fluid defense mechanism against acidosis by a no bone resorptive mechanism. We hypothesize that the parathyroids permit the necessary and adequate supply of bicarbonates by the bone to maintain blood pH homeostasis.

  10. The SigmaR1 chaperone drives breast and colorectal cancer cell migration by tuning SK3-dependent Ca2+ homeostasis.

    PubMed

    Gueguinou, M; Crottès, D; Chantôme, A; Rapetti-Mauss, R; Potier-Cartereau, M; Clarysse, L; Girault, A; Fourbon, Y; Jézéquel, P; Guérin-Charbonnel, C; Fromont, G; Martin, P; Pellissier, B; Schiappa, R; Chamorey, E; Mignen, O; Uguen, A; Borgese, F; Vandier, C; Soriani, O

    2017-06-22

    The remodeling of calcium homeostasis contributes to the cancer hallmarks and the molecular mechanisms involved in calcium channel regulation in tumors remain to be characterized. Here, we report that SigmaR1, a stress-activated chaperone, is required to increase calcium influx by triggering the coupling between SK3, a Ca 2+ -activated K + channel (KCNN3) and the voltage-independent calcium channel Orai1. We show that SigmaR1 physically binds SK3 in BC cells. Inhibition of SigmaR1 activity, either by molecular silencing or by the use of sigma ligand (igmesine), decreased SK3 current and Ca 2+ entry in breast cancer (BC) and colorectal cancer (CRC) cells. Interestingly, SigmaR1 inhibition diminished SK3 and/or Orai1 levels in lipid nanodomains isolated from BC cells. Analyses of tissue microarray from CRC patients showed higher SigmaR1 expression levels in cancer samples and a correlation with tumor grade. Moreover, the exploration of a cohort of 4937 BC patients indicated that high expression of SigmaR1 and Orai1 channels was significantly correlated to a lower overall survival. As the SK3/Orai1 tandem drives invasive process in CRC and bone metastasis progression in BC, our results may inaugurate innovative therapeutic approaches targeting SigmaR1 to control the remodeling of Ca 2+ homeostasis in epithelial cancers.

  11. Regulation of axonal and dendritic growth by the extracellular calcium-sensing receptor (CaSR)

    PubMed Central

    Vizard, Thomas N.; O'Keeffe, Gerard W.; Gutierrez, Humberto; Kos, Claudine H.; Riccardi, Daniela; Davies, Alun M.

    2009-01-01

    The extracellular calcium-sensing receptor (CaSR) monitors the systemic extracellular free ionized calcium level ([Ca2+]o) in organs involved in systemic [Ca2+]o homeostasis. However, the CaSR is also expressed in the nervous system where its role is unknown. Here we find high levels of the CaSR in perinatal mouse sympathetic neurons when their axons are innervating and branching extensively in their targets. Manipulating CaSR function in these neurons by varying [Ca2+]o, using CaSR agonists and antagonists or expressing a dominant-negative CaSR markedly affects neurite growth in vitro Sympathetic neurons lacking the CaSR have smaller neurite arbors in vitro, and sympathetic innervation density is reduced in CaSR-deficient mice in vivo. Hippocampal pyramidal neurons, which also express the CaSR, have smaller dendrites when transfected with dominant-negative CaSR in postnatal organotypic cultures. Our findings reveal a crucial role for the CaSR in regulating the growth of neural processes in the peripheral and central nervous systems. PMID:18223649

  12. Transporters involved in pH and K + homeostasis affect pollen wall formation, male fertility, and embryo development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Padmanaban, Senthilkumar; Czerny, Daniel D.; Levin, Kara A.

    Flowering plant genomes encode multiple cation/H + exchangers (CHXs) whose functions are largely unknown. AtCHX17, AtCHX18, and AtCHX19 are membrane transporters that modulate K+ and pH homeostasis and are localized in the dynamic endomembrane system. Loss of function reduced seed set, but the particular phase(s) of reproduction affected was not determined. Pollen tube growth and ovule targeting of chx17chx18chx19 mutant pollen appeared normal, but reciprocal cross experiments indicate a largely male defect. Although triple mutant pollen tubes reach ovules of a wild-type pistil and a synergid cell degenerated, half of those ovules were unfertilized or showed fertilization of the eggmore » or central cell, but not both female gametes. Fertility could be partially compromised by impaired pollen tube and/or sperm function as CHX19 and CHX18 are expressed in the pollen tube and sperm cell, respectively. When fertilization was successful in self-pollinated mutants, early embryo formation was retarded compared with embryos from wild-type ovules receiving mutant pollen. Thus CHX17 and CHX18 proteins may promote embryo development possibly through the endosperm where these genes are expressed. The reticulate pattern of the pollen wall was disorganized in triple mutants, indicating perturbation of wall formation during male gametophyte development. Lastly, as pH and cation homeostasis mediated by AtCHX17 affect membrane trafficking and cargo delivery, these results suggest that male fertility, sperm function, and embryo development are dependent on proper cargo sorting and secretion that remodel cell walls, plasma membranes, and extracellular factors.« less

  13. Transporters involved in pH and K + homeostasis affect pollen wall formation, male fertility, and embryo development

    DOE PAGES

    Padmanaban, Senthilkumar; Czerny, Daniel D.; Levin, Kara A.; ...

    2017-02-23

    Flowering plant genomes encode multiple cation/H + exchangers (CHXs) whose functions are largely unknown. AtCHX17, AtCHX18, and AtCHX19 are membrane transporters that modulate K+ and pH homeostasis and are localized in the dynamic endomembrane system. Loss of function reduced seed set, but the particular phase(s) of reproduction affected was not determined. Pollen tube growth and ovule targeting of chx17chx18chx19 mutant pollen appeared normal, but reciprocal cross experiments indicate a largely male defect. Although triple mutant pollen tubes reach ovules of a wild-type pistil and a synergid cell degenerated, half of those ovules were unfertilized or showed fertilization of the eggmore » or central cell, but not both female gametes. Fertility could be partially compromised by impaired pollen tube and/or sperm function as CHX19 and CHX18 are expressed in the pollen tube and sperm cell, respectively. When fertilization was successful in self-pollinated mutants, early embryo formation was retarded compared with embryos from wild-type ovules receiving mutant pollen. Thus CHX17 and CHX18 proteins may promote embryo development possibly through the endosperm where these genes are expressed. The reticulate pattern of the pollen wall was disorganized in triple mutants, indicating perturbation of wall formation during male gametophyte development. Lastly, as pH and cation homeostasis mediated by AtCHX17 affect membrane trafficking and cargo delivery, these results suggest that male fertility, sperm function, and embryo development are dependent on proper cargo sorting and secretion that remodel cell walls, plasma membranes, and extracellular factors.« less

  14. The Roles and Mechanisms of Intestinal Oxalate Transport in Oxalate Homeostasis

    PubMed Central

    Hatch, Marguerite; Freel, Robert W.

    2008-01-01

    The mammalian intestine has an important role in the dynamics of oxalate exchange and thereby is significant in the etiology of calcium oxalate nephrolithiasis. Here we review some of the phenomenological observations that have led to the conclusion that anion exchangers (antiporters) are important mediators of secondarily active, net oxalate transport along the intestine (both absorptive and secretory). Understanding the mechanisms of transepithelial oxalate transport has been radically advanced in recent years by the identification of the SLC26 family of anion transporters which has facilitated the identification of specific proteins mediating individual apical or basolateral oxalate transport pathways. Moreover, identification of specific exchangers has underscored their relative importance to oxalate homeostasis as revealed by using knockout mouse models and facilitated studies of oxalate transport regulation in heterologous expression systems. Finally, the significance of oxalate degrading bacteria to oxalate homeostasis is considered from basic and applied perspectives. PMID:18359395

  15. Homeostasis of chosen bioelements in organs of rats receiving lithium and/or selenium.

    PubMed

    Kiełczykowska, Małgorzata; Musik, Irena; Żelazowska, Renata; Lewandowska, Anna; Kurzepa, Jacek; Kocot, Joanna

    2016-10-01

    Lithium is an essential trace element, widely used in medicine and its application is often long-term. Despite beneficial effects, its administration can lead to severe side effects including hyperparathyroidism, renal and thyroid disorders. The aim of the current study was to evaluate the influence of lithium and/or selenium treatment on magnesium, calcium and silicon levels in rats' organs as well as the possibility of using selenium as an adjuvant in lithium therapy. The study was performed on rats divided into four groups (six animals each): control-treated with saline; Li-treated with Li2CO3 (2.7 mg Li/kg b.w.); Se-treated with Na2SeO3·H2O (0.5 mg Se/kg b.w.); Se + Li-treated simultaneously with Li2CO3 and Na2SeO3·H2O (2.7 mg Li/kg b.w. and of 0.5 mg Se/kg b.w., respectively). The administration was performed in form of water solutions by stomach tube once a day for 3 weeks. In the organs (liver, kidney, brain, spleen, heart, lung and femoral muscle) the concentrations of magnesium, calcium and silicon were determined. Magnesium was increased in liver of Se and Se + Li given rats. Lithium decreased tissue Ca and co-administration of selenium reversed this effect. Silicon was not affected by any treatment. The beneficial effect of selenium on disturbances of calcium homeostasis let suggest that further research on selenium application as an adjuvant in lithium therapy is worth being performed.

  16. Hypochlorhydria-induced calcium malabsorption does not affect fracture healing but increases post-traumatic bone loss in the intact skeleton.

    PubMed

    Haffner-Luntzer, Melanie; Heilmann, Aline; Heidler, Verena; Liedert, Astrid; Schinke, Thorsten; Amling, Michael; Yorgan, Timur Alexander; Vom Scheidt, Annika; Ignatius, Anita

    2016-11-01

    Efficient calcium absorption is essential for skeletal health. Patients with impaired gastric acidification display low bone mass and increased fracture risk because calcium absorption is dependent on gastric pH. We investigated fracture healing and post-traumatic bone turnover in mice deficient in Cckbr, encoding a gastrin receptor that affects acid secretion by parietal cells. Cckbr-/- mice display hypochlorhydria, calcium malabsorption, and osteopenia. Cckbr-/- and wildtype (WT) mice received a femur osteotomy and were fed either a standard or calcium-enriched diet. Healed and intact bones were assessed by biomechanical testing, histomorphometry, micro-computed tomography, and quantitative backscattering. Parathyroid hormone (PTH) serum levels were determined by enzyme-linked immunosorbent assay. Fracture healing was unaffected in Cckbr-/- mice. However, Cckbr-/- mice displayed increased calcium mobilization from the intact skeleton during bone healing, confirmed by significantly elevated PTH levels and osteoclast numbers compared to WT mice. Calcium supplementation significantly reduced secondary hyperparathyroidism and bone resorption in the intact skeleton in both genotypes, but more efficiently in WT mice. Furthermore, calcium administration improved bone healing in WT mice, indicated by significantly increased mechanical properties and bone mineral density of the fracture callus, whereas it had no significant effect in Cckbr-/- mice. Therefore, under conditions of hypochlorhydria-induced calcium malabsorption, calcium, which is essential for callus mineralization, appears to be increasingly mobilized from the intact skeleton in favor of fracture healing. Calcium supplementation during fracture healing prevented systemic calcium mobilization, thereby maintaining bone mass and improving fracture healing in healthy individuals whereas the effect was limited by gastric hypochlorhydria. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J

  17. Exacerbated immune stress response during experimental magnesium deficiency results from abnormal cell calcium homeostasis.

    PubMed

    Malpuech-Brugère, C; Rock, E; Astier, C; Nowacki, W; Mazur, A; Rayssiguier, Y

    1998-01-01

    The aim of this study was to assess the potential mechanism underlying the enhanced inflammatory processes during magnesium deficit. In this study, exacerbated response to live bacteria and platelet activating factors was shown in rats fed a magnesium-deficient diet. Peritoneal cells from these animals also showed enhanced superoxide anion production and calcium mobilising potency following in vitro stimulation. The latter effect occurred very early in the course of magnesium deficiency. These studies first showed that an abnormal calcium handling induced by extracellular magnesium depression in vivo may be at the origin of exacerbated inflammatory response.

  18. TRP channels in calcium homeostasis: from hormonal control to structure-function relationship of TRPV5 and TRPV6.

    PubMed

    van Goor, Mark K C; Hoenderop, Joost G J; van der Wijst, Jenny

    2017-06-01

    Maintaining plasma calcium levels within a narrow range is of vital importance for many physiological functions. Therefore, calcium transport processes in the intestine, bone and kidney are tightly regulated to fine-tune the rate of absorption, storage and excretion. The TRPV5 and TRPV6 calcium channels are viewed as the gatekeepers of epithelial calcium transport. Several calciotropic hormones control the channels at the level of transcription, membrane expression, and function. Recent technological advances have provided the first near-atomic resolution structural models of several TRPV channels, allowing insight into their architecture. While this field is still in its infancy, it has increased our understanding of molecular channel regulation and holds great promise for future structure-function studies of these ion channels. This review will summarize the mechanisms that control the systemic calcium balance, as well as extrapolate structural views to the molecular functioning of TRPV5/6 channels in epithelial calcium transport. Copyright © 2016. Published by Elsevier B.V.

  19. Physical activity and hypocaloric diet recovers osteoblasts homeostasis in women affected by abdominal obesity.

    PubMed

    Bimonte, Viviana M; Fittipaldi, Simona; Marocco, Chiara; Emerenziani, Gian Pietro; Fornari, Rachele; Guidetti, Laura; Poggiogalle, Eleonora; Nicolai, Emanuele; Di Luigi, Luigi; Donini, Lorenzo M; Baldari, Carlo; Lenzi, Andrea; Greco, Emanuela A; Migliaccio, Silvia

    2017-11-01

    Obesity is a multifactorial disease linked to metabolic chronic disorders such as diabetes, and hypertension. Also, it has recently been associated with skeletal alterations and low bone mineral density. We previously demonstrated that exposure of osteoblasts to sera of sedentary subjects affected by obesity alters cell homeostasis in vitro, leading to disruption of intracellular differentiation pathways and cellular activity. Thus, the purpose of the present study has been to evaluate whether sera of sedentary obese women, subjected to physical activity and hypocaloric diet, could recover osteoblast homeostasis in vitro as compared to the sera of same patients before intervention protocol. To this aim, obese women were evaluated at time 0 and after 4, 6, and 12 months of individualized prescribed physical activity and hypocaloric diet. Dual-energy-X-ray absorptiometry measurements were performed at each time point, as well as blood was collected at the same points. Cells were incubated with sera of subjects before and after physical activity as described: obese at baseline and after for 4, 6, and 12 months of physical activity and nutritional protocol intervention. Osteoblasts exposed to sera of patients, who displayed increased lean and decreased fat mass (from 55.5 ± 6.5 to 57.1 ± 5.6% p ≤ 0.05; from 44.5 ± 1.1 to 40.9 ± 2.6% p ≤ 0.01 respectively), showed a time-dependent increase of Wnt/β-catenin signaling, versus cells exposed to sera of obese patients before intervention protocol, suggesting recovery of osteoblast homeostasis upon improvement of body composition. An increase in β-catenin nuclear accumulation and nuclear translocation was also observed, accompanied by an increase in Adiponectin receptor 1 protein expression, suggesting positive effect on cell differentiation program. Furthermore, a decrease in sclerostin amount and an increase of type 1 procollagen amino-terminal-propeptide were depicted as compared to

  20. Astrocytes in the nucleus of the solitary tract are activated by low glucose or glucoprivation: evidence for glial involvement in glucose homeostasis.

    PubMed

    McDougal, David H; Hermann, Gerlinda E; Rogers, Richard C

    2013-01-01

    Glucose homeostasis is maintained through interplay between central and peripheral control mechanisms which are aimed at storing excess glucose following meals and mobilizing these same stores during periods of fasting. The nucleus of the solitary tract (NST) in the dorsal medulla has long been associated with the central detection of glucose availability and the control of glucose homeostasis. Recent evidence has emerged which supports the involvement of astrocytes in glucose homeostasis. The aim of the present study was to investigate whether NST-astrocytes respond to physiologically relevant decreases in glucose availability, in vitro, as well as to the presence of the glucoprivic compound 2-deoxy-D-Glucose. This report demonstrates that some NST-astrocytes are capable of responding to low glucose or glucoprivation by increasing cytoplasmic calcium; a change that reverses with restoration of normal glucose availability. While some NST-neurons also demonstrate an increase in calcium signaling during low glucose availability, this effect is smaller and somewhat delayed compared to those observed in adjacent astrocytes. TTX did not abolish these hypoglycemia mediated responses of astrocytes, suggesting that NST-astrocytes may be directly sensing low glucose levels as opposed to responding to neuronal detection of hypoglycemia. Thus, chemodetection of low glucose by NST-astrocytes may play an important role in the autonomic regulation of glucose homeostasis.

  1. TMBIM3/GRINA is a novel unfolded protein response (UPR) target gene that controls apoptosis through the modulation of ER calcium homeostasis

    PubMed Central

    Rojas-Rivera, D; Armisén, R; Colombo, A; Martínez, G; Eguiguren, A L; Díaz, A; Kiviluoto, S; Rodríguez, D; Patron, M; Rizzuto, R; Bultynck, G; Concha, M L; Sierralta, J; Stutzin, A; Hetz, C

    2012-01-01

    Transmembrane BAX inhibitor motif-containing (TMBIM)-6, also known as BAX-inhibitor 1 (BI-1), is an anti-apoptotic protein that belongs to a putative family of highly conserved and poorly characterized genes. Here we report the function of TMBIM3/GRINA in the control of cell death by endoplasmic reticulum (ER) stress. Tmbim3 mRNA levels are strongly upregulated in cellular and animal models of ER stress, controlled by the PERK signaling branch of the unfolded protein response. TMBIM3/GRINA synergies with TMBIM6/BI-1 in the modulation of ER calcium homeostasis and apoptosis, associated with physical interactions with inositol trisphosphate receptors. Loss-of-function studies in D. melanogaster demonstrated that TMBIM3/GRINA and TMBIM6/BI-1 have synergistic activities against ER stress in vivo. Similarly, manipulation of TMBIM3/GRINA levels in zebrafish embryos revealed an essential role in the control of apoptosis during neuronal development and in experimental models of ER stress. These findings suggest the existence of a conserved group of functionally related cell death regulators across species beyond the BCL-2 family of proteins operating at the ER membrane. PMID:22240901

  2. TMBIM3/GRINA is a novel unfolded protein response (UPR) target gene that controls apoptosis through the modulation of ER calcium homeostasis.

    PubMed

    Rojas-Rivera, D; Armisén, R; Colombo, A; Martínez, G; Eguiguren, A L; Díaz, A; Kiviluoto, S; Rodríguez, D; Patron, M; Rizzuto, R; Bultynck, G; Concha, M L; Sierralta, J; Stutzin, A; Hetz, C

    2012-06-01

    Transmembrane BAX inhibitor motif-containing (TMBIM)-6, also known as BAX-inhibitor 1 (BI-1), is an anti-apoptotic protein that belongs to a putative family of highly conserved and poorly characterized genes. Here we report the function of TMBIM3/GRINA in the control of cell death by endoplasmic reticulum (ER) stress. Tmbim3 mRNA levels are strongly upregulated in cellular and animal models of ER stress, controlled by the PERK signaling branch of the unfolded protein response. TMBIM3/GRINA synergies with TMBIM6/BI-1 in the modulation of ER calcium homeostasis and apoptosis, associated with physical interactions with inositol trisphosphate receptors. Loss-of-function studies in D. melanogaster demonstrated that TMBIM3/GRINA and TMBIM6/BI-1 have synergistic activities against ER stress in vivo. Similarly, manipulation of TMBIM3/GRINA levels in zebrafish embryos revealed an essential role in the control of apoptosis during neuronal development and in experimental models of ER stress. These findings suggest the existence of a conserved group of functionally related cell death regulators across species beyond the BCL-2 family of proteins operating at the ER membrane.

  3. Vitamin D/dietary calcium deficiency rickets and pseudo-vitamin D deficiency rickets

    PubMed Central

    Glorieux, Francis H; Pettifor, John M

    2014-01-01

    This review describes the pathogenesis, clinical presentation and biochemical perturbations found in privational (nutritional) rickets and pseudo-vitamin D deficiency rickets (PDDR), an autosomal recessive condition with loss of function mutations in CYP27B1. It may seem strange to combine a discussion on privational rickets and PDDR as a single topic, but privational rickets and PDDR present with similar clinical signs and symptoms and with similar perturbations in bone and mineral metabolism. Of interest is the characteristic lack of features of rickets at birth in infants with PDDR, a finding which has also been reported in infants born to vitamin D-deficient mothers. This highlights the independence of the fetus and neonate from the need for vitamin D to maintain calcium homeostasis during this period. The variable roles of vitamin D deficiency and dietary calcium deficiency in the pathogenesis of privational rickets are discussed and the associated alterations in vitamin D metabolism highlighted. Although PDDR is a rare autosomal recessive disorder, results of long-term follow-up are now available on the effect of treatment with calcitriol, and these are discussed. Areas of uncertainty, such as should affected mothers breastfeed their infants, are emphasized. PMID:24818008

  4. Calcium Homeostasis Modulator 1-Like Currents in Rat Fungiform Taste Cells Expressing Amiloride-Sensitive Sodium Currents.

    PubMed

    Bigiani, Albertino

    2017-05-01

    Salt reception by taste cells is still the less understood transduction process occurring in taste buds, the peripheral sensory organs for the detection of food chemicals. Although there is evidence suggesting that the epithelial sodium channel (ENaC) works as sodium receptor, yet it is not clear how salt-detecting cells signal the relevant information to nerve endings. Taste cells responding to sweet, bitter, and umami substances release ATP as neurotransmitter through a nonvesicular mechanism. Three different channel proteins have been proposed as conduit for ATP secretion: pannexin channels, connexin hemichannels, and calcium homeostasis modulator 1 (CALHM1) channels. In heterologous expression systems, these channels mediate outwardly rectifying membrane currents with distinct biophysical and pharmacological properties. I therefore tested whether also salt-detecting taste cells were endowed with these currents. To this aim, I applied the patch-clamp techniques to single cells in isolated taste buds from rat fungiform papillae. Salt-detecting cells were functionally identified by exploiting the effect of amiloride, which induces a current response by shutting down ENaCs. I looked for the presence of outwardly rectifying currents by using appropriate voltage-clamp protocols and specific pharmacological tools. I found that indeed salt-detecting cells possessed these currents with properties consistent with the presence, at least in part, of CALHM1 channels. Unexpectedly, CALHM1-like currents in taste cells were potentiated by known blockers of pannexin, suggesting a possible inhibitory action of this protein on CALMH1. These findings indicate that communication between salt-detecting cells and nerve endings might involve ATP release by CALMH1 channels. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Plasma membrane calcium ATPases: From generic Ca(2+) sump pumps to versatile systems for fine-tuning cellular Ca(2.).

    PubMed

    Strehler, Emanuel E

    2015-04-24

    The plasma membrane calcium ATPases (PMCAs) are ATP-driven primary ion pumps found in all eukaryotic cells. They are the major high-affinity calcium extrusion system for expulsion of Ca(2+) ions from the cytosol and help restore the low resting levels of intracellular [Ca(2+)] following the temporary elevation of Ca(2+) generated during Ca(2+) signaling. Due to their essential role in the maintenance of cellular Ca(2+) homeostasis they were initially thought to be "sump pumps" for Ca(2+) removal needed by all cells to avoid eventual calcium overload. The discovery of multiple PMCA isoforms and alternatively spliced variants cast doubt on this simplistic assumption, and revealed instead that PMCAs are integral components of highly regulated multi-protein complexes fulfilling specific roles in calcium-dependent signaling originating at the plasma membrane. Biochemical, genetic, and physiological studies in gene-manipulated and mutant animals demonstrate the important role played by specific PMCAs in distinct diseases including those affecting the peripheral and central nervous system, cardiovascular disease, and osteoporosis. Human PMCA gene mutations and allelic variants associated with specific disorders continue to be discovered and underline the crucial role of different PMCAs in particular cells, tissues and organs. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Induced calcium carbonate precipitation using Bacillus species.

    PubMed

    Seifan, Mostafa; Samani, Ali Khajeh; Berenjian, Aydin

    2016-12-01

    Microbially induced calcium carbonate precipitation is an emerging process for the production of self-healing concrete. This study was aimed to investigate the effects and optimum conditions on calcium carbonate biosynthesis. Bacillus licheniformis, Bacillus sphaericus, yeast extract, urea, calcium chloride and aeration were found to be the most significant factors affecting the biomineralization of calcium carbonate. It was noticed that the morphology of microbial calcium carbonate was mainly affected by the genera of bacteria (cell surface properties), the viscosity of the media and the type of electron acceptors (Ca 2+ ). The maximum calcium carbonate concentration of 33.78 g/L was achieved at the optimum conditions This value is the highest concentration reported in the literature.

  7. Arsenic-induced alteration in intracellular calcium homeostasis induces head kidney macrophage apoptosis involving the activation of calpain-2 and ERK in Clarias batrachus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banerjee, Chaitali; Goswami, Ramansu; Centre for Environmental Studies, Visva-Bharati University, Santiniketan 731 235

    2011-10-01

    We had earlier shown that exposure to arsenic (0.50 {mu}M) caused caspase-3 mediated head kidney macrophage (HKM) apoptosis involving the p38-JNK pathway in Clarias batrachus. Here we examined the roles of calcium (Ca{sup 2+}) and extra-cellular signal-regulated protein kinase (ERK), the other member of MAPK-pathway on arsenic-induced HKM apoptosis. Arsenic-induced HKM apoptosis involved increased expression of ERK and calpain-2. Nifedipine, verapamil and EGTA pre-treatment inhibited the activation of calpain-2, ERK and reduced arsenic-induced HKM apoptosis as evidenced from reduced caspase-3 activity, Annexin V-FITC-propidium iodide and Hoechst 33342 staining. Pre-incubation with ERK inhibitor U 0126 inhibited the activation of calpain-2 andmore » interfered with arsenic-induced HKM apoptosis. Additionally, pre-incubation with calpain-2 inhibitor also interfered with the activation of ERK and inhibited arsenic-induced HKM apoptosis. The NADPH oxidase inhibitor apocynin and diphenyleneiodonium chloride also inhibited ERK activation indicating activation of ERK in arsenic-exposed HKM also depends on signals from NADPH oxidase pathway. Our study demonstrates the critical role of Ca{sup 2+} homeostasis on arsenic-induced HKM apoptosis. We suggest that arsenic-induced alteration in intracellular Ca{sup 2+} levels initiates pro-apoptotic ERK and calpain-2; the two pathways influence each other positively and induce caspase-3 mediated HKM apoptosis. Besides, our study also indicates the role of ROS in the activation of ERK pathway in arsenic-induced HKM apoptosis in C. batrachus. - Highlights: > Altered Ca{sup 2+} homeostasis leads to arsenic-induced HKM apoptosis. > Calpain-2 plays a critical role in the process. > ERK is pro-apoptotic in arsenic-induced HKM apoptosis. > Arsenic-induced HKM apoptosis involves cross talk between calpain-2 and ERK.« less

  8. Vasopressin regulates renal calcium excretion in humans

    PubMed Central

    Hanouna, Guillaume; Haymann, Jean-Philippe; Baud, Laurent; Letavernier, Emmanuel

    2015-01-01

    Antidiuretic hormone or arginine vasopressin (AVP) increases water reabsorption in the collecting ducts of the kidney. Three decades ago, experimental models have shown that AVP may increase calcium reabsorption in rat kidney. The objective of this study was to assess whether AVP modulates renal calcium excretion in humans. We analyzed calcium, potassium, and sodium fractional excretion in eight patients affected by insipidus diabetes (nephrogenic or central) under acute vasopressin receptor agonist action and in 10 patients undergoing oral water load test affected or not by inappropriate antidiuretic hormone secretion (SIADH). Synthetic V2 receptor agonist (dDAVP) reduced significantly calcium fractional excretion from 1.71% to 0.58% (P < 0.05) in patients with central diabetes insipidus. In patients with nephrogenic diabetes insipidus (resistant to AVP), calcium fractional excretion did not change significantly after injection (0.48–0.68%, P = NS). In normal subjects undergoing oral water load test, calcium fractional excretion increased significantly from 1.02% to 2.54% (P < 0.05). Patients affected by SIADH had a high calcium fractional excretion at baseline that remained stable during test from 3.30% to 3.33% (P = NS), possibly resulting from a reduced calcium absorption in renal proximal tubule. In both groups, there was a significant correlation between urine output and calcium renal excretion. In humans, dDAVP decreases calcium fractional excretion in the short term. Conversely, water intake, which lowers AVP concentration, increases calcium fractional excretion. The correlation between urine output and calcium excretion suggests that AVP-related antidiuresis increases calcium reabsorption in collecting ducts. PMID:26620256

  9. Hydroxylation increases the neurotoxic potential of BDE-47 to affect exocytosis and calcium homeostasis in PC12 cells.

    PubMed

    Dingemans, Milou M L; de Groot, Aart; van Kleef, Regina G D M; Bergman, Ake; van den Berg, Martin; Vijverberg, Henk P M; Westerink, Remco H S

    2008-05-01

    Oxidative metabolism, resulting in the formation of hydroxylated polybrominated diphenyl ether (PBDE) metabolites, may enhance the neurotoxic potential of brominated flame retardants. Our objective was to investigate the effects of a hydroxylated metabolite of 2,2',4,4'-tetra-bromodiphenyl ether (BDE-47; 6-OH-BDE-47) on changes in the intracellular Ca2+ concentration ([Ca2+]i) and vesicular catecholamine release in PC12 cells. We measured vesicular catecholamine release and [Ca2+]i using amperometry and imaging of the fluorescent Ca2+-sensitive dye Fura-2, respectively. Acute exposure of PC12 cells to 6-OH-BDE-47 (5 microM) induced vesicular catecholamine release. Catecholamine release coincided with a transient increase in [Ca2+]i, which was observed shortly after the onset of exposure to 6-OH-BDE-47 (120 microM). An additional late increase in [Ca2+]i was often observed at > or =1 microM 6-OH-BDE-47. The initial transient increase was absent in cells exposed to the parent compound BDE-47, whereas the late increase was observed only at 20 microM. Using the mitochondrial uncoupler carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone (FCCP) and thapsigargin to empty intracellular Ca2+ stores, we found that the initial increase originates from emptying of the endoplasmic reticulum and consequent influx of extracellular Ca2+, whereas the late increase originates primarily from mitochondria. The hydroxylated metabolite 6-OH-BDE-47 is more potent in disturbing Ca2+ homeostasis and neurotransmitter release than the parent compound BDE-47. The present findings indicate that bioactivation by oxidative metabolism adds considerably to the neurotoxic potential of PBDEs. Additionally, based on the observed mechanism of action, a cumulative neurotoxic effect of PBDEs and ortho-substituted polychlorinated biphenyls on [Ca2+]i cannot be ruled out.

  10. Calcium metabolism before, during, and after a 3-mo spaceflight: kinetic and biochemical changes

    NASA Technical Reports Server (NTRS)

    Smith, S. M.; Wastney, M. E.; Morukov, B. V.; Larina, I. M.; Nyquist, L. E.; Abrams, S. A.; Taran, E. N.; Shih, C. Y.; Nillen, J. L.; Davis-Street, J. E.; hide

    1999-01-01

    The loss of bone during spaceflight is considered a physiological obstacle for the exploration of other planets. This report of calcium metabolism before, during, and after long-duration spaceflight extends results from Skylab missions in the 1970s. Biochemical and endocrine indexes of calcium and bone metabolism were measured together with calcium absorption, excretion, and bone turnover using stable isotopes. Studies were conducted before, during, and after flight in three male subjects. Subjects varied in physical activity, yet all lost weight during flight. During flight, calcium intake and absorption decreased up to 50%, urinary calcium excretion increased up to 50%, and bone resorption (determined by kinetics or bone markers) increased by over 50%. Osteocalcin and bone-specific alkaline phosphatase, markers of bone formation, increased after flight. Subjects lost approximately 250 mg bone calcium per day during flight and regained bone calcium at a slower rate of approximately 100 mg/day for up to 3 mo after landing. Further studies are required to determine the time course of changes in calcium homeostasis during flight to develop and assess countermeasures against flight-induced bone loss.

  11. Impact of Increasing Dietary Calcium Levels on Calcium Excretion and Vitamin D Metabolites in the Blood of Healthy Adult Cats.

    PubMed

    Paßlack, Nadine; Schmiedchen, Bettina; Raila, Jens; Schweigert, Florian J; Stumpff, Friederike; Kohn, Barbara; Neumann, Konrad; Zentek, Jürgen

    2016-01-01

    Dietary calcium (Ca) concentrations might affect regulatory pathways within the Ca and vitamin D metabolism and consequently excretory mechanisms. Considering large variations in Ca concentrations of feline diets, the physiological impact on Ca homeostasis has not been evaluated to date. In the present study, diets with increasing concentrations of dicalcium phosphate were offered to ten healthy adult cats (Ca/phosphorus (P): 6.23/6.02, 7.77/7.56, 15.0/12.7, 19.0/17.3, 22.2/19.9, 24.3/21.6 g/kg dry matter). Each feeding period was divided into a 10-day adaptation and an 8-day sampling period in order to collect urine and faeces. On the last day of each feeding period, blood samples were taken. Urinary Ca concentrations remained unaffected, but faecal Ca concentrations increased (P < 0.001) with increasing dietary Ca levels. No effect on whole and intact parathyroid hormone levels, fibroblast growth factor 23 and calcitriol concentrations in the blood of the cats were observed. However, the calcitriol precursors 25(OH)D2 and 25(OH)D3, which are considered the most useful indicators for the vitamin D status, decreased with higher dietary Ca levels (P = 0.013 and P = 0.033). Increasing dietary levels of dicalcium phosphate revealed an acidifying effect on urinary fasting pH (6.02) and postprandial pH (6.01) (P < 0.001), possibly mediated by an increase of urinary phosphorus (P) concentrations (P < 0.001). In conclusion, calcitriol precursors were linearly affected by increasing dietary Ca concentrations. The increase in faecal Ca excretion indicates that Ca homeostasis of cats is mainly regulated in the intestine and not by the kidneys. Long-term studies should investigate the physiological relevance of the acidifying effect observed when feeding diets high in Ca and P.

  12. Perfluorooctanoic acid exposure for 28 days affects glucose homeostasis and induces insulin hypersensitivity in mice

    NASA Astrophysics Data System (ADS)

    Yan, Shengmin; Zhang, Hongxia; Zheng, Fei; Sheng, Nan; Guo, Xuejiang; Dai, Jiayin

    2015-06-01

    Perfluoroalkyl acids (PFAAs) are widely used in many applications due to their unique physical and chemical characteristics. Because of the increasing prevalence of metabolic syndromes, including obesity, dyslipidemia and insulin resistance, concern has arisen about the roles of environmental pollutants in such diseases. Earlier epidemiologic studies showed a potential association between perfluorooctanoic acid (PFOA) and glucose metabolism, but how PFOA influences glucose homeostasis is still unknown. Here, we report on the modulation of the phosphatidylinositol 3-kinase-serine/threonine protein kinase (PI3K-AKT) signaling pathway in the livers of mice after 28 d of exposure to PFOA. Compared with normal mice, PFOA exposure significantly decreased the expression of the phosphatase and tensin homologue (PTEN) protein and affected the PI3K-AKT signaling pathway in the liver. Tolerance tests further indicated that PFOA exposure induced higher insulin sensitivity and glucose tolerance in mice. Biochemical analysis revealed that PFOA exposure reduced hepatic glycogen synthesis, which might be attributed to gluconeogenesis inhibition. The levels of several circulating proteins were altered after PFOA exposure, including proteins potentially related to diabetes and liver disease. Our results suggest that PFOA affected glucose metabolism and induced insulin hypersensitivity in mice.

  13. Bloodletting therapy in hemochromatosis: Does it affect trace element homeostasis?

    PubMed

    Bolann, Bjørn J; Distante, Sonia; Mørkrid, Lars; Ulvik, Rune J

    2015-01-01

    Hemochromatosis is the most common hereditary disorder in the Nordic population, if left untreated it can result in severe parenchymal iron accumulation. Bloodletting is mainstay treatment. Iron and trace elements partially share cellular uptake and transport mechanisms, and the aim of the present study was to see if bloodletting for hemochromatosis affects trace elements homeostasis. We recruited patients referred for diagnosis and treatment of hemochromatosis, four women and 22 men 23-68 years of age. Thirteen were C282Y homozygote, one was C282Y heterozygote, three were H63D homozygote, seven were compound heterozygote and two had none of the mutations above. Iron and liver function tests were performed; serum levels of trace elements were measured using inductively coupled plasma mass spectrometry. Results before the start of treatment and after normalization of iron parameters were compared. On completion of the bloodlettings the following average serum concentrations increased: Co from 5.6 to 11.5 nmol/L, serum Cu 16.2-17.6 μmol/L, Ni increased from 50.0 to 52.6 nmol/L and Sb from 13.2 to 16.3 nmol/L. Average serum Mn concentration declined from 30.2 to 28.3 nmol/L. All changes were statistically significant (by paired t-test). B, Ba, Cs, Mo, Se, Sr and Zn were not significantly changed. We conclude that bloodlettings in hemochromatosis lead to changes in trace element metabolism, including increased absorption of potentially toxic elements. Copyright © 2014 Elsevier GmbH. All rights reserved.

  14. Monitoring the progression of calcium and protein solubilisation as affected by calcium chelators during small-scale manufacture of casein-based food matrices.

    PubMed

    McIntyre, Irene; O'Sullivan, Michael; O'Riordan, Dolores

    2017-12-15

    Calcium and protein solubilisation during small-scale manufacture of semi-solid casein-based food matrices was investigated and found to be very different in the presence or absence of calcium chelating salts. Calcium concentrations in the dispersed phase increased and calcium-ion activity (A Ca ++ ) decreased during manufacture of the matrices containing calcium chelating salts; with ∼23% of total calcium solubilised by the end of manufacture. In the absence of calcium chelating salts, these concentrations were significantly lower at equivalent processing times and remained unchanged as did A Ca ++ , throughout manufacture. The protein content of the dispersed phase was low (≤3% of total protein), but was significantly higher for matrices containing calcium chelating salts. This study elucidates the critical role of calcium chelating salts in modulating casein hydration and dispersion and gives an indication of the levels of soluble calcium and protein required to allow matrix formation during manufacture of casein-based food structures e.g. processed and analogue cheese. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Genome-wide analysis of wheat calcium ATPases and potential role of selected ACAs and ECAs in calcium stress.

    PubMed

    Aslam, Roohi; Williams, Lorraine E; Bhatti, Muhammad Faraz; Virk, Nasar

    2017-10-27

    P 2 - type calcium ATPases (ACAs-auto inhibited calcium ATPases and ECAs-endoplasmic reticulum calcium ATPases) belong to the P- type ATPase family of active membrane transporters and are significantly involved in maintaining accurate levels of Ca 2+ , Mn 2+ and Zn 2+ in the cytosol as well as playing a very important role in stress signaling, stomatal opening and closing and pollen tube growth. Here we report the identification and possible role of some of these ATPases from wheat. In this study, ACA and ECA sequences of six species (belonging to Poaceae) were retrieved from different databases and a phylogenetic tree was constructed. A high degree of evolutionary relatedness was observed among P 2 sequences characterized in this study. Members of the respective groups from different plant species were observed to fall under the same clade. This pattern highlights the common ancestry of P 2- type calcium ATPases. Furthermore, qRT-PCR was used to analyse the expression of selected ACAs and ECAs from Triticum aestivum (wheat) under calcium toxicity and calcium deficiency. The data indicated that expression of ECAs is enhanced under calcium stress, suggesting possible roles of these ATPases in calcium homeostasis in wheat. Similarly, the expression of ACAs was significantly different in plants grown under calcium stress as compared to plants grown under control conditions. This gives clues to the role of ACAs in signal transduction during calcium stress in wheat. Here we concluded that wheat genome consists of nine P 2B and three P 2A -type calcium ATPases. Moreover, gene loss events in wheat ancestors lead to the loss of a particular homoeolog of a gene in wheat. To elaborate the role of these wheat ATPases, qRT-PCR was performed. The results indicated that when plants are exposed to calcium stress, both P 2A and P 2B gene expression get enhanced. This further gives clues about the possible role of these ATPases in wheat in calcium management. These findings can be

  16. Calcium homeostasis in the outer segments of retinal rods from the tiger salamander.

    PubMed Central

    Lagnado, L; Cervetto, L; McNaughton, P A

    1992-01-01

    1. The processes regulating intracellular calcium in the outer segments of salamander rods have been investigated. The main preparation used was the isolated rod loaded with the Ca(2+)-sensitive photoprotein aequorin, from which outer segment membrane current and free [Ca2+]i could be recorded simultaneously. Two other preparations were also used: outer segment membrane current was recorded from intact, isolated rods using a suction pipette, and from detached outer segments using a whole-cell pipette. 2. Measurements of free intracellular [Ca2+] in Ringer solution were obtained from two aequorin-loaded rods. Mean [Ca2+]i in darkness was 0.41 microM, and after a bright flash [Ca2+]i fell to below detectable levels ( < 0.3 microM). No release of intracellular Ca2+ by a bright flash of light could be detected ( < 0.2 microM). 3. Application of the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX) caused an increase in the size of the light-sensitive current and a rise in [Ca2+]i, but application of IBMX either when the light-sensitive channels had been closed by a bright light or in the absence of external Ca2+ caused no detectable rise in [Ca2+]i. It is concluded that IBMX increases [Ca2+]i by opening light-sensitive channels, and does not release Ca2+ from stores within the outer segment. 4. Removal of external Na+ caused a rise in [Ca2+]i to around 2 microM and completely suppressed the light-sensitive current. 5. The Na(+)-Ca2+, K+ exchange current in aequorin-loaded rods was activated in first-order manner by internal free calcium, with a mean Michaelis constant, KCa, of 1.6 microM. 6. The KCa of the Na(+)-Ca2+, K+ exchange was increased by elevating internal [Na+]. 7. The Michaelis relation between [Ca2+]i and the activity of the Na(+)-Ca2+, K+ exchange was used to calculate the change in [Ca2+]i occurring during the response to a bright light. In aequorin-loaded rods in Ringer solution the mean change in free [Ca2+]i after a bright flash was 0

  17. Dietary vitamin D intake is not associated with 25-hydroxyvitamin D3 or parathyroid hormone in elderly subjects, whereas the calcium-to-phosphate ratio affects parathyroid hormone.

    PubMed

    Jungert, Alexandra; Neuhäuser-Berthold, Monika

    2013-08-01

    This cross-sectional study investigates whether serum 25-hydroxyvitamin D3 [25(OH)D3] and intact parathyroid hormone (iPTH) are affected by vitamin D, calcium, or phosphate intake in 140 independently living elderly subjects from Germany (99 women and 41 men; age, 66-96 years). We hypothesized that habitual dietary intakes of vitamin D, calcium, and phosphate are not associated with 25(OH)D3 or iPTH and that body mass index confounds these associations. Serum 25(OH)D3 and iPTH were measured by an electrochemiluminescence immunoassay. Dietary intake was determined using a 3-day estimated dietary record. The median dietary intake levels of vitamin D, calcium, and phosphate were 3 μg/d, 999 mg/d, and 1250 mg/d, respectively. Multiple regression analyses confirmed that dietary vitamin D and calcium did not affect 25(OH)D3 or iPTH; however, supplemental intakes of vitamin D and calcium were associated with 25(OH)D3 after adjustment for age, sex, body composition, sun exposure, physical activity, and smoking. In addition, phosphate intake and the calcium-to-phosphate ratio were associated with iPTH after multiple adjustments. In a subgroup analysis, calcium and vitamin D supplements, as well as phosphate intake, were associated with 25(OH)D3 and/or iPTH in normal-weight subjects only. Our results indicate that habitual dietary vitamin D and calcium intakes have no independent effects on 25(OH)D3 or iPTH in elderly subjects without vitamin D deficiency, whereas phosphate intake and the calcium-to-phosphate ratio affect iPTH. However, vitamin D and calcium supplements may increase 25(OH)D3 and decrease iPTH, even during the summer, but the impact of supplements may depend on body mass index. Copyright © 2013. Published by Elsevier Inc.

  18. Interactions of endoplasmic reticulum and mitochondria Ca2+ stores with capacitative calcium entry

    PubMed Central

    Huang, Hsueh-Meei; Chen, Huan-Lian; Gibson, Gary E.

    2014-01-01

    Thiamine dependent enzymes are diminished in Alzheimer’s disease (AD). Thiamine deficiency in vitro and in rodents is a useful model of this reduction. Thiamine interacts with cellular calcium stores. To directly test the relevance of the thiamine dependent changes to dynamic processes in AD, the interactions must be studied in cells from patients with AD. These studies employed fibroblasts. Mitochondrial dysfunction including reductions in thiamine dependent enzymes and abnormalities in calcium homeostasis and oxidative processes occur in fibroblasts from Alzheimer’s Disease (AD) patients. Bombesin-releasable calcium stores (BRCS) from the endoplasmic reticulum (ER) are exaggerated in fibroblasts from patients with AD bearing a presenilin-1 (PS-1) mutation and in control fibroblasts treated with oxidants. ER calcium regulates calcium entry into the cell through capacitative calcium entry (CCE), which is reduced in fibroblasts and neurons from mice bearing PS-1 mutations. Under physiological conditions, mitochondria and ER play important and interactive roles in the regulation of Ca2+ homeostasis. Thus, the interactions of mitochondria and oxidants with CCE were tested. Inhibition of ER Ca2+-ATPase by cyclopiazonic acid (CPA) stimulates CCE. CPA-induced CCE was diminished by inhibition of mitochondrial Ca2+ export (−60%) or import (−40%). Different aspects of mitochondrial Ca2+ coupled to CPA-induced-CCE were sensitive to select oxidants. The effects were very different when CCE was examined in the presence of InsP3, a physiological regulator of ER calcium release, and subsequent CCE. CCE under these conditions was only mildly reduced (20–25%) by inhibition of mitochondrial Ca2+ export, and inhibition of mitochondrial Ca2+ uptake exaggerated CCE (+53%). However, t-BHP reversed both abnormalities. The results suggest that in the presence of InsP3, mitochondria buffer the local Ca2+ released from ER following rapid activation of InsP3R and serve as a

  19. Extracellular calcium sensing and extracellular calcium signaling

    NASA Technical Reports Server (NTRS)

    Brown, E. M.; MacLeod, R. J.; O'Malley, B. W. (Principal Investigator)

    2001-01-01

    The cloning of a G protein-coupled extracellular Ca(2+) (Ca(o)(2+))-sensing receptor (CaR) has elucidated the molecular basis for many of the previously recognized effects of Ca(o)(2+) on tissues that maintain systemic Ca(o)(2+) homeostasis, especially parathyroid chief cells and several cells in the kidney. The availability of the cloned CaR enabled the development of DNA and antibody probes for identifying the CaR's mRNA and protein, respectively, within these and other tissues. It also permitted the identification of human diseases resulting from inactivating or activating mutations of the CaR gene and the subsequent generation of mice with targeted disruption of the CaR gene. The characteristic alterations in parathyroid and renal function in these patients and in the mice with "knockout" of the CaR gene have provided valuable information on the CaR's physiological roles in these tissues participating in mineral ion homeostasis. Nevertheless, relatively little is known about how the CaR regulates other tissues involved in systemic Ca(o)(2+) homeostasis, particularly bone and intestine. Moreover, there is evidence that additional Ca(o)(2+) sensors may exist in bone cells that mediate some or even all of the known effects of Ca(o)(2+) on these cells. Even more remains to be learned about the CaR's function in the rapidly growing list of cells that express it but are uninvolved in systemic Ca(o)(2+) metabolism. Available data suggest that the receptor serves numerous roles outside of systemic mineral ion homeostasis, ranging from the regulation of hormonal secretion and the activities of various ion channels to the longer term control of gene expression, programmed cell death (apoptosis), and cellular proliferation. In some cases, the CaR on these "nonhomeostatic" cells responds to local changes in Ca(o)(2+) taking place within compartments of the extracellular fluid (ECF) that communicate with the outside environment (e.g., the gastrointestinal tract). In others

  20. A novel germline inactivating mutation in the CASR gene in an Italian kindred affected by familial hypocalciuric hypercalcemia.

    PubMed

    Falchetti, Alberto; Gozzini, Alessia; Terranegra, Annalisa; Soldati, Laura; Vezzoli, Giuseppe; Leoncini, Gigliola; Giusti, Francesca; Franceschelli, Francesco; Masi, Laura; Tanini, Annalisa; Cavalli, Loredana; Brandi, Maria Luisa

    2012-05-01

    Familial hypocalciuric hypercalcemia (FHH) syndrome is a rare benign condition, inherited as an autosomal dominant trait, in which inactivating mutations of the calcium-sensing receptor (CASR) gene affects the body's ability to regulate calcium homeostasis. Its outcome is featured by increased levels of serum calcium, moderate hypophosphatemia, and inadequately normal or elevated circulating parathyroid hormone levels. Affected patients are mostly asymptomatic and do not benefit from surgical resection of their mildly enlarged parathyroids. We evaluated for hypercalcemia an Italian family that was identified via a young adult male proband referred to our center for parathyroidectomy. The patients and the family members were evaluated both biochemically and genetically as suspected FHH subjects. An in vitro functional study was performed by site-directed mutagenesis, and CASR activity was monitored by measuring intracellular calcium ([Ca(2)(+)](i)). The patient had a novel germline heterozygous CASR mutation (c.361_364GATT; p.D121del/fsX122). The mutation caused a premature stop codon at codon 122, exiting a truncated protein. The biochemical phenotype of all family members carrying the heterozygous deletion was concordant with classic FHH syndrome. Our findings confirm the role of CASR gene mutational analysis to offer a valuable addition for the recognition of FHH in hypercalcemic patients not yet characterized for a positive familial history of hypercalcemia, the only condition that identifies CASR gene mutations in hypercalcemia.

  1. A Low Affinity GCaMP3 Variant (GCaMPer) for Imaging the Endoplasmic Reticulum Calcium Store.

    PubMed

    Henderson, Mark J; Baldwin, Heather A; Werley, Christopher A; Boccardo, Stefano; Whitaker, Leslie R; Yan, Xiaokang; Holt, Graham T; Schreiter, Eric R; Looger, Loren L; Cohen, Adam E; Kim, Douglas S; Harvey, Brandon K

    2015-01-01

    Endoplasmic reticulum calcium homeostasis is critical for cellular functions and is disrupted in diverse pathologies including neurodegeneration and cardiovascular disease. Owing to the high concentration of calcium within the ER, studying this subcellular compartment requires tools that are optimized for these conditions. To develop a single-fluorophore genetically encoded calcium indicator for this organelle, we targeted a low affinity variant of GCaMP3 to the ER lumen (GCaMPer (10.19)). A set of viral vectors was constructed to express GCaMPer in human neuroblastoma cells, rat primary cortical neurons, and human induced pluripotent stem cell-derived cardiomyocytes. We observed dynamic changes in GCaMPer (10.19) fluorescence in response to pharmacologic manipulations of the ER calcium store. Additionally, periodic calcium efflux from the ER was observed during spontaneous beating of cardiomyocytes. GCaMPer (10.19) has utility in imaging ER calcium in living cells and providing insight into luminal calcium dynamics under physiologic and pathologic states.

  2. Restricting calcium currents is required for correct fiber type specification in skeletal muscle

    PubMed Central

    Sultana, Nasreen; Dienes, Beatrix; Benedetti, Ariane; Tuluc, Petronel; Szentesi, Peter; Sztretye, Monika; Rainer, Johannes; Hess, Michael W.; Schwarzer, Christoph; Obermair, Gerald J.; Csernoch, Laszlo

    2016-01-01

    ABSTRACT Skeletal muscle excitation-contraction (EC) coupling is independent of calcium influx. In fact, alternative splicing of the voltage-gated calcium channel CaV1.1 actively suppresses calcium currents in mature muscle. Whether this is necessary for normal development and function of muscle is not known. However, splicing defects that cause aberrant expression of the calcium-conducting developmental CaV1.1e splice variant correlate with muscle weakness in myotonic dystrophy. Here, we deleted CaV1.1 (Cacna1s) exon 29 in mice. These mice displayed normal overall motor performance, although grip force and voluntary running were reduced. Continued expression of the developmental CaV1.1e splice variant in adult mice caused increased calcium influx during EC coupling, altered calcium homeostasis, and spontaneous calcium sparklets in isolated muscle fibers. Contractile force was reduced and endurance enhanced. Key regulators of fiber type specification were dysregulated and the fiber type composition was shifted toward slower fibers. However, oxidative enzyme activity and mitochondrial content declined. These findings indicate that limiting calcium influx during skeletal muscle EC coupling is important for the secondary function of the calcium signal in the activity-dependent regulation of fiber type composition and to prevent muscle disease. PMID:26965373

  3. Oxalate induces mitochondrial dysfunction and disrupts redox homeostasis in a human monocyte derived cell line.

    PubMed

    Patel, Mikita; Yarlagadda, Vidhush; Adedoyin, Oreoluwa; Saini, Vikram; Assimos, Dean G; Holmes, Ross P; Mitchell, Tanecia

    2018-05-01

    Monocytes/macrophages are thought to be recruited to the renal interstitium during calcium oxalate (CaOx) kidney stone disease for crystal clearance. Mitochondria play an important role in monocyte function during the immune response. We recently determined that monocytes in patients with CaOx kidney stones have decreased mitochondrial function compared to healthy subjects. The objective of this study was to determine whether oxalate, a major constituent found in CaOx kidney stones, alters cell viability, mitochondrial function, and redox homeostasis in THP-1 cells, a human derived monocyte cell line. THP-1 cells were treated with varying concentrations of CaOx crystals (insoluble form) or sodium oxalate (NaOx; soluble form) for 24h. In addition, the effect of calcium phosphate (CaP) and cystine crystals was tested. CaOx crystals decreased cell viability and induced mitochondrial dysfunction and redox imbalance in THP-1 cells compared to control cells. However, NaOx only caused mitochondrial damage and redox imbalance in THP-1 cells. In contrast, both CaP and cystine crystals did not affect THP-1 cells. Separate experiments showed that elevated oxalate also induced mitochondrial dysfunction in primary monocytes from healthy subjects. These findings suggest that oxalate may play an important role in monocyte mitochondrial dysfunction in CaOx kidney stone disease. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  4. The grapevine VvCAX3 is a cation/H+ exchanger involved in vacuolar Ca2+ homeostasis.

    PubMed

    Martins, Viviana; Carneiro, Filipa; Conde, Carlos; Sottomayor, Mariana; Gerós, Hernâni

    2017-12-01

    The grapevine VvCAX3 mediates calcium transport in the vacuole and is mostly expressed in green grape berries and upregulated by Ca 2+ , Na + and methyl jasmonate. Calcium is an essential plant nutrient with important regulatory and structural roles in the berries of grapevine (Vitis vinifera L.). On the other hand, the proton-cation exchanger CAX proteins have been shown to impact Ca 2+ homeostasis with important consequences for fruit integrity and resistance to biotic/abiotic stress. Here, the CAX gene found in transcriptomic databases as having one of the highest expressions in grapevine tissues, VvCAX3, was cloned and functionally characterized. Heterologous expression in yeast showed that a truncated version of VvCAX3 lacking its NNR autoinhibitory domain (sCAX3) restored the ability of the yeast strain to grow in 100-200 mM Ca 2+ , demonstrating a role in Ca 2+ transport. The truncated VvCAX3 was further shown to be involved in the transport of Na + , Li + , Mn 2+ and Cu 2+ in yeast cells. Subcellular localization studies using fluorescently tagged proteins confirmed VvCAX3 as a tonoplast transporter. VvCAX3 is expressed in grapevine stems, leaves, roots, and berries, especially at pea size, decreasing gradually throughout development, in parallel with the pattern of calcium accumulation in the fruit. The transcript abundance of VvCAX3 was shown to be regulated by methyl jasmonate (MeJA), Ca 2+ , and Na + in grape cell suspensions, and the VvCAX3 promotor contains several predicted cis-acting elements related to developmental and stress response processes. As a whole, the results obtained add new insights on the mechanisms involved in calcium homeostasis and intracellular compartmentation in grapevine, and indicate that VvCAX3 may be an interesting target towards the development of strategies for enhancement of grape berry properties.

  5. Dysbalance of Astrocyte Calcium under Hyperammonemic Conditions

    PubMed Central

    Haack, Nicole; Dublin, Pavel; Rose, Christine R.

    2014-01-01

    that dysbalance of astrocyte calcium homeostasis under hyperammonemic conditions is a widespread phenomenon, which might contribute to the disturbance of neurotransmission during HE. PMID:25153709

  6. Calcium homeostasis and organelle function in the pathogenesis of obesity and diabetes

    PubMed Central

    Arruda, Ana Paula; Hotamisligil, Gökhan S.

    2015-01-01

    Summary A number of chronic metabolic pathologies, including obesity, diabetes, cardiovascular disease, asthma, and cancer cluster together to present the greatest threat to human health. As research in this field has advanced, it has become clear that unresolved metabolic inflammation, organelle dysfunction, and other cellular and metabolic stresses underlie the development of these chronic metabolic diseases. However, the relationship between these systems and pathological mechanisms is poorly understood. Here, we will discuss the role of cellular Ca2+ homeostasis as a critical mechanism integrating the myriad of cellular and subcellular dysfunctional networks found in metabolic tissues such as liver and adipose tissue in the context of metabolic disease particularly in obesity and diabetes. PMID:26190652

  7. Fifty years of human space travel: implications for bone and calcium research.

    PubMed

    Smith, S M; Abrams, S A; Davis-Street, J E; Heer, M; O'Brien, K O; Wastney, M E; Zwart, S R

    2014-01-01

    Calcium and bone metabolism remain key concerns for space travelers, and ground-based models of space flight have provided a vast literature to complement the smaller set of reports from flight studies. Increased bone resorption and largely unchanged bone formation result in the loss of calcium and bone mineral during space flight, which alters the endocrine regulation of calcium metabolism. Physical, pharmacologic, and nutritional means have been used to counteract these changes. In 2012, heavy resistance exercise plus good nutritional and vitamin D status were demonstrated to reduce loss of bone mineral density on long-duration International Space Station missions. Uncertainty continues to exist, however, as to whether the bone is as strong after flight as it was before flight and whether nutritional and exercise prescriptions can be optimized during space flight. Findings from these studies not only will help future space explorers but also will broaden our understanding of the regulation of bone and calcium homeostasis on Earth.

  8. [Calcium hypothesis of Alzheimer disease].

    PubMed

    Riazantseva, M A; Mozhaeva, G N; Kaznacheeva, E V

    2012-01-01

    Alzheimer's disease is the most common neurodegenerative disorder characterized by progressive memory and cognitive abilities loss. The etiology of Alzheimer's disease is poorly understood. In this regard, there is no effective treatment for the disease. Various hypotheses to explain the nature of the pathology of Alzheimer's disease led to the development of appropriate therapeutics. Despite of decades of research and clinical trials available therapeutics, at best, can only slow down the progression of the disease, but cannot cure it. This review dedicated to the one of modern hypotheses of Alzheimer's disease pathogenesis implied the impairment of calcium homeostasis as a key event for the development of neurodegenerative processes.

  9. Effect of toluene diisocyanate on homeostasis of intracellular-free calcium in human neuroblastoma SH-SY5Y Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, P.-S.; Chiung, Y.-M.; Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan

    2006-03-01

    The mechanisms of TDI (2,4-toluene diisocyanate)-induced occupational asthma are not fully established. Previous studies have indicated that TDI induces non-specific bronchial hyperreactivity to methacholine and induces contraction of smooth muscle tissue by activating 'capsaicin-sensitive' nerves resulting asthma. Cytosolic-free calcium ion concentrations ([Ca{sup 2+}]{sub c}) are elevated when either capsaicin acts at vanilloid receptors, or methacholine at muscarinic receptors. This study therefore investigated the effects of TDI on Ca{sup 2+} mobilization in human neuroblastoma SH-SY5Y cells. TDI was found to elevate [Ca{sup 2+}]{sub c} by releasing Ca{sup 2+} from the intracellular stores and extracellular Ca{sup 2+} influx. 500 {mu}M TDI inducedmore » a net [Ca{sup 2+}]{sub c} increase of 112 {+-} 8 and 78 {+-} 6 nM in the presence and absence of extracellular Ca{sup 2+}, respectively. In Ca{sup 2+}-free buffer, TDI induced Ca{sup 2+} release from internal stores to reduce their Ca{sup 2+} content and this reduction was evidenced by a suppression occurring on the [Ca{sup 2+}]{sub c} rise induced by thapsigargin, ionomycin, and methacholine after TDI incubation. In the presence of extracellular Ca{sup 2+}, simultaneous exposure to TDI and methacholine led a higher level of [Ca{sup 2+}]{sub c} compared to single methacholine stimulation, that might explain that TDI induces bronchial hyperreactivity to methacholine. We conclude that TDI is capable of interfering the [Ca{sup 2+}]{sub c} homeostasis including releasing Ca{sup 2+} from internal stores and inducing extracellular Ca{sup 2+} influx. The interaction of this novel character and bronchial hyperreactivity need further investigation.« less

  10. SLP-2 negatively modulates mitochondrial sodium-calcium exchange.

    PubMed

    Da Cruz, Sandrine; De Marchi, Umberto; Frieden, Maud; Parone, Philippe A; Martinou, Jean-Claude; Demaurex, Nicolas

    2010-01-01

    Mitochondria play a major role in cellular calcium homeostasis. Despite decades of studies, the molecules that mediate and regulate the transport of calcium ions in and out of the mitochondrial matrix remain unknown. Here, we investigate whether SLP-2, an inner membrane mitochondrial protein of unknown function, modulates the activity of mitochondrial Ca(2+) transporters. In HeLa cells depleted of SLP-2, the amplitude and duration of mitochondrial Ca(2+) elevations evoked by agonists were decreased compared to control cells. SLP-2 depletion increased the rates of calcium extrusion from mitochondria. This effect disappeared upon Na(+) removal or addition of CGP-37157, an inhibitor of the mitochondrial Na(+)/Ca(2+) exchanger, and persisted in permeabilized cells exposed to a fixed cytosolic Na(+) and Ca(2+) concentration. The rates of mitochondrial Ca(2+) extrusion were prolonged in SLP-2 over-expressing cells, independently of the amplitude of mitochondrial Ca(2+) elevations. The amplitude of cytosolic Ca(2+) elevations was increased by SLP-2 depletion and decreased by SLP-2 over-expression. These data show that SLP-2 modulates mitochondrial calcium extrusion, thereby altering the ability of mitochondria to buffer Ca(2+) and to shape cytosolic Ca(2+) signals. 2009 Elsevier Ltd. All rights reserved.

  11. Meals and dephytinization affect calcium and zinc absorption in Nigerian children with rickets

    USDA-ARS?s Scientific Manuscript database

    Nutritional rickets resulting from calcium insufficiency is common in Nigeria, and high dietary phytate is thought to inhibit calcium and zinc absorption. We compared the effects of a high-phytate meal and enzymatic dephytinization on calcium and zinc absorption in Nigerian children with and without...

  12. ALTERATIONS OF FE HOMEOSTASIS IN RAT CARDIOVASCULAR DISEASE MODELS AND ITS CONTRIBUTION TO CARDIOPULMONARY TOXICITY

    EPA Science Inventory

    Introduction: Fe homeostasis can be disrupted in human cardiovascular diseases (CVD). We addressed how dysregulation of Fe homeostasis affected the pulmonary inflammation/oxidative stress response and disease progression after exposure to Libby amphibole (LA), an asbestifonn mine...

  13. The impact of mitochondrial endosymbiosis on the evolution of calcium signaling.

    PubMed

    Blackstone, Neil W

    2015-03-01

    At high concentrations, calcium has detrimental effects on biological systems. Life likely arose in a low calcium environment, and the first cells evolved mechanisms to maintain this environment internally. Bursts of calcium influx followed by efflux or sequestration thus developed in a functional context. For example, in proto-cells with exterior energy-converting membranes, such bursts could be used to depolarize the membrane. In this way, proto-cells could maintain maximal phosphorylation (metabolic state 3) and moderate levels of reactive oxygen species (ROS), while avoiding the resting state (metabolic state 4) and high levels of ROS. This trait is likely a shared primitive characteristic of prokaryotes. When eukaryotes evolved, the α-proteobacteria that gave rise to proto-mitochondria inhabited a novel environment, the interior of the proto-eukaryote that had a low calcium concentration. In this environment, metabolic homeostasis was difficult to maintain, and there were inherent risks from ROS, yet depolarizing the proto-mitochondrial membrane by calcium influx was challenging. To maintain metabolic state 3, proto-mitochondria were required to congregate near calcium influx points in the proto-eukaryotic membrane. This behavior, resulting in embryonic forms of calcium signaling, may have occurred immediately after the initiation of the endosymbiosis. Along with ROS, calcium may have served as one of the key forms of crosstalk among the community of prokaryotes that led to the eukaryotic cell. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Synaptic Calcium Regulation in Hair Cells of the Chicken Basilar Papilla

    PubMed Central

    Im, Gi Jung; Moskowitz, Howard S.; Lehar, Mohammed; Hiel, Hakim

    2014-01-01

    Cholinergic inhibition of hair cells occurs by activation of calcium-dependent potassium channels. A near-membrane postsynaptic cistern has been proposed to serve as a store from which calcium is released to supplement influx through the ionotropic ACh receptor. However, the time and voltage dependence of acetylcholine (ACh)-evoked potassium currents reveal a more complex relationship between calcium entry and release from stores. The present work uses voltage steps to regulate calcium influx during the application of ACh to hair cells in the chicken basilar papilla. When calcium influx was terminated at positive membrane potential, the ACh-evoked potassium current decayed exponentially over ∼100 ms. However, at negative membrane potentials, this current exhibited a secondary rise in amplitude that could be eliminated by dihydropyridine block of the voltage-gated calcium channels of the hair cell. Calcium entering through voltage-gated channels may transit through the postsynaptic cistern, since ryanodine and sarcoendoplasmic reticulum calcium-ATPase blockers altered the time course and magnitude of this secondary, voltage-dependent contribution to ACh-evoked potassium current. Serial section electron microscopy showed that efferent and afferent synaptic structures are juxtaposed, supporting the possibility that voltage-gated influx at afferent ribbon synapses influences calcium homeostasis during long-lasting cholinergic inhibition. In contrast, spontaneous postsynaptic currents (“minis”) resulting from stochastic efferent release of ACh were made briefer by ryanodine, supporting the hypothesis that the synaptic cistern serves primarily as a calcium barrier and sink during low-level synaptic activity. Hypolemmal cisterns such as that at the efferent synapse of the hair cell can play a dynamic role in segregating near-membrane calcium for short-term and long-term signaling. PMID:25505321

  15. Genetics of hereditary disorders of magnesium homeostasis.

    PubMed

    Schlingmann, Karl P; Konrad, Martin; Seyberth, Hannsjörg W

    2004-01-01

    Magnesium plays an essential role in many biochemical and physiological processes. Homeostasis of magnesium is tightly regulated and depends on the balance between intestinal absorption and renal excretion. During the last decades, various hereditary disorders of magnesium handling have been clinically characterized and genetic studies in affected individuals have led to the identification of some molecular components of cellular magnesium transport. In addition to these hereditary forms of magnesium deficiency, recent studies have revealed a high prevalence of latent hypomagnesemia in the general population. This finding is of special interest in view of the association between hypomagnesemia and common chronic diseases such as diabetes, coronary heart disease, hypertension, and asthma. However, valuable methods for the diagnosis of body and tissue magnesium deficiency are still lacking. This review focuses on clinical and genetic aspects of hereditary disorders of magnesium homeostasis. We will review primary defects of epithelial magnesium transport, disorders associated with defects in Ca(2+)/ Mg(2+) sensing, as well as diseases characterized by renal salt wasting and hypokalemic alkalosis, with special emphasis on disturbed magnesium homeostasis.

  16. Efficacy of desensitizing products containing 8% arginine and calcium carbonate for hypersensitivity relief in MIH-affected molars: an 8-week clinical study.

    PubMed

    Bekes, Katrin; Heinzelmann, Karolin; Lettner, Stefan; Schaller, Hans-Günter

    2017-09-01

    The objective of this study was to compare the efficacy in reducing hypersensitivity in molar incisor hypomineralization (MIH)-affected molars immediately and over 8 weeks combining a single in-office application and a homed-based program with desensitizing products containing 8% arginine and calcium carbonate. Nineteen children with at least one MIH-affected molar with hypersensitivity were included. Hypersensitivity was assessed with an evaporative (air) stimulus and a tactile stimulus. Each child received a single in-office treatment with a desensitizing paste containing 8% arginine and calcium carbonate (elmex Sensitive Professional desensitizing paste), followed by 8 weeks of brushing twice daily with a desensitizing toothpaste containing 8% arginine, calcium carbonate with 1450 ppm fluoride (elmex Sensitive Professional toothpaste), using the elmex Sensitive Professional toothbrush. Additionally, the corresponding mouthwash (elmex Sensitive Professional mouthwash) was used. Clinical assessments were made at baseline, immediately after the in-office treatment and after 1, 2, 4 and 8 weeks of brushing twice daily. Fifty-six molars with an air blast hypersensitivity score of 2 or 3 (Schiff Cold Air Sensitivity Scale) were included. Application of the desensitizing paste decreased hypersensitivity significantly immediately and throughout the 8 weeks recalls (p < 0.001). In conclusion, 8% arginine and calcium carbonate were able to reduce hypersensitivity successfully during this 8-week trial. Hypersensitivity is a major complaint in patients with MIH. This is the first study evaluating the desensitizing effect of a desensitizing paste containing 8% arginine and calcium carbonate in patients with MIH.

  17. Cortical firing and sleep homeostasis.

    PubMed

    Vyazovskiy, Vladyslav V; Olcese, Umberto; Lazimy, Yaniv M; Faraguna, Ugo; Esser, Steve K; Williams, Justin C; Cirelli, Chiara; Tononi, Giulio

    2009-09-24

    The need to sleep grows with the duration of wakefulness and dissipates with time spent asleep, a process called sleep homeostasis. What are the consequences of staying awake on brain cells, and why is sleep needed? Surprisingly, we do not know whether the firing of cortical neurons is affected by how long an animal has been awake or asleep. Here, we found that after sustained wakefulness cortical neurons fire at higher frequencies in all behavioral states. During early NREM sleep after sustained wakefulness, periods of population activity (ON) are short, frequent, and associated with synchronous firing, while periods of neuronal silence are long and frequent. After sustained sleep, firing rates and synchrony decrease, while the duration of ON periods increases. Changes in firing patterns in NREM sleep correlate with changes in slow-wave activity, a marker of sleep homeostasis. Thus, the systematic increase of firing during wakefulness is counterbalanced by staying asleep.

  18. IMPAIRMENT OF CALCIUM HOMEOSTASIS BY HEXACHLOROBENZENE (HCB) EXPOSURE IN FISCHER 344 RATS (JOURNAL VERSION)

    EPA Science Inventory

    Human exposure to hexachlorobenzene (HCB) has resulted in demineralization of bone with osteoporosis resulting. Experiments were undertaken to investigate the effects of HCB on the homeostatic mechanism of calcium metabolism. Fischer 344 rats were dosed with 0, 0.1, 1.0, 10.0 or ...

  19. Timing of the calcium intake and effect of calcium deficiency on behaviour and egg laying in captive great tits, Parus major.

    PubMed

    Graveland, J; Berends, A E

    1997-01-01

    The calcium demand of egg-laying birds is much higher than in other vertebrates during reproduction. We showed elsewhere that a low level of calcium availability can greatly affect the eggshell quality and reproduction of free-living passerines. However, there are few data on calcium demand and calcium intake in relation to egg laying and behaviour and egg-laying performance under conditions of calcium shortage in nondomesticated birds. We examined these aspects in an experiment with captive great tits, Parus major, on a diet deficient in calcium, with or without snail shells as an additional calcium source. More than 90% of the calcium intake for egg production took place during the egg-laying period. Females ingested about 1.7 times as much calcium as they deposited in eggshells. Removing the snail shells after the first egg resulted in eggshell defects and interruptions of laying after 1-3 d. Females without snail shells doubled their searching effort and started to burrow in the soil and to eat sand, small stones, and their own eggs. Most calcium was consumed in the evening, probably to supplement the calcium available from the medullary bone with an additional calcium source in the gut during eggshell formation. The results demonstrated that eggshell formation requires accurate timing of the calcium intake and that obtaining sufficient calcium is time-consuming, even in calcium-rich environments. These factors pertaining to calcium intake greatly affect the ability of birds to collect sufficient calcium for eggshell formation in calcium-poor areas.

  20. Pyrazoleamide compounds are potent antimalarials that target Na+ homeostasis in intraerythrocytic Plasmodium falciparum

    PubMed Central

    Vaidya, Akhil B.; Morrisey, Joanne M.; Zhang, Zhongsheng; Das, Sudipta; Daly, Thomas M.; Otto, Thomas D.; Spillman, Natalie J.; Wyvratt, Matthew; Siegl, Peter; Marfurt, Jutta; Wirjanata, Grennady; Sebayang, Boni F.; Price, Ric N.; Chatterjee, Arnab; Nagle, Advait; Stasiak, Marcin; Charman, Susan A.; Angulo-Barturen, Iñigo; Ferrer, Santiago; Belén Jiménez-Díaz, María; Martínez, María Santos; Gamo, Francisco Javier; Avery, Vicky M.; Ruecker, Andrea; Delves, Michael; Kirk, Kiaran; Berriman, Matthew; Kortagere, Sandhya; Burrows, Jeremy; Fan, Erkang; Bergman, Lawrence W.

    2014-01-01

    The quest for new antimalarial drugs, especially those with novel modes of action, is essential in the face of emerging drug-resistant parasites. Here we describe a new chemical class of molecules, pyrazoleamides, with potent activity against human malaria parasites and showing remarkably rapid parasite clearance in an in vivo model. Investigations involving pyrazoleamide-resistant parasites, whole-genome sequencing and gene transfers reveal that mutations in two proteins, a calcium-dependent protein kinase (PfCDPK5) and a P-type cation-ATPase (PfATP4), are necessary to impart full resistance to these compounds. A pyrazoleamide compound causes a rapid disruption of Na+ regulation in blood-stage Plasmodium falciparum parasites. Similar effect on Na+ homeostasis was recently reported for spiroindolones, which are antimalarials of a chemical class quite distinct from pyrazoleamides. Our results reveal that disruption of Na+ homeostasis in malaria parasites is a promising mode of antimalarial action mediated by at least two distinct chemical classes. PMID:25422853

  1. The control of calcium metabolism by parathyroid hormone, calcitonin and vitamin D

    NASA Technical Reports Server (NTRS)

    Potts, J. T., Jr.

    1976-01-01

    Advances in analysis of chemistry and physiology of parathyroid hormone, calcitonin, and Vitamin D are described along with development of techniques in radioassay methods. Emphasis is placed on assessment of normal and abnormal patterns of secretion of these hormones in specific relation to the physiological adaptations of weightlessness and space flight. Related diseases that involve perturbations in normal skeletal and calcium homeostasis are also considered.

  2. Effect of anions or foods on absolute bioavailability of calcium from calcium salts in mice by pharmacokinetics.

    PubMed

    Ueda, Yukari; Taira, Zenei

    2013-01-01

    We studied the absolute bioavailability of calcium from calcium L-lactate in mice using pharmacokinetics, and reviewed the absolute bioavailability of calcium from three other calcium salts in mice previously studied: calcium chloride, calcium acetate, and calcium ascorbate. The results showed that calcium metabolism is linear between intravenous administration of 15 mg/kg and 30 mg/kg, and is not affected by anions. Results after oral calcium administration of 150 mg/kg showed that the intestinal absorption process was significantly different among the four calcium salts. The rank of absolute bioavailability of calcium was calcium ascorbate > calcium L-lactate ≥ calcium acetate > calcium chloride. The mean residence time (MRTab) of calcium from calcium ascorbate (32.2 minutes) in the intestinal tract was much longer than that from calcium L-lactate (9.5 minutes), calcium acetate (15.0 minutes) and calcium chloride (13.6 minutes). Furthermore, the foods di-D-fructo-furanose-1,2':2,3'-dianhydride, sudachi (Citrus sudachi) juice, and moromi-su (a Japanese vinegar) increased the absolute bioavailability of calcium from calcium chloride by 2.46-fold, 2.86-fold, and 1.23-fold, respectively, and prolonged MRTab by 48.5 minutes, 43.1 minutes, and 44.9 minutes, respectively. In conclusion, the prolonged MRTab of calcium in the intestinal tract by anion or food might cause the increased absorbability of calcium.

  3. Effect of anions or foods on absolute bioavailability of calcium from calcium salts in mice by pharmacokinetics

    PubMed Central

    Ueda, Yukari; Taira, Zenei

    2013-01-01

    We studied the absolute bioavailability of calcium from calcium L-lactate in mice using pharmacokinetics, and reviewed the absolute bioavailability of calcium from three other calcium salts in mice previously studied: calcium chloride, calcium acetate, and calcium ascorbate. The results showed that calcium metabolism is linear between intravenous administration of 15 mg/kg and 30 mg/kg, and is not affected by anions. Results after oral calcium administration of 150 mg/kg showed that the intestinal absorption process was significantly different among the four calcium salts. The rank of absolute bioavailability of calcium was calcium ascorbate > calcium L-lactate ≥ calcium acetate > calcium chloride. The mean residence time (MRTab) of calcium from calcium ascorbate (32.2 minutes) in the intestinal tract was much longer than that from calcium L-lactate (9.5 minutes), calcium acetate (15.0 minutes) and calcium chloride (13.6 minutes). Furthermore, the foods di-D-fructo-furanose-1,2′:2,3′-dianhydride, sudachi (Citrus sudachi) juice, and moromi-su (a Japanese vinegar) increased the absolute bioavailability of calcium from calcium chloride by 2.46-fold, 2.86-fold, and 1.23-fold, respectively, and prolonged MRTab by 48.5 minutes, 43.1 minutes, and 44.9 minutes, respectively. In conclusion, the prolonged MRTab of calcium in the intestinal tract by anion or food might cause the increased absorbability of calcium. PMID:27186137

  4. Alcohol disrupts sleep homeostasis.

    PubMed

    Thakkar, Mahesh M; Sharma, Rishi; Sahota, Pradeep

    2015-06-01

    Alcohol is a potent somnogen and one of the most commonly used "over the counter" sleep aids. In healthy non-alcoholics, acute alcohol decreases sleep latency, consolidates and increases the quality (delta power) and quantity of NREM sleep during the first half of the night. However, sleep is disrupted during the second half. Alcoholics, both during drinking periods and during abstinences, suffer from a multitude of sleep disruptions manifested by profound insomnia, excessive daytime sleepiness, and altered sleep architecture. Furthermore, subjective and objective indicators of sleep disturbances are predictors of relapse. Finally, within the USA, it is estimated that societal costs of alcohol-related sleep disorders exceeds $18 billion. Thus, although alcohol-associated sleep problems have significant economic and clinical consequences, very little is known about how and where alcohol acts to affect sleep. In this review, we have described our attempts to unravel the mechanism of alcohol-induced sleep disruptions. We have conducted a series of experiments using two different species, rats and mice, as animal models. We performed microdialysis, immunohistochemical, pharmacological, sleep deprivation and lesion studies which suggest that the sleep-promoting effects of alcohol may be mediated via alcohol's action on the mediators of sleep homeostasis: adenosine (AD) and the wake-promoting cholinergic neurons of the basal forebrain (BF). Alcohol, via its action on AD uptake, increases extracellular AD resulting in the inhibition of BF wake-promoting neurons. Since binge alcohol consumption is a highly prevalent pattern of alcohol consumption and disrupts sleep, we examined the effects of binge drinking on sleep-wakefulness. Our results suggest that disrupted sleep homeostasis may be the primary cause of sleep disruption observed following binge drinking. Finally, we have also shown that sleep disruptions observed during acute withdrawal, are caused due to impaired

  5. Safety assessment of the calcium-binding protein, apoaequorin, expressed by Escherichia coli.

    PubMed

    Moran, Daniel L; Tetteh, Afua O; Goodman, Richard E; Underwood, Mark Y

    2014-07-01

    Calcium-binding proteins are ubiquitous modulators of cellular activity and function. Cells possess numerous calcium-binding proteins that regulate calcium concentration in the cytosol by buffering excess free calcium ion. Disturbances in intracellular calcium homeostasis are at the heart of many age-related conditions making these proteins targets for therapeutic intervention. A calcium-binding protein, apoaequorin, has shown potential utility in a broad spectrum of applications for human health and well-being. Large-scale recombinant production of the protein has been successful; enabling further research and development and commercialization efforts. Previous work reported a 90-day subchronic toxicity test that demonstrated this protein has no toxicity by oral exposure in Sprague-Dawley rodents. The current study assesses the allergenic potential of the purified protein using bioinformatic analysis and simulated gastric digestion. The results from the bioinformatics searches with the apoaequorin sequence show the protein is not a known allergen and not likely to cross-react with known allergens. Apoaequorin is easily digested by pepsin, a characteristic commonly exhibited by many non-allergenic dietary proteins. From these data, there is no added concern of safety due to unusual stability of the protein by ingestion. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. The effects of vitamin D and calcium supplementation on pancreatic beta cell function, insulin sensitivity and glycemia in adults at high risk for diabetes. The CaDDM Randomized Controlled Trial

    USDA-ARS?s Scientific Manuscript database

    Suboptimal vitamin D and calcium status has been associated with higher risk of type 2 diabetes in observational studies but evidence from trials is lacking. The objective of this trial was to determine whether vitamin D supplementation, with or without calcium, improves glucose homeostasis in adult...

  7. FM dyes enter via a store-operated calcium channel and modify calcium signaling of cultured astrocytes

    PubMed Central

    Li, Dongdong; Hérault, Karine; Oheim, Martin; Ropert, Nicole

    2009-01-01

    The amphiphilic fluorescent styryl pyridinium dyes FM1-43 and FM4-64 are used to probe activity-dependent synaptic vesicle cycling in neurons. Cultured astrocytes can internalize FM1-43 and FM4-64 inside vesicles but their uptake is insensitive to the elevation of cytosolic calcium (Ca2+) concentration and the underlying mechanism remains unclear. Here we used total internal reflection fluorescence microscopy and pharmacological tools to study the mechanisms of FM4-64 uptake into cultured astrocytes from mouse neocortex. Our data show that: (i) endocytosis is not a major route for FM4-64 uptake into astrocytes; (ii) FM4-64 enters astrocytes through an aqueous pore and strongly affects Ca2+ homeostasis; (iii) partitioning of FM4-64 into the outer leaflet of the plasma membrane results in a facilitation of store-operated Ca2+ entry (SOCE) channel gating; (iv) FM4-64 permeates and competes with Ca2+ for entry through a SOCE channel; (v) intracellular FM4-64 mobilizes Ca2+ from the endoplasmic reticulum stores, conveying a positive feedback to activate SOCE and to sustain dye uptake into astrocytes. Our study demonstrates that FM dyes are not markers of cycling vesicles in astrocytes and calls for a careful interpretation of FM fluorescence. PMID:20007370

  8. Regulation of Blood Pressure and Salt Homeostasis by Endothelin

    PubMed Central

    KOHAN, DONALD E.; ROSSI, NOREEN F.; INSCHO, EDWARD W.; POLLOCK, DAVID M.

    2011-01-01

    Endothelin (ET) peptides and their receptors are intimately involved in the physiological control of systemic blood pressure and body Na homeostasis, exerting these effects through alterations in a host of circulating and local factors. Hormonal systems affected by ET include natriuretic peptides, aldosterone, catecholamines, and angiotensin. ET also directly regulates cardiac output, central and peripheral nervous system activity, renal Na and water excretion, systemic vascular resistance, and venous capacitance. ET regulation of these systems is often complex, sometimes involving opposing actions depending on which receptor isoform is activated, which cells are affected, and what other prevailing factors exist. A detailed understanding of this system is important; disordered regulation of the ET system is strongly associated with hypertension and dysregulated extracellular fluid volume homeostasis. In addition, ET receptor antagonists are being increasingly used for the treatment of a variety of diseases; while demonstrating benefit, these agents also have adverse effects on fluid retention that may substantially limit their clinical utility. This review provides a detailed analysis of how the ET system is involved in the control of blood pressure and Na homeostasis, focusing primarily on physiological regulation with some discussion of the role of the ET system in hypertension. PMID:21248162

  9. Correlation of Salivary Statherin and Calcium Levels with Dental Calculus Formation: A Preliminary Study.

    PubMed

    Pateel, Deepak Gowda Sadashivappa; Gunjal, Shilpa; Math, Swarna Y; Murugeshappa, Devarasa Giriyapura; Nair, Sreejith Muraleedharan

    2017-01-01

    Salivary constituents have a wide range of functions including oral calcium homeostasis. Salivary proteins such as statherin inhibit crystal growth of calcium phosphate in supersaturated solutions and interact with several oral bacteria to adsorb on hydroxyapatite. Concurrently, saliva, which is supersaturated with respect to calcium phosphates, is the driving force for plaque mineralization and formation of calculus. Thus, the aim of the present study was to estimate and correlate salivary statherin and calcium concentration to the dental calculus formation. A cross-sectional study was conducted to assess the relationship between salivary statherin, calcium, and dental calculus among 70 subjects, aged 20-55 years. Subjects were divided into 3 groups based on the calculus scores as interpreted by Calculus Index which was followed by collection of whole saliva using Super•SAL™. Salivary calcium levels were assessed by calorimetric method using Calcium Assay kit (Cayman Chemical, Michigan, USA) and statherin levels by using ELISA Kit (Cusabio Biotech). Statherin levels showed a weak negative correlation with the calcium levels and with calculus formation. The mean salivary statherin and calcium concentration were found to be 0.96  μ g/ml and 3.87 mg/ml, respectively. Salivary statherin levels differed significantly among the three groups ( p < 0.05). Our preliminary data indicates that statherin could possibly play a role in the formation of dental calculus.

  10. Prevention of nutritional rickets in Nigerian children with dietary calcium supplementation.

    PubMed

    Thacher, Tom D; Fischer, Philip R; Isichei, Christian O; Zoakah, Ayuba I; Pettifor, John M

    2012-05-01

    Nutritional rickets in Nigerian children usually results from dietary calcium insufficiency. Typical dietary calcium intakes in African children are about 200mg daily (approximately 20-28% of US RDAs for age). We sought to determine if rickets could be prevented with supplemental calcium or with an indigenous food rich in calcium. We enrolled Nigerian children aged 12 to 18months from three urban communities. Two communities were assigned calcium, either as calcium carbonate (400mg) or ground fish (529±109mg) daily, while children in all three communities received vitamin A (2500IU) daily as placebo. Serum markers of mineral homeostasis and forearm bone density (pDEXA) were measured and radiographs were obtained at enrollment and after 18months of supplementation. The overall prevalence of radiographic rickets at baseline was 1.2% and of vitamin D deficiency [serum 25(OH)D<12ng/ml] 5.4%. Of 647 children enrolled, 390 completed the 18-month follow-up. Rickets developed in 1, 1, and 2 children assigned to the calcium tablet, ground fish, and control groups, respectively (approximate incidence 6.4/1000 children/year between 1 and 3years of age). Children who developed rickets in the calcium-supplemented groups had less than 50% adherence. Compared with the group that received no calcium supplementation, the groups that received calcium had a greater increase in areal bone density of the distal and proximal 1/3 radius and ulna over time (P<0.04). We conclude that calcium supplementation increased areal bone density at the radius and ulna, but a larger sample size would be required to determine its effect on the incidence of rickets. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Synaptic calcium regulation in hair cells of the chicken basilar papilla.

    PubMed

    Im, Gi Jung; Moskowitz, Howard S; Lehar, Mohammed; Hiel, Hakim; Fuchs, Paul Albert

    2014-12-10

    Cholinergic inhibition of hair cells occurs by activation of calcium-dependent potassium channels. A near-membrane postsynaptic cistern has been proposed to serve as a store from which calcium is released to supplement influx through the ionotropic ACh receptor. However, the time and voltage dependence of acetylcholine (ACh)-evoked potassium currents reveal a more complex relationship between calcium entry and release from stores. The present work uses voltage steps to regulate calcium influx during the application of ACh to hair cells in the chicken basilar papilla. When calcium influx was terminated at positive membrane potential, the ACh-evoked potassium current decayed exponentially over ∼100 ms. However, at negative membrane potentials, this current exhibited a secondary rise in amplitude that could be eliminated by dihydropyridine block of the voltage-gated calcium channels of the hair cell. Calcium entering through voltage-gated channels may transit through the postsynaptic cistern, since ryanodine and sarcoendoplasmic reticulum calcium-ATPase blockers altered the time course and magnitude of this secondary, voltage-dependent contribution to ACh-evoked potassium current. Serial section electron microscopy showed that efferent and afferent synaptic structures are juxtaposed, supporting the possibility that voltage-gated influx at afferent ribbon synapses influences calcium homeostasis during long-lasting cholinergic inhibition. In contrast, spontaneous postsynaptic currents ("minis") resulting from stochastic efferent release of ACh were made briefer by ryanodine, supporting the hypothesis that the synaptic cistern serves primarily as a calcium barrier and sink during low-level synaptic activity. Hypolemmal cisterns such as that at the efferent synapse of the hair cell can play a dynamic role in segregating near-membrane calcium for short-term and long-term signaling. Copyright © 2014 the authors 0270-6474/14/3416688-10$15.00/0.

  12. Intestinal lamina propria dendritic cells maintain T cell homeostasis but do not affect commensalism

    PubMed Central

    Welty, Nathan E.; Staley, Christopher; Ghilardi, Nico; Sadowsky, Michael J.; Igyártó, Botond Z.

    2013-01-01

    Dendritic cells (DCs) in the intestinal lamina propria (LP) are composed of two CD103+ subsets that differ in CD11b expression. We report here that Langerin is expressed by human LP DCs and that transgenic human langerin drives expression in CD103+CD11b+ LP DCs in mice. This subset was ablated in huLangerin-DTA mice, resulting in reduced LP Th17 cells without affecting Th1 or T reg cells. Notably, cognate DC–T cell interactions were not required for Th17 development, as this response was intact in huLangerin-Cre I-Aβfl/fl mice. In contrast, responses to intestinal infection or flagellin administration were unaffected by the absence of CD103+CD11b+ DCs. huLangerin-DTA x BatF3−/− mice lacked both CD103+ LP DC subsets, resulting in defective gut homing and fewer LP T reg cells. Despite these defects in LP DCs and resident T cells, we did not observe alterations of intestinal microbial communities. Thus, CD103+ LP DC subsets control T cell homeostasis through both nonredundant and overlapping mechanisms. PMID:24019552

  13. The Dehydratase ADT3 Affects ROS Homeostasis and Cotyledon Development1[OPEN

    PubMed Central

    Para, Alessia; Muhammad, DurreShahwar; Naldrett, Michael J.; Warpeha, Katherine M.

    2016-01-01

    During the transition from seed to seedling, emerging embryos strategically balance available resources between building up defenses against environmental threats and initiating the developmental program that promotes the switch to autotrophy. We present evidence of a critical role for the phenylalanine (Phe) biosynthetic activity of AROGENATE DEHYDRATASE3 (ADT3) in coordinating reactive oxygen species (ROS) homeostasis and cotyledon development in etiolated Arabidopsis (Arabidopsis thaliana) seedlings. We show that ADT3 is expressed in the cotyledon and shoot apical meristem, mainly in the cytosol, and that the epidermis of adt3 cotyledons contains higher levels of ROS. Genome-wide proteomics of the adt3 mutant revealed a general down-regulation of plastidic proteins and ROS-scavenging enzymes, corroborating the hypothesis that the ADT3 supply of Phe is required to control ROS concentration and distribution to protect cellular components. In addition, loss of ADT3 disrupts cotyledon epidermal patterning by affecting the number and expansion of pavement cells and stomata cell fate specification; we also observed severe alterations in mesophyll cells, which lack oil bodies and normal plastids. Interestingly, up-regulation of the pathway leading to cuticle production is accompanied by an abnormal cuticle structure and/or deposition in the adt3 mutant. Such impairment results in an increase in cell permeability and provides a link to understand the cell defects in the adt3 cotyledon epidermis. We suggest an additional role of Phe in supplying nutrients to the young seedling. PMID:27540109

  14. Heterodimerization of Arabidopsis calcium/proton exchangers contributes to regulation of guard cell dynamics and plant defense responses

    USDA-ARS?s Scientific Manuscript database

    "Arabidopsis thaliana" cation exchangers (CAX1 and CAX3) are closely related tonoplast-localized calcium/proton (Ca(2+)/H+) antiporters that contribute to cellular Ca(2+) homeostasis. CAX1 and CAX3 were previously shown to interact in yeast; however, the function of this complex in plants has remain...

  15. The Arabidopsis WRINKLED1 transcription factor affects auxin homeostasis in roots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kong, Que; Ma, Wei; Yang, Haibing

    WRINKLED1 (WRI1) is a key transcriptional regulator of fatty acid biosynthesis genes in diverse oil-containing tissues. Loss of function of Arabidopsis WRI1 leads to a reduction in the expression of genes for fatty acid biosynthesis and glycolysis, and concomitant strong reduction of seed oil content. The wri1-1 loss-of-function mutant shows reduced primary root growth and decreased acidification of the growth medium. The content of a conjugated form of the plant growth hormone auxin, indole-3-acetic acid (IAA)-Asp, was higher in wri1-1 plants compared with the wild-type. GH3.3, a gene encoding an enzyme involved in auxin degradation, displayed higher expression in themore » wri1-1 mutant. EMSAs demonstrated that AtWRI1 bound to the promoter of GH3.3. Specific AtWRI1-binding motifs were identified in the promoter of GH3.3. In addition, wri1-1 displayed decreased auxin transport. Expression of some PIN genes, which encode IAA carrier proteins, was reduced in wri1-1 plants as well. Correspondingly, AtWRI1 bound to the promoter regions of some PIN genes. It is well known that auxin exerts its maximum effects at a specific, optimal concentration in roots requiring a finely balanced auxin homeostasis. This process appears to be disrupted when the expression of WRI1 and in turn a subset of its target genes are misregulated, highlighting a role for WRI1 in root auxin homeostasis.« less

  16. The Arabidopsis WRINKLED1 transcription factor affects auxin homeostasis in roots

    DOE PAGES

    Kong, Que; Ma, Wei; Yang, Haibing; ...

    2017-08-26

    WRINKLED1 (WRI1) is a key transcriptional regulator of fatty acid biosynthesis genes in diverse oil-containing tissues. Loss of function of Arabidopsis WRI1 leads to a reduction in the expression of genes for fatty acid biosynthesis and glycolysis, and concomitant strong reduction of seed oil content. The wri1-1 loss-of-function mutant shows reduced primary root growth and decreased acidification of the growth medium. The content of a conjugated form of the plant growth hormone auxin, indole-3-acetic acid (IAA)-Asp, was higher in wri1-1 plants compared with the wild-type. GH3.3, a gene encoding an enzyme involved in auxin degradation, displayed higher expression in themore » wri1-1 mutant. EMSAs demonstrated that AtWRI1 bound to the promoter of GH3.3. Specific AtWRI1-binding motifs were identified in the promoter of GH3.3. In addition, wri1-1 displayed decreased auxin transport. Expression of some PIN genes, which encode IAA carrier proteins, was reduced in wri1-1 plants as well. Correspondingly, AtWRI1 bound to the promoter regions of some PIN genes. It is well known that auxin exerts its maximum effects at a specific, optimal concentration in roots requiring a finely balanced auxin homeostasis. This process appears to be disrupted when the expression of WRI1 and in turn a subset of its target genes are misregulated, highlighting a role for WRI1 in root auxin homeostasis.« less

  17. The (pro)renin receptor and body fluid homeostasis

    PubMed Central

    Cao, Theresa

    2013-01-01

    The renin-angiotensin system (RAS) has long been established as one of the major mechanisms of hypertension through the increased levels of angiotensin (ANG) II and its resulting effect on the sympathetic nerve activity, arterial vasoconstriction, water reabsorption, and retention, etc. In the central nervous system, RAS activation affects body fluid homeostasis through increases in sympathetic nerve activity, water intake, food intake, and arginine vasopressin secretion. Previous studies, however, have shown that ANG II can be made in the brain, and it could possibly be through a new component called the (pro)renin receptor. This review intends to summarize the central and peripheral effects of the PRR on body fluid homeostasis. PMID:23678024

  18. Gravity, calcium, and bone - Update, 1989

    NASA Technical Reports Server (NTRS)

    Arnaud, Sara B.; Morey-Holton, Emily

    1990-01-01

    Recent results obtained on skeletal adaptation, calcium metabolism, and bone browth during short-term flights and ground simulated-microgravity experiments are presented. Results demonstrate that two principal components of calcium metabolism respond within days to changes in body position and to weightlessness: the calcium endocrine system and bone characteristics. Furthermore, results of recent studies imply that bone biomechanics are more severely affected by spaceflight exposures than is the bone mass.

  19. Gestational diabetes is characterized by reduced mitochondrial protein expression and altered calcium signaling proteins in skeletal muscle.

    PubMed

    Boyle, Kristen E; Hwang, Hyonson; Janssen, Rachel C; DeVente, James M; Barbour, Linda A; Hernandez, Teri L; Mandarino, Lawrence J; Lappas, Martha; Friedman, Jacob E

    2014-01-01

    The rising prevalence of gestational diabetes mellitus (GDM) affects up to 18% of pregnant women with immediate and long-term metabolic consequences for both mother and infant. Abnormal glucose uptake and lipid oxidation are hallmark features of GDM prompting us to use an exploratory proteomics approach to investigate the cellular mechanisms underlying differences in skeletal muscle metabolism between obese pregnant women with GDM (OGDM) and obese pregnant women with normal glucose tolerance (ONGT). Functional validation was performed in a second cohort of obese OGDM and ONGT pregnant women. Quantitative proteomic analysis in rectus abdominus skeletal muscle tissue collected at delivery revealed reduced protein content of mitochondrial complex I (C-I) subunits (NDUFS3, NDUFV2) and altered content of proteins involved in calcium homeostasis/signaling (calcineurin A, α1-syntrophin, annexin A4) in OGDM (n = 6) vs. ONGT (n = 6). Follow-up analyses showed reduced enzymatic activity of mitochondrial complexes C-I, C-III, and C-IV (-60-75%) in the OGDM (n = 8) compared with ONGT (n = 10) subjects, though no differences were observed for mitochondrial complex protein content. Upstream regulators of mitochondrial biogenesis and oxidative phosphorylation were not different between groups. However, AMPK phosphorylation was dramatically reduced by 75% in the OGDM women. These data suggest that GDM is associated with reduced skeletal muscle oxidative phosphorylation and disordered calcium homeostasis. These relationships deserve further attention as they may represent novel risk factors for development of GDM and may have implications on the effectiveness of physical activity interventions on both treatment strategies for GDM and for prevention of type 2 diabetes postpartum.

  20. Testosterone supplementation, glucocorticoid milieu and bone homeostasis in the ageing male.

    PubMed

    Ajdžanović, Vladimir Z; Filipović, Branko R; Šošić Jurjević, Branka T; Milošević, Verica Lj

    2017-08-01

    Male ageing is entwined with a continuous fall in free testosterone levels, which contributes to the pathogenesis of bone loss. Glucocorticoid excess, either dependent on the ageing process or iatrogenically induced, was found to additionally impair the bone structure and metabolism. Cautious testosterone supplementation in this respect may positively affect the glucocorticoid milieu and bone homeostasis, while testosterone-induced changes in the glucocorticoid output could serve as a determinant of bone-related therapeutic outcome. Namely, bone mineral content/density, the parameters of trabecular bone structure as well as bone strength are enhanced, serum calcitonin levels tend to increase, while serum osteocalcin, serum parathyroid hormone and urinary calcium decrease, all upon testosterone administration to the ageing male. In parallel, testosterone application decreases glucocorticoid secretion in the animal models of male ageing, while clinical data in this field are still inconsistent. Importantly, a physiological link exists between testosterone-induced changes in glucocorticoid levels and the tendency of bone status improvement in the ageing male. We believe that the assessment of circulating adrenocorticotropic hormone concentrations together with glucocorticoid levels, reflecting the hypothalamic-pituitary-adrenal axis feedback loop operativeness during testosterone supplementation, represents a well-balanced bone-related therapeutic update. © 2017 Société Française de Pharmacologie et de Thérapeutique.

  1. Dual actions of lindane ({gamma}-hexachlorocyclohexane) on calcium homeostasis and exocytosis in rat PC12 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heusinkveld, Harm J., E-mail: H.J.Heusinkveld@uu.n; Thomas, Gareth O.; Department of Environmental Science, Lancaster University, Lancaster LA1 4YQ

    2010-10-01

    The persistent organochlorine pesticide lindane is still abundantly found in the environment and in human and animal tissue samples. Lindane induces a wide range of adverse health effects, which are at least partially mediated via the known inhibition of GABA{sub A} and glycine receptors. Additionally, lindane has been reported to increase the basal intracellular Ca{sup 2+} concentration ([Ca{sup 2+}]{sub i}). As Ca{sup 2+} triggers many cellular processes, including cell death and vesicular neurotransmitter release (exocytosis), we investigated whether lindane affects exocytosis, Ca{sup 2+} homeostasis, production of reactive oxygen species (ROS) and cytotoxicity in neuroendocrine PC12 cells. Amperometric recordings and [Ca{supmore » 2+}]{sub i} imaging experiments with fura-2 demonstrated that lindane ({>=} 10 {mu}M) rapidly increases basal exocytosis and basal [Ca{sup 2+}]{sub i}. Additional imaging and electrophysiological recordings revealed that this increase was largely due to a lindane-induced membrane depolarization and subsequent opening of N- and P/Q-type voltage-gated Ca{sup 2+} channels (VGCC). On the other hand, lindane ({>=} 3 {mu}M) induced a concentration-dependent but non-specific inhibition of VGCCs, thereby limiting the lindane-induced increase in basal [Ca{sup 2+}]{sub i} and exocytosis. Importantly, the non-specific inhibition of VGCCs also reduced stimulation-evoked exocytosis and Ca{sup 2+} influx. Though lindane exposure concentration-dependently increased ROS production, cell viability was not affected indicating that the used concentrations were not acute cytotoxic. These combined findings indicate that lindane has two, partly counteracting effects. Lindane causes membrane depolarization, thereby increasing basal [Ca{sup 2+}]{sub i} and exocytosis. In parallel, lindane inhibits VGCCs, thereby limiting the basal effects and reducing stimulation-evoked [Ca{sup 2+}]{sub i} and exocytosis. This study further underlines the need to consider

  2. Development of iron homeostasis in infants and young children.

    PubMed

    Lönnerdal, Bo

    2017-12-01

    Healthy, term, breastfed infants usually have adequate iron stores that, together with the small amount of iron that is contributed by breast milk, make them iron sufficient until ≥6 mo of age. The appropriate concentration of iron in infant formula to achieve iron sufficiency is more controversial. Infants who are fed formula with varying concentrations of iron generally achieve sufficiency with iron concentrations of 2 mg/L (i.e., with iron status that is similar to that of breastfed infants at 6 mo of age). Regardless of the feeding choice, infants' capacity to regulate iron homeostasis is important but less well understood than the regulation of iron absorption in adults, which is inverse to iron status and strongly upregulated or downregulated. Infants who were given daily iron drops compared with a placebo from 4 to 6 mo of age had similar increases in hemoglobin concentrations. In addition, isotope studies have shown no difference in iron absorption between infants with high or low hemoglobin concentrations at 6 mo of age. Together, these findings suggest a lack of homeostatic regulation of iron homeostasis in young infants. However, at 9 mo of age, homeostatic regulatory capacity has developed although, to our knowledge, its extent is not known. Studies in suckling rat pups showed similar results with no capacity to regulate iron homeostasis at 10 d of age when fully nursing, but such capacity occurred at 20 d of age when pups were partially weaned. The major iron transporters in the small intestine divalent metal-ion transporter 1 (DMT1) and ferroportin were not affected by pup iron status at 10 d of age but were strongly affected by iron status at 20 d of age. Thus, mechanisms that regulate iron homeostasis are developed at the time of weaning. Overall, studies in human infants and experimental animals suggest that iron homeostasis is absent or limited early in infancy largely because of a lack of regulation of the iron transporters DMT1 and ferroportin

  3. Magnesium retention from metabolic-balance studies in female adolescents: impact of race, dietary salt, and calcium123

    PubMed Central

    Palacios, Cristina; Wigertz, Karin; Braun, Michelle; Martin, Berdine R; McCabe, George P; McCabe, Linda; Pratt, J Howard; Peacock, Munro; Weaver, Connie M

    2013-01-01

    Background: Previously, we showed that black girls retained more calcium than white girls did and that salt loading negatively affected calcium retention. Racial differences likely exist in other bone minerals also, such as magnesium, in response to salt loading during growth. Objective: We studied racial differences in magnesium metabolism in response to dietary sodium and calcium during rapid bone growth. Design: Twenty-seven white and 40 black girls (11–15 y old) were studied for 3 wk while they consumed low-sodium (1.3 g/d) and high-sodium (3.8 g/d) diets by using a randomized-order, crossover metabolic study with 3 dietary calcium intakes; the magnesium dietary intake was fixed at 230 mg/d. Urine and feces were collected during each 3-wk period in 24-h pools and analyzed for magnesium. A mixed-model ANOVA was used to determine the effect of race and dietary sodium with calcium intake as a covariate. Results: Salt loading or calcium intake had no significant effect on urinary magnesium excretion. Blacks excreted significantly less urinary magnesium (mean ± SD: 83.8 ± 25.6 mg/d) than did whites (94.9 ± 27.3 mg/d; P < 0.05). No effects were observed in fecal magnesium excretion. Magnesium retention was higher with the low-sodium diet (50.1 ± 44.0 mg/d) than with the high-sodium diet (39.3 ± 49.8 mg/d) (P < 0.05), with no effects of race or calcium intake. Salt loading had no effect on biomarkers. Whites had higher 25-hydroxyvitamin D and insulin-like growth factor binding protein 3 but lower 1,25-dihydroxyvitamin D and parathyroid hormone concentrations. Conclusions: Blacks excreted less urinary magnesium than did whites. Magnesium retention was similar between races but higher with the low-sodium diet. Kinetic studies are needed to fully explain magnesium homeostasis. This trial was registered at clinicaltrials.gov as NCT01564238. PMID:23553157

  4. Chronobiology, endocrinology, and energy- and food-reward homeostasis.

    PubMed

    Gonnissen, H K J; Hulshof, T; Westerterp-Plantenga, M S

    2013-05-01

    Energy- and food-reward homeostasis is the essential component for maintaining energy balance and its disruption may lead to metabolic disorders, including obesity and diabetes. Circadian alignment, quality sleep and sleep architecture in relation to energy- and food-reward homeostasis are crucial. A reduced sleep duration, quality sleep and rapid-eye movement sleep affect substrate oxidation, leptin and ghrelin concentrations, sleeping metabolic rate, appetite, food reward, hypothalamic-pituitary-adrenal (HPA)-axis activity, and gut-peptide concentrations, enhancing a positive energy balance. Circadian misalignment affects sleep architecture and the glucose-insulin metabolism, substrate oxidation, homeostasis model assessment of insulin resistance (HOMA-IR) index, leptin concentrations and HPA-axis activity. Mood disorders such as depression occur; reduced dopaminergic neuronal signaling shows decreased food reward. A good sleep hygiene, together with circadian alignment of food intake, a regular meal frequency, and attention for protein intake or diets, contributes in curing sleep abnormalities and overweight/obesity features by preventing overeating; normalizing substrate oxidation, stress, insulin and glucose metabolism including HOMA-IR index, and leptin, GLP-1 concentrations, lipid metabolism, appetite, energy expenditure and substrate oxidation; and normalizing food reward. Synchrony between circadian and metabolic processes including meal patterns plays an important role in the regulation of energy balance and body-weight control. Additive effects of circadian alignment including meal patterns, sleep restoration, and protein diets in the treatment of overweight and obesity are suggested. © 2013 The Authors. obesity reviews © 2013 International Association for the Study of Obesity.

  5. Systems Modeling of Ca2+ Homeostasis and Mobilization in Platelets Mediated by IP3 and Store-Operated Ca2+ Entry

    PubMed Central

    Dolan, Andrew T.; Diamond, Scott L.

    2014-01-01

    Resting platelets maintain a stable level of low cytoplasmic calcium ([Ca2+]cyt) and high dense tubular system calcium ([Ca2+]dts). During thrombosis, activators cause a transient rise in inositol trisphosphate (IP3) to trigger calcium mobilization from stores and elevation of [Ca2+]cyt. Another major source of [Ca2+]cyt elevation is store-operated calcium entry (SOCE) through plasmalemmal calcium channels that open in response to store depletion as [Ca2+]dts drops. A 34-species systems model employed kinetics describing IP3-receptor, DTS-plasmalemma puncta formation, SOCE via assembly of STIM1 and Orai1, and the plasmalemma and sarco/endoplasmic reticulum Ca2+-ATPases. Four constraints were imposed: calcium homeostasis before activation; stable in zero extracellular calcium; IP3-activatable; and functional SOCE. Using a Monte Carlo method to sample three unknown parameters and nine initial concentrations in a 12-dimensional space near measured or expected values, we found that model configurations that were responsive to stimuli and demonstrated significant SOCE required high inner membrane electric potential (>−70 mV) and low resting IP3 concentrations. The absence of puncta in resting cells was required to prevent spontaneous store depletion in calcium-free media. Ten-fold increases in IP3 caused saturated calcium mobilization. This systems model represents a critical step in being able to predict platelets’ phenotypes during hemostasis or thrombosis. PMID:24806937

  6. Extracellular Potassium Homeostasis: Insights from Hypokalemic Periodic Paralysis

    PubMed Central

    Cheng, Chih-Jen; Kuo, Elizabeth; Huang, Chou-Long

    2014-01-01

    The extracellular potassium makes up only about 2% of the total body potassium store. The majority of the body potassium is distributed in the intracellular space, and of which about 80% is in skeletal muscle. Movement of potassium in and out of skeletal muscle thus plays a pivotal role in extracellular potassium homeostasis. The exchange of potassium between the extracellular space and skeletal muscle is mediated by specific membrane transporters. These include potassium uptake by Na+, K+-ATPase and release by inward rectifier K+ channels. These processes are regulated by circulating hormones, peptides, ions, and by physical activity of muscle as well as dietary potassium intake. Pharmaceutical agents, poisons and disease conditions also affect the exchange and alter extracellular potassium concentration. Here, we review extracellular potassium homeostasis focusing on factors and conditions that influence the balance of potassium movement in skeletal muscle. Recent findings that mutations of a skeletal muscle-specific inward rectifier K+ channel cause hypokalemic periodic paralysis provide interesting insights into the role of skeletal muscle in extracellular potassium homeostasis. These recent findings will be reviewed. PMID:23953801

  7. Cytosolic calcium homeostasis in bovine parathyroid cells and its modulation by protein kinase C.

    PubMed Central

    Racke, F K; Nemeth, E F

    1993-01-01

    1. The effects of protein kinase C (PKC) activators and inhibitors on the mechanisms regulating cytosolic Ca2+ homeostasis in dissociated bovine parathyroid cells loaded with fura-2 were examined. 2. Stepwise increases in the concentration of extracellular Ca2+ (from 0.5 to 2 or 3 mM) elicited transient followed by sustained increases in the concentration of intracellular free Ca2+ ([Ca2+]i). Cytosolic Ca2+ transients reflected the mobilization of intracellular Ca2+ and influx of extracellular Ca2+ whereas sustained increases in [Ca2+]i resulted from the influx of extracellular Ca2+. Brief (1-2 min) pretreatment with phorbol myristate acetate (PMA) shifted the concentration-response curve for extracellular Ca(2+)-induced cytosolic Ca2+ transients to the right without affecting the maximal response. Cytosolic Ca2+ transients elicited by extracellular Mg2+ were similarly affected by PMA. 3. These effects of PMA were mimicked by various other activators of PKC with the rank order of potency PMA > phorbol dibutyrate > bryostatin , > (-)indolactam V > mezerein. Isomers or analogues of these compounds that do not alter PKC activity (4 alpha-phorbols and (+)indolactam V) did not alter [Ca2+]i. 4. PKC activators depressed evoked increases in [Ca2+]i when influx of extracellular Ca2+ was blocked with Gd3+. Cytosolic Ca2+ transients elicited by extracellular Mg2+ in the absence of extracellular Ca2+ were similarly inhibited by PKC activators. Activation of PKC thus inhibits the mobilization of intracellular Ca2+ elicited by extracellular divalent cations. 5. Increases in the concentration of extracellular Ca2+ caused corresponding increases in the formation of [3H]inositol 1,4,5-trisphosphate ([3H]InsP3). Pretreatment with PMA shifted the concentration-response curve for extracellular Ca(2+)-induced [3H]InsP3 formation to the right without affecting the maximal response. 6. PKC activators also caused some depression of steady-state increases in [Ca2+]i elicited by

  8. Klotho Prevents Renal Calcium Loss

    PubMed Central

    Alexander, R. Todd; Woudenberg-Vrenken, Titia E.; Buurman, Jan; Dijkman, Henry; van der Eerden, Bram C. J.; van Leeuwen, Johannes P.T.M.; Bindels, René J.

    2009-01-01

    Disturbed calcium (Ca2+) homeostasis, which is implicit to the aging phenotype of klotho-deficient mice, has been attributed to altered vitamin D metabolism, but alternative possibilities exist. We hypothesized that failed tubular Ca2+ absorption is primary, which causes increased urinary Ca2+ excretion, leading to elevated 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] and its sequelae. Here, we assessed intestinal Ca2+ absorption, bone densitometry, renal Ca2+ excretion, and renal morphology via energy-dispersive x-ray microanalysis in wild-type and klotho−/− mice. We observed elevated serum Ca2+ and fractional excretion of Ca2+ (FECa) in klotho−/− mice. Klotho−/− mice also showed intestinal Ca2+ hyperabsorption, osteopenia, and renal precipitation of calcium-phosphate. Duodenal mRNA levels of transient receptor potential vanilloid 6 (TRPV6) and calbindin-D9K increased. In the kidney, klotho−/− mice exhibited increased expression of TRPV5 and decreased expression of the sodium/calcium exchanger (NCX1) and calbindin-D28K, implying a failure to absorb Ca2+ through the distal convoluted tubule/connecting tubule (DCT/CNT) via TRPV5. Gene and protein expression of the vitamin D receptor (VDR), 25-hydroxyvitamin D-1-α-hydroxylase (1αOHase), and calbindin-D9K excluded renal vitamin D resistance. By modulating the diet, we showed that the renal Ca2+ wasting was not secondary to hypercalcemia and/or hypervitaminosis D. In summary, these findings illustrate a primary defect in tubular Ca2+ handling that contributes to the precipitation of calcium-phosphate in DCT/CNT. This highlights the importance of klotho to the prevention of renal Ca2+ loss, secondary hypervitaminosis D, osteopenia, and nephrocalcinosis. PMID:19713312

  9. Is ABA involved in tolerance responses to salinity by affecting cytoplasm ion homeostasis in rice cell lines?

    PubMed

    Pons, Raül; Cornejo, María Jesús; Sanz, Amparo

    2013-01-01

    The ability of plant cells to maintain cytoplasm ion homeostasis under saline stress is among the main mechanisms involved in salt tolerance. To cope with excess Na(+), cells extrude it from the cytoplasm, which requires expenditure of metabolic energy, provided by H(+) gradients generated by membrane-bound H(+)-pumps. ABA is well-known to be involved in physiological processes elicited or enhanced by stresses causing cell dehydration. In this work we studied the possible implication of this plant hormone in the control of salt-induced cellular mechanisms conducting to Na(+) extrusion from the cytoplasm. We used rice (Oryza sativa L.) cell lines selected for their different tolerance to salinity to measure the response to ABA of H(+)-pumps and Na(+)/H(+)-antiporters associated to the plasma membrane and the tonoplast. Our results show that ABA generally enhances H(+)-pumping under salt stress but not under control conditions. This effect occurs to a higher extent across the tonoplast in the more tolerant lines (L-T). Na(+)/H(+) antiport activity is practically undetectable in calli under control conditions, pre-treated or not with ABA, but shows a strong activation under salinity across the tonoplast, particularly in L-T lines (cv Bahia) and also across de plasma membrane in cv Bomba. In these lines, prior treatments with ABA tend to reduce the NaCl enhanced activity of both antiporters. Overall, under saline conditions ABA seems to affect synergistically H(+) pumping and antagonistically Na(+) extrusion. A complex network of positive and negative regulatory signals seems involved in restoring ion cell homeostasis under salt stress. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  10. Calcium Kinetics During Space Flight

    NASA Technical Reports Server (NTRS)

    Smith, Scott M.; OBrien, K. O.; Abrams, S. A.; Wastney, M. E.

    2005-01-01

    Bone loss during space flight is one of the most critical challenges to astronaut health on space exploration missions. Defining the time course and mechanism of these changes will aid in developing means to counteract bone loss during space flight, and will have relevance for other clinical situations that impair weight-bearing activity. Bone health is a product of the balance between bone formation and bone resorption. Early space research could not clearly identify which of these was the main process altered in bone loss, but identification of the collagen crosslinks in the 1990s made possible a clear understanding that the impact of space flight was greater on bone resorption, with bone formation being unchanged or only slightly decreased. Calcium kinetics data showed that bone resorption was greater during flight than before flight (668 plus or minus 130 vs. 427 plus or minus 153 mg/d, p less than 0.001), and clearly documented that true intestinal calcium absorption was lower during flight than before flight (233 plus or minus 87 vs. 460 plus or minus 47 mg/d, p less than 0.01). Weightlessness had a detrimental effect on the balance in bone turnover: the difference between daily calcium balance during flight (-234 plus or minus 102 mg/d) and calcium balance before flight (63 plus or minus 75 mg/d) approached 300 mg/d (p less than 0.01). These data demonstrate that the bone loss that occurs during space flight is a consequence of increased bone resorption and decreased intestinal calcium absorption. Examining the changes in bone and calcium homeostasis in the initial days and weeks of space flight, as well as at later times on missions longer than 6 months, is critical to understanding the nature of bone adaptation to weightlessness. To increase knowledge of these changes, we studied bone adaptation to space flight on the 16-day Space Shuttle Columbia (STS-107) mission. When the brave and talented crew of Columbia were lost during reentry on the tragic morning

  11. Red blood cells of the lizards Ameiva ameiva (Squamata, Teiidae) display multiple mechanisms to control cytosolic calcium.

    PubMed

    Beraldo, F H; Sartorello, R; Gazarini, M L; Caldeira, W; Garcia, C R S

    2002-02-01

    We have previously reported that lizard red blood cells control their cytosolic calcium concentration by sequestering calcium ions in pools, which could be discharged by thapsigargin, by the Na+/H+ ionophore, monensin, by the K+/H+ ionophore, nigericin and by the proton pump inhibitor, bafilomycin A1 [1]. We have now demonstrated, with the aid of confocal microscopy, the presence in these cells of organelles, which accumulate the dye acridine orange and are thus by inference the sites of proton pools. We have found, moreover, that monensin, nigericin and bafilomycin all act to discharge these pools. We further show that calcium release ensues when the calcium ionophore, ionomycin, is added after thapsigargin and monensin; this implies the existence of a third pool, besides the acidic pool and the Endoplasmic Reticulum (ER), which participates in calcium homeostasis. The ER calcium pool can de discharged by the addition of the second messenger, IP3, and we present evidence, based on confocal microscopy, that the IP3 receptors are located in or close to the nucleus. Copyright 2002 Elsevier Science Ltd. All rights reserved.

  12. Trace elements have beneficial, as well as detrimental effects on bone homeostasis.

    PubMed

    Zofkova, I; Davis, M; Blahos, J

    2017-07-18

    The protective role of nutrition factors such as calcium, vitamin D and vitamin K for the integrity of the skeleton is well understood. In addition, integrity of the skeleton is positively influenced by certain trace elements (e.g. zinc, copper, manganese, magnesium, iron, selenium, boron and fluoride) and negatively by others (lead, cadmium, cobalt). Deficiency or excess of these elements influence bone mass and bone quality in adulthood as well as in childhood and adolescence. However, some protective elements may become toxic under certain conditions, depending on dosage (serum concentration), duration of treatment and interactions among individual elements. We review the beneficial and toxic effects of key elements on bone homeostasis.

  13. Mutations in the putative calcium-binding domain of polyomavirus VP1 affect capsid assembly

    NASA Technical Reports Server (NTRS)

    Haynes, J. I. 2nd; Chang, D.; Consigli, R. A.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    Calcium ions appear to play a major role in maintaining the structural integrity of the polyomavirus and are likely involved in the processes of viral uncoating and assembly. Previous studies demonstrated that a VP1 fragment extending from Pro-232 to Asp-364 has calcium-binding capabilities. This fragment contains an amino acid stretch from Asp-266 to Glu-277 which is quite similar in sequence to the amino acids that make up the calcium-binding EF hand structures found in many proteins. To assess the contribution of this domain to polyomavirus structural integrity, the effects of mutations in this region were examined by transfecting mutated viral DNA into susceptible cells. Immunofluorescence studies indicated that although viral protein synthesis occurred normally, infective viral progeny were not produced in cells transfected with polyomavirus genomes encoding either a VP1 molecule lacking amino acids Thr-262 through Gly-276 or a VP1 molecule containing a mutation of Asp-266 to Ala. VP1 molecules containing the deletion mutation were unable to bind 45Ca in an in vitro assay. Upon expression in Escherichia coli and purification by immunoaffinity chromatography, wild-type VP1 was isolated as pentameric, capsomere-like structures which could be induced to form capsid-like structures upon addition of CaCl2, consistent with previous studies. However, although VP1 containing the point mutation was isolated as pentamers which were indistinguishable from wild-type VP1 pentamers, addition of CaCl2 did not result in their assembly into capsid-like structures. Immunogold labeling and electron microscopy studies of transfected mammalian cells provided in vivo evidence that a mutation in this region affects the process of viral assembly.

  14. Aberrant Subcellular Neuronal Calcium Regulation in Aging and Alzheimer’s Disease

    PubMed Central

    Camandola, Simonetta; Mattson, Mark P.

    2010-01-01

    In this mini-review/opinion article we describe evidence that multiple cellular and molecular alterations in Alzheimer’s disease (AD) pathogenesis involve perturbed cellular calcium regulation, and that alterations in synaptic calcium handling may be early and pivotal events in the disease process. With advancing age neurons encounter increased oxidative stress and impaired energy metabolism, which compromise the function of proteins that control membrane excitability and subcellular calcium dynamics. Altered proteolytic cleavage of the β-amyloid precursor protein (APP) in response to the aging process in combination with genetic and environmental factors results in the production and accumulation of neurotoxic forms of amyloid β-peptide (Aβ ). Aβ undergoes a self-aggregation process and concomitantly generates reactive oxygen species that can trigger membrane-associated oxidative stress which, in turn, impairs the functions of ion-motive ATPases and glutamate and glucose transporters thereby rendering neurons vulnerable to excitotoxicity and apoptosis. Mutations in presenilin-1 that cause early-onset AD increase Aβ production, but also result in an abnormal increase in the size of endoplasmic reticulum calcium stores. Some of the events in the neurodegenerative cascade can be counteracted in animal models by manipulations that stabilize neuronal calcium homeostasis including dietary energy restriction, agonists of glucagon-like peptide 1 receptors and drugs that activate mitochondrial potassium channels. Emerging knowledge of the actions of calcium upstream and downstream of Aβ provides opportunities to develop novel preventative and therapeutic interventions for AD. PMID:20950656

  15. Global dietary calcium intake among adults: a systematic review

    USDA-ARS?s Scientific Manuscript database

    Purpose: Low calcium intake may adversely affect bone health in adults. Recognizing the presence of low calcium intake is necessary to develop national strategies to optimize intake. To highlight regions where calcium intake should be improved, we systematically searched for the most representative ...

  16. Enhanced Mitochondrial Transient Receptor Potential Channel, Canonical Type 3-Mediated Calcium Handling in the Vasculature From Hypertensive Rats.

    PubMed

    Wang, Bin; Xiong, Shiqiang; Lin, Shaoyang; Xia, Weijie; Li, Qiang; Zhao, Zhigang; Wei, Xing; Lu, Zongshi; Wei, Xiao; Gao, Peng; Liu, Daoyan; Zhu, Zhiming

    2017-07-15

    Mitochondrial Ca 2+ homeostasis is fundamental to the regulation of mitochondrial reactive oxygen species (ROS) generation and adenosine triphosphate production. Recently, transient receptor potential channel, canonical type 3 (TRPC3), has been shown to localize to the mitochondria and to play a role in maintaining mitochondrial calcium homeostasis. Inhibition of TRPC3 attenuates vascular calcium influx in spontaneously hypertensive rats (SHRs). However, it remains elusive whether mitochondrial TRPC3 participates in hypertension by increasing mitochondrial calcium handling and ROS production. In this study we demonstrated increased TRPC3 expression in purified mitochondria in the vasculature from SHRs, which facilitates enhanced mitochondrial calcium uptake and ROS generation compared with Wistar-Kyoto rats. Furthermore, inhibition of TRPC3 by its specific inhibitor, Pyr3, significantly decreased the vascular mitochondrial ROS production and H 2 O 2 synthesis and increased adenosine triphosphate content. Administration of telmisartan can improve these abnormalities. This beneficial effect was associated with improvement of the mitochondrial respiratory function through recovering the activity of pyruvate dehydrogenase in the vasculature of SHRs. In vivo, chronic administration of telmisartan suppressed TRPC3-mediated excessive mitochondrial ROS generation and vasoconstriction in the vasculature of SHRs. More importantly, TRPC3 knockout mice exhibited significantly ameliorated hypertension through reduction of angiotensin II-induced mitochondrial ROS generation. Together, we give experimental evidence for a potential mechanism by which enhanced TRPC3 activity at the cytoplasmic and mitochondrial levels contributes to redox signaling and calcium dysregulation in the vasculature from SHRs. Angiotensin II or telmisartan can regulate [Ca 2+ ] mito , ROS production, and mitochondrial energy metabolism through targeting TRPC3. © 2017 The Authors. Published on behalf of

  17. Calcium dynamics in cardiac excitatory and non-excitatory cells and the role of gap junction.

    PubMed

    Das, Phonindra Nath; Mehrotra, Parul; Mishra, Aseem; Bairagi, Nandadulal; Chatterjee, Samrat

    2017-07-01

    Calcium ions aid in the generation of action potential in myocytes and are responsible for the excitation-contraction coupling of heart. The heart muscle has specialized patches of cells, called excitatory cells (EC) such as the Sino-atrial node cells capable of auto-generation of action potential and cells which receive signals from the excitatory cells, called non-excitatory cells (NEC) such as cells of the ventricular and auricular walls. In order to understand cardiac calcium homeostasis, it is, therefore, important to study the calcium dynamics taking into account both types of cardiac cells. Here we have developed a model to capture the calcium dynamics in excitatory and non-excitatory cells taking into consideration the gap junction mediated calcium ion transfer from excitatory cell to non-excitatory cell. Our study revealed that the gap junctional coupling between excitatory and non-excitatory cells plays important role in the calcium dynamics. It is observed that any reduction in the functioning of gap junction may result in abnormal calcium oscillations in NEC, even when the calcium dynamics is normal in EC cell. Sensitivity of gap junction is observed to be independent of the pacing rate and hence a careful monitoring is required to maintain normal cardiomyocyte condition. It also highlights that sarcoplasmic reticulum may not be always able to control the amount of cytoplasmic calcium under the condition of calcium overload. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Media calcification, low erythrocyte magnesium, altered plasma magnesium, and calcium homeostasis following grafting of the thoracic aorta to the infrarenal aorta in the rat--differential preventive effects of long-term oral magnesium supplementation alone and in combination with alkali.

    PubMed

    Schwille, P O; Schmiedl, A; Schwille, R; Brunner, P; Kissler, H; Cesnjevar, R; Gepp, H

    2003-03-01

    Calcifications in arterial media are clinically well documented, but the role played by magnesium in pathophysiology and therapy is uncertain. To clarify this, an animal model in which the juxtacardial aorta was grafted to the infrarenal aorta, and the subsequent calcifications in the media of the graft and their response to oral supplementation with three magnesium-containing and alkalinizing preparations was investigated. Groups of highly inbred rats were formed as follows: sham-operation (Sham, n = 12), aorta transplantation (ATx, n = 12), ATx + magnesium citrate (MgC, n = 12), ATx + MgC + potassium citrate (MgCPC, n = 12), ATx + MgC + MgCPC (MgCPCSB, n = 12). At 84 (+/-2) days after ATx with or without treatment the following observations were made: (1) weight gain and general status were normal; (2) ATx rats developed massive media calcification, mineral accumulation in the graft, decreased erythrocyte magnesium and plasma parathyroid hormone, and increased plasma ionized magnesium and calcium, and uric acid; (3) Mg-treated rats developed variable degrees of metabolic alkalosis, but only MgCPCSB supplementation prevented calcifications. Additional findings after ATx alone were: imbalance in endothelin and nitric oxide production, the mineral deposited in media was poorly crystallized calcium phosphate, calcium exchange between plasma and graft, and bone resorption were unchanged. The superior anti-calcification effect of MgCPCSB was characterized by complete restoration of normal extracellular mineral homeostasis and uric acid, but sub-optimal normalization of erythrocyte magnesium. It was concluded that in the rat: (1) ATx causes loss of cellular magnesium, excess of extracellular magnesium and calcium in the presence of apparently unchanged bone resorption, and increased uricemia; (2) ATx facilitates enhanced influx of calcium into vascular tissue, leading to calcium phosphate deposition in the media; (3) ATx-induced calcification is prevented by dietary

  19. Calcium and zinc differentially affect the structure of lipid membranes

    DOE PAGES

    Kučerka, Norbert; Dushanov, Ermuhammad; Kholmurodov, Kholmirzo T.; ...

    2017-03-09

    Interactions of calcium (Ca 2+) and zinc (Zn 2+) cations with biomimetic membranes made of dipalmitoylphosphatidylcholine (DPPC) were studied by small angle neutron diffraction (SAND). Experiments show that the structure of these lipid bilayers is differentially affected by the two divalent cations. Initially, both Ca 2+ and Zn 2+ cause DPPC bilayers to thicken, while further increases in Ca 2+ concentration result in the bilayer thinning, eventually reverting to having the same thickness as pure DPPC. The binding of Zn 2+, on the other hand, causes the bilayers to swell to a maximum thickness, and the addition of more Znmore » 2+ does not result in a further thickening of the membrane. Agreement between our results obtained using oriented planar membranes and those from vesicular samples implies that the effect of cations on bilayer thickness is the result of electrostatic interactions, rather than geometrical constraints due to bilayer curvature. This notion is further reinforced by MD simulations. Lastly, the radial distribution functions reveal a strong interaction between Ca 2+ and the phosphate oxygens, while Zn 2+ shows a much weaker binding specificity.« less

  20. Calcium and zinc differentially affect the structure of lipid membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kučerka, Norbert; Dushanov, Ermuhammad; Kholmurodov, Kholmirzo T.

    Interactions of calcium (Ca 2+) and zinc (Zn 2+) cations with biomimetic membranes made of dipalmitoylphosphatidylcholine (DPPC) were studied by small angle neutron diffraction (SAND). Experiments show that the structure of these lipid bilayers is differentially affected by the two divalent cations. Initially, both Ca 2+ and Zn 2+ cause DPPC bilayers to thicken, while further increases in Ca 2+ concentration result in the bilayer thinning, eventually reverting to having the same thickness as pure DPPC. The binding of Zn 2+, on the other hand, causes the bilayers to swell to a maximum thickness, and the addition of more Znmore » 2+ does not result in a further thickening of the membrane. Agreement between our results obtained using oriented planar membranes and those from vesicular samples implies that the effect of cations on bilayer thickness is the result of electrostatic interactions, rather than geometrical constraints due to bilayer curvature. This notion is further reinforced by MD simulations. Lastly, the radial distribution functions reveal a strong interaction between Ca 2+ and the phosphate oxygens, while Zn 2+ shows a much weaker binding specificity.« less

  1. Regulation of protein degradation in muscle by calcium

    NASA Technical Reports Server (NTRS)

    Zeman, Richard J.; Kameyama, Tsuneo; Matsumoto, Kazue; Bernstein, Paul; Etlinger, Joseph D.

    1985-01-01

    Calcium-dependent regulation of intracellular protein degradation was studied in isolated rat skeletal muscles incubated in vitro in the presence of a large variety of agents known to affect calcium movement and distribution. The effect of different classes of protease inhibitors was tested to determine the responsible proteolytic systems involved in calcium-dependent degradation. The results suggest that nonlysosomal leupetin- and E-64-c-sensitive proteases are resposible for calcium-dependent proteolysis in muscle.

  2. Surface roughness and packaging tightness affect calcium lactate crystallization on Cheddar cheese.

    PubMed

    Rajbhandari, P; Kindstedt, P S

    2014-01-01

    Calcium lactate crystals that sometimes form on Cheddar cheese surfaces are a significant expense to manufacturers. Researchers have identified several postmanufacture conditions such as storage temperature and packaging tightness that contribute to crystal formation. Anecdotal reports suggest that physical characteristics at the cheese surface, such as roughness, cracks, and irregularities, may also affect crystallization. The aim of this study was to evaluate the combined effects of surface roughness and packaging tightness on crystal formation in smoked Cheddar cheese. Four 20-mm-thick cross-section slices were cut perpendicular to the long axis of a retail block (~300g) of smoked Cheddar cheese using a wire cutting device. One cut surface of each slice was lightly etched with a cheese grater to create a rough, grooved surface; the opposite cut surface was left undisturbed (smooth). The 4 slices were vacuum packaged at 1, 10, 50, and 90kPa (very tight, moderately tight, loose, very loose, respectively) and stored at 1°C. Digital images were taken at 1, 4, and 8 wk following the first appearance of crystals. The area occupied by crystals and number of discrete crystal regions (DCR) were quantified by image analysis. The experiment was conducted in triplicate. Effects of storage time, packaging tightness, surface roughness, and their interactions were evaluated by repeated-measures ANOVA. Surface roughness, packaging tightness, storage time, and their 2-way interactions significantly affected crystal area and DCR number. Extremely heavy crystallization occurred on both rough and smooth surfaces when slices were packaged loosely or very loosely and on rough surfaces with moderately tight packaging. In contrast, the combination of rough surface plus very tight packaging resulted in dramatic decreases in crystal area and DCR number. The combination of smooth surface plus very tight packaging virtually eliminated crystal formation, presumably by eliminating available

  3. Transient Receptor Potential Canonical 3 (TRPC3) Channels Are Required for Hypothalamic Glucose Detection and Energy Homeostasis.

    PubMed

    Chrétien, Chloé; Fenech, Claire; Liénard, Fabienne; Grall, Sylvie; Chevalier, Charlène; Chaudy, Sylvie; Brenachot, Xavier; Berges, Raymond; Louche, Katie; Stark, Romana; Nédélec, Emmanuelle; Laderrière, Amélie; Andrews, Zane B; Benani, Alexandre; Flockerzi, Veit; Gascuel, Jean; Hartmann, Jana; Moro, Cédric; Birnbaumer, Lutz; Leloup, Corinne; Pénicaud, Luc; Fioramonti, Xavier

    2017-02-01

    The mediobasal hypothalamus (MBH) contains neurons capable of directly detecting metabolic signals such as glucose to control energy homeostasis. Among them, glucose-excited (GE) neurons increase their electrical activity when glucose rises. In view of previous work, we hypothesized that transient receptor potential canonical type 3 (TRPC3) channels are involved in hypothalamic glucose detection and the control of energy homeostasis. To investigate the role of TRPC3, we used constitutive and conditional TRPC3-deficient mouse models. Hypothalamic glucose detection was studied in vivo by measuring food intake and insulin secretion in response to increased brain glucose level. The role of TRPC3 in GE neuron response to glucose was studied by using in vitro calcium imaging on freshly dissociated MBH neurons. We found that whole-body and MBH TRPC3-deficient mice have increased body weight and food intake. The anorectic effect of intracerebroventricular glucose and the insulin secretory response to intracarotid glucose injection are blunted in TRPC3-deficient mice. TRPC3 loss of function or pharmacological inhibition blunts calcium responses to glucose in MBH neurons in vitro. Together, the results demonstrate that TRPC3 channels are required for the response to glucose of MBH GE neurons and the central effect of glucose on insulin secretion and food intake. © 2017 by the American Diabetes Association.

  4. Sleep and bodily functions: the physiological interplay between body homeostasis and sleep homeostasis.

    PubMed

    Amici, R; Bastianini, S; Berteotti, C; Cerri, M; Del Vecchio, F; Lo Martire, V; Luppi, M; Perez, E; Silvani, A; Zamboni, G; Zoccoli, G

    2014-01-01

    Body homeostasis and sleep homeostasis may both rely on the complex integrative activity carried out by the hypothalamus. Thus, the three main wake-sleep (WS) states (i.e. wakefulness, NREM sleep, and REM sleep) may be better understood if the different cardio-respiratory and metabolic parameters, which are under the integrated control of the autonomic and the endocrine systems, are studied during sleep monitoring. According to this view, many physiological events can be considered as an expression of the activity that physiological regulations should perform in order to cope with the need to fulfill body and sleep homeostasis. This review is aimed at making an assessment of data showing the existence of a physiological interplay between body homeostasis and sleep homeostasis, starting from the spontaneous changes observed in the somatic and autonomic activity during sleep, through evidence showing the deep changes occurring in the central integration of bodily functions during the different WS states, to the changes in the WS states observed when body homeostasis is challenged by the external environment and when the return to normal ambient conditions allows sleep homeo- stasis to run without apparent physiological restrictions. The data summarized in this review suggest that an approach to the dichotomy between NREM and REM sleep based on physiological regulations may offer a framework within which observations that a traditional behavioral approach may overlook can be interpreted. The study of the interplay between body and sleep homeostasis appears, therefore, to be a way to understand the function of complex organisms beyond that of the specific regulations.

  5. Homeostasis, singularities, and networks.

    PubMed

    Golubitsky, Martin; Stewart, Ian

    2017-01-01

    Homeostasis occurs in a biological or chemical system when some output variable remains approximately constant as an input parameter [Formula: see text] varies over some interval. We discuss two main aspects of homeostasis, both related to the effect of coordinate changes on the input-output map. The first is a reformulation of homeostasis in the context of singularity theory, achieved by replacing 'approximately constant over an interval' by 'zero derivative of the output with respect to the input at a point'. Unfolding theory then classifies all small perturbations of the input-output function. In particular, the 'chair' singularity, which is especially important in applications, is discussed in detail. Its normal form and universal unfolding [Formula: see text] is derived and the region of approximate homeostasis is deduced. The results are motivated by data on thermoregulation in two species of opossum and the spiny rat. We give a formula for finding chair points in mathematical models by implicit differentiation and apply it to a model of lateral inhibition. The second asks when homeostasis is invariant under appropriate coordinate changes. This is false in general, but for network dynamics there is a natural class of coordinate changes: those that preserve the network structure. We characterize those nodes of a given network for which homeostasis is invariant under such changes. This characterization is determined combinatorially by the network topology.

  6. Parvalbumin overexpression alters immune-mediated increases in intracellular calcium, and delays disease onset in a transgenic model of familial amyotrophic lateral sclerosis

    NASA Technical Reports Server (NTRS)

    Beers, D. R.; Ho, B. K.; Siklos, L.; Alexianu, M. E.; Mosier, D. R.; Mohamed, A. H.; Otsuka, Y.; Kozovska, M. E.; McAlhany, R. E.; Smith, R. G.; hide

    2001-01-01

    Intracellular calcium is increased in vulnerable spinal motoneurons in immune-mediated as well as transgenic models of amyotrophic lateral sclerosis (ALS). To determine whether intracellular calcium levels are influenced by the calcium-binding protein parvalbumin, we developed transgenic mice overexpressing parvalbumin in spinal motoneurons. ALS immunoglobulins increased intracellular calcium and spontaneous transmitter release at motoneuron terminals in control animals, but not in parvalbumin overexpressing transgenic mice. Parvalbumin transgenic mice interbred with mutant SOD1 (mSOD1) transgenic mice, an animal model of familial ALS, had significantly reduced motoneuron loss, and had delayed disease onset (17%) and prolonged survival (11%) when compared with mice with only the mSOD1 transgene. These results affirm the importance of the calcium binding protein parvalbumin in altering calcium homeostasis in motoneurons. The increased motoneuron parvalbumin can significantly attenuate the immune-mediated increases in calcium and to a lesser extent compensate for the mSOD1-mediated 'toxic-gain-of-function' in transgenic mice.

  7. Association of SSTR2 Polymorphisms and Glucose Homeostasis Phenotypes

    PubMed Central

    Sutton, Beth S.; Palmer, Nicholette D.; Langefeld, Carl D.; Xue, Bingzhong; Proctor, Alexandria; Ziegler, Julie T.; Haffner, Steven M.; Norris, Jill M.; Bowden, Donald W.

    2009-01-01

    OBJECTIVE This study evaluated the influence of somatostatin receptor type 2 (SSTR2) polymorphisms on measures of glucose homeostasis in the Insulin Resistance Atherosclerosis Family Study (IRASFS). SSTR2 is a G-protein–coupled receptor that, in response to somatostatin, mediates inhibition of insulin, glucagon, and growth hormone release and thus may affect glucose homeostasis. RESEARCH DESIGN AND METHODS Ten single nucleotide polymorphisms (SNPs) spanning the gene were chosen using a SNP density selection algorithm and genotyped on 1,425 Hispanic-American individuals from 90 families in the IRASFS. These families comprised two samples (set 1 and set 2), which were analyzed individually and as a combined set. Single SNP tests of association were performed for four glucose homeostasis measures—insulin sensitivity (SI), acute insulin response (AIR), disposition index (DI), and fasting blood glucose (FBG)—using generalized estimating equations. RESULTS The SSTR2 locus was encompassed by a single linkage disequilibrium (LD) block (D′ = 0.91–1.00; r2 = 0.09–0.97) that contained four of the ten SNPs evaluated. Within the SSTR2-containing LD block, evidence of association was observed in each of the two sets and in a combined analysis with decreased SI(βhomozygous = −0.16; Pmeta-analysis = 0.0024–0.0030), decreased DI (βhomozygous = −0.35 to −5.16; Pmeta-analysis = 0.0075–0.027), and increased FBG (βhomozygous = 2.30; Pmeta-analysis = 0.045). SNPs outside the SSTR2-containing LD block were not associated with measures of glucose homeostasis. CONCLUSIONS We observed evidence for association of SSTR2 polymorphisms with measures of glucose homeostasis. Thus, variants in SSTR2 may influence pathways of SIto modulate glucose homeostasis. PMID:19324939

  8. The calcium endocrine system of adolescent rhesus monkeys and controls before and after spaceflight

    NASA Technical Reports Server (NTRS)

    Arnaud, Sara B.; Navidi, Meena; Deftos, Leonard; Thierry-Palmer, Myrtle; Dotsenko, Rita; Bigbee, Allison; Grindeland, Richard E.

    2002-01-01

    The calcium endocrine system of nonhuman primates can be influenced by chairing for safety and the weightless environment of spaceflight. The serum of two rhesus monkeys flown on the Bion 11 mission was assayed pre- and postflight for vitamin D metabolites, parathyroid hormone, calcitonin, parameters of calcium homeostasis, cortisol, and indexes of renal function. Results were compared with the same measures from five monkeys before and after chairing for a flight simulation study. Concentrations of 1,25-dihydroxyvitamin D were 72% lower after the flight than before, and more than after chairing on the ground (57%, P < 0.05). Decreases in parathyroid hormone did not reach significance. Calcitonin showed modest decreases postflight (P < 0.02). Overall, effects of spaceflight on the calcium endocrine system were similar to the effects of chairing on the ground, but were more pronounced. Reduced intestinal calcium absorption, losses in body weight, increases in cortisol, and higher postflight blood urea nitrogen were the changes in flight monkeys that distinguished them from the flight simulation study animals.

  9. Regulation of Bicarbonate Secretion in Marine Fish Intestine by the Calcium-Sensing Receptor.

    PubMed

    Gregório, Sílvia F; Fuentes, Juan

    2018-04-04

    In marine fish, high epithelial intestinal HCO₃ − secretion generates luminal carbonate precipitates of divalent cations that play a key role in water and ion homeostasis. The present study was designed to expose the putative role for calcium and the calcium-sensing receptor (CaSR) in the regulation of HCO₃ − secretion in the intestine of the sea bream ( Sparus aurata L.). Effects on the expression of the CaSR in the intestine were evaluated by qPCR and an increase was observed in the anterior intestine in fed fish compared with unfed fish and with different regions of intestine. CaSR expression reflected intestinal fluid calcium concentration. In addition, anterior intestine tissue was mounted in Ussing chambers to test the putative regulation of HCO₃ − secretion in vitro using the anterior intestine. HCO₃ − secretion was sensitive to varying calcium levels in luminal saline and to calcimimetic compounds known to activate/block the CaSR i.e., R 568 and NPS-2143. Subsequent experiments were performed in intestinal sacs to measure water absorption and the sensitivity of water absorption to varying luminal levels of calcium and calcimimetics were exposed as well. It appears, that CaSR mediates HCO₃ − secretion and water absorption in marine fish as shown by responsiveness to calcium levels and calcimimetic compounds.

  10. Nitric oxide and plant iron homeostasis.

    PubMed

    Buet, Agustina; Simontacchi, Marcela

    2015-03-01

    Like all living organisms, plants demand iron (Fe) for important biochemical and metabolic processes. Internal imbalances, as a consequence of insufficient or excess Fe in the environment, lead to growth restriction and affect crop yield. Knowledge of signals and factors affecting each step in Fe uptake from the soil and distribution (long-distance transport, remobilization from old to young leaves, and storage in seeds) is necessary to improve our understanding of plant mineral nutrition. In this context, the role of nitric oxide (NO) is discussed as a key player in maintaining Fe homeostasis through its cross talk with hormones, ferritin, and frataxin and the ability to form nitrosyl-iron complexes. © 2015 New York Academy of Sciences.

  11. Divergent calcium signaling in RBCs from Tropidurus torquatus (Squamata--Tropiduridae) strengthen classification in lizard evolution.

    PubMed

    Beraldo, Flávio H; Garcia, Célia R S

    2007-08-23

    We have previously reported that a Teiid lizard red blood cells (RBCs) such as Ameiva ameiva and Tupinambis merianae controls intracellular calcium levels by displaying multiple mechanisms. In these cells, calcium stores could be discharged not only by: thapsigargin, but also by the Na+/H+ ionophore monensin, K+/H+ ionophore nigericin and the H+ pump inhibitor bafilomycin as well as ionomycin. Moreover, these lizards possess a P2Y-type purinoceptors that mobilize Ca2+ from intracellular stores upon ATP addition. Here we report, that RBCs from the tropidurid lizard Tropidurus torquatus store Ca2+ in endoplasmic reticulum (ER) pool but unlike in the referred Teiidae, these cells do not store calcium in monensin-nigericin sensitive pools. Moreover, mitochondria from T. torquatus RBCs accumulate Ca2+. Addition of ATP to a calcium-free medium does not increase the [Ca2+]c levels, however in a calcium medium we observe an increase in cytosolic calcium. This is an indication that purinergic receptors in these cells are P2X-like. T. torquatus RBCs present different mechanisms from Teiid lizard red blood cells (RBCs), for controlling its intracellular calcium levels. At T. torquatus the ion is only stored at endoplasmic reticulum and mitochondria. Moreover activation of purinergic receptor, P2X type, was able to induce an influx of calcium from extracellular medium. These studies contribute to the understanding of the evolution of calcium homeostasis and signaling in nucleated RBCs.

  12. Direct single-molecule observation of calcium-dependent misfolding in human neuronal calcium sensor-1.

    PubMed

    Heidarsson, Pétur O; Naqvi, Mohsin M; Otazo, Mariela R; Mossa, Alessandro; Kragelund, Birthe B; Cecconi, Ciro

    2014-09-09

    Neurodegenerative disorders are strongly linked to protein misfolding, and crucial to their explication is a detailed understanding of the underlying structural rearrangements and pathways that govern the formation of misfolded states. Here we use single-molecule optical tweezers to monitor misfolding reactions of the human neuronal calcium sensor-1, a multispecific EF-hand protein involved in neurotransmitter release and linked to severe neurological diseases. We directly observed two misfolding trajectories leading to distinct kinetically trapped misfolded conformations. Both trajectories originate from an on-pathway intermediate state and compete with native folding in a calcium-dependent manner. The relative probability of the different trajectories could be affected by modulating the relaxation rate of applied force, demonstrating an unprecedented real-time control over the free-energy landscape of a protein. Constant-force experiments in combination with hidden Markov analysis revealed the free-energy landscape of the misfolding transitions under both physiological and pathological calcium concentrations. Remarkably for a calcium sensor, we found that higher calcium concentrations increased the lifetimes of the misfolded conformations, slowing productive folding to the native state. We propose a rugged, multidimensional energy landscape for neuronal calcium sensor-1 and speculate on a direct link between protein misfolding and calcium dysregulation that could play a role in neurodegeneration.

  13. Simulation of the effect of rogue ryanodine receptors on a calcium wave in ventricular myocytes with heart failure.

    PubMed

    Lu, Luyao; Xia, Ling; Ye, Xuesong; Cheng, Heping

    2010-05-26

    Calcium homeostasis is considered to be one of the most important factors for the contraction and relaxation of the heart muscle. However, under some pathological conditions, such as heart failure (HF), calcium homeostasis is disordered, and spontaneous waves may occur. In this study, we developed a mathematical model of formation and propagation of a calcium wave based upon a governing system of diffusion-reaction equations presented by Izu et al (2001 Biophys. J. 80 103-20) and integrated non-clustered or 'rogue' ryanodine receptors (rogue RyRs) into a two-dimensional (2D) model of ventricular myocytes isolated from failing hearts in which sarcoplasmic reticulum (SR) Ca(2+) pools are partially unloaded. The model was then used to simulate the effect of rogue RyRs on initiation and propagation of the calcium wave in ventricular myocytes with HF. Our simulation results show that rogue RyRs can amplify the diastolic SR Ca(2+) leak in the form of Ca(2+) quarks, increase the probability of occurrence of spontaneous Ca(2+) waves even with smaller SR Ca(2+) stores, accelerate Ca(2+) wave propagation, and hence lead to delayed afterdepolarizations (DADs) and cardiac arrhythmia in the diseased heart. This investigation suggests that incorporating rogue RyRs in the Ca(2+) wave model under HF conditions provides a new view of Ca(2+) dynamics that could not be mimicked by adjusting traditional parameters involved in Ca(2+) release units and other ion channels, and contributes to understanding the underlying mechanism of HF.

  14. Iron homeostasis in the liver

    PubMed Central

    Anderson, Erik R; Shah, Yatrik M

    2014-01-01

    Iron is an essential nutrient that is tightly regulated. A principal function of the liver is the regulation of iron homeostasis. The liver senses changes in systemic iron requirements and can regulate iron concentrations in a robust and rapid manner. The last 10 years have led to the discovery of several regulatory mechanisms in the liver which control the production of iron regulatory genes, storage capacity, and iron mobilization. Dysregulation of these functions leads to an imbalance of iron, which is the primary causes of iron-related disorders. Anemia and iron overload are two of the most prevalent disorders worldwide and affect over a billion people. Several mutations in liver-derived genes have been identified, demonstrating the central role of the liver in iron homeostasis. During conditions of excess iron, the liver increases iron storage and protects other tissues, namely the heart and pancreas from iron-induced cellular damage. However, a chronic increase in liver iron stores results in excess reactive oxygen species production and liver injury. Excess liver iron is one of the major mechanisms leading to increased steatohepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma. PMID:23720289

  15. Inhibition of the alpha-ketoglutarate dehydrogenase complex alters mitochondrial function and cellular calcium regulation.

    PubMed

    Huang, Hsueh-Meei; Zhang, Hui; Xu, Hui; Gibson, Gary E

    2003-01-20

    Mitochondrial dysfunction occurs in many neurodegenerative diseases. The alpha-ketoglutarate dehydrogenase complex (KGDHC) catalyzes a key and arguably rate-limiting step of the tricarboxylic acid cycle (TCA). A reduction in the activity of the KGDHC occurs in brains and cells of patients with many of these disorders and may underlie the abnormal mitochondrial function. Abnormalities in calcium homeostasis also occur in fibroblasts from Alzheimer's disease (AD) patients and in cells bearing mutations that lead to AD. Thus, the present studies test whether the reduction of KGDHC activity can lead to the alterations in mitochondrial function and calcium homeostasis. alpha-Keto-beta-methyl-n-valeric acid (KMV) inhibits KGDHC activity in living N2a cells in a dose- and time-dependent manner. Surprisingly, concentration of KMV that inhibit in situ KGDHC by 80% does not alter the mitochondrial membrane potential (MMP). However, similar concentrations of KMV induce the release of cytochrome c from mitochondria into the cytosol, reduce basal [Ca(2+)](i) by 23% (P<0.005), and diminish the bradykinin (BK)-induced calcium release from the endoplasmic reticulum (ER) by 46% (P<0.005). This result suggests that diminished KGDHC activities do not lead to the Ca(2+) abnormalities in fibroblasts from AD patients or cells bearing PS-1 mutations. The increased release of cytochrome c with diminished KGDHC activities will be expected to activate other pathways including cell death cascades. Reductions in this key mitochondrial enzyme will likely make the cells more vulnerable to metabolic insults that promote cell death.

  16. Using glutamate homeostasis as a target for treating addictive disorders

    PubMed Central

    Reissner, Kathryn J.; Kalivas, Peter W.

    2010-01-01

    Well-developed cellular mechanisms exist to preserve glutamate homeostasis and regulate extrasynaptic glutamate levels. Accumulating evidence indicates that disruptions in glutamate homeostasis are associated with addictive disorders. The disruptions in glutamate concentrations observed following prolonged exposure to drugs of abuse are associated with changes in the function and activity of several key components within the homeostatic control mechanism, including the cystine/glutamate exchanger xc− and the glial glutamate transporter EAAT2/GLT-1. Changes in the balance between synaptic and extrasynaptic glutamate levels in turn influence signaling through pre- and postsynaptic glutamate receptors, and thus affect synaptic plasticity and circuit-level activity. In this review we describe the evidence for impaired glutamate homestasis as a critical mediator of long-term drug-seeking behaviors, how chronic neuroadaptations in xc− and GLT-1 mediate a disruption in glutamate homeostasis, and how targeting these components restores glutamate levels and inhibits drug-seeking behaviors. PMID:20634691

  17. Cardiac basal metabolism: energetic cost of calcium withdrawal in the adult rat heart.

    PubMed

    Bonazzola, P; Takara, D

    2010-07-01

    Cardiac basal metabolism upon extracellular calcium removal and its relationship with intracellular sodium and calcium homeostasis was evaluated. A mechano-calorimetric technique was used that allowed the simultaneous and continuous measurement of both heat rate and resting pressure in arterially perfused quiescent adult rat hearts. Using pharmacological tools, the possible underlying mechanisms related to sodium and calcium movements were investigated. Resting heat rate (expressed in mW g(-1)(dry wt)) increased upon calcium withdrawal (+4.4 +/- 0.2). This response was: (1) unaffected by the presence of tetrodotoxin (+4.3 +/- 0.6), (2) fully blocked by both, the decrease in extracellular sodium concentration and the increase in extracellular magnesium concentration, (3) partially blocked by the presence of either nifedipine (+2.8 +/- 0.4), KB-R7943 (KBR; +2.5 +/- 0.2), clonazepam (CLO; +3.1 +/- 0.3) or EGTA (+1.9 +/- 0.3). The steady heat rate under Ca(2+)-free conditions was partially reduced by the addition of Ru360 (-1.1 +/- 0.2) but not CLO in the presence of EGTA, KBR or Ru360. Energy expenditure for resting state maintenance upon calcium withdrawal depends on the intracellular rise in both sodium and calcium. Our data are consistent with a mitochondrial Ca(2+) cycling, not detectable under normal calcium diastolic levels. The experimental condition here analysed, partially simulates findings reported under certain pathological situations including heart failure in which mildly increased levels of both diastolic sodium and calcium have also been found. Therefore, under such pathological conditions, hearts should distract chemical energy to fuel processes associated with sodium and calcium handling, making more expensive the maintenance of their functions.

  18. Knockdown of the coenzyme Q synthesis gene Smed-dlp1 affects planarian regeneration and tissue homeostasis

    PubMed Central

    Shiobara, Yumiko; Harada, Chiaki; Shiota, Takeshi; Sakamoto, Kimitoshi; Kita, Kiyoshi; Tanaka, Saeko; Tabata, Kenta; Sekie, Kiyoteru; Yamamoto, Yorihiro; Sugiyama, Tomoyasu

    2015-01-01

    The freshwater planarian is a model organism used to study tissue regeneration that occupies an important position among multicellular organisms. Planarian genomic databases have led to the identification of genes that are required for regeneration, with implications for their roles in its underlying mechanism. Coenzyme Q (CoQ) is a fundamental lipophilic molecule that is synthesized and expressed in every cell of every organism. Furthermore, CoQ levels affect development, life span, disease and aging in nematodes and mice. Because CoQ can be ingested in food, it has been used in preventive nutrition. In this study, we investigated the role of CoQ in planarian regeneration. Planarians synthesize both CoQ9 and rhodoquinone 9 (RQ9). Knockdown of Smed-dlp1, a trans-prenyltransferase gene that encodes an enzyme that synthesizes the CoQ side chain, led to a decrease in CoQ9 and RQ9 levels. However, ATP levels did not consistently decrease in these animals. Knockdown animals exhibited tissue regression and curling. The number of mitotic cells decreased in Smed-dlp1 (RNAi) animals. These results suggested a failure in physiological cell turnover and stem cell function. Accordingly, regenerating planarians died from lysis or exhibited delayed regeneration. Interestingly, the observed phenotypes were partially rescued by ingesting food supplemented with α-tocopherol. Taken together, our results suggest that oxidative stress induced by reduced CoQ9 levels affects planarian regeneration and tissue homeostasis. PMID:26516985

  19. Calcium-containing phosphopeptides pave the secretory pathway for efficient protein traffic and secretion in fungi.

    PubMed

    Martín, Juan F

    2014-09-10

    Casein phosphopeptides (CPPs) containing chelated calcium drastically increase the secretion of extracellular homologous and heterologous proteins in filamentous fungi. Casein phosphopeptides released by digestion of alpha - and beta-casein are rich in phosphoserine residues (SerP). They stimulate enzyme secretion in the gastrointestinal tract and enhance the immune response in mammals, and are used as food supplements. It is well known that casein phosphopeptides transport Ca2+ across the membranes and play an important role in Ca2+ homeostasis in the cells. Addition of CPPs drastically increases the production of heterologous proteins in Aspergillus as host for industrial enzyme production. Recent proteomics studies showed that CPPs alter drastically the vesicle-mediated secretory pathway in filamentous fungi, apparently because they change the calcium concentration in organelles that act as calcium reservoirs. In the organelles calcium homeostasis a major role is played by the pmr1 gene, that encodes a Ca2+/Mn2+ transport ATPase, localized in the Golgi complex; this transporter controls the balance between intra-Golgi and cytoplasmic Ca2+ concentrations. A Golgi-located casein kinase (CkiA) governs the ER to Golgi directionality of the movement of secretory proteins by interacting with the COPII coat of secretory vesicles when they reach the Golgi. Mutants defective in the casein-2 kinase CkiA show abnormal targeting of some secretory proteins, including cytoplasmic membrane amino acid transporters that in ckiA mutants are miss-targeted to vacuolar membranes. Interestingly, addition of CPPs increases a glyceraldehyde-3-phpshate dehydrogenase protein that is known to associate with microtubules and act as a vesicle/membrane fusogenic agent. In summary, CPPs alter the protein secretory pathway in fungi adapting it to a deregulated protein traffic through the organelles and vesicles what results in a drastic increase in secretion of heterologous and also of

  20. Use of diphosphonates to correct disorders in calcium metabolism and mineral composition of bone tissue with 60-day hypokinesia in rats

    NASA Technical Reports Server (NTRS)

    Morukov, B. V.; Zaychik, V. YE.; Ivanov, V. M.; Orlov, O. I.

    1988-01-01

    Compounds of the diphosphonate group suppress bone resorption and bone tissue metabolism, from which it was assumed that they can be used for the prevention of osteoporosis and disorders of calcium homeostasis in humans during space flight. Two compounds of this group were used for preventive purposes in 60 day hypokinesia in rats. The results showed that diphosphonates have a marked effect on calcium metabolism and the condition of the bone tissues under conditions of long term hypokinesia: they reduce the content of ionized calcium in blood, delay the loss of calcium and phosphorus by the bone tissue, and to a considerable degree prevent reduction of bone density. This confirms the possibility of using compounds of this group for correcting and preventing changes of bone tissue and mineral metabolism during long term hypokinesia.

  1. Non-Selective Calcium Channel Blocker Bepridil Decreases Secondary Pathology in Mice after Photothrombotic Cortical Lesion

    PubMed Central

    Lipsanen, Anu; Flunkert, Stefanie; Kuptsova, Kristina; Hiltunen, Mikko; Windisch, Manfred; Hutter-Paier, Birgit; Jolkkonen, Jukka

    2013-01-01

    Experimental studies have identified a complex link between neurodegeneration, β-amyloid (Aβ) and calcium homeostasis. Here we asked whether early phase β-amyloid pathology in transgenic hAPPSL mice exaggerates the ischemic lesion and remote secondary pathology in the thalamus, and whether a non-selective calcium channel blocker reduces these pathologies. Transgenic hAPPSL (n = 33) and non-transgenic (n = 30) male mice (4–5 months) were subjected to unilateral cortical photothrombosis and treated with the non-selective calcium channel blocker bepridil (50 mg/kg, p.o., once a day) or vehicle for 28 days, starting administration 2 days after the operation. Animals were then perfused for histological analysis of infarct size, Aβ and calcium accumulation in the thalamus. Cortical photothrombosis resulted in a small infarct, which was associated with atypical Aβ and calcium accumulation in the ipsilateral thalamus. Transgenic mice had significantly smaller infarct volumes than non-transgenic littermates (P<0.05) and ischemia-induced rodent Aβ accumulation in the thalamus was lower in transgenic mice compared to non-transgenic mice (P<0.01). Bepridil decreased calcium load in the thalamus (P<0.01). The present data suggest less pronounced primary and secondary pathology in hAPPSL transgenic mice after ischemic cortical injury. Bepridil particularly decreased calcium pathology in the thalamus following ischemia. PMID:23555933

  2. Geophysiology, Extended Organisms, and the Problem of Emergent Homeostasis

    NASA Astrophysics Data System (ADS)

    Turner, S.

    2001-12-01

    Physiology may be broadly defined as the managed flow of matter, energy and information. Central to this concept is the attendant phenomenon of homeostasis, doing physiological work to balance the thermodynamically driven flows of matter, energy or information that naturally attend to living things. Organisms in general exhibit what might be termed a "strong" homeostasis, in which well-regulated and complex physiological machines drive the physiological fluxes of matter, energy and information within the organism and at the organism's outermost integumentary boundary. Organisms also structure their environments to manage flows of matter, energy and information between themselves and their environment. In so doing, living things constitute a sort of extended organism, in which an organism's physiology reaches beyond the outermost boundary of the skin. Geophysiology's radical promise is that physiology can arise at levels of organization higher than the organism, ranging from social insect colonies through ecosystems, perhaps even to the biosphere itself. However, a simple demonstration that organisms affect the flows of matter, energy and information in their environments is not sufficient to qualify as physiology. That amounts to a demonstration that organisms do physiological work on their environments, which is neither a radical nor a new idea. To be truly physiological, geophysiology must exhibit physiology's most essential attribute, namely homeostasis. Finding homeostasis and explaining how it works in the extended organism is geophysiology's radical challenge.

  3. 1-alpha,25-Dihydroxyvitamin D3 up-regulates the expression of 2 types of human intestinal alkaline phosphatase alternative splicing variants in Caco-2 cells and may be an important regulator of their expression in gut homeostasis.

    PubMed

    Noda, Seiko; Yamada, Asako; Nakaoka, Kanae; Goseki-Sone, Masae

    2017-10-01

    Vitamin D insufficiency is associated with a greater risk of osteoporosis and also influences skeletal muscle functions, differentiation, and development. The principal function of vitamin D in calcium homeostasis is to increase the absorption of calcium from the intestine, and the level of alkaline phosphatase (ALP) activity, a differentiation marker for intestinal epithelial cells, is regulated by vitamin D. Intestinal-type ALP is expressed at a high concentration in the brush border membrane of intestinal epithelial cells, and is known to be affected by several kinds of nutrients. Recent reviews have highlighted the importance of intestinal-type ALP in gut homeostasis. Intestinal-type ALP controls bacterial endotoxin-induced inflammation by dephosphorylating lipopolysaccharide and is a gut mucosal defense factor. In this study, we investigated the influence of vitamin D on the expression of 2 types of alternative mRNA variants encoding the human alkaline phosphatase, intestinal (ALPI) gene in human Caco-2 cells as an in vitro model of the small intestinal epithelium. After treatment with 1-alpha,25-dihydroxyvitamin D 3 , the biologically active form of vitamin D 3 , there were significant increases in the ALP activities of Caco-2 cells. Inhibitor and thermal inactivation experiments showed that the increased ALP had properties of intestinal-type ALP. Reverse transcription-polymerase chain reaction analysis revealed that expression of the 2 types of alternative mRNA variants from the ALPI gene was markedly enhanced by vitamin D in Caco-2 cells. In conclusion, these findings agree with the hypothesis: vitamin D up-regulated the expression of 2 types of human intestinal alkaline phosphatase alternative splicing variants in Caco-2 cells; vitamin D may be an important regulator of ALPI gene expression in gut homeostasis. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Calcium-Induced Calcium Release during Action Potential Firing in Developing Inner Hair Cells

    PubMed Central

    Iosub, Radu; Avitabile, Daniele; Grant, Lisa; Tsaneva-Atanasova, Krasimira; Kennedy, Helen J.

    2015-01-01

    In the mature auditory system, inner hair cells (IHCs) convert sound-induced vibrations into electrical signals that are relayed to the central nervous system via auditory afferents. Before the cochlea can respond to normal sound levels, developing IHCs fire calcium-based action potentials that disappear close to the onset of hearing. Action potential firing triggers transmitter release from the immature IHC that in turn generates experience-independent firing in auditory neurons. These early signaling events are thought to be essential for the organization and development of the auditory system and hair cells. A critical component of the action potential is the rise in intracellular calcium that activates both small conductance potassium channels essential during membrane repolarization, and triggers transmitter release from the cell. Whether this calcium signal is generated by calcium influx or requires calcium-induced calcium release (CICR) is not yet known. IHCs can generate CICR, but to date its physiological role has remained unclear. Here, we used high and low concentrations of ryanodine to block or enhance CICR to determine whether calcium release from intracellular stores affected action potential waveform, interspike interval, or changes in membrane capacitance during development of mouse IHCs. Blocking CICR resulted in mixed action potential waveforms with both brief and prolonged oscillations in membrane potential and intracellular calcium. This mixed behavior is captured well by our mathematical model of IHC electrical activity. We perform two-parameter bifurcation analysis of the model that predicts the dependence of IHCs firing patterns on the level of activation of two parameters, the SK2 channels activation and CICR rate. Our data show that CICR forms an important component of the calcium signal that shapes action potentials and regulates firing patterns, but is not involved directly in triggering exocytosis. These data provide important insights

  5. Normocalcemia is maintained in mice under conditions of calcium malabsorption by vitamin D–induced inhibition of bone mineralization

    PubMed Central

    Lieben, Liesbet; Masuyama, Ritsuko; Torrekens, Sophie; Van Looveren, Riet; Schrooten, Jan; Baatsen, Pieter; Lafage-Proust, Marie-Hélène; Dresselaers, Tom; Feng, Jian Q.; Bonewald, Lynda F.; Meyer, Mark B.; Pike, J. Wesley; Bouillon, Roger; Carmeliet, Geert

    2012-01-01

    Serum calcium levels are tightly controlled by an integrated hormone-controlled system that involves active vitamin D [1,25(OH)2D], which can elicit calcium mobilization from bone when intestinal calcium absorption is decreased. The skeletal adaptations, however, are still poorly characterized. To gain insight into these issues, we analyzed the consequences of specific vitamin D receptor (Vdr) inactivation in the intestine and in mature osteoblasts on calcium and bone homeostasis. We report here that decreased intestinal calcium absorption in intestine-specific Vdr knockout mice resulted in severely reduced skeletal calcium levels so as to ensure normal levels of calcium in the serum. Furthermore, increased 1,25(OH)2D levels not only stimulated bone turnover, leading to osteopenia, but also suppressed bone matrix mineralization. This resulted in extensive hyperosteoidosis, also surrounding the osteocytes, and hypomineralization of the entire bone cortex, which may have contributed to the increase in bone fractures. Mechanistically, osteoblastic VDR signaling suppressed calcium incorporation in bone by directly stimulating the transcription of genes encoding mineralization inhibitors. Ablation of skeletal Vdr signaling precluded this calcium transfer from bone to serum, leading to better preservation of bone mass and mineralization. These findings indicate that in mice, maintaining normocalcemia has priority over skeletal integrity, and that to minimize skeletal calcium storage, 1,25(OH)2D not only increases calcium release from bone, but also inhibits calcium incorporation in bone. PMID:22523068

  6. The Molecular Mechanisms Affecting N-Acetylaspartate Homeostasis Following Experimental Graded Traumatic Brain Injury

    PubMed Central

    Di Pietro, Valentina; Amorini, Angela Maria; Tavazzi, Barbara; Vagnozzi, Roberto; Logan, Ann; Lazzarino, Giacomo; Signoretti, Stefano; Lazzarino, Giuseppe; Belli, Antonio

    2014-01-01

    To characterize the molecular mechanisms of N-acetylaspartate (NAA) metabolism following traumatic brain injury (TBI), we measured the NAA, adenosine triphosphate (ATP) and adenosine diphosphate (ADP) concentrations and calculated the ATP/ADP ratio at different times from impact, concomitantly evaluating the gene and protein expressions controlling NAA homeostasis (the NAA synthesizing and degrading enzymes N-acetyltransferase 8-like and aspartoacylase, respectively) in rats receiving either mild or severe TBI. The reversible changes in NAA induced by mild TBI were due to a combination of transient mitochondrial malfunctioning with energy crisis (decrease in ATP and in the ATP/ADP ratio) and modulation in the gene and protein levels of N-acetyltransferase 8-like and increase of aspartoacylase levels. The irreversible decrease in NAA following severe TBI, was instead characterized by profound mitochondrial malfunctioning (constant 65% decrease of the ATP/ADP indicating permanent impairment of the mitochondrial phosphorylating capacity), dramatic repression of the N-acetyltransferase 8-like gene and concomitant remarkable increase in the aspartoacylase gene and protein levels. The mechanisms underlying changes in NAA homeostasis following graded TBI might be of note for possible new therapeutic approaches and will help in understanding the effects of repeat concussions occurring during particular periods of the complex NAA recovery process, coincident with the so called window of brain vulnerability. PMID:24515258

  7. SLC30A9 mutation affecting intracellular zinc homeostasis causes a novel cerebro-renal syndrome.

    PubMed

    Perez, Yonatan; Shorer, Zamir; Liani-Leibson, Keren; Chabosseau, Pauline; Kadir, Rotem; Volodarsky, Michael; Halperin, Daniel; Barber-Zucker, Shiran; Shalev, Hanna; Schreiber, Ruth; Gradstein, Libe; Gurevich, Evgenia; Zarivach, Raz; Rutter, Guy A; Landau, Daniel; Birk, Ohad S

    2017-04-01

    A novel autosomal recessive cerebro-renal syndrome was identified in consanguineous Bedouin kindred: neurological deterioration was evident as of early age, progressing into severe intellectual disability, profound ataxia, camptocormia and oculomotor apraxia. Brain MRI was normal. Four of the six affected individuals also had early-onset nephropathy with features of tubulo-interstitial nephritis, hypertension and tendency for hyperkalemia, though none had rapid deterioration of renal function. Genome wide linkage analysis identified an ∼18 Mb disease-associated locus on chromosome 4 (maximal logarithm of odds score 4.4 at D4S2971; θ = 0). Whole exome sequencing identified a single mutation in SLC30A9 within this locus, segregating as expected within the kindred and not found in a homozygous state in 300 Bedouin controls. We showed that SLC30A9 (solute carrier family 30 member 9; also known as ZnT-9) is ubiquitously expressed with high levels in cerebellum, skeletal muscle, thymus and kidney. Confocal analysis of SH-SY5Y cells overexpressing SLC30A9 fused to enhanced green fluorescent protein demonstrated vesicular cytosolic localization associated with the endoplasmic reticulum, not co-localizing with endosomal or Golgi markers. SLC30A9 encodes a putative zinc transporter (by similarity) previously associated with Wnt signalling. However, using dual-luciferase reporter assay in SH-SY5Y cells we showed that Wnt signalling was not affected by the mutation. Based on protein modelling, the identified mutation is expected to affect SLC30A9's highly conserved cation efflux domain, putatively disrupting its transmembrane helix structure. Cytosolic Zn2+ measurements in HEK293 cells overexpressing wild-type and mutant SLC30A9 showed lower zinc concentration within mutant rather than wild-type SLC30A9 cells. This suggests that SLC30A9 has zinc transport properties affecting intracellular zinc homeostasis, and that the molecular mechanism of the disease is through

  8. SLC30A9 mutation affecting intracellular zinc homeostasis causes a novel cerebro-renal syndrome

    PubMed Central

    Perez, Yonatan; Shorer, Zamir; Liani-Leibson, Keren; Chabosseau, Pauline; Kadir, Rotem; Volodarsky, Michael; Halperin, Daniel; Barber-Zucker, Shiran; Shalev, Hanna; Schreiber, Ruth; Gradstein, Libe; Gurevich, Evgenia; Zarivach, Raz; Rutter, Guy A.; Landau, Daniel

    2017-01-01

    Abstract A novel autosomal recessive cerebro-renal syndrome was identified in consanguineous Bedouin kindred: neurological deterioration was evident as of early age, progressing into severe intellectual disability, profound ataxia, camptocormia and oculomotor apraxia. Brain MRI was normal. Four of the six affected individuals also had early-onset nephropathy with features of tubulo-interstitial nephritis, hypertension and tendency for hyperkalemia, though none had rapid deterioration of renal function. Genome wide linkage analysis identified an ∼18 Mb disease-associated locus on chromosome 4 (maximal logarithm of odds score 4.4 at D4S2971; θ = 0). Whole exome sequencing identified a single mutation in SLC30A9 within this locus, segregating as expected within the kindred and not found in a homozygous state in 300 Bedouin controls. We showed that SLC30A9 (solute carrier family 30 member 9; also known as ZnT-9) is ubiquitously expressed with high levels in cerebellum, skeletal muscle, thymus and kidney. Confocal analysis of SH-SY5Y cells overexpressing SLC30A9 fused to enhanced green fluorescent protein demonstrated vesicular cytosolic localization associated with the endoplasmic reticulum, not co-localizing with endosomal or Golgi markers. SLC30A9 encodes a putative zinc transporter (by similarity) previously associated with Wnt signalling. However, using dual-luciferase reporter assay in SH-SY5Y cells we showed that Wnt signalling was not affected by the mutation. Based on protein modelling, the identified mutation is expected to affect SLC30A9’s highly conserved cation efflux domain, putatively disrupting its transmembrane helix structure. Cytosolic Zn2+ measurements in HEK293 cells overexpressing wild-type and mutant SLC30A9 showed lower zinc concentration within mutant rather than wild-type SLC30A9 cells. This suggests that SLC30A9 has zinc transport properties affecting intracellular zinc homeostasis, and that the molecular mechanism of the disease is

  9. Deficient ryanodine receptor S-nitrosylation increases sarcoplasmic reticulum calcium leak and arrhythmogenesis in cardiomyocytes.

    PubMed

    Gonzalez, Daniel R; Beigi, Farideh; Treuer, Adriana V; Hare, Joshua M

    2007-12-18

    Altered Ca(2+) homeostasis is a salient feature of heart disease, where the calcium release channel ryanodine receptor (RyR) plays a major role. Accumulating data support the notion that neuronal nitric oxide synthase (NOS1) regulates the cardiac RyR via S-nitrosylation. We tested the hypothesis that NOS1 deficiency impairs RyR S-nitrosylation, leading to altered Ca(2+) homeostasis. Diastolic Ca(2+) levels are elevated in NOS1(-/-) and NOS1/NOS3(-/-) but not NOS3(-/-) myocytes compared with wild-type (WT), suggesting diastolic Ca(2+) leakage. Measured leak was increased in NOS1(-/-) and NOS1/NOS3(-/-) but not in NOS3(-/-) myocytes compared with WT. Importantly, NOS1(-/-) and NOS1/NOS3(-/-) myocytes also exhibited spontaneous calcium waves. Whereas the stoichiometry and binding of FK-binding protein 12.6 to RyR and the degree of RyR phosphorylation were not altered in NOS1(-/-) hearts, RyR2 S-nitrosylation was substantially decreased, and the level of thiol oxidation increased. Together, these findings demonstrate that NOS1 deficiency causes RyR2 hyponitrosylation, leading to diastolic Ca(2+) leak and a proarrhythmic phenotype. NOS1 dysregulation may be a proximate cause of key phenotypes associated with heart disease.

  10. The effects of crustacean cardioactive peptide on locust oviducts are calcium-dependent.

    PubMed

    Donini, Andrew; Lange, Angela B

    2002-04-01

    The role of calcium as a second messenger in the crustacean cardioactive peptide (CCAP)-induced contractions of the locust oviducts was investigated. Incubation of the oviducts in a calcium-free saline containing, a preferential calcium cation chelator, or an extracellular calcium channel blocker, abolished CCAP-induced contractions, indicating that the effects of CCAP on the oviducts are calcium-dependent. In contrast, sodium free saline did not affect CCAP-induced contractions. Co-application of CCAP to the oviducts with preferential L-type voltage-dependent calcium channel blockers reduced CCAP-induced contractions by 32-54%. Two preferential T-type voltage-dependent calcium channel blockers both inhibited CCAP-induced oviduct contractions although affecting different components of the contractions. Amiloride decreased the tonic component of CCAP-induced contractions by 40-55% and flunarizine dihydrochloride decreased the frequency of CCAP-induced phasic contractions by as much as 65%, without affecting tonus. Flunarizine dihydrochloride did not alter the proctolin-induced contractions of the oviducts. Results suggest that the actions of CCAP are partially mediated by voltage-dependent calcium channels similar to vertebrate L-type and T-type channels. High-potassium saline does not abolish CCAP-induced contractions indicating the presence of receptor-operated calcium channels that mediate the actions of CCAP on the oviducts. The involvement of calcium from intracellular stores in CCAP-induced contractions of the oviducts is likely since, an intracellular calcium antagonist decreased CCAP-induced contractions by 30-35%.

  11. Divergent calcium signaling in RBCs from Tropidurus torquatus (Squamata – Tropiduridae) strengthen classification in lizard evolution

    PubMed Central

    Beraldo, Flávio H; Garcia, Célia RS

    2007-01-01

    Background We have previously reported that a Teiid lizard red blood cells (RBCs) such as Ameiva ameiva and Tupinambis merianae controls intracellular calcium levels by displaying multiple mechanisms. In these cells, calcium stores could be discharged not only by: thapsigargin, but also by the Na+/H+ ionophore monensin, K+/H+ ionophore nigericin and the H+ pump inhibitor bafilomycin as well as ionomycin. Moreover, these lizards possess a P2Y-type purinoceptors that mobilize Ca2+ from intracellular stores upon ATP addition. Results Here we report, that RBCs from the tropidurid lizard Tropidurus torquatus store Ca2+ in endoplasmic reticulum (ER) pool but unlike in the referred Teiidae, these cells do not store calcium in monensin-nigericin sensitive pools. Moreover, mitochondria from T. torquatus RBCs accumulate Ca2+. Addition of ATP to a calcium-free medium does not increase the [Ca2+]c levels, however in a calcium medium we observe an increase in cytosolic calcium. This is an indication that purinergic receptors in these cells are P2X-like. Conclusion T. torquatus RBCs present different mechanisms from Teiid lizard red blood cells (RBCs), for controlling its intracellular calcium levels. At T. torquatus the ion is only stored at endoplasmic reticulum and mitochondria. Moreover activation of purinergic receptor, P2X type, was able to induce an influx of calcium from extracelullar medium. These studies contribute to the understanding of the evolution of calcium homeostasis and signaling in nucleated RBCs. PMID:17716375

  12. Mechanisms of calcium sequestration by isolated Malpighian tubules of the house cricket Acheta domesticus.

    PubMed

    Browne, Austin; O'Donnell, Michael J

    2018-01-01

    Hemolymph calcium homeostasis in insects is achieved by the Malpighian tubules, primarily by sequestering excess Ca 2+ within internal calcium stores (Ca-rich granules) most often located within type I (principal) tubule cells. Using both the scanning ion-selective electrode technique and the Ramsay secretion assay this study provides the first measurements of basolateral and transepithelial Ca 2+ fluxes across the Malpighian tubules of an Orthopteran insect, the house cricket Acheta domesticus. Ca 2+ transport was specific to midtubule segments, where 97% of the Ca 2+ entering the tubule is sequestered within intracellular calcium stores and the remaining 3% is secreted into the lumen. Antagonists of voltage-gated (L-type) calcium channels decreased Ca 2+ influx ≥fivefold in adenosine 3',5'-cyclic monophosphate (cAMP)-stimulated tubules, suggesting basolateral Ca 2+ influx is facilitated by voltage-gated Ca 2+ channels. Increasing fluid secretion through manipulation of intracellular levels of cAMP or Ca 2+ had opposite effects on tubule Ca 2+ transport. The adenylyl cyclase-cAMP-PKA pathway promotes Ca 2+ sequestration whereas both 5-hydroxytryptamine and thapsigargin inhibited sequestration. Our results suggest that the midtubules of Acheta domesticus are dynamic calcium stores, which maintain hemolymph calcium concentration by manipulating rates of Ca 2+ sequestration through stimulatory (cAMP) and inhibitory (Ca 2+ ) regulatory pathways. © 2017 Wiley Periodicals, Inc.

  13. Arctigenin exhibits relaxation effect on bronchus by affecting transmembrane flow of calcium.

    PubMed

    Zhao, Zhenying; Yin, Yongqiang; Wang, Zengyong; Fang, Runping; Wu, Hong; Jiang, Min; Bai, Gang; Luo, Guo'an

    2013-12-01

    Arctigenin, a lignan extract from Arctium lappa (L.), exhibits anti-inflammation, antioxidation, vasodilator effects, etc. However, the effects of arctigenin on bronchus relaxation are not well investigated. This study aimed to investigate how arctigenin regulates bronchus tone and calcium ion (Ca(2+)) flow. Trachea strips of guinea pigs were prepared for testing the relaxation effect of arctigenin to acetylcholine, histamine, KCl, and CaCl2, respectively. Furthermore, L-type calcium channel currents were detected by patch-clamp, and intracellular Ca(2+) concentration was detected by confocal microscopy. The results showed that arctigenin exhibited relaxation effect on tracheae to different constrictors, and this was related to decreasing cytoplasmic Ca(2+) concentration by inhibiting Ca(2+) influx partly through L-type calcium channel as well as promoting Ca(2+) efflux. In summary, this study provides new insight into the mechanisms by which arctigenin exhibits relaxation effect on bronchus and suggests its potential use for airway disease therapy.

  14. Systems Biology Approach Reveals a Calcium-Dependent Mechanism for Basal Toxicity in Daphnia magna.

    PubMed

    Antczak, Philipp; White, Thomas A; Giri, Anirudha; Michelangeli, Francesco; Viant, Mark R; Cronin, Mark T D; Vulpe, Chris; Falciani, Francesco

    2015-09-15

    The expanding diversity and ever increasing amounts of man-made chemicals discharged to the environment pose largely unknown hazards to ecosystem and human health. The concept of adverse outcome pathways (AOPs) emerged as a comprehensive framework for risk assessment. However, the limited mechanistic information available for most chemicals and a lack of biological pathway annotation in many species represent significant challenges to effective implementation of this approach. Here, a systems level, multistep modeling strategy demonstrates how to integrate information on chemical structure with mechanistic insight from genomic studies, and phenotypic effects to define a putative adverse outcome pathway. Results indicated that transcriptional changes indicative of intracellular calcium mobilization were significantly overrepresented in Daphnia magna (DM) exposed to sublethal doses of presumed narcotic chemicals with log Kow ≥ 1.8. Treatment of DM with a calcium ATPase pump inhibitor substantially recapitulated the common transcriptional changes. We hypothesize that calcium mobilization is a potential key molecular initiating event in DM basal (narcosis) toxicity. Heart beat rate analysis and metabolome analysis indicated sublethal effects consistent with perturbations of calcium preceding overt acute toxicity. Together, the results indicate that altered calcium homeostasis may be a key early event in basal toxicity or narcosis induced by lipophilic compounds.

  15. Factors affecting calcium oxalate dihydrate fragmented calculi regrowth

    PubMed Central

    Costa-Bauzá, A; Perelló, J; Isern, B; Sanchis, P; Grases, F

    2006-01-01

    Background The use of extracorporeal shock wave lithotripsy (ESWL) to treat calcium oxalate dihydrate (COD) renal calculi gives excellent fragmentation results. However, the retention of post-ESWL fragments within the kidney remains an important health problem. This study examined the effect of various urinary conditions and crystallization inhibitors on the regrowth of spontaneously-passed post-ESWL COD calculi fragments. Methods Post-ESWL COD calculi fragments were incubated in chambers containing synthetic urine varying in pH and calcium concentration: pH = 5.5 normocalciuria (3.75 mM), pH = 5.5 hypercalciuria (6.25 mM), pH = 6.5 normocalciuria (3.75 mM) or pH = 6.5 hypercalciuria (6.25 mM). Fragment growth was evaluated by measuring increases in weight. Fragment growth was standardized by calculating the relative mass increase. Results Calcium oxalate monohydrate (COM) crystals formed on COD renal calculi fragments under all conditions. Under pH = 5.5 normocalciuria conditions, only COM crystals formed (growth rate = 0.22 ± 0.04 μg/mg·h). Under pH = 5.5 hypercalciuria and under pH = 6.5 normocalciuria conditions, COM crystals and a small number of new COD crystals formed (growth rate = 0.32 ± 0.03 μg/mg·h and 0.35 ± 0.05 μg/mg·h, respectively). Under pH = 6.5 hypercalciuria conditions, large amounts of COD, COM, hydroxyapatite and brushite crystals formed (growth rate = 3.87 ± 0. 34 μg/mg·h). A study of three crystallization inhibitors demonstrated that phytate completely inhibited fragment growth (2.27 μM at pH = 5.5 and 4.55 μM at pH = 6.5, both under hypercalciuria conditions), while 69.0 μM pyrophosphate caused an 87% reduction in mass under pH = 6.5 hypercalciuria conditions. In contrast, 5.29 mM citrate did not inhibit fragment mass increase under pH = 6.5 hypercalciuria conditions. Conclusion The growth rate of COD calculi fragments under pH = 6.5 hypercalciuria conditions was approximately ten times that observed under the other three

  16. Role of perisynaptic parameters in neurotransmitter homeostasis - computational study of a general synapse

    PubMed Central

    Pendyam, Sandeep; Mohan, Ashwin; Kalivas, Peter W.; Nair, Satish S.

    2015-01-01

    Extracellular neurotransmitter concentrations vary over a wide range depending on the type of neurotransmitter and location in the brain. Neurotransmitter homeostasis near a synapse is achieved by a balance of several mechanisms including vesicular release from the presynapse, diffusion, uptake by transporters, non-synaptic production, and regulation of release by autoreceptors. These mechanisms are also affected by the glia surrounding the synapse. However, the role of these mechanisms in achieving neurotransmitter homeostasis is not well understood. A biophysical modeling framework was proposed to reverse engineer glial configurations and parameters related to homeostasis for synapses that support a range of neurotransmitter gradients. Model experiments reveal that synapses with extracellular neurotransmitter concentrations in the micromolar range require non-synaptic neurotransmitter sources and tight synaptic isolation by extracellular glial formations. The model was used to identify the role of perisynaptic parameters on neurotransmitter homeostasis, and to propose glial configurations that could support different levels of extracellular neurotransmitter concentrations. Ranking the parameters based on their effect on neurotransmitter homeostasis, non-synaptic sources were found to be the most important followed by transporter concentration and diffusion coefficient. PMID:22460547

  17. Fluoride Alters Serum Elemental (Calcium, Magnesium, Copper, and Zinc) Homeostasis Along with Erythrocyte Carbonic Anhydrase Activity in Fluorosis Endemic Villages and Restores on Supply of Safe Drinking Water in School-Going Children of Nalgonda District, India.

    PubMed

    Khandare, Arjun L; Validandi, Vakdevi; Boiroju, Naveen

    2018-02-17

    The present study aimed to determine the serum trace elements (copper (Cu), zinc (Zn), calcium (Ca), magnesium (Mg)) along with erythrocyte carbonic anhydrase (CA) activity and effect of intervention with safe drinking water for 5 years in the school children of fluorosis endemic area. For this purpose, three categories of villages were selected based on drinking water fluoride (F): Category I (control, F = 1.68 mg/L), category II (affected F = 3.77 mg/L), and category III (intervention village) where initial drinking water F was 4.51 mg/L, and since the last 5 years, they were drinking water containing < 1.0 mg/L F. The results revealed that urinary F was significantly (P < 0.05) higher in category II compared to categories I and III. A significant (P < 0.05) increase in serum Cu and Mg was observed in category II compared to category I. Serum Zn and Ca was significantly (P < 0.05) decreased in categories II and III compared to category I. The erythrocyte CA activity was decreased in the category II compared to category I. However, in the category III, erythrocyte CA activity was comparable to the control group. In conclusion, F exposure altered elemental homeostasis which has restored to some extent on intervention by safe drinking water for 5 years in school-going children.

  18. Multifunctional Thioredoxin-Like Protein from the Gastrointestinal Parasitic Nematodes Strongyloides ratti and Trichuris suis Affects Mucosal Homeostasis

    PubMed Central

    Hansmann, Jan; Winter, Dominic; Schramm, Guido; Erttmann, Klaus D.; Liebau, Eva

    2016-01-01

    The cellular redox state is important for the regulation of multiple functions and is essential for the maintenance of cellular homeostasis and antioxidant defense. In the excretory/secretory (E/S) products of Strongyloides ratti and Trichuris suis sequences for thioredoxin (Trx) and Trx-like protein (Trx-lp) were identified. To characterize the antioxidant Trx-lp and its interaction with the parasite's mucosal habitat, S. ratti and T. suis Trx-lps were cloned and recombinantly expressed. The primary antioxidative activity was assured by reduction of insulin and IgM. Further analysis applying an in vitro mucosal 3D-cell culture model revealed that the secreted Trx-lps were able to bind to monocytic and intestinal epithelial cells and induce the time-dependent release of cytokines such as TNF-α, IL-22, and TSLP. In addition, the redox proteins also possessed chemotactic activity for monocytic THP-1 cells and fostered epithelial wound healing activity. These results confirm that the parasite-secreted Trx-lps are multifunctional proteins that can affect the host intestinal mucosa. PMID:27872753

  19. Knockdown of the coenzyme Q synthesis gene Smed-dlp1 affects planarian regeneration and tissue homeostasis.

    PubMed

    Shiobara, Yumiko; Harada, Chiaki; Shiota, Takeshi; Sakamoto, Kimitoshi; Kita, Kiyoshi; Tanaka, Saeko; Tabata, Kenta; Sekie, Kiyoteru; Yamamoto, Yorihiro; Sugiyama, Tomoyasu

    2015-12-01

    The freshwater planarian is a model organism used to study tissue regeneration that occupies an important position among multicellular organisms. Planarian genomic databases have led to the identification of genes that are required for regeneration, with implications for their roles in its underlying mechanism. Coenzyme Q (CoQ) is a fundamental lipophilic molecule that is synthesized and expressed in every cell of every organism. Furthermore, CoQ levels affect development, life span, disease and aging in nematodes and mice. Because CoQ can be ingested in food, it has been used in preventive nutrition. In this study, we investigated the role of CoQ in planarian regeneration. Planarians synthesize both CoQ9 and rhodoquinone 9 (RQ9). Knockdown of Smed-dlp1, a trans-prenyltransferase gene that encodes an enzyme that synthesizes the CoQ side chain, led to a decrease in CoQ9 and RQ9 levels. However, ATP levels did not consistently decrease in these animals. Knockdown animals exhibited tissue regression and curling. The number of mitotic cells decreased in Smed-dlp1 (RNAi) animals. These results suggested a failure in physiological cell turnover and stem cell function. Accordingly, regenerating planarians died from lysis or exhibited delayed regeneration. Interestingly, the observed phenotypes were partially rescued by ingesting food supplemented with α-tocopherol. Taken together, our results suggest that oxidative stress induced by reduced CoQ9 levels affects planarian regeneration and tissue homeostasis. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Vitamin D status in growing dairy goats and sheep: Influence of ultraviolet B radiation on bone metabolism and calcium homeostasis.

    PubMed

    Nemeth, M V; Wilkens, M R; Liesegang, A

    2017-10-01

    The aim of this study was to investigate how controlled UVB irradiation in combination with reduced nutritional vitamin D (vitD) supply affects vitD status and Ca metabolism of growing goats and sheep. The hypothesis was that, like dairy cows, goats and sheep are able to compensate for the missing nutritional supply of vitD through endogenous production in the skin, with the consequence of a high vitD status and a balanced Ca homeostasis. Sixteen lambs and 14 goat kids aged 3 and a half months were housed in an UVB free environment and fed hay and a vitD-free concentrate over a period of 13 wk. One group of each species was exposed to UVB lamps daily during individual feeding; the other groups served as controls. Serum, urine, and feces samples were taken at the start and at a monthly interval. Serum was analyzed for vitD metabolites, bone markers, growth hormone, insulin-like growth factor I, Ca, and P. Apparent digestibility and urinary excretion of Ca and P were determined. The left metatarsus was analyzed by peripheral quantitative computer tomography for bone mineral density before starting and at the end of the trial. In wk 13, all animals were slaughtered and samples of skin, rumen, duodenum, kidney, and bone (metatarsus) were collected. Content of sterols of vitD synthesis in the skin, Ca flux rates in rumen and duodenum, expression of vitD receptor in duodenum and kidney, renal and intestinal gene expression of Ca transport proteins, and renal enzymes related to vitD metabolism were determined. The UVB exposure led to lower 7-dehydrocholesterol content in the skin and a better vitD status (higher serum 25-hydroxyvitamin D), but no signs of vitD deficiency were seen in the control groups and no effect of irradiation was detected in the analyzed parameters of Ca homeostasis. Differences between the 2 species were detected: lambs had a higher increase of bone mineral density, lower values of bone markers, growth hormone, and insulin-like growth factor I in

  1. Disrupted iron homeostasis causes dopaminergic neurodegeneration in mice

    PubMed Central

    Matak, Pavle; Matak, Andrija; Moustafa, Sarah; Aryal, Dipendra K.; Benner, Eric J.; Wetsel, William; Andrews, Nancy C.

    2016-01-01

    Disrupted brain iron homeostasis is a common feature of neurodegenerative disease. To begin to understand how neuronal iron handling might be involved, we focused on dopaminergic neurons and asked how inactivation of transport proteins affected iron homeostasis in vivo in mice. Loss of the cellular iron exporter, ferroportin, had no apparent consequences. However, loss of transferrin receptor 1, involved in iron uptake, caused neuronal iron deficiency, age-progressive degeneration of a subset of dopaminergic neurons, and motor deficits. There was gradual depletion of dopaminergic projections in the striatum followed by death of dopaminergic neurons in the substantia nigra. Damaged mitochondria accumulated, and gene expression signatures indicated attempted axonal regeneration, a metabolic switch to glycolysis, oxidative stress, and the unfolded protein response. We demonstrate that loss of transferrin receptor 1, but not loss of ferroportin, can cause neurodegeneration in a subset of dopaminergic neurons in mice. PMID:26929359

  2. Bone morphogenetic protein Smads signaling in mesenchymal stem cells affected by osteoinductive calcium phosphate ceramics.

    PubMed

    Tang, Zhurong; Wang, Zhe; Qing, Fangzhu; Ni, Yilu; Fan, Yujiang; Tan, Yanfei; Zhang, Xingdong

    2015-03-01

    Porous calcium phosphate ceramics (CaP ceramics) could induce ectopic bone formation which was regulated by various signal molecules. In this work, bone marrow mesenchymal stem cells (MSCs) were cultured on the surface of osteoinductive hydroxyapatite (HA) and biphasic calcium phosphate (BCP) ceramics in comparison with control (culture plate) for up to 14 days to detect the signal molecules which might be affected by the CaP ceramics. Without adding osteogenic factors, MSCs cultured on HA and BCP both expressed higher Runx2, Osterix, collagen type I, osteopontin, bone sialoprotein, and osteocalcin at various stages compared with control, thus confirmed the osteoblastic differentiation of MSCs. Later study demonstrated the messenger RNA level of bone morphogenetic protein 2 (BMP2) and BMP4 were also significantly enhanced by HA and BCP. Furthermore, Smad1, 4, 5, and Dlx5, the main molecules in the BMP/Smads signaling pathway, were upregulated by HA and BCP. Moreover, the higher expression of Smads and BMP2, 4 in BCP over HA, corresponded to the better performance of BCP in stimulating in vitro osteoblastic differentiation of MSCs. This was in accordance with the better osteoinductivity of BCP over HA in vivo. Altogether, these results implied that the CaP ceramics may initiate the osteoblastic differentiation of MSCs by influencing the expression of molecules in BMP/Smads pathway. © 2014 Wiley Periodicals, Inc.

  3. Calcium-Induced calcium release during action potential firing in developing inner hair cells.

    PubMed

    Iosub, Radu; Avitabile, Daniele; Grant, Lisa; Tsaneva-Atanasova, Krasimira; Kennedy, Helen J

    2015-03-10

    In the mature auditory system, inner hair cells (IHCs) convert sound-induced vibrations into electrical signals that are relayed to the central nervous system via auditory afferents. Before the cochlea can respond to normal sound levels, developing IHCs fire calcium-based action potentials that disappear close to the onset of hearing. Action potential firing triggers transmitter release from the immature IHC that in turn generates experience-independent firing in auditory neurons. These early signaling events are thought to be essential for the organization and development of the auditory system and hair cells. A critical component of the action potential is the rise in intracellular calcium that activates both small conductance potassium channels essential during membrane repolarization, and triggers transmitter release from the cell. Whether this calcium signal is generated by calcium influx or requires calcium-induced calcium release (CICR) is not yet known. IHCs can generate CICR, but to date its physiological role has remained unclear. Here, we used high and low concentrations of ryanodine to block or enhance CICR to determine whether calcium release from intracellular stores affected action potential waveform, interspike interval, or changes in membrane capacitance during development of mouse IHCs. Blocking CICR resulted in mixed action potential waveforms with both brief and prolonged oscillations in membrane potential and intracellular calcium. This mixed behavior is captured well by our mathematical model of IHC electrical activity. We perform two-parameter bifurcation analysis of the model that predicts the dependence of IHCs firing patterns on the level of activation of two parameters, the SK2 channels activation and CICR rate. Our data show that CICR forms an important component of the calcium signal that shapes action potentials and regulates firing patterns, but is not involved directly in triggering exocytosis. These data provide important insights

  4. Enteric Virome Sensing—Its Role in Intestinal Homeostasis and Immunity

    PubMed Central

    Metzger, Rebecca N.; Krug, Anne B.; Eisenächer, Katharina

    2018-01-01

    Pattern recognition receptors (PRRs) sensing commensal microorganisms in the intestine induce tightly controlled tonic signaling in the intestinal mucosa, which is required to maintain intestinal barrier integrity and immune homeostasis. At the same time, PRR signaling pathways rapidly trigger the innate immune defense against invasive pathogens in the intestine. Intestinal epithelial cells and mononuclear phagocytes in the intestine and the gut-associated lymphoid tissues are critically involved in sensing components of the microbiome and regulating immune responses in the intestine to sustain immune tolerance against harmless antigens and to prevent inflammation. These processes have been mostly investigated in the context of the bacterial components of the microbiome so far. The impact of viruses residing in the intestine and the virus sensors, which are activated by these enteric viruses, on intestinal homeostasis and inflammation is just beginning to be unraveled. In this review, we will summarize recent findings indicating an important role of the enteric virome for intestinal homeostasis as well as pathology when the immune system fails to control the enteric virome. We will provide an overview of the virus sensors and signaling pathways, operative in the intestine and the mononuclear phagocyte subsets, which can sense viruses and shape the intestinal immune response. We will discuss how these might interact with resident enteric viruses directly or in context with the bacterial microbiome to affect intestinal homeostasis. PMID:29570694

  5. Calcium influx affects intracellular transport and membrane repair following nanosecond pulsed electric field exposure

    NASA Astrophysics Data System (ADS)

    Thompson, Gary Lee; Roth, Caleb C.; Dalzell, Danielle R.; Kuipers, Marjorie; Ibey, Bennett L.

    2014-05-01

    The cellular response to subtle membrane damage following exposure to nanosecond pulsed electric fields (nsPEF) is not well understood. Recent work has shown that when cells are exposed to nsPEF, ion permeable nanopores (<2 nm) are created in the plasma membrane in contrast to larger diameter pores (>2 nm) created by longer micro- and millisecond duration pulses. Nanoporation of the plasma membrane by nsPEF has been shown to cause a transient increase in intracellular calcium concentration within milliseconds after exposure. Our research objective is to determine the impact of nsPEF on calcium-dependent structural and repair systems in mammalian cells. Chinese hamster ovary (CHO-K1) cells were exposed in the presence and absence of calcium ions in the outside buffer to either 1 or 20, 600-ns duration electrical pulses at 16.2 kV/cm, and pore size was determined using propidium iodide and calcium green. Membrane organization was observed with morphological changes and increases in FM1-43 fluorescence. Migration of lysosomes, implicated in membrane repair, was followed using confocal microscopy of red fluorescent protein-tagged LAMP1. Microtubule structure was imaged using mEmerald-tubulin. We found that at high 600-ns PEF dosage, calcium-induced membrane restructuring and microtubule depolymerization coincide with interruption of membrane repair via lysosomal exocytosis.

  6. Calcium influx affects intracellular transport and membrane repair following nanosecond pulsed electric field exposure.

    PubMed

    Thompson, Gary Lee; Roth, Caleb C; Dalzell, Danielle R; Kuipers, Marjorie; Ibey, Bennett L

    2014-05-01

    The cellular response to subtle membrane damage following exposure to nanosecond pulsed electric fields (nsPEF) is not well understood. Recent work has shown that when cells are exposed to nsPEF, ion permeable nanopores (<2  nm) are created in the plasma membrane in contrast to larger diameter pores (>2  nm) created by longer micro- and millisecond duration pulses. Nanoporation of the plasma membrane by nsPEF has been shown to cause a transient increase in intracellular calcium concentration within milliseconds after exposure. Our research objective is to determine the impact of nsPEF on calcium-dependent structural and repair systems in mammalian cells. Chinese hamster ovary (CHO-K1) cells were exposed in the presence and absence of calcium ions in the outside buffer to either 1 or 20, 600-ns duration electrical pulses at 16.2  kV/cm, and pore size was determined using propidium iodide and calcium green. Membrane organization was observed with morphological changes and increases in FM1-43 fluorescence. Migration of lysosomes, implicated in membrane repair, was followed using confocal microscopy of red fluorescent protein-tagged LAMP1. Microtubule structure was imaged using mEmerald-tubulin. We found that at high 600-ns PEF dosage, calcium-induced membrane restructuring and microtubule depolymerization coincide with interruption of membrane repair via lysosomal exocytosis.

  7. Similar calcium status is present in infants fed formula with and without prebiotics

    USDA-ARS?s Scientific Manuscript database

    Prebiotic oligosaccharides can increase calcium absorption in adolescents and adults. Whether they affect calcium absorption in infants has not been assessed. Few data are available to compare the calcium status of infants fed modern infant formulas to that of breast fed infants. To evaluate calcium...

  8. Copper Homeostasis as a Therapeutic Target in Amyotrophic Lateral Sclerosis with SOD1 Mutations

    PubMed Central

    Tokuda, Eiichi; Furukawa, Yoshiaki

    2016-01-01

    Amyotrophic lateral sclerosis (ALS) is a lethal neurodegenerative disease affecting both upper and lower motor neurons, and currently, there is no cure or effective treatment. Mutations in a gene encoding a ubiquitous antioxidant enzyme, Cu,Zn-superoxide dismutase (SOD1), have been first identified as a cause of familial forms of ALS. It is widely accepted that mutant SOD1 proteins cause the disease through a gain in toxicity but not through a loss of its physiological function. SOD1 is a major copper-binding protein and regulates copper homeostasis in the cell; therefore, a toxicity of mutant SOD1 could arise from the disruption of copper homeostasis. In this review, we will briefly review recent studies implying roles of copper homeostasis in the pathogenesis of SOD1-ALS and highlight the therapeutic interventions focusing on pharmacological as well as genetic regulations of copper homeostasis to modify the pathological process in SOD1-ALS. PMID:27136532

  9. Copper Homeostasis as a Therapeutic Target in Amyotrophic Lateral Sclerosis with SOD1 Mutations.

    PubMed

    Tokuda, Eiichi; Furukawa, Yoshiaki

    2016-04-28

    Amyotrophic lateral sclerosis (ALS) is a lethal neurodegenerative disease affecting both upper and lower motor neurons, and currently, there is no cure or effective treatment. Mutations in a gene encoding a ubiquitous antioxidant enzyme, Cu,Zn-superoxide dismutase (SOD1), have been first identified as a cause of familial forms of ALS. It is widely accepted that mutant SOD1 proteins cause the disease through a gain in toxicity but not through a loss of its physiological function. SOD1 is a major copper-binding protein and regulates copper homeostasis in the cell; therefore, a toxicity of mutant SOD1 could arise from the disruption of copper homeostasis. In this review, we will briefly review recent studies implying roles of copper homeostasis in the pathogenesis of SOD1-ALS and highlight the therapeutic interventions focusing on pharmacological as well as genetic regulations of copper homeostasis to modify the pathological process in SOD1-ALS.

  10. Calmodulins from Schistosoma mansoni: Biochemical analysis and interaction with IQ-motifs from voltage-gated calcium channels.

    PubMed

    Thomas, Charlotte M; Timson, David J

    2018-05-17

    The trematode Schistosoma mansoni is a causative agent of schistosomiasis, the second most common parasitic disease of humans after malaria. Calcium homeostasis and calcium-mediated signalling pathways are of particular interest in this species. The drug of choice for treating schistosomiasis, praziquantel, disrupts the regulation of calcium uptake and there is interest in exploiting calcium-mediated processes for future drug discovery. Calmodulin is a calcium sensing protein, present in most eukaryotes. It is a critical regulator of processes as diverse as muscle contraction, cell division and, partly through interaction with voltage-gated calcium channels, intra-cellular calcium concentrations. S. mansoni expresses two highly similar calmodulins - SmCaM1 and SmCaM2. Both proteins interact with calcium, manganese, cadmium (II), iron (II) and lead ions in native gel electrophoresis. These ions also cause conformational changes in the proteins resulting in the exposure of a more hydrophobic surface (as demonstrated by anilinonaphthalene-8-sulfonate fluorescence assays). The proteins are primarily dimeric in the absence of calcium ions, but monomeric in the presence of this ion. Both SmCaM1 and SmCaM2 interact with a peptide corresponding to an IQ-motif derived from the α-subunit of the voltage-gated calcium channel SmCa v 1B (residues 1923-1945). Both proteins bound with slightly higher affinity in the presence of calcium ions. However, there was no difference between the affinities of the two proteins for the peptide. This interaction could be antagonised by chlorpromazine and trifluoperazine, but not praziquantel or thiamylal. Interestingly no interaction could be detected with the other three IQ-motifs identified in S. mansoni voltage-gated ion calcium channels. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Modeling tensional homeostasis in multicellular clusters.

    PubMed

    Tam, Sze Nok; Smith, Michael L; Stamenović, Dimitrije

    2017-03-01

    Homeostasis of mechanical stress in cells, or tensional homeostasis, is essential for normal physiological function of tissues and organs and is protective against disease progression, including atherosclerosis and cancer. Recent experimental studies have shown that isolated cells are not capable of maintaining tensional homeostasis, whereas multicellular clusters are, with stability increasing with the size of the clusters. Here, we proposed simple mathematical models to interpret experimental results and to obtain insight into factors that determine homeostasis. Multicellular clusters were modeled as one-dimensional arrays of linearly elastic blocks that were either jointed or disjointed. Fluctuating forces that mimicked experimentally measured cell-substrate tractions were obtained from Monte Carlo simulations. These forces were applied to the cluster models, and the corresponding stress field in the cluster was calculated by solving the equilibrium equation. It was found that temporal fluctuations of the cluster stress field became attenuated with increasing cluster size, indicating that the cluster approached tensional homeostasis. These results were consistent with previously reported experimental data. Furthermore, the models revealed that key determinants of tensional homeostasis in multicellular clusters included the cluster size, the distribution of traction forces, and mechanical coupling between adjacent cells. Based on these findings, we concluded that tensional homeostasis was a multicellular phenomenon. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  12. Mitochondrial impairment increases FL-PINK1 levels by calcium-dependent gene expression☆

    PubMed Central

    Gómez-Sánchez, Rubén; Gegg, Matthew E.; Bravo-San Pedro, José M.; Niso-Santano, Mireia; Alvarez-Erviti, Lydia; Pizarro-Estrella, Elisa; Gutiérrez-Martín, Yolanda; Alvarez-Barrientos, Alberto; Fuentes, José M.; González-Polo, Rosa Ana; Schapira, Anthony H.V.

    2014-01-01

    Mutations of the PTEN-induced kinase 1 (PINK1) gene are a cause of autosomal recessive Parkinson's disease (PD). This gene encodes a mitochondrial serine/threonine kinase, which is partly localized to mitochondria, and has been shown to play a role in protecting neuronal cells from oxidative stress and cell death, perhaps related to its role in mitochondrial dynamics and mitophagy. In this study, we report that increased mitochondrial PINK1 levels observed in human neuroblastoma SH-SY5Y cells after carbonyl cyanide m-chlorophelyhydrazone (CCCP) treatment were due to de novo protein synthesis, and not just increased stabilization of full length PINK1 (FL-PINK1). PINK1 mRNA levels were significantly increased by 4-fold after 24 h. FL-PINK1 protein levels at this time point were significantly higher than vehicle-treated, or cells treated with CCCP for 3 h, despite mitochondrial content being decreased by 29%. We have also shown that CCCP dissipated the mitochondrial membrane potential (Δψm) and induced entry of extracellular calcium through L/N-type calcium channels. The calcium chelating agent BAPTA-AM impaired the CCCP-induced PINK1 mRNA and protein expression. Furthermore, CCCP treatment activated the transcription factor c-Fos in a calcium-dependent manner. These data indicate that PINK1 expression is significantly increased upon CCCP-induced mitophagy in a calcium-dependent manner. This increase in expression continues after peak Parkin mitochondrial translocation, suggesting a role for PINK1 in mitophagy that is downstream of ubiquitination of mitochondrial substrates. This sensitivity to intracellular calcium levels supports the hypothesis that PINK1 may also play a role in cellular calcium homeostasis and neuroprotection. PMID:24184327

  13. Role of cytosolic calcium diffusion in cardiac purkinje cells.

    PubMed

    Limbu, Bijay; Shah, Kushal; Deo, Makarand

    2016-08-01

    The Cardiac Purkinje cells (PCs) exhibit distinct calcium (Ca2+) homeostasis than that in ventricular myocytes (VMs). Due to lack of t-tubules in PCs, the Ca2+ ions entering the cell have to diffuse through the cytoplasm to reach the sarcoplasmic reticulum (SR) before triggering Ca2+-induced-Ca2+-release (CICR). In recent experimental studies PCs have been shown to be more susceptible to action potential (AP) abnormalities than the VMs, however the exact mechanisms are poorly understood. In this study, we utilize morphologically realistic detailed biophysical mathematical model of a murine PC to systematically examine the role intracellular Ca2+ diffusion in the APs of PCs. A biphasic spatiotemporal Ca2+ diffusion process, as observed experimentally, was implemented in the model which includes radial Ca2+ wavelets and cell wide longitudinal Ca2+ diffusion wave (CWW). The AP morphology, specifically plateau, is affected due to changes in intracellular Ca2+ dynamics. When Ca2+ concentration in sarcolemmal region is elevated, it activated inward sodium Ca2+ exchanger (NCX) current resulting into prolongation of the plateau at faster diffusion rates. Our results demonstrate that the cytosolic Ca2+ diffusion waves play a significant role in shaping APs of PCs and could provide mechanistic insights into the increased arrhythmogeneity of PCs.

  14. The Role of the Calcium-sensing Receptor in Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodland, Karin D.

    2004-03-01

    The cell surface calcium receptor (Ca2+ receptor) is a particularly difficult receptor to study because its primary physiological ligand, Ca2+, affects numerous biological processes both within and outside of cells. Because of this, distinguishing effects of extracellular Ca2+ mediated by the Ca2+ receptor from those mediated by other mechanisms is challenging. Certain pharmacological approaches, however, when combined with appropriate experimental designs, can be used to more confidently identify cellular responses regulated by the Ca2+ receptor and select those that might be targeted therapeutically. The Ca2+ receptor on parathyroid cells, because it is the primary mechanism regulating secretion of parathyroid hormonemore » (PTH), is one such target. Calcimimetic compounds, which active this Ca2+ receptor and lower circulating levels of PTH, have been developed for treating hyperparathyroidism. The converse pharmaceutical approach, involving calcilytic compounds that block parathyroid cell Ca2+ receptors and stimulate PTH secretion thereby providing an anabolic therapy for osteoporosis, still awaits clinical validation. Although Ca2+ receptors are expressed throughout the body and in many tissues that are not intimately involved in systemic Ca2+ homeostasis, their physiological and/or pathological significance remains speculative and their value as therapeutic targets is unknown.« less

  15. Lipid Raft, Regulator of Plasmodesmal Callose Homeostasis.

    PubMed

    Iswanto, Arya Bagus Boedi; Kim, Jae-Yean

    2017-04-03

    A bstract: The specialized plasma membrane microdomains known as lipid rafts are enriched by sterols and sphingolipids. Lipid rafts facilitate cellular signal transduction by controlling the assembly of signaling molecules and membrane protein trafficking. Another specialized compartment of plant cells, the plasmodesmata (PD), which regulates the symplasmic intercellular movement of certain molecules between adjacent cells, also contains a phospholipid bilayer membrane. The dynamic permeability of plasmodesmata (PDs) is highly controlled by plasmodesmata callose (PDC), which is synthesized by callose synthases (CalS) and degraded by β-1,3-glucanases (BGs). In recent studies, remarkable observations regarding the correlation between lipid raft formation and symplasmic intracellular trafficking have been reported, and the PDC has been suggested to be the regulator of the size exclusion limit of PDs. It has been suggested that the alteration of lipid raft substances impairs PDC homeostasis, subsequently affecting PD functions. In this review, we discuss the substantial role of membrane lipid rafts in PDC homeostasis and provide avenues for understanding the fundamental behavior of the lipid raft-processed PDC.

  16. Osmotic Homeostasis

    PubMed Central

    Zeidel, Mark L.

    2015-01-01

    Alterations in water homeostasis can disturb cell size and function. Although most cells can internally regulate cell volume in response to osmolar stress, neurons are particularly at risk given a combination of complex cell function and space restriction within the calvarium. Thus, regulating water balance is fundamental to survival. Through specialized neuronal “osmoreceptors” that sense changes in plasma osmolality, vasopressin release and thirst are titrated in order to achieve water balance. Fine-tuning of water absorption occurs along the collecting duct, and depends on unique structural modifications of renal tubular epithelium that confer a wide range of water permeability. In this article, we review the mechanisms that ensure water homeostasis as well as the fundamentals of disorders of water balance. PMID:25078421

  17. [Effect of inducible nitric oxide on intracellular homeostasis of hepatocytes].

    PubMed

    Tang, Xi-Feng; Zhou, Dong-Yao; Kang, Ge-Fei

    2002-02-01

    To investigate the effects of inducible nitric oxide (NO) and exogenous NO on the intracellular homeostasis of the hepatocytes. Endogenous NO was induced by combined action of lipopolysaccharide (LPS) and cytokines in cultured rat hepatocytes, and exogenous NO was supplied by sodium nitroprusside (SNP) to stimulate the hepatocytes. The changes in intracellular malondialdehyde (MDA), reduced glutathione(GSH) and free calcium ([Ca2+]i) were observed. substantial increase by 7.97 times in intracellular MDA level and a decrease by 57.9% in GSH occurred in the hepatocytes after the cells had been incubated with LPS and cytokines for 24 h, which were reversed by 43.5% and 98.4% respectively by treatment with N(G)-monomethyl-L-arginine (NMMA), a competitive nitric oxide synthase (NOS) inhibitor. Verapamil significantly reduced both endogenous NO production and oxidative stress, while the effect of A23187 was not conspicuous. Incubation with chlorpromazine and Vitamine E (VitE), however, did not result in decreased release of NO by LPS- and cytokines-induced hepatocytes. After SNP exposure of the hepatocytes, the oxidative status was reversibly enhanced in a time-dependent manner. Short exposure to SNP led to a concentration-dependent inhibition of the rapid and transient increase in free calcium induced by K(+) depolarization and hepatopoietin-coupled calcium mobilization. Inducible NO may initiate and play a key role in the latter stages of metabolic and functional stress responses of hepatocytes against endotoxin and cytokines, when the reduction occurs in the capacity of NO to independently mediate lipid peroxidation and counteract oxidation. The inhibitory effect of NO on [Ca2+]i mobilization may be an important autoregulatory mechanism by means of negative feedback on protein kinase C-associated NOS induction.

  18. Effect of low gravity on calcium metabolism and bone formation (L-7)

    NASA Technical Reports Server (NTRS)

    Suda, Tatsuo

    1993-01-01

    Recently, attention has been focused on the disorders of bone and calcium metabolism during space flight. The skeletal system has evolved on the Earth under 1-g. Space flights under low gravity appear to cause substantial changes in bone and calcium homeostasis of the animals adapted to 1-g. A space experiment for the First Materials Processing Test (FMPT) was proposed to examine the effects of low gravity on calcium metabolism and bone formation using chick embryos loaded in a space shuttle. This space experiment was proposed based on the following two experimental findings. First, it has been reported that bone density decreases significantly during prolonged space flight. The data obtained from the US Skylab and the U.S.S.R. Salyut-6 cosmonauts have also documented that the degree of bone loss is related to the duration of space flight. Second, the US-Soviet joints space experiment demonstrated that the decrease in bone density under low gravity appears to be due to the decrease in bone formation rather than the increase in bone resorption. The purpose of our space experiment is, therefore, to investigate further the mechanisms of bone growth under low gravity using fertilized chick embryos.

  19. Calcium bioavailability and kinetics of calcium ascorbate and calcium acetate in rats.

    PubMed

    Cai, Jianwei; Zhang, Qinmin; Wastney, Meryl E; Weaver, Connie M

    2004-01-01

    The objective was to investigate the bioavailability and mechanism of calcium absorption of calcium ascorbate (ASC) and calcium acetate (AC). A series of studies was performed in adult Sprague-Dawley male rats. In the first study, each group of rats (n = 10/group) was assigned to one of the five test meals labeled with (45)Ca: (i) 25 mg calcium as heated ASC or (ii) unheated ASC, (iii) 25 mg calcium as unheated AC, (iv) 3.6 mg Ca as unheated ASC, or (v) unheated AC. Femur uptake indicated better calcium bioavailability from ASC than AC at both calcium loads. A 5-min heat treatment partly reduced bioavailability of ASC. Kinetic studies were performed to further investigate the mechanism of superior calcium bioavailability from ASC. Two groups of rats (n = 10/group) received oral doses of 25 mg Ca as ASC or AC. Each dose contained 20 micro Ci (45)Ca. Two additional groups of rats (n = 10/group) received an intravenous injection (iv) of 10 micro Ci (45)Ca after receiving an unlabeled oral dose of 25 mg calcium as ASC or AC. Sequential blood samples were collected over 48 hrs. Urine and fecal samples were collected every 12 hrs for 48 hrs and were analyzed for total calcium and (45)Ca content. Total calcium and (45)Ca from serum, urine, and feces were fitted by a compartment kinetics model with saturable and nonsaturable absorption pathways by WinSAAM (Windows-based Simulation Analysis and Modeling). The difference in calcium bioavailability between the two salts was due to differences in saturable rather than passive intestinal absorption and not to endogenous secretion or calcium deposition rate. The higher bioavailability of calcium ascorbate was due to a longer transit time in the small intestine compared with ASC.

  20. Neuroprotective Effect of Ginseng against Alteration of Calcium Binding Proteins Immunoreactivity in the Mice Hippocampus after Radiofrequency Exposure

    PubMed Central

    Maskey, Dhiraj

    2013-01-01

    Calcium binding proteins (CaBPs) such as calbindin D28-k, parvalbumin, and calretinin are able to bind Ca2+ with high affinity. Changes in Ca2+ concentrations via CaBPs can disturb Ca2+ homeostasis. Brain damage can be induced by the prolonged electromagnetic field (EMF) exposure with loss of interacellular Ca2+ balance. The present study investigated the radioprotective effect of ginseng in regard to CaBPs immunoreactivity (IR) in the hippocampus through immunohistochemistry after one-month exposure at 1.6 SAR value by comparing sham control with exposed and ginseng-treated exposed groups separately. Loss of dendritic arborization was noted with the CaBPs in the Cornu Ammonis areas as well as a decrease of staining intensity of the granule cells in the dentate gyrus after exposure while no loss was observed in the ginseng-treated group. A significant difference in the relative mean density was noted between control and exposed groups but was nonsignificant in the ginseng-treated group. Decrease in CaBP IR with changes in the neuronal staining as observed in the exposed group would affect the hippocampal trisynaptic circuit by alteration of the Ca2+ concentration which could be prevented by ginseng. Hence, ginseng could contribute as a radioprotective agent against EMF exposure, contributing to the maintenance of Ca2+ homeostasis by preventing impairment of intracellular Ca2+ levels in the hippocampus. PMID:24069603

  1. Blue light-dependent changes in loosely bound calcium in Arabidopsis mesophyll cells: an X-ray microanalysis study

    PubMed Central

    Łabuz, Justyna; Samardakiewicz, Sławomir; Hermanowicz, Paweł; Wyroba, Elżbieta; Pilarska, Maria; Gabryś, Halina

    2016-01-01

    Calcium is involved in the signal transduction pathway from phototropins, the blue light photoreceptor kinases which mediate chloroplast movements. The chloroplast accumulation response in low light is controlled by both phot1 and phot2, while only phot2 is involved in avoidance movement induced by strong light. Phototropins elevate cytosolic Ca2+ after activation by blue light. In higher plants, both types of chloroplast responses depend on Ca2+, and internal calcium stores seem to be crucial for these processes. Yet, the calcium signatures generated after the perception of blue light by phototropins are not well understood. To characterize the localization of calcium in Arabidopsis mesophyll cells, loosely bound (exchangeable) Ca2+ was precipitated with potassium pyroantimonate and analyzed by transmission electron microscopy followed by energy-dispersive X-ray microanalysis. In dark-adapted wild-type Arabidopsis leaves, calcium precipitates were observed at the cell wall, where they formed spherical structures. After strong blue light irradiation, calcium at the apoplast prevailed, and bigger, multilayer precipitates were found. Spherical calcium precipitates were also detected at the tonoplast. After red light treatment as a control, the precipitates at the cell wall were smaller and less numerous. In the phot2 and phot1phot2 mutants, calcium patterns were different from those of wild-type plants. In both mutants, no elevation of calcium after blue light treatment was observed at the cell periphery (including the cell wall and a fragment of cytoplasm). This result confirms the involvement of phototropin2 in the regulation of Ca2+ homeostasis in mesophyll cells. PMID:26957564

  2. p53-upregulated-modulator-of-apoptosis (PUMA) deficiency affects food intake but does not impact on body weight or glucose homeostasis in diet-induced obesity.

    PubMed Central

    Litwak, Sara A.; Loh, Kim; Stanley, William J.; Pappas, Evan G.; Wali, Jibran A.; Selck, Claudia; Strasser, Andreas; Thomas, Helen E.; Gurzov, Esteban N.

    2016-01-01

    BCL-2 proteins have been implicated in the control of glucose homeostasis and metabolism in different cell types. Thus, the aim of this study was to determine the role of the pro-apoptotic BH3-only protein, p53-upregulated-modulator-of-apoptosis (PUMA), in metabolic changes mediated by diet-induced obesity, using PUMA deficient mice. At 10 weeks of age, knockout and wild type mice either continued consuming a low fat chow diet (6% fat), or were fed with a high fat diet (23% fat) for 14–17 weeks. We measured body composition, glucose and insulin tolerance, insulin response in peripheral tissues, energy expenditure, oxygen consumption, and respiratory exchange ratio in vivo. All these parameters were indistinguishable between wild type and knockout mice on chow diet and were modified equally by diet-induced obesity. Interestingly, we observed decreased food intake and ambulatory capacity of PUMA knockout mice on high fat diet. This was associated with increased adipocyte size and fasted leptin concentration in the blood. Our findings suggest that although PUMA is dispensable for glucose homeostasis in lean and obese mice, it can affect leptin levels and food intake during obesity. PMID:27033313

  3. p53-upregulated-modulator-of-apoptosis (PUMA) deficiency affects food intake but does not impact on body weight or glucose homeostasis in diet-induced obesity.

    PubMed

    Litwak, Sara A; Loh, Kim; Stanley, William J; Pappas, Evan G; Wali, Jibran A; Selck, Claudia; Strasser, Andreas; Thomas, Helen E; Gurzov, Esteban N

    2016-04-01

    BCL-2 proteins have been implicated in the control of glucose homeostasis and metabolism in different cell types. Thus, the aim of this study was to determine the role of the pro-apoptotic BH3-only protein, p53-upregulated-modulator-of-apoptosis (PUMA), in metabolic changes mediated by diet-induced obesity, using PUMA deficient mice. At 10 weeks of age, knockout and wild type mice either continued consuming a low fat chow diet (6% fat), or were fed with a high fat diet (23% fat) for 14-17 weeks. We measured body composition, glucose and insulin tolerance, insulin response in peripheral tissues, energy expenditure, oxygen consumption, and respiratory exchange ratio in vivo. All these parameters were indistinguishable between wild type and knockout mice on chow diet and were modified equally by diet-induced obesity. Interestingly, we observed decreased food intake and ambulatory capacity of PUMA knockout mice on high fat diet. This was associated with increased adipocyte size and fasted leptin concentration in the blood. Our findings suggest that although PUMA is dispensable for glucose homeostasis in lean and obese mice, it can affect leptin levels and food intake during obesity.

  4. Physiological characterisation of a pH- and calcium-dependent sodium uptake mechanism in the freshwater crustacean, Daphnia magna.

    PubMed

    Glover, Chris N; Wood, Chris M

    2005-03-01

    Daphnia are highly sensitive to sodium metabolism disruption caused by aquatic acidification and ionoregulatory toxicants, due to their finely balanced ion homeostasis. Nine different water chemistries of varying pH (4, 6 and 8) and calcium concentration (0, 0.5 and 1 mmol l(-1)) were used to delineate the mechanism of sodium influx in Daphnia magna. Lowering water pH severely inhibited sodium influx when calcium concentration was high, but transport kinetic analysis revealed a stimulated sodium influx capacity (J(max)) when calcium was absent. At low pH increasing water calcium levels decreased J(max) and raised K(m) (decreased sodium influx affinity), while at high pH the opposite pattern was observed (elevated J(max) and reduced K(m)). These effects on sodium influx were mirrored by changes in whole body sodium levels. Further examination of the effect of calcium on sodium influx showed a severe inhibition of sodium uptake by 100 micromol l(-1) calcium gluconate at both low (50 micromol l(-1)) and high (1000 micromol l(-1)) sodium concentrations. At high sodium concentrations, stimulated sodium influx was noted with elevated calcium levels. These results, in addition to data showing amiloride inhibition of sodium influx (K(i)=180 micromol l(-1)), suggest a mechanism of sodium influx in Daphnia magna that involves the electrogenic 2Na(+)/1H(+) exchanger.

  5. A Physiologist's View of Homeostasis

    ERIC Educational Resources Information Center

    Modell, Harold; Cliff, William; Michael, Joel; McFarland, Jenny; Wenderoth, Mary Pat; Wright, Ann

    2015-01-01

    Homeostasis is a core concept necessary for understanding the many regulatory mechanisms in physiology. Claude Bernard originally proposed the concept of the constancy of the "milieu interieur," but his discussion was rather abstract. Walter Cannon introduced the term "homeostasis" and expanded Bernard's notion of…

  6. Bioequivalence study of an oral contraceptive containing ethinylestradiol/drospirenone/levomefolate calcium relative to ethinylestradiol/drospirenone and to levomefolate calcium alone.

    PubMed

    Blode, Hartmut; Klipping, Christine; Richard, Frank; Trummer, Dietmar; Rohde, Beate; Diefenbach, Konstanze

    2012-02-01

    A new tablet formulation containing 0.02 mg ethinylestradiol/3 mg drospirenone/0.451 mg levomefolate calcium (calcium salt containing 0.416 mg L-5-methyltetrahydrofolate) was assessed for bioequivalence compared to the approved oral contraceptive (OC) tablet containing identical amounts of ethinylestradiol and drospirenone and to a tablet containing 0.451 mg levomefolate calcium. Forty-four subjects received in an intraindividual crossover design single doses of the new tablet formulation or the established ethinylestradiol/drospirenone tablet or the levomefolate calcium tablet. Bioequivalence was demonstrated for ethinylestradiol, drospirenone and L-5-methyltetrahydrofolate (active moiety of levomefolate calcium) between the investigated tablet formulations. The geometric mean ratios of the AUC((0-tlast)) and C(max) values for all three compounds and their 90% confidence intervals were well within the 80%-125% range generally accepted to demonstrate bioequivalence. The rate and extent of absorption of ethinylestradiol and drospirenone were not affected by the concomitant administration of levomefolate calcium and vice versa. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Environmental metabolomics with data science for investigating ecosystem homeostasis.

    PubMed

    Kikuchi, Jun; Ito, Kengo; Date, Yasuhiro

    2018-02-01

    A natural ecosystem can be viewed as the interconnections between complex metabolic reactions and environments. Humans, a part of these ecosystems, and their activities strongly affect the environments. To account for human effects within ecosystems, understanding what benefits humans receive by facilitating the maintenance of environmental homeostasis is important. This review describes recent applications of several NMR approaches to the evaluation of environmental homeostasis by metabolic profiling and data science. The basic NMR strategy used to evaluate homeostasis using big data collection is similar to that used in human health studies. Sophisticated metabolomic approaches (metabolic profiling) are widely reported in the literature. Further challenges include the analysis of complex macromolecular structures, and of the compositions and interactions of plant biomass, soil humic substances, and aqueous particulate organic matter. To support the study of these topics, we also discuss sample preparation techniques and solid-state NMR approaches. Because NMR approaches can produce a number of data with high reproducibility and inter-institution compatibility, further analysis of such data using machine learning approaches is often worthwhile. We also describe methods for data pretreatment in solid-state NMR and for environmental feature extraction from heterogeneously-measured spectroscopic data by machine learning approaches. Copyright © 2017. Published by Elsevier B.V.

  8. A Putative Chloroplast-Localized Ca(2+)/H(+) Antiporter CCHA1 Is Involved in Calcium and pH Homeostasis and Required for PSII Function in Arabidopsis.

    PubMed

    Wang, Chao; Xu, Weitao; Jin, Honglei; Zhang, Taijie; Lai, Jianbin; Zhou, Xuan; Zhang, Shengchun; Liu, Shengjie; Duan, Xuewu; Wang, Hongbin; Peng, Changlian; Yang, Chengwei

    2016-08-01

    Calcium is important for chloroplast, not only in its photosynthetic but also nonphotosynthetic functions. Multiple Ca(2+)/H(+) transporters and channels have been described and studied in the plasma membrane and organelle membranes of plant cells; however, the molecular identity and physiological roles of chloroplast Ca(2+)/H(+) antiporters have remained unknown. Here we report the identification and characterization of a member of the UPF0016 family, CCHA1 (a chloroplast-localized potential Ca(2+)/H(+) antiporter), in Arabidopsis thaliana. We observed that the ccha1 mutant plants developed pale green leaves and showed severely stunted growth along with impaired photosystem II (PSII) function. CCHA1 localizes to the chloroplasts, and the levels of the PSII core subunits and the oxygen-evolving complex were significantly decreased in the ccha1 mutants compared with the wild type. In high Ca(2+) concentrations, Arabidopsis CCHA1 partially rescued the growth defect of yeast gdt1Δ null mutant, which is defective in a Ca(2+)/H(+) antiporter. The ccha1 mutant plants also showed significant sensitivity to high concentrations of CaCl2 and MnCl2, as well as variation in pH. Taken these results together, we propose that CCHA1 might encode a putative chloroplast-localized Ca(2+)/H(+) antiporter with critical functions in the regulation of PSII and in chloroplast Ca(2+) and pH homeostasis in Arabidopsis. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.

  9. Non-destructive Measurement of Calcium and Potassium in Apple and Pear Using Handheld X-ray Fluorescence

    PubMed Central

    Kalcsits, Lee A.

    2016-01-01

    Calcium and potassium are essential for cell signaling, ion homeostasis and cell wall strength in plants. Unlike nutrients such as nitrogen and potassium, calcium is immobile in plants. Localized calcium deficiencies result in agricultural losses; particularly for fleshy horticultural crops in which elemental imbalances in fruit contribute to the development of physiological disorders such as bitter pit in apple and cork spot in pear. Currently, elemental analysis of plant tissue is destructive, time consuming and costly. This is a limitation for nutrition studies related to calcium in plants. Handheld portable x-ray fluorescence (XRF) can be used to non-destructively measure elemental concentrations. The main objective was to test if handheld XRF can be used for semi-quantitative calcium and potassium analysis of in-tact apple and pear. Semi-quantitative measurements for individual fruit were compared to results obtained from traditional lab analysis. Here, we observed significant correlations between handheld XRF measurements of calcium and potassium and concentrations determined using MP-AES lab analysis. Pearson correlation coefficients ranged from 0.73 and 0.97. Furthermore, measuring apple and pear using handheld XRF identified spatial variability in calcium and potassium concentrations on the surface of individual fruit. This variability may contribute to the development of localized nutritional imbalances. This highlights the importance of understanding spatial and temporal variability in elemental concentrations in plant tissue. Handheld XRF is a relatively high-throughput approach for measuring calcium and potassium in plant tissue. It can be used in conjunction with traditional lab analysis to better understand spatial and temporal patterns in calcium and potassium uptake and distribution within an organ, plant or across the landscape. PMID:27092160

  10. Protein-Mediated Precipitation of Calcium Carbonate

    PubMed Central

    Polowczyk, Izabela; Bastrzyk, Anna; Fiedot, Marta

    2016-01-01

    Calcium carbonate is an important component in exoskeletons of many organisms. The synthesis of calcium carbonate was performed by mixing dimethyl carbonate and an aqueous solution of calcium chloride dihydrate. The precipitation product was characterized by means of scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) measurements. In addition, the turbidity of the reaction solution was acquired to monitor the kinetics of the calcium carbonate structure’s growth in the investigated system. In this study, samples of CaCO3 particles obtained with individual proteins, such as ovalbumin, lysozyme, and a mixture of the proteins, were characterized and compared with a control sample, i.e., synthesized without proteins. The obtained data indicated that the addition of ovalbumin to the reaction changed the morphology of crystals from rhombohedral to ‘stack-like’ structures. Lysozyme, however, did not affect the morphology of calcium carbonate, yet the presence of the protein mixture led to the creation of more complex composites in which the calcium carbonate crystals were constructed in protein matrices formed by the ovalbumin-lysozyme interaction. It was also observed that in the protein mixture, ovalbumin has a major influence on the CaCO3 formation through a strong interaction with calcium ions, which leads to the coalescence and creation of a steric barrier reducing particle growth. The authors proposed a mechanism of calcium carbonate grain growth in the presence of both proteins, taking into account the interaction of calcium ions with the protein. PMID:28774065

  11. Advanced glycation end products affect cholesterol homeostasis by impairing ABCA1 expression on macrophages.

    PubMed

    Kamtchueng Simo, Olivier; Ikhlef, Souade; Berrougui, Hicham; Khalil, Abdelouahed

    2017-08-01

    Reverse cholesterol transport (RCT), which is intimately linked to high-density lipoproteins (HDLs), plays a key role in cholesterol homeostasis and the prevention of atherosclerosis. The goal of the present study was to investigate the effect of aging and advanced glycation end products (AGEs) on RCT as well as on other factors that may affect the antiatherogenic property of HDLs. The transfer of macrophage-derived cholesterol to the plasma and liver and then to the feces for elimination was significantly lower in aged mice than in young mice. Chronic injection of d -galactose (D-gal) or AGEs also significantly reduced RCT (65.3% reduction in [ 3 H]cholesterol levels in the plasma of D-gal-treated mice after 48 h compared with control mice, P < 0.01). The injection of both D-gal and aminoguanidine hydrochloride increased [ 3 H]cholesterol levels in the plasma, although the levels were lower than those of control mice. The in vitro incubation of HDLs with dicarbonyl compounds increased the carbonyl and conjugated diene content of HDLs and significantly reduced PON1 paraoxonase activity (87.4% lower than control HDLs, P < 0.0001). Treating J774A.1 macrophages with glycated fetal bovine serum increased carbonyl formation (39.5% increase, P < 0.003) and reduced ABCA1 protein expression and the capacity of macrophages to liberate cholesterol (69.1% decrease, P < 0.0001). Our results showed, for the first time, that RCT is altered with aging and that AGEs contribute significantly to this alteration.

  12. Effects of nicergoline on calcium and magnesium deposition in the central nervous system tissues of rats maintained on low-calcium diets.

    PubMed

    Yasui, M; Kihira, T; Tsujimoto, M; Ota, K

    1992-11-01

    Reduction of calcium intake leads to the mobilization of calcium and magnesium from the bone pool and to calcium deposition in the soft tissues, especially in the central nervous system (CNS). The effects of 10 alpha-methoxy-1,6-dimethylergoline-8 beta-methanol 5-bromonicotinate (nicergoline), an ameliorator of cerebral circulation and metabolism, on the deposition of calcium and magnesium in the CNS, heart, liver, kidney, muscle, abdominal aorta and bones were studied in rats maintained on standard and low-calcium diets. Rats were fed the following diets for 90 days: standard calcium (12.5 g/kg); standard calcium with 60 mg/kg nicergoline; low-calcium (30 mg/kg); and low-calcium with 60 mg/kg nicergoline. The presence of nicergoline did not affect blood chemistry but magnesium concentrations in the liver were significantly (P < 0.05) higher in rats fed standard diet with nicergoline. Magnesium concentrations in the occipital cortex, pons, cerebellum, liver, kidney, muscle and femur of nicergoline-treated rats fed low-calcium diet were significantly (P < 0.01-0.05) higher compared with those in the corresponding controls, whereas the calcium concentrations in the femur of nicergoline-treated rats fed both standard and low-calcium diets were significantly (P < 0.05) higher than those in the corresponding controls. In general, nicergoline tended to preserve the calcium content in the bone of rats fed a standard diet. Nicergoline may be implicated in calcium metabolism in rats fed low-calcium diets and may activate cerebral metabolism through the maintenance of magnesium concentrations in the CNS and soft tissues.

  13. Disruption of iron homeostasis and lung disease.

    PubMed

    Ghio, Andrew J

    2009-07-01

    As a result of a direct exchange with the external environment, the lungs are exposed to both iron and agents with a capacity to disrupt the homeostasis of this metal (e.g. particles). An increased availability of catalytically reactive iron can result from these exposures and, by generating an oxidative stress, this metal can contribute to tissue injury. By importing this Fe(3+) into cells for storage in a chemically less reactive form, the lower respiratory tract demonstrates an ability to mitigate both the oxidative stress presented by iron and its potential for tissue injury. This means that detoxification is accomplished by chemical reduction to Fe(2+) (e.g. by duodenal cytochrome b and other ferrireductases), iron import (e.g. by divalent metal transporter 1 and other transporters), and storage in ferritin. The metal can subsequently be exported from the cell (e.g. by ferroportin 1) in a less reactive state relative to that initially imported. Iron is then transported out of the lung via the mucociliary pathway or blood and lymphatic pathways to the reticuloendothelial system for long term storage. This coordinated handling of iron in the lung appears to be disrupted in several acute diseases on the lung including infections, acute respiratory distress syndrome, transfusion-related acute lung injury, and ischemia-reperfusion. Exposures to bleomycin, dusts and fibers, and paraquat similarly alter iron homeostasis in the lung to affect an oxidative stress. Finally, iron homeostasis is disrupted in numerous chronic lung diseases including pulmonary alveolar proteinosis, transplantation, cigarette smoking, and cystic fibrosis.

  14. The Calcium-Sensing Receptor and Integrins in Cellular Differentiation and Migration

    PubMed Central

    Tharmalingam, Sujeenthar; Hampson, David R.

    2016-01-01

    The calcium-sensing receptor (CaSR) is a widely expressed homodimeric G-protein coupled receptor structurally related to the metabotropic glutamate receptors and GPRC6A. In addition to its well characterized role in maintaining calcium homeostasis and regulating parathyroid hormone release, evidence has accumulated linking the CaSR with cellular differentiation and migration, brain development, stem cell engraftment, wound healing, and tumor growth and metastasis. Elevated expression of the CaSR in aggressive metastatic tumors has been suggested as a potential novel prognostic marker for predicting metastasis, especially to bone tissue where extracellular calcium concentrations may be sufficiently high to activate the receptor. Recent evidence supports a model whereby CaSR-mediated activation of integrins promotes cellular migration. Integrins are single transmembrane spanning heterodimeric adhesion receptors that mediate cell migration by binding to extracellular matrix proteins. The CaSR has been shown to form signaling complexes with the integrins to facilitate both the movement and differentiation of cells, such as neurons during normal brain development and tumor cells under pathological circumstances. Thus, CaSR/integrin complexes may function as a universal cell migration or homing complex. Manipulation of this complex may be of potential interest for treating metastatic cancers, and for developmental disorders pertaining to aberrant neuronal migration. PMID:27303307

  15. Use of two calcium concentrations in hemodialysis--report of a 20-year clinical experience.

    PubMed

    Seyffart, G; Schulz, T; Stiller, S

    2009-03-01

    Over the past almost 50 years several calcium concentrations in the dialysate (CaD) have been used to balance calcium in hemodialysis (HD) patients but a consensus as to which is most appropriate has not been established. Moreover, since the late 1980s, further confusion has been caused following the use of calcium salts as intestinal phosphate binders. This paper reports results of 387 chronic HD patients with respect to secondary hyperparathyroidism (sHPT) and renal osteodystrophy (ROD) of a single center over 20 years. The most important therapeutic measures applied were use of only 2 CaD, 1.5 and 1.75 mmol/l, with very few exceptions, administration of either calcium-containing or calcium-magnesium-containing and/or calcium-free phosphate binders, no dietary restrictions and continuous compensation of uremic acidosis via dialysate and oral supplements of bicarbonate. Using one of the two CaD and selective administration of different phosphate binders for fine adjustment of serum calcium through this combination, we were able to maintain in the long term almost physiological conditions. With exception of the phosphate metabolism, most physiological functions with regard to sHPT and ROD returned close to normal. As a result, the incidence of hypercalcemia, hypocalcemia, extraosseous, extravascular calcification, bone pain and spontaneous bone fractures was extremely low. We conclude that the clinical advantages of the therapeutic measures, above all precise balance of calcium homeostasis, in our investigation were demonstrated by high survival rates (92% after the first year on HD, 82% after 2, and 55% after 5 years), low incidence of cardiovascular fatalities (about 25%), and very low incidence of sHPT (mostly normal parathyroid hormone levels, 1 parathyrdoidectomy within 20 years).

  16. Inherited Variation in Cytokine, Acute Phase Response, and Calcium Metabolism Genes Affects Susceptibility to Infective Endocarditis

    PubMed Central

    Rutkovskaya, Natalia V.; Kondyukova, Natalia V.; Odarenko, Yuri N.; Kazachek, Yana V.; Tsepokina, Anna V.; Barbarash, Leonid S.

    2017-01-01

    Infective endocarditis (IE) is a septic inflammation of the endocardium. Recognition of microbial patterns, cytokine and acute phase responses, hemostasis features, and alterations in plasma lipid and calcium profile all have been reported to affect pathogenesis and clinical course of IE. Having recruited 123 patients with IE and 300 age-, sex-, and ethnicity-matched healthy blood donors, we profiled their genomic DNA for 35 functionally significant polymorphisms within the 22 selected genes involved in the abovementioned pathways, with the further genetic association analysis. We found that the G/A genotype of the rs1143634 polymorphism within the IL1B gene, the G/T genotype of the rs3212227 polymorphism within the IL12B gene, the A/G genotype of the rs1130864 polymorphism within the CRP gene, and the G allele of the rs1801197 polymorphism within the CALCR gene were associated with a decreased risk of IE whereas the T/T genotype of the rs1205 polymorphism within the CRP gene was associated with a higher risk of IE. Furthermore, heterozygous genotypes of the rs1143634 and rs3212227 polymorphisms were associated with the higher plasma levels of IL-1β and IL-12, respectively. Our results indicate that inherited variation in the cytokine, acute phase response, and calcium metabolism pathways may be linked to IE. PMID:28659664

  17. Calcium Overload Accelerates Phosphate-Induced Vascular Calcification Via Pit-1, but not the Calcium-Sensing Receptor.

    PubMed

    Masumoto, Asuka; Sonou, Tomohiro; Ohya, Masaki; Yashiro, Mitsuru; Nakashima, Yuri; Okuda, Kouji; Iwashita, Yuko; Mima, Toru; Negi, Shigeo; Shigematsu, Takashi

    2017-07-01

    Vascular calcification (VC) is a risk factor of cardiovascular and all-cause mortality in patients with chronic kidney disease (CKD). CKD-mineral and bone metabolism disorder is an important problem in patients with renal failure. Abnormal levels of serum phosphate and calcium affect CKD-mineral and bone metabolism disorder and contribute to bone disease, VC, and cardiovascular disease. Hypercalcemia is a contributing factor in progression of VC in patients with CKD. However, the mechanisms of how calcium promotes intracellular calcification are still unclear. This study aimed to examine the mechanisms underlying calcium-induced calcification in a rat aortic tissue culture model. Aortic segments from 7-week-old male Sprague-Dawley rats were cultured in serum-supplemented medium for 10 days. We added high calcium (HiCa; calcium 3.0 mM) to high phosphate (HPi; phosphate 3.8 mM) medium to accelerate phosphate and calcium-induced VC. We used phosphonoformic acid and the calcimimetic R-568 to determine whether the mechanism of calcification involves Pit-1 or the calcium-sensing receptor. Medial VC was significantly augmented by HPi+HiCa medium compared with HPi alone (300%, p<0.05), and was associated with upregulation of Pit-1 protein. Pit-1 protein concentrations in HPi+HiCa medium were greater than those in HPi medium. Phosphonoformic acid completely negated the augmentation of medial VC induced by HPi+HiCa. R-568 had no additive direct effect on medial VC. These results indicated that exposure to HPi+HiCa accelerates medial VC, and this is mediated through Pit-1, not the calcium-sensing receptor.

  18. The TRPM7 channel kinase regulates store-operated calcium entry.

    PubMed

    Faouzi, Malika; Kilch, Tatiana; Horgen, F David; Fleig, Andrea; Penner, Reinhold

    2017-05-15

    Pharmacological and molecular inhibition of transient receptor potential melastatin 7 (TRPM7) reduces store-operated calcium entry (SOCE). Overexpression of TRPM7 in TRPM7 -/- cells restores SOCE. TRPM7 is not a store-operated calcium channel. TRPM7 kinase rather than channel modulates SOCE. TRPM7 channel activity contributes to the maintenance of store Ca 2+ levels at rest. The transient receptor potential melastatin 7 (TRPM7) is a protein that combines an ion channel with an intrinsic kinase domain, enabling it to modulate cellular functions either by conducting ions through the pore or by phosphorylating downstream proteins via its kinase domain. In the present study, we report store-operated calcium entry (SOCE) as a novel target of TRPM7 kinase activity. TRPM7-deficient chicken DT40 B lymphocytes exhibit a strongly impaired SOCE compared to wild-type cells as a result of reduced calcium release activated calcium currents, and independently of potassium channel regulation, membrane potential changes or changes in cell-cycle distribution. Pharmacological blockade of TRPM7 with NS8593 or waixenicin A in wild-type B lymphocytes results in a significant decrease in SOCE, confirming that TRPM7 activity is acutely linked to SOCE, without TRPM7 representing a store-operated channel itself. Using kinase-deficient mutants, we find that TRPM7 regulates SOCE through its kinase domain. Furthermore, Ca 2+ influx through TRPM7 is essential for the maintenance of endoplasmic reticulum Ca 2+ concentration in resting cells, and for the refilling of Ca 2+ stores after a Ca 2+ signalling event. We conclude that the channel kinase TRPM7 and SOCE are synergistic mechanisms regulating intracellular Ca 2+ homeostasis. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.

  19. Depletion of intracellular calcium stores facilitates the influx of extracellular calcium in platelet derived growth factor stimulated A172 glioblastoma cells.

    PubMed

    Vereb, G; Szöllösi, J; Mátyus, L; Balázs, M; Hyun, W C; Feuerstein, B G

    1996-05-01

    Calcium signaling in non-excitable cells is the consequence of calcium release from intracellular stores, at times followed by entry of extracellular calcium through the plasma membrane. To study whether entry of calcium depends upon the level of saturation of intracellular stores, we measured calcium channel opening in the plasma membrane of single confluent A172 glioblastoma cells stimulated with platelet derived growth factor (PDGF) and/or bradykinin (BK). We monitored the entry of extracellular calcium by measuring manganese quenching of Indo-1 fluorescence. PDGF raised intracellular calcium concentration ([Ca2+]i) after a dose-dependent delay (tdel) and then opened calcium channels after a dose-independent delay (tch). At higher doses (> 3 nM), BK increased [Ca2+]i after a tdel approximately 0 s, and tch decreased inversely with both dose and peak [Ca2+]i. Experiments with thapsigargin (TG), BK, and PDGF indicated that BK and PDGF share intracellular Ca2+ pools that are sensitive to TG. When these stores were depleted by treatment with BK and intracellular BAPTA, tdel did not change, but tch fell to almost 0 s in PDGF stimulated cells, indicating that depletion of calcium stores affects calcium channel opening in the plasma membrane. Our data support the capacitative model for calcium channel opening and the steady-state model describing quantal Ca2+ release from intracellular stores.

  20. Oxygen Sensing and Homeostasis

    PubMed Central

    Semenza, Gregg L.

    2015-01-01

    The discovery of carotid bodies as sensory receptors for detecting arterial blood oxygen levels, and the identification and elucidation of the roles of hypoxia-inducible factors (HIFs) in oxygen homeostasis have propelled the field of oxygen biology. This review highlights the gas-messenger signaling mechanisms associated with oxygen sensing, as well as transcriptional and non-transcriptional mechanisms underlying the maintenance of oxygen homeostasis by HIFs and their relevance to physiology and pathology. PMID:26328879

  1. The Chloroplast Protease AMOS1/EGY1 Affects Phosphate Homeostasis under Phosphate Stress1

    PubMed Central

    Yu, Fang Wei; Zhu, Xiao Fang; Li, Guang Jie; Kronzucker, Herbert J.; Shi, Wei Ming

    2016-01-01

    Plastid intramembrane proteases in Arabidopsis (Arabidopsis thaliana) are involved in jasmonic acid biosynthesis, chloroplast development, and flower morphology. Here, we show that Ammonium-Overly-Sensitive1 (AMOS1), a member of the family of plastid intramembrane proteases, plays an important role in the maintenance of phosphate (P) homeostasis under P stress. Loss of function of AMOS1 revealed a striking resistance to P starvation. amos1 plants displayed retarded root growth and reduced P accumulation in the root compared to wild type (Col-0) under P-replete control conditions, but remained largely unaffected by P starvation, displaying comparable P accumulation and root and shoot growth under P-deficient conditions. Further analysis revealed that, under P-deficient conditions, the cell wall, especially the pectin fraction of amos1, released more P than that of wild type, accompanied by a reduction of the abscisic acid (ABA) level and an increase in ethylene production. By using an ABA-insensitive mutant, abi4, and applying ABA and ACC exogenously, we found that ABA inhibits cell wall P remobilization while ethylene facilitates P remobilization from the cell wall by increasing the pectin concentration, suggesting ABA can counteract the effect of ethylene. Furthermore, the elevated ABA level and the lower ethylene production also correlated well with the mimicked P deficiency in amos1. Thus, our study uncovers the role of AMOS1 in the maintenance of P homeostasis through ABA-antagonized ethylene signaling. PMID:27516532

  2. A pressure-affected headspace-gas chromatography method for determining calcium carbonate content in paper sample.

    PubMed

    Dai, Yi; Yu, Zhen-Hua; Zhan, Jian-Bo; Chai, Xin-Sheng; Zhang, Shu-Xin; Xie, Wei-Qi; He, Liang

    2017-07-21

    The present work reports on the development of a pressure-affected based headspace (HS) analytical technique for the determination of calcium carbonate content in paper samples. By the acidification, the carbonate in the sample was converted to CO 2 and released into the headspace of a closed vial and then measured by gas chromatography (GC). When the amount of carbonate in the sample is significant, the pressure created by the CO 2 affects the accuracy of the method. However, the pressure also causes a change in the O 2 signal in the HS-GC measurement, which is a change that can be used as an indirect measure of the carbonate in the sample. The results show that the present method has a good precision (the relative standard deviation<2.32%), and good accuracy (the relative differences compared to a reference method was<5.76%). Coupled with the fact that the method is simple, rapid, and accurate, it is suitable for a variety of applications that call for the analysis of high carbonate content in paper samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Elemental calcium intake associated with calcium acetate/calcium carbonate in the treatment of hyperphosphatemia

    PubMed Central

    Wilson, Rosamund J; Copley, J Brian

    2017-01-01

    Background Calcium-based and non-calcium-based phosphate binders have similar efficacy in the treatment of hyperphosphatemia; however, calcium-based binders may be associated with hypercalcemia, vascular calcification, and adynamic bone disease. Scope A post hoc analysis was carried out of data from a 16-week, Phase IV study of patients with end-stage renal disease (ESRD) who switched to lanthanum carbonate monotherapy from baseline calcium acetate/calcium carbonate monotherapy. Of the intent-to-treat population (N=2520), 752 patients with recorded dose data for calcium acetate (n=551)/calcium carbonate (n=201) at baseline and lanthanum carbonate at week 16 were studied. Elemental calcium intake, serum phosphate, corrected serum calcium, and serum intact parathyroid hormone levels were analyzed. Findings Of the 551 patients with calcium acetate dose data, 271 (49.2%) had an elemental calcium intake of at least 1.5 g/day at baseline, and 142 (25.8%) had an intake of at least 2.0 g/day. Mean (95% confidence interval [CI]) serum phosphate levels were 6.1 (5.89, 6.21) mg/dL at baseline and 6.2 (6.04, 6.38) mg/dL at 16 weeks; mean (95% CI) corrected serum calcium levels were 9.3 (9.16, 9.44) mg/dL and 9.2 (9.06, 9.34) mg/dL, respectively. Of the 201 patients with calcium carbonate dose data, 117 (58.2%) had an elemental calcium intake of at least 1.5 g/day, and 76 (37.8%) had an intake of at least 2.0 g/day. Mean (95% CI) serum phosphate levels were 5.8 (5.52, 6.06) mg/dL at baseline and 5.8 (5.53, 6.05) mg/dL at week 16; mean (95% CI) corrected serum calcium levels were 9.7 (9.15, 10.25) mg/dL and 9.2 (9.06, 9.34) mg/dL, respectively. Conclusion Calcium acetate/calcium carbonate phosphate binders, taken to control serum phosphate levels, may result in high levels of elemental calcium intake. This may lead to complications related to calcium balance. PMID:28182142

  4. Biotic Nitrogen Enrichment Regulates Calcium Sources to Forests

    NASA Astrophysics Data System (ADS)

    Pett-Ridge, J. C.; Perakis, S. S.; Hynicka, J. D.

    2015-12-01

    Calcium is an essential nutrient in forest ecosystems that is susceptible to leaching loss and depletion. Calcium depletion can affect plant and animal productivity, soil acid buffering capacity, and fluxes of carbon and water. Excess nitrogen supply and associated soil acidification are often implicated in short-term calcium loss from soils, but the long-term role of nitrogen enrichment on calcium sources and resupply is unknown. Here we use strontium isotopes (87Sr/86Sr) as a proxy for calcium to investigate how soil nitrogen enrichment from biological nitrogen fixation interacts with bedrock calcium to regulate both short-term available supplies and the long-term sources of calcium in montane conifer forests. Our study examines 22 sites in western Oregon, spanning a 20-fold range of bedrock calcium on sedimentary and basaltic lithologies. In contrast to previous studies emphasizing abiotic control of weathering as a determinant of long-term ecosystem calcium dynamics and sources (via bedrock fertility, climate, or topographic/tectonic controls) we find instead that that biotic nitrogen enrichment of soil can strongly regulate calcium sources and supplies in forest ecosystems. For forests on calcium-rich basaltic bedrock, increasing nitrogen enrichment causes calcium sources to shift from rock-weathering to atmospheric dominance, with minimal influence from other major soil forming factors, despite regionally high rates of tectonic uplift and erosion that can rejuvenate weathering supply of soil minerals. For forests on calcium-poor sedimentary bedrock, we find that atmospheric inputs dominate regardless of degree of nitrogen enrichment. Short-term measures of soil and ecosystem calcium fertility are decoupled from calcium source sustainability, with fundamental implications for understanding nitrogen impacts, both in natural ecosystems and in the context of global change. Our finding that long-term nitrogen enrichment increases forest reliance on atmospheric

  5. Interactions between calcium and phosphorus in the regulation of the production of fibroblast growth factor 23 in vivo

    PubMed Central

    Quinn, Stephen J.; Thomsen, Alex R. B.; Pang, Jian L.; Kantham, Lakshmi; Bräuner-Osborne, Hans; Pollak, Martin; Goltzman, David

    2013-01-01

    Calcium and phosphorus homeostasis are highly interrelated and share common regulatory hormones, including FGF23. However, little is known about calcium's role in the regulation of FGF23. We sought to investigate the regulatory roles of calcium and phosphorus in FGF23 production using genetic mouse models with targeted inactivation of PTH (PTH KO) or both PTH and the calcium-sensing receptor (CaSR; PTH-CaSR DKO). In wild-type, PTH KO, and PTH-CaSR DKO mice, elevation of either serum calcium or phosphorus by intraperitoneal injection increased serum FGF23 levels. In PTH KO and PTH-CaSR DKO mice, however, increases in serum phosphorus by dietary manipulation were accompanied by severe hypocalcemia, which appeared to blunt stimulation of FGF23 release. Increases in dietary phosphorus in PTH-CaSR DKO mice markedly decreased serum 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] despite no change in FGF23, suggesting direct regulation of 1,25(OH)2D3 synthesis by serum phosphorus. Calcium-mediated increases in serum FGF23 required a threshold level of serum phosphorus of about 5 mg/dl. Analogously, phosphorus-elicited increases in FGF23 were markedly blunted if serum calcium was less than 8 mg/dl. The best correlation between calcium and phosphorus and serum FGF23 was found between FGF23 and the calcium × phosphorus product. Since calcium stimulated FGF23 production in the PTH-CaSR DKO mice, this effect cannot be mediated by the full-length CaSR. Thus the regulation of FGF23 by both calcium and phosphorus appears to be fundamentally important in coordinating the serum levels of both mineral ions and ensuring that the calcium × phosphorus product remains within a physiological range. PMID:23233539

  6. Real-time scratch assay reveals mechanisms of early calcium signaling in breast cancer cells in response to wounding

    PubMed Central

    Pratt, Stephen J.P.; Hernández-Ochoa, Erick O.; Lee, Rachel M.; Ory, Eleanor C.; Lyons, James S.; Joca, Humberto C.; Johnson, Ashley; Thompson, Keyata; Bailey, Patrick; Lee, Cornell J.; Mathias, Trevor; Vitolo, Michele I.; Trudeau, Matt; Stains, Joseph P.; Ward, Christopher W.; Schneider, Martin F.; Martin, Stuart S.

    2018-01-01

    Aggressive cellular phenotypes such as uncontrolled proliferation and increased migration capacity engender cellular transformation, malignancy and metastasis. While genetic mutations are undisputed drivers of cancer initiation and progression, it is increasingly accepted that external factors are also playing a major role. Two recently studied modulators of breast cancer are changes in the cellular mechanical microenvironment and alterations in calcium homeostasis. While many studies investigate these factors separately in breast cancer cells, very few do so in combination. This current work sets a foundation to explore mechano-calcium relationships driving malignant progression in breast cancer. Utilizing real-time imaging of an in vitro scratch assay, we were able to resolve mechanically-sensitive calcium signaling in human breast cancer cells. We observed rapid initiation of intracellular calcium elevations within seconds in cells at the immediate wound edge, followed by a time-dependent increase in calcium in cells at distances up to 500μm from the scratch wound. Calcium signaling to neighboring cells away from the wound edge returned to baseline within seconds. Calcium elevations at the wound edge however, persisted for up to 50 minutes. Rigorous quantification showed that extracellular calcium was necessary for persistent calcium elevation at the wound edge, but intercellular signal propagation was dependent on internal calcium stores. In addition, intercellular signaling required extracellular ATP and activation of P2Y2 receptors. Through comparison of scratch-induced signaling from multiple cell lines, we report drastic reductions in response from aggressively tumorigenic and metastatic cells. The real-time scratch assay established here provides quantitative data on the molecular mechanisms that support rapid scratch-induced calcium signaling in breast cancer cells. These mechanisms now provide a clear framework for investigating which short-term calcium

  7. Something more to say about calcium homeostasis: the role of vitamin K2 in vascular calcification and osteoporosis.

    PubMed

    Flore, R; Ponziani, F R; Di Rienzo, T A; Zocco, M A; Flex, A; Gerardino, L; Lupascu, A; Santoro, L; Santoliquido, A; Di Stasio, E; Chierici, E; Lanti, A; Tondi, P; Gasbarrini, A

    2013-09-01

    Vascular calcification and osteoporosis share similar etiopathogenetic mechanisms. Vitamin K2 deficiency could be responsible of the so called "calcium paradox", that is the lack of calcium in the bone and its storage in the vessel wall. These events may have clinically relevant consequences, such as cardiovascular accidents, and bone fractures. To review the biological function of vitamin K2 metabolism, the main factors related to its deficiency and the consequent clinical significance. Vitamin K2 is essential for the function of several proteins, involved in the maintenance of the normal structure of arterial wall, osteoarticular system, teeth, and for the regulation of cell growth. It has been demonstrated to have a pivotal role in the inhibition of vascular foci of calcification, and in the regulation of calcium deposition in the bone. Vitamin K2 deficiency is often subclinic in a large part of healthy population. This deficiency is related to the interaction of various factors, such as the reduced dietary intake, the alteration of intestinal absorption or production, with a possible role of intestinal microbiota and the increased consumption at the vessel wall. Vitamin K2 deficiency has recently been recognized as a protagonist in the development of vascular calcification and osteoporosis. Data reported so far are promising and, dietary supplementation seems a useful tool to contrast these diseases. However, large studies or solid clinical correlations regarding vitamin K2 deficiency and its pathologic consequences are needed to confirm these preliminary experiences.

  8. Mammary-Specific Ablation of the Calcium-Sensing Receptor During Lactation Alters Maternal Calcium Metabolism, Milk Calcium Transport, and Neonatal Calcium Accrual

    PubMed Central

    Mamillapalli, Ramanaiah; VanHouten, Joshua; Dann, Pamela; Bikle, Daniel; Chang, Wenhan; Brown, Edward

    2013-01-01

    To meet the demands for milk calcium, the lactating mother adjusts systemic calcium and bone metabolism by increasing dietary calcium intake, increasing bone resorption, and reducing renal calcium excretion. As part of this adaptation, the lactating mammary gland secretes PTHrP into the maternal circulation to increase bone turnover and mobilize skeletal calcium stores. Previous data have suggested that, during lactation, the breast relies on the calcium-sensing receptor (CaSR) to coordinate PTHrP secretion and milk calcium transport with calcium availability. To test this idea genetically, we bred BLG-Cre mice with CaSR-floxed mice to ablate the CaSR specifically from mammary epithelial cells only at the onset of lactation (CaSR-cKO mice). Loss of the CaSR in the lactating mammary gland did not disrupt alveolar differentiation or milk production. However, it did increase the secretion of PTHrP into milk and decreased the transport of calcium from the circulation into milk. CaSR-cKO mice did not show accelerated bone resorption, but they did have a decrease in bone formation. Loss of the mammary gland CaSR resulted in hypercalcemia, decreased PTH secretion, and increased renal calcium excretion in lactating mothers. Finally, loss of the mammary gland CaSR resulted in decreased calcium accrual by suckling neonates, likely due to the combination of increased milk PTHrP and decreased milk calcium. These results demonstrate that the mammary gland CaSR coordinates maternal bone and calcium metabolism, calcium transport into milk, and neonatal calcium accrual during lactation. PMID:23782944

  9. Blue light-dependent changes in loosely bound calcium in Arabidopsis mesophyll cells: an X-ray microanalysis study.

    PubMed

    Łabuz, Justyna; Samardakiewicz, Sławomir; Hermanowicz, Paweł; Wyroba, Elżbieta; Pilarska, Maria; Gabryś, Halina

    2016-06-01

    Calcium is involved in the signal transduction pathway from phototropins, the blue light photoreceptor kinases which mediate chloroplast movements. The chloroplast accumulation response in low light is controlled by both phot1 and phot2, while only phot2 is involved in avoidance movement induced by strong light. Phototropins elevate cytosolic Ca(2+) after activation by blue light. In higher plants, both types of chloroplast responses depend on Ca(2+), and internal calcium stores seem to be crucial for these processes. Yet, the calcium signatures generated after the perception of blue light by phototropins are not well understood. To characterize the localization of calcium in Arabidopsis mesophyll cells, loosely bound (exchangeable) Ca(2+) was precipitated with potassium pyroantimonate and analyzed by transmission electron microscopy followed by energy-dispersive X-ray microanalysis. In dark-adapted wild-type Arabidopsis leaves, calcium precipitates were observed at the cell wall, where they formed spherical structures. After strong blue light irradiation, calcium at the apoplast prevailed, and bigger, multilayer precipitates were found. Spherical calcium precipitates were also detected at the tonoplast. After red light treatment as a control, the precipitates at the cell wall were smaller and less numerous. In the phot2 and phot1phot2 mutants, calcium patterns were different from those of wild-type plants. In both mutants, no elevation of calcium after blue light treatment was observed at the cell periphery (including the cell wall and a fragment of cytoplasm). This result confirms the involvement of phototropin2 in the regulation of Ca(2+) homeostasis in mesophyll cells. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  10. The degree of resistance of erythrocyte membrane cytoskeletal proteins to supra-physiologic concentrations of calcium: an in vitro study.

    PubMed

    Mostafavi, Ebrahim; Nargesi, Arash Aghajani; Ghazizadeh, Zaniar; Larry, Mehrdad; Farahani, Roya Horabad; Morteza, Afsaneh; Esteghamati, Alireza; Vigneron, Claude; Nakhjavani, Manouchehr

    2014-08-01

    Calcium is a key regulator of cell dynamics. Dysregulation of its cytosolic concentration is implicated in the pathophysiology of several diseases. This study aimed to assess the effects of calcium on the network of membrane cytoskeletal proteins. Erythrocyte membranes were obtained from eight healthy donors and incubated with 250 µM and 1.25 mM calcium solutions. Membrane cytoskeletal proteins were quantified using SDS-PAGE at baseline and after 3 and 5 days of incubation. Supra-physiologic concentrations of calcium (1.25 mM) induced a significant proteolysis in membrane cytoskeletal proteins, compared with magnesium (p < 0.001). Actin exhibited the highest sensitivity to calcium-induced proteolysis (6.8 ± 0.3 vs. 5.3 ± 0.6, p < 0.001), while spectrin (39.9 ± 1.0 vs. 40.3 ± 2.0, p = 0.393) and band-6 (6.3 ± 0.3 vs. 6.8 ± 0.8, p = 0.191) were more resistant to proteolysis after incubation with calcium in the range of endoplasmic reticulum concentrations (250 µM). Aggregation of membrane cytoskeletal proteins was determined after centrifugation and was significantly higher after incubation with calcium ions compared with control, EDTA and magnesium solutions (p < 0.001). In a supra-physiologic range of 1.25-10 mM of calcium ions, there was a nearly perfect linear relationship between calcium concentration and aggregation of erythrocyte membrane cytoskeletal proteins (R(2) = 0.971, p < 0.001). Our observation suggests a strong interaction between calcium ions and membrane cytoskeletal network. Cumulative effects of disrupted calcium homeostasis on cytoskeletal proteins need to be further investigated at extended periods of time in disease states.

  11. Cellular copper homeostasis: current concepts on its interplay with glutathione homeostasis and its implication in physiology and human diseases.

    PubMed

    Bhattacharjee, Ashima; Chakraborty, Kaustav; Shukla, Aditya

    2017-10-18

    Copper is a trace element essential for almost all living organisms. But the level of intracellular copper needs to be tightly regulated. Dysregulation of cellular copper homeostasis leading to various diseases demonstrates the importance of this tight regulation. Copper homeostasis is regulated not only within the cell but also within individual intracellular compartments. Inactivation of export machinery results in excess copper being redistributed into various intracellular organelles. Recent evidence suggests the involvement of glutathione in playing an important role in regulating copper entry and intracellular copper homeostasis. Therefore interplay of both homeostases might play an important role within the cell. Similar to copper, glutathione balance is tightly regulated within individual cellular compartments. This review explores the existing literature on the role of glutathione in regulating cellular copper homeostasis. On the one hand, interplay of glutathione and copper homeostasis performs an important role in normal physiological processes, for example neuronal differentiation. On the other hand, perturbation of the interplay might play a key role in the pathogenesis of copper homeostasis disorders.

  12. Lactate rescues neuronal sodium homeostasis during impaired energy metabolism.

    PubMed

    Karus, Claudia; Ziemens, Daniel; Rose, Christine R

    2015-01-01

    Recently, we established that recurrent activity evokes network sodium oscillations in neurons and astrocytes in hippocampal tissue slices. Interestingly, metabolic integrity of astrocytes was essential for the neurons' capacity to maintain low sodium and to recover from sodium loads, indicating an intimate metabolic coupling between the 2 cell types. Here, we studied if lactate can support neuronal sodium homeostasis during impaired energy metabolism by analyzing whether glucose removal, pharmacological inhibition of glycolysis and/or addition of lactate affect cellular sodium regulation. Furthermore, we studied the effect of lactate on sodium regulation during recurrent network activity and upon inhibition of the glial Krebs cycle by sodium-fluoroacetate. Our results indicate that lactate is preferentially used by neurons. They demonstrate that lactate supports neuronal sodium homeostasis and rescues the effects of glial poisoning by sodium-fluoroacetate. Altogether, they are in line with the proposed transfer of lactate from astrocytes to neurons, the so-called astrocyte-neuron-lactate shuttle.

  13. Lactate rescues neuronal sodium homeostasis during impaired energy metabolism

    PubMed Central

    Karus, Claudia; Ziemens, Daniel; Rose, Christine R

    2015-01-01

    Recently, we established that recurrent activity evokes network sodium oscillations in neurons and astrocytes in hippocampal tissue slices. Interestingly, metabolic integrity of astrocytes was essential for the neurons' capacity to maintain low sodium and to recover from sodium loads, indicating an intimate metabolic coupling between the 2 cell types. Here, we studied if lactate can support neuronal sodium homeostasis during impaired energy metabolism by analyzing whether glucose removal, pharmacological inhibition of glycolysis and/or addition of lactate affect cellular sodium regulation. Furthermore, we studied the effect of lactate on sodium regulation during recurrent network activity and upon inhibition of the glial Krebs cycle by sodium-fluoroacetate. Our results indicate that lactate is preferentially used by neurons. They demonstrate that lactate supports neuronal sodium homeostasis and rescues the effects of glial poisoning by sodium-fluoroacetate. Altogether, they are in line with the proposed transfer of lactate from astrocytes to neurons, the so-called astrocyte-neuron-lactate shuttle. PMID:26039160

  14. Concept analysis of family homeostasis.

    PubMed

    Kim, Heejung; Rose, Karen M

    2014-11-01

    To report a concept analysis of family homeostasis. As family members are a majority of informal caregivers, negative consequences from caregiving duty create a vicious cycle in the family unit resulting in ongoing health crises and care challenges. Concept analysis. Forty empirical studies published from 1956-2012 were selected by searching five electronic bibliographical databases and by a manual search conducted from 2012-2013. Search terms included 'family homeostasis', 'homeostasis in family', 'homeostatic care' and 'family equilibrium'. Clinical experiences in nursing practice were used for constructing cases and clinical implications. Walker and Avant's method guided this analysis. Family homeostasis is defined as the capacity and mechanisms by which equilibrium is re-established in the family after a change occurs. Five critical attributes are identified: (1) predetermined setpoint; (2) self-appraised antecedents; (3) interdependence; (4) tendency to stability; and (5) feedback mechanisms. Antecedents include any type of causative change beyond the tolerable limit, while consequences encompass intermediate and long-term outcomes as well as equilibrium itself. Family homeostasis provides a conceptual rationale of family caregiving. While care recipients remain the primary beneficiaries of healthcare provision, homeostatic mechanisms are required to support the family caregiver's valuable contribution in the caring process to enhance family well-being. Further study should expand the definition and settings of family to reflect healthcare needs of diverse types of families and from the perspectives of different healthcare providers. © 2014 John Wiley & Sons Ltd.

  15. Mutual independence of alkaline- and calcium-mediated signalling in Aspergillus fumigatus refutes the existence of a conserved druggable signalling nexus.

    PubMed

    Loss, Omar; Bertuzzi, Margherita; Yan, Yu; Fedorova, Natalie; McCann, Bethany L; Armstrong-James, Darius; Espeso, Eduardo A; Read, Nick D; Nierman, William C; Bignell, Elaine M

    2017-12-01

    Functional coupling of calcium- and alkaline responsive signalling occurs in multiple fungi to afford efficient cation homeostasis. Host microenvironments exert alkaline stress and potentially toxic concentrations of Ca 2+ , such that highly conserved regulators of both calcium- (Crz) and pH- (PacC/Rim101) responsive signalling are crucial for fungal pathogenicity. Drugs targeting calcineurin are potent antifungal agents but also perturb human immunity thereby negating their use as anti-infectives, abrogation of alkaline signalling has, therefore, been postulated as an adjunctive antifungal strategy. We examined the interdependency of pH- and calcium-mediated signalling in Aspergillus fumigatus and found that calcium chelation severely impedes hyphal growth indicating a critical requirement for this ion independently of ambient pH. Transcriptomic responses to alkaline pH or calcium excess exhibited minimal similarity. Mutants lacking calcineurin, or its client CrzA, displayed normal alkaline tolerance and nuclear translocation of CrzA was unaffected by ambient pH. Expression of a highly conserved, alkaline-regulated, sodium ATPase was tolerant of genetic or chemical perturbations of calcium-mediated signalling, but abolished in null mutants of the pH-responsive transcription factor PacC, and PacC proteolytic processing occurred normally during calcium excess. Taken together our data demonstrate that in A. fumigatus the regulatory hierarchy governing alkaline tolerance circumvents calcineurin signalling. © 2017 The Authors. Molecular Microbiology Published by John Wiley & Sons Ltd.

  16. Effect of ceramic calcium-phosphorus ratio on chondrocyte-mediated biosynthesis and mineralization.

    PubMed

    Boushell, Margaret K; Khanarian, Nora T; LeGeros, Raquel Z; Lu, Helen H

    2017-10-01

    The osteochondral interface functions as a structural barrier between cartilage and bone, maintaining tissue integrity postinjury and during homeostasis. Regeneration of this calcified cartilage region is thus essential for integrative cartilage healing, and hydrogel-ceramic composite scaffolds have been explored for calcified cartilage formation. The objective of this study is to test the hypothesis that Ca/P ratio of the ceramic phase of the composite scaffold regulates chondrocyte biosynthesis and mineralization potential. Specifically, the response of deep zone chondrocytes to two bioactive ceramics with different calcium-phosphorus ratios (1.35 ± 0.01 and 1.41 ± 0.02) was evaluated in agarose hydrogel scaffolds over two weeks in vitro. It was observed that the ceramic with higher calcium-phosphorus ratio enhanced chondrocyte proliferation, glycosaminoglycan production, and induced an early onset of alkaline phosphorus activity, while the ceramic with lower calcium-phosphorus ratio performed similarly to the ceramic-free control. These results underscore the importance of ceramic bioactivity in directing chondrocyte response, and demonstrate that Ca/P ratio is a key parameter to be considered in osteochondral scaffold design. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2694-2702, 2017. © 2017 Wiley Periodicals, Inc.

  17. Effects of adrenalectomy on the alpha-adrenergic regulation of cytosolic free calcium in hepatocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freudenrich, C.C.; Borle, A.B.

    1988-06-25

    We have previously published that bilateral adrenalectomy in the rat reduces the Ca2+-mediated alpha-adrenergic activation of hepatic glycogenolysis, while it increases the cellular calcium content of hepatocytes. In the experiments presented here, the concentration of cytosolic free calcium (Ca2+i) at rest and in response to epinephrine was measured in aequorin-loaded hepatocytes isolated from sham and adrenalectomized male rats. We found that in adrenalectomized rats the resting Ca2+i was elevated, the rise in Ca2+i evoked by epinephrine was reduced, and the rise in /sup 45/Ca efflux that follows such stimulation was depressed. Furthermore, the slope of the relationship between Ca2+i andmore » calcium efflux was decreased 60% in adrenalectomized. Adrenalectomy did not change Ca2+ release from intracellular calcium pools in response to IP3 in saponin-permeabilized hepatocytes. The EC50 for inositol 1,4,5-triphosphate and the maximal Ca2+ released were similar in both sham and adrenalectomized animals. Finally, the liver calmodulin content determined by radioimmunoassay was not significantly different between sham and adrenalectomized rats. These results suggest that 1) adrenalectomy reduces calcium efflux from the hepatocyte, probably by an effect on the plasma membrane (Ca2+-Mg2+)-ATPase-dependent Ca2+ pump and thus alters cellular calcium homeostasis; 2) adrenalectomy decreases the rise in Ca2+i in response to epinephrine; 3) this decreased rise in Ca2+i is not due to defects in the intracellular Ca2+ storage and mobilization processes; and 4) the effects of adrenalectomy on cellular calcium metabolism and on alpha-adrenergic activation of glycogenolysis are not caused by a reduction in soluble calmodulin.« less

  18. Proposed mechanisms of the effects of proanthocyanidins on glucose homeostasis.

    PubMed

    Yang, Kaiyuan; Chan, Catherine B

    2017-08-01

    Proanthocyanidins are a major group of flavonoids in the human diet, known for their strong antioxidant properties. Emerging evidence from clinical studies indicates a role of proanthocyanidins in modulating glucose homeostasis, and higher proanthocyanidin intake has been associated with reduced risk of diabetes. On the other hand, recent studies report limited bioavailability of proanthocyanidins. At relatively low concentrations in the systemic circulation, proanthocyanidins may act as cell-signaling molecules to modulate glucose homeostasis. For example, they affect hepatic glucose production via adenosine monophosphate-activated protein kinase and/or insulin-signaling pathways. There is also evidence for a direct role of proanthocyanidins in modulating several pancreatic β-cell functions: prevention of oxidative stress, enhancement of insulin secretion, and promotion of β-cell survival. Therefore, greater understanding of the potentially beneficial effects of proanthocyanidins on cell-signaling pathways implicated in glucose homeostasis is needed. In addition, further investigation to address the in vivo metabolism of proanthocyanidins and the comparative effectiveness of proanthocyanidin-derived metabolites is warranted. The dosage and the experimental model should be given special attention when results from mechanistic studies using proanthocyanidins are interpreted. © The Author(s) 2017. Published by Oxford University Press on behalf of the International Life Sciences Institute. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Near-infrared light-controlled regulation of intracellular calcium to modulate macrophage polarization.

    PubMed

    Kang, Heemin; Zhang, Kunyu; Wong, Dexter Siu Hong; Han, Fengxuan; Li, Bin; Bian, Liming

    2018-04-21

    Macrophages are multifunctional immune cells with diverse physiological functions such as fighting against infection, influencing progression of pathologies, maintaining homeostasis, and regenerating tissues. Macrophages can be induced to adopt distinct polarized phenotypes, such as classically activated pro-inflammatory (M1) phenotypes or alternatively activated anti-inflammatory and pro-healing (M2), to execute diverse and dynamic immune functions. However, unbalanced polarizations of macrophage can lead to various pathologies, such as atherosclerosis, obesity, tumor, and asthma. Thus, the capability to remotely control macrophage phenotypes is important to the success of treating many pathological conditions involving macrophages. In this study, we developed an upconversion nanoparticle (UCNP)-based photoresponsive nanocarrier for near-infrared (NIR) light-mediated control of intracellular calcium levels to regulate macrophage polarization. UCNP was coated with mesoporous silica (UCNP@mSiO 2 ), into which loaded calcium regulators that can either supply or deplete calcium ions. UCNP@mSiO 2 was chemically modified through serial coupling of photocleavable linker and Arg-Gly-Asp (RGD) peptide-bearing molecular cap via cyclodextrin-adamantine host-guest complexation. The RGD-bearing cap functioned as the photolabile gating structure to control the release of calcium regulators and facilitated the cellular uptake of UCNP@mSiO 2 nanocarrier. The upconverted UV light emission from the UCNP@mSiO 2 under NIR light excitation triggered the cleavage of cap and intracellular release of calcium regulators, thereby allowing temporal regulation on the intracellular calcium levels. Application of NIR light through skin tissue promoted M1 or M2 polarization of macrophages, by elevating or depleting intracellular calcium levels, respectively. To the best of our knowledge, this is the first demonstration of NIR light-mediated remote control on macrophage polarization. This

  20. Calcium

    MedlinePlus

    ... You'll also find calcium in broccoli and dark green, leafy vegetables (especially collard and turnip greens, ... can enjoy good sources of calcium such as dark green, leafy vegetables, broccoli, chickpeas, and calcium-fortified ...

  1. Calcium signal communication in the central nervous system.

    PubMed

    Braet, Katleen; Cabooter, Liesbet; Paemeleire, Koen; Leybaert, Luc

    2004-02-01

    The communication of calcium signals between cells is known to be operative between neurons where these signals integrate intimately with electrical and chemical signal communication at synapses. Recently, it has become clear that glial cells also exchange calcium signals between each other in cultures and in brain slices. This communication pathway has received utmost attention since it is known that astrocytic calcium signals can be induced by neuronal stimulation and can be communicated back to the neurons to modulate synaptic transmission. In addition to this, cells that are generally not considered as brain cells become progressively incorporated in the picture, as astrocytic calcium signals are reported to be communicated to endothelial cells of the vessel wall and can affect smooth muscle cell tone to influence the vessel diameter and thus blood flow. We review the available evidence for calcium signal communication in the central nervous system, taking into account a basic functional unit -the brain cell tripartite- consisting of neurons, glial cells and vascular cells and with emphasis on glial-vascular calcium signaling aspects.

  2. Heteromerization of G2A and OGR1 enhances proton sensitivity and proton-induced calcium signals.

    PubMed

    Huang, Ya-Han; Su, Yeu-Shiuan; Chang, Chung-Jen; Sun, Wei-Hsin

    2016-12-01

    Proton-sensing G-protein-coupled receptors (GPCRs; OGR1, GPR4, G2A, TDAG8), with full activation at pH 6.4 ∼ 6.8, are important to pH homeostasis, immune responses and acid-induced pain. Although G2A mediates the G13-Rho pathway in response to acid, whether G2A activates Gs, Gi or Gq proteins remains debated. In this study, we examined the response of this fluorescence protein-tagged OGR1 family to acid stimulation in HEK293T cells. G2A did not generate detectable intracellular calcium or cAMP signals or show apparent receptor redistribution with moderate acid (pH ≥ 6.0) stimulation but reduced cAMP accumulation under strong acid stimulation (pH ≤ 5.5). Surprisingly, coexpression of OGR1- and G2A-enhanced proton sensitivity and proton-induced calcium signals. This alteration is attributed to oligomerization of OGR1 and G2A. The oligomeric potential locates receptors at a specific site, which leads to enhanced proton-induced calcium signals through channels.

  3. Effects of chlorogenic acid on intracellular calcium regulation in lysophosphatidylcholine-treated endothelial cells

    PubMed Central

    Jung, Hye-Jin; Im, Seung-Soon; Song, Dae-Kyu; Bae, Jae-Hoon

    2017-01-01

    Lysophosphatidylcholine (LPC) is a major phospholipid component of oxidized low-density lipoprotein (ox-LDL) and is implicated in its atherogenic activity. This study investigated the effects of LPC on cell viability, intracellular calcium homeostasis, and the protective mechanisms of chlorogenic acid (CGA) in human umbilical vein endothelial cells (HUVECs). LPC increased intracellular calcium ([Ca2+]i) by releasing Ca2+ from intracellular stores and via Ca2+ influx through store-operated channels (SOCs). LPC also increased the generation of reactive oxygen species (ROS) and decreased cell viability. The mRNA expression of Transient receptor potential canonical (TRPC) channel 1 was increased significantly by LPC treatment and suppressed by CGA. CGA inhibited LPC-induced Ca2+ influx and ROS generation, and restored cell viability. These results suggested that CGA inhibits SOC-mediated Ca2+ influx and ROS generation by attenuating TRPC1 expression in LPC-treated HUVECs. Therefore, CGA might protect endothelial cells against LPC injury, thereby inhibiting atherosclerosis. PMID:28088946

  4. A conceptual framework for homeostasis: development and validation

    PubMed Central

    Wenderoth, Mary Pat; Michael, Joel; Cliff, William; Wright, Ann; Modell, Harold

    2016-01-01

    We have developed and validated a conceptual framework for understanding and teaching organismal homeostasis at the undergraduate level. The resulting homeostasis conceptual framework details critical components and constituent ideas underlying the concept of homeostasis. It has been validated by a broad range of physiology faculty members from community colleges, primarily undergraduate institutions, research universities, and medical schools. In online surveys, faculty members confirmed the relevance of each item in the framework for undergraduate physiology and rated the importance and difficulty of each. The homeostasis conceptual framework was constructed as a guide for teaching and learning of this critical core concept in physiology, and it also paves the way for the development of a concept inventory for homeostasis. PMID:27105740

  5. Calcium-regulatory proteins as modulators of chemotherapy in human neuroblastoma

    PubMed Central

    Florea, Ana-Maria; Varghese, Elizabeth; McCallum, Jennifer E.; Mahgoub, Safa; Helmy, Irfan; Varghese, Sharon; Gopinath, Neha; Sass, Steffen; Theis, Fabian J.; Reifenberger, Guido; Büsselberg, Dietrich

    2017-01-01

    Neuroblastoma (NB) is a pediatric cancer treated with poly-chemotherapy including platinum complexes (e.g. cisplatin (CDDP), carboplatin), DNA alkylating agents, and topoisomerase I inhibitors (e.g. topotecan (TOPO)). Despite aggressive treatment, NB may become resistant to chemotherapy. We investigated whether CDDP and TOPO treatment of NB cells interacts with the expression and function of proteins involved in regulating calcium signaling. Human neuroblastoma cell lines SH-SY5Y, IMR-32 and NLF were used to investigate the effects of CDDP and TOPO on cell viability, apoptosis, calcium homeostasis, and expression of selected proteins regulating intracellular calcium concentration ([Ca2+]i). In addition, the impact of pharmacological inhibition of [Ca2+]i-regulating proteins on neuroblastoma cell survival was studied. Treatment of neuroblastoma cells with increasing concentrations of CDDP (0.1−10 μM) or TOPO (0.1 nM−1 μM) induced cytotoxicity and increased apoptosis in a concentration- and time-dependent manner. Both drugs increased [Ca2+]i over time. Treatment with CDDP or TOPO also modified mRNA expression of selected genes encoding [Ca2+]i-regulating proteins. Differentially regulated genes included S100A6, ITPR1, ITPR3, RYR1 and RYR3. With FACS and confocal laser scanning microscopy experiments we validated their differential expression at the protein level. Importantly, treatment of neuroblastoma cells with pharmacological modulators of [Ca2+]i-regulating proteins in combination with CDDP or TOPO increased cytotoxicity. Thus, our results confirm an important role of calcium signaling in the response of neuroblastoma cells to chemotherapy and suggest [Ca2+]i modulation as a promising strategy for adjunctive treatment. PMID:28206967

  6. Calcium-regulatory proteins as modulators of chemotherapy in human neuroblastoma.

    PubMed

    Florea, Ana-Maria; Varghese, Elizabeth; McCallum, Jennifer E; Mahgoub, Safa; Helmy, Irfan; Varghese, Sharon; Gopinath, Neha; Sass, Steffen; Theis, Fabian J; Reifenberger, Guido; Büsselberg, Dietrich

    2017-04-04

    Neuroblastoma (NB) is a pediatric cancer treated with poly-chemotherapy including platinum complexes (e.g. cisplatin (CDDP), carboplatin), DNA alkylating agents, and topoisomerase I inhibitors (e.g. topotecan (TOPO)). Despite aggressive treatment, NB may become resistant to chemotherapy. We investigated whether CDDP and TOPO treatment of NB cells interacts with the expression and function of proteins involved in regulating calcium signaling. Human neuroblastoma cell lines SH-SY5Y, IMR-32 and NLF were used to investigate the effects of CDDP and TOPO on cell viability, apoptosis, calcium homeostasis, and expression of selected proteins regulating intracellular calcium concentration ([Ca2+]i). In addition, the impact of pharmacological inhibition of [Ca2+]i-regulating proteins on neuroblastoma cell survival was studied. Treatment of neuroblastoma cells with increasing concentrations of CDDP (0.1-10 μM) or TOPO (0.1 nM-1 μM) induced cytotoxicity and increased apoptosis in a concentration- and time-dependent manner. Both drugs increased [Ca2+]i over time. Treatment with CDDP or TOPO also modified mRNA expression of selected genes encoding [Ca2+]i-regulating proteins. Differentially regulated genes included S100A6, ITPR1, ITPR3, RYR1 and RYR3. With FACS and confocal laser scanning microscopy experiments we validated their differential expression at the protein level. Importantly, treatment of neuroblastoma cells with pharmacological modulators of [Ca2+]i-regulating proteins in combination with CDDP or TOPO increased cytotoxicity. Thus, our results confirm an important role of calcium signaling in the response of neuroblastoma cells to chemotherapy and suggest [Ca2+]i modulation as a promising strategy for adjunctive treatment.

  7. Parathyroid hormone, calcitonin, and vitamin D 1974: Present status of physiological studies and analysis of calcium homeostasis

    NASA Technical Reports Server (NTRS)

    Potts, J. T., Jr.; Swenson, K. G.

    1975-01-01

    The role of parathyroid hormone, calcitonin, and vitamin D in the control of calcium and bone metabolism was studied. Particular emphasis was placed on the physiological adaptation to weightlessness and, as a potential model for this purpose, on the immobilization characteristic of space flight or prolonged bed rest. The biosynthesis, control of secretion, and metabolism of these hormonal agents is considered.

  8. Trace element status and zinc homeostasis differ in breast and formula-fed piglets

    USDA-ARS?s Scientific Manuscript database

    Differences in trace element composition and bioavailability between breast milk and infant formulas may affect metal homeostasis in neonates. In the current study, piglets were fed soy infant formula (Soy), cow's milk formula (Milk), or were allowed to suckle from the sow from PND2 to PND21. Serum ...

  9. 1,25-Dihydroxyvitamin D3 Controls a Cohort of Vitamin D Receptor Target Genes in the Proximal Intestine That Is Enriched for Calcium-regulating Components*

    PubMed Central

    Lee, Seong Min; Riley, Erin M.; Meyer, Mark B.; Benkusky, Nancy A.; Plum, Lori A.; DeLuca, Hector F.; Pike, J. Wesley

    2015-01-01

    1,25-Dihydroxyvitamin D3 (1,25(OH)2D3) plays an integral role in calcium homeostasis in higher organisms through its actions in the intestine, kidney, and skeleton. Interestingly, although several intestinal genes are known to play a contributory role in calcium homeostasis, the entire caste of key components remains to be identified. To examine this issue, Cyp27b1 null mice on either a normal or a high calcium/phosphate-containing rescue diet were treated with vehicle or 1,25(OH)2D3 and evaluated 6 h later. RNA samples from the duodena were then subjected to RNA sequence analysis, and the data were analyzed bioinformatically. 1,25(OH)2D3 altered expression of large collections of genes in animals under either dietary condition. 45 genes were found common to both 1,25(OH)2D3-treated groups and were composed of genes previously linked to intestinal calcium uptake, including S100g, Trpv6, Atp2b1, and Cldn2 as well as others. An additional distinct network of 56 genes was regulated exclusively by diet. We then conducted a ChIP sequence analysis of binding sites for the vitamin D receptor (VDR) across the proximal intestine in vitamin D-sufficient normal mice treated with vehicle or 1,25(OH)2D3. The residual VDR cistrome was composed of 4617 sites, which was increased almost 4-fold following hormone treatment. Interestingly, the majority of the genes regulated by 1,25(OH)2D3 in each diet group as well as those found in common in both groups contained frequent VDR sites that likely regulated their expression. This study revealed a global network of genes in the intestine that both represent direct targets of vitamin D action in mice and are involved in calcium absorption. PMID:26041780

  10. Potassium dependent rescue of a myopathy with core-like structures in mouse

    PubMed Central

    Hanson, M Gartz; Wilde, Jonathan J; Moreno, Rosa L; Minic, Angela D; Niswander, Lee

    2015-01-01

    Myopathies decrease muscle functionality. Mutations in ryanodine receptor 1 (RyR1) are often associated with myopathies with microscopic core-like structures in the muscle fiber. In this study, we identify a mouse RyR1 model in which heterozygous animals display clinical and pathological hallmarks of myopathy with core-like structures. The RyR1 mutation decreases sensitivity to activated calcium release and myoplasmic calcium levels, subsequently affecting mitochondrial calcium and ATP production. Mutant muscle shows a persistent potassium leak and disrupted expression of regulators of potassium homeostasis. Inhibition of KATP channels or increasing interstitial potassium by diet or FDA-approved drugs can reverse the muscle weakness, fatigue-like physiology and pathology. We identify regulators of potassium homeostasis as biomarkers of disease that may reveal therapeutic targets in human patients with myopathy of central core disease (CCD). Altogether, our results suggest that amelioration of potassium leaks through potassium homeostasis mechanisms may minimize muscle damage of myopathies due to certain RyR1 mutations. DOI: http://dx.doi.org/10.7554/eLife.02923.001 PMID:25564733

  11. General anesthesia selectively disrupts astrocyte calcium signaling in the awake mouse cortex

    PubMed Central

    Thrane, Alexander Stanley; Zeppenfeld, Douglas; Lou, Nanhong; Xu, Qiwu; Nagelhus, Erlend Arnulf; Nedergaard, Maiken

    2012-01-01

    Calcium signaling represents the principle pathway by which astrocytes respond to neuronal activity. General anesthetics are routinely used in clinical practice to induce a sleep-like state, allowing otherwise painful procedures to be performed. Anesthetic drugs are thought to mainly target neurons in the brain and act by suppressing synaptic activity. However, the direct effect of general anesthesia on astrocyte signaling in awake animals has not previously been addressed. This is a critical issue, because calcium signaling may represent an essential mechanism through which astrocytes can modulate synaptic activity. In our study, we performed calcium imaging in awake head-restrained mice and found that three commonly used anesthetic combinations (ketamine/xylazine, isoflurane, and urethane) markedly suppressed calcium transients in neocortical astrocytes. Additionally, all three anesthetics masked potentially important features of the astrocyte calcium signals, such as synchronized widespread transients that appeared to be associated with arousal in awake animals. Notably, anesthesia affected calcium transients in both processes and soma and depressed spontaneous signals, as well as calcium responses, evoked by whisker stimulation or agonist application. We show that these calcium transients are inositol 1,4,5-triphosphate type 2 receptor (IP3R2)-dependent but resistant to a local blockade of glutamatergic or purinergic signaling. Finally, we found that doses of anesthesia insufficient to affect neuronal responses to whisker stimulation selectively suppressed astrocyte calcium signals. Taken together, these data suggest that general anesthesia may suppress astrocyte calcium signals independently of neuronal activity. We propose that these glial effects may constitute a nonneuronal mechanism for sedative action of anesthetic drugs. PMID:23112168

  12. [Influence of hormonal contraceptives on indices of zinc homeostasis and bone remodeling in young adult women].

    PubMed

    Simões, Tania Mara Rodrigues; Zapata, Carmiña Lucía Vargas; Donangelo, Carmen Marino

    2015-09-01

    To investigate the influence of the use of oral hormonal contraceptive agents (OCA) on the biochemical indices related to metabolic zinc utilization and distribution, and to bone turnover in young adult women. Cross-sectional study. Blood and urine samples from non-users (-OCA; control; n=69) and users of hormonal contraceptives for at least 3 months (+OCA; n=62) were collected under controlled conditions. Indices of zinc homeostasis and of bone turnover were analyzed in serum or plasma (total, albumin-bound and α2-macroglobulin-bound zinc, albumin and total and bone alkaline phosphatase activity), in erythrocytes (zinc and metallothionein) and in urine (zinc, calcium and hydroxyproline). The habitual zinc and calcium intakes were evaluated by a food frequency questionnaire. Dietary zinc intake was similar in both groups and on average above recommended values, whereas calcium intake was similarly sub-adequate in +OCA and -OCA. Compared to controls, +OCA had lower concentrations of total and α2-macroglobulin-bound zinc (11 and 28.5%, respectively, p<0.001), serum albumin (13%, p<0.01), total and bone-specific alkaline phosphatase activity (13 and 18%, respectively, p<0.05), erythrocyte metallothionein (13%, p<0.01), and, urinary zinc (34%, p<0.05). OCA use decreases serum zinc, alters zinc distribution in major serum fractions with possible effects on tissue uptake, enhances zinc retention in the body and decreases bone turnover. Prolonged OCA use may lead to lower peak bone mass and/or to impaired bone mass maintenance in young women, particularly in those with marginal calcium intake. The observed OCA effects were more evident in women younger than 25 years and in nulliparous women, deserving special attention in future studies.

  13. A conceptual framework for homeostasis: development and validation.

    PubMed

    McFarland, Jenny; Wenderoth, Mary Pat; Michael, Joel; Cliff, William; Wright, Ann; Modell, Harold

    2016-06-01

    We have developed and validated a conceptual framework for understanding and teaching organismal homeostasis at the undergraduate level. The resulting homeostasis conceptual framework details critical components and constituent ideas underlying the concept of homeostasis. It has been validated by a broad range of physiology faculty members from community colleges, primarily undergraduate institutions, research universities, and medical schools. In online surveys, faculty members confirmed the relevance of each item in the framework for undergraduate physiology and rated the importance and difficulty of each. The homeostasis conceptual framework was constructed as a guide for teaching and learning of this critical core concept in physiology, and it also paves the way for the development of a concept inventory for homeostasis. Copyright © 2016 The American Physiological Society.

  14. Behavioral sleep-wake homeostasis and EEG delta power are decoupled by chronic sleep restriction in the rat.

    PubMed

    Stephenson, Richard; Caron, Aimee M; Famina, Svetlana

    2015-05-01

    Chronic sleep restriction (CSR) is prevalent in society and is linked to adverse consequences that might be ameliorated by acclimation of homeostatic drive. This study was designed to test the hypothesis that the sleep-wake homeostat will acclimatize to CSR. A four-parameter model of proportional control was used to quantify sleep homeostasis with and without recourse to a sleep intensity function. Animal laboratory, rodent walking-wheel apparatus. Male Sprague-Dawley rats. Acute total sleep deprivation (TSD, 1 day × 18 or 24 h, N = 12), CSR (10 days × 18 h TSD, N = 5, or 5 days × 20 h TSD, N = 6). Behavioral rebounds were consistent with model predictions for proportional control of cumulative times in wake, nonrapid eye movement (NREM) and rapid eye movement (REM). Delta (D) energy homeostasis was secondary to behavioral homeostasis; a biphasic NREM D power rebound contributed to the dynamics (rapid response) but not to the magnitude of the rebound in D energy. REM behavioral homeostasis was little affected by CSR. NREM behavioral homeostasis was attenuated in proportion to cumulative NREM deficit, whereas the biphasic NREM D power rebound was only slightly suppressed, indicating decoupled regulatory mechanisms following CSR. We conclude that sleep homeostasis is achieved through behavioral regulation, that the NREM behavioral homeostat is susceptible to attenuation during CSR and that the concept of sleep intensity is not essential in a model of sleep-wake regulation. Chronic sleep restriction (CSR) is prevalent in society and is linked to adverse consequences that might be ameliorated by acclimation of homeostatic drive. This study was designed to test the hypothesis that the sleep-wake homeostat will acclimatize to CSR. A four-parameter model of proportional control was used to quantify sleep homeostasis with and without recourse to a sleep intensity function. Animal laboratory, rodent walking-wheel apparatus. Male Sprague-Dawley rats. Acute total sleep

  15. Mitochondrial Dysfunction in Chemotherapy-Induced Peripheral Neuropathy (CIPN)

    PubMed Central

    Canta, Annalisa; Pozzi, Eleonora; Carozzi, Valentina Alda

    2015-01-01

    The mitochondrial dysfunction has a critical role in several disorders including chemotherapy-induced peripheral neuropathies (CIPN). This is due to a related dysregulation of pathways involving calcium signalling, reactive oxygen species and apoptosis. Vincristine is able to affect calcium movement through the Dorsal Root Ganglia (DRG) neuronal mitochondrial membrane, altering its homeostasis and leading to abnormal neuronal excitability. Paclitaxel induces the opening of the mitochondrial permeability transition pore in axons followed by mitochondrial membrane potential loss, increased reactive oxygen species generation, ATP level reduction, calcium release and mitochondrial swelling. Cisplatin and oxaliplatin form adducts with mitochondrial DNA producing inhibition of replication, disruption of transcription and morphological abnormalities within mitochondria in DRG neurons, leading to a gradual energy failure. Bortezomib is able to modify mitochondrial calcium homeostasis and mitochondrial respiratory chain. Moreover, the expression of a certain number of genes, including those controlling mitochondrial functions, was altered in patients with bortezomib-induced peripheral neuropathy. PMID:29056658

  16. Targeting Chronic and Neuropathic Pain: The N-type Calcium Channel Comes of Age

    PubMed Central

    Snutch, Terrance P.

    2005-01-01

    Summary: The rapid entry of calcium into cells through activation of voltage-gated calcium channels directly affects membrane potential and contributes to electrical excitability, repetitive firing patterns, excitation-contraction coupling, and gene expression. At presynaptic nerve terminals, calcium entry is the initial trigger mediating the release of neurotransmitters via the calcium-dependent fusion of synaptic vesicles and involves interactions with the soluble N-ethylmaleimide-sensitive factor attachment protein receptor complex of synaptic release proteins. Physiological factors or drugs that affect either presynaptic calcium channel activity or the efficacy of calcium-dependent vesicle fusion have dramatic consequences on synaptic transmission, including that mediating pain signaling. The N-type calcium channel exhibits a number of characteristics that make it an attractive target for therapeutic intervention concerning chronic and neuropathic pain conditions. Within the past year, both U.S. and European regulatory agencies have approved the use of the cationic peptide Prialt for the treatment of intractable pain. Prialt is the first N-type calcium channel blocker approved for clinical use and represents the first new proven mechanism of action for chronic pain intervention in many years. The present review discusses the rationale behind targeting the N-type calcium channel, some of the limitations confronting the widespread clinical application of Prialt, and outlines possible strategies to improve upon Prialt's relatively narrow therapeutic window. PMID:16489373

  17. Planarian yorkie/YAP functions to integrate adult stem cell proliferation, organ homeostasis and maintenance of axial patterning.

    PubMed

    Lin, Alexander Y T; Pearson, Bret J

    2014-03-01

    During adult homeostasis and regeneration, the freshwater planarian must accomplish a constant balance between cell proliferation and cell death, while also maintaining proper tissue and organ size and patterning. How these ordered processes are precisely modulated remains relatively unknown. Here we show that planarians use the downstream effector of the Hippo signaling cascade, yorkie (yki; YAP in vertebrates) to control a diverse set of pleiotropic processes in organ homeostasis, stem cell regulation, regeneration and axial patterning. We show that yki functions to maintain the homeostasis of the planarian excretory (protonephridial) system and to limit stem cell proliferation, but does not affect the differentiation process or cell death. Finally, we show that Yki acts synergistically with WNT/β-catenin signaling to repress head determination by limiting the expression domains of posterior WNT genes and that of the WNT-inhibitor notum. Together, our data show that yki is a key gene in planarians that integrates stem cell proliferation control, organ homeostasis, and the spatial patterning of tissues.

  18. 21 CFR 172.330 - Calcium pantothenate, calcium chloride double salt.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Calcium pantothenate, calcium chloride double salt... FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.330 Calcium pantothenate, calcium chloride double salt. The food additive calcium chloride double salt of calcium pantothenate may...

  19. Senna leaf extracts induced Ca(+2) homeostasis in a zoonotic tapeworm Hymenolepis diminuta.

    PubMed

    Roy, Saptarshi; Kundu, Suman; Lyndem, Larisha M

    2016-10-01

    Context Plants and plant products have been used in traditional medicine as anthelmintic agents in human and veterinary medicine. Three species of Senna plant, S. alata (L), S. alexandrina (M) and S. occidentalis (L.) Link (Fabaceae) have been shown to have a vermicidal/vermifugal effect on a zoonotic tapeworm Hymenolepis diminuta (Rudolphi) (Cyclophyllidean). Objective The present study validates the mode of action of these Senna plants on the parasite. The alcoholic leaf extract was determined to obtain information on the intracellular free calcium concentration level. Materials and methods Hymenolepis diminuta was maintained in Sprague-Dawley rat model for 2 months. Live parasites collected from infected rat intestine were exposed to 40 mg/mL concentration of each plant extracts prepared in phosphate buffer saline at 37 °C, till parasite gets paralyzed. The rate of efflux of calcium from the parasite tissue to the medium and the level of intracellular Ca(2+ )concentration were determined by an atomic absorption spectroscopy. Results This study revealed that exposure of the worms to the plant extract leads to disruption in intracellular calcium homeostasis. A significant increase (44.6% and 25%) of efflux in Ca(2+ )from the tissue to the incubated medium was observed. Senna alata showed high rate of efflux (5.32 mg/g) followed by S. alexandria and S. occidentalis (both 4.6 mg/g) compared with control (3.68 mg/g). Discussion and conclusion These results suggest that leaf extracts caused membrane permeability to Ca(2+ )after vacuolization of the tegument under stress and the extracts may contain compound that can be used as a chemotherapeutic agent.

  20. Calcium regulation in crustaceans during the molt cycle: a review and update.

    PubMed

    Ahearn, Gregory A; Mandal, Prabir K; Mandal, Anita

    2004-02-01

    Epithelial cells of the gut, gills, antennal glands and integument regulate calcium concentrations in crustaceans during the molt cycle. A cellular calcium transport model has been proposed suggesting the presence of calcium pumps, cation antiporters and calcium channels in transporting epithelial membranes that regulate the movements of this cation across the cell layer. Basolateral calcium transport during postmolt appears mainly regulated by the low affinity NCX antiporter, while calcium regulating 'housekeeping' activities of these cells in intermolt are controlled by the high affinity calcium ATPase (PMCA). A model is proposed for the involvement of the epithelial ER in the massive transepithelial calcium fluxes that occur during premolt and postmolt. This model involves the endoplasmic reticulum SERCA and RyR proteins and proposed cytoplasmic unstirred layers adjacent to apical and basolateral plasma membranes where calcium activities may largely exceed those in the bulk cytoplasmic phase. A result of the proposed transepithelial calcium transport model is that large quantities of calcium can be moved through these cells by these processes without affecting the low, and carefully controlled, bulk cytoplasmic calcium activities.

  1. Intra-Amniotic Administration (Gallus gallus) of Cicer arietinum and Lens culinaris Prebiotics Extracts and Duck Egg White Peptides Affects Calcium Status and Intestinal Functionality

    PubMed Central

    Hou, Tao; Glahn, Raymond P.; Tako, Elad

    2017-01-01

    Calcium (Ca) is one of the most abundant inorganic elements in the human body and has many important physiological roles. Prebiotics and bioactive peptides are two important substances used to promote calcium uptake. However, the difference in mechanisms of the calcium uptake from these two supplements is not clear. By using the Gallus gallus model and the intra-amniotic administration procedure, the aim of this study was to investigate whether Ca status, intestinal functionality, and health-promoting bacterial populations were affected by prebiotics extracted from chickpea and lentil, and duck egg white peptides (DPs). Eleven groups (non-injected; 18 MΩ H2O; 4 mmol/L CaCl2; 50 mg/mL chickpea + 4 mmol/L CaCl2; 50 mg/mL lentil + 4 mmol/L CaCl2; 40 mg/mL DPs + 4 mmol/L CaCl2; 5 mg/mL Val-Ser-Glu-Glu (VSEE) + 4 mmol/L CaCl2; 50 mg/mL chickpea; 50 mg/mL lentil; 40 mg/mL DPs; 5 mg/mL VSEE) were utilized. Upon hatch, blood, cecum, small intestine, liver and bone were collected for assessment of serum bone alkaline phosphate level (BALP), the relative abundance of intestinal microflora, expression of Ca-related genes, brush border membrane (BBM) functional genes, and liver and bone mineral levels, respectively. The BALP level increased in the presence of lentil, DPs and VSEE (p < 0.05). The relative abundance of probiotics increased significantly (p < 0.05) by VSEE + Ca and chickpea. The expression of CalbindinD9k (Ca transporter) increased (p < 0.05) in Ca, chickpea + Ca and lentil + Ca groups. In addition, the brush border membrane functionality genes expressions increased (p < 0.05) by the chickpea or lentil extracts. Prebiotics and DPs beneficially affected the intestinal microflora and duodenal villus surface area. This research expands the understanding of the prebiotics’ properties of chickpea and lentil extracts, and peptides’ effects on calcium metabolism and gut health. PMID:28754012

  2. Intra-Amniotic Administration (Gallus gallus) of Cicer arietinum and Lens culinaris Prebiotics Extracts and Duck Egg White Peptides Affects Calcium Status and Intestinal Functionality.

    PubMed

    Hou, Tao; Kolba, Nikolai; Glahn, Raymond P; Tako, Elad

    2017-07-21

    Calcium (Ca) is one of the most abundant inorganic elements in the human body and has many important physiological roles. Prebiotics and bioactive peptides are two important substances used to promote calcium uptake. However, the difference in mechanisms of the calcium uptake from these two supplements is not clear. By using the Gallus gallus model and the intra-amniotic administration procedure, the aim of this study was to investigate whether Ca status, intestinal functionality, and health-promoting bacterial populations were affected by prebiotics extracted from chickpea and lentil, and duck egg white peptides (DPs). Eleven groups (non-injected; 18 MΩ H₂O; 4 mmol/L CaCl₂; 50 mg/mL chickpea + 4 mmol/L CaCl₂; 50 mg/mL lentil + 4 mmol/L CaCl₂; 40 mg/mL DPs + 4 mmol/L CaCl₂; 5 mg/mL Val-Ser-Glu-Glu (VSEE) + 4 mmol/L CaCl₂; 50 mg/mL chickpea; 50 mg/mL lentil; 40 mg/mL DPs; 5 mg/mL VSEE) were utilized. Upon hatch, blood, cecum, small intestine, liver and bone were collected for assessment of serum bone alkaline phosphate level (BALP), the relative abundance of intestinal microflora, expression of Ca-related genes, brush border membrane (BBM) functional genes, and liver and bone mineral levels, respectively. The BALP level increased in the presence of lentil, DPs and VSEE ( p < 0.05). The relative abundance of probiotics increased significantly ( p < 0.05) by VSEE + Ca and chickpea. The expression of CalbindinD9k (Ca transporter) increased ( p < 0.05) in Ca, chickpea + Ca and lentil + Ca groups. In addition, the brush border membrane functionality genes expressions increased ( p < 0.05) by the chickpea or lentil extracts. Prebiotics and DPs beneficially affected the intestinal microflora and duodenal villus surface area. This research expands the understanding of the prebiotics' properties of chickpea and lentil extracts, and peptides' effects on calcium metabolism and gut health.

  3. Chronic Effect of Aspartame on Ionic Homeostasis and Monoamine Neurotransmitters in the Rat Brain.

    PubMed

    Abhilash, M; Alex, Manju; Mathews, Varghese V; Nair, R Harikumaran

    2014-07-01

    Aspartame is one of the most widely used artificial sweeteners globally. Data concerning acute neurotoxicity of aspartame is controversial, and knowledge on its chronic effect is limited. In the current study, we investigated the chronic effects of aspartame on ionic homeostasis and regional monoamine neurotransmitter concentrations in the brain. Our results showed that aspartame at high dose caused a disturbance in ionic homeostasis and induced apoptosis in the brain. We also investigated the effects of aspartame on brain regional monoamine synthesis, and the results revealed that there was a significant decrease of dopamine in corpus striatum and cerebral cortex and of serotonin in corpus striatum. Moreover, aspartame treatment significantly alters the tyrosine hydroxylase activity and amino acids levels in the brain. Our data suggest that chronic use of aspartame may affect electrolyte homeostasis and monoamine neurotransmitter synthesis dose dependently, and this might have a possible effect on cognitive functions. © The Author(s) 2014.

  4. Heat stability and acid gelation properties of calcium-enriched reconstituted skim milk affected by ultrasonication.

    PubMed

    Chandrapala, Jayani; Bui, Don; Kentish, Sandra; Ashokkumar, Muthupandian

    2014-05-01

    The aggregation of proteins after heating of calcium-fortified milks has been an ongoing problem in the dairy industry. This undesirable effect restricts the manufacture of calcium rich dairy products. To overcome this problem, a completely new approach in controlling the heat stability of dairy protein solutions, developed in our lab, has been employed. In this approach, high intensity, low frequency ultrasound is applied for a very short duration after a pre-heating step at ⩾70 °C. The ultrasound breaks apart whey/whey and whey/casein aggregates through the process of acoustic cavitation. Protein aggregates do not reform on subsequent post-heating, thereby making the systems heat stable. In this paper, the acid gelation properties of ultrasonicated calcium-enriched skim milks have also been investigated. It is shown that ultrasonication alone does not change the gelation properties significantly whereas a sequence of preheating (72 °C/1 min) followed by ultrasonication leads to decreased gelation times, decreased gel syneresis and increased skim milk viscosity in comparison to heating alone. Overall, ultrasonication has the potential to provide calcium-fortified dairy products with increased heat stability. However, enhanced gelation properties can only be achieved when ultrasonication is completed in conjunction with heating.

  5. tRNA wobble modifications and protein homeostasis

    PubMed Central

    Ranjan, Namit; Rodnina, Marina V.

    2016-01-01

    Abstract tRNA is a central component of the protein synthesis machinery in the cell. In living cells, tRNAs undergo numerous post-transcriptional modifications. In particular, modifications at the anticodon loop play an important role in ensuring efficient protein synthesis, maintaining protein homeostasis, and helping cell adaptation and survival. Hypo-modification of the wobble position of the tRNA anticodon loop is of particular relevance for translation regulation and is implicated in various human diseases. In this review we summarize recent evidence of how methyl and thiol modifications in eukaryotic tRNA at position 34 affect cellular fitness and modulate regulatory circuits at normal conditions and under stress. PMID:27335723

  6. Involvement of TRPV2 and SOCE in calcium influx disorder in DMD primary human myotubes with a specific contribution of α1-syntrophin and PLC/PKC in SOCE regulation.

    PubMed

    Harisseh, Rania; Chatelier, Aurélien; Magaud, Christophe; Déliot, Nadine; Constantin, Bruno

    2013-05-01

    Calcium homeostasis is critical for several vital functions in excitable and nonexcitable cells and has been shown to be impaired in many pathologies including Duchenne muscular dystrophy (DMD). Various studies using murine models showed the implication of calcium entry in the dystrophic phenotype. However, alteration of store-operated calcium entry (SOCE) and transient receptor potential vanilloid 2 (TRPV2)-dependant cation entry has not been investigated yet in human skeletal muscle cells. We pharmacologically characterized basal and store-operated cation entries in primary cultures of myotubes prepared from muscle of normal and DMD patients and found, for the first time, an increased SOCE in DMD myotubes. Moreover, this increase cannot be explained by an over expression of the well-known SOCE actors: TRPC1/4, Orai1, and stromal interaction molecule 1 (STIM1) mRNA and proteins. Thus we investigated the modes of regulation of this cation entry. We firstly demonstrated the important role of the scaffolding protein α1-syntrophin, which regulates SOCE in primary human myotubes through its PDZ domain. We also studied the implication of phospholipase C (PLC) and protein kinase C (PKC) in SOCE and showed that their inhibition restores normal levels of SOCE in DMD human myotubes. In addition, the involvement of TRPV2 in calcium deregulation in DMD human myotubes was explored. We showed an abnormal elevation of TRPV2-dependant cation entry in dystrophic primary human myotubes compared with normal ones. These findings show that calcium homeostasis mishandling in DMD myotubes depends on SOCE under the influence of Ca(2+)/PLC/PKC pathway and α1-syntrophin regulation as well as on TRPV2-dependant cation influx.

  7. Pain emotion and homeostasis.

    PubMed

    Panerai, Alberto E

    2011-05-01

    Pain has always been considered as part of a defensive strategy, whose specific role is to signal an immediate, active danger. This definition partially fits acute pain, but certainly not chronic pain, that is maintained also in the absence of an active noxa or danger and that nowadays is considered a disease by itself. Moreover, acute pain is not only an automatic alerting system, but its severity and characteristics can change depending on the surrounding environment. The affective, emotional components of pain have been and are the object of extensive attention and research by psychologists, philosophers, physiologists and also pharmacologists. Pain itself can be considered to share the same genesis as emotions and as a specific emotion in contributing to the maintenance of the homeostasis of each unique subject. Interestingly, this role of pain reaches its maximal development in the human; some even argue that it is specific for the human primate.

  8. Fibromodulin modulates myoblast differentiation by controlling calcium channel.

    PubMed

    Lee, Eun Ju; Nam, Joo Hyun; Choi, Inho

    2018-06-16

    Fibromodulin (FMOD) is a proteoglycan present in extracellular matrix (ECM). Based on our previous findings that FMOD controls myoblast differentiation by regulating the gene expressions of collagen type I alpha 1 (COL1α1) and integral membrane protein 2 A (Itm2a), we undertook this study to investigate relationships between FMOD and calcium channels and to understand further the mechanism by which they control myoblast differentiation. Gene expression studies and luciferase reporter assays showed FMOD affected calcium channel gene expressions by regulating calcium channel gene promoter, and patch-clamp experiments showed both L- and T-type calcium channel currents were almost undetectable in FMOD knocked down cells. In addition, gene knock-down studies demonstrated the COL1α1 and Itm2a genes both regulate the expressions of calcium channel genes. Studies using a cardiotoxin-induced mouse muscle injury model demonstrated calcium channels play important roles in the regeneration of muscle tissue, possibly by promoting the differentiation of muscle stem cells (MSCs). Summarizing, the study demonstrates ECM components secreted by myoblasts during differentiation provide an essential environment for muscle differentiation and regeneration. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. A human intermediate conductance calcium-activated potassium channel.

    PubMed

    Ishii, T M; Silvia, C; Hirschberg, B; Bond, C T; Adelman, J P; Maylie, J

    1997-10-14

    An intermediate conductance calcium-activated potassium channel, hIK1, was cloned from human pancreas. The predicted amino acid sequence is related to, but distinct from, the small conductance calcium-activated potassium channel subfamily, which is approximately 50% conserved. hIK1 mRNA was detected in peripheral tissues but not in brain. Expression of hIK1 in Xenopus oocytes gave rise to inwardly rectifying potassium currents, which were activated by submicromolar concentrations of intracellular calcium (K0.5 = 0.3 microM). Although the K0.5 for calcium was similar to that of small conductance calcium-activated potassium channels, the slope factor derived from the Hill equation was significantly reduced (1.7 vs. 3. 5). Single-channel current amplitudes reflected the macroscopic inward rectification and revealed a conductance level of 39 pS in the inward direction. hIK1 currents were reversibly blocked by charybdotoxin (Ki = 2.5 nM) and clotrimazole (Ki = 24.8 nM) but were minimally affected by apamin (100 nM), iberiotoxin (50 nM), or ketoconazole (10 microM). These biophysical and pharmacological properties are consistent with native intermediate conductance calcium-activated potassium channels, including the erythrocyte Gardos channel.

  10. Evaluation of Cisplatin Neurotoxicity in Cultured Rat Dorsal Root Ganglia via Cytosolic Calcium Accumulation

    PubMed Central

    Erol, Kevser; Yiğitaslan, Semra; Ünel, Çiğdem; Kaygısız, Bilgin; Yıldırım, Engin

    2016-01-01

    Background: Calcium homeostasis is considered to be important in antineoplastic as well as in neurotoxic adverse effects of cisplatin. Aims: This study aimed to investigate the role of Ca2+ in cisplatin neurotoxicity in cultured rat dorsal root ganglia (DRG) cells. Study Design: Cell culture study. Methods: DRG cells prepared from 1-day old Sprague-Dawley rats were used to determine the role of Ca2+ in the cisplatin (10–600 μM) neurotoxicity. The cells were incubated with cisplatin plus nimodipine (1–3 μM), dizocilpine (MK-801) (1–3 μM) or thapsigargin (100–300 nM). Toxicity of cisplatinon DRG cells was determined by the MTT assay. Results: The neurotoxicity of cisplatin was significant when used in high concentrations (100–600 μM). Nimodipine (1 μM) but not MK-801 or thapsigargin prevented the neurotoxic effects of 200 μM of cisplatin. Conclusion: Voltage-dependent calcium channels may play a role in cisplatin neurotoxicity. PMID:27403382

  11. Ocean acidification affects redox-balance and ion-homeostasis in the life-cycle stages of Emiliania huxleyi.

    PubMed

    Rokitta, Sebastian D; John, Uwe; Rost, Björn

    2012-01-01

    Ocean Acidification (OA) has been shown to affect photosynthesis and calcification in the coccolithophore Emiliania huxleyi, a cosmopolitan calcifier that significantly contributes to the regulation of the biological carbon pumps. Its non-calcifying, haploid life-cycle stage was found to be relatively unaffected by OA with respect to biomass production. Deeper insights into physiological key processes and their dependence on environmental factors are lacking, but are required to understand and possibly estimate the dynamics of carbon cycling in present and future oceans. Therefore, calcifying diploid and non-calcifying haploid cells were acclimated to present and future CO(2) partial pressures (pCO(2); 38.5 Pa vs. 101.3 Pa CO(2)) under low and high light (50 vs. 300 µmol photons m(-2) s(-1)). Comparative microarray-based transcriptome profiling was used to screen for the underlying cellular processes and allowed to follow up interpretations derived from physiological data. In the diplont, the observed increases in biomass production under OA are likely caused by stimulated production of glycoconjugates and lipids. The observed lowered calcification under OA can be attributed to impaired signal-transduction and ion-transport. The haplont utilizes distinct genes and metabolic pathways, reflecting the stage-specific usage of certain portions of the genome. With respect to functionality and energy-dependence, however, the transcriptomic OA-responses resemble those of the diplont. In both life-cycle stages, OA affects the cellular redox-state as a master regulator and thereby causes a metabolic shift from oxidative towards reductive pathways, which involves a reconstellation of carbon flux networks within and across compartments. Whereas signal transduction and ion-homeostasis appear equally OA-sensitive under both light intensities, the effects on carbon metabolism and light physiology are clearly modulated by light availability. These interactive effects can be

  12. Neuronal regulation of homeostasis by nutrient sensing.

    PubMed

    Lam, Tony K T

    2010-04-01

    In type 2 diabetes and obesity, the homeostatic control of glucose and energy balance is impaired, leading to hyperglycemia and hyperphagia. Recent studies indicate that nutrient-sensing mechanisms in the body activate negative-feedback systems to regulate energy and glucose homeostasis through a neuronal network. Direct metabolic signaling within the intestine activates gut-brain and gut-brain-liver axes to regulate energy and glucose homeostasis, respectively. In parallel, direct metabolism of nutrients within the hypothalamus regulates food intake and blood glucose levels. These findings highlight the importance of the central nervous system in mediating the ability of nutrient sensing to maintain homeostasis. Futhermore, they provide a physiological and neuronal framework by which enhancing or restoring nutrient sensing in the intestine and the brain could normalize energy and glucose homeostasis in diabetes and obesity.

  13. Distribution of calcium (Ca) and magnesium (Mg) in the leaves of Brassica rapa under varying exogenous Ca and Mg supply.

    PubMed

    Rios, Juan Jose; Lochlainn, Seosamh O; Devonshire, Jean; Graham, Neil S; Hammond, John P; King, Graham J; White, Philip J; Kurup, Smita; Broadley, Martin R

    2012-05-01

    Leafy vegetable Brassica crops are an important source of dietary calcium (Ca) and magnesium (Mg) and represent potential targets for increasing leaf Ca and Mg concentrations through agronomy or breeding. Although the internal distribution of Ca and Mg within leaves affects the accumulation of these elements, such data are not available for Brassica. The aim of this study was to characterize the internal distribution of Ca and Mg in the leaves of a vegetable Brassica and to determine the effects of altered exogenous Ca and Mg supply on this distribution. Brassica rapa ssp. trilocularis 'R-o-18' was grown at four different Ca:Mg treatments for 21 d in a controlled environment. Concentrations of Ca and Mg were determined in fully expanded leaves using inductively coupled plasma-mass spectrometry (ICP-MS). Internal distributions of Ca and Mg were determined in transverse leaf sections at the base and apex of leaves using energy-dispersive X-ray spectroscopy (EDS) with cryo-scanning electron microscopy (cryo-SEM). Leaf Ca and Mg concentrations were greatest in palisade and spongy mesophyll cells, respectively, although this was dependent on exogenous supply. Calcium accumulation in palisade mesophyll cells was enhanced slightly under high Mg supply; in contrast, Mg accumulation in spongy mesophyll cells was not affected by Ca supply. The results are consistent with Arabidopsis thaliana and other Brassicaceae, providing phenotypic evidence that conserved mechanisms regulate leaf Ca and Mg distribution at a cellular scale. The future study of Arabidopsis gene orthologues in mutants of this reference B. rapa genotype will improve our understanding of Ca and Mg homeostasis in plants and may provide a model-to-crop translation pathway for targeted breeding.

  14. Calcium deprivation increases the palatability of calcium solutions in rats.

    PubMed

    McCaughey, Stuart A; Forestell, Catherine A; Tordoff, Michael G

    2005-02-15

    Calcium-deprived rats have elevated intakes of CaCl2, other calcium salts, and some non-calcium compounds. We used taste reactivity to examine the effects of calcium deprivation on the palatability of CaCl2 and other solutions. Nine male Sprague-Dawley rats were calcium-deprived by maintenance on a low-calcium diet, and eight replete rats were used as controls. All rats were videotaped during intraoral infusion of the following solutions: 30 and 300 mM CaCl2, 30 mM calcium lactate, 100 and 600 mM NaCl, 30 mM MgCl2, 1 mM quinine.HCl, 2.5 mM sodium saccharin, and deionized water. We counted individual orofacial and somatic movements elicited by the infusions and used them to calculate total ingestive and aversive scores. Relative to controls, calcium-deprived rats gave a significantly larger number of tongue protrusions and had higher total ingestive scores for CaCl2, calcium lactate, NaCl, and MgCl2. Our results suggest that CaCl2, calcium lactate, NaCl, and MgCl2 taste more palatable to rats when they are calcium-deprived than replete, and this may be responsible for the increased intake of these solutions following calcium deprivation.

  15. The Mitochondrial Calcium Uniporter: Mice can live and die without it

    PubMed Central

    Harrington, Josephine L; Murphy, Elizabeth

    2014-01-01

    Calcium is of critical importance to mitochondrial and cell function, and calcium signaling is highly localized in the cell. When stimulated, mitochondria are capable of rapidly taking up calcium, affecting both matrix energetics within mitochondria and shaping the amplitude and frequency of cytosolic calcium “waves”. During pathological conditions a large increase in mitochondrial calcium levels is thought to activate the mitochondrial permeability transition pore, resulting in cell death. The protein responsible for mitochondrial calcium uptake, the mitochondrial calcium uniporter (MCU), was identified in 2011 and its molecular elucidation has stimulated and invigorated research in this area. MCU knockout mice have been created, a variety of other regulators have been identified, and a disease phenotype in humans has been attributed to the loss of a uniporter regulator. In the three years since its molecular elucidation, further research into the MCU has revealed a complex uniporter, and raised many questions about its physiologic and pathologic cell roles. PMID:25451167

  16. The pmr gene, encoding a Ca2+-ATPase, is required for calcium and manganese homeostasis and normal development of hyphae and conidia in Neurospora crassa.

    PubMed

    Bowman, Barry J; Abreu, Stephen; Johl, Jessica K; Bowman, Emma Jean

    2012-11-01

    The pmr gene is predicted to encode a Ca(2+)-ATPase in the secretory pathway. We examined two strains of Neurospora crassa that lacked PMR: the Δpmr strain, in which pmr was completely deleted, and pmr(RIP), in which the gene was extensively mutated. Both strains had identical, complex phenotypes. Compared to the wild type, these strains required high concentrations of calcium or manganese for optimal growth and had highly branched, slow-growing hyphae. They conidiated poorly, and the shape and size of the conidia were abnormal. Calcium accumulated in the Δpmr strains to only 20% of the wild-type level. High concentrations of MnCl(2) (1 to 5 mM) in growth medium partially suppressed the morphological defects but did not alter the defect in calcium accumulation. The Δpmr Δnca-2 double mutant (nca-2 encodes a Ca(2+)-ATPase in the plasma membrane) accumulated 8-fold more calcium than the wild type, and the morphology of the hyphae was more similar to that of wild-type hyphae. Previous experiments failed to show a function for nca-1, which encodes a SERCA-type Ca(2+)-ATPase in the endoplasmic reticulum (B. J. Bowman, S. Abreu, E. Margolles-Clark, M. Draskovic, and E. J. Bowman, Eukaryot. Cell 10:654-661, 2011). The pmr(RIP) Δnca-1 double mutant accumulated small amounts of calcium, like the Δpmr strain, but exhibited even more extreme morphological defects. Thus, PMR can apparently replace NCA-1 in the endoplasmic reticulum, but NCA-1 cannot replace PMR. The morphological defects in the Δpmr strain are likely caused, in part, by insufficient concentrations of calcium and manganese in the Golgi compartment; however, PMR is also needed to accumulate normal levels of calcium in the whole cell.

  17. The effect of prolonged breast-feeding on the development of postmenopausal osteoporosis in population with insufficient calcium intake and vitamin D level.

    PubMed

    Yun, B H; Chon, S J; Choi, Y S; Cho, S; Lee, B S; Seo, S K

    2016-09-01

    Breast-feeding affects bone metabolism and calcium homeostasis, and prolonged breast-feeding may influence the development of postmenopausal osteoporosis, particularly in highly susceptible populations. The study determined that breast-feeding may be a risk factor for postmenopausal osteoporosis, especially in people with low calcium intakes and vitamin D deficiencies. The purpose of this study was to determine whether breast-feeding is a risk factor in the development of postmenopausal osteoporosis, especially in highly susceptible population. The study was performed using data from the 2010 to 2011 Korea National Health and Nutrition Examination Survey, and it included 1231 postmenopausal women who were aged between 45 and 70 years. Osteoporosis was defined using the World Health Organization's T-score criteria, namely, a T-score of ≤-2.5 at the femoral neck or the lumbar spine. The patients' ages, body mass indexes, daily calcium intakes, serum vitamin D levels, exercise levels, smoking histories, and reproductive factors relating to menarche, menopause, delivery, breast-feeding, hormone treatment, and oral contraceptive use were evaluated. Comparisons between the osteoporosis and non-osteoporosis groups were undertaken using Student's t test and the chi-square test, and logistic regression models were built. A significant increase in the risk of osteoporosis was apparent in postmenopausal women with prolonged breast-feeding histories (≥24 months) (model 1: odds ratio [OR] = 2.489; 95 % confidence interval [CI] = 1.111 to 5.578, p = 0.027; model 2: OR = 2.503; 95 % CI = 1.118 to 5.602, p = 0.026; model 3: OR = 2.825; 95 % CI = 1.056 to 7.56, p = 0.039), particularly in those with inadequate serum vitamin D levels and calcium intakes (<800 mg/day). Breast-feeding seems to increase the risk of postmenopausal osteoporosis; however, its impact may not be definitive in women with sufficient vitamin D levels and calcium

  18. Relationship of calcium and membrane guanylate cyclase in adrenocorticotropin-induced steroidogenesis.

    PubMed

    Nambi, P; Aiyar, N V; Roberts, A N; Sharma, R K

    1982-07-01

    Chlorpromazine, when incubated with isolated adrenal cells, inhibited the ACTH-stimulated formation of cGMP and corticosterone production. It also inhibited the ACTH-stimulated membrane guanylate cyclase, but did not affect the binding of ACTH to the membrane receptors. cGMP-induced steroidogenesis was not affected by the drug. These data indicate that chlorpromazine interferes with adrenal steroid metabolism at a site between the hormone receptor and guanylate cyclase and also show that guanylate cyclase is composed of separate receptor and catalytic components. Furthermore, based on the premise that chlorpromazine exerts its inhibitory action by blocking the binding of a calcium receptor protein, such as calmodulin, to the receptor-coupled guanylate cyclase, it is proposed that the interaction of calcium, presumably through a calcium-binding protein, is essential for ACTH-dependent guanylate cyclase.

  19. Oxidized Low-density Lipoprotein (ox-LDL) Cholesterol Induces the Expression of miRNA-223 and L-type Calcium Channel Protein in Atrial Fibrillation

    PubMed Central

    He, Fengping; Xu, Xin; Yuan, Shuguo; Tan, Liangqiu; Gao, Lingjun; Ma, Shaochun; Zhang, Shebin; Ma, Zhanzhong; Jiang, Wei; Liu, Fenglian; Chen, Baofeng; Zhang, Beibei; Pang, Jungang; Huang, Xiuyan; Weng, Jiaqiang

    2016-01-01

    Atrial fibrillation (AF) is the most common sustained arrhythmia causing high morbidity and mortality. While changing of the cellular calcium homeostasis plays a critical role in AF, the L-type calcium channel α1c protein has suggested as an important regulator of reentrant spiral dynamics and is a major component of AF-related electrical remodeling. Our computational modeling predicted that miRNA-223 may regulate the CACNA1C gene which encodes the cardiac L-type calcium channel α1c subunit. We found that oxidized low-density lipoprotein (ox-LDL) cholesterol significantly up-regulates both the expression of miRNA-223 and L-type calcium channel protein. In contrast, knockdown of miRNA-223 reduced L-type calcium channel protein expression, while genetic knockdown of endogenous miRNA-223 dampened AF vulnerability. Transfection of miRNA-223 by adenovirus-mediated expression enhanced L-type calcium currents and promoted AF in mice while co-injection of a CACNA1C-specific miR-mimic counteracted the effect. Taken together, ox-LDL, as a known factor in AF-associated remodeling, positively regulates miRNA-223 transcription and L-type calcium channel protein expression. Our results implicate a new molecular mechanism for AF in which miRNA-223 can be used as an biomarker of AF rheumatic heart disease. PMID:27488468

  20. Oxidized Low-density Lipoprotein (ox-LDL) Cholesterol Induces the Expression of miRNA-223 and L-type Calcium Channel Protein in Atrial Fibrillation

    NASA Astrophysics Data System (ADS)

    He, Fengping; Xu, Xin; Yuan, Shuguo; Tan, Liangqiu; Gao, Lingjun; Ma, Shaochun; Zhang, Shebin; Ma, Zhanzhong; Jiang, Wei; Liu, Fenglian; Chen, Baofeng; Zhang, Beibei; Pang, Jungang; Huang, Xiuyan; Weng, Jiaqiang

    2016-08-01

    Atrial fibrillation (AF) is the most common sustained arrhythmia causing high morbidity and mortality. While changing of the cellular calcium homeostasis plays a critical role in AF, the L-type calcium channel α1c protein has suggested as an important regulator of reentrant spiral dynamics and is a major component of AF-related electrical remodeling. Our computational modeling predicted that miRNA-223 may regulate the CACNA1C gene which encodes the cardiac L-type calcium channel α1c subunit. We found that oxidized low-density lipoprotein (ox-LDL) cholesterol significantly up-regulates both the expression of miRNA-223 and L-type calcium channel protein. In contrast, knockdown of miRNA-223 reduced L-type calcium channel protein expression, while genetic knockdown of endogenous miRNA-223 dampened AF vulnerability. Transfection of miRNA-223 by adenovirus-mediated expression enhanced L-type calcium currents and promoted AF in mice while co-injection of a CACNA1C-specific miR-mimic counteracted the effect. Taken together, ox-LDL, as a known factor in AF-associated remodeling, positively regulates miRNA-223 transcription and L-type calcium channel protein expression. Our results implicate a new molecular mechanism for AF in which miRNA-223 can be used as an biomarker of AF rheumatic heart disease.

  1. Calcium dynamics in tomato pollen tubes using the Yellow Cameleon 3.6 sensor.

    PubMed

    Barberini, María Laura; Sigaut, Lorena; Huang, Weijie; Mangano, Silvina; Juarez, Silvina Paola Denita; Marzol, Eliana; Estevez, José; Obertello, Mariana; Pietrasanta, Lía; Tang, Weihua; Muschietti, Jorge

    2018-06-01

    In vitro tomato pollen tubes show a cytoplasmic calcium gradient that oscillates with the same period as growth. Pollen tube growth requires coordination between the tip-focused cytoplasmic calcium concentration ([Ca 2+ ] cyt ) gradient and the actin cytoskeleton. This [Ca 2+ ] cyt gradient is necessary for exocytosis of small vesicles, which contributes to the delivery of new membrane and cell wall at the pollen tube tip. The mechanisms that generate and maintain this [Ca 2+ ] cyt gradient are not completely understood. Here, we studied calcium dynamics in tomato (Solanum lycopersicum) pollen tubes using transgenic tomato plants expressing the Yellow Cameleon 3.6 gene under the pollen-specific promoter LAT52. We use tomato as an experimental model because tomato is a Solanaceous plant that is easy to transform, and has an excellent genomic database and genetic stock center, and unlike Arabidopsis, tomato pollen is a good system to do biochemistry. We found that tomato pollen tubes showed an oscillating tip-focused [Ca 2+ ] cyt gradient with the same period as growth. Then, we used a pharmacological approach to disturb the intracellular Ca 2+ homeostasis, evaluating how the [Ca 2+ ] cyt gradient, pollen germination and in vitro pollen tube growth were affected. We found that cyclopiazonic acid (CPA), a drug that inhibits plant P IIA -type Ca 2+ -ATPases, increased [Ca 2+ ] cyt in the subapical zone, leading to the disappearance of the Ca 2+ oscillations and inhibition of pollen tube growth. In contrast, 2-aminoethoxydiphenyl borate (2-APB), an inhibitor of Ca 2+ released from the endoplasmic reticulum to the cytoplasm in animals cells, completely reduced [Ca 2+ ] cyt at the tip of the tube, blocked the gradient and arrested pollen tube growth. Although both drugs have antagonistic effects on [Ca 2+ ] cyt , both inhibited pollen tube growth triggering the disappearance of the [Ca 2+ ] cyt gradient. When CPA and 2-APB were combined, their individual inhibitory

  2. The Effects of Calcium, Vitamins D and K co-Supplementation on Markers of Insulin Metabolism and Lipid Profiles in Vitamin D-Deficient Women with Polycystic Ovary Syndrome.

    PubMed

    Karamali, Maryam; Ashrafi, Mahnaz; Razavi, Maryamalsadat; Jamilian, Mehri; Kashanian, Maryam; Akbari, Maryam; Asemi, Zatollah

    2017-05-01

    Data on the effects of calcium, vitamins D and K co-supplementation on markers of insulin metabolism and lipid profiles among vitamin D-deficient women with polycystic ovary syndrome (PCOS) are scarce. This study was done to determine the effects of calcium, vitamins D and K co-supplementation on markers of insulin metabolism and lipid profiles in vitamin D-deficient women with PCOS. This randomized double-blind, placebo-controlled trial was conducted among 55 vitamin D-deficient women diagnosed with PCOS aged 18-40 years old. Subjects were randomly assigned into 2 groups to intake either 500 mg calcium, 200 IU vitamin D and 90 µg vitamin K supplements (n=28) or placebo (n=27) twice a day for 8 weeks. After the 8-week intervention, compared with the placebo, joint calcium, vitamins D and K supplementation resulted in significant decreases in serum insulin concentrations (-1.9±3.5 vs. +1.8±6.6 µIU/mL, P=0.01), homeostasis model of assessment-estimated insulin resistance (-0.4±0.7 vs. +0.4±1.4, P=0.01), homeostasis model of assessment-estimated b cell function (-7.9±14.7 vs. +7.0±30.3, P=0.02) and a significant increase in quantitative insulin sensitivity check index (+0.01±0.01 vs. -0.008±0.03, P=0.01). In addition, significant decreases in serum triglycerides (-23.4±71.3 vs. +9.9±39.5 mg/dL, P=0.03) and VLDL-cholesterol levels (-4.7±14.3 vs. +2.0±7.9 mg/dL, P=0.03) was observed following supplementation with combined calcium, vitamins D and K compared with the placebo. Overall, calcium, vitamins D and K co-supplementation for 8 weeks among vitamin D-deficient women with PCOS had beneficial effects on markers of insulin metabolism, serum triglycerides and VLDL-cholesterol levels. © Georg Thieme Verlag KG Stuttgart · New York.

  3. Calcium ionization balance and argon/calcium abundance in solar flares

    NASA Astrophysics Data System (ADS)

    Antonucci, E.; Marocchi, D.; Gabriel, A. H.; Doschek, G. A.

    1987-12-01

    An earlier analysis of solar flare calcium spectra from XRP and P78-1 aimed at measuring the calcium ionization balance resulted in an ambiguity due to a line blend between the calcium q line and an Ar XVII line. In the present work the calcium line 'r' is included in the analysis in order to resolve this problem. It is shown that the correct calcium ionization balance is that indicated in the earlier paper as corresponding to an argon/calcium abundance ratio of 0.2. The argon/calcium abundance ratio in the group of solar flares studied is shown to be 0.2 + or - 0.2. It is further argued that while the abundance of heavy elements may be enhanced in energetic flare events, this enhancement is less for argon than for calcium, leading to an argon/calcium ratio smaller than that present in the quiet sun.

  4. Calcium Carbonate

    MedlinePlus

    ... Maalox® (as a combination product containing Calcium Carbonate, Simethicone) ... Relief (as a combination product containing Calcium Carbonate, Simethicone) ... Plus (as a combination product containing Calcium Carbonate, Simethicone)

  5. Mechanisms of mammalian iron homeostasis

    PubMed Central

    Pantopoulos, Kostas; Porwal, Suheel Kumar; Tartakoff, Alan; Devireddy, L.

    2012-01-01

    Iron is vital for almost all organisms because of its ability to donate and accept electrons with relative ease. It serves as a cofactor for many proteins and enzymes necessary for oxygen and energy metabolism, as well as for several other essential processes. Mammalian cells utilize multiple mechanisms to acquire iron. Disruption of iron homeostasis is associated with various human diseases: iron deficiency resulting from defects in acquisition or distribution of the metal causes anemia; whereas iron surfeit resulting from excessive iron absorption or defective utilization causes abnormal tissue iron deposition, leading to oxidative damage. Mammals utilize distinct mechanisms to regulate iron homeostasis at the systemic and cellular levels. These involve the hormone hepcidin and iron regulatory proteins, which collectively ensure iron balance. This review outlines recent advances in iron regulatory pathways, as well as in mechanisms underlying intracellular iron trafficking, an important but less-studied area of mammalian iron homeostasis. PMID:22703180

  6. Diseases of Pulmonary Surfactant Homeostasis

    PubMed Central

    Whitsett, Jeffrey A.; Wert, Susan E.; Weaver, Timothy E.

    2015-01-01

    Advances in physiology and biochemistry have provided fundamental insights into the role of pulmonary surfactant in the pathogenesis and treatment of preterm infants with respiratory distress syndrome. Identification of the surfactant proteins, lipid transporters, and transcriptional networks regulating their expression has provided the tools and insights needed to discern the molecular and cellular processes regulating the production and function of pulmonary surfactant prior to and after birth. Mutations in genes regulating surfactant homeostasis have been associated with severe lung disease in neonates and older infants. Biophysical and transgenic mouse models have provided insight into the mechanisms underlying surfactant protein and alveolar homeostasis. These studies have provided the framework for understanding the structure and function of pulmonary surfactant, which has informed understanding of the pathogenesis of diverse pulmonary disorders previously considered idiopathic. This review considers the pulmonary surfactant system and the genetic causes of acute and chronic lung disease caused by disruption of alveolar homeostasis. PMID:25621661

  7. Isoflurane-Induced Caspase-3 Activation Is Dependent on Cytosolic Calcium and Can Be Attenuated by Memantine

    PubMed Central

    Zhang, Guohua; Dong, Yuanlin; Zhang, Bin; Ichinose, Fumito; Wu, Xu; Culley, Deborah J.; Crosby, Gregory

    2008-01-01

    Increasing evidence indicates that caspase activation and apoptosis are associated with a variety of neurodegenerative disorders, including Alzheimer's disease. We reported that anesthetic isoflurane can induce apoptosis, alter processing of the amyloid precursor protein (APP), and increase amyloid-β protein (Aβ) generation. However, the mechanism by which isoflurane induces apoptosis is primarily unknown. We therefore set out to assess effects of extracellular calcium concentration on isoflurane-induced caspase-3 activation in H4 human neuroglioma cells stably transfected to express human full-length APP (H4-APP cells). In addition, we tested effects of RNA interference (RNAi) silencing of IP3 receptor, NMDA receptor, and endoplasmic reticulum (ER) calcium pump, sacro-/ER calcium ATPase (SERCA1). Finally, we examined the effects of the NMDA receptor partial antagonist, memantine, in H4-APP cells and brain tissue of naive mice. EDTA (10 mm), BAPTA (10 μm), and RNAi silencing of IP3 receptor, NMDA receptor, or SERCA1 attenuated capase-3 activation. Memantine (4 μm) inhibited isoflurane-induced elevations in cytosolic calcium levels and attenuated isoflurane-induced caspase-3 activation, apoptosis, and cell viability. Memantine (20 mg/kg, i.p.) reduced isoflurane-induced caspase-3 activation in brain tissue of naive mice. These results suggest that disruption of calcium homeostasis underlies isoflurane-induced caspase activation and apoptosis. We also show for the first time that the NMDA receptor partial antagonist, memantine, can prevent isoflurane-induced caspase-3 activation and apoptosis in vivo and in vitro. These findings, indicating that isoflurane-induced caspase activation and apoptosis are dependent on cytosolic calcium levels, should facilitate the provision of safer anesthesia care, especially for Alzheimer's disease and elderly patients. PMID:18434534

  8. Fatty acid translocase promoted hepatitis B virus replication by upregulating the levels of hepatic cytosolic calcium.

    PubMed

    Huang, Jian; Zhao, Lei; Yang, Ping; Chen, Zhen; Ruan, Xiong Z; Huang, Ailong; Tang, Ni; Chen, Yaxi

    2017-09-15

    Hepatitis B virus (HBV) is designated a "metabolovirus" due to the intimate connection between the virus and host metabolism. The nutrition state of the host plays a relevant role in the severity of HBV infection. Metabolic syndrome (MS) is prone to increasing HBV DNA loads and accelerating the progression of liver disease in patients with chronic hepatitis B (CHB). Cluster of differentiation 36 (CD36), also named fatty acid translocase, is known to facilitate long-chain fatty acid uptake and contribute to the development of MS. We recently found that CD36 overexpression enhanced HBV replication. In this study, we further explored the mechanism by which CD36 overexpression promotes HBV replication. Our data showed that CD36 overexpression increased HBV replication, and CD36 knockdown inhibited HBV replication. RNA sequencing found some of the differentially expressed genes were involved in calcium ion homeostasis. CD36 overexpression elevated the cytosolic calcium level, and CD36 knockdown decreased the cytosolic calcium level. Calcium chelator BAPTA-AM could override the HBV replication increased by CD36 overexpression, and the calcium activator thapsigargin could improve the HBV replication reduced by CD36 knockdown. We further found that CD36 overexpression activated Src kinase, which plays an important role in the regulation of the store-operated Ca 2+ channel. An inhibitor of Src kinase (SU6656) significantly reduced the CD36-induced HBV replication. We identified a novel link between CD36 and HBV replication, which is associated with cytosolic calcium and the Src kinase pathway. CD36 may represent a potential therapeutic target for the treatment of CHB patients with MS. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Maintenance of Mitochondrial Oxygen Homeostasis by Cosubstrate Compensation

    PubMed Central

    Kueh, Hao Yuan; Niethammer, Philipp; Mitchison, Timothy J.

    2013-01-01

    Mitochondria maintain a constant rate of aerobic respiration over a wide range of oxygen levels. However, the control strategies underlying oxygen homeostasis are still unclear. Using mathematical modeling, we found that the mitochondrial electron transport chain (ETC) responds to oxygen level changes by undergoing compensatory changes in reduced electron carrier levels. This emergent behavior, which we named cosubstrate compensation (CSC), enables the ETC to maintain homeostasis over a wide of oxygen levels. When performing CSC, our ETC models recapitulated a classic scaling relationship discovered by Chance [Chance B (1965) J. Gen. Physiol. 49:163-165] relating the extent of oxygen homeostasis to the kinetics of mitochondrial electron transport. Analysis of an in silico mitochondrial respiratory system further showed evidence that CSC constitutes the dominant control strategy for mitochondrial oxygen homeostasis during active respiration. Our findings indicate that CSC constitutes a robust control strategy for homeostasis and adaptation in cellular biochemical networks. PMID:23528093

  10. ATP Released by Electrical Stimuli Elicits Calcium Transients and Gene Expression in Skeletal Muscle*

    PubMed Central

    Buvinic, Sonja; Almarza, Gonzalo; Bustamante, Mario; Casas, Mariana; López, Javiera; Riquelme, Manuel; Sáez, Juan Carlos; Huidobro-Toro, Juan Pablo; Jaimovich, Enrique

    2009-01-01

    ATP released from cells is known to activate plasma membrane P2X (ionotropic) or P2Y (metabotropic) receptors. In skeletal muscle cells, depolarizing stimuli induce both a fast calcium signal associated with contraction and a slow signal that regulates gene expression. Here we show that nucleotides released to the extracellular medium by electrical stimulation are partly involved in the fast component and are largely responsible for the slow signals. In rat skeletal myotubes, a tetanic stimulus (45 Hz, 400 1-ms pulses) rapidly increased extracellular levels of ATP, ADP, and AMP after 15 s to 3 min. Exogenous ATP induced an increase in intracellular free Ca2+ concentration, with an EC50 value of 7.8 ± 3.1 μm. Exogenous ADP, UTP, and UDP also promoted calcium transients. Both fast and slow calcium signals evoked by tetanic stimulation were inhibited by either 100 μm suramin or 2 units/ml apyrase. Apyrase also reduced fast and slow calcium signals evoked by tetanus (45 Hz, 400 0.3-ms pulses) in isolated mouse adult skeletal fibers. A likely candidate for the ATP release pathway is the pannexin-1 hemichannel; its blockers inhibited both calcium transients and ATP release. The dihydropyridine receptor co-precipitated with both the P2Y2 receptor and pannexin-1. As reported previously for electrical stimulation, 500 μm ATP significantly increased mRNA expression for both c-fos and interleukin 6. Our results suggest that nucleotides released during skeletal muscle activity through pannexin-1 hemichannels act through P2X and P2Y receptors to modulate both Ca2+ homeostasis and muscle physiology. PMID:19822518

  11. Immunohistochemical localization of calcium-binding proteins in the brainstem vestibular nuclei of the jaundiced Gunn rat.

    PubMed

    Shaia, Wayne T; Shapiro, Steven M; Heller, Andrew J; Galiani, David L; Sismanis, Aristides; Spencer, Robert F

    2002-11-01

    Vestibular gaze and postural abnormalities are major sequelae of neonatal hyperbilirubinemia. The sites and cellular effects of bilirubin toxicity in the brainstem vestibular pathway are not easily detected. Since altered intracellular calcium homeostasis may play a role in neuronal cell death, we hypothesized that altered expression of calcium-binding proteins may occur in brainstem vestibular nuclei of the classic animal model of bilirubin neurotoxicity. The expression of the calcium-binding proteins calbindin-D28k and parvalbumin in the brainstem vestibular pathways and cerebellum of homozygous recessive jaundiced (jj) Gunn rats was examined by light microscopy and immunohistochemistry at 18 days postnatally and compared to the findings obtained from age-matched non-jaundiced heterozygous (Nj) littermate controls. Jaundiced animals exhibited decreased parvalbumin immunoreactivity specifically in synaptic inputs to superior, medial, and inferior vestibular nuclei, and to oculomotor and trochlear nuclei, whereas the neurons retained their normal immunoreactivity. Jaundiced animals also demonstrated a decrease in calbindin expression in the lateral vestibular nuclei and a paucity of calbindin-immunoreactive synaptic endings on the somata of Deiters' neurons. The involved regions are related to the control of the vestibulo-ocular and vestibulospinal reflexes. Decreased expression of calcium-binding proteins in brainstem vestibular neurons may relate to the vestibulo-ocular and vestibulospinal dysfunction seen with clinical kernicterus, and may provide a sensitive new way to assess bilirubin toxicity in the vestibular system.

  12. Redox homeostasis: The Golden Mean of healthy living

    PubMed Central

    Ursini, Fulvio; Maiorino, Matilde; Forman, Henry Jay

    2016-01-01

    The notion that electrophiles serve as messengers in cell signaling is now widely accepted. Nonetheless, major issues restrain acceptance of redox homeostasis and redox signaling as components of maintenance of a normal physiological steady state. The first is that redox signaling requires sudden switching on of oxidant production and bypassing of antioxidant mechanisms rather than a continuous process that, like other signaling mechanisms, can be smoothly turned up or down. The second is the misperception that reactions in redox signaling involve “reactive oxygen species” rather than reaction of specific electrophiles with specific protein thiolates. The third is that hormesis provides protection against oxidants by increasing cellular defense or repair mechanisms rather than by specifically addressing the offset of redox homeostasis. Instead, we propose that both oxidant and antioxidant signaling are main features of redox homeostasis. As the redox shift is rapidly reversed by feedback reactions, homeostasis is maintained by continuous signaling for production and elimination of electrophiles and nucleophiles. Redox homeostasis, which is the maintenance of nucleophilic tone, accounts for a healthy physiological steady state. Electrophiles and nucleophiles are not intrinsically harmful or protective, and redox homeostasis is an essential feature of both the response to challenges and subsequent feedback. While the balance between oxidants and nucleophiles is preserved in redox homeostasis, oxidative stress provokes the establishment of a new radically altered redox steady state. The popular belief that scavenging free radicals by antioxidants has a beneficial effect is wishful thinking. We propose, instead, that continuous feedback preserves nucleophilic tone and that this is supported by redox active nutritional phytochemicals. These nonessential compounds, by activating Nrf2, mimic the effect of endogenously produced electrophiles (parahormesis). In summary

  13. Risk of calcium oxalate nephrolithiasis in postmenopausal women supplemented with calcium or combined calcium and estrogen.

    PubMed

    Domrongkitchaiporn, Somnuek; Ongphiphadhanakul, Boonsong; Stitchantrakul, Wasana; Chansirikarn, Sirinthorn; Puavilai, Gobchai; Rajatanavin, Rajata

    2002-02-26

    Recent studies showed that postmenopausal women lost less bone mass when supplemented with calcium or estrogen therapy. However, the safety of the treatments in terms of the risk of calcium oxalate stone formation is unknown. We therefore conducted this study to determine the alteration in calcium oxalate supersaturation after calcium supplement or after combined calcium and estrogen therapy in postmenopausal osteoporotic women. Fifty-six postmenopausal women were enrolled in this study. All subjects were more than 10 years postmenopausal with vertebral or femoral osteoporosis by bone mineral density criteria. They were randomly allocated to receive either 625 mg of calcium carbonate (250 mg of elemental calcium) at the end of a meal three times a day (group A, n=26) or calcium carbonate in the same manner plus 0.625 mg/day of conjugated equine estrogen and 5 mg medrogestone acetate from day 1-12 each month (group B, n=30). The age (mean +/- S.E.M.) was 66.3 +/- 1.2 and 65.1 +/- 1.1 years, weight 54.1 +/- 1.2 and 55.3 +/- 2.1 kg, in group A and group B, respectively. Urine specimens (24-h) were collected at baseline and 3 months after treatment for the determination of calcium oxalate saturation by using Tiselius's index (AP(CaOx)) and calcium/citrate ratio. After 3 months of treatment, there was no significant alteration from baseline for urinary excretion of calcium, citrate and oxalate. Urinary phosphate excretion was significantly reduced (6.3 +/- 0.7 vs. 5.1 +/- 0.7 mmol/day for group A and 8.2 +/- 0.9 vs. 5.8 +/- 0.7 mmol/day for group B, P<0.05), whereas net alkaline absorption was significantly elevated (10.1 +/- 3.6 vs. 20.1 +/- 4.4 meq/day for group A and 4.8 +/- 3.2 vs. 19.9 +/- 3.6 meq/day for group B, P<0.05). Calcium/citrate ratio and AP(CaOx) determined at baseline were not different from the corresponding values after treatment in both groups; calcium/citrate: 10.1 +/- 3.1 vs. 10.1 +/- 2.5 for group A and 9.3 +/- 1.8 vs. 11.9 +/- 2.5 for group B and

  14. Amelioration of boron toxicity in sweet pepper as affected by calcium management under an elevated CO2 concentration.

    PubMed

    Piñero, María Carmen; Pérez-Jiménez, Margarita; López-Marín, Josefa; Del Amor, Francisco M

    2017-04-01

    We investigated B tolerance in sweet pepper plants (Capsicum annuun L.) under an elevated CO 2 concentration, combined with the application of calcium as a nutrient management amelioration technique. The data show that high B affected the roots more than the aerial parts, since there was an increase in the shoot/root ratio, when plants were grown with high B levels; however, the impact was lessened when the plants were grown at elevated CO 2 , since the root FW reduction caused by excess B was less marked at the high CO 2 concentration (30.9% less). Additionally, the high B concentration affected the membrane permeability of roots, which increased from 39 to 54% at ambient CO 2 concentration, and from 38 to 51% at elevated CO 2 concentration, producing a cation imbalance in plants, which was differentially affected by the CO 2 supply. The Ca surplus in the nutrient solution reduced the nutritional imbalance in sweet pepper plants produced by the high B concentration, at both CO 2 concentrations. The medium B concentration treatment (toxic according to the literature) did not result in any toxic effect. Hence, there is a need to review the literature on critical and toxic B levels taking into account increases in atmospheric CO 2 .

  15. Polyamines as Possible Modulators of Gravity-induced Calcium Transport in Plants

    NASA Technical Reports Server (NTRS)

    Galston, A. W.; Slocum, R. D.

    1985-01-01

    Data from various laboratories indicate a probable relationship between calcium movement and some aspects of graviperception and tropistic bending responses. The movement of calcium in response to gravistimulation appears to be rapid, polar and opposite in direction to polar auxin transport. What might be the cause of such rapid Ca(2+) movement? Data from studies on polyamine (PA) metabolism may furnish a clue. A transient increase in the activity of ornithine decarboxylase (ODC) and titers of various PAs occurs within 60 seconds after hormonal stimulation of animal cells, followed by Ca(2+) transport out of the cells. Through the use of specific inhibitors, it was shown that the enhanced PA synthesis from ODC was essential not only for Ca(2+) transport, but also for Ca(2+) transport-dependent endocytosis and the movement of hexoses and amino acids across the plasmalemma. In plants, rapid changes in arginine decarboxylase (ADC) activity occur in response to various plant stresses. Physical stresses associated with gravisensor displacement and reorientation of a plant in the gravitational field could similarly activate ADC and that resultant increases in PA levels might initiate transient perturbations in Ca(2+) homeostasis.

  16. A human intermediate conductance calcium-activated potassium channel

    PubMed Central

    Ishii, Takahiro M.; Silvia, Christopher; Hirschberg, Birgit; Bond, Chris T.; Adelman, John P.; Maylie, James

    1997-01-01

    An intermediate conductance calcium-activated potassium channel, hIK1, was cloned from human pancreas. The predicted amino acid sequence is related to, but distinct from, the small conductance calcium-activated potassium channel subfamily, which is ≈50% conserved. hIK1 mRNA was detected in peripheral tissues but not in brain. Expression of hIK1 in Xenopus oocytes gave rise to inwardly rectifying potassium currents, which were activated by submicromolar concentrations of intracellular calcium (K0.5 = 0.3 μM). Although the K0.5 for calcium was similar to that of small conductance calcium-activated potassium channels, the slope factor derived from the Hill equation was significantly reduced (1.7 vs. 3.5). Single-channel current amplitudes reflected the macroscopic inward rectification and revealed a conductance level of 39 pS in the inward direction. hIK1 currents were reversibly blocked by charybdotoxin (Ki = 2.5 nM) and clotrimazole (Ki = 24.8 nM) but were minimally affected by apamin (100 nM), iberiotoxin (50 nM), or ketoconazole (10 μM). These biophysical and pharmacological properties are consistent with native intermediate conductance calcium-activated potassium channels, including the erythrocyte Gardos channel. PMID:9326665

  17. Abdominal Fat and Sarcopenia in Women Significantly Alter Osteoblasts Homeostasis In Vitro by a WNT/β-Catenin Dependent Mechanism

    PubMed Central

    Wannenes, Francesca; Papa, Vincenza; Greco, Emanuela A.; Fornari, Rachele; Marocco, Chiara; Di Luigi, Luigi; Donini, Lorenzo M.; Lenzi, Andrea

    2014-01-01

    Obesity and sarcopenia have been associated with mineral metabolism derangement and low bone mineral density (BMD). We investigated whether imbalance of serum factors in obese or obese sarcopenic patients could affect bone cell activity in vitro. To evaluate and characterize potential cellular and molecular changes of human osteoblasts, cells were exposed to sera of four groups of patients: (1) affected by obesity with normal BMD (O), (2) affected by obesity with low BMD (OO), (3) affected by obesity and sarcopenia (OS), and (4) affected by obesity, sarcopenia, and low BMD (OOS) as compared to subjects with normal body weight and normal BMD (CTL). Patients were previously investigated and characterized for body composition, biochemical and bone turnover markers. Then, sera of different groups of patients were used to incubate human osteoblasts and evaluate potential alterations in cell homeostasis. Exposure to OO, OS, and OOS sera significantly reduced alkaline phosphatase, osteopontin, and BMP4 expression compared to cells exposed to O and CTL, indicating a detrimental effect on osteoblast differentiation. Interestingly, sera of all groups of patients induced intracellular alteration in Wnt/β-catenin molecular pathway, as demonstrated by the significant alteration of specific target genes expression and by altered β-catenin cellular compartmentalization and GSK3β phosphorylation. In conclusion our results show for the first time that sera of obese subjects with low bone mineral density and sarcopenia significantly alter osteoblasts homeostasis in vitro, indicating potential detrimental effects of trunk fat on bone formation and skeletal homeostasis. PMID:24963291

  18. CALCIUM CHLORIDE PLANT LOOKING EAST. CALCIUM CHLORIDE BUILDING IN CENTER, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CALCIUM CHLORIDE PLANT LOOKING EAST. CALCIUM CHLORIDE BUILDING IN CENTER, CALCIUM CHLORIDE STORAGE BUILDING ON RIGHT WITH SA (SODA ASH) BUILDING IN RIGHT BACKGROUND. - Solvay Process Company, Calcium Chloride Plant, Between Willis & Milton Avenues, Solvay, Onondaga County, NY

  19. Effects of chlorogenic acid on intracellular calcium regulation in lysophosphatidylcholine-treated endothelial cells.

    PubMed

    Jung, Hye-Jin; Im, Seung-Soon; Song, Dae-Kyu; Bae, Jae-Hoon

    2017-06-01

    Lysophosphatidylcholine (LPC) is a major phospholipid component of oxidized low-density lipoprotein (ox-LDL) and is implicated in its atherogenic activity. This study investigated the effects of LPC on cell viability, intracellular calcium homeostasis, and the protective mechanisms of chlorogenic acid (CGA) in human umbilical vein endothelial cells (HUVECs). LPC increased intracellular calcium ([Ca 2+ ] i ) by releasing Ca 2+ from intracellular stores and via Ca 2+ influx through store-operated channels (SOCs). LPC also increased the generation of reactive oxygen species (ROS) and decreased cell viability. The mRNA expression of Transient receptor potential canonical (TRPC) channel 1 was increased significantly by LPC treatment and suppressed by CGA. CGA inhibited LPC-induced Ca 2+ influx and ROS generation, and restored cell viability. These results suggested that CGA inhibits SOC-mediated Ca 2+ influx and ROS generation by attenuating TRPC1 expression in LPC-treated HUVECs. Therefore, CGA might protect endothelial cells against LPC injury, thereby inhibiting atherosclerosis. [BMB Reports 2017; 50(6): 323-328].

  20. Stilbene Glucoside, a Putative Sleep Promoting Constituent from Polygonum multiflorum Affects Sleep Homeostasis by Affecting the Activities of Lactate Dehydrogenase and Salivary Alpha Amylase.

    PubMed

    Wei, Qian; Ta, Guang; He, Wenjing; Wang, Wei; Wu, Qiucheng

    2017-01-01

    Chinese herbal medicine (CHM) has been used for treating insomnia for centuries. The most used CHM for insomnia was Polygonum multiflorum. However, the molecular mechanism for CHM preventing insomnia is unknown. Stilbene glucoside (THSG), an important active component of P. multiflorum, may play an important role for treating insomnia. To test the hypothesis, Kunming mice were treated with different dosages of THSG. To examine the sleep duration, a computer-controlled sleep-wake detection system was implemented. Electroencephalogram (EEG) and electromyogram (EMG) electrodes were implanted to determine sleep-wake state. RT-PCR and Western blot was used to measure the levels of lactate dehydrogenase (LDH) and saliva alpha amylase. Spearman's rank correlation coefficient was used to identify the strength of correlation between the variables. The results showed that THSG significantly prolonged the sleep time of the mice (p<0.01). THSG changed sleep profile by reducing wake and rapid eye movement (REM) period, and increasing non-REM period. RT-PCR and Western blot analysis showed that THSG could down-regulate the levels of LDH and saliva alpha amylase (p<0.05). The level of lactate and glucose was positively related with the activity of LDH and saliva alpha amylase (p<0.05), respectively. On the other hand, the activities of LDH and amylase were negatively associated with sleep duration (p<0.05). The levels of lactate and glucose affect sleep homeostasis. Thus, THSG may prevent insomnia by regulating sleep duration via LDH and salivary alpha amylase.

  1. Cellular Homeostasis and Aging.

    PubMed

    Hartl, F Ulrich

    2016-06-02

    Aging and longevity are controlled by a multiplicity of molecular and cellular signaling events that interface with environmental factors to maintain cellular homeostasis. Modulation of these pathways to extend life span, including insulin-like signaling and the response to dietary restriction, identified the cellular machineries and networks of protein homeostasis (proteostasis) and stress resistance pathways as critical players in the aging process. A decline of proteostasis capacity during aging leads to dysfunction of specific cell types and tissues, rendering the organism susceptible to a range of chronic diseases. This volume of the Annual Review of Biochemistry contains a set of two reviews addressing our current understanding of the molecular mechanisms underlying aging in model organisms and humans.

  2. Effect of the calcium to phosphorus ratio on the setting properties of calcium phosphate bone cements.

    PubMed

    Vlad, M D; Gómez, S; Barracó, M; López, J; Fernández, E

    2012-09-01

    α-Tricalcium phosphate (α-TCP) has become the main reactant of most experimental and commercial ceramic bone cements. It has calcium-to-phosphorus (Ca/P) ratio of 1.50. The present study expands and reports on the microstructures and mechanical properties of calcium phosphate (CP) cements containing sintered monolithic reactants obtained in the interval 1.29 < Ca/P < 1.77. The study focuses on their cement setting and hardening properties as well as on their microstructure and crystal phase evolution. The results showed that: (a) CP-cements made with reactants with Ca/P ratio other than 1.50 have longer setting and lower hardening properties; (b) CP-cements reactivity was clearly affected by the Ca/P ratio of the starting reactant; (c) reactants with Ca/P < 1.50 were composed of several phases, calcium pyrophosphate and α- and β-TCP. Similarly, reactants with Ca/P > 1.50 were composed of α-TCP, tetracalcium phosphate and hydroxyapatite; (d) only the reactant with Ca/P = 1.50 was monophasic and was made of α-TCP, which transformed during the setting into calcium deficient hydroxyapatite; (e) CP-cements developed different crystal microstructures with specific features depending on the Ca/P ratio of the starting reactant.

  3. Impaired embryonic development in glucose-6-phosphate dehydrogenase-deficient Caenorhabditis elegans due to abnormal redox homeostasis induced activation of calcium-independent phospholipase and alteration of glycerophospholipid metabolism.

    PubMed

    Chen, Tzu-Ling; Yang, Hung-Chi; Hung, Cheng-Yu; Ou, Meng-Hsin; Pan, Yi-Yun; Cheng, Mei-Ling; Stern, Arnold; Lo, Szecheng J; Chiu, Daniel Tsun-Yee

    2017-01-12

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a commonly pervasive inherited disease in many parts of the world. The complete lack of G6PD activity in a mouse model causes embryonic lethality. The G6PD-deficient Caenorhabditis elegans model also shows embryonic death as indicated by a severe hatching defect. Although increased oxidative stress has been implicated in both cases as the underlying cause, the exact mechanism has not been clearly delineated. In this study with C. elegans, membrane-associated defects, including enhanced permeability, defective polarity and cytokinesis, were found in G6PD-deficient embryos. The membrane-associated abnormalities were accompanied by impaired eggshell structure as evidenced by a transmission electron microscopic study. Such loss of membrane structural integrity was associated with abnormal lipid composition as lipidomic analysis revealed that lysoglycerophospholipids were significantly increased in G6PD-deficient embryos. Abnormal glycerophospholipid metabolism leading to defective embryonic development could be attributed to the increased activity of calcium-independent phospholipase A 2 (iPLA) in G6PD-deficient embryos. This notion is further supported by the fact that the suppression of multiple iPLAs by genetic manipulation partially rescued the embryonic defects in G6PD-deficient embryos. In addition, G6PD deficiency induced disruption of redox balance as manifested by diminished NADPH and elevated lipid peroxidation in embryos. Taken together, disrupted lipid metabolism due to abnormal redox homeostasis is a major factor contributing to abnormal embryonic development in G6PD-deficient C. elegans.

  4. Aluminium exposure disrupts elemental homeostasis in Caenorhabditis elegans†

    PubMed Central

    Page, Kathryn E.; White, Keith N.; McCrohan, Catherine R.

    2013-01-01

    Aluminium (Al) is highly abundant in the environment and can elicit a variety of toxic responses in biological systems. Here we characterize the effects of Al on Caenorhabditis elegans by identifying phenotypic abnormalities and disruption in whole-body metal homeostasis (metallostasis) following Al exposure in food. Widespread changes to the elemental content of adult nematodes were observed when chronically exposed to Al from the first larval stage (L1). Specifically, we saw increased barium, chromium, copper and iron content, and a reduction in calcium levels. Lifespan was decreased in worms exposed to low levels of Al, but unexpectedly increased when the Al concentration reached higher levels (4.8 mM). This bi-phasic phenotype was only observed when Al exposure occurred during development, as lifespan was unaffected by Al exposure during adulthood. Lower levels of Al slowed C. elegans developmental progression, and reduced hermaphrodite self-fertility and adult body size. Significant developmental delay was observed even when Al exposure was restricted to embryogenesis. Similar changes in Al have been noted in association with Al toxicity in humans and other mammals, suggesting that C. elegans may be of use as a model for understanding the mechanisms of Al toxicity in mammalian systems. PMID:22534883

  5. Glycine Receptor Activation Impairs ATP-Induced Calcium Transients in Cultured Cortical Astrocytes

    PubMed Central

    Morais, Tatiana P.; Coelho, David; Vaz, Sandra H.; Sebastião, Ana M.; Valente, Cláudia A.

    2018-01-01

    In central nervous system, glycine receptor (GlyR) is mostly expressed in the spinal cord and brainstem, but glycinergic transmission related elements have also been identified in the brain. Astrocytes are active elements at the tripartite synapse, being responsible for the maintenance of brain homeostasis and for the fine-tuning of synaptic activity. These cells communicate, spontaneously or in response to a stimulus, by elevations in their cytosolic calcium (calcium transients, Ca2+T) that can be propagated to other cells. How these Ca2+T are negatively modulated is yet poorly understood. In this work, we evaluated GlyR expression and its role on calcium signaling modulation in rat brain astrocytes. We first proved that GlyR, predominantly subunits α2 and β, was expressed in brain astrocytes and its localization was confirmed in the cytoplasm and astrocytic processes by immunohistochemistry assays. Calcium imaging experiments in cultured astrocytes showed that glycine (500 μM), a GlyR agonist, caused a concentration-dependent reduction in ATP-induced Ca2+T, an effect abolished by the GlyR antagonist, strychnine (0.8 μM), as well as by nocodazole (1 μM), known to impair GlyR anchorage to the plasma membrane. This effect was mimicked by activation of GABAAR, another Cl--permeable channel. In summary, we demonstrated that GlyR activation in astrocytes mediates an inhibitory effect upon ATP induced Ca2+T, which most probably involves changes in membrane permeability to Cl- and requires GlyR anchorage at the plasma membrane. GlyR in astrocytes may thus be part of a mechanism to modulate astrocyte-to-neuron communication. PMID:29386993

  6. 21 CFR 172.330 - Calcium pantothenate, calcium chloride double salt.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.330 Calcium pantothenate, calcium chloride double salt. The food additive calcium chloride double salt of calcium pantothenate may...

  7. 21 CFR 172.330 - Calcium pantothenate, calcium chloride double salt.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.330 Calcium pantothenate, calcium chloride double salt. The food additive calcium chloride double salt of calcium pantothenate may...

  8. 21 CFR 172.330 - Calcium pantothenate, calcium chloride double salt.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.330 Calcium pantothenate, calcium chloride double salt. The food additive calcium chloride double salt of calcium pantothenate may...

  9. CALCIUM CHLORIDE PLANT LOOKING EAST. CALCIUM CHLORIDE BUILDING ON LEFT, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CALCIUM CHLORIDE PLANT LOOKING EAST. CALCIUM CHLORIDE BUILDING ON LEFT, CALCIUM CHLORIDE STORAGE BUILDING ON RIGHT OF CENTER WITH TOP OF SA (SODA ASH) BUILDING IN RIGHT BACKGROUND. - Solvay Process Company, Calcium Chloride Plant, Between Willis & Milton Avenues, Solvay, Onondaga County, NY

  10. Mutation/SNP analysis in EF-hand calcium binding domain of mitochondrial Ca[Formula: see text] uptake 1 gene in bipolar disorder patients.

    PubMed

    Safari, Roghaiyeh; Salimi, Reza; Tunca, Zeliha; Ozerdem, Aysegul; Ceylan, Deniz; Sakizli, Meral

    2016-06-01

    Calcium signaling is important for synaptic plasticity, generation of brain rhythms, regulating neuronal excitability, data processing and cognition. Impairment in calcium homeostasis contributed to the development of psychiatric disorders such as bipolar disorder (BP). MCU is the most important calcium transporter in mitochondria inner membrane responsible for influx of Ca[Formula: see text]. MICU1 is linked with MCU and has two canonical EF hands that are vital for its activity and regulates MCU-mediated Ca[Formula: see text] influx. In the current study, we aimed to investigate the role of genetic alteration of EF hand calcium binding motifs of MICU1 on the development of BP. We examined patients with BP, first degree relatives of these patients and healthy volunteers for mutations and polymorphisms in EF hand calcium binding motifs of MICU1. The result showed no SNP/mutation in BP patients, in healthy subjects and in first degree relatives. Additionally, alignment of the EF hand calcium binding regions among species (Gallus-gallus, Canis-lupus-familiaris, Bos-taurus, Mus-musculus, Rattus-norvegicus, Pan-troglodytes, Homosapiens and Danio-rerio) showed exactly the same amino acids (DLNGDGEVDMEE and DCDGNGELSNKE) except in one of the calcium binding domain of Danio-rerio that there was only one difference; leucine instead of Methionine. Our results showed that the SNP on EF-hand Ca[Formula: see text] binding domains of MICU1 gene had no effect in phenotypic characters of BP patients.

  11. Pulsed electromagnetic fields promote the proliferation and differentiation of osteoblasts by reinforcing intracellular calcium transients.

    PubMed

    Tong, Jie; Sun, Lijun; Zhu, Bin; Fan, Yun; Ma, Xingfeng; Yu, Liyin; Zhang, Jianbao

    2017-10-01

    Pulsed electromagnetic fields (PEMF) can be used to treat bone-related diseases, but the underlying mechanism remains unclear, especially the process by which PEMFs initiate biological effects. In this study, we demonstrated the effects of PEMF on proliferation and differentiation of osteoblasts using the model of calcium transients induced by high extracellular calcium. Our results showed that PEMF can increase both the percentage of responding cells and amplitude of intracellular calcium transients induced by high extracellular calcium stimulation. Compared with corresponding extracellular calcium levels, PEMF stimulation increased proliferation and differentiation of osteoblasts and related gene expressions, such as insulin-like growth factor 1 (IGF-1), alkaline phosphatase (ALP), runt-related transcription factor 2 (Runx2), and osteocalcin (OCN), which can be completely abolished by BAPTA-AM. Moreover, PEMF did not affect proliferation and differentiation of osteoblasts if no intracellular calcium transient was present in osteoblasts during PEMF exposure. Our results revealed that PEMF affects osteoblast proliferation and differentiation through enhanced intracellular calcium transients, which provided a cue to treat bone-related diseases with PEMF. Bioelectromagnetics. 38:541-549, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  12. Effects of nanoparticle zinc oxide on emotional behavior and trace elements homeostasis in rat brain.

    PubMed

    Amara, Salem; Slama, Imen Ben; Omri, Karim; El Ghoul, Jaber; El Mir, Lassaad; Rhouma, Khemais Ben; Abdelmelek, Hafedh; Sakly, Mohsen

    2015-12-01

    Over recent years, nanotoxicology and the potential effects on human body have grown in significance, the potential influences of nanosized materials on the central nervous system have received more attention. The aim of this study was to determine whether zinc oxide (ZnO) nanoparticles (NPs) exposure cause alterations in emotional behavior and trace elements homeostasis in rat brain. Rats were treated by intraperitoneal injection of ZnO NPs (20-30 nm) at a dose of 25 mg/kg body weight. Sub -: acute ZnO NPs treatment induced no significant increase in the zinc content in the homogenate brain. Statistically significant decreases in iron and calcium concentrations were found in rat brain tissue compared to control. However, sodium and potassium contents remained unchanged. Also, there were no significant changes in the body weight and the coefficient of brain. In the present study, the anxiety-related behavior was evaluated using the plus-maze test. ZnO NPs treatment modulates slightly the exploratory behaviors of rats. However, no significant differences were observed in the anxious index between ZnO NP-treated rats and the control group (p > 0.05). Interestingly, our results demonstrated minimal effects of ZnO NPs on emotional behavior of animals, but there was a possible alteration in trace elements homeostasis in rat brain. © The Author(s) 2012.

  13. 21 CFR 172.330 - Calcium pantothenate, calcium chloride double salt.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... SERVICES (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.330 Calcium pantothenate, calcium chloride double salt. The food additive calcium chloride double salt of calcium pantothenate may be safely used in foods for special...

  14. Calcium waves.

    PubMed

    Jaffe, Lionel F

    2008-04-12

    Waves through living systems are best characterized by their speeds at 20 degrees C. These speeds vary from those of calcium action potentials to those of ultraslow ones which move at 1-10 and/or 10-20 nm s(-1). All such waves are known or inferred to be calcium waves. The two classes of calcium waves which include ones with important morphogenetic effects are slow waves that move at 0.2-2 microm s(-1) and ultraslow ones. Both may be propagated by cycles in which the entry of calcium through the plasma membrane induces subsurface contraction. This contraction opens nearby stretch-sensitive calcium channels. Calcium entry through these channels propagates the calcium wave. Many slow waves are seen as waves of indentation. Some are considered to act via cellular peristalsis; for example, those which seem to drive the germ plasm to the vegetal pole of the Xenopus egg. Other good examples of morphogenetic slow waves are ones through fertilizing maize eggs, through developing barnacle eggs and through axolotl embryos during neural induction. Good examples of ultraslow morphogenetic waves are ones during inversion in developing Volvox embryos and across developing Drosophila eye discs. Morphogenetic waves may be best pursued by imaging their calcium with aequorins.

  15. Interactions between calcium precipitation and the polyphosphate-accumulating bacteria metabolism.

    PubMed

    Barat, R; Montoya, T; Borrás, L; Ferrer, J; Seco, A

    2008-07-01

    A sequencing batch reactor that is operated for biological phosphorus removal has been operated under different influent calcium concentrations to study the precipitation process and the possible effects of phosphorus precipitation in the biological phosphorus removal process. Four experiments were carried out under different influent calcium concentrations ranging from 10 to 90 g Ca m(-3). The experimental results and the equilibrium study, which are based on the saturation index calculation, confirm that the process controlling the calcium behaviour is the calcium phosphate precipitation. This precipitation takes place at two stages: initially, precipitation of the amorphous calcium phosphate, and later crystallization of hydroxyapatite. Also the accumulation of phosphorus precipitated was observed when the influent calcium concentration was increased. In all the experiments, the influent wastewater ratio P/COD was kept constant. It has been observed that, at high calcium concentration, the ratio between phosphate release and acetate uptake (P(rel)/Ac(uptake)) decreases. Changes in the polyphosphate-accumulating organism (PAO) population and in the glycogen-accumulating organism (GAO) population during the experimental period were ruled out by means of fluorescence in situ hybridization. These results could suggest that PAO are able to change their metabolic pathways based on external conditions, such as influent calcium concentration. The accumulation of phosphorus precipitated as calcium phosphate at high influent calcium concentration throughout the experimental period confirmed that phosphate precipitation is a process that can affect the PAO metabolism.

  16. Vitamin D, Calcium, and Cardiovascular Disease: a“D”vantageous or “D”etrimental? An era of uncertainty

    PubMed Central

    Chin, Kathleen; Appel, Lawrence J.; Michos, Erin D.

    2017-01-01

    While the function of vitamin D in regulating calcium homeostasis is well established, there has been growing interest in its role in the prevention of numerous chronic diseases, including cardiovascular disease (CVD). There is mounting epidemiological evidence suggesting that vitamin D deficiency is linked to increased CVD risk. However, the results of previous vitamin D supplementation trials have yielded mixed results in regards to cardiovascular health, and the results of on-going large-scale randomized controlled trials are not yet available. Further complicating the issue, calcium supplementation, which is often prescribed concurrently with vitamin D, has been associated with increased CVD risk in some (but not all) studies. Thus, it is currently unclear whether vitamin D supplements, particularly for those that are deficient, can help prevent the development of CVD. In addition, there has not been uniform consensus regarding the threshold of 25-hydroxyvitamin D levels that constitutes “sufficiency” across organizational guidelines. This review will provide an update on the most recent evidence regarding the effects of vitamin D and calcium supplements on CVD clinical outcomes, summarize ongoing vitamin D trials, and discuss the current but remarkably disparate recommendations regarding vitamin D deficiency screening and supplementation. PMID:28127710

  17. 1,25-Dihydroxyvitamin D3 Controls a Cohort of Vitamin D Receptor Target Genes in the Proximal Intestine That Is Enriched for Calcium-regulating Components.

    PubMed

    Lee, Seong Min; Riley, Erin M; Meyer, Mark B; Benkusky, Nancy A; Plum, Lori A; DeLuca, Hector F; Pike, J Wesley

    2015-07-17

    1,25-Dihydroxyvitamin D3 (1,25(OH)2D3) plays an integral role in calcium homeostasis in higher organisms through its actions in the intestine, kidney, and skeleton. Interestingly, although several intestinal genes are known to play a contributory role in calcium homeostasis, the entire caste of key components remains to be identified. To examine this issue, Cyp27b1 null mice on either a normal or a high calcium/phosphate-containing rescue diet were treated with vehicle or 1,25(OH)2D3 and evaluated 6 h later. RNA samples from the duodena were then subjected to RNA sequence analysis, and the data were analyzed bioinformatically. 1,25(OH)2D3 altered expression of large collections of genes in animals under either dietary condition. 45 genes were found common to both 1,25(OH)2D3-treated groups and were composed of genes previously linked to intestinal calcium uptake, including S100g, Trpv6, Atp2b1, and Cldn2 as well as others. An additional distinct network of 56 genes was regulated exclusively by diet. We then conducted a ChIP sequence analysis of binding sites for the vitamin D receptor (VDR) across the proximal intestine in vitamin D-sufficient normal mice treated with vehicle or 1,25(OH)2D3. The residual VDR cistrome was composed of 4617 sites, which was increased almost 4-fold following hormone treatment. Interestingly, the majority of the genes regulated by 1,25(OH)2D3 in each diet group as well as those found in common in both groups contained frequent VDR sites that likely regulated their expression. This study revealed a global network of genes in the intestine that both represent direct targets of vitamin D action in mice and are involved in calcium absorption. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Altered sarcoplasmic reticulum calcium cycling—targets for heart failure therapy

    PubMed Central

    Kho, Changwon; Lee, Ahyoung; Hajjar, Roger J.

    2013-01-01

    Cardiac myocyte function is dependent on the synchronized movements of Ca2+ into and out of the cell, as well as between the cytosol and sarcoplasmic reticulum. These movements determine cardiac rhythm and regulate excitation–contraction coupling. Ca2+ cycling is mediated by a number of critical Ca2+-handling proteins and transporters, such as L-type Ca2+ channels (LTCCs) and sodium/calcium exchangers in the sarcolemma, and sarcoplasmic/endoplasmic reticulum calcium ATPase 2a (SERCA2a), ryanodine receptors, and cardiac phospholamban in the sarcoplasmic reticulum. The entry of Ca2+ into the cytosol through LTCCs activates the release of Ca2+ from the sarcoplasmic reticulum through ryanodine receptor channels and initiates myocyte contraction, whereas SERCA2a and cardiac phospholamban have a key role in sarcoplasmic reticulum Ca2+ sequesteration and myocyte relaxation. Excitation–contraction coupling is regulated by phosphorylation of Ca2+-handling proteins. Abnormalities in sarcoplasmic reticulum Ca2+ cycling are hallmarks of heart failure and contribute to the pathophysiology and progression of this disease. Correcting impaired intracellular Ca2+ cycling is a promising new approach for the treatment of heart failure. Novel therapeutic strategies that enhance myocyte Ca2+ homeostasis could prevent and reverse adverse cardiac remodeling and improve clinical outcomes in patients with heart failure. PMID:23090087

  19. Roles of Commensal Microbiota in Pancreas Homeostasis and Pancreatic Pathologies

    PubMed Central

    Leal-Lopes, Camila; Velloso, Fernando J.; Campopiano, Julia C.; Sogayar, Mari C.; Correa, Ricardo G.

    2015-01-01

    The pancreas plays a central role in metabolism, allowing ingested food to be converted and used as fuel by the cells throughout the body. On the other hand, the pancreas may be affected by devastating diseases, such as pancreatitis, pancreatic adenocarcinoma (PAC), and diabetes mellitus (DM), which generally results in a wide metabolic imbalance. The causes for the development and progression of these diseases are still controversial; therefore it is essential to better understand the underlying mechanisms which compromise the pancreatic homeostasis. The interest in the study of the commensal microbiome increased extensively in recent years, when many discoveries have illustrated its central role in both human physiology and maintenance of homeostasis. Further understanding of the involvement of the microbiome during the development of pathological conditions is critical for the improvement of new diagnostic and therapeutic approaches. In the present review, we discuss recent findings on the behavior and functions played by the microbiota in major pancreatic diseases and provide further insights into its potential roles in the maintenance of pancreatic steady-state activities. PMID:26347203

  20. REDUCING TOXICITY AND INCREASING EFFICIENCY: ACONITINE WITH LIQUIRITIN AND GLYCYRRHETINIC ACID REGULATE CALCIUM REGULATORY PROTEINS IN RAT MYOCARDIAL CELL.

    PubMed

    Zhang, Yuyan; Yu, Li; Jin, Weifeng; Fan, Hongjing; Li, Min; Zhou, Tianmei; Wan, Haitong; Yang, Jiehong

    2017-01-01

    Compatibility of Radix Aconiti Carmichaeli and Liquorice is known to treat heart diseases such as heart failure and cardiac arrhythmias. This work answers the question that whether the active components (Aconitine, Liquiritin and Glycyrrhetinic Acid) of Radix Aconiti Carmichaeli and Liquorice could result in regulating intracellular calcium homeostasis and calcium cycling, and thereby verifies the therapeutic material basis. The myocardial cells were divided into twelve groups randomly as control group, Aconitine group, nine different dose groups that orthogonal combined with Aconitine, Liquiritin and Glycyrrhetinic Acid, and Verapamil group. The myocardial cellular survival rate and morphology were assessed. The expression of calcium regulation protein(RyR2, NCX1, DHPR-a1) in the myocardial cell by Western-blotting. The results exhibited that Aconitine (120 uM) significantly damaged on myocardial cell, decreased the survival rate and expression of Na + /Ca 2+ exchangers (NCX1) and dihydropteridine reducta-α1 (DHPR-a1), and increased the expression of ryanodine receptor type2 (RyR2) obviously. The compatibility groups (Aconitine, Liquiritin and Glycyrrhetinic Acid) all could against the damage on the myocardial cell by Aconitine at different levels. Aconitine with Liquiritin and Glycyrrhetinic Acid may regulate the expression of calcium-regulated proteins to protect myocardial cells from damage.

  1. REDUCING TOXICITY AND INCREASING EFFICIENCY: ACONITINE WITH LIQUIRITIN AND GLYCYRRHETINIC ACID REGULATE CALCIUM REGULATORY PROTEINS IN RAT MYOCARDIAL CELL

    PubMed Central

    Zhang, Yuyan; Yu, Li; Jin, Weifeng; Fan, Hongjing; Li, Min; Zhou, Tianmei; Wan, Haitong; Yang, Jiehong

    2017-01-01

    Background: Compatibility of Radix Aconiti Carmichaeli and Liquorice is known to treat heart diseases such as heart failure and cardiac arrhythmias. This work answers the question that whether the active components (Aconitine, Liquiritin and Glycyrrhetinic Acid) of Radix Aconiti Carmichaeli and Liquorice could result in regulating intracellular calcium homeostasis and calcium cycling, and thereby verifies the therapeutic material basis. Materials and Methods: The myocardial cells were divided into twelve groups randomly as control group, Aconitine group, nine different dose groups that orthogonal combined with Aconitine, Liquiritin and Glycyrrhetinic Acid, and Verapamil group. The myocardial cellular survival rate and morphology were assessed. The expression of calcium regulation protein(RyR2, NCX1, DHPR-a1) in the myocardial cell by Western-blotting. Results: The results exhibited that Aconitine (120 uM) significantly damaged on myocardial cell, decreased the survival rate and expression of Na+/Ca2+ exchangers (NCX1) and dihydropteridine reducta-α1 (DHPR-a1), and increased the expression of ryanodine receptor type2 (RyR2) obviously. The compatibility groups (Aconitine, Liquiritin and Glycyrrhetinic Acid) all could against the damage on the myocardial cell by Aconitine at different levels. Conclusion: Aconitine with Liquiritin and Glycyrrhetinic Acid may regulate the expression of calcium-regulated proteins to protect myocardial cells from damage. PMID:28638869

  2. Calcium - urine

    MedlinePlus

    Urinary Ca+2; Kidney stones - calcium in urine; Renal calculi - calcium in your urine; Parathyroid - calcium in urine ... A 24-hour urine sample is most often needed: On day 1, urinate into the toilet when you wake up in the morning. ...

  3. Specific reduction of calcium-binding protein (28-kilodalton calbindin-D) gene expression in aging and neurodegenerative diseases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iacopino, A.M.; Christakos, S.

    1990-06-01

    The present studies establish that there are specific, significant decreases in the neuronal calcium-binding protein (28-kDa calbindin-D) gene expression in aging and in neurodegenerative diseases. The specificity of the changes observed in calbindin mRNA levels was tested by reprobing blots with calmodulin, cyclophilin, and B-actin cDNAs. Gross brain regions of the aging rat exhibited specific, significant decreases in calbindin{center dot}mRNA and protein levels in the cerebellum, corpus striatum, and brain-stem region but not in the cerebral cortex or hippocampus. Discrete areas of the aging human brain exhibited significant decreases in calbindin protein and mRNA in the cerebellum, corpus striatum, andmore » nucleus basalis but not in the neocortex, hippocampus, amygdala, locus ceruleus, or nucleus raphe dorsalis. Comparison of diseased human brain tissue with age- and sex-matched controls yielded significant decreases calbindin protein and mRNA in the substantia nigra (Parkinson disease), in the corpus striatum (Huntington disease), in the nucleus basalis (Alzheimer disease), and in the hippocampus and nucleus raphe dorsalis (Parkinson, Huntington, and Alzheimer diseases) but not in the cerebellum, neocortex, amygdala, or locus ceruleus. These findings suggest that decreased calbindin gene expression may lead to a failure of calcium buffering or intraneuronal calcium homeostasis, which contributes to calcium-mediated cytotoxic events during aging and in the pathogenesis of neurodegenerative diseases.« less

  4. Redox homeostasis: The Golden Mean of healthy living.

    PubMed

    Ursini, Fulvio; Maiorino, Matilde; Forman, Henry Jay

    2016-08-01

    The notion that electrophiles serve as messengers in cell signaling is now widely accepted. Nonetheless, major issues restrain acceptance of redox homeostasis and redox signaling as components of maintenance of a normal physiological steady state. The first is that redox signaling requires sudden switching on of oxidant production and bypassing of antioxidant mechanisms rather than a continuous process that, like other signaling mechanisms, can be smoothly turned up or down. The second is the misperception that reactions in redox signaling involve "reactive oxygen species" rather than reaction of specific electrophiles with specific protein thiolates. The third is that hormesis provides protection against oxidants by increasing cellular defense or repair mechanisms rather than by specifically addressing the offset of redox homeostasis. Instead, we propose that both oxidant and antioxidant signaling are main features of redox homeostasis. As the redox shift is rapidly reversed by feedback reactions, homeostasis is maintained by continuous signaling for production and elimination of electrophiles and nucleophiles. Redox homeostasis, which is the maintenance of nucleophilic tone, accounts for a healthy physiological steady state. Electrophiles and nucleophiles are not intrinsically harmful or protective, and redox homeostasis is an essential feature of both the response to challenges and subsequent feedback. While the balance between oxidants and nucleophiles is preserved in redox homeostasis, oxidative stress provokes the establishment of a new radically altered redox steady state. The popular belief that scavenging free radicals by antioxidants has a beneficial effect is wishful thinking. We propose, instead, that continuous feedback preserves nucleophilic tone and that this is supported by redox active nutritional phytochemicals. These nonessential compounds, by activating Nrf2, mimic the effect of endogenously produced electrophiles (parahormesis). In summary

  5. Genetically Encoded Calcium Indicators For Studying Long-Term Calcium Dynamics During Apoptosis

    PubMed Central

    Garcia, M. Iveth; Chen, Jessica J.; Boehning, Darren

    2017-01-01

    Intracellular calcium release is essential for regulating almost all cellular functions. Specific spatio-temporal patterns of cytosolic calcium elevations are critical determinants of cell fate in response to pro-apoptotic cellular stressors. As the apoptotic program can take hours or days, measurement of long-term calcium dynamics are essential for understanding the mechanistic role of calcium in apoptotic cell death. Due to the technical limitations of using calcium-sensitive dyes to measure cytosolic calcium little is known about long-term calcium dynamics in living cells after treatment with apoptosis-inducing drugs. Genetically encoded calcium indicators could potentially overcome some of the limitations of calcium-sensitive dyes. Here, we compared the performance of the genetically encoded calcium indicators GCaMP6s and GCaMP6f with the ratiometric dye Fura-2. GCaMP6s performed as well or better than Fura-2 in detecting agonist-induced calcium transients. We then examined the utility of GCaMP6s for continuously measuring apoptotic calcium release over the course of ten hours after treatment with staurosporine. We found that GCaMP6s was suitable for measuring apoptotic calcium release over long time courses and revealed significant heterogeneity in calcium release dynamics in individual cells challenged with staurosporine. Our results suggest GCaMP6s is an excellent indicator for monitoring long-term changes cytosolic calcium during apoptosis. PMID:28073595

  6. Inhibition of parathyroid hormone release by maitotoxin, a calcium channel activator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fitzpatrick, L.A.; Yasumoto, T.; Aurbach, G.D.

    1989-01-01

    Maitotoxin, a toxin derived from a marine dinoflagellate, is a potent activator of voltage-sensitive calcium channels. To further test the hypothesis that inhibition of PTH secretion by calcium is mediated via a calcium channel we studied the effect of maitotoxin on dispersed bovine parathyroid cells. Maitotoxin inhibited PTH release in a dose-dependent fashion, and inhibition was maximal at 1 ng/ml. Chelation of extracellular calcium by EGTA blocked the inhibition of PTH by maitotoxin. Maitotoxin enhanced the effects of the dihydropyridine calcium channel agonist (+)202-791 and increased the rate of radiocalcium uptake in parathyroid cells. Pertussis toxin, which ADP-ribosylates and inactivatesmore » a guanine nucleotide regulatory protein that interacts with calcium channels in the parathyroid cell, did not affect the inhibition of PTH secretion by maitotoxin. Maitotoxin, by its action on calcium channels allows entry of extracellular calcium and inhibits PTH release. Our results suggest that calcium channels are involved in the release of PTH. Inhibition of PTH release by maitotoxin is not sensitive to pertussis toxin, suggesting that maitotoxin may act distal to the site interacting with a guanine nucleotide regulatory protein, or maitotoxin could interact with other ions or second messengers to inhibit PTH release.« less

  7. The effect of variable calcium and very low calcium diets on human calcium metabolism. Ph.D. Thesis. Final Report

    NASA Technical Reports Server (NTRS)

    Chu, J.

    1971-01-01

    The effects of a very low calcium diet, with variable high and low protein intake, on the dynamics of calcium metabolism and the mechanism of calciuretics, are examined. The experiment, using male subjects, was designed to study the role of intestinal calcium absorption on urinary calcium excretion, and the rate of production of endogeneously secreted calcium in the gastrointestinal tract. The study showed an average of 70% fractional absorption rate during very low calcium intake, and that a decrease in renal tubular reabsorption of calcium is responsible for calciuretic effects of high protein intake. The study also indicates that there is a tendency to develop osteoporosis after long periods of low calcium intake, especially with a concurrent high protein intake.

  8. The activity of calcium in calcium-metal-fluoride fluxes

    NASA Astrophysics Data System (ADS)

    Ochifuji, Yuichiro; Tsukihashi, Fumitaka; Sano, Nobuo

    1995-08-01

    The standard Gibbs energy of reaction Ca (1) + O (mass pct, in Zr) = CaO (s) has been determined as follows by equilibrating molten calcium with solid zirconium in a CaO crucible: Δ G° = -64,300(±700) + 19.8(±3.5) T J/mol (1373 to 1623 K) The activities of calcium in the CaOsatd-Ca- MF2 ( M: Ca, Ba, Mg) and CaOsatd-Ca-NaF systems were measured as a function of calcium composition at high calcium contents at 1473 K on the basis of the standard Gibbs energy. The activities of calcium increase in the order of CaF2, BaF2, and MgF2 at the same calcium fraction of these fluxes. The observed activities are compared with those estimated by using the Temkin model for ionic solutions. Furthermore, the possibility of the removal of tramp elements such as tin, arsenic, antimony, bismuth, and lead from carbon-saturated iron by using calcium-metal-fluoride fluxes is discussed.

  9. Characterization of keratinocyte differentiation induced by ascorbic acid: protein kinase C involvement and vitamin C homeostasis.

    PubMed

    Savini, Isabella; Catani, Maria Valeria; Rossi, Antonello; Duranti, Guglielmo; Melino, Gerry; Avigliano, Luciana

    2002-02-01

    Epidermal keratinocytes undergo differentiation in response to several stimuli to form the cornified envelope, a structure that contributes to the barrier function of skin. Although differentiation has been extensively analyzed, the precise role of vitamin C during this process is still not defined. Ascorbic acid, besides acting as a radical scavenger, has been shown to promote mesenchymal differentiation. In this study, we found that keratinocytes grown in ascorbate-supplemented medium developed a differentiated phenotype, as demonstrated by enhanced expression of marker genes and increase in cornified envelope content. The pro-differentiating effects of ascorbate were mediated by the protein-kinase-C-dependent induction of activating protein 1 DNA binding activity; indeed, down-modulation of protein kinase C activity abolished differentiation triggered by ascorbic acid. Although vitamin C appeared to regulate the same signaling pathway modulated by calcium, a classical in vitro inducer of epidermal differentiation, nonetheless terminally differentiated keratinocytes exhibited different ascorbate homeostasis and cellular antioxidant status. Indeed, we found that, unlike calcium, differentiation promoted by ascorbate was accompanied by (i) an enhanced ascorbate transport, due to overexpression of specific transporters, (ii) a great efficiency of dehydroascorbate uptake, and (iii) an increase in glutathione content with respect to proliferating cells. Ascorbic acid may be useful to promote epidermal differentiation, avoiding depletion of hydrophilic antioxidant stores.

  10. Interoception beyond homeostasis: affect, cognition and mental health.

    PubMed

    Tsakiris, Manos; Critchley, Hugo

    2016-11-19

    Interoception refers to the sensing of the internal state of one's body. Interoception is distinct from the processing of sensory information concerning external (non-self) stimuli (e.g. vision, hearing, touch and smell) and is the afferent axis to internal (autonomic and hormonal) physiological control. However, the impact of interoception extends beyond homeostatic/allostatic reflexes: it is proposed to be fundamental to motivation, emotion (affective feelings and behaviours), social cognition and self-awareness. This view is supported by a growing body of experimental evidence that links peripheral physiological states to mental processes. Within this framework, the representation of self is constructed from early development through continuous integrative representation of biological data from the body, to form the basis for those aspects of conscious awareness grounded on the subjective sense of being a unique individual. This theme issue of the Philosophical Transactions of the Royal Society B draws together state-of-the-art knowledge concerning theoretical, experimental and clinical facets of interoception with the emphasis on cognitive and affective neuroscience. The multidisciplinary and cross-disciplinary perspectives represented in this theme issue disseminate and entrench knowledge about interoception across the scientific community and provide a reference for the conceptualization and further study of interoception across behavioural sciences. © 2016 The Author(s).

  11. Genetically encoded calcium indicators for studying long-term calcium dynamics during apoptosis.

    PubMed

    Garcia, M Iveth; Chen, Jessica J; Boehning, Darren

    2017-01-01

    Intracellular calcium release is essential for regulating almost all cellular functions. Specific spatio-temporal patterns of cytosolic calcium elevations are critical determinants of cell fate in response to pro-apoptotic cellular stressors. As the apoptotic program can take hours or days, measurement of long-term calcium dynamics are essential for understanding the mechanistic role of calcium in apoptotic cell death. Due to the technical limitations of using calcium-sensitive dyes to measure cytosolic calcium little is known about long-term calcium dynamics in living cells after treatment with apoptosis-inducing drugs. Genetically encoded calcium indicators could potentially overcome some of the limitations of calcium-sensitive dyes. Here, we compared the performance of the genetically encoded calcium indicators GCaMP6s and GCaMP6f with the ratiometric dye Fura-2. GCaMP6s performed as well or better than Fura-2 in detecting agonist-induced calcium transients. We then examined the utility of GCaMP6s for continuously measuring apoptotic calcium release over the course of ten hours after treatment with staurosporine. We found that GCaMP6s was suitable for measuring apoptotic calcium release over long time courses and revealed significant heterogeneity in calcium release dynamics in individual cells challenged with staurosporine. Our results suggest GCaMP6s is an excellent indicator for monitoring long-term changes cytosolic calcium during apoptosis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Chronic social stress leads to altered sleep homeostasis in mice.

    PubMed

    Olini, Nadja; Rothfuchs, Iru; Azzinnari, Damiano; Pryce, Christopher R; Kurth, Salome; Huber, Reto

    2017-06-01

    Disturbed sleep and altered sleep homeostasis are core features of many psychiatric disorders such as depression. Chronic uncontrollable stress is considered an important factor in the development of depression, but little is known on how chronic stress affects sleep regulation and sleep homeostasis. We therefore examined the effects of chronic social stress (CSS) on sleep regulation in mice. Adult male C57BL/6 mice were implanted for electrocortical recordings (ECoG) and underwent either a 10-day CSS protocol or control handling (CON). Subsequently, ECoG was assessed across a 24-h post-stress baseline, followed by a 4-h sleep deprivation, and then a 20-h recovery period. After sleep deprivation, CSS mice showed a blunted increase in sleep pressure compared to CON mice, as measured using slow wave activity (SWA, electroencephalographic power between 1-4Hz) during non-rapid eye movement (NREM) sleep. Vigilance states did not differ between CSS and CON mice during post-stress baseline, sleep deprivation or recovery, with the exception of CSS mice exhibiting increased REM sleep during recovery sleep. Behavior during sleep deprivation was not affected by CSS. Our data provide evidence that CSS alters the homeostatic regulation of sleep SWA in mice. In contrast to acute social stress, which results in a faster SWA build-up, CSS decelerates the homeostatic build up. These findings are discussed in relation to the causal contribution of stress-induced sleep disturbance to depression. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Calcium orthophosphates

    PubMed Central

    Dorozhkin, Sergey V.

    2011-01-01

    The present overview is intended to point the readers’ attention to the important subject of calcium orthophosphates. This type of materials is of special significance for human beings, because they represent the inorganic part of major normal (bones, teeth and antlers) and pathological (i.e., those appearing due to various diseases) calcified tissues of mammals. For example, atherosclerosis results in blood vessel blockage caused by a solid composite of cholesterol with calcium orthophosphates, while dental caries and osteoporosis mean a partial decalcification of teeth and bones, respectively, that results in replacement of a less soluble and harder biological apatite by more soluble and softer calcium hydrogenphosphates. Therefore, the processes of both normal and pathological calcifications are just an in vivo crystallization of calcium orthophosphates. Similarly, dental caries and osteoporosis might be considered an in vivo dissolution of calcium orthophosphates. Thus, calcium orthophosphates hold a great significance for humankind, and in this paper, an overview on the current knowledge on this subject is provided. PMID:23507744

  14. Calcium, mitochondria and oxidative stress in neuronal pathology. Novel aspects of an enduring theme.

    PubMed

    Chinopoulos, Christos; Adam-Vizi, Vera

    2006-02-01

    The interplay among reactive oxygen species (ROS) formation, elevated intracellular calcium concentration and mitochondrial demise is a recurring theme in research focusing on brain pathology, both for acute and chronic neurodegenerative states. However, causality, extent of contribution or the sequence of these events prior to cell death is not yet firmly established. Here we review the role of the alpha-ketoglutarate dehydrogenase complex as a newly identified source of mitochondrial ROS production. Furthermore, based on contemporary reports we examine novel concepts as potential mediators of neuronal injury connecting mitochondria, increased [Ca2+]c and ROS/reactive nitrogen species (RNS) formation; specifically: (a) the possibility that plasmalemmal nonselective cationic channels contribute to the latent [Ca2+]c rise in the context of glutamate-induced delayed calcium deregulation; (b) the likelihood of the involvement of the channels in the phenomenon of 'Ca2+ paradox' that might be implicated in ischemia/reperfusion injury; and (c) how ROS/RNS and mitochondrial status could influence the activity of these channels leading to loss of ionic homeostasis and cell death.

  15. Behavioral Sleep-Wake Homeostasis and EEG Delta Power Are Decoupled By Chronic Sleep Restriction in the Rat

    PubMed Central

    Stephenson, Richard; Caron, Aimee M.; Famina, Svetlana

    2015-01-01

    Study Objectives: Chronic sleep restriction (CSR) is prevalent in society and is linked to adverse consequences that might be ameliorated by acclimation of homeostatic drive. This study was designed to test the hypothesis that the sleep-wake homeostat will acclimatize to CSR. DESIGN: A four-parameter model of proportional control was used to quantify sleep homeostasis with and without recourse to a sleep intensity function. Setting: Animal laboratory, rodent walking-wheel apparatus. Subjects: Male Sprague-Dawley rats. Interventions: Acute total sleep deprivation (TSD, 1 day × 18 or 24 h, N = 12), CSR (10 days × 18 h TSD, N = 6, or 5 days × 20 h TSD, N = 5). Measurements and Results: Behavioral rebounds were consistent with model predictions for proportional control of cumulative times in wake, nonrapid eye movement sleep (NREM) and rapid eye movement sleep (REM). Delta (Δ) energy homeostasis was secondary to behavioral homeostasis; a biphasic NREM Δ power rebound contributed to the dynamics (rapid response) but not to the magnitude of the rebound in Δ energy. REM behavioral homeostasis was little affected by CSR. NREM behavioral homeostasis was attenuated in proportion to cumulative NREM deficit, whereas the biphasic NREM Δ power rebound was only slightly suppressed, indicating decoupled regulatory mechanisms following CSR. Conclusions: We conclude that sleep homeostasis is achieved through behavioral regulation, that the nonrapid eye movement sleep behavioral homeostat is susceptible to attenuation during chronic sleep restriction and that the concept of sleep intensity is not essential in a model of sleep-wake regulation. Citation: Stephenson R, Caron AM, Famina S. Behavioral sleep-wake homeostasis and EEG delta power are decoupled by chronic sleep restriction in the rat. SLEEP 2015;38(5):685–697. PMID:25669184

  16. LKB1 Regulates Mitochondria-Dependent Presynaptic Calcium Clearance and Neurotransmitter Release Properties at Excitatory Synapses along Cortical Axons.

    PubMed

    Kwon, Seok-Kyu; Sando, Richard; Lewis, Tommy L; Hirabayashi, Yusuke; Maximov, Anton; Polleux, Franck

    2016-07-01

    Individual synapses vary significantly in their neurotransmitter release properties, which underlie complex information processing in neural circuits. Presynaptic Ca2+ homeostasis plays a critical role in specifying neurotransmitter release properties, but the mechanisms regulating synapse-specific Ca2+ homeostasis in the mammalian brain are still poorly understood. Using electrophysiology and genetically encoded Ca2+ sensors targeted to the mitochondrial matrix or to presynaptic boutons of cortical pyramidal neurons, we demonstrate that the presence or absence of mitochondria at presynaptic boutons dictates neurotransmitter release properties through Mitochondrial Calcium Uniporter (MCU)-dependent Ca2+ clearance. We demonstrate that the serine/threonine kinase LKB1 regulates MCU expression, mitochondria-dependent Ca2+ clearance, and thereby, presynaptic release properties. Re-establishment of MCU-dependent mitochondrial Ca2+ uptake at glutamatergic synapses rescues the altered neurotransmitter release properties characterizing LKB1-null cortical axons. Our results provide novel insights into the cellular and molecular mechanisms whereby mitochondria control neurotransmitter release properties in a bouton-specific way through presynaptic Ca2+ clearance.

  17. Calcium

    MedlinePlus

    ... Guidelines for Americans and the U.S. Department of Agriculture's MyPlate . Where can I find out more about ... on food sources of calcium: U.S. Department of Agriculture's (USDA) National Nutrient Database Nutrient List for calcium ( ...

  18. Calcium supplementation prevents endothelial cell activation: possible relevance to preeclampsia.

    PubMed

    Chen, Qi; Tong, Mancy; Wu, Man; Stone, Peter R; Snowise, Saul; Chamley, Lawrence W

    2013-09-01

    Preeclampsia is a leading cause of maternal and fetal mortality and morbidity. A hallmark of preeclampsia is endothelial cell dysfunction/activation in response to 'toxins' from the placenta. Necrotic trophoblastic debris (NTD) is one possible placental toxin and other activators of endothelial cells include inflammatory cytokines. Calcium supplementation appears to protect 'at-risk' women from developing preeclampsia but how is unclear. Placental explants were cultured with interleukin-6 (IL-6) in varied concentrations of calcium. The resultant trophoblastic debris was exposed to endothelial cells. Endothelial cells were exposed to activators including NTD, IL-6, and preeclamptic sera in the presence of varied concentrations of calcium and activation monitored by quantifying cell surface markers by ELISA. Raising the levels of calcium did not prevent the IL-6-induced shedding of NTD from placental explants but did prevent the activation of endothelial cells in response to IL-6, preeclamptic sera, or NTD. Reducing the level of calcium directly induced the activation of endothelial cells. Inhibiting nitric oxide synthetase ablated the ability of high calcium levels to protect endothelial cell activation. The activity of endothelial cell nitric oxide synthetase was blocked with L-N-nitroarginine methyl ester. Our results demonstrate calcium levels do not affect the shedding of trophoblastic debris but are important to endothelial cell activation and supplemental calcium may reverse the activation of the endothelium in preeclamptic women. These results may in part explain the benefits of calcium supplementation in the reduction of risk for developing preeclampsia and provide in-vitro mechanistic support for the use of calcium supplementation in at-risk women.

  19. Effect of curd washing on the properties of reduced-calcium and standard-calcium Cheddar cheese.

    PubMed

    Hou, Jia; McSweeney, Paul L H; Beresford, Thomas P; Guinee, Timothy P

    2014-10-01

    Washed (W) and nonwashed (NW) variants of standard (SCa) and reduced-calcium (RCa) Cheddar cheeses were made in triplicate, ripened for a 270-d period, and analyzed for composition and changes during maturation. Curd washing was applied to cheeses to give a target level of lactose plus lactic acid in cheese moisture of 3.9 g/100 g in the W cheese, compared with a value of 5.3 g/100 g of lactose plus lactic acid in cheese moisture in the control NW cheeses. The 4 cheese types were denoted standard calcium nonwashed (SCaNW), standard calcium washed (SCaW), reduced-calcium nonwashed (RCaNW), and reduced-calcium washed (RCaW). The mean calcium level was 760 mg/100 g in the SCaNW and SCaW and 660 mg/100 g in the RCaNW and RCaW cheeses. Otherwise the gross composition of all cheeses was similar, each with protein, fat, and moisture levels of ~26, 32, and 36 g/100 g, respectively. Curd washing significantly reduced the mean level of lactic acid in the SCaW cheese and residual lactose in both SCaW and RCaW cheeses. The mean pH of the standard-calcium cheese over the 270-d ripening period increased significantly with curd washing and ripening time, in contrast to the reduced-calcium cheese, which was not affected by the latter parameters. Otherwise curd washing had little effect on changes in populations of starter bacteria or nonstarter lactic acid bacteria, proteolysis, rheology, or color of the cheese during ripening. Descriptive sensory analysis at 270 d indicated that the SCaW cheese had a nuttier, sweeter, less fruity, and less rancid taste than the corresponding SCaNW cheese. In contrast, curd washing was not as effective in discriminating between the RCaW and RCaNW cheeses. The RCaW cheese had a more buttery, caramel odor and flavor, and a more bitter, less sweet, and nutty taste than the SCaW cheese, whereas the RCaNW had a more pungent and less fruity flavor, a less fruity odor, a saltier, more-bitter, and less acidic taste, and a more astringent mouthfeel than

  20. Parallel Stochastic discrete event simulation of calcium dynamics in neuron.

    PubMed

    Ishlam Patoary, Mohammad Nazrul; Tropper, Carl; McDougal, Robert A; Zhongwei, Lin; Lytton, William W

    2017-09-26

    The intra-cellular calcium signaling pathways of a neuron depends on both biochemical reactions and diffusions. Some quasi-isolated compartments (e.g. spines) are so small and calcium concentrations are so low that one extra molecule diffusing in by chance can make a nontrivial difference in its concentration (percentage-wise). These rare events can affect dynamics discretely in such way that they cannot be evaluated by a deterministic simulation. Stochastic models of such a system provide a more detailed understanding of these systems than existing deterministic models because they capture their behavior at a molecular level. Our research focuses on the development of a high performance parallel discrete event simulation environment, Neuron Time Warp (NTW), which is intended for use in the parallel simulation of stochastic reaction-diffusion systems such as intra-calcium signaling. NTW is integrated with NEURON, a simulator which is widely used within the neuroscience community. We simulate two models, a calcium buffer and a calcium wave model. The calcium buffer model is employed in order to verify the correctness and performance of NTW by comparing it to a serial deterministic simulation in NEURON. We also derived a discrete event calcium wave model from a deterministic model using the stochastic IP3R structure.

  1. Role of mitochondrial calcium uptake homeostasis in resting state fMRI brain networks.

    PubMed

    Kannurpatti, Sridhar S; Sanganahalli, Basavaraju G; Herman, Peter; Hyder, Fahmeed

    2015-11-01

    Mitochondrial Ca(2+) uptake influences both brain energy metabolism and neural signaling. Given that brain mitochondrial organelles are distributed in relation to vascular density, which varies considerably across brain regions, we hypothesized different physiological impacts of mitochondrial Ca(2+) uptake across brain regions. We tested the hypothesis by monitoring brain "intrinsic activity" derived from the resting state functional MRI (fMRI) blood oxygen level dependent (BOLD) fluctuations in different functional networks spanning the somatosensory cortex, caudate putamen, hippocampus and thalamus, in normal and perturbed mitochondrial Ca(2+) uptake states. In anesthetized rats at 11.7 T, mitochondrial Ca(2+) uptake was inhibited or enhanced respectively by treatments with Ru360 or kaempferol. Surprisingly, mitochondrial Ca(2+) uptake inhibition by Ru360 and enhancement by kaempferol led to similar dose-dependent decreases in brain-wide intrinsic activities in both the frequency domain (spectral amplitude) and temporal domain (resting state functional connectivity; RSFC). The fact that there were similar dose-dependent decreases in the frequency and temporal domains of the resting state fMRI-BOLD fluctuations during mitochondrial Ca(2+) uptake inhibition or enhancement indicated that mitochondrial Ca(2+) uptake and its homeostasis may strongly influence the brain's functional organization at rest. Interestingly, the resting state fMRI-derived intrinsic activities in the caudate putamen and thalamic regions saturated much faster with increasing dosage of either drug treatment than the drug-induced trends observed in cortical and hippocampal regions. Regional differences in how the spectral amplitude and RSFC changed with treatment indicate distinct mitochondrion-mediated spontaneous neuronal activity coupling within the various RSFC networks determined by resting state fMRI. Copyright © 2015 John Wiley & Sons, Ltd.

  2. Ryanodine receptor gating controls generation of diastolic calcium waves in cardiac myocytes

    PubMed Central

    Petrovič, Pavol; Valent, Ivan; Cocherová, Elena; Pavelková, Jana

    2015-01-01

    The role of cardiac ryanodine receptor (RyR) gating in the initiation and propagation of calcium waves was investigated using a mathematical model comprising a stochastic description of RyR gating and a deterministic description of calcium diffusion and sequestration. We used a one-dimensional array of equidistantly spaced RyR clusters, representing the confocal scanning line, to simulate the formation of calcium sparks. Our model provided an excellent description of the calcium dependence of the frequency of diastolic calcium sparks and of the increased tendency for the production of calcium waves after a decrease in cytosolic calcium buffering. We developed a hypothesis relating changes in the propensity to form calcium waves to changes of RyR gating and tested it by simulation. With a realistic RyR gating model, increased ability of RyR to be activated by Ca2+ strongly increased the propensity for generation of calcium waves at low (0.05–0.1-µM) calcium concentrations but only slightly at high (0.2–0.4-µM) calcium concentrations. Changes in RyR gating altered calcium wave formation by changing the calcium sensitivity of spontaneous calcium spark activation and/or the average number of open RyRs in spontaneous calcium sparks. Gating changes that did not affect RyR activation by Ca2+ had only a weak effect on the propensity to form calcium waves, even if they strongly increased calcium spark frequency. Calcium waves induced by modulating the properties of the RyR activation site could be suppressed by inhibiting the spontaneous opening of the RyR. These data can explain the increased tendency for production of calcium waves under conditions when RyR gating is altered in cardiac diseases. PMID:26009544

  3. Mechanosensitive subcellular rheostasis drives emergent single-cell mechanical homeostasis

    NASA Astrophysics Data System (ADS)

    Weng, Shinuo; Shao, Yue; Chen, Weiqiang; Fu, Jianping

    2016-09-01

    Mechanical homeostasis--a fundamental process by which cells maintain stable states under environmental perturbations--is regulated by two subcellular mechanotransducers: cytoskeleton tension and integrin-mediated focal adhesions (FAs). Here, we show that single-cell mechanical homeostasis is collectively driven by the distinct, graduated dynamics (rheostasis) of subcellular cytoskeleton tension and FAs. Such rheostasis involves a mechanosensitive pattern wherein ground states of cytoskeleton tension and FA determine their distinct reactive paths through either relaxation or reinforcement. Pharmacological perturbations of the cytoskeleton and molecularly modulated integrin catch-slip bonds biased the rheostasis and induced non-homeostasis of FAs, but not of cytoskeleton tension, suggesting a unique sensitivity of FAs in regulating homeostasis. Theoretical modelling revealed myosin-mediated cytoskeleton contractility and catch-slip-bond-like behaviours in FAs and the cytoskeleton as sufficient and necessary mechanisms for quantitatively recapitulating mechanosensitive rheostasis. Our findings highlight the previously underappreciated physical nature of the mechanical homeostasis of cells.

  4. Probabilistic Perception, Empathy, and Dynamic Homeostasis: Insights in Autism Spectrum Disorders and Conduct Disorders

    PubMed Central

    Guilé, Jean Marc

    2013-01-01

    Homeostasis is not a permanent and stable state but instead results from conflicting forces. Therefore, infants have to engage in dynamic exchanges with their environment, in biological, cognitive, and affective domains. Empathy is an adaptive response to these environmental challenges, which contributes to reaching proper dynamic homeostasis and development. Empathy relies on implicit interactive processes, namely probabilistic perception and synchrony, which will be reviewed in the article. If typically-developed neonates are fully equipped to automatically and synchronously interact with their human environment, conduct disorders (CD) and autism spectrum disorders (ASD) present with impairments in empathetic communication, e.g., emotional arousal and facial emotion processing. In addition sensorimotor resonance is lacking in ASD, and emotional concern and semantic empathy are impaired in CD with Callous-Unemotional traits. PMID:24479115

  5. Evolutionary Tradeoffs between Economy and Effectiveness in Biological Homeostasis Systems

    PubMed Central

    Szekely, Pablo; Sheftel, Hila; Mayo, Avi; Alon, Uri

    2013-01-01

    Biological regulatory systems face a fundamental tradeoff: they must be effective but at the same time also economical. For example, regulatory systems that are designed to repair damage must be effective in reducing damage, but economical in not making too many repair proteins because making excessive proteins carries a fitness cost to the cell, called protein burden. In order to see how biological systems compromise between the two tasks of effectiveness and economy, we applied an approach from economics and engineering called Pareto optimality. This approach allows calculating the best-compromise systems that optimally combine the two tasks. We used a simple and general model for regulation, known as integral feedback, and showed that best-compromise systems have particular combinations of biochemical parameters that control the response rate and basal level. We find that the optimal systems fall on a curve in parameter space. Due to this feature, even if one is able to measure only a small fraction of the system's parameters, one can infer the rest. We applied this approach to estimate parameters in three biological systems: response to heat shock and response to DNA damage in bacteria, and calcium homeostasis in mammals. PMID:23950698

  6. Evolutionary tradeoffs between economy and effectiveness in biological homeostasis systems.

    PubMed

    Szekely, Pablo; Sheftel, Hila; Mayo, Avi; Alon, Uri

    2013-01-01

    Biological regulatory systems face a fundamental tradeoff: they must be effective but at the same time also economical. For example, regulatory systems that are designed to repair damage must be effective in reducing damage, but economical in not making too many repair proteins because making excessive proteins carries a fitness cost to the cell, called protein burden. In order to see how biological systems compromise between the two tasks of effectiveness and economy, we applied an approach from economics and engineering called Pareto optimality. This approach allows calculating the best-compromise systems that optimally combine the two tasks. We used a simple and general model for regulation, known as integral feedback, and showed that best-compromise systems have particular combinations of biochemical parameters that control the response rate and basal level. We find that the optimal systems fall on a curve in parameter space. Due to this feature, even if one is able to measure only a small fraction of the system's parameters, one can infer the rest. We applied this approach to estimate parameters in three biological systems: response to heat shock and response to DNA damage in bacteria, and calcium homeostasis in mammals.

  7. Calcium and ROS: A mutual interplay

    PubMed Central

    Görlach, Agnes; Bertram, Katharina; Hudecova, Sona; Krizanova, Olga

    2015-01-01

    Calcium is an important second messenger involved in intra- and extracellular signaling cascades and plays an essential role in cell life and death decisions. The Ca2+ signaling network works in many different ways to regulate cellular processes that function over a wide dynamic range due to the action of buffers, pumps and exchangers on the plasma membrane as well as in internal stores. Calcium signaling pathways interact with other cellular signaling systems such as reactive oxygen species (ROS). Although initially considered to be potentially detrimental byproducts of aerobic metabolism, it is now clear that ROS generated in sub-toxic levels by different intracellular systems act as signaling molecules involved in various cellular processes including growth and cell death. Increasing evidence suggests a mutual interplay between calcium and ROS signaling systems which seems to have important implications for fine tuning cellular signaling networks. However, dysfunction in either of the systems might affect the other system thus potentiating harmful effects which might contribute to the pathogenesis of various disorders. PMID:26296072

  8. Altered stored calcium release in skeletal myotubes deficient of triadin and junctin

    PubMed Central

    Wang, Ying; Li, Xinghai; Duan, Hongzhe; Fulton, Timothy R.; Eu, Jerry P.; Meissner, Gerhard

    2008-01-01

    Summary Triadin and junctin are integral sarcoplasmic reticulum membrane proteins that form a macromolecular complex with the skeletal muscle ryanodine receptor (RyR1) but their roles in skeletal muscle calcium homeostasis remain incompletely understood. Here we report that delivery of siRNAs specific for triadin or junctin into C2C12 skeletal myoblasts reduced the expression of triadin and junctin in 8-day-old myotubes by 80 and 100%, respectively. Knocking down either triadin or junctin in these cells reduced Ca2+ release induced by depolarization (10 mM KCl) by 20–25%. Unlike triadin knockdown myotubes, junctin knockdown and junctin/triadin double knockdown myotubes also had reduced Ca2+ release induced by 400 μM 4-chloro-m-cresol, 10 mM caffeine, 400 μM UTP, or 1 μM thapsigargin. Thus, knocking down junctin compromised the Ca2+ stores in the sarcoplasmic reticulum of these cells. Our subsequent studies showed that in junctin knockdown myotubes at least two sarcoplasmic reticulum proteins (RyR1 and skeletal muscle calsequestrin) were down-regulated while these proteins’ mRNA expression was not affected. The results suggest that triadin has a role in facilitating KCl depolarization-induced Ca2+ release in contrast to junctin which has a role in maintaining sarcoplasmic reticulum Ca2+ store size in C2C12 myotubes. PMID:18620751

  9. ALS Patient Stem Cells for Unveiling Disease Signatures of Motoneuron Susceptibility: Perspectives on the Deadly Mitochondria, ER Stress and Calcium Triad

    PubMed Central

    Kaus, Anjoscha; Sareen, Dhruv

    2015-01-01

    Amyotrophic lateral sclerosis (ALS) is a largely sporadic progressive neurodegenerative disease affecting upper and lower motoneurons (MNs) whose specific etiology is incompletely understood. Mutations in superoxide dismutase-1 (SOD1), TAR DNA-binding protein 43 (TARDBP/TDP-43) and C9orf72, have been identified in subsets of familial and sporadic patients. Key associated molecular and neuropathological features include ubiquitinated TDP-43 inclusions, stress granules, aggregated dipeptide proteins from mutant C9orf72 transcripts, altered mitochondrial ultrastructure, dysregulated calcium homeostasis, oxidative and endoplasmic reticulum (ER) stress, and an unfolded protein response (UPR). Such impairments have been documented in ALS animal models; however, whether these mechanisms are initiating factors or later consequential events leading to MN vulnerability in ALS patients is debatable. Human induced pluripotent stem cells (iPSCs) are a valuable tool that could resolve this “chicken or egg” causality dilemma. Relevant systems for probing pathophysiologically affected cells from large numbers of ALS patients and discovering phenotypic disease signatures of early MN susceptibility are described. Performing unbiased ‘OMICS and high-throughput screening in relevant neural cells from a cohort of ALS patient iPSCs, and rescuing mitochondrial and ER stress impairments, can identify targeted therapeutics for increasing MN longevity in ALS. PMID:26635528

  10. Effect of Casein Phosphopeptide-Amorphous Calcium Phosphate and Three Calcium Phosphate on Enamel Microhardness.

    PubMed

    Haghgou, En Hr; Haghgoo, Roza; Roholahi, Mohamad R; Ghorbani, Zahra

    2017-07-01

    This study aims to investigate the effect of casein phos-phopeptide-amorphous calcium phosphate and three calcium phosphate (CPP-ACP and TCP) on increasing the microhardness of human enamel after induction of erosion. A total of 26 healthy human-impacted third molar teeth were chosen, and their hardness measured using a microhardness testing machine. The samples were immersed in Coca Cola (pH = 4.7) for 8 minutes. Then, micro-hardness was measured again, and these samples were randomly divided into four groups (two control groups and two experimental groups). (1) Negative control group: Artificial saliva was used for 10 minutes, (2) positive control group: Fluoride gel was used for 10 minutes, (3) β-TCP group: TCP was used for 10 minutes, (4) CCP-ACP group: CCP-ACP was used for 10 minutes. The final microhardness of those samples was measured, and the changes in microhardness of teeth within group and between groups were analyzed using the paired and analysis of variance tests respectively. Results were considered statistically significant at a level of p < 0.05. No significant difference was observed in microhard-ness between CPP-ACP group and TCP group (p = 0.368) during the time microhardness significantly dropped after soaking in soda. Casein phosphopeptide-amorphous calcium phosphate and TCP increased the microhardness of teeth. The increase in hardness in the TCP group was higher than in the CPP-ACP group, but this difference was not significant (p = 0.36). Casein phosphopeptide-amorphous calcium phosphate and TCP can affect the remineralization of erosive lesions.

  11. Biogenic Fish-gut Calcium Carbonate is a Stable Amorphous Phase in the Gilt-head Seabream, Sparus aurata

    PubMed Central

    Foran, Elizabeth; Weiner, Steve; Fine, Maoz

    2013-01-01

    The main source of calcium carbonate (CaCO3) in the ocean comes from the shells of calcifying planktonic organisms, but substantial amounts of CaCO3 are also produced in fish intestines. The precipitation of CaCO3 assists fish in intestinal water absorption and aids in whole body Ca2+ homeostasis. Here we report that the product formed in the intestinal lumen of the gilt-head seabream, Sparus aurata, is an amorphous calcium carbonate (ACC) phase. With FTIR spectroscopy and SEM imaging, our study shows that the fish-derived carbonates from S. aurata are maintained as a stable amorphous phase throughout the intestinal tract. Moreover, intestinal deposits contained up to 54 mol% Mg2+, the highest concentration yet reported in biogenic ACC. Mg is most likely responsible for stabilizing this inherently unstable mineral. The fish carbonates also displayed initial rapid dissolution when exposed to seawater, exhibiting a significant increase in carbonate concentration. PMID:23609008

  12. Effect of soluble calcium on the renneting properties of casein micelles as measured by rheology and diffusing wave spectroscopy.

    PubMed

    Sandra, S; Ho, M; Alexander, M; Corredig, M

    2012-01-01

    Addition of calcium chloride to milk has positive effects on cheese-making because it decreases coagulation time, creates firmer gels, and increases curd yield. Although addition of calcium chloride is a widely used industrial practice, the effect of soluble calcium on the preliminary stages of gelation is not fully understood. In addition, it is not known whether the manner of addition and equilibration of the soluble calcium would affect the rennetability of the casein micelles. Therefore, the aim of this paper was to study the details of the coagulation behavior of casein micelles in the presence of additional calcium, and to elucidate whether the manner in which this cation is added (directly as calcium chloride or by gradual exchange through dialysis) affects the functionality of the micelles. Calcium was added as CaCl(2) (1 mM final added concentration) directly to skim milk or indirectly using dialysis against 50 volumes of milk. Additional soluble calcium did not affect the primary phase of the renneting reaction, as demonstrated by the analysis of the casein macropeptide (CMP) released in solution; however, it shortened the coagulation time of the micelles and increased the firmness of the gel. The turbidity parameter of samples with or without calcium showed that similar amounts of CMP were needed for particle interactions to commence. However, the amount of CMP released at the point of gelation, as indicated by rheology, was lesser for samples with added calcium, which can be attributed to a greater extent of calcium bridging on the surface or between micelles. The results also showed that the manner in which calcium was presented to the micelles did not influence the mechanism of gelation. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  13. Protein Homeostasis in Amyotrophic Lateral Sclerosis: Therapeutic Opportunities?

    PubMed Central

    Webster, Christopher P.; Smith, Emma F.; Shaw, Pamela J.; De Vos, Kurt J.

    2017-01-01

    Protein homeostasis (proteostasis), the correct balance between production and degradation of proteins, is essential for the health and survival of cells. Proteostasis requires an intricate network of protein quality control pathways (the proteostasis network) that work to prevent protein aggregation and maintain proteome health throughout the lifespan of the cell. Collapse of proteostasis has been implicated in the etiology of a number of neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), the most common adult onset motor neuron disorder. Here, we review the evidence linking dysfunctional proteostasis to the etiology of ALS and discuss how ALS-associated insults affect the proteostasis network. Finally, we discuss the potential therapeutic benefit of proteostasis network modulation in ALS. PMID:28512398

  14. Leptin and Hormones: Energy Homeostasis.

    PubMed

    Triantafyllou, Georgios A; Paschou, Stavroula A; Mantzoros, Christos S

    2016-09-01

    Leptin, a 167 amino acid adipokine, plays a major role in human energy homeostasis. Its actions are mediated through binding to leptin receptor and activating JAK-STAT3 signal transduction pathway. It is expressed mainly in adipocytes, and its circulating levels reflect the body's energy stores in adipose tissue. Recombinant methionyl human leptin has been FDA approved for patients with generalized non-HIV lipodystrophy and for compassionate use in subjects with congenital leptin deficiency. The purpose of this review is to outline the role of leptin in energy homeostasis, as well as its interaction with other hormones. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. CD14 Deficiency Impacts Glucose Homeostasis in Mice through Altered Adrenal Tone

    PubMed Central

    Young, James L.; Mora, Alfonso; Cerny, Anna; Czech, Michael P.; Woda, Bruce; Kurt-Jones, Evelyn A.; Finberg, Robert W.; Corvera, Silvia

    2012-01-01

    The toll-like receptors comprise one of the most conserved components of the innate immune system, signaling the presence of molecules of microbial origin. It has been proposed that signaling through TLR4, which requires CD14 to recognize bacterial lipopolysaccharide (LPS), may generate low-grade inflammation and thereby affect insulin sensitivity and glucose metabolism. To examine the long-term influence of partial innate immune signaling disruption on glucose homeostasis, we analyzed knockout mice deficient in CD14 backcrossed into the diabetes-prone C57BL6 background at 6 or 12 months of age. CD14-ko mice, fed either normal or high-fat diets, displayed significant glucose intolerance compared to wild type controls. They also displayed elevated norepinephrine urinary excretion and increased adrenal medullary volume, as well as an enhanced norepinephrine secretory response to insulin-induced hypoglycemia. These results point out a previously unappreciated crosstalk between innate immune- and sympathoadrenal- systems, which exerts a major long-term effect on glucose homeostasis. PMID:22253759

  16. Effect of malnutrition on iron homeostasis in black-necked swans (Cygnus melanocoryphus).

    PubMed

    Norambuena, M Cecilia; Bozinovic, Francisco

    2009-12-01

    The Cayumapu River black-necked swan (Cygnus melanocoryphus) population in southern Chile suffered a syndrome of malnutrition and hyperferremia in 2005. The iron metabolic imbalance could not be explained on the basis of the quality of their diet. Hence, the primary objective of this study was to determine the relationship between malnutrition and iron homeostasis in black-necked swans. It was proposed that catabolic processes could increase serum iron levels due to the release of endogenous iron from tissues. A free-living swan population undergoing natural nutritional imbalance due to molting was studied. In addition, swans captured were subjected to a diet restriction until they became emaciated. The results revealed that neither lipolytic activity nor emaciation affected serum iron concentrations. The increment of total iron binding capacity observed was in agreement with the reduction of endogenous iron stored, with the increase of erythropoeitic demand, or with both. Future studies are needed to determine the effect of incremental erythropoietic activity on iron homeostasis in anemic, malnourished birds.

  17. Aluminum hydroxide, calcium carbonate and calcium acetate in chronic intermittent hemodialysis patients.

    PubMed

    Janssen, M J; van der Kuy, A; ter Wee, P M; van Boven, W P

    1996-02-01

    Prevention of secondary hyperparathyroidism in uremia necessitates correction of hyperphosphatemia and hypocalcemia. In order to avoid aluminum toxicity, calcium containing phosphate binders are used increasingly, instead of aluminium hydroxide. Recent studies have shown that calcium acetate has many characteristics of an ideal phosphate binder. It is, for instance, a more readily soluble salt compared with calcium carbonate. This advantage might, however, disappear if calcium carbonate is taken on an empty stomach, a few minutes before meals. We examined the efficacy of three different phosphate binding agents in a randomized prospective study of 53 patients on regular hemodialysis. Bicarbonate dialyses were performed with a dialysate calcium concentration of 1.75 mmol/l. After a three-week wash-out period, patients received either aluminum hydroxide (control group), calcium acetate, or calcium carbonate as their phosphate binder. Patients were instructed to take the calcium salts a few minutes before meals on an empty stomach, and aluminum hydroxide during meals. Serum calcium, phosphate, intact parathormone, and alkaline phosphatase levels were determined every month. Patient compliance was estimated every month by asking the patients which phosphate binder and what daily dose they had used. Aluminum hydroxide tended to be the most effective phosphate binder. The mean +/- SEM required daily dose of calcium acetate at 12 months was 5.04 +/- 0.60 g, corresponding to 10.1 +/- 1.20 tablets of 500 mg. Co-medication with aluminum hydroxide, however, was needed (1.29 +/- 0.54 g per day, corresponding to 2.6 +/- 1.08 tablets of 500 mg). The required daily calcium carbonate dose appeared to be 2.71 +/- 0.48 g, corresponding to 5.4 +/- 0.95 capsules of 500 mg, with an adjuvant daily aluminum hydroxide dose of 0.69 +/- 0.27 g, corresponding to 1.4 +/- 0.55 tablets of 500 mg (p = 0.0055). Thus, the mean daily doses of elemental calcium were comparable between the calcium

  18. Calcium and vitamin D in post menopausal women.

    PubMed

    Aggarwal, Sameer; Nityanand

    2013-12-01

    Calcium and Vitamin D are widely used therapies for Osteoporosis. Vitamin D is not a vitamin in true sense since it is produced in response to the action of sunlight on skin. Vitamin D has multiple roles in the body, not all of them well-understood. Vitamin D supplementation must be considered a form of hormone replacement therapy. Therefore it raises all the questions about efficacy, dose, and side effects. The Efficacy of use of Calcium and Vitamin D in all post menopausal women in terms of the prevention of fracture is uncertain. The Annual worldwide sales of these supplements have been several billion dollars. The variation of the results from various studies of Calcium and Vitamin D supplementation in elderly women suggest that benefit of calcium plus vitamin D on bone mineral density or the risk of fracture is small and may vary from group to group and baseline Vitamin D status. Women taking supplemental vitamin D and calcium have a statistically increased incidence of renal stones, according to evidence from the Women's Health Initiative. Studies have shown association between calcium use and increased risk for cardiovascular disease. In a recent review of evidence from 6 randomized trials evaluating the use of vitamin D and calcium to prevent fractures in postmenopausal women who are not living in a nursing home or other institution, the United States Preventive Task Force (USPTF) found no evidence of a benefit from supplementation with 400 IU or less of vitamin D3 and 1000 mg or less of calcium. Also in a report from institute of Medicine Committee, there was insufficient evidence, particularly from randomized trials, that vitamin D treatment affected the risk of non skeletal outcomes like risk of cancer, cardiovascular disease, diabetes, infections, autoimmune disease, and other extra skeletal outcomes.

  19. Expression of the high capacity calcium-binding domain of calreticulin increases bioavailable calcium stores in plants

    NASA Technical Reports Server (NTRS)

    Wyatt, Sarah E.; Tsou, Pei-Lan; Robertson, Dominique; Brown, C. S. (Principal Investigator)

    2002-01-01

    Modulation of cytosolic calcium levels in both plants and animals is achieved by a system of Ca2+-transport and storage pathways that include Ca2+ buffering proteins in the lumen of intracellular compartments. To date, most research has focused on the role of transporters in regulating cytosolic calcium. We used a reverse genetics approach to modulate calcium stores in the lumen of the endoplasmic reticulum. Our goals were two-fold: to use the low affinity, high capacity Ca2+ binding characteristics of the C-domain of calreticulin to selectively increase Ca2+ storage in the endoplasmic reticulum, and to determine if those alterations affected plant physiological responses to stress. The C-domain of calreticulin is a highly acidic region that binds 20-50 moles of Ca2+ per mole of protein and has been shown to be the major site of Ca2+ storage within the endoplasmic reticulum of plant cells. A 377-bp fragment encoding the C-domain and ER retention signal from the maize calreticulin gene was fused to a gene for the green fluorescent protein and expressed in Arabidopsis under the control of a heat shock promoter. Following induction on normal medium, the C-domain transformants showed delayed loss of chlorophyll after transfer to calcium depleted medium when compared to seedlings transformed with green fluorescent protein alone. Total calcium measurements showed a 9-35% increase for induced C-domain transformants compared to controls. The data suggest that ectopic expression of the calreticulin C-domain increases Ca2+ stores, and that this Ca2+ reserve can be used by the plant in times of stress.

  20. Overexpression of the Novel Arabidopsis Gene At5g02890 Alters Inflorescence Stem Wax Composition and Affects Phytohormone Homeostasis

    PubMed Central

    Xu, Liping; Zeisler, Viktoria; Schreiber, Lukas; Gao, Jie; Hu, Kaining; Wen, Jing; Yi, Bin; Shen, Jinxiong; Ma, Chaozhi; Tu, Jinxing; Fu, Tingdong

    2017-01-01

    The cuticle is composed of cutin and cuticular wax. It covers the surfaces of land plants and protects them against environmental damage. At5g02890 encodes a novel protein in Arabidopsis thaliana. In the current study, protein sequence analysis showed that At5g02890 is highly conserved in the Brassicaceae. Arabidopsis lines overexpressing At5g02890 (OE-At5g02890 lines) and an At5g02890 orthologous gene from Brassica napus (OE-Bn1 lines) exhibited glossy stems. Chemical analysis revealed that overexpression of At5g02890 caused significant reductions in the levels of wax components longer than 28 carbons (C28) in inflorescence stems, whereas the levels of wax molecules of chain length C28 or shorter were significantly increased. Transcriptome analysis indicated that nine of 11 cuticular wax synthesis-related genes with different expression levels in OE-At5g02890 plants are involved in very-long-chain fatty acid (VLCFA) elongation. At5g02890 is localized to the endoplasmic reticulum (ER), which is consistent with its function in cuticular wax biosynthesis. These results demonstrate that the overexpression of At5g02890 alters cuticular wax composition by partially blocking VLCFA elongation of C28 and higher. In addition, detailed analysis of differentially expressed genes associated with plant hormones and endogenous phytohormone levels in wild-type and OE-At5g02890 plants indicated that abscisic acid (ABA), jasmonic acid (JA), and jasmonoyl-isoleucine (JA-Ile) biosynthesis, as well as polar auxin transport, were also affected by overexpression of At5g02890. Taken together, these findings indicate that overexpression of At5g02890 affects both cuticular wax biosynthesis and phytohormone homeostasis in Arabidopsis. PMID:28184233